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Preface for the Instructor

This textbook is intended for a sophomore- or junior-level introductory course in linear
algebra. We assume the students have had at least one course in calculus.

PHILOSOPHY AND FEATURES OF THE TEXT
Clarity of Presentation: We have striven for clarity and used straightforward lan-
guage throughout the book, occasionally sacrificing brevity for clear and convincing
explanation. We hope you will encourage students to read the text deeply and
thoroughly.

Helpful Transition from Computation to Theory: In writing this text, our main intention
was to address the fact that students invariably ran into trouble as the largely com-
putational first half of most linear algebra courses gave way to a more theoretical
second half. In particular,many students encountered difficulties when abstract vector
space topics were introduced. Accordingly, we have taken great care to help students
master these important concepts. We consider the material in Sections 4.1 through
5.6 (vector spaces and subspaces, span, linear independence, basis and dimension,
coordinatization, linear transformations, kernel and range, one-to-one and onto linear
transformations, isomorphism,diagonalization of linear operators) to be the“heart”of
this linear algebra text.

Emphasis on the Reading and Writing of Proofs: One reason that students have trouble
with the more abstract material in linear algebra is that most textbooks contain few,
if any, guidelines about reading and writing simple mathematical proofs. This book is
intended to remedy that situation. Consequently,we have students working on proofs
as quickly as possible. After a discussion of the basic properties of vectors, there
is a special section (Section 1.3) on general proof techniques, with concrete exam-
ples using the material on vectors from Sections 1.1 and 1.2. The early placement of
Section 1.3 helps to build the students’confidence and gives them a strong foundation
in the reading and writing of proofs.

We have written the proofs of theorems in the text in a careful manner to give
students models for writing their own proofs. We avoided“clever”or “sneaky”proofs,
in which the last line suddenly produces “a rabbit out of a hat,” because such proofs
invariably frustrate students. They are given no insight into the strategy of the proof
or how the deductive process was used. In fact, such proofs tend to reinforce the
students’mistaken belief that they will never become competent in the art of writing
proofs. In this text,proofs longer than one paragraph are often written in a“top-down”
manner, a concept borrowed from structured programming. A complex theorem is
broken down into a secondary series of results,which together are sufficient to prove
the original theorem. In this way,the student has a clear outline of the logical argument
and can more easily reproduce the proof if called on to do so. ix



 

x Preface for the Instructor

We have left the proofs of some elementary theorems to the student. However, for
every nontrivial theorem in Chapters 1 through 6,we have either included a proof,or
given detailed hints which should be sufficient to enable students to provide a proof
on their own. Most of the proofs of theorems that are left as exercises can be found in
the Student Solutions Manual.The exercises corresponding to these proofs are marked
with the symbol �.

Computational and Numerical Methods, Applications: A summary of the most important
computational and numerical methods covered in this text is found in the chart located
in the frontpages. This chart also contains the most important applications of linear
algebra that are found in this text. Linear algebra is a branch of mathematics having a
multitude of practical applications, and we have included many standard ones so that
instructors can choose their favorites. Chapter 8 is devoted entirely to applications
of linear algebra, but there are also several shorter applications in Chapters 1 to 6.
Instructors may choose to have their students explore these applications in computer
labs,or to assign some of these applications as extra credit reading assignments outside
of class.

Revisiting Topics: We frequently introduce difficult concepts with concrete examples
and then revisit them frequently in increasingly abstract forms as students progress
throughout the text. Here are several examples:

■ Students are first introduced to the concept of linear combinations beginning in
Section 1.1, long before linear combinations are defined for real vector spaces
in Chapter 4.

■ The row space of a matrix is first encountered in Section 2.3, thereby preparing
students for the more general concepts of subspace and span in Sections 4.2
and 4.3.

■ Students traditionally find eigenvalues and eigenvectors to be a difficult topic,so
these are introduced early in the text (Section 3.4) in the context of matrices.
Further properties of eigenvectors are included throughout Chapters 4 and 5 as
underlying vector space concepts are covered. Then a more thorough, detailed
treatment of eigenvalues is given in Section 5.6 in the context of linear transfor-
mations. The more advanced topics of orthogonal and unitary diagonalization
are covered in Chapters 6 and 7.

■ The technique behind the first two methods in Section 4.6 for computing bases
are introduced earlier in Sections 4.3 and 4.4 in the Simplified Span Method and
the Independence Test Method, respectively. In this way, students will become
comfortable with these methods in the context of span and linear independence
before employing them to find appropriate bases for vector spaces.

■ Students are first introduced to least-squares polynomials in Section 8.3 in a
concrete fashion,and then (assuming a knowledge of orthogonal complements),
the theory behind least-squares solutions for inconsistent systems is explored
later on in Section 8.10.
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Numerous Examples and Exercises: There are 321 numbered examples in the text, and
many other unnumbered examples as well, at least one for each new concept or
application, to ensure that students fully understand new material before proceeding
onward. Almost every theorem has a corresponding example to illustrate its meaning
and/or usefulness.

The text also contains an unusually large number of exercises. There are more than
980 numbered exercises, and many of these have multiple parts, for a total of more
than 2660 questions. Some are purely computational. Many others ask the students
to write short proofs. The exercises within each section are generally ordered by
increasing difficulty, beginning with basic computational problems and moving on
to more theoretical problems and proofs. Answers are provided at the end of the
book for approximately half the computational exercises; these problems are marked
with a star (★). Full solutions to the ★ exercises appear in the Student Solutions
Manual.

True/False Exercises: Included among the exercises are 500 True/False questions,
which appear at the end of each section in Chapters 1 through 9, as well as in the
Review Exercises at the end of Chapters 1 through 7, and in Appendices B and C.
These True/False questions help students test their understanding of the fundamental
concepts presented in each section. In particular, these exercises highlight the impor-
tance of crucial words in definitions or theorems. Pondering True/False questions
also helps the students learn the logical differences between “true,” “occasionally
true,” and “never true.” Understanding such distinctions is a crucial step toward the
type of reasoning they are expected to possess as mathematicians.

Summary Tables: There are helpful summaries of important material at various points
in the text:

■ Table 2.1 (in Section 2.3): The three types of row operations and their inverses

■ Table 3.1 (in Section 3.2): Equivalent conditions for a matrix to be singular
(and similarly for nonsingular)

■ Chart following Chapter 3: Techniques for solving a system of linear equations,
and for finding the inverse,determinant,eigenvalues and eigenvectors of a matrix

■ Table 4.1 (in Section 4.4): Equivalent conditions for a subset to be linearly
independent (and similarly for linearly dependent)

■ Table 4.2 (in Section 4.6): Contrasts between the Simplified Span Method and
the Independence Test Method

■ Table 5.1 (in Section 5.2): Matrices for several geometric linear operators
in R

3

■ Table 5.2 (in Section 5.5): Equivalent conditions for a linear transformation to
be an isomorphism (and similarly for one-to-one, onto)

Symbol Table: Following the Prefaces, for convenience, there is a comprehensive Sym-
bolTable listing all of the major symbols related to linear algebra that are employed in
this text together with their meanings.
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Instructor’s Manual: An Instructor’s Manual is available for this text that contains the
answers to all computational exercises, and complete solutions to the theoretical and
proof exercises. In addition, this manual includes three versions of a sample test for
each of Chapters 1 through 7. Answer keys for the sample tests are also included.

Student Solutions Manual: A Student Solutions Manual is available that contains full
solutions for each exercise in the text bearing a ★ (those whose answers appear in
the back of the textbook). The Student Solutions Manual also contains the proofs of
most of the theorems whose proofs were left to the exercises. These exercises are
marked in the text with a �. Because we have compiled this manual ourselves, it
utilizes the same styles of proof-writing and solution techniques that appear in the
actual text.

Web Site: Our web site,

http://elsevierdirect.com/companions/9780123747518

contains appropriate updates on the textbook as well as a way to communicate with
the authors.

MAJOR CHANGES FOR THE FOURTH EDITION
Chapter Review Exercises: We have added additional exercises for review following each
of Chapters 1 through 7, including many additional True/False exercises.

Section-by-Section Vocabulary and Highlights Summary: After each section in the text-
book, for the students’convenience, there is now a summary of important vocabulary
and a summary of the main results of that section.

QR Factorization and Singular Value Decomposition: New sections have been added on
QR Factorization (Section 9.4) and Singular Value Decomposition (Section 9.5). The
latter includes a new application on digital imaging.

Major Revisions: Many sections of the text have been augmented and/or rewritten for
further clarity. The sections that received the most substantial changes are as follows:

■ Section 1.5 (Matrix Multiplication): A new subsection (“Linear Combinations
from Matrix Multiplication”) with some related exercises has been added to
show how a linear combination of the rows or columns of a matrix can be
accomplished easily using matrix multiplication.

■ Section 3.2 (Determinants and Row Reduction): For greater convenience,
the approach to finding the determinant of a matrix by row reduction has been
rewritten so that the row reduction now proceeds in a forward manner.

■ Section 3.4 (Eigenvalues and Diagonalization): The concept of similarity
is introduced in a more formal manner. Also, the vectors obtained from the
row reduction process are labeled as“fundamental eigenvectors”from this point
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onward in the text,and examples in the section have been reordered for greater
clarity.

■ Section 4.4 (Linear Independence): The definition of linear independence
is now taken from Theorem 4.7 in the Third Edition: that is, {v1,v2, . . . ,vn} is
linearly independent if and only if a1v1 � a2v2 � · · · � anvn � 0 implies a1 �
a2 � · · · � an � 0.

■ Section 4.5 (Basis and Dimension): The main theorem of this section (now
Theorem 4.12), that any two bases for the same finite dimensional vector space
have the same size,was preceded in the previous edition by two lemmas.These
lemmas have now been consolidated into one“technical lemma” (Lemma 4.11)
and proven using linear systems rather than the exchange method.

■ Section 4.7 (Coordinatization):The examples in this section have been rewrit-
ten to streamline the overall presentation and introduce the row reduction
method for coordinatization sooner.

■ Section 5.3 (The Dimension Theorem): The Dimension Theorem is now
proven (in a more straightforward manner) for the special case of a linear trans-
formation from R

n to R
m, and the proof for more general linear transformations

is now given in Section 5.5, once the appropriate properties of isomorphisms
have been introduced. (An alternate proof for the Dimension Theorem in the
general case is outlined in Exercise 18 of Section 5.3.)

■ Section 5.4 (One-to-One and Onto Linear Transformations) and
Section 5.5 (Isomorphism): Much of the material of these two sections
was previously in a single section, but has now been extensively revised. This
new approach gives the students more familiarity with one-to-one and onto
transformations before proceeding to isomorphisms. Also, there is a more thor-
ough explanation of how isomorphisms preserve important properties of vector
spaces. This, in turn, validates more carefully the methods used in Chapter 4 for
finding particular bases for general vector spaces other than R

n. [The mate-
rial formerly in Section 5.5 in the Third Edition has been moved to Section 5.6
(Diagonalization of Linear Operators) in the Fourth Edition.]

■ Chapter 8 (Additional Applications): Several of the sections in this chapter
have been rewritten for improved clarity,including Section 8.2 (Ohm’s Law) in
order to stress the use of both of Kirchhoff’s Laws,Section 8.3 (Least-Squares
Polynomials) in order to present concrete examples first before stating the
general result (Theorem 8.2), Section 8.7 (Rotation of Axes) in which the
emphasis is now on a clockwise rotation of axes for simplicity, and Section 8.8
(Computer Graphics) in which there are many minor improvements in the pre-
sentation, including a more careful approach to the display of pixel coordinates
and to the concept of geometric similarity.

■ Appendix A (Miscellaneous Proofs): A proof of Theorem 2.4 (uniqueness of
reduced row echelon form for a matrix) has been added.
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Also, Chapter 10 in the Third Edition has been eliminated and two of its three
sections (Elementary Matrices,Quadratic Forms) have been incorporated into Chapter
8 in the Fourth Edition (as Sections 8.6 and 8.11, respectively). The sections from the
Third Edition entitled“Change of Variables and the Jacobian,”“Max-Min Problems in R

n

and the Hessian Matrix,”and“Function Spaces”have been eliminated,but are available
for downloading and use from the text’s web site. Also, the appendix “Computers
and Calculators”from previous editions has been removed because the most common
computer packages (e.g., Maple, MATLAB, Mathematica) that are used in conjunction
with linear algebra courses now contain introductory tutorials that are much more
thorough than what can be provided here.

PREREQUISITE CHART FOR SECTIONS IN CHAPTERS 7, 8, 9
Prerequisites for the material in Chapters 7 through 9 are listed in the following chart.
The sections of Chapters 8 and 9 are generally independent of each other, and any of
these sections can be covered after its prerequisite has been met.

Section Prerequisite

Section 7.1 (Complex n-Vectors Section 1.5 (Matrix Multiplication)
and Matrices)

Section 7.2 (Complex Eigenvalues Section 3.4 (Eigenvalues and Diagonalization)
and Complex Eigenvectors)*

Section 7.3 (Complex Vector Spaces)* Section 5.2 (The Matrix of a Linear Transformation)

Section 7.4 (Orthogonality in C
n)* Section 6.3 (Orthogonal Diagonalization)

Section 7.5 (Inner Product Spaces)* Section 6.3 (Orthogonal Diagonalization)

Section 8.1 (Graph Theory) Section 1.5 (Matrix Multiplication)

Section 8.2 (Ohm’s Law) Section 2.2 (Gauss-Jordan Row Reduction and
Reduced Row Echelon Form)

Section 8.3 (Least-Squares Polynomials) Section 2.2 (Gauss-Jordan Row Reduction and
Reduced Row Echelon Form)

Section 8.4 (Markov Chains) Section 2.2 (Gauss-Jordan Row Reduction and
Reduced Row Echelon Form)

Section 8.5 (Hill Substitution: An Section 2.4 (Inverses of Matrices)
Introduction to Coding Theory)

Section 8.6 (Elementary Matrices) Section 2.4 (Inverses of Matrices)

Section 8.7 (Rotation of Axes for Conic Sections) Section 4.7 (Coordinatization)

(Continued)
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Section Prerequisite

Section 8.8 (Computer Graphics) Section 5.2 (The Matrix of a Linear Transformation)

Section 8.9 (Differential Equations)** Section 5.6 (Diagonalization of Linear Operators)

Section 8.10 (Least-Squares Section 6.2 (Orthogonal Complements)
Solutions for Inconsistent Systems)

Section 8.11 (Quadratic Forms) Section 6.3 (Orthogonal Diagonalization)

Section 9.1 (Numerical Methods for Section 2.3 (Equivalent Systems, Rank,
Solving Systems) and Row Space)

Section 9.2 (LDU Decomposition) Section 2.4 (Inverses of Matrices)

Section 9.3 (The Power Method Section 3.4 (Eigenvalues and Diagonalization)
for Finding Eigenvalues)

Section 9.4 (QR Factorization) Section 6.1 (Orthogonal Bases and the Gram-Schmidt
Process)

Section 9.5 (Singular Value Section 6.3 (Orthogonal Diagonalization)
Decomposition)

(Continued)

*In addition to the prerequisites listed, each section in Chapter 7 requires the sections of Chapter 7 that precede
it, although most of Section 7.5 can be covered without having covered Sections 7.1 through 7.4 by concentrating
only on real inner products.
**The techniques presented for solving differential equations in Section 8.9 require only Section 3.4 as a
prerequisite. However, terminology from Chapters 4 and 5 is used throughout Section 8.9.

PLANS FOR COVERAGE
Chapters 1 through 6 have been written in a sequential fashion. Each section is gen-
erally needed as a prerequisite for what follows.Therefore,we recommend that these
sections be covered in order. However, there are three exceptions:

■ Section 1.3 (An Introduction to Proofs) can be covered, in whole,or in part,
at any time after Section 1.2.

■ Section 3.3 (Further Properties of the Determinant) contains some material
that can be omitted without affecting most of the remaining development. The
topics of general cofactor expansion,(classical) adjoint matrix,and Cramer’s Rule
are used very sparingly in the rest of the text.

■ Section 6.1 (Orthogonal Bases and the Gram-Schmidt Process) can be
covered any time after Chapter 4, as can much of the material in Section 6.2
(Orthogonal Complements).

Any section in Chapters 7 through 9 can be covered at any time as long as the
prerequisites for that section have previously been covered. (Consult the Prerequisite
Chart for Sections in Chapters 7, 8, 9.)
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The textbook contains much more material than can be covered in a typical
3- or 4-credit course. We expect that the students will read much on their own, while
the instructor emphasizes the highlights. Two suggested timetables for covering the
material in this text are presented below — one for a 3-credit course,and the other for a
4-credit course.A 3-credit course could skip portions of Sections 1.3,2.3,3.3,4.1 (more
abstract vector spaces), 5.5, 5.6, 6.2, and 6.3, and all of Chapter 7. A 4-credit course
could cover most of the material of Chapters 1 through 6 (perhaps de-emphasizing
portions of Sections 1.3, 2.3, and 3.3), and could cover some of Chapter 7. In either
course, some of the material in Chapter 1 could be skimmed if students are already
familiar with vector and matrix operations.

3-Credit Course 4-Credit Course

Chapter 1 5 classes 5 classes

Chapter 2 5 classes 6 classes

Chapter 3 5 classes 5 classes

Chapter 4 11 classes 13 classes

Chapter 5 8 classes 13 classes

Chapter 6 2 classes 5 classes

Chapter 7 2 classes

Chapters 8 and 9 (selections) 3 classes 4 classes

Tests 3 classes 3 classes

Total 42 classes 56 classes
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Preface for the Student

OVERVIEW OF THE MATERIAL
Chapters 1 to 3: Appetizer: Linear algebra is a branch of mathematics that is largely
concerned with solving systems of linear equations. The main tools for working with
systems of linear equations are vectors and matrices.Therefore,this text begins with an
introduction to vectors and matrices and their fundamental properties in Chapter 1.
This is followed by techniques for solving linear systems in Chapter 2. Chapter 3
introduces determinants and eigenvalues, which help us to better understand the
behavior of linear systems.

Chapters 4 to 7: Main Course: The material of Chapters 1, 2, and 3 is treated in a more
abstract form in Chapters 4 through 7. In Chapter 4, the concept of a vector space
(a collection of general vectors) is introduced, and in Chapter 5, mappings between
vector spaces are considered. Chapter 6 explores orthogonality in the most common
vector space, and Chapter 7 considers more general types of vector spaces, such as
complex vector spaces and inner product spaces.

Chapters 8 and 9: Dessert: The powerful techniques of linear algebra lend themselves
to many important and diverse applications in science, social science, and business,
as well as in other branches of mathematics. While some of these applications are
covered in the text as new material is introduced,others of a more lengthy nature are
placed in Chapter 8, which is entirely devoted to applications of linear algebra. There
are also many useful numerical algorithms and methods associated with linear algebra,
some of which are covered in Chapters 1 through 7. Additional numerical algorithms
are explored in Chapter 9.

HELPFUL ADVICE
Strategies for Learning: Many students find the transition to abstractness that begins
in Chapter 4 to be challenging. This textbook was written specifically to help you in
this regard. We have tried to present the material in the clearest possible manner with
many helpful examples.We urge you to take advantage of this and read each section
of the textbook thoroughly and carefully many times over. Each re-reading will allow
you to see connections among the concepts on a deeper level. Try as many problems
in each section as possible. There are True/False questions to test your knowledge at
the end of each section, as well as at the end of each of the sets of Review Exercises
for Chapters 1 to 7. After pondering these first on your own,consult the explanations
for the answers in the Student Solutions Manual.

Facility with Proofs: Linear algebra is considered by many instructors as a transi-
tional course from the freshman computationally-oriented calculus sequence to the xix



 

xx Preface for the Student

junior-senior level courses which put much more emphasis on the reading and writing
of mathematical proofs.At first it may seem daunting to you to write your own proofs.
However, most of the proofs that you are asked to write for this text are relatively
short. Many useful strategies for proof-writing are discussed in Section 1.3.The proofs
that are presented in this text are meant to serve as good examples. Study them care-
fully. Remember that each step of a proof must be validated with a proper reason—
a theorem that was proven earlier, or a definition, or a principle of logic. Understand-
ing carefully each definition and theorem in the text is very valuable. Only by fully
comprehending each mathematical definition and theorem can you fully appreciate
how to use it in a proof. Learning how to read and write proofs effectively is an impor-
tant skill that will serve you well in your upper-division mathematics courses and
beyond.

Student Solutions Manual: A Student Solutions Manual is available that contains full
solutions for each exercise in the text bearing a ★ (those whose answers appear in
the back of the textbook). It therefore contains additional useful examples and models
of how to solve various types of problems.The Student Solutions Manual also contains
the proofs of most of the theorems whose proofs were left to the exercises. These
exercises are marked in the text with a �. The Student Solutions Manual is intended
to serve as a strong support to assist you in mastering the textbook material.

LINEAR ALGEBRA TERM-BY-TERM
As students vector through the space of this text from its initial point to its terminal
point, we hope that on a one-to-one basis, they will undergo a real transformation
from the norm. Their induction into the domain of linear algebra should be sufficient
to produce a pivotal change in their abilities.

One characteristic that we expect students to manifest is a greater linear indepen-
dence in problem-solving.After much reflection on the kernel of ideas presented in this
book, the range of new methods available to them should be graphically augmented
in a multiplicity of ways. An associative feature of this transition is that all of the new
techniques they learn should become a consistent and normalized part of their iden-
tity in the future. In addition, students will gain a singular new appreciation of their
mathematical skills. Consequently, the resultant change in their self-image should be
one of no minor magnitude.

One obvious implication is that the level of the students’ success is an isomorphic
reflection of the amount of homogeneous energy they expend on this complex mate-
rial. That is, we can often trace the rank of their achievement to the depth of their
resolve to be a scalar of new distances. Similarly, we make this symmetric claim: the
students’positive,definite growth is clearly a function of their overall coordinatization
of effort. Naturally, the matrix of thought behind this parallel assertion is that students
should avoid the negative consequences of sparse learning. Instead, it is the inverse
approach of systematic and iterative study that will ultimately lead them to less error,
and not rotate them into useless dead-ends and diagonal tangents of zero worth.
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Of course some nontrivial length of time is necessary to transpose a student with
an empty set of knowledge on this subject into higher echelons of understanding. But,
our projection is that the unique dimensions of this text will be a determinant factor
in enriching the span of students’ lives,and translate them onto new orthogonal paths
of wisdom.

Stephen Andrilli
David Hecker

May, 2009
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Symbol Table

⊕ addition on a vector space (unusual)
A adjoint (classical) of a matrix A
I ampere (unit of current)
≈ approximately equal to
[A|B] augmented matrix formed from matrices A and B
pL(x) characteristic polynomial of a linear operator L
pA(x) characteristic polynomial of a matrix A
Aij cofactor, (i, j), of a matrix A
z complex conjugate of a complex number z
z complex conjugate of z ∈ C

n

Z complex conjugate of Z ∈ MC
mn

C complex numbers, set of
C

n complex n-vectors, set of (ordered n-tuples of complex numbers)
g ◦ f composition of functions f and g
L2 ◦ L1 composition of linear transformations L1 and L2

Z* conjugate transpose of Z ∈ MC
mn

C0(R) continuous real-valued functions with domain R, set of
C1(R) continuously differentiable functions with domain R, set of
[w]B coordinatization of a vector w with respect to a basis B
x � y cross product of vectors x and y
f (n) derivative, nth, of a function f
|A| determinant of a matrix A
� determinant of a 2 � 2 matrix, ad � bc
Dn diagonal n � n matrices, set of
dim(V) dimension of a vector space V
x · y dot product or complex dot product of vectors x and y
� eigenvalue of a matrix
E� eigenspace corresponding to eigenvalue �
{ },∅ empty set
aij entry, (i, j), of a matrix A
f : X → Y function f from a set X (domain) to a set Y (codomain)
I, In identity matrix; n � n identity matrix
⇔, iff if and only if
f (S) image of a set S under a function f
f (x) image of an element x under a function f
i imaginary number whose square � �1
⇒ implies; if...then
< x,y > inner product of x and y
Z integers, set of
f �1 inverse of a function f

xxiii



 

xxiv Symbol Table

L�1 inverse of a linear transformation L
A�1 inverse of a matrix A∼� isomorphic
ker(L) kernel of a linear transformation L
�ij Kronecker delta
||a|| length, or norm, of a vector a
Mf limit matrix of a Markov chain
pf limit vector of a Markov chain
Ln lower triangular n � n matrices, set of
|z| magnitude (absolute value) of a complex number z
Mmn matrices of size m � n, set of
MC

mn matrices of size m � n with complex entries, set of
ABC matrix for a linear transformation with respect to ordered

bases B and C
|Aij | minor, (i, j), of a matrix A
N natural numbers, set of
not A negation of statement A
|S| number of elements in a set S
� ohm (unit of resistance)
(v1,v2, . . . ,vn) ordered basis containing vectors v1,v2, . . . ,vn

W⊥ orthogonal complement of a subspace W
⊥ perpendicular to
Pn polynomials of degree �n, set of
PC

n polynomials of degree �n with complex coefficients, set of
P polynomials, set of all
R

� positive real numbers, set of
Ak power, kth, of a matrix A
f �1(S) pre-image of a set S under a function f
f �1(x) pre-image of an element x under a function f
projab projection of b onto a
projWv projection of v onto a subspace W
A� pseudoinverse of a matrix A
range(L) range of a linear transformation L
rank(A) rank of a matrix A
R real numbers, set of
R

n real n-vectors, set of (ordered n-tuples of real numbers)
〈i〉 ← c 〈i〉 row operation of type (I)
〈i〉 ← c

〈
j
〉
� 〈i〉 row operation of type (II)

〈i〉 ↔ 〈
j
〉

row operation of type (III)
R(A) row operation R applied to matrix A
� scalar multiplication on a vector space (unusual)
�k singular value, kth, of a matrix
m � n size of a matrix with m rows and n columns
span(S) span of a set S
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�ij standard basis vector (matrix) in Mmn

i, j, k standard basis vectors in R
3

e1,e2, . . . ,en standard basis vectors in R
n; standard basis vectors in C

n

pn state vector, nth, of a Markov chain
Aij submatrix, (i, j), of a matrix A∑

sum of
trace(A) trace of a matrix A
AT transpose of a matrix A
C2(R) twice continuously differentiable functions with domain R, set of
Un upper triangular n � n matrices, set of
Vn Vandermonde n � n matrix
V volt (unit of voltage)
O; On; Omn zero matrix; n � n zero matrix; m � n zero matrix
0;0V zero vector in a vector space V
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Computational and Numerical
Methods, Applications

The following is a list of the most important computational and numerical methods
and applications of linear algebra presented throughout the text.

Section Method/Application

Section 1.1 Vector Addition and Scalar Multiplication, Vector Length
Section 1.1 Resultant Velocity
Section 1.1 Newton’s Second Law
Section 1.2 Dot Product, Angle Between Vectors, Projection Vector
Section 1.2 Work (in physics)
Section 1.4 Matrix Addition and Scalar Multiplication, Matrix Transpose
Section 1.5 Matrix Multiplication, Powers of a Matrix
Section 1.5 Shipping Cost and Profit

Section 2.1 Gaussian Elimination and Back Substitution
Section 2.1 Curve Fitting
Section 2.2 Gauss-Jordan Row Reduction
Section 2.2 Balancing of Chemical Equations
Section 2.3 Determining the Rank and Row Space of a Matrix
Section 2.4 Inverse Method (finding the inverse of a matrix)
Section 2.4 Solving a System using the Inverse of the Coefficient Matrix
Section 2.4 Determinant of a 2 � 2 Matrix (ad � bc formula)

Section 3.1 Determinant of a 3 � 3 Matrix (basketweaving)
Section 3.1 Areas and Volumes using Determinants
Section 3.1 Determinant of a Matrix by Last Row Cofactor Expansion
Section 3.2 Determinant of a Matrix by Row Reduction
Section 3.3 Determinant of a Matrix by General Cofactor Expansion
Section 3.3 Inverse of a Matrix using the Adjoint Matrix
Section 3.3 Cramer’s Rule
Section 3.4 Eigenvalues and Eigenvectors for a Matrix
Section 3.4 Diagonalization Method (diagonalizing a square matrix)

Section 4.3 Simplified Span Method (determining span by row reduction)
Section 4.4 Independence Test Method (determining linear independence by row reduction)
Section 4.6 Inspection Method (finding a basis by inspection)
Section 4.6 Enlarging Method (enlarging a linearly independent set to a basis)
Section 4.7 Coordinatization Method (coordinatizing a vector w.r.t. an ordered basis)
Section 4.7 Transition Matrix Method (calculating a transition matrix by row reduction)

xxvii
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Section Method/Application

Section 5.2 Determining the Matrix for a Linear Transformation
Section 5.3 Kernel Method (finding a basis for a kernel of a linear transformation)
Section 5.3 Range Method (finding a basis for the range of a linear transformation)
Section 5.4 Determining whether a Linear Transformation is One-to-One or Onto
Section 5.5 Determining whether a Linear Transformation is an Isomorphism
Section 5.6 Generalized Diagonalization Method (diagonalizing a linear operator)

Section 6.1 Gram-Schmidt Process (creating an orthogonal set from a linearly
independent set)

Section 6.2 Orthogonal Complement of a Subspace
Section 6.2 Orthogonal Projection of a Vector onto a Subspace
Section 6.2 Distance from a Point to a Subspace
Section 6.3 Orthogonal Diagonalization Method (orthogonally diagonalizing a

symmetric operator)

Section 7.1 Complex Vector Addition, Scalar Multiplication
Section 7.1 Complex Conjugate of a Vector, Dot Product
Section 7.1 Complex Matrix Addition and Scalar Multiplication, Conjugate Transpose
Section 7.1 Complex Matrix Multiplication
Section 7.2 Gaussian Elimination for Complex Systems
Section 7.2 Gauss-Jordan Row Reduction for Complex Systems
Section 7.2 Complex Determinants, Eigenvalues, and Matrix Diagonalization
Section 7.4 Gram-Schmidt Process with Complex Vectors
Section 7.5 Length of a Vector, Distance Between Vectors in an Inner Product Space
Section 7.5 Angle Between Vectors in an Inner Product Space
Section 7.5 Orthogonal Complement of a Subspace in an Inner Product Space
Section 7.5 Orthogonal Projection of a Vector onto an Inner Product Subspace
Section 7.5 Generalized Gram-Schmidt Process (for an inner product space)
Section 7.5 Fourier Series

Section 8.1 Number of Paths (of a given length) between Vertices in a Graph/Digraph
Section 8.2 Current in a Branch of an Electrical Circuit
Section 8.3 Least-Squares Polynomial for a Set of Data
Section 8.4 Steady-State Vector for a Markov Chain
Section 8.5 Encoding/Decoding Messages using Hill Substitution
Section 8.6 Decomposition of a Matrix as a Product of Elementary Matrices
Section 8.7 Using Rotation of Axes to Graph a Conic Section
Section 8.8 Similarity Method (in computer graphics, finding a matrix for a transformation

not centered at origin)
Section 8.9 Solutions of a System of First-Order Differential Equations
Section 8.9 Solutions to Higher-Order Homogeneous Differential Equations
Section 8.10 Least-Squares Solutions for Inconsistent Systems
Section 8.10 Approximate Eigenvalues/Eigenvectors using Inconsistent Systems
Section 8.11 Quadratic Form Method (diagonalizing a quadratic form)
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Section Method/Application

Section 9.1 Partial Pivoting (to avoid roundoff errors when solving systems)
Section 9.1 Jacobi (Iterative) Method (for solving systems)
Section 9.1 Gauss-Seidel (Iterative) Method (for solving systems)
Section 9.2 LDU Decomposition
Section 9.3 Power Method (finding the dominant eigenvalue of a square matrix)
Section 9.4 QR Factorization (factoring a matrix as a product of orthogonal and upper

triangular matrices)
Section 9.5 Singular Value Decomposition (factoring a matrix into the product of

orthogonal, almost-diagonal, and orthogonal matrices)
Section 9.5 Pseudoinverse of a matrix
Section 9.5 Digital Imaging (using Singular Value Decomposition)
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CHAPTER

1Vectors and Matrices

PROOF POSITIVE

The concept of proof is central to higher mathematics. Mathematicians claim no statement
as a “fact” until it is proven true using logical deduction. Therefore, no one can succeed in
higher mathematics without mastering the techniques required to supply such a proof.

Linear algebra, in addition to having a multitude of practical applications in science
and engineering, also can be used to introduce proof-writing skills. Section 1.3 gives an
introductory overview of the basic proof-writing tools that a mathematician uses on a daily
basis. Other proofs given throughout the text should be taken as models for constructing
proofs of your own when completing the exercises. With these tools and models, you can
begin to develop the proof-writing skills crucial to your future success in mathematics.

Our study of linear algebra begins with vectors and matrices: two of the most practi-
cal concepts in mathematics. You are probably already familiar with the use of vectors to
describe positions, movements, and forces. And, as we will see later, matrices are the key
to representing motions that are “linear” in nature, such as the rigid motion of an object in
space or the movement of an image on a computer screen.

In linear algebra, the most fundamental object is the vector. We define vectors in
Sections 1.1 and 1.2 and describe their algebraic and geometric properties. The link
between algebraic manipulation and geometric intuition is a recurring theme in linear
algebra, which we use to establish many important results.

In Section 1.3,we examine techniques that are useful for reading and writing proofs.
In Sections 1.4 and 1.5, we introduce the matrix, another fundamental object, whose
basic properties parallel those of the vector. However, we will eventually find many
differences between the more advanced properties of vectors and matrices,especially
regarding matrix multiplication.

Elementary Linear Algebra
Copyright © 2010 by Elsevier, Inc. All rights reserved. 1



 

2 CHAPTER 1 Vectors and Matrices

1.1 FUNDAMENTAL OPERATIONS WITH VECTORS
In this section, we introduce vectors and consider two operations on vectors: scalar
multiplication and addition. Let R denote the set of all real numbers (that is, all
coordinate values on the real number line).

Definition of a Vector

aa
Definition A real n-vector is an ordered sequence of n real numbers (sometimes
referred to as an ordered n-tuple of real numbers). The set of all n-vectors is
denoted R

n.

For example, R
2 is the set of all 2-vectors (ordered 2-tuples�ordered pairs) of

real numbers; it includes [2,�4] and [�6.2,3.14]. R
3 is the set of all 3-vectors

(ordered 3-tuples � ordered triples) of real numbers; it includes [2,�3,0] and
[�√

2,42.7,�].1
The vector in R

n that has all n entries equal to zero is called the zero n-vector.
In R

2 and R
3, the zero vectors are [0,0] and [0,0,0], respectively.

Two vectors in R
n are equal if and only if all corresponding entries (called coor-

dinates) in their n-tuples agree. That is, [x1, x2, . . . , xn] � [y1, y2, . . . , yn] if and only
if x1 � y1, x2 � y2, . . . , and xn � yn.

A single number (such as �10 or 2.6) is often called a scalar to distinguish it from
a vector.

Geometric Interpretation of Vectors

Vectors in R
2 frequently represent movement from one point to another in a coordinate

plane. From initial point (3,2) to terminal point (1,5), there is a net decrease of 2 units
along the x-axis and a net increase of 3 units along the y-axis. A vector representing
this change would thus be [�2,3], as indicated by the arrow in Figure 1.1.

Vectors can be positioned at any desired starting point. For example, [�2,3] could
also represent a movement from initial point (9,�6) to terminal point (7,�3).2

Vectors in R
3 have a similar geometric interpretation: a 3-vector is used to repre-

sent movement between points in three-dimensional space. For example,[2,�2,6] can
represent movement from initial point (2,3,�1) to terminal point (4,1,5), as shown
in Figure 1.2.

1 Many texts distinguish between row vectors, such as [2,�3], and column vectors, such as

[
2

�3

]
.

However, in this text, we express vectors as row or column vectors as the situation warrants.
2 We use italicized capital letters and parentheses for the points of a coordinate system,such as A � (3,2),
and boldface lowercase letters and brackets for vectors, such as x � [3,2].
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Movement represented by the vector [�2,3]
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FIGURE 1.2

The vector [2,�2,6] with initial point (2,3,�1)

Three-dimensional movements are usually graphed on a two-dimensional page
by slanting the x-axis at an angle to create the optical illusion of three mutually
perpendicular axes. Movements are determined on such a graph by breaking them
down into components parallel to each of the coordinate axes.

Visualizing vectors in R
4 and higher dimensions is difficult. However,the same alge-

braic principles are involved. For example, the vector x � [2,7,�3,10] can represent
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a movement between points (5,�6,2,�1) and (7,1,�1,9) in a four-dimensional
coordinate system.

Length of a Vector

Recall the distance formula in the plane;the distance between two points (x1,y1) and
(x2,y2) is d �

√
(x2 � x1)2 � (y2 � y1)2 (see Figure 1.3). This formula arises from the

Pythagorean Theorem for right triangles. The 2-vector between the points is [a1,a2],
where a1 � x2 � x1 and a2 � y2 � y1, so d �

√
a2

1 � a2
2. This formula motivates the

following definition:

Definition The length (also known as the norm or magnitude) of a vector a �

[a1,a2, . . . ,an] in R
n is ‖a‖ �

√
a2

1 � a2
2 � · · · � a2

n.

Example 1
The length of the vector a � [4,�3,0,2] is given by

‖a‖ �
√

42 � (�3)2 � 02 � 22 �
√

16 � 9 � 4 �
√

29.

Note that the length of any vector in R
n is always nonnegative (that is, 	 0).

(Do you know why this statement is true?) Also, the only vector with length 0 in
R

n is the zero vector [0,0, . . . ,0] (why?).
Vectors of length 1 play an important role in linear algebra.

(x2, y2)

(x1, y1)

x1 x2

y

x

Vector
a 5 [a1, a2]

a25 y22 y1

a15 x22 x1
y1 A

By2

FIGURE 1.3

The line segment (and vector) connecting points A and B, with length
√

(x2 � x1)
2 � (y2 � y1)2 �√

a2
1 � a2

2
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Definition Any vector of length 1 is called a unit vector.

In R
2, the vector

[3
5 ,� 4

5

]
is a unit vector, because

√(3
5

)2
�
(

� 4
5

)2
� 1. Similarly,[

0, 3
5 ,0,� 4

5

]
is a unit vector in R

4. Certain unit vectors are particularly useful: those
with a single coordinate equal to 1 and all other coordinates equal to 0. In R

2 these
vectors are denoted i � [1,0] and j � [0,1]; in R

3 they are denoted i � [1,0,0], j �
[0,1,0],and k � [0,0,1]. In R

n,these vectors,the standard unit vectors,are denoted
e1 � [1,0,0, . . . ,0],e2 � [0,1,0, . . . ,0], . . . , en � [0,0,0, . . . ,1].

Scalar Multiplication and Parallel Vectors

aa
Definition Let x � [x1, x2, . . . , xn] be a vector in R

n, and let c be any scalar (real
number).Then cx, the scalar multiple of x by c, is the vector [cx1,cx2, . . . ,cxn].

For example, if x � [4,�5], then 2x � [8,�10],�3x � [�12,15], and � 1
2x �[

�2, 5
2

]
. These vectors are graphed in Figure 1.4. From the graph, you can see that

2
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FIGURE 1.4

Scalar multiples of x � [4,�5] (all vectors drawn with initial point at origin)
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the vector 2x points in the same direction as x but is twice as long. The vectors �3x
and � 1

2x indicate movements in the direction opposite to x, with �3x being three
times as long as x and � 1

2x being half as long.
In general, in R

n, multiplication by c dilates (expands) the length of the vector
when |c| > 1 and contracts (shrinks) the length when |c| < 1. Scalar multiplica-
tion by 1 or �1 does not affect the length. Scalar multiplication by 0 always
yields the zero vector. These properties are all special cases of the following
theorem:

Theorem 1.1 Let x ∈ R
n, and let c be any real number (scalar). Then ‖cx‖ �

|c| ‖x‖. That is, the length of cx is the absolute value of c times the length of x.

The proof of Theorem 1.1 is left as Exercise 23 at the end of this section.
We have noted that in R

2, the vector cx is in the same direction as x when
c is positive and in the direction opposite to x when c is negative, but have not
yet discussed “direction” in higher-dimensional coordinate systems. We use scalar
multiplication to give a precise definition for vectors having the same or opposite
directions.

Definition Two nonzero vectors x and y in R
n are in the same direction if and

only if there is a positive real number c such that y � cx. Two nonzero vectors x
and y are in opposite directions if and only if there is a negative real number c
such that y � cx. Two nonzero vectors are parallel if and only if they are either
in the same direction or in the opposite direction.

Hence, vectors [1,�3,2] and [3,�9,6] are in the same direction, because
[3,�9,6] � 3[1,�3,2] (or because [1,�3,2] � 1

3 [3,�9,6]), as shown in Figure 1.5.
Similarly, vectors [�3,6,0,15] and [4,�8,0,�20] are in opposite directions, because
[4,�8,0,�20] � � 4

3 [�3,6,0,15].
The next result follows from Theorem 1.1:

Corollary 1.2 If x is a nonzero vector in R
n, then u � (1/‖x‖)x is a unit vector in the

same direction as x.

Proof. The vector u in Corollary 1.2 is certainly in the same direction as x because u is a pos-
itive scalar multiple of x (the scalar is 1/‖x‖). Also, by Theorem 1.1, ‖u‖ � ‖(1/‖x‖)x‖ �
(1/‖x‖)‖x‖ � 1, so u is a unit vector.

This process of “dividing”a vector by its length to obtain a unit vector in the same
direction is called normalizing the vector (see Figure 1.6).
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FIGURE 1.5

The parallel vectors [1,�3,2] and [3,�9,6]

x

u
x1 ,
))x))

x2 ,
))x))

x3

[x1, x2, x3]

))x))

FIGURE 1.6

Normalizing a vector x to obtain a unit vector u in the same direction (with ‖x‖ > 1)

Example 2
Consider the vector [2,3,�1,1] in R

4. Because ‖[2,3,�1,1]‖ �
√

15, normalizing [2,3,�1,1]
gives a unit vector u in the same direction as [2,3,�1,1], which is

u �

(
1√
15

)
[2,3,�1,1] �

[
2√
15

,
3√
15

,
�1√

15
,

1√
15

]
.
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Addition and Subtraction with Vectors

aa
Definition Let x � [x1, x2, . . . , xn] and y � [y1, y2, . . . , yn] be vectors in R

n. Then
x � y, the sum of x and y, is the vector [x1 � y1,x2 � y2, . . . ,xn � yn] in R

n.

Vectors are added by summing their respective coordinates. For exam-
ple, if x � [2,�3,5] and y � [�6,4,�2], then x � y � [2 � 6,�3 � 4,5 � 2] �
[�4,1,3]. Vectors cannot be added unless they have the same number of
coordinates.

There is a natural geometric interpretation for the sum of vectors in a plane or in
space. Draw a vector x.Then draw a vector y from the terminal point of x.The sum of
x and y is the vector whose initial point is the same as that of x and whose terminal
point is the same as that of y.The total movement (x � y) is equivalent to first moving
along x and then along y. Figure 1.7 illustrates this in R

2.
Let �y denote the scalar multiple �1y. We can now define subtraction of

vectors in a natural way: if x and y are both vectors in R
n, let x � y be

the vector x � (�y). A geometric interpretation of this is in Figure 1.8 (move-
ment x followed by movement �y). An alternative interpretation is described in
Exercise 11.

Fundamental Properties of Addition and Scalar Multiplication

Theorem 1.3 contains the basic properties of addition and scalar multiplication of
vectors.The commutative,associative,and distributive laws are so named because
they resemble the corresponding laws for real numbers.

x

y

x2� y2

x � y
x � [x1, x2]
y � [y1, y2]

x1� y1

y2 y
y

x

x

x2

y1 x1

FIGURE 1.7

Addition of vectors in R
2
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x 2 y

x

x

y
2 y

2 y

FIGURE 1.8

Subtraction of vectors in R
2 : x � y � x � (�y)

Theorem 1.3 Let x � [x1, x2, . . . , xn] ,y � [y1, y2, . . . , yn], and z � [z1, z2, . . . , zn] be
any vectors in R

n, and let c and d be any real numbers (scalars). Let 0 represent the
zero vector in R

n. Then

(1) x � y � y � x Commutative Law of Addition
(2) x � (y � z) � (x � y) � z Associative Law of Addition
(3) 0 � x � x � 0 � x Existence of Identity Element for Addition
(4) x � (�x) � (�x) � x � 0 Existence of Inverse Elements for Addition
(5) c(x � y) � cx � cy Distributive Laws of Scalar Multiplication
(6) (c � d)x � cx � dx over Addition
(7) (cd)x � c(dx) Associativity of Scalar Multiplication
(8) 1x � x Identity Property for Scalar Multiplication

In part (3), the vector 0 is called an identity element for addition because 0 does
not change the identity of any vector to which it is added.A similar statement is true in
part (8) for the scalar 1 with scalar multiplication. In part (4), the vector �x is called
the additive inverse element of x because it “cancels out x” to produce the zero
vector.

Each part of the theorem is proved by calculating the entries in each coordinate of
the vectors and applying a corresponding law for real-number arithmetic.We illustrate
this coordinate-wise technique by proving part (6).You are asked to prove other parts
of the theorem in Exercise 24.

Proof. Proof of Part (6):

(c � d)x � (c � d) [x1,x2, . . . ,xn]
� [(c � d)x1,(c � d)x2, . . . ,(c � d)xn] definition of scalar multiplication
� [cx1 � dx1,cx2 � dx2, . . . ,cxn � dxn] coordinate-wise use of distributive law in R

� [cx1,cx2, . . . ,cxn] � [dx1,dx2, . . . ,dxn] definition of vector addition
� c [x1,x2, . . . ,xn] � d [x1,x2, . . . ,xn] definition of scalar multiplication
� cx � dx.
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The following theorem is very useful (the proof is left as Exercise 25):

Theorem 1.4 Let x be a vector in R
n, and let c be a scalar. If cx � 0, then either c � 0

or x � 0.

Linear Combinations of Vectors

aa
Definition Let v1,v2, . . . ,vk be vectors in R

n. Then the vector v is a linear com-
bination of v1,v2, . . . ,vk if and only if there are scalars c1,c2, . . . ,ck such that
v � c1v1 � c2v2 � · · · � ckvk.

Thus, a linear combination of vectors is a sum of scalar multiples of those vectors.
For example, the vector [�2,8,5,0] is a linear combination of [3,1,�2,2], [1,0,3,�1],
and [4,�2,1,0] because 2[3,1,�2,2] � 4[1,0,3,�1] � 3[4,�2,1,0] � [�2,8,5,0].

Note that any vector in R
3 can be expressed in a unique way as a linear com-

bination of i, j, and k. For example, [3,�2,5] � 3[1,0,0] � 2[0,1,0] � 5[0,0,1] �
3i � 2j � 5k. In general, [a,b,c] � ai � bj � ck. Also, every vector in R

n can be
expressed as a linear combination of the standard unit vectors e1 � [1,0,0, . . . ,0],e2 �
[0,1,0, . . . ,0], . . . ,en � [0,0, . . . ,0,1] (why?).

One helpful way to picture linear combinations of the vectors v1,v2, . . . ,vk is to
remember that each vector represents a certain amount of movement in a particular
direction. When we combine these vectors using addition and scalar multiplication,
the endpoint of each linear combination vector represents a “destination” that can be
reached using these operations. For example, the linear combination w � 2[1,3] �
1
2 [4,�5] � 3[2,�1] � [6, 11

2 ] is the destination reached by traveling in the direction of
[1,3],but traveling twice its length, then traveling in the direction opposite to [4,�5],
but half its length, and finally traveling in the direction [2,�1], but three times its
length (see Figure 1.9(a)).

We can also consider the set of all possible destinations that can be reached using
linear combinations of a certain set of vectors. For example, the set of all linear com-
binations in R

3 of v1 � [2,0,1] and v2 � [0,1,�2] is the set of all vectors (beginning
at the origin) with endpoints lying in the plane through the origin containing v1 and
v2 (see Figure 1.9(b)).

Physical Applications of Addition and Scalar Multiplication

Addition and scalar multiplication of vectors are often used to solve problems in ele-
mentary physics. Recall the trigonometric fact that if v is a vector in R

2 forming an
angle of � with the positive x-axis, then v � [‖v‖cos�,‖v‖sin �], as in Figure 1.10.
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(a) (b)

1
2 [4, �5]

[4, �5]

3[2, �1]

[2, �1]

2[1, 3]

w[1, 3]

�

[2, 0, 1]

[0, 1, �2]

FIGURE 1.9

(a) The destination w � 2[1,3] � 1
2 [4,�5] � 3[2,�1] �

[
6, 11

2

]
; (b) the plane in R

3 containing all
linear combinations of [2,0,1] and [0,1,�2]

))v)) sin �

))v)) cos �

�

v

y

x

FIGURE 1.10

The vector v � [‖v‖cos�,‖v‖sin �] forming an angle of � with the positive x-axis

Example 3
Resultant Velocity: Suppose a man swims 5 km/hr in calm water. If he is swimming toward the
east in a wide stream with a northwest current of 3 km/hr, what is his resultant velocity (net
speed and direction)?

The velocities of the swimmer and current are shown as vectors in Figure 1.11, where
we have, for convenience, placed the swimmer at the origin. Now, v1 � [5,0] and v2 �

[3cos135◦,3sin 135◦] �
[

� 3
√

2/2,3
√

2/2
]
. Thus, the total (resultant) velocity of the swimmer

is the sum of these velocities, v1 � v2, which is
[
5 � 3

√
2/2,3

√
2/2

]≈ [2.88,2.12]. Hence, each
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v1� v2v2

v1

3  2
2

y
North

,

Swimmer

South

East[5, 0]West

Current Resu
lta

nt

x

3  2
22

3  2
2

, 3  2
25 2

FIGURE 1.11

Velocity v1 of swimmer, velocity v2 of current, and resultant velocity v1 � v2

hour the swimmer is traveling about 2.9 km east and 2.1 km north. The resultant speed of the
swimmer is

∥∥[5 � 3
√

2/2,3
√

2/2
]∥∥≈ 3.58 km/hr.

Example 4
Newton’s Second Law: Newton’s famous Second Law of Motion asserts that the sum, f , of the
vector forces on an object is equal to the scalar multiple of the mass m of the object times
the vector acceleration a of the object; that is, f � ma. For example, suppose a mass of 5 kg
(kilograms) in a three-dimensional coordinate system has two forces acting on it: a force f1 of
10 newtons3 in the direction of the vector [�2,1,2] and a force f2 of 20 newtons in the direction
of the vector [6,3,�2]. What is the acceleration of the object?

We must first normalize the direction vectors [�2,1,2] and [6,3,�2] so that their
lengths do not contribute to the magnitude of the forces f1 and f2. Therefore, f1 �

10([�2,1,2]/‖[�2,1,2]‖), and f2 � 20([6,3,�2]/‖[6,3,�2]‖). The net force on the object is
f � f1 � f2. Thus, the net acceleration on the object is

a �
1

m
f �

1

m
(f1 � f2) �

1

5

(
10

( [�2,1,2]
‖[�2,1,2]‖

)
� 20

(
[6,3,�2]∥∥[6,3,�2]∥∥

))
,

which equals 2
3 [�2,1,2] � 4

7 [6,3,�2] �
[

44
21 , 50

21 , 4
21

]
. The length of a is approximately 3.18, so

pulling out a factor of 3.18 from each coordinate, we can approximate a as 3.18[0.66,0.75,0.06],
where [0.66,0.75,0.06] is a unit vector. Hence, the acceleration is about 3.18 m/sec2 in the
direction [0.66,0.75,0.06].

3 1 newton � 1 kg-m/sec2
(
kilogram-meter/second2

)
,or the force needed to push 1 kg at a speed 1 m/sec

(meter per second) faster every second.
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If the sum of the forces on an object is 0, then the object is in equilibrium; there
is no acceleration in any direction (see Exercise 21).

New Vocabulary
addition of vectors
additive inverse vector
associative law for scalar multiplication
associative law for vector addition
commutative law for vector addition
contraction of a vector
dilation of a vector
distance formula
distributive laws for vectors
equilibrium
initial point of a vector
length (norm, magnitude) of a vector
linear combination of vectors

normalization of a vector
opposite direction vectors
parallel vectors
real n-vector
resultant velocity
same direction vectors
scalar
scalar multiplication of a vector
standard unit vectors
subtraction of vectors
terminal point of a vector
unit vector
zero n-vector

Highlights

■ n-vectors are used to represent movement from one point to another in an
n-dimensional coordinate system.

■ The norm (length) of a vector is the distance from its intitial point to its terminal
point and is nonnegative.

■ Multiplication of a nonzero vector by a nonzero scalar results in a vector that is
parallel to the original.

■ For any given nonzero vector,there is a unique unit vector in the same direction.

■ The sum and difference of two vectors in R
2 can be found using the diagonals

of appropriate parallelograms.

■ The commutative, associative, and distributive laws hold for addition of vectors
in R

n.

■ If the scalar multiple of a vector is the zero vector, then either the scalar is zero
or the vector is the zero vector.

■ Every vector in R
n is a linear combination of the standard unit vectors in R

n.

■ The linear combinations of a given set of vectors represent the set of all possible
“destinations” that can be reached using those vectors.

■ Any vector v in R
2 can be expressed as [||v||cos�, ||v||sin �],where � is the angle

v forms with the positive x-axis.
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■ The resultant velocity of an object is the sum of its individual vector velocities.

■ The sum of the vector forces on an object is equal to the scalar product of the
object’s mass and its acceleration vector.

EXERCISES FOR SECTION 1.1
Note: A star (�) next to an exercise indicates that the answer for that exercise appears
in the back of the book,and the full solution appears in the Student Solutions Manual.

1. In each of the following cases, find a vector that represents a movement from
the first (initial) point to the second (terminal) point. Then use this vector to
find the distance between the given points.
�(a) (�4,3),(5,�1)

(b) (2,�1,4),(�3,0,2)

�(c) (1,�2,0,2,3),(0,�3,2,�1,�1)

2. In each of the following cases, draw a directed line segment in space that
represents the movement associated with each of the vectors if the initial
point is (1,1,1). What is the terminal point in each case?

�(a) [2,3,1]
(b) [�1,4,2]

�(c) [0,�3,�1]
(d) [2,�1,�1]

3. In each of the following cases, find the initial point, given the vector and the
terminal point.
�(a) [�1,4],(6,�9)

(b) [2,�2,5],(�4,1,7)

�(c) [3,�4,0,1,�2],(2,�1,�1,5,4)

4. In each of the following cases, find a point that is two-thirds of the distance
from the first (initial) point to the second (terminal) point.

�(a) (�4,7,2),(10,�10,11) (b) (2,�1,0,�7),(�11,�1,�9,2)

5. In each of the following cases, find a unit vector in the same direction as the
given vector. Is the resulting (normalized) vector longer or shorter than the
original? Why?
�(a) [3,�5,6]
(b) [4,1,0,�2]

�(c) [0.6,�0.8]
(d)

[1
5 ,� 2

5 ,� 1
5 , 1

5 , 2
5

]
6. Which of the following pairs of vectors are parallel?

�(a) [12,�16], [9,�12]
(b) [4,�14], [�2,7]

�(c) [�2,3,1], [6,�4,�3]
(d) [10,�8,3,0,27],[ 5

6 ,� 2
3 , 3

4 ,0,� 5
2

]
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7. If x � [�2,4,5],y � [�1,0,3], and z � [4,�1,2], find the following:

�(a) 3x

(b) �2y

�(c) x � y

(d) y � z

�(e) 4y � 5x

(f) 2x � 3y � 4z

8. Given x and y as follows, calculate x � y,x � y, and y � x, and sketch x,y,
x � y,x � y, and y � x in the same coordinate system.

�(a) x � [�1,5],y � [2,�4]
(b) x � [10,�2],y � [�7,�3]

�(c) x � [2,5,�3],y � [�1,3,�2]
(d) x � [1,�2,5],y � [�3,�2,�1]

9. Show that the points (7,�3,6),(11,�5,3), and (10,�7,8) are the vertices of
an isosceles triangle. Is this an equilateral triangle?

10. A certain clock has a minute hand that is 10 cm long. Find the vector
representing the displacement of the tip of the minute hand of the clock.
�(a) From 12 PM to 12:15 PM

�(b) From 12 PM to 12:40 PM (Hint: Use trigonometry.)

(c) From 12 PM to 1 PM

11. Show that if x and y are vectors in R
2, then x � y and x � y are the two

diagonals of the parallelogram whose sides are x and y.

12. Consider the vectors in R
3 in Figure 1.12. Verify that x � (y � z) is a diagonal

of the parallelepiped with sides x,y,z. Does (x � y) � z represent the same
diagonal vector? Why or why not?

�13. At a certain green on a golf course, a golfer takes three putts to sink the
ball. If the first putt moved the ball 1 m (meter) southwest, the second putt

z
y

x

FIGURE 1.12

Parallelepiped with sides x,y,z
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moved the ball 0.5 m east, and the third putt moved the ball 0.2 m northwest,
what single putt (expressed as a vector) would have had the same final
result?

14. (a) Show that every unit vector in R
2 is of the form [cos(�1),cos(�2)], where

�1 is the angle the vector makes with the positive x-axis and �2 is the angle
the vector makes with the positive y-axis.

(b) Show that every unit vector in R
3 is of the form [cos(�1),cos(�2),cos(�3)],

where �1,�2, and �3 are the angles the vector makes with the positive x-,
y-, and z-axes, respectively. (Note: The coordinates of this unit vector are
often called the direction cosines of the vector.)

�15. A rower can propel a boat 4 km/hr on a calm river. If the rower rows north-
westward against a current of 3 km/hr southward, what is the net velocity of
the boat? What is its resultant speed?

16. A singer is walking 3 km/hr southwestward on a moving parade float that is
being pulled northward at 4 km/hr.What is the net velocity of the singer?What
is the singer’s resultant speed?

�17. A woman rowing on a wide river wants the resultant (net) velocity of her boat
to be 8 km/hr westward. If the current is moving 2 km/hr northeastward,what
velocity vector should she maintain?

�18. Using Newton’s Second Law of Motion, find the acceleration vector on a 20-
kg object in a three-dimensional coordinate system when the following three
forces are simultaneously applied:

f1: A force of 4 newtons in the direction of the vector [3,�12,4]
f2: A force of 2 newtons in the direction of the vector [0,�4,�3]
f3: A force of 6 newtons in the direction of the unit vector k

19. Using Newton’s Second Law of Motion, find the acceleration vector on a 6-kg
object in a three-dimensional coordinate system when the following two forces
are simultaneously applied:

f1: A force of 22 newtons in the direction of the vector [9,6,�2]
f2: A force of 27 newtons in the direction of the vector [7,�4,4]

20. Using Newton’s Second Law of Motion, find the resultant sum of the forces
on a 30-kg object in a three-dimensional coordinate system undergoing an
acceleration of 6 m/sec2 in the direction of the vector [�2,3,1].

�21. Two forces, a and b, are simultaneously applied along cables attached to a
weight, as in Figure 1.13, to keep the weight in equilibrium by balancing the
force of gravity (which is mg,where m is the mass of the weight and g � [0,�g]
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a

458 608

b

Weight

mg

y

x

FIGURE 1.13

Forces in equilibrium

is the downward acceleration due to gravity). Solve for the coordinates of forces
a and b in terms of m and g.

22. (a) Prove that the length of each vector in R
n is nonnegative (that is, 	 0).

(b) Prove that the only vector in R
n of length 0 is the zero vector.

�23. Prove Theorem 1.1.

24. (a) Prove part (2) of Theorem 1.3.

�(b) Prove part (4) of Theorem 1.3.

�(c) Prove part (5) of Theorem 1.3.

(d) Prove part (7) of Theorem 1.3.

�25. Prove Theorem 1.4.

26. If x is a vector in R
n and c1 �� c2, show that c1x � c2x implies that x � 0 (zero

vector).

�27. True or False:

(a) The length of a � [a1,a2,a3] is a2
1 � a2

2 � a2
3.

(b) For any vectors x, y, z in R
n,(x � y) � z � z � (y � x).

(c) [2,0,�3] is a linear combination of [1,0,0] and [0,0,1].
(d) The vectors [3,�5,2] and [6,�10,5] are parallel.

(e) Let x ∈ R
n, and let d be a scalar. If dx � 0, and d �� 0, then x � 0.
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(f) If two nonzero vectors in R
n are parallel, then they are in the same

direction.

(g) The properties in Theorem 1.3 are only true if all the vectors have their
initial points at the origin.

1.2 THE DOT PRODUCT
We now discuss another important vector operation: the dot product.After explaining
several properties of the dot product, we show how to calculate the angle between
vectors and to “project”one vector onto another.

Definition and Properties of the Dot Product

aa
Definition Let x � [x1,x2, . . . ,xn] and y � [y1,y2, . . . ,yn] be two vectors in R

n.The
dot (inner) product of x and y is given by

x · y � x1y1 � x2y2 � · · · � xnyn �

n∑
k�1

xkyk.

For example, if x � [2,�4,3] and y � [1,5,�2], then x · y � (2)(1) � (�4)(5) �
(3)(�2) � �24. Notice that the dot product involves two vectors and the result is
a scalar, whereas scalar multiplication involves a scalar and a vector and the result
is a vector. Also, the dot product is not defined for vectors having different numbers
of coordinates. The next theorem states some elementary results involving the dot
product.

Theorem 1.5 If x, y, and z are any vectors in R
n, and if c is any scalar, then

(1) x · y � y · x Commutativity of Dot Product
(2) x · x � ‖x‖2 	 0 Relationship between Dot Product

and Length
(3) x · x � 0 if and only if x � 0
(4) c(x · y) � (cx) · y � x · (cy) Relationship between Scalar Multiplication

and Dot Product
(5) x · (y � z) � (x · y) � (x · z) Distributive Laws of Dot Product
(6) (x � y) · z � (x · z) � (y · z) over Addition

The proofs of parts (1), (2), (4), (5), and (6) are done by expanding the expressions
on each side of the equation and then showing they are equal. We illustrate this with
the proof of part (5). The remaining proofs are left as Exercise 6.
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Proof. Proof of Part (5): Let x � [x1,x2, . . . ,xn] , y � [y1,y2, . . . ,yn], and z � [z1,z2, . . . ,zn].
Then,

x · (y � z) � [x1,x2, . . . ,xn] · ([y1,y2, . . . ,yn] � [z1,z2, . . . ,zn]
)

� [x1,x2, . . . ,xn] · [y1 � z1,y2 � z2, . . . ,yn � zn]

� x1(y1 � z1) � x2(y2 � z2) � · · · � xn(yn � zn)

� (x1y1 � x2y2 � · · · � xnyn) � (x1z1 � x2z2 � · · · � xnzn).

Also,

(x · y) � (x · z) �
(
[x1,x2, . . . ,xn] · [y1,y2, . . . ,yn]

)
� ([x1,x2, . . . ,xn] · [z1,z2, . . . ,zn])

� (x1y1 � x2y2 � · · · � xnyn) � (x1z1 � x2z2 � · · · � xnzn).

Hence, x · (y � z) � (x · y) � (x · z).

The properties inTheorem 1.5 allow us to simplify dot product expressions just as
in elementary algebra. For example,

(5x � 4y) · (�2x � 3y) � [(5x � 4y) · (�2x)] � [(5x � 4y) · (3y)]
� [(5x) · (�2x)] � [(�4y) · (�2x)] � [(5x) · (3y)]

� [(�4y) · (3y)]
� �10(x · x) � 8(y · x) � 15(x · y) � 12(y · y)

� �10‖x‖2 � 23(x · y) � 12‖y‖2.

Inequalities Involving the Dot Product

The next theorem gives an upper and lower bound on the dot product.

Theorem 1.6 (Cauchy-Schwarz Inequality) If x and y are vectors in R
n, then |x · y| �

(‖x‖)(‖y‖).

Proof. If either x � 0 or y � 0, the theorem is certainly true. Hence, we need only examine
the case when both ‖x‖ and ‖y‖ are nonzero. We need to prove �(‖x‖)(‖y‖) � x · y �
(‖x‖)(‖y‖). This statement is true if and only if

�1 �
x · y

(‖x‖)(‖y‖) � 1.

Now, (x · y)/((‖x‖)(‖y‖)) is equal to (x/‖x‖) · (y/‖y‖). Note that x/‖x‖ and y/‖y‖ are
both unit vectors. Thus, it is enough to show that �1 � a · b � 1 for any unit vectors a
and b.



 

20 CHAPTER 1 Vectors and Matrices

The term a · b occurs as part of the expansion of (a � b) · (a � b), as well as part of
(a � b) · (a � b). The first expansion gives

(a � b) · (a � b) � ‖a � b‖2 	 0 using part (2) of Theorem 1.5
⇒ (a · a) � (b · a) � (a · b) � (b · b) 	 0
⇒ ‖a‖2 � 2(a · b) � ‖b‖2 	 0 by parts (1) and (2) of Theorem 1.5
⇒ 1 � 2(a · b) � 1 	 0 because a and b are unit vectors
⇒ a · b 	 �1.

A similar argument beginning with (a � b) · (a � b) � ‖a � b‖2 	 0 shows a · b � 1 (see
Exercise 8). Hence, �1 � a · b � 1.

Example 1
Let x � [�1,4,2,0,�3] and let y � [2,1,�4,�1,0]. We verify the Cauchy-Schwarz Inequality in
this specific case. Now, x · y � �2 � 4 � 8 � 0 � 0 � �6. Also, ‖x‖ �

√
1 � 16 � 4 � 0 � 9 �√

30, and ‖y‖ �
√

4 � 1 � 16 � 1 � 0 �
√

22. Then, |x · y| � ((‖x‖)(‖y‖)), because |� 6| �

6 �
√

(30)(22) � 2
√

165 ≈ 25.7.

Another useful result, sometimes known as Minkowski’s Inequality, is

Theorem 1.7 (Triangle Inequality) If x and y are vectors in R
n, then ‖x � y‖ �

‖x‖ � ‖y‖.

We can prove this theorem geometrically in R
2 and R

3 by noting that the length
of x � y, one side of the triangles in Figure 1.14, is never larger than the sum of the
lengths of the other two sides, x and y. The following algebraic proof extends this
result to R

n for n > 3.

x 1 y

x

x

y

y

FIGURE 1.14

Triangle Inequality in R
2: ‖x � y‖ � ‖x‖ � ‖y‖
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Proof. It is enough to show that ‖x � y‖2 � (‖x‖ � ‖y‖)2 (why?). But

‖x � y‖2 � (x � y) · (x � y)

� (x · x) � 2(x · y) � (y · y)

� ‖x‖2 � 2(x · y) � ‖y‖2

� ‖x‖2 � 2|x · y| � ‖y‖2

� ‖x‖2 � 2(‖x‖)(‖y‖) � ‖y‖2 by the Cauchy-Schwarz Inequality

� (‖x‖ � ‖y‖)2.

The Angle between Two Vectors

The dot product enables us to find the angle � between two nonzero vectors x and y
in R

2 or R
3 that begin at the same initial point. There are actually two angles formed

by the vectors x and y, but we always choose the angle � between two vectors to be
the one measuring between 0 and � radians.

Consider the vector x � y in Figure 1.15, which begins at the terminal point of
y and ends at the terminal point of x. Because 0 � � � �, it follows from the Law of
Cosines that ‖x � y‖2 � ‖x‖2 � ‖y‖2 � 2(‖x‖)(‖y‖)cos�. But,

‖x � y‖2 � (x � y) · (x � y)

� (x · x) � 2(x · y) � (y · y)

� ‖x‖2 � 2(x · y) � ‖y‖2.

x � y(y1, y2)

(x1, x2)

x

y

�

FIGURE 1.15

The angle � between two nonzero vectors x and y in R
2
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Hence, �2‖x‖‖y‖cos� � �2(x · y), which implies ‖x‖‖y‖cos� � x · y, and so

cos� �
x · y

(‖x‖)(‖y‖) .

Example 2
Suppose x � [6,�4] and y � [�2,3] and � is the angle between x and y. Then,

cos� �
x · y

(‖x‖)(‖y‖) �
(6)(�2) � (�4)(3)√

52
√

13
� �

12

13
≈ �0.9231.

Using a calculator, we find that � ≈ 2.75 radians, or 157.4◦. (Remember that 0 � � � �.)

In higher-dimensional spaces,we are outside the geometry of everyday experience,
and in such cases, we have not yet defined the angle between two vectors. However,
by the Cauchy-Schwarz Inequality, (x · y)/(‖x‖‖y‖) always has a value between �1
and 1 for any nonzero vectors x and y in R

n.Thus, this value equals cos� for a unique
� between 0 and � radians. Hence, we can define the angle between two vectors in
R

n so it is consistent with the situation in R
2 and R

3.

Definition Let x and y be two nonzero vectors in R
n, for n 	 2. Then the angle

between x and y is the unique angle between 0 and � radians whose cosine is
(x · y)/((‖x‖)(‖y‖)).

Example 3
For x � [�1,4,2,0,�3] and y � [2,1,�4,�1,0], we have (x · y)/((‖x‖)(‖y‖)) �

�6/(2
√

165) ≈ �0.234. Using a calculator, we find the angle � between x and y is
approximately 1.8 radians, or 103.5◦.

The following theorem is an immediate consequence of the last definition:

Theorem 1.8 Let x and y be nonzero vectors in R
n, and let � be the angle between x

and y. Then,

(1) x · y > 0 if and only if 0 � � <
�

2
radians (0◦ or acute).

(2) x · y � 0 if and only if � �
�

2
radians (90◦).

(3) x · y < 0 if and only if
�

2
< � � � radians (180◦ or obtuse).
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Special Cases: Orthogonal and Parallel Vectors

aa
Definition Two vectors x and y in R

n are orthogonal (perpendicular) if and
only if x · y � 0.

Example 4
The vectors x � [2,�5] and y � [�10,�4] are orthogonal in R

2 because x · y � 0. By
Theorem 1.8, x and y form a right angle, as shown in Figure 1.16.

In R
3, the vectors i, j, and k are mutually orthogonal; that is, the dot product of

any pair of these vectors equals zero. In general, in R
n the standard unit vectors e1 �

[1,0,0, . . . ,0],e2 � [0,1,0, . . . ,0], . . . ,en � [0,0,0, . . . ,1] form a mutually orthogonal set
of vectors.

The next theorem gives an alternative way of describing parallel vectors in terms of
the angle between them. A proof for the case x · y � �‖x‖‖y‖ appears in Section 1.3
(see Result 4), and the proof of the other case is similar.

Theorem 1.9 Let x and y be nonzero vectors in R
n. Then x and y are parallel if and

only if x · y � 
‖x‖‖y‖ (that is, cos� � 
1, where � is the angle between x and y).

Example 5
Let x � [8,�20,4] and y � [6,�15,3]. Then, if � is the angle between x and y,

2 3121
21

22

23

24

25

2223242526272829210211

3

2

1

4 5

(2, 25)
(210, 24)

x

x

y

y

FIGURE 1.16

The orthogonal vectors x � [2,�5] and y � [�10,�4]
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cos� �
x · y

(‖x‖)(‖y‖) �
48 � 300 � 12√

480
√

270
�

360√
129600

� 1.

Thus, by Theorem 1.9, x and y are parallel. (Notice also that x and y are parallel by the definition
of parallel vectors in Section 1.1 because [8,�20,4] � 4

3 [6,�15,3].)

Projection Vectors

The projection of one vector onto another is useful in physics,engineering,computer
graphics, and statistics. Suppose a and b are nonzero vectors, both in R

2 or both
in R

3, drawn at the same initial point. Let � represent the angle between a and b.
Drop a perpendicular line segment from the terminal point of b to the straight line �

containing the vector a, as in Figure 1.17.
By the projection p of b onto a, we mean the vector from the initial point of a to

the point where the dropped perpendicular meets the line �. Note that p is in the same
direction as a when 0 � � < �

2 radians (see Figure 1.17) and in the opposite direction
to a when �

2 < � � � radians, as in Figure 1.18.
Using trigonometry,we see that when 0 � � � �

2 , the vector p has length ‖b‖cos�
and is in the direction of the unit vector a/‖a‖. Also, when �

2 < � � �,p has length
�‖b‖cos� and is in the direction of the unit vector �a/‖a‖. Therefore,we can express
p in all cases as

p � (‖b‖cos�)

(
a

‖a‖
)

.

a
P

b

�

FIGURE 1.17

The projection p of the vector b onto a (when � is acute)

aP

b �

FIGURE 1.18

The projection p of b onto a (when � is obtuse)
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But we know that cos� � (a · b)/(‖a‖‖b‖), and hence

p �

(
a · b

‖a‖2

)
a.

The projection p of vector b onto a is often denoted by projab.

Example 6
Let a � [4,0,�3] and b � [3,1,�7]. Then

projab � p �

(
a · b

‖a‖2

)
a �

(4)(3) � (0)(1) � (�3)(�7)(√
16 � 0 � 9

)2 a �
33

25
a

�
33

25
[4,0,�3] �

[
132

25
,0,�

99

25

]
.

Next, we algebraically define projection vectors in R
n to be consistent with the

geometric definition in R
2 and R

3.

Definition If a and b are vectors in R
n, with a �� 0, then the projection vector

of b onto a is

projab �

(
a · b

‖a‖2

)
a.

The projection vector can be used to decompose a given vector b into the sum of
two component vectors. Suppose a �� 0. Notice that if projab �� 0,then it is parallel
to a by definition because it is a scalar multiple of a (see Figure 1.19).Also,b � projab

b b 2 p

a

p � projab

FIGURE 1.19

Decomposition of a vector b into two components: one parallel to a and the other orthogonal to a
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is orthogonal to a because

(b � projab) · a � b · a �
(
projab

) · a

� b · a �

(
a · b

‖a‖2

)
(a · a)

� b · a �

(
a · b

‖a‖2

)
‖a‖2

� 0.

Because projab � (b � projab) � b, we have proved

Theorem 1.10 Let a be a nonzero vector in R
n, and let b be any vector in R

n. Then b
can be decomposed as the sum of two component vectors, projab and b � projab,
where the first (if nonzero) is parallel to a and the second is orthogonal to a.

Example 7
Consider a � [4,0,�3] and b � [3,1,�7] from Example 6, where we found the component of b
in the direction of the vector a is p � projab � [132/25,0,�99/25]. Then the component of b
orthogonal to a (and p as well) is b � projab � [�57/25,1,�76/25]. We can easily check that
b � p is orthogonal to a as follows:

(b � p) · a �

(
�

57

25

)
(4) � (1)(0) �

(
�

76

25

)
(�3) � �

228

25
�

228

25
� 0.

Application: Work

Suppose that a vector force f is exerted on an object and causes the object to undergo
a vector displacement d. Let � be the angle between these vectors. In physics, when
measuring the work done on the object, only the component of the force that acts
in the direction of movement is important. But the component of f in the direction
of d is ‖f‖cos�, as shown in Figure 1.20. Thus, the work accomplished by the force
is defined to be the product of this force component, ‖f‖cos�, times the length ‖d‖
of the displacement, which equals (‖f‖cos�)‖d‖ � f · d. That is, we can calculate the
work simply by finding the dot product of f and d.

Work is measured in joules,where 1 joule is the work done when a force of 1 newton
(nt) moves an object 1 meter.

Example 8
Suppose that a force of 8 nt is exerted on an object in the direction of the vector [1,�2,1] and
that the object travels 5 m in the direction of the vector [2,�1,0]. Then, f is 8 times a unit vector
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d

f

�

FIGURE 1.20

Projection ‖f‖cos� of a vector force f onto a vector displacement d, with angle � between f and d

in the direction of [1,�2,1] and d is 5 times a unit vector in the direction of [2,�1,0]. Therefore,
the total work performed is

f · d � 8

( [1,�2,1]
‖[1,�2,1]‖

)
· 5

( [2,�1,0]
‖[2,�1,0]‖

)
�

40(2 � 2 � 0)√
6
√

5
≈ 29.2 joules.

New Vocabulary
angle between two vectors
Cauchy-Schwarz Inequality
commutative law for dot product
distributive laws for dot product
dot (inner) product of vectors
mutually orthogonal vectors

orthogonal (perpendicular) vectors
projection of one vector onto another
Reverse Triangle Inequality
Triangle Inequality
work (accomplished by a vector force)

Highlights

■ The dot product of vectors is always a scalar.

■ The dot product of a vector with itself is always the square of the length of the
vector.

■ The commutative and distributive laws hold for the dot product of vectors in R
n.

■ The Cauchy-Schwarz Inequality and theTriangle Inequality hold for vectors in R
n.

■ The cosine of the angle between two nonzero vectors is equal to the dot product
of the vectors divided by the product of their lengths.

■ Two vectors are orthogonal if and only if their dot product is zero.

■ Two vectors are parallel if and only if their dot product is either equal to or
opposite the product of their lengths.
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■ The projection of a vector b onto a vector a is found by multiplying a by the
scalar (a · b)/||a||2.

■ Any vector can be expressed as the sum of two component vectors such that
one (if nonzero) is parallel to a given vector a, and the other is orthogonal to a.

■ The work accomplished by a vector force is equal to the dot product of the
vector force and the vector displacement.

EXERCISES FOR SECTION 1.2
Note: Some exercises ask for proofs. If you have difficulty with these, try them again
after working through Section 1.3, in which proof techniques are discussed.

1. Use a calculator to find the angle � (to the nearest degree) between the following
given vectors x and y:

�(a) x � [�4,3], y � [6,�1]
(b) x � [0,�3,2], y � [1,�7,�4]

�(c) x � [7,�4,2], y � [�6,�10,1]
(d) x � [�18,�4,�10,2,�6], y � [9,2,5,�1,3]

2. Show that points A1(9,19,16),A2(11,12,13),and A3(14,23,10) are the vertices
of a right triangle. (Hint: Construct vectors between the points and check for
an orthogonal pair.)

3. (a) Show that [a,b] and [�b,a] are orthogonal. Show that [a,�b] and [b,a]
are orthogonal.

(b) Show that the lines given by the equations ax � by � c � 0 and bx � ay �
d � 0 (where a,b,c,d ∈ R) are perpendicular by finding a vector in the
direction of each line and showing that these vectors are orthogonal. (Hint:
Watch out for the cases in which a or b equals zero.)

4. (a) Calculate (in joules) the total work performed by a force f � 3i�2j � k
(nt) on an object which causes a displacement d � �i � 6j � 3k (m).

�(b) Calculate (in joules) the total work performed by a force of 26 nt acting
in the direction of the vector �2i � 4j � 5k on an object displaced a total
of 10 m in the direction of the vector �i � 2j � 2k.

(c) Calculate (in joules) the total work performed by a force of 6 nt acting in
the direction of the vector 3i � 2j � 6k on an object displaced a total of
21 m in the direction of the vector �4i � 4j � 7k.

5. Why isn’t it true that if x,y,z ∈ R
n, then x · (y · z) � (x · y) · z?
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�6. Prove parts (1), (2), (3), (4), and (6) of Theorem 1.5.

�7. Does the Cancellation Law of algebra hold for the dot product;that is,assuming
that z �� 0, does x · z � y · z always imply that x � y?

8. Finish the proof of Theorem 1.6 by showing that for unit vectors a and b,
(a � b) · (a � b) 	 0 implies a · b � 1.

9. Prove that if (x � y) · (x � y) � 0, then ‖x‖ � ‖y‖. (Hence, if the diagonals of
a parallelogram are perpendicular, then the parallelogram is a rhombus.)

10. Prove that 1
2

(‖x � y‖2 � ‖x � y‖2
)

� ‖x‖2 � ‖y‖2 for any vectors x,y in R
n.

(This equation is known as the Parallelogram Identity because it asserts that
the sum of the squares of the lengths of all four sides of a parallelogram equals
the sum of the squares of the diagonals.)

11. (a) Prove that for vectors x,y in R
n,‖x � y‖2 � ‖x‖2 � ‖y‖2 if and only if

x · y � 0.

(b) Prove that if x,y,z are mutually orthogonal vectors in R
n, then

‖x � y � z‖2 � ‖x‖2 � ‖y‖2 � ‖z‖2.

(c) Prove that x · y � 1
4

(‖x � y‖2 � ‖x � y‖2
)
, if x and y are vectors in R

n.
(This result, a form of the Polarization Identity, gives a way of defining
the dot product using the norms of vectors.)

12. Given x,y,z in R
n,with x orthogonal to both y and z, prove that x is orthogonal

to c1y � c2z, where c1,c2 ∈ R.

�13. Let x � [a,b,c] be a vector in R
3. If �1,�2, and �3 are the angles that x forms

with the x-, y-, and z-axes, respectively, find formulas for cos�1,cos�2, and
cos�3 in terms of a,b,c, and show that cos2 �1 � cos2 �2 � cos2 �3 � 1. (Note:
cos�1,cos�2, and cos�3 are commonly known as the direction cosines of the
vector x. See Exercise 14(b) in Section 1.1.)

�14. (a) If the side of a cube has length s, what is the length of the cube’s
diagonal?

(b) Using vectors,find the angle that the diagonal makes with one of the sides
of the cube.

15. Calculate projab in each case, and verify b � projab is orthogonal to a.

�(a) a � [2,1,5], b � [1,4,�3]
(b) a � [�5,3,0], b � [3,�7,1]

�(c) a � [1,0,�1,2], b � [3,�1,0,�1]

16. (a) Suppose that a is orthogonal to b in R
n. What is projab? Why? Give a

geometric interpretation in R
2 or R

3.

(b) Suppose a and b are parallel vectors in R
n. What is projab? Why? Give a

geometric interpretation in R
2 or R

3.
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�17. What are the projections of the general vector [a,b,c] onto each of the vectors
i, j, and k in turn?

18. Let x � [�6,2,7] represent the force on an object in a three-dimensional coor-
dinate system. Decompose x into two component forces in directions parallel
and orthogonal to each vector given.
�(a) [2,�3,4]
(b) [�1,2,�1]

�(c) [3,�2,6]
19. Show that if � is any line through the origin in R

3 and x is any vector with its
initial point at the origin, then the reflection of x through the line � (acting
as a mirror) is equal to 2(projrx) � x, where r is any nonzero vector parallel
to the line � (see Figure 1.21).

20. Prove the Reverse Triangle Inequality; that is, for any vectors x and y in R
n,∣∣∣‖x‖ � ‖y‖

∣∣∣� ‖x � y‖. (Hint: Consider the cases ‖x‖ � ‖y‖ and ‖x‖ 	 ‖y‖
separately.)

21. Let x and y be nonzero vectors in R
n.

(a) Prove that y � cx � w for some scalar c and some vector w such that w
is orthogonal to x.

(b) Show that the vector w and the scalar c in part (a) are unique; that is, show
that if y � cx � w and y � dx � v,where w and v are both orthogonal to
x, then c � d and w � v. (Hint: Compute x · y.)

22. If x,y ∈ R
n such that x · y �� 0, prove that the angle between x and y equals

the angle between projxy and projyx.

�23. True or False:

(a) For any vectors x, y in R
n, and any scalar d, x · (dy) � (dx) · y.

(b) For all x, y in R
n with x �� 0,(x · y)/‖x‖ � ‖y‖.

(c) For all x, y in R
n,‖x � y‖ � ‖x‖ � ‖y‖.

Reflection
of x

x

r

FIGURE 1.21

Reflection of x through the line �
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(d) If � is the angle between vectors x and y in R
n, and � > �

2 , then x · y > 0.

(e) The standard unit vectors in R
n are mutually orthogonal.

(f) If projab � b, then a is perpendicular to b.

1.3 AN INTRODUCTION TO PROOF TECHNIQUES
In reading this book, you will spend much time studying the proofs of theorems, and
for the exercises,you will often write proofs. Hence, in this section we discuss several
methods of proving theorems in order to sharpen your skills in reading and writing
proofs.

The “results” (not all new) proved in this section are intended only to illustrate
various proof techniques. Therefore, they are not labeled as “theorems.”

Proof Technique: Direct Proof

The most straightforward proof method is direct proof, a logical step-by-step argu-
ment concluding with the statement to be proved. The following is a direct proof for
a familiar result from Theorem 1.5:

Result 1 Let x be a vector in R
n. Then x · x � ‖x‖2.

Proof.
Step 1: Let x � [x1, . . . ,xn] because x ∈ R

n

Step 2: x · x � x2
1 � · · · � x2

n definition of dot product

Step 3: ‖x‖ �
√

x2
1 � · · · � x2

n definition of ‖x‖
Step 4: ‖x‖2 � x2

1 � · · · � x2
n squaring both sides of Step 3

Step 5: x · x �‖x‖2 from Steps 2 and 4

Each step in a direct proof should follow immediately from a definition,a previous
step,or a known fact.The reasons for each step should be clearly stated when necessary
for the intended reader. However, the preceding type of presentation is infrequently
used. A more typical paragraph version of the same argument is

Proof. If x is a vector in R
n, then we can express x as [x1,x2, . . . ,xn] for some real numbers

x1, . . . ,xn. Now, x · x � x2
1 � · · · � x2

n, by definition of the dot product. However, ‖x‖ �√
x2

1 � · · · � x2
n, by definition of the length of a vector. Therefore, ‖x‖2 � x · x, because

both sides are equal to x2
1 � · · · � x2

n.

The paragraph form should contain the same information as the step-by-step form
and be presented in such a way that a corresponding step-by-step proof occurs
naturally to the reader. We present most proofs in this book in paragraph style. But
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you may want to begin writing proofs in the step-by-step format and then change to
paragraph style once you have more experience with proofs.

Stating the definitions of the relevant terms is usually a good beginning when
tackling a proof because it helps to clarify what you must prove. For example, the first
four of the five steps in the step-by-step proof of Result 1 merely involve writing what
each side of x · x � ‖x‖2 means. The final result then follows naturally.

Working “Backward” to Discover a Proof

A method often used when there is no obvious direct proof is to work “backward”—
that is,to start with the desired conclusion and work in reverse toward the given facts.
Although these“reversed”steps do not constitute a proof, they may provide sufficient
insight to make construction of a “forward”proof easier, as we now illustrate.

Result 2 Let x and y be nonzero vectors in R
n. If x · y 	 0, then ‖x � y‖ > ‖y‖.

We begin with the desired conclusion ‖x � y‖ > ‖y‖ and try to work “backward”
toward the given fact x · y 	 0, as follows:

‖x � y‖ > ‖y‖
‖x � y‖2 > ‖y‖2

(x � y) · (x � y) > ‖y‖2

x · x � 2x · y � y · y > ‖y‖2

‖x‖2 � 2x · y�‖y‖2 > ‖y‖2

‖x‖2 � 2x · y > 0.

At this point, we cannot easily continue going “backward.” However, the last inequal-
ity is true if x · y 	 0. Therefore, we reverse the above steps to create the following
“forward”proof of Result 2:

Proof.

Step 1: ‖x‖2 > 0 x is nonzero
Step 2: 2(x · y) 	 0 because x · y 	 0
Step 3: ‖x‖2 � 2x · y > 0 from Steps 1 and 2
Step 4: ‖x‖2 � 2x · y � ‖y‖2 > ‖y‖2

Step 5: x · x � 2x · y � y · y > ‖y‖2 from Theorem 1.5, part (2)
Step 6: (x � y) · (x � y) > ‖y‖2 from Theorem 1.5, parts (5) and (6)
Step 7: ‖x � y‖2 > ‖y‖2 from Theorem 1.5, part (2)
Step 8: ‖x � y‖ > ‖y‖ take square root of both sides;

length is always nonnegative
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When “working backward,” your steps must be reversed for the final proof.
Therefore, each step must be carefully examined to determine if it is “reversible.”
For example, if t is a real number, then t > 5 ⇒ t2 > 25 is a valid step, but reversing
this yields t2 > 25 ⇒ t > 5,which is certainly an invalid step if t < �5. Notice that we
were very careful in Step 8 of the proof when we took the square root of both sides
to ensure the step was indeed valid.

“If A Then B” Proofs

Frequently, a theorem is given in the form “If A then B,” where A and B represent
statements. An example is “If ‖x‖ � 0, then x � 0” for vectors x in R

n, where A is
“‖x‖ � 0”and B is“x � 0.” The entire“If A then B”statement is called an implication;
A alone is the premise, and B is the conclusion.The meaning of“If A then B” is that,
whenever A is true, B is true as well. Thus, the implication “If ‖x‖ � 0, then x � 0”
means that, if we know ‖x‖ � 0 for some particular vector x in R

n, then we can
conclude that x is the zero vector.

Note that the implication“If A then B”asserts nothing about the truth or falsity of B
unless A is true.4 Therefore,to prove“If A then B,”we assume A is true and try to prove
B is also true. This is illustrated in the proof of the next result, a part of Theorem 1.8.

Result 3 If x and y are nonzero vectors in R
n such that x · y > 0, then the angle

between x and y is acute.

Proof. The premise in this result is “x and y are nonzero vectors and x · y > 0.” The
conclusion is “the angle between x and y is acute.” We begin by assuming that both parts
of the premise are true.

Step 1: x and y are nonzero first part of premise
Step 2: ‖x‖ > 0 and ‖y‖ > 0 Theorem 1.5, parts (2) and (3)
Step 3: x · y > 0 second part of premise
Step 4: cos� � x·y

‖x‖‖y‖ , where � is definition of the angle between two
vectorsthe angle between x and y,

and 0 � � � �

Step 5: cos� > 0 quotient of positive reals is positive
Step 6: � is acute since 0 � � � �, cos� > 0 only if

0 < � < �
2

4 In formal logic, when A is false, the implication “If A then B” is considered true but worthless because
it tells us absolutely nothing about B. For example, the implication“If every vector in R

3 is a unit vector,
then the inflation rate will be 8% next year” is considered true because the premise “every vector in R

3

is a unit vector” is clearly false. However, the implication is useless. It tells us nothing about next year’s
inflation rate, which is free to take any value, such as 6%.
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Beware! An implication is not always written in the form “If A then B.”

Some Equivalent Forms for “If A Then B”

A implies B B if A
A ⇒ B A is a sufficient condition for B
A only if B B is a necessary condition for A

Another common practice is to place some of the conditions of the premise before
the “If . . . then.”For example, Result 3 might be rewritten as

Let x and y be nonzero vectors in R
n. If x · y > 0, then the angle between

x and y is acute.

The condition“x and y are nonzero vectors in R
n”sets the stage for the implication

to come. Such conditions are treated as given information along with the premise in
the actual proof.

“A If and Only If B” Proofs

Some theorems have the form “A if and only if B.” This is really a combination of
two statements: “If A then B” and “If B then A.” Both of these statements must be
shown true to fully complete the proof of the original statement. In essence,we must
show A and B are logically equivalent: the “if A then B” half means that whenever A
is true, B must follow; the “if B then A” half means that whenever B is true, A must
follow. Therefore, A is true exactly when B is true. For an example of an “if and only
if” argument, we prove the following special case of Theorem 1.9.

Result 4 Let x and y be nonzero vectors in R
n. Then x · y � ‖x‖‖y‖ if and only if y

is a positive scalar multiple of x.

In an “if and only if” proof, it is usually good to begin by stating the two halves of
the “if and only if” statement. This gives a clearer picture of what is given and what
must be proved in each half. In Result 4, the two halves are

1. Suppose that y � cx for some positive c ∈ R. Prove that x · y � ‖x‖‖y‖.

2. Suppose that x · y � ‖x‖‖y‖. Prove that there is some c > 0 such that y � cx.

The assumption “Let x and y be nonzero vectors in R
n” is considered given

information for both halves.

Proof. Part 1: We suppose that y � cx for some c > 0. Then,

x · y � x · (cx) because y � cx
� c(x · x) Theorem 1.5, part (4)
� c‖x‖2 Theorem 1.5, part (2)
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� ‖x‖(c‖x‖) associative law of multiplication for real numbers
� ‖x‖(|c|‖x‖) because c > 0
� ‖x‖‖cx‖ Theorem 1.1
� ‖x‖‖y‖ because y � cx.

Part 2: We assume that x · y � ‖x‖‖y‖ and show that there is some c > 0 such that
y � cx. By Theorem 1.10, y can be expressed as projxy � w, where w is orthogonal to x.
Our strategy is first to show that projxy is a positive scalar multiple of x and then to show
that w � 0. For then, y � cx with c > 0, and the proof is done.

First, note that

projxy �

(
x · y

‖x‖2

)
x formula for projxy

�

(‖x‖‖y‖
‖x‖2

)
x because x · y � ‖x‖‖y‖

�

(‖y‖
‖x‖

)
x.

Let c � ‖y‖/‖x‖. Note that c is positive.
Finally, we conclude by showing w � 0. Now,

‖w‖2 � w · w Theorem 1.5, part (2)
� (y � cx) · (y � cx) because y � cx � w
� (y · y) � 2c(x · y) � c2(x · x) distributive law of dot product

over addition
� ‖y‖2 � 2c‖x‖‖y‖ � c2‖x‖2 Theorem 1.5, part (2), and

x · y � ‖x‖‖y‖
� ‖y‖2 � 2‖y‖2 � ‖y‖2 because c �

‖y‖
‖x‖ ,

which equals zero, and so w � 0. The proof is complete.

Note that two proofs are required to prove an “if and only if” type of statement —
one for each of the implications involved. Also, each half is not necessarily just a
reversal of the steps in the other half. Sometimes the two halves must be proved very
differently, as for Result 4.

Other common alternate forms for “if and only if” are

Some Equivalent Forms for “A If and Only If B”

A iff B

A ⇔ B

A is a necessary and sufficient condition for B
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“If A Then (B or C )” Proofs

Sometimes we must prove a statement of the form “If A then (B or C).”5 This is an
implication whose conclusion has two parts. Note that B is either true or false. Now,
if B is true, there is no need for a proof, because we only need to establish that either
B or C holds. For this reason,“If A then (B or C)” is equivalent to “If A is true and B
is false, then C is true.” That is, we are allowed to assume that B is false, and then use
this extra information to prove C is true. This strategy often makes the proof easier.
As an example, consider the following result:

Result 5 If x is a nonzero vector in R
2, then x · [1,0] �� 0 or x · [0,1] �� 0.

In this case, A �“x is a nonzero vector in R
2,” B �“x · [1,0] �� 0,” and C �

“x · [0,1] �� 0.”Assuming B is false, we obtain the following statement equivalent to
Result 5:

If x is a nonzero vector in R
n and x · [1,0] � 0, then x · [0,1] �� 0.

Proving this (which can be done with a direct proof — try it!) has the effect of proving
the original statement in Result 5.

Of course,an alternate way of proving“If A then (B or C)”is to assume instead that
C is false and use this assumption to prove B is true.

Proof Technique: Proof by Contrapositive

Related to the implication “If A then B” is its contrapositive:“If not B, then not A.”
For example, for an integer n, the statement “If n2 is even, then n is even” has the
contrapositive “If n is odd (that is, not even), then n2 is odd.” A statement and its
contrapositive are always logically equivalent; that is, they are either both true or both
false together.Therefore,proving the contrapositive of any statement (known as proof
by contrapositive) has the effect of proving the original statement as well. In many
cases,the contrapositive is easier to prove.The following result illustrates this method:

Result 6 Let x be a vector in R
n. If ‖x‖ � 0, then x � 0.

5 In this text, or is used in the inclusive sense. That is, “A or B” always means “A or B or both.” For
example,“n is even or prime” means that n could be even or n could be prime or n could be both.
Therefore,“n is even or prime”is true for n � 2,which is both even and prime,as well as for n � 6 (even
but not prime) and n � 7 (prime but not even). However, in English, the word or is frequently used in
the exclusive sense, as in “You may have the prize behind the curtain or the cash in my hand,” where
you are not meant to have both prizes. The “exclusive or” is rarely used in mathematics.
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Proof. To prove this result, we give a direct proof of its contrapositive: if x �� 0, then ‖x‖ �� 0.

Step 1: Let x � [x1, . . . ,xn] �� 0 premise of contrapositive
Step 2: For some i,1 � i � n, we have xi �� 0

Step 3: ‖x‖ �
√

x2
1 � · · · � x2

i � · · · � x2
n

Step 4: ‖x‖2 � x2
1 � · · · � x2

i � · · · � x2
n

Step 5: ‖x‖2 	 x2
i > 0

Step 6: ‖x‖2 > 0

Step 7: ‖x‖ �� 0

You should fill in the missing reasons for Steps 2 through 7 to complete the proof of the
contrapositive and hence the proof of the result itself.

Converse and Inverse

Along with the contrapositive, there are two other related statements of interest —
the converse and inverse:

Original Statement If A then B
Contrapositive If not B then not A

Converse If B then A
Inverse If not A then not B

Notice that,when“If A then B”and its converse“If B then A”are combined together,
they form the familiar “A if and only if B” statement.

Although the converse and inverse may resemble the contrapositive, take care:
neither the converse nor the inverse is logically equivalent to the original statement.
However,the converse and inverse of a statement are equivalent to each other,and are
both true or both false together. For example, consider “If x � y, then x · y � ‖x‖2,”
for vectors in R

n.

Original Statement If x � y, then x · y � ‖x‖2

Contrapositive If x · y �� ‖x‖2, then x �� y

}
equivalent to each other

Converse If x · y � ‖x‖2, then x � y

Inverse If x �� y, then x · y �� ‖x‖2

}
equivalent to each other

Notice that in this case the original statement and its contrapositive are both true; the
converse and the inverse are both false (see Exercise 5).

Beware! It is possible for a statement and its converse to have the same truth
value. For example, the converse of Result 6 is “If x � 0, then ‖x‖ � 0,” and this is
also a true statement.The moral here is that a statement and its converse are logically
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independent,and thus,proving the converse (or inverse) is never acceptable as a valid
proof of the original statement.

Finally, when constructing the contrapositive, converse, or inverse of an “If A
then B”statement, you should not change the accompanying conditions. For instance,
consider the condition“Let x and y be nonzero vectors in R

n”of Result 2.The contra-
positive, converse, and inverse should all begin with this condition. For example, the
contrapositive of Result 2 is “Let x and y be nonzero vectors in R

n. If ‖x � y‖ � ‖y‖,
then x · y < 0.”

Proof Technique: Proof by Contradiction

Another common proof method is proof by contradiction, in which we assume the
statement to be proved is false and use this assumption to contradict a known fact. In
effect,we prove a result by showing that if it were false, it would be inconsistent with
some other true statement, as in the proof of the following result:

Result 7 Let S � {x1, . . . ,xk} be a set of mutually orthogonal nonzero vectors in R
n.

Then no vector in S can be expressed as a linear combination of the other vectors in S.

Recall that a set {x1, . . . ,xk} of nonzero vectors is mutually orthogonal if and only
if xi · xj � 0 whenever i �� j.

Proof. To prove this by contradiction, we assume it is false; that is, some vector in S can be
expressed as a linear combination of the other vectors in S. That is, some xi � a1x1 � · · · �
ai�1xi�1 � ai�1xi�1� · · ·�akxk, for some a1, . . . ,ai�1,ai�1, . . . ,ak ∈ R. We then show
this assumption leads to a contradiction:

xi · xi � xi · (a1x1� · · ·�ai�1xi�1 � ai�1xi�1� · · ·�akxk)

� a1(xi · x1)� · · ·�ai�1(xi · xi�1) � ai�1(xi · xi�1)� · · ·�ak(xi · xk)

� a1(0)� · · ·�ai�1(0) � ai�1(0)� · · ·�ak(0) � 0.

Hence, xi � 0, by part (3) of Theorem 1.5. This equation contradicts the given fact that
x1, . . . ,xk are all nonzero vectors, thus completing the proof.

A mathematician generally constructs a proof by contradiction by assuming that
the given statement is false and then investigates where this assumption leads until
some absurdity appears. Of course,any“blind alleys”encountered in the investigation
should not appear in the final proof.

In the preceding proof,we assumed that some chosen vector xi could be expressed
as a linear combination of the other vectors. However, we could easily have renum-
bered the vectors so that xi becomes x1, and the other vectors are x2 through xk.
A mathematician would express this by writing:“We assume some vector in S can be
expressed as a linear combination of the others.Without loss of generality, choose x1 to
be this vector.” This phrase“without loss of generality”implies here that the vectors



 

1.3 An Introduction to Proof Techniques 39

have been suitably rearranged if necessary, so that x1 now has the desired property.
Then our assumption in the proof of Result 7 would be x1 � a2x2 � · · · � akxk. The
proof is now simpler to express, since we do not have to skip over subscript “i.”

x1 · x1 � x1 · (a2x2 � · · · � akxk)

� a2(x1 · x2) � · · · � ak(x1 · xk)

� a2(0) � · · · � ak(0) � 0.

Proof Technique: Proof by Induction

The method of proof by induction is used to show that a statement is true for all
values of an integer variable greater than or equal to some initial value i. For example,
A�“For every integer n 	 1,12 � 22 � · · · � n2 � n(n � 1)(2n � 1)/6”can be proved
by induction for all integers n greater than or equal to the initial value i � 1. You may
have seen such a proof in your calculus course.

There are two steps in any induction proof,the Base Step and the Inductive Step.

(1) Base Step: Prove that the desired statement is true for the initial value i of the (integer)
variable.

(2) Inductive Step: Prove that if the statement is true for an integer value k of the variable
(with k 	 i), then the statement is true for the next integer value k � 1 as well.

These two steps together show that the statement is true for every integer greater
than or equal to the initial value i because the Inductive Step sets up a “chain of
implications,” as in Figure 1.22. First, the Base Step implies that the initial statement,
Ai , is true. But Ai is the premise for the first implication in the chain. Hence, the
Inductive Step tells us that the conclusion of this implication, Ai�1,must also be true.
However, Ai�1 is the premise of the second implication; hence, the Inductive Step
tells us that the conclusion Ai�2 must be true. In this way, the statement is true for
each integer value 	 i.

The process of induction can be likened to knocking down a line of dominoes—one
domino for each integer greater than or equal to the initial value. Keep in mind that the
Base Step is needed to knock over the first domino and thus start the entire process.

Statement
at initial
value i

Statement
when

variable
equals i 11

Statement
when

variable
equals i 1 2

Statement
when

variable
equals i 1 3

A i A i 12 A i 13A i 11
. . .

FIGURE 1.22

Chain of implications set up by the Inductive Step
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Without the Base Step, we cannot be sure that the given statement is true for any
integer value at all. The next proof illustrates the induction technique:

Result 8 Let z, and x1,x2, . . . ,xn (for n 	 1) be vectors in R
m, and let c1,c2, . . . ,cn ∈ R.

Then,

(c1x1 � c2x2 � · · · � cnxn) · z � c1(x1 · z) � c2(x2 · z) � · · · � cn(xn · z).

This is a generalization of part (6) of Theorem 1.5, where a linear combination
replaces a single addition of vectors.

Proof. The integer induction variable is n, with initial value i � 1.

Base Step: The Base Step is typically proved by plugging in the initial value and verifying the
result is true in that case. When n � 1, the left-hand side of the equation in Result 8 has only
one term: (c1x1) · z, while the right-hand side yields c1(x1 · z). But (c1x1) · z � c1(x1 · z) by
part (4) of Theorem 1.5, and so we have completed the Base Step.

Inductive Step: Assume in what follows that c1,c2, . . . ,ck,ck�1 ∈ R, z,x1,x2, . . . ,
xk,xk�1 ∈ R

m, and k 	 1. The Inductive Step requires us to prove the following:
If

(c1x1 � c2x2 � · · · � ckxk) · z � c1(x1 · z) � c2(x2 · z) � · · · � ck(xk · z),

then

(c1x1 � c2x2 � · · · � ckxk � ck�1xk�1) · z

� c1(x1 · z) � c2(x2 · z) � · · · � ck(xk · z) � ck�1(xk�1 · z).

We assume that the premise is true, and use it to prove the following conclusion:

(c1x1 � c2x2 � · · · � ckxk � ck�1xk�1) · z
� ((c1x1 � c2x2 � · · · � ckxk) � (ck�1xk�1)) · z
� (c1x1 � c2x2 � · · · � ckxk) · z � (ck�1xk�1) · z

by part (6) of Theorem 1.5, where x � c1x1 � c2x2 � · · · � ckxk,
and y � ck�1xk�1

� (c1x1 � c2x2 � · · · � ckxk) · z � ck�1(xk�1 · z)

by part (4) of Theorem 1.5
� c1(x1 · z) � c2(x2 · z) � · · · � ck(xk · z) � ck�1(xk�1 · z)

by the induction premise.

Thus, we have proven the conclusion and completed the Inductive Step. Because we
have completed both parts of the induction proof, the proof is finished.

Note that in the Inductive Step we are proving an implication, and so we get the
powerful advantage of assuming the premise of that implication.This premise is called
the inductive hypothesis. In Result 8, the inductive hypothesis is

(c1x1 � c2x2 � · · · � ckxk) · z � c1(x1 · z) � c2(x2 · z) � · · · � ck(xk · z).
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It allows us to make the crucial substitution for (c1x1 � c2x2 � · · · � ckxk) · z in the
Inductive Step. A successful proof by induction ultimately depends on using the
inductive hypothesis to reach the final conclusion.

Negating Statements with Quantifiers and Connectives

When considering some statement A, we are frequently interested in its negation,
“not A.” For example, negation is used in constructing a contrapositive, as well as
in proof by contradiction. Of course, “not A” is true precisely when A is false, and
“not A” is false precisely when A is true. That is, A and “not A” always have opposite
truth values. Negating a simple statement is usually easy. However, when a statement
involves quantifiers (such as all, some, or none) or involves connectives (such as
and or or), the negation process can be tricky.

We first discuss negating statements with quantifiers. As an example, suppose S
represents some set of vectors in R

3 and A �“All vectors in S are unit vectors.” The
correct negation of A is “not A” � “Some vector in S is not a unit vector.” These
statements have opposite truth values in all cases. Students frequently err in giving
B � “No vector in S is a unit vector” as the negation of A. This is incorrect, because
if S contained unit and non-unit vectors, then both A and B would be false. Hence, A
and B do not have opposite truth values in all cases.

Next consider C �“There is a real number c such that y � cx,”referring to specific
vectors x and y.Then“not C”�“No real number c exists such that y � cx.”Alternately,
“not C”� “For every real number c, y �� cx.”

There are two types of quantifiers. Universal quantifiers (such as every, all, no,
and none) say that a statement is true or false in every instance, and existential
quantifiers (such as some and there exists) claim that there is at least one instance
in which the statement is satisfied. The statements A and “not C” in the preceding
examples involve universal quantifiers;“not A”and C use existential quantifiers.These
examples follow a general pattern.

Rules for Negating Statements with Quantifiers
The negation of a statement involving a universal quantifier uses an existential quantifier.
The negation of a statement involving an existential quantifier uses a universal quantifier.

Hence, negating a statement changes the type of quantifier used.
Next, consider negating with the connectives and or or. The formal rules for

negating such statements are known as DeMorgan’s Laws.

Rules for Negating Statements with Connectives (DeMorgan’s Laws)
The negation of “A or B” is “(not A) and (not B).”
The negation of “A and B” is “(not A) or (not B).”
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Note that when negating, or is converted to and, and vice versa.
Table 1.1 illustrates the rules for negating quantifiers and connectives. In the table,

S refers to a set of vectors in R
3, and n represents a positive integer. Only some of

the statements are true. Regardless, each statement has the opposite truth value of its
negation.

Disproving Statements

Frequently we must prove that a given statement is false rather than true.To disprove
a statement A, we must instead prove “not A.” There are two cases.

Case 1: Statements involving universal quantifiers: A statement A with a uni-
versal quantifier is disproved by finding a single counterexample that makes A false.
For example,consider B �“For all x and y in R

3,‖x � y‖ � ‖x‖ � ‖y‖.” We disprove
B by finding a counterexample — that is, a specific case where B is false. Letting
x � [3,0,0] and y � [0,0,4], we get ‖x � y‖ � ‖[3,0,4]‖ � 5. However, ‖x‖ � 3 and
‖y‖ � 4, so ‖x � y‖ �� ‖x‖ � ‖y‖, and B is disproved.

Sometimes we want to disprove an implication “If A then B.” This implication
involves a universal quantifier because it asserts “In all cases in which A is true, B is
also true.” Therefore,

Table 1.1 Several statements and their negations

Original Statement Negation of the Statement

n is an even number or a prime. n is odd and not prime.

x is a unit vector and x ∈ S. ‖x‖ �� 1 or x /∈ S.

Some prime numbers are odd. Every prime number is even.

There is a unit vector in S. No elements of S are unit vectors.

There is a vector x in S For every vector x in S,
with x · [1,1,�1] � 0. x · [1,1,�1] �� 0.

All numbers divisible by 4 are even. Some number divisible by 4 is odd.

Every vector in S is either a unit vector There is a non-unit vector in S that
or is parallel to [1,�2,1]. is not parallel to [1,�2,1].
For every nonzero vector x in R

3, there There is a nonzero vector x in R
3 that

is a vector in S that is parallel to x. is not parallel to any vector in S.

There is a real number K such that For every real number K , there is a
for every x ∈ S, ‖x‖ � K . vector x ∈ S such that ‖x‖ > K .
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Disproving “If A then B” entails finding a specific counterexample for which A is true but B
is false.

To illustrate, consider C � “If x and y are unit vectors in R
4, then x · y � 1.”To

disprove C , we must find a counterexample in which the premise “x and y are unit
vectors in R

4” is true and the conclusion“x · y � 1” is false. Consider x � [1,0,0,0] and
y � [0,1,0,0],which are unit vectors in R

4.Then x · y � 0 �� 1.This counterexample
disproves C .

Case 2: Statements involving existential quantifiers: Recall that an existen-
tial quantifier changes to a universal quantifier under negation. For example,consider
D �“There is a nonzero vector x in R

2 such that x · [1,0] � 0 and x · [0,1] � 0.” To dis-
prove D,we must prove“not D”�“For every nonzero vector x in R

2,either x · [1,0] �� 0
or x · [0,1] �� 0.”6 We cannot prove this statement by giving a single example. Instead,
we must show “not D” is true for every nonzero vector in R

2. This can be done with
a direct proof. (You were asked to supply its proof earlier, since “not D” is actually
Result 5.)

The moral here is we cannot disprove a statement having an existential quantifier
with a counterexample. Instead, a proof of the negation must be given.

New Vocabulary

Base Step of an induction proof
conclusion of an “If…then”statement
connectives
contrapositive of a statement
converse of a statement
counterexample
DeMorgan’s Laws
direct proof
existential quantifier
“If…then”proof
“If and only if”proof
“If A then (B or C)”proof
implication

induction
inductive hypothesis for the Inductive

Step
Inductive Step of an induction proof
inverse of a statement
negation of a statement
premise of an “If…then”statement
proof by contradiction
proof by contrapositive
proof by induction
quantifiers
universal quantifier
without loss of generality

Highlights

■ Various types of proofs include direct proof, “If A then B” proof, “A if and only
if B” proof, “If A then (B or C)” proof, proof by contrapositive, proof by
contradiction, and proof by induction.

6 Notice that along with the change in the quantifier, the and connective changes to or.
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■ When proving that an equation is true,a useful strategy is to begin with one half
of the equation and work toward the other half.

■ A useful strategy for trying to prove a given statement is to work “backward” to
discover a proof, then write the proof in a “forward” (correct) manner.

■ A useful strategy for trying to prove an “If A then B” statement is to assume the
premise A and derive the conclusion B.

■ In an “if and only if” proof, there are normally two parts to the proof. That is,
we must begin with each half of the given statement and use it to prove the
other half.

■ In an “If A then (B or C)”proof, a typical strategy is to assume A and “not B”and
prove C . Alternately, we can assume A and “not C”and prove B.

■ A statement is logically equivalent to its contrapositive, but not to either its
converse or inverse.

■ An “If A then B”statement can be proven by contrapositive by assuming “not B”
and proving “not A.”

■ In an induction proof,both the Base Step and the Inductive Step must be proven.
In carrying out the Inductive Step,assume the statement is true for some integer
value (say, k) of the given variable (this is the inductive hypothesis), and then
prove the statement is true for the next integer value (k � 1).

■ When negating a statement,universal quantifiers change to existential quantifiers,
and vice versa.

■ When negating a statement,“and” is replaced by “or,” and vice versa.

■ To disprove an“If A then B”statement, it is enough to find a counterexample for
which A is true and B is false.

EXERCISES FOR SECTION 1.3
1. (a) Give a direct proof that, if x and y are vectors in R

n, then ‖4x � 7y‖ �
7(‖x‖ � ‖y‖).

�(b) Can you generalize your proof in part (a) to draw any conclusions about
‖cx � dy‖, where c,d ∈ R? What about ‖cx � dy‖?

2. (a) Give a direct proof that if an integer has the form 6j � 5, then it also has
the form 3k � 1, where j and k are integers.

�(b) Find a counterexample to show that the converse of part (a) is not true.

3. Let x and y be nonzero vectors in R
n. Prove projxy � 0 if and only if

projyx � 0.
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4. Let x and y be nonzero vectors in R
n. Prove ‖x � y‖ � ‖x‖ � ‖y‖ if and only

if y � cx for some c > 0. (Hint:Be sure to prove both halves of this statement.
Result 4 may make one half of the proof easier.)

�5. Consider the statement A � “If x · y � ‖x‖2, then x � y.”

(a) Show that A is false by exhibiting a counterexample.

(b) State the contrapositive of A.

(c) Does your counterexample from part (a) also show that the contrapositive
from part (b) is false?

6. Prove the following statements of the form “If A, then B or C .”

(a) If ‖x � y‖ � ‖x‖, then y � 0 or x is not orthogonal to y.

(b) If projxy � x, then either x is a unit vector or x · y �� 1.

7. Prove the following by contrapositive:Assume that x and y are vectors in R
n.

If x · y �� 0, then ‖x � y‖2 �� ‖x‖2 � ‖y‖2.

8. State the contrapositive, converse, and inverse of each of the following state-
ments for vectors in R

n:
�(a) If x is a unit vector, then x is nonzero.

(b) Let x and y be nonzero vectors. If x is parallel to y, then y � projxy.

�(c) Let x and y be nonzero vectors. If projxy � 0, then projyx � 0.

9. (a) State the converse of Result 2.

(b) Show that this converse is false by finding a counterexample.

10. Each of the following statements has the opposite truth value as its converse;
that is, one of them is true, and the other is false. In each case,

(i) State the converse of the given statement.

(ii) Which is true — the statement or its converse?

(iii) Prove the one from part (ii) that is true.

(iv) Disprove the other one by finding a counterexample.

(a) Let x, y, and z be vectors in R
n. If x · y � x · z, then y � z.

�(b) Let x and y be vectors in R
n. If x · y � 0, then ‖x � y‖ 	 ‖y‖.

(c) Assume that x and y are vectors in R
n with n > 1. If x · y � 0,then x � 0

or y � 0.

11. Let x and y be vectors in R
n such that each coordinate of both x and y is equal to

either 1 or �1. Prove by contradiction that if x is orthogonal to y,then n is even.

12. Prove the following by contradiction: three mutually orthogonal nonzero
vectors do not exist in R

2. (Hint: Assume three such vectors [x1,x2] , [y1,y2],
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and [z1,z2] exist. First,show that at least one of x1,y1,or z1 is nonzero.Without
loss of generality,you may assume x1 �� 0. Next,show that you may also assume
that y1 ��0. Let a � x2/x1 and b � y2/y1. Then, prove that [1,a], [1,b], and
[z1,z2] are also mutually orthogonal. Finally, show that z1 � az2 � z1 � bz2,
and obtain a contradiction.)

13. Prove by induction: If x1,x2, . . . ,xn�1,xn (for n 	 1) are vectors in R
m, then

x1 � x2 � · · · � xn�1 � xn � xn � xn�1 � · · · � x2 � x1.

14. Prove by induction: For each integer m 	 1, let x1, . . . ,xm be vectors in R
n.

Then,‖x1 � x2 � · · · � xm‖ � ‖x1‖ � ‖x2‖ � · · · � ‖xm‖.

15. Let x1, . . . ,xk be a mutually orthogonal set of nonzero vectors in R
n. Use

induction to show that ∥∥∥∥∥
k∑

i�1

xi

∥∥∥∥∥
2

�

k∑
i�1

‖xi‖2 .

16. Prove by induction: Let x1, . . . ,xk be unit vectors in R
n, and let a1, . . . ,ak be

real numbers. Then, for every y in R
n,

(
k∑

i�1

aixi

)
· y �

(
k∑

i�1

|ai|
)

‖y‖.

17. Let x � [x1, . . . ,xn] be a vector in R
n. Prove that ‖x‖ � �n

i�1 |xi|. (Hint: Use a

proof by induction on n to prove that
√

�n
i�1x2

i � �n
i�1 |xi|. For the Inductive

Step, let y � [x1, . . . ,xk,xk�1], z � [x1, . . . ,xk,0], and w � [0,0, . . . ,0,xk�1].
Note that y � z � w. Then apply the Triangle Inequality.)

�18. Which steps in the following argument cannot be “reversed”? Why? Assume
that y � f (x) is a nonzero function and that d2y/dx2 exists for all x.

Step 1: y � x2 � 2 ⇒ y2 � x4 � 4x2 � 4

Step 2: y2 � x4 � 4x2 � 4 ⇒ 2y
dy

dx
� 4x3 � 8x

Step 3: 2y
dy

dx
� 4x3 � 8x ⇒ dy

dx
�

4x3 � 8x

2y

Step 4:
dy

dx
�

4x3 � 8x

2y
⇒ dy

dx
�

4x3 � 8x

2
(
x2 � 2

)
Step 5:

dy

dx
�

4x3 � 8x

2
(
x2 � 2

) ⇒ dy

dx
� 2x

Step 6:
dy

dx
� 2x ⇒ d2y

dx2
� 2
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19. State the negation of each of the following statements involving quantifiers
and connectives. (The statements are not necessarily true.)
�(a) There is a unit vector in R

3 perpendicular to [1,�2,3].
(b) x � 0 or x · y > 0, for all vectors x and y in R

n.
�(c) x �� 0 and ‖x � y‖ � ‖y‖, for some vectors x and y in R

n.

(d) For every vector x in R
n, x · x > 0.

�(e) For every x ∈ R
3, there is a nonzero y ∈ R

3 such that x · y � 0.

(f) There is an x ∈ R
4 such that for every y ∈ R

4,x · y � 0.

20. State the contrapositive, converse, and inverse of the following statements
involving connectives. (The statements are not necessarily true.)
�(a) If x · y � 0, then either x � 0 or ‖x � y‖ > ‖y‖.

(b) If x �� 0 and x · y � 0, then ‖x � y‖ > ‖y‖.

21. Prove the following by contrapositive: Let x be a vector in R
n. If x · y � 0 for

every vector y in R
n, then x � 0.

22. Prove the following by contrapositive: Let u and v be nonzero vectors in R
n.

If, for all x in R
n, either u · x � 0 or v · x � 0, then u and v are in opposite

directions. (Hint: Consider a vector that bisects the angle between u and v.)

23. Disprove the following:If x and y are vectors in R
n,then ‖x � y‖ � ‖x‖ � ‖y‖.

24. Use Result 2 to disprove the following: there is a vector x in R
3 such that

x · [1,�2,2] � 0 and ‖x � [1,�2,2]‖ < 3.

�25. True or False:

(a) After“working backward”to complete a proof, it is enough to reverse your
steps to give a valid “forward”proof.

(b) “If A then B”has the same truth value as “If not B then not A.”

(c) The converse of “A only if B” is “If B then A.”

(d) “A if and only if B” is logically equivalent to “A is a necessary condition
for B.”

(e) “A if and only if B” is logically equivalent to “A is a necessary condition for
B” together with “B is a sufficient condition for A.”

(f) The converse and inverse of a statement must have opposite truth values.

(g) A proof of a given statement by induction is valid if, whenever the
statement is true for any integer k, it is also true for the next integer k � 1.

(h) When negating a statement, universal quantifiers change to existential
quantifiers, and vice versa.

(i) The negation of “A and B” is “not A and not B.”



 

48 CHAPTER 1 Vectors and Matrices

1.4 FUNDAMENTAL OPERATIONS WITH MATRICES
We now introduce a new algebraic structure: the matrix. Matrices are two-dimensional
arrays created by arranging vectors into rows and columns. We examine several fun-
damental types of matrices, as well as three basic operations on matrices and their
properties.

Definition of a Matrix

aa
Definition An m � n matrix is a rectangular array of real numbers, arranged in
m rows and n columns. The elements of a matrix are called the entries. The
expression m � n denotes the size of the matrix.

For example, each of the following is a matrix, listed with its correct size:

A �

[
2 3 �1
4 0 �5

]
︸ ︷︷ ︸

2�3 matrix

B �

⎡
⎣ 4 �2

1 7
�5 3

⎤
⎦

︸ ︷︷ ︸
3�2 matrix

C �

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦

︸ ︷︷ ︸
3�3 matrix

D �

⎡
⎣ 7

1
�2

⎤
⎦

︸ ︷︷ ︸
3�1 matrix

E �
[
4 �3 0

]︸ ︷︷ ︸
1�3 matrix

F �
[
4
]︸︷︷︸

1�1 matrix

Here are some conventions to remember regarding matrices.

■ We use a single (or subscripted) bold capital letter to denote a matrix (such as
A,B,C1,C2) in contrast to the lowercase bold letters used to represent vectors.
The capital letters I and O are usually reserved for special types of matrices
discussed later.

■ The size of a matrix is always specified by stating the number of rows first. For
example, a 3 � 4 matrix always has three rows and four columns, never four
rows and three columns.

■ An m � n matrix can be thought of either as a collection of m row vectors,each
having n coordinates, or as a collection of n column vectors, each having m
coordinates. A matrix with just one row (or column) is essentially equivalent to
a vector with coordinates in row (or column) form.

■ We often write aij to represent the entry in the ith row and jth column of a
matrix A. For example, in the previous matrix A, a23 is the entry �5 in the
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second row and third column. A typical 3 � 4 matrix C has entries symbo-
lized by

C �

⎡
⎣c11 c12 c13 c14

c21 c22 c23 c24
c31 c32 c33 c34

⎤
⎦.

■ Mmn represents the set of all matrices with real-number entries having m
rows and n columns. For example, M34 is the set of all matrices having three
rows and four columns. A typical matrix in M34 has the form of the preceding
matrix C.

■ The main diagonal entries of a matrix A are a11,a22,a33, . . ., those that lie on a
diagonal line drawn down to the right, beginning from the upper-left corner of
the matrix.

Matrices occur naturally in many contexts. For example, two-dimensional tables
(having rows and columns) of real numbers are matrices. The following table
represents a 50 � 3 matrix with integer entries.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U.S. State Population (2000) Area (sq. mi.) Year Admitted to Union

Alabama 4447100 51609 1819

Alaska 626932 589757 1959

Arizona 5130632 113909 1912

...
...

...
...

Wyoming 493782 97914 1890

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Two m � n matrices A and B are equal if and only if all of their corresponding
entries are equal. That is, A � B if aij � bij for all i,1 � i � m, and for all j,1 � j � n.

Note that the following may be considered equal as vectors but not as matrices:

[3,�2,4] and

⎡
⎣ 3

�2
4

⎤
⎦,

since the former is a 1 � 3 matrix, but the latter is a 3 � 1 matrix.

Special Types of Matrices

We now describe a few important types of matrices.
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A square matrix is an n � n matrix; that is, a matrix having the same number of
rows as columns. For example, the following matrices are square:

A �

[
5 0
9 �2

]
and B �

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦.

A diagonal matrix is a square matrix in which all entries that are not on the main
diagonal are zero. That is, D is diagonal if and only if it is square and dij � 0 for i �� j.
For example, the following are diagonal matrices:

E �

⎡
⎣ 6 0 0

0 7 0
0 0 �2

⎤
⎦, F �

⎡
⎢⎢⎣

4 0 0 0
0 0 0 0
0 0 �2 0
0 0 0 0

⎤
⎥⎥⎦, and G �

[
�4 0

0 5

]
.

However, the following matrices

H �

[
4 3
0 1

]
and J �

⎡
⎣ 0 4 3
�7 0 6

5 �2 0

⎤
⎦

are not diagonal. (The main diagonal elements have been shaded in each case.) We
use Dn to represent the set of all n � n diagonal matrices.

An identity matrix is a diagonal matrix with all main diagonal entries equal to
1. That is, an n � n matrix A is an identity matrix if and only if aij � 0 for i �� j and
aii � 1 for 1 � i � n. The n � n identity matrix is denoted by In. For example, the
following are identity matrices:

I2 �

[
1 0
0 1

]
and I4 �

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦.

If the size of the identity matrix is clear from the context, I alone may be used.
An upper triangular matrix is a square matrix with all entries below the main

diagonal equal to zero. That is, an n � n matrix A is upper triangular if and only if
aij � 0 for i > j. For example, the following are upper triangular:

P �

⎡
⎣ 6 9 11

0 �2 3
0 0 5

⎤
⎦ and Q �

⎡
⎢⎢⎣

7 �2 2 0
0 �4 9 5
0 0 0 8
0 0 0 3

⎤
⎥⎥⎦.
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Similarly, a lower triangular matrix is one in which all entries above the main
diagonal equal zero; for example,

R �

⎡
⎣ 3 0 0

9 �2 0
14 �6 1

⎤
⎦

is lower triangular. We use Un to represent the set of all n � n upper triangular
matrices and Ln to represent the set of all n � n lower triangular matrices.

A zero matrix is any matrix all of whose entries are zero. Omn denotes the m � n
zero matrix, and On denotes the n � n zero matrix. For example,

O23 �

[
0 0 0
0 0 0

]
and O2 �

[
0 0
0 0

]

are zero matrices. If the size of the zero matrix is clear from the context,O alone may
be used.

Addition and Scalar Multiplication with Matrices

aa
Definition Let A and B both be m � n matrices.The sum of A and B is the m � n
matrix (A � B) whose (i, j) entry is equal to aij � bij .

As with vectors,matrices are summed simply by adding their corresponding entries
together. For example,

[
6 �3 2

�7 0 4

]
�

[
5 �6 �3

�4 �2 �4

]
�

[
11 �9 �1

�11 �2 0

]
.

Notice that the definition does not allow addition of matrices with different sizes. For
example, the following matrices cannot be added:

A �

[
�2 3 0

1 4 �5

]
and B �

⎡
⎣ 6 7

�2 5
4 �1

⎤
⎦,

since A is a 2 � 3 matrix, and B is a 3 � 2 matrix.

Definition Let A be an m � n matrix, and let c be a scalar.Then the matrix cA, the
scalar multiplication of c and A, is the m � n matrix whose (i, j) entry is equal
to caij .
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As with vectors, scalar multiplication with matrices is done by multiplying every
entry by the given scalar. For example, if c � �2 and

A �

[
4 �1 6 7
2 4 9 �5

]
, then � 2A �

[
�8 2 �12 �14
�4 �8 �18 10

]
.

Note that if A is any m � n matrix, then 0A � Omn.
Let �A denote the matrix �1A, the scalar multiple of A by (�1). For example, if

A �

[
3 �2

10 6

]
, then � 1A � �A �

[
�3 2

�10 �6

]
.

Also, we define subtraction of matrices as A � B � A � (�B).
As with vectors, sums of scalar multiples of matrices are called linear combina-

tions. For example, �2A � 6B � 3C is a linear combination of A, B, and C.

Fundamental Properties of Addition and Scalar Multiplication

The properties in the next theorem are similar to the vector properties of Theorem 1.3.

Theorem 1.11 Let A, B, and C be m � n matrices (elements of Mmn), and let c and
d be scalars. Then

(1) A � B � B � A Commutative Law of Addition

(2) A � (B � C) � (A � B) � C Associative Law of Addition

(3) Omn � A � A � Omn � A Existence of Identity Element for Addition

(4) A � (�A) � (�A) � A � Omn Existence of Inverse Elements for Addition

(5) c(A � B) � cA � cB Distributive Laws of Scalar

(6) (c � d)A � cA � dA Multiplication over Addition

(7) (cd)A � c(dA) Associativity of Scalar Multiplication

(8) 1(A) � A Identity Property for Scalar Multiplication

To prove each property, calculate corresponding entries on both sides and show
they agree by applying an appropriate law of real numbers. We prove part (1) as an
example and leave some of the remaining proofs as Exercise 10.

Proof. Proof of Part (1): For any i, j, where 1 � i � m and 1 � j � n, the (i, j) entry of (A � B)

is the sum of the entries aij and bij from A and B, respectively. Similarly, the (i, j) entry
of B � A is the sum of bij and aij . But aij � bij � bij � aij , by the commutative property
of addition for real numbers. Hence, A � B � B � A, because their corresponding entries
agree.
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The Transpose of a Matrix and Its Properties

aa
Definition If A is an m � n matrix, then its transpose, AT , is the n � m matrix
whose (i, j) entry is the same as the ( j, i) entry of A.

Thus, transposing A moves the (i, j) entry of A to the (j, i) entry of AT . Notice that
the entries on the main diagonal do not move as we convert A to AT . However, all
entries above the main diagonal are moved below it, and vice versa. For example,

if A �

⎡
⎢⎢⎣

6 10
�2 4

3 0
1 8

⎤
⎥⎥⎦ and B �

⎡
⎣1 5 �3

0 �4 6
0 0 �5

⎤
⎦,

then AT �

[
6 �2 3 1

10 4 0 8

]
and BT �

⎡
⎣ 1 0 0

5 �4 0
�3 6 �5

⎤
⎦.

Notice that the transpose changes the rows of A into the columns of AT . Similarly,
the columns of A become the rows of AT . Also note that the transpose of an upper
triangular matrix (such as B) is lower triangular, and vice versa.

Three useful properties of the transpose are given in the next theorem. We prove
one and leave the others as Exercise 11.

Theorem 1.12 Let A and B both be m � n matrices, and let c be a scalar. Then

(1)
(
AT
)T

� A

(2) (A � B)T � AT � BT

(3) (cA)T � c
(
AT
)

Proof. Proof of Part (2): Notice that both (A � B)T and
(
AT
)

�
(
BT
)

are n � m matrices
(why?). We need to show that the (i, j) entries of both are equal, for 1 � i � n and 1 � j � m.
Now, the (i, j) entry of (A � B)T equals the ( j, i) entry of A � B, which is aji � bji. But the
(i, j) entry of AT � BT equals the (i, j) entry of AT plus the (i, j) entry of BT , which is also
aji � bji.

Symmetric and Skew-Symmetric Matrices

aa
Definition A matrix A is symmetric if and only if A � AT . A matrix A is skew-
symmetric if and only if A � �AT .
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In Exercise 5,you are asked to show that any symmetric or skew-symmetric matrix
is a square matrix.

Example 1
Consider the following matrices:

A �

⎡
⎢⎣2 6 4

6 �1 0
4 0 �3

⎤
⎥⎦ and B �

⎡
⎢⎢⎢⎣

0 �1 3 6
1 0 2 �5

�3 �2 0 4
�6 5 �4 0

⎤
⎥⎥⎥⎦.

A is symmetric and B is skew-symmetric, because their respective transposes are

AT �

⎡
⎢⎣2 6 4

6 �1 0
4 0 �3

⎤
⎥⎦ and BT �

⎡
⎢⎢⎢⎣

0 1 �3 �6
�1 0 �2 5

3 2 0 �4
6 �5 4 0

⎤
⎥⎥⎥⎦,

which equal A and �B, respectively. However, neither of the following is symmetric or skew-
symmetric (why?):

C �

⎡
⎢⎣ 3 �2 1

2 4 0
�1 0 �2

⎤
⎥⎦ and D �

⎡
⎢⎣1 �2

3 4
5 �6

⎤
⎥⎦.

Notice that an n � n matrix A is symmetric [skew-symmetric] if and only if aij �
aji [aij � �aji] for all i, j such that 1 � i, j � n. In other words, the entries above
the main diagonal are reflected into equal (for symmetric) or opposite (for skew-
symmetric) entries below the diagonal. Since the main diagonal elements are reflected
into themselves,all of the main diagonal elements of a skew-symmetric matrix must
be zeroes (aii � �aii only if aii � 0).

Notice that any diagonal matrix is equal to its transpose, and so such matrices are
automatically symmetric. Another useful result is the following:

Theorem 1.13 Every square matrix A can be decomposed uniquely as the sum of two
matrices S and V, where S is symmetric and V is skew-symmetric.

An outline of the proof of Theorem 1.13 is given in Exercise 13, which also states
that S � 1

2

(
A � AT

)
and V � 1

2

(
A � AT

)
.
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Example 2
We can decompose the matrix

A �

⎡
⎢⎣�4 2 5

6 3 7
�1 0 2

⎤
⎥⎦

as the sum of a symmetric matrix S and a skew-symmetric matrix V, where

S �
1

2

(
A � AT

)
�

1

2

⎛
⎜⎝
⎡
⎢⎣�4 2 5

6 3 7
�1 0 2

⎤
⎥⎦�

⎡
⎢⎣�4 6 �1

2 3 0
5 7 2

⎤
⎥⎦
⎞
⎟⎠�

⎡
⎢⎣�4 4 2

4 3 7
2

2 7
2 2

⎤
⎥⎦

and

V �
1

2

(
A � AT

)
�

1

2

⎛
⎜⎝
⎡
⎢⎣�4 2 5

6 3 7
�1 0 2

⎤
⎥⎦�

⎡
⎢⎣�4 6 �1

2 3 0
5 7 2

⎤
⎥⎦
⎞
⎟⎠�

⎡
⎢⎣ 0 �2 3

2 0 7
2

�3 � 7
2 0

⎤
⎥⎦.

Notice that S and V really are, respectively, symmetric and skew-symmetric and that S � V really
does equal A.

New Vocabulary

additive inverse of a matrix
associative law for matrix addition
associative law for scalar multiplication
commutative law for matrix addition
diagonal matrix
distributive laws for matrices
identity matrix
identity property for scalar multiplica-

tion
lower triangular matrix

main diagonal entries
matrix
size of a matrix
skew-symmetric matrix
square matrix
symmetric matrix
trace of a square matrix
transpose of a matrix
upper triangular matrix
zero matrix

Highlights

■ An m � n matrix can be thought of as a collection of m row vectors in R
n, or a

collection of n column vectors in R
m.

■ Special types of matrices include square matrices, diagonal matrices, upper and
lower triangular matrices, identity matrices, and zero matrices.

■ Matrix addition and scalar multiplication satisfy commutative, associative, and
distributive laws.
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■ The transpose of a sum of matrices is equal to the sum of the transposes,and the
transpose of a scalar multiple of a matrix is equal to the scalar multiple of the
transpose.

■ A matrix is symmetric if and only if it is equal to its transpose. All entries above
the main diagonal of a symmetric matrix are reflected into equal entries below
the diagonal.

■ A matrix is skew-symmetric if and only if it is the opposite of its transpose. All
main diagonal entries of a skew-symmetric matrix are zero.

■ Every square matrix is the sum in a unique way of a symmetric and a skew-
symmetric matrix.

EXERCISES FOR SECTION 1.4
1. Compute the following, if possible, for the matrices

A �

⎡
⎣�4 2 3

0 5 �1
6 1 �2

⎤
⎦ B �

⎡
⎣6 �1 0

2 2 �4
3 �1 1

⎤
⎦ C �

[
5 �1

�3 4

]

D �

[
�7 1 �4

3 �2 8

]
E �

⎡
⎣3 �3 5

1 0 �2
6 7 �2

⎤
⎦ F �

⎡
⎣8 �1

2 0
5 �3

⎤
⎦.

�(a) A � B (h) 2D � 3F

(b) C � D �(i) AT � ET

�(c) 4A (j) (A � E)T

(d) 2A � 4B (k) 4D � 2FT

�(e) C � 3F � E �(l) 2CT � 3F

(f) A � B � E (m) 5
(
FT � DT

)
�(g) 2A � 3E � B �(n)

(
(B � A)T � ET

)T
�2. Indicate which of the following matrices are square, diagonal, upper or lower

triangular, symmetric, or skew-symmetric. Calculate the transpose for each
matrix.

A �

⎡
⎣�1 4

0 1
6 0

⎤
⎦ B �

[
2 0
0 �1

]
C �

[
�1 1
�1 1

]
D �

⎡
⎣�1

4
2

⎤
⎦
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E �

⎡
⎣ 0 0 6

0 �6 0
�6 0 0

⎤
⎦ F �

⎡
⎢⎢⎣

1 0 0 1
0 0 1 1
0 1 0 0
1 1 0 1

⎤
⎥⎥⎦ G �

⎡
⎣6 0 0

0 6 0
0 0 6

⎤
⎦

H �

⎡
⎢⎢⎣

0 �1 6 2
1 0 �7 1

�6 7 0 �4
�2 �1 4 0

⎤
⎥⎥⎦ J �

⎡
⎢⎢⎣

0 1 0 0
1 0 1 1
0 1 1 1
0 1 1 0

⎤
⎥⎥⎦ K �

⎡
⎢⎢⎣

1 2 3 4
�2 1 5 6
�3 �5 1 7
�4 �6 �7 1

⎤
⎥⎥⎦

L �

⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦ M �

⎡
⎣0 0 0

1 0 0
1 1 0

⎤
⎦ N �

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

P �

[
0 1
1 0

]
Q �

⎡
⎣�2 0 0

4 0 0
�1 2 3

⎤
⎦ R �

⎡
⎣ 6 2

3 �2
�1 0

⎤
⎦

3. Decompose each of the following as the sum of a symmetric and a skew-
symmetric matrix:

�(a)

⎡
⎣3 �1 4

0 2 5
1 �3 2

⎤
⎦

(b)

⎡
⎣1 0 �4

3 3 �1
4 �1 0

⎤
⎦

(c)

⎡
⎢⎢⎣

2 3 4 �1
�3 5 �1 2
�4 1 �2 0

1 �2 0 5

⎤
⎥⎥⎦

(d)

⎡
⎢⎢⎣

�3 3 5 � 4
11 4 5 � 1

�9 1 5 �14
2 �11 �2 � 5

⎤
⎥⎥⎦

4. Prove that if AT � BT , then A � B.

5. (a) Prove that any symmetric or skew-symmetric matrix is square.

(b) Prove that every diagonal matrix is symmetric.

(c) Show that (In)T � In. (Hint: Use part (b).)
�(d) Describe completely every matrix that is both diagonal and skew-

symmetric.

6. Assume that A and B are square matrices of the same size.

(a) If A and B are diagonal, prove that A � B is diagonal.

(b) If A and B are symmetric, prove that A � B is symmetric.

7. Use induction to prove that, if A1, . . . ,An are upper triangular matrices of the
same size, then �n

i�1Ai is upper triangular.
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8. (a) If A is a symmetric matrix, show that AT and cA are also symmetric.

(b) If A is a skew-symmetric matrix, show that AT and cA are also skew-
symmetric.

9. The Kronecker Delta �ij is defined as follows: �ij �

{
1 if i � j
0 if i �� j

. If A � In,

explain why aij � �ij .

10. Prove parts (4), (5), and (7) of Theorem 1.11.

�11. Prove parts (1) and (3) of Theorem 1.12.

12. Let A be an m � n matrix. Prove that if cA � Omn, the m � n zero matrix, then
c � 0 or A � Omn.

13. This exercise provides an outline for the proof of Theorem 1.13. Let A be an
n � n matrix.

(a) Prove that 1
2

(
A � AT

)
is a symmetric matrix.

(b) Prove that 1
2

(
A � AT

)
is a skew-symmetric matrix.

(c) Show that A � 1
2

(
A � AT

)
� 1

2

(
A � AT

)
.

(d) Suppose that S1 and S2 are symmetric matrices and that V1 and V2 are
skew-symmetric matrices such that S1 � V1 � S2 � V2. Derive a second
equation involving S1, S2, V1, and V2 by taking the transpose of both sides
of the equation and simplifying.

(e) Prove that S1 � S2 by adding the two equations from part (d) together.

(f) Use parts (d) and (e) to prove that V1 � V2.

(g) Explain how parts (a) through (f) together prove Theorem 1.13.

14. The trace of a square matrix A is the sum of the elements along the main
diagonal.
�(a) Find the trace of each square matrix in Exercise 2.

(b) If A and B are both n � n matrices, prove that:

(i) trace(A � B) � trace(A) � trace(B)

(ii) trace(cA) � c(trace(A))

(iii) trace(A) � trace
(
AT
)

�(c) Suppose that trace(A) � trace(B) for two n � n matrices A and B. Does
A � B? Prove your answer.

�15. True or False:

(a) A 5 � 6 matrix has exactly six entries on its main diagonal.

(b) The transpose of a lower triangular matrix is upper triangular.

(c) No skew-symmetric matrix is diagonal.

(d) If V is a skew-symmetric matrix, then �VT � V.

(e) For all scalars c, and n � n matrices A and B,
(
c
(
AT � B

))T
� cBT � cA.
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1.5 MATRIX MULTIPLICATION
Another useful operation is matrix multiplication, which is a generalization of the dot
product of vectors.

Definition of Matrix Multiplication

Two matrices A and B can be multiplied (in that order) only if the number of columns
of A is equal to the number of rows of B. In that case,

Size of product AB � (number of rows of A) � (number of columns of B).

That is, if A is an m � n matrix, then AB is defined only when the number of rows
of B is n — that is,when B is an n � p matrix, for some integer p. In this case,AB is an
m � p matrix, because A has m rows and B has p columns. The actual entries of AB
are given by the following definition:

Definition If A is an m � n matrix and B is an n � p matrix, their matrix product
C � AB is the m � p matrix whose (i, j) entry is the dot product of the ith row of
A with the jth column of B. That is,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

. . .
...

ai1 ai2 ai3 · · · ain
...

...
...

. . .
...

am1 am2 am3 · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
m�n matrix A

⎡
⎢⎢⎢⎢⎢⎢⎣

b11 b12 · · · b1j · · · b1p

b21 b22 · · · b2j · · · b2p

b31 b32 · · · b3j · · · b3p

...
...

. . .
...

. . .
...

bn1 bn2 · · · bnj · · · bnp

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n�p matrix B

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1j · · · c1p

c21 c22 · · · c2j · · · c2p
...

...
. . .

...
. . .

...
ci1 ci2 · · · cij · · · cip
...

...
. . .

...
. . .

...
cm1 cm2 · · · cmj · · · cmp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
m�p matrix C

where cij � ai1b1j � ai2b2j � ai3b3j � · · · � ainbnj �

n∑
k�1

aikbkj .
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Since the number of columns in A equals the number of rows in B in this definition,
each row of A contains the same number of entries as each column of B. Thus, it is
possible to perform the dot products needed to calculate C � AB.

Example 1
Consider

A �

[
5 �1 4

�3 6 0

]
and B �

⎡
⎢⎣ 9 4 �8 2

7 6 �1 0
�2 5 3 �4

⎤
⎥⎦.

Since A is a 2 � 3 matrix and B is a 3 � 4 matrix, the number of columns of A equals the number
of rows of B (three in each case). Therefore, A and B can be multiplied, and the product matrix
C � AB is a 2 � 4 matrix, because A has two rows and B has four columns. To calculate each
entry of C, we take the dot product of the appropriate row of A with the appropriate column of B.
For example, to find c11, we take the dot product of the first row of A with the first column of B:

c11 � [5,�1,4] ·
⎡
⎢⎣ 9

7
�2

⎤
⎥⎦� (5)(9) � (�1)(7) � (4)(�2) � 45 � 7 � 8 � 30.

To find c23, we take the dot product of the second row of A with the third column of B:

c23 � [�3,6,0] ·
⎡
⎢⎣�8

�1
3

⎤
⎥⎦� (�3)(�8) � (6)(�1) � (0)(3) � 24 � 6 � 0 � 18.

The other entries are computed similarly, yielding

C � AB �

[
30 34 �27 �6
15 24 18 �6

]
.

Example 2
Consider the following five matrices:

D �

⎡
⎢⎣�2 1

0 5
4 �3

⎤
⎥⎦ ,

︸ ︷︷ ︸
3�2 matrix

E �

[
1 �6
0 2

]
,

︸ ︷︷ ︸
2�2 matrix

F �
[
�4 2 1

]
,︸ ︷︷ ︸

1�3 matrix

G �

⎡
⎢⎣ 7

�1
5

⎤
⎥⎦ ,

︸ ︷︷ ︸
3�1 matrix

and H �

[
5 0
1 �3

]
.

︸ ︷︷ ︸
2�2 matrix
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The only possible products of two of these matrices that are defined are

DE �

⎡
⎢⎣�2 14

0 10
4 �30

⎤
⎥⎦, DH �

⎡
⎢⎣�9 � 3

5 �15
17 9

⎤
⎥⎦, GF �

⎡
⎢⎣�28 14 7

4 �2 �1
�20 10 5

⎤
⎥⎦,

EE �

[
1 �18
0 4

]
, EH �

[
�1 18

2 �6

]
, HE �

[
5 �30
1 �12

]
, HH �

[
25 0

2 9

]
,

FG � [�25](1 � 1 matrix), and FD � [12 3] (1 � 2 matrix). (Verify!)

Example 2 points out that the order in which matrix multiplication is performed
is extremely important. In fact, for two given matrices, we have seen the following:

■ Neither product may be defined (for example, DG or GD).

■ One product may be defined but not the other. (DE is defined, but not ED.)

■ Both products may be defined,but the resulting sizes may not agree. (FG is 1 � 1,
but GF is 3 � 3.)

■ Both products may be defined,and the resulting sizes may agree,but the entries
may differ. (EH and HE are both 2 � 2, but have different entries.)

In unusual cases, where AB � BA, we say that A and B commute, or that
“A commutes with B.” But as we have seen, there is no general commutative law
for matrix multiplication, although there is a commutative law for addition.

If A is any 2 � 2 matrix, then AI2 � I2A(� A), where I2 is the iden-

tity matrix

[
1 0
0 1

]
. For example, if A �

[
�4 2

5 6

]
, then

[
�4 2

5 6

][
1 0
0 1

]
� A �[

1 0
0 1

][
�4 2

5 6

]
. In Exercise 17, we generalize this to show that if A is any

m � n matrix, then AIn � ImA � A. This is why I is called the (multiplicative)
identity matrix — because it preserves the “identity” of any matrices multiplied
by it. In particular, for an n � n matrix A, AIn � InA � A, and so A commutes
with In.

Application: Shipping Cost and Profit

Matrix products are vital in modeling certain geometric transformations (as we will
see in Sections 5.1 and 8.8). They are also widely used in graph theory, coding theory,
physics, and chemistry. Here is a simple application in business.

Example 3
Suppose four popular DVDs — say, W,X,Y, and Z — are being sold online by a video company
that operates three different warehouses. After purchase, the shipping cost is added to the price
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of the DVDs when they are mailed to the customer. The number of each type of DVD shipped
from each warehouse during the past week is shown in the following matrix A. The shipping cost
and profit collected for each DVD sold is shown in matrix B.

A �

⎡
⎢⎢⎢⎣

DVD W DVD X DVD Y DVD Z

Warehouse 1 130 160 240 190

Warehouse 2 210 180 320 240

Warehouse 3 170 200 340 220

⎤
⎥⎥⎥⎦

B �

⎡
⎢⎢⎢⎢⎢⎢⎣

Shipping Cost Profit

DVD W $3 $3

DVD X $4 $2

DVD Y $3 $4

DVD Z $2 $2

⎤
⎥⎥⎥⎥⎥⎥⎦

The product AB represents the combined total shipping costs and profits last week.

AB �

⎡
⎢⎢⎢⎣

Total Shipping Cost Total Profit

Warehouse 1 $2130 $2050

Warehouse 2 $2790 $2750

Warehouse 3 $2770 $2710

⎤
⎥⎥⎥⎦

In particular, the entry in the second row and second column of AB is calculated by taking the
dot product of the second row of A with the second column of B; that is,

(210)($3) � (180)($2) � (320)($4) � (240)($2) � $2750.

In this case, we are multiplying the number of each type of DVD sold from Warehouse 2 times
the profit per DVD, which equals the total profit for Warehouse 2.

Often we need to find only a particular row or column of a matrix product:

If the product AB is defined, then the kth row of AB is the product (kth row of A)B. Also,
the lth column of AB is the product A(lth column of B).
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Thus, in Example 3, if we only want the results for Warehouse 3, we only need to
compute the third row of AB. This is

[
170 200 340 220

]︸ ︷︷ ︸
third row of A

⎡
⎢⎢⎣

$3 $3
$4 $2
$3 $4
$2 $2

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

�
[
$2770 $2710

]︸ ︷︷ ︸
third row of AB

.

Linear Combinations from Matrix Multiplication

Forming a linear combination of the rows or columns of a matrix can be done very
easily using matrix multiplication, as illustrated in the following example.

Example 4
Consider the matrix

A �

⎡
⎢⎣ 3 �2 6 5

�1 4 �1 �3
2 �5 3 �6

⎤
⎥⎦.

In order to create a linear combination of the rows of A such as 7(first row of A)

�8(second row of A) � 9(third row of A), we only need to multiply A on the left by the vector
of coefficients [7,�8,9]. That is,

[7,�8,9]
⎡
⎢⎣ 3 �2 6 5

�1 4 �1 �3
2 �5 3 �6

⎤
⎥⎦

� [7(3) � (�8)(�1) � 9(2),7(�2) � (�8)(4) � 9(�5),7(6) � (�8)(�1) � 9(3),
7(5) � (�8)(�3) � 9(�6)]

� 7[3,�2,6,5] � (�8)[�1,4,�1,�3] � 9[2,�5,3,�6] � [47,�91,77,5]
� 7(first row of A) � 8(second row of A) � 9(third row of A).

Similarly, we can create a linear combination of the columns of A such as 10(first column of A)

� 11(second column of A) � 12(third column of A) � 13(fourth column of A) by multiplying
A on the right by the vector of coefficients [10,�11,12,�13]. This gives

⎡
⎢⎣ 3 �2 6 5

�1 4 �1 �3
2 �5 3 �6

⎤
⎥⎦
⎡
⎢⎢⎢⎣

10
�11

12
�13

⎤
⎥⎥⎥⎦

�

⎡
⎢⎣ 3(10) � (�2)(�11) � 6(12) � 5(�13)

(�1)(10) � 4(�11) � (�1)(12) � (�3)(13)

2(10) � (�5)(�11) � 3(12) � (�6)(�13)

⎤
⎥⎦
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� 10

⎡
⎢⎣ 3

�1
2

⎤
⎥⎦� 11

⎡
⎢⎣�2

4
�5

⎤
⎥⎦� 12

⎡
⎢⎣ 6

�1
3

⎤
⎥⎦� 13

⎡
⎢⎣ 5

�3
�6

⎤
⎥⎦�

⎡
⎢⎣ 59

�27
189

⎤
⎥⎦

� 10(first column of A) � 11(second column of A) � 12(third column of A)

�13(fourth column of A).

Fundamental Properties of Matrix Multiplication

If the zero matrix O is multiplied times any matrix A, or if A is multiplied times O,
the result is O (see Exercise 16). The following theorem lists some other important
properties of matrix multiplication:

Theorem 1.14 Suppose that A, B, and C are matrices for which the following sums
and products are defined. Let c be a scalar. Then

(1) A(BC) � (AB)C Associative Law of Multiplication
(2) A(B � C) � AB � AC Distributive Laws of Matrix Multiplication
(3) (A � B)C � AC � BC over Addition
(4) c(AB) � (cA)B � A(cB) Associative Law of Scalar and Matrix Multiplication

The proof of part (1) of Theorem 1.14 is more difficult than the others, and so it is
included in Appendix A for the interested reader. You are asked to provide the proofs
of parts (2), (3), and (4) in Exercise 15.

Other expected properties do not hold for matrix multiplication (such as the
commutative law). For example, the cancellation laws of algebra do not hold in
general.That is, if AB � AC,with A �� O, it does not necessarily follow that B � C. For
example, if

A �

[
2 1
6 3

]
, B �

[
�1 0

5 2

]
, and C �

[
3 1

�3 0

]
,

then

AB �

[
2 1
6 3

][
�1 0

5 2

]
�

[
3 2
9 6

]

and

AC �

[
2 1
6 3

][
3 1

�3 0

]
�

[
3 2
9 6

]
.

Here, AB � AC, but B �� C. Similarly, if AB � CB, it does not necessarily follow
that A � C.
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Also, if AB � O, it is not necessarily true that A � O or B � O. For example, if

A �

[
2 1
6 3

]
and B �

[
�1 2

2 �4

]
,

then

AB �

[
2 1
6 3

][
�1 2

2 �4

]
�

[
0 0
0 0

]
.

Here, AB � O2, but neither A nor B equals O2.

Powers of Square Matrices

Any square matrix can be multiplied by itself because the number of rows is the same
as the number of columns. In fact, square matrices are the only matrices that can be
multiplied by themselves (why?). The various nonnegative powers of a square matrix
are defined in a natural way.

Definition Let A be any n � n matrix. Then the (nonnegative) powers of A are
given by A0 � In,A1 � A, and for k 	 2, Ak �

(
Ak�1

)
(A).

Example 5

Suppose that A �

[
2 1

�4 3

]
. Then

A2 � (A)(A) �

[
2 1

�4 3

][
2 1

�4 3

]
�

[
0 5

�20 5

]
, and

A3 � (A2)(A) �

[
0 5

�20 5

][
2 1

�4 3

]
�

[
�20 15
�60 �5

]
.

Example 6
The identity matrix In is square, and so Ik

n exists, for all k 	 0. However, since InA � A, for any
n � n matrix A, we have InIn � In. Thus, Ik

n � In, for all k 	 0.

The next theorem asserts that two familiar laws of exponents in algebra are still
valid for powers of a square matrix. The proof is left as Exercise 20.
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Theorem 1.15 If A is a square matrix, and if s and t are nonnegative integers, then

(1) As�t � (As)(At )

(2) (As)t � Ast � (At )s.

As an example of part (1) of this theorem,we have A4�6 �
(
A4
)(

A6
)

� A10. As an

example of part (2), we have
(
A3
)2

� A(3)(2) �
(
A2
)3

� A6.
One law of exponents in elementary algebra that does not carry over to matrix

algebra is (xy)q � xqyq. In fact, if A and B are square matrices of the same size,
usually (AB)q �� AqBq, if q is an integer 	 2. Even in the simplest case, q � 2, usually
(AB)(AB) �� (AA)(BB) because the order of matrix multiplication is important.

Example 7
Let

A �

[
2 �4
1 3

]
and B �

[
3 2

�1 5

]
.

Then

(AB)2 �

[
10 �16

0 17

]2

�

[
100 �432

0 289

]
.

However,

A2B2 �

[
0 �20
5 5

][
7 16

�8 23

]
�

[
160 �460
�5 195

]
.

Hence, in this particular case, (AB)2 �� A2B2.

The Transpose of a Matrix Product

aa
Theorem 1.16 If A is an m � n matrix and B is an n � p matrix, then (AB)T � BT AT .

This result may seem unusual at first because you might expect (AB)T to equal
AT BT . But notice that AT BT may not be defined, because AT is an n � m matrix and
BT is a p � n matrix. Instead, the transpose of the product of two matrices is the
product of their transposes in reverse order.

Proof. Because AB is an m � p matrix and BT is a p � n matrix and AT is an n � m matrix,
it follows that (AB)T and BT AT are both p � m matrices. Hence, we only need to show
the (i, j) entries of (AB)T and BT AT are equal, for 1 � i � p and 1 � j � m. Now, the (i, j)
entry of (AB)T is the ( j, i) entry of AB, which is [ jth row of A]·[ith column of B]. However,
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the (i, j) entry of BT AT is [ith row of BT ]·[ jth column of AT ], which equals [ith column of
B]·[ jth row of A]. Thus, the (i, j) entries of (AB)T and BT AT agree.

Example 8
For the matrices A and B of Example 7, we have

AB �

[
10 �16

0 17

]
, BT �

[
3 �1
2 5

]
, and AT �

[
2 1

�4 3

]
.

Hence,

BT AT �

[
3 �1
2 5

][
2 1

�4 3

]
�

[
10 0

�16 17

]
� (AB)T .

Notice, however, that

AT BT �

[
2 1

�4 3

][
3 �1
2 5

]
�

[
8 3

�6 19

]
�� (AB)T .

�Supplemental Material: You have now covered the prerequisites for
Section 7.1,“Complex n-Vectors and Matrices.”

�Application: You have now covered the prerequisites for Section 8.1, “Graph
Theory.”

New Vocabulary

commuting matrices
idempotent matrix
identity matrix for multiplication

multiplication of matrices
power of a square matrix

Highlights

■ Two matrices can only be multiplied if the number of columns of the first is
equal to the number of rows of the second.

■ If two matrices can be multiplied, the resulting matrix has the same number of
rows as the first matrix, and the same number of columns as the second.

■ The (i, j) entry of a matrix product is calculated by taking the dot product of the
ith row of the first matrix with the jth column of the second matrix.

■ In matrix multiplication, the order of the matrices is important — that is, a
different result (or no result) may occur if the order of the matrices is reversed.



 

68 CHAPTER 1 Vectors and Matrices

■ The kth row of a matrix product is equal to the kth row of the first matrix times
the (whole) second matrix,and the lth column of a matrix product is equal to the
(whole) first matrix times the lth column of the second matrix.

■ The associative and distributive laws hold for matrix multiplication (but not the
commutative law).

■ The cancellation laws do not generally hold for matrix multiplication. That is,
AB � AC or BA � CA do not necessarily imply B � C.

■ Any product of a matrix with a zero matrix is equal to a zero matrix. However,
if the product of two matrices is zero, it does not necessarily mean that one of
the matrices is zero.

■ The usual laws of exponents hold for powers of square matrices, except that a
power of a matrix product is usually not equal to the product of the individual
powers of the matrices; that is, in general, (AB)q �� AqBq. In particular,ABAB �
(AB)2 �� A2B2 � AABB.

■ The transpose of a matrix product is found by multiplying the transposes of the
matrices in reverse order.

■ If A is an m � n matrix, B is a 1 � m matrix, and C is an n � 1 matrix, then BA
gives a linear combination of the rows of A, and AC gives a linear combination
of the columns of A.

EXERCISES FOR SECTION 1.5
Note: Exercises 1 through 3 refer to the following matrices:

A �

⎡
⎣�2 3

6 5
1 �4

⎤
⎦ B �

⎡
⎣�5 3 6

3 8 0
�2 0 4

⎤
⎦ C �

⎡
⎣ 11 �2

�4 �2
3 �1

⎤
⎦

D �

⎡
⎣�1 4 3 7

2 1 7 5
0 5 5 �2

⎤
⎦ E �

⎡
⎢⎢⎣

1 1 0 1
1 0 1 0
0 0 0 1
1 0 1 0

⎤
⎥⎥⎦ F �

⎡
⎢⎢⎣

9 �3
5 �4
2 0
8 �3

⎤
⎥⎥⎦

G �

⎡
⎣5 1 0

0 �2 �1
1 0 3

⎤
⎦ H �

⎡
⎣ 6 3 1

1 �15 �5
�2 � 1 10

⎤
⎦ J �

⎡
⎣ 8

�1
4

⎤
⎦

K �

[
2 1 �5
0 2 7

]
L �

[
10 9
8 7

]
M �

[
7 �1

11 3

]
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N �

[
0 0
0 0

]
P �

[
3 �1
4 7

]
Q �

[
1 4 �1 6
8 7 �3 3

]
R �

[
�3 6 �2

]
S �

[
6 �4 3 2

]
T �

[
4 �1 7

]
1. Which of these products are possible? If possible, then calculate the product.

(a) AB

�(b) BA

�(c) JM

(d) DF

�(e) RJ

�(f ) JR

�(g) RT

(h) SF

(i) KN

�( j) F2

(k) B2

�(l) E3

(m) (TJ)3

�(n) D(FK)

(o) (CL)G

2. Determine whether these pairs of matrices commute.

�(a) L and M

(b) G and H

�(c) A and K

�(d) N and P

(e) F and Q

3. Find only the indicated row or column of each given matrix product.

�(a) The second row of BG

(b) The third column of DE

�(c) The first column of SE

(d) The third row of FQ

�4. Assuming that all of the following products exist,which of these equations are
always valid? If valid, specify which theorems (and parts, if appropriate) apply.

(a) (RG)H � R(GH)

(b) LP � PL

(c) E(FK) � (EF)K

(d) K(A � C) � KA � KC

(e) (QF)T � FT QT

(f ) L(ML) � L2M

(g) GC � HC � (G � H)C

(h) R(J � TT ) � RJ � RTT

(i) (AK)T � AT KT

( j) (Q � FT )ET � QET � (EF)T
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�5. The following matrices detail the number of employees at four different retail
outlets and their wages and benefits (per year). Calculate the total salaries and
fringe benefits paid by each outlet per year to its employees.

⎡
⎢⎢⎢⎢⎢⎣

Executives Salespersons Others

Outlet 1 3 7 8

Outlet 2 2 4 5

Outlet 3 6 14 18

Outlet 4 3 6 9

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
Salary Fringe Benefits

Executives $30000 $7500

Salespersons $22500 $4500

Others $15000 $3000

⎤
⎥⎥⎦

6. The following matrices detail the typical amount spent on tickets, food, and
souvenirs at a Summer Festival by a person from each of four age groups, and
the total attendance by these different age groups during each month of the
festival. Calculate the total amount spent on tickets, food, and souvenirs each
month.

⎡
⎢⎢⎢⎢⎢⎣

Tickets Food Souvenirs

Children $2 $5 $8

Teens $4 $12 $3

Adults $6 $15 $10

Seniors $3 $9 $12

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
Children Teens Adults Seniors

June Attendance 32500 54600 121500 46300

July Attendance 37400 62800 136000 52900

August Attendance 29800 48500 99200 44100

⎤
⎥⎥⎦

�7. Matrix A gives the percentage of nitrogen, phosphates, and potash in three
fertilizers. Matrix B gives the amount (in tons) of each type of fertilizer spread
on three different fields. Use matrix operations to find the total amount of
nitrogen, phosphates, and potash on each field.
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A �

⎡
⎢⎢⎣
Nitrogen Phosphates Potash

Fertilizer 1 10% 10% 5%

Fertilizer 2 25% 5% 5%

Fertilizer 3 0% 10% 20%

⎤
⎥⎥⎦

B �

⎡
⎢⎢⎣
Field 1 Field 2 Field 3

Fertilizer 1 5 2 4

Fertilizer 2 2 1 1

Fertilizer 3 3 1 3

⎤
⎥⎥⎦

8. Matrix A gives the numbers of four different types of computer modules that
are needed to assemble various rockets. Matrix B gives the amounts of four
different types of computer chips that compose each module. Use matrix oper-
ations to find the total amount of each type of computer chip needed for each
rocket.

A �

⎡
⎢⎢⎢⎢⎢⎣

Module A Module B Module C Module D

Rocket 1 24 10 5 17

Rocket 2 25 8 6 16

Rocket 3 32 12 8 22

Rocket 4 27 11 7 19

⎤
⎥⎥⎥⎥⎥⎦

B �

⎡
⎢⎢⎢⎢⎢⎣

Module A Module B Module C Module D

Chip 1 42 37 52 29

Chip 2 23 25 48 31

Chip 3 37 33 29 28

Chip 4 52 46 35 51

⎤
⎥⎥⎥⎥⎥⎦

�9. (a) Find a nondiagonal matrix A such that A2 � I2.

(b) Find a nondiagonal matrix A such that A2 � I3. (Hint:Modify your answer
to part (a).)

(c) Find a nonidentity matrix A such that A3 � I3.
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10. Let A be an m � n matrix,and let B be an n � m matrix,with m,n 	 5. Each of
the following sums represents an entry of either AB or BA. Determine which
product is involved and which entry of that product is represented.
�(a) �n

k�1a3kbk4

(b) �n
q�1a4qbq1

�(c) �m
k�1ak2b3k

(d) �m
q�1b2qaq5

11. Let A be an m � n matrix, and let B be an n � m matrix, where m,n 	 4. Use
sigma

(
�
)

notation to express the following entries symbolically:
�(a) The entry in the third row and second column of AB

(b) The entry in the fourth row and first column of BA

�12. For the matrix A �

⎡
⎣ 4 7 �2

�3 �6 5
�9 2 �8

⎤
⎦, use matrix multiplication (as in

Example 4) to find the following linear combinations:

(a) 3v1 � 2v2 � 5v3, where v1,v2,v3 are the rows of A

(b) 2w1 � 6w2 � 3w3, where w1,w2,w3 are the columns of A

13. For the matrix A �

⎡
⎣ 7 �3 �4 1

�5 6 2 �3
�1 9 3 �8

⎤
⎦, use matrix multiplication (as in

Example 4) to find the following linear combinations:

(a) �5v1 � 6v2 � 4v3, where v1,v2,v3 are the rows of A

(b) 6w1 � 4w2 � 2w3 � 3w4, where w1,w2,w3,w4 are the columns of A

14. (a) Consider the unit vectors i, j, and k in R
3. Show that, if A is an m � 3

matrix, then Ai � first column of A, Aj � second column of A, and Ak �
third column of A.

(b) Generalize part (a) to a similar result involving an m � n matrix A and the
standard unit vectors e1, . . . ,en in R

n.

(c) Let A be an m � n matrix. Use part (b) to show that,if Ax � 0 for all vectors
x ∈ R

n, then A � Omn.

�15. Prove parts (2), (3), and (4) of Theorem 1.14.

16. Let A be an m � n matrix. Prove AOnp � Omp.

17. Let A be an m � n matrix. Prove AIn � ImA � A.

18. (a) Prove that the product of two diagonal matrices is diagonal. (Hint: If C �
AB where A and B are diagonal, show that cij � 0 when i �� j.)
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(b) Prove that the product of two upper triangular matrices is upper triangular.
(Hint:Let A and B be upper triangular and C � AB. Show cij � 0 when i > j
by checking that all terms aikbkj in the formula for cij have at least one
zero factor. Consider the following two cases: i > k and i � k.)

(c) Prove that the product of two lower triangular matrices is lower triangular.
(Hint: Use Theorem 1.16 and part (b) of this exercise.)

19. Show that if c ∈ R and A is a square matrix, then (cA)n � cnAn for any integer
n 	 1. (Hint: Use a proof by induction.)

�20. Prove each part of Theorem 1.15 using the method of induction. (Hint: Use
induction on t for both parts. Part (1) will be useful in proving part (2).)

21. (a) Show AB � BA only if A and B are square matrices of the same size.

(b) Prove two square matrices A and B of the same size commute if and only
if (A � B)2 � A2 � 2AB � B2.

22. If A,B, and C are all square matrices of the same size, show that AB commutes
with C if A and B both commute with C.

23. Show that A and B commute if and only if AT and BT commute.

24. Let A be any matrix. Show that AAT and AT A are both symmetric.

25. Let A and B both be n � n matrices.

(a) Show that (AB)T � BA if A and B are both symmetric or both skew-
symmetric.

(b) If A and B are both symmetric, show that AB is symmetric if and only if A
and B commute.

26. Recall the definition of the trace of a matrix given in Exercise 14 of Section 1.4.
If A and B are both n � n matrices, show the following:

(a) Trace
(
AAT

)
is the sum of the squares of all entries of A.

(b) If trace
(
AAT

)
� 0, then A � On. (Hint: Use part (a) of this exercise.)

(c) Trace(AB) � trace(BA). (Hint: Calculate trace(AB) and trace(BA) in the
3�3 case to discover how to prove the general n � n case.)

27. An idempotent matrix is a square matrix A for which A2 � A. (Note that if A
is idempotent, then An � A for every integer n 	 1.)

�(a) Find a 2 � 2 idempotent matrix (besides In and On).

(b) Show that

⎡
⎣�1 1 1

�1 1 1
�1 1 1

⎤
⎦ is idempotent.

(c) If A is an n � n idempotent matrix, show that In � A is also idempotent.
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(d) Use parts (b) and (c) to get another example of an idempotent matrix.

(e) Let A and B be n � n matrices. Show that A is idempotent if both AB � A
and BA � B.

28. (a) Let A be an m � n matrix, and let B be an n � p matrix. Prove that AB �
Omp if and only if every (vector) row of A is orthogonal to each column
of B.

�(b) Find a 2 � 3 matrix A �� O and a 3 � 2 matrix B �� O such that AB � O2.

(c) Using your answers from part (b),find a matrix C �� B such that AB � AC.

�29. What form does a 2 � 2 matrix have if it commutes with every other 2 � 2
matrix? Prove that your answer is correct.

30. Let A be an n � n matrix. Consider the n � n matrix Yij , which has all entries
zero except for an entry of 1 in the (i, j) position.

(a) Show that the jth column of AYij equals the ith column of A and all other
columns of AYij have only zero entries.

(b) Show that the ith row of YijA equals the jth row of A and all other rows
of YijA have only zero entries.

(c) Use parts (a) and (b) to prove that an n � n matrix A commutes with
all other n � n matrices if and only if A � cIn, for some c ∈ R. (Hint: Use
AYkk � YkkA,for 1 � k � n,to prove aij � 0 for i �� j.Then use AYij � YijA
to show aii � ajj .)

�31. True or False:

(a) If AB is defined, the jth column of AB � A( jth column of B).

(b) If A, B, D are n � n matrices, then D(A � B) � DB � DA.

(c) If t is a scalar, and D and E are n � n matrices, then (tD)E � D(tE).

(d) If D, E are n � n matrices, then (DE)2 � D2E2.

(e) If D, E are n � n matrices, then (DE)T � DT ET .

(f ) If DE � O, then D � O or E � O.

REVIEW EXERCISES FOR CHAPTER 1
1. Determine whether the quadrilateral ABCD formed by the points A(6,4),

B(11,7), C(5,17), D(0,14) is a rectangle.

�2. Find a unit vector u in the same direction as x �
[1

4 ,� 3
5 , 3

4

]
. Is u shorter or

longer than x?
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3. A motorized glider is attempting to travel 8 mi/hr southeast, but the wind is
pulling the glider 5 mi/hr west. What is the net velocity of the glider? What is
its resultant speed?

�4. Find the acceleration vector on a 7-kg object when the forces f1 and f2 are
simultaneously applied, if f1 is a force of 133 newtons in the direction of the
vector [6,17,�6] and f2 is a force of 168 newtons in the direction of the vector
[�8,�4,8].

5. Verify that the Cauchy-Schwarz Inequality holds for the vectors x � [�2,7,�5]
and y � [4,�3,9].

�6. Find the angle (to the nearest degree) between x � [�4,7,�6] and y �
[8,�1,5].

7. For the vectors a � [6,�2,1,3] and b � [4,�4,3,1],find projab and verify that
b � projab is orthogonal to a.

�8. Find the work (in joules) performed by a force of 34 newtons acting in the direc-
tion of the vector [15,�8] that displaces an object 75 meters in the direction
of the vector [�7,24].

9. Use a proof by contrapositive to show that if ||x|| �� ||y||,then (x � y) · (x � y)

�� 0.

�10. Suppose y �� projxy. Use a proof by contradiction to show that x is not
parallel to y.

�11. Let A �

[
5 �2 �1
3 �1 4

]
, B �

⎡
⎣ 2 �3 �1

�4 5 �2
3 �4 3

⎤
⎦, and C �

⎡
⎣ 3 5

�2 4
�4 3

⎤
⎦.

(a) Find, if possible: 3A � 4CT, AB, BA, AC, CA, A3, B3.

(b) Find (only) the third row of BC.

12. Express

⎡
⎣4 �3 5

2 7 �3
6 1 �2

⎤
⎦ as the sum of a symmetric matrix S and a skew-

symmetric matrix V.

13. �(a) If A and B are n � n skew-symmetric matrices, prove that 3(A � B)T is
skew-symmetric.

(b) If A and B are n � n lower triangular matrices, prove A � B is lower
triangular.

�14. The following matrices detail the price and shipping cost (per pound) for steel
and iron,as well as the amount (in pounds) of each used by three different com-
panies. Calculate the total price and shipping cost incurred by each company.
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⎡
⎣

Steel Iron

Price (per lb.) $20 $15

Shipping Cost (per lb.) $3 $2

⎤
⎦

⎡
⎢⎢⎣
Steel (lbs.) Iron (lbs.)

Company I 5200 4300

Company II 6300 5100

Company III 4600 4200

⎤
⎥⎥⎦

�15. Prove if AT BT � BT AT , then (AB)2 � A2B2.

16. State and disprove the negation of the following statement: For some square
matrix A, A2 �� A.

�17. Prove that if A is a nonzero 2 � 2 matrix, then either A

[
1
0

]
��
[

0
0

]
or

A

[
0
1

]
��
[

0
0

]
.

18. Prove by induction: The product of k upper triangular matrices is upper
triangular for k 	 2.

19. Let A be an n � n lower triangular matrix, and B be an n � n upper triangular
matrix. Suppose both A and B have no zero entries on the main diagonal, and
suppose AB is diagonal.
�(a) Prove that A is diagonal by induction,with j as the induction variable for

1 � j � n, where j represents the jth column of A.

(b) Use part (a) to prove that B is diagonal. (Hint:Notice that BT AT is diagonal
and apply part (a) to conclude BT is diagonal.)

�20. True or False:

(a) There exist a nonzero scalar c and a nonzero matrix A ∈ Mmn such that
cA � Omn.

(b) Every nonzero vector in R
n is parallel to a unit vector in R

n.

(c) Every linear combination of [1,4,3] and [2,5,4] has all nonnegative entries.

(d) The angle between [1,0] and [0,�1] in R
2 is 3�

2 .

(e) For x and y in R
n, if projxy �� 0,then projxy is in the same direction as x.

(f ) For all x, y, and z in R
n,‖x � y � z‖ � ‖x‖ � ‖y‖ � ‖z‖.

(g) The negation of “{v1,v2, . . . ,vn} is a mutually orthogonal set of vectors” is
“For every pair vi , vj of vectors in {v1,v2, . . . ,vn}, vi · vj �� 0.”
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(h) Disproving a statement involving an existential quantifier involves finding
a single counterexample.

(i) The sum of an upper triangular matrix and a lower triangular matrix is a
symmetric matrix.

(j) The trace of a skew-symmetric matrix must equal zero.

(k) Un ∩ Ln � Dn.

(l) The transpose of a linear combination of matrices equals the corresponding
linear combination of the transposes of the matrices.

(m) If A is an m � n matrix and B is an n � 1 matrix,then AB is an m � 1 matrix
representing a linear combination of the columns of A.

(n) If A is an m � n matrix and D is an n � n diagonal matrix, then AD is an
m � n matrix whose ith row is the ith row of A multiplied by dii .

(o) If A and B are matrices such that AB and BA are both defined, then A and
B are both square.

(p) If A and B are square matrices of the same size, then (A � B)2 � A2 �
2AB � B2.

(q) The product of two skew-symmetric matrices of the same size is skew-
symmetric.

(r) If A is a square matrix, then
(
A4
)5

�
(
A5
)4

.
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CHAPTER

2
Systems of Linear Equations

A SYSTEMATIC APPROACH

One important mathematical problem that arises frequently is the need to unscramble data
that have been mixed together by an apparently irreversible process. A common problem
of this type is the calculation of the exact ratios of chemical elements that were combined
to produce a certain compound. To solve this problem, we must unscramble the given mix
of given elements to determine the original ratios involved. An analogous type of problem
involves the deciphering of a coded message, where in order to find the answer we must
recover the original message before it was scrambled into code.

We will see that whenever information is scrambled in a “linear” fashion, a matrix multi-
plication is involved. And, a system of linear equations corresponding to that matrix can be
constructed. Unscrambling the data is then accomplished by solving that system of linear
equations. In this chapter, we develop a systematic method for solving such systems, and
then study some of the theoretical consequences of that technique.

Attempts to solve systems of linear equations inspired much of the development of
linear algebra. In Sections 2.1 and 2.2, we present Gaussian elimination and Gauss-
Jordan row reduction,which are important techniques for solving linear systems.The
study of linear systems leads to the examination of further properties of matrices,
including row equivalence, rank, and the row space of a matrix in Section 2.3, and
inverses of matrices in Section 2.4.

2.1 SOLVING LINEAR SYSTEMS USING GAUSSIAN ELIMINATION
In this section,we introduce systems of linear equations and the Gaussian elimination
method for solving such systems.

Elementary Linear Algebra
Copyright © 2010 by Elsevier, Inc. All rights reserved. 79
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Systems of Linear Equations

A linear equation is an equation involving one or more variables in which only
the operations of multiplication by real numbers and summing of terms are allowed.
For example,6x � 3y � 4 and 8x1 � 3x2 � 4x3 � �20 are linear equations in two and
three variables, respectively.

When several linear equations involving the same variables are considered together,
we have a system of linear equations. For example, the following system has four
equations and three variables:⎧⎪⎪⎨

⎪⎪⎩
3x1 � 2x2 � 5x3 � 4
2x1 � 4x2 � x3 � 2
6x1 � 4x2 � 10x3 � 8

�4x1 � 8x2 � 9x3 � �6

.

We often need to find the solutions to a given system.The ordered triple,or 3-tuple,
(x1,x2,x3) � (4,�1,2) is a solution to the preceding system because each equation
in the system is satisfied for these values of x1, x2, and x3. Notice that

(
� 3

2 , 3
4 ,�2

)
is

another solution for that same system. These two particular solutions are part of the
complete set of all solutions for that system.

We now formally define linear systems and their solutions.

Definition A system of m (simultaneous) linear equations in n variables⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a11x1 � a12x2 � a13x3 � · · · � a1nxn � b1

a21x1 � a22x2 � a23x3 � · · · � a2nxn � b2
...

...
...

. . .
...

...
am1x1 � am2x2 � am3x3 � · · · � amnxn � bm

is a collection of m equations, each containing a linear combination of the same
n variables summing to a scalar. A particular solution to a system of linear
equations in the variables x1,x2, . . . ,xn is an n-tuple (s1,s2, . . . ,sn) that satisfies
each equation in the system when s1 is substituted for x1,s2 for x2, and so on.
The (complete) solution set for a system of linear equations in n variables is the
collection of all n-tuples that form solutions to the system.

In this definition, the coefficients of x1,x2, . . . ,xn can be collected together in an
m � n coefficient matrix

A �

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦.
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If we also let

X �

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ and B �

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦,

then the linear system is equivalent to the matrix equation AX � B (verify!).
An alternate way to express this system is to form the augmented matrix

[A|B] �

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣
b1

b2
...

bm

⎤
⎥⎥⎥⎦.

Each row of [A|B] represents one equation in the original system, and each col-
umn to the left of the vertical bar represents one of the variables in the system.
Hence, this augmented matrix contains all the vital information from the original
system.

Example 1
Consider the linear system {

4w � 2x � y � 3z � 5
3w � x � 5z � 12

.

Letting

A �

[
4 �2 1 �3
3 1 0 5

]
, X �

⎡
⎢⎢⎢⎣

w
x
y
z

⎤
⎥⎥⎥⎦, and B �

[
5

12

]
,

we see that the system is equivalent to AX � B, or,

[
4 �2 1 �3
3 1 0 5

]⎡⎢⎢⎢⎣
w
x
y
z

⎤
⎥⎥⎥⎦�

[
4w � 2x � y � 3z

3w � x � 5z

]
�

[
5

12

]
.

This system can also be represented by the augmented matrix

[ A|B] �

[
4 �2 1 �3
3 1 0 5

∣∣∣∣∣ 5
12

]
.
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Number of Solutions to a System

There are only three possibilities for the size of the solution set of a linear system:
a single solution, an infinite number of solutions, or no solutions. There are no other
possibilities because if at least two solutions exist,we can show that an infinite number
of solutions must exist (see Exercise 10). For instance,in a system of two equations and
two variables — say, x and y — the solution set for each equation forms a line in the
xy-plane. The solution to the system is the intersection of the lines corresponding to
each equation. But any two given lines in the plane either intersect in exactly one point
(unique solution), are equal (infinite number of solutions, all points on the common
line), or are parallel (no solutions).

For example, the system {
4x1 � 3x2 � 0

2x1 � 3x2 � 18

(where x1 and x2 are used instead of x and y) has the unique solution (3,4) because
that is the only intersection point of the two lines. On the other hand, the system{

4x � 6y � 10

6x � 9y � 15

has an infinite number of solutions because the two given lines are really the same,
and so every point on one line is also on the other. Finally, the system{

2x1 � x2 � 3

2x1 � x2 � 1

has no solutions at all because the two lines are parallel but not equal. (Both of their
slopes are �2.)The solution set for this system is the empty set {} � ∅.All three systems
are pictured in Figure 2.1.

Any system that has at least one solution (either unique or infinitely many) is said
to be consistent. A system whose solution set is empty is called inconsistent. The
first two systems in Figure 2.1 are consistent, and the last one is inconsistent.

Gaussian Elimination

Many methods are available for finding the complete solution set for a given lin-
ear system. The first one we present, Gaussian elimination, involves systematically
replacing most of the coefficients in the system with simpler numbers (1’s and 0’s) to
make the solution apparent.

In Gaussian elimination,we begin with the augmented matrix for the given system,
and then examine each column in turn from left to right. In each column, if possible,
we choose a special entry, called a pivot entry, convert that pivot entry to “1,” and



 

2.1 Solving Linear Systems Using Gaussian Elimination 83

(0, 6)
(3, 4)

(0, 0)

(0, 3)

(0, 1)

Unique solution

x1

x2

(9, 0) (1, 2 1)

( , 0)

4x12 3x25 0

2x11 3x25 18

4x12 3x25 0
2x11 3x25 18

4x 2 6y 5 10
6x 2 9y 5 15

4x 2 6y 5 10

No solution

x1

x2

2x11 x25 3

2x11 x25 1

2x11 x25 3
2x11 x25 1

Infinite number of solutions

x

y

5
2

( , 0)3
2

( , 0)1
2

(0, 2 )5
3

FIGURE 2.1

Three systems: unique solution, infinite number of solutions, no solution

then perform further operations to zero out the entries below the pivot. The pivots
will be “staggered” so that as we proceed from column to column, each new pivot
occurs in a lower row.

Row Operations and Their Notation

There are three operations that we are allowed to use on the augmented matrix in the
Gaussian elimination method. These are as follows:

Row Operations
(I) Multiplying a row by a nonzero scalar

(II) Adding a scalar multiple of one row to another row

(III) Switching the positions of two rows in the matrix
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To save space, we will use a shorthand notation for these row operations. For
example, a row operation of type (I) in which each entry of row 3 is multiplied
by 1

2 times that entry is represented by (I): 〈3〉 ← 1
2 〈3〉. That is, each entry of row

3 is multiplied by 1
2 , and the result replaces the previous row 3. A type (II) row

operation in which (�3) � (row 4) is added to row 2 is represented by (II): 〈2〉 ←
�3〈4〉 � 〈2〉. That is, a multiple (�3, in this case) of one row (in this case, row 4) is
added to row 2, and the result replaces the previous row 2. Finally, a type (III) row
operation in which the second and third rows are exchanged is represented by (III):
〈2〉 ↔ 〈3〉. (Note that a double arrow is used for type (III) operations.)

We now illustrate the use of the first two operations with the following example:

Example 2
Let us solve the following system of linear equations:⎧⎪⎨

⎪⎩
5x � 5y � 15z � 40
4x � 2y � 6z � 19
3x � 6y � 17z � 41

.

The augmented matrix associated with this system is⎡
⎢⎣5 �5 �15

4 �2 �6
3 �6 �17

∣∣∣∣∣∣∣
40
19
41

⎤
⎥⎦ .

We now perform row operations on this matrix to give it a simpler form, proceeding through
the columns from left to right. Starting with the first column, we choose the (1,1) position as our
first pivot entry. We want to place a 1 in this position. The row containing the current pivot is
often referred to as the pivot row, and so row 1 is currently our pivot row. Now, when placing 1
in the matrix, we generally use a type (I) operation to multiply the pivot row by the reciprocal of
the pivot entry. In this case, we multiply each entry of the first row by 1

5 .

type (I) operation: 〈1〉 ← 1

5
〈1〉

⎡
⎢⎣ 1 �1 �3

4 �2 �6
3 �6 �17

∣∣∣∣∣∣∣
8

19
41

⎤
⎥⎦.

For reference, we circle all pivot entries as we proceed.
Next we want to convert all entries below this pivot to 0. We will refer to this as “targeting”

these entries. As each entry is changed to 0, it is called the target, and its row is called the target
row. To change a target entry to 0, we always use the following type (II) row operation:

(II): 〈target row〉 ← (�target value) � 〈pivot row〉 � 〈target row〉 .
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For example, to zero out (target) the (2,1) entry, we use the type (II) operation 〈2〉 ← (�4) �

〈1〉 � 〈2〉. (That is, we add (�4) times the pivot row to the target row.) To perform this operation,
we first do the following side calculation:

(�4) � (row1) �4 4 12 �32
(row2) 4 �2 �6 19

(sum) 0 2 6 �13

The resulting sum is now substituted in place of the old row 2, producing

type (II) operation: 〈2〉 ← (�4) � 〈1〉 � 〈2〉
⎡
⎢⎣ 1 �1 �3

0 2 6
3 �6 �17

∣∣∣∣∣∣∣
8

�13
41

⎤
⎥⎦.

Note that even though we multiplied row 1 by �4 in the side calculation, row 1 itself was not
changed in the matrix. Only row 2, the target row, was altered by this type (II) row operation.

Similarly, to target the (1,3) position (that is, convert the (1,3) entry to 0), row 3 becomes
the target row, and we use another type (II) row operation. We replace row 3 with (�3) �

(row 1) � (row 3). This gives

type (II) operation: 〈3〉 ← (�3) � 〈1〉 � 〈3〉

Side Calculation Resulting Matrix
(�3) � (row1) �3 3 9 �24

(row3) 3 �6 �17 41

(sum) 0 �3 �8 17

⎡
⎢⎣ 1 �1 �3

0 2 6
0 �3 �8

∣∣∣∣∣∣∣
8

�13
17

⎤
⎥⎦

Now, the last matrix is associated with the linear system⎧⎪⎨
⎪⎩

x � y � 3z � 8

2y � 6z � �13

�3y � 8z � 17

.

Note that x has been eliminated from the second and third equations, which makes this system
simpler than the original. However, as we will prove later, this new system has the same solu-
tion set.

Our work on the first column is finished, and we proceed to the second column. The pivot
entry for this column must be in a lower row than the previous pivot, so we choose the (2,2)

position as our next pivot entry. Thus, row 2 is now the pivot row. We first perform a type (I)
operation on the pivot row to convert the pivot entry to 1. Multiplying each entry of row 2 by 1

2
(the reciprocal of the pivot entry), we obtain

type (I) operation: 〈2〉 ← 1

2
〈2〉
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Resulting matrix �

⎡
⎢⎣

1 �1 �3

0 1 3

0 �3 �8

∣∣∣∣∣∣∣
8

� 13
2

17

⎤
⎥⎦.

We now use a type (II) operation to target the (3,2) entry. The target row is now row 3.

type (II) operation: 〈3〉 ← 3 � 〈2〉 � 〈3〉

Side Calculation Resulting Matrix

(3) � (row2) 0 3 9 � 39
2

(row3) 0 �3 �8 17

(sum) 0 0 1 � 5
2

⎡
⎢⎣1 �1 �3

0 1 3
0 0 1

∣∣∣∣∣∣∣
8

� 13
2

� 5
2

⎤
⎥⎦

The last matrix corresponds to ⎧⎪⎪⎨
⎪⎪⎩

x � y � 3z � 8

y � 3z � � 13
2

z � � 5
2

.

Notice that y has been eliminated from the third equation. Again, this new system has exactly
the same solution set as the original system.

At this point, we know from the third equation that z � � 5
2 . Substituting this result into

the second equation and solving for y, we obtain y � 3
(
� 5

2

)
� � 13

2 , and hence, y � 1. Finally,
substituting these values for y and z into the first equation, we obtain x � 1 � 3

(
� 5

2

)
� 8, and

hence x � 3
2 . This process of working backward through the set of equations to solve for each

variable in turn is called back substitution.
Thus, the final system has a unique solution — the ordered triple

(3
2 ,1,� 5

2

)
. However, you

can check by substitution that
(3

2 ,1,� 5
2

)
is also a solution to the original system. In fact, Gaussian

elimination always produces the complete solution set, and so
(3

2 ,1,� 5
2

)
is the unique solution

to the original linear system.

The Strategy in the Simplest Case

In Gaussian elimination, we work on one column of the augmented matrix at a time.
Beginning with the first column,we choose row 1 as our initial pivot row,convert the
(1,1) pivot entry to 1, and target (zero out) the entries below that pivot. After each
column is simplified, we proceed to the next column to the right. In each column, if
possible, we choose a pivot entry that is in the next row lower than the previous
pivot,and this entry is converted to 1.The row containing the current pivot is referred
to as the pivot row.The entries below each pivot are targeted (converted to 0) before
proceeding to the next column.The process advances to additional columns until we
reach the augmentation bar or run out of rows to use as the pivot row.
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We generally convert pivot entries to 1 by multiplying the pivot row by the
reciprocal of the current pivot entry. Then we use type (II) operations of the form

〈target row〉 ← (�target value) � 〈pivot row〉 � 〈target row〉

to target (zero out) each entry below the pivot entry. This eliminates the variable
corresponding to that column from each equation in the system below the pivot row.
Note that in type (II) operations, we add an appropriate multiple of the pivot row to
the target row. (Any other type (II) operation could destroy work done in previous
columns.)

Using Type (III) Operations

So far, we have used only type (I) and type (II) operations. However, when we begin
work on a new column, if the logical choice for a pivot entry in that column is 0,
it is impossible to convert the pivot to 1 using a type (I) operation. Frequently, this
dilemma can be resolved by first using a type (III) operation to switch the pivot row
with another row below it. (We never switch the pivot row with a row above it,
because such a type (III) operation could destroy work done in previous columns.)

Example 3
Let us solve the following system using Gaussian elimination:⎧⎪⎨

⎪⎩
3x � y � �5

�6x � 2y � 10
4x � 5y � 8

, with augmented matrix

⎡
⎢⎣ 3 1

�6 �2
4 5

∣∣∣∣∣∣∣
�5
10
8

⎤
⎥⎦.

We start with the first column, and establish row 1 as the pivot row. We convert the pivot entry
in the (1,1) position to 1 by multiplying the pivot row by the reciprocal of the pivot entry.

type (I) operation: 〈1〉 ← 1

3
〈1〉

Resulting matrix �

⎡
⎢⎣ 1 1

3
�6 �2

4 5

∣∣∣∣∣∣∣
� 5

3
10
8

⎤
⎥⎦

Next, we use type (II) operations to target the rest of the first column by adding appropriate
multiples of the pivot row (the first row) to the target rows.

type (II) operation: 〈2〉 ← 6 � 〈1〉 � 〈2〉
type (II) operation: 〈3〉 ← (�4) � 〈1〉 � 〈3〉

Resulting matrix �

⎡
⎢⎣ 1 1

3
0 0
0 11

3

∣∣∣∣∣∣∣
� 5

3
0

44
3

⎤
⎥⎦
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We now advance to the second column, and designate row 2 as the pivot row. We want to convert
the pivot entry (2,2) to 1, but because the pivot is 0, a type (I) operation will not work. Instead,
we first perform a type (III) operation, switching the pivot row with the row below it, in order to
change the pivot to a nonzero number.

type (III) operation: 〈2〉 ↔ 〈3〉

Resulting matrix �

⎡
⎢⎢⎣

1 1
3

0 11
3

0 0

∣∣∣∣∣∣∣∣
� 5

3
44
3

0

⎤
⎥⎥⎦

Now, using a type (I) operation, we can convert the (2,2) pivot entry to 1.

type (I) operation: 〈2〉 ← 3

11
〈2〉

Resulting matrix �

⎡
⎢⎢⎣

1 1
3

0 1

0 0

∣∣∣∣∣∣∣∣
� 5

3

4

0

⎤
⎥⎥⎦

Since the entry below the current pivot is already 0, the second column is now simplified. Because
there are no more columns to the left of the augmentation bar, we stop. The final matrix corres-
ponds to the following system: ⎧⎪⎨

⎪⎩
x � 1

3 y � � 5
3

y � 4
0 � 0

.

The third equation is always satisfied, no matter what values x and y have, and provides us
with no information. The second equation gives y � 4. Back substituting into the first equation,
we obtain x � 1

3 (4) � � 5
3 , and so x � �3. Thus, the unique solution for our original system is

(�3,4).

The general rule for using type (III) operations is

When starting a new column, if the pivot entry is 0, look for a nonzero number in the current
column below the pivot row. If you find one, use a type (III) operation to switch the pivot
row with the row containing this nonzero number.

Skipping a Column

Occasionally when we progress to a new column, the pivot entry as well as all lower
entries in that column are zero. Here,a type (III) operation cannot help. In such cases,
we skip over the current column and advance to the next column to the right. Hence,
the new pivot entry is located horizontally to the right from where we would nor-
mally expect it. We illustrate the use of this rule in the next few examples. Example 4
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involves an inconsistent system, and Examples 5, 6, and 7 involve infinitely many
solutions.

Inconsistent Systems

Example 4
Let us solve the following system using Gaussian elimination:⎧⎪⎨

⎪⎩
3x1 � 6x2 � 3x4 � 9

�2x1 � 4x2 � 2x3 � x4 � �11
4x1 � 8x2 � 6x3 � 7x4 � �5

.

First, we set up the augmented matrix⎡
⎢⎣ 3 �6 0 3

�2 4 2 �1
4 �8 6 7

∣∣∣∣∣∣∣
9

�11
�5

⎤
⎥⎦.

We begin with the first column and establish row 1 as the pivot row. We use a type (I) operation
to convert the current pivot entry, the (1,1) entry, to 1.

(I): 〈1〉 ← 1

3
〈1〉

Resulting matrix �

⎡
⎢⎣ 1 �2 0 1

�2 4 2 �1
4 �8 6 7

∣∣∣∣∣∣∣
3

�11
�5

⎤
⎥⎦

Next, we target the entries below the pivot using type (II) row operations.

(II): 〈2〉 ← 2 〈1〉 � 〈2〉
(II): 〈3〉 ← �4 〈1〉 � 〈3〉

Resulting matrix �

⎡
⎢⎣ 1 �2 0 1

0 0 2 1
0 0 6 3

∣∣∣∣∣∣∣
3

�5
�17

⎤
⎥⎦

We are finished with the first column, so we advance to the second column. The pivot row now
advances to row 2, and so the pivot is now the (2,2) entry, which unfortunately is 0. We search
for a nonzero entry below the pivot but do not find one. Hence, we skip over this column and
advance horizontally to the third column, still maintaining row 2 as the pivot row.

We now change the current pivot entry (the (2,3) entry) into 1.

(I): 〈2〉 ← 1

2
〈2〉

Resulting matrix �

⎡
⎢⎣

1 �2 0 1
0 0 1 1

2

0 0 6 3

∣∣∣∣∣∣∣
3

� 5
2

�17

⎤
⎥⎦
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Targeting the entry below this pivot, we obtain

(II): 〈3〉 ← �6 〈2〉 � 〈3〉

Resulting matrix �

⎡
⎢⎣

1 �2 0 1
0 0 1 1

2

0 0 0 0

∣∣∣∣∣∣∣
3

� 5
2

�2

⎤
⎥⎦

We proceed to the fourth column, and the pivot row advances to row 3. However, the pivot entry,
the (3,4) entry, is also 0. Since there is no row below the pivot row (row 3) to switch with, the
fourth column is finished. We attempt to move the pivot horizontally to the right, but we have
reached the augmentation bar, so we stop. The resulting system is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x1 � 2x2 � x4 � 3

x3 � 1
2 x4 � � 5

2

0 � �2

.

Regardless of the values of x1, x2, x3, and x4, the last equation, 0 � �2, is never satisfied.
This equation has no solutions. But any solution to the system must satisfy every equation
in the system. Therefore, this system is inconsistent, as is the original system with which we
started.

For inconsistent systems, the final augmented matrix always contains at least one
row of the form [

0 0 · · · 0
∣∣c] ,

with all zeroes on the left of the augmentation bar and a nonzero number c on the
right. Such a row corresponds to the equation 0 � c, for some c �� 0, which certainly
has no solutions. In fact, if you encounter such a row at any stage of the Gaussian
elimination process, the original system is inconsistent.

Beware! An entire row of zeroes, with zero on the right of the augmentation
bar, does not imply the system is inconsistent. Such a row is simply ignored, as in
Example 3.

Infinite Solution Sets

Example 5
Let us solve the following system using Gaussian elimination:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3x1 � x2 � 7x3 � 2x4 � 13

2x1 � 4x2 � 14x3 � x4 � �10

5x1 � 11x2 � 7x3 � 8x4 � 59

2x1 � 5x2 � 4x3 � 3x4 � 39

.
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The augmented matrix for this system is⎡
⎢⎢⎢⎣

3 1 7 2
2 �4 14 �1
5 11 �7 8
2 5 �4 �3

∣∣∣∣∣∣∣∣∣
13

�10
59
39

⎤
⎥⎥⎥⎦.

After simplifying the first two columns as in earlier examples, we obtain⎡
⎢⎢⎢⎢⎢⎣

1 1
3

7
3

2
3

0 1 �2 1
2

0 0 0 0
0 0 0 � 13

2

∣∣∣∣∣∣∣∣∣∣∣

13
3

4

0
13

⎤
⎥⎥⎥⎥⎥⎦.

There is no nonzero pivot in the third column, so we advance to the fourth column and use row
operation (III): 〈3〉 ↔ 〈4〉 to put a nonzero number into the (3,4) pivot position, obtaining⎡

⎢⎢⎢⎢⎢⎣
1 1

3
7
3

2
3

0 1 �2 1
2

0 0 0 � 13
2

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

13
3

4

13

0

⎤
⎥⎥⎥⎥⎥⎦.

Converting the pivot entry in the fourth column to 1 leads to the final augmented matrix⎡
⎢⎢⎢⎢⎣

1 1
3

7
3

2
3

0 1 �2 1
2

0 0 0 1

0 0 0 0

∣∣∣∣∣∣∣∣∣∣

13
3

4

�2

0

⎤
⎥⎥⎥⎥⎦ .

This matrix corresponds to ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 � 1
3 x2 � 7

3 x3 � 2
3 x4 � 13

3

x2 � 2x3 � 1
2 x4 � 4

x4 � �2

0 � 0

.

We discard the last equation, which gives no information about the solution set. The third equation
gives x4 � �2, but values for the other three variables are not uniquely determined — there are
infinitely many solutions. We can let x3 take on any value whatsoever, which then determines
the values for x1 and x2. For example, if we let x3 � 5, then back substituting into the second
equation for x2 yields x2 � 2(5) � 1

2 (�2) � 4, which gives x2 � 15. Back substituting into the
first equation gives x1 � 1

3 (15) � 7
3 (5) � 2

3 (�2) � 13
3 , which reduces to x1 � �11. Thus, one

solution is (�11,15,5,�2). However, different solutions can be found by choosing alternate
values for x3. For example, letting x3 � �4 gives the solution x1 � 16, x2 � �3, x3 � �4,
x4 � �2. All such solutions satisfy the original system.
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How can we express the complete solution set? Of course, x4 � �2. If we use a variable,
say c, to represent x3, then from the second equation, we obtain x2 � 2c � 1

2 (�2) � 4, which
gives x2 � 5 � 2c. Then from the first equation, we obtain x1 � 1

3 (5 � 2c) � 7
3 (c) � 2

3 (�2) � 13
3 ,

which leads to x1 � 4 � 3c. Thus, the infinite solution set can be expressed as{
(4 � 3c, 5 � 2c, c,�2)

∣∣c ∈ R
}

.

After Gaussian elimination, the columns having no pivot entries are often referred
to as nonpivot columns, while those with pivots are called pivot columns. Recall
that the columns to the left of the augmentation bar correspond to the variables
x1, x2, and so on, in the system. The variables for nonpivot columns are called inde-
pendent variables, while those for pivot columns are dependent variables. If a
given system is consistent, solutions are found by letting each independent variable
take on any real value whatsoever. The values of the dependent variables are then cal-
culated from these choices.Thus, in Example 5, the third column is the only nonpivot
column. Hence,x3 is an independent variable,while x1,x2,and x4 are dependent vari-
ables. We found a general solution by letting x3 take on any value, and we determined
the remaining variables from that choice.

Example 6
Suppose that the final matrix after Gaussian elimination is⎡

⎢⎢⎢⎢⎢⎢⎣

1 �2 0 3 5 �1

0 0 1 4 23 0

0 0 0 0 0 1

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

1

�9

16

0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

which corresponds to the system⎧⎪⎨
⎪⎩

x1 � 2x2 � 3x4 � 5x5 � x6 � 1
x3 � 4x4 � 23x5 � �9

x6 � 16

.

Note that we have ignored the row of zeroes. Because the nonpivot columns are columns 2, 4,
and 5, x2, x4, and x5 are the independent variables. Therefore, we can let x2, x4, and x5 take
on any real values — say, x2 � b, x4 � d, and x5 � e. We know x6 � 16. We now use back
substitution to solve the remaining equations in the system for the dependent variables x1 and
x3, yielding x3 � �9 � 4d � 23e, x1 � 17 � 2b � 3d � 5e. Hence, the complete solution set is{

(17 � 2b � 3d � 5e, b,�9 � 4d � 23e, d, e, 16)
∣∣b,d,e ∈ R

}
.

Particular solutions can be found by choosing values for b, d, and e. For example, choosing
b � 1, d � �1, and e � 0 yields (22,1,�5,�1,0,16).
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Example 7
Suppose that the final matrix after Gaussian elimination is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 4 �1 2 1

0 1 3 �2 6

0 0 0 1 �3

0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

8

�11

9

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Because the third and fifth columns are nonpivot columns, x3 and x5 are the independent
variables. Therefore, we can let x3 and x5 take on any real values — say, x3 � c and x5 � e.
We now use back substitution to solve the remaining equations in the system for the dependent
variables x1, x2, and x4, yielding x4 � 9 � 3e, x2 � �11 � 3c � 2(9 � 3e) � 6e � 7 � 3c, and
x1 � 8 � 4(7 � 3c) � c � 2(9 � 3e) � e � �38 � 13c � 7e. Hence, the complete solution set is

{ (�38 � 13c � 7e, 7 � 3c, c, 9 � 3e, e)|c,e ∈ R} .

Particular solutions can be found by choosing values for c and e. For example, choosing c � �1
and e � 2 yields (�65,10,�1,15,2).

Application: Curve Fitting

Example 8
Let us find the unique quadratic equation of the form y � ax2 � bx � c that goes through the
points (�2,20), (1,5), and (3,25) in the xy-plane. By substituting each of the (x,y) pairs in turn
into the equation, we get ⎧⎪⎨

⎪⎩
a(�2)2 � b(�2) � c � 20

a(1)2 � b(1) � c � 5
a(3)2 � b(3) � c � 25

,

which leads to the system ⎧⎪⎨
⎪⎩

4a � 2b � c � 20
a � b � c � 5

9a � 3b � c � 25

.

Using Gaussian elimination on this system leads to the final augmented matrix⎡
⎢⎢⎣

1 � 1
2

1
4

0 1 1
2

0 0 1

∣∣∣∣∣∣∣∣
5

0

4

⎤
⎥⎥⎦ .
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Thus, c � 4, and after back substituting, we find b � �2 and a � 3, and so the desired quadratic
equation is y � 3x2 � 2x � 4.

The Effect of Row Operations on Matrix Multiplication

We conclude this section with a property involving row operations and matrix multi-
plication that will be useful later. The following notation is helpful: if a row operation
R is performed on a matrix A, we represent the resulting matrix by R(A).

Theorem 2.1 Let A and B be matrices for which the product AB is defined.

(1) If R is any row operation, then R(AB) � (R(A))B.

(2) If R1, . . . ,Rn are row operations, then
Rn(· · ·(R2(R1(AB))) · · ·) � (Rn(· · ·(R2(R1(A))) · · ·))B.

Part (1) of this theorem asserts that whenever a row operation is performed on the
product of two matrices,the same answer is obtained by performing the row operation
on the first matrix alone before multiplying. Part (1) is proved by considering each
type of row operation in turn. Part (2) generalizes this result to any finite number of
row operations, and is proved by using part (1) and induction. We leave the proof of
Theorem 2.1 for you to do in Exercise 8.

Example 9
Let

A �

[
1 �2 1
3 4 2

]
, B �

⎡
⎢⎣3 7

0 �1
5 2

⎤
⎥⎦ ,

and let R be the row operation 〈2〉 ← �2 〈1〉 � 〈2〉. Then

R(AB) � R

([
8 11

19 21

])
�

[
8 11
3 �1

]
, and

(R(A))B �

(
R

([
1 �2 1
3 4 2

]))⎡⎢⎣3 7
0 �1
5 2

⎤
⎥⎦�

[
1 �2 1
1 8 0

]⎡⎢⎣3 7
0 �1
5 2

⎤
⎥⎦�

[
8 11
3 �1

]
.

Similarly, with R1: 〈1〉 ↔ 〈2〉, R2: 〈1〉 ← �3 〈2〉 � 〈1〉, and R3: 〈1〉 ← 4 〈1〉, you can verify that

R3(R2(R1(AB))) � R3

(
R2

(
R1

([
8 11

19 21

])))
�

[
�20 �48

8 11

]
, and
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(R3(R2(R1(A))))B �

(
R3

(
R2

(
R1

([
1 �2 1
3 4 2

]))))⎡⎢⎣3 7
0 �1
5 2

⎤
⎥⎦

�

[
0 40 �4
1 �2 1

]⎡⎢⎣3 7
0 �1
5 2

⎤
⎥⎦�

[
�20 �48

8 11

]
also.

New Vocabulary
augmented matrix (for a system)
back substitution
coefficient matrix (for a system)
complete solution set (for a system)
consistent system
dependent system
dependent variable
Gaussian elimination
inconsistent system
independent system
independent variable

nonpivot column
particular solution (to a system)
pivot column
pivot (entry)
pivot row
row operations
system of (simultaneous) linear equa-

tions
target row
type (I), (II), (III) row operations

Highlights

■ A system of linear equations has either no solutions (inconsistent),one solution,
or an infinite number of solutions (dependent).

■ The three row operations allowable in Gaussian elimination are: type (I): mul-
tiplying a row by a nonzero scalar, type (II): adding a multiple of one row to
another, and type (III): switching two rows.

■ Performing any of the three row operations on the augmented matrix for a linear
system does not alter the solution set of the system.

■ When performing Gaussian elimination on an augmented matrix, we proceed
through the columns from left to right. When proceeding to the next column,
the goal is to choose a nonzero pivot element in the next row that does not yet
contain a pivot.

■ If the next logical pivot choice is nonzero, we convert that pivot to 1 (using a
type (I) row operation), and zero out all entries below the pivot (using a type
(II) row operation).

■ If the next logical pivot choice is a zero entry, and if a nonzero value exists in
some row below this entry,a type (III) row operation is used to switch one such
row with the current row.
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■ If the next logical pivot choice is a zero entry, and all entries below this value
are zero, then the current column is skipped over.

■ At the conclusion of the Gaussian elimination process,if the system is consistent,
each nonpivot column represents an (independent) variable that can have any
value,and the values of all other (dependent) variables are determined from the
independent variables, using back substitution.

EXERCISES FOR SECTION 2.1
1. Use the Gaussian elimination method to solve each of the following systems

of linear equations. In each case, indicate whether the system is consistent or
inconsistent. Give the complete solution set, and if the solution set is infinite,
specify three particular solutions.

�(a)

⎧⎨
⎩

�5x1 � 2x2 � 2x3 � 14
3x1 � x2 � x3 � �8
2x1 � 2x2 � x3 � �3

(b)

⎧⎨
⎩

3x1 � 3x2 � 2x3 � 23
�6x1 � 4x2 � 3x3 � �38
�2x1 � x2 � x3 � �11

�(c)

⎧⎨
⎩

3x1 � 2x2 � 4x3 � �54
�x1 � x2 � 2x3 � 20
5x1 � 4x2 � 8x3 � �83

(d)

⎧⎪⎪⎨
⎪⎪⎩

�2x1 � 3x2 � 4x3 � x4 � �17
8x1 � 5x2 � 2x3 � 4x4 � 47

�5x1 � 9x2 � 13x3 � 3x4 � �44
�4x1 � 3x2 � 2x3 � 2x4 � �25

�(e)

⎧⎨
⎩

6x1 � 12x2 � 5x3 � 16x4 � 2x5 � �53
�3x1 � 6x2 � 3x3 � 9x4 � x5 � 29
�4x1 � 8x2 � 3x3 � 10x4 � x5 � 33

(f )

{
5x1 � 5x2 � 15x3 � 3x4 � �34

�2x1 � 2x2 � 6x3 � x4 � 12

�(g)

⎧⎪⎪⎨
⎪⎪⎩

4x1 � 2x2 � 7x3 � 5
�6x1 � 5x2 � 10x3 � �11
�2x1 � 3x2 � 4x3 � �3
�3x1 � 2x2 � 5x3 � �5
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(h)

⎧⎪⎪⎨
⎪⎪⎩

5x1 � x2 � 9x3 � 2x4 � 26
4x1 � x2 � 7x3 � 2x4 � 21

�2x1 � 4x3 � x4 � �12
�3x1 � 2x2 � 4x3 � 2x4 � �11

2. Suppose that each of the following is the final augmented matrix obtained
after Gaussian elimination. In each case, give the complete solution set for the
corresponding system of linear equations.

�(a)

⎡
⎢⎢⎣

1 �5 2 3 �2
0 1 �1 �3 �7
0 0 0 1 2
0 0 0 0 0

∣∣∣∣∣∣∣∣
�4
�2

5
0

⎤
⎥⎥⎦

(b)

⎡
⎢⎢⎣

1 �3 6 0 �2 4
0 0 1 �2 8 �1
0 0 0 0 0 1
0 0 0 0 0 0

∣∣∣∣∣∣∣∣
�3

5
�2

0

⎤
⎥⎥⎦

�(c)

⎡
⎢⎢⎣

1 4 �8 �1 2 �3
0 1 �7 2 �9 �1
0 0 0 0 1 �4
0 0 0 0 0 0

∣∣∣∣∣∣∣∣
�4
�3

2
0

⎤
⎥⎥⎦

(d)

⎡
⎢⎢⎣

1 �7 �3 �2 �1
0 0 1 2 3
0 0 0 1 �1
0 0 0 0 0

∣∣∣∣∣∣∣∣
�5

1
4

�2

⎤
⎥⎥⎦

�3. Solve the following problem by using a linear system: A certain number of
nickels, dimes, and quarters totals $16.50. There are twice as many dimes as
quarters, and the total number of nickels and quarters is 20 more than the
number of dimes. Find the correct number of each type of coin.

�4. Find the quadratic equation y � ax2 � bx � c that goes through the points
(3,18),(2,9), and (�2,13).

5. Find the cubic equation y � ax3 � bx2 � cx � d that goes through the points
(1,1),(2,�18),(�2,46), and (3,�69).

�6. The general equation of a circle is x2 � y2 � ax � by � c. Find the equation of
the circle that goes through the points (6,8),(8,4), and (3,9).

7. Let A �

⎡
⎢⎢⎣

2 3 4
0 1 1

�2 1 5
3 0 1

⎤
⎥⎥⎦, B �

⎡
⎣2 1 �5

2 3 0
4 1 1

⎤
⎦. Compute R(AB) and (R(A))B to

verify that they are equal, if
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�(a) R: 〈3〉 ← �3 〈2〉 � 〈3〉.
(b) R: 〈2〉 ↔ 〈

4
〉
.

8. � (a) Prove part (1) of Theorem 2.1 by showing that R(AB) � (R(A))B for
each type of row operation ((I),(II), (III)) in turn. (Hint:Use the fact from
Section 1.5 that the kth row of (AB) � (kth row of A)B.)

(b) Use part (a) and induction to prove part (2) of Theorem 2.1.

9. Explain why the scalar used in a type (I) row operation must be nonzero.

10. Prove that if more than one solution to a system of linear equations exists,
then an infinite number of solutions exists. (Hint: Show that if X1 and X2 are
different solutions to AX � B, then X1 � c(X2 � X1) is also a solution,for every
real number c. Also, show that all these solutions are different.)

�11. True or False:

(a) The augmented matrix for a linear system contains all the essential
information from the system.

(b) It is possible for a linear system of equations to have exactly three solutions.

(c) A consistent system must have exactly one solution.

(d) type (II) row operations are used to convert nonzero pivot entries to 1.

(e) A type (III) row operation is used to replace a zero pivot entry with a
nonzero entry below it.

(f ) Multiplying matrices and then performing a row operation on the product
has the same effect as performing the row operation on the first matrix
and then calculating the product.

2.2 GAUSS-JORDAN ROW REDUCTION AND REDUCED ROW
ECHELON FORM

In this section,we introduce the Gauss-Jordan row reduction method, an extension of
the Gaussian elimination method. We also examine homogeneous linear systems and
their solutions.

Introduction to Gauss-Jordan Row Reduction

In the Gaussian elimination method, we created the augmented matrix for a given
linear system and systematically proceeded through the columns from left to right,
creating pivots and targeting (zeroing out) entries below the pivots. Although we
occasionally skipped over a column,we placed pivots into successive rows,and so the



 

2.2 Gauss-Jordan Row Reduction and Reduced Row Echelon Form 99

overall effect was to create a staircase pattern of pivots, as in

⎡
⎢⎢⎣

1 3 �7

0 1 5

0 0 1

∣∣∣∣∣∣∣∣
3

2

8

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

1 2 17 9

0 0 1 3

0 0 0 1

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

6

9

�2

0

⎤
⎥⎥⎥⎥⎥⎦ ,

and

⎡
⎢⎢⎢⎢⎢⎣

1 �3 6 �2 4 �5

0 0 1 �5 2 �3

0 0 0 0 0 1

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

�3

�1

2

0

⎤
⎥⎥⎥⎥⎥⎦ .

Such matrices are said to be in row echelon form. However, we can extend the
Gaussian elimination method further to target (zero out) the entries above each pivot
as well, as we proceed from column to column. This extension is called the Gauss-
Jordan row reduction method, sometimes simply referred to as“row reduction.”

Example 1
We will solve the following system of equations using the Gauss-Jordan method:

⎧⎪⎨
⎪⎩

2x1 � x2 � 3x3 �16
3x1 �2x2 � x4 �16
2x1 �12x3 �5x4 � 5

.

This system has the corresponding augmented matrix

⎡
⎢⎣2 1 3 0

3 2 0 1
2 0 12 �5

∣∣∣∣∣∣∣
16
16

5

⎤
⎥⎦ .

As in Gaussian elimination, we begin with the first column and set row 1 as the pivot row. The
following operation places 1 in the (1,1) pivot position:

Row Operation Resulting Matrix

(I): 〈1〉 ← 1
2 〈1〉

⎡
⎢⎣

1 1
2

3
2 0

3 2 0 1
2 0 12 �5

∣∣∣∣∣∣∣
8

16
5

⎤
⎥⎦.
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The next operations target (zero out) the entries below the (1,1) pivot.

Row Operations Resulting Matrix

(II): 〈2〉 ← (�3) 〈1〉 � 〈2〉
(II): 〈3〉 ← (�2) 〈1〉 � 〈3〉

⎡
⎢⎣

1 1
2

3
2 0

0 1
2 � 9

2 1
0 �1 9 �5

∣∣∣∣∣∣∣
8

�8
�11

⎤
⎥⎦

Proceeding to the second column, we set row 2 as the pivot row. The following operation
places a 1 in the (2,2) pivot position.

Row Operation Resulting Matrix

(I): 〈2〉 ← 2 〈2〉
⎡
⎢⎣

1 1
2

3
2 0

0 1 �9 2
0 �1 9 �5

∣∣∣∣∣∣∣
8

�16
�11

⎤
⎥⎦

The next operations target the entries above and below the (2,2) pivot.

Row Operations Resulting Matrix

(II): 〈1〉 ← � 1
2 〈2〉 � 〈1〉

(II): 〈3〉 ← 1 〈2〉 � 〈3〉

⎡
⎢⎢⎢⎣

1 0 6 �1

0 1 �9 2

0 0 0 �3

∣∣∣∣∣∣∣∣∣
16

�16

�27

⎤
⎥⎥⎥⎦

We cannot place a nonzero pivot in the third column, so we proceed to the fourth column
and set row 3 as the pivot row. The following operation places 1 in the (3,4) pivot position.

Row Operation Resulting Matrix

(I): 〈3〉 ← � 1
3 〈3〉

⎡
⎢⎢⎢⎣

1 0 6 �1

0 1 �9 2

0 0 0 1

∣∣∣∣∣∣∣∣∣
16

�16

9

⎤
⎥⎥⎥⎦

The next operations target the entries above the (3,4) pivot.

Row Operations Resulting Matrix

(II): 〈1〉 ← 1 〈3〉 � 〈1〉
(II): 〈2〉 ← �2 〈3〉 � 〈2〉

⎡
⎢⎢⎢⎣

1 0 6 0

0 1 �9 0

0 0 0 1

∣∣∣∣∣∣∣∣∣
25

�34

9

⎤
⎥⎥⎥⎦

Since we have reached the augmentation bar, we stop. (Notice the staircase pattern of pivots in
the final augmented matrix.) The corresponding system for this final matrix is⎧⎪⎨

⎪⎩
x1 �6x3 � 25

x2 �9x3 ��34
x4 � 9

.
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The third equation gives x4 � 9. Since the third column is not a pivot column, the inde-
pendent variable x3 can take on any real value, say c. The other variables x1 and x2 are
now determined to be x1 � 25 � 6c and x2 � �34 � 9c. Then the complete solution set is{ (

25 � 6c, 9c � 34, c, 9
) ∣∣ c ∈ R

}
.

One disadvantage of the Gauss-Jordan method is that more type (II) operations
generally need to be performed on the augmented matrix in order to target the
entries above the pivots. Hence,Gaussian elimination is faster. It is also more accurate
when using a calculator or computer because there is less opportunity for the
compounding of roundoff errors during the process. On the other hand, with the
Gauss-Jordan method there are fewer nonzero numbers in the final augmented matrix,
which makes the solution set more apparent.

Reduced Row Echelon Form

In the final augmented matrix in Example 1, each step on the staircase begins with a
nonzero pivot, although the steps are not uniform in width. As in row echelon form,
all entries below the staircase are 0, but now all entries above a nonzero pivot are
0 as well. When a matrix satisfies these conditions, it is said to be in reduced row
echelon form. The following definition states these conditions more formally:

Definition A matrix is in [reduced] row echelon form if and only if all the fol-
lowing conditions hold:

(1) The first nonzero entry in each row is 1.
(2) Each successive row has its first nonzero entry in a later column.
(3) All entries [above and] below the first nonzero entry of each row are zero.
(4) All full rows of zeroes are the final rows of the matrix.

Condition (3) asserts that if the entries above each pivot are zero in a row echelon
form matrix, then the matrix is in reduced row echelon form as well.

Technically speaking, to put an augmented matrix into reduced row echelon form,
this definition requires us to row reduce all columns.Therefore,putting an augmented
matrix into reduced row echelon form may require proceeding beyond the augmen-
tation bar. However, we have seen that the solution set of a linear system can actually
be determined without simplifying the column to the right of the augmentation bar.

Example 2
The following augmented matrices are all in reduced row echelon form:

A �

⎡
⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣
6

�2

3

⎤
⎥⎥⎥⎦ , B �

⎡
⎢⎢⎢⎢⎢⎣

1 0 2 0

0 1 3 0

0 0 0 1

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

�1

4

2

0

⎤
⎥⎥⎥⎥⎥⎦ ,
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and C �

⎡
⎢⎢⎢⎣

1 4 0 �3

0 0 1 2

0 0 0 0

∣∣∣∣∣∣∣∣∣
0

0

1

⎤
⎥⎥⎥⎦ .

Notice the staircase pattern of pivots in each matrix, with 1 as the first nonzero entry in each row.
The linear system corresponding to A has a unique solution (6,�2,3). The system corresponding
to B has an infinite number of solutions since the third column has no pivot entry, and its
corresponding variable can take on any real value. (The complete solution set for this system
is
{ (

�1 � 2c, 4 � 3c, c,2
) ∣∣ c ∈ R

}
. ) However, the system corresponding to C has no solutions,

since the third row is equivalent to the equation 0 � 1.

Number of Solutions

The Gauss-Jordan row reduction method also implies the following:

Number of Solutions of a Linear System
Let AX � B be a system of linear equations. Let C be the reduced row echelon form aug-
mented matrix obtained by row reducing [ A|B].

�If there is a row of C having all zeroes to the left of the augmentation bar but with its
last entry nonzero, then AX � B has no solution.

�If not, but if one of the columns of C to the left of the augmentation bar has no nonzero
pivot entry, then AX � B has an infinite number of solutions. The nonpivot columns corre-
spond to (independent) variables that can take on any value, and the values of the remaining
(dependent) variables are determined from those.

�Otherwise, AX � B has a unique solution.

Homogeneous Systems

Definition A system of linear equations having matrix form AX � O, where O
represents a zero column matrix, is called a homogeneous system.

For example, the following are homogeneous systems:

{
2x � 3y � 0

�4x � 6y � 0
and

⎧⎨
⎩

5x1 � 2x2 � 3x3 � 0
6x1 � x2 � 7x3 � 0

�x1 � 3x2 � x3 � 0
.

Notice that homogeneous systems are always consistent. This is because all of the
variables can be set equal to zero to satisfy all of the equations. This special solu-
tion, (0,0, . . . ,0), is called the trivial solution. Any other solution of a homogeneous
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system is called a nontrivial solution. For example, (0,0) is the trivial solution to
the first homogeneous system shown, but (9,6) is a nontrivial solution. Whenever a
homogeneous system has a nontrivial solution, it actually has infinitely many solutions
(why?).

An important result about homogeneous systems is the following:

If the reduced row echelon form augmented matrix for a homogeneous system in n variables
has fewer than n nonzero pivot entries, then the system has a nontrivial solution.

Example 3
Consider the following 3 � 3 homogeneous systems:⎧⎪⎨

⎪⎩
2x1 � x2 � 4x3 � 0
3x1 � 2x2 � 5x3 � 0

�x2 � x3 � 0

and

⎧⎪⎨
⎪⎩

4x1 � 8x2 � 2x3 � 0
3x1 � 5x2 � 2x3 � 0
2x1 � 8x2 � x3 � 0

.

After Gauss-Jordan row reduction, the final augmented matrices for these systems are,
respectively,

⎡
⎢⎣ 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎦ and

⎡
⎢⎢⎣

1 0 � 3
2

0 1 � 1
2

0 0 0

∣∣∣∣∣∣∣∣
0

0

0

⎤
⎥⎥⎦ .

The first system has only the trivial solution because all three columns are pivot columns. How-
ever, the second system has a nontrivial solution because only two of its three variable columns
are pivot columns (that is, there is at least one nonpivot column). The complete solution set for
the second system is {(

3

2
c,

1

2
c, c

)∣∣∣∣c ∈ R

}
�

{
c

(
3

2
,
1

2
,1

)∣∣∣∣c ∈ R

}
.

Notice that if there are fewer equations than variables in a homogeneous system,
we are bound to get at least one nonpivot column. Therefore, such a homogeneous
system always has nontrivial solutions.

Example 4
Consider the following homogeneous system:⎧⎪⎨

⎪⎩
x1 � 3x2 � 2x3 � 4x4 � 8x5 � 17x6 � 0

3x1 � 9x2 � 6x3 � 12x4 � 24x5 � 49x6 � 0
�2x1 � 6x2 � 5x3 � 11x4 � 18x5 � 40x6 � 0

.
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Because this homogeneous system has fewer equations than variables, it has a nontrivial solution.
To find all the solutions, we row reduce to obtain the final augmented matrix⎡

⎢⎣ 1 �3 0 2 4 0
0 0 1 �3 2 0
0 0 0 0 0 1

∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎦ .

The second, fourth, and fifth columns are nonpivot columns, so we can let x2, x4, and x5 take on
any real values — say, b, d, and e, respectively. The values of the remaining variables are then
determined by solving the equations x1 � 3b � 2d � 4e � 0, x3 � 3d � 2e � 0, and x6 � 0. The
complete solution set is

{
(3b � 2d � 4e, b, 3d � 2e, d, e, 0)

∣∣ b,d,e ∈ R
}

.

The solutions for the homogeneous system in Example 4 can be expressed as linear
combinations of three particular solutions as follows:

(3b � 2d � 4e, b, 3d � 2e, d, e, 0)

� b(3,1,0,0,0,0) � d(�2,0,3,1,0,0) � e(�4,0,�2,0,1,0).

Each particular solution was found by setting one independent variable equal to 1
and the others equal to 0. We will frequently find it useful to express solutions in
this way.

Application: Balancing Chemical Equations

Homogeneous systems frequently occur when balancing chemical equations. In chem-
ical reactions,we often know the reactants (initial substances) and products (results
of the reaction). For example, it is known that the reactants phosphoric acid and
calcium hydroxide produce calcium phosphate and water. This reaction can be
symbolized as

H3PO4
Phosphoric acid

� Ca(OH)2
Calcium hydroxide

→ Ca3(PO4)2
Calcium phosphate

� H2O
Water

.

An empirical formula for this reaction is an equation containing the minimal
integer multiples of the reactants and products so that the number of atoms of each
element agrees on both sides. (Finding the empirical formula is called balancing
the equation.) In the preceding example, we are looking for minimal positive integer
values of a, b, c, and d such that

aH3PO4 � bCa(OH)2 → cCa3(PO4)2 � dH2O
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balances the number of hydrogen (H), phosphorus (P), oxygen (O), and calcium (Ca)
atoms on both sides.1 Considering each element in turn, we get

⎧⎪⎪⎨
⎪⎪⎩

3a�2b� 2d (H)
a �2c (P)

4a�2b�8c � d (O)
b�3c (Ca)

.

Bringing the c and d terms to the left side of each equation, we get the following
augmented matrix for this system:

⎡
⎢⎢⎣

3 2 0 �2
1 0 �2 0
4 2 �8 �1
0 1 �3 0

∣∣∣∣∣∣∣∣
0
0
0
0

⎤
⎥⎥⎦ , which row reduces to

⎡
⎢⎢⎢⎢⎣

1 0 0 � 1
3

0 1 0 � 1
2

0 0 1 � 1
6

0 0 0 0

∣∣∣∣∣∣∣∣∣∣

0

0

0

0

⎤
⎥⎥⎥⎥⎦ .

The only variable having a nonpivot column is d. We choose d � 6 because this
is the minimum positive integer value we can assign to d so that a, b, and c are also
integers (why?). We then have a � 2,b � 3,and c � 1.Thus, the empirical formula for
this reaction is

2H3PO4 � 3Ca(OH)2 → Ca3(PO4)2 � 6H2O.

Solving Several Systems Simultaneously

In many cases, we need to solve two or more systems having the same coefficient
matrix. Suppose we wanted to solve both of the systems

⎧⎨
⎩

3x1 � x2 � 2x3 � 1
4x1 � x3 � 7
2x1 � 3x2 � 5x3 � 18

and

⎧⎨
⎩

3x1 � x2 � 2x3 � 8
4x1 � x3 � �1
2x1 � 3x2 � 5x3 � �32

.

It is wasteful to do two almost identical row reductions on the augmented matrices

⎡
⎣3 1 �2

4 0 �1
2 �3 5

∣∣∣∣∣∣
1
7

18

⎤
⎦ and

⎡
⎣3 1 �2

4 0 �1
2 �3 5

∣∣∣∣∣∣
8

�1
�32

⎤
⎦ .

1 In expressions like (OH)2 and (PO4)2, the number immediately following the parentheses indicates
that every term in the unit should be considered to appear that many times. Hence,(PO4)2 is equivalent
to PO4PO4 for our purposes.
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Instead,we can create the following “simultaneous” matrix containing the information
from both systems: ⎡

⎣3 1 �2
4 0 �1
2 �3 5

∣∣∣∣∣∣
1 8
7 �1

18 �32

⎤
⎦ .

Row reducing this matrix completely yields

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣
2 �1

�3 5

1 �3

⎤
⎥⎥⎦ .

By considering both of the right-hand columns separately,we discover that the unique
solution of the first system is x1 � 2,x2 � �3,and x3 � 1 and that the unique solution
of the second system is x1 � �1, x2 � 5, and x3 � �3.

Any number of systems with the same coefficient matrix can be handled similarly,
with one column on the right side of the augmented matrix for each system.

� Applications: You now have covered the prerequisites for Section 8.2,“Ohm’s
Law,”Section 8.3,“Least-Squares Polynomials,” and Section 8.4,“Markov Chains.”

New Vocabulary

homogeneous system
nontrivial solution
reduced row echelon form

row echelon form
staircase pattern (of pivots)
trivial solution

Highlights

■ The Gauss-Jordan method is similar to the Gaussian elimination process, except
that the entries both above and below each pivot are zeroed out.

■ After performing Gaussian elimination on a matrix, the result is in row ech-
elon form, while the result after the Gauss-Jordan method is in reduced row
echelon form.

■ A homogeneous linear system is always consistent because it always has at least
the trivial solution.

■ If a homogeneous linear system has at least one nonpivot column (for example,
when it has more variables than equations), then the system has an infinite
number of solutions.

■ Linear systems having the same coefficient matrix can be solved simultaneously.
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EXERCISES FOR SECTION 2.2
�1. Which of these matrices are not in reduced row echelon form? Why?

(a)

⎡
⎢⎣1 0 0 0

0 0 1 0

0 1 0 0

⎤
⎥⎦

(b)

⎡
⎢⎢⎢⎣

1 �2 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

(c)

⎡
⎢⎣1 0 0 3

0 2 0 �2

0 0 3 0

⎤
⎥⎦

(d)

⎡
⎢⎣1 �4 0 0

0 0 1 0

0 0 2 0

⎤
⎥⎦

(e)

⎡
⎢⎣1 0 4

0 1 �2

0 0 0

⎤
⎥⎦

(f )

⎡
⎢⎣1 �2 0 �2 3

0 0 1 5 4

0 0 0 0 1

⎤
⎥⎦

2. Use the Gauss-Jordan method to convert these matrices to reduced row echelon
form, and draw in the correct staircase pattern.

�(a)

⎡
⎢⎣ 5 20 �18

3 12 �14

�4 �16 13

∣∣∣∣∣∣∣
�11

3

13

⎤
⎥⎦

�(b)

⎡
⎢⎢⎢⎣

�2 1 1 15

6 �1 �2 �36

1 �1 �1 �11

�5 �5 �5 �14

⎤
⎥⎥⎥⎦

�(c)

⎡
⎢⎢⎢⎣

�5 10 �19 �17

�3 6 �11 �11

�7 14 �26 �25

9 �18 34 31

∣∣∣∣∣∣∣∣∣
20

14

31

�37

⎤
⎥⎥⎥⎦

(d)

⎡
⎢⎢⎢⎢⎢⎣

2 �5 �20

0 2 7

1 �5 �19

�5 16 64

3 �9 �36

⎤
⎥⎥⎥⎥⎥⎦

�(e)

[
�3 6 �1 �5 0
�1 2 3 �5 10

∣∣∣∣�5
5

]

(f )

⎡
⎢⎢⎢⎢⎣

�2 1 �1 �1 3
3 1 �4 �2 �4
7 1 �6 �2 �3

�8 �1 6 2 3
�3 0 2 1 2

⎤
⎥⎥⎥⎥⎦

�3. In parts (a), (e), and (g) of Exercise 1 in Section 2.1, take the final row echelon
form matrix that you obtained from Gaussian elimination and convert it to
reduced row echelon form. Then check that the reduced row echelon form
leads to the same solution set that you obtained using Gaussian elimination.

4. Each of the following homogeneous systems has a nontrivial solution since the
number of variables is greater than the number of equations. Use the Gauss-
Jordan method to determine the complete solution set for each system, and
give one particular nontrivial solution.
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�(a)

⎧⎨
⎩

�2x1 � 3x2 � 2x3 � 13x4 � 0
�4x1 � 7x2 � 4x3 � 29x4 � 0

x1 � 2x2 � x3 � 8x4 � 0

(b)

⎧⎨
⎩

2x1 � 4x2 � x3 � 5x4 � 2x5 � 0
3x1 � 3x2 � x3 � 3x4 � 0

�5x1 � 6x2 � 2x3 � 6x4 � x5 � 0

�(c)

⎧⎪⎪⎨
⎪⎪⎩

7x1 � 28x2 � 4x3 � 2x4 � 10x5 � 19x6 � 0
�9x1 � 36x2 � 5x3 � 3x4 � 15x5 � 29x6 � 0

3x1 � 12x2 � 2x3 � 6x5 � 11x6 � 0
6x1 � 24x2 � 3x3 � 3x4 � 10x5 � 20x6 � 0

5. Use the Gauss-Jordan method to find the complete solution set for each of
the following homogeneous systems, and express each solution set as linear
combinations of particular solutions, as shown after Example 4.

�(a)

⎧⎨
⎩

�2x1 � x2 � 8x3 � 0
7x1 � 2x2 � 22x3 � 0
3x1 � x2 � 10x3 � 0

(b)

⎧⎨
⎩

5x1 � 2x3 � 0
�15x1 � 16x2 � 9x3 � 0

10x1 � 12x2 � 7x3 � 0

�(c)

⎧⎪⎪⎨
⎪⎪⎩

2x1 � 6x2 � 13x3 � x4 � 0
x1 � 4x2 � 10x3 � x4 � 0

2x1 � 8x2 � 20x3 � x4 � 0
3x1 � 10x2 � 21x3 � 2x4 � 0

(d)

⎧⎪⎪⎨
⎪⎪⎩

2x1 � 6x2 � 3x3 � 21x4 � 0
4x1 � 5x2 � 2x3 � 24x4 � 0

�x1 � 3x2 � x3 � 10x4 � 0
�2x1 � 3x2 � x3 � 13x4 � 0

6. Use the Gauss-Jordan method to find the minimal integer values for the variables
that will balance each of the following chemical equations:2

�(a) aC6H6 � bO2 → cCO2 � dH2O

(b) aC8H18 � bO2 → cCO2 � dH2O

�(c) aAgNO3 � bH2O → cAg � dO2 � eHNO3

(d) aHNO3 � bHCl � cAu → dNOCl � eHAuCl4 � f H2O

2 The chemical elements used in these equations are silver (Ag), gold (Au), carbon (C), chlorine
(Cl), hydrogen (H), nitrogen (N), and oxygen (O). The compounds are water (H2O), carbon dioxide
(CO2), benzene (C6H6), octane (C8H18), silver nitrate (AgNO3), nitric acid (HNO3), hydrochloric acid
(HCl), nitrous chloride (NOCl), and hydrogen tetrachloroaurate (III) (HAuCl4).
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7. Use the Gauss-Jordan method to find the values of A, B, C (and D in part (b))
in the following partial fractions problems:

�(a)
5x2 � 23x � 58

(x � 1)(x � 3)
(
x � 4

) �
A

x � 1
�

B

x � 3
�

C

x � 4

(b)
�3x3 � 29x2 � 91x � 94

(x � 2)2(x � 3)2
�

A

(x � 2)2
�

B

x � 2
�

C

(x � 3)2
�

D

x � 3

�8. Solve the systems AX � B1 and AX � B2 simultaneously, as illustrated in this
section, where

A �

⎡
⎣ 9 2 2

3 2 4
27 12 22

⎤
⎦ , B1 �

⎡
⎣�6

0
12

⎤
⎦ , and B2 �

⎡
⎣�12

�3
8

⎤
⎦ .

9. Solve the systems AX � B1 and AX � B2 simultaneously, as illustrated in this
section, where

A �

⎡
⎢⎢⎣

12 2 0 3
�24 �4 1 �6
�4 �1 �1 0
�30 �5 0 �6

⎤
⎥⎥⎦ , B1 �

⎡
⎢⎢⎣

3
8

�4
6

⎤
⎥⎥⎦ , and B2 �

⎡
⎢⎢⎣

2
4

�24
0

⎤
⎥⎥⎦ .

10. Let A �

[
0 3 �12
2 4 �10

]
and B �

⎡
⎣ 2 1

3 �3
�4 1

⎤
⎦.

(a) Find row operations R1, . . . ,Rn such that Rn(Rn�1(· · ·(R2(R1(A))) · · ·)) is
in reduced row echelon form.

(b) Verify part (2) of Theorem 2.1 using A, B, and the row operations from
part (a).

11. Consider the homogeneous system AX � O having m equations and n vari-
ables.

(a) Prove that, if X1 and X2 are both solutions to this system, then X1 � X2

and any scalar multiple cX1 are also solutions.

�(b) Give a counterexample to show that the results of part (a) do not
necessarily hold if the system is nonhomogeneous.

(c) Consider a nonhomogeneous system AX � B having the same coefficient
matrix as the homogeneous system AX � O. Prove that, if X1 is a solution
of AX � B and if X2 is a solution of AX � O,then X1 � X2 is also a solution
of AX � B.

(d) Show that if AX � B has a unique solution, with B �� O, then the corre-
sponding homogeneous system AX � O can have only the trivial solution.
(Hint: Use part (c).)
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12. Prove that the following homogeneous system has a nontrivial solution if and
only if ad � bc � 0: {

ax1 � bx2 � 0
cx1 � dx2 � 0

.

(Hint:First, suppose that a �� 0,and show that under the Gauss-Jordan method,
the second column has a nonzero pivot entry if and only if ad � bc �� 0. Then
consider the case a � 0.)

13. Suppose that AX � O is a homogeneous system of n equations in n variables.

(a) If the system A2X � O has a nontrivial solution, show that AX � O also
has a nontrivial solution. (Hint: Prove the contrapositive.)

(b) Generalize the result of part (a) to show that, if the system AnX � O has a
nontrivial solution for some positive integer n,then AX � O has a nontrivial
solution. (Hint: Use a proof by induction.)

�14. True or False:

(a) In Gaussian elimination, a descending “staircase” pattern of pivots is cre-
ated, in which each step starts with 1 and the entries below the staircase
are all 0.

(b) Gauss-Jordan row reduction differs from Gaussian elimination by targeting
(zeroing out) entries above each nonzero pivot as well as those below the
pivot.

(c) In a reduced row echelon form matrix,the nonzero pivot entries are always
located in successive rows and columns.

(d) No homogeneous system is inconsistent.

(e) Nontrivial solutions to a homogeneous system are found by setting the
dependent (pivot column) variables equal to any real number and then
determining the independent (nonpivot column) variables from those
choices.

(f ) If a homogeneous system has more equations than variables, then the
system has a nontrivial solution.

2.3 EQUIVALENT SYSTEMS, RANK, AND ROW SPACE
In this section, we continue discussing the solution sets of linear systems. First we
introduce row equivalence of matrices, and use this to prove our assertion in the last
two sections that the Gaussian elimination and Gauss-Jordan row reduction methods
always produce the complete solution set for a given linear system. We also note that
every matrix has a unique corresponding matrix in reduced row echelon form and
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use this fact to define the rank of the matrix. We then introduce an important set of
linear combinations of vectors associated with a matrix, called the row space of the
matrix, and show it is invariant under row operations.

Equivalent Systems and Row Equivalence of Matrices

The first two definitions below involve related concepts. The connection between
them will be shown in Theorem 2.3.

Definition Two systems of m linear equations in n variables are equivalent if and
only if they have exactly the same solution set.

For example, the systems{
2x � y � 1
3x � y � 9

and

{
x � 4y � 14

5x � 2y � 4

are equivalent, because the solution set of both is exactly {(2,3)}.

Definition An (augmented) matrix D is row equivalent to a matrix C if and only
if D is obtained from C by a finite number of row operations of types (I), (II),
and (III).

For example,given any matrix,either Gaussian elimination or the Gauss-Jordan row
reduction method produces a matrix that is row equivalent to the original.

Now, if D is row equivalent to C, then C is also row equivalent to D. The reason
is that each row operation is reversible; that is, the effect of any row operation can
be undone by performing another row operation. These reverse, or inverse, row
operations are shown in Table 2.1. Notice a row operation of type (I) is reversed by
using the reciprocal 1/c and an operation of type (II) is reversed by using the additive
inverse �c. (Do you see why?)

Thus, if D is obtained from C by the sequence

C
R1→ A1

R2→ A2
R3→ ··· Rn→ An

Rn�1→ D,

then C can be obtained from D using the reverse operations in reverse order:

D
R�1

n�1→ An
R�1

n→ An�1
R�1

n�1→ ··· R�1
2→ A1

R�1
1→ C

(R�1
i represents the inverse operation of Ri ,as indicated inTable 2.1.) These comments

provide a sketch for the proof of the following theorem. You are asked to fill in the
details of the proof in Exercise 13(a).



 

112 CHAPTER 2 Systems of Linear Equations

Table 2.1 Row operations and their inverses

Type of Operation Operation Reverse Operation

(I) 〈i〉 ← c 〈i〉 〈i〉 ← 1
c 〈i〉

(II)
〈
j
〉← c 〈i〉 �

〈
j
〉 〈

j
〉← �c 〈i〉 �

〈
j
〉

(III) 〈i〉 ↔ 〈
j
〉 〈i〉 ↔ 〈

j
〉

Theorem 2.2 If a matrix D is row equivalent to a matrix C, then C is row equivalent
to D.

The next theorem asserts that if two augmented matrices are obtained from each
other using only row operations, then their corresponding systems have the same
solution set. This result guarantees that the Gaussian elimination and Gauss-Jordan
methods provided in Sections 2.1 and 2.2 are correct because the only steps allowed in
those procedures were row operations.Therefore,a final augmented matrix produced
by either method represents a system equivalent to the original — that is, a system
with precisely the same solution set.

Theorem 2.3 Let AX � B be a system of linear equations. If [C|D] is row equivalent to
[A|B], then the system CX � D is equivalent to AX � B.

Proof. (Abridged) Let SA represent the complete solution set of the system AX � B, and
let SC be the solution set of CX � D. Our goal is to prove that if [C|D] is row equivalent to
[A|B], then SA � SC . It will be enough to show that [C|D] row equivalent to [A|B] implies
SA ⊆ SC . This fact, together with Theorem 2.2, implies the reverse inclusion, SC ⊆ SA (why?).

Also, it is enough to assume that [C|D] = R([A|B]) for a single row operation R because
an induction argument extends the result to the case where any (finite) number of row
operations are required to produce [C|D] from [A|B]. Therefore, we need only consider
the effect of each type of row operation in turn. We present the proof for a type (II) operation
and leave the proofs for the other types as Exercise 13(b).

type (II) Operation: Suppose that the original system has the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a11x1 � a12x2 � a13x3 � · · · � a1nxn � b1
a21x1 � a22x2 � a23x3 � · · · � a2nxn � b2

...
...

...
. . .

...
...

am1x1 �am2x2 �am3x3 � · · · �amnxn �bm

and that the row operation used is
〈
j
〉← q 〈i〉 �

〈
j
〉
(where i �� j). When this row operation

is applied to the corresponding augmented matrix, all rows except the jth row remain
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unchanged. The new jth equation then has the form

(qai1 � aj1)x1 � (qai2 � aj2)x2 � · · · � (qain � ajn)xn � qbi � bj .

We must show that any solution (s1,s2, . . . ,sn) of the original system is a solution of the new
one. Now, since (s1,s2, . . . ,sn) is a solution of both the ith and jth equations in the original
system, we have

ai1s1 � ai2s2 � · · · � ainsn � bi and aj1s1 � aj2s2 � · · · � ajnsn � bj .

Multiplying the first equation by q and then adding equations yields

(qai1 � aj1)s1 � (qai2 � aj2)s2 � · · · � (qain � ajn)sn � qbi � bj .

Hence, (s1,s2, . . . ,sn) is also a solution of the new jth equation. And (s1,s2, . . . ,sn) is certainly
a solution of every other equation in the new system as well, since none of those have
changed.

Rank of a Matrix

When the Gauss-Jordan method is performed on a matrix, only one final augmented
matrix can result. This fact is stated in the following theorem, the proof of which
appears in Appendix A:

Theorem 2.4 Every matrix is row equivalent to a unique matrix in reduced row echelon
form.

While each matrix is row equivalent to exactly one matrix in reduced row echelon
form, there may be many matrices in row echelon form to which it is row equivalent.
This is one of the advantages of Gauss-Jordan row reduction over Gaussian elimination.

Because each matrix has a unique corresponding reduced row echelon form
matrix, we can make the following definition:

Definition Let A be a matrix. Then the rank of A is the number of nonzero rows
(that is,rows with nonzero pivot entries) in the unique reduced row echelon form
matrix that is row equivalent to A.

Example 1
Consider the following matrices:

A �

⎡
⎢⎣2 1 4

3 2 5
0 �1 1

⎤
⎥⎦ and B �

⎡
⎢⎣3 1 0 1 �9

0 �2 12 �8 �6
2 �3 22 �14 �17

⎤
⎥⎦ .
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The unique reduced row echelon form matrices for A and B are, respectively,⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦ (� I3) and

⎡
⎢⎣1 0 2 �1 �4

0 1 �6 4 3
0 0 0 0 0

⎤
⎥⎦ .

Therefore, the rank of A is 3 since the reduced row echelon form of A has three nonzero rows
(and hence three nonzero pivot entries). On the other hand, the rank of B is 2 since the reduced
row echelon form of B has two nonzero rows (and hence two nonzero pivot entries).

Homogeneous Systems and Rank

We can now restate our observations about homogeneous systems from Section 2.2
in terms of rank.

Theorem 2.5 Let AX � O be a homogeneous system in n variables.

(1) If rank(A) < n, then the system has a nontrivial solution.

(2) If rank(A) � n, then the system has only the trivial solution.

Note that the presence of a nontrivial solution when rank(A) < n means that the
homogeneous system has an infinite number of solutions.

Proof. After the Gauss-Jordan method is applied to the augmented matrix [A|O], the num-
ber of nonzero pivots equals rank(A). Suppose rank(A) < n. Then at least one of the
columns is a nonpivot column, and so at least one of the n variables on the left side of
[A|O] is independent. Now, because this system is homogeneous, it is consistent. There-
fore, the solution set is infinite, with particular solutions found by choosing arbitrary values
for all independent variables and then solving for the dependent variables. Choosing a
nonzero value for at least one independent variable yields a nontrivial solution.

On the other hand, suppose rank(A) � n. Then, because A has n columns, every
column on the left side of [A|O] is a pivot column, and each variable must equal zero.
Hence, in this case, AX � O has only the trivial solution.

The following corollary (illustrated by Example 4 in Section 2.2) follows immedi-
ately from Theorem 2.5:

Corollary 2.6 Let AX � O be a homogeneous system of m linear equations in
n variables. If m < n, then the system has a nontrivial solution.

Linear Combinations of Vectors

In Section 1.1, we introduced linear combinations of vectors. Recall that a linear
combination of vectors is a sum of scalar multiples of the vectors.
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Example 2
Let a1 � [�4,1,2], a2 � [2,1,0], and a3 � [6,�3,�4] in R

3. Consider the vector [�18,15,16].
Because

[�18,15,16] � 2[�4,1,2] � 4[2,1,0] � 3[6,�3,�4],

the vector [�18,15,16] is a linear combination of the vectors a1, a2, and a3. This combination
shows us how to reach the “destination” [�18,15,16] by traveling in directions parallel to the
vectors a1, a2, and a3.

Now consider the vector [16,�3,8]. This vector is not a linear combination of a1, a2, and
a3. For if it were, the equation

[16,�3,8] � c1[�4,1,2] � c2[2,1,0] � c3[6,�3,�4]

would have a solution. But, equating coordinates, we get the following system:

⎧⎪⎨
⎪⎩

�4c1 �2c2 �6c3 � 16
c1 � c2 �3c3 ��3

2c1 �4c3 � 8

first coordinates
second coordinates
third coordinates.

We solve this system by row reducing

⎡
⎢⎢⎢⎣

�4 2 6

1 1 �3

2 0 �4

∣∣∣∣∣∣∣∣∣
16

�3

8

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎣

1 0 �2

0 1 �1

0 0 0

∣∣∣∣∣∣∣∣∣
� 11

3
2
3

46
3

⎤
⎥⎥⎥⎦.

The third row of this final matrix indicates that the system has no solutions, and hence, there are
no values of c1, c2, and c3 that together satisfy the equation

[16,�3,8] � c1[�4,1,2] � c2[2,1,0] � c3[6,�3,�4].

Therefore, [16,�3,8] is not a linear combination of the vectors [�4,1,2], [2,1,0], and
[6,�3,�4]. This means that it is impossible to reach the “destination” [16,�3,8] by traveling in
directions parallel to the vectors a1, a2, and a3.

The next example shows that a vector x can sometimes be expressed as a linear
combination of vectors a1,a2, . . . ,ak in more than one way.
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Example 3
To determine whether [14,�21,7] is a linear combination of [2,�3,1] and [�4,6,�2], we need
to find scalars c1 and c2 such that

[14,�21,7] � c1[2,�3,1] � c2[�4,6,�2].
This is equivalent to solving the system⎧⎪⎨

⎪⎩
2c1 �4c2 � 14

�3c1 �6c2 ��21
c1 �2c2 � 7

.

We solve this system by row reducing⎡
⎢⎣ 2 �4

�3 6
1 �2

∣∣∣∣∣∣∣
14

�21
7

⎤
⎥⎦ to obtain

⎡
⎢⎣1 �2

0 0
0 0

∣∣∣∣∣∣∣
7
0
0

⎤
⎥⎦ .

Because c2 is an independent variable, we may take c2 to be any real value. Then c1 � 2c2 � 7.
Hence, there are an infinite number of solutions to the system.

For example, we could let c2 � 1, which forces c1 � 2(1) � 7 � 9, yielding

[14,�21,7] � 9[2,�3,1] � 1[�4,6,�2].
On the other hand, we could let c2 � 0, which forces c1 � 7, yielding

[14,�21,7] � 7[2,�3,1] � 0[�4,6,�2].
Thus, we have expressed [14,�21,7] as a linear combination of [2,�3,1] and [�4,6,�2] in
more than one way.

In Examples 2 and 3 we saw that to find the coefficients to express a given vector x
as a linear combination of other vectors, we row reduce an augmented matrix whose
rightmost column is x, and whose remaining columns are the other vectors.

It is possible to have a linear combination of a single vector: any scalar multiple of
a is considered a linear combination of a. For example, if a � [3,�1,5], then �2a �
[�6,2,�10] is a linear combination of a.

The Row Space of a Matrix

Suppose A is an m � n matrix. Recall that each of the m rows of A is a vector with n
entries — that is, a vector in R

n.

Definition Let A be an m � n matrix. The subset of R
n consisting of all vectors

that are linear combinations of the rows of A is called the row space of A.
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Recall that we consider a linear combination of vectors to be a“possible destination”
obtained by traveling in the directions of those vectors. Hence, the row space of a
matrix is the set of “all possible destinations”using the rows of A as our fundamental
directions.

Example 4
Consider the matrix

A �

⎡
⎢⎣ 3 1 �2

4 0 1
�2 4 �3

⎤
⎥⎦ .

We want to determine whether [5,17,�20] is in the row space of A. If so, [5,17,�20] can be
expressed as a linear combination of the rows of A, as follows:

[5,17,�20] � c1[3,1,�2] � c2[4,0,1] � c3[�2,4,�3].

Equating the coordinates on each side leads to the following system:⎧⎪⎨
⎪⎩

3c1 �4c2 �2c3 � 5
c1 �4c3 � 17

�2c1 � c2 �3c3 ��20

, whose matrix row reduces to

⎡
⎢⎣1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣∣
5

�1
3

⎤
⎥⎦ .

Hence, c1 � 5, c2 � �1, and c3 � 3, and

[5,17,�20] � 5[3,1,�2] � 1[4,0,1] � 3[�2,4,�3].

Therefore, [5,17,�20] is in the row space of A.

Example 4 shows that to check whether a vector X is in the row space of A, we
row reduce the augmented matrix

[
AT
∣∣X] to determine whether its corresponding

system has a solution.

Example 5

The vector X � [3,5] is not in the row space of B �

[
2 �4

�1 2

]
because there is no way to

express [3,5] as a linear combination of the rows [2,�4] and [�1,2] of B. That is, row reducing

[
BT
∣∣∣X]�

[
2 �1

�4 2

∣∣∣∣∣ 3
5

]
yields

[
1 � 1

2
0 0

∣∣∣∣∣
3
2

11

]
,

thus showing that the corresponding linear system is inconsistent.
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If A is any m � n matrix, then [0,0, . . . ,0] in R
n is always in the row space of A.

This is because the zero vector can always be expressed as a linear combination of the
rows of A simply by multiplying each row by zero and adding the results. Similarly,
each individual row of A is in the row space of A,because any particular row of A can
be expressed as a linear combination of all the rows of A simply by multiplying that
row by 1, multiplying all other rows by zero, and summing.

Row Equivalence Determines the Row Space

The following lemma is used in the proof of Theorem 2.8:

Lemma 2.7 Suppose that x is a linear combination of q1, . . . ,qk, and suppose also
that each of q1, . . . ,qk is itself a linear combination of r1, . . . ,rl . Then x is a linear
combination of r1, . . . ,rl .

If we create a matrix Q whose rows are the vectors q1, . . . ,qk and a matrix R whose
rows are the vectors r1, . . . ,rl , then Lemma 2.7 can be rephrased as

If x is in the row space of Q and each row of Q is in the row space of R,
then x is in the row space of R.

Proof. Because x is a linear combination of q1, . . . ,qk, we can write x � c1q1 � c2q2 �
· · · � ckqk for some scalars c1,c2, . . . ,ck. But, since each of q1, . . . ,qk can be expressed as
a linear combination of r1, . . . ,rl , there are scalars d11, . . . ,dkl such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
q1 � d11r1 � d12r2 � · · · �d1lrl
q2 � d21r1 � d22r2 � · · · �d2lrl
...

...
...

. . .
...

qk �dk1r1 �dk2r2 � · · · �dklrl

.

Substituting these equations into the equation for x, we obtain

x � c1(d11r1 � d12r2 � · · · �d1lrl)

� c2(d21r1 � d22r2 � · · · �d2lrl)
...

...
. . .

...
�ck(dk1r1 �dk2r2 � · · · �dklrl)

.

Collecting all r1 terms, all r2 terms, and so on, we get

x � (c1d11 �c2d21 � · · · �ckdk1)r1
�(c1d12 �c2d22 � · · · �ckdk2)r2

...
...

. . .
...

� (c1d1l � c2d2l � · · · � ckdkl)rl

.

Thus, x can be expressed as a linear combination of r1,r2, . . . ,rl .
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The next theorem illustrates an important connection between row equivalence
and row space.

Theorem 2.8 Suppose that A and B are row equivalent matrices. Then the row space
of A equals the row space of B.

In other words, if A and B are row equivalent, then any vector that is a linear
combination of the rows of A must be a linear combination of the rows of B, and vice
versa. Theorem 2.8 assures us that we do not gain or lose any linear combinations
of the rows when we perform row operations. That is, the same set of “destination
vectors” is obtained from the rows of row equivalent matrices.

Proof. (Abridged) Let A and B be row equivalent m � n matrices. We will show that if x
is a vector in the row space of B, then x is in the row space of A. (A similar argument
can then be used to show that if x is in the row space of A, then x is in the row space
of B.)

First consider the case in which B is obtained from A by performing a single row oper-
ation. In this case, the definition for each type of row operation implies that each row of B
is a linear combination of the rows of A (see Exercise 19(a)). Now, suppose x is in the row
space of B. Then x is a linear combination of the rows of B. But since each of the rows of
B is a linear combination of the rows of A, Lemma 2.7 indicates that x is in the row space
of A. By induction, this argument can be extended to the case where B is obtained from A
by any (finite) sequence of row operations (see Exercise 20).

Example 6
Consider the matrix

A �

⎡
⎢⎢⎢⎣

5 10 12 33 19
3 6 �4 �25 �11
1 2 �2 �11 �5
2 4 �1 �10 �4

⎤
⎥⎥⎥⎦ .

The reduced row echelon form matrix for A is

B �

⎡
⎢⎢⎢⎣

1 2 0 �3 �1
0 0 1 4 2
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ .

Theorem 2.8 asserts that the row spaces of A and B are equal. Hence, the linear combinations
that can be created from the rows of A are identical to those that can be created from B. For
example, the vector x � [4,8,�30,�132,�64] is in both row spaces:

x � �1[5,10,12,33,19] � 3[3,6,�4,�25,�11] � 4[1,2,�2,�11,�5] � 2[2,4,�1,�10,�4],
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which shows x is in the row space of A. But x is in the row space of B, since

x � 4[1,2,0,�3,�1] � 30[0,0,1,4,2].

The matrix A in Example 6 essentially has two unneeded, or “redundant” rows.
Thus, from the reduced row echelon form matrix B of A, we obtain a smaller num-
ber of rows (those that are nonzero in B) producing the same row space. In other
words,we can reach the same “destinations” using just the two vector directions of the
nonzero rows of B as we could using all four of the vector directions of the rows of
A. In fact, we will prove in Chapter 4 that the rank of A gives precisely the minimal
number of rows of A needed to produce the same set of linear combinations.

� Numerical Method: You have now covered the prerequisites for Section 9.1,
“Numerical Methods for Solving Systems.”

New Vocabulary
equivalent systems
rank (of a matrix)
reverse (inverse) row operations

row equivalent matrices
row space (of a matrix)

Highlights

■ Two matrices are row equivalent to each other if one can be produced from the
other using some finite series of the three allowable row operations.

■ If the augmented matrices for two linear systems are row equivalent, then
the systems have precisely the same solution set (that is, the systems are
equivalent).

■ Every matrix is row equivalent to a unique reduced row echelon form matrix.

■ The rank of a matrix is the number of nonzero rows (� number of pivot columns)
in its corresponding reduced row echelon form matrix.

■ If the rank of the augmented matrix for a homogeneous linear system is less than
the number of variables, then the system has an infinite number of solutions.

■ We can determine whether a given vector is a linear combination of other vectors
by solving an appropriate system whose augmented matrix consists of those
vectors as its leftmost columns and the given vector as the rightmost column.

■ The row space of a matrix is the set of all possible linear combinations of the
rows of the matrix.

■ If two matrices are row equivalent, then their row spaces are identical (that is,
each linear combination of the rows that can be produced using one matrix can
also be produced from the other).
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EXERCISES FOR SECTION 2.3
Note: To save time,you should use a calculator or an appropriate software package to
perform nontrivial row reductions.

1. For each of the following pairs of matrices A and B, give a reason why A and B
are row equivalent:

�(a) A �

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦, B �

⎡
⎣1 0 0

0 �5 0
0 0 1

⎤
⎦

(b) A �

⎡
⎣12 9 �5

4 6 �2
0 1 3

⎤
⎦, B �

⎡
⎣ 0 1 3

4 6 �2
12 9 �5

⎤
⎦

�(c) A �

⎡
⎣ 3 2 7

�4 1 6
2 5 4

⎤
⎦, B �

⎡
⎣ 3 2 7

�2 6 10
2 5 4

⎤
⎦

2. (a) Find the reduced row echelon form B of the following matrix A, keeping
track of the row operations used:

A �

⎡
⎣ 4 0 �20

�2 0 11
3 1 �15

⎤
⎦.

�(b) Use your answer to part (a) to give a sequence of row operations that
converts B back to A. Check your answer. (Hint: Use the inverses of the
row operations from part (a), but in reverse order.)

�3. (a) Verify that the following matrices are row equivalent by showing they
have the same reduced row echelon form:

A �

⎡
⎣1 0 9

0 1 �3
0 �2 5

⎤
⎦ and B �

⎡
⎣�5 3 0

�2 1 0
�3 0 1

⎤
⎦.

(b) Find a sequence of row operations that converts A into B. (Hint: Let C
be the common matrix in reduced row echelon form corresponding to A
and B. In part (a), you found a sequence of row operations that converts
A to C and another sequence that converts B to C. Reverse the operations
in the second sequence to obtain a sequence that converts C to B. Finally,
combine the first sequence with these “reversed” operations to create a
sequence from A to B.)



 

122 CHAPTER 2 Systems of Linear Equations

4. Verify that the following matrices are not row equivalent by showing that their
corresponding matrices in reduced row echelon form are different:

A �

⎡
⎢⎢⎣

1 �2 0 0 3
2 �5 �3 �2 6
0 5 15 10 0
2 6 18 8 6

⎤
⎥⎥⎦ and B �

⎡
⎢⎢⎣

0 0 1 1 0
0 0 0 0 1
0 1 3 2 0

�1 2 0 0 �3

⎤
⎥⎥⎦ .

5. Find the rank of each of the following matrices:

�(a)

⎡
⎣ 1 �1 3

2 0 4
�1 �3 1

⎤
⎦

(b)

[
�1 3 2

2 �6 �4

]

�(c)

⎡
⎣4 0 0

0 0 0
0 0 5

⎤
⎦

(d)

⎡
⎣ 3 5 2

4 2 3
�1 2 4

⎤
⎦

�(e)

⎡
⎢⎢⎣

�1 �1 0 0
0 0 2 3
4 0 �2 1
3 �1 0 4

⎤
⎥⎥⎦

(f )

⎡
⎣1 1 �1 0 1

2 �4 3 1 0
3 15 �13 �2 7

⎤
⎦

6. Does Corollary 2.6 apply to the following homogeneous systems? Why or
why not? Find the rank of the augmented matrix for each system. From the
rank,what doesTheorem 2.5 predict about the solution set? Find the complete
solution set to verify this prediction.

�(a)

⎧⎪⎪⎨
⎪⎪⎩

�2x1 � 6x2 � 3x3 � 0
5x1 � 9x2 � 4x3 � 0
4x1 � 8x2 � 3x3 � 0
6x1 � 11x2 � 5x3 � 0

(b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�x1 � 4x2 � 19x3 � 0
5x1 � x2 � 11x3 � 0
4x1 � 5x2 � 32x3 � 0
2x1 � x2 � 2x3 � 0
x1 � 2x2 � 11x3 � 0

7. Assume that for each type of system below there is at least one variable
with a nonzero coefficient. Find the smallest and largest rank possible for the
corresponding augmented matrix in each case.
�(a) Four equations, three variables, nonhomogeneous

(b) Three equations, four variables

�(c) Three equations, four variables, inconsistent

(d) Five equations, three variables, nonhomogeneous, consistent

8. In each of the following cases, express the vector x as a linear combination of
the other vectors, if possible:
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�(a) x � [�3,�6], a1 � [1,4], a2 � [�2,3]
(b) x � [5,9,5], a1 � [2,1,4], a2 � [1,�1,3], a3 � [3,2,5]

�(c) x � [2,�1,4], a1 � [3,6,2], a2 � [2,10,�4]
(d) x � [2,2,3], a1 � [6,�2,3], a2 � [0,�5,�1], a3 � [�2,1,2]

�(e) x � [7,2,3], a1 � [1,�2,3], a2 � [5,�2,6], a3 � [4,0,3]
(f) x � [1,1,1,1], a1 � [2,1,0,3], a2 � [3,�1,5,2], a3 � [�1,0,2,1]

�(g) x � [2,3,�7,3], a1 � [3,2,�2,4], a2 � [�2,0,1,�3], a3 � [6,1,2,8]
(h) x � [�3,1,2,0,1], a1 � [�6,2,4,�1,7]

9. In each of the following cases, determine whether the given vector is in the
row space of the given matrix:

�(a) [7,1,18], with

⎡
⎣3 6 2

2 10 �4
2 �1 4

⎤
⎦

(b) [4,0,�3], with

⎡
⎣ 3 1 1

2 �1 5
�4 �3 3

⎤
⎦

�(c) [2,2,�3], with

⎡
⎣ 4 �1 2

�2 3 5
6 1 9

⎤
⎦

(d) [1,2,5,�1], with

[
2 �1 0 3
7 �1 5 8

]

�(e) [1,11,�4,11], with

⎡
⎣2 �4 1 �3

7 �1 �1 2
3 7 �3 8

⎤
⎦

�10. (a) Express the vector [13,�23,60] as a linear combination of the vectors

q1 � [�1,�5,11], q2 � [�10,3,�8], and q3 � [7,�12,30].

(b) Express each of the vectors q1,q2, and q3 in turn as a linear combination
of the vectors r1 � [3,�2,4], r2 � [2,1,�3], and r3 � [4,�1,2].

(c) Use the results of parts (a) and (b) to express the vector [13,�23,60] as
a linear combination of the vectors r1, r2, and r3. (Hint: Use the method
given in the proof of Lemma 2.7.)

11. For each given matrix A, perform the following steps:

(i) Find B, the reduced row echelon form of A.
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(ii) Show that every nonzero row of B is in the row space of A by solving for
the appropriate linear combination.

(iii) Show that every row of A is in the row space of B by solving for the
appropriate linear combination.

�(a)

⎡
⎣0 4 12 8

2 7 19 18
1 2 5 6

⎤
⎦

(b)

⎡
⎢⎢⎣

1 2 3 �4 �21
�2 �4 �6 5 27
13 26 39 5 12

2 4 6 �1 �7

⎤
⎥⎥⎦

12. Let A be a diagonal n � n matrix. Prove that A is row equivalent to In if and
only if aii �� 0, for all i, 1 � i � n.

�13. (a) Finish the proof of Theorem 2.2 by showing that the three inverse row
operations given in Table 2.1 correctly reverse their corresponding type
(I), ( II), and (III) row operations.

(b) Finish the proof of Theorem 2.3 by showing that when a single row oper-
ation of type (I) or type (III) is applied to the augmented matrix [A|B],
every solution of the original system is also a solution of the new system.

�14. Let A be an m � n matrix. If B is a nonzero m-vector, explain why the systems
AX � B and AX � O are not equivalent.

�15. Show that the converse to Theorem 2.3 is not true by exhibiting two incon-
sistent systems (with the same number of equations and variables) whose
corresponding augmented matrices are not row equivalent.

16. (a) Show that,if five distinct points in the plane are given,then they must lie on
a conic section: an equation of the form ax2 � bxy � cy2 � dx � ey � f �
0. (Hint:Create the corresponding homogeneous system of five equations
and use Corollary 2.6.)

(b) Is this result also true when fewer than five points are given? Why or why
not?

17. Explain why the proof of Theorem 2.5 does not necessarily work for a
nonhomogeneous system.

18. Let A and B be m � n and n � p matrices, respectively, and let R be a row
operation.

(a) Prove that rank(R(A)) � rank(A).

(b) Show that if A has k rows of all zeroes, then rank(A) � m � k.

(c) Show that if A is in reduced row echelon form, then rank(AB)� rank(A).
(Hint: Use part (b).)
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(d) Use parts (a) and (c) to prove that for a general matrix A, rank(AB)�
rank(A).

�19. Suppose a matrix B is created from a matrix A by a single row operation (of
type (I), ( II), or (III)).

(a) Verify the assertion in the proof of Theorem 2.8 that each row of B is a
linear combination of the rows of A.

(b) Prove that the row space of B is contained in the row space of A. (Hint:
The argument needed here is contained in the proof of Theorem 2.8.)

�20. Complete the proof of Theorem 2.8 by showing that if a matrix B is obtained
from a matrix A by any finite sequence of row operations,then the row space of
B is contained in the row space of A. (Hint: The case for a single row operation
follows from Exercise 19. Use induction and Lemma 2.7 to extend this result
to the case of more than one row operation.)

21. Let x1, . . . ,xn�1 be vectors in R
n.

(a) Show that there exist real numbers a1, . . . ,an�1, not all zero, such that
the linear combination a1x1 � · · · � an�1xn�1 equals 0. (Hint: Solve an
appropriate homogeneous system.)

(b) Using part (a), show that

xi � b1x1 � · · · � bi�1xi�1 � bi�1xi�1 � · · · � bn�1xn�1,

for some i, 1 � i � n � 1, and some b1, . . . ,bi�1,bi�1, . . . ,bn�1 ∈ R.

�22. True or False:

(a) Two linear systems are equivalent if their corresponding augmented
matrices are row equivalent.

(b) If A is row equivalent to B, and B has rank 3, then A has rank 3.

(c) The inverse of a type (I) row operation is a type (II) row operation.

(d) If the matrix for a linear system with n variables has rank < n, then the
system must have a nontrivial solution.

(e) If the matrix for a homogeneous system with n variables has rank n, then
the system has a nontrivial solution.

(f) If x is a linear combination of the rows of A, and B is row equivalent to A,
then x is in the row space of B.

2.4 INVERSES OF MATRICES
In this section,we consider whether a given n � n (square) matrix A has a multiplica-
tive inverse matrix (that is, a matrix A�1 such that AA�1 � In). Interestingly, not all
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square matrices have multiplicative inverses, but most do. We examine some proper-
ties of multiplicative inverses and illustrate methods for finding these inverses when
they exist.

Multiplicative Inverse of a Matrix

When the word “inverse” is used with matrices, it usually refers to the multiplica-
tive inverse in the next definition, rather than the additive inverse of Theorem 1.11,
part (4).

Definition Let A be an n � n matrix.Then an n � n matrix B is a (multiplicative)
inverse of A if and only if AB � BA � In.

Note that if B is an inverse of A,then A is also an inverse of B,as is seen by switching
the roles of A and B in the definition.

Example 1
The matrices

A �

⎡
⎢⎣ 1 �4 1

1 1 �2
�1 1 1

⎤
⎥⎦ and B �

⎡
⎢⎣3 5 7

1 2 3
2 3 5

⎤
⎥⎦

are inverses of each other because⎡
⎢⎣ 1 �4 1

1 1 �2
�1 1 1

⎤
⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎣3 5 7

1 2 3
2 3 5

⎤
⎥⎦

︸ ︷︷ ︸
B

�

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
I3

�

⎡
⎢⎣3 5 7

1 2 3
2 3 5

⎤
⎥⎦

︸ ︷︷ ︸
B

⎡
⎢⎣ 1 �4 1

1 1 �2
�1 1 1

⎤
⎥⎦

︸ ︷︷ ︸
A

.

However, C �

[
2 1
6 3

]
has no inverse because there is no

[
a b
c d

]
such that[

2 1
6 3

][
a b
c d

]
�

[
1 0
0 1

]
.

For, if so, then multiplying out the left side of this equation would give[
2a � c 2b � d

6a � 3c 6b � 3d

]
�

[
1 0

0 1

]
.

This would force 2a � c � 1 and 6a � 3c � 0, but these are contradictory equations, since 6a �

3c � 3(2a � c).

When checking whether two given square matrices A and B are inverses, we do
not need to multiply both products AB and BA, as the next theorem asserts.
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Theorem 2.9 Let A and B be n � n matrices. If either product AB or BA equals In,
then the other product also equals In, and A and B are inverses of each other.

The proof is tedious and is in Appendix A for the interested reader.

Definition A square matrix is singular if and only if it does not have an inverse.
A square matrix is nonsingular if and only if it has an inverse.

For example, the 2 � 2 matrix C from Example 1 is a singular matrix since we
proved that it does not have an inverse. Another example of a singular matrix is the
n � n zero matrix On (why?). On the other hand, the 3 � 3 matrix A from Example 1
is nonsingular, because we found an inverse B for A.

Properties of the Matrix Inverse

The next theorem shows that the inverse of a matrix must be unique (when it exists).

Theorem 2.10 (Uniqueness of Inverse Matrix) If B and C are both inverses of an n � n
matrix A, then B � C.

Proof.

B � BIn � B(AC) � (BA)C � InC � C.

Because Theorem 2.10 asserts that a nonsingular matrix A can have exactly one
inverse, we denote the unique inverse of A by A�1.

For a nonsingular matrix A, we can use the inverse to define negative integral
powers of A.

Definition Let A be a nonsingular n � n matrix.Then the negative powers of A are

given as follows: A�1 is the (unique) inverse of A, and for k 	 2, A�k �
(
A�1

)k
.

Example 2
We know from Example 1 that

A �

⎡
⎢⎣ 1 �4 1

1 1 �2
�1 1 1

⎤
⎥⎦ has A�1 �

⎡
⎢⎣3 5 7

1 2 3
2 3 5

⎤
⎥⎦
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as its unique inverse. Since A�3 �
(
A�1)3, we have

A�3 �

⎡
⎢⎣3 5 7

1 2 3
2 3 5

⎤
⎥⎦

3

�

⎡
⎢⎣272 445 689

107 175 271
184 301 466

⎤
⎥⎦ .

Theorem 2.11 Let A and B be nonsingular n � n matrices. Then

(1) A�1 is nonsingular, and
(
A�1

)�1
� A

(2) Ak is nonsingular, and
(
Ak
)�1

�
(
A�1

)k
� A�k, for any integer k

(3) AB is nonsingular, and (AB)�1 � B�1A�1

(4) AT is nonsingular, and
(
AT
)�1

�
(
A�1

)T
Part (3) says that the inverse of a product equals the product of the inverses in

reverse order. To prove each part of this theorem, show that the right side of each
equation is the inverse of the term in parentheses on the left side. This is done by
simply multiplying them together and observing that their product is In. We prove
parts (3) and (4) here and leave the others as Exercise 15(a).

Proof. (Abridged)
Part (3): We must show that B�1A�1 (right side) is the inverse of AB (in parentheses on
the left side). Multiplying them together gives (AB)(B�1A�1) � A(BB�1)A�1 � AInA�1 �
AA�1 � In.
Part (4): We must show that (A�1)T (right side) is the inverse of AT (in parentheses on
the left side). Multiplying them together gives AT (A�1)T � (A�1A)T (by Theorem 1.16) �
(In)T � In, since In is symmetric.

Using a proof by induction, part (3) of Theorem 2.11 generalizes as follows: if
A1,A2, . . . ,Ak are nonsingular matrices of the same size, then

(A1A2 · · ·Ak)�1 � A�1
k · · ·A�1

2 A�1
1

(see Exercise 15(b)). Notice that the order of the matrices on the right side is reversed.
Theorem 1.15 can also be generalized to show that the laws of exponents hold for
negative integer powers, as follows:

Theorem 2.12 (Expanded Version of Theorem 1.15) If A is a nonsingular matrix and if
s and t are integers, then

(1) As�t � (As)(At )

(2) (As)t � Ast � (At )s
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The proof of this theorem is a bit tedious. Some special cases are considered in
Exercise 17.

Recall that in Section 1.5 we observed that if AB � AC for three matrices A,B, and
C, it does not necessarily follow that B � C. However, if A is a nonsingular matrix,
then B � C because you can multiply both sides of AB � AC by A�1 on the left to
effectively cancel out the A’s.

Inverses for 2 � 2 Matrices

So far,we have studied many properties of the matrix inverse,but we have not discussed
methods for finding inverses. In fact, there is an immediate way to find the inverse (if
it exists) of a 2 � 2 matrix. Note that if we let � � ad � bc, then[

a b
c d

][
d �b

�c a

]
�

[
� 0
0 �

]
� �In.

Hence, if � �� 0, we can divide this equation by � to prove one half of the following
theorem:

Theorem 2.13 The matrix A �

[
a b
c d

]
has an inverse if and only if � � ad � bc �� 0.

In that case,

A�1 �

[
a b
c d

]�1

�
1

�

[
d �b

�c a

]
.

For the other half of the proof, note that if � � ad � bc � 0, then[
a b
c d

][
d �b

�c a

]
� O2,and it can then be shown that A�1 does not exist (see Exer-

cise 10). Hence, the condition � � ad � bc �� 0 is both a necessary and a sufficient
condition for the inverse to exist.The quantity � � ad � bc is called the determinant
of A. We will discuss determinants in more detail in Chapter 3.

Example 3

There is no inverse for

[
12 �4
9 �3

]
, since � � (12)(�3) � (�4)(9) � 0. On the other hand, M �[

�5 2
9 �4

]
does have an inverse because � � (�5)(�4) � (2)(9) � 2 �� 0. This inverse is

M�1 �
1

2

[
�4 �2
�9 �5

]
�

[
�2 �1
� 9

2 � 5
2

]
.

Verify this by checking that MM�1 � I2.
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Inverses of Larger Matrices

Let A be an n � n matrix. We now describe a process for calculating A�1, if it exists.

Method for Finding the Inverse of a Matrix (if It Exists) (Inverse Method)
Suppose that A is a given n � n matrix.

Step 1: Augment A to an n � 2n matrix, whose first n columns constitute A itself and whose
last n columns constitute In.

Step 2: Convert [ A| In] into reduced row echelon form.

Step 3: If the first n columns of [ A| In] cannot be converted into In, then A is singular.
Stop.

Step 4: Otherwise, A is nonsingular, and the last n columns of the augmented matrix in
reduced row echelon form constitute A�1. That is, [ A| In] row reduces to

[
In|A�1].

Before proving that this procedure is valid, we consider some examples.

Example 4
To find the inverse of the matrix

A �

⎡
⎢⎣ 2 �6 5

�4 12 �9
2 �9 8

⎤
⎥⎦ ,

we first enlarge this to a 3 � 6 matrix by adjoining the identity matrix I3:⎡
⎢⎣ 2 �6 5

�4 12 �9
2 �9 8

∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

⎤
⎥⎦ .

Row reduction yields ⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣
5
2

1
2 �1

7
3 1 � 1

3

2 1 0

⎤
⎥⎥⎦ .

The last three columns give the inverse of the original matrix A. This is

A�1 �

⎡
⎢⎢⎣

5
2

1
2 �1

7
3 1 � 1

3

2 1 0

⎤
⎥⎥⎦ .

You should check that this matrix really is the inverse of A by showing that its product with A is
equal to I3.
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Using Row Reduction to Show That a Matrix Is Singular

As we have seen, not every square matrix has an inverse. For a singular matrix A, row
reduction of [A| In] does not produce In to the left of the augmentation bar. Now, the
only way this can happen is if, during row reduction, we reach a column whose main
diagonal entry and all entries below it are zero. In that case, there is no way to use a
type (I) or type (III) operation to place a nonzero entry in the main diagonal position
for that column. Hence, we cannot transform the leftmost columns into the identity
matrix. This situation is illustrated in the following example:

Example 5
We attempt to find an inverse for the singular matrix

A �

⎡
⎢⎢⎢⎣

4 2 8 1
�2 0 �4 1

1 4 2 0
3 �1 6 �2

⎤
⎥⎥⎥⎦ .

Beginning with
[
A| I4

]
and simplifying the first two columns, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 2 � 1
2

0 1 0 3
2

0 0 0 � 11
2

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

0 � 1
2 0 0

1
2 1 0 0

�2 � 7
2 1 0

1
2

5
2 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Continuing on to the third column, we see that the (3,3) entry is zero. Thus, a type (I) operation
cannot be used to make the pivot 1. Because the (4,3) entry is also zero, no type (III) operation
(switching the pivot row with a row below it) can make the pivot nonzero. We conclude that there
is no way to transform the first four columns into the identity matrix I4 using the row reduction
process, and so the original matrix A has no inverse.

Justification of the Inverse Method

To verify that the Inverse Method is valid,we must prove that for a given square matrix
A, the algorithm correctly predicts whether A has an inverse and, if it does, calculates
its (unique) inverse.
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Now, from the technique of solving simultaneous systems in Section 2.2,we know
that row reduction of

[A| In] �

⎡
⎢⎢⎢⎣A

∣∣∣∣∣∣∣∣∣
1st

column

of In

2nd

column

of In

3rd

column

of In

· · ·
nth

column

of In

⎤
⎥⎥⎥⎦

is equivalent to separately using row reduction to solve each of the n linear systems
whose augmented matrices are

⎡
⎣A

∣∣∣∣∣∣
1st

column
of In

⎤
⎦ ,

⎡
⎣A

∣∣∣∣∣∣
2nd

column
of In

⎤
⎦ , . . . ,

⎡
⎣A

∣∣∣∣∣∣
nth

column
of In

⎤
⎦ .

First, suppose A is a nonsingular n � n matrix (that is, A�1 exists). Now, because

AA�1 � In, we know A

⎡
⎣ ith

column
of A�1

⎤
⎦�

⎡
⎣ ith

column
of In

⎤
⎦. Therefore, the columns of A�1 are

respective solutions of the n systems above. Thus, these systems are all consistent.
Now, if any one of these systems has more than one solution, then a second solution
for that system can be used to replace the corresponding column in A�1 to give a
second inverse for A. But by Theorem 2.10, the inverse of A is unique, and so each
of these systems must have a unique solution. Therefore, each column to the left of
the augmentation bar must be a pivot column, or else there would be independent
variables, giving an infinite number of solutions. Thus, [A| In] must row reduce to[
In|A�1

]
, since the columns of A�1 are the unique solutions for these simultaneous

systems.
Now consider the case where A is singular. Because an inverse for A cannot be

found, at least one of the original n systems, such as

⎡
⎣A

∣∣∣∣∣∣
kth

column
of In

⎤
⎦ ,

has no solutions. But this occurs only if the final augmented matrix after row reduction
contains a row of the form

[
0 0 0 · · · 0

∣∣r] ,
where r �� 0. Hence, there is a row that contains no pivot entry in the first n columns,
and so we cannot obtain In to the left of the augmentation bar. Step 3 of the formal
algorithm correctly concludes that A is singular.
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Recall that A row reduces to In if and only if rank(A) � n. Now, since the inverse
algorithm is valid, we have the following:

Theorem 2.14 An n � n matrix A is nonsingular if and only if rank(A) � n.

Solving a System Using the Inverse of the Coefficient Matrix

The following result gives us another method for solving certain linear systems:

Theorem 2.15 Let AX � B represent a system where the coefficient matrix A is
square.

(1) If A is nonsingular, then the system has a unique solution
(
X � A�1B

)
.

(2) If A is singular, then the system has either no solutions or an infinite number of
solutions.

Hence, AX � B has a unique solution if and only if A is nonsingular.

Proof. If A is nonsingular, then A�1B is a solution for the system AX � B because
A(A�1B) � (AA�1)B � InB � B. To show that this solution is unique, suppose Y is any
solution to the system; that is, suppose that AY � B. Then we can multiply both sides of
AY � B on the left by A�1 to get

A�1(AY) � A�1B ”
(
A�1A

)
Y � A�1B

” InY � A�1B

” Y � A�1B.

Therefore, A�1B is the only solution of AX � B.
On the other hand, if A is singular, then by Theorem 2.14, rank(A) < n, and so not

every column of A becomes a pivot column in the row reduction of the augmented matrix
[A|B]. Now, suppose AX � B has at least one solution. Then this system has at least one
independent variable (which can take on any real value), and hence, the system has an
infinite number of solutions.

Theorem 2.15 indicates that when A�1 is known, the matrix X of variables can be
found by a simple matrix multiplication of A�1 and B.

Example 6
Consider the 3 � 3 system⎧⎪⎨

⎪⎩
�7x1 � 5x2 � 3x3 � 6

3x1 � 2x2 � 2x3 � �3
3x1 � 2x2 � x3 � 2

; that is,

⎡
⎢⎣�7 5 3

3 �2 �2
3 �2 �1

⎤
⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦

︸ ︷︷ ︸
X

�

⎡
⎢⎣ 6

�3
2

⎤
⎥⎦

︸ ︷︷ ︸
B

.
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We will solve this system using the inverse

A�1 �

⎡
⎢⎣2 1 4

3 2 5
0 �1 1

⎤
⎥⎦

of the coefficient matrix. By Theorem 2.15, X � A�1B, and so⎡
⎢⎣x1

x2

x3

⎤
⎥⎦�

⎡
⎢⎣2 1 4

3 2 5
0 �1 1

⎤
⎥⎦
⎡
⎢⎣ 6

�3
2

⎤
⎥⎦�

⎡
⎢⎣17

22
5

⎤
⎥⎦ .

This method for solving an n � n system is not as efficient as the Gauss-Jordan
method because it involves finding an inverse as well as performing a matrix multi-
plication. It is sometimes used when many systems, all having the same nonsingular
coefficient matrix, must be solved. In that case, the inverse of the coefficient matrix
can be calculated first, and then each system can be solved with a single matrix
multiplication.

� Application: You have now covered the prerequisites for Section 8.5, “Hill
Substitution: An Introduction to Coding Theory.”

� Supplemental Material: You have now covered the prerequisites for
Section 8.6,“Elementary Matrices.”

� Numerical Method: You have now covered the prerequisites for Section 9.2,
“LDU Decomposition.”

New Vocabulary

determinant (of a 2 � 2 matrix)
Inverse Method
inverse (multiplicative) of a matrix

nonsingular matrix
singular matrix

Highlights

■ If a (square) matrix has a (multiplicative) inverse (that is, if the matrix is
nonsingular), then that inverse is unique.

■ The (�k)th power of a (square) matrix is the inverse of the kth power of the
matrix.

■ The inverse of a matrix product is the product of the inverses in reverse
order.

■ The inverse of a transpose is the transpose of the inverse.
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■ The inverse of a 2 � 2 matrix

[
a b
c d

]
is 1

(ad�bc)

[
d �b

�c a

]
.

■ The inverse of an n � n matrix A can be found by row reducing [A| In] to[
In|A�1

]
. If this result cannot be obtained, then A has no inverse (that is, A

is singular).

■ A (square) n � n matrix is nonsingular if and only if its rank is n.

■ If A is nonsingular, then AX � B has the unique solution X � A�1B. If A is
singular, then AX � B has either no solution or infinitely many solutions.

EXERCISES FOR SECTION 2.4
Note: You should be using a calculator or appropriate computer software to perform
nontrivial row reductions.

1. Verify that the following pairs of matrices are inverses:

(a)

⎡
⎣ 10 41 �5

�1 �12 1
3 20 �2

⎤
⎦ ,

⎡
⎣ 4 �18 �19

1 �5 �5
16 �77 �79

⎤
⎦

(b)

⎡
⎢⎢⎣

1 0 �1 5
�1 1 0 �3

0 2 �3 7
2 �1 �2 12

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

1 �4 1 �2
4 6 �2 1
5 11 �4 3
1 3 �1 1

⎤
⎥⎥⎦

2. Determine whether each of the following matrices is nonsingular by calculating
its rank:

�(a)

[
4 �9

�2 3

]

(b)

⎡
⎣ 3 �1 4

2 �2 1
�1 3 2

⎤
⎦

�(c)

⎡
⎣�6 �6 1

2 3 �1
8 6 �1

⎤
⎦

(d)

⎡
⎢⎢⎣

�10 �3 1 �3
18 5 �2 6
6 2 �1 6

12 3 �1 3

⎤
⎥⎥⎦

�(e)

⎡
⎢⎢⎣

2 1 �7 14
�6 �3 19 �38

1 0 �3 6
2 1 �6 12

⎤
⎥⎥⎦

3. Find the inverse, if it exists, for each of the following 2 � 2 matrices:

�(a)

[
4 2
9 �3

]

(b)

[
10 �5

�4 2

] �(c)

[
�3 5

�12 �8

]

(d)

[
1 2
4 �3

]
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�(e)

[
�6 12

4 �8

]
(f)

⎡
⎣� 1

2
3
4

1
3 � 1

2

⎤
⎦

4. Use row reduction to find the inverse, if it exists, for each of the following:

�(a)

⎡
⎣�4 7 6

3 �5 �4
�2 4 3

⎤
⎦

(b)

⎡
⎣5 7 �6

3 1 �2
1 �5 2

⎤
⎦

�(c)

⎡
⎣ 2 �2 3

8 �4 9
�4 6 �9

⎤
⎦

(d)

⎡
⎢⎢⎣

0 0 �2 �1
�2 0 �1 0
�1 �2 �1 �5

0 1 1 3

⎤
⎥⎥⎦

�(e)

⎡
⎢⎢⎣

2 0 �1 3
1 �2 3 1
4 1 0 �1
1 3 �2 �5

⎤
⎥⎥⎦

(f)

⎡
⎢⎢⎣

3 3 0 �2
14 15 0 �11

�3 1 2 �5
�2 0 1 �2

⎤
⎥⎥⎦

5. Assuming that all main diagonal entries are nonzero,find the inverse of each of
the following:

(a)

[
a11 0
0 a22

]

(b)

⎡
⎣a11 0 0

0 a22 0
0 0 a33

⎤
⎦

�(c)

⎡
⎢⎢⎢⎣

a11 0 0 · · · 0
0 a22 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

⎤
⎥⎥⎥⎦

�6. The following matrices are useful in computer graphics for rotating vectors (see
Section 5.1). Find the inverse of each matrix, and then state what the matrix
and its inverse are when � � �

6 , �
4 , and �

2 .

(a)

[
cos� �sin �
sin � cos�

]

(b)

⎡
⎣cos� �sin � 0

sin � cos� 0
0 0 1

⎤
⎦ (Hint: Modify your answer from part (a).)

7. In each case, find the inverse of the coefficient matrix and use it to solve the
system by matrix multiplication.
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�(a)

{
5x1 � x2 � 20

�7x1 � 2x2 � �31

(b)

⎧⎨
⎩

�5x1 � 3x2 � 6x3 � 4
3x1 � x2 � 7x3 � 11

�2x1 � x2 � 2x3 � 2

�(c)

⎧⎪⎪⎨
⎪⎪⎩

�2x2 � 5x3 � x4 � 25
�7x1 � 4x2 � 5x3 � 22x4 � �15

5x1 � 3x2 � 4x3 � 16x4 � 9
�3x1 � x2 � 9x4 � �16

�8. A matrix with the property A2 � In is called an involutory matrix.

(a) Find an example of a 2 � 2 involutory matrix other than I2.

(b) Find an example of a 3 � 3 involutory matrix other than I3.

(c) What is A�1 if A is involutory?

9. (a) Give an example to show that A � B can be singular if A and B are both
nonsingular.

(b) Give an example to show that A � B can be nonsingular if A and B are
both singular.

(c) Give an example to show that even when A,B,and A � B are all nonsingular,
(A � B)�1 is not necessarily equal to A�1 � B�1.

�10. Let A, B, and C be n � n matrices.

(a) Suppose that AB � On, and A is nonsingular. What must B be?

(b) If AB � In, is it possible for AC to equal On without C � On? Why or
why not?

�11. If A4 � In, but A �� In, A2 �� In, and A3 �� In, which powers of A are equal to
A�1?

�12. If the matrix product A�1B is known, how could you calculate B�1A without
necessarily knowing what A and B are?

13. Let A be a symmetric nonsingular matrix. Prove that A�1 is symmetric.

�14. (a) You have already seen in this section that every square matrix containing a
row of zeroes must be singular. Why must every square matrix containing
a column of zeroes be singular?

(b) Why must every diagonal matrix with at least one zero main diagonal entry
be singular?

(c) Why must every upper triangular matrix with no zero entries on the main
diagonal be nonsingular?
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(d) Use part (c) and the transpose to show that every lower triangular matrix
with no zero entries on the main diagonal must be nonsingular.

(e) Prove that if A is an upper triangular matrix with no zero entries on the
main diagonal,then A�1 is upper triangular. (Hint: As [A| In] is row reduced
to
[
In|A�1

]
, consider the effect on the entries in the rightmost columns.)

15. �(a) Prove parts (1) and (2) of Theorem 2.11. (Hint: In proving part (2),
consider the cases k 	 0 and k < 0 separately.)

(b) Use the method of induction to prove the following generalization of
part (3) of Theorem 2.11: if A1,A2, . . . ,Am are nonsingular matrices of
the same size, then (A1A2 · · ·Am)�1 � A�1

m · · ·A�1
2 A�1

1 .

16. If A is a nonsingular matrix and c ∈ R with c �� 0,prove that (cA)�1 �
(1

c

)
A�1.

17. �(a) Prove part (1) of Theorem 2.12 if s < 0 and t < 0.

(b) Prove part (2) of Theorem 2.12 if s 	 0 and t < 0.

18. Assume that A and B are nonsingular n � n matrices. Prove that A and B
commute (that is, AB � BA) if and only if (AB)2 � A2B2.

19. Prove that if A and B are nonsingular matrices of the same size, then AB � BA
if and only if (AB)q � AqBq for every positive integer q 	 2. (Hint: To prove
the “if” part, let q � 2. For the “only if” part, first show by induction that if
AB � BA,then ABq � BqA,for any positive integer q 	 2. Finish the proof with
a second induction argument to show (AB)q � AqBq.)

20. Prove that, if A is an n � n matrix and A � In is nonsingular, then for every
integer k 	 0,

In � A � A2 � A3 � · · · � Ak �
(
Ak�1 � In

)
(A � In)�1 .

�21. Let A be an n � k matrix and B be a k � n matrix such that AB � In and BA � Ik.

(a) Prove that n � k. (Hint: Assume that n > k and find a contradiction. Show
that there is a nontrivial X such that BX � O. Then compute ABX two
different ways.)

(b) Prove that k � n.

(c) Use parts (a) and (b) to show that A and B are square nonsingular matrices
with A�1 � B.

�22. True or False:

(a) Every n � n matrix A has a unique inverse.

(b) If A, B are n � n matrices, and BA � In, then A and B are inverses.

(c) If A, B are nonsingular n � n matrices, then ((AB)T )�1 � (A�1)T (B�1)T .

(d) A �

[
a b
c d

]
is singular if and only if ad � bc �� 0.
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(e) If A is an n � n matrix,then A is nonsingular if and only if [A| In] has fewer
than n nonzero pivots before the augmentation bar after row reduction.

(f ) If A is an n � n matrix, then rank(A) � n if and only if any system of the
form AX � B has a unique solution for X.

REVIEW EXERCISES FOR CHAPTER 2
1. For each of the following linear systems,

�(i) Use Gaussian elimination to give the complete solution set.

(ii) Use the Gauss-Jordan method to give the complete solution set and the cor-
rect staircase pattern for the row reduced echelon form of the augmented
matrix for the system.

(a)

⎧⎪⎪⎨
⎪⎪⎩

2x1 � 5x2 � 4x3 � 48
x1 � 3x2 � 2x3 � �40

�3x1 � 4x2 � 7x3 � 15
�2x1 � 3x2 � x3 � 41

(b)

⎧⎪⎪⎨
⎪⎪⎩

4x1 � 3x2 � 7x3 � 5x4 � 31
�2x1 � 3x2 � 5x3 � x4 � �5

2x1 � 6x2 � 2x3 � 3x4 � 52
6x1 � 21x2 � 3x3 � 12x4 � 16

(c)

⎧⎨
⎩

6x1 � 2x2 � 2x3 � x4 � 6x5 � �33
�2x1 � x2 � 2x4 � x5 � 13

4x1 � x2 � 2x3 � 3x4 � x5 � �24

�2. Find the cubic equation that goes through the points (�3,120), (�2,51),
(3,�24), and (4,�69).

3. Are the following matrices in reduced row echelon form? If not,explain why not.

(a)

⎡
⎢⎢⎣

1 �5 2 �4 �2
0 1 �3 4 �1
0 0 0 1 �3
0 0 0 0 1

⎤
⎥⎥⎦

(b)

⎡
⎢⎢⎣

1 0 0 �2
0 1 0 �4
0 0 0 0
0 0 1 �3

⎤
⎥⎥⎦

�4. Find minimal integer values for the variables that will satisfy the following
chemical equation:a NH3 � b O2 → c NO2 � d H2O (NH3 � ammonia;NO2 �
nitrogen dioxide).

5. Solve the following linear systems simultaneously:
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(i)

⎧⎪⎪⎨
⎪⎪⎩

�4x1 � 2x2 � x3 � 4x4 � 195
5x1 � 3x2 � 2x3 � x4 � �312

�7x1 � 3x2 � 4x3 � 5x4 � 78
�2x1 � 6x2 � 2x3 � 3x4 � �234

(ii)

⎧⎪⎪⎨
⎪⎪⎩

�4x1 � 2x2 � x3 � 4x4 � �78
5x1 � 3x2 � 2x3 � x4 � 52

�7x1 � 3x2 � 4x3 � 5x4 � �26
�2x1 � 6x2 � 2x3 � 3x4 � 104

(iii)

⎧⎪⎪⎨
⎪⎪⎩

�4x1 � 2x2 � x3 � 4x4 � �234
5x1 � 3x2 � 2x3 � x4 � �78

�7x1 � 3x2 � 4x3 � 5x4 � 312
�2x1 � 6x2 � 2x3 � 3x4 � �78

6. Without row reducing,explain why the following homogeneous system has an
infinite number of solutions.⎧⎨

⎩
2x1 � x2 � 3x3 � x4 � 0
x1 � 3x2 � 2x3 � 2x4 � 0

�3x1 � 4x2 � x3 � 3x4 � 0

7. What is the inverse of each of the following row operations?

(a) (I): 〈3〉 ← � 1
6 〈3〉

(b) (II): 〈2〉 ← �3
〈
4
〉
� 〈2〉

(c) (III): 〈2〉 ↔ 〈3〉

�8. (a) Find the rank of the each of the following matrices:A �

⎡
⎣ 2 �5 3

�1 �3 4
7 �12 5

⎤
⎦,

B �

⎡
⎢⎢⎣

0 0 �2 �1
�2 0 �1 0
�1 �2 �1 �5

0 1 1 3

⎤
⎥⎥⎦, C �

⎡
⎣ 3 �1 �5 �6

0 4 8 �2
�2 �3 �4 0

⎤
⎦ .

(b) From the rank of the matrices in part (a), determine how many solutions
each of the systems AX � O, BX � O, CX � O has.

9. Determine whether the following matrices A and B are row equivalent. (Hint:
Do they have the same row reduced echelon form matrix?)

A �

⎡
⎣ 6 1 �16 �2 2

�27 5 91 �8 �98
21 �4 �71 6 76

⎤
⎦ , B �

⎡
⎣ 9 �2 �31 2 32

�3 20 49 �22 �152
3 39 69 �43 �279

⎤
⎦

�10. (a) Determine whether [�34,29,�21] is a linear combination of x1 �
[2,�3,�1], x2 � [5,�2,1], and x3 � [9,�8,3].
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(b) From your answer to part (a), is [�34,29,�21] in the row space of A �⎡
⎣2 �3 �1

5 �2 1
9 �8 3

⎤
⎦?

11. Without row reduction, state the inverse of the matrix A �

[
�6 2
�3 4

]
.

12. Find the inverse (if it exists) for each of the following matrices, and indicate
whether the matrix is nonsingular.

(a) A �

⎡
⎢⎣�4 5 4

�2 1 0

2 0 1

⎤
⎥⎦

�(b) B �

⎡
⎢⎢⎢⎣

3 4 3 5

4 5 5 8

7 9 8 13

2 3 2 3

⎤
⎥⎥⎥⎦

13. Prove that an n � n matrix A is nonsingular if and only if A is row equivalent
to In.

14. If A�1 exists, does AX � O have a nontrivial solution? Why or why not?

�15. Find the solution set for the following linear system by calculating the inverse
of the coefficient matrix and then using matrix multiplication:⎧⎪⎨

⎪⎩
4x1 � 6x2 � x3 � 17

�x1 � 2x2 � x3 � �14

3x1 � 5x2 � x3 � 23

.

16. Let A be an m � n matrix, let B be a nonsingular m � m matrix, and let C be a
nonsingular n � n matrix.

(a) Use Theorem 2.1 to show that rank(BA) � rank(A).

(b) Use part (d) of Exercise 18 in Section 2.3 to prove that rank(AC) � rank(A).

�17. True or False:

(a) The Gaussian elimination and Gauss-Jordan methods can produce
extraneous, or extra, “solutions” that are not actually solutions to the
original system.

(b) If A and B are n � n matrices, and R is a row operation, then R(A)B �
AR(B).

(c) If the augmented matrix [A |B ] row reduces to a matrix having a row of
zeroes, then the linear system AX � B is consistent.

(d) If c is a nonzero scalar, then the linear systems (cA)X � cB and AX � B
have the same solution set.

(e) If A is an upper triangular matrix, then A can be transformed into row
echelon form using only type (I) row operations.
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(f ) Every square reduced row echelon form matrix is upper triangular.

(g) The exact same row operations that produce the solution set for the homo-
geneous system AX � 0 also produce the solution set for the related linear
system AX � B.

(h) If a linear system has the trivial solution, then it must be a homogeneous
system.

(i) It is possible for the homogeneous linear system AX � 0 to have a nontrivial
solution and the related linear system AX � B to have a unique solution.

(j) Every row operation has a corresponding inverse row operation that
“undoes” the original row operation.

(k) If the two m � n matrices A and B have the same rank, then the homo-
geneous linear systems AX � 0 and BX � 0 have the same nonempty
solution set.

(l) The rank of a matrix A equals the number of vectors in the row space of
A.

(m) If A is a nonsingular matrix, then rank(A) � rank(A�1).

(n) If A and B are n � n matrices such that AB is nonsingular, then A is
nonsingular.

(o) If A and B are matrices such that AB � In,then A and B are square matrices.

(p) If A and B are 2 � 2 matrices with equal determinants, then the linear
systems AX � 0 and BX � 0 have the same number of solutions.

(q) If A is an n � n nonsingular matrix, then [A |In ] is row equivalent to[
In
∣∣A�1

]
.

(r) If A is a nonsingular matrix, then (A3)�5 � (A�3)5 �
((

A5
)3)�1

.

(s) If A, B, C are nonsingular n � n matrices, (A�1BT C)�1 � C�1(B�1)T A.
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3Determinants and
Eigenvalues

THE DETERMINING FACTOR

Amazingly, many important geometric and algebraic properties of a square matrix are
revealed by a single real number associated with the matrix, known as its determinant.
For example, the areas and volumes of certain figures can be found by creating a matrix
based on the figure’s edges and then calculating the determinant of that matrix. The deter-
minant also provides a quick method for discovering whether certain linear systems have a
unique solution.

In this chapter, we also use determinants to introduce the concept of eigenvectors.
An eigenvector of a square matrix is a special vector that, when multiplied by the matrix,
produces a parallel vector. Such vectors provide a new way to look at matrix multiplication,
and help to solve many intractable problems. Eigenvectors are practical tools in linear algebra
with applications in differential equations, probability, statistics, and in related disciplines
such as economics, physics, chemistry, and computer graphics.

In this chapter,we introduce the determinant,a particular real number associated with
each square matrix. In Section 3.1,we define the determinant using cofactor expansion
and illustrate a geometric application. In Section 3.2, we examine a technique for
finding the determinant of a given square matrix using row reduction. In Section 3.3,
we present several useful properties of the determinant. In Section 3.4, we introduce
eigenvalues and eigenvectors. This leads to diagonalization of matrices, which will be
revisited in greater detail in Section 5.5.

3.1 INTRODUCTION TO DETERMINANTS
Determinants of 1 � 1, 2 � 2, and 3 � 3 Matrices

For a 1 � 1 matrix A � [a11], the determinant |A| is defined to be a11, its only entry.
For example, the determinant of A � [�4] is simply |A| � � 4. We will represent

Elementary Linear Algebra
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a determinant by placing absolute value signs around the matrix, even though the
determinant could be negative.

For a 2 � 2 matrix A �

[
a11 a12

a21 a22

]
, the determinant |A| is defined to be a11a22 �

a12a21. For example, the determinant of A �

[
4 �3
2 5

]
is |A| �

∣∣∣∣4 �3
2 5

∣∣∣∣� (4)(5) �

(�3)(2) � 26. Recall that in Section 2.4 we proved

[
a11 a12

a21 a22

]
has an inverse if and

only if |A| � a11a22 � a12a21 �� 0.
For the 3 � 3 matrix

A �

⎡
⎢⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦,

we define the determinant |A| to be the following expression, which has six terms:

|A| � a11a22a33 � a12a23a31 � a13a21a32 � a13a22a31 � a11a23a32 � a12a21a33.

This expression may look complicated,but its terms can be obtained by multiplying
the following entries linked by arrows. Notice that the first two columns of the original
3 � 3 matrix have been repeated. Also, the arrows pointing right indicate terms with
a positive sign, while those pointing left indicate terms with a negative sign.

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

This technique is sometimes referred to as the basketweaving method for
calculating the determinant of a 3 � 3 matrix.

Example 1
Find the determinant of

A �

⎡
⎢⎣ 4 �2 3

�1 5 0
6 �1 �2

⎤
⎥⎦.
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Repeating the first two columns and forming terms using the basketweaving method, we have

4 22 3 4 22

21 5 0 21 5

6 21 22 6 21

which gives

(4)(5)(�2) � (�2)(0)(6) � (3)(�1)(�1) � (3)(5)(6) � (4)(0)(�1) � (�2)(�1)(�2).

This reduces to �40 � 0 � 3 � 90 � 0 � (�4) � �123. Thus,

|A| �

∣∣∣∣∣∣∣
4 �2 3

�1 5 0
6 �1 �2

∣∣∣∣∣∣∣� �123.

Application: Areas and Volumes

The next theorem illustrates why 2 � 2 and 3 � 3 determinants are sometimes inter-
preted as areas and volumes, respectively.

Theorem 3.1

(1) Let x � [x1,x2] and y � [y1,y2] be two nonparallel vectors in R
2 beginning

at a common point (see Figure 3.1(a)). Then the area of the parallelogram
determined by x and y is the absolute value of the determinant∣∣∣∣x1 x2

y1 y2

∣∣∣∣.

x 5 [x1, x2 ] x 5 [x1, x2, x3]

y 5 [y1, y2 ]
y 5 [y1, y2, y3]

z 5 [z1, z2, z3]

(a) (b)

FIGURE 3.1

(a) The parallelogram determined by x and y (Theorem 3.1); (b) the parallelepiped determined
by x, y, and z (Theorem 3.1).
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(2) Let x � [x1,x2,x3], y � [y1,y2,y3], and z � [z1,z2,z3] be three vectors not all
in the same plane beginning at a common initial point (see Figure 3.1(b)). Then
the volume of the parallelepiped determined by x, y, and z is the absolute value
of the determinant ∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣ .

The proof of this theorem is straightforward (see Exercises 10 and 12).

Example 2
The volume of the parallelepiped whose sides are x � [�2,1,3], y � [3,0,�2], and z �

[�1,3,7] is given by the absolute value of the determinant∣∣∣∣∣∣∣
�2 1 3

3 0 �2
�1 3 7

∣∣∣∣∣∣∣ .
Calculating this determinant, we obtain �4, so the volume is

∣∣�4
∣∣� 4.

Cofactors

Before defining determinants for square matrices larger than 3 � 3, we first introduce
a few new terms.

Definition Let A be an n � n matrix, with n 	 2. The (i, j) submatrix, Aij , of A is
the (n � 1) � (n � 1) matrix obtained by deleting all entries of the ith row and all
entries of the jth column of A. The (i, j) minor,

∣∣Aij
∣∣, of A is the determinant of

the submatrix Aij of A.

Example 3
Consider the following matrices:

A �

⎡
⎢⎣5 �2 1

0 4 �3
2 �7 6

⎤
⎥⎦ and B �

⎡
⎢⎢⎢⎣

9 �1 4 7
�3 2 6 �2
�8 0 1 3

4 7 �5 �1

⎤
⎥⎥⎥⎦ .

The (1,3) submatrix of A obtained by deleting all entries in the first row and all entries in the

third column is A13 �

[
0 4
2 �7

]
, and the (3,4) submatrix of B obtained by deleting all entries
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in the third row and all entries in the fourth column is

B34 �

⎡
⎢⎣ 9 �1 4

�3 2 6
4 7 �5

⎤
⎥⎦.

The corresponding minors associated with these submatrices are

∣∣A13
∣∣�

∣∣∣∣∣ 0 4
2 �7

∣∣∣∣∣� �8 and
∣∣B34

∣∣�

∣∣∣∣∣∣∣
9 �1 4

�3 2 6
4 7 �5

∣∣∣∣∣∣∣� �593.

An n � n matrix has a total of n2 minors — one for each entry of the matrix.
In particular, a 3 � 3 matrix has nine minors. For the matrix A in Example 3, the
minors are

|A11| �

∣∣∣∣ 4 �3
�7 6

∣∣∣∣� 3, |A12| �

∣∣∣∣0 �3
2 6

∣∣∣∣� 6, |A13| �

∣∣∣∣0 4
2 �7

∣∣∣∣� �8,

|A21| �

∣∣∣∣�2 1
�7 6

∣∣∣∣� �5, |A22| �

∣∣∣∣5 1
2 6

∣∣∣∣� 28, |A23| �

∣∣∣∣5 �2
2 �7

∣∣∣∣� �31,

|A31| �

∣∣∣∣�2 1
4 �3

∣∣∣∣� 2, |A32| �

∣∣∣∣5 1
0 �3

∣∣∣∣� �15, |A33| �

∣∣∣∣5 �2
0 4

∣∣∣∣� 20.

We now define a “cofactor” for each entry based on its minor.

Definition Let A be an n � n matrix, with n 	 2. The (i, j) cofactor of A,Aij , is
(�1)i�j times the (i, j) minor of A — that is,Aij � (�1)i�j

∣∣Aij
∣∣ .

Example 4
For the matrices A and B in Example 3, the cofactor A13 of A is (�1)1�3

∣∣A13
∣∣� (�1)4(�8) �

�8, and the cofactor B34 of B is (�1)3�4
∣∣B34

∣∣� (�1)7(�593) � 593.

An n � n matrix has n2 cofactors, one for each matrix entry. In particular, a 3 � 3
matrix has nine cofactors. For the matrix A from Example 3, these cofactors are

A11 � (�1)1�1 |A11| � (�1)2 (3) � 3
A12 � (�1)1�2 |A12| � (�1)3

(
6
)

� �6
A13 � (�1)1�3 |A13| � (�1)4 (�8) � �8
A21 � (�1)2�1 |A21| � (�1)3 (�5) � 5
A22 � (�1)2�2 |A22| � (�1)4 (28) � 28
A23 � (�1)2�3 |A23| � (�1)5 (�31) � 31
A31 � (�1)3�1 |A31| � (�1)4 (2) � 2
A32 � (�1)3�2 |A32| � (�1)5 (�15) � 15
A33 � (�1)3�3 |A33| � (�1)6 (20) � 20
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Formal Definition of the Determinant

We are now ready to define the determinant of a general n � n matrix. We will see
shortly that the following definition agrees with our earlier formulas for determinants
of size 1 � 1, 2 � 2, and 3 � 3.

Definition Let A be an n � n (square) matrix.The determinant of A,denoted |A|,
is defined as follows:

If n � 1 (so that A � [a11]), then |A| � a11.
If n > 1, then |A| � an1An1 � an2An2 � · · · � annAnn.

For n > 1, this defines the determinant as a sum of products. Each entry ani of
the last row of the matrix A is multiplied by its corresponding cofactor Ani , and we
sum the results.This process is often referred to as cofactor expansion (or Laplace
expansion) along the last row of the matrix. Since the cofactors of an n � n matrix
are calculated by finding determinants of appropriate (n � 1) � (n � 1) submatrices,
we see that this definition is actually recursive.That is,we can find the determinant of
any matrix once we know how to find the determinant of any smaller-size matrix!

Example 5
Consider again the matrix from Example 3:

A �

⎡
⎢⎣5 �2 1

0 4 �3
2 �7 6

⎤
⎥⎦.

Multiplying every entry of the last row by its cofactor, and summing, we have

|A| � a31A31 � a32A32 � a33A33 � 2(2) � (�7)(15) � 6(20) � 19.

You can verify that using “basketweaving” also produces |A| � 19.

Note that this new definition for the determinant agrees with the previous defini-
tions for 2 � 2 and 3 � 3 matrices. For, if B is a 2 � 2 matrix, then cofactor expansion
on B yields

|B| � b21B21 � b22B22

� b21(�1)2�1|B21| � b22(�1)2�2|B22|
� �b21(b12) � b22(b11)

� b11b22 � b12b21,
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which is correct. Similarly, if C is a 3 � 3 matrix, then

|C| � c31C31 � c32C32 � c33C33

� c31(�1)3�1|C31| � c32(�1)3�2|C32| � c33(�1)3�3|C33|

� c31

∣∣∣∣c12 c13

c22 c23

∣∣∣∣� c32

∣∣∣∣c11 c13

c21 c23

∣∣∣∣� c33

∣∣∣∣c11 c12

c21 c22

∣∣∣∣
� c31(c12c23 � c13c22) � c32(c11c23 � c13c21) � c33(c11c22 � c12c21)

� c11c22c33 � c12c23c31 � c13c21c32 � c13c22c31 � c11c23c32 � c12c21c33,

which agrees with the formula for a 3 � 3 determinant.
We now compute the determinant of a 4 � 4 matrix.

Example 6
Consider the matrix

A �

⎡
⎢⎢⎢⎣

3 2 0 5
4 1 3 �1
2 �1 3 6
5 0 2 �1

⎤
⎥⎥⎥⎦.

Then, using cofactor expansion along the last row, we have

|A| � a41A41 � a42A42 � a43A43 � a44A44

� 5(�1)4�1|A41| � 0(�1)4�2|A42| � 2(�1)4�3|A43| � (�1)(�1)4�4|A44|

� �5

∣∣∣∣∣∣∣
2 0 5
1 3 �1

�1 3 6

∣∣∣∣∣∣∣� 0 � 2

∣∣∣∣∣∣∣
3 2 5
4 1 �1
2 �1 6

∣∣∣∣∣∣∣� 1

∣∣∣∣∣∣∣
3 2 0
4 1 3
2 �1 3

∣∣∣∣∣∣∣.
At this point, we could use basketweaving to finish the calculation. Instead, we evaluate each of
the remaining determinants using cofactor expansion along the last row to illustrate the recursive
nature of the method. Now,

∣∣∣∣∣∣∣
2 0 5
1 3 �1

�1 3 6

∣∣∣∣∣∣∣� (�1)(�1)3�1

∣∣∣∣∣0 5
3 �1

∣∣∣∣∣� 3(�1)3�2

∣∣∣∣∣2 5
1 �1

∣∣∣∣∣� 6(�1)3�3

∣∣∣∣∣2 0
1 3

∣∣∣∣∣
� (�1)(0 � 15) � (�3)(�2 � 5) � (6)(6 � 0)

� 15 � 21 � 36 � 72,
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∣∣∣∣∣∣∣
3 2 5
4 1 �1
2 �1 6

∣∣∣∣∣∣∣� (2)(�1)3�1

∣∣∣∣∣2 5
1 �1

∣∣∣∣∣� (�1)(�1)3�2

∣∣∣∣∣3 5
4 �1

∣∣∣∣∣� 6(�1)3�3

∣∣∣∣∣3 2
4 1

∣∣∣∣∣
� (2)(�2 � 5) � (1)(�3 � 20) � (6)(3 � 8)

� �14 � 23 � 30 � �67, and

∣∣∣∣∣∣∣
3 2 0
4 1 3
2 �1 3

∣∣∣∣∣∣∣� (2)(�1)3�1

∣∣∣∣∣2 0
1 3

∣∣∣∣∣� (�1)(�1)3�2

∣∣∣∣∣3 0
4 3

∣∣∣∣∣� 3(�1)3�3

∣∣∣∣∣3 2
4 1

∣∣∣∣∣
� (2)(6 � 0) � (1)(9 � 0) � (3)(3 � 8)

� 12 � 9 � 15 � 6.

Hence, |A| � (�5)(72) � 2(�67) � 1(6) � �360 � 134 � 6 � �232.

The computation of the 4 � 4 determinant in Example 6 is quite cumbersome.
Finding the determinant of a 5 � 5 matrix would involve the computation of five 4 � 4
determinants! As the size of the matrix increases, the calculation of the determinant
can become tedious. In Section 3.2, we present an alternative method for calculating
determinants that is computationally more efficient for larger matrices. After that, we
will generally use methods other than cofactor expansion, except in cases in which
enough zeroes in the matrix allow us to avoid computing many of the corresponding
cofactors. (For instance, in Example 6, we did not need to calculate A42.)

New Vocabulary
basketweaving
cofactor
cofactor expansion (along the last row

of a matrix)

determinant
minor
submatrix

Highlights

■ The (i, j) minor of a (square) matrix is the determinant of its (i, j) submatrix.

■ The (i, j) cofactor of a (square) matrix is (�1)i�j times its (i, j) minor.

■ The determinant of a (square) matrix is the cofactor expansion along its last row
(that is, multiplying each entry of the last row times its cofactor and summing
the results).

■ The determinant of a 2 � 2 matrix

[
a b
c d

]
is ad � bc.

■ The determinant of a 3 � 3 matrix is easily found using basketweaving.
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■ The area of a parallelogram or the volume of a parallelepiped is the absolute
value of the determinant of the matrix whose rows determine the sides of the
figure.

EXERCISES FOR SECTION 3.1
1. Calculate the determinant of each of the following matrices using the quick

formulas given at the beginning of this section:

�(a)

[
�2 5

3 1

]

(b)

[
5 �3
2 0

]

�(c)

[
6 �12

�4 8

]

(d)

[
cos� sin �

�sin � cos�

]

�(e)

⎡
⎣ 2 0 5

�4 1 7
0 3 �3

⎤
⎦

(f )

⎡
⎣ 3 �2 4

5 1 �2
�1 3 6

⎤
⎦

�(g)

⎡
⎣ 5 0 0

3 �2 0
�1 8 4

⎤
⎦

(h)

⎡
⎣�6 0 0

0 2 0
0 0 5

⎤
⎦

�(i)

⎡
⎣ 3 1 �2

�1 4 5
3 1 �2

⎤
⎦

�(j) [�3]

2. Calculate the indicated minors for each given matrix.

�(a) |A21| , for A �

⎡
⎣�2 4 3

3 �1 6
5 �2 4

⎤
⎦

(b)
∣∣B34

∣∣ , for B �

⎡
⎢⎢⎣

0 2 �3 1
1 4 2 �1
3 �2 4 0
4 �1 1 0

⎤
⎥⎥⎦

�(c) |C42| , for C �

⎡
⎢⎢⎣

�3 3 0 5
2 1 �1 4
6 �3 4 0

�1 5 1 �2

⎤
⎥⎥⎦

3. Calculate the indicated cofactors for each given matrix.

�(a) A22, for A �

⎡
⎣4 1 �3

0 2 �2
9 14 �7

⎤
⎦
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(b) B23, for B �

⎡
⎣�9 6 7

2 �1 0
4 3 �8

⎤
⎦

�(c) C43, for C �

⎡
⎢⎢⎣

�5 2 2 13
�8 2 �5 22
�6 �3 0 �16

4 �1 7 �8

⎤
⎥⎥⎦

�(d) D12, for D �

⎡
⎣x � 1 x x � 7

x � 4 x � 5 x � 3
x � 1 x x � 2

⎤
⎦, where x ∈ R

4. Calculate the determinant of each of the matrices in Exercise 1 using the formal
definition of the determinant.

5. Calculate the determinant of each of the following matrices.

�(a)

⎡
⎢⎢⎣

5 2 1 0
�1 3 5 2

4 1 0 2
0 2 3 0

⎤
⎥⎥⎦

(b)

⎡
⎢⎢⎣

0 5 4 0
4 1 �2 7

�1 0 3 0
0 2 1 5

⎤
⎥⎥⎦

(c)

⎡
⎢⎢⎣

2 1 9 7
0 �1 3 8
0 0 5 2
0 0 0 6

⎤
⎥⎥⎦

�(d)

⎡
⎢⎢⎢⎢⎣

0 4 1 3 �2
2 2 3 �1 0
3 1 2 �5 1
1 0 �4 0 0
0 3 0 0 2

⎤
⎥⎥⎥⎥⎦

6. For a general 4 � 4 matrix A, write out the formula for |A| using cofactor expan-
sion along the last row, and simplify as far as possible. (Your final answer should
have 24 terms, each being a product of four entries of A.)

�7. Give a counterexample to show that for square matrices A and B of the same
size, it is not always true that |A � B| � |A| � |B| .

8. (a) Show that the cross product a � b � [a2b3 � a3b2, a3b1 � a1b3, a1b2 �
a2b1] of a � [a1,a2,a3] and b � [b1,b2,b3] can be expressed in “determi-
nant notation”as ⎡

⎣ i j k
a1 a2 a3

b1 b2 b3

⎤
⎦.

(b) Show that a � b is orthogonal to both a and b.

9. Calculate the area of the parallelogram in R
2 determined by the following:

�(a) x � [3,2], y � [4,5]
(b) x � [�4,3], y � [�2,6]
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�(c) x � [5,�1], y � [�3,3]
(d) x � [�2,3], y � [6,�9]

�10. Prove part (1) of Theorem 3.1. (Hint:See Figure 3.2.The area of the parallelogram
is the length of the base x multiplied by the length of the perpendicular height
h. Note that if p � projxy, then h � y � p.)

11. Calculate the volume of the parallelepiped in R
3 determined by the following:

�(a) x � [�2,3,1], y � [4,2,0], z � [�1,3,2]
(b) x � [1,2,3], y � [0,�1,0], z � [4,�1,5]

�(c) x � [�3,4,0], y � [6,�2,1], z � [0,�3,3]
(d) x � [1,2,0], y � [3,2,�1], z � [5,�2,�1]

�12. Prove part (2) of Theorem 3.1.
(
Hint: See Figure 3.3. Let h be the perpen-

dicular dropped from z to the plane of the parallelogram. From Exercise 8,
x � y is perpendicular to both x and y, and so h is actually the projection
of z onto x � y. Hence, the volume of the parallelepiped is the area of the
parallelogram determined by x and y multiplied by the length of h. A calcula-
tion similar to that in Exercise 10 shows that the area of the parallelogram is√

(x2y3 � x3y2)2 � (x1y3 � x3y1)2 � (x1y2 � x2y1)2.
)

13. (a) If A is an n � n matrix, and c is a scalar, prove that |cA| � cn |A|. (Hint: Use
a proof by induction on n.)

(b) Use part (a) together with part (2) of Theorem 3.1 to explain why, when
each side of a parallelepiped is doubled, the volume is multiplied by 8.

14. Show that, for x ∈ R, x4 � a3x3 � a2x2 � a1x � a0 is the determinant of

⎡
⎢⎢⎣

x �1 0 0
0 x �1 0
0 0 x �1
a0 a1 a2 a3 � x

⎤
⎥⎥⎦.

y

x

h

p

FIGURE 3.2

Parallelogram determined by x and y.
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x

y
h

z

FIGURE 3.3

Parallelepiped determined by x, y, and z.

15. Solve the following determinant equations for x ∈ R:

�(a)

∣∣∣∣x 2
5 x � 3

∣∣∣∣� 0

(b)

∣∣∣∣ 15 x � 4
x � 7 �2

∣∣∣∣� 0

�(c)

∣∣∣∣∣∣
x � 3 5 �19

0 x � 1 6
0 0 x � 2

∣∣∣∣∣∣� 0

16. (a) Show that the determinant of the 3 � 3 Vandermonde matrix⎡
⎣ 1 1 1

a b c
a2 b2 c2

⎤
⎦

is equal to (a � b)(b � c)(c � a).
�(b) Using part (a), calculate the determinant of⎡

⎣1 1 1
2 3 �2
4 9 4

⎤
⎦.

17. The purpose of this exercise is to show that it is impossible to have an equilateral
triangle whose three vertices all lie on lattice points in the plane — that is,points
whose coordinates are both integers. Suppose T is such an equilateral triangle.
Use the following steps to reach a contradiction:

(a) If s is the length of a side of T , use elementary geometry to find a formula
for the area of T in terms of s.

(b) Use your answer for part (a) to show that the area of T is an irrational number.
(You may assume

√
3 is irrational.)
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(c) Suppose the three vertices of a triangle in the plane are given. Use
part (1) of Theorem 3.1 to express the area of the triangle using a
determinant.

(d) Use your answer for part (c) to show that the area of T is a rational number,
thus contradicting part (b).

�18. True or False:

(a) The basketweaving technique can be used to find determinants of 3 � 3 and
larger square matrices.

(b) The area of the parallelogram determined by nonparallel vectors [x1,x2] and
[y1,y2] is |x1y2 � x2y1|.

(c) An n � n matrix has 2n associated cofactors.

(d) The cofactor B23 for a square matrix B equals the minor |B23|.
(e) The determinant of a 4 � 4 matrix A is a41A41 � a42A42 � a43A43 � a44A44.

3.2 DETERMINANTS AND ROW REDUCTION
In this section, we provide a method for calculating the determinant of a matrix
by using row reduction. For large matrices, this technique is computationally more
efficient than cofactor expansion. We will also use the relationship between
determinants and row reduction to establish a link between determinants and
rank.

Determinants of Upper Triangular Matrices

We begin by proving the following simple formula for the determinant of an upper
triangular matrix. Our goal will be to reduce every other determinant computation to
this special case using row reduction.

Theorem 3.2 Let A be an upper triangular n � n matrix. Then |A| � a11a22 · · ·ann, the
product of the entries of A along the main diagonal.

Because we have defined the determinant recursively, we prove Theorem 3.2 by
induction.

Proof. We use induction on n.

Base Step: n � 1. In this case, A � [a11], and |A| � a11, which verifies the formula in
the theorem.

Inductive Step: Let n > 1. Assume that for any upper triangular (n � 1) � (n � 1) matrix
B, |B| � b11b22 · · ·b(n�1)(n�1). We must prove that the formula given in the theorem holds
for any n � n matrix A.
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Now, |A| � an1An1 � an2An2 � · · · � annAnn � 0An1 � 0An2 � · · · � 0A(n�1)(n�1) �
annAnn, because ani � 0 for i < n since A is upper triangular. Thus, |A| � annAnn �
ann(�1)n�n|Ann| � ann|Ann| (since n � n is even). However, the (n � 1) � (n � 1) sub-
matrix Ann is itself an upper triangular matrix, since A is upper triangular. Thus, by the induc-
tive hypothesis, |Ann| � a11a22 · · ·a(n�1)(n�1). Hence, |A| � ann(a11a22 · · ·a(n�1)(n�1)) �
a11a22 · · ·ann, completing the proof.

Example 1
By Theorem 3.2, ∣∣∣∣∣∣∣∣∣

4 2 0 1

0 3 9 6

0 0 �1 5

0 0 0 7

∣∣∣∣∣∣∣∣∣
� (4)(3)(�1)(7) � �84.

As a special case of Theorem 3.2, notice that for all n 	 1, we have |In| � 1, since
In is upper triangular with all its main diagonal entries equal to 1.

Effect of Row Operations on the Determinant

The following theorem describes explicitly how each type of row operation affects
the determinant:

Theorem 3.3 Let A be an n � n matrix, with determinant |A|, and let c be a scalar.

(1) If R1 is the row operation 〈i〉 ← c 〈i〉 of type (I), then |R1(A)| � c|A|.
(2) If R2 is the row operation

〈
j
〉← c 〈i〉 �

〈
j
〉
of type (II), then |R2(A)| � |A|.

(3) If R3 is the row operation 〈i〉 ↔ 〈
j
〉
of type (III), then |R3(A)| � � |A|.

All three parts of Theorem 3.3 are proved by induction. The proof of part (1) is
easiest and is outlined in Exercise 8. Part (2) is easier to prove after part (3) is proven,
and we outline the proof of part (2) in Exercises 9 and 10.The proof of part (3) is done
by induction. Most of the proof of part (3) is given after the next example, except for
one tedious case, which has been placed in Appendix A.

Example 2
Let

A �

⎡
⎢⎣5 �2 1

4 3 �1
2 1 0

⎤
⎥⎦.
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You can quickly verify by the basketweaving method that |A| � 7. Consider the following
matrices:

B1 �

⎡
⎢⎣ 5 �2 1

4 3 �1
�6 �3 0

⎤
⎥⎦, B2 �

⎡
⎢⎣ 5 �2 1

4 3 �1
12 �3 2

⎤
⎥⎦, and B3 �

⎡
⎢⎣4 3 �1

5 �2 1
2 1 0

⎤
⎥⎦.

Now, B1 is obtained from A by the operation 〈3〉 ← �3 〈3〉 of type (I). Hence, part (1) of The-
orem 3.3 asserts that |B1| � �3 |A| � (�3)(7) � �21.

Next, B2 is obtained from A by the operation 〈3〉 ← 2 〈1〉 � 〈3〉 of type (II). By part (2) of
Theorem 3.3, |B2| � |A| � 7.

Finally, B3 is obtained from A by the operation 〈1〉 ↔ 〈2〉 of type (III). Then, by part (3) of
Theorem 3.3,

∣∣B3
∣∣� �|A| � �7.

You can use basketweaving on B1, B2, and B3 to verify that the values given for their
determinants are indeed correct.

Proof. Proof of Part (3) of Theorem 3.3: We proceed by induction on n. Notice that for
n � 1, we cannot have a type (III) row operation, so n � 2 for the Base Step.

Base Step: n � 2. Then R must be the row operation 〈1〉 ↔ 〈2〉, and |R(A)| �∣∣∣∣R
([

a11 a12
a21 a22

])∣∣∣∣�

∣∣∣∣a21 a22
a11 a12

∣∣∣∣� a21a12 � a22a11 � �(a11a22 � a12a21) � �|A|.
Inductive Step: Assume n 	 3, and that switching two rows of an (n � 1) � (n � 1)

matrix results in a matrix whose determinant has the opposite sign. We consider three
separate cases.

Case 1: Suppose R is the row operation 〈i〉 ↔ 〈
j
〉
, where i �� n and j �� n. Let B �

R(A). Then, since the last row of A is not changed, bnk � ank, for 1 � k � n.
Also, Bnk, the (n,k) submatrix of B, equals R(Ank) (why?). Therefore, by
the inductive hypothesis, |Bnk| � �|Ank|, implying Bnk � (�1)n�k|Bnk| �
(�1)n�k(�1)|Ank| � �Ank, for 1 � k � n. Hence, |B| � bn1Bn1 � · · · � bnn Bnn
� an1(�An1) � · · · � ann(�Ann) � �(an1An1 � · · · � annAnn) � �|A|.

Case 2: Suppose R is the row operation 〈n � 1〉 ↔ 〈n〉, switching the last two rows.
This case is proved by brute-force calculation, the details of which appear in
Appendix A.

Case 3: Suppose R is the row operation 〈i〉 ↔ 〈n〉, with i � n � 2. In this case, our strategy
is to express R as a sequence of row swaps from the two previous cases. Let R1 be
the row operation 〈i〉 ↔ 〈n � 1〉 and R2 be the row operation 〈n � 1〉 ↔ 〈n〉 . Then
B � R(A) � R1(R2(R1(A))) (why?). Using the previous two cases, we have |B| �
|R(A)| � |R1(R2(R1(A)))| � �|R2(R1(A))| � (�1)2|R1(A)| � (�1)3|A| � �|A|.
This completes the proof.

Theorem 3.3 can be used to prove that if a matrix A has a row with all entries zero,
or has two identical rows, then |A| � 0 (see Exercises 11 and 12).
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Part (1) of Theorem 3.3 can be used to multiply each of the n rows of a matrix A
by c in turn, thus proving the following corollary1:

Corollary 3.4 If A is an n � n matrix, and c is any scalar, then |cA| � cn|A|.

Example 3
A quick calculation shows that ∣∣∣∣∣∣∣

0 2 1
3 �3 �2

16 7 1

∣∣∣∣∣∣∣� �1.

Therefore,∣∣∣∣∣∣∣
0 �4 �2

�6 6 4
�32 �14 �2

∣∣∣∣∣∣∣�

∣∣∣∣∣∣∣�2

⎡
⎢⎣ 0 2 1

3 �3 �2
16 7 1

⎤
⎥⎦
∣∣∣∣∣∣∣� (�2)3

∣∣∣∣∣∣∣
0 2 1
3 �3 �2

16 7 1

∣∣∣∣∣∣∣� (�8)(�1) � 8.

Calculating the Determinant by Row Reduction

We will now illustrate how to use row operations to calculate the determinant of a
given matrix A by finding an upper triangular matrix B that is row equivalent to A.

Example 4
Let

A �

⎡
⎢⎣ 0 �14 �8

1 3 2
�2 0 6

⎤
⎥⎦.

We row reduce A to upper triangular form, as follows, keeping track of the effect on the
determinant at each step:

A �

⎡
⎢⎣ 0 �14 �8

1 3 2
�2 0 6

⎤
⎥⎦

1 You were also asked to prove this result in Exercise 13 of Section 3.1 directly from the definition of
the determinant using induction.
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(III) : 〈1〉 ↔ 〈2〉 ⇒ B1 �

⎡
⎢⎣ 1 3 2

0 �14 �8
�2 0 6

⎤
⎥⎦ (|B1| � �|A|)

(II) : 〈3〉 ← 2 〈1〉 � 〈3〉 ⇒ B2 �

⎡
⎢⎣1 3 2

0 �14 �8
0 6 10

⎤
⎥⎦ (|B2| � |B1| � �|A|)

(I) : 〈2〉 ← � 1
14 〈2〉 ⇒ B3 �

⎡
⎢⎣

1 3 2

0 1 4
7

0 6 10

⎤
⎥⎦ (

|B3| � � 1
14 |B2| � � 1

14 |A|
)

(II) : 〈3〉 ← �6 〈2〉 � 〈3〉 ⇒ B �

⎡
⎢⎢⎣

1 3 2

0 1 4
7

0 0 46
7

⎤
⎥⎥⎦ (

|B| � |B3| � � 1
14 |A|

)
.

Because the last matrix B is in upper triangular form, we stop. (Notice that we do not target
the entries above the main diagonal, as in reduced row echelon form.) From Theorem 3.2,
|B| � (1)(1)

(
46
7

)
� 46

7 . Since |B| � � 1
14 |A|, we see that |A| � 14|B| � 14

(46
7

)
� 92.

A more convenient method of calculating |A| is to create a variable P (for “product”)
with initial value 1, and update P appropriately as each row operation is performed.
That is, we replace the current value of P by{

P � c for type (I) row operations

P � (�1) for type (III) row operations
.

Of course, row operations of type (II) do not affect the determinant. Then, using the
final value of P,we can solve for |A| using |B| � P |A|,where B is the upper triangular
result of the row reduction process. This method is illustrated in the next example.

Example 5
Let us redo the calculation for |A| in Example 4. We create a variable P and initialize P to 1.
Listed below are the row operations used in that example to convert A into upper triangular form
B, with |B| � 46

7 . After each operation, we update the value of P accordingly.

Row Operation Effect P

(III): 〈1〉 ↔ 〈2〉 Multiply P by �1 �1

(II): 〈3〉 ← 2 〈1〉 � 〈3〉 No change �1

(I): 〈2〉 ← � 1
14 〈2〉 Multiply P by � 1

14
1

14

(II): 〈3〉 ← �6 〈2〉 � 〈3〉 No change 1
14

Then |A| equals the reciprocal of the final value of P times |B|; that is, |A| � (1/P)|B| �

14 � 46
7 � 92.
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Determinant Criterion for Matrix Singularity

The next theorem gives an alternative way of determining whether the inverse of a
given square matrix exists.

Theorem 3.5 An n � n matrix A is nonsingular if and only if |A| �� 0.

Proof. Let D be the unique matrix in reduced row echelon form for A. Now, using
Theorem 3.3, we see that a single row operation of type (I), (II), or (III) cannot convert a
matrix having a nonzero determinant to a matrix having a zero determinant (why?). Because
A is converted to D using a finite number of such row operations, Theorem 3.3 assures us
that |A| and |D| are either both zero or both nonzero.

Now, if A is nonsingular (which implies D � In), we know that |D| � 1 �� 0 and there-
fore |A| �� 0, and we have completed half of the proof.

For the other half, assume that |A| �� 0. Then |D| �� 0. Because D is a square matrix
with a staircase pattern of pivots, it is upper triangular. Because |D| �� 0, Theorem 3.2
asserts that all main diagonal entries of D are nonzero. Hence, they are all pivots, and
D � In. Therefore, row reduction transforms A to In, so A is nonsingular.

Notice that Theorem 3.5 agrees with Theorem 2.13 in asserting that an inverse for[
a b
c d

]
exists if and only if

∣∣∣∣a b
c d

∣∣∣∣� ad � bc �� 0.

Theorem 2.14 and Theorem 3.5 together imply the following:

Corollary 3.6 Let A be an n � n matrix. Then rank(A) � n if and only if |A| �� 0.

Example 6

Consider the matrix A �

[
1 6

�3 5

]
. Now, |A| � 23 �� 0. Hence, rank(A) � 2 by Corollary 3.6.

Also, because A is the coefficient matrix of the system

{
x � 6y � 20

�3x � 5y � 9

and |A| �� 0, this system has a unique solution by Theorems 3.5 and 2.15. In fact, the solution
is (2,3).

On the other hand, the matrix

B �

⎡
⎢⎣

1 5 1

2 1 �7

�1 2 6

⎤
⎥⎦
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has determinant zero. Thus, rank(B) < 3. Also, because B is the coefficient matrix for the
homogeneous system ⎧⎪⎨

⎪⎩
x1 � 5x2 � x3 � 0

2x1 � x2 � 7x3 � 0
�x1 � 2x2 � 6x3 � 0

,

this system has nontrivial solutions by Theorem 2.5. You can verify that its solution set is{
c(4,�1,1)

∣∣ c ∈ R
}

.

For reference, we summarize many of the results obtained in Chapters 2 and 3 in
Table 3.1.You should be able to justify each equivalence inTable 3.1 by citing a relevant
definition or result.

Table 3.1 Equivalent conditions for singular and nonsingular matrices

Assume that A is an n � n matrix. Assume that A is an n � n matrix.
Then the following are all equivalent: Then the following are all equivalent:

A is singular (A�1 does not exist). A is nonsingular (A�1 exists).

Rank(A) �� n. Rank(A) � n.

|A| � 0. |A| �� 0.

A is not row equivalent to In. A is row equivalent to In.

AX � O has a nontrivial solution for X. AX � O has only the trivial solution for X.

AX � B does not have a unique solution AX � B has a unique solution for X
(no solutions or infinitely many solutions). (namely, X � A�1B).

Highlights

■ The determinant of an upper (or lower) triangular matrix is the product of the
main diagonal entries.

■ A row operation of type (I) involving multiplication by c multiplies the determi-
nant by c.

■ A row operation of type (II) has no effect on the determinant.

■ A row operation of type (III) negates the determinant.

■ If an n � n matrix A is multiplied by c to produce B, then |B| � cn|A|.
■ The determinant of a matrix can be found by row reducing the matrix to upper

triangular form and keeping track of the row operations performed and their
effects on the determinant.

■ An n � n matrix A is nonsingular iff |A| �� 0 iff rank(A) � n.
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EXERCISES FOR SECTION 3.2
1. Each of the following matrices is obtained from I3 by performing a single row

operation of type (I), (II),or (III). Identify the operation,and use Theorem 3.3 to
give the determinant of each matrix.

�(a)

⎡
⎣1 �3 0

0 1 0
0 0 1

⎤
⎦

(b)

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦

�(c)

⎡
⎣1 0 0

0 1 0
0 0 �4

⎤
⎦

(d)

⎡
⎣1 0 0

2 1 0
0 0 1

⎤
⎦

(e)

⎡
⎢⎣

1
2 0 0

0 1 0
0 0 1

⎤
⎥⎦

�(f )

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦

2. Calculate the determinant of each of the following matrices by using row
reduction to produce an upper triangular form:

�(a)

⎡
⎣ 10 4 21

0 �4 3
�5 �1 �12

⎤
⎦

(d)

⎡
⎢⎢⎣

�8 4 �3 2
2 1 �1 �1

�3 �5 4 0
2 �4 3 �1

⎤
⎥⎥⎦

(b)

⎡
⎣ 18 �9 �14

6 �3 �5
�3 1 2

⎤
⎦

�(e)

⎡
⎢⎢⎢⎣

5 3 �8 4
15
2

1
2 �1 �7

� 5
2

3
2 �4 1

10 �3 8 �8

⎤
⎥⎥⎥⎦

�(c)

⎡
⎢⎢⎣

1 �1 5 1
�2 1 �7 1
�3 2 �12 �2

2 �1 9 1

⎤
⎥⎥⎦ (f )

⎡
⎢⎢⎢⎢⎣

1 2 �1 3 0
2 4 �3 1 �4
2 6 4 8 �4

�3 �8 �1 1 0
1 3 3 10 1

⎤
⎥⎥⎥⎥⎦

3. By calculating the determinant of each matrix, decide whether it is nonsin-
gular.

�(a)

[
5 6

�3 �4

]
(b)

[
cos� �sin �
sin � cos�

]
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�(c)

⎡
⎣�12 7 �27

4 �1 2
3 2 �8

⎤
⎦ (d)

⎡
⎣ 31 �20 106

�11 7 �37
�9 6 �32

⎤
⎦

4. By calculating the determinant of the coefficient matrix,decide whether each of
the following homogeneous systems has a nontrivial solution. (You do not need
to find the actual solutions.)

�(a)

⎧⎨
⎩

�6x � 3y � 22z � 0
�7x � 4y � 31z � 0
11x � 6y � 46z � 0

(b)

⎧⎨
⎩

4x1 � x2 � x3 � 0
�x1 � x2 � 2x3 � 0

�6x1 � 9x2 � 19x3 � 0

(c)

⎧⎪⎪⎨
⎪⎪⎩

2x1 � 2x2 � x3 � 4x4 � 0
4x1 � 2x2 � x3 � 0

�x1 � x2 � x4 � 0
�12x1 � 7x2 � 5x3 � 2x4 � 0

5. Let A be an upper triangular matrix. Prove that |A| �� 0 if and only if all the main
diagonal elements of A are nonzero.

�6. Find the determinant of the following matrix:

A �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 a16
0 0 0 0 a25 a26
0 0 0 a34 a35 a36
0 0 a43 a44 a45 a46
0 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

⎤
⎥⎥⎥⎥⎥⎥⎦.

(Hint: Use part (3) of Theorem 3.3 and then Theorem 3.2.)

7. Suppose that AB � AC and |A| �� 0. Show that B � C.

8. The purpose of this exercise is to outline a proof by induction of part (1) of
Theorem 3.3. Let A be an n � n matrix, let R be the row operation 〈i〉 ← c 〈i〉 ,
and let B � R(A).

(a) Prove |B| � c|A| when n � 1. (This is the Base Step.)

(b) State the inductive hypothesis for the Inductive Step.

(c) Complete the Inductive Step for the case in which R is not performed on
the last row of A.

(d) Complete the Inductive Step for the case in which R is performed on the
last row of A.
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9. The purpose of this exercise and the next is to outline a proof by induction of
part (2) of Theorem 3.3. This exercise completes the Base Step.

(a) Explain why n �� 1 in this problem.

(b) Prove that applying the row operation 〈1〉 ← c 〈2〉 � 〈1〉 to a 2 � 2 matrix
does not change the determinant.

(c) Repeat part (b) for the row operation 〈2〉 ← c 〈1〉 � 〈2〉 .

10. The purpose of this exercise is to outline the Inductive Step in the proof of part
(2) of Theorem 3.3. You may assume that part (3) of Theorem 3.3 has already
been proved. Let A be an n � n matrix, for n 	 3,and let R be the row operation
〈i〉 ← c

〈
j
〉
� 〈i〉.

(a) State the inductive hypothesis and the statement to be proved for the
Inductive Step. (Assume for size n � 1, and prove for size n.)

(b) Prove the Inductive Step in the case where i �� n and j �� n. (Your proof
should be similar to that for Case 1 in the proof of part (3) of Theorem 3.3.)

(c) Consider the case i � n. Suppose k �� j and k �� n. Let R1 be the row oper-
ation 〈k〉 ↔ 〈n〉 and R2 be the row operation 〈k〉 ← c

〈
j
〉
� 〈k〉. Prove that

R(A) � R1(R2(R1(A))).

(d) Finish the proof of the Inductive Step for the case i � n. (Your proof should
be similar to that for Case 3 in the proof of part (3) of Theorem 3.3.)

(e) Finally,consider the case j � n. Suppose k �� i and k �� n. Let R1 be the row
operation 〈k〉 ↔ 〈n〉 and R3 be the row operation 〈i〉 ← c 〈k〉 � 〈i〉 . Prove
that R(A) � R1(R3(R1(A))).

(f ) Finish the proof of the Inductive Step for the case j � n.

11. Let A be an n � n matrix having an entire row of zeroes.

(a) Use part (1) of Theorem 3.3 to prove that |A| � 0.

(b) Use Corollary 3.6 to provide an alternate proof that |A| � 0.

12. Let A be an n � n matrix having two identical rows.

(a) Use part (3) of Theorem 3.3 to prove that |A| � 0.

(b) Use Corollary 3.6 to provide an alternate proof that |A| � 0.

13. Let A be an n � n matrix.

(a) Show that if the entries of some row of A are proportional to those in another
row, then |A| � 0.

(b) Show that if the entries in every row of A add up to zero,then |A| � 0. (Hint:
Consider the system AX � O,and note that the n � 1 vector X having every
entry equal to 1 is a nontrivial solution.)

14. (a) Use row reduction to show that the determinant of the n � n matrix

symbolically represented by

[
A C
O B

]
is |A| |B|, where
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A is an m � m submatrix,
B is an (n � m) � (n � m) submatrix,
C is an m � (n � m) submatrix, and
O is an (n � m) � m zero submatrix.

(b) Use part (a) to compute ∣∣∣∣∣∣∣∣
�2 6 7 �1

3 �9 2 �2
0 0 4 �3
0 0 �1 5

∣∣∣∣∣∣∣∣.
15. Suppose that f : Mnn → R such that f (In) � 1, and that whenever a single

row operation is performed on A ∈ Mnn to create B,

f (B) �

⎧⎨
⎩

cf (A) for a type (I) row operation with c �� 0
f (A) for a type (II) row operation

�f (A) for a type (III) row operation
.

Prove that f (A) � |A| , for all A ∈ Mnn. (Hint: If A is row equivalent to In,
then the given properties of f guarantee that f (A) � |A| (why?). Otherwise,
A is row equivalent to a matrix with a row of zeroes, and |A| � 0. In this case,
apply a type (I) operation with c � �1 to obtain f (A) � 0.)

�16. True or False:

(a) The determinant of a square matrix is the product of the main diagonal
entries.

(b) Two row operations of type (III) performed in succession have no overall
effect on the determinant.

(c) If every row of a 4 � 4 matrix is multiplied by 3,the determinant is multiplied
by 3 also.

(d) If two rows of a square matrix A are identical, then |A| � 1.

(e) A square matrix A is nonsingular if and only if |A| � 0.

(f ) An n � n matrix A has determinant zero if and only if rank(A) < n.

3.3 FURTHER PROPERTIES OF THE DETERMINANT
In this section, we investigate the determinant of a product and the determinant of
a transpose. We also introduce the classical adjoint of a matrix. Finally, we present
Cramer’s Rule, an alternative technique for solving certain linear systems using deter-
minants.

Theorems 3.9, 3.10, 3.11, and 3.13 are not proven in this section. An interrelated
progressive development of these proofs is left as Exercises 23 through 36.
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Determinant of a Matrix Product

We begin by proving that the determinant of a product of two matrices A and B is
equal to the product of their determinants |A| and |B|.

Theorem 3.7 If A and B are both n � n matrices, then |AB| � |A| |B| .

Proof. First, suppose A is singular. Then |A| � 0 by Theorem 3.5. If |AB| � 0, then |AB| �
|A| |B| and we will be done. We assume |AB| �� 0 and get a contradiction. If |AB| �� 0,
(AB)�1 exists, and In � AB(AB)�1. Hence, B(AB)�1 is a right inverse for A. But then by
Theorem 2.9, A�1 exists, contradicting the fact that A is singular.

Now suppose A is nonsingular. In the special case where A � In, we have |A| � 1 (why?),
and so |AB| � |InB| � |B| �1|B| � |A| |B|. Finally, if A is any other nonsingular matrix, then
A is row equivalent to In, so there is a sequence R1,R2, . . . ,Rk of row operations such that
Rk(· · ·(R2(R1(In))) · · ·) � A. (These are the inverses of the row operations that row reduce
A to In.) Now, each row operation Ri has an associated real number ri, so that applying
Ri to a matrix multiplies its determinant by ri (as in Theorem 3.3). Hence,

|AB| � |Rk(· · ·(R2(R1(In))) · · ·)B|
� |Rk(· · ·(R2(R1(InB))) · · ·)| by Theorem 2.1, part (2)
� rk · · ·r2r1|InB| by Theorem 3.3
� rk · · ·r2r1|In||B| by the In special case
� |Rk(· · ·(R2(R1(In))) · · ·)||B| by Theorem 3.3
� |A| |B|.

Example 1
Let

A �

⎡
⎢⎣ 3 2 1

5 0 �2
�3 1 4

⎤
⎥⎦ and B �

⎡
⎢⎣ 1 �1 0

4 2 �1
�2 0 3

⎤
⎥⎦.

Quick calculations show that |A| � �17 and |B| � 16. Therefore, the determinant of

AB �

⎡
⎢⎣ 9 1 1

9 �5 �6
�7 5 11

⎤
⎥⎦

is |AB| � |A| |B| � (�17)(16) � �272.

One consequence of Theorem 3.7 is that |AB| � 0 if and only if either |A| � 0
or |B| � 0. (See Exercise 6(a).) Therefore, it follows that AB is singular if and only if
either A or B is singular. Another important result is

Corollary 3.8 If A is nonsingular, then
∣∣A�1

∣∣� 1
|A| .
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Proof. If A is nonsingular, then AA�1 � In. By Theorem 3.7, |A||A�1| � |In| � 1, so∣∣A�1
∣∣� 1/ |A|.

Determinant of the Transpose

Theorem 3.9 If A is an n � n matrix, then |A| �
∣∣AT

∣∣.
See Exercises 23 through 31 for an outline of the proof of Theorem 3.9.

Example 2
A quick calculation shows that if

A �

⎡
⎢⎣�1 4 1

2 0 3
�1 �1 2

⎤
⎥⎦,

then |A| � �33. Hence, by Theorem 3.9,

|AT | �

∣∣∣∣∣∣∣
�1 2 �1

4 0 �1
1 3 2

∣∣∣∣∣∣∣� �33.

Theorem 3.9 can be used to prove “column versions” of several earlier results
involving determinants. For example, the determinant of a lower triangular matrix
equals the product of its main diagonal entries, just as for an upper triangular matrix.
Also,if a square matrix has an entire column of zeroes,or if it has two identical columns,
then its determinant is zero, just as with rows.

Also, column operations analogous to the familiar row operations can be defined.
For example, a type (I) column operation multiplies all entries of a given column of a
matrix by a nonzero scalar.Theorem 3.9 can be combined withTheorem 3.3 to show
that each type of column operation has the same effect on the determinant of a matrix
as its corresponding row operation.

Example 3
Let

A �

⎡
⎢⎣

2 5 1

1 2 3

�3 1 �1

⎤
⎥⎦.
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After the type (II) column operation 〈col. 2〉 ← �3 〈col. 1〉 � 〈col. 2〉, we have

B �

⎡
⎢⎣

2 �1 1

1 �1 3

�3 10 �1

⎤
⎥⎦.

A quick calculation checks that |A| � �43 � |B|. Thus, this column operation of type (II) has
no effect on the determinant, as we expected.

A More General Cofactor Expansion

Our definition of the determinant specifies that we multiply the elements ani of the last
row of an n � n matrix A by their corresponding cofactors Ani , and sum the results.
The next theorem shows the same result is obtained when a cofactor expansion is
performed across any row or any column of the matrix!

Theorem 3.10 Let A be an n � n matrix, with n 	 2. Then,

(1) ai1Ai1 � ai2Ai2 � · · · � ainAin � |A|, for each i,1 � i � n

(2) a1jA1j � a2jA2j � · · · � anjAnj � |A|, for each j,1 � j � n.

The formulas for |A| given in Theorem 3.10 are called the cofactor expansion
(or, Laplace expansion) along the ith row (part (1)) and jth column (part (2)).
An outline of the proof of this theorem is provided in Exercises 23 through 32. The
proof that any row can be used, not simply the last row, is established by considering
the effect of certain row swaps on the matrix. Then the |A| �

∣∣AT
∣∣ formula explains

why any column expansion is allowable.

Example 4
Consider the matrix

A �

⎡
⎢⎢⎢⎣

5 0 1 �2
2 2 3 1

�1 3 2 5
6 0 1 1

⎤
⎥⎥⎥⎦ .

After some calculation, we find that the 16 cofactors of A are

A11 � �12, A12 � �74, A13 � 50, A14 � 22,
A21 � 9, A22 � 42, A23 � �51, A24 � �3,
A31 � �6, A32 � �46, A33 � 34, A34 � 2,
A41 � �3, A42 � 40, A43 � �19, A44 � �17.
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We will use these values to compute |A| by a cofactor expansion across several different rows
and columns of A. Along the second row, we have

|A| � a21A21 � a22A22 � a23A23 � a24A24

� 2(9) � 2(42) � 3(�51) � 1(�3) � �54.

Along the second column, we have

|A| � a12A12 � a22A22 � a32A32 � a42A42

� 0(�74) � 2(42) � 3(�46) � 0(40) � �54.

Along the fourth column, we have

|A| � a14A14 � a24A24 � a34A34 � a44A44

� �2(22) � 1(�3) � 5(2) � 1(�17) � �54.

Note in Example 4 that cofactor expansion is easiest along the second column
because that column has two zeroes (entries a12 and a42). In this case, only two
cofactors, A22 and A32, were really needed to compute |A|. We generally choose the
row or column containing the largest number of zero entries for cofactor expansion.

The Adjoint Matrix

Definition Let A be an n � n matrix, with n 	 2. The (classical) adjoint A of A
is the n � n matrix whose (i, j) entry is Aji , the ( j, i) cofactor of A.

Notice that the (i, j) entry of the adjoint is not the cofactor Aij of A but is Aji

instead. Hence, the general form of the adjoint of an n � n matrix A is

A �

⎡
⎢⎢⎢⎣

A11 A21 · · · An1

A12 A22 · · · An2
...

...
. . .

...
A1n A2n · · · Ann

⎤
⎥⎥⎥⎦.

Example 5
Recall the matrix

A �

⎡
⎢⎢⎢⎣

5 0 1 �2
2 2 3 1

�1 3 2 5
6 0 1 1

⎤
⎥⎥⎥⎦
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whose cofactors Aij were given in Example 4. Grouping these cofactors into a matrix gives the
adjoint matrix for A.

A �

⎡
⎢⎢⎢⎣

�12 9 �6 �3
�74 42 �46 40

50 �51 34 �19
22 �3 2 �17

⎤
⎥⎥⎥⎦

Note that the cofactors are “transposed”; that is, the cofactors for entries in the same row of A
are placed in the same column of A.

The next theorem shows that the adjoint A of A is “almost”an inverse for A.

Theorem 3.11 If A is an n � n matrix with adjoint matrix A, then

AA � AA � (|A|) In.

The fact that the diagonal entries of AA and AA equal |A| follows immediately
fromTheorem 3.10 (why?).The proof that the other entries of AA and AA equal zero
is outlined in Exercises 23 through 35.

Example 6
Using A and A from Example 5, we have

AA �

⎡
⎢⎢⎢⎣

5 0 1 �2
2 2 3 1

�1 3 2 5
6 0 1 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

�12 9 �6 �3
�74 42 �46 40

50 �51 34 �19
22 �3 2 �17

⎤
⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎣

�54 0 0 0
0 �54 0 0
0 0 �54 0
0 0 0 �54

⎤
⎥⎥⎥⎦� (�54)I4

(verify!), as predicted by Theorem 3.10, since |A| � �54 (see Example 4). Similarly, you can
check that AA � (�54)I4 as well.

Calculating Inverses with the Adjoint Matrix

If |A| �� 0 we can divide the equation in Theorem 3.11 by the scalar |A| to obtain
(1/ |A|)(AA) � In. But then, A ((1/ |A|)A) � In. Therefore, the scalar multiple 1/ |A|
of the adjoint A must be the inverse matrix of A, and we have proved
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Corollary 3.12 If A is a nonsingular n � n matrix with adjoint A, then A�1 �
(

1
|A|
)
A.

This corollary gives an algebraic formula for the inverse of a matrix (when it exists).

Example 7
The adjoint matrix for

B �

⎡
⎢⎢⎣

�2 0 �3

0 1 0

0 0 4

⎤
⎥⎥⎦ is B �

⎡
⎢⎢⎣

B11 B21 B31

B12 B22 B32

B13 B23 B33

⎤
⎥⎥⎦,

where each Bij (for 1 � i, j � 3) is the (i, j) cofactor of B. But a quick computation of these
cofactors (try it!) gives

B �

⎡
⎢⎣

4 0 3

0 �8 0

0 0 �2

⎤
⎥⎦.

Now, |B| � �8 (because B is upper triangular), and so

B�1 �
1

|B|B � �
1

8

⎡
⎢⎣

4 0 3

0 �8 0

0 0 �2

⎤
⎥⎦�

⎡
⎢⎢⎣

� 1
2 0 � 3

8

0 1 0

0 0 1
4

⎤
⎥⎥⎦.

Finding the inverse by row reduction is usually quicker than using the adjoint.
However, Corollary 3.12 is often useful for proving other results (see Exercise 19).

Cramer’s Rule

We conclude this section by stating an explicit formula,known as Cramer’s Rule, for
the solution to a system of n equations and n variables when it is unique:

Theorem 3.13 (Cramer’s Rule) Let AX � B be a system of n equations in n variables
with |A| �� 0. For 1 � i � n, let Ai be the n � n matrix obtained by replacing the ith
column of A with B. Then the entries of the unique solution X are

x1 �
|A1|
|A| , x2 �

|A2|
|A| , . . . , xn �

|An|
|A| .
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The proof of this theorem is outlined in Exercise 36. An alternate proof is also
outlined in Exercise 13 in the Review Exercises at the end of the chapter. Cramer’s
Rule cannot be used for a system AX � B in which |A| � 0 (why?). It is frequently
used on 3 � 3 systems having a unique solution, because the determinants involved
can be calculated quickly by hand.

Example 8
We will solve ⎧⎪⎨

⎪⎩
5x1 � 3x2 � 10x3 � �9
2x1 � 2x2 � 3x3 � 4

�3x1 � x2 � 5x3 � �1

using Cramer’s Rule. This system is equivalent to AX � B, where

A �

⎡
⎢⎣ 5 �3 �10

2 2 �3
�3 �1 5

⎤
⎥⎦ and B �

⎡
⎢⎣�9

4
�1

⎤
⎥⎦.

A quick calculation shows that |A| � �2. Let

A1�

⎡
⎢⎢⎢⎢⎣

�9

4

�1

�3

2

�1

�10

�3

5

⎤
⎥⎥⎥⎥⎦ , A2 �

⎡
⎢⎢⎢⎢⎣

5
2

�3

�9

4

�1

�10
�3

5

⎤
⎥⎥⎥⎥⎦, and A3�

⎡
⎢⎢⎢⎢⎣

5

2

�3

�3

2

�1

�9

4

�1

⎤
⎥⎥⎥⎥⎦.

The matrix A1 is identical to A, except in the first column, where its entries are taken from B. A2

and A3 are created in an analogous manner. A quick computation shows that |A1| � 8, |A2| �

�6, and
∣∣A3

∣∣� 4. Therefore,

x1 �
|A1|
|A| �

8

�2
� �4, x2 �

|A2|
|A| �

�6

�2
� 3, and x3 �

∣∣A3
∣∣

|A| �
4

�2
� �2.

Hence, the unique solution to the given system is (x1,x2,x3) � (�4,3,�2).

Notice that solving the system in Example 8 essentially amounts to calculating four
determinants: |A| , |A1| , |A2|, and |A3|.

New Vocabulary

adjoint (classical)
cofactor expansion (along any row or

column)

Cramer’s Rule
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Highlights

■ The determinant of a product AB is the product of the determinants of A and B.

■ The determinant of A�1 is the reciprocal of the determinant of A.

■ A matrix and its transpose have the same determinant.

■ The determinant of a matrix can be found using cofactor expansion along any
row or column.

■ The (classical) adjoint A of a matrix A is the transpose of the matrix whose (i, j)
entry is the (i, j) cofactor of A.

■ If A is nonsingular, then A�1 � (1/|A|)A.

■ A system AX � B where |A| �� 0 can be solved via division of determinants
using Cramer’s Rule: that is, each xi � |Ai|/|A|, where Ai � A except that the
ith column of Ai equals B.

EXERCISES FOR SECTION 3.3
1. For a general 4 � 4 matrix A, write out the formula for |A| using a cofactor

expansion along the indicated row or column.

�(a) Third row

(b) First row

�(c) Fourth column

(d) First column

2. Find the determinant of each of the following matrices by performing a cofactor
expansion along the indicated row or column:

�(a) Second row of

⎡
⎣2 �1 4

0 3 �2
5 �2 �3

⎤
⎦

(b) First row of

⎡
⎣10 �2 7

3 2 �8
6 5 �2

⎤
⎦

�(c) First column of

⎡
⎣4 �2 3

5 �1 �2
3 3 2

⎤
⎦

(d) Third column of

⎡
⎢⎢⎣

4 �2 0 �1
�1 3 �3 2

2 4 �4 �3
3 6 0 �2

⎤
⎥⎥⎦
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3. Calculate the adjoint matrix for each of the following by finding the associated
cofactor for each entry. Then use the adjoint to find the inverse of the original
matrix (if it exists).

�(a)

⎡
⎣14 �1 �21

2 0 �3
20 �2 �33

⎤
⎦

(b)

⎡
⎣�15 �6 �2

5 3 2
5 6 5

⎤
⎦

�(c)

⎡
⎢⎢⎣

�2 1 0 �1
7 �4 1 4

�14 11 �2 �8
�12 10 �2 �7

⎤
⎥⎥⎦

(d)

⎡
⎣�4 0 0

�3 2 0
0 0 3

⎤
⎦

�(e)

⎡
⎣3 �1 0

0 �3 2
0 0 �1

⎤
⎦

(f )

⎡
⎢⎢⎣

2 1 0 0
0 �1 1 0
0 0 1 �1
0 0 0 �2

⎤
⎥⎥⎦

4. Use Cramer’s Rule to solve each of the following systems:

�(a)

⎧⎨
⎩

3x1 � x2 � x3 � �8
2x1 � x2 � 2x3 � 3

�9x1 � x2 � 39

(b)

⎧⎨
⎩

�2x1 � 5x2 � 4x3 � �3
3x1 � 3x2 � 4x3 � 6
2x1 � x2 � 2x3 � 5

(c)

⎧⎨
⎩

�5x1 � 6x2 � 2x3 � �16
3x1 � 5x2 � 3x3 � 13

�3x1 � 3x2 � x3 � �11

�(d)

⎧⎪⎪⎨
⎪⎪⎩

�5x1 � 2x2 � 2x3 � x4 � �10
2x1 � x2 � 2x3 � 2x4 � �9
5x1 � 2x2 � 3x3 � x4 � 7

�6x1 � 2x2 � 2x3 � x4 � �14

5. Let A and B be n � n matrices.

(a) Show that A is nonsingular if and only if AT is nonsingular.

(b) Show that |AB| � |BA|. (Remember that, in general, AB �� BA.)

6. Let A and B be n � n matrices.

(a) Show that |AB| � 0 if and only if |A| � 0 or |B| � 0.

(b) Show that if AB � �BA and n is odd, then A or B is singular.

7. Let A and B be n � n matrices.

(a) Show that
∣∣AAT

∣∣	 0.

(b) Show that
∣∣ABT

∣∣�
∣∣AT

∣∣ |B|.
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8. Let A be an n � n skew-symmetric matrix.

(a) If n is odd, show that |A| � 0.

�(b) If n is even, give an example where |A| �� 0.

9. An orthogonal matrix is a (square) matrix A with AT � A�1.

(a) Why is In orthogonal?

�(b) Find a 3 � 3 orthogonal matrix other than I3.

(c) Show that |A| � 
1 if A is orthogonal.

10. Show that there is no matrix A such that

A2 �

⎡
⎣ 9 0 �3

3 2 �1
�6 0 1

⎤
⎦.

11. Give a proof by induction in each case.

(a) General form of Theorem 3.7: Assuming Theorem 3.7, prove |A1A2 · · ·
Ak| � |A1| |A2| · · · |Ak| for any n � n matrices A1,A2, . . . ,Ak.

(b) Prove
∣∣Ak

∣∣� |A|k for any n � n matrix A and any integer k 	 1.

(c) Let A be an n � n matrix. Show that if Ak � On, for some integer k 	 1,
then |A| � 0.

12. Suppose that |A| is an integer.

(a) Prove that |An| is not prime, for n 	 2. (Recall that a prime number is an
integer > 1 with no positive integer divisors except itself and 1.)

(b) Prove that if An � I, for some n 	 1, n odd, then |A| � 1.

13. We say that a matrix B is similar to a matrix A if there exists some (nonsingular)
matrix P such that P�1AP � B.

(a) Show that if B is similar to A, then they are both square matrices of the
same size.

�(b) Find two different matrices B similar to A �

[
1 2
3 4

]
.

(c) Show that every square matrix A is similar to itself.

(d) Show that if B is similar to A, then A is similar to B.

(e) Prove that if A is similar to B and B is similar to C, then A is similar to C.

(f ) Prove that if A is similar to In, then A � In.

(g) Show that if A and B are similar, then |A| � |B|.
�14. Let A and B be nonsingular matrices of the same size, with adjoints A and B.

Express (AB)�1 in terms of A, B, |A|, and |B|.
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15. If all entries of a (square) matrix A are integers and |A| � 
1, show that all
entries of A�1 are integers.

16. If A is an n � n matrix with adjoint A, show that AA � On if and only if A is
singular.

17. Let A be an n � n matrix with adjoint A.

(a) Show that the adjoint of AT is AT .

(b) Show that the adjoint of kA is kn�1A, for any scalar k.

18. (a) Prove that if A is symmetric with adjoint matrix A, then A is symmetric.
(Hint: Show that the cofactors Aij and Aji of A are equal.)

�(b) Give an example to show that part (a) is not necessarily true when
“symmetric” is replaced by “skew-symmetric.”

19. Use Corollary 3.12 to prove that if A is nonsingular and upper triangular, then
A�1 is also upper triangular.

20. Let A be a matrix with adjoint A.

(a) Prove that if A is singular, then A is singular. (Hint: Use Exercise 16 and a
proof by contradiction.)

(b) Prove that |A| � |A|n�1. (Hint: Consider the cases |A| � 0 and |A| �� 0.)

21. Recall the 3 � 3Vandermonde matrix from Exercise 16 of Section 3.1. For n 	 3,
the general n � n Vandermonde matrix is

Vn �

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
...

. . .
...

xn�1
1 xn�1

2 xn�1
3 · · · xn�1

n

⎤
⎥⎥⎥⎥⎥⎦.

If x1,x2, . . . ,xn are distinct real numbers, show that

|Vn| � (�1)n�1(x1 � xn)(x2 � xn) · · ·(xn�1 � xn)|Vn�1|.
(Hint: Subtract the last column from every other column, and use cofactor
expansion along the first row to show that |Vn| is equal or opposite
to the determinant of a matrix W of size (n � 1) � (n � 1). Next, divide
each column of W by the first element of that column, using the “col-
umn” version of part (1) of Theorem 3.3 to pull out the factors x1 � xn,
x2 � xn, . . . ,xn�1 � xn. (Note that

(
xk

1 � xk
n

)
/(x1 � xn) � xk�1

1 � xk�2
1 xn �

xk�3
1 x2

n � · · · � x1xk�2
n � xk�1

n .) Finally, create |Vn�1| from the resulting matrix
by going through each row from 2 to n in reverse order and adding �xn times
the previous row to it.)
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�22. True or False:

(a) If A is a nonsingular matrix, then |A�1| � 1
|AT | .

(b) If A is a 5 � 5 matrix, a cofactor expansion along the second row gives the
same result as a cofactor expansion along the third column.

(c) If B is obtained from a type (III) column operation on a square matrix A,
then |B| � |A|.

(d) The (i, j) entry of the adjoint of A is (�1)i�j |Aji|.
(e) For every nonsingular matrix A, we have AA � I.

(f ) For the system

⎧⎨
⎩

4x1 � 2x2 � x3 � �6
�3x2 � 4x3 � 5

x3 � 3
, x2 � � 1

12

∣∣∣∣∣∣
4 �6 �1
0 5 4
0 3 1

∣∣∣∣∣∣.
Taken together, the remaining exercises outline the proofs of Theorems 3.9,

3.10, 3.11, and 3.13 but not in the order in which these theorems were stated.
Almost every exercise in this group is dependent on those which precede it.

�23. This exercise will prove part (1) of Theorem 3.10.

(a) Show that if part (1) of Theorem 3.10 is true for some i � k with 2 � k � n,
then it is also true for i � k � 1. (Hint: Let B � R(A), where R is the row
operation 〈k〉 ↔ 〈k � 1〉. Show that |Bkj | � |A(k�1)j | for each j. Then apply
part (1) of Theorem 3.10 along the kth row of B.)

(b) Use part (a) to complete the proof of part (1) of Theorem 3.10.

�24. Let A be an n � n matrix. Prove that if A has two identical rows, then |A| � 0.
(This was also proven in Exercise 12 in Section 3.2.)

�25. Let A be an n � n matrix. Prove that ai1Aj1 � ai2Aj2 � · · · � ainAjn � 0, for
i �� j,1 � i, j � n. (Hint:Form a new matrix B,which has all entries equal to A,
except that both the ith and jth rows of B equal the ith row of A. Show that
the cofactor expansion along the jth row of B equals ai1Aj1 � ai2Aj2 � · · · �
ainAjn. Then apply Exercises 23 and 24.)

�26. Let A be an n � n matrix. Prove that AA � (|A|) In. (Hint: Use Exercises 23
and 25.)

�27. Let A be a nonsingular n � n matrix. Prove that AA � (|A|) In. (Hint: Use
Exercise 26 and Theorem 2.9.)

�28. Prove part (2) of Theorem 3.10 if A is nonsingular. (Hint: Use Exercise 27.)

�29. Let A be a singular n � n matrix. Prove that |A| � |AT |. (Hint: Use a proof by
contradiction to show AT is also singular, and then use Theorem 3.5.)

�30. Let A be an n � n matrix. Show that (Ajm)T � (AT )mj , for 1 � j, m � n, where
(AT )mj refers to the (m, j) submatrix of AT .
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�31. Let A be a nonsingular n � n matrix. Prove that |A| � |AT |. (Hint: Note that
AT is also nonsingular by part (4) of Theorem 2.11. Use induction on n.
The Base Step (n � 1) is straightforward. For the Inductive Step, show that a
cofactor expansion along the last column of A equals a cofactor expansion
along the last row of AT . (Use Exercise 30 to obtain that each minor |(AT )ni|
� |(Ain)T |, and then use either the inductive hypothesis or Exercise 29 to
show |(Ain)T | � |Ain|.) Finally, note that a cofactor expansion along the last
column of A equals |A| by Exercise 28.) (This exercise completes the proof of
Theorem 3.9.)

�32. Prove part (2) of Theorem 3.10 if A is singular. (Hint: Show that a cofactor
expansion along the jth column of A is equal to a cofactor expansion along
the jth row of AT . (Note that each |Akj | � |(Akj)

T | (from Exercises 29 and
31) � |(AT )jk| (by Exercise 30). Next, apply Exercise 23 to AT . Finally, use
Exercise 29.) (This exercise completes the proof of Theorem 3.10.)

�33. Let A be an n � n matrix. Prove that if A has two identical columns,then |A| � 0.
(Hint: Use Exercises 29 and 31 together with Exercise 24.)

�34. Let A be an n � n matrix. Prove that a1iA1j � a2iA2j � · · · � aniAnj � 0, for
i �� j,1 � i, j � n. (Hint:Use an argument similar to that in Exercise 25,but with
columns instead of rows. Use Exercises 28 and 32 together with Exercise 33.)

�35. Let A be a singular n � n matrix. Prove that AA � (|A|) In. (Hint: Use Exer-
cises 32 and 34.) (This exercise completes the proof of Theorem 3.11.)

�36. This exercise outlines the proof that Cramer’s Rule (Theorem 3.13) is valid. We
want to solve AX � B, where A is an n � n matrix with |A| �� 0. Assume n 	 2
(since the case n � 1 is trivial).

(a) Show that X � (1/|A|)(AB).

(b) Prove that the kth entry of X is (1/|A|)(b1A1k � · · · � bnAnk).

(c) Prove that |Ak| � b1A1k � · · · � bnAnk,where Ak is defined as in the state-
ment of Theorem 3.13. (Hint: Perform a cofactor expansion along the kth
column of Ak, and use part (2) of Theorem 3.10.)

(d) Explain how parts (b) and (c) together prove Theorem 3.13.

3.4 EIGENVALUES AND DIAGONALIZATION
In this section, we define eigenvalues and eigenvectors in the context of matrices,
in order to find, when possible, a diagonal form for a square matrix. Some of the
theoretical details involved cannot be discussed fully until we have introduced vector
spaces and linear transformations, which are covered in Chapters 4 and 5. Thus, we
will take a more comprehensive look at eigenvalues and eigenvectors at the end of
Chapter 5, as well as in Chapters 6 and 7.
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Eigenvalues and Eigenvectors

Definition Let A be an n � n matrix. A real number � is an eigenvalue of A if and
only if there is a nonzero n-vector X such that AX � �X. Also,any nonzero vector
X for which AX � �X is an eigenvector corresponding to the eigenvalue �.

In some textbooks,eigenvalues are called characteristic values and eigenvectors
are called characteristic vectors.

Notice that an eigenvalue can be zero. However, by definition, an eigenvector is
never the zero vector.

If X is an eigenvector associated with an eigenvalue � for an n � n matrix A, then
the matrix product AX is equivalent to performing the scalar product �X. Thus, AX
is parallel to the vector X,dilating (or lengthening) X if |�| > 1 and contracting (or
shortening) X if |�| < 1. Of course, if � � 0, then AX � 0.

Example 1
Consider the 3 � 3 matrix

A �

⎡
⎢⎣�4 8 �12

6 �6 12
6 �8 14

⎤
⎥⎦.

Now, � � 2 is an eigenvalue for A because a nonzero vector X exists such that AX � 2X. In
particular,

A

⎡
⎢⎣4

3
0

⎤
⎥⎦�

⎡
⎢⎣�4 8 �12

6 �6 12
6 �8 14

⎤
⎥⎦
⎡
⎢⎣4

3
0

⎤
⎥⎦�

⎡
⎢⎣8

6
0

⎤
⎥⎦� 2

⎡
⎢⎣4

3
0

⎤
⎥⎦.

Hence, X � [4,3,0] is an eigenvector corresponding to the eigenvalue 2. In fact, any nonzero
scalar multiple c of [4,3,0] is also an eigenvector corresponding to 2, because A(cX) �

c(AX) � c(2X) � 2(cX). Therefore, there are infinitely many eigenvectors corresponding to the
eigenvalue � � 2.

Definition Let A be an n � n matrix and � be an eigenvalue for A.Then the set E� �
{X | AX � �X} is called the eigenspace of �.

The eigenspace E� for a particular eigenvalue � of A consists of the set of all eigen-
vectors for A associated with �, together with the zero vector 0, since A0 � 0 ��0,
for any �.Thus, for the matrix A in Example 1, the eigenspace E2 contains (at least) all
of the scalar multiples of [4,3,0].
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The Characteristic Polynomial of a Matrix

Our next goal is to find a method for determining all the eigenvalues and eigenvectors
of an n � n matrix A. Now, if X is an eigenvector for A corresponding to the eigenvalue
�, then we have

AX � �X � �InX, or (�In � A)X � 0.

Therefore, X is a nontrivial solution to the homogeneous system whose coefficient
matrix is �In � A.Theorem 2.5 and Corollary 3.6 then show that |�In � A| � 0. Since
all of the steps in this argument are reversible, we have proved

Theorem 3.14 Let A be an n � n matrix and let � be a real number. Then � is an
eigenvalue of A if and only if |�In � A| � 0. The eigenvectors corresponding to � are
the nontrivial solutions of the homogeneous system (�In � A)X � 0. The eigenspace
E� is the complete solution set for this homogeneous system.

Because the determinant |�In � A| is useful for finding eigenvalues, we make the
following definition:

Definition If A is an n � n matrix, then the characteristic polynomial of A is
the polynomial pA (x) � |xIn � A|.

It can be shown that if A is an n � n matrix, then pA (x) is a polynomial of degree
n (see Exercise 23). From calculus,we know that pA (x) has at most n real roots. Now,
using this terminology, we can rephrase the first assertion of Theorem 3.14 as

The eigenvalues of an n � n matrix A are precisely the real roots of the characteristic
polynomial pA (x).

Example 2

The characteristic polynomial of A �

[
12 �51

2 �11

]
is

pA (x) � |xI2 � A|

�

∣∣∣∣∣
[

x 0
0 x

]
�

[
12 �51

2 �11

]∣∣∣∣∣�

∣∣∣∣∣x � 12 51
�2 x � 11

∣∣∣∣∣
� (x � 12)(x � 11) � 102

� x2 � x � 30 � (x � 6)(x � 5).



 

3.4 Eigenvalues and Diagonalization 181

Therefore, the eigenvalues of A are the solutions to pA (x) � 0; that is, �1 � 6 and �2 � �5.
We now find the eigenspace for each of the eigenvalues of A. For the eigenvalue �1 � 6, we

need to solve the homogeneous system (�1I2 � A)X � 0; that is, (6I2 � A)X � 0. Since

6I2 � A �

[
6 0
0 6

]
�

[
12 �51

2 �11

]
�

[
�6 51
�2 17

]
,

the augmented matrix for this system is

[6I2 � A |0] �

[
�6 51
�2 17

∣∣∣∣∣ 0
0

]
, which row reduces to

[
1 � 17

2
0 0

∣∣∣∣∣ 0
0

]
.

Using the method of Section 2.2 to express the solution set as a set of linear combinations of
particular solutions, we find that the complete solution set for this system is

{
b
[

17
2 ,1

] ∣∣∣ b ∈ R

}
.

This is the eigenspace E6 for the eigenvalue �1 � 6. After eliminating fractions, we can express
this eigenspace as E6 � {b [17,2] | b ∈ R}. Thus, the eigenvectors for �1 � 6 are precisely
the nonzero scalar multiples of X1 � [17,2]. We can check that [17,2] is an eigenvector
corresponding to �1 � 6 by noting that

AX1 �

[
12 �51

2 �11

][
17

2

]
�

[
102

12

]
� 6

[
17

2

]
� 6X1.

For the eigenvalue �2 � �5, we need to solve the homogeneous system (�2I2 � A)X � 0;
that is, (�5I2 � A)X � 0. Since

�5I2 � A �

[
�5 0

0 �5

]
�

[
12 �51

2 �11

]
�

[
�17 51

�2 6

]
,

the augmented matrix for this system is

[6I2 � A |0] �

[
�17 51

�2 6

∣∣∣∣∣ 0
0

]
, which row reduces to

[
1 �3
0 0

∣∣∣∣∣ 0
0

]
.

The complete solution set for this system is the eigenspace E�5 � {b [3,1] | b ∈ R}. Thus, the
eigenvectors for �2 � �5 are precisely the nonzero scalar multiples of X2 � [3,1]. You should
check that for this vector X2, we have AX2 � � 5X2.

Example 3
The characteristic polynomial of

B �

⎡
⎢⎣ 7 1 �1

�11 �3 2
18 2 �4

⎤
⎥⎦ is

pB (x) �

∣∣∣∣∣∣∣
⎡
⎢⎣x 0 0

0 x 0
0 0 x

⎤
⎥⎦�

⎡
⎢⎣ 7 1 �1

�11 �3 2
18 2 �4

⎤
⎥⎦
∣∣∣∣∣∣∣�

∣∣∣∣∣∣∣
x � 7 �1 1

11 x � 3 �2
�18 �2 x � 4

∣∣∣∣∣∣∣ ,
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which simplifies to pB (x) � x3 � 12x � 16 � (x � 2)2(x � 4). Hence, �1 � �2 and �2 � 4 are
the eigenvalues for B.

For the eigenvector �1 � �2, we need to solve the homogeneous system (�2I3 � B)X � 0.
Since

�2I3 � B �

⎡
⎢⎣�2 0 0

0 �2 0
0 0 �2

⎤
⎥⎦�

⎡
⎢⎣ 7 1 �1

�11 �3 2
18 2 �4

⎤
⎥⎦�

⎡
⎢⎣ �9 �1 1

11 1 �2
�18 �2 2

⎤
⎥⎦,

the augmented matrix for this system is

[
2I3 � B |0]�

⎡
⎢⎣ �9 �1 1

11 1 �2
�18 �2 2

∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎦, which row reduces to

⎡
⎢⎢⎢⎣

1 0 � 1
2

0 1 7
2

0 0 0

∣∣∣∣∣∣∣∣∣
0

0
0

⎤
⎥⎥⎥⎦ .

Thus, the complete solution set for this system is the eigenspace E�2 �
{

c
[

1
2 ,� 7

2 ,1
] ∣∣∣ c ∈ R

}
.

After multiplying by 2 to remove fractions, this is equivalent to E�2 � { c [1,�7,2] | c ∈ R}.
Hence, the eigenvectors for �1 � �2 are precisely the nonzero multiples of X1 � [1,�7,2].
You can verify that BX1 � �2X1.

Similarly, for the eigenvector �2 � 4, we need to solve the homogeneous system (4I3 � B)X
�0. Since

4I3 � B �

⎡
⎢⎣4 0 0

0 4 0
0 0 4

⎤
⎥⎦�

⎡
⎢⎣ 7 1 �1

�11 �3 2
18 2 �4

⎤
⎥⎦�

⎡
⎢⎣ �3 �1 1

11 7 �2
�18 �2 8

⎤
⎥⎦,

the augmented matrix for this system is

[
2I3 � B |0]�

⎡
⎢⎣ �3 �1 1

11 7 �2
�18 �2 8

∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎦, which row reduces to

⎡
⎢⎢⎢⎣

1 0 � 1
2

0 1 1
2

0 0 0

∣∣∣∣∣∣∣∣∣
0

0
0

⎤
⎥⎥⎥⎦ .

Thus, the complete solution set for this system is the eigenspace E4 �
{
c
[1

2 ,� 1
2 ,1

] ∣∣ c ∈ R
}
.

After multiplying by 2 to remove fractions, this is equivalent to E4 � { c [1,�1,2] | c ∈ R}. Thus,
the eigenvectors for �2 � 4 are precisely the nonzero multiples of X2 � [1,�1,2]. You can verify
that BX2 � 4X2.
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Example 4

Recall the matrix A �

⎡
⎢⎣�4 8 �12

6 �6 12
6 �8 14

⎤
⎥⎦ from Example 1. We will find all of the eigenvalues

and eigenspaces for A. The characteristic polynomial for A is
∣∣xI3 � A

∣∣, which is∣∣∣∣∣∣∣
⎡
⎢⎣x 0 0

0 x 0
0 0 x

⎤
⎥⎦�

⎡
⎢⎣�4 8 �12

6 �6 12
6 �8 14

⎤
⎥⎦
∣∣∣∣∣∣∣�

∣∣∣∣∣∣∣
x � 4 �8 12
�6 x � 6 �12
�6 8 x � 14

∣∣∣∣∣∣∣ .
Setting this equal to 0, we find that after some simplification, we obtain x3 � 4x2 � 4x �

x(x � 2)2 � 0, which yields two solutions: �1 � 2 and �2 � 0. (We already noted in Example
1 that 2 is an eigenvalue for A.)

For the eigenvector �1 � 2, we need to solve the homogeneous system (�1I3 � A)X � 0;
that is, (2I3 � A)X � 0. Since

2I3 � A �

⎡
⎢⎣2 0 0

0 2 0
0 0 2

⎤
⎥⎦�

⎡
⎢⎣�4 8 �12

6 �6 12
6 �8 14

⎤
⎥⎦�

⎡
⎢⎣ 6 �8 12

�6 8 �12
�6 8 �12

⎤
⎥⎦,

the augmented matrix for this system is

[
2I3 � A |0]�

⎡
⎢⎣ 6 �8 12

�6 8 �12
�6 8 �12

∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎦, which row reduces to

⎡
⎢⎢⎣1 � 4

3 2

0 0 0
0 0 0

∣∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎥⎦.

Thus, after multiplying to remove fractions, the complete solution set for this system is the
eigenspace E2 �

{
a[4,3,0] � b[�2,0,1] ∣∣ a,b ∈ R

}
. Setting a � 1, b � 0 produces the eigen-

vector [4,3,0] from Example 1. Let X1 � [4,3,0], and notice that AX1� 2X1. However, with
a � 0, b � 1, we also discover the eigenvector X2 � [�2,0,1]. You can verify that AX2 � 2X2.
Also, any nontrivial linear combination of X1 and X2 is also an eigenvector for A corresponding
to � (why?). In fact, the eigenspace E2 consists precisely of all the nontrivial linear combinations
of X1 and X2.

Similarly, we can find eigenvectors corresponding to �2 � 0 by row reducing

[
0I3 � A |0]�

⎡
⎢⎣ 4 �8 12

�6 6 �12
�6 8 �14

∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎦ to obtain

⎡
⎢⎣1 0 1

0 1 �1
0 0 0

∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎦,

which has the solution set E0 � { c[�1,1,1] | c ∈ R}. Therefore, the eigenvectors for A corre-
sponding to �2 � 0 are the nonzero scalar multiples of X3 � [�1,1,1]. You should check that
AX3 � 0X3.

Calculating the characteristic polynomial of a 4 � 4 or larger matrix can be tedious.
Computing the roots of the characteristic polynomial may also be difficult. Thus, in
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practice, you should use a calculator or computer with appropriate software to com-
pute the eigenvalues of a matrix. Numerical techniques for finding eigenvalues without
the characteristic polynomial are discussed in Section 9.3.

Diagonalization

One of the most important uses of eigenvalues and eigenvectors is in the diagonaliza-
tion of matrices. Because diagonal matrices have such a simple structure,it is relatively
easy to compute a matrix product when one of the matrices is diagonal. As we will
see later, other important matrix computations are also easier when using diagonal
matrices. Hence, if a given square matrix can be replaced by a corresponding diagonal
matrix, it could greatly simplify computations involving the original matrix.Therefore,
our next goal is to present a formal method for using eigenvalues and eigenvectors to
find a diagonal form for a given square matrix, if possible. Before stating the method,
we motivate it with an example.

Example 5
Consider again the 3 � 3 matrix

A �

⎡
⎢⎣�4 8 �12

6 �6 12
6 �8 14

⎤
⎥⎦.

In Example 4, we found the eigenvalues �1 � 2 and �2 � 0 of A. We also found eigenvectors
X � [4,3,0] and Y � [�2,0,1] for �1 � 2 and an eigenvector Z � [�1,1,1] for �2 � 0. We will
use these three vectors as columns for a 3 � 3 matrix

P �

⎡
⎢⎣4 �2 �1

3 0 1
0 1 1

⎤
⎥⎦.

Now, |P| � �1 (verify!), and so P is nonsingular. A quick calculation yields

P�1 �

⎡
⎢⎣ 1 �1 2

3 �4 7
�3 4 �6

⎤
⎥⎦.

We can now use A, P, and P�1 to compute a diagonal matrix D:

D � P�1AP �

⎡
⎢⎣ 1 �1 2

3 �4 7
�3 4 �6

⎤
⎥⎦
⎡
⎢⎣�4 8 �12

6 �6 12
6 �8 14

⎤
⎥⎦
⎡
⎢⎣4 �2 �1

3 0 1
0 1 1

⎤
⎥⎦�

⎡
⎢⎣2 0 0

0 2 0
0 0 0

⎤
⎥⎦.

Each main diagonal entry dii of D is an eigenvalue having an associated eigenvector in the
corresponding column of P.
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Example 5 motivates the following definition2:

Definition A matrix B is similar to a matrix A if there exists some (nonsingular)
matrix P such that P�1AP � B.

Hence, we see that the diagonal matrix D in Example 5 is similar to the original
matrix A. The computation(

P�1)�1
D
(
P�1)� PDP�1 � PP�1APP�1 �

(
PP�1)A (PP�1)� A

shows that A is also similar to D. Adapting this argument (or see Exercise 13 of
Section 3.3), we see that, in general, for any matrices A and B, A is similar to B if
and only if B is similar to A. Thus, we will frequently just say that A and B are similar,
without giving an “order” to the similarity relationship.

Other properties of the similarity relation between matrices were stated in
Exercise 13 of Section 3.3. For example, similar matrices must be square, have the
same size, and have equal determinants. Exercise 6 in this section shows that similar
matrices have identical characteristic polynomials.

The next theorem shows that the diagonalization process presented in Example 5
works for many matrices.

Theorem 3.15 Let A and P be n � n matrices such that each column of P is an eigen-
vector for A. If P is nonsingular, then D � P�1AP is a diagonal matrix similar to A. The
ith main diagonal entry dii of D is the eigenvalue for the eigenvector forming the ith
column of P.

The proof of Theorem 3.15 is not difficult, and we leave it, with hints, as
Exercise 20. Thus, the following technique can be used to diagonalize a matrix:

Method for Diagonalizing an n � n Matrix A (if possible) (Diagonalization Method)

Step 1: Calculate pA(x) � |xIn � A|.
Step 2: Find all real roots of pA(x) (that is, all real solutions to pA(x) � 0). These are the

eigenvalues �1,�2,�3, . . . ,�k for A.

Step 3: For each eigenvalue �m in turn:
Row reduce the augmented matrix [�mIn � A |0]. Use the result to obtain a

set of particular solutions of the homogeneous system (�mIn � A)X � 0 by setting
each independent variable in turn equal to 1 and all other independent variables
equal to 0. (You may eliminate fractions from these solutions by replacing them
with nonzero scalar multiples.)

2 This definition of similar matrices was also given in Exercise 13 of Section 3.3.
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We will often refer to the particular eigenvectors that are obtained in this manner
as fundamental eigenvectors.

Step 4: If, after repeating Step 3 for each eigenvalue, you have fewer than n fundamental
eigenvectors overall for A, then A cannot be put into diagonal form. Stop.

Step 5: Otherwise, form a matrix P whose columns are these n fundamental eigenvectors.
(This matrix P is nonsingular.)

Step 6: To check your work, verify that D � P�1AP is a diagonal matrix whose dii entry is
the eigenvalue for the fundamental eigenvector forming the ith column of P. Also
note that A � PDP�1.

The assertions in Step 4 that A cannot be diagonalized, and in Step 5 that P is
nonsingular, will not be proved here, but will follow from results in Section 5.6.

Example 6
Consider the 4 � 4 matrix

A �

⎡
⎢⎢⎢⎣

�4 7 1 4
6 �16 �3 �9

12 �27 �4 �15
�18 43 7 24

⎤
⎥⎥⎥⎦.

Step 1: A lengthy calculation gives pA(x) � x4 � 3x2 � 2x � x(x � 2)(x � 1)2.

Step 2: The eigenvalues of A are the roots of pA(x), namely, �1 � �1, �2 � 2, and �3 � 0.

Step 3: We first compute eigenvectors for �1 � �1. Row reducing
[
(�1)I4 � A |0] yields

⎡
⎢⎢⎢⎣

1 0 2 1
0 1 1 1
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣
0
0
0
0

⎤
⎥⎥⎥⎦.

Setting the first independent variable (corresponding to column 3) equal to 1 and the
second independent variable (column 4) equal to 0 gives a fundamental eigenvector
X1 � [�2,�1,1,0]. Setting the second independent variable equal to 1 and the first
independent variable equal to 0 gives a fundamental eigenvector X2 � [�1,�1,0,1].

Similarly, we row reduce
[
2I4 � A |0] to obtain the eigenvector

[
1
6 ,� 1

3 ,� 2
3 ,1

]
.

We multiply this by 6 to avoid fractions, yielding a fundamental eigenvector X3 �

[1,�2,�4,6]. Finally, from
[
0I4 � A |0], we obtain a fundamental eigenvector X4 �

[1,�3,�3,7].
Step 4: We have produced four fundamental eigenvectors for this 4 � 4 matrix, so we proceed

to Step 5.
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Step 5: Let

P �

⎡
⎢⎢⎢⎣

�2 �1 1 1
�1 �1 �2 �3

1 0 �4 �3
0 1 6 7

⎤
⎥⎥⎥⎦,

the matrix whose columns are our fundamental eigenvectors X1, X2, X3, X4.

Step 6: Calculating D � P�1AP, we verify that D is the diagonal matrix whose corresponding
entries on the main diagonal are the eigenvalues �1, �1, 2, and 0, respectively.

In Chapter 4, we will learn more about fundamental eigenvectors. Be careful!
Remember that for an eigenvalue �, any fundamental eigenvectors are only particular
vectors in the eigenspace E�. In fact, E� contains an infinite number of eigenvectors,
not just our fundamental eigenvectors.

Theorem 3.15 requires a nonsingular matrix P whose columns are eigenvectors for
A, as in Examples 5 and 6. However, such a matrix P does not always exist in general.
Thus, we have the following definition3:

Definition An n � n matrix A is diagonalizable if and only if there exists a
nonsingular n � n matrix P such that D � P�1AP is diagonal.

Nondiagonalizable Matrices

In the next two examples, we illustrate some square matrices that are not diagona-
lizable.

Example 7
Consider the matrix

B �

⎡
⎢⎣ 7 1 �1

�11 �3 2
18 2 �4

⎤
⎥⎦

from Example 3, where we found pB (x) � (x � 2)2(x � 4), thus giving us the eigenvalues �1 �

�2 and �2 � 4. Using Step 3 of the Diagonalization Method produces fundamental eigenvectors
[1,�7,2] for �1 � �2, and [1,�1,2] for �2 � 4. Since the method yields only two fundamental
eigenvectors for this 3 � 3 matrix, B cannot be diagonalized.

3 Although not explicitly stated in the definition, it can be shown that if such a matrix P exists, then the
columns of P must be eigenvectors of A (see Exercise 21).
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Example 8
Consider the 2 � 2 matrix

A �

[
cos� �sin �

sin � cos�

]
,

for some angle � (in radians). In Chapter 5, we will see that if a 2-vector X has its initial point
at the origin, then AX is the vector obtained by rotating X counterclockwise about the origin
through an angle of � radians. Now,

pA (x) �

∣∣∣∣∣(x � cos�) sin �

�sin � (x � cos�)

∣∣∣∣∣� x2 � (2cos�)x � 1.

Using the Quadratic Formula to solve for eigenvalues yields

� �
2cos� 


√
4cos2 � � 4

2
� cos� 


√
�sin2 �.

Thus, there are no eigenvalues unless � is an integral multiple of �. When there are no
eigenvalues, there cannot be any eigenvectors, and so in most cases A cannot be diagonalized.

The lack of eigenvectors for A makes perfect sense geometrically. If we rotate a vector X
beginning at the origin through an angle which is not a multiple of � radians, then the new
vector AX points in a direction that is not parallel to X. Thus, AX cannot be a scalar multiple
of X, and hence there are no eigenvalues. If � is an even multiple of �, then A � I2, and X is
rotated into itself. Therefore, 1 is an eigenvalue. (Here, AX � �1X.) If � is an odd multiple of �,
then AX is in the opposite direction as X, so �1 is an eigenvalue. (Here, AX � �1X.)

Algebraic Multiplicity of an Eigenvalue

Definition Let A be an n � n matrix,and let � be an eigenvalue for A. Suppose that
(x � �)k is the highest power of (x � �) that divides pA(x). Then k is called the
algebraic multiplicity of �.

Example 9
Recall the matrix A in Example 6 whose characteristic polynomial is pA (x) � x(x � 2)(x � 1)2.
The algebraic multiplicity of �1 � �1 is 2 (because the factor (x � 1) appears to the second
power in pA (x)), while the algebraic multiplicities of �2 � 2 and �3 � 0 are both 1.

Note that in Example 9, the algebraic multiplicity of each eigenvalue agrees with
the number of fundamental eigenvectors produced for that eigenvalue in Exam-
ple 6 by Step 3 of the Diagonalization Method. In Chapter 5, we will prove results
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that imply that, for any eigenvalue, the number of fundamental eigenvectors pro-
duced by the Diagonalization Method is always less than or equal to its algebraic
multiplicity.

Example 10
Recall the nondiagonalizable matrix B from Example 3 with pB (x) � (x � 2)2(x � 4). The eigen-
value �1 � �2 for B has algebraic multiplicity 2 because the factor (x � 2) appears to the second
power in pB (x). By the remark just before this example, we know that Step 3 of the Diagonal-
ization Method must produce two or fewer fundamental eigenvectors for �1 � �2. In fact, in
Example 7, we obtained only one fundamental eigenvector for �1 � �2.

Example 11
Consider the 3 � 3 matrix

A �

⎡
⎢⎣�3 �1 �2

�2 16 �18
2 9 �7

⎤
⎥⎦,

for which pA (x) � |xI3 � A| � x3 � 6x2 � 25x � x(x2 � 6x � 25) (verify!). Since x2 � 6x � 25
has no real solutions (try the Quadratic Formula), A has only one eigenvalue, � � 0, which has
algebraic multiplicity 1. Thus, the Diagonalization Method can produce only one fundamental
eigenvector for �, and hence a total of only one fundamental eigenvector overall. Therefore,
according to Step 4, A cannot be diagonalized.

Example 11 illustrates that if the sum of the algebraic multiplicities of all the eigen-
values for an n � n matrix A is less than n, then there is no need to proceed beyond
Step 2 of the Diagonalization Method. This is because we are assured that Step 3 can
not produce a sufficient number of fundamental eigenvectors, and so A cannot be
diagonalized.

Application: Large Powers of a Matrix

If D is a diagonal matrix, any positive integer power of D can be obtained by merely
raising each of the diagonal entries of D to that power (why?). For example,

[
3 0
0 �2

]12

�

[
312 0
0 (�2)12

]
�

[
531441 0

0 4096

]
.

Now, suppose that A and P are n � n matrices such that P�1AP � D, a diagonal
matrix. We know A � PDP�1. But then,

A2 � AA �
(
PDP�1)(PDP�1)� PD

(
P�1P

)
DP�1 � PDInDP�1 � PD2P�1.
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More generally, a straightforward proof by induction shows that for all positive
integers k, Ak � PDkP�1 (see Exercise 15). Hence, calculating positive powers of
A is relatively easy if the corresponding matrices P and D are known.

Example 12
We will use eigenvalues and eigenvectors to compute A11 for the matrix

A �

⎡
⎢⎢⎢⎣

�4 7 1 4
6 �16 �3 �9

12 �27 �4 �15
�18 43 7 24

⎤
⎥⎥⎥⎦

in Example 6. Recall that in that example, we found

P �

⎡
⎢⎢⎢⎣

�2 �1 1 1
�1 �1 �2 �3

1 0 �4 �3
0 1 6 7

⎤
⎥⎥⎥⎦ and D � P�1AP �

⎡
⎢⎢⎢⎣

�1 0 0 0
0 �1 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎥⎦.

Then, A � PDP�1, and so

A11 � PD11P�1

�

⎡
⎢⎢⎢⎣

�2 �1 1 1
�1 �1 �2 �3

1 0 �4 �3
0 1 6 7

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

�1 0 0 0
0 �1 0 0
0 0 2048 0
0 0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

�4 11 4 7
6 �19 �7 �12

�1 2 0 1
0 1 1 1

⎤
⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎣

�2050 4099 1 2050
4098 �8200 �3 �4101
8196 �16395 �4 �8199

�12294 24595 7 12300

⎤
⎥⎥⎥⎦.

The technique illustrated in Example 12 can also be adapted to calculate square
roots and cube roots of matrices (see Exercises 7 and 8).

Roundoff Error Involving Eigenvalues

The only technique described in this section for finding eigenvectors corresponding
to a given eigenvalue � is by solving the homogeneous linear system (�In � A)X � 0
using row reduction. However, if the numerical value for the eigenvalue � is slightly
in error, perhaps due to rounding, then the matrix (�In � A) will have inaccurate
entries.This might cause a calculator or software to obtain only the trivial solution for
(�In � A)X � 0, erroneously yielding no eigenvectors.
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Example 13

Let A �

[
0 2
1 0

]
. Then pA(x) � x2 � 2, and so the eigenvalues for A are �1 �

√
2 and �2 �

�
√

2. Suppose we try to find fundamental eigenvectors for �1 using 1.414 as an approximation
for

√
2. Row reducing

[ (
1.414I2 � A

)∣∣0]�

[
1.414 �2

�1 1.414

∣∣∣∣∣ 0
0

]
,

we obtain [
1 0
0 1

∣∣∣∣∣ 0
0

]
.

Thus, our approximation of the eigenvalue has resulted in a homogeneous system having only
the trivial solution, despite the fact that

(√
2I2 � A

)
X � 0 actually has nontrivial solutions such

as the eigenvector X � [√2,1] for A corresponding to �1 �
√

2.

There are several efficient numerical techniques that can be used other than the
Diagonalization Method that produce an eigenvector when we are working with an
approximate eigenvalue. While we do not consider them in this section, appropriate
techniques to resolve this problem can be found in Sections 8.10 and 9.3. Other
more advanced techniques can be found in the literature.You should not encounter a
problem with roundoff doing the exercises in this section.

� Supplemental Material: You have now covered the prerequisites for
Section 7.2,“Complex Eigenvalues and Complex Eigenvectors,” and for Section
9.3,“ The Power Method for Finding Eigenvalues.”

New Vocabulary
algebraic multiplicity (of an eigenvalue)
characteristic polynomial (of a matrix)
diagonalizable matrix
eigenspace

eigenvalue (characteristic value)
eigenvector (characteristic vector)
nondiagonalizable matrix
similar matrices

Highlights

■ � is an eigenvalue for A if there is some nonzero vector X for which AX � �X.
(X is then an eigenvector for �.)

■ The eigenvalues for A are the roots of the characteristic polynomial pA(x) �
|xIn � A|.
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■ The eigenvectors for an eigenvalue � are the nontrivial solutions of (�In �
A)X � 0.

■ The eigenspace E� for an eigenvalue � is the set of all eigenvectors for � together
with the zero vector.

■ Two matrices A and B are similar if B is obtained by multiplying A by a
nonsingular matrix P on one side and by P�1 on its other side.

■ Similar matrices are square, have the same size, have the same determinant, and
have the same characteristic polynomial.

■ Fundamental eigenvectors for � are found from the solution set of (�In �
A)X � 0 by setting each independent variable equal to 1 and all other inde-
pendent variables equal to 0. (Fractions are often eliminated for simplicity by
taking an appropriate scalar multiple.)

■ If A is an n � n matrix,and the Diagonalization Method produces n fundamental
eigenvectors for A, then A is diagonalizable. If P is a matrix whose columns are
these n fundamental eigenvectors, then P�1AP � D, a diagonal matrix whose
main diagonal entries are the eigenvalues of A.

■ If fewer than n fundamental eigenvectors are produced for A by the Diagonal-
ization Method, then A is nondiagonalizable.

■ The algebraic multiplicity of an eigenvalue � is the number of factors of x � � in
pA(x).

■ If the algebraic multiplicity of an eigenvalue is k, then k or fewer funda-
mental eigenvectors will emerge for that eigenvalue from the Diagonalization
Method.

■ If D � P�1AP is diagonal, then positive powers of A are easily computed using
Ak � PDkP�1.

EXERCISES FOR SECTION 3.4
1. Find the characteristic polynomial of each given matrix. (Hint: For part (e), do a

cofactor expansion along the third row.)

�(a)

[
3 1

�2 4

]

(b)

⎡
⎣2 5 8

0 �1 9
0 0 5

⎤
⎦

�(c)

⎡
⎣ 2 1 �1

�6 6 0
3 0 0

⎤
⎦

(d)

⎡
⎣5 1 4

1 2 3
3 �1 1

⎤
⎦

�(e)

⎡
⎢⎢⎣

0 �1 0 1
�5 2 �1 2

0 1 1 0
4 �1 3 0

⎤
⎥⎥⎦
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2. Solve for the eigenspace E� corresponding to the given eigenvalue � for each of
the following matrices. Express E� as a set of linear combinations of fundamental
eigenvectors.

�(a)

[
1 1

�2 4

]
, � � 2

(b)

⎡
⎣ 1 �1 �1

1 3 2
�3 �3 �2

⎤
⎦, � � 2

�(c)

⎡
⎣�5 2 0

�8 3 0
4 �2 �1

⎤
⎦, � � �1

3. Find all eigenvalues corresponding to each given matrix and their correspond-
ing algebraic multiplicities. Also, express each eigenspace as a set of linear
combinations of fundamental eigenvectors.

�(a)

[
1 3
0 1

]

(b)

[
2 �1
0 3

]

�(c)

⎡
⎣1 0 1

0 2 �3
0 0 �5

⎤
⎦

(d)

[
8 �21
3 �8

]

�(e)

⎡
⎣4 0 �2

6 2 �6
4 0 �2

⎤
⎦

(f )

⎡
⎣ 3 4 12

4 �12 3
12 3 �4

⎤
⎦

(g)

⎡
⎢⎢⎣

2 1 �2 �4
�2 �4 4 10

3 4 �5 �12
�2 �3 4 9

⎤
⎥⎥⎦

�(h)

⎡
⎢⎢⎣

3 �1 4 �1
0 3 �3 3

�6 2 �8 2
�6 �4 �2 �4

⎤
⎥⎥⎦

4. Use the Diagonalization Method to determine whether each of the following
matrices is diagonalizable. If so, specify the matrices D and P and check your
work by verifying that D � P�1AP.

�(a) A �

[
19 �48
8 �21

]

(b) A �

[
�18 40

�8 18

]

�(c) A �

[
13 �34

5 �13

]

�(d) A �

⎡
⎣�13 �3 18

�20 �4 26
�14 �3 19

⎤
⎦

(e) A �

⎡
⎣�3 3 �1

2 2 4
6 �3 4

⎤
⎦
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�(f ) A �

⎡
⎣ 5 �8 �12

�2 3 4
4 �6 �9

⎤
⎦

�(g) A �

⎡
⎣ 2 0 0

�3 4 1
3 �2 1

⎤
⎦

(h) A �

⎡
⎣�5 18 6

�2 7 2
1 �3 0

⎤
⎦

�(i) A �

⎡
⎢⎢⎣

3 1 �6 �2
4 0 �6 �4
2 0 �3 �2
0 1 �2 1

⎤
⎥⎥⎦

5. Use diagonalization to calculate the indicated powers of A in each case.

�(a) A15, where A �

[
4 �6
3 �5

]

(b) A30, where A �

⎡
⎣11 �6 �12

13 �6 �16
5 �3 �5

⎤
⎦

�(c) A49, where A is the matrix of part (b)

(d) A11, where A �

⎡
⎣ 4 �4 6

�1 2 �1
�1 4 �3

⎤
⎦

�(e) A10, where A �

⎡
⎣ 7 9 �12

10 16 �22
8 12 �16

⎤
⎦

6. Let A and B be n � n matrices. Prove that if A is similar to B,then pA (x) � pB(x).

7. Let A be a diagonalizable n � n matrix.

(a) Show that A has a cube root — that is, that there is a matrix B such that
B3 � A.

�(b) Give a sufficient condition for A to have a square root. Prove that your
condition is valid.

�8. Find a matrix A such that A3 �

⎡
⎣ 15 �14 �14

�13 16 17
20 �22 �23

⎤
⎦. (Hint: See Exercise 7.)

9. Prove that

[
a b
c d

]
has two distinct eigenvalues if (a � d)2 � 4bc > 0, one

distinct eigenvalue if (a � d)2 � 4bc � 0, and no eigenvalues if (a � d)2 �
4bc < 0.

10. Let A be an n � n matrix, and let k be a positive integer.
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(a) Prove that if � is an eigenvalue of A, then �k is an eigenvalue of Ak.

�(b) Give a 2 � 2 matrix A and an integer k that provide a counterexample to the
converse of part (a).

11. Suppose that A is a nonsingular n � n matrix. Prove that

pA�1(x) � (�x)n
∣∣A�1

∣∣pA

(
1

x

)
.

(Hint: First express pA
( 1

x

)
as
∣∣( 1

x

)
In � A

∣∣. Then collect the right-hand side into
one determinant.)

12. Let A be an upper triangular n � n matrix. (Note: The following assertions are
also true if A is a lower triangular matrix.)

(a) Prove that � is an eigenvalue for A if and only if � appears on the main
diagonal of A.

(b) Show that the algebraic multiplicity of an eigenvalue � of A equals the
number of times � appears on the main diagonal.

13. Let A be an n � n matrix. Prove that A and AT have the same characteristic
polynomial and hence the same eigenvalues.

14. (Note: You must have covered the material in Section 8.4 in order to do this
exercise.) Suppose that A is a stochastic n � n matrix. Prove that � � 1 is an
eigenvalue for A. (Hint: Let X � [1,1, . . .,1], and consider AT X. Then use Exer-
cise 13.) (This exercise implies that every stochastic matrix has a fixed point.
However, not all initial conditions reach this fixed point, as demonstrated in
Example 3 in Section 8.4.)

15. Let A, P, and D be n � n matrices with P nonsingular and P�1AP � D. Use a
proof by induction to show that Ak � PDkP�1, for every integer k > 0.

16. Let A be an n � n upper triangular matrix with all main diagonal entries distinct.
Prove that A is diagonalizable.

17. Prove that a square matrix A is singular if and only if � � 0 is an eigenvalue
for A.

18. Let A be a diagonalizable matrix. Prove that AT is diagonalizable.

19. Let A be a nonsingular diagonalizable matrix with all eigenvalues nonzero. Prove
that A�1 is diagonalizable.

20. This exercise outlines a proof of Theorem 3.15. Let A and P be given as stated
in the theorem.

(a) Suppose �i is the eigenvalue corresponding to Pi � ith column of P. Prove
that the ith column of AP equals �iPi .
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(b) Use the fact that P�1P � In to prove that P�1�iPi � �iei .

(c) Use parts (a) and (b) to finish the proof of Theorem 3.15.

21. Prove that if A and P are n � n matrices such that P is nonsingular and D �
P�1AP is diagonal, then for each i, Pi , the ith column of P, is an eigenvector for
A corresponding to the eigenvalue dii . (Hint: Note that PD � AP, and calculate
the ith column of both sides to show that diiPi � APi .)

22. Prove the following:Let A, B, and C be n � n matrices such that C � xA � B. If
at most k rows of A have nonzero entries, then |C| is a polynomial in x of degree
�k. (Hint: Use induction on n.)

23. (a) Show that the characteristic polynomial of a 2 � 2 matrix A is given by
x2 � (trace(A))x � |A|.

(b) Prove that the characteristic polynomial of an n � n matrix always has degree
n,with the coefficient of xn equal to 1. (Hint:Use induction and Exercise 22.)

(c) If A is an n � n matrix, show that the constant term of pA (x) is (�1)n |A|.
(Hint: The constant term of pA (x) equals pA (0).)

(d) If A is an n � n matrix, show that the coefficient of xn�1 in pA (x) is
�trace(A). (Hint: Use induction and Exercise 22.)

�24. True or False:

(a) If A is a square matrix, then 5 is an eigenvalue of A if AX � 5X for some
nonzero vector X.

(b) The eigenvalues of an n � n matrix A are the solutions of xIn � A � O.

(c) If � is an eigenvalue for an n � n matrix A, then any nontrivial solution of
(�In � A)X � 0 is an eigenvector for A corresponding to �.

(d) If D is the diagonal matrix created from an n � n matrix A by the Diag-
onalization Method, then the main diagonal entries of D are eigenvalues
of A.

(e) If A,P are n � n matrices and each column of P is an eigenvector for A, then
P is nonsingular and P�1AP is a diagonal matrix.

(f ) If A is a square matrix and pA (x) � (x � 3)2(x � 1),then the Diagonalization
Method cannot produce more than one fundamental eigenvector for the
eigenvalue �1.

(g) If a 3 � 3 matrix A has three distinct eigenvalues, then A is diagonalizable.

(h) If A � PDP�1, where D is a diagonal matrix, then An � PnDn(P�1)n.



 

Review Exercises for Chapter 3 197

REVIEW EXERCISES FOR CHAPTER 3

1. Consider A �

⎡
⎢⎢⎣

4 �5 2 �3
�6 1 �2 �4

3 �8 5 2
�7 0 �1 9

⎤
⎥⎥⎦.

(a) Find the (3,4) minor of A.

�(b) Find the (3,4) cofactor of A.

(c) Find |A| using cofactor expansion along the last row of A.

�(d) Find |A| using cofactor expansion along the second column of A.

2. Find the determinant of A �

⎡
⎣�4 7 �1

2 �3 �5
6 1 6

⎤
⎦ by basketweaving.

�3. Find the determinant of A �

⎡
⎢⎢⎣

2 0 �3 3
4 �2 �1 3
1 �1 0 �2
2 1 �2 1

⎤
⎥⎥⎦ by row reducing A to upper

triangular form.

4. Find the volume of the parallepiped determined by vectors x � [3,�2,5],y �
[�4,1,3],z � [2,2,�7].

�5. If A is a 4 � 4 matrix and |A| � �15,what is |B|, if B is obtained from A after the
indicated row operation?

(a) (I): 〈3〉 ← �4 〈3〉
(b) (II): 〈2〉 ← 5 〈1〉 � 〈2〉
(c) (III): 〈3〉 ↔ 〈

4
〉

6. Suppose A is a 4 � 4 matrix and |A| � �2.

(a) Is A nonsingular?

(b) What is rank(A)?

(c) Is A row equivalent to I4?

(d) Does AX � 0 have a unique solu-
tion?

�7. If A and B are 3 � 3 matrices, and |A| � �7 and |B| � 1
2 , what is | � 3AT B�1|?

8. Consider the matrix A �

⎡
⎣�4 7 6

3 �4 �4
�1 2 2

⎤
⎦.
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(a) Calculate the adjoint matrix A for A.

(b) Use A to find A�1.

9. Let A �

⎡
⎣ 1 5 �6

4 3 �2
�2 1 �2

⎤
⎦.

(a) Compute A�1.

(b) Use your answer to part (a) to compute A.

(c) Use part (b) to find the (2,3) cofactor of A.

(d) If B �

⎡
⎣1 3 �2

4 1 5
6 7 1

⎤
⎦, explain why we can not use the method outlined in

parts (a), (b), and (c) to compute the (2,3) cofactor of B.

�10. Solve the following system using Cramer’s Rule:

⎧⎨
⎩

2x1 � 3x2 � 2x3 � 11
3x1 � 4x2 � 3x3 � �9

�x1 � 2x2 � x3 � 3
.

�11. (a) Show that there is no matrix A such that A4 �

⎡
⎣ 5 �4 �2

�8 �3 3
�2 4 7

⎤
⎦.

(b) Show that there is no matrix A such that A�1 �

⎡
⎣ 3 �2 5

�1 1 4
1 0 13

⎤
⎦.

12. If B is similar to A, prove the following:

(a) Bk is similar to Ak (for any integer k > 0).

�(b) |BT | � |AT |.
(c) B is nonsingular if and only if A is nonsingular.

(d) If A and B are both nonsingular, then A�1 is similar to B�1.

�(e) B � In is similar to A � In.

(f ) Trace(B) � trace(A). (Hint: Use Exercise 26(c) in Section 1.5.)

(g) B is diagonalizable if and only if A is diagonalizable.

�13. This exercise outlines an alternate proof of Cramer’s Rule. Consider the linear
system having augmented matrix [A| B],with A nonsingular. Let Ai be the matrix
defined in Theorem 3.13. Let R be a row operation (of any type).

(a) Show that the ith matrix (as defined in Theorem 3.13) for the linear system
whose augmented matrix is R([A| B]) is equal to R(Ai).

(b) Prove that
|R(Ai)|
|R(A)| �

|Ai|
|A| .
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(c) Show that the solution for AX � B as given in Theorem 3.13 is correct in
the case when A � In.

(d) Use parts (a), (b), and (c) to prove that the solution for AX � B as given in
Theorem 3.13 is correct for any nonsingular matrix A.

14. For the given matrix A, find the characteristic polynomial, all the eigenvalues,
the eigenspace for each eigenvalue, a matrix P whose columns are fundamental
eigenvectors for A, and a diagonal matrix D similar to A. Check your work by
verifying that D � P�1AP.

(a) A �

⎡
⎣�8 14 �16

21 �48 53
21 �52 57

⎤
⎦

�(b) A �

⎡
⎣ 5 16 �16

�32 �67 64
�32 �64 61

⎤
⎦

15. Show that each of the following matrices is not diagonalizable according to the
Diagonalization Method.

(a) A �

⎡
⎣�2 1 �2

�1 1 �2
2 �1 1

⎤
⎦

�(b) A �

⎡
⎢⎢⎣

�468 �234 �754 299
324 162 525 �204
144 72 231 �93

�108 �54 �174 69

⎤
⎥⎥⎦. (Hint: pA(x) � x4 � 6x3 � 9x2.)

�16. For the matrix A �

⎡
⎣�21 22 16

�28 29 20
8 �8 �5

⎤
⎦, use diagonalization (as in Example 12 of

Section 3.4) to find A13.

�17. Let D � P�1AP, where D �

⎡
⎢⎢⎣

2 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 3

⎤
⎥⎥⎦ and P �

⎡
⎢⎢⎣

1 1 3 2
�2 0 7 8

1 0 �3 �4
1 1 2 3

⎤
⎥⎥⎦.

(a) What are the eigenvalues of A?

(b) Without using row reduction, give the eigenspaces for each eigenvalue in
part (a).

(c) What is |A|?
�18. True or False:

(a) If A and B are n � n matrices, n > 1, with |A| � |B|, then A � B.

(b) If A is symmetric, then the cofactors Aij and Aji are equal.
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(c) The submatrix Aij of any matrix A equals (�1)i�jAij .

(d) If the vectors x and y determine a parallelogram in R
2, then the determinant

of the matrix whose rows are x and y in either order gives the correct area
for the parallelogram.

(e) The volume of the parallelepiped determined by three vectors in R
3 equals

the absolute value of the determinant of the matrix whose columns are the
three vectors.

(f ) A lower triangular matrix having a zero on the main diagonal must be
singular.

(g) If an n � n matrix B is created by changing the order of the columns of a
matrix A, then either |B| � |A| or |B| � �|A|.

(h) If A is an n � n matrix such that Ae1 � 0, then |A| � 0.

(i) In general, for large square matrices, cofactor expansion along the last row
is the most efficient method for calculating the determinant.

(j) Any two n � n matrices having the same nonzero determinant are row
equivalent.

(k) If A and B are n � n matrices, n > 1,with |A| � |B|, then A can be obtained
from B by performing a type (II) row operation.

(l) A homogeneous system of linear equations having the same number of equa-
tions as variables has a nontrivial solution if and only if its coefficient matrix
has a nonzero determinant.

(m) If |AB| � 0, then |A| � 0 or |B| � 0.

(n) If A is nonsingular, then |A�1| � |A|
|A| .

(o) If A and B are n � n matrices, n > 1, with A singular, then |A � B| � |B|.
(p) If the main diagonal entries of a square matrix A are all zero, then |A| � 0.

(q) Since an eigenspace E� contains the zero vector as well as all fundamen-
tal eigenvectors corresponding to �, the total number of vectors in E�

is one more than the number of fundamental eigenvectors found in the
Diagonalization Method for �.

(r) The sum of the algebraic multiplicities of the eigenvalues for an n � n matrix
cannot exceed n.

(s) If A is an n � n matrix, then the coefficient of the xn term in pA(x) is 1.

(t) If A � P�1BP, then B � P�1AP.

(u) Every nonsingular n � n matrix is similar to In.

(v) For every root � of pA(x), there is at least one nonzero vector X such that
AX � �X.
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(w) If A is nonsingular and D � P�1AP is a diagonal matrix,then A�1 � PRP�1,
where R is the diagonal matrix whose diagonal entries are the reciprocals
of the corresponding diagonal entries of D.

(x) If � is not an eigenvalue for an n � n matrix A,then the homogeneous system
(�In � A)X � 0 has only the trivial solution.

(y) The sum of diagonalizable matrices is diagonalizable.

(z) The product of diagonalizable matrices is diagonalizable.

Summary of Techniques

We summarize here many of the computational techniques developed in Chapters 2
and 3. These computations should be done using calculators or computer software
packages if they cannot be done easily by hand.

Techniques for Solving a System AX � B of m Linear Equations
in n Unknowns

■ Gaussian elimination: Use row operations to find a matrix in row echelon
form that is row equivalent to [A|B]. Assign values to the independent vari-
ables and use back substitution to determine the values of the dependent
variables. Advantages: finds the complete solution set for any linear system;
fewer computational roundoff errors than Gauss-Jordan row reduction (Section
2.1).

■ Gauss-Jordan row reduction: Use row operations to find the matrix in
reduced row echelon form for [A|B]. Assign values to the independent vari-
ables and solve for the dependent variables. Advantages: easily computerized;
finds the complete solution set for any linear system (Section 2.2).

■ Multiplication by inverse matrix: Use when m � n and |A| �� 0.The solution
is X � A�1B. Disadvantage:A�1 must be known or calculated first,and therefore
the method is only useful when there are several systems to be solved with the
same coefficient matrix A (Section 2.4).

■ Cramer’s Rule: Use when m � n and |A| �� 0. The solution is x1 � |A1|/ |A| ,
x2 � |A2|/ |A| , . . . , xn � |An|/ |A|, where Ai (for 1 � i � n) and A are identi-
cal except that the ith column of Ai equals B. Disadvantage: efficient only
for small systems because it involves calculating n � 1 determinants of size n
(Section 3.3).

Other techniques for solving systems are discussed in Chapter 9. Among these
are LDU decomposition and iterative methods, such as the Gauss-Seidel and Jacobi
techniques.

Also remember that if m < n and B � 0 (homogeneous case), then there are an
infinite number of solutions to AX � B.
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Techniques for Finding the Inverse (if It Exists) of an n � n Matrix A

■ 2 � 2 case: The inverse of

[
a b
c d

]
exists if and only if ad � bc �� 0. In that case,

the inverse is given by
( 1

ad�bc

)[ d �b
�c a

]
(Section 2.4).

■ Row reduction: Row reduce [A| In] to [ In|A�1] (where A�1 does not exist
if the process stops prematurely). Advantages: easily computerized; relatively
efficient (Section 2.4).

■ Adjoint matrix: A�1 �
(

1
|A|
)
A,where A is the adjoint matrix of A. Advantage:

gives an algebraic formula for A�1. Disadvantage:not very efficient,because |A|
and all n2 cofactors of A must be calculated first (Section 3.3).

Techniques for Finding the Determinant of an n � n Matrix A
■ 2 � 2 case: |A| � a11a22 � a12a21 (Sections 2.4 and 3.1).

■ 3 � 3 case: Basketweaving (Section 3.1).

■ Row reduction: Row reduce A to an upper triangular form matrix B, keeping
track of the effect of each row operation on the determinant using a variable P.
Then |A| � ( 1

P )|B|, using the final value of P. Advantages: easily computerized;
relatively efficient (Section 3.2).

■ Cofactor expansion: Multiply each element along any row or column of A by
its cofactor and sum the results. Advantage: useful for matrices with many zero
entries. Disadvantage: not as fast as row reduction (Sections 3.1 and 3.3).

Also remember that |A| � 0 if A is row equivalent to a matrix with a row or column
of zeroes, or with two identical rows, or with two identical columns.

Technique for Finding the Eigenvalues of an n � n Matrix A
■ Characteristic polynomial: Find the roots of pA (x) � |xIn � A|. (We only con-

sider the real roots of pA(x) in Chapters 1 through 6.) Disadvantages: tedious to
calculate pA (x);polynomial becomes more difficult to factor as degree of pA (x)

increases (Section 3.4).

A more computationally efficient technique for finding eigenvalues is the Power
Method in Chapter 9. If the Power Method is used to compute an eigenvalue, it will
also produce a corresponding eigenvector.

Technique for Finding the Eigenvectors of an n � n Matrix A
■ Row reduction: For each eigenvalue � of A, solve (�In � A)X � 0 by row

reducing the augmented matrix [ (�In � A)|0] and taking the nontrivial solutions
(Section 3.4).



 

CHAPTER

4Finite Dimensional Vector
Spaces

DRIVEN TO ABSTRACTION

Students frequently wonder why mathematicians often feel the need to work in abstract
terms. Could abstract generalizations of common mathematical concepts have any real-
world applications? Most often, the answer is “Yes!” The inspiration for such generalizations
in linear algebra comes from considering the properties of vectors and matrices.

Generalization is necessary in linear algebra because studying R
n can take us only

so far. But as we will see, many other sets of mathematical objects, such as functions,
matrices, infinite series, and so forth, have properties in common with R

n. This suggests
that we should generalize our discussion of vectors to other sets of objects, which we call
vector spaces. By studying vector spaces whose objects share many of the same properties
of vectors in R

n, we reveal a more abstract theory with a wider range of applications than
we would obtain from a study of R

n alone.

In Chapter 1, we saw that the operations of addition and scalar multiplication on
the set Mmn possess many of the same algebraic properties as addition and scalar
multiplication on the set R

n. In fact, there are many other sets with comparable oper-
ations, and it is profitable to study them together. In this chapter, we define vector
spaces to be algebraic structures with operations having properties similar to those
of addition and scalar multiplication on R

n. We then establish many important results
relating to vector spaces. Because we are studying vector spaces as a class, this chap-
ter is more abstract than previous chapters. But the advantage of working in this
more general setting is that we generate theorems that apply to all vector spaces, not
just R

n.

Elementary Linear Algebra
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4.1 INTRODUCTION TO VECTOR SPACES
Definition of a Vector Space

InTheorems 1.3 and 1.11,we proved eight properties of addition and scalar multiplica-
tion in R

n and Mmn.These properties are important because all other results involving
these operations can be derived from them.We now introduce the general class of sets
called vector spaces,1 having operations of addition and scalar multiplication with
these same eight properties, as well as two closure properties.

Definition A vector space is a set V together with an operation called vector
addition (a rule for adding two elements of V to obtain a third element of V)
and another operation called scalar multiplication (a rule for multiplying a real
number times an element of V to obtain a second element of V) on which the
following ten properties hold:

For every u,v, and w in V , and for every a and b in R,

(A) u � v ∈V Closure Property of Addition
(B) au∈V Closure Property of Scalar

Multiplication
(1) u � v � v � u Commutative Law of Addition
(2) u � (v � w) � (u � v) � w Associative Law of Addition
(3) There is an element 0 of V so that Existence of Identity Element

for every y in V we have for Addition
0 � y � y � y � 0.

(4) There is an element �u in V such Existence of Additive Inverse
that u � (�u) � 0 � (�u) � u.

(5) a(u � v) � (au) � (av) Distributive Laws for Scalar
(6) (a � b)u � (au) � (bu) Multiplication over Addition
(7) (ab)u � a(bu) Associativity of Scalar

Multiplication
(8) 1u � u Identity Property for Scalar

Multiplication

The elements of a vector space V are called vectors.

The two closure properties require that both the operations of vector addition and
scalar multiplication always produce an element of the vector space as a result.

1 We actually define what are called real vector spaces, rather than just vector spaces. The word real
implies that the scalars involved in the scalar multiplication are real numbers. In Chapter 7,we consider
complex vector spaces,where the scalars are complex numbers. Other types of vector spaces involving
more general sets of scalars are not considered in this book.
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The standard plus sign,“�,” is used to indicate both vector addition and the sum of
real numbers, two different operations. All sums in properties (1), (2), (3), (4), and (5)
are vector sums. In property (6), the “�” on the left side of the equation represents
addition of real numbers; the “�”on the right side stands for the sum of two vectors.
In property (7), the left side of the equation contains one product of real numbers,ab,
and one instance of scalar multiplication, (ab) times u. The right side of property (7)
involves two scalar multiplications — first, b times u, then, a times the vector (bu).
Usually we can tell from the context which type of operation is being used.

In any vector space,the additive identity element in property (3) is unique,and the
additive inverse (property (4)) of each vector is unique (see the proof of part (3) of
Theorem 4.1 and Exercise 12).

Examples of Vector Spaces

Example 1
Let V � R

n, with addition and scalar multiplication of n-vectors as defined in Section 1.1. Since
these operations always produce vectors in R

n, the closure properties certainly hold for R
n. By

Theorem 1.3, the remaining eight properties hold as well. Thus, V � R
n is a vector space with

these operations.
Similarly, consider Mmn, the set of m � n matrices. The usual operations of matrix addition

and scalar multiplication on Mmn always produce m � n matrices, and so the closure properties
certainly hold for Mmn. By Theorem 1.11, the remaining eight properties hold as well. Hence,
Mmn is a vector space with these operations.

R
n and Mmn (with the usual operations of addition and scalar multiplication) are

representative of most of the vector spaces we consider here. Keep R
n and Mmn in

mind as examples later, as we consider theorems involving general vector spaces.
Some vector spaces can have additional operations. For example, R

n has the dot
product, and Mnn has matrix multiplication and the transpose. But these additional
structures are not shared by all vector spaces because they are not included in the
definition. We cannot assume the existence of any additional operations in a general
discussion of vector spaces. In particular, there is no such operation as multiplication
or division of one vector by another in general vector spaces.The only general vector
space operation that combines two vectors is vector addition.

Example 2
The set V � {0} is a vector space with the rules for addition and multiplication given by 0 � 0 � 0
and a0 � 0 for every scalar (real number) a. Since 0 is the only possible result of either operation,
V must be closed under both addition and scalar multiplication. A quick check verifies that the
remaining eight properties also hold for V. This vector space is called the trivial vector space,
and no smaller vector space is possible (why?).
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Example 3
Consider R

3 as the set of 3-vectors in three-dimensional space, all with initial points at the origin.
Let W be any plane containing the origin. W can also be considered as the set of all 3-vectors
whose terminal point lies in this plane (that is, W is the set of all 3-vectors that lie entirely in the
plane when drawn on a graph, since both the initial point and terminal point of each vector lie in
the plane). For example, in Figure 4.1, W is the plane containing the vectors u and v (elements
of W); q is not in W because its terminal point does not lie in the plane. We will prove that W
is a vector space.

To check the closure properties, we must show that the sum of any two vectors in W is a
vector in W and that any scalar multiple of a vector in W also lies in W.

If x and y are elements of W, then the parallelogram they form lies entirely in the plane,
because x and y do. Hence, the diagonal x � y of this parallelogram also lies in the plane,
so x � y is in W. This observation verifies that W is closed under vector addition (that is, the
closure property holds for vector addition). Notice that it is not enough to know that the sum of
two 3-vectors in W produces another 3-vector. We have to show that the sum they produce is
actually in the set W.

Next consider scalar multiplication. If x is a vector in W, then any scalar multiple of
x, ax, is either parallel to x or equal to 0. Therefore, ax lies in any plane through the
origin that contains x (in particular, W). Hence, ax is in W, and W is closed under scalar
multiplication.

We now check that the remaining eight vector space properties hold. Properties (1), (2),
(5), (6), (7), and (8) are true for all vectors in W by Theorem 1.3, since W ⊆ R

3. However,
properties (3) and (4) must be checked separately for W because they are existence properties.
We know that the zero vector and additive inverses exist in R

3, but are they in W? Now, 0 �

[0,0,0] is in W, because the plane W passes through the origin, thus proving property (3). Also,
the opposite (additive inverse) of any vector lying in the plane W also lies in W, thus proving
property (4). Hence, all eight properties and the closure properties are true, so W is a vector
space.

u
W

v

q

FIGURE 4.1

A plane W in R
3 containing the origin
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Example 4
Let Pn be the set of polynomials of degree �n, with real coefficients. The vectors in Pn have
the form p � anxn � · · · � a1x � a0 for some real numbers a0,a1, . . . ,an. We define addition of
polynomials in the usual manner — that is, by adding corresponding coefficients. Then the sum
of any two polynomials of degree �n also has degree �n and so is in Pn. Thus, the closure
property of addition holds. Similarly, if b is a real number and p � anxn � · · · � a1x � a0 is
in Pn, we define bp to be the polynomial (ban)xn � · · · � (ba1)x � ba0, which is also in Pn.
Hence, the closure property of scalar multiplication holds. Then, if the remaining eight vector
space properties hold, Pn is a vector space under these operations. We verify properties (1), (3),
and (4) of the definition and leave the others for you to check.

(1) Commutative Law of Addition: We must show that the order in which two vectors (poly-
nomials) are added makes no difference. Now, by the commutative law of addition for real
numbers,

(anxn � · · · � a1x � a0) �
(
bnxn � · · · � b1x � b0

)
� (an � bn)xn � · · · � (a1 � b1)x � (a0 � b0)

� (bn � an)xn � · · · � (b1 � a1)x � (b0 � a0)

� (bnxn � · · · � b1x � b0) � (anxn � · · · � a1x � a0).

(3) Existence of Identity Element for Addition: The zero-degree polynomial z � 0xn � · · · �

0x � 0 acts as the additive identity element 0. That is, adding z to any vector p � anxn � · · · �

a1x � a0 does not change the vector:

z � p � (0 � an)xn � · · · � (0 � a1)x � (0 � a0) � p.

(4) Existence of Additive Inverse: We must show that each vector p � anxn � · · · � a1x �

a0 in Pn has an additive inverse in Pn. But, the vector �p � �(anxn � · · · � a1x � a0) �

(�an)xn � · · · � (�a1)x � (�a0) has the property that p � [�p] � z, the zero vector, and so
�p acts as the additive inverse of p. Because �p is also in Pn, we are done.

The vector space in Example 4 is similar to our prototype R
n. For any polynomial in

Pn,consider the sequence of its n � 1 coefficients.This sequence completely describes
that polynomial and can be thought of as an (n � 1)-vector. For example,a polynomial
a2x2 � a1x � a0 in P2 can be described by the 3-vector [a2,a1,a0]. In this way, the
vector space P2 “resembles”the vector space R

3,and in general,Pn “resembles”R
n�1.

We will frequently capitalize on this “resemblance”in an informal way throughout the
chapter. We will formalize this relationship between Pn and R

n�1 in Section 5.5.

Example 5
The set P of all polynomials (of all degrees) is a vector space under the usual (term-by-term)
operations of addition and scalar multiplication (see Exercise 15).



 

208 CHAPTER 4 Finite Dimensional Vector Spaces

Example 6
Let V be the set of all real-valued functions defined on R. For example, f (x) � arctan(x) is in V. We
define addition of functions as usual: h � f � g is the function such that h(x) � f (x) � g(x), for
every x ∈ R. Similarly, if a ∈ R and f is in V, we define the scalar multiple h � af to be the function
such that h(x) � af (x), for every x ∈ R. Now, the closure properties hold for V because sums
and scalar multiples of real-valued functions produce real-valued functions. To finish verifying
that V is a vector space, we must check that the remaining eight vector space properties hold.

Suppose that f ,g, and h are in V, and a and b are real numbers.
Property (1): For every x in R, f (x) and g(x) are both real numbers. Hence, f (x) � g(x) �

g(x) � f (x) for all x ∈ R, by the commutative law of addition for real numbers, so each represents
the same function of x. Hence, f � g � g � f .

Property (2): For every x ∈ R, f (x) �
(
g(x) � h(x)

)
�
(
f (x) � g(x)

)
� h(x), by the associa-

tive law of addition for real numbers. Thus, f � (g � h) � (f � g) � h.
Property (3): Let z be the function given by z(x) � 0 for every x ∈ R. Then, for each x, z(x) �

f (x) � 0 � f (x) � f (x). Hence, z � f � f .
Property (4): Given f in V, define �f by [�f ](x) � �(f (x)) for every x ∈ R. Then, for all

x, [�f ](x) � f (x) � �(f (x)) � f (x) � 0. Therefore, [�f ] � f � z, the zero vector, and so the
additive inverse of f is also in V.

Properties (5) and (6): For every x ∈ R, a(f (x) � g(x)) � af (x) � ag(x) and (a � b)f (x) �

af (x) � bf (x) by the distributive laws for real numbers of multiplication over addition. Hence,
a(f � g) � af � ag, and (a � b)f � af � bf .

Property (7): For every x ∈ R,(ab)f (x) � a(bf (x)) follows from the associative law of multi-
plication for real numbers. Hence, (ab)f � a(bf ).

Property (8): Since 1 · f (x) � f (x) for every real number x, we have 1 · f � f in V.

Two Unusual Vector Spaces

The next two examples place unusual operations on familiar sets to create new vector
spaces. In such cases, regardless of how the operations are defined, we sometimes
use the symbols ⊕ and � to denote addition and scalar multiplication, respectively, in
order to remind ourselves that these operations are not the “regular” ones. Note that
⊕ is defined differently in Examples 7 and 8 (and similarly for �).

Example 7
Let V be the set R

� of positive real numbers. This set is not a vector space under the usual
operations of addition and scalar multiplication (why?). However, we can define new rules for
these operations to make V a vector space. In what follows, we sometimes think of elements of
R

� as abstract vectors (in which case we use boldface type, such as v) or as the values on the
positive real number line they represent (in which case we use italics, such as v).

To define “addition” on V, we use multiplication of real numbers. That is,

v1 ⊕ v2 � v1 · v2
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for every v1 and v2 in V, where we use the symbol ⊕ for the “addition” operation on V to
emphasize that this is not addition of real numbers. The definition of a vector space states only
that vector addition must be a rule for combining two vectors to yield a third vector so that
properties (1) through (8) hold. There is no stipulation that vector addition must be at all similar
to ordinary addition of real numbers.2

We next define “scalar multiplication,” �, on V by

a � v � va

for every a ∈ R and v ∈ V.
From the given definitions, we see that if v1 and v2 are in V and a is in R, then both v1 ⊕ v2

and a � v1 are in V, thus verifying the two closure properties. To prove the other eight properties,
we assume that v1,v2,v3 ∈ V and that a,b ∈ R. We then have the following:

Property (1): v1 ⊕ v2 � v1 · v2 � v2 · v1 (by the commutative law of multiplication for real
numbers) � v2 ⊕ v1.

Property (2): v1 ⊕ (v2 ⊕ v3) � v1 ⊕ (v2 · v3) � v1 · (v2 · v3) � (v1 · v2) · v3 (by the associa-
tive law of multiplication for real numbers) � (v1 ⊕ v2) · v3 � (v1 ⊕ v2) ⊕ v3.

Property (3): The number 1 in R
� acts as the zero vector 0 in V (why?).

Property (4): The additive inverse of v in V is the positive real number (1/v), because
v ⊕ (1/v) � v · (1/v) � 1, the zero vector in V.

Property (5): a � (v1 ⊕ v2) � a � (v1 · v2) � (v1 · v2)a � va
1 · va

2 � (a � v1) · (a � v2) �

(a � v1) ⊕ (a � v2).
Property (6): (a � b) � v � va�b � va · vb � (a � v) · (b � v) � (a � v) ⊕ (b � v).

Property (7): (ab) � v � vab �
(
vb)a � (b � v)a � a � (b � v).

Property (8): 1 � v � v1 � v.

Example 8
Let V � R

2, with addition defined by

[x,y] ⊕ [w,z] � [x � w � 1, y � z � 2]

and scalar multiplication defined by

a � [x,y] � [ax � a � 1, ay � 2a � 2] .

The closure properties hold for these operations (why?). In fact, V forms a vector space because
the eight vector properties also hold. We verify properties (2), (3), (4), and (6) and leave the
others for you to check.

2 You might expect the operation ⊕ to be called something other than“addition.”However,most of our
vector space terminology comes from the motivating example of R

n, so the word addition is a natural
choice for the name of the operation.
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Property (2): [x,y] ⊕ ([u,v] ⊕ [w,z]) � [x,y] ⊕ [u � w � 1, v � z � 2]
� [x � u � w � 2, y � v � z � 4]
� [x � u � 1, y � v � 2] ⊕ [w,z]
� ([x,y] ⊕ [u,v]) ⊕ [w,z].

Property (3): The vector [�1,2] acts as the zero vector, since

[x,y] ⊕ [�1,2] � [x � (�1) � 1, y � 2 � 2] � [x,y].
Property (4): The additive inverse of [x,y] is [�x � 2,�y � 4], because

[x,y] ⊕ [�x � 2,�y � 4] � [x � x � 2 � 1, y � y � 4 � 2] � [�1,2],
the zero vector in V.

Property (6):

(a � b) � [x,y] � [(a � b)x � (a � b) � 1, (a � b)y � 2(a � b) � 2]

� [(ax � a � 1) � (bx � b � 1) � 1, (ay � 2a � 2) � (by � 2b � 2) � 2]

� [ax � a � 1, ay � 2a � 2] ⊕ [bx � b � 1, by � 2b � 2]
�
(
a � [x,y])⊕ (b � [x,y]) .

Some Elementary Properties of Vector Spaces

The next theorem contains several simple results regarding vector spaces. Although
these are obviously true in the most familiar examples,we must prove them in general
before we know they hold in every possible vector space.

Theorem 4.1 Let V be a vector space. Then, for every vector v in V and every real
number a, we have

(1) a0 � 0 Any scalar multiple of the zero vector yields
the zero vector.

(2) 0v � 0 The scalar zero multiplied by any vector yields
the zero vector.

(3) (�1)v � �v The scalar �1 multiplied by any vector yields
the additive inverse of that vector.

(4) If av � 0, then If a scalar multiplication yields the zero vector,
a � 0 or v � 0. then either the scalar is zero, or the vector

is the zero vector, or both.

Part (3) justifies the notation for the additive inverse in property (4) of the definition
of a vector space and shows we do not need to distinguish between �v and (�1)v.
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This theorem must be proved directly from the properties in the definition of a
vector space because at this point we have no other known facts about general vector
spaces. We prove parts (1), (3), and (4). The proof of part (2) is similar to the proof of
part (1) and is left as Exercise 18.

Proof. (Abridged):
Part (1): By direct proof,

a0 � a0 � 0 by property (3)

� a0 � (a0 � (�[a0])) by property (4)

� (a0 � a0) � (�[a0]) by property (2)

� a(0 � 0) � (�[a0]) by property (5)

� a0 � (�[a0]) by property (3)

� 0. by property (4)

Part (3): First, note that v � (�1)v � 1v � (�1)v (by property (8)) � (1 � (�1))v (by
property (6)) � 0v � 0 (by part (2) of Theorem 4.1). Therefore, (�1)v acts as an additive
inverse for v. We will finish the proof by showing that the additive inverse for v is unique.
Hence, (�1)v will be the additive inverse of v.

Suppose that x and y are both additive inverses for v. Thus, x � v � 0 and v � y � 0.
Hence,

x � x � 0 � x � (v � y) � (x � v) � y � 0 � y � y.

Therefore, any two additive inverses of v are equal. (Note that this is, in essence, the same
proof we gave for Theorem 2.10, the uniqueness of inverse for matrix multiplication. You
should compare these proofs.)

Part (4): This is an “If A then B or C” statement. Therefore, we assume that av � 0 and
a �� 0 and show that v � 0. Now,

v � 1v by property (8)

�
( 1

a · a
)
v because a �� 0

�
( 1

a

)
(av) by property (7)

�
( 1

a

)
0 because av � 0

� 0. by part (1) of Theorem 4.1

Theorem 4.1 is valid even for unusual vector spaces, such as those in Examples 7
and 8. For instance, part (4) of the theorem claims that, in general, av � 0 implies
a � 0 or v � 0. This statement can quickly be verified for the vector space V � R

�

with operations ⊕ and � from Example 7. In this case,a � v � va,and the zero vector
0 is the real number 1. Then, part (4) is equivalent here to the true statement that
va � 1 implies a � 0 or v � 1.
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Applying parts (2) and (3) of Theorem 4.1 to an unusual vector space V gives
a quick way of finding the zero vector 0 of V and the additive inverse �v for any vec-
tor v in V . For instance, in Example 8, we have V � R

2 with scalar multiplication
a � [x,y] � [ax � a � 1,ay � 2a � 2]. To find the zero vector 0 in V , we simply
multiply the scalar 0 by any general vector [x,y] in V :

0 � 0 � [x,y] � [0x � 0 � 1, 0y � 2(0) � 2] � [�1,2].
Similarly, if [x,y] ∈ V , then �1 � [x,y] gives the additive inverse of [x,y].

�[x,y] � �1 � [x,y] � [�1x � (�1) � 1,�1y � 2(�1) � 2]

� [�x � 2,�y � 4] .

Failure of the Vector Space Conditions

We conclude this section by considering some sets that are not vector spaces to see
what can go wrong.

Example 9
The set � of real-valued functions, f , defined on the interval [0,1] such that f

( 1
2

)
� 1, is not a

vector space under the usual operations of function addition and scalar multiplication because
the closure properties do not hold. If f and g are in �, then

( f � g)

(
1

2

)
� f

(
1

2

)
� g

(
1

2

)
� 1 � 1 � 2 �� 1,

so f � g is not in �. Therefore, � is not closed under addition and cannot be a vector space. (Is
� closed under scalar multiplication?)

Example 10
Let  be the set R

2 with operations

v1 ⊕ v2 � v1 � v2 and c � v � c(Av), where A �

[
�3 1

5 �2

]
.

With these operations,  is not a vector space. You can verify that  is closed under ⊕ and
�, but properties (7) and (8) of the definition are not satisfied. For example, property (8) fails
since

1 �
[

2
7

]
� 1

([
�3 1

5 �2

][
2
7

])
� 1

[
1

�4

]
�

[
1

�4

]
��
[

2
7

]
.
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New Vocabulary
closure properties
scalar multiplication (in a general

vector space)
trivial vector space

vector addition (in a general vector
space)

vector space
vectors (in a general vector space)

Highlights

■ Vector spaces have two specified operations:vector addition (�) and scalar mul-
tiplication (·). A vector space is closed under these operations and possesses
eight additional fundamental properties (as stated in the definition).

■ The smallest possible vector space is the trivial vector space.

■ Familiar vector spaces (under natural operations) include R
n, Mmn,Pn,P ,

a line through the origin, a plane through the origin, all real-valued functions.

■ Any scalar multiple of the zero vector equals the zero vector.

■ The scalar 0 times any vector equals the zero vector.

■ The scalar �1 times any vector gives the additive inverse of the vector.

■ If a scalar multiple of a vector equals the zero vector, then either the scalar is
zero or the vector is zero.

EXERCISES FOR SECTION 4.1
Remember: To verify that a given set with its operations is a vector space, you must
prove the two closure properties as well as the remaining eight properties in the
definition.To show that a set with operations is not a vector space,you need only find
an example showing that one of the closure properties or one of the remaining eight
properties is not satisfied.

1. Rewrite properties (2), (5), (6), and (7) in the definition of a vector space using
the symbols ⊕ for vector addition and � for scalar multiplication. (The notations
for real number addition and multiplication should not be changed.)

2. Prove that the set of all scalar multiples of the vector [1,3,2] in R
3 forms a

vector space with the usual operations on 3-vectors.

3. Verify that the set of polynomials f in P3 such that f (2) � 0 forms a vector
space with the standard operations.

4. Prove that R is a vector space using the operations ⊕ and � given by x ⊕ y �(
x3 � y3

)1/3
and a � x �

(
3
√

a
)
x.
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�5. Show that the set of singular 2 � 2 matrices under the usual operations is not
a vector space.

6. Prove that the set of nonsingular n � n matrices under the usual operations is
not a vector space.

7. Show that R,with ordinary addition but with scalar multiplication replaced by
a � x � 0 for every real number a, is not a vector space.

�8. Show that the set R,with the usual scalar multiplication but with addition given
by x ⊕ y � 2(x � y), is not a vector space.

9. Show that the set R
2, with the usual scalar multiplication but with vector

addition replaced by [x,y] ⊕ [w,z] � [x � w,0], does not form a vector space.

10. Let A � R, with the operations ⊕ and � given by x ⊕ y �
(
x5 � y5

)1/5
and

a � x � ax. Determine whether A is a vector space. Prove your answer.

11. Let A be a fixed m � n matrix, and let B be a fixed m-vector (in R
m). Let V be

the set of solutions X (in R
n) to the matrix equation AX � B. Endow V with

the usual n-vector operations.

(a) Assume V is nonempty. Show that the closure properties are satisfied in V
if and only if B � 0.

(b) Explain why properties (1), (2), (5), (6), (7), and (8) in the definition of a
vector space have already been proved for V in Theorem 1.3.

(c) Prove that property (3) in the definition of a vector space is satisfied if and
only if B � 0.

(d) Explain why property (4) in the definition makes no sense unless property
(3) is satisfied. Prove property (4) when B � 0.

(e) Use parts (a) through (d) of this exercise to determine necessary and
sufficient conditions for V to be a vector space.

12. Let V be a vector space. Prove that the identity element for vector addition in
V is unique. (Hint: Use a proof by contradiction.)

13. The set R
2 with operations [x,y] ⊕ [w,z] � [x � w � 2, y � z � 3] and

a � [x,y] � [ax � 2a � 2,ay � 3a � 3] is a vector space. Use parts (2) and (3)
of Theorem 4.1 to find the zero vector 0 and the additive inverse of each
vector v � [x,y] for this vector space. Then check your answers.

14. Let V be a vector space. Prove the following cancellation laws:

(a) If u,v, and w are vectors in V for which u � v � w � v, then u � w.

(b) If a and b are scalars and v �� 0 is a vector in V with av � bv, then a � b.

(c) If a �� 0 is a scalar and v,w ∈ V with av � aw, then v � w.
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15. Prove that the set P of all polynomials with real coefficients forms a vector
space under the usual operations of polynomial (term-by-term) addition and
scalar multiplication.

16. Let X be any set, and let V � {all real-valued functions with domain X}. Prove
that V is a vector space using ordinary addition and scalar multiplication of
real-valued functions. (Hint: Alter the proof in Example 6 appropriately.)

17. Let v1, . . . ,vn be vectors in a vector space V , and let a1, . . . ,an be any real
numbers. Use induction to prove that �n

i�1aivi is in V .

18. Prove part (2) of Theorem 4.1.

19. Prove that every nontrivial vector space has an infinite number of distinct
elements.

�20. True or False:

(a) The set R
n under any operations of “addition”and “scalar multiplication” is

a vector space.

(b) The set of all polynomials of degree 7 is a vector space under the usual
operations of addition and scalar multiplication.

(c) The set of all polynomials of degree �7 is a vector space under the usual
operations of addition and scalar multiplication.

(d) If x is a vector in a vector space V , and c is a nonzero scalar, then cx � 0
implies x � 0.

(e) In a vector space, scalar multiplication by the zero scalar always results in
the zero scalar.

(f ) In a vector space, scalar multiplication of a vector x by �1 always results
in the additive inverse of x.

(g) The set of all real-valued functions f on R such that f (1) � 0 is a vector
space under the usual operations of addition and scalar multiplication.

4.2 SUBSPACES
Section 4.1 presented several examples in which two vector spaces share the same
addition and scalar multiplication operations,with one as a subset of the other. In fact,
most of these examples involve subsets of either R

n,Mmn,or the vector space of real-
valued functions defined on some set (see Exercise 16 in Section 4.1). As we will see,
when a vector space is a subset of a known vector space and has the same operations,
it becomes easier to handle. These subsets, called subspaces, also provide additional
information about the larger vector space.
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Definition of a Subspace and Examples

Definition Let V be a vector space. Then W is a subspace of V if and only if
W is a subset of V , and W is itself a vector space with the same operations
as V .

That is, W is a subspace of V if and only if W is a vector space inside V such that
for every a in R and every v and w in W ,v � w and av yield the same vectors when
the operations are performed in W as when they are performed in V .

Example 1
Example 3 of Section 4.1 showed that the set of points lying on a plane W through the origin in
R

3 forms a vector space under the usual addition and scalar multiplication in R
3. W is certainly

a subset of R
3. Hence, the vector space W is a subspace of R

3.

Example 2
The set S of scalar multiples of the vector [1,3,2] in R

3 forms a vector space under the
usual addition and scalar multiplication in R

3 (see Exercise 2 in Section 4.1). S is certainly
a subset of R

3. Hence, S is a subspace of R
3. Notice that S corresponds geometrically

to the set of points lying on the line through the origin in R
3 in the direction of the vector

[1,3,2] (see Figure 4.2). In the same manner, every line through the origin determines a sub-
space of R

3 — namely, the set of scalar multiples of a nonzero vector in the direction of that
line.

y

x

z

[1, 3, 2]

FIGURE 4.2

Line containing all scalar multiples of [1,3,2]
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Example 3
Let V be any vector space. Then V is a subspace of itself (why?). Also, if W is the subset {0} of
V, then W is a vector space under the same operations as V (see Example 2 of Section 4.1).
Therefore, W � {0} is a subspace of V.

Although the subspaces V and {0} of a vector space V are important,they occasion-
ally complicate matters because they must be considered as special cases in proofs.
The subspace W � {0} is called the trivial subspace of V . A vector space containing
at least one nonzero vector has at least two distinct subspaces, the trivial subspace
and the vector space itself. In fact, under the usual operations, R has only these two
subspaces (see Exercise 16).

All subspaces of V other than V itself are called proper subspaces of V . If we
consider Examples 1 to 3 in the context of R

3, we find at least four different types of
subspaces of R

3. These are the trivial subspace {[0,0,0]} � {0}, subspaces like Exam-
ple 2 that can be geometrically represented as a line (thus “resembling”R), subspaces
like Example 1 that can be represented as a plane (thus “resembling” R

2), and the
subspace R

3 itself.3 All but the last are proper subspaces. Later we will show that
each subspace of R

3 is, in fact, one of these four types. Similarly, we will show later
that all subspaces of R

n “resemble” {0},R,R2,R3, . . . ,Rn�1, or R
n.

Example 4
Consider the vector spaces (using ordinary function addition and scalar multiplication) in the
following chain:

P0 ⊂ P1 ⊂ P2 ⊂ ·· · ⊂ P
⊂ {differentiable real-valued functions on R}
⊂ {continuous real-valued functions on R}
⊂ {all real-valued functions on R}.

Some of these we encountered in Section 4.1, and the rest are discussed in Exercise 7 of this
section. Each of these vector spaces is a proper subspace of every vector space after it in the
chain (why?).

When Is a Subset a Subspace?

It is important to note that not every subset of a vector space is a subspace. A subset
S of a vector space V fails to be a subspace of V if S does not satisfy the properties of
a vector space in its own right or if S does not use the same operations as V .

3 Although some subspaces of R
3 “resemble”R and R

2 geometrically,note that R and R
2 are not actually

subspaces of R
3 because they are not subsets of R

3.
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Example 5
Consider the first quadrant in R

2 — that is, the set � of all 2-vectors of the form [x,y] where x 	 0
and y 	 0. This subset � of R

2 is not a vector space under the normal operations of R
2 because

it is not closed under scalar multiplication. (For example, [3,4] is in �, but �2 · [3,4] � [�6,�8]
is not in �.) Therefore, � cannot be a subspace of R

2.

Example 6
Consider the vector space R under the usual operations. Let W be the subset R

�. By Example 7
of Section 4.1, we know that W is a vector space under the unusual operations ⊕ and �, where
⊕ represents multiplication and � represents exponentiation. Although W is a nonempty subset
of R and is itself a vector space, W is not a subspace of R because W and R do not share the
same operations.

The following theorem provides a shortcut for verifying that a (nonempty) subset
W of a vector space is a subspace; if the closure properties hold for W , then the
remaining eight vector space properties automatically follow as well.

Theorem 4.2 Let V be a vector space, and let W be a nonempty subset of V using the
same operations. Then W is a subspace of V if and only if W is closed under vector
addition and scalar multiplication in V.

Notice that this theorem applies only to nonempty subsets of a vector space. Even
though the empty set is a subset of every vector space, it is not a subspace of any
vector space because it does not contain an additive identity.

Proof. Since this is an “if and only if” statement, the proof has two parts. First we must
show that if W is a subspace of V, then it is closed under the two operations. Now, as a
subspace, W is itself a vector space. Hence, the closure properties hold for W as they do
for any vector space.

For the other part of the proof, we must show that if the closure properties hold for a
nonempty subset W of V, then W is itself a vector space under the operations in V. That
is, we must prove the remaining eight vector space properties hold for W.

Properties (1), (2), (5), (6), (7), and (8) are all true in W because they are true in V, a
known vector space. That is, since these properties hold for all vectors in V, they must be true
for all vectors in its subset, W. For example, to prove property (1) for W, let u,v ∈ W. Then,

u � v︸ ︷︷ ︸
addition in W

� u � v︸ ︷︷ ︸
addition in V

because W and V share the same operations

� v � u︸ ︷︷ ︸
addition in V

because V is a vector space and property (1) holds

� v � u.︸ ︷︷ ︸
addition in W

because W and V share the same operations

Next we prove property (3), the existence of an additive identity in W. Because W
is nonempty, we can choose an element w1 from W. Now W is closed under scalar
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multiplication, so 0w1 is in W. However, since this is the same operation as in V, a known
vector space, part (2) of Theorem 4.1 implies that 0w1 � 0. Hence, 0 is in W. Because
0 � v � v for all v in V, it follows that 0 � w � w for all w in W. Therefore, W contains
the same additive identity that V has.

Finally, we must prove that property (4), the existence of additive inverses, holds for W.
Let w ∈ W. Then w ∈ V. Part (3) of Theorem 4.1 shows (�1)w is the additive inverse of
w in V. If we can show that this additive inverse is also in W, we will be done. But since
W is closed under scalar multiplication, (�1)w ∈ W.

Checking for Subspaces in Mnn and R
n

In the next three examples, we apply Theorem 4.2 to determine whether several
subsets of Mnn and R

n are subspaces. Assume that Mnn and R
n have the usual

operations.

Example 7
Consider Un, the set of upper triangular n � n matrices. Since Un is nonempty, we may apply
Theorem 4.2 to see whether Un is a subspace of Mnn. Closure of Un under vector addition
holds because the sum of any two n � n upper triangular matrices is again upper triangular. The
closure property in Un for scalar multiplication also holds, since any scalar multiple of an upper
triangular matrix is again upper triangular. Hence, Un is a subspace of Mnn.

Similar arguments show that Ln (lower triangular n � n matrices) and Dn (diagonal n � n
matrices) are also subspaces of Mnn.

The subspace Dn of Mnn in Example 7 is the intersection of the subspaces Un and
Ln. In fact,the intersection of subspaces of a vector space always produces a subspace
under the same operations (see Exercise 18).

If either closure property fails to hold for a subset, it cannot be a subspace. For this
reason, none of the following subsets of Mnn,n 	 2, is a subspace:

(1) the set of nonsingular n � n matrices

(2) the set of singular n � n matrices

(3) the set of n � n matrices in reduced row echelon form.

You should check that the closure property for vector addition fails in each case and
that the closure property for scalar multiplication fails in (1) and (3).

Example 8
Let Y be the set of vectors in R

4 of the form [a,0,b,0], that is, 4-vectors whose second and fourth
coordinates are zero. We prove that Y is a subspace of R

4 by checking the closure properties.
To prove closure under vector addition, we must add two arbitrary elements of Y and

check that the result has the correct form for a vector in Y. Now, [a,0,b,0] � [c,0,d,0] �

[(a � c),0,(b � d),0]. The second and fourth coordinates of the sum are zero, so Y is
closed under addition. Similarly, we must prove closure under scalar multiplication. Now,
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k[a,0,b,0] � [ka,0,kb,0]. Since the second and fourth coordinates of the product are zero,
Y is closed under scalar multiplication. Hence, by Theorem 4.2, Y is a subspace of R

4.

Example 9
Let W be the set of vectors in R

3 of the form
[
a, b, 1

2 a � 2b
]
, that is, 3-vectors whose third

coordinate is half the first coordinate minus twice the second coordinate. We show that W is a
subspace of R

3 by checking the closure properties.
Checking closure under vector addition, we have[

a, b,
1

2
a � 2b

]
�

[
c, d,

1

2
c � 2d

]
�

[
a � c, b � d,

1

2
a � 2b �

1

2
c � 2d

]

�

[
a � c, b � d,

1

2
(a � c) � 2(b � d)

]
,

which has the required form, since it equals
[
A, B, 1

2 A � 2B
]
, where A � a � c and B � b � d.

Checking closure under scalar multiplication, we get

k

[
a, b,

1

2
a � 2b

]
�

[
ka, kb, k

(
1

2
a � 2b

)]
�

[
ka, kb,

1

2
(ka) � 2(kb)

]
,

which has the required form (why?).
Note that [

a, b,
1

2
a � 2b

]
� a

[
1,0,

1

2

]
� b[0,1,�2],

and so W consists of the set of all linear combinations of
[
1,0, 1

2

]
and [0,1,�2]. Geo-

metrically, W is the plane in R
3 through the origin containing the vectors

[
1,0, 1

2

]
and

[0,1,�2], shown in Figure 4.3. This plane is the set of all possible “destinations” using these
two directions (starting from the origin). This is the type of subspace of R

3 discussed in
Example 1.

x

[0, 1, 22]

y

z

[1, 0,   ]1
2

FIGURE 4.3

The plane through the origin containing
[
1,0, 1

2

]
and [0,1,�2]
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The following subsets of R
n are not subspaces. In each case,at least one of the two

closure properties fails. (Can you determine which properties?)

(1) The set of n-vectors whose first coordinate is nonnegative (in R
2, this set is a

half-plane)

(2) The set of unit n-vectors (in R
3, this set is a sphere)

(3) For n 	 2,the set of n-vectors with a zero in at least one coordinate (in R
3, this

set is the union of three planes)

(4) The set of n-vectors having all integer coordinates

(5) For n 	 2, the set of all n-vectors whose first two coordinates add up to 3 (in
R

2, this is the line x � y � 3)

The subsets (2) and (5), which do not contain the additive identity 0 of R
n, can

quickly be disqualified as subspaces. In general,

If a subset S of a vector space V does not contain the zero vector 0 of V, then S is not a
subspace of V.

Checking for the presence of the additive identity is usually easy and thus is a fast way
to show that certain subsets are not subspaces.

Linear Combinations Remain in a Subspace

As in Chapter 1,we define a linear combination of vectors in a general vector space
to be a sum of scalar multiples of the vectors. The next theorem asserts that if a finite
set of vectors is in a given subspace of a vector space,then so is any linear combination
of those vectors.

Theorem 4.3 Let W be a subspace of a vector space V, and let v1,v2, . . . ,vn be vectors
in W. Then, for any scalars a1,a2, . . . ,an, we have a1v1 � a2v2 � · · · � anvn ∈ W.

Essentially, this theorem points out that a subspace is “closed under linear combina-
tions.” That is, when the vectors of a subspace are used to form linear combinations,
all possible “destination vectors” remain in the subspace.

Proof. Suppose that W is a subspace of a vector space V. We give a proof by induction
on n.

Base Step: If n � 1, then we must show that if v1 ∈ W and a1 is a scalar, then a1v1 ∈ W.
But this is certainly true since the subspace W is closed under scalar multiplication.

Inductive Step: Assume that the theorem is true for any linear combination of n vectors
in W. We must prove the theorem holds for a linear combination of n � 1 vectors. Suppose
v1,v2, . . . ,vn,vn�1 are vectors in W, and a1,a2, . . . ,an,an�1 are scalars. We must show
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that a1v1 � a2v2 � · · · � anvn � an�1vn�1 ∈ W. However, by the inductive hypothesis, we
know that a1v1 � a2v2 � · · · � anvn ∈ W. Also, an�1vn�1 ∈ W, since W is closed under
scalar multiplication. But since W is also closed under addition, the sum of any two vectors
in W is again in W, so (a1v1 � a2v2 � · · · � anvn) � (an�1vn�1) ∈ W.

Example 10
In Example 9, we found that the set W of all vectors of the form

[
a, b, 1

2 a � 2b
]

is a sub-
space of R

3. In particular, [1,0, 1
2 ] and [0,1,�2] are in W. By Theorem 4.3, any linear

combination of these vectors is also in W. For example, 6[1,0, 1
2 ] � 5[0,1,�2] � [6,�5,13]

and �4[1,0, 1
2 ] � 2[0,1,�2] � [�4,2,�6] are both in W. Of course, this makes sense geomet-

rically, since W is a plane through the origin, and any linear combination of vectors in such a
plane remains in that plane.

An Eigenspace Is a Subspace

We conclude this section by noting that any eigenspace of an n � n matrix is a subspace
of R

n. (In fact, this is why the word “space”appears in the term “eigenspace.”)

Theorem 4.4 Let A be an n � n matrix, and let � be an eigenvalue for A, having
eigenspace E�. Then E� is a subspace of R

n.

Proof. Let � be an eigenvalue for an n � n matrix A. By definition, the eigenspace E� of �
is the set of all n-vectors X having the property that AX � �X, including the zero n-vector.
We will use Theorem 4.2 to show that E� is a subspace of R

n.
Since 0 ∈ E�, E� is a nonempty subset of R

n. We must show that E� is closed under
addition and scalar multiplication.

Let X1,X2 be any two vectors in E�. To show that X1� X2 ∈ E�, we need to verify that
A(X1 � X2) � �(X1 � X2). But, A(X1 � X2) � AX1 � AX2 � �X1 � �X2 � �(X1 � X2).

Similarly, let X be a vector in E�, and let c be a scalar. We must show that cX ∈ E�. But,
A(cX) � c(AX) � c(�X) � �(cX), and so cX ∈ E�. Hence, E� is a subspace of R

n.

Example 11
Consider

A �

⎡
⎢⎣16 �4 �2

3 3 �6
2 �8 11

⎤
⎥⎦ .

Computing |xI3 � A| produces pA(x) � x3 � 30x2 � 225x � x(x � 15)2. Solving (0I3 � A)X �

0 yields E0 � {c[1,3,2] |c ∈ R}. Thus, the eigenspace for �1 � 0 is the subspace of R
3 from

Example 2. Similarly, solving (15I3 � A) � 0 gives E15 � {a[4,1,0] � b[2,0,1] |a,b ∈ R}. By The-
orem 4.4, E15 is also a subspace of R

3. Although it is not obvious, E15 is the same subspace of
R

3 that we studied in Examples 9 and 10 (see Exercises 14(b) and 14(c)).
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New Vocabulary
linear combination (of vectors in a

vector space)
proper subspace(s)

subspace
trivial subspace

Highlights

■ A subset of a vector space is a subspace if it is a vector space itself under the
same operations.

■ The subset {0} is a trivial subspace of any vector space.

■ Any subspace of a vector space V other than V itself is considered a proper
subspace.

■ Familiar proper nontrivial subspaces of R
3 are any line through the origin, any

plane through the origin.

■ Familiar proper subspaces of the real-valued functions on R are Pn,P , all
differentiable real-valued functions on R, all continuous real-valued functions
on R.

■ Familiar proper subspaces of Mnn are Un,Ln,Dn,the symmetric n � n matrices,
the skew-symmetric n � n matrices.

■ A nonempty subset of a vector space is a subspace if it is closed under vector
addition and scalar multiplication.

■ If a subset of a vector space does not contain the zero vector, it cannot be a
subspace.

■ If a set of vectors is in a subspace, then any (finite) linear combination of those
vectors is also in the subspace.

■ If � is an eigenvalue for an n � n matrix A,then E� (eigenspace for �) is a subspace
of R

n.

■ The intersection of subspaces is a subspace.

EXERCISES FOR SECTION 4.2
Note: From this point onward in the book, use a calculator or available software
packages to avoid tedious calculations.

1. Prove or disprove that each given subset of R
2 is a subspace of R

2 under the
usual vector operations. (In these problems, a and b represent arbitrary real
numbers.)
�(a) The set of unit 2-vectors

(b) The set of 2-vectors of the form [1,a]
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�(c) The set of 2-vectors of the form [a,2a]
(d) The set of 2-vectors having a zero in at least one coordinate

�(e) The set {[1,2]}
(f ) The set of 2-vectors whose second coordinate is zero

�(g) The set of 2-vectors of the form [a,b], where |a| � |b|
(h) The set of points in the plane lying on the line y � �3x

(i) The set of points in the plane lying on the line y � 7x � 5
�(j) The set of points lying on the parabola y � x2

(k) The set of points in the plane lying above the line y � 2x � 5
�(l) The set of points in the plane lying inside the circle of radius 1 centered

at the origin

2. Prove or disprove that each given subset of M22 is a subspace of M22 under
the usual matrix operations. (In these problems, a and b represent arbitrary
real numbers.)

�(a) The set of matrices of the form

[
a �a
b 0

]
(b) The set of 2 � 2 matrices that have at least one row of zeroes

�(c) The set of symmetric 2 � 2 matrices

(d) The set of nonsingular 2 � 2 matrices

�(e) The set of 2 � 2 matrices having the sum of all entries zero

(f ) The set of 2 � 2 matrices having trace zero (Recall that the trace of a
square matrix is the sum of the main diagonal entries.)

�(g) The set of 2 � 2 matrices A such that A

[
1 3

�2 �6

]
�

[
0 0
0 0

]
�(h) The set of 2 � 2 matrices having the product of all entries zero

3. Prove or disprove that each given subset of P5 is a subspace of P5 under the
usual operations.

�(a) {p ∈ P5| the coefficient of the first-degree term of p equals the coefficient
of the fifth-degree term of p}

�(b) {p ∈ P5|p(3) � 0}
(c) {p ∈ P5| the sum of the coefficients of p is zero}

(d) {p ∈ P5|p(3) � p(5)}
�(e) {p ∈ P5|p is an odd-degree polynomial (highest-order nonzero term has

odd degree)}

(f ) {p ∈ P5|p has a relative maximum at x � 0}
�(g) {p ∈ P5|p′(4) � 0, where p′ is the derivative of p}

(h) {p ∈ P5|p′(4) � 1, where p′ is the derivative of p}
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4. Show that the set of vectors of the form [a,b,0,c,a � 2b � c] in R
5 forms a

subspace of R
5 under the usual operations.

5. Show that the set of vectors of the form [2a � 3b,a � 5c,a,4c � b,c] in R
5

forms a subspace of R
5 under the usual operations.

6. (a) Prove that the set of all 3-vectors orthogonal to [1,�1,4] forms a subspace
of R

3.

(b) Is the subspace from part (a) all of R
3, a plane passing through the origin

in R
3, or a line passing through the origin in R

3?

7. Show that each of the following sets is a subspace of the vector space of all real-
valued functions on the given domain, under the usual operations of function
addition and scalar multiplication:

(a) The set of continuous real-valued functions with domain R

(b) The set of differentiable real-valued functions with domain R

(c) The set of all real-valued functions f defined on the interval [0,1] such
that f

(1
2

)
� 0 (Compare this vector space with the set in Example 9 of

Section 4.1.)

(d) The set of all continuous real-valued functions f defined on the interval
[0,1] such that

∫ 1
0 f (x)dx � 0

8. Let W be the set of differentiable real-valued functions y � f (x) defined on
R that satisfy the differential equation 3(dy/dx) � 2y � 0. Show that, under
the usual function operations, W is a subspace of the vector space of all
differentiable real-valued functions. (Do not forget to show W is nonempty.)

9. Show that the set W of solutions to the differential equation y′′ � 2y′ � 9y � 0
is a subspace of the vector space of all twice-differentiable real-valued functions
defined on R. (Do not forget to show that W is nonempty.)

10. Prove that the set of discontinuous real-valued functions defined on R (for exam-

ple, f (x) �

{
0 if x � 0
1 if x > 0

) with the usual function operations is not a subspace

of the vector space of all real-valued functions with domain R.

11. Let A be a fixed n � n matrix, and let W be the subset of Mnn of all n � n
matrices that commute with A under multiplication (that is,B ∈ W if and only
if AB � BA). Show that W is a subspace of Mnn under the usual vector space
operations. (Do not forget to show that W is nonempty.)

12. (a) A careful reading of the proof ofTheorem 4.2 reveals that only closure under
scalar multiplication (not closure under addition) is sufficient to prove the
remaining eight vector space properties for W . Explain,nevertheless,why
closure under addition is a necessary condition for W to be a subspace
of V .

(b) Show that the set of singular n � n matrices is closed under scalar
multiplication in Mnn.
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(c) Use parts (a) and (b) to determine which of the eight vector space
properties are true for the set of singular n � n matrices.

(d) Show that the set of singular n � n matrices is not closed under vector
addition and hence is not a subspace of Mnn (n 	 2).

�(e) Is the set of nonsingular n � n matrices closed under scalar multiplication?
Why or why not?

13. (a) Prove that the set of all points lying on a line passing through the origin in
R

2 is a subspace of R
2 (under the usual operations).

(b) Prove that the set of all points in R
2 lying on a line not passing through the

origin does not form a subspace of R
2 (under the usual operations).

14. Let W be the subspace from Examples 9 and 10, and let A and E15 be as given
in Example 11.

(a) Use Theorem 4.2 to prove directly that E15 is a subspace of R
3.

(b) Show that E15 ⊆ W by proving that every vector in E15 has the form
[a,b, 1

2a � 2b].
(c) Prove that W ⊆ E15 by showing that every nonzero vector of the form

[a,b, 1
2a � 2b] is an eigenvector for A corresponding to �2 � 15.

�15. Suppose A is an n � n matrix and � ∈ R is not an eigenvalue for A. Determine
exactly which vectors are in S � {X ∈ R

n |AX � �X}. Is this set a subspace of
R

n? Why or why not?

16. Prove that R (under the usual operations) has no subspaces except R and {0}.
(Hint: Let V be a nontrivial subspace of R, and show that V � R.)

17. Let W be a subspace of a vector space V . Show that the set W ′ � {v ∈ V|v /∈ W}
is not a subspace of V .

18. Let V be a vector space, and let W1 and W2 be subspaces of V . Prove that
W1 ∩W2 is a subspace of V . (Do not forget to show W1 ∩W2 is nonempty.)

19. Let V be any vector space, and let W be a nonempty subset of V .

(a) Prove that W is a subspace of V if and only if aw1 � bw2 is an element
of W for every a,b ∈ R and every w1,w2 ∈ W . (Hint: For one half of the
proof, first consider the case where a � b � 1 and then the case where
b � 0 and a is arbitrary.)

(b) Prove that W is a subspace of V if and only if aw1 � w2 is an element of
W for every real number a and every w1 and w2 in W .

20. Let W be a nonempty subset of a vector space V , and suppose every linear
combination of vectors in W is also in W . Prove that W is a subspace of V .
(This is the converse of Theorem 4.3.)
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21. Let � be an eigenvalue for an n � n matrix A. Show that if X1, . . . ,Xk are eigen-
vectors for A corresponding to �, then any linear combination of X1, . . . ,Xk is
in E�.

�22. True or False:

(a) A nonempty subset W of a vector space V is always a subspace of V under
the same operations as those in V .

(b) Every vector space has at least one subspace.

(c) Any plane W in R
3 is a subspace of R

3 (under the usual operations).

(d) The set of all lower triangular 5 � 5 matrices is a subspace of M55 (under
the usual operations).

(e) The set of all vectors of the form [0,a,b,0] is a subspace of R
4 (under the

usual operations).

(f ) If a subset W of a vector space V contains the zero vector 0 of V , then W
must be a subspace of V (under the same operations).

(g) Any linear combination of vectors from a subspace W of a vector space V
must also be in W .

(h) If � is an eigenvalue for a 4 � 4 matrix A, then E� is a subspace of R
4.

4.3 SPAN
In this section, we study the concept of linear combinations in more depth. We show
that the set of all linear combinations of the vectors in a subset S of V forms an
important subspace of V , called the span of S in V .

Finite Linear Combinations

In Section 4.2,we introduced linear combinations of vectors in a general vector space.
We now extend the concept of linear combination to include the possibility of forming
sums of scalar multiples from infinite, as well as finite, sets.

Definition Let S be a nonempty (possibly infinite) subset of a vector space V .Then
a vector v in V is a (finite) linear combination of the vectors in S if and only
if there exists a finite subset {v1,v2, . . . ,vn} of S such that v � a1v1 � a2v2 � · · · �
anvn for some real numbers a1, . . .,an.

Examples 1 and 2 below involve a finite set S,while Examples 3 and 4 use an infinite
set S. In all these examples, however, only a finite number of vectors from S are used
at any given time to form linear combinations.
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Example 1
Consider the subset S � {[1,�1,0], [1,0,2], [0,�2,5]} of R

3. The vector [1,�2,�2] is a linear
combination of the vectors in S according to the definition, because [1,�2,�2] � 2[1,�1,0] �

(�1)[1,0,2]. In this case, the (finite) subset of S used (from the definition) is {[1,�1,0], [1,0,2]}.
However, we could have used all of S to form the linear combination by placing a zero coefficient
in front of the remaining vector [0,�2,5]. That is, [1,�2,�2] � 2[1,�1,0] � (�1)[1,0,2] �

0[0,�2,5].

We see from Example 1 that if S is a finite subset of a vector space V , any linear
combination v formed using some of the vectors in S can always be formed using all
the vectors in S by placing zero coefficients on the remaining vectors.

A linear combination formed from a set {v} containing a single vector is just a scalar
multiple av of v, as we see in the next example.

Example 2
Let S � {[1,�2,7]}, a subset of R

3 containing a single element. Then the only linear combi-
nations that can be formed from S are scalar multiples of [1,�2,7], such as [3,�6,21] and
[�4,8,�28].

Example 3
Consider P, the vector space of polynomials with real coefficients, and let S � {1,x2,x4, . . .},
the infinite subset of P consisting of all nonnegative even powers of x (since x0 � 1). We can
form linear combinations of vectors in S using any finite subset of S. For example, p(x) �

7x8 � (1/4)x4 � 10 is a linear combination formed from S because it is a sum of scalar multiples
of elements of a finite subset {x8, x4, 1} of S. In fact, the possible linear combinations of vectors
in S are precisely the polynomials involving only even powers of x.

Notice that we cannot use all of the elements in an infinite set S when forming a
linear combination because an “infinite” sum would result. This is why a linear com-
bination is frequently called a finite linear combination in order to stress that only a
finite number of vectors are combined at any time.

Example 4
Let S � U2 ∪ L2, an infinite subset of M22. (Recall that U2 and L2 are, respectively, the sets of

upper and lower triangular 2 � 2 matrices.) The matrix A �

[
2 3

�1 1
2

]
is a linear combination

of the elements in S, because

A �
1

2

[
4 6
0 1

]
︸ ︷︷ ︸

in U2

� (�1)

[
0 0
1 0

]
.

︸ ︷︷ ︸
in L2
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But there are many other ways to express A as a finite linear combination of the elements in S.
We can add more elements from S with zero coefficients, as in Example 1, but in this case there
are further possibilities. For example,

A � 2

[
1 0
0 0

]
︸ ︷︷ ︸

in U2 and L2

� 3

[
0 1
0 0

]
︸ ︷︷ ︸

in U2

� (�1)

[
0 0
1 0

]
︸ ︷︷ ︸

in L2

�
1

2

[
0 0
0 1

]
.

︸ ︷︷ ︸
in U2 and L2

Definition of the Span of a Set

Definition Let S be a nonempty subset of a vector space V . Then the span of S in
V is the set of all possible (finite) linear combinations of the vectors in S. We use
the notation span(S) to denote the span of S in V .

The span of a set S is a generalization of the row space of a matrix; each is just the
set of all linear combinations of a set of vectors. In fact, from this definition:

The span of the set of rows of a matrix is precisely the row space of the matrix.

We now consider some examples of the span of a subset.

Example 5
In Example 3, we found that for S �

{
1, x2, x4, . . .

}
in P, span(S) is the set of all polynomials

containing only even-degree terms. This consists of all the “destinations” obtainable by traveling
in the “directions” 1, x2, x4, . . . , etc. Thus, we can visualize span(S) as the set of “possible
destinations” in the same sense as the row space is the set of “possible destinations” obtainable
from the rows of a given matrix. Notice that we may only use a finite number of the possible
“directions” to obtain a given “destination.” That is, span(S) only contains polynomials, not infinite
series.

Example 6
Let S � U2 ∪ L2 in M22, as in Example 4. Then span(S) � M22 because every 2 � 2 matrix can
be expressed as a finite linear combination of upper and lower triangular matrices, as follows:[

a b
c d

]
� a

[
1 0
0 0

]
� b

[
0 1
0 0

]
� c

[
0 0
1 0

]
� d

[
0 0
0 1

]
.

Notice that the span of a given set often (but not always) contains many more vectors than the
set itself.
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Example 6 shows that,when S � U2 ∪ L2 and V � M22,every vector in V is a linear
combination of vectors in S.That is,span(S) � V itself.When this happens,we say that
V is spanned by S or that S spans V . Here, we are using span as a verb to indicate
that the span (noun) of a set S equals V .Thus,M22 is spanned (verb) by U2 ∪ L2,since
the span (noun) of U2 ∪ L2 is M22.

Example 7
Note that R

3 is spanned by S1 � {i, j,k}, since span(S1) � R
3. That is, every 3-vector can

be expressed as a linear combination of i, j, and k (why?). However, R
3 is not spanned by the

smaller set S2 � {i, j}, since span(S2) is the xy-plane in R
3 (why?). More generally, R

n is spanned
by the set of standard unit vectors {e1, . . .,en}. Note that no proper subset of {e1, . . . ,en} will
span R

n.

Span(S) Is the Minimal Subspace Containing S

The next theorem completely characterizes the span.

Theorem 4.5 Let S be a nonempty subset of a vector space V. Then:

(1) S ⊆ span(S).

(2) Span(S) is a subspace of V (under the same operations as V).

(3) If W is a subspace of V with S ⊆ W, then span(S) ⊆ W.

(4) Span(S) is the smallest subspace of V containing S.

Proof. Part (1): We must show that each vector w ∈ S is also in span(S). But if w ∈ S, then
w � 1w is a sum of scalar multiples from the subset {w} of S. Hence, w ∈ span(S).

Part (2): Since S is nonempty, part (1) shows that span(S) is nonempty. Therefore, by
Theorem 4.2, span(S) is a subspace of V if we can prove the closure properties hold for
span(S).

First, let us verify closure under scalar multiplication. Let v be in span(S), and let c be a
scalar. We must show that cv ∈ span(S). Now, since v ∈ span(S), a finite subset {v1, . . . ,vn}
of S and real numbers a1, . . . ,an exist such that v � �n

i�1aivi. Then,

cv � c(a1v1 � · · · � anvn) � (ca1)v1 � · · · � (can)vn.

Hence, cv is a linear combination of the finite subset {v1, . . . ,vn} of S, and so cv ∈ span(S).
Finally, we show that span(S) is closed under vector addition. First we will consider the

case in which S is a finite set. Thus, we suppose that S � {v1,v2, . . . ,vn}. Let x and y be
two vectors in span(S). Hence, there exist real numbers a1, . . . ,an and b1, . . . ,bn such that

x � a1v1 � a2v2 � · · · � anvn and y � b1v1 � b2v2 � · · · � bnvn.

Therefore,

x � y � (a1 � b1)v1 � (a2 � b2)v2 � · · · � (an � bn)vn,
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and we have expressed x � y as a linear combination of vectors in S. Hence, x � y ∈
span(S).

The proof of closure under addition in the case in which S has an infinite number of
elements is identical in concept to the finite case. However, the linear combinations for
x and y might now be formed using two different finite subsets of vectors from S. This
complication is remedied by uniting these two subsets into one common finite subset of
S that we use to form the linear combinations for x and y. Then we place a coefficient of
zero in front of any vector in the union that is unneeded when forming the desired linear
combination for x, and similarly for y. You are asked to complete the details for this part of
the proof in Exercise 28.

Part (3): This part asserts that if S is a subset of a subspace W, then any (finite) linear
combination from S is also in W. This is merely a rewording of Theorem 4.3 using the
“span” concept. The fact that span(S) cannot contain vectors outside W is illustrated in
Figure 4.4.

Part (4): This is merely a summary of the other three parts. Parts (1) and (2) assert that
span(S) is a subspace of V containing S. But part (3) shows that span(S) is the smallest
such subspace because span(S) must be a subset of, and hence smaller than, any other
subspace of V that contains S.

Theorem 4.5 implies that span(S) is created by appending to S precisely those
vectors needed to make the closure properties hold. In fact, the whole idea behind
span is to “close up”a subset of a vector space to create a subspace.

Example 8
Let v1 and v2 be any two vectors in R

4. Then, by Theorem 4.5, span({v1,v2}) is the smallest
subspace of R

4 containing v1 and v2. In particular, if v1 � [1,3,�2,5] and v2 � [0,�4,3,�1],
then span({v1,v2}) is the subspace of R

4 consisting of all vectors of the form

a[1,3,�2,5] � b[0,�4,3,�1] � [a, 3a � 4b,�2a � 3b, 5a � b].
No smaller subspace of R

4 contains v1 and v2.

The following useful result is left for you to prove in Exercise 21.

S

span(S ) span(S )
W W

(a)

V V

(b)

S

FIGURE 4.4

(a) Situation that must occur if W is a subspace containing S; (b) situation that cannot occur if W
is a subspace containing S
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Corollary 4.6 Let V be a vector space, and let S1 and S2 be subsets of V with S1 ⊆ S2.
Then span(S1) ⊆ span(S2).

Simplifying Span(S) using Row Reduction

Our next goal is to find a simplified form for the vectors in the span of a given
set S. The fact that span is a generalization of the row space concept suggests that
we can use results from Chapter 2 involving row spaces to help us compute and
simplify span(S). If we form the matrix A whose rows are the vectors in S, the
rows of the reduced row echelon form of A often give a simpler expression for
span(S), since row equivalent matrices have the same row space. Hence, we have the
following:

Method for Simplifying Span(S) Using Row Reduction (Simplified Span Method)
Suppose that S is a finite subset of R

n containing k vectors, with k 	 2.

Step 1: Form a k � n matrix A by using the vectors in S as the rows of A. (Thus, span(S) is
the row space of A).

Step 2: Let C be the reduced row echelon form matrix for A.

Step 3: Then, a simplified form for span(S) is given by the set of all linear combinations of
the nonzero rows of C.

Example 9
Let S be the subset {[1,4,�1,�5], [2,8,5,4], [�1,�4,2,7], [6,24,�1,�20]} of R

4. By definition,
span(S) is the set of all vectors of the form

a[1,4,�1,�5] � b[2,8,5,4] � c[�1,�4,2,7] � d[6,24,�1,�20]

for a,b,c,d ∈ R. We want to use the Simplified Span Method to find a simplified form for the
vectors in span(S). We first create

A �

⎡
⎢⎢⎢⎣

1 4 �1 �5
2 8 5 4

�1 �4 2 7
6 24 �1 �20

⎤
⎥⎥⎥⎦ ,

whose rows are the vectors in S. Then, span(S) is the row space of A; that is, the set of all linear
combinations of the rows of A.
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Next, we simplify the form of the row space of A by obtaining its reduced row echelon form
matrix

C �

⎡
⎢⎢⎢⎣

1 4 0 �3
0 0 1 2
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ .

By Theorem 2.8, the row space of A is the same as the row space of C, which is the set of all
4-vectors of the form

a[1,4,0,�3] � b[0,0,1,2] � [a, 4a, b,�3a � 2b].

Therefore, span(S) � {[a,4a,b,�3a � 2b] |a,b ∈ R}, a subspace of R4. Note, for example, that
the vector [3,12,�2,�13] is in span(S) (a � 3,b � �2). However, the vector [�2,�8,4,6] is
not in span(S) because the following system has no solutions:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a � �2

4a � �8
b � 4

�3a � 2b � 6

.

Example 10
Recall that the eigenspace E15 for the matrix A in Example 11 in Section 4.2 is E15 �

{a[4,1,0] � b[2,0,1] ∣∣ a,b ∈ R}. Hence, E15 is spanned by {[4,1,0], [2,0,1]}. Although the form
of E15 is already simple, we can obtain an alternative form by using the Simplified Span Method.
Row reducing the matrix

A �

[
4 1 0
2 0 1

]
, we obtain C �

[
1 0 1

2
0 1 �2

]
.

Hence, an alternative form for the vectors in E15 is
{

a
[
1,0, 1

2

]
� b[0,1,�2]

∣∣∣ a,b ∈ R

}
�{

[a,b, 1
2 a � 2b]

∣∣∣ a,b ∈ R

}
, just as we claimed in Example 11 in Section 4.2.

The method used in Examples 9 and 10 works in vector spaces other than R
n, as

we see in the next example. This fact will follow from the discussion of isomorphism
in Section 5.5. (However, we will not use this fact in proofs of theorems until after
Section 5.5.)

Example 11
Let S be the subset {5x3 � 2x2 � 4x � 3,�x2 � 3x � 7,2x3 � 4x2 � 8x � 5, x3 � 2x � 5}
of P3. We use the Simplified Span Method to find a simplified form for the vectors in span(S).
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Consider the coefficients of each polynomial as the coordinates of a vector in R
4, yielding

the corresponding set of vectors T � {[5,2,4,�3], [0,�1,3,�7], [2,4,�8,5], [1,0,2,5]}. Using
the Simplified Span Method, we create the following matrix, whose rows are the vectors in T .

A �

⎡
⎢⎢⎢⎣

5 2 4 �3
0 �1 3 �7
2 4 �8 5
1 0 2 5

⎤
⎥⎥⎥⎦

Then span(T ) is the row space of the reduced row echelon form of A, which is

C �

⎡
⎢⎢⎢⎣

1 0 2 0
0 1 �3 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦ .

Taking each nonzero row of C as the coefficients of a polynomial in P3, we see that

span(S) � {a(x3 � 2x) � b(x2 � 3x) � c(1) |a,b,c ∈ R}
� {ax3 � bx2 � (2a � 3b)x � c |a,b,c ∈ R}.

A Spanning Set for an Eigenspace

In Section 3.4, we illustrated a method for diagonalizing an n � n matrix, when pos-
sible. In fact, a set S of fundamental eigenvectors generated for a given eigenvalue �
spans the eigenspace E� (see Exercise 27). We illustrate this in the following example:

Example 12
Let

A �

⎡
⎢⎣0 �6 3

2 �13 6
4 �24 11

⎤
⎥⎦ .

A little work yields pA(x) � x3 � 2x2 � x � x(x � 1)2. We solve the homogeneous system
(�1I3 � A)X � 0 to find the eigenspace E�1 for A.

Row reducing [(�I3 � A)|0] produces⎡
⎢⎣1 �6 3

0 0 0
0 0 0

∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎦,

giving the solution set

E�1 � {[6b � 3c,b,c] |b,c ∈ R} � {b[6,1,0] � c[�3,0,1] |b,c ∈ R}.
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Thus, E�1 � span(S), where S � {[6,1,0], [�3,0,1]}. The set S is precisely the set of fundamental
eigenvectors that we would obtain for � � �1 (verify!).

Special Case: The Span of the Empty Set

Until now,our results involving span have specified that the subset S of the vector space
V be nonempty. However,our understanding of span(S) as the smallest subspace of V
containing S allows us to give a meaningful definition for the span of the empty set.

Definition Span({ }) � {0}.

This definition makes sense because the trivial subspace is the smallest subspace of V ,
hence the smallest one containing the empty set.Thus, Theorem 4.5 is also true when
the set S is empty. Similarly, to maintain consistency,we define any linear combination
of the empty set of vectors to be 0.This ensures that the span of the empty set equals
the set of all linear combinations of vectors taken from this set.

New Vocabulary
finite linear combination (of vectors in

a vector space)
Simplified Span Method

span (of a set of vectors)
spanned by (as in “V is spanned by S”)
span of the empty set

Highlights

■ The span of a set is the collection of all finite linear combinations of vectors from
the set.

■ A set S spans a vector space V (i.e., V is spanned by S) if every vector in V is a
(finite) linear combination of vectors in S.

■ The row space of a matrix is the span of the rows of the matrix.

■ R
3 is spanned by {i, j,k}; R

n is spanned by {e1, . . . ,en}; Pn is spanned by
{1,x,x2, . . . ,xn};Mmn is spanned by {�ij}, where each �ij has a 1 in the (i, j)
entry, and zeroes elsewhere.

■ The span of a set of vectors is always a subspace of the vector space, and is, in
fact, the smallest subspace containing that set.

■ If S1 ⊆ S2, then span(S1) ⊆ span(S2).

■ The Simplified Span Method generally produces a more simplified form of the
span of a set of vectors by calculating the reduced row echelon form of the
matrix whose rows are the given vectors.

■ The span of the empty set is {0}.
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EXERCISES FOR SECTION 4.3
1. In each of the following cases,use the Simplified Span Method to find a simpli-

fied general form for all the vectors in span(S), where S is the given subset
of R

n:
�(a) S � {[1,1,0], [2,�3,�5]}
(b) S � {[3,1,�2], [�3,�1,2], [6,2,�4]}

�(c) S � {[1,�1,1], [2,�3,3], [0,1,�1]}
(d) S � {[1,1,1], [2,1,1], [1,1,2]}

�(e) S � {[1,3,0,1], [0,0,1,1], [0,1,0,1], [1,5,1,4]}
(f ) S � {[2,�1,3,1], [1,�2,0,�1], [3,�3,3,0], [5,�4,6,1], [1,�5,�3,�4]}

2. In each case, use the Simplified Span Method to find a simplified general form
for all the vectors in span(S), where S is the given subset of P3:
�(a) S � {x3 � 1, x2 � x, x � 1}
(b) S � {x3 � 2x2, 1 � 4x2, 12 � 5x3, x3 � x2}

�(c) S � {x3 � x � 5, 3x3 � 3x � 10, 5x3 � 5x � 6, 6x � 6x3 � 13}
3. In each case, use the Simplified Span Method to find a simplified general form

for all the vectors in span(S),where S is the given subset of M22. (Hint:Rewrite
each matrix as a 4-vector.)

�(a) S �

{[
�1 1

0 0

]
,

[
0 0
1 �1

]
,

[
�1 0

0 1

]}

(b) S �

{[
1 3

�2 1

]
,

[
�2 �5

3 1

]
,

[
1 4

�3 4

]}
�(c) S �

{[
1 �1
3 0

]
,

[
2 �1
8 �1

]
,

[
�1 4

4 �1

]
,

[
3 �4
5 6

]}
�4. (a) Express the subspace W of R

4 of all 4 -vectors of the form [a � b,a � c,
b � c,c] as the row space of a matrix A.

(b) Find the reduced row echelon form matrix B for A.

(c) Use the matrix B from part (b) to find a simplified form for the vectors
in W .

5. (a) Express the subspace W of R
5 of all 5-vectors of the form [2a � 3b � 4c,

a � b � c,�b � 7c,3a � 4b,4a � 2b] as the row space of a matrix A.

(b) Find the reduced row echelon form matrix B for A.

(c) Use the matrix B from part (b) to find a simplified form for the vectors
in W .

6. Prove that the set S � {[1,3,�1], [2,7,�3], [4,8,�7]} spans R
3.

7. Prove that the set S � {[1,�2,2], [3,�4,�1], [1,�4,9], [0,2,�7]} does not
span R

3.
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8. Show that the set {x2 � x � 1,x � 1,1} spans P2.

9. Prove that the set {x2 � 4x � 3,2x2 � x � 5,7x � 11} does not span P2.

10. (a) Let S � {[1,�2,�2], [3,�5,1], [�1,1,�5]}. Show that [�4,5,�13] ∈
span(S) by expressing it as a linear combination of the vectors in S.

(b) Prove that the set S in part (a) does not span R
3.

�11. Consider the subset S � {x3 � 2x2 � x � 3,2x3 � 3x2 � 2x � 5,4x2 � x � 3,
4x3 � 7x2 � 4x � 1} of P . Show that 3x3 � 8x2 � 2x � 16 is in span(S) by
expressing it as a linear combination of the elements of S.

12. Prove that the set S of all vectors in R
4 that have zeroes in exactly two

coordinates spans R
4. (Hint: Find a subset of S that spans R

4.)

13. Let a be any nonzero element of R. Prove that span({a}) � R.

14. �(a) Suppose that S1 is the set of symmetric 2 � 2 matrices and that S2

is the set of skew-symmetric 2 � 2 matrices. Prove that span(S1 ∪ S2) �
M22.

(b) State and prove the corresponding statement for n � n matrices.

15. Consider the subset S � {1 � x2,x � x3,3 � 2x � 3x2 � 12x3} of P , and let
W �

{
ax3 � bx2 � cx � b

∣∣ a,b,c ∈ R
}
. Show that W � span(S).

16. Let A �

⎡
⎢⎣ �9 �15 8

�10 �14 8

�30 �45 25

⎤
⎥⎦.

�(a) Find a set S of two fundamental eigenvectors for A corresponding to the
eigenvalue � � 1. Multiply by a scalar to eliminate any fractions in your
answers.

(b) Verify that the set S from part (a) spans E1.

17. Let S1 � {v1, . . . ,vn} be a nonempty subset of a vector space V . Let S2 �
{�v1,�v2, . . . ,�vn}. Show that span(S1) � span(S2).

18. Let u and v be two nonzero vectors in R
3,and let S � {u,v}. Show that span(S)

is a line through the origin if u � av for some real number a, but otherwise
span(S) is a plane through the origin.

19. Let u,v, and w be three vectors in R
3 and let A be the matrix whose rows

are u,v, and w. Show that S � {u,v,w} spans R
3 if and only if |A| �� 0. (Hint:

To prove that span(S) � R
3 implies |A| �� 0, suppose x ∈ R

3 such that Ax � 0.
First, show that x is orthogonal to u,v, and w. Then, express x as a linear
combination of u,v,and w. Prove that x · x � 0,and then useTheorem 2.5 and
Corollary 3.6. To prove that |A| �� 0 implies span(S) � R

3, show that A is row
equivalent to I3 and apply Theorem 2.8.)
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20. Let S � {p1, . . . ,pk} be a finite subset of P . Prove that there is some positive
integer n such that span(S) ⊆ Pn.

�21. Prove Corollary 4.6.

22. (a) Prove that if S is a nonempty subset of a vector space V ,then S is a subspace
of V if and only if span(S) � S.

(b) Use part (a) to show that every subspace W of a vector space V has a set
of vectors that spans W — namely, the set W itself.

(c) Describe the span of the set of the skew-symmetric matrices in M33.

23. Let S1 and S2 be subsets of a vector space V . Prove that span(S1) � span(S2) if
and only if S1 ⊆ span(S2) and S2 ⊆ span(S1).

24. Let S1 and S2 be two subsets of a vector space V .

(a) Prove that span(S1 ∩ S2) ⊆ span(S1) ∩ span(S2).

�(b) Give an example of distinct subsets S1 and S2 of R
3 for which the inclusion

in part (a) is actually an equality.

�(c) Give an example of subsets S1 and S2 of R
3 for which the inclusion in

part (a) is not an equality.

25. Let S1 and S2 be subsets of a vector space V .

(a) Show that span(S1) ∪ span(S2) ⊆ span(S1 ∪ S2).

(b) Prove that if S1 ⊆ S2, then the inclusion in part (a) is an equality.

�(c) Give an example of subsets S1 and S2 in P5 for which the inclusion in
part (a) is not an equality.

26. Let S be a subset of a vector space V , and let v ∈ V . Show that span(S) �
span(S ∪ {v}) if and only if v ∈ span(S).

27. Let A be an n � n matrix and � be an eigenvalue for A. Suppose S is a set of
fundamental eigenvectors for A corresponding to �. Prove that S spans E�.

�28. Finish the proof of Theorem 4.5 by providing the details necessary to show
that span(S) is closed under addition if S is an infinite subset of a vector
space V .

�29. True or False:

(a) Span(S) is only defined if S is a finite subset of a vector space.

(b) If S is a subset of a vector space V , then span(S) contains every finite linear
combination of vectors in S.

(c) If S is a subset of a vector space V , then span(S) is the smallest set in V
containing S.

(d) If S is a subset of a vector space V , and W is a subspace of V containing S,
then we must have W ⊆ span(S).
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(e) The row space of a 4 � 5 matrix A is a subspace of R
4.

(f ) A simplified form for the span of a finite set S of vectors in R
n can be found

by row reducing the matrix whose rows are the vectors of S.

(g) The eigenspace E� for an eigenvalue � of an n � n matrix A is the row space
of �In � A.

4.4 LINEAR INDEPENDENCE
In this section, we explore the concept of a linearly independent set of vectors and
examine methods for determining whether or not a given set of vectors is linearly inde-
pendent.We will also see that there are important connections between the concepts
of span and linear independence.

Linear Independence and Dependence

At first, we will define linear independence and linear dependence only for finite
sets of vectors. We will extend the definition to infinite sets at the end of this
section.

Definition Let S � {v1, . . . ,vn} be a finite nonempty subset of a vector space V .
Then S is linearly dependent if and only if there exist real numbers a1, . . . ,an,
not all zero,such that a1v1 � · · · � anvn � 0.That is,S is linearly dependent if and
only if the zero vector can be expressed as a nontrivial linear combination of the
vectors in S.

S is linearly independent if and only if it is not linearly dependent.
The empty set, { }, is linearly independent.

To understand this definition, we begin first with the simplest cases: sets having
one or two elements.

Suppose S � {v}, a one-element set. Then, by part (4) of Theorem 4.1, av � 0
implies that either a � 0 or v � 0. Now, for S to be linearly dependent, we would
have to have some nonzero a satisfy av � 0. This would imply that v � 0. We con-
clude that if S � {v}, a one-element set, then S is linearly dependent if and only if
v � 0. Equivalently, S � {v} is linearly independent if and only if v �� 0.

Example 1
Let S1 � {[3,�1,4]}. Since S1 contains a single vector and this vector is nonzero, S1 is a linearly
independent subset of R

3. On the other hand, S2 � {[0,0,0,0]} is a linearly dependent subset
of R

4.
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Next,suppose S � {v1,v2} is a linearly dependent set with two elements.Then there
exist real numbers a1 and a2,not both zero, such that a1v1 � a2v2 � 0. If a1 �� 0, this
implies that v1 � � a2

a1
v2. That is, v1 is a scalar multiple of v2. Similarly, if a2 �� 0, we

see that v2 is a scalar multiple of v1. Thus, linearly dependent sets containing exactly
two vectors are precisely those for which at least one of the vectors is a scalar multiple
of the other. So, a set of exactly two vectors is linearly independent precisely when
neither of the vectors is a scalar multiple of the other.That is,two linearly independent
vectors are not parallel. They represent two different directions.

Example 2
The set of vectors S1 �

{[1,�1,2], [�3,3,�6]} in R
3 is linearly dependent since one of the

vectors is a scalar multiple (and hence a linear combination) of the other. For example,
[1,�1,2] � (� 1

3 )[�3,3,�6].
Also, the set S2 � {[3,�8], [2,5]} is a linearly independent subset of R

2 because neither of
these vectors is a scalar multiple of the other. These two vectors are not parallel. They represent
two different directions.

In general, because linear independence is defined as the negation of linear
dependence, we can express linear independence as follows:

Let S � {v1, . . . ,vn} be a finite nonempty subset of a vector space V. Then S is linearly
independent if and only if for any set of real numbers a1, . . . ,an, the equation a1v1 � · · · �

anvn � 0 implies a1 � a2 � · · · � an � 0.

Example 3
The set of vectors {i, j,k} in R

3 is linearly independent because ai � bj � ck � [a,b,c] �

[0,0,0] if and only if a � b � c � 0. More generally, the set {e1, . . . ,en} in R
n is linearly

independent.

Example 4
Let S be any subset of a vector space V containing the zero vector 0. If S contains no vector other
than 0, then we have already seen that S is linearly dependent. If S � {v1, . . . ,vn} contains at least
two distinct vectors with one of them 0 (say v1 � 0), then 0 can be expressed as a nontrivial linear
combination of the vectors in S since 1v1 � 0v2 � · · · � 0vn � 1 · 0 � 0 � · · · � 0 � 0. Hence, by
the definition, S is linearly dependent. Therefore, in all cases, any finite subset of a vector space
that contains the zero vector 0 is linearly dependent.

The result we obtained in Example 4 is important enough to highlight:

Any finite subset of a vector space that contains the zero vector 0 is linearly dependent.
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Example 5
Let S �

{[2,5], [3,�2], [4,�9]}. Notice that [4,�9] � �[2,5] � 2[3,�2]. This shows that some
vector in S can be expressed as a linear combination of other vectors in S. In other words, the
vector [4,�9] is a “destination” that can be reached using a linear combination of the other
vectors in S. It does not strike out in a new, independent, direction. Notice that we can subtract
[4,�9] from both sides of the equation [4,�9] � �[2,5] � 2[3,�2] to obtain

0 � �[2,5] � 2[3,�2] � [4,�9].
We have thus expressed the zero vector as a nontrivial linear combination of the vectors in S,
and this implies that S is linearly dependent.

Example 6
Consider the subset S � {[1,�1,0,2], [0,�2,1,0], [2,0,�1,1]} of R

4. We will investigate whether
S is linearly independent.

We proceed by assuming that a[1,�1,0,2] � b[0,�2,1,0] � c[2,0,�1,1] � [0,0,0,0] and
solve for a,b, and c to see whether all these coefficients must be zero. That is, we determine
whether the following homogeneous system has only the trivial solution:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a � 2c � 0

�a � 2b � 0
b � c � 0

2a � c � 0

.

Row reducing

a⎡
⎢⎢⎢⎣

1
�1

0
2

b
0

�2
1
0

c
2
0

�1
1

∣∣∣∣∣∣∣∣∣
0
0
0
0

⎤
⎥⎥⎥⎦ , we obtain

a⎡
⎢⎢⎢⎣

1
0
0
0

b
0
1
0
0

c
0
0
1
0

∣∣∣∣∣∣∣∣∣
0
0
0
0

⎤
⎥⎥⎥⎦ ,

which shows that this system has only the trivial solution a � b � c � 0. Hence, S is linearly
independent.

Using Row Reduction to Test for Linear Independence

Notice that in Example 6, the columns of the matrix to the left of the augmentation
bar are just the vectors in S. In general, to test a finite set of vectors in R

n for linear
independence,we row reduce the matrix whose columns are the vectors in the set,and
then check whether the associated homogeneous system has only the trivial solution.
In practice it is not necessary to include the augmentation bar and the column of
zeroes to its right, since this column never changes in the row reduction process.
Thus, we have
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Method to Test for Linear Independence Using Row Reduction (Independence Test Method)
Let S be a finite nonempty set of vectors in R

n. To determine whether S is linearly
independent, perform the following steps:

Step 1: Create the matrix A whose columns are the vectors in S.

Step 2: Find B, the reduced row echelon form of A.

Step 3: If there is a pivot in every column of B, then S is linearly independent. Otherwise, S
is linearly dependent.

Example 7
Consider the subset S � {[3,1,�1], [�5,�2,2], [2,2,�1]} of R

3. Using the Independence Test
Method, we row reduce ⎡

⎢⎣ 3 �5 2
1 �2 2

�1 2 �1

⎤
⎥⎦ to obtain

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦ .

Since we found a pivot in every column, the set S is linearly independent.

Example 8
Consider the subset S � {[2,5], [3,7], [4,�9], [�8,3]} of R

2. Using the Independence Test
Method, we row reduce[

2 3 4 �8
5 7 �9 3

]
to obtain

[
1 0 �55 65
0 1 38 �46

]
.

Since we have no pivots in columns 3 and 4, the set S is linearly dependent.

In the last example, there are more columns than rows in the matrix we row
reduced. Hence, there must ultimately be some column without a pivot, since each
pivot is in a different row. In such cases, the original set of vectors must be linearly
dependent. This motivates the following result, which we ask you to formally prove
as Exercise 16:

Theorem 4.7 If S is any set in R
n containing k distinct vectors, where k > n, then S is

linearly dependent.

The Independence Test Method can be adapted for use on vector spaces other
than R

n, as in the next example. We will prove that the Independence Test Method is
actually valid in such cases in Section 5.5.
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Example 9
Consider the following subset of M22:

S �

{[
2 3

�1 4

]
,

[
�1 0

1 1

]
,

[
6 �1
3 2

]
,

[
�11 3

�2 2

]}
.

We determine whether S is linearly independent using the Independence Test Method. First, we
represent the 2 � 2 matrices in S as 4-vectors. Placing them in a matrix, using each 4-vector as
a column, we get⎡

⎢⎢⎢⎣
2 �1 6 �11
3 0 �1 3

�1 1 3 �2
4 1 2 2

⎤
⎥⎥⎥⎦ , which reduces to

⎡
⎢⎢⎢⎣

1 0 0 1
2

0 1 0 3
0 0 1 � 3

2
0 0 0 0

⎤
⎥⎥⎥⎦ .

There is no pivot in column 4. Hence, S is linearly dependent.

Alternate Characterizations of Linear Independence

We have already seen that a set of two vectors is linearly dependent if one vector
is a linear combination of the other. We now generalize this to larger sets as well.
Notice in the last two examples that the final columns of the row reduced matrix
indicate how to obtain the original vectors in the nonpivot columns from earlier
columns. In Example 8, the third column of the row reduced matrix is [�55,38]. The
entries �55 and 38 represent the coefficients for a linear combination of the original
first and second columns that produces the original third column; that is, [4,�9] �
�55[2,5] � 38[3,7]. Similarly, the fourth column [65,�46] of the row reduced matrix
implies [�8,3] � 65[2,5] � 46[3,7]. In Example 9, the entries of the fourth column
of the row reduced matrix are 1

2 ,3,� 3
2 ,0, respectively. The first three of these are the

coefficients for a linear combination of the first three matrices in S that produces the
fourth matrix; that is,[

�11 3
�2 2

]
�

1

2

[
2 3

�1 4

]
� 3

[
�1 0

1 1

]
�

3

2

[
6 �1
3 2

]
.

We see that when vectors are linearly dependent,the IndependenceTest Method gives
a natural way of expressing certain vectors as linear combinations of the others. More
generally, we have

Theorem 4.8 Suppose S is a finite set of vectors having at least two elements. Then
S is linearly dependent if and only if some vector in S can be expressed as a linear
combination of the other vectors in S.
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Proof. We start by assuming that S is linearly dependent. Therefore, we have coefficients
a1, . . . ,an such that 0 � a1v1 � · · · � anvn, with ai �� 0 for some i. Then,

vi �

(
�

a1

ai

)
v1 � · · · �

(
�

ai�1

ai

)
vi�1 �

(
�

ai�1

ai

)
vi�1 � · · · �

(
�

an

ai

)
vn,

which expresses vi as a linear combination of the other vectors in S.
For the second half of the proof, we assume that there is a vector vi in S that is a linear

combination of the other vectors in S. Without loss of generality, assume vi � v1; that is,
i � 1. Therefore, there are real numbers a2, . . . ,an such that

v1 � a2v2 � a3v3 � · · · � anvn.

Letting a1 � �1, we get 0 � a1v1 � · · · � anvn. Since a1 �� 0, this shows that S is linearly
dependent, completing the proof of the theorem.

Example 10
The set of vectors S � {[1,2,�1], [0,1,2], [2,7,4]} in R

3 is linearly dependent because it is pos-
sible to express some vector in the set S as a linear combination of the others. For example,
[2,7,4] � 2[1,2,�1] � 3[0,1,2]. From a geometric point of view, the fact that [2,7,4] can be
expressed as a linear combination of the vectors [1,2,�1] and [0,1,2] means that [2,7,4] lies
in the plane spanned by [1,2,�1] and [0,1,2], assuming that all three vectors have their initial
points at the origin (see Figure 4.5).

y

x

z
3[0, 1, 2]

[2, 7, 4]

2[1, 2, 21]

[1, 2, 21]

[0, 1, 2]

FIGURE 4.5

The vector [2,7,4] in the plane spanned by [1,2,�1] and [0,1,2]
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Example 11
Consider the subset S �

{[1,2,�1,1], [2,1,0,1], [2,�2,1,0], [11,1,1,4]} of R
4. Using the Inde-

pendence Test Method, we row reduce⎡
⎢⎢⎢⎣

1 2 2 11
2 1 �2 1

�1 0 1 1
1 1 0 4

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎣

1 0 0 1
0 1 0 3
0 0 1 2
0 0 0 0

⎤
⎥⎥⎥⎦ .

Because there is no pivot in column 4, S is linearly dependent. This means that at least one vector
in S is a linear combination of the others. In particular, the first three entries of the fourth column
of the row reduced matrix represent coefficients that express [11,1,1,4] as a linear combination
of the other vectors:

[11,1,1,4] � 1 · [1,2,�1,1] � 3 · [2,1,0,1] � 2 · [2,�2,1,0].

The characterization of linear dependence and linear independence inTheorem 4.8
can be expressed in alternate notation using the concept of span.

If v is a vector in a set S, we use the notation S � {v} to represent the set of all
(other) vectors in S except v. Of course, in the special case where S � {v} itself, the
set S � {v} � { }, the empty set. Theorem 4.8 implies that a subset S of two or more
vectors in a vector space V is linearly independent precisely when no vector v in S is
in the span of the remaining vectors. That is,

A set S in a vector space V is linearly independent if and only if there is no vector v ∈ S such
that v ∈ span(S � {v}).

This statement holds even in the special cases when S � {v} or S � { }. You are asked
to prove this in Exercise 21.

Equivalently, we have

A set S in a vector space V is linearly dependent if and only if there is some vector v ∈ S
such that v ∈ span(S � {v}).

Another useful characterization of linear independence is the following:

A nonempty set of vectors S � {v1, . . . ,vn} is linearly independent if and only if

(1) v1 �� 0, and

(2) for each k, 2 � k � n, vk /∈ span({v1, . . . ,vk�1}).
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This states that S is linearly independent if each vector in S can not be expressed
as a linear combination of those vectors listed before it.You are asked to prove this in
Exercise 22.

Uniqueness of Expression of a Vector as a Linear Combination

The next theorem serves as the foundation for the rest of this chapter because it
gives an even more powerful connection between the concepts of span and linear
independence.

Theorem 4.9 Let S be a nonempty finite subset of a vector space V. Then S is linearly
independent if and only if every vector v ∈span(S) can be expressed uniquely as a
linear combination of the elements of S.

Proof. Let S � {v1, . . . ,vn}.
Suppose first that S is linearly independent. Assume that v ∈span(S) can be expressed

both as v � a1v1 � · · · � anvn and as v � b1v1 � · · · � bnvn. In order to show that the
linear combination for v is unique, we need to prove that ai � bi for all i. But 0 � v � v �
(a1v1 � · · · � anvn) � (b1v1 � · · · � bnvn) � (a1 � b1)v1 � · · · � (an � bn)vn. Since S is a
linearly independent set, each ai � bi � 0, by the definition of linear independence, and
thus ai � bi for all i.

Conversely, assume every vector in span(S) can be uniquely expressed as a linear
combination of elements of S. Since 0 ∈span(S), there is exactly one linear combination
a1v1 � · · · � anvn of elements of S that equals 0. But the fact that 0 � 0v1 � · · · � 0vn
together with the uniqueness of expression for 0 means a1, . . . ,an are all zero. Thus, by the
definition of linear independence, S is linearly independent.

By Theorem 4.9,S is linearly independent if there is precisely one way of reaching
any “destination” in span(S) using the given “directions” in S!

Example 12
Recall the subset S � {[1,�1,0,2], [0,�2,1,0], [2,0,�1,1]} of R

4 from Example 6. In that
example, we proved that S is linearly independent. Now

[11,1,�6,10] � 3[1,�1,0,2] � (�2)[0,�2,1,0] � 4[2,0,�1,1]

so [11,1,�6,10] is in span(S). Then by Theorem 4.9, this is the only possible way to express
[11,1,�6,10] as a linear combination of the elements in S.

Recall the subset S � {[2,5], [3,7], [4,�9], [�8,3]} of R2 from Example 8. In that example,
we proved that S is linearly dependent. Just before Theorem 4.8 we showed that [4,�9] �

�55[2,5] � 38[3,7]. This means that [4,9] � �55[2,5] � 38[3,7] � 0[4,�9] � 0[�8,3], but we
can also express this vector as [4,9] � 0[2,5] � 0[3,7] � 1[4,�9] � 0[�8,3]. Since [4,9] is obvi-
ously in span(S), we have found a vector in span(S) for which the linear combination of elements
in S is not unique, just as Theorem 4.9 asserts.
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Linear Independence of Eigenvectors

We will prove in Section 5.6 that any set of fundamental eigenvectors for an n � n
matrix produced by the Diagonalization Method is always linearly independent (also
see Exercise 25). Let us assume this for the moment. Now, if the method produces n
eigenvectors, then the matrix P whose columns are these eigenvectors must row
reduce to In, by the Independence Test Method. This will establish the claim in
Section 3.4 that P is nonsingular.

Example 13
Consider the 3 � 3 matrix

A �

⎡
⎢⎣�2 12 �4

�2 8 �2
�3 9 �1

⎤
⎥⎦.

You are asked to show in Exercise 14 that [4,2,3] is a fundamental eigenvector for the eigenvalue
�1 � 1, and that [3,1,0] and [�1,0,1] are fundamental eigenvectors for the eigenvalue �2 � 2.
We test their linear independence by row reducing

P �

⎡
⎢⎣4 3 �1

2 1 0
3 0 1

⎤
⎥⎦ to obtain

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦,

thus illustrating that this set of fundamental eigenvectors is indeed linearly independent and that
P is nonsingular.

Linear Independence of Infinite Sets

Most cases in which we check for linear independence involve a finite set S. However,
we will occasionally want to discuss linear independence for infinite sets of vectors.

Definition An infinite subset S of a vector space V is linearly dependent if and
only if there is some finite subset T of S such that T is linearly dependent. S is
linearly independent if and only if S is not linearly dependent.

Example 14
Consider the subset S of M22 consisting of all nonsingular 2 � 2 matrices. We will show that S
is linearly dependent.

Let T � {I2, 2I2}, a subset of S. Clearly, since the second element of T is a scalar multiple
of the first element of T ,T is a linearly dependent set. Hence, S is linearly dependent, since one
of its finite subsets is linearly dependent.
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We can also express the definition of linear independence using the negation of
the definition of linear dependence:

An infinite subset S of a vector space V is linearly independent if and only if every finite
subset T of S is linearly independent.

From this, Theorem 4.8 implies that an infinite subset S of a vector space V is
linearly independent if and only if no vector in S is a finite linear combination of other
vectors in S.

These characterizations of linear independence are obviously valid as well when S
is a finite set.

Example 15
Let S �

{
1,1 � x,1 � x � x2,1 � x � x2 � x3, . . .

}
, an infinite subset of P. We will show that S is

linearly independent.
Suppose T � {p1, . . . ,pn} is a finite subset of S, with the polynomials written in order of

increasing degree. Also suppose that

a1p1 � · · · � anpn � 0.

We need to show that a1 � a2 � · · · � an � 0. We prove this by contradiction.
Suppose at least one ai is nonzero. Let ak be the last nonzero coefficient in the series. Then,

a1p1 � · · · � akpk � 0, with ak �� 0.

Hence,

pk � �
a1

ak
p1 �

a2

ak
p2 � · · · �

ak�1

ak
pk�1.

Because all the degrees of the polynomials in T are different and they were listed in order of
increasing degree, this equation expresses pk as a linear combination of polynomials whose
degrees are lower than that of pk. This can not happen, and so we get our desired contradiction.

The next theorem generalizes Theorem 4.9 to include both finite and infinite sets.
You are asked to prove this in Exercise 27.

Theorem 4.10 Let S be a nonempty subset of a vector space V. Then S is linearly
independent if and only if every vector v ∈span(S) can be expressed uniquely as a
finite linear combination of the elements of S, if terms with zero coefficients are ignored.

Remember: a finite linear combination from an infinite set S involves only a finite
number of vectors from S. The phrase “if terms with zero coefficients are ignored”
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means that two finite linear combinations from a set S are considered the same when all
their terms with nonzero coefficients agree.Adding more terms with zero coefficients
to a linear combination is not considered to produce a different linear combination.

Example 16
Recall the set S of nonsingular 2 � 2 matrices discussed in Example 14. Because S is lin-
early dependent, some vector in span(S) can be expressed in more than one way as a linear
combination of vectors in S. For example,[

2 2
2 2

]
� 2

[
1 0
0 1

]
� 2

[
0 1
1 0

]
� 1

[
3 1
0 3

]
� (�1)

[
1 �1

�2 1

]
.

Summary of Results

This section includes several different,but equivalent,descriptions of linearly indepen-
dent and linearly dependent sets of vectors. Several additional characterizations are
described in the exercises. The most important results from both the section and the
exercises are summarized in Table 4.1.

New Vocabulary

Independence Test Method
linearly dependent (set of vectors)

linearly independent (set of vectors)
redundant vector

Highlights

■ A set of vectors is linearly dependent if there is a nontrivial linear combination
of the vectors that equals 0.

■ A set of vectors is linearly independent if the only linear combination of the
vectors that equals 0 is the trivial linear combination (i.e., all coefficients � 0).

■ A single element set {v} is linearly independent if and only if v �� 0.

■ A two-element set {v1,v2} is linearly independent if and only if neither vector is
a scalar multiple of the other.

■ The vectors {e1, . . . ,en} are linearly independent in R
n, and the vectors

{1,x,x2, . . . ,xn} are linearly independent in Pn.

■ Any set containing the zero vector is linearly dependent.

■ The Independence Test Method determines whether a finite set is linearly inde-
pendent by calculating the reduced row echelon form of the matrix whose
columns are the given vectors.
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Table 4.1 Equivalent conditions for a subset S of a vector space to be linearly independent
or linearly dependent

Linear Independence of S Linear Dependence of S Source

If S � {v1, . . . ,vn} and
a1v1 � · · · � anvn � 0, then a1 �

a2 � · · · � an � 0. (The zero vec-
tor requires zero coefficients.)

If S � {v1, . . . ,vn}, then
a1v1 � · · · � anvn � 0 for some
scalars a1,a2, . . . ,an, with some
ai �� 0. (The zero vector does not
require all coefficients to be zero.)

Definition

No vector in S is a finite linear
combination of other vectors in S.

Some vector in S is a finite linear
combination of other vectors in S.

Theorem 4.8 and
Remarks after Example 14

For every v ∈ S, we have v /∈
span(S � {v}).

There is a v ∈ S such that v ∈
span(S � {v}).

Alternate characterization

For every v ∈ S, span(S � {v})
does not contain all the vectors of
span(S).

There is some v ∈ S such that
span(S � {v}) � span(S).

Exercise 12

If S �{v1, . . . ,vn}, then for each k,
vk /∈ span({v1, . . . ,vk�1}). (Each
vk is not a linear combination of
the previous vectors in S.)

If S �{v1, . . . ,vn}, some vk can be
expressed as vk � a1v1 � · · · �

ak�1vk�1. (Some vk is a linear
combination of the previous vec-
tors in S.)

Exercise 22

Every vector in span(S) can be
uniquely expressed as a linear
combination of the vectors in S.

Some vector in span(S) can be
expressed in more than one way
as a linear combination of the
vectors in S.

Theorem 4.9 and
Theorem 4.10

Every finite subset of S is linearly
independent.

Some finite subset of S is linearly
dependent.

Definition when S is infinite

■ If a subset of R
n contains more than n vectors, then the subset is linearly

dependent.

■ A set of vectors is linearly dependent if some vector can be expressed as a linear
combination of the others (i.e.,is in the span of the other vectors). (Such a vector
is said to be redundant.)

■ A set of vectors is linearly independent if no vector can be expressed as a linear
combination of the others (i.e., is in the span of the other vectors).

■ A set of vectors is linearly independent if no vector can be expressed as a linear
combination of those listed before it in the set.

■ A set of fundamental eigenvectors produced by the Diagonalization Method is
linearly independent (this will be justified in Section 5.6).
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■ An infinite set of vectors is linearly dependent if some finite subset is linearly
dependent.

■ An infinite set of vectors is linearly independent if every finite subset is linearly
independent.

■ A set S of vectors is linearly independent if and only if every vector in span(S) is
produced by a unique linear combination of the vectors in S.

EXERCISES FOR SECTION 4.4
�1. In each part, determine by quick inspection whether the given set of vectors

is linearly independent. State a reason for your conclusion.

(a) {[0,1,1]}
(b) {[1,2,�1], [3,1,�1]}
(c) {[1,2,�5], [�2,�4,10]}
(d) {[4,2,1], [�1,3,7], [0,0,0]}
(e) {[2,�5,1], [1,1,�1], [0,2,�3], [2,2,6]}

2. Use the Independence Test Method to determine which of the following sets
of vectors are linearly independent:
�(a) {[1,9,�2], [3,4,5], [�2,5,�7]}
�(b) {[2,�1,3], [4,�1,6], [�2,0,2]}

(c) {[�2,4,2][�1,5,2], [3,5,1]}
(d) {[5,�2,3], [�4,1,�7], [7,�4,�5]}

�(e) {[2,5,�1,6], [4,3,1,4], [1,�1,1,�1]}
(f ) {[1,3,�2,4], [3,11,�2,�2], [2,8,3,�9], [3,11,�8,5]}

3. Use the Independence Test Method to determine which of the following
subsets of P2 are linearly independent:
�(a)

{
x2 � x � 1, x2 � 1, x2 � 1

}
(b) {x2 � x � 3,2x2 � 3x � 1,5x2 � 9x � 7}

�(c) {2x � 6,7x � 2,12x � 7}
(d)

{
x2 � ax � b

∣∣ |a| � |b| � 1
}

4. Determine which of the following subsets of P are linearly independent:
�(a) {x2 � 1,x2 � 1,x2 � x}
(b) {1 � x2 � x3,2x � 1,x � x3}

�(c) {4x2 � 2,x2 � x � 1,x,x2 � 5x � 3}
(d) {3x3 � 2x � 1,x3 � x,x � 5,x3 � x � 10}
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�(e) {1,x,x2,x3, . . .}
(f ) {1,1 � 2x,1 � 2x � 3x2,1 � 2x � 3x2 � 4x3, . . .}

5. Show that the following is a linearly dependent subset of M22:{[
1 �2
0 1

]
,

[
3 2

�6 1

]
,

[
4 �1

�5 2

]
,

[
3 �3
0 0

]}
.

6. Prove that the following is linearly independent in M32:⎧⎨
⎩
⎡
⎣ 1 2

�1 1
3 0

⎤
⎦ ,

⎡
⎣ 4 2

�6 1
0 1

⎤
⎦ ,

⎡
⎣0 1

1 �1
2 2

⎤
⎦ ,

⎡
⎣ 0 7

5 2
�1 6

⎤
⎦
⎫⎬
⎭.

7. Let S � {[1,1,0], [�2,0,1]}.
(a) Show that S is a linearly independent subset of R

3.
�(b) Find a vector v in R

3 such that S ∪ {v} is also linearly independent.
�(c) Is the vector v from part (b) unique, or could some other choice for v

have been made? Why or why not?
�(d) Find a nonzero vector u in R

3 such that S ∪ {u} is linearly dependent.

8. Suppose that S is the subset {[2,�1,0,5], [1,�1,2,0], [�1,0,1,1]} of R
4.

(a) Show that S is linearly independent.

(b) Find a linear combination of vectors in S that produces [�2,0,3,�4] (an
element of span(S)).

(c) Is there a different linear combination of the elements of S that yields
[�2,0,3,�4]? If so, find one. If not, why not?

9. Consider S � {2x3 � x � 3,3x3 � 2x � 2,x3 � 4x � 8,4x3 � 5x � 7}⊆P3.

(a) Show that S is linearly dependent.

(b) Show that every three-element subset of S is linearly dependent.

(c) Explain why every subset of S containing exactly two vectors is linearly
independent. (Note:There are six possible two-element subsets.)

10. Let u � [u1,u2,u3],v � [v1,v2,v3],w � [w1,w2,w3] be three vectors in R
3.

Show that S � {u,v,w} is linearly independent if and only if∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ �� 0.

( Hint: Consider the transpose and use the Independence Test Method.)
(Compare this exercise with Exercise 19 in Section 4.3.)



 

4.4 Linear Independence 253

11. For each of the following vector spaces, find a linearly independent subset S
containing exactly four elements:

�(a) R
4

(b) R
5

�(c) P3

(d) M23

�(e) V � set of all symmetric matrices
in M33.

12. Let S be a (possibly infinite) subset of a vector space V . Prove that S is lin-
early dependent if and only if there is a vector v ∈ S such that span(S � {v}) �
span(S). (We say that such a vector v is redundant in S because the same set
of linear combinations is obtained after v is removed from S; that is, v is not
needed.)

13. Find a redundant vector in each given linearly dependent set, and show that it
satisfies the definition of a redundant vector given in Exercise 12.

(a)
{[4,�2,6,1], [1,0,�1,2], [0,0,0,0], [6,�2,5,5]}

�(b)
{[1,1,0,0], [1,1,1,0], [0,0,�6,0]}

(c)
{[x1,x2,x3,x4] ∈ R

4
∣∣∣ xi �
 1, for each i

}
14. Verify that the Diagonalization Method of Section 3.4 produces the fundamental

eigenvectors given in the text for the matrix A of Example 13.

15. Let S1 � {v1, . . . ,vn} be a subset of a vector space V , let c be a nonzero real
number,and let S2 � {cv1, . . . ,cvn}. Show that S1 is linearly independent if and
only if S2 is linearly independent.

�16. Prove Theorem 4.7. (Hint: Use the definition of linear dependence. Construct
an appropriate homogeneous system of linear equations, and show that the
system has a nontrivial solution.)

17. Let f be a polynomial with at least two nonzero terms having different degrees.
Prove that the set {f (x),xf ′(x)} (where f ′ is the derivative of f ) is linearly
independent in P .

18. Let V be a vector space,W a subspace of V ,S a linearly independent subset of
W , and v ∈ V � W . Prove that S ∪ {v} is linearly independent.

19. Let A be an n � m matrix, let S � {v1, . . . ,vk} be a finite subset of R
m, and let

T � {Av1, . . . ,Avk}, a subset of R
n.

(a) Prove that if T is a linearly independent subset of R
n containing k distinct

vectors, then S is a linearly independent subset of R
m.

�(b) Find a matrix A for which the converse to part (a) is false.

(c) Show that the converse to part (a) is true if A is square and nonsingular.

20. Prove that every subset of a linearly independent set is linearly independent.
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21. Let S be a subset of a vector space V . If S � {a} or S � { }, prove that S
is linearly independent if and only if there is no vector v ∈ S such that v ∈
span(S � {v}).

22. Suppose S � {v1, . . . ,vn} is a finite subset of a vector space V . Prove that S
is linearly independent if and only if v1 �� 0 and, for each k with 2 � k � n,
vk /∈ span({v1, . . . ,vk�1}). (Hint:Half of the proof is done by contrapositive. For
this half,assume that S is linearly dependent,and use an argument similar to the
first half of the proof ofTheorem 4.8 to show some vk is in span({v1, . . . ,vk�1}).
For the other half,assume S is linearly independent and show v1 �� 0 and each
vk /∈ span({v1, . . . ,vk�1}).)

23. Let f be an nth-degree polynomial in P , and let f (i) be the ith derivative of
f . Show that

{
f , f (1), f (2), . . . , f (n)

}
is a linearly independent subset of P . (Hint:

Reverse the order of the elements, and use Exercise 22.)

24. Let S be a nonempty (possibly infinite) subset of a vector space V .

(a) Prove that S is linearly independent if and only if some vector v in
span(S) has a unique expression as a linear combination of the vectors
in S (ignoring zero coefficients).

(b) The contrapositive of both halves of the “if and only if” statement in part
(a),when combined,gives a necessary and sufficient condition for S to be
linearly dependent. What is this condition?

25. Suppose A is an n � n matrix and that � is an eigenvalue for A. Let {v1, . . . ,vk}
be a set of fundamental eigenvectors for A corresponding to �. Prove that S
is linearly independent. (Hint: Consider that each vi has a 1 in a coordinate in
which all the other vectors in S have a 0.)

26. Suppose T is a linearly independent subset of a vector space V and that v ∈ V .

(a) Prove that if T ∪ {v} is linearly dependent, then v ∈ span(T ).

(b) Prove that if v ∈ span(T ), then T ∪ {v} is linearly independent. (Compare
this to Exercise 18.)

�27. Prove Theorem 4.10. (Hint: Generalize the proof of Theorem 4.9. In the first
half of the proof,suppose that v ∈ span(S) and that v can be expressed as both
a1u1 � · · · � akuk and b1v1 � · · · � blvl for distinct u1, . . . ,uk and distinct
v1, . . . ,vl in S. Consider the union W � {u1, . . . ,uk} ∪ {v1, . . . ,vl}, and label the
distinct vectors in the union as {w1, . . . ,wm}.Then use the given linear combi-
nations to express v in two ways as a linear combination of the vectors in W .
Finally, use the fact that W is a linearly independent set.)

�28. True or False:

(a) The set {[2,�3,1], [�8,12,�4]} is a linearly independent subset of R
3.

(b) A set S � {v1,v2,v3} in a vector space V is linearly dependent if v2 is a
linear combination of v1 and v3.
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(c) A subset S � {v} of a vector space V is linearly dependent if v � 0.

(d) A subset S of a vector space V is linearly independent if there is a vector
v ∈ S such that v ∈span(S � {v}).

(e) If {v1,v2, . . . ,vn} is a linearly independent set of vectors in a vector space
V , and a1v1 � a2v2 � · · · � anvn � 0, then a1 � a2 � · · · � an � 0.

(f ) If S is a subset of R
4 containing six vectors, then S is linearly dependent.

(g) Let S be a finite nonempty set of vectors in R
n. If the matrix A whose

rows are the vectors in S has n pivots after row reduction,then S is linearly
independent.

(h) If S � {v1,v2,v3} is a linearly independent set of a vector space V , then no
vector in span(S) can be expressed as two different linear combinations
of v1,v2, and v3.

(i) If S � {v1,v2} is a subset of a vector space V , and v3 � 3v1 � 2v2, then
{v1,v2,v3} is linearly dependent.

4.5 BASIS AND DIMENSION
Suppose that S is a subset of a vector space V and that v is some vector in V . We can
ask the following two fundamental questions about S and v:

Existence: Is there a linear combination of vectors in S equal to v?

Uniqueness: If so, is this the only such linear combination?

The interplay between existence and uniqueness questions is a pervasive theme
throughout mathematics. Answering the existence question is equivalent to deter-
mining whether v ∈span(S). Answering the uniqueness question is equivalent (by
Theorem 4.10) to determining whether S is linearly independent.

We are most interested in cases where both existence and uniqueness occur. In
this section, we tie together these concepts by examining those subsets of vector
spaces that simultaneously span and are linearly independent. Such a subset is called
a basis.

Definition of Basis

Definition Let V be a vector space, and let B be a subset of V . Then B is a basis
for V if and only if both of the following are true:

(1) B spans V .

(2) B is linearly independent.



 

256 CHAPTER 4 Finite Dimensional Vector Spaces

Example 1
We show that B � {[1,2,1], [2,3,1], [�1,2,�3]} is a basis for R

3 by showing that it both spans
R

3 and is linearly independent.
First, we use the Simplified Span Method in Section 4.3 to show that B spans R

3. Expressing
the vectors in B as rows and row reducing the matrix

⎡
⎢⎣ 1 2 1

2 3 1
�1 2 �3

⎤
⎥⎦ yields

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦,

which proves that span(B) � {a[1,0,0] � b[0,1,0] � c[0,0,1] |a,b,c ∈ R} � R3.
Next, we must show that B is linearly independent. Expressing the vectors in B as columns,

and using the Independence Test Method in Section 4.4, we row reduce

⎡
⎢⎣1 2 �1

2 3 2
1 1 �3

⎤
⎥⎦ to obtain

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦.

Hence, B is also linearly independent.
Since B spans R3 and is linearly independent, B is a basis for R

3. (B is not the only basis for
R

3, as we show in the next example.)

Example 2
The vector space R

n has {e1, . . . ,en} as a basis. Although R
n has other bases as well, the

basis {e1, . . . ,en} is the most useful for general applications and is therefore referred to as the
standard basis for R

n. Thus, we refer to {i, j} and {i, j,k} as the standard bases for R
2 and R

3,
respectively.

Each of our fundamental examples of vector spaces also has a “standard basis.”

Example 3
The standard basis in M32 is defined as the set

⎧⎪⎨
⎪⎩
⎡
⎢⎣1 0

0 0
0 0

⎤
⎥⎦,

⎡
⎢⎣0 1

0 0
0 0

⎤
⎥⎦,

⎡
⎢⎣0 0

1 0
0 0

⎤
⎥⎦,

⎡
⎢⎣0 0

0 1
0 0

⎤
⎥⎦,

⎡
⎢⎣0 0

0 0
1 0

⎤
⎥⎦,

⎡
⎢⎣0 0

0 0
0 1

⎤
⎥⎦
⎫⎪⎬
⎪⎭.

More generally, we define the standard basis in Mmn to be the set of m · n distinct matrices

{
�ij
∣∣1 � i � m,1 � j � n

}
,
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where �ij is the m � n matrix with 1 in the (i, j) position and zeroes elsewhere. You should
check that these m · n matrices are linearly independent and span Mmn. In addition to the
standard basis, Mmn has many other bases as well.

Example 4
We define

{
1,x,x2,x3} to be the standard basis for P3. More generally, the standard basis for

Pn is defined to be the set
{
1,x,x2, . . . ,xn}, containing n � 1 elements. Similarly, we define the

infinite set
{
1,x,x2, . . .

}
to be the standard basis for P. Again, note that in each case these sets

both span and are linearly independent.
Of course, the polynomial spaces have other bases. For example, the following is also a basis

for P4: {
x4, x4 � x3, x4 � x3 � x2, x4 � x3 � x2 � x, x3 � 1

}
.

In Exercise 3, you are asked to verify that this is a basis.

Example 5
The empty set, { }, is a basis for the trivial vector space, {0}. At the end of Section 4.3, we defined
the span of the empty set to be the trivial vector space. That is, { } spans {0}. Similarly, at the
beginning of Section 4.4, we defined { } to be linearly independent.

A Technical Lemma

In Examples 1 through 4 we saw that R
n,Pn, and Mmn each have some finite set for

a basis, while P has an infinite basis. We will mostly be concerned with those vector
spaces that have finite bases.To begin our study of such vector spaces,we need to show
that if a vector space has one basis that is finite, then all of its bases are finite, and all
have the same size. Proving this requires some effort. We begin with Lemma 4.11.

In Lemma 4.11, and throughout the remainder of the text, we use the notation |S|
to represent the number of elements in a set S. For example, if B is the standard basis
for R

3, |B| � 3.

Lemma 4.11 Let S and T be subsets of a vector space V such that S spans V ,S is finite,
and T is linearly independent. Then T is finite and |T | � |S|.

Proof. If S is empty, then V � {0}. Since {0} is not linearly independent, T is also empty,
and so |T | � |S|.

Assume that |S| � n 	 1. We will proceed with a proof by contradiction. Suppose that
either T is infinite or |T | > |S| � n. Then, since every finite subset of T is also linearly
independent (see Table 4.1 in Section 4.4), there is a linearly independent set Y ⊆ T such
that |Y | � n � 1. Let S � {v1, . . . ,vn} and let Y � {w1, . . . ,wn,wn�1}. We will show that
wn�1 ∈ span({w1, . . . ,wn}), which will contradict the linear independence of Y .
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Now since S spans V, there are scalars a1,a2, . . . ,an such that

wn�1 � a1v1 � a2v2 � · · · � anvn.

Also, there are scalars cij , for 1 � i � n and 1 � j � n, such that

w1 � c11v1 � c12v2 � · · · � c1nvn

w2 � c21v1 � c22v2 � · · · � c2nvn

...
...

wn � cn1v1 � cn2v2 � · · · � cnnvn.

Let C be the n � n matrix whose (i, j) entry is cij . Our first step is to prove that CT is
nonsingular. To do this, we show that the homogeneous system CT x � 0 has only the trivial
solution. So, let u represent a solution to the system CT x � 0; that is, suppose CT u � 0.
Then, with u � [u1, . . . ,un], we have

u1w1 � u2w2 � · · · � unwn � u1 (c11v1 � c12v2 � · · · � c1nvn)

� u2 (c21v1 � c22v2 � · · · � c2nvn)

...

� un (cn1v1 � cn2v2 � · · · � cnnvn)

� c11u1v1 � c12u1v2 � · · · � c1nu1vn

� c21u2v1 � c22u2v2 � · · · � c2nu2vn

...

� cn1unv1 � cn2unv2 � · · · � cnnunvn

� (c11u1 � c21u2 � · · · � cn1un)v1

�(c12u1 � c22u2 � · · · � cn2un)v2

...

�(c1nu1 � c2nu2 � · · · � cnnun)vn.

But the coefficient of each vi in the last expression is just the ith entry of CT u. Hence, the
coefficient of each vi equals 0. Therefore,

u1w1 � u2w2 � · · · � unwn � 0v1 � 0v2 � · · · � 0vn � 0.

Now, {w1, . . . ,wn}, a subset of Y, is linearly independent. Hence, u1 � u2 � · · · �
un � 0. Thus, u � 0, proving that the system CT x � 0 has only the trivial solution. From
this we conclude that CT is nonsingular.
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Let a � [a1, . . . ,an], where a1, . . . ,an are as previously defined. Since CT is nonsingular,
the system CT x � a has a unique solution b; that is, there is a vector b � [b1, . . . ,bn] such
that CT b � a. Using a computation similar to the above, we get

b1w1 � b2w2 � · · · � bnwn � b1 (c11v1 � c12v2 � · · · � c1nvn)

� b2 (c21v1 � c22v2 � · · · � c2nvn)

...

� bn (cn1v1 � cn2v2 � · · · � cnnvn)

� (c11b1 � c21b2 � · · · � cn1bn)v1

�(c12b1 � c22b2 � · · · � cn2bn)v2

...

�(c1nb1 � c2nb2 � · · · � cnnbn)vn.

Now, the coefficient of each vi in the last expression equals the ith coordinate of CT b,
which equals ai. Hence,

b1w1 � b2w2 � · · · � bnwn � a1v1 � a2v2 � · · · � anvn � wn�1.

This proves that wn�1 ∈ span({w1, . . . ,wn}), the desired contradiction, completing the proof
of the lemma.

Example 6
Let T �

{[1,4,3], [2,�7,6], [5,5,�5], [0,3,19]}, a subset of R
3. We already know from Theo-

rem 4.7 that because |T | > 3,T is linearly dependent. However, Lemma 4.11 gives us the same
conclusion because {i, j,k} is a spanning set for R

3 containing three elements, and so the fact
that |T | > 3 again shows that T is linearly dependent.

Dimension

We can now prove the main result of this section.

Theorem 4.12 Let V be a vector space, and let B1 and B2 be bases for V such that B1
has finitely many elements. Then B2 also has finitely many elements, and |B1| � |B2|.

Proof. Because B1 and B2 are bases for V ,B1 spans V and B2 is linearly independent.
Hence, Lemma 4.11 shows that B2 has finitely many elements and |B2| � |B1|. Now, since
B2 is finite, we can reverse the roles of B1 and B2 in this argument to show that |B1| � |B2|.
Therefore, |B1| � |B2|.

It follows from Theorem 4.12 that if a vector space V has one basis containing a
finite number of elements, then every basis for V is finite, and all bases for V have the
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same number of elements.This allows us to unambiguously define the dimension of
such a vector space, as follows:

Definition Let V be a vector space. If V has a basis B containing a finite number of
elements,then V is said to be finite dimensional. In this case,the dimension of
V ,dim(V), is the number of elements in any basis for V . In particular,dim(V)� |B|.

If V has no finite basis, then V is infinite dimensional.

Example 7
Because R

3 has the (standard) basis {i, j,k}, the dimension of R
3 is 3. Theorem 4.12 then implies

that every other basis for R
3 also has exactly three elements. More generally, dim(Rn) � n, since

R
n has the basis {e1, . . . ,en}.

Example 8
Because the standard basis {1,x,x2,x3} for P3 has four elements, dim(P3) � 4. Every other
basis for P3, such as

{
x3 � x,x2 � x � 1,x3 � x � 5,2x3 � x2 � x � 3

}
, also has four elements.

(Verify that this set is a basis for P3.)
Also, dim(Pn) � n � 1, since Pn has the basis

{
1,x,x2, . . . ,xn}, containing n � 1 elements.

Be careful! Many students erroneously believe that the dimension of Pn is n because of the
subscript n.

Example 9
The standard basis for M22 contains four elements. Hence, dim(M22) � 4. In general, from
the size of the standard basis for Mmn, we see that dim(Mmn) � m · n.

Example 10
Let V � {0} be the trivial vector space. Then dim(V) � 0 because the empty set, which contains
no elements, is a basis for V.

Example 11
Consider the following subsets of R

4:

S1 � {[1,3,1,2], [3,11,5,10], [�2,4,4,4]} and

S2 � {[1,5,�2,3], [�2,�8,8,8], [1,1,�10,�2], [0,2,4,�9], [3,13,�10,�8]}.
Since dim(R4) � 4, |S1| � 3, and |S2| � 5, Theorem 4.12 shows us that neither S1 nor S2 is a
basis for R

4. In particular, S1 cannot span R
4 because the standard basis for R

4 would then be
a linearly independent set that is larger than S1, contradicting Lemma 4.11. Similarly, S2 cannot
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be linearly independent because the standard basis would be a spanning set that is smaller than
S2, again contradicting Lemma 4.11.

Notice, however, that in this case we can make no conclusions regarding whether S1 is
linearly independent or whether S2 spans R

4 based solely on the size of these sets. We must
check for these properties separately using the techniques of Sections 4.3 and 4.4.

Sizes of Spanning Sets and Linearly Independent Sets

Example 11 illustrates the next result, which summarizes much of what we have
learned regarding the sizes of spanning sets and linearly independent sets.

Theorem 4.13 Let V be a finite dimensional vector space.

(1) Suppose S is a finite subset of V that spans V. Then dim(V) � |S|. Moreover,
|S| � dim(V) if and only if S is a basis for V.

(2) Suppose T is a linearly independent subset of V. Then T is finite and |T | �
dim(V). Moreover, |T | � dim(V) if and only if T is a basis for V.

Proof. Let B be a basis for V with |B| � n. Then dim(V) � |B|, by definition.
Part (1): Since S is a finite spanning set and B is linearly independent, Lemma 4.11

implies that |B| � |S|, and so dim(V) � |S|.
If |S| � dim(V), we prove that S is a basis for V by contradiction. If S is not a

basis, then it is not linearly independent (because it spans). So, by Exercise 12 in
Section 4.4 (see Table 4.1), there is a redundant vector in S — that is, a vector v such that
span(S � {v}) � span(S) � V. But then S � {v} is a spanning set for V having fewer than
n elements, contradicting the fact that we just observed that the size of a spanning set is
never less than the dimension.

Finally, suppose S is a basis for V. By Theorem 4.12, S is finite, and |S| � dim(V) by
the definition of dimension.

Part (2): Using B as the spanning set S in Lemma 4.11 proves that T is finite and
|T | � dim(V).

If |T | � dim(V), we prove that T is a basis for V by contradiction. If T is not a basis for
V, then T does not span V (because it is linearly independent). Therefore, there is a vector
v ∈ V such that v /∈ span(T ). Hence, by part (b) of Exercise 26 in Section 4.4, T ∪ {v} is
also linearly independent. But T ∪ {v} has n � 1 elements, contradicting the fact we just
proved — that a linearly independent subset must have size �dim(V).

Finally, if T is a basis for V, then |T | � dim(V), by the definition of dimension.

Example 12
Recall the subset B � {[1,2,1], [2,3,1], [�1,2,�3]} of R

3 from Example 1. In that example, after
showing that B spans R

3, we could have immediately concluded that B is a basis for R
3 without

having proved linear independence by using part (1) of Theorem 4.13 because B is a spanning
set with dim(R3) � 3 elements.



 

262 CHAPTER 4 Finite Dimensional Vector Spaces

Similarly, consider T � {3, x � 5, x2 � 7x � 12, x3 � 4}, a subset of P3. T is linearly inde-
pendent from Exercise 22 in Section 4.4 (see Table 4.1) because each vector in T is not in the
span of those before it. Since |T | � 4 � dim(P3), part (2) of Theorem 4.13 shows that T is a
basis for P3.

Maximal Linearly Independent Sets and Minimal Spanning Sets

Theorem 4.13 shows that in a finite dimensional vector space, a large enough linearly
independent set is a basis, as is a small enough spanning set. The “borderline” size is
the dimension of the vector space. No linearly independent sets are larger than this,
and no spanning sets are smaller. The next two results illustrate this same principle
without explicitly using the dimension. Thus, they are useful in cases in which the
dimension is not known or for infinite dimensional vector spaces. Outlines of their
proofs are given in Exercises 18 and 19.

Theorem 4.14 Let V be a vector space with spanning set S (so, span(S) = V), and let
B be a maximal linearly independent subset of S. Then B is a basis for V.

The phrase“B is a maximal linearly independent subset of S” means that both
of the following are true:

■ B is a linearly independent subset of S.

■ If B ⊂ C ⊆ S and B �� C , then C is linearly dependent.

Theorem 4.14 asserts that if there is no way to include another vector from S in B
without making B linearly dependent, then B is a basis for span(S) � V . The converse
to Theorem 4.14 is also true (see Exercise 20).

Example 13
Consider the subset S � {[1,�2,1], [3,1,�2], [5,�3,0], [5,4,�5], [0,0,0]} of R

3 and the subset
B � {[1,�2,1], [5,�3,0]} of S. We show that B is a maximal linearly independent subset of S
and hence, by Theorem 4.14, it is a basis for V � span(S).

Now, B is a linearly independent subset of S. The following equations show that if any of the
remaining vectors of S are added to B, the set is no longer linearly independent:

[3,1,�2] � �2[1,�2,1] � [5,�3,0]
[5,4,�5] � �5[1,�2,1] � 2[5,�3,0]

[0,0,0] � 0[1,�2,1] � 0[5,�3,0].

Thus, B is a maximal linearly independent subset of S and so is a basis for span(S).
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Another consequence of Theorem 4.14 is that any vector space V having a
finite spanning set S must be finite dimensional. This is because a maximal linearly
independent subset of S, which must also be finite, is a basis for V (see Exercise 24).

We also have the following result for spanning sets:

Theorem 4.15 Let V be a vector space, and let B be a minimal spanning set for V.
Then B is a basis for V.

The phrase“B is a minimal spanning set for V” means that both of the following
are true:

■ B is a subset of V that spans V .

■ If C ⊂ B and C �� B, then C does not span V .

The converse of Theorem 4.15 is true as well (see Exercise 21).

Example 14
Consider the subsets S and B of R

3 given in Example 13. We can use Theorem 4.15 to give
another justification that B is a basis for V � span(S). Recall from Example 13 that every vector
in S is a linear combination of vectors in B, so S ⊆ span(B). This fact along with B ⊆ S and
Corollary 4.6 shows that span(B) � span(S) � V. Also, neither vector in B is a scalar multiple of
the other, so that neither vector alone can span V (why?). Hence, B is a minimal spanning set
for V, and by Theorem 4.15, B is a basis for span(S).

Dimension of a Subspace

We conclude this section with the result that every subspace of a finite dimensional
vector space is also finite dimensional. This is important because it tells us that the
theorems we have developed about finite dimension apply to all subspaces of our
basic examples R

n,Mmn, and Pn.

Theorem 4.16 Let V be a finite dimensional vector space, and let W be a subspace of V.
Then W is also finite dimensional with dim(W) � dim(V). Moreover, dim(W) � dim(V)

if and only if W � V.

The proof of Theorem 4.16 is left for you to do,with hints, in Exercise 22.The only
subtle part of this proof involves showing that W actually has a basis.4

4 Although it is true that every vector space has a basis, we must be careful here, because we have not
proven this. In fact,Theorem 4.16 establishes that every subspace of a finite dimensional vector space
does have a basis and that this basis is finite. Although every finite dimensional vector space has a finite
basis by definition, the proof that every infinite dimensional vector space has a basis requires advanced
set theory and is beyond the scope of this text.
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Example 15
Consider the nested sequence of subspaces of R

3 given by {0} ⊂ {scalar multiples of [4,�7,0]} ⊂
xy-plane ⊂ R

3. Their respective dimensions are 0,1,2, and 3 (why?). Hence, the dimensions of
each successive pair of these subspaces satisfy the inequality given in Theorem 4.16.

Example 16
It can be shown that B � {x3 � 2x2 � 4x � 18,3x2 � 4x � 4,x3 � 5x2 � 3,3x � 2} is a linearly
independent subset of P3. Therefore, by part (2) of Theorem 4.13, B is a basis for P3. However,
we can also reach the same conclusion from Theorem 4.16. For, W � span(B) has B as a
basis (why?), and hence, dim(W) � 4. But since W is a subspace of P3 and dim(P3) � 4,
Theorem 4.16 implies that W � P3. Hence, B is a basis for P3.

New Vocabulary

basis
dimension
finite dimensional (vector space)
infinite dimensional (vector space)

maximal linearly independent set
minimal spanning set
standard basis (for R

n,Mmn,Pn)

Highlights

■ A basis is a subset of a vector space that both spans and is linearly independent.

■ If a finite basis exists for a vector space, the vector space is said to be finite
dimensional.

■ For a finite dimensional vector space,all bases have the same number of vectors,
and this number is known as the dimension of the vector space.

■ The standard basis for R
n is {e1, . . . ,en}; dim(Rn) � n.

■ The standard basis for Pn is {1,x,x2, . . . ,xn}; dim(Pn) � n � 1.

■ The standard basis for Mmn is {�ij}, where each �ij has a 1 in the (i, j) entry,
and zeroes elsewhere; dim(Mmn) � m · n.

■ The basis for the trivial vector space {0} is the empty set { }; dim({0}) � 0.

■ If no finite basis exists for a vector space, the vector space is said to be infinite
dimensional. P is an infinite dimensional vector space, as is the set of all real-
valued functions (under normal operations).

■ In a vector space V with dimension n, the size of a spanning set S is always 	n.
If |S| � n, then S is a basis for V .

■ In a vector space V with dimension n, the size of a linearly independent set T is
always � n. If |T | � n, then T is a basis for V .
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■ A maximal linearly independent set in a vector space is a basis.

■ A minimal spanning set in a vector space is a basis.

■ In a vector space V with dimension n, the dimension of a subspace W is always
� n. If dim(W) � n, then W � V .

EXERCISES FOR SECTION 4.5
1. Prove that each of the following subsets of R

4 is a basis for R
4 by showing both

that it spans R
4 and that is linearly independent:

(a) {[2,1,0,0], [0,1,1,�1], [0,�1,2,�2], [3,1,0,�2]}
(b) {[6,1,1,�1], [1,0,0,9], [�2,3,2,4], [2,2,5,�5]}
(c) {[1,1,1,1], [1,1,1,�1], [1,1,�1,�1], [1,�1,�1,�1]}
(d)

{[15
2 ,5, 12

5 ,1
]
,
[
2, 1

2 , 3
4 ,1
]
,
[
� 13

2 ,1,0,4
]
,
[18

5 ,0, 1
5 ,� 1

5

]}
2. Prove that the following set is a basis for M22 by showing that it spans M22

and is linearly independent:{[
1 4
2 0

]
,

[
0 2
1 0

]
,

[
�3 1
�1 0

]
,

[
5 �2
0 �3

]}
.

3. Show that the subset
{
x4, x4 � x3, x4 � x3 � x2, x4 � x3 � x2 � x, x3 � 1

}
of

P4 is a basis for P4.

4. Determine which of the following subsets of R
4 form a basis for R

4:
�(a) S � {[7,1,2,0], [8,0,1,�1], [1,0,0,�2]}
(b) S � {[1,3,2,0], [�2,0,6,7], [0,6,10,7]}

�(c) S � {[7,1,2,0], [8,0,1,�1], [1,0,0,�2], [3,0,1,�1]}
(d) S � {[1,3,2,0], [�2,0,6,7], [0,6,10,7], [2,10,�3,1]}

�(e) S � {[1,2,3,2], [1,4,9,3], [6,�2,1,4], [3,1,2,1], [10,�9,�15,6]}
5. (a) Show that B � {[2,3,0,�1], [�1,1,1,�1]} is a maximal linearly indepen-

dent subset of S � {[1,4,1,�2], [�1,1,1,�1], [3,2,�1,0], [2,3,0,�1]}.
�(b) Calculate dim(span(S)).

�(c) Does span(S) � R
4? Why or why not?

(d) Is B a minimal spanning set for span(S)? Why or why not?

6. (a) Show that B � {x3 � x2 � 2x � 1, 2x3 � 4x � 7, 3x3 � x2 � 6x � 6} is a
maximal linearly independent subset of S � {x3 � x2 � 2x � 1, x � 1,
2x3 � 4x �7, x3 � 3x2 � 22x � 34, 3x3 � x2 � 6x � 6}.

(b) Calculate dim(span(S)).
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(c) Does span(S) � P3? Why or why not?

(d) Is B a minimal spanning set for span(S)? Why or why not?

7. Let W be the solution set to the matrix equation AX � O, where

A �

⎡
⎢⎢⎣

1 2 1 0 �1
2 �1 0 1 3
1 �3 �1 1 4
2 9 4 �1 �7

⎤
⎥⎥⎦.

(a) Show that W is a subspace of R
5.

(b) Find a basis for W .

(c) Show that dim(W)�rank(A) � 5.

8. Prove that every proper nontrivial subspace of R
3 can be thought of, from a

geometric point of view, as either a line through the origin or a plane through
the origin.

9. Let f be a polynomial of degree n. Show that the set {f , f (1), f (2), . . . , f (n)} is a
basis for Pn (where f (i) denotes the ith derivative of f ). (Hint: See Exercise 23
in Section 4.4.)

10. (a) Let A be a 2 � 2 matrix. Prove that there are real numbers a0,a1, . . . ,a4,
not all zero, such that a4A4 � a3A3 � a2A2 � a1A � a0I2 � O2. (Hint:You
can assume that A,A2,A3,A4, and I2 are all distinct because if they are
not, opposite nonzero coefficients can be chosen for any identical pair to
demonstrate that the given statement holds.)

(b) Suppose B is an n � n matrix. Show that there must be a nonzero poly-
nomial p ∈ Pn2 such that p(B) � On.

11. (a) Show that B � {(x � 2), x(x � 2), x2(x � 2), x3(x � 2), x4(x � 2)} is a
basis for V � {p ∈ P5|p(2) � 0}.

�(b) What is dim(V)?

�(c) Find a basis for W � {p ∈ P5 | p(2) � p(3) � 0}.
�(d) Calculate dim(W).

�12. Let V be a finite dimensional vector space.

(a) Let S be a subset of V with dim(V) � |S|. Find an example to show that S
need not span V .

(b) Let T be a subset of V with |T | � dim(V). Find an example to show that T
need not be linearly independent.

13. Let S be a subset of a finite dimensional vector space V such that |S| � dim(V).
If S is not a basis for V ,prove that S neither spans V nor is linearly independent.
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14. Let V be an n-dimensional vector space, and let S be a subset of V con-
taining exactly n elements. Prove that S spans V if and only if S is linearly
independent.

15. Let A be a nonsingular n � n matrix, and let B be a basis for R
n.

(a) Show that B1 � {Av|v ∈ B} is also a basis for R
n. (Treat the vectors in B as

column vectors.)

(b) Show that B2 � {vA|v ∈ B} is also a basis for R
n. (Treat the vectors in B

as row vectors.)

(c) Letting B be the standard basis for R
n, use the result of part (a) to show

that the columns of A form a basis for R
n.

(d) Prove that the rows of A form a basis for R
n.

16. Prove that P is infinite dimensional by showing that no finite subset S of P can
span P , as follows:

(a) Let S be a finite subset of P . Show that S ⊆ Pn, for some n.

(b) Use part (a) to prove that span(S) ⊆ Pn.

(c) Conclude that S cannot span P .

17. (a) Prove that if a vector space V has an infinite linearly independent subset,
then V is not finite dimensional.

(b) Use part (a) to prove that any vector space having P as a subspace is not
finite dimensional.

18. The purpose of this exercise is to proveTheorem 4.14. Let V ,S,and B be as given
in the statement of the theorem. Suppose B �� S, and w ∈ S with w /∈ B.

(a) Explain why it is sufficient to prove that B spans V .

�(b) Prove that if S ⊆span(B), then B spans V .

�(c) Let C � B ∪ {w}. Prove that C is linearly dependent.

(d) Use part (c) to prove that w ∈span(B). (Also see part (a) of Exercise 26
in Section 4.4.)

(e) Tie together all parts to finish the proof.

19. The purpose of this exercise is to prove Theorem 4.15.

(a) Explain why it is sufficient to prove the following statement: Let S be a
spanning set for a vector space V . If S is a minimal spanning set for V ,
then S is linearly independent.

�(b) State the contrapositive of the statement in part (a).

�(c) Prove the statement from part (b). (Hint: Use Exercise 12 from
Section 4.4.)

20. Let B be a basis for a vector space V . Prove that B is a maximal linearly indepen-
dent subset of V . (Note:You may not use dim(V) in your proof, since V could
be infinite dimensional.)
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21. Let B be a basis for a vector space V . Prove that B is a minimal spanning set
for V . (Note:You may not use dim(V) in your proof, since V could be infinite
dimensional.)

22. The purpose of this exercise is to prove Theorem 4.16. Let V and W be as
given in the theorem. Consider the set A of nonnegative integers defined by
A � {k |a set T exists with T ⊆ W , |T | � k, and T linearly independent}.

(a) Prove that 0 ∈ A. (Hence, A is nonempty.)

(b) Prove that k ∈ A implies k � dim(V). (Hint: Use Theorem 4.13.) (Hence,
A is finite.)

�(c) Let n be the largest element of A. Let T be a linearly independent subset
of W such that |T | � n. Prove T is a maximal linearly independent subset
of W .

�(d) Use part (c) and Theorem 4.14 to prove that T is a basis for W .

(e) Conclude that W is finite dimensional and use part (b) to show dim(W) �
dim(V).

(f ) Prove that if dim(W) � dim(V), then W � V . (Hint: Let T be a basis for
W and use part (2) of Theorem 4.13 to show that T is also a basis
for V .)

(g) Prove the converse of part (f).

23. Let V be a subspace of R
n with dim(V) � n � 1. (Such a subspace is called

a hyperplane in R
n.) Prove that there is a nonzero x ∈ R

n such that V �
{v ∈ R

n|x · v � 0}. (Hint: Set up a homogeneous system of equations whose
coefficient matrix has a basis for V as its rows. Then notice that this (n � 1) �
n system has at least one nontrivial solution, say x.)

24. Let V be a vector space and let S be a finite spanning set for V . Prove that V is
finite dimensional.

�25. True or False:

(a) A set B of vectors in a vector space V is a basis for V if B spans V and B is
linearly independent.

(b) All bases for P4 have four elements.

(c) dim(M43) � 7.

(d) If S is a spanning set for W and dim (W) � n, then |S| � n.

(e) If T is a linearly independent set in W and dim(W) � n, then |T | � n.

(f ) If T is a linearly independent set in a finite dimensional vector space W
and S is a finite spanning set for W , then |T | � |S|.

(g) If W is a subspace of a finite dimensional vector space V , then dim(W) <

dim(V).

(h) Every subspace of an infinite dimensional vector space is infinite dimen-
sional.
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(i) If T is a maximal linearly independent set for a vector space V and S is a
minimal spanning set for V , then S � T .

(j) If A is a nonsingular 4 � 4 matrix, then the rows of A are a basis for R
4.

4.6 CONSTRUCTING SPECIAL BASES
In this section, we present additional methods for finding a basis for a given finite
dimensional vector space,starting with either a spanning set or a linearly independent
subset.

Using Row Reduction to Construct a Basis

Recall the Simplified Span Method from Section 4.3. Using that method,we were able
to simplify the form of span(S) for a subset S of R

n.This was done by creating a matrix
A whose rows are the vectors in S, and then row reducing A to obtain a reduced row
echelon form matrix C. We discovered that a simplified form of span(S) is given by
the set of all linear combinations of the nonzero rows of C. Now, each nonzero row
of the matrix C has a (pivot) 1 in a column in which all other rows have zeroes, so
the nonzero rows of C must be linearly independent.Thus, the nonzero rows of C not
only span S but are linearly independent as well, and so they form a basis for span(S).
Therefore, whenever we use the Simplified Span Method on a subset S of R

n, we are
actually creating a basis for span(S).

Example 1
Let S � {[2,�2,3,5,5], [�1,1,4,14,�8], [4,�4,�2,�14,18], [3,�3,�1,�9,13]}, a subset of
R

5. We can use the Simplified Span Method to find a basis B for V � span(S). We construct the
matrix

A �

⎡
⎢⎢⎢⎣

2 �2 3 5 5
�1 1 4 14 �8

4 �4 �2 �14 18
3 �3 �1 �9 13

⎤
⎥⎥⎥⎦,

whose rows are the vectors in S. The reduced row echelon form matrix for A is

C �

⎡
⎢⎢⎢⎣

1 �1 0 �2 4
0 0 1 3 �1
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦.

Therefore, the desired basis for V is the set B � {[1,�1,0,�2,4], [0,0,1,3,�1]} of nonzero rows
of C, and dim(V) � 2.
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In general, the Simplified Span Method creates a basis of vectors with a simpler
form than the original vectors.This is because a reduced row echelon form matrix has
the simplest form of all matrices that are row equivalent to it.

This method can also be adapted to vector spaces other than R
n, as in the next

example.

Example 2
Consider the subset S � {x2 � 3x � 5,3x3 � 4x � 8,6x3 � x2 � 11x � 21,2x5 � 7x3 � 5x} of
P5. We use the Simplified Span Method to find a basis for W � span(S).

Since S is a subset of P5 instead of R
n, we must alter our method slightly. We cannot use

the polynomials in S themselves as rows of a matrix, so we “peel off” their coefficients to create
four 6-vectors, which we use as the rows of the following matrix:

A �

x5⎡
⎢⎢⎢⎣

0
0
0
2

x4

0
0
0
0

x3

0
3
6

�7

x2

1
0

�1
0

x

�3
4

11
5

1

5
�8

�21
0

⎤
⎥⎥⎥⎦.

Row reducing this matrix produces

C �

x5⎡
⎢⎢⎢⎢⎣

1

0

0
0

x4

0

0

0
0

x3

0

1

0
0

x2

0

0

1
0

x
43
6
4
3

�3
0

1

� 28
3

� 8
3

5
0

⎤
⎥⎥⎥⎥⎦.

The nonzero rows of C yield the following three-element basis for W:

D �

{
x5 �

43

6
x �

28

3
, x3 �

4

3
x �

8

3
, x2 � 3x � 5

}
.

Hence, dim(W) � 3.

Every Spanning Set for a Finite Dimensional Vector Space
Contains a Basis

Sometimes, we are interested in reducing a spanning set to a basis by eliminating
redundant vectors without changing the form of the original vectors.The next theorem
asserts that this is possible; that is, if V is a finite dimensional vector space, then any
spanning set of V , finite or infinite, must contain a basis for V .

Theorem 4.17 If S is a spanning set for a finite dimensional vector space V, then there
is a set B ⊆ S that is a basis for V.
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The proof of this theorem is very similar to the first part of the proof of
Theorem 4.165 and is left as Exercise 14.

Example 3
Let S � {[1,3,�2], [2,1,4], [0,5,�8], [1,�7,14]}, and let V � span( S). Theorem 4.17 indicates
that some subset of S is a basis for V. Now, the equations

[0,5,�8]�2[1,3,�2] � [2,1,4] and
[1,�7,14]��3[1,3,�2] � 2[2,1,4]

show that the subset B � {[1,3,�2], [2,1,4]} is a maximal linearly independent subset of S
(why?). Hence, by Theorem 4.14, B is a basis for V contained in S.

Shrinking a Spanning Set to a Basis Using Row Reduction

As Example 3 illustrates,to find a subset B of a spanning set S that is a basis for span(S),
it is necessary to remove enough redundant vectors from S until we are left with a
(maximal) linearly independent subset of S.This can be done using the Independence
Test Method from Section 4.4. Suppose we row reduce the matrix whose columns are
all the vectors in S.Then those vectors of S corresponding to the pivot columns form a
linearly independent subset B.This is because if we had row reduced the matrix having
just these columns, every column would have had a pivot. Also, no larger subset of S
containing B can be linearly independent because reinserting a column corresponding
to any of the remaining vectors would result in a nonpivot column after row reduction.
Therefore, B is a maximal linearly independent subset of S, and hence is a basis for
span(S). This procedure is illustrated in the next two examples.

Example 4
Consider the subset S � {[1,2,�1], [3,6,�3], [4,1,2], [0,0,0], [�1,5,�5]} of R

3. We use the
Independence Test Method to find a subset B of S that is a basis for V �span(S). We form the
matrix A whose columns are the vectors in S, and then row reduce

A �

⎡
⎢⎣ 1 3 4 0 �1

2 6 1 0 5
�1 �3 2 0 �5

⎤
⎥⎦ to obtain C �

⎡
⎢⎣1 3 0 0 3

0 0 1 0 �1
0 0 0 0 0

⎤
⎥⎦.

Since there are nonzero pivots in the first and third columns of C, we choose B �

{[1,2,�1], [4,1,2]}, the first and third vectors in S. Since |B| � 2,dim(V) � 2. (Hence, S does
not span all of R3.)

5 Theorem 4.17 is also true for infinite dimensional vector spaces,but the proof requires advanced topics
in set theory that are beyond the scope of this book.
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This method can also be adapted to vector spaces other than R
n.

Example 5
Let S � {x3 � 3x2 � 1,2x2 � x,2x3 � 3x � 2,4x � 5} ⊆ P3. We use the Independence Test
Method to find a subset B of S that is a basis for V � span(S). Let A be the matrix whose
columns are the analogous vectors in R

4 for the given vectors in S. Then

A �

⎡
⎢⎢⎢⎣

1 0 2 0
�3 2 0 0

0 1 3 4
1 0 2 �5

⎤
⎥⎥⎥⎦, which reduces to C �

⎡
⎢⎢⎢⎣

1 0 2 0
0 1 3 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦.

Because we have nonzero pivots in the first, second, and fourth columns of C, we choose
B � {x3 � 3x2 � 1,2x2 � x,4x � 5}. These are the first, second, and fourth vectors in S. Then
B is the desired basis for V.

The third vector in S is a linear combination of previous vectors in S. The first two entries
of the third column of C give the coefficients of that linear combination; that is, 2x3 � 3x � 2 �

2(x3 � 3x2 � 1) � 3(2x2 � x).

The Simplified Span Method and the IndependenceTest Method for finding a basis
are similar enough to cause confusion,so we contrast their various features inTable 4.2.

Shrinking an Infinite Spanning Set to a Basis

The Independence Test Method can sometimes be used successfully when the
spanning set S is infinite.

Table 4.2 Contrasting the Simplified Span Method and Independence Test Method
for finding a basis from a given spanning set S

Simplified Span Method Independence Test Method

The vectors in S become the rows of a
matrix.

The vectors in S become the columns of a
matrix.

The basis created is not a subset of the
spanning set S but contains vectors with a
simpler form.

The basis created is a subset of the
spanning set S.

The nonzero rows of the reduced row
echelon form matrix are used as the basis
vectors.

The pivot columns of the reduced row
echelon form matrix are used to determine
which vectors to select from S.
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Example 6
Let V be the subspace of M22 consisting of all 2 � 2 symmetric matrices. Let S be the set
of nonsingular matrices in V, and let W � span(S) � span({nonsingular, symmetric 2 � 2
matrices}). We reduce S to a basis for W using the Independence Test Method, even though S
is infinite. (We prove later that W � V, and so the basis we construct is actually a basis for V.)

The strategy is to guess a finite subset Y of S that spans W. We then use the Independence
Test Method on Y to find the desired basis. We try to pick vectors for Y whose forms are as
simple as possible to make computation easier. In this case, we choose the set of all nonsingular
symmetric 2 � 2 matrices having only zeroes and ones as entries. That is,

Y �

{[
1 0
0 1

]
,

[
1 1
1 0

]
,

[
0 1
1 0

]
,

[
0 1
1 1

]}
.

Now, before continuing, we must ensure that span(Y ) � W. That is, we must show every
nonsingular symmetric 2 � 2 matrix is in span(Y ). In fact, we will show every symmetric 2 � 2
matrix is in span(Y ) by finding real numbers w, x, y, and z so that

[
a b
b c

]
� w

[
1 0
0 1

]
� x

[
1 1
1 0

]
� y

[
0 1
1 0

]
� z

[
0 1
1 1

]
.

Thus, we must prove that the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w�x �a

x �y �z �b

x �y �z �b

w �z � c

has solutions for w, x, y, and z in terms of a, b, and c. But w � 0, x � a, y � b � a � c,
z � c certainly satisfies the system. Hence, V ⊆ span(Y ). Since span(Y ) ⊆ V, we have
span(Y ) � V � W.

We can now use the Independence Test Method on Y . We express the matrices in Y as
corresponding vectors in R

4 and create the matrix with these vectors as columns, as follows:

A �

⎡
⎢⎢⎢⎣

1 1 0 0
0 1 1 1
0 1 1 1
1 0 0 1

⎤
⎥⎥⎥⎦, which reduces to C �

⎡
⎢⎢⎢⎣

1 0 0 1
0 1 0 �1
0 0 1 2
0 0 0 0

⎤
⎥⎥⎥⎦.

Then, the desired basis is

B �

{[
1 0
0 1

]
,

[
1 1
1 0

]
,

[
0 1
1 0

]}
,

the elements of Y corresponding to the pivot columns of C.
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The method used in Example 6 is not guaranteed to work when the spanning set
S has infinitely many elements because our choice for the finite set Y might not have
the same span as S. When this happens, the choice of a larger set Y may lead to
success.

Finding a Basis from a Spanning Set by Inspection

When a spanning set S for a vector space V is given, it is sometimes easier to select
a maximal linearly independent subset of S (and hence, a basis for V) by process of
elimination rather than row reduction. The idea behind the following method is to
inspect each of the vectors in the given spanning set S in turn and eliminate any
that are redundant; that is, any vectors in S that are linear combinations of previous
vectors.

The formal technique presented in the following method resembles a proof by
induction in that there is a“Base”Step followed by an“Inductive”Step that is repeated
until the desired basis is found. The method stops when we run out of vectors
to choose in the Inductive Step that are linearly independent of those previously
chosen.6

Method for Finding a Basis from a Spanning Set by Inspection (Inspection Method)
Let S be a finite set of vectors spanning a vector space V.

(1) Base Step: Choose v1 �� 0 in S.

Repeat the following step as many times as possible:

(2) Inductive Step: Assuming v1, . . . ,vk�1 have already been chosen from S, choose
vk ∈ S such that vk /∈ span({v1, . . . ,vk�1}).
The final set constructed is a basis for V.

The Inspection Method is useful when you can determine easily (without tedious
computations) which vectors to choose next in the Inductive Step. Otherwise, you
should apply the Independence Test Method.

Example 7
Let S � {[0,0,0], [2,�8,12], [�1,4,�6], [7,2,2]}, a subset of R

3. Let V � span(S), a subspace
of R

3. We use the Inspection Method to find a subset B of S that is a basis for V.
The Base Step is to choose v1, a nonzero vector in S. So, we skip over the first vector listed

in S, [0,0,0] and let v1 � [2,�8,12].

6 We assume that S has at least one nonzero vector. Otherwise, V would be the trivial vector space. In
this case, the desired basis for V is the empty set, { }.
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Moving on to the Inductive Step, we look for v2 in S so that v2 /∈span({v1}). Hence, v2 may
not be a scalar multiple of v1. Therefore, we may not choose [�1,4,�6] because [�1,4,�6] �

� 1
2 [2,�8,12]. Instead, we choose v2 � [7,2,2].

At this point, there are no more vectors in S for us to try, so the induction process must
terminate here. Therefore, B � {v1,v2} � {[2,�8,12], [7,2,2]} is the desired basis for V. Notice
that V � span(B) is not all of R

3 because dim(V) � 2 �� dim
(
R

3). (You can verify, for example,
that the vector [1,0,0] ∈ R

3 cannot be expressed as a linear combination of the vectors in B and
hence is not in V � span(B).)

Every Linearly Independent Set in a Finite Dimensional Vector
Space Is Contained in Some Basis

Suppose that T � {t1, . . . , tk} is a linearly independent set of vectors in a finite dimen-
sional vector space V . Because V is finite dimensional, it has a finite basis, say
A � {a1, . . .,an}. Consider the set T ∪ A. Now, T ∪ A certainly spans V (since A alone
spans V). We can therefore apply the Independence Test Method to T ∪ A to produce
a basis B for V . If we order the vectors in T ∪ A so that all the vectors in T are listed
first, then none of these vectors will be eliminated, since no vector in T is a linear
combination of vectors listed earlier in T . In this manner we construct a basis B for V
that contains T . We have just proved the following:

Theorem 4.18 Let T be a linearly independent subset of a finite dimensional vector
space V. Then V has a basis B with T ⊆ B.

Compare this result with Theorem 4.17.
We modify slightly the method outlined just beforeTheorem 4.18 to find a basis for

a finite dimensional vector space containing a given linearly independent subset T .

Method for Finding a Basis by Enlarging a Linearly Independent Subset (Enlarging Method)
Suppose that T � {t1, . . . , tk} is a linearly independent subset of a finite dimensional vector
space V.

Step 1: Find a finite spanning set A � {a1, . . .,an} for V.

Step 2: Form the ordered spanning set S � {t1, . . . , tk,a1, . . . ,an} for V.

Step 3: Use either the Independence Test Method or the Inspection Method on S to produce
a subset B of S.

Then B is a basis for V containing T .

The basis produced by this method is easier to use if the additional vectors in the
set A have a simple form. Ideally, we choose A to be the standard basis for V .
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Example 8
Consider the linearly independent subset T � {[2,0,4,�12], [0,�1,�3,9]} of V � R

4. We use
the Enlarging Method to find a basis for R

4 that contains T .

Step 1: We choose A to be the standard basis {e1,e2,e3,e4} for R
4.

Step 2: We create

S � {[2,0,4,�12], [0,�1,�3,9], [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]}.

Step 3: The matrix

⎡
⎢⎢⎢⎣

2 0 1 0 0 0
0 �1 0 1 0 0
4 �3 0 0 1 0

�12 9 0 0 0 1

⎤
⎥⎥⎥⎦ reduces to

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 � 3
4 0 � 1

12

0 1 0 �1 0 0
0 0 1 3

2 0 1
6

0 0 0 0 1 1
3

⎤
⎥⎥⎥⎥⎥⎦ .

Since columns 1,2,3, and 5 have nonzero pivots, the Independence Test Method indi-
cates that the set B � {[2,0,4,�12], [0,�1,�3,9], [1,0,0,0], [0,0,1,0]} is a basis for R

4

containing T .

In general, we can use the Enlarging Method only when we already know a finite
spanning set to use for A. Otherwise, we can make an intelligent guess, just as we
did when using the Independence Test Method on an infinite spanning set. How-
ever, we must then take care to verify that the resulting set actually spans the vector
space.

New Vocabulary
Enlarging Method Inspection Method

Highlights

■ Every spanning set of a finite dimensional vector space V has a subset that is a
basis for V .

■ Every linearly independent set of a finite dimensional vector space V can be
enlarged to a basis for V .

■ The Simplified Span Method is useful for finding a basis (in simplified form) for
the span of a given set of vectors (by row reducing the matrix whose rows
are the given vectors).

■ The Independence Test Method is useful for finding a subset of a given set of
vectors that is a basis for the span of the vectors.
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■ The Inspection Method is useful for finding a subset of a spanning set that is a
basis (by eliminating those vectors that are linear combinations of earlier
vectors).

■ The Enlarging Method is useful for enlarging a linearly independent set to a basis
(for a finite dimensional vector space).

EXERCISES FOR SECTION 4.6
1. For each of the given subsets S of R

5, find a basis for V � span(S) using the
Simplified Span Method:
�(a) S � {[1,2,3,�1,0], [3,6,8,�2,0], [�1,�1,�3,1,1], [�2,�3,�5,1,1]}
(b) S � {[3,2,�1,0,1], [1,�1,0,3,1], [4,1,�1,3,2], [3,7,�2,�9,�1],

[�1,�4,1,6,1]}
(c) S � {[0,1,1,0,6], [2,�1,0,�2,1], [�1,2,1,1,2], [3,�2,0,�2,�3],

[1,1,1,�1,4], [2,�1,�1,1,3]}
�(d) S � {[1,1,1,1,1], [1,2,3,4,5], [0,1,2,3,4], [0,0,4,0,�1]}

�2. Adapt the Simplified Span Method to find a basis for the subspace of P3 spanned
by S � {x3 � 3x2 � 2, 2x3 � 7x2 � x � 3, 4x3 � 13x2 � x � 5}.

�3. Adapt the Simplified Span Method to find a basis for the subspace of M32

spanned by

S �

⎧⎨
⎩
⎡
⎣1 4

0 �1
2 2

⎤
⎦,

⎡
⎣2 5

1 �1
4 9

⎤
⎦,

⎡
⎣ 1 7

�1 �2
2 �3

⎤
⎦,

⎡
⎣3 6

2 �1
6 12

⎤
⎦
⎫⎬
⎭.

4. For each given subset S of R
3, find a subset B of S that is a basis for V �

span(S).
�(a) S � {[3,1,�2], [0,0,0], [6,2,�3]}
(b) S � {[4,7,1], [1,0,0], [6,7,1], [�4,0,0]}

�(c) S � {[1,3,�2], [2,1,4], [3,�6,18], [0,1,�1], [�2,1,�6]}
(d) S � {[1,4,�2], [�2,�8,4], [2,�8,5], [0,�7,2]}

�(e) S � {[3,�2,2], [1,2,�1], [3,�2,7], [�1,�10,6]}
(f ) S � {[3,1,0], [2,�1,7], [0,0,0], [0,5,�21], [6,2,0], [1,5,7]}
(g) S � the set of all 3-vectors whose second coordinate is zero

�(h) S � the set of all 3-vectors whose second coordinate is �3 times its first
coordinate plus its third coordinate
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5. For each given subset S of P3,find a subset B of S that is a basis for V � span(S).
�(a) S �{x3 � 8x2 � 1,3x3 � 2x2 � x,4x3 � 2x � 10,x3 � 20x2 � x � 12,

x3 � 24x2 � 2x � 13,x3 � 14x2 � 7x � 18}
(b) S � {�2x3 � x � 2,3x3 � x2 � 4x � 6,8x3 � x2 � 6x � 10,�4x3 �

3x2 � 3x � 4,�3x3 � 4x2 � 8x � 12}
�(c) S � the set of all polynomials in P3 with a zero constant term

(d) S � P2

�(e) S � the set of all polynomials in P3 with the coefficient of the x2 term
equal to the coefficient of the x3 term

(f ) S � the set of all polynomials in P3 with the coefficient of the x3 term
equal to 8

6. For each given subset S of M33, find a subset B of S that is a basis for V �
span(S).
�(a) S � {A ∈ M33| each aij is either 0 or 1}

(b) S � {A ∈ M33| each aij is either 1 or �1}

�(c) S � the set of all symmetric 3 � 3 matrices

(d) S � the set of all nonsingular 3 � 3 matrices

7. Enlarge each of the following linearly independent subsets T of R
5 to a basis B

for R
5 containing T :

�(a) T � {[1,�3,0,1,4], [2,2,1,�3,1]}
(b) T � {[1,1,1,1,1], [0,1,1,1,1], [0,0,1,1,1]}

�(c) T � {[1,0,�1,0,0], [0,1,�1,1,0], [2,3,�8,�1,0]}
8. Enlarge each of the following linearly independent subsets T of P4 to a basis B

for P4 that contains T :
�(a) T � {x3 � x2, x4 � 3x3 � 5x2 � x}
(b) T � {3x � 2, x3 � 6x � 4}

�(c) T � {x4 � x3 � x2 � x � 1, x3 � x2 � x � 1, x2 � x � 1}
9. Enlarge each of the following linearly independent subsets T of M32 to a basis

B for M32 that contains T :

�(a) T �

⎧⎨
⎩
⎡
⎣ 1 �1

�1 1
0 0

⎤
⎦,

⎡
⎣ 0 0

1 �1
�1 1

⎤
⎦
⎫⎬
⎭
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(b) T �

⎧⎨
⎩
⎡
⎣ 0 �2

1 0
�1 2

⎤
⎦,

⎡
⎣0 �3

0 1
3 �6

⎤
⎦,

⎡
⎣ 0 1

1 1
�4 8

⎤
⎦
⎫⎬
⎭

�(c) T �

⎧⎨
⎩
⎡
⎣ 3 0

�1 7
0 1

⎤
⎦,

⎡
⎣�1 0

1 3
0 �2

⎤
⎦ ,

⎡
⎣2 0

3 1
0 �1

⎤
⎦,

⎡
⎣6 0

0 1
0 �1

⎤
⎦
⎫⎬
⎭

�10. Find a basis for the vector space U4 consisting of all 4 � 4 upper triangular
matrices.

11. In each case,find the dimension of V by using an appropriate method to create
a basis.

(a) V � span({[5,2,1,0,�1], [3,0,1,1,0], [0,0,0,0,0], [�2,4,�2,�4,�2],
[0,12,�4,�10,�6], [�6,0,�2,�2,0]}), a subspace of R

5

�(b) V � {A ∈ M33| trace(A) � 0}, a subspace of M33 (Recall that the trace
of a matrix is the sum of the terms on the main diagonal.)

(c) V � span({x4 � x3 � 2x2, 2x4 � x � 5, 2x3 � 4x2 � x � 4, 6, x2 � 1})
�(d) V � {p ∈ P6|p � ax6 � bx5 � ax4 � cx3 � (a � b � c)x2 � (a � c)x �

(3a � 2b � 16c), for real numbers a,b, and c}

12. (a) Show that each of these subspaces of Mnn has dimension (n2 � n)/2.

(i) The set of upper triangular n � n matrices

(ii) The set of lower triangular n � n matrices

(iii) The set of symmetric n � n matrices
�(b) What is the dimension of the set of skew-symmetric n � n matrices?

13. Let A be an m � n matrix.

(a) Prove that SA � {X ∈ R
n|AX � 0}, the solution set of the homogeneous

system AX � 0, is a subspace of R
n.

(b) Prove that dim(SA)�rank(A) � n. (Hint:First consider the case where A is
in reduced row echelon form.)

�14. Prove Theorem 4.17. This proof should be similar to the part of the proof for
Theorem 4.16 outlined in parts (a), (b), and (c) of Exercise 22 in Section 4.5.
However, change the definition of the set A in that exercise so that each set T
is a subset of S rather than of W .

15. Let W be a subspace of a finite dimensional vector space V .

(a) Show that V has some basis B with a subset B′ that is a basis for W .
�(b) If B is any given basis for V , must some subset B′ of B be a basis for W?

Prove that your answer is correct.
�(c) If B is any given basis for V and B′ ⊆ B, is there necessarily a subspace Y

of V such that B′ is a basis for Y? Why or why not?



 

280 CHAPTER 4 Finite Dimensional Vector Spaces

16. Let V be a finite dimensional vector space, and let W be a subspace of V .

(a) Prove that V has a subspace W ′ such that every vector in V can be uniquely
expressed as a sum of a vector in W and a vector in W ′. (In other words,
show that there is a subspace W ′ so that,for every v in V ,there are unique
vectors w ∈ W and w′ ∈ W ′ such that v � w � w′.)

�(b) Give an example of a subspace W of some finite dimensional vector space
V for which the subspace W ′ from part (a) is not unique.

17. (a) Let S be a finite subset of R
n. Prove that the Simplified Span Method applied

to S produces the standard basis for R
n if and only if span(S) � R

n.

(b) Let B ⊆ R
n with |B| � n,and let A be the n � n matrix whose rows are the

vectors in B. Prove that B is a basis for R
n if and only if |A| �� 0.

18. Let A be an m � n matrix and let S be the set of vectors consisting of the rows
of A.

(a) Use the Simplified Span Method to show that dim(span(S)) � rank(A).

(b) Use the IndependenceTest Method to prove that dim(span(S)) � rank(AT ).

(c) Use parts (a) and (b) to prove that rank(A) � rank(AT ). (We will state this
formally as Corollary 5.11 in Section 5.3.)

19. Let �1, . . . ,�n and �1, . . . ,�n be any real numbers, with n > 2. Consider the
n � n matrix A whose (i, j) term is aij � sin(�i � �j). Prove that |A| � 0. (Hint:
Consider x1 � [sin �1,sin �2, . . . ,sin �n], x2 � [cos�1,cos�2, . . . ,cos�n]. Show
that the row space of A ⊆ span({x1,x2}), and hence, dim(row space of A)
< n.)

�20. True or False:

(a) Given any spanning set S for a finite dimensional vector space V , there is
some B ⊆ S that is a basis for V .

(b) Given any linearly independent set T in a finite dimensional vector space
V , there is a basis B for V containing T .

(c) If S is a finite spanning set for R
n, then the Simplified Span Method must

produce a subset of S that is a basis for R
n.

(d) If S is a finite spanning set for R
n, then the Independence Test Method

produces a subset of S that is a basis for R
n.

(e) If S is a finite spanning set for R
n, then the Inspection Method produces a

subset of S that is a basis for R
n.

(f ) If T is a linearly independent set in R
n, then the Enlarging Method must

produce a subset of T that is a basis for R
n.

(g) Before row reduction, the Simplified Span Method places the vectors of a
given spanning set S as columns in a matrix, while the Independence Test
Method places the vectors of S as rows.
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4.7 COORDINATIZATION
If B is a basis for a vector space V , then we know every vector in V has a unique expres-
sion as a linear combination of the vectors in B. For example, the vector [a1, . . . ,an] in
R

n is written as a linear combination of the standard basis {e1, . . . ,en} for R
n in a natural

and unique way as a1e1 � · · · � anen. Dealing with the standard basis in R
n is easy

because the coefficients in the linear combination are the same as the coordinates of
the vector. However, this is not necessarily true for other bases.

In this section, we develop a process, called coordinatization, for representing any
vector in a finite dimensional vector space in terms of its coefficients with respect
to a given basis. We also determine how the coordinatization changes whenever we
switch bases.

Coordinates with Respect to an Ordered Basis

Definition An ordered basis for a vector space V is an ordered n-tuple of vectors
(v1, . . . ,vn) such that the set {v1, . . . ,vn} is a basis for V .

In an ordered basis, the elements are written in a specific order. Thus, (i, j,k) and
(j, i,k) are different ordered bases for R

3.
By Theorem 4.9,if B � (v1,v2, . . . ,vn) is an ordered basis for V ,then for every vector

w ∈ V , there are unique scalars a1,a2, . . . ,an such that w � a1v1 � a2v2 � · · · � anvn.
We use these scalars a1,a2, . . . ,an to coordinatize the vector w as follows:

Definition Let B � (v1,v2, . . . ,vn) be an ordered basis for a vector space V . Suppose
that w � a1v1 � a2v2 � · · · � anvn ∈ V . Then [w]B, the coordinatization of w
with respect to B, is the n-vector [a1,a2, . . . ,an].

The vector [w]B � [a1,a2, . . . ,an] is frequently referred to as “w expressed in
B-coordinates.” When useful, we will express [w]B as a column vector.

Example 1
Let B � ([4,2], [1,3]) be an ordered basis for R

2. Notice that [4,2] � 1[4,2] � 0[1,3], so [4,2]B �

[1,0]. Similarly, [1,3]B � [0,1]. From a geometric viewpoint, converting to B-coordinates in
R

2 results in a new coordinate system in R
2 with [4,2] and [1,3] as its “unit” vectors. The

new coordinate grid consists of parallelograms whose sides are the vectors in B, as shown
in Figure 4.6. For example, [11,13] equals [2,3] when expressed in B-coordinates because
[11,13] � 2[4,2] � 3[1,3]. In other words, [11,13]B � [2,3].
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x

y

[1, 3]B5 [0, 1]

[11, 13]B5 [2, 3]

[4, 2]B5 [1, 0]

New
y-axis

New
x-axis

FIGURE 4.6

A B-coordinate grid in R
2: picturing [11,13] in B-coordinates

Example 2
Let B � (x3,x2,x,1), an ordered basis for P3. Then [6x3 � 2x � 18]B � [6,0,�2,18], and
[4 � 3x � 9x2 � 7x3]B � [�7,9,�3,4]. Notice also that [x3]B � [1,0,0,0], [x2]B � [0,1,0,0],
[x]B � [0,0,1,0], and [1]B � [0,0,0,1].

As part of Example 2, we saw an illustration of the general principle that if B �
(v1, . . . ,vn), then every vector in B itself has a simple coordinatization. In particular,
[vi]B � ei . You are asked to prove this in Exercise 6.

Using Row Reduction to Coordinatize a Vector

Example 3
Consider the subspace V of R

5 spanned by the ordered basis

C �
([�4,5,�1,0,�1], [1,�3,2,2,5], [1,�2,1,1,3]) .

Notice that the vectors in V can be put into C-coordinates by solving an appropriate system. For
example, to find [�23,30,�7,�1,�7]C , we solve the equation

[�23,30,�7,�1,�7] � a[�4,5,�1,0,�1] � b[1,�3,2,2,5] � c[1,�2,1,1,3].
The equivalent system is ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�4a� b� c ��23
5a�3b�2c � 30

�a�2b� c � �7
2b� c � �1

�a�5b�3c � �7

.
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To solve this system, we row reduce⎡
⎢⎢⎢⎢⎢⎣

�4 1 1
5 �3 �2

�1 2 1
0 2 1

�1 5 3

∣∣∣∣∣∣∣∣∣∣∣

�23
30

�7
�1
�7

⎤
⎥⎥⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

∣∣∣∣∣∣∣∣∣∣∣

6
�2

3
0
0

⎤
⎥⎥⎥⎥⎥⎦ .

Hence, the (unique) solution for the system is a � 6, b � �2, c � 3, and we see that
[�23,30,�7,�1,�7]C � [6,�2,3].

On the other hand, vectors in R
5 that are not in span(C) cannot be expressed in

C-coordinates. For example, the vector [1,2,3,4,5] is not in V � span(C). To see this, consider
the system ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�4a� b� c �1
5a�3b�2c �2

�a�2b� c �3
2b� c �4

�a�5b�3c �5

.

We solve this system by row reducing⎡
⎢⎢⎢⎢⎣

�4 1 1
5 �3 �2

�1 2 1
0 2 1

�1 5 3

∣∣∣∣∣∣∣∣∣∣

1
2
3
4
5

⎤
⎥⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

∣∣∣∣∣∣∣∣∣∣∣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎦ .

This result tells us that the system has no solutions, implying that the vector [1,2,3,4,5] is not
in span(S).

Notice in Example 3 that the coordinatized vector [6,�2,3] is more “compact”
than the original vector [�23,30,�7,�1,�7] but still contains the same essential
information.

As we saw in Example 3, finding the coordinates of a vector with respect to an
ordered basis typically amounts to solving a system of linear equations, which is fre-
quently done using row reduction. The computations we did in Example 3 motivate
the following method,which works in general.Although it applies to subspaces of R

n,
we can adapt it to other finite dimensional vector spaces,such as Pn and Mmn,as with
other techniques we have examined.We handle these other vector spaces“informally”
in this chapter, but we will treat them more formally in Section 5.5.

Method for Coordinatizing a Vector with Respect to a Finite Ordered Basis
(Coordinatization Method)
Let V be a nontrivial subspace of R

n, let B � (v1, . . . ,vk) be an ordered basis for V, and let
v ∈ R

n. To calculate [v]B, if possible, perform the following steps:

Step 1: Form an augmented matrix [A |v] by using the vectors in B as the columns of A,
in order, and using v as a column on the right.
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Step 2: Row reduce [A |v] to obtain the reduced row echelon form [C |w].
Step 3: If there is a row of [C |w] that contains all zeroes on the left and has a nonzero entry

on the right, then v /∈ span(B) � V, and coordinatization is not possible. Stop.

Step 4: Otherwise, v ∈ span(B) � V. Eliminate all rows consisting entirely of zeroes in [C |w]
to obtain [Ik |y]. Then, [v]B � y, the last column of [Ik |y].

Example 4
Let V be the subspace of R

3 spanned by the ordered basis

B � ([2,�1,3], [3,2,1]) .

We use the Coordinatization Method to find [v]B, where v � [5,�6,11]. To do this, we set up
the augmented matrix⎡

⎢⎣
2 3

�1 2

3 1

∣∣∣∣∣∣∣
5

�6

11

⎤
⎥⎦, which row reduces to

⎡
⎢⎣1 0

0 1

0 0

∣∣∣∣∣∣∣
4

�1

0

⎤
⎥⎦ .

Ignoring the bottom row of zeroes, we discover [v]B � [4,�1].
Similarly, applying the Coordinatization Method to the vector [1,2,3], we see that⎡

⎢⎣ 2 3
�1 2

3 1

∣∣∣∣∣∣∣
1
2
3

⎤
⎥⎦ row reduces to

⎡
⎢⎣1 0

0 1
0 0

∣∣∣∣∣∣∣
0
0
1

⎤
⎥⎦ .

From the third row, we see that coordinatization of [1,2,3] with respect to B is not possible by
Step 3 of the Coordinatization Method.

Fundamental Properties of Coordinatization

The following theorem shows that the coordinatization of a vector behaves in a manner
similar to the original vector with respect to addition and scalar multiplication:

Theorem 4.19 Let B � (v1, . . . ,vn) be an ordered basis for a vector space V. Suppose
w1, . . . ,wk ∈ V and a1, . . . ,ak are scalars. Then

(1) [w1 � w2]B � [w1]B � [w2]B
(2) [a1w1]B � a1[w1]B
(3) [a1w1 � a2w2 � · · · � akwk]B � a1[w1]B � a2[w2]B � · · · � ak[wk]B
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Figure 4.7 illustrates part (1) of this theorem. Moving along either path from the
upper left to the lower right in the diagram produces the same answer. (Such a picture
is called a commutative diagram.)

Part (3) asserts that to put a linear combination of vectors in V into B-coordinates,
we can first find the B-coordinates of each vector individually and then calculate the
analogous linear combination in R

n. The proof of Theorem 4.19 is left for you to do
in Exercise 13.

Example 5
Recall the subspace V of R

5 from Example 3 spanned by the ordered basis

C �
([�4,5,�1,0,�1], [1,�3,2,2,5], [1,�2,1,1,3]) .

Consider the vectors x � [1,0,�1,0,4],y � [0,1,�1,0,3],z � [0,0,0,1,5]. Applying the Coor-
dinatization Method to x, we find that the augmented matrix⎡

⎢⎢⎢⎢⎢⎣
�4 1 1

5 �3 �2
�1 2 1

0 2 1
�1 5 3

∣∣∣∣∣∣∣∣∣∣∣

1
0

�1
0
4

⎤
⎥⎥⎥⎥⎥⎦ row reduces to

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

∣∣∣∣∣∣∣∣∣∣∣

1
�5
10

0
0

⎤
⎥⎥⎥⎥⎥⎦ .

Ignoring the last two rows of zeroes, we obtain [x]C � [1,�5,10]. In a similar manner we can
calculate [y]C � [1,�4,8] and [z]C � [1,�3,7].

Using Theorem 4.19, it is now a simple matter to find the coordinatization of any linear combi-
nation of x, y, and z. For example, consider the vector 2x � 7y � 3z, which is easily computed
to be [2,�7,5,3,2]. Theorem 4.19 asserts that [2x � 7y � 3z]C � 2[x]C � 7[y]C � 3[z]C �

2[1,�5,10] � 7[1,�4,8] � 3[1,�3,7] � [�2,9,�15]. This result is easily checked by noting
that �2[�4,5,�1,0,�1] � 9[1,�3,2,2,5] � 15[1,�2,1,1,3] really does equal [2,�7,5,3,2].

Coordinatization

Rn

V V

Rn

Coordinatization

w11 w2w1, w2

[w1]B, [w2]B [w1]B1 [w2]B

1

1

FIGURE 4.7

Commutative diagram involving addition and coordinatization of vectors
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The Transition Matrix for Change of Coordinates

Our next goal is to determine how the coordinates of a vector change when we convert
from one ordered basis to another.

Definition Suppose that V is a nontrivial n-dimensional vector space with ordered
bases B and C . Let P be the n � n matrix whose ith column, for 1 � i � n, equals
[bi]C ,where bi is the ith basis vector in B.Then P is called the transition matrix
from B-coordinates to C-coordinates.

We often refer to the matrix P in this definition as the “transition matrix from
B to C .”

Example 6
Recall from Example 5 the subspace V of R

5 that is spanned by the ordered basis C �

([�4,5,�1,0,�1], [1,�3,2,2,5], [1,�2,1,1,3]). Using the Simplified Span Method on the vec-
tors in C produces the vectors x � [1,0,�1,0,4],y � [0,1,�1,0,3], and z � [0,0,0,1,5] from
Example 5. Thus B � (x,y,z) is also an ordered basis for V. To find the transition matrix from
B to C we must solve for the C-coordinates of each vector in B. In Example 5, we used the
Coordinatization Method on each of x,y, and z in turn. However, we could have obtained the
same result by applying the Coordinatization Method to x,y, and z simultaneously — that is, by
row reducing the augmented matrix

⎡
⎢⎢⎢⎢⎢⎣

�4 1 1
5 �3 �2

�1 2 1
0 2 1

�1 5 3

∣∣∣∣∣∣∣∣∣∣∣

1 0 0
0 1 0

�1 �1 0
0 0 1
4 3 5

⎤
⎥⎥⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

∣∣∣∣∣∣∣∣∣∣∣

1 1 1
�5 �4 �3
10 8 7

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

This gives [x]C � [1,�5,10], [y]C � [1,�4,8], and [z]C � [1,�3,7] (as we saw earlier). These
vectors form the columns of the transition matrix from B to C, namely,

P �

⎡
⎢⎣ 1 1 1

�5 �4 �3
10 8 7

⎤
⎥⎦ .

Example 6 illustrates that solving for the columns of the transition matrix can be
accomplished efficiently by performing a single row reduction using an augmented
matrix with several columns to the right of the augmentation bar. Hence,we have the
following:
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Method for Calculating a Transition Matrix (Transition Matrix Method)
To find the transition matrix P from B to C where B and C are ordered bases for a nontrivial
k-dimensional subspace of R

n, use row reduction on

⎡
⎢⎢⎢⎣

1st 2nd kth
vector vector · · · vector

in in in
C C C

∣∣∣∣∣∣∣∣∣
1st 2nd kth

vector vector · · · vector
in in in
B B B

⎤
⎥⎥⎥⎦

to produce
[

Ik P
rows of zeroes

]
.

In Exercise 8, you are asked to show that, in the special cases where either B or C
is the standard basis in R

n, there are simple expressions for the transition matrix from
B to C .

Example 7
Consider the following ordered bases for U2:

B �

([
7 3
0 0

]
,

[
1 2
0 �1

]
,

[
1 �1
0 1

])
and C �

([
22 7
0 2

]
,

[
12 4
0 1

]
,

[
33 12
0 2

])
.

Expressing the matrices in B and C as column vectors, we use the Transition Matrix Method to
find the transition matrix from B to C by row reducing⎡

⎢⎢⎢⎣
22 12 33
7 4 12
0 0 0
2 1 2

∣∣∣∣∣∣∣∣∣
7 1 1
3 2 �1
0 0 0
0 �1 1

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣∣∣∣
1 �2 1

�4 1 1
1 1 �1
0 0 0

⎤
⎥⎥⎥⎦.

Ignoring the final row of zeroes, we see that the transition matrix from B to C is given by

P �

⎡
⎢⎣ 1 �2 1

�4 1 1
1 1 �1

⎤
⎥⎦ .

Change of Coordinates Using the Transition Matrix

The next theorem shows that the transition matrix can be used to change the coor-
dinatization of a vector v from one ordered basis B to another ordered basis C .
That is, if [v]B is known, then [v]C can be found by using the transition matrix
from B to C .
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Theorem 4.20 Suppose that B and C are ordered bases for a nontrivial n-dimensional
vector space V, and let P be an n � n matrix. Then P is the transition matrix from B to
C if and only if for every v ∈ V , P[v]B � [v]C .

Proof. Let B and C be ordered bases for a vector space V, with B � (b1, . . . ,bn).
First, suppose P is the transition matrix from B to C. Let v ∈ V. We want to show P[v]B �

[v]C . Suppose [v]B � [a1, . . . ,an]. Then v � a1b1 � · · · � anbn. Hence,

P[v]B �

⎡
⎢⎣

p11 · · · p1n
...

. . .
...

pn1 · · · pnn

⎤
⎥⎦
⎡
⎢⎢⎢⎣

a1
a2
...

an

⎤
⎥⎥⎥⎦

� a1

⎡
⎢⎢⎢⎣

p11
p21

...
pn1

⎤
⎥⎥⎥⎦� a2

⎡
⎢⎢⎢⎣

p12
p22

...
pn2

⎤
⎥⎥⎥⎦� · · · � an

⎡
⎢⎢⎢⎣

p1n
p2n

...
pnn

⎤
⎥⎥⎥⎦ .

However, P is the transition matrix from B to C, so the ith column of P equals [bi]C .
Therefore,

P[v]B � a1[b1]C � a2[b2]C � · · · � an[bn]C
� [a1b1 � a2b2 � · · · � anbn]C by Theorem 4.19

� [v]C .

Conversely, suppose that P is an n � n matrix and that P[v]B � [v]C for every v ∈ V. We
show that P is the transition matrix from B to C. By definition, it is enough to show that the
ith column of P is equal to [bi]C . Since P[v]B � [v]C , for all v ∈ V, let v � bi. Then since
[v]B � ei, we have P[v]B � Pei � [bi]C . But Pei � ith column of P, which completes the
proof.

Example 8
Recall the ordered bases for U2 from Example 7:

B �

([
7 3
0 0

]
,

[
1 2
0 �1

]
,

[
1 �1
0 1

])
and C �

([
22 7
0 2

]
,

[
12 4
0 1

]
,

[
33 12
0 2

])
.

In that example, we found that the transition matrix P from B to C is

P �

⎡
⎢⎣ 1 �2 1

�4 1 1
1 1 �1

⎤
⎥⎦ .
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This gives a quick way of changing the coordinatization of any vector in U2 from B-coordinates

to C-coordinates. For example, let v �

[
25 24
0 �9

]
. Since

[
25 24
0 �9

]
� 4

[
7 3
0 0

]
� 3

[
1 2
0 �1

]
� 6

[
1 �1
0 1

]
,

we know that

[v]B �

⎡
⎢⎣ 4

3
�6

⎤
⎥⎦ . But then, P[v]B �

⎡
⎢⎣ �8

�19
13

⎤
⎥⎦,

and so [v]C � [�8,�19,13] by Theorem 4.20. We can easily verify this by checking that[
25 24
0 �9

]
� �8

[
22 7
0 2

]
� 19

[
12 4
0 1

]
� 13

[
33 12
0 2

]
.

Algebra of the Transition Matrix

The next theorem shows that the cumulative effect of two transitions between bases
is represented by the product of the transition matrices in reverse order.

Theorem 4.21 Suppose that B, C, and D are ordered bases for a nontrivial finite dimen-
sional vector space V. Let P be the transition matrix from B to C, and let Q be the
transition matrix from C to D. Then QP is the transition matrix from B to D.

The proof of this theorem is left as Exercise 14.

Example 9
Consider the ordered bases B and C for P2 given by

B � (�x2 � 4x � 2, 2x2 � x � 1, �x2 � 2x � 1) and

C � (x2 � 2x � 3, 2x2 � 1, x2 � x � 1).

Also consider the standard basis S � (x2,x,1) for P2.
Now, row reducing⎡

⎢⎣ 1 2 1
�2 0 1
�3 �1 1

∣∣∣∣∣∣∣
�1 2 �1

4 �1 2
2 �1 1

⎤
⎥⎦ to obtain

⎡
⎢⎣1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣∣
�9 3 �5
11 �3 6

�14 5 �8

⎤
⎥⎦ ,
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we see that the transition matrix from B to C is

P �

⎡
⎢⎣ �9 3 �5

11 �3 6
�14 5 �8

⎤
⎥⎦ .

Because it is simple to express each vector in C in S-coordinates, we can quickly calculate that
the transition matrix from C to S is

Q �

⎡
⎢⎣ 1 2 1

�2 0 1
�3 �1 1

⎤
⎥⎦ .

Then, by Theorem 4.21, the product

QP �

⎡
⎢⎣ 1 2 1

�2 0 1
�3 �1 1

⎤
⎥⎦
⎡
⎢⎣ �9 3 �5

11 �3 6
�14 5 �8

⎤
⎥⎦ �

⎡
⎢⎣�1 2 �1

4 �1 2
2 �1 1

⎤
⎥⎦

is the transition matrix from B to S. This matrix is correct, since the columns of QP are, in fact,
the vectors of B expressed in S-coordinates.

The next theorem shows how to reverse a transition from one basis to another.
The proof of this theorem is left as Exercise 15.

Theorem 4.22 Let B and C be ordered bases for a nontrivial finite dimensional vector
space V, and let P be the transition matrix from B to C. Then P is nonsingular, and
P�1 is the transition matrix from C to B.

Let us return to the situation in Example 9 and use the inverses of the transition
matrices to find the B-coordinates of a polynomial in P2.

Example 10
Consider again the bases B,C, and S in Example 9 and the transition matrices P from B to C
and Q from C to S. From Theorem 4.22, the transition matrices from C to B and from S to C,
respectively, are

P�1 �

⎡
⎢⎣�6 �1 3

4 2 �1
13 3 �6

⎤
⎥⎦ and Q�1 �

⎡
⎢⎣ 1 �3 2

�1 4 �3
2 �5 4

⎤
⎥⎦ .

Now,

[v]B � P�1[v]C � P�1
(
Q�1[v]S

)
�
(
P�1Q�1

)
[v]S ,
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and so P�1Q�1 acts as the transition matrix from S to B (see Figure 4.8). For example, if
v � x2 � 7x � 3, then

[v]B �
(
P�1Q�1

)
[v]S

�

⎡
⎢⎣

�6 �1 3

4 2 �1

13 3 �6

⎤
⎥⎦
⎡
⎢⎣

1 �3 2

�1 4 �3

2 �5 4

⎤
⎥⎦
⎡
⎢⎣

1

7

3

⎤
⎥⎦ �

⎡
⎢⎣

3

1

�2

⎤
⎥⎦ .

B-coordinates

C-coordinates

S-coordinates

QP P21Q21

P

Q

P21

Q21

FIGURE 4.8

Transition matrices used to convert among B-,C-, and S-coordinates in P2

Diagonalization and the Transition Matrix

The matrix P obtained in the process of diagonalizing an n � n matrix turns out to
be a transition matrix between two different bases for R

n, as we see in our final
example.

Example 11
Consider

A �

⎡
⎢⎣

14 �15 �30

6 �7 �12

3 �3 �7

⎤
⎥⎦ .

A quick calculation produces pA(x) � x3 � 3x � 2 � (x � 2)(x � 1)2. Row reducing (2I3 � A)

yields a fundamental eigenvector v1 � [5,2,1]. The set {v1} is a basis for the eigenspace E2.
Similarly, we row reduce (�1I3 � A) to obtain fundamental eigenvectors v2 � [1,1,0] and v3 �

[2,0,1]. The set {v2,v3} forms a basis for the eigenspace E�1.
Let B � (v1,v2,v3). These vectors are linearly independent (see the remarks before Exam-

ple 13 in Section 4.4), and thus B is a basis for R
3 by Theorem 4.13. Let S be the standard

basis. Then, the transition matrix P from B to S is given by the matrix whose columns are the
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vectors in B, and so

P �

⎡
⎢⎣

5 1 2

2 1 0

1 0 1

⎤
⎥⎦ .

Notice that the transition matrix P is precisely the matrix P created by the Diagonalization Method
of Section 3.4!

Now, by Theorem 4.22,

P�1 �

⎡
⎢⎣

1 �1 �2

�2 3 4

�1 1 3

⎤
⎥⎦

is the transition matrix from S to B. Finally, recall from Section 3.4 that P�1AP is a diagonal
matrix D with the eigenvalues of A on the main diagonal — namely,

D �

⎡
⎢⎣2 0 0

0 �1 0
0 0 �1

⎤
⎥⎦ .

Example 11 illustrates the following general principle:

When the Diagonalization Method of Section 3.4 is successfully performed on a matrix A,
the matrix P obtained is the transition matrix from B-coordinates to standard coordinates,
where B is an ordered basis for R

n consisting of eigenvectors for A.

We can understand the relationship between A and D in Example 11 more fully
from a “change of coordinates”perspective. In fact, if v is any vector in R

3 expressed
in standard coordinates, we claim that D[v]B � [Av]B. That is, multiplication by D
when working in B-coordinates corresponds to first multiplying by A in standard
coordinates, and then converting the result to B-coordinates (see Figure 4.9).

Why does this relationship hold? Well,

D[v]B � (P�1AP)[v]B � (P�1A)P[v]B � P�1A[v]S � P�1(Av) � [Av]B
because multiplication by P and P�1 performs the appropriate transitions between
B- and S-coordinates. Thus, we can think of D as being the “B-coordinates version” of
A. By using a basis of eigenvectors we have converted to a new coordinate system in
which multiplication by A has been replaced with multiplication by a diagonal matrix,
which is much easier to work with because of its simpler form.

� Application: You have now covered the prerequisites for Section 8.7,“Rota-
tion of Axes for Conic Sections.”
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Multiplication
by P21

Multiplication
by P21

Multiplication
by D

Multiplication
by A

Avv

[v]B D[v]B 5 [Av]B

FIGURE 4.9

Multiplication by A in standard coordinates corresponds to multiplication by D in B-coordinates

New Vocabulary

commutative diagram
coordinatization (of a vector with

respect to an ordered basis)
Coordinatization Method

ordered basis
transition matrix (from one ordered

basis to another)
Transition Matrix Method

Highlights

■ If a vector space has an ordered basis B � (v1,v2, . . . ,vn), and if v � a1v1 �
a2v2 � · · · � anvn, then v has a unique coordinatization [v]B � [a1,a2, . . . ,an]
in R

n with respect to B.

■ The Coordinatization Method is useful for finding the coordinatization of a vector
with respect to a given ordered basis.

■ The coordinatization of a linear combination of vectors, [a1w1 � a2w2 � · · · �
akwk]B, is equal to the corresponding linear combination of the respective
coordinatizations of the vectors: a1[w1]B � a2[w2]B � · · · � ak[wk]B.

■ The transition matrix from B-coordinates to C -coordinates is the matrix whose
ith column is [bi]C , where bi is the ith basis vector in B.

■ If B and C are bases for a finite dimensional vector space V , and v ∈ V , then a
change of coordinates from one basis to another can be obtained by multiplying
by the transition matrix: that is, [v]C � P[v]B, where P is the transition matrix
from B-coordinates to C -coordinates.

■ The Transition Matrix Method is useful for finding the transition matrix from
one basis B to another basis C by row reducing the matrix whose first columns
are the vectors in C and whose last columns are the vectors in B.

■ If P is the transition matrix from B to C , and Q is the transition matrix from C to
D, then QP is the transition matrix from B to D, and P�1 is the transition matrix
from C to B.
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■ When the Diagonalization Method is applied to a matrix A to create a diagonal
matrix D � P�1AP and a basis B of fundamental eigenvectors, then the matrix
P (whose columns are the vectors in B) is, in fact, the transition matrix from
B-coordinates to standard coordinates.

EXERCISES FOR SECTION 4.7
1. In each part, let B represent an ordered basis for a subspace V of R

n, Pn, or
Mmn. Find [v]B, for the given v ∈ V .
�(a) B � ([1,�4,1], [5,�7,2], [0,�4,1]); v � [2,�1,0]
(b) B � ([4,6,0,1], [5,1,�1,0], [0,15,1,3], [1,5,0,1]); v � [0,�9,1,�2]

�(c) B � ([2,3,1,�2,2], [4,3,3,1,�1], [1,2,1,�1,1]); v � [7,�4,5,13,�13]
(d) B � ([�3,1,�2,5,�1], [6,1,2,�1,0], [9,2,1,�4,2], [3,1,0,�2,1]); v �

[3,16,�12,41,�7]
�(e) B � (3x2 � x � 2, x2 � 2x � 3, 2x2 � 3x � 1); v � 13x2 � 5x � 20

(f ) B � (4x2 � 3x � 1, 2x2 � x � 4, x2 � 2x � 3); v � �5x2 � 17x � 20

�(g) B � (2x3 � x2 � 3x � 1, x3 � 2x2 � x � 3, �3x3 � x2 � x � 1); v �
8x3 � 11x2 � 9x � 11

�(h) B �

([
1 �2
0 1

]
,

[
2 �1
1 0

]
,

[
1 �1
3 1

])
; v �

[
�3 �2

0 3

]

(i) B �

([
�2 3

0 2

]
,

[
1 1

�1 2

]
,

[
0 �3
2 1

])
; v �

[
�8 35

�14 8

]

�(j) B �

([
1 3 �1
2 1 4

]
,

[
�3 1 7

1 2 5

])
; v �

[
11 13 �19
8 1 10

]
2. In each part,ordered bases B and C are given for a subspace of R

n,Pn,or Mmn.
Find the transition matrix from B to C .

�(a) B � ([1,0,0], [0,1,0], [0,0,1]); C � ([1,5,1], [1,6,�6], [1,3,14])
(b) B � ([1,0,�1], [10,5,4], [2,1,1]); C � ([1,0,2], [5,2,5], [2,1,2])

�(c) B � (2x2 � 3x � 1,8x2 � x � 1,x2 � 6);C � (x2 � 3x � 1,3x2 �
4x � 1,10x2 � 17x � 5)

�(d) B �

([
1 3
5 1

]
,

[
2 1
0 4

]
,

[
3 1
1 0

]
,

[
0 2

�4 1

])
;

C �

([
�1 1

3 �1

]
,

[
1 0
0 1

]
,

[
3 �4

�7 4

]
,

[
1 �1

�2 1

])
(e) B �

([1,3,�2,0,1,4], [�6,2,7,�5,�11,�14]) ;

C � ([3,1,�4,2,5,8], [4,0,�5,3,7,10])
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�(f ) B � (6x4 � 20x3 � 7x2 � 19x � 4,x4 � 5x3 � 7x2 � x � 6,5x3 �
17x2 � 10x � 19);C � (x4 � 3x3 � 4x � 2,2x4 � 7x3 � 4x2 � 3x �
1,2x4 � 5x3 � 3x2 � 8x � 7)

(g) B �

⎛
⎝
⎡
⎣�1 4

8 4
�9 0

⎤
⎦ ,

⎡
⎣ 3 7

2 10
�7 3

⎤
⎦ ,

⎡
⎣�9 �1

20 0
3 1

⎤
⎦
⎞
⎠ ;

C �

⎛
⎝
⎡
⎣1 2

0 4
1 2

⎤
⎦ ,

⎡
⎣ 2 3

�1 5
�1 2

⎤
⎦ ,

⎡
⎣�1 2

5 3
�2 1

⎤
⎦
⎞
⎠

3. Draw the B-coordinate grid in R
2 as in Example 1, where B � ([3,2], [�2,1]).

Plot the point (2,6). Convert this point to B-coordinates, and show that it is at
the proper place on the B-coordinate grid.

4. In each part of this exercise,ordered bases B,C , and D are given for R
n or Pn.

Calculate the following independently:

(i) The transition matrix P from B to C

(ii) The transition matrix Q from C to D

(iii) The transition matrix T from B to D
Then verify Theorem 4.21 by showing that T � QP.

�(a) B � ([3,1], [7,2]); C � ([3,7], [2,5]); D � ([5,2], [2,1])
(b) B�([8,1,0], [2,11,5], [�1,2,1]);C �([2,11,5], [�1,2,1], [8,1,0]);

D �([�1,2,1], [2,11,5], [8,1,0])
�(c) B � (x2 � 2x � 2, 3x2 � 7x � 8, 3x2 � 9x � 13); C � (x2 � 4x � 1,

2x2 � x, x2); D � (7x2 � 3x � 2, x2 � 7x � 3, x2 � 2x � 1)

(d) B � (4x3 � x2 � 5x � 2,2x3 � 2x2 � x � 1,3x3 � x2 � 7x �
3,x3 � x2 � 2x � 1);C � (x3 � x � 3,x2 � 2x � 1,x3 � 2x2 �
6x � 6,3x3 � x2 � 6x � 36);D � (x3,x2,x,1)

5. In each part of this exercise, an ordered basis B is given for a subspace V of
R

n. Perform the following steps:

(i) Use the Simplified Span Method to find a second ordered basis C .

(ii) Find the transition matrix P from B to C .

(iii) Use Theorem 4.22 to find the transition matrix Q from C to B.

(iv) For the given vector v ∈ V , independently calculate [v]B and [v]C .

(v) Check your answer to step (iv) by using Q and [v]C to calculate [v]B.
�(a) B � ([1, �4, 1, 2, 1], [6, �24,5,8,3], [3,�12,3,6,2]);

v � [2,�8,�2,�12,3]
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(b) B � ([1,�5,2,0,�4], [3,�14,9,2,�3], [1,�4,5,3,7]); v � [2,�9,
7,5,7]

�(c) B � ([3,�1,4,6], [6,7,�3,�2], [�4,�3,3,4], [�2,0,1,2]);v �
[10,14,3,12]

6. Let B � (v1, . . . ,vn) be an ordered basis for a vector space V . Prove that for
each i, [vi]B � ei .

7. �(a) Let u � [�5,9,�1],v � [3,�9,2],and w � [2,�5,1]. Find the transition
matrix from the ordered basis B � (u,v,w) to each of the follow-
ing ordered bases: C1 � (v,w,u), C2 � (w,u,v), C3 � (u,w,v), C4 �
(v,u,w), C5 � (w,v,u).

(b) Let B be an ordered basis for an n-dimensional vector space V . Let C be
another ordered basis for V with the same vectors as B but rearranged in
a different order. Prove that the transition matrix from B to C is obtained
by rearranging rows of In in exactly the same fashion.

8. Let B and C be ordered bases for R
n.

(a) Show that if B is the standard basis in R
n, then the transition matrix from

B to C is given by ⎡
⎢⎣

1st 2nd nth
vector vector · · · vector

in in in
C C C

⎤
⎥⎦

�1

.

(b) Show that if C is the standard basis in R
n, then the transition matrix from

B to C is given by

⎡
⎢⎣

1st 2nd nth
vector vector · · · vector

in in in
B B B

⎤
⎥⎦ .

9. Let B and C be ordered bases for R
n. Let P be the matrix whose columns

are the vectors in B and let Q be the matrix whose columns are the vectors
in C . Prove that the transition matrix from B to C equals Q�1P. (Hint: Use
Exercise 8.)

�10. Consider the ordered basis B � ([�2,1,3], [1,0,2], [�13,5,10]) for R
3. Sup-

pose that C is another ordered basis for R
3 and that the transition matrix from

B to C is given by ⎡
⎣ 1 9 �1

2 13 �11
�1 �8 3

⎤
⎦ .

Find C . (Hint: Use Exercise 9.)
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11. (a) Verify all of the computations in Example 11, including the computation
of pA(x), the eigenvectors v1, v2, and v3, the transition matrix P, and its
inverse P�1. Check that D � P�1AP.

�(b) Let v � [1,4,�2].With B,A,and D as in Example 11,compute D[v]B and
[Av]B independently, without using multiplication by the matrices P or
P�1 in that example. Compare your results.

12. Let A �

⎡
⎣�13 �10 8

�20 �28 14
�58 �69 39

⎤
⎦.

(a) Find all the eigenvalues for A and fundamental eigenvectors for each
eigenvalue.

(b) Find a diagonal matrix D similar to A.

(c) Let B be the set of fundamental eigenvectors found in part (a). From the
answer to part (a), find the transition matrix from B to the standard basis
without row reducing.

�13. Prove Theorem 4.19. (Hint: Use a proof by induction for part (3).)

�14. Prove Theorem 4.21. (Hint: Use Theorem 4.20.)

15. Prove Theorem 4.22. (Hint: Let Q be the transition matrix from C to B. Prove
that QP � I by using Theorems 4.20 and 4.21.)

�16. True or False:

(a) For the ordered bases B � (i, j,k) and C � (j,k, i) for R
3, we have [v]B �

[v]C for each v ∈ R
3.

(b) If B is a finite ordered basis for V and bi is the ith vector in B, then
[bi]B � ei .

(c) If B � (b1, . . . ,bn) and C � (c1, . . . ,cn) are ordered bases for a vector space
V , then the ith column of the transition matrix Q from C to B is [ci]B.

(d) If B and C are ordered bases for a finite dimensional vector space V and
P is the transition matrix from B to C , then P[v]C � [v]B for every vector
v ∈ V .

(e) If B, C , and D are finite ordered bases for a vector space V , P is the transi-
tion matrix from B to C , and Q is the transition matrix from C to D, then
PQ is the transition matrix from B to D.

(f ) If B and C are ordered bases for a finite dimensional vector space V and if
P is the transition matrix from B to C , then P is nonsingular.

(g) If the Diagonalization Method is applied to a square matrix A to create a
diagonal matrix D � P�1AP, then P is the transition matrix from standard
coordinates to an ordered basis of eigenvectors for A.
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REVIEW EXERCISES FOR CHAPTER 4
1. Determine whether the subset { [x1,x2,x3] | x1 > 0, x2 > 0, x3 > 0} of R

3 is a
vector space under the operations [x1,x2,x3]⊕ [y1,y2,y3] � [x1y1,x2y2,x3y3],
and c � [x1,x2,x3] � [(x1)

c ,(x2)
c ,(x3)

c].

�2. Use parts (2) and (3) of Theorem 4.1 to find the zero vector 0 and the additive
inverse of each vector v � [x,y] for the vector space R

2 with operations [x,y] ⊕
[w,z] � [x � w � 4, y � z � 5] and a � [x,y] � [ax � 4a � 4, ay � 5a � 5].

3. Which of the following subsets of the given vector spaces are subspaces? If so,
prove it. If not, explain why not.
�(a)

{ [3a,2a � 1,�4a] ∣∣ a ∈ R
}

in R
3

(b) the plane 2x � 4y � 2z � 3 in R
3

�(c)

{[
2a � b �4a � 5b

0 a � 2b

] ∣∣∣∣ a,b ∈ R

}
in M22

�(d) all matrices that are both singular and symmetric in M22

(e)
{

ax3 � bx2 � (c � 3a)x
∣∣ a,b,c ∈ R

}
in P3

�(f ) all polynomials whose highest-order nonzero term has even degree in P4

(g) all functions f such that f (2) � 1 in the vector space of all real-valued
functions with domain R

�4. For the subset S �
{[3,3,�2,4], [3,4,0,3], [5,6,�1,6], [4,4,�3,5]} of R

4:

(a) Use the Simplified Span Method to find a simplified form for the vectors in
span(S). Does S span R

4?

(b) Give a basis for span(S). What is dim(span(S))?

5. For the subset S �
{
3x3 �4x2 �x �2,6x3 �4x2 �10x �13,3x3 � 2x2 � 5x � 7,

6x3 � 7x2 � 4x � 2
}

of P3:

(a) Use the Simplified Span Method to find a simplified form for the vectors in
span(S). Does S span P3?

(b) Give a basis for span(S). What is dim(span(S))?

6. For the subset S �

{[
4 6 �2
2 �4 3

]
,

[
8 11 �1
5 �10 9

]
,

[
2 1 5
1 �4 1

]
,

[
4 5 1
1 �4 2

]
,[

3 2 6
2 �6 3

]
,

[
3 4 0
2 �4 4

]}
of M23:

(a) Use the Simplified Span Method to find a simplified form for the vectors in
span(S). Does S span M23?

(b) Give a basis for span(S). What is dim(span(S))?
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�7. For the subset S �
{[3,5,�3], [�2,�4,3], [1,2,�1]} of R

3:

(a) Use the Independence Test Method to determine whether S is linearly
independent. If S is linearly dependent, show how to express one vector
in the set as a linear combination of the others.

(b) Give a maximal linearly independent subset of S. Does S span R
3?

(c) The vector v � [11,20,�12] � 2[3,5,�3] � 1[�2,�4,3] � 3[1,2,�1] is in
span(S). Is there a different linear combination of the vectors in S that
produces v?

�8. For the subset S �
{
�5x3 � 2x2 � 5x � 2,2x3 � x2 � 2x � 1,x3 � 2x2 � x � 2,

�2x3 � 2x2 � 3x � 5
}

of P3:

(a) Use the Independence Test Method to determine whether S is linearly
independent. If S is linearly dependent, show how to express one vector
in the set as a linear combination of the others.

(b) Give a maximal linearly independent subset of S. Does S span P3?

(c) The vector v � 18x3 � 9x2 � 19x � 12 � �2(�5x3 � 2x2 � 5x � 2)

�3(2x3 � x2 � 2x � 1) � 1(�2x3 � 2x2 � 3x � 5) is in span(S). Is there a
different linear combination of the vectors in S that produces v ?

9. For the subset S �

⎧⎨
⎩
⎡
⎣ 4 0

11 �2
6 �1

⎤
⎦,

⎡
⎣�10 �14

�10 �8
�6 �12

⎤
⎦,

⎡
⎣7 12

5 7
3 10

⎤
⎦,

⎡
⎣8 16

3 10
2 13

⎤
⎦,

⎡
⎣4 6

3 4
2 5

⎤
⎦ ,

⎡
⎣6 11

4 7
3 9

⎤
⎦
⎫⎬
⎭ of M32:

(a) Use the Independence Test Method to determine whether S is linearly
independent. If S is linearly dependent, show how to express one vector
in the set as a linear combination of the others.

(b) Give a maximal linearly independent subset of S. Does S span M32?

(c) The vector v �

⎡
⎣�7 �25

11 �18
6 �23

⎤
⎦� 2

⎡
⎣ 4 0

11 �2
6 �1

⎤
⎦� 3

⎡
⎣7 12

5 7
3 10

⎤
⎦� 1

⎡
⎣6 11

4 7
3 9

⎤
⎦

is in span(S). Is there a different linear combination of the vectors in S
that produces v?

10. If S � {v1, . . . ,vn} is a finite subset of a vector space V , and v ∈ span(S), with
v /∈ S, prove that some vector in T � S ∪ {v} can be expressed in more than
one way as a linear combination of vectors in T .

11. Show that
{
x,x3 � x,x5 � x3,x7 � x5, . . .

}
is a linearly independent subset

of P .
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12. Prove:
�(a)

{[�2,3,�1,4], [3,�3,2,�4], [�2,2,�1,3], [3,�5,0,�7]} is a basis for

R
4.

(b)
{
2x2 � 2x � 13, x2 � 3, 4x2 � x � 16

}
is a basis for P2.

(c)

{[
1 5
0 3

]
,

[
6 �1
4 3

]
,

[
7 �4
7 �1

]
,

[
�3 7
�2 4

]}
is a basis for M22.

�13. Let W be the solution set to AX � O,where A �

⎡
⎣ 5 �15 2 8

�3 9 �1 �5
2 �6 1 3

⎤
⎦.

(a) Show that W is a subspace of R
4.

(b) Find a basis for W .

(c) Show that dim(W) � rank(A) � 4.

�14. (a) Show that B � {x3 � 3x,x2 � 2x,1} is a basis for V �
{

p ∈ P3|p′(1) � 0
}
.

What is dim(V)?

(b) Find a basis for W �
{

p ∈ P3|p′(1) � p′′(1) � 0
}
. What is dim(W)?

�15. Consider the subset S =
{[2,�3,0,1], [�6,9,0,�3], [4,3,0,4], [8,�3,0,6],

[1,0,2,1]} of R
4. Let V � span(S).

(a) Use the Inspection Method to find a subset T of S that is a basis for V .

(b) Is T a maximal linearly independent set of V?

16. Consider the subset S =
{
x2 � 2x, x3 � x, 2x3 � x2 � 4x,2x3 � 2x2 � 1,3x3�

2x2 � x � 1
}

of P3. Let V � span(S).

(a) Use the Inspection Method to find a subset T of S that is a basis for V .

(b) Is T a maximal linearly independent set of V?

�17. Use the Enlarging Method to enlarge the linearly independent set T �{[2,1,�1,2], [1,�2,2,�4]} to a basis for R
4.

18. Use the Enlarging Method to enlarge the linearly independent set

T �

⎧⎨
⎩
⎡
⎣3 �1

0 2
1 0

⎤
⎦ ,

⎡
⎣�1 2

0 �1
3 0

⎤
⎦ ,

⎡
⎣2 �1

0 1
4 0

⎤
⎦
⎫⎬
⎭ to a basis for M32.

19. Consider the set S of all polynomials in P4 of the form
{

p ∈ P4|p � ax4�

bx3 � (3a � 2b)x2 � cx � (a � b � 3c)
}
. Find a subset of S that is a basis for

span(S).

20. In each case, let B represent an ordered basis B for a subspace V of R
n, Pn, or

Mmn. For the given vector v, find [v]B.
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�(a) B � ([2,1,2], [5,0,1], [�6,2,1]); v � [1,�7,�9]
(b) B �

{
5x3 � x2 � 3x � 1,�9x3 � 3x2 � 3x �2, 6x3 � x2 � 4x � 1

}
;

v � �16x3 � 5x2 � 6x � 3

�(c) B �

{[
�3 3 11

5 �2 2

]
,

[
�10 3 28

4 �6 0

]
,

[
2 11 10

14 �16 3

]}
;

v �

[
�43 �5 97

�9 �8 �9

]
21. For the given ordered bases B,C (for a subspace V of R

n,Pn,or Mmn),find [v]B,
and the transition matrix P from B to C . Then use P and [v]B to find [v]C .
�(a) B � ([26,�47,�10], [9,�16,�1], [�3,10,37]); C � ([2,�3,4],

[�3,5,�1], [5,�10,�9]); v � [126,�217,14]
�(b) B �

(
x2 � 3x � 1,3x2 � 11x � 5,�2x2 � 4x � 4

)
;

C �
(
�7x2 � 7x � 9,13x2 � 7x � 13,�16x2 � 18x � 22

)
;

v � �13x2 � 11x � 3

(c) B �

([
�3 19

�12 30

]
,

[
12 3
11 11

]
,

[
3 6
0 12

]
,

[
0 �3
1 �5

])
;

C �

([
3 1
2 2

]
,

[
�1 3
�1 7

]
,

[
2 �1
3 �1

]
,

[
2 1
2 4

])
; v �

[
�33 85
�73 125

]
22. Consider the ordered bases B � ([10,5,4,3], [4,�3,7,�1], [15,10,8,6],

[18,9,10,5]); C � ([5,5,4,3], [6,�2,5,0], [4,7,�1,3], [8,4,6,2]);
D � ([3,�1,2,�1], [2,6,1,2], [3,�1,3,1], [2,1,�2,1]).
(a) Find the transition matrix P from B to C .

(b) Find the transition matrix Q from C to D.

(c) Verify that the transition matrix R from B to D is equal to QP.

(d) Use the answer to part (c) to find the transition matrix from D to B.

23. Let A �

⎡
⎢⎣ �30 �48 24

�32 �46 24

�104 �156 80

⎤
⎥⎦.

(a) Find all the eigenvalues for A and fundamental eigenvectors for each
eigenvalue.

(b) Find a diagonal matrix D similar to A.
�(c) Let B be the set of fundamental eigenvectors found in part (a). From the

answer to part (a), find the transition matrix from B to the standard basis
without row reducing.
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24. Consider the ordered basis B � ([1,�2,1,�15], [�1,�1,1,5], [3,�5,2,�43])
for a subspace V of R

4.

(a) Use the Simplified Span Method to find a second ordered basis C .

(b) Find the transition matrix P from B to C .

(c) Suppose that [v]C � [�3,2,3] for some vector v ∈ V . Use the answer to
part (b) to calculate [v]B.

(d) For the vector v in part (c), what is v expressed in standard coordinates?

25. Let B, C be ordered bases for R
n, and let P be the transition matrix from B to

C . If C is the matrix whose columns are the vectors of C , show that CP is the
matrix whose columns are the respective vectors of B.

�26. True or False:

(a) To prove that some set with given operations is not a vector space, we
only need to find a single counterexample for one of the ten vector space
properties.

(b) If A is an m � n matrix and V � {X ∈ R
n | AX � 0},then V is a vector space

using the usual operations in R
n.

(c) The set of integers is a subspace of R.

(d) Every subspace of a vector space contains the zero vector from the vector
space.

(e) The union of two subspaces of the same vector space is also a subspace of
the vector space.

(f ) If S is a subset of a vector space V , and S contains at least one nonzero
vector, then span(S) is a subspace of V containing an infinite number of
vectors.

(g) If S is a complete set of fundamental eigenvectors found for an eigenvalue
� using the Diagonalization Method, then S spans E�.

(h) If S1 and S2 are two nonempty subsets of a vector space having no vectors
in common, then span(S1) �� span(S2).

(i) Performing the Simplified Span Method on a subset S of R
n that is already

a basis for R
n will yield the same set S.

(j) Performing the Independence Test Method on a subset T of R
n that is

already a basis for R
n will yield the same set T .

(k) The set {1} is a linearly independent subset of the vector space V �
R

� under the operations v1 ⊕ v2 � v1 · v2 and a � v � va discussed in
Example 7 in Section 4.1.

(l) Every set of distinct eigenvectors of an n � n matrix corresponding to the
same eigenvalue is linearly independent.
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(m) The rows of a nonsingular matrix form a linearly independent set of vectors.

(n) If T is a linearly independent subset of a vector space V , and v ∈ V with
v /∈ span(T ), then T ∪ {v} is linearly independent.

(o) If {v1, . . . ,vn} is a subset of a vector space such that a1v1 � · · · � anvn � 0,
then {v1, . . . ,vn} is linearly independent.

(p) If {v1,v2} is a linearly dependent subset of a vector space, then there is a
scalar c such that v2 � cv1.

(q) If T is a linearly independent subset of a vector space V , then T is a basis
for span(T ).

(r) The dimension of the trivial vector space is 1.

(s) If T is a maximal linearly independent set for a finite dimensional vector
space V and S is a minimal spanning set for V , then |S| � |T |.

(t) If a vector space V has an infinite dimensional subspace W ,then V is infinite
dimensional.

(u) dim(Un) � n(n�1)
2 .

(v) If W is a subspace of a finite dimensional vector space V , and if B is a basis
for W , then there is a basis for V that contains B.

(w) If B and C are ordered bases for a finite dimensional vector space V and
if P is the transition matrix from B to C , then PT is the transition matrix
from C to B.

(x) If B and C are ordered bases for a finite dimensional vector space V and if
P is the transition matrix from B to C , then P is a square matrix.

(y) If B is an ordered basis for R
n, and S is the standard basis for R

n, then the
transition matrix from B to S is the matrix whose columns are the vectors
in B.

(z) After a row reduction using the Transition Matrix Method, the desired
transition matrix is the matrix to the right of the augmentation bar.
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CHAPTER

5Linear Transformations

TRANSFORMING SPACE

Although a vector can be used to indicate a particular type of movement, actual vectors
themselves are essentially static, unchanging objects. For example, if we represent the
edges of a particular image on a computer screen by vectors, then these vectors are fixed
in place. However, when we want to move or alter the image in some way, such as rotating
it about a point on the screen, we need a function to calculate the new position for each of
the original vectors.

This suggests that we need another “tool” in our arsenal: functions that move a given
set of vectors in a prescribed “linear” manner. Such functions are called linear transforma-
tions. Just as we saw in Chapter 4 that general vector spaces are abstract generalizations
of R

n, we will find in this chapter that linear transformations are the corresponding abstract
generalization of matrix multiplication.

In this chapter,we study functions that map the vectors in one vector space to those in
another.We concentrate on a special class of these functions,known as linear transfor-
mations. The formal definition of a linear transformation is introduced in Section 5.1
along with several of its fundamental properties. In Section 5.2,we show that the effect
of any linear transformation is equivalent to multiplication by a corresponding matrix.
In Section 5.3, we examine an important relationship between the dimensions of the
domain and the range of a linear transformation,known as the DimensionTheorem. In
Section 5.4, we introduce two special types of linear transformations: one-to-one and
onto. In Section 5.5, these two types of linear transformations are combined to form
isomorphisms, which are used to establish that all n-dimensional vector spaces are in
some sense equivalent. Finally, in Section 5.6, we return to the topic of eigenvalues
and eigenvectors to study them in the context of linear transformations.

Elementary Linear Algebra
Copyright © 2010 by Elsevier, Inc. All rights reserved. 305
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5.1 INTRODUCTION TO LINEAR TRANSFORMATIONS
In this section, we introduce linear transformations and examine their elementary
properties.

Functions

If you are not familiar with the terms domain, codomain, range, image, and pre-
image in the context of functions, read Appendix B before proceeding.The following
example illustrates some of these terms:

Example 1
Let f : M23 → M22 be given by

f

([
a b c
d e f

])
�

[
a b
0 0

]
.

Then f is a function that maps one vector space to another. The domain of f is M23, the
codomain of f is M22, and the range of f is the set of all 2 � 2 matrices with second row entries

equal to zero. The image of

[
1 2 3
4 5 6

]
under f is

[
1 2
0 0

]
. The matrix

[
1 2 10

11 12 13

]
is one of

the pre-images of

[
1 2
0 0

]
under f . Also, the image under f of the set S of all matrices of the form[

7 ∗ ∗
∗ ∗ ∗

]
(where “∗” represents any real number) is the set f (S) containing all matrices of the

form

[
7 ∗
0 0

]
. Finally, the pre-image under f of the set T of all matrices of the form

[
a a � 2
0 0

]

is the set f �1(T ) consisting of all matrices of the form

[
a a � 2 ∗
∗ ∗ ∗

]
.

Linear Transformations

Definition Let V and W be vector spaces, and let f : V → W be a function from
V to W . (That is, for each vector v ∈ V , f (v) denotes exactly one vector of W .)
Then f is a linear transformation if and only if both of the following are true:

(1) f (v1 � v2) � f (v1) � f (v2), for all v1, v2 ∈ V
(2) f (cv) � cf (v), for all c ∈ R and all v ∈ V .

Properties (1) and (2) insist that the operations of addition and scalar multiplica-
tion give the same result on vectors whether the operations are performed before
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f is applied (in V) or after f is applied (in W). Thus, a linear transformation is a
function between vector spaces that “preserves” the operations that give structure to
the spaces.

To determine whether a given function f from a vector space V to a vector space W
is a linear transformation, we need only verify properties (1) and (2) in the definition,
as in the next three examples.

Example 2
Consider the mapping f : Mmn → Mnm, given by f (A) � AT for any m � n matrix A. We will
show that f is a linear transformation.

(1) We must show that f (A1 �A2)� f (A1)� f (A2), for matrices A1, A2 ∈ Mmn. However,
f (A1 � A2) � (A1 � A2)T � AT

1 � AT
2 (by part (2) of Theorem 1.12) � f (A1) � f (A2).

(2) We must show that f (cA) � cf (A), for all c ∈ R and for all A ∈ Mmn. However, f (cA) �

(cA)T � c(AT ) (by part (3) of Theorem 1.12)�cf (A).

Hence, f is a linear transformation.

Example 3
Consider the function g : Pn → Pn�1 given by g(p) � p′, the derivative of p. We will show that
g is a linear transformation.

(1) We must show that g(p1 � p2) � g(p1) � g(p2), for all p1,p2 ∈ Pn. Now, g(p1 � p2) �(
p1 � p2

)′. From calculus we know that the derivative of a sum is the sum of the
derivatives, so

(
p1 � p2

)′
� p′

1 � p′
2 � g(p1) � g(p2).

(2) We must show that g(cp) � cg(p), for all c ∈ R and p ∈ Pn. Now, g(cp) �
(
cp
)′. Again,

from calculus we know that the derivative of a constant times a function is equal to the
constant times the derivative of the function, so (cp)′ � c(p′) � cg(p).

Hence, g is a linear transformation.

Example 4
Let V be a finite dimensional vector space, and let B be an ordered basis for V. Then every
element v ∈ V has its coordinatization [v]B with respect to B. Consider the mapping f : V → R

n

given by f (v) � [v]B. We will show that f is a linear transformation.
Let v1,v2 ∈ V. By Theorem 4.20, [v1 � v2]B � [v1]B � [v2]B. Hence,

f (v1 � v2) � [v1 � v2]B � [v1]B � [v2]B � f (v1) � f (v2).

Next, let c ∈ R and v ∈ V. Again by Theorem 4.20, [cv]B � c [v]B. Hence,

f (cv) � [cv]B � c [v]B � cf (v).

Thus, f is a linear transformation from V to R
n.
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Not every function between vector spaces is a linear transformation. For example,
consider the function h:R2 → R

2 given by h([x,y]) � [x � 1,y � 2] � [x,y] � [1,�2].
In this case, h merely adds [1,�2] to each vector [x,y] (see Figure 5.1). This type of
mapping is called a translation. However, h is not a linear transformation. To show
that it is not, we have to produce a counterexample to verify that either property
(1) or property (2) of the definition fails. Property (1) fails, since h([1,2] � [3,4]) �
h([4,6]) � [5,4], while h([1,2]) � h([3,4]) � [2,0] � [4,2] � [6,2].

In general, when given a function f between vector spaces, we do not always
know right away whether f is a linear transformation. If we suspect that either pro-
perty (1) or (2) does not hold for f , then we look for a counterexample.

Linear Operators and Some Geometric Examples

An important type of linear transformation is one that maps a vector space to itself.

Definition Let V be a vector space. A linear operator on V is a linear transfor-
mation whose domain and codomain are both V .

Example 5
If V is any vector space, then the mapping i: V → V given by i(v) � v for all v ∈ V is a linear
operator, known as the identity linear operator. Also, the constant mapping z: V → V given by
z(v) � 0V is a linear operator known as the zero linear operator (see Exercise 2).

The next few examples exhibit important geometric operators. In these examples,
assume that all vectors begin at the origin.

Example 6
Reflections: Consider the mapping f : R

3 → R
3 given by f ([a1,a2,a3]) � [a1,a2,�a3]. This

mapping “reflects” the vector [a1,a2,a3] through the xy-plane, which acts like a “mirror” (see

(x, y )

[1, 22]

(x 1 1, y 2 2)

y

x

y 2 1

y 2 2

x11

FIGURE 5.1

A translation in R
2
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Figure 5.2). Now, since

f ([a1,a2,a3] � [b1,b2,b3]) � f ([a1 � b1,a2 � b2,a3 � b3])
� [a1 � b1,a2 � b2,�(a3 � b3)]
� [a1,a2,�a3] � [b1,b2,�b3]
� f ([a1,a2,a3]) � f ([b1,b2,b3]), and

f (c[a1,a2,a3]) � f ([ca1,ca2,ca3]) � [ca1,ca2,�ca3] � c[a1,a2,�a3] � cf ([a1,a2,a3]),

we see that f is a linear operator. Similarly, reflection through the xz-plane or the yz-plane is
also a linear operator on R

3 (see Exercise 4).

Example 7
Contractions and Dilations: Consider the mapping g: R

n → R
n given by scalar multiplication by

k, where k ∈ R; that is, g(v) � kv, for v ∈ R
n. The function g is a linear operator (see Exercise 3).

If |k| > 1, g represents a dilation (lengthening) of the vectors in R
n; if |k| < 1, g represents a

contraction (shrinking).

Example 8
Projections: Consider the mapping h: R

3 → R
3 given by h([a1,a2,a3]) � [a1,a2,0]. This map-

ping takes each vector in R
3 to a corresponding vector in the xy-plane (see Figure 5.3). Similarly,

(a1, a2, a3)

(a1, a2, 0)

(a1, a2, 2a3)

z

y

x

FIGURE 5.2

Reflection in R
3 through the xy-plane
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(a1, a2, a3)

(a1, a2, 0)

z

y

x

FIGURE 5.3

Projection of [a1,a2,a3] to the xy-plane

consider the mapping j: R
4 → R

4 given by j([a1,a2,a3,a4]) � [0,a2,0,a4]. This mapping takes
each vector in R

4 to a corresponding vector whose first and third coordinates are zero. The
functions h and j are both linear operators (see Exercise 5). Such mappings, where at least
one of the coordinates is “zeroed out,” are examples of projection mappings. You can verify that
all such mappings are linear operators. (Other types of projection mappings are illustrated in
Exercises 6 and 7.)

Example 9
Rotations: Let � be a fixed angle in R

2, and let l: R
2 → R

2 be given by

l

([
x

y

])
�

[
cos� �sin �

sin � cos�

][
x

y

]
�

[
x cos� � y sin �

x sin � � y cos�

]
.

In Exercise 9 you are asked to show that l rotates [x,y] counterclockwise through the angle �

(see Figure 5.4).
Now, let v1 � [x1,y1] and v2 � [x2,y2] be two vectors in R

2. Then,

l(v1 � v2) �

[
cos� �sin �

sin � cos�

]
(v1 � v2)

�

[
cos� �sin �

sin � cos�

]
v1 �

[
cos� �sin �

sin � cos�

]
v2

� l (v1) � l (v2) .
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(x, y )

[x, y ]
�l ([x, y ])

FIGURE 5.4

Counterclockwise rotation of [x, y] through an angle � in R
2

Similarly, l(cv) � cl(v), for any c ∈ R and v ∈ R
2. Hence, l is a linear operator.

Beware! Not all geometric operations are linear operators. Recall that the translation
function is not a linear operator!

Multiplication Transformation

The linear operator in Example 9 is actually a special case of the next example,which
shows that multiplication by an m � n matrix is always a linear transformation from
R

n to R
m.

Example 10
Let A be a given m � n matrix. We show that the function f : R

n → R
m defined by f (x) � Ax, for

all x ∈ R
n, is a linear transformation. Let x1,x2 ∈ R

n. Then f (x1 � x2) � A(x1 � x2) � Ax1 �

Ax2 � f (x1) � f (x2). Also, let x ∈ R
n and c ∈ R. Then, f (cx) � A(cx) � c(Ax) � cf (x).

For a specific example of the multiplication transformation, consider the matrix

A �

[
�1 4 2

5 6 �3

]
. The mapping given by

f

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

[
�1 4 2

5 6 �3

]⎡⎣x1

x2

x3

⎤
⎦�

[
�x1 � 4x2 � 2x3

5x1 � 6x2 � 3x3

]

is a linear transformation from R
3 to R

2. In the next section, we will show that the
converse of the result in Example 10 also holds; every linear transformation from R

n

to R
m is equivalent to multiplication by an appropriate m � n matrix.
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Elementary Properties of Linear Transformations

We now prove some basic properties of linear transformations. From here on, we
usually use italicized capital letters, such as “L,” to represent linear transformations.

Theorem 5.1 Let V and W be vector spaces, and let L: V → W be a linear trans-
formation. Let 0V be the zero vector in V and 0W be the zero vector in W.
Then

(1) L(0V ) � 0W
(2) L(�v) � �L(v), for all v ∈ V
(3) L(a1v1 � a2v2 � · · · � anvn) � a1L(v1) � a2L(v2) � · · · � anL(vn), for all

a1, . . . ,an ∈ R, and v1, . . . ,vn ∈ V, for n 	 2.

Proof.

Part (1):

L(0V ) � L(00V ) part (2) of Theorem 4.1, in V
� 0L(0V ) property (2) of linear transformation

� 0W part (2) of Theorem 4.1, in W

Part (2):

L(�v) � L(�1v) part (3) of Theorem 4.1, in V
� �1(L(v)) property (2) of linear transformation

� �L(v) part (3) of Theorem 4.1, in W

Part (3): (Abridged) This part is proved by induction. We prove the Base Step (n � 2)

here and leave the Inductive Step as Exercise 29. For the Base Step, we must
show that L(a1v1 � a2v2) � a1L(v1) � a2L(v2). But,

L(a1v1 � a2v2) � L(a1v1) � L(a2v2) property (1) of linear transformation

� a1L(v1) � a2L(v2) property (2) of linear transformation.

The next theorem asserts that the composition L2 ◦ L1 of linear transformations L1

and L2 is again a linear transformation (see Appendix B for a review of composition of
functions).

Theorem 5.2 Let V1,V2, and V3 be vector spaces. Let L1: V1 → V2 and L2: V2 → V3
be linear transformations. Then L2 ◦ L1: V1 → V3 given by (L2 ◦ L1)(v) � L2(L1(v)), for
all v ∈ V1, is a linear transformation.
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Proof. (Abridged) To show that L2 ◦ L1 is a linear transformation, we must show that for all
c ∈ R and v,v1,v2 ∈ V,

(L2 ◦ L1)(v1 � v2) � (L2 ◦ L1)(v1) � (L2 ◦ L1)(v2)

and (L2 ◦ L1)(cv) � c(L2 ◦ L1)(v).

The first property holds since

(L2 ◦ L1)(v1 � v2) � L2(L1(v1 � v2))

� L2(L1(v1) � L1(v2)) because L1 is a linear
transformation

� L2(L1(v1)) � L2(L1(v2)) because L2 is a linear
transformation

� (L2 ◦ L1)(v1) � (L2 ◦ L1)(v2).

We leave the proof of the second property as Exercise 33.

Example 11
Let L1 represent the rotation of vectors in R

2 through a fixed angle � (as in Example 9), and let
L2 represent the reflection of vectors in R

2 through the x-axis. That is, if v � [v1,v2], then

L1(v) �

[
cos� �sin �

sin � cos�

][
v1

v2

]
and L2 (v) �

[
v1

�v2

]
.

Because L1 and L2 are both linear transformations, Theorem 5.2 asserts that

L2 (L1 (v)) � L2

([
v1 cos� � v2 sin �

v1 sin � � v2 cos�

])
�

[
v1 cos� � v2 sin �

�v1 sin � � v2 cos�

]

is also a linear transformation. L2 ◦ L1 represents a rotation of v through � followed by a reflection
through the x-axis.

Theorem 5.2 generalizes naturally to more than two linear transformations.That is,
if L1,L2, . . . ,Lk are linear transformations and the composition Lk ◦ · · · ◦ L2 ◦ L1 makes
sense, then Lk ◦ · · · ◦ L2 ◦ L1 is also a linear transformation.

Linear Transformations and Subspaces

The final theorem of this section assures us that, under a linear transformation L:
V → W , subspaces of V “correspond” to subspaces of W , and vice versa.
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Theorem 5.3 Let L: V → W be a linear transformation.

(1) If V ′ is a subspace of V, then L(V ′) � {L(v) |v ∈ V ′}, the image of V ′ in W, is
a subspace of W. In particular, the range of L is a subspace of W.

(2) If W ′ is a subspace of W, then L�1(W ′) � {v |L(v) ∈ W ′}, the pre-image of
W ′ in V, is a subspace of V.

We prove part (1) and leave part (2) as Exercise 31.

Proof. Part (1): Suppose that L: V → W is a linear transformation and that V ′ is a subspace
of V. Now, L

(V ′), the image of V ′ in W (see Figure 5.5), is certainly nonempty (why?).
Hence, to show that L

(V ′) is a subspace of W, we must prove that L
(V ′) is closed under

addition and scalar multiplication.
First, suppose that w1,w2 ∈ L

(V ′). Then, by definition of L
(V ′), we have w1 � L(v1) and

w2 � L(v2), for some v1,v2 ∈ V ′. Then, w1 � w2 � L(v1) � L(v2) � L(v1 � v2) because
L is a linear transformation. However, since V ′ is a subspace of V , (v1 � v2) ∈ V ′. Thus,
(w1 � w2) is the image of (v1 � v2) ∈ V ′, and so (w1 � w2) ∈ L

(V ′). Hence, L
(V ′) is closed

under addition.
Next, suppose that c ∈ R and w ∈ L

(V ′). By definition of L
(V ′) , w � L(v), for some

v ∈ V ′. Then, cw � cL(v) � L(cv) since L is a linear transformation. Now, cv ∈ V ′, because
V ′ is a subspace of V. Thus, cw is the image of cv ∈ V ′, and so cw ∈ L

(V ′). Hence, L
(V ′)

is closed under scalar multiplication.

Example 12

Let L: M22 → R
3, where L

([
a b
c d

])
� [b,0,c]. L is a linear transformation (verify!). By Theo-

rem 5.3, the range of any linear transformation is a subspace of the codomain. Hence, the range
of L � {[b,0,c]| b,c ∈ R} is a subspace of R

3.

Also, consider the subspace U2 �

{[
a b
0 d

]∣∣∣∣∣a,b,d ∈ R

}
of M22. Then the image of U2

under L is { [b,0,0]|b ∈ R}. This image is a subspace of R
3, as Theorem 5.3 asserts. Finally,

consider the subspace W � { [b,e,2b]| b,e ∈ R} of R
3. The pre-image of W consists of all

L

W 9
WV

V 9

FIGURE 5.5

Subspaces of V correspond to subspaces of W under a linear transformation L: V → W
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matrices in M22 of the form

[
a b

2b d

]
. Notice that this pre-image is a subspace of M22, as

claimed by Theorem 5.3.

New Vocabulary

codomain (of a linear transformation)
composition of linear transformations
contraction (mapping)
dilation (mapping)
domain (of a linear transformation)
identity linear operator
image (of a vector in the domain)
linear operator
linear transformation

pre-image (of a vector in the codomain)
projection (mapping)
range (of a linear transformation)
reflection (mapping)
rotation (mapping)
shear (mapping)
translation (mapping)
zero linear operator

Highlights

■ A linear transformation is a function from one vector space to another that
preserves the operations of addition and scalar multiplication. That is, under
a linear transformation, the image of a linear combination of vectors is the linear
combination of the images of the vectors having the same coefficients.

■ A linear operator is a linear transformation from a vector space to itself.

■ A nontrivial translation of the plane (R2) or of space (R3) is never a linear operator,
but all of the following are linear operators:contraction (of R

n),dilation (of R
n),

reflection of space through the xy-plane (or xz-plane or yz-plane), rotation of
the plane about the origin through a given angle �, projection (of R

n) in which
one or more of the coordinates are zeroed out.

■ Multiplication of vectors in R
n on the left by a fixed m � n matrix A is a linear

transformation from R
n to R

m.

■ Multiplying a vector on the left by the matrix

[
cos� �sin �
sin � cos�

]
is equivalent to

rotating the vector counterclockwise about the origin through the angle �.

■ Linear transformations always map the zero vector of the domain to the zero
vector of the codomain.

■ A composition of linear transformations is a linear transformation.

■ Under a linear transformation,subspaces of the domain map to subspaces of the
codomain,and the pre-image of a subspace of the codomain is a subspace of the
domain.
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EXERCISES FOR SECTION 5.1
1. Determine which of the following functions are linear transformations. Prove

that your answers are correct. Which are linear operators?
�(a) f : R2 → R

2 given by f ([x,y]) � [3x � 4y,�x � 2y]
�(b) h: R4 → R

4 given by h([x1,x2,x3,x4]) � [x1 � 2, x2 � 1, x3,�3]
(c) k: R3 → R

3 given by k([x1,x2,x3]) � [x2, x3, x1]
�(d) l:M22 → M22 given by l

([
a b
c d

])
�

[
a � 2c � d 3b � c

�4a b � c � 3d

]

(e) n:M22 → R given by n

([
a b
c d

])
� ad � bc

�(f ) r:P3 → P2 given by r(ax3 � bx2 � cx � d) � ( 3
√

a)x2 � b2x � c

(g) s: R3 → R
3 given by s([x1,x2,x3]) � [cosx1, sin x2, ex3 ]

�(h) t :P3 → R given by t(a3x3 � a2x2 � a1x � a0) � a3 � a2 � a1 � a0

(i) u: R4 → R given by u
([x1,x2,x3,x4]

)
� |x2|

�(j) v:P2 → R given by v
(
ax2 � bx � c

)
� abc

�(k) g:M32 → P4 given by g

⎛
⎜⎝
⎡
⎢⎣a11 a12

a21 a22

a31 a32

⎤
⎥⎦
⎞
⎟⎠� a11x4 � a21x2 � a31

�(l) e: R2 → R given by e([x,y]) �
√

x2 � y2

2. Let V and W be vector spaces.

(a) Show that the identity mapping i: V → V given by i(v) � v, for all v ∈ V ,
is a linear operator.

(b) Show that the zero mapping z:V → W given by z(v) � 0W , for all v ∈ V ,
is a linear transformation.

3. Let k be a fixed scalar in R. Show that the mapping f : R
n → R

n given by
f ([x1,x2, . . . ,xn]) � k[x1,x2, . . . ,xn] is a linear operator.

4. (a) Show that f :R3 → R
3 given by f ([x,y,z]) � [�x,y,z] (reflection of a

vector through the yz-plane) is a linear operator.

(b) What mapping from R
3 to R

3 would reflect a vector through the xz-plane?
Is it a linear operator? Why or why not?

(c) What mapping from R
2 to R

2 would reflect a vector through the y-axis?
through the x-axis? Are these linear operators? Why or why not?

5. Show that the projection mappings h: R
3 → R

3 given by h([a1,a2,a3]) �
[a1,a2,0] and j: R

4 → R
4 given by j([a1,a2,a3,a4]) � [0,a2,0,a4] are linear

operators.
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6. The mapping f :Rn → R given by f ([x1,x2, . . . ,xi , . . . ,xn]) � xi is another type
of projection mapping. Show that f is a linear transformation.

7. Let x be a fixed nonzero vector in R
3. Show that the mapping g:R3 → R

3 given
by g(y) � projxy is a linear operator.

8. Let x be a fixed vector in R
n. Prove that L: R

n →R given by L(y) � x · y is a
linear transformation.

9. Let � be a fixed angle in the xy-plane. Show that the linear operator L:R2 →
R

2 given by L

([
x
y

])
�

[
cos� �sin �
sin � cos�

][
x
y

]
rotates the vector [x,y] coun-

terclockwise through the angle � in the plane. (Hint: Consider the vector
[x′,y′], obtained by rotating [x,y] counterclockwise through the angle �. Let
r �

√
x2 � y2. Then x � r cos� and y � r sin �, where � is the angle shown in

Figure 5.6. Notice that x′ � r(cos(� � �)) and y′ � r(sin(� � �)). Then show
that L([x,y]) � [x′,y′].)

10. (a) Explain why the mapping L: R3 → R
3 given by

L

⎛
⎝
⎡
⎣x

y
z

⎤
⎦
⎞
⎠�

⎡
⎣cos� �sin � 0

sin � cos� 0
0 0 1

⎤
⎦
⎡
⎣x

y
z

⎤
⎦

is a linear operator.

(b) Show that the mapping L in part (a) rotates every vector in R
3 about the

z-axis through an angle of � (as measured relative to the xy-plane).
�(c) What matrix should be multiplied times [x,y,z] to create the linear opera-

tor that rotates R
3 about the y-axis through an angle � (relative to the

xz-plane)? (Hint: When looking down from the positive y-axis toward

(x, y)

(x9, y9)

�

�

FIGURE 5.6

The vectors [x,y] and [x′,y′]
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the xz-plane in a right-handed system, the positive z-axis rotates 90◦
counterclockwise into the positive x-axis.)

11. Shears: Let f1, f2: R2 → R
2 be given by

f1

([
x

y

])
�

[
1 k

0 1

][
x

y

]
�

[
x � ky

y

]

and

f2

([
x

y

])
�

[
1 0

k 1

][
x

y

]
�

[
x

kx � y

]
.

The mapping f1 is called a shear in the x-direction with factor k; f2 is called
a shear in the y-direction with factor k. The effect of these functions (for
k > 1) on the vector [1,1] is shown in Figure 5.7. Show that f1 and f2 are linear
operators directly, without using Example 10.

12. Let f : Mnn → R be given by f (A) � trace(A). (The trace is defined in
Exercise 14 of Section 1.4.) Prove that f is a linear transformation.

13. Show that the mappings g,h:Mnn → Mnn given by g(A) � A � AT and h(A) �
A � AT are linear operators on Mnn.

14. (a) Show that if p ∈ Pn, then the (indefinite integral) function f : Pn → Pn�1,
where f (p) is the vector

∫
p(x) dx with zero constant term, is a linear

transformation.

(b) Show that if p ∈ Pn, then the (definite integral) function g: Pn → R given
by g(p) �

∫ b
a p dx is a linear transformation, for any fixed a,b ∈ R.

15. Let V be the vector space of all functions f from R to R that are infinitely
differentiable (that is, for which f (n), the nth derivative of f , exists for every

(a)

(1, 1)
(1, 1)

(1 � k, 1)
(1, 1 � k)

(b)

FIGURE 5.7

(a) Shear in the x-direction; (b) shear in the y-direction (both for k > 0)
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integer n 	 1). Use induction and Theorem 5.2 to show that for any given
integer k 	 1, L:V → V given by L(f ) � f (k) is a linear operator.

16. Consider the function f : Mnn → Mnn given by f (A) � BA, where B is some
fixed n � n matrix. Show that f is a linear operator.

17. Let B be a fixed nonsingular matrix in Mnn. Show that the mapping f :Mnn →
Mnn given by f (A) � B�1AB is a linear operator.

18. Let a be a fixed real number.

(a) Let L:Pn → R be given by L(p(x)) � p(a). (That is,L evaluates polynomials
in Pn at x � a.) Show that L is a linear transformation.

(b) Let L: Pn → Pn be given by L(p(x)) � p(x � a). (For example, when a is
positive, L shifts the graph of p(x) to the left by a units.) Prove that L is a
linear operator.

19. Let A be a fixed matrix in Mnn. Define f :Pn → Mnn by

f (anxn � an�1xn�1 � · · · � a1x � a0)

� anAn � an�1An�1 � · · · � a1A � a0In.

Show that f is a linear transformation.

20. Let V be the unusual vector space from Example 7 in Section 4.1. Show that
L:V → R given by L(x) � ln(x) is a linear transformation.

21. Let V be a vector space, and let x �� 0 be a fixed vector in V . Prove that
the translation function f : V → V given by f (v) � v � x is not a linear
transformation.

22. Show that if A is a fixed matrix in Mmn and y �� 0 is a fixed vector in R
m, then

the mapping f :Rn → R
m given by f (x) � Ax � y is not a linear transformation

by showing that part (1) of Theorem 5.1 fails for f .

23. Prove that f : M33 → R given by f (A) � |A| is not a linear transformation.
(A similar result is true for Mnn, for n > 1.)

24. Suppose L1: V → W is a linear transformation and L2: V → W is defined by
L2(v) � L1(2v). Show that L2 is a linear transformation.

25. Suppose L: R
3 → R

3 is a linear operator and L([1,0,0]) � [�2,1,0],
L([0,1,0]) � [3,�2,1], and L([0,0,1]) � [0,�1,3]. Find L([�3,2,4]). Give a
formula for L([x,y,z]), for any [x,y,z] ∈ R

3.

�26. Suppose L:R2 → R
2 is a linear operator and L(i � j) � i � 3j and L(�2i � 3j) �

�4i � 2j. Express L(i) and L(j) as linear combinations of i and j.

27. Let L:V → W be a linear transformation. Show that L(x � y) � L(x) � L(y), for
all vectors x,y ∈ V .
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28. Part (3) of Theorem 5.1 assures us that if L: V → W is a linear transformation,
then L(av1 � bv2) � aL(v1) � bL(v2), for all v1,v2 ∈ V and all a,b ∈ R. Prove
that the converse of this statement is true. (Hint: Consider two cases: first
a � b � 1 and then b � 0.)

�29. Finish the proof of part (3) of Theorem 5.1 by doing the Inductive Step.

30. (a) Suppose that L:V → W is a linear transformation. Show that if {L(v1),
L(v2), . . . ,L(vn)} is a linearly independent set of n distinct vectors in W ,for
some vectors v1, . . . ,vn ∈ V , then {v1,v2, . . . ,vn} is a linearly independent
set in V .

�(b) Find a counterexample to the converse of part (a).

�31. Finish the proof of Theorem 5.3 by showing that if L:V → W is a linear trans-
formation and W ′ is a subspace of W with pre-image L�1

(W ′), then L�1
(W ′)

is a subspace of V .

32. Show that every linear operator L: R → R has the form L(x) � cx, for some
c ∈ R.

33. Finish the proof of Theorem 5.2 by proving property (2) of a linear transfor-
mation for L2 ◦ L1.

34. Let L1,L2: V → W be linear transformations. Define (L1 ⊕ L2): V → W by
(L1 ⊕ L2)(v) � L1(v) � L2(v) (where the latter addition takes place in W).
Also define (c � L1):V → W by (c � L1)(v) � c (L1(v)) (where the latter scalar
multiplication takes place in W).

(a) Show that (L1 ⊕ L2) and (c � L1) are linear transformations.

(b) Use the results in part (a) above and part (b) of Exercise 2 to show that
the set of all linear transformations from V to W is a vector space under
the operations ⊕ and �.

35. Let L:R2 → R
2 be a nonzero linear operator. Show that L maps a line to either

a line or a point.

�36. True or False:

(a) If L:V → W is a function between vector spaces for which L(cv) � cL(v),
then L is a linear transformation.

(b) If V is an n-dimensional vector space with ordered basis B, then L:V → R
n

given by L(v) � [v]B is a linear transformation.

(c) The function L: R
3 → R

3 given by L([x,y,z]) � [x � 1, y � 2, z � 3] is a
linear operator.

(d) If A is a 4 � 3 matrix, then L(v) � Av is a linear transformation from R
4

to R
3.

(e) A linear transformation from V to W always maps 0V to 0W .
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(f) If M1:V → W and M2:W → X are linear transformations, then M1 ◦ M2 is
a well-defined linear transformation.

(g) If L: V → W is a linear transformation, then the image of any subspace of
V is a subspace of W .

(h) If L: V → W is a linear transformation, then the pre-image of {0W } is a
subspace of V .

5.2 THE MATRIX OF A LINEAR TRANSFORMATION
In this section, we show that the behavior of any linear transformation L: V → W
is determined by its effect on a basis for V . In particular, when V and W are finite
dimensional and ordered bases for V and W are chosen,we can obtain a matrix corre-
sponding to L that is useful in computing images under L. Finally, we investigate how
the matrix for L changes as the bases for V and W change.

A Linear Transformation Is Determined by Its Action on a Basis

If the action of a linear transformation L: V → W on a basis for V is known, then
the action of L can be computed for all elements of V , as we see in the next
example.

Example 1
You can quickly verify that

B �
(
[0,4,0,1] , [�2,5,0,2] , [�3,5,1,1] , [�1,2,0,1]

)
is an ordered basis for R

4. Now suppose that L: R
4 → R

3 is a linear transformation for which

L
(
[0,4,0,1]

)
� [3,1,2], L([�2,5,0,2]) � [2,�1,1],

L([�3,5,1,1]) � [�4,3,0], and L([�1,2,0,1]) � [6,1,�1].
We can use the values of L on B to compute L for other vectors in R

4. For example, let v �

[�4,14,1,4]. By using row reduction, we see that [v]B � [2,�1,1,3] (verify!). So,

L(v) � L
(
2 [0,4,0,1] � 1 [�2,5,0,2] � 1 [�3,5,1,1] � 3 [�1,2,0,1]

)
� 2L

(
[0,4,0,1]

)
� 1L([�2,5,0,2]) � 1L([�3,5,1,1])

� 3L([�1,2,0,1])

� 2[3,1,2] � [2,�1,1] � [�4,3,0] � 3[6,1,�1]
� [18,9,0].



 

322 CHAPTER 5 Linear Transformations

In general, if v ∈ R
4 and [v]B � [k1,k2,k3,k4], then

L(v) � k1[3,1,2] � k2[2,�1,1] � k3[�4,3,0] � k4[6,1,�1]
� [3k1 � 2k2 � 4k3 � 6k4, k1 � k2 � 3k3 � k4, 2k1 � k2 � k4].

Thus, we have derived a general formula for L from its effect on the basis B.

Example 1 illustrates the next theorem.

Theorem 5.4 Let B � (v1,v2, . . . ,vn) be an ordered basis for a vector space V. Let W
be a vector space, and let w1,w2, . . . ,wn be any n vectors in W. Then there is a unique
linear transformation L: V → W such that L(v1) � w1, L(v2) � w2, . . . , L(vn) � wn.

Proof. (Abridged) Let B � (v1,v2, . . . ,vn) be an ordered basis for V, and let v ∈ V. Then
v � a1v1 � · · · � anvn, for some unique ai ’s in R. Let w1, . . . ,wn be any vectors in W.
Define L: V → W by L(v) � a1w1 � a2w2 � · · · � anwn. Notice that L(v) is well defined
since the ai ’s are unique.

To show that L is a linear transformation, we must prove that L(x1 � x2) � L(x1) �
L(x2) and L(cx1) � cL(x1), for all x1,x2 ∈ V and all c ∈ R. Suppose that x1 � d1v1 � · · · �
dnvn and x2 � e1v1 � · · · � envn. Then, by definition of L, L(x1) � d1w1 � · · · � dnwn and
L(x2) � e1wn � · · · � enwn. However,

x1 � x2 � (d1 � e1)v1 � · · · � (dn � en)vn,

so, L(x1 � x2) � (d1 � e1)w1 � · · · � (dn � en)wn,

again by definition of L. Hence, L(x1) � L(x2) � L(x1 � x2).
Similarly, suppose x ∈ V, and x � t1v1 � · · · � tnvn. Then, cx � ct1v1 � · · · � ctnvn,

and so L(cx) � ct1w1 � · · · � ctnwn � cL(x). Hence, L is a linear transformation.
Finally, the proof of the uniqueness assertion is straightforward and is left as

Exercise 25.

The Matrix of a Linear Transformation

Our next goal is to show that every linear transformation on a finite dimensional vector
space can be expressed as a matrix multiplication. This will allow us to solve prob-
lems involving linear transformations by performing matrix multiplications, which
can easily be done by computer. As we will see, the matrix for a linear transformation
is determined by the ordered bases B and C chosen for the domain and codomain,
respectively. Our goal is to find a matrix that takes the B-coordinates of a vector in the
domain to the C -coordinates of its image vector in the codomain.

Recall the linear transformation L: R4 → R
3 with the ordered basis B for R

4 from
Example 1. For v ∈ R

4,we let [v]B � [k1,k2,k3,k4],and obtained the following formula
for L:

L(v) � [3k1 � 2k2 � 4k3 � 6k4, k1 � k2 � 3k3 � k4, 2k1 � k2 � k4].
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Now, to keep matters simple, we select the standard basis C � (e1,e2,e3) for the
codomain R

3,so that the C -coordinates of vectors in the codomain are the same as the
vectors themselves. (That is, L(v) � [L(v)]C , since C is the standard basis.) Then this
formula for L takes the B-coordinates of each vector in the domain to the C -coordinates
of its image vector in the codomain. Now, notice that if

ABC �

⎡
⎢⎣3 2 �4 6

1 �1 3 1

2 1 0 �1

⎤
⎥⎦, then ABC

⎡
⎢⎢⎢⎣

k1

k2

k3

k4

⎤
⎥⎥⎥⎦�

⎡
⎢⎣3k1 � 2k2 � 4k3 � 6k4

k1 � k2 � 3k3 � k4

2k1 � k2 � k4

⎤
⎥⎦ .

Hence, the matrix A contains all of the information needed for carrying out the linear
transformation L with respect to the chosen bases B and C .

A similar process can be used for any linear transformation between finite
dimensional vector spaces.

Theorem 5.5 Let V and W be nontrivial vector spaces, with dim(V) � n and dim(W) �
m. Let B � (v1,v2, . . . ,vn) and C � (w1,w2, . . . ,wm) be ordered bases for V and
W, respectively. Let L: V → W be a linear transformation. Then there is a unique
m � n matrix ABC such that ABC [v]B � [L(v)]C , for all v ∈ V. (That is, ABC times the
coordinatization of v with respect to B gives the coordinatization of L(v) with respect
to C.)

Furthermore, for 1 � i � n, the ith column of ABC � [L(vi)]C .

Theorem 5.5 asserts that once ordered bases for V and W have been selected,
each linear transformation L: V → W is equivalent to multiplication by a unique
corresponding matrix. The matrix ABC in this theorem is known as the matrix of
the linear transformation L with respect to the ordered bases B (for V) and
C (for W). Theorem 5.5 also says that the matrix ABC is computed as follows: find
the image of each domain basis element vi in turn, and then express these images in
C -coordinates to get the respective columns of ABC .

The subscripts B and C on A are sometimes omitted when the bases being used
are clear from context. Beware! If different ordered bases are chosen for V or W , the
matrix for the linear transformation will probably change.

Proof. Consider the m � n matrix ABC whose ith column equals [L(vi)]C , for 1 � i � n. Let
v ∈ V. We first prove that ABC [v]B � [L(v)]C .

Suppose that [v]B � [k1,k2, . . . ,kn]. Then v � k1v1 � k2v2 � · · · � knvn, and L(v) �
k1L(v1) � k2L(v2) � · · · � knL(vn), by Theorem 5.1. Hence,

[L(v)]C � [k1L(v1) � k2L(v2) � · · · � knL(vn)]C

� k1 [L(v1)]C � k2 [L(v2)]C � · · · � kn [L(vn)]C by Theorem 4.19
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� k1(1st column of ABC ) � k2(2nd column of ABC )

� · · · � kn(nth column of ABC )

� ABC

⎡
⎢⎢⎢⎣

k1
k2
...

kn

⎤
⎥⎥⎥⎦� ABC [v]B.

To complete the proof, we need to establish the uniqueness of ABC . Suppose that H
is an m � n matrix such that H[v]B � [L(v)]C for all v ∈ V. We will show that H � ABC . It
is enough to show that the ith column of H equals the ith column of ABC , for 1 � i � n.
Consider the ith vector, vi, of the ordered basis B for V. Since [vi]B � ei, we have ith
column of H � Hei � H [vi]B � [L(vi)]C , and this is the ith column of ABC .

Notice that in the special case where the codomain W is R
m, and the basis C for

W is the standard basis,Theorem 5.5 asserts that the ith column of ABC is simply L(vi)

itself (why?).

Example 2
Table 5.1 lists the matrices corresponding to some geometric linear operators on R

3, with respect
to the standard basis. The columns of each matrix are quickly calculated using Theorem 5.5,
since we simply find the images L(e1), L(e2), and L(e3) of the domain basis elements e1, e2,
and e3. (Each image is equal to its coordinatization in the codomain since we are using the
standard basis for the codomain as well.)

Once the matrix for each transformation is calculated, we can easily find the image of any
vector using matrix multiplication. For example, to find the effect of the reflection L1 in Table 5.1
on the vector [3,�4,2], we simply multiply by the matrix for L1 to get

⎡
⎢⎣1 0 0

0 1 0
0 0 �1

⎤
⎥⎦
⎡
⎢⎣ 3

�4
2

⎤
⎥⎦�

⎡
⎢⎣ 3

�4
�2

⎤
⎥⎦ .

Example 3
We will find the matrix for the linear transformation L: P3 → R

3 given by

L(a3x3 � a2x2 � a1x � a0) � [a0 � a1,2a2,a3 � a0]

with respect to the standard ordered bases B � (x3,x2,x,1) for P3 and C � (e1,e2,e3) for R
3.

We first need to find L(v), for each v ∈ B. By definition of L, we have

L(x3) � [0,0,1], L(x2) � [0,2,0], L(x) � [1,0,0], and L(1) � [1,0,�1].
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Table 5.1 Matrices for several geometric linear operators on R
3

Transformation Formula Matrix

Reflection
(through xy-plane)

L1

⎛
⎝
⎡
⎣a1

a2

a3

⎤
⎦
⎞
⎠�

⎡
⎣ a1

a2

�a3

⎤
⎦

L1(e1)⎡
⎣1

0
0

L1(e2)

0
1
0

L1(e3)

0
0

�1

⎤
⎦

Contraction
or dilation

L2

⎛
⎝
⎡
⎣a1

a2

a3

⎤
⎦
⎞
⎠�

⎡
⎣ca1

ca2

ca3

⎤
⎦, for c ∈ R

L2(e1)⎡
⎣c

0
0

L2(e2)

0
c
0

L2(e3)

0
0
c

⎤
⎦

Projection
(onto xy-plane)

L3

⎛
⎝
⎡
⎣a1

a2

a3

⎤
⎦
⎞
⎠�

⎡
⎣a1

a2

0

⎤
⎦

L3(e1)⎡
⎣1

0
0

L3(e2)

0
1
0

L3(e3)

0
0
0

⎤
⎦

Rotation (about
z-axis through
angle �) (relative
to the xy-plane)

L4

⎛
⎝
⎡
⎣a1

a2

a3

⎤
⎦
⎞
⎠�

⎡
⎣a1 cos� � a2 sin �

a1 sin � � a2 cos�

a3

⎤
⎦

L4(e1)⎡
⎣cos�

sin �

0

L4(e2)

�sin �

cos�

0

L4(e3)

0
0
1

⎤
⎦

Shear (in the z-
direction with factor k)
(analog of Exercise
11 in Section 5.1)

L5

⎛
⎝
⎡
⎣a1

a2

a3

⎤
⎦
⎞
⎠�

⎡
⎣a1 � ka3

a2 � ka3

a3

⎤
⎦

L5(e1)⎡
⎣1

0
0

L5(e2)

0
1
0

L5(e3)

k
k
1

⎤
⎦

Since we are using the standard basis C for R
3, each of these images in R

3 is its own
C-coordinatization. Then by Theorem 5.5, the matrix ABC for L is the matrix whose columns
are these images; that is,

ABC �

L(x3)⎡
⎢⎣0

0
1

L(x2)

0
2
0

L(x)

1
0
0

L(1)

1
0

�1

⎤
⎥⎦.

We will compute L(5x3 � x2 � 3x � 2) using this matrix. Now,
[
5x3 � x2 � 3x � 2

]
B �

[5,�1,3,2]. Hence, multiplication by ABC gives

[
L(5x3 � x2 � 3x � 2)

]
C

�

⎡
⎢⎣0 0 1 1

0 2 0 0
1 0 0 �1

⎤
⎥⎦
⎡
⎢⎢⎢⎣

5
�1

3
2

⎤
⎥⎥⎥⎦�

⎡
⎢⎣ 5

�2
3

⎤
⎥⎦ .

Since C is the standard basis for R3, we have L(5x3 � x2 � 3x � 2) � [5,�2,3], which can be
quickly verified to be the correct answer.



 

326 CHAPTER 5 Linear Transformations

Example 4
We will find the matrix for the same linear transformation L: P3 → R

3 of Example 3 with respect
to the different ordered bases

D � (x3 � x2, x2 � x, x � 1, 1)

and E � ([�2,1,�3], [1,�3,0], [3,�6,2]).

You should verify that D and E are bases for P3 and R
3, respectively.

We first need to find L(v), for each v ∈ D. By definition of L, we have L(x3 � x2) � [0,2,1],
L(x2 � x) � [1,2,0], L(x � 1) � [2,0,�1], and L(1) � [1,0,�1]. Now we must find the coordi-
natization of each of these images in terms of the basis E for R

3. Since we must solve for the
coordinates of many vectors, it is quicker to use the transition matrix Q from the standard basis
C for R

3 to the basis E. From Theorem 4.22, Q is the inverse of the matrix whose columns are
the vectors in E; that is,

Q �

⎡
⎢⎣�2 1 3

1 �3 �6
�3 0 2

⎤
⎥⎦

�1

�

⎡
⎢⎣�6 �2 3

16 5 �9
�9 �3 5

⎤
⎥⎦.

Now, multiplying Q by each of the images, we get

[
L(x3 � x2)

]
E

� Q

⎡
⎢⎣0

2
1

⎤
⎥⎦�

⎡
⎢⎣�1

1
�1

⎤
⎥⎦,

[
L(x2 � x)

]
E

� Q

⎡
⎢⎣1

2
0

⎤
⎥⎦�

⎡
⎢⎣�10

26
�15

⎤
⎥⎦,

[L(x � 1)]E � Q

⎡
⎢⎣ 2

0
�1

⎤
⎥⎦�

⎡
⎢⎣�15

41
�23

⎤
⎥⎦, and [L(1)]E � Q

⎡
⎢⎣ 1

0
�1

⎤
⎥⎦�

⎡
⎢⎣ �9

25
�14

⎤
⎥⎦.

By Theorem 5.5, the matrix ADE for L is the matrix whose columns are these products.

ADE �

⎡
⎢⎣�1 �10 �15 �9

1 26 41 25
�1 �15 �23 �14

⎤
⎥⎦

We will compute L(5x3 � x2 � 3x � 2) using this matrix. We must first find the representation
for 5x3 � x2 � 3x � 2 in terms of the basis D. Solving 5x3 � x2 � 3x � 2 � a(x3 � x2) � b(x2 �

x) � c(x � 1) � d(1) for a, b, c, and d, we get the unique solution a � 5, b � �6, c � 9, and
d � �7 (verify!). Hence,

[
5x3 � x2 � 3x � 2

]
D � [5,�6,9,�7]. Then

[
L(5x3 � x2 � 3x � 2)

]
E

�

⎡
⎢⎣�1 �10 �15 �9

1 26 41 25
�1 �15 �23 �14

⎤
⎥⎦
⎡
⎢⎢⎢⎣

5
�6

9
�7

⎤
⎥⎥⎥⎦�

⎡
⎢⎣�17

43
�24

⎤
⎥⎦.
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This answer represents a coordinate vector in terms of the basis E, and so

L(5x3 � x2 � 3x � 2) � �17

⎡
⎢⎣�2

1
�3

⎤
⎥⎦� 43

⎡
⎢⎣ 1

�3
0

⎤
⎥⎦� 24

⎡
⎢⎣ 3

�6
2

⎤
⎥⎦�

⎡
⎢⎣ 5

�2
3

⎤
⎥⎦,

which agrees with the answer in Example 3.

Finding the New Matrix for a Linear Transformation after
a Change of Basis

The next theorem indicates precisely how the matrix for a linear transformation
changes when we alter the bases for the domain and codomain.

Theorem 5.6 Let V and W be two nontrivial finite dimensional vector spaces with
ordered bases B and C, respectively. Let L: V → W be a linear transformation with
matrix ABC with respect to bases B and C. Suppose that D and E are other ordered
bases for V and W, respectively. Let P be the transition matrix from B to D, and let Q
be the transition matrix from C to E. Then the matrix ADE for L with respect to bases
D and E is given by ADE � QABCP�1.

The situation in Theorem 5.6 is summarized in Figure 5.8.

Proof. For all v ∈ V,

ABC [v]B � [L(v)]C by Theorem 5.5
⇒ QABC [v]B � Q [L(v)]C
⇒ QABC [v]B � [L(v)]E because Q is the transition matrix from C to E
⇒ QABCP�1[v]D � [L(v)]E . because P�1 is the transition matrix from D to B

However, ADE is the unique matrix such that ADE [v]D � [L(v)]E , for all v ∈ V. Hence,
ADE � QABCP�1.

ABC

ADE

[v]B

[v]D

[L(v)]C

[L(v)]E

Transition
matrix Q

(Matrix for L using B, C )

(Matrix for L using D, E )

Transition
matrix P

FIGURE 5.8

Relationship between matrices ABC and ADE for a linear transformation under a change of basis
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Theorem 5.6 gives us an alternate method for finding the matrix of a linear trans-
formation with respect to one pair of bases when the matrix for another pair of bases
is known.

Example 5
Recall the linear transformation L: P3 → R

3 from Examples 3 and 4, given by

L(a3x3 � a2x2 � a1x � a0) � [a0 � a1,2a2,a3 � a0].

Example 3 shows that the matrix for L using the standard bases B (for P3) and C (for R
3) is

ABC �

⎡
⎢⎣0 0 1 1

0 2 0 0
1 0 0 �1

⎤
⎥⎦.

Also, in Example 4, we computed directly to find the matrix ADE for the ordered bases D �

(x3 � x2, x2 � x, x � 1, 1) for P3 and E � ([�2,1,�3], [1,�3,0], [3,�6,2]) for R
3. Instead, we

now use Theorem 5.6 to calculate ADE . Recall from Example 4 that the transition matrix Q from
bases C to E is

Q �

⎡
⎢⎣

�6 �2 3

16 5 �9

�9 �3 5

⎤
⎥⎦.

Also, the transition matrix P�1 from bases D to B is

P�1 �

⎡
⎢⎢⎢⎢⎣

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

⎤
⎥⎥⎥⎥⎦. (Verify!)

Hence,

ADE � QABCP�1 �

⎡
⎢⎣

�6 �2 3

16 5 �9

�9 �3 5

⎤
⎥⎦
⎡
⎢⎣0 0 1 1

0 2 0 0
1 0 0 �1

⎤
⎥⎦
⎡
⎢⎢⎢⎣

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

⎤
⎥⎥⎥⎦

�

⎡
⎢⎣�1 �10 �15 �9

1 26 41 25
�1 �15 �23 �14

⎤
⎥⎦,

which agrees with the result obtained for ADE in Example 4.
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Linear Operators and Similarity

Suppose L is a linear operator on a finite dimensional vector space V . If B is a basis for
V , then there is some matrix ABB for L with respect to B. Also, if C is another basis for
V , then there is some matrix ACC for L with respect to C . Let P be the transition matrix
from B to C (see Figure 5.9). Notice that by Theorem 5.6 we have ABB � P�1ACCP,
and so, by the definition of similar matrices, ABB and ACC are similar. This argument
shows that any two matrices for the same linear operator with respect to different
bases are similar. In fact, the converse is also true (see Exercise 20).

Example 6
Consider the linear operator L: R

3 → R
3 whose matrix with respect to the standard basis B

for R
3 is

ABB �
1

7

⎡
⎢⎣ 6 3 �2

3 �2 6
�2 6 3

⎤
⎥⎦ .

We will use eigenvectors to find another basis D for R
3 so that with respect to D,L has a much sim-

pler matrix representation. Now, pABB (x) � |xI3 � ABB| � x3 � x2 � x � 1 � (x � 1)2(x � 1)

(verify!).
By row reducing (1I3 � ABB) and (�1I3 � ABB) we find the basis {[3,1,0], [�2,0,1]} for

the eigenspace E1 for ABB and the basis {[1,�3,2]} for the eigenspace E�1 for ABB. (Again,
verify!) A quick check verifies that D � {[3,1,0], [�2,0,1], [1,�3,2]} is a basis for R

3 consisting
of eigenvectors for ABB.

Next, recall that ADD is similar to ABB. In particular, from the remarks right before this exam-
ple, ADD � P�1ABBP, where P is the transition matrix from D to B. Now, the matrix whose
columns are the vectors in D is the transition matrix from D to the standard basis B. Thus,

P �

⎡
⎢⎣3 �2 1

1 0 �3
0 1 2

⎤
⎥⎦ , with P�1 �

1

14

⎡
⎢⎣ 3 5 6

�2 6 10
1 �3 2

⎤
⎥⎦

ABB

ACC

[v]B

[v]C

[L(v)]B

[L(v)]C

Transition
matrix P

(Matrix for L using B)

(Matrix for L using C)

Transition
matrix P21

FIGURE 5.9

Relationship between matrices ABB and ACC for a linear operator under a change of basis
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as the transition matrix from B to D. Then,

ADD � P�1ABBP �

⎡
⎢⎣1 0 0

0 1 0
0 0 �1

⎤
⎥⎦,

a diagonal matrix with the eigenvalues 1 and �1 on the main diagonal.
Written in this form, the operator L is more comprehensible. Compare ADD to the matrix for

a reflection through the xy-plane given in Table 5.1. Now, because D is not the standard basis
for R

3, L is not a reflection through the xy-plane. But we can show that L is a reflection of all
vectors in R

3 through the plane formed by the two basis vectors for E1 (that is, the plane is the
eigenspace E1 itself). By the uniqueness assertion in Theorem 5.4, it is enough to show that L
acts as a reflection through the plane E1 for each of the three basis vectors of D.

Since [3,1,0] and [�2,0,1] are in the plane E1, we need to show that L “reflects” these
vectors to themselves. But this is true since L([3,1,0]) � 1[3,1,0] � [3,1,0], and similarly for
[�2,0,1]. Finally, notice that [1,�3,2] is orthogonal to the plane E1 (since it is orthogonal to both
[3,1,0] and [�2,0,1]). Therefore, we need to show that L “reflects” this vector to its opposite. But,
L([1,�3,2]) � �1[1,�3,2] � �[1,�3,2], and we are done. Hence, L is a reflection through the
plane E1.

Because the matrix ADD in Example 6 is diagonal, it is easy to see that pADD (x) �
(x � 1)2(x � 1). In Exercise 6 of Section 3.4, you were asked to prove that simi-
lar matrices have the same characteristic polynomial. Therefore, pABB(x) also equals
(x � 1)2(x � 1).

Matrix for the Composition of Linear Transformations

Our final theorem for this section shows how to find the corresponding matrix for the
composition of linear transformations. The proof is left as Exercise 15.

Theorem 5.7 Let V1,V2, and V3 be nontrivial finite dimensional vector spaces with
ordered bases B, C, and D, respectively. Let L1: V1 → V2 be a linear transformation with
matrix ABC with respect to bases B and C, and let L2: V2 → V3 be a linear transformation
with matrix ACD with respect to bases C and D. Then the matrix ABD for the composite
linear transformation L2 ◦ L1: V1 → V3 with respect to bases B and D is the product
ACDABC .

Theorem 5.7 can be generalized to compositions of several linear transformations,
as in the next example.

Example 7
Let L1,L2, . . . ,L5 be the geometric linear operators on R

3 given in Table 5.1. Let A1, . . . ,A5 be
the matrices for these operators using the standard basis for R

3. Then, the matrix for the
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composition L4 ◦ L5 is

A4A5 �

⎡
⎢⎣cos� �sin � 0

sin � cos� 0
0 0 1

⎤
⎥⎦
⎡
⎢⎣1 0 k

0 1 k
0 0 1

⎤
⎥⎦�

⎡
⎢⎣cos� �sin � kcos� � k sin �

sin � cos� k sin � � kcos�

0 0 1

⎤
⎥⎦ .

Similarly, the matrix for the composition L2 ◦ L3 ◦ L1 ◦ L5 is

A2A3A1A5 �

⎡
⎢⎣c 0 0

0 c 0
0 0 c

⎤
⎥⎦
⎡
⎢⎣1 0 0

0 1 0
0 0 0

⎤
⎥⎦
⎡
⎢⎣1 0 0

0 1 0
0 0 �1

⎤
⎥⎦
⎡
⎢⎣1 0 k

0 1 k
0 0 1

⎤
⎥⎦�

⎡
⎢⎣c 0 kc

0 c kc
0 0 0

⎤
⎥⎦ .

� Supplemental Material: You have now covered the prerequisites for
Section 7.3,“Complex Vector Spaces.”

� Application: You have now covered the prerequisites for Section 8.8,
“Computer Graphics.”

New Vocabulary

matrix for a linear transformation

Highlights

■ A linear transformation between finite dimensional vector spaces is uniquely
determined once the images of an ordered basis for the domain are specified.
(More specifically, let V and W be vector spaces, with dim(V) � n. Let B �
(v1,v2, . . . ,vn) be an ordered basis for V , and let w1,w2, . . . ,wn be any n (not
necessarily distinct) vectors in W . Then there is a unique linear transformation
L:V → W such that L(vi) � wi , for 1 � i � n.)

■ Every linear transformation between (nontrivial) finite dimensional vector
spaces has a unique matrix ABC with respect to the ordered bases B and C chosen
for the domain and codomain, respectively. (More specifically, let L: V → W be
a linear transformation, with dim(V) � n,dim(W) � m. Let B � (v1,v2, . . . ,vn)

and C � (w1,w2, . . . ,wm) be ordered bases for V and W , respectively. Then
there is a unique m � n matrix ABC such that ABC [v]B � [L(v)]C , for all v ∈ V .)

■ If ABC is the matrix for a linear transformation with respect to the ordered bases
B and C chosen for the domain and codomain, respectively, then the ith column
of ABC is the C -coordinatization of the image of the ith vector in B. That is, the
ith column of ABC equals [L(vi)]C .

■ After a change of bases for the domain and codomain,the new matrix for a given
linear transformation can be found using the original matrix and the transition
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matrices between bases. (More specifically, let L:V → W be a linear transforma-
tion between (nontrivial) finite dimensional vector spaces with ordered bases B
and C , respectively, and with matrix ABC in terms of bases B and C . If D and E
are other ordered bases for V and W , respectively, and P is the transition matrix
from B to D, and Q is the transition matrix from C to E, then the matrix ADE for
L in terms of bases D and E is ADE � QABCP�1.)

■ Matrices for several useful geometric operators on R
3 are given in Table 5.1.

■ The matrix for a linear operator (on a finite dimensional vector space) after a
change of basis is similar to the original matrix.

■ The matrix for the composition of linear transformations (using the same ordered
bases) is the product of the matrices for the individual linear transformations
in reverse order. (More specifically, if L1: V1 → V2 is a linear transformation
with matrix ABC with respect to ordered bases B and C , and L2: V2 → V3 is
a linear transformation with matrix ACD with respect to bases C and D, then
the matrix ABD for L2 ◦ L1: V1 → V3 with respect to bases B and D is given by
ABD � ACDABC .)

EXERCISES FOR SECTION 5.2
1. Verify that the correct matrix is given for each of the geometric linear operators

in Table 5.1.

2. For each of the following linear transformations L: V → W , find the matrix for
L with respect to the standard bases for V and W .
�(a) L: R

3 → R
3 given by L([x,y,z]) � [�6x � 4y � z,�2x � 3y � 5z, 3x �

y � 7z]
(b) L:R4 →R

2 given by L([x,y,z,w])� [3x �5y �z �2w,5x �y �2z �8w]
�(c) L: P3 → R

3 given by L(ax3 � bx2 � cx � d) � [4a � b � 3c � 3d, a �
3b � c � 5d,�2a � 7b � 5c � d]

(d) L:P3 → M22 given by

L(ax3 � bx2 � cx � d) �

[
�3a � 2c �b � 4d

4b � c � 3d �6a � b � 2d

]

3. For each of the following linear transformations L:V → W ,find the matrix ABC

for L with respect to the given bases B for V and C for W using the method of
Theorem 5.5:

�(a) L: R
3 → R

2 given by L([x,y,z]) � [�2x � 3z, x � 2y � z] with B �
([1,�3,2], [�4,13,�3], [2,�3,20]) and C � ([�2,�1], [5,3])
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(b) L: R
2 → R

3 given by L([x,y]) � [13x � 9y, �x � 2y,�11x � 6y] with
B � ([2,3], [�3,�4]) and C � ([�1,2,2], [�4,1,3], [1,�1,�1])

�(c) L:R2 → P2 given by L([a,b]) � (�a � 5b)x2 � (3a � b)x � 2b with B �
([5,3], [3,2]) and C � (3x2 � 2x,�2x2 � 2x � 1, x2 � x � 1)

(d) L: M22 → R
3 given by L

([
a b

c d

])
� [a � c � 2d,2a � b � d,�2c � d]

with B �

([
2 5

2 �1

]
,

[
�2 �2

0 1

]
,

[
�3 �4

1 2

]
,

[
�1 �3

0 1

])
and

C � ([7,0,�3], [2,�1,�2], [�2,0,1])
�(e) L: P2 → M23 given by

L(ax2 � bx � c) �

[
�a 2b � c 3a � c

a � b c �2a � b � c

]

with B � (�5x2 � x � 1,�6x2 � 3x � 1, 2x � 1) and C �([
1 0 0

0 0 0

]
,

[
0 �1 0

0 0 0

]
,

[
0 1 1

0 0 0

]
,

[
0 0 0

�1 0 0

]
,

[
0 0 0

0 1 1

]
,

[
0 0 0

0 0 1

])

4. In each case,find the matrix ADE for the given linear transformation L:V → W
with respect to the given bases D and E by first finding the matrix for L with
respect to the standard bases B and C for V and W , respectively,and then using
the method of Theorem 5.6.
�(a) L: R

3 → R
3 given by L([a,b,c]) � [�2a � b,�b � c, a � 3c] with D �

([15,�6,4], [2,0,1], [3,�1,1]) and E � ([1,�3,1], [0,3,�1], [2,�2,1])
�(b) L:M22 → R

2 given by

L

([
a b

c d

])
� [6a � b � 3c � 2d,�2a � 3b � c � 4d]

with

D �

([
2 1

0 1

]
,

[
0 2

1 1

]
,

[
1 1

2 1

]
,

[
1 1

1 1

])
and

E � ([�2,5], [�1,2])

(c) L:M22 → P2 given by

L

([
a b

c d

])
� (b � c)x2 � (3a � d)x � (4a � 2c � d)
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with

D �

([
3 �4
1 �1

]
,

[
�2 1

1 1

]
,

[
2 �2
1 �1

]
,

[
�2 1

0 1

])
and

E � (2x � 1,�5x2 � 3x � 1,x2 � 2x � 1)

5. Verify that the same matrix is obtained for L in Exercise 3(d) by first finding the
matrix for L with respect to the standard bases and then using the method of
Theorem 5.6.

6. In each case,find the matrix ABB for each of the given linear operators L:V → V
with respect to the given basis B by using the method of Theorem 5.5. Then,
check your answer by calculating the matrix for L using the standard basis and
applying the method of Theorem 5.6.
�(a) L: R

2 → R
2 given by L([x,y]) � [2x � y, x � 3y] with B � ([4,�1],

[�7,2])
�(b) L: P2 → P2 given by L(ax2 � bx � c) � (b � 2c)x2 � (2a � c)x � (a �

b � c) with B � (2x2 � 2x � 1, x,�3x2 � 2x � 1)

(c) L: M22 → M22 given by

L

([
a b
c d

])
�

[
2a � c � d a � b
�3b � 2d �a � 2c � 3d

]

with

B �

([
�2 �1

0 1

]
,

[
3 1
0 �1

]
,

[
�2 0

0 1

]
,

[
1 �1
1 �1

])

7. �(a) Let L: P3 → P2 be given by L(p) � p′, for p ∈ P3. Find the matrix for
L with respect to the standard bases for P3 and P2. Use this matrix to
calculate L(4x3 � 5x2 � 6x � 7) by matrix multiplication.

(b) Let L: P2 → P3 be the indefinite integral linear transformation; that is,
L(p) is the vector

∫
p(x) dx with zero constant term. Find the matrix for

L with respect to the standard bases for P2 and P3. Use this matrix to
calculate L(2x2 � x � 5) by matrix multiplication.

8. Let L: R
2 → R

2 be the linear operator that performs a counterclockwise
rotation through an angle of �

6 radians (30◦).

�(a) Find the matrix for L with respect to the standard basis for R
2.

(b) Find the matrix for L with respect to the basis B � ([4,�3], [3,�2]).
9. Let L:M23 → M32 be given by L(A) � AT .

(a) Find the matrix for L with respect to the standard bases.
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�(b) Find the matrix for L with respect to the bases

B �

([
1 0 0
0 0 0

]
,

[
0 1 �1
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 0

�1 0 0

]
,

[
0 0 0
0 �1 �1

]
,[

0 0 0
0 0 1

])
for M23, and

C �

⎛
⎝
⎡
⎣1 1

0 0
0 0

⎤
⎦ ,

⎡
⎣1 �1

0 0
0 0

⎤
⎦ ,

⎡
⎣0 0

1 1
0 0

⎤
⎦ ,

⎡
⎣0 0

1 �1
0 0

⎤
⎦ ,

⎡
⎣0 0

0 0
1 1

⎤
⎦ ,

⎡
⎣0 0

0 0
1 �1

⎤
⎦
⎞
⎠

for M32.

�10. Let B be a basis for V1, C be a basis for V2, and D be a basis for V3. Suppose
L1:V1 → V2 and L2:V2 → V3 are represented, respectively, by the matrices

ABC �

[
�2 3 �1

4 0 �2

]
and ACD �

⎡
⎣ 4 �1

2 0
�1 �3

⎤
⎦ .

Find the matrix ABD representing the composition L2 ◦ L1:V1 → V3.

11. Let L1:R3 → R
4 be given by L1([x,y,z])� [x �y �z, 2y �3z, x �3y,�2x �z],

and let L2: R4 → R
2 be given by L2([x,y,z,w]) � [2y � 2z � 3w, x � z � w].

(a) Find the matrices for L1 and L2 with respect to the standard bases in each
case.

(b) Find the matrix for L2 ◦ L1 with respect to the standard bases for R
3 and

R
2 using Theorem 5.7.

(c) Check your answer to part (b) by computing (L2 ◦ L1)([x,y,z]) and finding
the matrix for L2 ◦ L1 directly from this result.

12. Let A �

[
cos� �sin �
sin � cos�

]
, the matrix representing the counterclockwise rota-

tion of R
2 about the origin through an angle �.

(a) Use Theorem 5.7 to show that

A2 �

[
cos2� �sin 2�
sin 2� cos2�

]
.

(b) Generalize the result of part (a) to show that for any integer n 	 1,

An �

[
cosn� �sin n�
sin n� cosn�

]
.

13. Let B � (v1,v2, . . . ,vn) be an ordered basis for a vector space V . Find the matrix
with respect to B for each of the following linear operators L:V → V :
�(a) L(v) � v, for all v ∈ V (identity linear operator)
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(b) L(v) � 0, for all v ∈ V (zero linear operator)
�(c) L(v) � cv, for all v ∈ V , and for some fixed c ∈ R (scalar linear operator)

(d) L: V → V given by L(v1) � v2, L(v2) � v3, . . . , L(vn�1) � vn, L(vn) � v1

(forward replacement of basis vectors)
�(e) L: V → V given by L(v1) � vn, L(v2) � v1, . . . , L(vn�1) � vn�2, L(vn) �

vn�1 (reverse replacement of basis vectors)

14. Let L: Rn → R be a linear transformation. Prove that there is a vector x in R
n

such that L(y) � x · y for all y ∈ R
n.

�15. Prove Theorem 5.7.

16. Let L: R
3 → R

3 be given by L([x,y,z]) � [�4y � 13z,�6x � 5y � 6z,
2x � 2y � 3z].
(a) What is the matrix for L with respect to the standard basis for R

3?

(b) What is the matrix for L with respect to the basis

B � ([�1,�6,2], [3,4,�1], [�1,�3,1])?

(c) What does your answer to part (b) tell you about the vectors in B? Explain.

17. In Example 6, verify that pABB(x) � (x � 1)2(x � 1), {[3,1,0], [�2,0,1]} is a
basis for the eigenspace E1, {[1,�3,2]} is a basis for the eigenspace E�1, the
transition matrices P and P�1 are as indicated, and, finally, ADD � P�1ABBP
is a diagonal matrix with entries 1,1, and �1, respectively, on the main
diagonal.

18. Let L:R3 → R
3 be the linear operator whose matrix with respect to the standard

basis B for R
3 is

ABB �
1

9

⎡
⎣8 2 2

2 5 �4

2 �4 5

⎤
⎦ .

�(a) Calculate and factor pABB(x). (Be sure to incorporate 1
9 correctly into your

calculations.)
�(b) Solve for a basis for each eigenspace for L. Combine these to form a basis

C for R
3.

�(c) Find the transition matrix P from C to B.

(d) Calculate ACC using ABB,P, and P�1.

(e) Use ACC to give a geometric description of the operator L, as was done in
Example 6.
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19. Let L be a linear operator on a vector space V with ordered basis B �
(v1, . . . ,vn). Suppose that k is a nonzero real number, and let C be the ordered
basis (kv1, . . . ,kvn) for V . Show that ABB � ACC .

20. Let V be an n-dimensional vector space, and let X and Y be similar n � n
matrices. Prove that there is a linear operator L:V → V and bases B and C such
that X is the matrix for L with respect to B and Y is the matrix for L with
respect to C . (Hint: Suppose that Y � P�1XP. Choose any basis B for V . Then
create the linear operator L: V → V whose matrix with respect to B is X. Let
vi be the vector so that [vi]B � ith column of P. Define C to be (v1, . . . ,vn).
Prove that C is a basis for V . Then show that P�1 is the transition matrix from
B to C and that Y is the matrix for L with respect to C .)

21. Let B � ([a,b], [c,d]) be a basis for R
2. Then ad � bc �� 0 (why?). Let L: R2 →

R
2 be a linear operator such that L([a,b]) � [c,d] and L([c,d]) � [a,b]. Show

that the matrix for L with respect to the standard basis for R
2 is

1

ad � bc

[
cd � ab a2 � c2

d2 � b2 ab � cd

]
.

22. Let L: R
2 → R

2 be the linear transformation where L(v) is the reflection of v
through the line y � mx. (Assume that the initial point of v is the origin.) Show
that the matrix for L with respect to the standard basis for R

2 is

1

1 � m2

[
1 � m2 2m

2m m2 � 1

]
.

(Hint: Use Exercise 19 in Section 1.2.)

23. Find the set of all matrices with respect to the standard basis for R
2 for all linear

operators that

(a) Take all vectors of the form [0,y] to vectors of the form
[
0,y′]

(b) Take all vectors of the form [x,0] to vectors of the form [x′,0]
(c) Satisfy both parts (a) and (b) simultaneously

24. Let V and W be finite dimensional vector spaces,and let Y be a subspace of V .
Suppose that L: Y → W is a linear transformation. Prove that there is a linear
transformation L′: V → W such that L′(y) � L(y) for every y ∈ Y . (L′ is called
an extension of L to V .)

�25. Prove the uniqueness assertion in Theorem 5.4. (Hint: Let v be any vector in
V . Show that there is only one possible answer for L(v) by expressing L(v) as
a linear combination of the wi’s.)



 

338 CHAPTER 5 Linear Transformations

�26. True or False:

(a) If L:V → W is a linear transformation, and B � (v1,v2, . . . ,vn) is an
ordered basis for V , then for any v ∈ V , L(v) can be computed if
L(v1),L(v2), . . . ,L(vn) are known.

(b) There is a unique linear transformation L: R3 → P3 such that L([1,0,0]) �
x3 � x2,L([0,1,0]) � x3 � x2, and L([0,0,1]) � x3 � x2.

(c) If V , W are nontrivial finite dimensional vector spaces and L: V → W is a
linear transformation, then there is a unique matrix A corresponding to L.

(d) If L:V → W is a linear transformation and B is a (finite nonempty) ordered
basis for V , and C is a (finite nonempty) ordered basis for W , then [v]B �
ABC [L(v)]C .

(e) If L:V → W is a linear transformation and B � (v1,v2, . . . ,vn) is an ordered
basis for V , and C is a (finite nonempty) ordered basis for W , then the ith
column of ABC is [L(vi)]C .

(f) The matrix for the projection of R
3 onto the xz-plane (with respect to the

standard basis) is

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦.

(g) If L: V → W is a linear transformation, and B and D are (finite nonempty)
ordered bases for V , and C and E are (finite nonempty) ordered bases for
W , then ADEP � QABC , where P is the transition matrix from B to D, and
Q is the transition matrix from C to E.

(h) If L: V → V is a linear operator on a nontrivial finite dimensional vector
space, and B and D are ordered bases for V , then ABB is similar to ADD.

(i) Similar square matrices have identical characteristic polynomials.

(j) If L1,L2: R
2 → R

2 are linear transformations with matrices

[
1 2
3 4

]
and[

0 1
1 0

]
, respectively,with respect to the standard basis, then the matrix for

L2 ◦ L1 with respect to the standard basis equals

[
1 2
3 4

][
0 1
1 0

]
.

5.3 THE DIMENSION THEOREM
In this section, we introduce two special subspaces associated with a linear transfor-
mation L: V → W : the kernel of L (a subspace of V) and the range of L (a subspace
of W). We illustrate techniques for calculating bases for both the kernel and range
and show their dimensions are related to the rank of any matrix for the linear trans-
formation. We then use this to show that any matrix and its transpose have the same
rank.
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Kernel and Range

Definition Let L: V → W be a linear transformation. The kernel of L, denoted
by ker(L), is the subset of all vectors in V that map to 0W . That is, ker(L) �
{v ∈ V |L(v) � 0W }.The range of L,or, range(L), is the subset of all vectors in W
that are the image of some vector in V . That is, range(L) = {L(v) |v ∈ V}.

Remember that the kernel1 is a subset of the domain and that the range is a subset of
the codomain. Since the kernel of L: V → W is the pre-image of the subspace {0W }
of W , it must be a subspace of V by Theorem 5.3. That theorem also assures us that
the range of L is a subspace of W . Hence, we have

Theorem 5.8 If L: V → W is a linear transformation, then the kernel of L is a subspace
of V and the range of L is a subspace of W.

Example 1
Projection: For n 	 3, consider the linear operator L: R

n → R
n given by L([a1,a2, . . . ,an]) �

[a1,a2,0, . . . ,0]. Now, ker(L) consists of those elements of the domain that map to [0,0, . . . ,0],
the zero vector of the codomain. Hence, for vectors in the kernel, a1 � a2 � 0, but a3, . . . ,an

can have any values. Thus,

ker(L) �
{ [0,0,a3, . . . ,an]∣∣a3, . . . ,an ∈ R

}
.

Notice that ker(L) is a subspace of the domain and that dim(ker(L)) � n � 2, because the stan-
dard basis vectors e3, . . . ,en of R

n span ker(L).
Also, range(L) consists of those elements of the codomain P

2 that are images of domain
elements. Hence, range(L) � { [a1,a2,0, . . . ,0]|a1,a2 ∈ R}. Notice that range(L) is a subspace
of the codomain and that dim(range(L)) � 2, since the standard basis vectors e1 and e2 span
range(L).

Example 2
Differentiation: Consider the linear transformation L: P3 → P2 given by L(ax3 �bx2 �cx �d) �

3ax2 � 2bx � c. Now, ker(L) consists of the polynomials in P3 that map to the zero polynomial
in P2. However, if 3ax2 � 2bx � c � 0, we must have a � b � c � 0. Hence, ker(L) �{

0x3 � 0x2 � 0x � d
∣∣d ∈ R

}
; that is, ker(L) is just the subset of P3 of all constant polynomials.

Notice that ker (L) is a subspace of P3 and that dim(ker(L)) � 1 because the single polynomial
“1” spans ker (L).

1 Some textbooks refer to the kernel of L as the nullspace of L.
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Also, range(L) consists of all polynomials in the codomain P2 of the form 3ax2 � 2bx � c.
Since every polynomial Ax2 � Bx � C of degree 2 or less can be expressed in this form (take
a � A/3, b � B/2, c � C), range(L) is all of P2. Therefore, range(L) is a subspace of P2, and
dim(range(L)) � 3.

Example 3
Rotation: Recall that the linear transformation L: R

2 → R
2 given by

L

([
x
y

])
�

[
cos� �sin �

sin � cos�

][
x
y

]
,

for some (fixed) angle �, represents the counterclockwise rotation of any vector [x,y] with initial
point at the origin through the angle �.

Now, ker(L) consists of all vectors in the domain R
2 that map to [0,0] in the codomain R

2.
However, only [0,0] itself is rotated by L to the zero vector. Hence, ker(L) � {[0,0]}. Notice that
ker(L) is a subspace of R

2, and dim(ker(L)) � 0.
Also, range(L) is all of the codomain R

2 because every nonzero vector v in R
2 is the image

of the vector of the same length at the angle � clockwise from v. Thus, range(L) � R
2, and so,

range(L) is a subspace of R
2 with dim(range(L)) � 2.

Finding the Kernel from the Matrix of a Linear Transformation

Consider the linear transformation L: R
n → R

m given by L(X) � AX, where A is a
(fixed) m � n matrix and X ∈ R

n. Now, ker(L) is the subspace of all vectors X in the
domain R

n that are solutions of the homogeneous system AX � O. If B is the reduced
row echelon form matrix for A, we find a basis for ker(L) by solving for particular
solutions to the system BX � O by systematically setting each independent variable
equal to 1 in turn, while setting the others equal to 0. (You should be familiar with
this process from the Diagonalization Method for finding fundamental eigenvectors
in Section 3.4.) Thus, dim(ker(L)) equals the number of independent variables in the
system BX � O.

We present an example of this technique.

Example 4
Let L:R5 → R

4 be given by L(X) � AX, where

A �

⎡
⎢⎢⎢⎣

8 4 16 32 0
4 2 10 22 �4

�2 �1 �5 �11 7
6 3 15 33 �7

⎤
⎥⎥⎥⎦ .
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To solve for ker(L), we first row reduce A to

B �

⎡
⎢⎢⎢⎣

1 1
2 0 �2 0

0 0 1 3 0

0 0 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎦ .

The homogeneous system BX � O has independent variables x2 and x4, and

⎧⎪⎨
⎪⎩

x1 � � 1
2 x2 � 2x4

x3 � � 3x4

x5 � 0

.

We construct two particular solutions, first by setting x2 � 1 and x4 � 0 to obtain v1 �

[� 1
2 ,1,0,0,0], and then setting x2 � 0 and x4 � 1, yielding v2 � [2,0,�3,1,0]. The set

{v1,v2} forms a basis for ker(L), and thus, dim(ker(L)) � 2, the number of independent vari-
ables. The entire subspace ker(L) consists of all linear combinations of the basis vectors;
that is,

ker(L) � {av1 � bv2 |a,b ∈ R} �

{[
�

1

2
a � 2b,a,�3b,b,0

]∣∣∣∣ a,b ∈ R

}
.

Finally, note that we could have eliminated fractions in this basis, just as we did with
fundamental eigenvectors in Section 3.4, by replacing v1 with 2v1 � [�1,2,0,0,0].

Example 4 illustrates the following general technique:

Method for Finding a Basis for the Kernel of a Linear Transformation (Kernel Method)
Let L: R

n → R
m be a linear transformation given by L(X) � AX for some m � n matrix A.

To find a basis for ker(L), perform the following steps:

Step 1: Find B, the reduced row echelon form of A.

Step 2: Solve for one particular solution for each independent variable in the homogeneous
system BX � O. The ith such solution, vi , is found by setting the ith independent
variable equal to 1 and setting all other independent variables equal to 0.

Step 3: The set {v1, . . . ,vk} is a basis for ker(L). (We can replace any vi with cvi , where
c �� 0, to eliminate fractions.)
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The method for finding a basis for ker(L) is practically identical to Step 3 of the
Diagonalization Method of Section 3.4, in which we create a basis of fundamental
eigenvectors for the eigenspace E� for a matrix A. This is to be expected, since E� is
really the kernel of the linear transformation L whose matrix is (�In � A).

Finding the Range from the Matrix of a Linear Transformation

Next,we determine a method for finding a basis for the range of L:Rn → R
m given by

L(X) � AX. In Section 1.5, we saw that AX can be expressed as a linear combination
of the columns of A. In particular, if X � [x1, . . .xn], then AX � x1 (1st column of A)

� · · · � xn (nth column of A). Thus, range(L) is spanned by the set of columns of A;
that is, range(L) � span({columns of A}). Note that L(ei) equals the ith column of A.
Thus, we can also say that {L(e1), . . . ,L(en)} spans range(L).

The fact that the columns of A span range(L) combined with the Independence
Test Method yields the following general technique for finding a basis for the range:

Method for Finding a Basis for the Range of a Linear Transformation (Range Method)
Let L: R

n → R
m be a linear transformation given by L(X) � AX, for some m � n matrix A.

To find a basis for range(L), perform the following steps:

Step 1: Find B, the reduced row echelon form of A.

Step 2: Form the set of those columns of A whose corresponding columns in B have nonzero
pivots. This set is a basis for range(L).

Example 5
Consider the linear transformation L: R

5 → R
4 given in Example 4. After row reducing the matrix

A for L, we obtained a matrix B in reduced row echelon form having nonzero pivots in columns
1,3, and 5. Hence, columns 1, 3, and 5 of A form a basis for range(L). In particular, we get the
basis {[8,4,�2,6], [16,10,�5,15], [0,�4,7,�7]}, and so dim(range(L)) � 3.

From Examples 4 and 5, we see that dim(ker(L)) � dim(range(L)) � 2 � 3 � 5 �
dim(R5) � dim(domain(L)), for the given linear transformation L. We can understand
why this works by examining our methods for calculating bases for the kernel and
range. For ker(L),we get one basis vector for each independent variable,which corre-
sponds to a nonpivot column of A after row reducing. For range(L), we get one basis
vector for each pivot column of A. Together, these account for the total number of
columns of A, which is the dimension of the domain.

The fact that the number of nonzero pivots of A equals the number of nonzero rows
in the reduced row echelon form matrix for A shows that dim(range(L)) � rank (A).
This result is stated in the following theorem,which also holds when bases other than
the standard bases are used (see Exercise 17).
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Theorem 5.9 If L: R
n → R

m is a linear transformation with matrix A with respect to any
bases for R

n and R
m, then

(1) dim(range(L)) � rank (A)

(2) dim(ker(L)) � n � rank (A)

(3) dim(ker(L)) � dim(range(L)) � dim(domain(L)) � n.

The Dimension Theorem

The result in part (3) of Theorem 5.9 generalizes to linear transformations between any
vector spaces V and W , as long as the dimension of the domain is finite. We state this
important theorem here,but postpone its proof until after a discussion of isomorphism
in Section 5.5.An alternate proof of the DimensionTheorem that does not involve the
matrix of the linear transformation is outlined in Exercise 18 of this section.

Theorem 5.10 (Dimension Theorem) If L: V → W is a linear transformation and V is
finite dimensional, then range(L) is finite dimensional, and

dim(ker(L)) � dim(range(L)) � dim(V).

We have already seen that for the linear transformation in Examples 4 and 5, the
dimensions of the kernel and the range add up to the dimension of the domain, as
the Dimension Theorem asserts. Notice the Dimension Theorem holds for the linear
transformations in Examples 1 through 3 as well.

Example 6
Consider L: Mnn → Mnn given by L(A) � A � AT . Now, ker(L) � {A ∈ Mnn | A � AT � On}.
However, A � AT � On implies that A � �AT . Hence, ker(L) is precisely the set of all skew-
symmetric n � n matrices.

The range of L is the set of all matrices B of the form A � AT for some n � n matrix A.

However, if B � A � AT , then BT �
(
A � AT

)T
� AT � A � B, so B is symmetric. Thus,

range(L) ⊆ {symmetric n � n matrices}.
Next, if B is a symmetric n � n matrix, then L(1

2 B) � 1
2 L(B) � 1

2 (B � BT ) � 1
2 (B � B) � B,

and so B ∈ range(L), thus proving {symmetric n � n matrices} ⊆ range(L). Hence, range(L) is
the set of all symmetric n � n matrices.

In Exercise 12 of Section 4.6, we found that dim({skew-symmetric n � n matrices}) �

(n2 � n)/2 and that dim({symmetric n � n matrices}) �
(
n2 � n

)
/2. Notice that the Dimension

Theorem holds here, since dim(ker(L)) � dim(range(L)) � (n2 � n)/2 �
(
n2 � n

)
/2 � n2 �

dim (Mnn).
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Rank of the Transpose

We can use the Range Method to prove the following result:2

Corollary 5.11 If A is any matrix, then rank(A) � rank(AT ).

Proof. Let A be an m � n matrix. Consider the linear transformation L: R
n → R

m with
associated matrix A (using the standard bases). By the Range Method, range(L) is the
span of the column vectors of A. Hence, range(L) is the span of the row vectors of AT ;
that is, range(L) is the row space of AT . Thus, dim(range(L)) � rank(AT ), by the Sim-
plified Span Method. But by Theorem 5.9, dim(range(L)) � rank(A). Hence, rank(A) �
rank(AT ).

Example 7
Let A be the matrix from Examples 4 and 5. We calculated its reduced row echelon form B in
Example 4 and found it has three nonzero rows. Hence, rank(A) � 3. Now,

AT �

⎡
⎢⎢⎢⎢⎢⎢⎣

8 4 �2 6

4 2 �1 3

16 10 �5 15

32 22 �11 33

0 �4 7 �7

⎤
⎥⎥⎥⎥⎥⎥⎦ row reduces to

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 7
5

0 0 1 � 1
5

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

showing that rank(AT ) � 3 as well.

In some textbooks, rank(A) is called the row rank of A and rank(AT ) is called
the column rank of A.Thus,Corollary 5.11 asserts that the row rank of A equals the
column rank of A.

Recall that rank(A)� dim(row space of A). Analogous to the concept of row
space, we define the column space of a matrix A as the span of the columns of A.
In Corollary 5.11, we observed that if L: R

n → R
m with L(X) � AX (using the stan-

dard bases), then range(L) � span({columns of A}) � column space of A, and so
dim(range(L)) � dim(column space of A) � rank(AT ). With this new terminology,
Corollary 5.11 asserts that dim(row space of A) � dim(column space of A). Be careful!
This statement does not imply that these spaces are equal, only that their dimensions
are equal. In fact,unless A is square,they contain vectors of different sizes. Notice that
for the matrix A in Example 7, the row space of A is a subspace of R

5,but the column
space of A is a subspace of R

4.

2 In Exercise 18 of Section 4.6, you were asked to prove Corollary 5.11 by essentially the same method
given here, only using different notation.
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New Vocabulary

column rank (of a matrix)
column space (of a matrix)
Dimension Theorem
kernel (of a linear transformation)

Kernel Method
range (of a linear transformation)
Range Method
row rank (of a matrix)

Highlights

■ The kernel of a linear transformation consists of all vectors of the domain that
map to the zero vector of the codomain. The kernel is always a subspace of the
domain.

■ The range of a linear transformation consists of all vectors of the codomain that
are images of vectors in the domain. The range is always a subspace of the
codomain.

■ If A is the matrix (with respect to any bases) for a linear transformation L:Rn →
R

m, then dim(ker(L)) � n � rank (A) and dim(range(L)) � rank (A).

■ Kernel Method:A basis for the kernel of a linear transformation L(X) � AX is
obtained from the solution set of BX � O by letting each independent variable
in turn equal 1 and all other independent variables equal 0, where B is the
reduced row echelon form of A.

■ Range Method: A basis for the range of a linear transformation L(X) � AX is
obtained by selecting the columns of A corresponding to pivot columns in the
reduced row echelon form matrix B for A.

■ Dimension Theorem: If L: V → W is a linear transformation and V is finite
dimensional, then dim(ker(L)) � dim(range(L)) � dim(V).

■ The rank of any matrix (� row rank) is equal to the rank of its transpose
(� column rank).

EXERCISES FOR SECTION 5.3
1. Let L: R3 → R

3 be given by

L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 5 1 �1

�3 0 1
1 �1 �1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ .

�(a) Is [1,�2,3] in ker(L)? Why or why not?

(b) Is [2,�1,4] in ker(L)? Why or why not?
�(c) Is [2,�1,4] in range(L)? Why or why not?

(d) Is [�16,12,�8] in range(L)? Why or why not?
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2. Let L: P3 →P3 be given by L(ax3 �bx2 �cx �d) � 2cx3 �(a�b)x �(d �c).
�(a) Is x3 � 5x2 � 3x � 6 in ker(L)? Why or why not?

(b) Is 4x3 � 4x2 in ker(L)? Why or why not?
�(c) Is 8x3 � x � 1 in range(L)? Why or why not?

(d) Is 4x3 � 3x2 � 7 in range(L)? Why or why not?

3. For each of the following linear transformations L:V → W ,find a basis for ker(L)

and a basis for range(L). Verify that dim(ker(L)) � dim(range(L)) � dim(V).
�(a) L: R3 → R

3 given by

L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 1 �1 5

�2 3 �13
3 �3 15

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦

(b) L: R3 → R
4 given by

L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎢⎢⎣

4 �2 8
7 1 5

�2 �1 0
3 �2 7

⎤
⎥⎥⎦
⎡
⎣x1

x2

x3

⎤
⎦

(c) L: R3 → R
2 given by

L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

[
3 2 11
2 1 8

]⎡⎣x1

x2

x3

⎤
⎦

�(d) L: R4 → R
5 given by

L

⎛
⎜⎜⎝
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦
⎞
⎟⎟⎠�

⎡
⎢⎢⎢⎢⎣

�14 �8 �10 2
�4 �1 1 �2
�6 2 12 �10

3 �7 �24 17
4 2 2 0

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

4. For each of the following linear transformations L:V → W , find a basis for ker(L)

and a basis for range(L), and verify that dim(ker(L)) � dim(range(L)) � dim(V):
�(a) L: R3 → R

2 given by L([x1,x2,x3]) � [0,x2]
(b) L: R2 → R

3 given by L([x1,x2]) � [x1, x1 � x2, x2]
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(c) L:M22 → M32 given by L

([
a11 a12

a21 a22

])
�

⎡
⎣ 0 �a12

�a21 0
0 0

⎤
⎦

�(d) L:P4 → P2 given by L(ax4 � bx3 � cx2 � dx � e) � cx2 � dx � e

(e) L:P2 → P3 given by L(ax2 � bx � c) � cx3 � bx2 � ax
�(f) L: R3 → R

3 given by L([x1,x2,x3]) � [x1, 0, x1 � x2 � x3]
�(g) L:M22 → M22 given by L(A) � AT

(h) L:M33 → M33 given by L(A) � A � AT

�(i) L:P2 → R
2 given by L

(
p
)

�
[
p (1) ,p′ (1)

]
(j) L:P4 → R

3 given by L(p) � [p(�1),p(0),p(1)]
5. (a) Suppose that L: V → W is the linear transformation given by L(v) � 0W ,

for all v ∈ V . What is ker(L)? What is range(L)?

(b) Suppose that L: V → V is the linear transformation given by L(v) � v, for
all v ∈ V . What is ker(L)? What is range(L)?

�6. Consider the mapping L:M33 → R given by L(A) � trace(A) (see Exercise 14
in Section 1.4). Show that L is a linear transformation. What is ker(L)? What is
range(L)? Calculate dim(ker(L)) and dim(range(L)).

7. Let V be a vector space with fixed basis B � {v1, . . . ,vn}. Define L: V → V by
L(v1) � v2, L(v2) � v3, . . . , L(vn�1) � vn, L(vn) � v1. Find range(L). What is
ker(L)?

�8. Consider L: P2 → P4 given by L(p) � x2p. What is ker(L)? What is range(L)?
Verify that dim(ker(L)) � dim(range(L)) � dim(P2).

9. Consider L: P4 → P2 given by L(p) � p′′. What is ker(L)? What is range(L)?
Verify that dim(ker(L)) � dim(range(L)) � dim(P4).

�10. Consider L: Pn → Pn given by L(p) � p(k) (the kth derivative of p), where
k � n. What is dim(ker(L))? What is dim(range(L))? What happens when
k > n?

11. Let a be a fixed real number. Consider L:Pn → R given by L(p(x)) � p(a) (that
is, the evaluation of p at x � a). (Recall from Exercise 18 in Section 5.1 that L
is a linear transformation.) Show that

{
x � a, x2 � a2, . . . , xn � an

}
is a basis

for ker(L). (Hint:What is range(L)?)

�12. Suppose that L: R
n → R

n is a linear operator given by L(X) � AX, where
|A| �� 0. What is ker(L)? What is range(L)?

13. Let V be a finite dimensional vector space,and let L:V → V be a linear operator.
Show that ker(L) � {0V } if and only if range(L) � V .
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14. Let L:V → W be a linear transformation. Prove directly that ker(L) is a subspace
of V and that range(L) is a subspace of W using Theorem 4.2, that is, without
invoking Theorem 5.8.

15. Let L1:V → W and L2:W → X be linear transformations.

(a) Show that ker(L1) ⊆ ker(L2 ◦ L1).

(b) Show that range(L2 ◦ L1) ⊆ range(L2).

(c) If V is finite dimensional,prove that dim(range(L2 ◦ L1)) � dim(range(L1)).

�16. Give an example of a linear operator L: R2 → R
2 such that ker(L) � range(L).

17. Let L: R
n → R

m be a linear transformation with m � n matrix A for L with
respect to the standard bases and m � n matrix B for L with respect to bases
B and C .

(a) Prove that rank(A) � rank(B). (Hint: Use Exercise 16 in the Review
Exercises of Chapter 2.)

(b) Use part (a) to finish the proof of Theorem 5.9. (Hint: Notice that Theo-
rem 5.9 allows any bases to be used for R

n and R
m.You can assume, from

the remarks beforeTheorem 5.9,that the theorem is true when the standard
bases are used for R

n and R
m.)

18. This exercise outlines an alternate proof of the DimensionTheorem. Let L:V →
W be a linear transformation with V finite dimensional. Figure 5.10 illustrates
the relationships among the vectors referenced throughout this exercise.

(a) Let {k1, . . . ,ks} be a basis for ker(L). Show that there exist vectors q1, . . . ,qt

such that {k1, . . . ,ks,q1, . . . ,qt} is a basis for V . Express dim(V) in terms of
s and t .

V

ker (L)
q1 L(q1)

L(q2)
L(q3)

L(qt)
k1 k2 k3 ks

q2
q3

qt

W

0W

FIGURE 5.10

Images of basis elements in Exercise 18
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(b) Use part (a) to show that for every v ∈ V , there exist scalars b1, . . . ,bt such
that L(v) � b1L(q1) � · · · � btL(qt).

(c) Use part (b) to show that {L(q1), . . . ,L(qt)} spans range(L). Conclude that
dim(range(L)) � t , and, hence, is finite.

(d) Suppose that c1L(q1) � · · · � ctL(qt) � 0W . Prove that c1q1 � · · · � ctqt ∈
ker(L).

(e) Use part (d) to show that there are scalars d1, . . . ,ds such that c1q1 � · · · �
ctqt � d1k1 � · · · � dsks.

(f) Use part (e) and the fact that {k1, . . . ,ks,q1, . . . ,qt} is a basis for V to prove
that c1 � c2 � · · · � ct � d1 � · · · � ds � 0.

(g) Use parts (d) and (f) to conclude that {L(q1), . . . ,L(qt)} is linearly indepen-
dent.

(h) Use parts (c) and (g) to prove that {L(q1), . . . ,L(qt)} is a basis for range(L).

(i) Conclude that dim(ker(L)) � dim(range(L)) � dim(V).

19. Prove the following corollary of the Dimension Theorem: Let L: V → W be a
linear transformation with V finite dimensional.Then dim(ker(L)) � dim(V) and
dim(range(L)) � dim(V).

�20. True or False:

(a) If L: V → W is a linear transformation, then ker(L) � {L(v) |v ∈ V}.
(b) If L: V → W is a linear transformation, then range(L) is a subspace of V .

(c) If L: V → W is a linear transformation and dim(V) � n, then dim(ker(L)) �
n � dim(range(L)).

(d) If L: V → W is a linear transformation and dim(V) � 5 and dim(W) � 3,
then the Dimension Theorem implies that dim(ker(L)) � 2.

(e) If L: R
n → R

m is a linear transformation and L(X) � AX, then dim(ker(L))

equals the number of nonpivot columns in the reduced row echelon form
matrix for A.

(f) If L: R
n → R

m is a linear transformation and L(X) � AX, then
dim(range(L)) � n � rank(A).

(g) If A is a 5 � 5 matrix, and rank (A) � 2, then rank
(
AT
)

� 3.

(h) If A is any matrix, then the row space of A equals the column space of A.
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5.4 ONE-TO-ONE AND ONTO LINEAR TRANSFORMATIONS
The kernel and the range of a linear transformation are related to the function proper-
ties one-to-one and onto. Consequently, in this section we study linear transformations
that are one-to-one or onto.

One-to-One and Onto Linear Transformations

One-to-one functions and onto functions are defined and discussed in Appendix B. In
particular,Appendix B contains the usual methods for proving that a given function
is, or is not, one-to-one or onto. Now, we are interested primarily in linear transforma-
tions, so we restate the definitions of one-to-one and onto specifically as they apply
to this type of function.

Definition Let L: V → W be a linear transformation.

(1) L is one-to-one if and only if distinct vectors in V have different images in
W . That is, L is one-to-one if and only if, for all v1,v2 ∈ V , L(v1) � L(v2)

implies v1 � v2.

(2) L is onto if and only if every vector in the codomain W is the image of
some vector in the domain V . That is, L is onto if and only if, for every
w ∈ W , there is some v ∈ V such that L(v) � w.

Notice that the two descriptions of a one-to-one linear transformation given in this
definition are really contrapositives of each other.

Example 1
Rotation: Recall the rotation linear operator L: R

2 → R
2 from Example 9 in Section 5.1 given by

L(v) � Av, where A �

[
cos� �sin �

sin � cos�

]
. We will show that L is both one-to-one and onto.

To show that L is one-to-one, we take any two arbitrary vectors v1 and v2 in the domain R
2,

assume that L(v1) � L(v2), and prove that v1 � v2. Now, if L(v1) � L(v2), then Av1 � Av2.
Because A is nonsingular, we can multiply both sides on the left by A�1 to obtain v1 � v2.
Hence, L is one-to-one.

To show that L is onto, we must take any arbitrary vector w in the codomain R
2 and show

that there is some vector v in the domain R
2 that maps to w. Recall that multiplication by A�1

undoes the action of multiplication by A, and so it must represent a clockwise rotation through
the angle �. Hence, we can find a pre-image for w by rotating it clockwise through the angle �;
that is, consider v � A�1w ∈ R

2. When we apply L to v, we rotate it counterclockwise through
the same angle �: L(v) � A(A�1w) � w, thus obtaining the original vector w. Since v is in the
domain and v maps to w under L, L is onto.
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Example 2
Differentiation: Consider the linear transformation L: P3 → P2 given by L(p) � p′. We will show
that L is onto but not one-to-one.

To show that L is not one-to-one, we must find two different vectors p1 and p2 in the domain
P3 that have the same image. Consider p1 � x � 1 and p2 � x � 2. Since L(p1) � L(p2) � 1,
L is not one-to-one.

To show that L is onto, we must take an arbitrary vector q in P2 and find some vector p
in P3 such that L(p) � q. Consider the vector p �

∫
q(x)dx with zero constant term. Because

L(p) � q, we see that L is onto.

If in Example 2 we had used P3 for the codomain instead of P2, the linear trans-
formation would not have been onto because x3 would have no pre-image (why?).
This provides an example of a linear transformation that is neither one-to-one nor onto.
Also,Exercise 6 illustrates a linear transformation that is one-to-one but not onto.These
examples, together with Examples 1 and 2, show that the concepts of one-to-one and
onto are independent of each other; that is, there are linear transformations that have
either property with or without the other.

Theorem B.1 in Appendix B shows that the composition of one-to-one linear trans-
formations is one-to-one,and similarly, the composition of onto linear transformations
is onto.

Kernel and Range

The next theorem gives an alternate way of characterizing one-to-one linear transfor-
mations and onto linear transformations.

Theorem 5.12 Let V and W be vector spaces, and let L:V → W be a linear trans-
formation. Then:

(1) L is one-to-one if and only if ker(L) � {0V } (or, equivalently, if and only if
dim(ker(L)) � 0), and

(2) If W is finite dimensional, then L is onto if and only if dim(range(L)) � dim(W).

Thus, a linear transformation whose kernel contains a nonzero vector cannot be
one-to-one.

Proof. First suppose that L is one-to-one, and let v ∈ ker(L). We must show that v � 0V .
Now, L(v) � 0W . However, by Theorem 5.1, L(0V ) � 0W . Because L(v) � L(0V ) and L is
one-to-one, we must have v � 0V .

Conversely, suppose that ker(L) � {0V }. We must show that L is one-to-one. Let v1,v2 ∈
V, with L(v1) � L(v2). We must show that v1 � v2. Now, L(v1) � L(v2) � 0W , implying
that L(v1 � v2) � 0W . Hence, v1 � v2 ∈ ker(L), by definition of the kernel. Since ker(L) �
{0V }, v1 � v2 � 0V and so v1 � v2.
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Finally, note that, by definition, L is onto if and only if range(L) � W, and therefore
part (2) of the theorem follows immediately from Theorem 4.16.

Example 3

Consider the linear transformation L: M22 → M23 given by L

([
a b
c d

])
�[

a � b 0 c � d
c � d a � b 0

]
. If

[
a b
c d

]
∈ ker(L), then a � b � c � d � c � d � a � b � 0. Solving

these equations yields a � b � c � d � 0, and so ker(L) contains only the zero matrix

[
0 0
0 0

]
;

that is, dim(ker(L)) � 0. Thus, by part (1) of Theorem 5.12, L is one-to-one. However, by the
Dimension Theorem, dim(range(L)) � dim(M22) � dim(ker(L)) � dim(M22) � 4. Hence, by

part (2) of Theorem 5.12, L is not onto. In particular,

[
0 1 0
0 0 0

]
/∈ range(L).

On the other hand, consider M : M23 → M22 given by M

([
a b c
d e f

])
�[

a � b a � c
d � e d � f

]
. It is easy to see that M is onto, since M

([
0 b c
0 e f

])
�

[
b c
e f

]
, and thus

every 2 � 2 matrix is in range(M). Thus, by part (2) of Theorem 5.12, dim(range(M)) �

dim(M22) � 4. Then, by the Dimension Theorem, ker(M) � dim(M23) � dim(range(M)) �

6 � 4 � 2. Hence, by part (1) of Theorem 5.12, M is not one-to-one. In particular,[
1 �1 �1
1 �1 �1

]
∈ ker(L).

Spanning and Linear Independence

The next theorem shows that the one-to-one property is related to linear independence,
while the onto property is related to spanning.

Theorem 5.13 Let V and W be vector spaces, and let L: V → W be a linear trans-
formation. Then:

(1) If L is one-to-one, and T is a linearly independent subset of V, then L(T ) is
linearly independent in W.

(2) If L is onto, and S spans V, then L(S) spans W.

Proof. Suppose that L is one-to-one, and T is a linearly independent subset of V. To
prove that L(T ) is linearly independent in W, it is enough to show that any finite
subset of L(T ) is linearly independent. Suppose {L(x1), . . . ,L(xn)} is a finite subset
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of L(T ), for vectors x1, . . . ,xn ∈ T , and suppose b1L(x1) � · · · � bnL(xn) � 0W . Then,
L(b1x1 � · · · � bnxn) � 0W , implying that b1x1 � · · · � bnxn ∈ ker(L). But since L is one-
to-one, Theorem 5.12 tells us that ker(L) � {0V }. Hence, b1x1 � · · · � bnxn � 0V . Then,
because the vectors in T are linearly independent, b1 � b2 � · · · � bn � 0. Therefore,
{L(x1), . . . ,L(xn)} is linearly independent. Hence, L(T ) is linearly independent.

Now suppose that L is onto, and S spans V. To prove that L(S) spans W, we must
show that any vector w ∈ W can be expressed as a linear combination of vectors in
L(S). Since L is onto, there is a v ∈ V such that L(v) � w. Since S spans V, there
are scalars a1, . . . ,an and vectors v1, . . . ,vn ∈ S such that v � a1v1 � · · · � anvn. Thus,
w � L(v) � L(a1v1 � · · · � anvn) � a1L(v1) � · · · � anL(vn). Hence, L(S) spans W.

An almost identical proof gives the following useful generalization of part (2) ofThe-
orem 5.13: For any linear transformation L:V → W , and any subset S of V , L(S) spans
the subspace L(span(S)) of W . In particular, if S spans V , then L(S) spans range(L).
(See Exercise 8.)

Example 4
Consider the linear transformation L:P2 → P3 given by L(ax2 � bx � c) � bx3 � cx2 � ax. It is
easy to see that ker(L) � {0} since L(ax2 � bx � c) � 0x3 � 0x2 � 0x � 0 only if a � b � c � 0,
and so L is one-to-one by Theorem 5.12. Consider the linearly independent set T � {x2 � x,
x � 1} in P2. Notice that L(T ) � {x3 � x, x3 � x2}, and that L(T ) is linearly independent, as
predicted by part (1) of Theorem 5.13.

Next, let W � {[x,0,z]} be the xz-plane in R
3. Clearly, dim(W) = 2. Consider L:R3 → W,

where L is the projection of R
3 onto the xz-plane; that is, L([x,y,z]) � [x,0,z]. It is easy to

check that S �
{
[2,�1,3] , [1,�2,0] , [4,3,�1]

}
spans R

3 using the Simplified Span Method.
Part (2) of Theorem 5.13 then asserts that L(S) �

{
[2,0,3] , [1,0,0] , [4,0,�1]

}
spans W. In fact,

{[2,0,3] , [1,0,0]} alone spans W, since dim(span({[2,0,3] , [1,0,0]})) � 2 � dim(W).

In Section 5.5, we will consider isomorphisms, which are linear transformations
that are simultaneously one-to-one and onto. We will see that such functions faithfully
carry vector space properties from the domain to the codomain.

New Vocabulary

one-to-one linear transformation onto linear transformation

Highlights

■ A linear transformation is one-to-one if no two distinct vectors of the domain
map to the same image in the codomain.

■ A linear transformation L: V → W is one-to-one if and only if ker(L) � {0V }
(or, equivalently, if and only if dim(ker(L)) � 0).

■ If a linear transformation is one-to-one, then the image of every linearly
independent subset of the domain is linearly independent.
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■ A linear transformation is onto if every vector in the codomain is the image of
some vector from the domain.

■ A linear transformation L:V → W is onto if and only if range(L) � W (or, equiv-
alently, if and only if dim(range(L)) � dim(W) when W is finite dimensional).

■ If a linear transformation is onto, then the image of every spanning set for the
domain spans the codomain.

EXERCISES FOR SECTION 5.4
1. Which of the following linear transformations are one-to-one? Which are onto?

Justify your answers without using row reduction.
�(a) L: R

3 → R
4 given by L([x,y,z]) � [y,z,�y,0]

(b) L: R
3 → R

2 given by L([x,y,z]) � [x � y, y � z]
�(c) L: R

3 → R
3 given by L([x,y,z]) � [2x, x � y � z,�y]

(d) L: P3 → P2 given by L(ax3 � bx2 � cx � d) � ax2 � bx � c
�(e) L: P2 → P2 given by L(ax2 � bx � c) � (a � b)x2 � (b � c)x � (a � c)

(f ) L: M22 → M22 given by L

([
a b
c d

])
�

[
d b � c

b � c a

]

�(g) L:M23 → M22 given by L

([
a b c
d e f

])
�

[
a �c
2e d � f

]

�(h) L: P2 → M22 given by L(ax2 � bx � c) �

[
a � c 0
b � c �3a

]
2. Which of the following linear transformations are one-to-one? Which are onto?

Justify your answers by using row reduction to determine the dimensions of
the kernel and range.

�(a) L: R
2 → R

2 given by L

([
x1

x2

])
�

[
�4 �3

2 2

][
x1

x2

]

�(b) L: R
2 → R

3 given by L

([
x1

x2

])
�

⎡
⎣�3 4

�6 9
7 �8

⎤
⎦[x1

x2

]

�(c) L: R
3 → R

3 given by L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣�7 4 �2

16 �7 2
4 �3 2

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦
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(d) L: R
4 → R

3 given by L

⎛
⎜⎜⎝
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦
⎞
⎟⎟⎠�

⎡
⎣�5 3 1 18

�2 1 1 6
�7 3 4 19

⎤
⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

3. In each of the following cases, the matrix for a linear transformation with
respect to some ordered bases for the domain and codomain is given. Which
of these linear transformations are one-to-one? Which are onto? Justify your
answers by using row reduction to determine the dimensions of the kernel and
range.

�(a) L: P2 → P2 having matrix

⎡
⎣ 1 �3 0

�4 13 �1
8 �25 2

⎤
⎦

(b) L: M22 → M22 having matrix

⎡
⎢⎢⎣

6 �9 2 8
10 �6 12 4

�3 3 �4 �4
8 �9 9 11

⎤
⎥⎥⎦

�(c) L: M22 → P3 having matrix

⎡
⎢⎢⎣

2 3 �1 1
5 2 �4 7
1 7 1 �4

�2 19 7 �19

⎤
⎥⎥⎦

4. Suppose that m > n.

(a) Show there is no onto linear transformation from R
n to R

m.

(b) Show there is no one-to-one linear transformation from R
m to R

n.

5. Let A be a fixed n � n matrix, and consider L: Mnn → Mnn given by L(B) �
AB � BA.

(a) Show that L is not one-to-one. (Hint: Consider L(In).)

(b) Use part (a) to show that L is not onto.

6. Define L: U3 → M33 by L(A) � 1
2 (A � AT ). Prove that L is one-to-one but is

not onto.

7. Let L: V → W be a linear transformation between vector spaces. Suppose
that for every linearly independent set T in V ,L(T ) is linearly independent
in W . Prove that L is one-to-one. (Hint: Prove ker(L) � {0V } using a proof by
contradiction.)

8. Let L:V → W be a linear transformation between vector spaces, and let S be a
subset of V .

(a) Prove that L(S) spans the subspace L(span(S)).
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(b) Show that if S spans V , then L(S) spans range(L).

(c) Show that if L(S) spans W , then L is onto.

�9. True or False:

(a) A linear transformation L:V → W is one-to-one if for all v1,v2 ∈ V ,v1 � v2

implies L(v1) � L(v2).

(b) A linear transformation L: V → W is onto if for all v ∈ V , there is some
w ∈ W such that L(v) � w.

(c) A linear transformation L:V → W is one-to-one if ker(L) contains no vectors
other than 0V .

(d) If L is a linear transformation and S spans the domain of L, then L(S) spans
the range of L.

(e) Suppose V is a finite dimensional vector space. A linear transformation
L:V → W is not one-to-one if dim(ker(L)) �� 0.

(f ) Suppose W is a finite dimensional vector space. A linear transformation
L:V → W is not onto if dim(range(L)) < dim(W).

(f) If L is a linear transformation and T is a linearly independent subset of the
domain of L, then L(T ) is linearly independent.

(g) If L is a linear transformation L: V → W , and S is a subset of V such that
L(S) spans W , then S spans V .

5.5 ISOMORPHISM
In this section, we examine methods for determining whether two vector spaces
are equivalent, or isomorphic. Isomorphism is important because if certain algebraic
results are true in one of two isomorphic vector spaces, corresponding results hold
true in the other as well. It is the concept of isomorphism that has allowed us to apply
our techniques and formal methods to vector spaces other than R

n.

Isomorphisms: Invertible Linear Transformations

We restate here the definition fromAppendix B for the inverse of a function as it applies
to linear transformations.

Definition Let L: V → W be a linear transformation. Then L is an invertible
linear transformation if and only if there is a function M : W → V such that
(M ◦ L)(v) � v, for all v ∈ V , and (L ◦ M)(w) � w, for all w ∈ W . Such a function
M is called an inverse of L.
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If the inverse M of L:V → W exists, then it is unique byTheorem B.3 and is usually
denoted by L�1:W → V .

Definition A linear transformation L: V → W that is both one-to-one and onto is
called an isomorphism from V to W .

The next result shows that the previous two definitions actually refer to the same
class of linear transformations.

Theorem 5.14 Let L: V → W be a linear transformation. Then L is an isomorphism if
and only if L is an invertible linear transformation. Moreover, if L is invertible, then L�1

is also a linear transformation.

Notice that Theorem 5.14 also asserts that whenever L is an isomorphism, L�1 is
an isomorphism as well because L�1 is an invertible linear transformation (with L as
its inverse).

Proof. The “if and only if” part of Theorem 5.14 follows directly from Theorem B.2. Thus,
we only need to prove the last assertion in Theorem 5.14. That is, suppose L: V → W is
invertible (and thus, an isomorphism) with inverse L�1. We need to prove L�1 is a linear
transformation. To do this, we must show both of the following properties hold:

(1) L�1(w1 � w2) � L�1(w1) � L�1(w2), for all w1,w2 ∈ W
(2) L�1(cw) � cL�1(w), for all c ∈ R, and for all w ∈ W.

Property (1): Because L is an isomorphism, L is one-to-one. Hence, if we can show that
L(L�1(w1 � w2)) � L(L�1(w1) � L�1(w2)), we will be done. But,

L(L�1(w1) � L�1(w2)) � L(L�1(w1)) � L(L�1(w2))

� w1 � w2

� L(L�1(w1 � w2)).

Property (2): Again, because L is an isomorphism, L is one-to-one. Hence, if we can
show that L(L�1(cw)) � L(cL�1(w)), we will be done. But,

L(cL�1(w)) � cL(L�1(w))

� cw

� L(L�1(cw)).

Because both properties (1) and (2) hold, L�1 is a linear transformation.
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Example 1
Recall the rotation linear operator L: R

2 → R
2 with

L

([
x
y

])
�

[
cos� �sin �

sin � cos�

][
x
y

]

given in Example 9 in Section 5.1. In Example 1 in Section 5.4, we proved that L is both one-
to-one and onto. Hence, L is an isomorphism and has an inverse, L�1. Because L represents a
counterclockwise rotation of vectors through the angle �, then L�1 must represent a clockwise
rotation through the angle �, as we saw in Example 1 of Section 5.4. Equivalently, L�1 can be
thought of as a counterclockwise rotation through the angle ��. Thus,

L�1

([
x
y

])
�

[
cos(��) �sin (��)

sin (��) cos(��)

][
x
y

]
�

[
cos� sin �

�sin � cos�

][
x
y

]
.

Of course, L�1 is also an isomorphism.

The next theorem gives a simple method for determining whether a linear
transformation between finite dimensional vector spaces is an isomorphism.

Theorem 5.15 Let V and W both be nontrivial finite dimensional vector spaces with
ordered bases B and C, respectively, and let L: V → W be a linear transformation.
Then L is an isomorphism if and only if the matrix representation ABC for L with respect
to B and C is nonsingular.

To prove one half of Theorem 5.15, let ABC be the matrix for L with respect to B
and C , and let DCB be the matrix for L�1 with respect to C and B. Theorem 5.7 then
shows that DCBABC � In, with n � dim(V), and ABCDCB � Ik, with k � dim(W). By
Exercise 21 in Section 2.4,n � k,and (ABC)�1 � DCB,so ABC is nonsingular.The proof
of the converse is straightforward, and you are asked to give the details in Exercise 8.
Notice, in particular, that the matrix for any isomorphism must be a square matrix.

Example 2
Consider L: R

3 → R
3 given by L(v) � Av, where

A �

⎡
⎢⎣1 0 3

0 1 3
0 0 1

⎤
⎥⎦ .

Now, A is nonsingular (|A| � 1 �� 0). Hence, by Theorem 5.15, L is an isomorphism. Geometri-
cally, L represents a shear in the z-direction (see Table 5.1).
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Theorem B.4 in Appendix B shows that the composition of isomorphisms results
in an isomorphism. In particular, the inverse of the composition L2 ◦ L1 is L�1

1 ◦ L�1
2 .

That is, the transformations must be undone in reverse order to arrive at the correct
inverse. (Compare this with part (3) of Theorem 2.11 for matrix multiplication.)

When an isomorphism exists between two vector spaces, properties from the
domain are carried over to the codomain by the isomorphism. In particular, the fol-
lowing theorem,which follows immediately fromTheorem 5.13, shows that spanning
sets map to spanning sets, and linearly independent sets map to linearly independent
sets.

Theorem 5.16 Suppose L:V → W is an isomorphism. Let S span V and let T be a
linearly independent subset of V. Then L(S) spans W and L(T ) is linearly independent.

Isomorphic Vector Spaces

Definition Let V and W be vector spaces. Then V is isomorphic to W , denoted
V ∼� W , if and only if there exists an isomorphism L:V → W .

If V ∼� W ,there is some isomorphism L:V →W .Then byTheorem 5.14, L�1:W →V
is also an isomorphism,so W ∼� V . Hence,we usually speak of such V and W as being
isomorphic to each other.

Also notice that if V ∼� W and W ∼� X , then there are isomorphisms L1: V → W
and L2: W → X . But then L2 ◦ L1: V → X is an isomorphism, and so V ∼� X . In other
words,two vector spaces such as V and X that are both isomorphic to the same vector
space W are isomorphic to each other.

Example 3
Consider L1: R

4 → P3 given by L1([a,b,c,d]) � ax3 � bx2 � cx � d and L2: M22 → P3 given

by L2

([
a b
c d

])
� ax3 � bx2 � cx � d. L1 and L2 are certainly both isomorphisms. Hence,

R
4 ∼� P3 and M22

∼� P3. Thus, the composition L�1
2 ◦ L1: R

4 → M22 is also an isomorphism,
and so R

4 ∼� M22. Notice that all of these vector spaces have dimension 4.

Next,we show that finite dimensional vector spaces V and W must have the same
dimension for an isomorphism to exist between them.

Theorem 5.17 Suppose V ∼� W and V is finite dimensional. Then W is finite dimen-
sional and dim(V) � dim(W).
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Proof. Since V ∼� W, there is an isomorphism L: V → W. Let dim(V) � n, and let B �
{v1, . . . ,vn} be a basis for V. By Theorem 5.16, L(B) � {L(v1), . . . ,L(vn)} both spans W
and is linearly independent, and so must be a basis for W. Also, because L is a one-to-one
function, |L(B)| � |B| � n. Therefore, dim(V) � dim(W).

Theorem 5.17 implies that there is no possible isomorphism from, say, R
3 to P4

or from M22 to R
3, because the dimensions of the spaces do not agree. Notice that

Theorem 5.17 gives another confirmation of the fact that any matrix for an isomor-
phism must be square.

Isomorphism of n-Dimensional Vector Spaces

Example 3 hints that any two finite dimensional vector spaces of the same dimension
are isomorphic. This result, which is one of the most important in all linear algebra, is
a corollary of the next theorem.

Theorem 5.18 If V is any n-dimensional vector space, then V ∼� R
n.

Proof. Suppose that V is a vector space with dim(V) � n. If we can find an isomorphism
L: V → R

n, then V ∼� R
n, and we will be done. Let B � (v1, . . . ,vn) be an ordered basis

for V. Consider the mapping L(v) � [v]B, for all v ∈ V. Now, L is a linear transformation by
Example 4 in Section 5.1. Also,

v ∈ ker(L) ⇔ [v]B � [0, . . . ,0] ⇔ v � 0v1 � · · · � 0vn ⇔ v � 0.

Hence, ker(L) � {0V }, and L is one-to-one.
If a � [a1, . . . ,an] ∈ R

n, then L(a1v1 � · · · � anvn) � [a1, . . . ,an], showing that a ∈
range(L). Hence, L is onto, and so L is an isomorphism.

In particular, Theorem 5.18 tells us that Pn
∼� R

n�1 and that Mmn
∼� R

mn. Also,
the proof of Theorem 5.18 illustrates that coordinatization of vectors in an n-
dimensional vector space V automatically gives an isomorphism of V with R

n.
By the remarks before Example 3,Theorem 5.18 implies the following converse of

Theorem 5.17:

Corollary 5.19 Any two n-dimensional vector spaces V and W are isomorphic. That
is, if dim(V) � dim(W), then V ∼� W.

For example, suppose that V and W are both vector spaces with dim(V) �
dim(W) � 47. Then by Corollary 5.19,V ∼� W , and by Theorem 5.18,V ∼� W ∼� R

47.
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Isomorphism and the Methods

We now have the means to justify the use of the Simplified Span Method and the
Independence Test Method on vector spaces other than R

n. Suppose V ∼� R
n. By

using the coordinatization isomorphism or its inverse as the linear transformation L in
Theorem 5.16, we see that spanning sets in V are mapped to spanning sets in R

n, and
vice versa. Similarly,linearly independent sets in V are mapped to linearly independent
sets in R

n, and vice versa. This is illustrated in the following example.

Example 4
Consider the subset S � {x3 � 2x2 � x � 2, x3 � x2 � x � 1, x3 � 5x2 � x � 5, x3 � x2

� x � 1} of P3. We use the coordinatization isomorphism L:P3 → R
4 with respect to the stan-

dard basis of P3 to obtain L(S) � {[1, �2, 1, �2], [1, 1, 1, 1], [1, �5, 1, �5], [1, �1, �1, 1]}, a
subset of R

4 corresponding to S. Row reducing⎡
⎢⎢⎢⎣

1 �2 1 �2
1 1 1 1
1 �5 1 �5
1 �1 �1 1

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎣

1 0 0 1
0 1 0 1
0 0 1 �1
0 0 0 0

⎤
⎥⎥⎥⎦

shows, by the Simplified Span Method, that span ({[1,�2,1,�2], [1,1,1,1], [1,�5,1,�5],
[1,�1,�1,1]}) � span ({[1,0,0,1], [0,1,0,1], [0,0,1,�1]}). Since L�1 is an isomorphism,
Theorem 5.16 shows that L�1 ({[1,0,0,1], [0,1,0,1], [0,0,1,�1]}) � {x3 � 1, x2 � 1, x � 1}
spans the same subspace of P3 that S does. That is, span({x3 � 1, x2 � 1, x � 1}) � span(S).

Similarly, row reducing⎡
⎢⎢⎢⎣

1 1 1 1
�2 1 �5 �1

1 1 1 �1
�2 1 �5 1

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎣

1 0 2 0
0 1 �1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦

shows, by the Independence Test Method, that {[1,�2,1,�2], [1,1,1,1], [1,�1,�1,1]} is a
linearly independent subset of R4, and that [1,�5,1,�5] � 2[1,�2,1,�2] � [1,1,1,1] �

0[1,�1,�1,1]. Since L�1 is an isomorphism, Theorem 5.16 shows us that L�1({[1,�2,1,�2],
[1,1,1,1], [1,�1,�1,1]})�

{
x3 � 2x2 � x � 2,x3 � x2 � x � 1,x3 � x2 � x � 1

}
is a linearly

independent subset of P3. The fact that L�1 is a linear transformation also assures us
that x3 � 5x2 � x � 5 � 2

(
x3 � 2x2 � x � 2

)
�
(
x3 � x2 � x � 1

)
� 0

(
x3 � x2 � x � 1

)
.

In addition to preserving dimension, spanning, and linear independence, isomor-
phisms keep intact most other properties of vector spaces and the linear transforma-
tions between them. In particular,the next theorem shows that when we coordinatize
the domain and codomain of a linear transformation, the kernel and the range are
preserved.
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Theorem 5.20 Let L: V → W be a linear transformation between nontrivial finite
dimensional vector spaces, and let L1: V → R

n and L2: W → R
m be coordinatization

isomorphisms with respect to some ordered bases B and C for V and W, respectively.
Let M � L2 ◦ L ◦ L�1

1 : R
n → R

m, so that M([v]B) � [L(v)]C . Then,

(1) L�1
1 (ker (M)) � ker (L) ⊆ V ,

(2) L�1
2 (range(M)) � range(L) ⊆ W ,

(3) dim(ker (M)) � dim(ker (L)), and

(4) dim(range(M)) � dim(range(L)).

Figure 5.11 illustrates the situation in Theorem 5.20. The linear transformation M
in Theorem 5.20 is merely an “Rn → R

m” version of L, using coordinatized vectors
instead of the actual vectors in V and W . Because L�1

1 and L�1
2 are isomorphisms,

parts (1) and (2) of the theorem show that the subspace ker(L) of V is isomorphic to
the subspace ker(M) of R

n, and that the subspace range(L) of W is isomorphic to the
subspace range(M) of R

m. Parts (3) and (4) of the theorem follow directly from parts
(1) and (2) because isomorphic finite dimensional vector spaces must have the same
dimension. You are asked to prove a more general version of Theorem 5.20 as well as
other related statements in Exercises 17 and 18.

The importance of Theorem 5.20 is that it justifies our use of the Kernel Method
and the Range Method of Section 5.3 when vector spaces other than R

n are involved.
Suppose that we want to find ker(L) and range(L) for a given linear transformation L:
V → W .We begin by coordinatizing the domain V and codomain W using coordinati-
zation isomorphisms L1 and L2 as in Theorem 5.20. (For simplicity, we can assume
B and C are the standard bases for V and W , respectively.) The mapping M cre-
ated in Theorem 5.20 is thus an equivalent “Rn → R

m” version of L. By applying
the Kernel and Range Methods to M , we can find bases for ker(M) and range(M).

L1 L2

M

L

Rn

V

Rm

W

FIGURE 5.11

The linear transformations L and M and the isomorphisms L1 and L2 in Theorem 5.20
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However, parts (1) and (2) of the theorem assure us that ker(L) is isomorphic to
ker(M), and, similarly, that range(L) is isomorphic to range(M). Therefore, by revers-
ing the coordinatizations, we can find bases for ker(L) and range(L). In fact, this is
exactly the approach that was used without justification in Section 5.3 to determine
bases for the kernel and range for linear transformations involving vector spaces other
than R

n.

Proving the Dimension Theorem Using Isomorphism

Recall the Dimension Theorem:

(Dimension Theorem) If L: V → W is a linear transformation and V is finite dimensional,
then range(L) is finite dimensional, and

dim(ker(L)) � dim(range(L)) � dim(V).

In Section 5.3, we stated the Dimension Theorem in its full generality, but only
proved it for linear transformations from R

n to R
m. We now supply the general proof,

assuming that the special case for linear transformations from R
n to R

m has already
been proved.

Proof. The theorem is obviously true if V is the trivial vector space. Suppose B is a finite,
nonempty ordered basis for V. Then, by the comments directly after Theorem 5.13 regarding
spanning sets and range, range(L) is spanned by the finite set L(B), and so range(L) is finite
dimensional. Since L does not interact at all with the vectors in W outside range(L), we can
consider adjusting L so that its codomain is just the subspace range(L) of W. That is,
without loss of generality, we can let W � range(L). Hence, we can assume that W is finite
dimensional.

Let L1:V → R
n and L2:W → R

m be coordinatization transformations with respect to
some ordered bases for V and W, respectively. Applying the special case of the Dimension
Theorem to the linear transformation L2 ◦ L ◦ L�1

1 :Rn → R
m, we get

dim(V) � n � dim(Rn) � dim
(
domain

(
L2 ◦ L ◦ L�1

1

))
� dim

(
ker
(
L2 ◦ L ◦ L�1

1

))
� dim

(
range

(
L2 ◦ L ◦ L�1

1

))
� dim(ker(L)) � dim(range(L)), by parts (3) and (4) of Theorem 5.20.

Suppose that V and W are finite dimensional vector spaces and L:V → W is a linear
transformation. If dim(V) � dim(W), the next result,which requires the full generality
of the DimensionTheorem,asserts that we need only check that L is either one-to-one
or onto to know that L has the other property as well.
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Corollary 5.21 Let V and W be finite dimensional vector spaces with dim(V) �
dim(W). Let L: V → W be a linear transformation. Then L is one-to-one if and only if
L is onto.

Proof. Let V and W be finite dimensional vector spaces with dim(V) � dim(W), and let
L: V → W be a linear transformation. Then

L is one-to-one ⇔ dim(ker(L)) � 0 by Theorem 5.12
⇔ dim(V) � dim(range(L)) by the Dimension Theorem
⇔ dim(W) � dim(range(L)) because dim(V) � dim(W)

⇔ L is onto. by Theorem 4.16

Example 5
Consider L: P2 → R

3 given by L(p) � [p(0),p(1),p(2)]. Now, dim(P2) � dim(R3) � 3. Hence,
by Corollary 5.21, if L is either one-to-one or onto, it has the other property as well.

We will show that L is one-to-one using Theorem 5.12. If p ∈ker(L), then L(p) � 0, and
so p(0) � p(1) � p(2) � 0. Hence, p is a polynomial of degree � 2 touching the x-axis at
x � 0, x � 1, and x � 2. Since the graph of p must be either a parabola or a line, it cannot
touch the x-axis at three distinct points unless its graph is the line y � 0. That is, p � 0 in P2.
Therefore, ker(L) � {0}, and L is one-to-one.

Now, by Corollary 5.21, L is onto. Thus, given any 3-vector [a,b,c], there is some
p ∈ P2 such that p(0) � a, p(1) � b, and p(2) � c. (This example is generalized further in
Exercise 21.)

So far, we have proved many important results concerning the concepts of one-
to-one, onto, and isomorphism. For convenience, these and other useful properties
from the exercises are summarized in Table 5.2.

New Vocabulary

inverse of a linear transformation
invertible linear transformation

isomorphic vector spaces
isomorphism

Highlights

■ A linear transformation L:V → W is invertible if and only if there is a function
M :W → V such that L ◦ M and M ◦ L are the identity linear operators on W and
V , respectively.

■ If a linear transformation has an inverse,its inverse is also a linear transformation.

■ An isomorphism is a linear transformation that is both one-to-one and onto.
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Table 5.2 Conditions on linear transformations that are one-to-one, onto, or
isomorphisms

Let L: V → W be a linear transformation, and let B be a basis for V.

L is one-to-one

⇔ ker(L) � {0V } Theorem 5.12

⇔ dim(ker(L)) � 0 Theorem 5.12

⇔ the image of every linearly Theorem 5.13
independent set in V is and Exercise 7
linearly independent in W in Section 5.4

L is onto

⇔ range(L) � W Definition

⇔ dim(range(L)) � dim(W) Theorem 4.16*

⇔ the image of every spanning set Theorem 5.13
for V is a spanning set for W

⇔ the image of some spanning set Exercise 8 in
for V is a spanning set for W Section 5.4

L is an isomorphism

⇔ L is both one-to-one and onto Definition

⇔ L is invertible (that is, Theorem 5.14

L�1: W → V exists)

⇔ the matrix for L (with respect to Theorem 5.15*
every pair of ordered bases for
V and W) is nonsingular

⇔ the matrix for L (with respect to Theorem 5.15*
some pair of ordered bases
for V and W) is nonsingular

⇔ the images of vectors in B are distinct Exercise 14
and L(B) is a basis for W

⇔ L is one-to-one and dim(V) � dim(W) Corollary 5.21*

⇔ L is onto and dim(V) � dim(W) Corollary 5.21*

Furthermore, if L: V → W is an isomorphism, then

(1) dim(V) � dim(W) Theorem 5.17*

(2) L�1 is an isomorphism from W to V Theorem 5.14

(3) for any subspace Y of V, Exercise 16*

dim(Y) � dim(L(Y))

*True only in the finite dimensional case



 

366 CHAPTER 5 Linear Transformations

■ A linear transformation is an isomorphism if and only if it is an invertible linear
transformation.

■ A linear transformation (involving nontrivial finite dimensional vector spaces)
is an isomorphism if and only if the matrix for the linear transformation (with
respect to any ordered bases) is nonsingular.

■ Under an isomorphism, the image of every linearly independent subset of the
domain is linearly independent.

■ Under an isomorphism, the image of every spanning set for the domain spans
the codomain.

■ Under an isomorphism, the dimension of every subspace of the domain is equal
to the dimension of its image.

■ If two vector spaces V and W have the same (finite) dimension, a linear
transformation L: V → W is one-to-one if and only if it is onto.

■ Finite-dimensional vector spaces are isomorphic if and only if they have the same
dimension.

■ All n-dimensional vector spaces are isomorphic to R
n (and to each other).

■ The Simplified Span Method and the IndependenceTest Method can be justified
for sets of vectors in any finite dimensional vector space V by applying a coor-
dinatization isomorphism from V to R

n. Similarly, the Kernel Method and the
Range Method can be justified for any linear transformation L: V → W where V
is finite dimensional by applying coordinatization isomorphisms between V and
R

n and between W and R
m.

EXERCISES FOR SECTION 5.5
1. Each part of this exercise gives matrices for linear operators L1 and L2 on R

3

with respect to the standard basis. For each part, do the following:

(i) Show that L1 and L2 are isomorphisms.

(ii) Find L�1
1 and L�1

2 .

(iii) Calculate L2 ◦ L1 directly.

(iv) Calculate (L2 ◦ L1)
�1 by inverting the appropriate matrix.

(v) Calculate L�1
1 ◦ L�1

2 directly from your answer to (ii) and verify that the
answer agrees with the result you obtained in (iv).

�(a) L1:

⎡
⎣0 �2 1

0 �1 0
1 0 0

⎤
⎦ , L2:

⎡
⎣ 1 0 0

�2 0 1
0 �3 0

⎤
⎦
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(b) L1:

⎡
⎣�4 0 1

0 1 0
1 2 0

⎤
⎦ , L2:

⎡
⎣0 3 �1

1 0 0
0 �2 1

⎤
⎦

�(c) L1:

⎡
⎣�9 2 1

�6 1 1
5 0 �2

⎤
⎦ , L2:

⎡
⎣�4 2 1

�3 1 0
�5 2 1

⎤
⎦

2. Show that L:Mmn → Mnm given by L(A) � AT is an isomorphism.

3. Let A be a fixed nonsingular n � n matrix.

(a) Show that L1:Mnn → Mnn given by L1(B) � AB is an isomorphism. (Hint:
Be sure to show first that L1 is a linear operator.)

(b) Show that L2:Mnn → Mnn given by L2(B) � ABA�1 is an isomorphism.

4. Show that L: Pn → Pn given by L(p) � p � p′ is an isomorphism. (Hint: First
show that L is a linear operator.)

5. Let R: R
2 → R

2 be the operator that reflects a vector through the line y � x;
that is, R([a,b]) � [b,a].
�(a) Find the matrix for R with respect to the standard basis for R

2.

(b) Show that R is an isomorphism.

(c) Prove that R�1 � R using the matrix from part (a).

(d) Give a geometric explanation for the result in part (c).

6. Prove that the change of basis process is essentially an isomorphism;that is, if B
and C are two different finite bases for a vector space V ,with dim(V) � n, then
the mapping L: R

n → R
n given by L([v]B) � [v]C is an isomorphism. (Hint:

First show that L is a linear operator.)

7. Let V , W , and X be vector spaces. Let L1: V → W and L2: V → W be linear
transformations. Let M : W → X be an isomorphism. If M ◦ L1 � M ◦ L2, show
that L1 � L2.

�8. Prove Theorem 5.15.

9. (a) Explain why Mmn
∼� Mnm.

(b) Explain why P4n�3
∼� M4,n�1.

(c) Explain why the subspace of upper triangular matrices in Mnn is isomor-
phic to R

n(n�1)/2. Is the subspace still isomorphic to R
n(n�1)/2 if upper is

replaced by lower?

10. Let V be a vector space. Show that a linear operator L:V → V is an isomorphism
if and only if L ◦ L is an isomorphism.
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11. Let V be a nontrivial vector space. Suppose that L:V → V is a linear operator.

(a) If L ◦ L is the zero transformation, show that L is not an isomorphism.

(b) If L ◦ L � L and L is not the identity transformation, show that L is not an
isomorphism.

12. Let L:Rn → R
n be a linear operator with matrix A (using the standard basis for

R
n). Prove that L is an isomorphism if and only if the columns of A are linearly

independent.

�13. (a) Suppose that L: R6 → P5 is a linear transformation and that L is not onto.
Is L one-to-one? Why or why not?

(b) Suppose that L: M22 → P3 is a linear transformation and that L is not
one-to-one. Is L onto? Why or why not?

14. Let L:V → W be a linear transformation between vector spaces, and let B be a
basis for V .

(a) Show that if L is an isomorphism, then L(B) is a basis for W .

(b) Prove that if L(B) is a basis for W , and the images of vectors in B are distinct,
then L is an isomorphism. (Hint: Use Exercise 8(c) in Section 5.4 to show
L is onto. Then show ker(L) � {0V } using a proof by contradiction.)

(c) Define T :R3 → R
2 by T (X) �

[
3 5 3
1 2 1

]
X,and let B be the standard basis

in R
3. Show that T (B) is a basis for R

2, but T is not an isomorphism.

(d) Explain why part (c) does not provide a counterexample to part (b).

15. Let L: V → W be an isomorphism between finite dimensional vector spaces,
and let B be a basis for V . Show that for all v ∈ V , [v]B � [L(v)]L(B). (Hint: Use
the fact from Exercise 14(a) that L(B) is a basis for W .)

�16. Let L:V → W be an isomorphism,with V finite dimensional. If Y is any subspace
of V , prove that dim(L(Y)) � dim(Y).

17. Suppose T : V → W is a linear transformation, and T1: X → V and T2: W → Y
are isomorphisms.

(a) Prove that ker (T2 ◦ T ) � ker (T ).

(b) Prove that range(T ◦ T1) � range(T ).

�(c) Prove that T1 (ker (T ◦ T1)) � ker (T ).

(d) Show that dim(ker(T )) � dim(ker(T ◦ T1)). (Hint: Use part (c) and
Exercise 16.)

�(e) Prove that range(T2 ◦ T ) � T2 (range(T )).

(f ) Show that dim(range(T )) � dim(range(T2 ◦ T )). (Hint: Use part (e) and
Exercise 16.)
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18. Suppose L:V → W is a linear transformation,and that L1:V → R
n and L2:W →

R
m are isomorphisms. Let M � L2 ◦ L ◦ L�1

1 .

�(a) Use part (c) of Exercise 17 with T � L2 ◦ L and T1 � L�1
1 to prove that

L�1
1 (ker(M)) � ker(L2 ◦ L).

�(b) Use part (a) of this exercise together with part (a) of Exercise 17 to prove
that L�1

1 (ker(M)) � ker(L).

�(c) Use part (b) of this exercise together with Exercise 16 to prove that
dim(ker(M)) � dim(ker(L)).

(d) Use part (e) of Exercise 17 to prove that L�1
2 (range(M)) �

range
(
L ◦ L�1

1

)
. (Hint: Let T � L ◦ L�1

1 and T2 � L2. Then apply L�1
2 to

both sides.)

(e) Use part (d) of this exercise together with part (b) of Exercise 17 to prove
that L�1

2 (range(M)) � range(L).

(f ) Use part (e) of this exercise together with Exercise 16 to prove that
dim(range(M)) � dim(range(L)).

19. We show in this exercise that any isomorphism from R
2 to R

2 is the compo-
sition of certain types of reflections, contractions/dilations, and shears. (See
Exercise 11 in Section 5.1 for the definition of a shear.) Note that if a �� 0,

[
a b
c d

]
�

[
a 0
0 1

][
1 0
c 1

][
1 0
0 ad�bc

a

][
1 b

a
0 1

]
,

and if c �� 0,

[
a b
c d

]
�

[
0 1
1 0

][
c 0
0 1

][
1 0
a 1

][
1 0
0 bc�ad

c

][
1 d

c
0 1

]
.

(a) Use the given equations to show that every nonsingular 2 � 2 matrix can
be expressed as a product of matrices, each of which is in one of the
following forms:

[
k 0
0 1

]
,

[
1 0
0 k

]
,

[
1 0
k 1

]
,

[
1 k
0 1

]
, or

[
0 1
1 0

]
.

(b) Show that when k 	 0, multiplying either of the first two matrices in
part (a) times the vector [x,y] represents a contraction/dilation along the
x-coordinate or the y-coordinate.

(c) Show that when k < 0, multiplying either of the first two matrices in
part (a) times the vector [x,y] represents a contraction/dilation along the
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x-coordinate or the y-coordinate, followed by a reflection through one of

the axes.

(
Hint:

[
k 0
0 1

]
�

[
�1 0

0 1

][
�k 0

0 1

]
.

)
(d) Explain why multiplying either of the third or fourth matrices in part (a)

times [x,y] represents a shear.

(e) Explain why multiplying the last matrix in part (a) times [x,y] represents
a reflection through the line y � x.

(f ) Using parts (a) through (e),show that any isomorphism from R
2 to R

2 is the
composition of a finite number of the following linear operators:reflection
through an axis, reflection through y � x, contraction/dilation of the x- or
y-coordinate, shear in the x- or y-direction.

20. Express the linear transformation L: R
2 → R

2 that rotates the plane 45◦ in a
counterclockwise direction as a composition of the transformations described
in part (f) of Exercise 19.

21. (a) Let x1, x2, x3 be distinct real numbers. Use an argument similar to that in
Example 5 to show that for any given a, b, c ∈ R, there is a polynomial
p ∈ P2 such that p(x1) � a, p(x2) � b, and p(x3) � c.

(b) For each choice of x1,x2,x3,a,b,c ∈ R, show that the polynomial p from
part (a) is unique.

(c) Recall from algebra that a nonzero polynomial of degree n can have at most
n roots. Use this fact to prove that if x1, . . . ,xn�1 ∈ R, with x1, . . . ,xn�1

distinct, then for any given a1, . . . ,an�1 ∈ R, there is a unique polynomial
p ∈ Pn such that p(x1) � a1, p(x2) � a2, . . . ,p(xn) � an, and p(xn�1) �
an�1.

22. Define L:P → P by L(p(x)) � xp(x).

(a) Show that L is one-to-one but not onto.

(b) Explain why L does not contradict Corollary 5.21.

�23. True or False:

(a) If the inverse L�1 of a linear transformation L exists,then L�1 is also a linear
transformation.

(b) A linear transformation is an isomorphism if and only if it is invertible.

(c) If L: V → V is a linear operator, and the matrix for L with respect to
the finite basis B for V is ABB, then L is an isomorphism if and only if
|ABB| � 0.

(d) If L: V → W is a linear transformation, then L is one-to-one if and only if L
is onto.
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(e) If L:V → W is a linear transformation and M :X → V is an isomorphism,
then ker (L ◦ M) � ker(L).

(f ) If L:V → W is a linear transformation and M :X → V is an isomorphism,
then range(L ◦ M) � range(L).

(g) If L:V → W is an isomorphism and w1, . . . ,wn ∈ W , then for every
set of scalars a1, . . . ,an, L�1 (a1w1 � · · · � anwn) � a1L�1(w1) � · · · �
anL�1(wn).

(h) R
28 ∼� P27

∼� M74.

(i) If L:R6 → M32 is not one-to-one, then it is not onto.

5.6 DIAGONALIZATION OF LINEAR OPERATORS
In Section 3.4, we examined a method for diagonalizing certain square matrices. In
this section, we generalize this process to diagonalize certain linear operators.

Eigenvalues, Eigenvectors, and Eigenspaces for Linear Operators

We define eigenvalues and eigenvectors for linear operators in a manner analogous to
their definitions for matrices.

Definition Let L: V → V be a linear operator. A real number � is said to be an
eigenvalue of L if and only if there is a nonzero vector v ∈ V such that L(v) � �v.
Also, any nonzero vector v such that L(v) � �v is said to be an eigenvector for L
corresponding to the eigenvalue �.

If L is a linear operator on R
n given by multiplication by a square matrix A (that

is,L(v) � Av), then the eigenvalues and eigenvectors for L are merely the eigenvalues
and eigenvectors of the matrix A, since L(v) � �v if and only if Av � �v. Hence,all of
the results regarding eigenvalues and eigenvectors for matrices in Section 3.4 apply
to this type of operator. Let us now consider an example involving a different type of
linear operator.

Example 1
Consider L:Mnn → Mnn given by L(A) � A � AT . Then every nonzero n � n symmetric matrix
S is an eigenvector for L corresponding to the eigenvalue �1 � 2 because L(S) � S � ST � S � S
(since S is symmetric) � 2S. Similarly, every nonzero skew-symmetric n � n matrix V is an
eigenvector for L corresponding to the eigenvalue �2 � 0 because L(V) � V � VT � V � (�V) �

Onn � 0V.
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We now define an eigenspace for a linear operator.

Definition Let L:V → V be a linear operator on V . Let � be an eigenvalue for
L. Then E�, the eigenspace of �, is defined to be the set of all eigenvec-
tors for L corresponding to �, together with the zero vector 0V of V . That is,
E� � {v ∈ V | L(v) � �v}.

Just as the eigenspace of an n � n matrix is a subspace of R
n (see Theorem 4.4),

the eigenspace of a linear operator L:V → V is a subspace of the vector space V . This
can be proved directly by showing that the eigenspace is nonempty and closed under
vector addition and scalar multiplication, and then applying Theorem 4.2.

Example 2
Recall the operator L:Mnn → Mnn from Example 1 given by L(A) � A � AT . We have already
seen that the eigenspace E2 for L contains all symmetric n � n matrices. In fact, these are the
only elements of E2 because

L(A) � 2A ” A � AT � 2A ” A � AT � A � A ” AT � A.

Hence, E2 � {symmetric n � n matrices}, which we know to be a subspace of Mnn having
dimension n(n � 1)/2.

Similarly, the eigenspace E0 � {skew-symmetric n � n matrices}.

The Characteristic Polynomial of a Linear Operator

Frequently, we analyze a linear operator L on a finite dimensional vector space V by
looking at its matrix with respect to some basis for V . In particular, to solve for the
eigenvalues of L, we first find an ordered basis B for V , and then solve for the matrix
representation A of L with respect to B. For this matrix A, we have [L(v)]B � A[v]B.
Thus, finding the eigenvalues of A gives the eigenvalues of L.

Example 3
Let L:R2 → R

2 be the linear operator given by L([a,b]) � [b,a]; that is, a reflection about the
line y � x. We will calculate the eigenvalues for L two ways — first, using the standard basis for
R

2, and then, using a nonstandard basis.
Since L(i) � j and L(j) � i, the matrix for L with respect to the standard basis is

A �

[
0 1
1 0

]
. Then pA (x) �

∣∣∣∣∣ x �1
�1 x

∣∣∣∣∣� x2 � 1 � (x � 1)(x � 1).

Hence, the eigenvalues for A (and L) are �1 � 1 and �2 � �1. Solving the homogeneous system
(1I2 � A)v � 0 yields v1 � [1,1] as an eigenvector corresponding to �1 � 1. Similarly, we obtain
v2 � [1,�1], for �2 � �1.
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Notice that this result makes sense geometrically. The vector v1 runs parallel to the line
of reflection and thus L leaves v1 unchanged; L(v1) � �1v1 � v1. On the other hand, v2 is
perpendicular to the axis of reflection, and so L reverses its direction; L(v2) � �2v2 � �v2.

Now, instead of using the standard basis in R
2, let us find the matrix representation of L with

respect to B � (v1,v2). Since [L(v1)]B � [1,0] and [L(v2)]B � [0,�1] (why?), the matrix for L
with respect to B is

D �

[L(v1)]B[
1
0

[L(v2)]B
0

�1

]
,

a diagonal matrix with the eigenvalues for L on the main diagonal. Notice that

pD(x) �

∣∣∣∣∣x � 1 0
0 x � 1

∣∣∣∣∣� (x � 1)(x � 1) � pA (x) ,

giving us (of course) the same eigenvalues �1 � 1 and �2 � �1 for L.

Example 3 illustrates how two different matrix representations for the same linear
operator (using different ordered bases) produce the same characteristic polynomial.
Theorem 5.6 and Exercise 6 in Section 3.4 together show that this is true in general.
Therefore, we can define the characteristic polynomial of a linear operator as follows,
without concern about which particular ordered basis is used:

Definition Let L be a linear operator on a nontrivial finite dimensional vector space
V . Suppose A is the matrix representation of L with respect to some ordered basis
for V . Then the characteristic polynomial of L, pL(x), is defined to be pA (x).

Example 4
Consider L:P2 → P2 determined by L(p(x)) � x2p′′(x) � (3x � 2)p′(x) � 5p(x). You can
check that L(x2) � 13x2 � 4x, L(x) � 8x � 2, and L(1) � 5. Thus, the matrix representation
of L with respect to the standard basis S � (x2, x,1) is

A �

⎡
⎢⎣ 13 0 0

�4 8 0
0 �2 5

⎤
⎥⎦ .

Hence,

pL (x) � pA (x) �

∣∣∣∣∣∣∣
x � 13 0 0

4 x � 8 0
0 2 x � 5

∣∣∣∣∣∣∣� (x � 13)(x � 8)(x � 5),



 

374 CHAPTER 5 Linear Transformations

since this is the determinant of a lower triangular matrix. The eigenvalues of L are the roots of
pL(x), namely, �1 � 13, �2 � 8, and �3 � 5.

Criterion for Diagonalization

Given a linear operator L on a finite dimensional vector space V , our goal is to find a
basis B for V such that the matrix for L with respect to B is diagonal, as in Example 3.
But, just as every square matrix cannot be diagonalized, neither can every linear
operator.

Definition A linear operator L on a finite dimensional vector space V is diagonal-
izable if and only if the matrix representation of L with respect to some ordered
basis for V is a diagonal matrix.

The next result indicates precisely which linear operators are diagonalizable.

Theorem 5.22 Let L be a linear operator on a nontrivial n-dimensional vector space V.
Then L is diagonalizable if and only if there is a set of n linearly independent eigenvectors
for L.

Proof. Suppose that L is diagonalizable. Then there is an ordered basis B � (v1, . . . ,vn) for
V such that the matrix representation for L with respect to B is a diagonal matrix D. Now,
B is a linearly independent set. If we can show that each vector vi in B, for 1 � i � n, is
an eigenvector corresponding to some eigenvalue for L, then B will be a set of n linearly
independent eigenvectors for L. Now, for each vi, we have [L(vi)]B � D[vi]B � Dei �
diiei � dii[vi]B � [diivi]B, where dii is the (i, i) entry of D. Since coordinatization of vectors
with respect to B is an isomorphism, we have L(vi) � diivi, and so each vi is an eigenvector
for L corresponding to the eigenvalue dii.

Conversely, suppose that B � {w1, . . . ,wn} is a set of n linearly independent eigenvectors
for L, corresponding to the (not necessarily distinct) eigenvalues �1, . . . ,�n, respectively.
Since B contains n � dim(V) linearly independent vectors, B is a basis for V, by part (2) of
Theorem 4.13. We show that the matrix A for L with respect to B is, in fact, diagonal. Now,
for 1 � i � n,

ith column of A � [L(wi)]B � [�iwi]B � �i[wi]B � �iei .

Thus, A is a diagonal matrix, and so L is diagonalizable.

Example 5
In Example 3, L:R2 → R

2 was defined by L([a,b]) � [b,a]. In that example, we found a set of two
linearly independent eigenvectors for L, namely, v1 � [1,1] and v2 � [1,�1]. Since dim(R2) � 2,
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Theorem 5.22 indicates that L is diagonalizable. In fact, in Example 3, we computed the matrix

for L with respect to the ordered basis (v1,v2) for R
2 to be the diagonal matrix

[
1 0
0 �1

]
.

Example 6
Consider the linear operator L:R2 → R

2 that rotates the plane counterclockwise through an
angle of �

4 . Now, every nonzero vector v is moved to L(v), which is not parallel to v, since L(v)

forms a 45◦ angle with v. Hence, L has no eigenvectors, and so a set of two linearly independent
eigenvectors cannot be found for L. Therefore, by Theorem 5.22, L is not diagonalizable.

Linear Independence of Eigenvectors

Theorem 5.22 asserts that finding enough linearly independent eigenvectors is crucial
to the diagonalization process.The next theorem gives a condition under which a set
of eigenvectors is guaranteed to be linearly independent.

Theorem 5.23 Let L be a linear operator on a vector space V, and let �1, . . . ,�t be dis-
tinct eigenvalues for L. If v1, . . . ,vt are eigenvectors for L corresponding to �1, . . . ,�t ,
respectively, then the set {v1, . . . ,vt } is linearly independent. That is, eigenvectors
corresponding to distinct eigenvalues are linearly independent.

Proof. We proceed by induction on t.
Base Step: Suppose that t � 1. Any eigenvector v1 for �1 is nonzero, so {v1} is linearly

independent.
Inductive Step: Let �1, . . .,�k�1 be distinct eigenvalues for L, and let v1, . . . ,vk�1 be

corresponding eigenvectors. Our inductive hypothesis is that the set {v1, . . . ,vk} is lin-
early independent. We must prove that {v1, . . . ,vk,vk�1} is linearly independent. Suppose
that a1v1 � · · · � akvk � ak�1vk�1 � 0V . Showing that a1 � a2 � · · · � ak � ak�1 � 0 will
finish the proof. Now,

L(a1v1 � · · · � akvk � ak�1vk�1)� L(0V )

” a1L(v1) � · · · � akL(vk) � ak�1L(vk�1)� L(0V )

” a1�1v1 � · · · � ak�kvk � ak�1�k�1vk�1� 0V .

Multiplying both sides of the original equation a1v1 � · · · � akvk � ak�1vk�1 � 0V by
�k�1 yields

a1�k�1v1 � · · · � ak�k�1vk � ak�1�k�1vk�1 � 0V .

Subtracting the last two equations containing �k�1 gives

a1(�1 � �k�1)v1 � · · · � ak(�k � �k�1)vk � 0V .
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Hence, our inductive hypothesis implies that

a1(�1 � �k�1) � · · · � ak(�k � �k�1) � 0.

Since the eigenvalues �1, . . . ,�k�1 are distinct, none of the factors �i � �k�1 in these equa-
tions can equal zero, for 1 � i � k. Thus, a1 � a2 � · · · � ak � 0. Finally, plugging these
values into the earlier equation a1v1 � · · · � akvk � ak�1vk�1 � 0V gives ak�1vk�1 � 0V .
Since vk�1 �� 0V , we must have ak�1 � 0 as well.

Example 7
Consider the linear operator L:R3 → R

3 given by L(x) � Ax, where

A �

⎡
⎢⎣ 31 �14 �92

�50 28 158
18 �9 �55

⎤
⎥⎦ .

It can be shown that the characteristic polynomial for A is pA(x) � x3 � 4x2 � x � 6 � (x � 1)

(x � 2)(x � 3). Hence, the eigenvalues for A are �1 � �1, �2 � 2, and �3 � 3. A quick check
verifies that [2,�2,1], [10,1,3], and [1,2,0] are eigenvectors, respectively, for the distinct eigen-
values �1, �2, and �3. Therefore, by Theorem 5.23, the set B � {[2,�2,1], [10,1,3], [1,2,0]} is
linearly independent (verify!). In fact, since dim(R3) � 3, this set B is a basis for R

3.
Also note that L is diagonalizable by Theorem 5.22, since there are three linearly independent

eigenvectors for L and dim(R3) � 3. In fact, the matrix for L with respect to B is

D �

⎡
⎢⎣�1 0 0

0 2 0
0 0 3

⎤
⎥⎦ .

This can be verified by computing D � P�1AP, where

P �

⎡
⎢⎣ 2 10 1

�2 1 2
1 3 0

⎤
⎥⎦

is the transition matrix from B-coordinates to standard coordinates, that is, the matrix whose
columns are the vectors in B (see Exercise 8(b) in Section 4.7).

As illustrated in Example 7, Theorems 5.22 and 5.23 combine to prove the
following:

Corollary 5.24 If L is a linear operator on an n-dimensional vector space and L has n
distinct eigenvalues, then L is diagonalizable.

The converse to this corollary is false, since it is possible to get n linearly
independent eigenvectors from fewer than n eigenvalues (see Exercise 6).
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The proof of the following generalization of Theorem 5.23 is left as Exercises 15
and 16.

Theorem 5.25 Let L:V → V be a linear operator on a finite dimensional vector space V,
and let B1,B2, . . . ,Bk be bases for eigenspaces E�1 , . . . ,E�k for L, where �1, . . . ,�k are
distinct eigenvalues for L. Then Bi ∩ Bj � � for 1 � i < j � k, and B1 ∪ B2 ∪ ·· · ∪ Bk is
a linearly independent subset of V.

This theorem asserts that for a given operator on a finite dimensional vector space,
the bases for distinct eigenspaces are disjoint, and the union of two or more bases
from distinct eigenspaces always constitutes a linearly independent set.

Example 8
Consider the linear operator L:R4 → R

4 given by L(x) � Ax, for the matrix A in Example 6 of
Section 3.4; namely,

A �

⎡
⎢⎢⎢⎣

�4 7 1 4
6 �16 �3 �9

12 �27 �4 �15
�18 43 7 24

⎤
⎥⎥⎥⎦ .

In that example, we showed there were precisely three eigenvalues for A (and hence, for L):
�1 � �1, �2 � 2, and �3 � 0. In the row reduction of [(�1)I4 � A |0] in that example, we found
two independent variables, and so dim(E�1) � 2. We also discovered fundamental eigenvec-
tors X1 � [�2,�1,1,0] and X2 � [�1,�1,0,1] for �1. Therefore, {X1,X2} is a basis for E�1 .
Similarly, we can verify that dim(E�2) � dim(E�3) � 1. We found a fundamental eigenvector
X3 � [1,�2,�4,6] for �2, and a fundamental eigenvector X4 � [1,�3,�3,7] for �3. Thus, {X3}
is a basis for E�2 , and {X4} is a basis for E�3 . Now, by Theorem 5.25, the union {X1,X2,X3,X4} of

these bases is a linearly independent subset of R
4. Of course, since dim(R4) � 4,{X1,X2,X3,X4}

is also a basis for R
4. Hence, by Theorem 5.22, L is diagonalizable.

Method for Diagonalizing a Linear Operator

Theorem 5.25 suggests a method for diagonalizing a given linear operator L: V → V ,
when possible.This method,outlined below,illustrates how to find a basis B so that the
matrix for L with respect to B is diagonal. In the case where V � R

n and the standard
basis is used,we simply apply the Diagonalization Method of Section 3.4 to the matrix
for L to find a basis for V . In other cases,we first need to choose a basis C for V . Next
we find the matrix for L with respect to C , and then use the Diagonalization Method
on this matrix to obtain a basis Z of eigenvectors in R

n. Finally, the desired basis B
for V consists of the vectors in V whose coordinatization with respect to C are the
vectors in Z .
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Method for Diagonalizing a Linear Operator (if possible) (Generalized Diagonalization Method)
Let L: V → V be a linear operator on an n-dimensional vector space V.

Step 1: Find a basis C for V (if V � R
n, we can use the standard basis), and calculate the

matrix representation A of L with respect to C.

Step 2: Apply the Diagonalization Method of Section 3.4 to A in order to obtain all of the
eigenvalues �1, . . . , �k of A and a basis in R

n for each eigenspace E�i of A (by
solving an appropriate homogeneous system if necessary). If the union of the bases
of the E�i contains fewer than n elements, then L is not diagonalizable, and we stop.
Otherwise, let Z � (w1, . . . , wn) be an ordered basis for R

n consisting of the union
of the bases for the E�i .

Step 3: Reverse the C-coordinatization isomorphism on the vectors in Z to obtain an
ordered basis B � (v1, . . . ,vn) for V; that is, [vi]C � wi .

The matrix representation for L with respect to B is the diagonal matrix D whose (i, i)
entry dii is the eigenvalue for L corresponding to vi . In most practical situations, the
transition matrix P from B- to C-coordinates is useful; P is the n � n matrix whose
columns are [v1]C , . . . , [vn]C — that is, w1,w2, . . . ,wn. Note that D � P�1AP.

If we have a linear operator on R
n and use the standard basis for C , then the

C -coordinatization isomorphism in this method is merely the identity mapping. In this
case, Steps 1 and 3 are a lot easier to perform, as we see in the next example.

Example 9
We use the preceding method to diagonalize the operator L:R4 → R

4 given by L(v) � Av, where

A �

⎡
⎢⎢⎢⎣

5 0 �8 8
8 1 �16 16

�4 0 9 �8
�8 0 16 �15

⎤
⎥⎥⎥⎦ .

Step 1: Since V � R
4, we let C be the standard basis for R

4. Then no additional work needs to
be done here, since the matrix representation for L with respect to C is simply A itself.

Step 2: We apply the Diagonalization Method of Section 3.4 to A. A lengthy computation
produces the characteristic polynomial

pA (x) � x4 � 6x2 � 8x � 3 � (x � 1)3(x � 3).

Thus, the eigenvalues for A are �1 � 1 and �2 � �3.
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To obtain a basis for the eigenspace E�1 , we row reduce

[1I4 � A |0] �

⎡
⎢⎢⎢⎣

�4 0 8 �8
�8 0 16 �16

4 0 �8 8
8 0 �16 16

∣∣∣∣∣∣∣∣∣
0
0
0
0

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎣

1 0 �2 2
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣
0
0
0
0

⎤
⎥⎥⎥⎦ .

There are three independent variables, so dim(E�1) � 3. As in Section 3.4, we set each
independent variable in turn to 1, while setting the others equal to 0. This yields three
linearly independent fundamental eigenvectors: w1 � [0,1,0,0],w2 � [2,0,1,0], and
w3 � [�2,0,0,1]. Thus, {w1,w2,w3} is a basis for E�1 . A similar procedure yields
dim(E�2) � 1, and a fundamental eigenvector w4 � [1,2,�1,�2] for E�2 . Also, {w4} is
a basis for E�2 . Since dim(V) � 4 and since we obtained four fundamental eigenvectors
overall from the Diagonalization Method, L is diagonalizable. We form the union Z �

{w1,w2,w3,w4} of the bases for E�1 and E�2 .

Step 3: Since C is the standard basis for R
4 and the C-coordinatization isomorphism is

the identity mapping, no additional work needs to be done here. We simply let
B � (v1, v2, v3, v4), where v1 � w1,v2 � w2,v3 � w3, and v4 � w4. That is, B �

([0,1,0,0], [2,0,1,0], [�2,0,0,1], [1,2,�1,�2]). B is an ordered basis for V � R
4.

Notice that the matrix representation of L with respect to B is the 4 � 4 diagonal
matrix D with each dii equal to the eigenvalue for vi , for 1 � i � 4. In particular,

D �

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �3

⎤
⎥⎥⎥⎦ .

Also, the transition matrix P from B-coordinates to standard coordinates is formed
by using v1,v2,v3, and v4 as columns. Hence,

P �

⎡
⎢⎢⎢⎣

0 2 �2 1
1 0 0 2
0 1 0 �1
0 0 1 �2

⎤
⎥⎥⎥⎦ , and its inverse is P�1 �

⎡
⎢⎢⎢⎣

2 1 �4 4
�1 0 3 �2
�2 0 4 �3
�1 0 2 �2

⎤
⎥⎥⎥⎦ .

You should verify that P�1AP � D.

In the next example, the linear operator is not originally defined as a matrix
multiplication, and so Steps 1 and 3 of the process require additional work.

Example 10
Let L: P3 → P3 be given by L(p(x)) � xp′(x) � p(x � 1). We want to find an ordered basis B
for P3 such that the matrix representation of L with respect to B is diagonal.



 

380 CHAPTER 5 Linear Transformations

Step 1: Let C � (x3,x2,x,1), the standard basis for P3. We need the matrix for L with respect
to C. Calculating directly, we get

L(x3) � x(3x2) � (x � 1)3 � 4x3 � 3x2 � 3x � 1,

L(x2) � x(2x) � (x � 1)2 � 3x2 � 2x � 1,

L(x) � x(1) � (x � 1) � 2x � 1,

and L(1) � x(0) � 1 � 1.

Thus, the matrix for L with respect to C is

A �

⎡
⎢⎢⎢⎣

4 0 0 0
3 3 0 0
3 2 2 0
1 1 1 1

⎤
⎥⎥⎥⎦ .

Step 2: We now apply the Diagonalization Method of Section 3.4 to A. The characteristic polyno-
mial of A is pA (x) � (x � 4)(x � 3)(x � 2)(x � 1), since A is lower triangular. Thus, the
eigenvalues for A are �1 � 4,�2 � 3,�3 � 2, and �4 � 1. Solving for a basis for each
eigenspace of A gives: basis for E�1 � {[6,18,27,17]}, basis for E�2 � {[0,2,4,3]}, basis
for E�3 � {[0,0,1,1]}, and basis for E�4

� {[0,0,0,1]}. Since dim(P3) � 4 and since we
obtained four distinct eigenvectors, L is diagonalizable. The union

Z � {[6,18,27,17], [0,2,4,3], [0,0,1,1], [0,0,0,1]}
of these eigenspaces is a linearly independent set by Theorem 5.25, and hence, Z is a
basis for R4.

Step 3: Reversing the C-coordinatization isomorphism on the vectors in Z yields the ordered
basis B�(v1,v2,v3,v4) for P3, where v1 � 6x3 �18x2 �27x �17, v2 � 2x2 �4x �3,
v3 � x �1, and v4 � 1. The diagonal matrix

D �

⎡
⎢⎢⎢⎣

4 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

⎤
⎥⎥⎥⎦

is the matrix representation of L in B-coordinates and has the eigenvalues of L
appearing on the main diagonal. Finally, the transition matrix P from B-coordinates
to C-coordinates is

P �

⎡
⎢⎢⎢⎣

6 0 0 0
18 2 0 0
27 4 1 0
17 3 1 1

⎤
⎥⎥⎥⎦ .

It can quickly be verified that D � P�1AP.
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Geometric and Algebraic Multiplicity

As we have seen, the number of eigenvectors in a basis for each eigenspace is crucial
in determining whether a given linear operator is diagonalizable,and so we often need
to consider the dimension of each eigenspace.

Definition Let L be a linear operator on a finite dimensional vector space, and let
� be an eigenvalue for L. Then the dimension of the eigenspace E� is called the
geometric multiplicity of �.

Example 11
In Example 9, we studied a linear operator on R

4 having eigenvalues �1 � 1 and �2 � �3. In
that example, we found dim(E�1) � 3 and dim(E�2) � 1. Hence, the geometric multiplicity of �1

is 3 and the geometric multiplicity of �2 is 1.

We define the algebraic multiplicity of a linear operator in a manner analogous to
the matrix-related definition in Section 3.4.

Definition Let L be a linear operator on a finite dimensional vector space, and let
� be an eigenvalue for L. Suppose that (x � �)k is the highest power of (x � �)

that divides pL(x). Then k is called the algebraic multiplicity of �.

In Section 3.4,we suggested,but did not prove,the following relationship between
the algebraic and geometric multiplicities of an eigenvalue.

Theorem 5.26 Let L be a linear operator on a finite dimensional vector space V, and
let � be an eigenvalue for L. Then

1 � (geometric multiplicity of �) � (algebraic multiplicity of �).

The proof of Theorem 5.26 uses the following lemma:

Lemma 5.27 Let A be an n � n matrix symbolically represented by A �

[
B C
O D

]
, where

B is an m � m submatrix, C is an m � (n � m) submatrix, O is an (n � m) � m zero
submatrix, and D is an (n � m) � (n � m) submatrix. Then, |A| � |B| · |D|.
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Lemma 5.27 follows from Exercise 14 in Section 3.2. (We suggest you complete
that exercise if you have not already done so.)

Proof. Proof of Theorem 5.26: Let V ,L, and � be as given in the statement of the theorem,
and let k represent the geometric multiplicity of �. By definition, the eigenspace E� must
contain at least one nonzero vector, and thus k � dim(E�) 	 1. Thus, the first inequality in
the theorem is proved.

Next, choose a basis {v1, . . . ,vk} for E� and expand it to an ordered basis B �
(v1, . . . ,vk,vk�1, . . . ,vn) for V. Let A be the matrix representation for L with respect to
B. Notice that for 1 � i � k, the ith column of A � [L(vi)]B � [�vi]B � �[vi]B � �ei. Thus,
A has the form

A �

[
�Ik C
O D

]
,

where C is a k � (n � k) submatrix, O is an (n � k) � k zero submatrix, and D is an
(n � k) � (n � k) submatrix.

The form of A makes it straightforward to calculate the characteristic polynomial of L:

pL(x) � pA (x) � |xIn � A| �

∣∣∣∣xIn �

[
�Ik C
O D

]∣∣∣∣
�

∣∣∣∣(x � �) Ik �C
O xIn�k � D

∣∣∣∣
� |(x � �)Ik| · |xIn�k � D| by Lemma 5.27

� (x � �)k · pD (x) .

Let l be the number of factors of x � � in pD (x). (Note that l 	 0, with l � 0 if pD(�) �� 0.)
Then, altogether, (x � �)k�l is the largest power of x � � that divides pL (x). Hence,

geometric multiplicity of � � k � k � l � algebraic multiplicity of �.

Example 12
Consider the linear operator L:R4 → R

4 given by

L

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠�

⎡
⎢⎢⎢⎣

5 2 0 1
�2 1 0 �1

4 4 3 2
16 0 �8 �5

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ .

In Exercise 3(a), you are asked to verify that pL(x) � (x � 3)3(x � 5). Thus, the eigenvalues for
L are �1 � 3 and �2 � �5. Notice that the algebraic multiplicity of �1 is 3 and the algebraic
multiplicity of �2 is 1.
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Next we find the eigenspaces of �1 and �2 by solving appropriate homogeneous systems.
Let A be the matrix for L. For �1 � 3, we solve (3I4 � A)v � 0 by row reducing

⎡
⎢⎢⎢⎣

�2 �2 0 �1
2 2 0 1

�4 �4 0 �2
�16 0 8 8

∣∣∣∣∣∣∣∣∣
0
0
0
0

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎢⎣

1 0 � 1
2 � 1

2

0 1 1
2 1

0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣

0

0

0
0

⎤
⎥⎥⎥⎥⎦ .

Thus, a basis for E3 is {[1,�1,2,0] , [1,�2,0,2]}, and so the geometric multiplicity of �1 is 2,
which is less than its algebraic multiplicity.

In Exercise 3(b), you are asked to solve an appropriate system to show that the eigenspace
for �2 � �5 has dimension 1, with {[�1,1,�2,8]} being a basis for E�5. Thus, the geomet-
ric multiplicity of �2 is 1. Hence, the geometric and algebraic multiplicities of �2 are actually
equal.

The eigenvalue �2 in Example 12 also illustrates the principle that if the algebraic
multiplicity of an eigenvalue is 1, then its geometric multiplicity must also be 1. This
follows immediately from Theorem 5.26.

Multiplicities and Diagonalization

Theorem 5.26 gives us a way to use algebraic and geometric multiplicities to deter-
mine whether a linear operator is diagonalizable. Let L:V → V be a linear operator,
with dim(V) � n. Then pL(x) has degree n. Therefore, the sum of the algebraic multi-
plicities for all eigenvalues can be at most n. Now, for L to be diagonalizable, L must
have n linearly independent eigenvectors by Theorem 5.22. This can only happen if
the sum of the geometric multiplicities of all eigenvalues for L equals n.Theorem 5.26
then forces the geometric multiplicity of every eigenvalue to equal its algebraic multi-
plicity (why?). We have therefore proven the following alternative characterization of
diagonalizability:

Theorem 5.28 Let L:V → V be a linear operator with dim(V) � n. Then L is diagonal-
izable if and only if both of the following conditions hold: (1) the sum of the algebraic
multiplicities over all eigenvalues of L equals n, and (2) the geometric multiplicity of
each eigenvalue equals its algebraic multiplicity.

Theorem 5.28 gives another justification that the operator L on R
4 in Exam-

ple 9 is diagonalizable. The eigenvalues �1 � 1 and �2 � �3 have algebraic mul-
tiplicities 3 and 1, respectively, and 3 � 1 � 4 � dim(R4). Also, the eigenvalues
respectively have geometric multiplicities 3 and 1, which equal their algebraic mul-
tiplicities. These conditions ensure L is diagonalizable, as we demonstrated in that
example.
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Example 13
Theorem 5.28 shows the operator on R

4 in Example 12 is not diagonalizable because the
geometric multiplicity of �1 � 3 is 2, while its algebraic multiplicity is 3.

Example 14
Let L:R3 → R

3 be a rotation about the z-axis through an angle of �
3 . Then the matrix for L with

respect to the standard basis is

A �

⎡
⎢⎢⎣

1
2 �

√
3

2 0
√

3
2

1
2 0

0 0 1

⎤
⎥⎥⎦ ,

as described in Table 5.1. Using A, we calculate pL(x) � x3 � 2x2 � 2x � 1 � (x � 1)(x2 � x �

1), where the quadratic factor has no real roots. Therefore, � � 1 is the only eigenvalue, and its
algebraic multiplicity is 1. Hence, by Theorem 5.28, L is not diagonalizable because the sum of
the algebraic multiplicities of its eigenvalues equals 1, which is less than dim(R3) � 3.

The Cayley-Hamilton Theorem

We conclude this section with an interesting relationship between a matrix and its
characteristic polynomial. If p(x) � anxn � an�1xn�1 · · · � a1x � a0 is any polyno-
mial and A is an n � n matrix, we define p(A) to be the n � n matrix given by
p(A) � anAn � an�1An�1 · · · � a1A � a0In.

Theorem 5.29 (Cayley-Hamilton Theorem) Let A be an n � n matrix, and let pA (x)

be its characteristic polynomial. Then pA(A) � On.

The Cayley-HamiltonTheorem is an important result in advanced linear algebra.We
have placed its proof in Appendix A for the interested reader.

Example 15

Let A �

[
3 2
4 �1

]
. Then pA (x) � x2 � 2x � 11 (verify!). The Cayley-Hamilton Theorem states

that pA(A) � O2. To check this, note that

pA(A) � A2 � 2A � 11I2 �

[
17 4
8 9

]
�

[
6 4
8 �2

]
�

[
11 0
0 11

]
�

[
0 0
0 0

]
.
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� Application: You have now covered the prerequisites for Section 8.9,“Differ-
ential Equations.”

New Vocabulary

algebraic multiplicity (of an eigenvalue)
Cayley-Hamilton Theorem
characteristic polynomial (for a linear

operator)
diagonalizable linear operator
eigenspace (for an eigenvalue of a linear

operator)

eigenvalue of a linear operator
eigenvector of a linear operator
Generalized Diagonalization Method

(for a linear operator)
geometric multiplicity (of an eigen-

value)

Highlights

■ A linear operator L on a finite dimensional vector space V is diagonalizable if the
matrix for L with respect to some ordered basis for V is diagonal.

■ A linear operator L on an n-dimensional vector space V is diagonalizable if and
only if n linearly independent eigenvectors exist for L.

■ Eigenvectors corresponding to distinct eigenvalues are linearly independent.

■ A linear operator L on an n-dimensional vector space V is diagonalizable if n
distinct eigenvalues exist for L.

■ If L is a linear operator,the union of bases for distinct eigenspaces of L is a linearly
independent set.

■ The Diagonalization Method of Section 3.4 applies to any matrix A for a lin-
ear operator on a finite dimensional vector space, and if A is diagonalizable,
the method can be used to find the eigenvalues of A, a basis of fundamental
eigenvectors for A, and a diagonal matrix similar to A.

■ The geometric multiplicity of an eigenvalue is the dimension of its eigenspace.

■ The algebraic multiplicity of an eigenvalue � for a linear operator L is the highest
power of (x � �) that divides the characteristic polynomial pL(x).

■ The geometric multiplicity of an eigenvalue is always less than or equal to its
algebraic multiplicity.

■ A linear operator L on an n-dimensional vector space is diagonalizable if and
only if both of the following conditions hold: (1) the sum of all the algebraic
multiplicities of all the eigenvalues of L is equal to n, and (2) the geometric
multiplicity of each eigenvalue equals its algebraic multiplicity.
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■ If A is an n � n matrix with characteristic polynomial pA (x), then pA(A) � On.
That is, every matrix is a“root”of its characteristic polynomial (Cayley-Hamilton
Theorem).

EXERCISES FOR SECTION 5.6
1. For each of the following, let L be a linear operator on R

n represented by the
given matrix with respect to the standard basis. Find all eigenvalues for L, and
find a basis for the eigenspace corresponding to each eigenvalue. Compare the
geometric and algebraic multiplicities of each eigenvalue.

�(a)

[
2 1
0 2

]

(b)

[
3 0
4 2

]

�(c)

⎡
⎣ 0 1 1

�1 4 �1
�1 5 �2

⎤
⎦

�(d)

⎡
⎣ 2 0 0

4 �3 �6
�4 5 8

⎤
⎦

(e)

⎡
⎣ 7 1 2

�11 �2 �3
�24 �3 �7

⎤
⎦

(f)

⎡
⎢⎢⎣

�13 10 12 19
1 5 7 �2

�2 �1 �1 3
�9 8 10 13

⎤
⎥⎥⎦

2. Each of the following represents a linear operator L on a vector space V . Let
C be the standard basis in each case, and let A be the matrix representation of
L with respect to C . Follow Steps 1 and 2 of the Generalized Diagonalization
Method to determine whether L is diagonalizable. If L is diagonalizable, finish
the method by performing Step 3. In particular, find the following:

(i) An ordered basis B for V consisting of eigenvectors for L

(ii) The diagonal matrix D that is the matrix representation of L with respect
to B

(iii) The transition matrix P from B to C

Finally, check your work by verifying that D � P�1AP.

(a) L: R4 → R
4 given by L

([x1,x2,x3,x4]
)

� [x2,x1,x4,x3]
�(b) L:P2 → P2 given by L

(
p(x)

)
� (x � 1)p′(x)

(c) L:P2 → P2 given by L
(
p(x)

)
� x2p′′(x) � p′(x) � 3p(x)

�(d) L:P2 → P2 given by L
(
p(x)

)
� (x � 3)2p′′(x) � xp′(x) � 5p(x)

�(e) L:R2 → R
2 such that L is the counterclockwise rotation about the origin

through an angle of �
3 radians
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(f ) L:M22 → M22 given by L(K) � KT

(g) L:M22 → M22 given by L(K) � K � KT

�(h) L:M22 → M22 given by L(K) �

[
�4 3

�10 7

]
K

3. Consider the linear operator L: R4 → R
4 from Example 12.

(a) Verify that pL(x) � (x � 3)3(x � 5) � x4 � 4x3 � 18x2 � 108x � 135.
(Hint: Use a cofactor expansion along the third column.)

(b) Show that {[�1,1,�2,8]} is a basis for the eigenspace E�5 for L by solving
an appropriate homogeneous system.

4. Let L: P2 → P2 be the translation operator given by L(p(x)) � p(x � a), for
some (fixed) real number a.
�(a) Find all eigenvalues for L when a � 1,and find a basis for each eigenspace.

(b) Find all eigenvalues for L when a is an arbitrary nonzero number,and find
a basis for each eigenspace.

5. Let A be an n � n upper triangular matrix with all main diagonal entries equal.
Show that A is diagonalizable if and only if A is a diagonal matrix.

6. Explain why Examples 8 and 9 provide counterexamples to the converse of
Corollary 5.24.

�7. (a) Give an example of a 3 � 3 upper triangular matrix having an eigenvalue
� with algebraic multiplicity 3 and geometric multiplicity 2.

(b) Give an example of a 3 � 3 upper triangular matrix, one of whose
eigenvalues has algebraic multiplicity 2 and geometric multiplicity 2.

8. (a) Suppose that L is a linear operator on a nontrivial finite dimensional vector
space. Prove L is an isomorphism if and only if 0 is not an eigenvalue
for L.

(b) Let L be an isomorphism from a vector space to itself. Suppose that � is an
eigenvalue for L having eigenvector v. Prove that v is an eigenvector for
L�1 corresponding to the eigenvalue 1/�.

9. Let L be a linear operator on a nontrivial finite dimensional vector space V , and
let B be an ordered basis for V .Also, let A be the matrix for L with respect to B.
Assume that A is a diagonalizable matrix. Prove that there is an ordered basis
C for V such that the matrix representation of L with respect to C is diagonal
and hence that L is a diagonalizable operator.

10. Let A be an n � n matrix. Suppose that {v1, . . . ,vn} is a basis for R
n of

eigenvectors for A with corresponding eigenvalues �1,�2, . . . ,�n. Show that
|A| � �1�2 · · ·�n.



 

388 CHAPTER 5 Linear Transformations

11. Let L be a linear operator on an n-dimensional vector space, with {�1, . . . ,�k}
equal to the set of all distinct eigenvalues for L. Show that �k

i�1(geometric
multiplicity of �i) � n.

12. Let L be a nontrivial linear operator on a nontrivial finite dimensional vector
space V . Show that if L is diagonalizable, then every root of pL(x) is real.

13. Let A and B be commuting n � n matrices.

(a) Show that if � is an eigenvalue for A and v ∈ E� (the eigenspace for A
associated with �), then Bv ∈ E�.

(b) Prove that if A has n distinct eigenvalues, then B is diagonalizable.

14. (a) Let A be a fixed 2 � 2 matrix with distinct eigenvalues �1 and �2. Show
that the linear operator L: M22 → M22 given by L(K) � AK is diagonal-
izable with eigenvalues �1 and �2, each having multiplicity 2. (Hint: Use
eigenvectors for A to help create eigenvectors for L.)

(b) Generalize part (a) as follows: Let A be a fixed diagonalizable n � n
matrix with distinct eigenvalues �1, . . . ,�k. Show that the linear operator
L: Mnn → Mnn given by L(K) � AK is diagonalizable with eigenvalues
�1, . . . ,�k. In addition, show that, for each i, the geometric multiplicity of
�i for L is n times the geometric multiplicity of �i for A.

�15. Let L: V → V be a linear operator on a finite dimensional vector space V . Sup-
pose that �1 and �2 are distinct eigenvalues for L and that B1 and B2 are bases
for the eigenspaces E�1 and E�2 for L. Prove that B1 ∩ B2 is empty.

�16. Let L: V → V be a linear operator on a finite dimensional vector space V . Sup-
pose that �1, . . . ,�n are distinct eigenvalues for L and that Bi � {vi1, . . . ,viki } is
a basis for the eigenspace E�i , for 1 � i � n. The goal of this exercise is to show
that B � ∪n

i�1Bi is linearly independent. Suppose that �n
i�1�ki

j�1aijvij � 0.

(a) Let ui � �ki
j�1aijvij . Show that ui ∈ E�i .

(b) Note that �n
i�1ui � 0. Use Theorem 5.23 to show that ui � 0,for 1 � i � n.

(c) Conclude that aij � 0, for 1 � i � n and 1 � j � ki .

(d) Explain why parts (a) through (c) prove that B is linearly independent.

17. Verify that the Cayley-Hamilton Theorem holds for the matrix in Example 7.

�18. True or False:

(a) If L: V → V is a linear operator and � is an eigenvalue for L, then E� �
{�L(v) |v ∈ V}.

(b) If L is a linear operator on a finite dimensional vector space V and A is a
matrix for L with respect to some ordered basis for V , then pL(x) � pA(x).

(c) If dim(V) � 5, a linear operator L on V is diagonalizable when L has
five linearly independent eigenvectors.
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(d) Eigenvectors for a given linear operator L are linearly independent if and
only if they correspond to distinct eigenvalues of L.

(e) If L is a linear operator on a finite dimensional vector space,then the union
of bases for distinct eigenspaces for L is a linearly independent set.

(f ) If L: R
6 → R

6 is a diagonalizable linear operator, then the union of bases
for all the distinct eigenspaces of L is actually a basis for R

6.

(g) If L is a diagonalizable linear operator on a finite dimensional vector space
V , the Generalized Diagonalization Method produces a basis B for V so that
the matrix for L with respect to B is diagonal.

(h) If L is a linear operator on a finite dimensional vector space V and � is an
eigenvalue for L, then the algebraic multiplicity of � is never greater than
the geometric multiplicity of �.

(i) If dim(V) � 7 and L: V → V is a linear operator, then L is diagonalizable
whenever the sum of the algebraic multiplicities of all the eigenvalues
equals 7.

(j) If A �

[
1 2
0 4

]
, then (1I2 � A)(4I2 � A) � O2.

REVIEW EXERCISES FOR CHAPTER 5
1. Which of the following are linear transformations? Prove your answer is correct.

�(a) f :R3 → R
3 given by f ([x,y,z]) � [4z � y,3x � 1,2y � 5x]

(b) g:P3 → M32 given by g(ax3 �bx2 �cx �d) �

⎡
⎣ 4b � c 3d � a

2d � 3a 4c
5a � c � 2d 2b � 3d

⎤
⎦

(c) h:R2 → R
2 given by h([x,y]) �

[
2
√

xy,�3x2y
]

2. Find the image of [2,�3] under the linear transformation that rotates every
vector [x,y] in R

2 counterclockwise about the origin through � � 2�/3. Use
three decimal places in your answer.

�3. Let B and C be fixed n � n matrices,with B nonsingular. Show that the mapping
f : Mnn → Mnn given by f (A) � CAB�1 is a linear operator.

�4. Suppose L: R
3 → R

3 is a linear operator and L([1,0,0]) � [�3,2,4],
L([0,1,0]) � [5,�1,3], and L([0,0,1]) � [�4,0,�2]. Find L([6,2,�7]). Find
L([x,y,z]), for any [x,y,z] ∈ R

3.

5. Let L1: V → W and L2: W → X be linear transformations. Suppose V ′ is a
subspace of V and X ′ is a subspace of X .

(a) Prove that (L2 ◦ L1)(V ′) is a subspace of X .
�(b) Prove that (L2 ◦ L1)

�1(X ′) is a subspace of V .
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6. For each of the following linear transformations L:V → W ,find the matrix ABC

for L with respect to the given bases B for V and C for W using the method of
Theorem 5.5:
�(a) L: R3 → R

2 given by L([x,y,z]) � [3y � 2z,4x � 7y] with
B � ([�5,�3,�2], [3,0,1], [5,2,2]) and C � ([4,3], [�3,�2])

(b) L: M22 → P2 given by L

([
a b
c d

])
� (2d � c � 3a)x2 � (4b � a)x �

(2b � 3d � 5c) with B �

([
3 4

�7 2

]
,

[
�2 �2

3 �2

]
,

[
3 2

�2 3

]
,

[
�6 �3

3 �4

])
and C � (�6x2 � x � 5,7x2 � 6x � 2,2x2 � 2x � 1)

7. In each case,find the matrix ADE for the given linear transformation L:V → W
with respect to the given bases D and E by first finding the matrix for L with
respect to the standard bases B and C for V and W , respectively,and then using
the method of Theorem 5.6.

(a) L: R
4 → R

3 given by L([a,b,c,d]) � [2a � b � 3c,3b � a � 4d,c � 2d]
with D � ([�4,7,3,0], [2,�1,�1,2], [3,�2,�2,3], [�2,2,1,1]) and E �
([�2,�1,2], [�6,2,�1], [3,�2,2])

�(b) L:P2 → M22 given by

L(ax2 � bx � c) �

[
6a � b � c 3b � 2c

2a � 4c a � 5b � c

]

with D � (�5x2 � 2x � 5,3x2 � x � 1, �2x2 � x � 3)

and E �

([
3 2
2 5

]
,

[
2 1
1 4

]
,

[
1 1
2 4

]
,

[
4 2
2 7

])
8. Find the matrix with respect to the standard bases for the composition L3 ◦ L2 ◦

L1:R3 → R
3 if L1 is a reflection through the yz-plane,L2 is a rotation about the

z-axis of 90◦, and L3 is a projection onto the xz-plane.

9. Suppose L: R
3 → R

3 is the linear operator whose matrix with respect to the

standard basis B for R
3 is ABB � 1

41

⎡
⎣ 23 36 12

36 �31 �24
�12 24 49

⎤
⎦.

�(a) Find pABB(x). (Be sure to incorporate 1
41 correctly into your calculations.)

(b) Find all eigenvalues for ABB and fundamental eigenvectors for each
eigenvalue.

(c) Combine the fundamental eigenvectors to form a basis C for R
3.

(d) Find ACC . (Hint: Use ABB and the transition matrix P from C to B.)

(e) Use ACC to give a geometric description of the operator L, as was done in
Example 6 of Section 5.2.
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10. Consider the linear transformation L: R4 → R
4 given by

L

⎛
⎜⎜⎝
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦
⎞
⎟⎟⎠�

⎡
⎢⎢⎣

3 1 �3 5

2 1 �1 2

2 3 5 �6

1 4 10 �13

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ .

�(a) Find a basis for ker(L) and a basis for range(L).

(b) Verify that dim(ker(L)) � dim(range(L)) � dim(R4).

(c) Is [�18,26,�4,2] in ker(L)? Is [�18,26,�6,2] in ker(L)? Why or why
not?

(d) Is [8,3,�11,�23] in range(L)? Why or why not?

11. For L: M32 → P3 given by L

([
a b c
d e f

])
� (a � f )x3 � (b � 2c)x2 �

(d � 3f )x, find a basis for ker(L) and a basis for range(L), and verify that
dim(ker(L)) � dim(range(L)) � dim(M32).

�12. Let L1:V → W and L2:W → X be linear transformations.

(a) Show that dim(ker(L1)) � dim(ker(L2 ◦ L1)).

(b) Find linear transformations L1,L2:R2 → R
2 for which dim(ker(L1)) <

dim(ker(L2 ◦ L1)).

13. Let A be a fixed m � n matrix, and let L:Rn → R
m and M :Rm → R

n be given
by L(X) � AX and M(Y) � AT Y.

(a) Prove that dim(ker(L)) � dim(ker(M)) � n � m.

(b) Prove that if L is onto, then M is one-to-one.

(c) Is the converse to part (b) true? Prove or disprove.

14. Consider L:P3 → M22 given by L
(
ax3 � bx2 � cx � d

)
�

[
a � d 2b

b c � d

]
.

(a) Without using row reduction, determine whether L is one-to-one and
whether L is onto.

(b) What is dim(ker(L))? What is dim(range(L))?

15. In each case, use row reduction to determine whether the given linear trans-
formation L is one-to-one and whether L is onto, and find dim(ker(L)) and
dim(range(L)).

�(a) L: R
3 → R

3 given by L

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 2 �1 1

�11 3 �3
13 �8 9

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦
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(b) L: R
4 → P2 having matrix

⎡
⎣6 3 21 5

3 2 10 2
2 �1 9 1

⎤
⎦with respect to the standard

bases for R
4 and P2

16. (a) Prove that any linear transformation from P3 to R
3 is not one-to-one.

(b) Prove that any linear transformation from P2 to M22 is not onto.

17. Let L:V → W be a linear transformation.

(a) Suppose L is one-to-one and L(v1) � cL(v2) with c �� 0 for some vectors
v1,v2 ∈ V . Show that v1 � cv2,and explain why this result agrees with part
(1) of Theorem 5.13.

(b) Suppose L is onto and w ∈ W . Let v1,v2 ∈ V and suppose that L(av1 �
bv2) �� w for all a,b ∈ R. Prove that {v1,v2} does not span V . (Hint: Use
part (2) of Theorem 5.13.)

18. Consider the linear operators L1 and L2 on R
4 having the given matrices with

respect to the standard basis:

L1:

⎡
⎢⎢⎣

3 6 1 1
5 2 �2 1
2 1 0 1
1 �1 �2 �1

⎤
⎥⎥⎦ , L2:

⎡
⎢⎢⎣

9 8 5 4
9 13 4 7
5 9 2 5

�5 �2 �2 0

⎤
⎥⎥⎦ .

�(a) Show that L1 and L2 are isomorphisms.
�(b) Calculate the matrices for L2 ◦ L1,L�1

1 , and L�1
2 .

(c) Verify that the matrix for (L2 ◦ L1)
�1 agrees with the matrix for L�1

1 ◦ L�1
2 .

19. (a) Show that a shear in the z-direction with factor k (see Table 5.1 in Section
5.2) is an isomorphism from R

3 to itself.

(b) Calculate the inverse isomorphism of the shear in part (a). Describe the
effect of the inverse geometrically.

20. Consider the subspace W of Mnn consisting of all n � n symmetric matrices,
and let B be a fixed n � n nonsingular matrix.

(a) Prove that if A ∈ W , then BT AB ∈ W .

(b) Prove that the linear operator on W given by L(A) � BT AB is an isomor-
phism. (Hint: Show either that L is one-to-one or that L is onto, and then
use Corollary 5.21.)

21. Consider the subspace W of P4 consisting of all polynomials of the form ax4 �
bx3 � cx2, for some a,b,c ∈ R.
�(a) Prove that L:W → P3 given by L(p) � p′ � p′′ is one-to-one.

(b) Is L an isomorphism from W to P3?

(c) Find a vector in P3 that is not in range(L).
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22. For each of the following, let L be the indicated linear operator.

(i) Find all eigenvalues for L,and a basis of fundamental eigenvectors for each
eigenspace.

(ii) Compare the geometric and algebraic multiplicities of each eigenvalue,
and determine whether L is diagonalizable.

(iii) If L is diagonalizable, find an ordered basis B of eigenvectors for L, a diag-
onal matrix D that is the matrix for L with respect to the basis B, and the
transition matrix P from B to the standard basis.

�(a) L: R
3 → R

3 having matrix

⎡
⎣�9 18 �16

32 �63 56
44 �84 75

⎤
⎦ with respect to the

standard basis

(b) L: R
3 → R

3 having matrix

⎡
⎣�1 �3 3

3 �1 �1
�1 1 �3

⎤
⎦ with respect to the

standard basis

�(c) L: R
3 → R

3 having matrix

⎡
⎣ �97 20 12

�300 63 36
�300 60 39

⎤
⎦ with respect to the

standard basis

(d) L:P3 → P3 given by L(p(x)) � (x � 1)p′(x) � 2p(x)

23. Show that L:R3 → R
3 given by reflection through the plane determined by the

linearly independent vectors [a,b,c] and [d,e, f ] is diagonalizable, and state a
diagonal matrix D that is similar to the matrix for L with respect to the standard
basis for R

3, as well as a basis of eigenvectors for L. (Hint: Use Exercise 8(a) in
Section 3.1 to find a vector that is orthogonal to both [a,b,c] and [d,e, f ].Then,
follow the strategy outlined in the last paragraph of Example 6 in Section 5.2.)

24. Verify that the Cayley-HamiltonTheorem holds for the matrix in Example 12 of
Section 5.6. (Hint: See part (a) of Exercise 3 in Section 5.6.)

�25. True or False:

(a) There is only one linear transformation L:R2 → R
2 such that L(i) � j and

L(j) � i.

(b) There is only one linear transformation L:R3 → R
2 such that L(i) � j and

L(j) � i.

(c) The matrix with respect to the standard basis for a clockwise rotation

about the origin through an angle of 45◦ in R
2 is

(√
2

2

)[ 1 1
�1 1

]
.

(d) If L: V → W is a linear transformation and Y is a subspace of V , then
T : Y → W given by T (y) � L(y) for all y ∈ Y is a linear transformation.
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(e) Let B be a fixed m � n matrix,and let L:Rn → R
m be given by L(X) � BX.

Then B is the matrix for L with respect to the standard bases for R
n

and R
m.

(f) If L: V → W is a linear transformation between nontrivial finite dimen-
sional vector spaces, and if ABC and ADE are matrices for L with respect
to the bases B and D for V and C and E for W , then ABC and ADE are
similar matrices.

(g) There is a linear operator L on R
5 such that ker(L) � range(L).

(h) If A is an m � n matrix and L: R
n → R

m is the linear transformation
L(X) � AX, then dim(range(L)) � dim(row space of A).

(i) If A is an m � n matrix and L: R
n → R

m is the linear transformation
L(X) � AX, then range(L) � column space of A.

(j) The DimensionTheorem shows that if L:V → W is a linear transformation
and V is finite dimensional, then W is also finite dimensional.

(k) A linear transformation L: V → W is one-to-one if and only if ker(L) is
empty.

(l) If V is a finite dimensional vector space, then a linear transformation L:
V → W is one-to-one if and only if dim(range(L)) � dim(V).

(m) Every linear transformation is either one-to-one or onto or both.

(n) If V is a finite dimensional vector space and L: V → W is an onto linear
transformation, then W is finite dimensional.

(o) If L: V → W is a one-to-one linear transformation and T is a linearly
independent subset of V , then L(T ) is a linearly independent subset
of W .

(p) If L: V → W is a one-to-one and onto function between vector spaces,
then L is a linear transformation.

(q) If V and W are nontrivial finite dimensional vector spaces,and L:V → W
is a linear transformation, then L is an isomorphism if and only if the
matrix for L with respect to some bases for V and W is square.

(r) If L:R3 → R
3 is the isomorphism that reflects vectors through the plane

2x � 3y � z � 0, then L�1 � L.

(s) Every nontrivial vector space V is isomorphic to R
n for some n.

(t) If W1 and W2 are two planes through the origin in R
3, then there exists

an isomorphism L:W1 → W2.

(u) If L:V → W is a linear transformation and M :W → X is an isomorphism,
then ker(M ◦ L) � ker(L).
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(v) If L:V → W is a linear transformation and M :W → X is an isomorphism,
then range(M ◦ L) � range(L).

(w) If A is an n � n matrix and � is an eigenvalue for A, then E� is the kernel
of the linear operator on R

n whose matrix with respect to the standard
basis is (�In � A).

(x) If L is a linear operator on an n-dimensional vector space V such that L has
n distinct eigenvalues, then the algebraic multiplicity for each eigenvalue
is 1.

(y) If L is a linear operator on a nontrivial finite dimensional vector space
V , x2 is a factor of pL(x), and dim(E0) � 1, then L is not diagonalizable.

(z) If L is a linear operator on a nontrivial finite dimensional vector space
V and B1, . . . ,Bk are bases for k different eigenspaces for L, then B1 ∪
B2 ∪ ·· · ∪ Bk is a basis for a subspace of V .
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CHAPTER

6Orthogonality

GEOMETRY IS NEVER POINTLESS

Linear algebra exists at the crossroads between algebra and geometry. Yet, in our study of
abstract vector spaces in Chapters 4 and 5, we usually concentrated on the algebra involved
at the expense of the geometry. But the underlying geometry is important, also. For example,
a linear transformation on R

n can cause the distance between the images of two points to
be different from the original distance between the points. Angles between a pair of vectors
and their images can differ as well.

In Chapter 1, we noted that the geometric properties of R
n, such as orthogonality,

are derived from the length and dot product of vectors. In this chapter, we enhance our
understanding of these properties and operations by re-examining them in the light of the
more general vector space properties of Chapters 4 and 5. This new level of understanding
will put additional applications within our reach.

In our study of general vector spaces and linear transformations in Chapters 4 and 5,
we avoided the dot product because it is not defined in every vector space.Therefore,
we could not discuss lengths of vectors or angles in general vector spaces as we can
in R

n. In this chapter, we restrict our attention to R
n and present some additional

structures and properties related to the dot product.
In Section 6.1,we examine special bases for R

n whose vectors are mutually orthog-
onal. In Section 6.2,we introduce orthogonal complements of subspaces of R

n. Finally,
in Section 6.3, we use orthogonality to diagonalize any symmetric matrix.

6.1 ORTHOGONAL BASES AND THE GRAM-SCHMIDT
PROCESS

In this section,we investigate orthogonality of vectors in more detail. Our main goal is
the Gram-Schmidt Process, a method for constructing a basis of mutually orthogonal
vectors for any nontrivial subspace of R

n.

Elementary Linear Algebra
Copyright © 2010 by Elsevier, Inc. All rights reserved. 397
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Orthogonal and Orthonormal Vectors

Definition Let {v1,v2, . . . ,vk} be a subset of k distinct vectors of R
n. Then

{v1,v2, . . . ,vk} is an orthogonal set of vectors if and only if the dot product
of any two distinct vectors in this set is zero — that is, if and only if vi · vj � 0, for
1 � i, j � k, i �� j. Also, {v1,v2, . . . ,vk} is an orthonormal set of vectors if and
only if it is an orthogonal set and all its vectors are unit vectors (that is, ‖vi‖ � 1,
for 1 � i � k).

In particular, any set containing a single vector is orthogonal, and any set
containing a single unit vector is orthonormal.

Example 1
In R

3,{i, j,k} is an orthogonal set because i · j � j · k � k · i � 0. In fact, this is an orthonormal
set, since we also have ‖i‖ � ‖j‖ � ‖k‖ � 1.

In R
4,{[1,0,�1,0], [3,0,3,0]} is an orthogonal set because [1,0,�1,0] · [3,0,3,0] � 0. If

we normalize each vector (that is, divide each of these vectors by its length), we create the
orthonormal set of vectors

{[
1√
2

,0,�
1√
2

,0

]
,

[
1√
2

,0,
1√
2

,0

]}
.

The next theorem is proved in the same manner as Result 7 in Section 1.3.

Theorem 6.1 Let T � {v1, . . . ,vk} be an orthogonal set of nonzero vectors in R
n. Then

T is a linearly independent set.

Notice that the orthogonal sets in Example 1 are indeed linearly independent.

Orthogonal and Orthonormal Bases

Theorem 6.1 assures us that any orthogonal set of nonzero vectors in R
n is linearly

independent, so any such set forms a basis for some subspace of R
n.

Definition A basis B for a subspace W of R
n is an orthogonal basis for W if and

only if B is an orthogonal set. Similarly, a basis B for W is an orthonormal basis
for W if and only if B is an orthonormal set.
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The following corollary follows immediately from Theorem 6.1:

Corollary 6.2 If B is an orthogonal set of n nonzero vectors in R
n, then B is an orthogonal

basis for R
n. Similarly, if B is an orthonormal set of n vectors in R

n, then B is an
orthonormal basis for R

n.

Example 2
Consider the following subset of R

3: {[1,0,�1], [�1,4,�1], [2,1,2]}. Because every pair of dis-
tinct vectors in this set is orthogonal (verify!), this is an orthogonal set. By Corollary 6.2, this is
also an orthogonal basis for R

3. Normalizing each vector, we obtain the following orthonormal
basis for R

3: {[
1√
2

,0,�
1√
2

]
,

[
�

1

3
√

2
,

4

3
√

2
,�

1

3
√

2

]
,

[
2

3
,
1

3
,
2

3

]}
.

One of the advantages of using an orthogonal or orthonormal basis is that it is easy
to coordinatize vectors with respect to that basis.

Theorem 6.3 If B � (v1,v2, . . . ,vk) is a nonempty ordered orthogonal basis for a
subspace W of R

n, and if v is any vector in W, then

[v]B �

[
(v · v1)

(v1 · v1)
,

(v · v2)

(v2 · v2)
, . . . ,

(v · vk)

(vk · vk)

]
�

[
(v · v1)

||v1||2 ,
(v · v2)

||v2||2 , . . . ,
(v · vk)

||vk||2
]

.

In particular, if B is an ordered orthonormal basis for W, then [v]B �
[v · v1,v · v2, . . . ,v · vk].

Proof. Suppose that [v]B � [a1,a2, . . . ,ak], where a1,a2, . . . ,ak ∈ R. We must show that
ai � (v · vi)/(vi · vi), for 1 � i � k. Now, v � a1v1 � a2v2 � · · · � akvk. Hence,

v · vi � (a1v1 � a2v2 � · · · � aivi � · · · � akvk) · vi

� a1(v1 · vi) � a2(v2 · vi) � · · · � ai(vi · vi) � · · · � ak(vk · vi)

� a1(0) � a2(0) � · · · � ai(vi · vi) � · · · � ak(0) because B is orthogonal

� ai(vi · vi).

Thus, ai � (v · vi)/(vi · vi) � (v · vi)/||vi||2. In the special case when B is orthonormal,
‖vi‖ � 1, and so ai � v · vi.
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Example 3
Consider the ordered orthogonal basis B � (v1,v2,v3) for R

3 from Example 2, where v1 �

[1,0,�1],v2 � [�1,4,�1], and v3 � [2,1,2]. Let v � [�1,5,3]. We will use Theorem 6.3 to
find [v]B.

Now, v · v1 � �4,v · v2 � 18, and v · v3 � 9. Also, v1 · v1 � 2,v2 · v2 � 18, and v3 · v3 � 9.
Hence,

[v]B �

[
(v · v1)

(v1 · v1)
,

(v · v2)

(v2 · v2)
, . . . ,

(v · vk)

(vk · vk)

]
�

[
�4

2
,
18

18
,
9

9

]
� [�2,1,1].

Similarly, suppose C � (w1,w2,w3) is the ordered orthonormal basis for R
3 from Example 2;

that is, w1 �
[

1√
2

,0,� 1√
2

]
,w2 �

[
� 1

3
√

2
, 4

3
√

2
,� 1

3
√

2

]
, and w3 �

[
2
3 , 1

3 , 2
3

]
. Again, let

v � [�1,5,3]. Then v · v1 � �2
√

2,v · v2 � 3
√

2, and v · v3 � 3. By Theorem 6.3, [v]C �[
�2

√
2,3

√
2,3
]
. These coordinates can be verified by checking that

[�1,5,3] � �2
√

2

[
1√
2

,0,�
1√
2

]
� 3

√
2

[
�

1

3
√

2
,

4

3
√

2
,�

1

3
√

2

]
� 3

[
2

3
,
1

3
,
2

3

]
.

The Gram-Schmidt Process: Finding an Orthogonal Basis for a
Subspace of R

n

We have just seen that it is convenient to work with an orthogonal basis whenever
possible. Now, suppose W is a subspace of R

n with basis B � {w1, . . . ,wk}. There is
a straightforward way to replace B with an orthogonal basis for W . This is known as
the Gram-Schmidt Process.

Gram-Schmidt Process
Let {w1, . . . ,wk} be a linearly independent subset of R

n. We create a new set {v1, . . . ,vk}
of vectors as follows:

Let v1 � w1.

Let v2 � w2 �

(
w2 · v1

v1 · v1

)
v1.

Let v3 � w3 �

(
w3 · v1

v1 · v1

)
v1 �

(
w3 · v2

v2 · v2

)
v2.

...

Let vk � wk �

(
wk · v1

v1 · v1

)
v1 �

(
wk · v2

v2 · v2

)
v2 � · · · �

(
wk · vk�1

vk�1 · vk�1

)
vk�1.

Then {v1, . . . ,vk} is an orthogonal basis for span({w1, . . . ,wk}).
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The justification that the Gram-Schmidt Process is valid is given in the following
theorem:

Theorem 6.4 Let B � {w1, . . . ,wk} be a basis for a subspace W of R
n. Then the set

T � {v1, . . . ,vk} obtained by applying the Gram-Schmidt Process to B is an orthogonal
basis for W.

Hence, any nontrivial subspace W of R
n has an orthogonal basis.

Proof. Let W , B, and T be as given in the statement of the theorem. To prove that T is an
orthogonal basis for W, we must prove three statements about T .

(1) T ⊆ W.

(2) Every vector in T is nonzero.

(3) T is an orthogonal set.

Theorem 6.1 will then show that T is linearly independent, and since |T | � k � dim(W),
T is an orthogonal basis for W.

We proceed by induction, proving for each i,1 � i � k, that

(1′) {v1, . . . ,vi} ⊆ span({w1, . . . ,wi}),
(2′) vi �� 0,

(3′) {v1, . . . ,vi} is an orthogonal set.

Obviously, once the induction is complete, properties (1), (2), and (3) will be established
for T , and the theorem will be proved.

Base Step: Since v1 � w1 ∈ B, it is clear that {v1} ⊆ span({w1}),v1 �� 0, and {v1} is an
orthogonal set.

Inductive Step: The inductive hypothesis asserts that {v1, . . . ,vi} is an orthogonal subset
of span({w1, . . . ,wi}) consisting of nonzero vectors. We need to prove (1′), (2′), and (3′) for
{v1, . . . ,vi�1}.

To establish (1′), we only need to prove that vi�1 ∈ span({w1, . . . ,wi�1}), since
we already know from the inductive hypothesis that {v1, . . . ,vi} is a subset of
span({w1, . . . ,wi}), and hence of span({w1, . . . ,wi�1}). But by definition, vi�1 is a lin-
ear combination of wi�1 and v1, . . . ,vi, all of which are in span({w1, . . . ,wi�1}). Hence,
vi�1 ∈ span({w1, . . . ,wi�1}).

To prove (2′), we assume that vi�1 � 0 and produce a contradiction. Now, from the
definition of vi�1, if vi�1 � 0, we have

wi�1 �

(
wi�1 · v1

v1 · v1

)
v1 �

(
wi�1 · v2

v2 · v2

)
v2 � · · · �

(
wi�1 · vi

vi · vi

)
vi .

But then wi�1 ∈ span({v1, . . . ,vi}) ⊆ span({w1, . . . ,wi}), from the inductive hypothesis.
This result contradicts the fact that B is a linearly independent set. Therefore, vi�1 �� 0.
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Finally, we need to prove (3′). By the inductive hypothesis, {v1, . . . ,vi} is an orthogonal
set. Hence, we only need to show that vi�1 is orthogonal to each of v1, . . . ,vi. Now,

vi�1 � wi�1 �

(
wi�1 · v1

v1 · v1

)
v1 �

(
wi�1 · v2

v2 · v2

)
v2 � · · · �

(
wi�1 · vi

vi · vi

)
vi .

Notice that

vi�1 · v1 � wi�1 · v1 �

(
wi�1 · v1

v1 · v1

)
(v1 · v1) �

(
wi�1 · v2

v2 · v2

)
(v2 · v1)

� · · · �

(
wi�1 · vi

vi · vi

)
(vi · v1)

� wi�1 · v1 �

(
wi�1 · v1

v1 · v1

)
(v1 · v1) �

(
wi�1 · v2

v2 · v2

)
(0)

� · · · �

(
wi�1 · vi

vi · vi

)
(0) inductive hypothesis

� wi�1 · v1 � wi�1 · v1 � 0.

Similar arguments show that vi�1 · v2 � vi�1 · v3 � · · · � vi�1 · vi � 0. Hence, {v1, . . . ,
vi�1} is an orthogonal set. This finishes the Inductive Step, completing the proof of the
theorem.

Once we have an orthogonal basis for a subspace W of R
n, we can easily convert

it to an orthonormal basis for W by normalizing each vector. Also, a little thought
will convince you that if any of the newly created vectors vi in the Gram-Schmidt
Process is replaced with a nonzero scalar multiple of itself, the proof of Theorem 6.4
still holds. Hence,in applying the Gram-Schmidt Process,we can often replace the vi’s
we create with appropriate multiples to avoid fractions. The next example illustrates
these techniques.

Example 4
You can verify that B � {[2,1,0,�1], [1,0,2,�1], [0,�2,1,0]} is a linearly independent set in R

4.
Let W � span(B). Now, B is not an orthogonal basis for W, but we will apply the Gram-Schmidt
Process to replace B with an orthogonal basis. Let w1 � [2,1,0,�1],w2 � [1,0,2,�1], and
w3 � [0,�2,1,0]. Beginning the Gram-Schmidt Process, we obtain v1 � w1 � [2,1,0,�1] and

v2 � w2 �

(
w2 · v1

v1 · v1

)
v1

� [1,0,2,�1] �

( [1,0,2,�1] · [2,1,0,�1]
[2,1,0,�1] · [2,1,0,�1]

)
[2,1,0,�1]

� [1,0,2,�1] �

(
3

6

)
[2,1,0,�1] �

[
0,�

1

2
,2,�

1

2

]
.
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To avoid fractions, we replace this vector with an appropriate scalar multiple. Multiplying by 2,
we get v2 � [0,�1,4,�1]. Notice that v2 is orthogonal to v1. Finally,

v3 � w3 �

(
w3 · v1

v1 · v1

)
v1 �

(
w3 · v2

v2 · v2

)
v2

� [0,�2,1,0] �

( [0,�2,1,0] · [2,1,0,�1]
[2,1,0,�1] · [2,1,0,�1]

)
[2,1,0,�1]

�

( [0,�2,1,0] · [0,�1,4,�1]
[0,�1,4,�1] · [0,�1,4,�1]

)
[0,�1,4,�1]

� [0,�2,1,0] �

(
�2

6

)
[2,1,0,�1] �

(
6

18

)
[0,�1,4,�1] �

[
2

3
,�

4

3
,�

1

3
,0

]
.

To avoid fractions, we multiply this vector by 3, yielding v3 � [2,�4,�1,0]. Notice that v3 is
orthogonal to both v1 and v2. Hence,

{v1,v2,v3} � {[2,1,0,�1], [0,�1,4,�1], [2,�4,�1,0]}

is an orthogonal basis for W. To find an orthonormal basis for W, we normalize v1,v2, and v3

to obtain{[
2√
6

,
1√
6

,0,�
1√
6

]
,

[
0,�

1

3
√

2
,

4

3
√

2
,�

1

3
√

2

]
,

[
2√
21

,�
4√
21

,�
1√
21

,0

]}
.

Suppose T � {w1, . . . ,wk} is an orthogonal set of nonzero vectors in a subspace
W of R

n. By Theorem 6.1, T is linearly independent. Hence, by Theorem 4.18,
we can enlarge T to an ordered basis (w1, . . . ,wk,wk�1, . . . ,wl) for W . Applying
the Gram-Schmidt Process to this enlarged basis gives an ordered orthogonal basis
B � (v1, . . . ,vk,vk�1, . . . ,vl) for W . However, because (w1, . . . ,wk) is already orthog-
onal, the first k vectors, v1, . . . ,vk, created by the Gram-Schmidt Process will be
equal to w1, . . . ,wk, respectively (why?). Hence, B is an ordered orthogonal basis for
W that contains T . Similarly, if the original set T � {w1, . . . ,wk} is orthonormal, T
can be enlarged to an orthonormal basis for W (why?). These remarks prove the
following:

Theorem 6.5 Let W be a subspace of R
n. Then any orthogonal set of nonzero vectors

in W is contained in (can be enlarged to) an orthogonal basis for W. Similarly, any
orthonormal set of vectors in W is contained in an orthonormal basis for W.

Example 5
We will find an orthogonal basis B for R

4 that contains the orthogonal set T �

{[2,1,0,�1], [0,�1,4,�1], [2,�4,�1,0]} from Example 4. To enlarge T to a basis for R
4, we
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row reduce

⎡
⎢⎢⎢⎣

2 0 2 1 0 0 0
1 �1 �4 0 1 0 0
0 4 �1 0 0 1 0

�1 �1 0 0 0 0 1

⎤
⎥⎥⎥⎦ to obtain

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 1
18 � 2

9 � 17
18

0 1 0 0 � 1
18

2
9 � 1

18

0 0 1 0 � 2
9 � 1

9 � 2
9

0 0 0 1 1
3

2
3

7
3

⎤
⎥⎥⎥⎥⎥⎦.

Hence, the Enlarging Method from Section 4.6 shows that {[2,1,0,�1], [0,�1,4,�1],
[2,�4,�1,0], [1,0,0,0]} is a basis for R

4. Now, we use the Gram-Schmidt Process to convert
this basis to an orthogonal basis for R

4.
Let w1 � [2,1,0,�1], w2 � [0,�1,4,�1], w3 � [2,�4,�1,0], and w4 � [1,0,0,0]. The

first few steps of the Gram-Schmidt Process give v1 � w1, v2 � w2, and v3 � w3 (why?). Finally,

v4 � w4 �

(
w4 · v1

v1 · v1

)
v1 �

(
w4 · v2

v2 · v2

)
v2 �

(
w4 · v3

v3 · v3

)
v3

� [1,0,0,0] �

( [1,0,0,0] · [2,1,0,�1]
[2,1,0,�1] · [2,1,0,�1]

)
[2,1,0,�1]

�

( [1,0,0,0] · [0,�1,4,�1]
[0,�1,4,�1] · [0,�1,4,�1]

)
[0,�1,4,�1]

�

( [1,0,0,0] · [2,�4,�1,0]
[2,�4,�1,0] · [2,�4,�1,0]

)
[2,�4,�1,0]

� [1,0,0,0] �
1

3
[2,1,0,�1] �

2

21
[2,�4,�1,0] �

[
1

7
,

1

21
,

2

21
,
1

3

]
.

To avoid fractions, we multiply this vector by 21 to obtain v4 � [3,1,2,7]. Notice that v4
is orthogonal to v1,v2, and v3. Hence, {v1,v2,v3,v4} is an orthogonal basis for R

4

containing T .

Orthogonal Matrices

Definition A nonsingular (square) matrix A is orthogonal if and only if AT � A�1.

The next theorem lists some fundamental properties of orthogonal matrices.

Theorem 6.6 If A and B are orthogonal matrices of the same size, then

(1) |A| �
1,

(2) AT � A�1 is orthogonal, and

(3) AB is orthogonal.
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Part (1) of Theorem 6.6 is obviously true because if A is orthogonal, then |AT | �
|A�1| ⇒ |A| � 1/|A| ⇒ |A|2 � 1 ⇒ |A| �
1. (Beware! The converse is not true — if
|A| �
1, then A is not necessarily orthogonal.) The proofs of parts (2) and (3) are
straightforward, and you are asked to provide them in Exercise 11.

The next theorem characterizes all orthogonal matrices.

Theorem 6.7 Let A be an n � n matrix. Then A is orthogonal

(1) if and only if the rows of A form an orthonormal basis for R
n

(2) if and only if the columns of A form an orthonormal basis for R
n.

Theorem 6.7 suggests that it is probably more appropriate to refer to orthogonal matri-
ces as“orthonormal matrices.”Unfortunately,the term orthogonal matrix has become
traditional usage in linear algebra.

Proof. (Abridged) We prove half of part (1) and leave the rest as Exercise 17.
Suppose that A is an orthogonal n � n matrix. Then we have A AT � In (why?). Hence,

for 1 � i, j � n with i �� j, we have [ith row of A] · [ jth column of AT ] � 0. Therefore, [ith
row of A] · [ jth row of A] � 0, which shows that distinct rows of A are orthogonal. Again,
because A AT � In, for each i,1 � i � n, we have [ith row of A] · [ith column of AT ] � 1.
But then [ith row of A] · [ith row of A] � 1, which shows that each row of A is a unit
vector. Thus, the n rows of A form an orthonormal set, and hence, an orthonormal basis
for R

n.

In is obviously an orthogonal matrix, for any n 	 1. In the next example, we show
how Theorem 6.7 can be used to find other orthogonal matrices.

Example 6
Consider the orthonormal basis {v1,v2,v3} for R

3 from Example 2, where

v1 �

[
1√
2

,0,�
1√
2

]
, v2 �

[
�

1

3
√

2
,

4

3
√

2
,�

1

3
√

2

]
, and

[
2

3
,
1

3
,
2

3

]
.

By parts (1) and (2) of Theorem 6.7, respectively,

A �

⎡
⎢⎢⎢⎢⎣

1√
2

0 � 1√
2

� 1
3
√

2
4

3
√

2
� 1

3
√

2
2
3

1
3

2
3

⎤
⎥⎥⎥⎥⎦ and AT �

⎡
⎢⎢⎢⎢⎢⎣

1√
2

� 1
3
√

2
2
3

0 4
3
√

2
1
3

� 1√
2

� 1
3
√

2
2
3

⎤
⎥⎥⎥⎥⎥⎦

are both orthogonal matrices. You can verify that both A and AT are orthogonal by checking that
A AT � I3.
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One important example of orthogonal matrices is given in the next theorem.

Theorem 6.8 Let B and C be ordered orthonormal bases for R
n. Then the transition

matrix from B to C is an orthogonal matrix.

In Exercise 20,you are asked to prove a partial converse as well as a generalization
of Theorem 6.8.

Proof. Let S be the standard basis for R
n. The matrix P whose columns are the vectors in B

is the transition matrix from B to S. Similarly, the matrix Q, whose columns are the vectors
in C, is the transition matrix from C to S. Both P and Q are orthogonal matrices by part (2)
of Theorem 6.7. But then Q�1 is also orthogonal. Now, by Theorems 4.21 and 4.22, Q�1P
is the transition matrix from B to C (see Figure 6.1), and Q�1P is orthogonal by part (3) of
Theorem 6.6.

P

Q21P

Q215QT

Q

CSB

FIGURE 6.1

Visualizing Q�1P as the transition matrix from B to C

Example 7
Consider the following ordered orthonormal bases for R

2:

B �

([√
2

2
,

√
2

2

]
,

[√
2

2
,�

√
2

2

])
and C �

([√
3

2
,
1

2

]
,

[
�

1

2
,

√
3

2

])
.

By Theorem 6.8, the transition matrix from B to C is orthogonal. To verify this, we can use
Theorem 6.3 to obtain [√

2

2
,

√
2

2

]
C

�

[√
6 �

√
2

4
,

√
6 �

√
2

4

]
and

[√
2

2
,�

√
2

2

]
C

�

[√
6 �

√
2

4
,

�
√

6 �
√

2

4

]
.
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Hence, the transition matrix from B to C is

A �
1

4

[√
6 �

√
2

√
6 �

√
2√

6 �
√

2 �
√

6 �
√

2

]
.

Because AAT � I2 (verify!), A is an orthogonal matrix.

The final theorem of this section can be used to prove that multiplying two n-vectors
by an orthogonal matrix does not change the angle between them (see Exercise 18).

Theorem 6.9 Let A be an n � n orthogonal matrix, and let v and w be vectors in R
n.

Then v · w � Av · Aw.

Proof. Notice that the dot product x · y of two column vectors x and y can be written in
matrix multiplication form as xT y. Let v,w ∈ R

n, and let A be an n � n orthogonal matrix.
Then

v · w � vT w � vT Inw � vT AT Aw � (Av)T Aw � Av · Aw.

New Vocabulary
Bessel’s Inequality
Gram-Schmidt Process
ordered orthogonal basis
ordered orthonormal basis
orthogonal basis

orthogonal matrix
orthogonal set (of vectors)
orthonormal basis
orthonormal set (of vectors)
Parseval’s Inequality

Highlights

■ Any finite orthogonal set of nonzero vectors is linearly independent.

■ Any set of n nonzero orthogonal [orthonormal] vectors in R
n is an orthogonal

[orthonormal] basis for R
n.

■ If a vector v is contained in a subspace W of R
n, and B � (v1,v2, . . . ,vk) is an

ordered orthogonal basis for W , then [v]B �
[

(v·v1)

||v1||2 , (v·v2)

||v2||2 , . . . , (v·vk)

||vk||2
]
. If B is an

ordered orthonormal basis for W , then [v]B � [v · v1,v · v2, . . . ,v · vk].
■ Any nontrivial subspace of R

n has an orthogonal (and hence, an orthonormal)
basis.

■ The Gram-Schmidt Process is used to find an orthogonal basis of k vectors for
the span of a given set of k linearly independent vectors.
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■ Any orthogonal [orthonormal] set of nonzero vectors in a subspace W of R
n

can be enlarged to an orthogonal [orthonormal] basis for W .

■ A (nonsingular) matrix A is orthogonal if and only if AT � A�1.

■ If a matrix A is orthogonal, then |A| �
 1.

■ An n � n matrix A is orthogonal if and only if the rows [columns] of A form an
orthonormal basis for R

n.

■ Any transition matrix from one ordered orthonormal basis of R
n to another is

an orthogonal matrix.

■ If v,w ∈ R
n, and A is an n � n orthogonal matrix, then the angle between v and

w equals the angle between Av and Aw.

EXERCISES FOR SECTION 6.1
1. Which of the following sets of vectors are orthogonal?Which are orthonormal?

�(a) {[3,�2], [4,6]}
(b)

{[
� 1√

5
, 2√

5

]
,
[

2√
5
, 1√

5

]}
�(c)

{[
3√
13

,� 2√
13

]
,
[

1√
10

,� 3√
10

]}
(d)

{[
1
3 , 2

3 , 2
3

]
,
[

2
3 , 1

3 ,� 2
3

]
,
[

2
3 ,� 2

3 , 1
3

]}

(e)
{[

3
5 ,0,� 4

5

]}
�(f) {[2,�3,1,2], [�1,2,8,0],

[6,�1,1,�8]}
(g)

{[1
4 , 1

4 , 1
4 ,� 1

2 , 3
4

]
,
[

1
6 , 1

6 ,� 1
2 , 2

3 , 1
2

]}

2. Which of the following matrices are orthogonal?

�(a)

⎡
⎣

√
3

2
1
2

� 1
2

√
3

2

⎤
⎦

(b)

[
3 �2
2 3

]

�(c)

⎡
⎣ 3 0 10

�1 3 3
3 1 �9

⎤
⎦

(d)

⎡
⎢⎢⎣

2
15

5
15

14
15

10
15

10
15 � 5

15
11
15 � 10

15
2

15

⎤
⎥⎥⎦

�(e)

⎡
⎢⎢⎢⎢⎢⎣

2
3

2
3 0 1

3
2
3 � 2

3 � 1
3 0

1
3 0 2

3 � 2
3

0 1
3 � 2

3 � 2
3

⎤
⎥⎥⎥⎥⎥⎦

3. In each case,verify that the given ordered basis B is orthonormal.Then, for the
given v, find [v]B, using the method of Theorem 6.3.

�(a) v � [�2,3], B �
([

�
√

3
2 , 1

2

]
,
[

1
2 ,

√
3

2

])
(b) v � [4,�1,2], B �

([
3
7 ,� 6

7 ,� 2
7

]
,
[

2
7 , 3

7 ,� 6
7

]
,
[

6
7 , 2

7 , 3
7

])
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�(c) v � [8,4,�3,5], B �
([ 1

2 ,� 1
2 , 1

2 , 1
2

]
,
[

3
2
√

3
, 1

2
√

3
,� 1

2
√

3
,� 1

2
√

3

]
,[

0, 2√
6

, 1√
6

, 1√
6

]
,
[
0,0,� 1√

2
, 1√

2

])
4. Each of the following represents a basis for a subspace of R

n, for some n. Use
the Gram-Schmidt Process to find an orthogonal basis for the subspace.

�(a) {[5,�1,2], [2,�1,�4]} in R
3

(b) {[2,�1,3,1], [�3,0,�1,4]} in R
4

�(c) {[2,1,0,�1], [1,1,1,�1], [1,�2,1,1]} in R
4

(d) {[0,1,3,�2], [1,2,1,�1], [�2,6,7,�4]} in R
4

(e) {[4,�1,�2,2], [8,�1,4,0], [�1,2,0,�2]} in R
4

5. Enlarge each of the following orthogonal sets to an orthogonal basis for R
n.

(Avoid fractions by using appropriate scalar multiples.)

�(a) {[2,2,�3]}
(b) {[1,�4,3]}

�(c) {[1,�3,1], [2,5,13]}

(d) {[3,1,�2], [5,�3,6]}
�(e) {[2,1,�2,1]}

(f) {[2,1,0,�3], [0,3,2,1]}
6. Let W � {[a,b,c,d,e] |a � b � c � d � e � 0}, a subspace of R

5. Let T �
{[�2,�1,4,�2,1], [4,�3,0,�2,1]}, an orthogonal subset of W . Enlarge T
to an orthogonal basis for W . (Hint: Use the fact that B � {[1,�1,0,0,0],
[0,1,�1,0,0], [0,0,1,�1,0], [0,0,0,1,�1]} is a basis for W .)

7. It can be shown (see Exercise 6 in the Review Exercises for this chapter) that
the linear operator represented by a 3 � 3 orthogonal matrix with determi-
nant 1 (with respect to the standard basis) always represents a rotation about
some axis in R

3 and that the axis of rotation is parallel to an eigenvector corre-
sponding to the eigenvalue � � 1. Verify that each of the following matrices is
orthogonal with determinant 1,and thereby represents a rotation about an axis
in R

3. Solve in each case for a vector in the direction of the axis of rotation.

�(a) 1
11

⎡
⎣ 2 6 �9

�9 6 2
6 7 6

⎤
⎦

(b) 1
17

⎡
⎣ 12 1 12

8 12 �9
�9 12 8

⎤
⎦

�(c) 1
7

⎡
⎣6 2 3

3 �6 �2
2 3 �6

⎤
⎦

(d) 1
15

⎡
⎣ 2 14 5

10 �5 10
11 2 �10

⎤
⎦

8. (a) Show that if {v1, . . . ,vk} is an orthogonal set in R
n and c1, . . . ,ck are

nonzero scalars, then {c1v1, . . . ,ckvk} is also an orthogonal set.
�(b) Is part (a) still true if orthogonal is replaced by orthonormal every-

where?
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9. Suppose that {u1, . . . ,un} is an orthonormal basis for R
n.

(a) If v,w ∈ R
n, show that

v · w � (v · u1)(w · u1) � (v · u2)(w · u2) � · · · � (v · un)(w · un).

(b) If v ∈ R
n, use part (a) to prove Parseval’s Equality,

‖v‖2 � (v · u1)
2 � (v · u2)

2 � · · · � (v · un)2.

10. Let {u1, . . . ,uk} be an orthonormal set of vectors in R
n. For any vector v ∈ R

n,
prove Bessel’s Inequality,

(v · u1)
2 � · · · � (v · uk)2 � ‖v‖2 .

(Hint: Let W be the subspace spanned by {u1, . . . ,uk}. Enlarge {u1, . . . ,uk} to
an orthonormal basis for R

n. Then use Theorem 6.3.) (Bessel’s Inequality is a
generalization of Parseval’s Equality, which appears in Exercise 9.)

11. (a) Prove part (2) of Theorem 6.6.

(b) Prove part (3) of Theorem 6.6.

12. Let A be an n � n matrix with A2 � In. Prove that A is symmetric if and only
if A is orthogonal.

13. Show that if n is odd and A is an orthogonal n � n matrix, then A is not skew-
symmetric. (Hint: Suppose A is both orthogonal and skew-symmetric. Show
that A2 � �In, and then use determinants.)

14. If A is an n � n orthogonal matrix with |A| � �1, show that A � In has
no inverse. (Hint: Show that A � In � A (A � In)T , and then use determi-
nants.)

15. Suppose that A is a 3 � 3 upper triangular orthogonal matrix. Show that A is
diagonal and that all main diagonal entries of A equal 
1. (Note:This result
is true for any n � n upper triangular orthogonal matrix.)

16. (a) If u is any unit vector in R
n, explain why there exists an n � n orthogonal

matrix with u as its first row. (Hint: Consider Theorem 6.5.)
�(b) Find an orthogonal matrix whose first row is 1√

6
[1,2,1].

�17. Finish the proof of Theorem 6.7.

18. Suppose that A is an n � n orthogonal matrix.

(a) Prove that for every v ∈ R
n,‖v‖ � ‖Av‖.

(b) Prove that for all v,w ∈ R
n, the angle between v and w equals the angle

between Av and Aw.
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19. Let B be an ordered orthonormal basis for a k-dimensional subspace V of R
n.

Prove that for all v1,v2 ∈ V , v1 · v2 � [v1]B · [v2]B, where the first dot product
takes place in R

n and the second takes place in R
k. (Hint:Let B � (b1, . . . ,bk),

and express v1 and v2 as linear combinations of the vectors in B. Substitute
these linear combinations in the left side of v1 · v2 � [v1]B · [v2]B and simplify.
Then use the same linear combinations to express v1 and v2 in B-coordinates
to calculate the right side.)

20. Prove each of the following statements related to Theorem 6.8. (Hint: Use the
result of Exercise 19 in proving parts (b) and (c).)

(a) Let B be an orthonormal basis for R
n, C be a basis for R

n, and P be the
transition matrix from B to C . If P is an orthogonal matrix, then C is an
orthonormal basis for R

n.

(b) Let V be a subspace of R
n, and let B and C be orthonormal bases for V .

Then the transition matrix from B to C is an orthogonal matrix.

(c) Let V be a subspace of R
n, B be an orthonormal basis for V , C be a basis

for V , and P be the transition matrix from B to C . If P is an orthogonal
matrix, then C is an orthonormal basis for V .

21. If A is an m � n matrix and the columns of A form an orthonormal set in R
m,

prove that AT A � In.

�22. True or False:

(a) Any subset of R
n containing 0 is automatically an orthogonal set of

vectors.

(b) The standard basis in R
n is an orthonormal set of vectors.

(c) If B � (u1,u2, . . . ,un) is an ordered orthonormal basis for R
n, and v ∈ R

n,
then [v]B � [v · u1,v · u2, . . . ,v · un].

(d) The Gram-Schmidt Process can be used to enlarge any linearly inde-
pendent set {w1,w2, . . . ,wk} in R

n to an orthogonal basis {w1,w2, . . . ,
wk,wk�1, . . . ,wn} for R

n.

(e) If W is a nontrivial subspace of R
n, then an orthogonal basis for W exists.

(f) If A is a square matrix, and AT A � In, then A is orthogonal.

(g) If A and B are orthogonal n � n matrices, then BA is orthogonal and
|BA| �
1.

(h) If either the rows or columns of A form an orthogonal basis for R
n, then

A is orthogonal.

(i) If A is an orthogonal matrix and R is a type (III) row operation, then R(A)

is an orthogonal matrix.

(j) If P is the transition matrix from B to C , where B and C are ordered
orthonormal bases for R

n, then P is orthogonal.
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6.2 ORTHOGONAL COMPLEMENTS
For each subspace W of R

n, there is a corresponding subspace of R
n consisting of

the vectors orthogonal to all vectors in W , called the orthogonal complement of W .
In this section,we study many elementary properties of orthogonal complements and
investigate the orthogonal projection of a vector onto a subspace of R

n.

Orthogonal Complements

Definition Let W be a subspace of R
n. The orthogonal complement, W⊥, of

W in R
n is the set of all vectors x ∈ R

n with the property that x · w � 0, for all
w ∈ W .That is,W⊥ contains those vectors of R

n orthogonal to every vector in W .

The proof of the next theorem is left as Exercise 18.

Theorem 6.10 If W is a subspace of R
n, then v ∈ W⊥ if and only if v is orthogonal to

every vector in a spanning set for W.

Example 1
Consider the subspace W � { [a,b,0] | a,b ∈ R} of R

3. Now, W is spanned by {[1,0,0], [0,1,0]}.
By Theorem 6.10, a vector [x,y,z] is in W⊥, the orthogonal complement of W, if and only if
it is orthogonal to both [1,0,0] and [0,1,0] (why?) — that is, if and only if x � y � 0. Hence,
W⊥ � { [0,0,z] | z ∈ R}. Notice that W⊥ is a subspace of R

3 of dimension 1 and that dim(W) �

dim(W⊥) � dim(R3).

Example 2
Consider the subspace W �

{
a[�3,2,4] ∣∣ a ∈ R

}
of R

3. Since {[�3,2,4]} spans W, Theo-
rem 6.10 tells us that the orthogonal complement W⊥ of W is the set of all vectors [x,y,z]
in R

3 such that [x,y,z] · [�3,2,4] � 0. That is, W⊥ is precisely the set of all vectors [x,y,z]
lying in the plane �3x � 2y � 4z � 0. Notice that W⊥ is a subspace of R

3 of dimension 2 and
that dim(W) � dim(W⊥) � dim(R3).

Example 3
The orthogonal complement of R

n itself is just the trivial subspace {0}, since 0 is the only vector
orthogonal to all of e1,e2, . . . ,en ∈ R

n (why?).
Conversely, the orthogonal complement of the trivial subspace in R

n is all of R
n because

every vector in R
n is orthogonal to the zero vector.
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Hence, {0} and R
n itself are orthogonal complements of each other in R

n. Notice that the
dimensions of these two subspaces add up to dim(Rn).

Properties of Orthogonal Complements

Examples 1,2, and 3 suggest that the orthogonal complement W⊥ of a subspace W is
a subspace of R

n. This result is part of the next theorem.

Theorem 6.11 Let W be a subspace of R
n. Then W⊥ is a subspace of R

n, and
W ∩ W⊥ � {0}.

Proof. W⊥ is nonempty because 0 ∈ W⊥ (why?). Thus, to show that W⊥ is a subspace,
we need only verify the closure properties for W⊥.

Suppose x1,x2 ∈ W⊥. We want to show x1 � x2 ∈ W⊥. However, for all w ∈ W ,
(x1 � x2) · w � (x1 · w) � (x2 · w) � 0 � 0 � 0, since x1,x2 ∈ W⊥. Hence, x1 � x2 ∈
W⊥. Next, suppose that x ∈ W⊥ and c ∈ R. We want to show that cx ∈ W⊥. However,
for all w ∈ W, (cx) · w � c(x · w) � c(0) � 0, since x ∈ W⊥. Hence, cx ∈ W⊥. Thus, W⊥
is a subspace of R

n.
Finally, suppose w ∈ W ∩ W⊥. Then w ∈ W and w ∈ W⊥, so w is orthogonal to itself.

Hence, w · w � 0, and so w � 0.

The next theorem shows how we can obtain an orthogonal basis for W⊥.

Theorem 6.12 Let W be a subspace of R
n. Let {v1, . . . ,vk} be an orthogonal basis for W

contained in an orthogonal basis {v1, . . . ,vk,vk�1, . . . ,vn} for R
n. Then {vk�1, . . . ,vn}

is an orthogonal basis for W⊥.

Proof. Let {v1, . . . ,vn} be an orthogonal basis for R
n, with W � span({v1, . . . ,vk}). Let X �

span({vk�1, . . . ,vn}). Since {vk�1, . . . ,vn} is linearly independent (why?), it is a basis for
W⊥ if X � W⊥. We will show that X ⊆ W⊥ and W⊥ ⊆ X .

To show X ⊆ W⊥, we must prove that any vector x of the form dk�1vk�1 � · · · � dnvn
(for some scalars dk�1, . . . ,dn) is orthogonal to every vector w ∈ W. Now, if w ∈ W, then
w � c1v1 � · · · � ckvk, for some scalars c1, . . . ,ck. Hence,

x · w � (dk�1vk�1 � · · · � dnvn) · (c1v1 � · · · � ckvk),

which equals zero when expanded because each vector in {vk�1, . . . ,vn} is orthogonal to
every vector in {v1, . . . ,vk}. Hence, x ∈ W⊥, and so X ⊆ W⊥.

To show W⊥ ⊆ X , we must show that any vector x in W⊥ is also in span({vk�1, . . . ,vn}).
Let x ∈ W⊥. Since {v1, . . . ,vn} is an orthogonal basis for R

n, Theorem 6.3 tells us that

x �
(x · v1)

(v1 · v1)
v1 � · · · �

(x · vk)

(vk · vk)
vk �

(x · vk�1)

(vk�1 · vk�1)
vk�1 � · · · �

(x · vn)

(vn · vn)
vn.
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However, since each of v1, . . . ,vk is in W, we know that x · v1 � · · · � x · vk � 0. Hence,

x �
(x · vk�1)

(vk�1 · vk�1)
vk�1 � · · · �

(x · vn)

(vn · vn)
vn,

and so x ∈ span({vk�1, . . . ,vn}). Thus, W⊥ ⊆ X .

Example 4
Consider the subspace W � span({[2,�1,0,1], [�1,3,1,�1]}) of R

4. We want to find an
orthogonal basis for W⊥. We start by finding an orthogonal basis for W.

Let w1 � [2,�1,0,1] and w2 � [�1,3,1,�1]. Performing the Gram-Schmidt Process yields
v1 � w1 � [2,�1,0,1] and v2 � w2 � ((w2 · v1)/(v1 · v1))v1 � [1,2,1,0]. Hence, {v1,v2} �

{[2,�1,0,1], [1,2,1,0]} is an orthogonal basis for W.
We now expand this basis for W to a basis for all of R

4 using the Enlarging Method of
Section 4.6. Row reducing⎡

⎢⎢⎢⎣
2 1 1 0 0 0

�1 2 0 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1

⎤
⎥⎥⎥⎦ yields

⎡
⎢⎢⎢⎣

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 0 �1 �2
0 0 0 1 �2 1

⎤
⎥⎥⎥⎦.

Thus, {v1,v2,w3,w4} is a basis for R
4, where w3 � [1,0,0,0] and w4 � [0,1,0,0]. Apply-

ing the Gram-Schmidt Process to {v1,v2,w3,w4}, we replace w3 and w4, respectively, with
v3 � [1,0,�1,�2] and v4 � [0,1,�2,1] (verify!). Then {v1,v2,v3,v4} is an orthogonal basis
for R

4 . Since {v1,v2} is an orthogonal basis for W, Theorem 6.12 tells us that {v3,v4} �

{[1,0,�1,�2], [0,1,�2,1]} is an orthogonal basis for W⊥.

The following is an important corollary of Theorem 6.12, which was illustrated in
Examples 1, 2, and 3:

Corollary 6.13 Let W be a subspace of R
n. Then dim(W) � dim(W⊥) � n � dim(Rn).

Proof. Let W be a subspace of R
n of dimension k. By Theorem 6.4, W has an orthogonal

basis {v1, . . . ,vk}. By Theorem 6.5, we can expand this basis for W to an orthogonal basis
{v1, . . . ,vk,vk�1, . . . ,vn} for all of R

n. Then, by Theorem 6.12, {vk�1, . . . ,vn} is a basis for
W⊥, and so dim(W⊥) � n � k. Hence, dim(W) � dim(W⊥) � n.

Example 5
If W is a one-dimensional subspace of R

n, then Corollary 6.13 asserts that dim(W⊥) � n � 1.
For example, in R

2, the one-dimensional subspace W � span({[a,b]}), where [a,b] �� [0,0], has
a one-dimensional orthogonal complement. In fact, W⊥ � span({[b,�a]}) (see Figure 6.2(a)).
That is, W⊥ is the set of all vectors on the line through the origin perpendicular to [a,b].
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(a)

[b, 2a]

[a, b]

W

[a, b, c]

W

(b)

FIGURE 6.2

(a) The orthogonal complement of W � span({[a,b]}) in R
2, a line through the origin perpendicular

to [a,b], when [a,b] �� [0,0]; (b) the orthogonal complement of W � span({[a,b,c]}) in R
3, a plane

through the origin perpendicular to [a,b,c], when [a,b,c] �� [0,0,0]

In R
3, the one-dimensional subspace W � span({[a,b,c]}), where [a,b,c] �� [0,0,0], has

a two-dimensional orthogonal complement. A little thought will convince you that W⊥ is the
plane through the origin perpendicular to [a,b,c], that is, the plane ax � by � cz � 0 (see
Figure 6.2(b)).

If W is a subspace of R
n, Corollary 6.13 indicates that the dimensions of W and

W⊥ add up to n. For this reason, many students get the mistaken impression that
every vector in R

n lies either in W or in W⊥. But W and W⊥ are not “setwise”
complements of each other; a more accurate depiction is given in Figure 6.3. For
example, recall the subspace W � { [a,b,0]|a,b ∈ R} of Example 1. We showed that

W

W

Rn

Zero
vector

FIGURE 6.3

Symbolic depiction of W and W⊥
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W⊥ � { [0,0,z]|z ∈ R}. Yet [1,1,1] is in neither W nor W⊥, even though dim(W) �
dim(W⊥) � dim(R3). In this case,W is the xy-plane and W⊥ is the z-axis.

The next corollary asserts that each subspace W of R
n is, in fact, the orthogonal

complement of W⊥. Hence, W and W⊥ are orthogonal complements of each other.
The proof is left as Exercise 19.

Corollary 6.14 Let W be a subspace of R
n. Then

(W⊥)⊥ � W.

Orthogonal Projection onto a Subspace

Next, we present the Projection Theorem, a generalization of Theorem 1.10. Recall
fromTheorem 1.10 that every nonzero vector in R

n can be decomposed into the sum
of two vectors, one parallel to a given vector a and another orthogonal to a.

Theorem 6.15 (Projection Theorem) Let W be a subspace of R
n. Then every vector

v ∈ R
n can be expressed in a unique way as w1 � w2, where w1 ∈ W and w2 ∈ W⊥.

Proof. Let W be a subspace of R
n, and let v ∈ R

n. We first show that v can be expressed as
w1 � w2, where w1 ∈ W , w2 ∈ W⊥. Then we will show that there is a unique pair w1,w2
for each v.

Let {u1, . . . ,uk} be an orthonormal basis for W. Expand {u1, . . . ,uk} to an orthonormal
basis {u1, . . . ,uk,uk�1, . . . ,un} for R

n. Then by Theorem 6.3, v � (v · u1)u1 � · · · �
(v · un)un. Let w1 � (v · u1)u1 � · · · � (v · uk)uk and w2 � (v · uk�1)uk�1 � · · · �
(v · un)un. Clearly, v � w1 � w2. Also, Theorem 6.12 implies that w1 ∈ W and w2 ∈ W⊥.

Finally, we want to show uniqueness of decomposition. Suppose that v � w1 � w2
and v � w′

1 � w′
2, where w1,w′

1 ∈ W and w2,w′
2 ∈ W⊥. We want to show that w1 � w′

1
and w2 � w′

2. Now, w1 � w′
1 � w′

2 � w2 (why?). Also, w1 � w′
1 ∈ W, but w′

2 � w2 ∈
W⊥. Thus, w1 � w′

1 � w′
2 � w2 ∈ W ∩ W⊥. By Theorem 6.11, w1 � w′

1 � w′
2 � w2 � 0.

Hence, w1 � w′
1 and w2 � w′

2.

We give a special name to the vector w1 in the proof of Theorem 6.15.

Definition Let W be a subspace of R
n with orthonormal basis {u1, . . . ,uk}, and let

v ∈ R
n. Then the orthogonal projection of v onto W is the vector

projWv � (v · u1)u1 � · · · � (v · uk)uk.

If W is the trivial subspace of R
n, then projWv � 0.

Notice that the choice of orthonormal basis for W in this definition does not
matter. This is because if v is any vector in R

n,Theorem 6.15 asserts there is a unique
expression w1 � w2 for v with w1 ∈ W ,w2 ∈ W⊥, and we see from the proof of the
theorem that w1� projWv. Hence,if {z1, . . . ,zk} is any other orthonormal basis for W ,
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then projWv is equal to (v · z1)z1 � · · · � (v · zk)zk as well. This fact is illustrated in
the next example.

Example 6
Consider the orthonormal subset

B � {u1,u2} �

{[
8

9
,�

1

9
,�

4

9

]
,

[
4

9
,
4

9
,
7

9

]}

of R
3, and let W � span(B). Notice that B is an orthonormal basis for W.
Also consider the orthogonal set S � {[4,1,1], [4,�5,�11]}. Now since

[4,1,1] � 3

[
8

9
,�

1

9
,�

4

9

]
� 3

[
4

9
,
4

9
,
7

9

]

and [4,�5,�11] � 9

[
8

9
,�

1

9
,�

4

9

]
� 9

[
4

9
,
4

9
,
7

9

]
,

S is an orthogonal subset of W. Since |S| � dim(W), S is also an orthogonal basis for W. Hence,
after normalizing the vectors in S, we obtain the following second orthonormal basis for W:

C � {z1,z2} �

{[
4

3
√

2
,

1

3
√

2
,

1

3
√

2

]
,

[
4

9
√

2
,�

5

9
√

2
,�

11

9
√

2

]}
.

Let v � [1,2,3]. We will verify that the same vector for projWv is obtained whether
B � {u1,u2} or C � {z1,z2} is used as the orthonormal basis for W. Now, using B yields

(v · u1)u1 � (v · u2)u2 � �
2

3

[
8

9
,�

1

9
,�

4

9

]
�

11

3

[
4

9
,
4

9
,
7

9

]
�

[
28

27
,
46

27
,
85

27

]
.

Similarly, using C gives

(v · z1)z1 � (v · z2)z2 �
3√
2

[
4

3
√

2
,

1

3
√

2
,

1

3
√

2

]
�

(
�

13

3
√

2

)[
4

9
√

2
,�

5

9
√

2
,�

11

9
√

2

]

�

[
28

27
,
46

27
,
85

27

]
.

Hence, with either orthonormal basis we obtain projWv �
[

28
27 , 46

27 , 85
27

]
.

The proof of Theorem 6.15 illustrates the following:

If W is a subspace of R
n and v ∈ R

n, then v can be expressed as w1 � w2, where
w1 � projWv ∈ W and w2 � v � projWv ∈ W⊥. Moreover, w2 can also be expressed
as projW⊥v.
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The vector w1 is the generalization of the projection vector projab from Section 1.2
(see Exercise 17).

Example 7
Let W be the subspace of R

3 whose vectors (beginning at the origin) lie in the plane L with
equation 2x � y � z � 0. Let v � [�6,10,5]. (Notice that v /∈ W.) We will find projWv.

First, notice that [1,0,�2] and [0,1,�1] are two linearly independent vectors in W. (To find
the first vector, choose x � 1, y � 0, and for the other, let x � 0 and y � 1.) Using the Gram-
Schmidt Process on these vectors, we obtain the orthogonal basis {[1,0,�2], [�2,5,�1]} for W
(verify!). After normalizing, we have the orthonormal basis {u1,u2} for W, where

u1 �

[
1√
5

,0,�
2√
5

]
and u2 �

[
�

2√
30

,
5√
30

,�
1√
30

]
.

Now,

projWv � (v · u1)u1 � (v · u2)u2

� �
16√

5

[
1√
5

,0,�
2√
5

]
�

57√
30

[
�

2√
30

,
5√
30

,�
1√
30

]

�

[
�

16

5
,0,

32

5

]
�

[
�

114

30
,
285

30
,�

57

30

]

�

[
�7,

19

2
,
9

2

]
.

Notice that this vector is in W. Finally, v � projWv �
[
1, 1

2 , 1
2

]
, which is indeed in W⊥ because

it is orthogonal to both u1 and u2 (verify!). Hence, we have decomposed v � [�6,10,5] as the
sum of two vectors

[
�7, 19

2 , 9
2

]
and

[
1, 1

2 , 1
2

]
, where the first is in W and the second is in W⊥.

We can think of the orthogonal projection vector projWv in Example 7 as the
“shadow” that v casts on the plane L as light falls directly onto L from a light source
above and parallel to L. This concept is illustrated in Figure 6.4.

There are two special cases of the ProjectionTheorem. First,if v ∈ W ,then projWv
simply equals v itself. Also, if v ∈ W⊥, then projWv equals 0. These results are left as
Exercise 13.

The next theorem assures us that orthogonal projection onto a subspace of R
n is a

linear operator on R
n. The proof is left as Exercise 20.
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x z

y

2x1y1z50

[26, 10, 5]

2 2
27, 19, 9

FIGURE 6.4

The orthogonal projection vector
[
�7, 19

2 , 9
2

]
of v � [�6,10,5] onto the plane 2x � y � z � 0,

pictured as a shadow cast by v from a light source above and parallel to the plane

Theorem 6.16 Let W be a subspace of R
n. Then the mapping L: R

n → R
n given by

L(v) � projWv is a linear operator with ker(L) � W⊥.

Application: Orthogonal Projections and Reflections in R
3

From Theorem 6.16, an orthogonal projection onto a plane through the origin in R
3

is a linear operator on R
3. We can use eigenvectors and the Generalized Diagonal-

ization Method to find the matrix for such an operator with respect to the standard
basis.

Example 8
Let L : R

3 → R
3 be the orthogonal projection onto the plane W � {[x,y,z] |4x � 7y � 4z � 0}.

To find the matrix for L with respect to the standard basis, we first find bases for W and W⊥,
which as we will see, are actually bases for the eigenspaces of L.

Since [4,�7,4] · [x,y,z] � 0 for every vector in W , v1 � [4,�7,4] ∈ W⊥. Since dim(W) �

2, we have dim(W⊥) � 1 by Corollary 6.13 and so {v1} is a basis for W⊥. Notice that W⊥ �

ker(L) (by Theorem 6.16), and so W⊥ � the eigenspace E0 for L. Hence, {v1} is actually a basis
for E0.

Next, notice that the plane W � {[x,y,z] |4x � 7y � 4z � 0} can be expressed as{[
x,y, 1

4 (�4x � 7y)
]}

�
{
x[1,0,�1] � y

[
0,1, 7

4

]}
. Let v2 � [1,0,�1] and v3 �

[
0,1, 7

4

]
. Then

{v2,v3} is a linearly independent subset of W. Hence, {v2,v3} is a basis for W, since
dim(W) � 2. But since every vector in the plane W is mapped to itself by L,W � the eigenspace
E1 for L. Thus, {v2,v3} is a basis for E1. The union {v1,v2,v3} of the bases for E0 and E1 is a
linearly independent set of three vectors for R

3 by Theorem 5.24, and so L is diagonalizable.
Now, by the Generalized Diagonalization Method of Section 5.6, if A is the matrix for L with

respect to the standard basis, then P�1AP � D, where P is the matrix whose columns are the
eigenvectors v1,v2, and v3, and D is the diagonal matrix with the eigenvalues 0,1, and 1 on the



 

420 CHAPTER 6 Orthogonality

main diagonal. Hence, we compute P�1, and use A � PDP�1 to obtain

A �

⎡
⎢⎣

4 1 0
�7 0 1

4 �1 7
4

⎤
⎥⎦
⎡
⎢⎣0 0 0

0 1 0
0 0 1

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎢⎣

4
81 � 7

81
4

81

65
81

28
81 � 16

81

28
81

32
81

28
81

⎤
⎥⎥⎥⎥⎥⎦�

1

81

⎡
⎢⎣ 65 28 �16

28 32 28
�16 28 65

⎤
⎥⎦ ,

which is the matrix for L with respect to the standard basis.

The technique used in Example 8 can be used to find the matrix with respect
to the standard basis for the orthogonal projection onto any plane through the origin
in R

3. In particular,for the plane ax � by � cz � 0,let v1 � [a,b,c],a vector orthogonal
to the plane. Next, choose v2 and v3 to be any linearly independent pair of vectors in
the plane. Then the matrix A for the projection with respect to the standard basis is
A � PDP�1,where P is the matrix whose columns are v1,v2,and v3, in any order,and
D is the diagonal matrix with the eigenvalues 0,1, and 1 in a corresponding order on
the main diagonal. That is, the column containing eigenvalue 0 in D must correspond
to the column in P containing v1.

Similarly,we can reverse the process to determine whether a given 3 � 3 matrix A
represents an orthogonal projection onto a plane through the origin. Such a matrix
must diagonalize to the diagonal matrix D having eigenvalues 0,1, and 1, respectively,
on the main diagonal, and the matrix P such that A � PDP�1 must have the property
that the column of P corresponding to the eigenvalue 0 be orthogonal to the other
two columns of P.

Example 9
The matrix

A �

⎡
⎢⎣ 18 �6 �30

�25 10 45
17 �6 �29

⎤
⎥⎦

has eigenvalues 0,1, and �2 (verify!). Since there is an eigenvalue other than 0 or 1, A cannot
represent an orthogonal projection onto a plane through the origin.

Similarly, you can verify that

A1 �

⎡
⎢⎣�3 1 �1

16 �3 4
28 �7 8

⎤
⎥⎦ diagonalizes to D1 �

⎡
⎢⎣0 0 0

0 1 0
0 0 1

⎤
⎥⎦.
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Now, D1 clearly has the proper form. However, the transition matrix P1 used in the diagonalization
is found to be

P1 �

⎡
⎢⎣�1 1 �1

4 4 0
7 0 4

⎤
⎥⎦.

Since the first column of P1 (corresponding to eigenvalue 0) is not orthogonal to the other two
columns of P1, A1 does not represent an orthogonal projection onto a plane through the origin.

In contrast, the matrix

A2 �
1

14

⎡
⎢⎣ 5 �3 �6

�3 13 �2
�6 �2 10

⎤
⎥⎦ diagonalizes to D2 �

⎡
⎢⎣0 0 0

0 1 0
0 0 1

⎤
⎥⎦

with transition matrix

P2 �

⎡
⎢⎣3 �1 �2

1 3 0
2 0 3

⎤
⎥⎦.

Now, D2 has the correct form, as does P2, since the first column of P2 is orthogonal to both
other columns. Hence, A2 represents an orthogonal projection onto a plane through the origin
in R

3. In fact, it is the orthogonal projection onto the plane 3x � y � 2z � 0, that is, all [x,y,z]
orthogonal to the first column of P2.

We can analyze linear operators that are orthogonal reflections through a plane
through the origin in R

3 in a manner similar to the techniques we used for orthog-
onal projections.1 However, the vector v1 orthogonal to the plane now corresponds
to the eigenvalue �1 � �1 (instead of �1 � 0), since v1 reflects through the plane
into �v1.

Example 10
Consider the orthogonal reflection R through the plane {[x,y,z] |5x � y � 3z � 0} �{[

x,y, 1
3 (�5x � y)

]}
�
{
x
[
1,0,� 5

3

]
� y

[
0,1, 1

3

]}
. The matrix for R with respect to the standard

basis for R
3 is A � PDP�1, where D has the eigenvalues �1,1, and 1 on the main diagonal,

and where the first column of P is orthogonal to the plane, and the other two columns of P are

1 All of the reflection operators we have studied earlier in this text are, in fact, orthogonal reflections.
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linearly independent vectors in the plane. Hence,

A � PDP�1 �

⎡
⎢⎣

5 1 0
�1 0 1

3 � 5
3

1
3

⎤
⎥⎦
⎡
⎢⎣�1 0 0

0 1 0
0 0 1

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎢⎣

1
7 � 1

35
3
35

2
7

1
7 � 3

7

1
7

34
35

3
35

⎤
⎥⎥⎥⎥⎥⎦�

⎡
⎢⎢⎢⎢⎢⎣

�3
7

2
7 � 6

7

2
7

33
35

6
35

�6
7

6
35

17
35

⎤
⎥⎥⎥⎥⎥⎦.

Application: Distance from a Point to a Subspace

Definition Let W be a subspace of R
n, and assume all vectors in W have initial

point at the origin. Let P be any point in n-dimensional space.Then the minimum
distance from P to W is the shortest distance between P and the terminal point
of any vector in W .

The next theorem gives a formula for the minimum distance,and its proof is left as
Exercise 23.

Theorem 6.17 Let W be a subspace of R
n, and let P be a point in n-dimensional

space. If v is the vector from the origin to P, then the minimum distance from P to W is
‖v � projWv‖.

Notice that if S is the terminal point of projWv, then ‖v � projWv‖ represents
the distance from P to S, as illustrated in Figure 6.5. Therefore,Theorem 6.17 can be
interpreted as saying that no other vector in W is closer to v than projWv; that is, the
norm of the difference between v and projWv is less than or equal to the norm of
the difference between v and any other vector in W . In fact, it can be shown that if
w is a vector in W equally close to v, then w must equal projWv.2

Example 11
Consider the subspace W of R

3 from Example 7, whose vectors lie in the plane 2x � y � z � 0.
In that example, for v � [�6,10,5], we calculated that v � projWv �

[
1, 1

2 , 1
2

]
. Hence, the min-

imum distance from P � (�6,10,5) to W is ‖v � projWv‖ �

√
12 �

(
1
2

)2
�
(

1
2

)2
�
√

3
2 ≈

1.2247.

� Application: You have now covered the prerequisites for Section 8.10,“Least-
Squares Solutions for Inconsistent Systems.”

2 This statement, in a slightly different form, is proved as part of Theorem 8.8 in Section 8.10.
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P

v

Origin S (point in W
closest to P)

v 2 projWv

projWv
W

FIGURE 6.5

The minimum distance from P to W ,‖v � projWv‖

New Vocabulary
minimum distance from a point to a

subspace
orthogonal complement (of a subspace)
orthogonal projection (of a vector onto

a subspace)

orthogonal reflection (of a vector
through a plane)

Projection Theorem

Highlights

■ If {v1, . . . ,vk} spans W , a subspace of R
n, then W⊥, the orthogonal complement

of W ,is the subspace of R
n consisting precisely of the vectors that are orthogonal

to all of v1, . . . ,vk.

■ If W is a subspace of R
n, then dim(W) � dim

(W⊥)� n � dim(Rn).

■ If W is a subspace of R
n, then W ∩ W⊥ � {0} and

(W⊥)⊥ � W .

■ If B � {v1, . . . ,vk} is an orthogonal basis for a subspace W of R
n, and if

B is enlarged to an orthogonal basis {v1, . . . ,vk,vk�1, . . . ,vn} for R
n, then

{vk�1, . . . ,vn} is an orthogonal basis for W⊥.

■ In R
2, if W � span({[a,b]}) is nontrivial, then W⊥ � span({[b,�a]}).

■ In R
3,if W � span({[a,b,c]}) is nontrivial,then W⊥ consists of the plane through

the origin perpendicular to [a,b,c] (that is, ax � by � cz � 0).

■ The orthogonal projection of a vector v onto a subspace W of R
n hav-

ing orthonormal basis {u1, . . . ,uk} is the vector projWv � (v · u1)u1 � · · · �
(v · uk)uk. The result obtained for projWv is the same regardless of the parti-
cular orthonormal basis chosen for W .

■ If W is a subspace of R
n, then every vector v ∈ R

n can be expressed as w1 � w2,
where w1 � projWv ∈ W and w2 � v � projWv � projW⊥v ∈ W⊥.

■ If W is a subspace of R
n, then L: R

n → R
n given by L(v) � projWv is a linear

operator, and ker(L) � W⊥.
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■ The matrix A for any orthogonal projection onto a plane through the origin in R
3

is a diagonalizable matrix, and A � PDP�1,where D is a diagonal matrix having
eigenvalues 0,1,1 on the main diagonal, and where the respective eigenvectors
that form the columns of P have the property that the column corresponding to
eigenvalue 0 is orthogonal to the columns corresponding to the eigenvalue 1.

■ The matrix A for any orthogonal reflection through a plane through the ori-
gin in R

3 is a diagonalizable matrix, and A � PDP�1, where D is a diagonal
matrix having eigenvalues �1,1,1 on the main diagonal, and where the respec-
tive eigenvectors that form the columns of P have the property that the column
corresponding to eigenvalue �1 is orthogonal to the columns corresponding to
the eigenvalue 1.

■ The minimum distance from a point P to a subspace W of R
n is

∥∥v � projWv
∥∥,

where v is the vector from the origin to P.

EXERCISES FOR SECTION 6.2
1. For each of the following subspaces W of R

n, find a basis for W⊥, and verify
Corollary 6.13:

�(a) In R
2,W � span({[3,�2]})

(b) In R
3,W � span({[1,�2,1]})

�(c) In R
3,W � span({[1,4,�2], [2,1,�1]})

(d) In R
3,W � the plane 3x � y � 4z � 0

�(e) In R
3,W � the plane �2x � 5y � z � 0

�(f) In R
4,W � span({[1,�1,0,2], [0,1,2,�1]})

(g) In R
4,W �

{ [x,y,z,w] ∣∣ 3x � 2y � 4z � w � 0
}

2. For each of the following subspaces W of R
n and for the given v ∈ R

n, find
projWv,and decompose v into w1 � w2,where w1 ∈ W and w2 ∈ W⊥. (Hint:
You may need to find an orthonormal basis for W first.)

�(a) In R
3,W � span({[1,�2,�1], [3,�1,0]}), v � [�1,3,2]

�(b) In R
3,W � the plane 2x � 2y � z � 0, v � [1,�4,3]

(c) In R
3,W � span({[�1,3,2]}), v � [2,2,�3]

(d) In R
4,W � span({[2,�1,1,0], [1,�1,2,2]}), v � [�1,3,3,2]

3. Let v � [a,b,c]. If W is the xy-plane, verify that projWv � [a,b,0].
4. In each of the following, find the minimum distance between the given point

P and the given subspace W of R
n:

�(a) P � (�2,3,1),W � span({[�1,4,4], [2,�1,0]}) in R
3

(b) P � (4,�1,2),W � span({[�2,3,�3]}) in R
3
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(c) P � (2,3,�3,1),W � span({[�1,2,�1,1], [2,�1,1,�1]}) in R
4

�(d) P � (�1,4,�2,2),W �
{ [x,y,z,w] ∣∣ 2x � 3z � 2w � 0

}
in R

4

5. In each part, let L be the linear operator on R
3 with the given matrix

representation with respect to the standard basis. Determine whether L is

(i) An orthogonal projection onto a plane through the origin

(ii) An orthogonal reflection through a plane through the origin

(iii) Neither
Also, if L is of type (i) or (ii), state the equation of the plane.

�(a)
1

11

⎡
⎣ 2 �3 �3

�3 10 �1
�3 �1 10

⎤
⎦

(b)
1

9

⎡
⎣7 4 4

4 1 �8
4 �8 1

⎤
⎦

(c)
1

3

⎡
⎣ 11 49 �77

�18 �66 99
�10 �35 52

⎤
⎦

�(d)
1

15

⎡
⎣ 7 �2 �14

�4 14 �7
�12 �3 �6

⎤
⎦

�6. Let L: R
3 → R

3 be the orthogonal projection onto the plane 2x � y � 2z � 0.
Use eigenvalues and eigenvectors to find the matrix representation of L with
respect to the standard basis.

7. Let L: R
3 → R

3 be the orthogonal reflection through the plane 3x � y � 2z �
0. Use eigenvalues and eigenvectors to find the matrix representation of L with
respect to the standard basis.

8. Let L: R
3 → R

3 be the orthogonal projection onto the plane 2x � y � z � 0
from Example 7.

(a) Use eigenvalues and eigenvectors to find the matrix representation of L
with respect to the standard basis.

(b) Use the matrix in part (a) to confirm the computation in Example 7 that
L([�6,10,5]) �

[
�7, 19

2 , 9
2

]
.

9. Find the characteristic polynomial for each of the given linear operators. (Hint:
This requires almost no computation.)
�(a) L: R

3 → R
3, where L is the orthogonal projection onto the plane 4x �

3y � 2z � 0

(b) L: R
3 → R

3,where L is the orthogonal projection onto the line through
the origin spanned by [4,�1,3]

�(c) L: R
3 → R

3,where L is the orthogonal reflection through the plane 3x �
5y � z � 0

10. In each of the following, find the matrix representation of the operator L:
R

n → R
n given by L(v) � projWv, with respect to the standard basis for R

n:
�(a) In R

3,W � span({[2,�1,1], [1,0,�3]})
(b) In R

3,W � the plane 3x � 2y � 2z � 0
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�(c) In R
4,W � span({[1,2,1,0], [�1,0,�2,1]})

(d) In R
4,W � span({[�3,�1,1,2]})

11. Prove that if W1 and W2 are subspaces of R
n with W⊥

1 � W⊥
2 , then W1 � W2.

12. Prove that if W1 and W2 are subspaces of R
n with W1 ⊆ W2, then W⊥

2 ⊆ W⊥
1 .

13. Let W be a subspace of R
n.

(a) Show that if v ∈ W , then projWv � v.

(b) Show that if v ∈ W⊥, then projWv � 0.

14. Let W be a subspace of R
n. Suppose that v is a nonzero vector with initial

point at the origin and terminal point P. Prove that v ∈ W⊥ if and only if the
minimum distance between P and W is ‖v‖.

15. Let W be a subspace of R
n, and let v1 and v2 be vectors in R

n. Suppose that
p1 � projWv1 and p2 � projWv2.

(a) What is projW (v1 � v2)? Prove your answer.

(b) If c ∈ R, what is projW (cv1)? Prove your answer.

16. We can represent matrices in Mnn as n2-vectors by using their coordinatization
with respect to the standard basis in Mnn. Use this technique to prove that
the orthogonal complement of the subspace V of symmetric matrices in Mnn

is the subspace W of n � n skew-symmetric matrices. (Hint: First show that
W ⊆ V⊥. Then prove equality by showing that dim(W) � n2 � dim(V).)

17. Show that if W is a one-dimensional subspace of R
n spanned by a and if b ∈ R

n,
then the value of projWb agrees with the definition for projab in Section 1.2.

�18. Prove Theorem 6.10.

19. Prove Corollary 6.14. (Hint: First show that W ⊆ (W⊥)⊥. Then use Corollary

6.13 to show that dim(W) � dim(
(W⊥)⊥), and apply Theorem 4.16.)

�20. Prove Theorem 6.16. (Hint: To prove ker(L) � W⊥, first show that range(L) �
W . Hence, dim(ker(L)) � n � dim(W) � dim(W⊥) (why?). Finally, show
W⊥ ⊆ ker(L), and apply Theorem 4.16.)

21. Let L: Rn → R
m be a linear transformation with matrix A (with respect to the

standard basis). Show that ker(L) is the orthogonal complement of the row
space of A.

22. Let L: R
n → R

m be a linear transformation. Consider the mapping
T : (ker(L))⊥ → R

m given by T (v) � L(v), for all v ∈ (ker(L))⊥. (T is the
restriction of L to (ker(L))⊥.) Prove that T is one-to-one.

�23. Prove Theorem 6.17. (Hint: Suppose that T is any point in W and w is the
vector from the origin to T . We need to show that ‖v � w‖ 	 ‖v � projWv‖;
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that is, the distance from P to T is at least as large as the distance from P to
the terminal point of projWv. Let a � v � projWv and b � (projWv) � w.
Show that a ∈ W⊥, b ∈ W , and ‖v � w‖2 � ‖a‖2 � ‖b‖2.)

24. Let L be a subspace of R
n, and let W be a subspace of L. We define the

orthogonal complement of W in L to be the set of all vectors in L that are
orthogonal to every vector in W .

(a) Prove that the orthogonal complement of W in L is a subspace of L.

(b) Prove that the dimensions of W and its orthogonal complement in L add
up to the dimension of L. (Hint:Let B be an orthonormal basis for W . First
enlarge B to an orthonormal basis for L, and then enlarge this basis to an
orthonormal basis for R

n.)

25. Let A be an m � n matrix and let L1: R
n → R

m and L2: R
m → R

n be given by
L1(x) � Ax and L2(y) � AT y.

(a) Prove that for all v ∈ R
m and w ∈ R

n, v · L1(w) � L2(v) · w (or, equiva-
lently, v · (Aw) � (AT v) · w).

(b) Prove that ker(L2) ⊆ (range(L1))
⊥. (Hint: Use part (a).)

(c) Prove that ker(L2) � (range(L1))
⊥. (Hint: Use part (b) and the Dimension

Theorem.)

(d) Show that (ker(L1))
⊥ equals the row space of A. (Hint: Row space of A =

column space of AT = range(L2).)

�26. True or False:

(a) If W is a subspace of R
n, then W⊥ � {x ∈ R

n | x · w � 0 for all w ∈ W}.
(b) If W is a subspace of R

n and every vector in a basis for W is orthogonal
to v, then v ∈W⊥.

(c) If W is a subspace of R
n, then W ∩ W⊥ � { }.

(d) If W is a subspace of R
7, and {b1,b2, . . . ,b7} is a basis for R

7 and
{b1,b2,b3,b4} is a basis for W , then {b5,b6,b7} is a basis for W⊥.

(e) If W is a subspace of R
5, then dim(W⊥) � 5 � dim(W).

(f) If W is a subspace of R
n, then every vector v ∈ R

n lies in W or W⊥.

(g) The orthogonal complement of the orthogonal complement of a subspace
W of R

n is W itself.

(h) The orthogonal complement of a plane through the origin in R
3 is a line

through the origin perpendicular to the plane.

(i) The mapping L: R
n → R

n given by L(v) � projWv, where W is a given
subspace of R

n, has W⊥ as its kernel.

(j) The matrix for an orthogonal projection onto a plane through the origin
in R

3 diagonalizes to a matrix with �1,1,1 on the main diagonal.
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(k) If W is a subspace of R
n, and v ∈ R

n, then the minimum distance from v
to W is ‖projW⊥v‖.

(l) If v ∈ R
n, and W is a subspace of R

n, then v � projWv � projW⊥v.

6.3 ORTHOGONAL DIAGONALIZATION
In this section,we determine which linear operators on R

n have an orthonormal basis
B of eigenvectors. Such operators are said to be orthogonally diagonalizable. For this
type of operator, the transition matrix P from B-coordinates to standard coordinates
is an orthogonal matrix. Such a change of basis preserves much of the geometric
structure of R

n, including lengths of vectors and the angles between them. Essentially,
then, an orthogonally diagonalizable operator is one for which we can find a diagonal
form while keeping certain important geometric properties of the operator.

We begin by defining symmetric operators and studying their properties.Then we
show that these operators are precisely the ones that are orthogonally diagonalizable.
Also,we present a method for orthogonally diagonalizing an operator analogous to the
Generalized Diagonalization Method in Section 5.6.

Symmetric Operators

Definition Let V be a subspace of R
n. A linear operator L:V → V is a symmetric

operator on V if and only if L(v1) · v2 � v1 · L(v2), for every v1,v2 ∈ V .

Example 1
The operator L on R

3 given by L([a,b,c]) � [b,a,�c] is symmetric since

L([a,b,c]) · [d,e, f ] � [b,a,�c] · [d,e, f ] � bd � ae � cf

and [a,b,c] · L([d,e, f ]) � [a,b,c] · [e,d,�f ] � ae � bd � cf .

You can verify that the matrix representation for the operator L in Example 1 with
respect to the standard basis is ⎡

⎣0 1 0
1 0 0
0 0 �1

⎤
⎦,

a symmetric matrix.The next theorem asserts that an operator on a subspace V of R
n

is symmetric if and only if its matrix representation with respect to any orthonormal
basis for V is symmetric.
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Theorem 6.18 Let V be a nontrivial subspace of R
n, L be a linear operator on V , B be

an ordered orthonormal basis for V, and A be the matrix for L with respect to B. Then
L is a symmetric operator if and only if A is a symmetric matrix.

Theorem 6.18 gives a quick way of recognizing symmetric operators just by looking
at their matrix representations. Such operators occur frequently in applications. (For
example,see Section 8.11,“Quadratic Forms.”)The proof ofTheorem 6.18 is long,and
so we have placed it in Appendix A for the interested reader.

A Symmetric Operator Always Has an Eigenvalue

The following lemma is needed for the proof of Theorem 6.20, the main theorem of
this section:

Lemma 6.19 Let L be a symmetric operator on a nontrivial subspace V of R
n. Then L

has at least one eigenvalue.

Simpler proofs of Lemma 6.19 exist than the one given below, but they involve
complex vector spaces, which will not be discussed until Section 7.3. Nevertheless,
the following proof is interesting, since it brings together a variety of topics already
developed as well as some familiar theorems from algebra.

Proof. Suppose that L is a symmetric operator on a nontrivial subspace V of R
n with

dim(V) � k. Let B be an orthonormal basis for V. By Theorem 6.18, the matrix represen-
tation A for L with respect to B is a symmetric matrix.

Let pA(x) � xk � �k�1xk�1 � · · · � �1x � �0 be the characteristic polynomial for A.
From algebra, we know that pA(x) can be factored into a product of linear terms and
irreducible (nonfactorable) quadratic terms. Since k � k matrices follow the same laws
of algebra as real numbers, with the exception of the commutative law for multiplication,
and since A commutes with itself and Ik, it follows that the polynomial pA(A) � Ak �
�k�1Ak�1 � · · · � �1A � �0Ik can also be factored into linear and irreducible quadratic
factors. Hence, pA(A) � F1F2 · · ·Fj , where each factor Fi is either of the form aiA � biIk,
with ai �� 0, or of the form aiA2 � biA � ciIk, with ai �� 0 and b2

i � 4aici < 0 (since the
latter condition makes this quadratic irreducible).

Now, by the Cayley-Hamilton Theorem, pA(A) � F1F2 · · ·Fj � Ok. Hence, the deter-
minant |F1F2 · · ·Fj | � 0. Since |F1F2 · · ·Fj | � |F1||F2| · · · |Fj |, some Fi must have a zero
determinant. There are two possible cases.

Case 1: Suppose that Fi � aiA � biIk. Since |aiA � biIk| � 0, there is a nonzero vector u
with (aiA � biIk)u � 0. Thus, Au � �(bi/ai)u, and u is an eigenvector for A with
eigenvalue �bi/ai. Hence, �bi/ai is an eigenvalue for L.

Case 2: Suppose that Fi � aiA2 � biA � ciIk. We show that this case cannot occur by
exhibiting a contradiction. As in Case 1, there is a nonzero vector u with (aiA2 �
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biA � ciIk)u � 0. Completing the square yields

ai

((
A �

bi

2ai
Ik

)2

�

(
b2

i � 4aici

4a2
i

)
Ik

)
u � 0.

Let C � A � (bi/2ai)Ik and d � �(b2
i � 4aici)/4a2

i . Then C is a symmetric matrix
since it is the sum of symmetric matrices, and d > 0, since b2

i � 4aici < 0. These
substitutions simplify the preceding equation to ai(C2 � dIk)u � 0, or C2u �
�du. Thus,

0 � (Cu) · (Cu)

� u · (C2u) since C is symmetric

� u · (�du)

� �d(u · u) < 0, since d > 0 and u �� 0.

However, 0 < 0 is a contradiction. Hence, Case 2 cannot occur.

Example 2
The operator L([a,b,c]) � [b,a,�c] on R

3 is symmetric, as shown in Example 1. Lemma 6.19
then states that L has at least one eigenvalue. In fact, L has two eigenvalues, which are �1 � 1
and �2 � �1. The eigenspaces E�1 and E�2 have bases {[1,1,0]} and {[1,�1,0], [0,0,1]},
respectively.

Orthogonally Diagonalizable Operators

We know that a linear operator L on a finite dimensional vector space V can be diago-
nalized if we can find a basis for V consisting of eigenvectors for L. We now examine
the special case where the basis of eigenvectors is orthonormal.

Definition Let V be a nontrivial subspace of R
n, and let L:V → V be a linear oper-

ator. Then L is an orthogonally diagonalizable operator if and only if there is
an ordered orthonormal basis B for V such that the matrix for L with respect to
B is a diagonal matrix.

A square matrix A is orthogonally diagonalizable if and only if there is an
orthogonal matrix P such that D � P�1AP is a diagonal matrix.

These two definitions are related. In fact,L is an orthogonally diagonalizable opera-
tor if and only if the matrix for L with respect to any orthonormal basis is orthogonally
diagonalizable. To see this, suppose L is an orthogonally diagonalizable operator on a
nontrivial subspace V of R

n, and B is an orthonormal basis such that the matrix for
L with respect to B is D, a diagonal matrix. By a generalization of Theorem 6.8 (see
Exercise 20 in Section 6.1),the transition matrix P between B and any other orthonor-
mal basis C for V is orthogonal.Then if A is the matrix for L with respect to C ,we have



 

6.3 Orthogonal Diagonalization 431

D � P�1AP,and thus A is orthogonally diagonalizable. By reversing this reasoning,we
see that the converse is also true.

Equivalence of Symmetric and Orthogonally Diagonalizable Operators

We are now ready to show that symmetric operators and orthogonally diagonalizable
operators are really the same.

Theorem 6.20 Let V be a nontrivial subspace of R
n, and let L be a linear operator on V.

Then L is orthogonally diagonalizable if and only if L is symmetric.

Proof. Suppose that L is a linear operator on a nontrivial subspace V of R
n.

First, we show that if L is orthogonally diagonalizable, then L is symmetric. Suppose L
is orthogonally diagonalizable. Then, by definition, there is an ordered orthonormal basis B
for V such that the matrix representation A for L with respect to B is diagonal. Since every
diagonal matrix is also symmetric, L is a symmetric operator by Theorem 6.18.

To finish the proof, we must show that if L is a symmetric operator, then L is orthogonally
diagonalizable. Suppose L is symmetric. If L has an ordered orthonormal basis B consisting
entirely of eigenvectors of L, then, clearly, the matrix for L with respect to B is a diagonal
matrix (having the eigenvalues corresponding to the eigenvectors in B along its main diago-
nal), and then L is orthogonally diagonalizable. Therefore, our goal is to find an orthonormal
basis of eigenvectors for L. We give a proof by induction on dim(V).

Base Step: Assume that dim(V) � 1. Normalize any nonzero vector in V to obtain a unit
vector u ∈ V. Then, {u} is an orthonormal basis for V. Since L(u) ∈ V and {u} is a basis
for V, we must have L(u) � �u, for some real number �, and so � is an eigenvalue for L.
Hence, {u} is an orthonormal basis of eigenvectors for V, thus completing the Base Step.

Inductive Step: The inductive hypothesis is as follows:

If W is a subspace of R
n with dimension k, and T is any symmetric

operator on W, then W has an orthonormal basis of eigenvectors for T .

We must prove the following:

If V is a subspace of R
n with dimension k � 1, and L is a symmetric

operator on V, then V has an orthonormal basis of eigenvectors for L.

Now, L has at least one eigenvalue �, by Lemma 6.19. Take any eigenvector for L
corresponding to � and normalize it to create a unit eigenvector v. Let Y � span({v}). Now,
we want to enlarge {v} to an orthonormal basis of eigenvectors for L in V.

Our goal is to find a subspace W of V of dimension k that is orthogonal to Y, together
with a symmetric operator on W. We can then invoke the inductive hypothesis to find the
remaining orthonormal basis vectors for L.

Since dim(V) � k � 1, we can use the Gram-Schmidt Process to find vectors v1, . . .,vk
such that {v,v1, . . .,vk} is an orthonormal basis for V containing v. Since v1, . . .,vk
are orthogonal to v, we have {v1, . . .,vk} ⊆ Y⊥ ∩ V, the orthogonal complement of Y
in V (see Exercise 24 in Section 6.2). Let W � Y⊥ ∩ V. Since {v1, . . .,vk} is a linearly
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independent subset of W ,dim(W) 	 k. But v /∈ W implies dim(W) < dim(V) � k � 1, and
so dim(W)�k.

Next, we claim that for every w ∈ W, we have L(w) ∈ W. For,

v · L(w) � L(v) · w since L is symmetric

� (�v) · w since � is an eigenvalue for L

� �(v · w) � �(0) � 0,

which shows that L(w) is orthogonal to v and hence is in W. Therefore, we can define a
linear operator T : W → W by T (w) � L(w). (T is the restriction of L to W.) Now, T is a
symmetric operator on W, since, for every w1,w2 ∈ W,

T (w1) · w2 � L(w1) · w2 definition of T

� w1 · L(w2) since L is symmetric

� w1 · T (w2). definition of T

Since dim(W) � k, the inductive hypothesis implies that W has an orthonormal basis
{u1, . . .,uk} of eigenvectors for T . Then, by definition of T ,{u1, . . .,uk} is also a set of eigen-
vectors for L, all of which are orthogonal to v (since they are in W). Hence, B � {v,u1, . . .,uk}
is an orthonormal basis for V of eigenvectors for L, and we have finished the proof of the
Inductive Step.

Method for Orthogonally Diagonalizing a Linear Operator

We now present a method for orthogonally diagonalizing a symmetric operator,based
on Theorem 6.20. You should compare this to the method for diagonalizing a linear
operator given in Section 5.6. Notice that the following method assumes that eigen-
vectors of a symmetric operator corresponding to distinct eigenvalues are orthogonal.
The proof of this is left as Exercise 11.

Method for Orthogonally Diagonalizing a Symmetric Operator (Orthogonal Diagonalization
Method)

Let L: V → V be a symmetric operator on a subspace V of R
n, with dim(V) � k.

Step 1: Find an ordered orthonormal basis C for V (if V � R
n, we can use the standard

basis), and calculate the matrix representation A for L with respect to C (which
should be a k � k symmetric matrix).

Step 2: (a) Apply the Diagonalization Method of Section 3.4 to A in order to obtain all of
the eigenvalues �1, . . .,�m of A, and a basis in R

k for each eigenspace E�i of
A (by solving an appropriate homogeneous system if necessary).

(b) Perform the Gram-Schmidt Process on the basis for each E�i from Step 2(a),
and then normalize to get an orthonormal basis for each E�i .

(c) Let Z � (z1. . .,zk) be an ordered basis for R
k consisting of the union of the

orthonormal bases for the E�i .
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Step 3: Reverse the C-coordinatization isomorphism on the vectors in Z to obtain an ordered
orthonormal basis B � (v1, . . .,vk) for V; that is, [vi]C � zi .

The matrix representation for L with respect to B is the diagonal matrix D, where
dii is the eigenvalue for L corresponding to vi . In most practical situations, the
transition matrix P from B- to C-coordinates is useful. P is the k � k matrix whose
columns are [v1]C , . . ., [vk]C — that is, the vectors z1, . . . ,zk in Z . Note that P is
an orthogonal matrix, and D � P�1AP � PT AP.

The following example illustrates this method.

Example 3
Consider the operator L: R

4 → R
4 given by L(v) � Av, where

A �
1

7

⎡
⎢⎢⎢⎣

15 �21 �3 �5
�21 35 �7 0

�3 �7 23 15
�5 0 15 39

⎤
⎥⎥⎥⎦.

L is clearly symmetric, since its matrix A with respect to the standard basis C for R
4 is symmetric.

We find an orthonormal basis B such that the matrix for L with respect to B is diagonal.

Step 1: We have already seen that A is the matrix for L with respect to the standard basis C
for R

4.

Step 2: (a) A lengthy calculation yields

pA(x) � x4 � 16x3 � 77x2 � 98x � x(x � 2)(x � 7)2,

giving eigenvalues �1 � 0,�2 � 2, and �3 � 7. Solving the appropriate homoge-
neous systems to find bases for the eigenspaces produces

Basis for E�1 � {[3,2,1,0]}
Basis for E�2 � {[1,0,�3,2]}
Basis for E�3 � {[�2,3,0,1], [3,�5,1,0]}.

(b) There is no need to perform the Gram-Schmidt Process on the bases for E�1 and
E�2 , since each of these eigenspaces is one-dimensional. Normalizing the basis
vectors yields

Orthonormal basis for E�1 �

{
1√
14

[3,2,1,0]
}

Orthonormal basis for E�2 �

{
1√
14

[1,0,�3,2]
}

.

Let us label the vectors in these bases as z1,z2, respectively. However, we must
perform the Gram-Schmidt Process on the basis for E�3. Let w1 � v1 � [�2,3,0,1]
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and w2 � [3,�5,1,0]. Then

v2 � [3,�5,1,0] �

( [3,�5,1,0] · [�2,3,0,1]
[�2,3,0,1] · [�2,3,0,1]

)
[�2,3,0,1] �

[
0,�

1

2
,1,

3

2

]
.

Finally, normalizing v1 and v2, we obtain

Orthonormal basis for E�3 �

{
1√
14

[�2,3,0,1], 1√
14

[0,�1,2,3]
}

.

Let us label the vectors in this basis as z3,z4, respectively.

(c) We let Z �
(
z1,z2,z3,z4

)
�(

1√
14

[3,2,1,0], 1√
14

[1,0,�3,2], 1√
14

[�2,3,0,1], 1√
14

[0,�1,2,3]
)

be the union of the orthonormal bases for E�1 , E�2 , and E�3 .

Step 3: Since C is the standard basis for R
4, the C-coordinatization isomorphism is the identity

mapping, so v1 � z1, v2 � z2,v3 � z3, and v4 � z4 here, and B � (v1,v2,v3,v4) is an
ordered orthonormal basis for R

4. The matrix representation D of L with respect to B is

D �

⎡
⎢⎢⎢⎣

�1 0 0 0
0 �2 0 0
0 0 �3 0
0 0 0 �3

⎤
⎥⎥⎥⎦�

⎡
⎢⎢⎢⎣

0 0 0 0
0 2 0 0
0 0 7 0
0 0 0 7

⎤
⎥⎥⎥⎦.

The transition matrix P from B to C is the orthogonal matrix

P �
1√
14

⎡
⎢⎢⎢⎣

3 1 �2 0
2 0 3 �1
1 �3 0 2
0 2 1 3

⎤
⎥⎥⎥⎦.

You can verify that P�1AP � PT AP � D.

We conclude by examining a symmetric operator whose domain is a proper
subspace of R

n.

Example 4
Consider the operators L1, L2, and L3 on R

3 given by

L1: orthogonal projection onto the plane x � y � z � 0
L2: orthogonal projection onto the plane x � y � z � 0
L3: orthogonal projection onto the xy-plane (that is, z � 0).

Let L: R
3 → R

3 be given by L � L3 ◦ L2 ◦ L1, and let V be the xy-plane in R
3. Then, since

range(L3) � V, we see that range(L) ⊆ V. Thus, restricting the domain of L to V, we can think
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of L as a linear operator on V. We will show that L is a symmetric operator on V and orthogonally
diagonalize L.

Step 1: Choose C � ([1,0,0], [0,1,0]) as an ordered orthonormal basis for V. We need to
calculate the matrix representation A of L with respect to C. Using the orthonormal
basis

{
1√
2
[1,�1,0], 1√

6
[1,1,�2]

}
for the plane x � y � z � 0, the orthonormal basis{

1√
2
[1,�1,0], 1√

6
[1,1,2]

}
for the plane x � y � z � 0, and the orthonormal basis C

for the xy-plane, we can use the method of Example 7 in Section 6.2 to compute the
required orthogonal projections.

L([1,0,0]) � L3 (L2 (L1 ([1,0,0]))) � L3

(
L2

([
2

3
,�

1

3
,�

1

3

]))

� L3

([
4

9
,�

5

9
,�

1

9

])
�

1

9
[4,�5,0]

and L([0,1,0]) � L3 (L2 (L1 ([0,1,0]))) � L3

(
L2

([
�

1

3
,
2

3
,�

1

3

]))

� L3

([
�

5

9
,
4

9
,�

1

9

])
�

1

9
[�5,4,0].

Expressing these vectors in C-coordinates, we see that the matrix representation of L

with respect to C is A �
1

9

[
4 �5

�5 4

]
, a symmetric matrix. Thus, by Theorem 6.18, L

is a symmetric operator on V.3 Hence, L is, indeed, orthogonally diagonalizable.

Step 2: (a) The characteristic polynomial for A is pA (x) � x2 � 8
9 x � 1

9 � (x � 1)
(
x � 1

9

)
,

giving eigenvalues �1 � 1 and �2 � � 1
9 . Solving the appropriate homogeneous

systems to find bases for these eigenspaces yields

Basis for E�1 � {[1,�1]}, Basis for E�2 � {[1,1]}.
Notice that we expressed the bases in C-coordinates.

(b) Since the eigenspaces are one-dimensional, there is no need to perform the Gram-
Schmidt Process on the bases for E�1 and E�2 . Normalizing the basis vectors
produces

Orthonormal basis for E�1 �

{
1√
2
[1,�1]

}

Orthonormal basis for E�2 �

{
1√
2
[1,1]

}
.

Let us denote these vectors as z1,z2, respectively.

(c) Let Z � (z1,z2) be the union of the (ordered) orthonormal bases for E�1 and E�2 .

3 You can easily verify that L is not a symmetric operator on all of R
3, even though it is symmetric on

the subspace V .
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Step 3: Reversing the C-coordinatization isomorphism on Z , we obtain v1 � 1√
2
[1,�1,0] and

v2 � 1√
2
[1,1,0], respectively. Thus, an ordered orthonormal basis in R

3 for V is B �

(v1,v2). The matrix D �

[
1 0
0 � 1

9

]
is the matrix representation for L with respect to B.

The transition matrix P �
(
1/

√
2
)[ 1 1

�1 1

]
from B to C is the orthogonal matrix whose

columns are the vectors in B expressed in C-coordinates. You can verify that P�1AP �

PT AP � D.

� Supplemental Material: You have now covered the prerequisites for
Section 7.4,“Orthogonality in C

n,” and Section 7.5,“Inner Product Spaces.”

� Application: You have now covered the prerequisites for Section 8.11,
“Quadratic Forms.”

New Vocabulary

Orthogonal Diagonalization Method
orthogonally diagonalizable matrix

orthogonally diagonalizable operator
symmetric operator

Highlights

■ A linear operator L on a subspace V of R
n is a symmetric operator if and only if,

for every v1,v2 ∈ V , we have L(v1) · v2 � v1 · L(v2).

■ A linear operator L on a nontrivial subspace V of R
n is a symmetric operator if

and only if the matrix for L with respect to any ordered orthonormal basis for V
is a symmetric matrix.

■ A matrix A is orthogonally diagonalizable if and only if there is some orthogonal
matrix P such that D � P�1AP is a diagonal matrix.

■ A linear operator L on a nontrivial subspace V of R
n is an orthogonally diago-

nalizable operator if and only if the matrix for L with respect to some ordered
orthonormal basis for V is a diagonal matrix.

■ A linear operator L on a nontrivial subspace of R
n is orthogonally diagonalizable

if and only if L is symmetric.

■ If L is a symmetric linear operator on a subspace V of R
n, with matrix A with

respect to an ordered orthonormal basis for V , then the Orthogonal Diagonaliza-
tion Method produces an orthogonal matrix P such that D � P�1AP � PT AP is
diagonal.
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EXERCISES FOR SECTION 6.3
Note: Use a calculator or computer (when needed) in solving for eigenvalues and
eigenvectors and performing the Gram-Schmidt Process.

1. Determine which of the following linear operators are symmetric. Explain why
each is, or is not, symmetric.

�(a) L: R2 → R
2 given by L

([
x
y

])
�

[
3x � 2y
2x � 5y

]

(b) L: R2 → R
2 given by L

([
x
y

])
�

[
5x � 7y
7x � 6y

]
(c) L: R

3 → R
3 given by the orthogonal projection onto the plane x � y �

z � 0
�(d) L:R3 → R

3 given by the orthogonal projection onto the plane ax � by �
cz � 0

�(e) L: R3 → R
3 given by a counterclockwise rotation through an angle of �

3
radians about the line through the origin in the direction [1,1,�1]

(f) L: R
3 → R

3 given by the orthogonal reflection through the plane 4x �
3y � 5z � 0

�(g) L: R
4 → R

4 given by L � L�1
1 ◦ L2 ◦ L1 where L1: R

4 → M22 is given by

L1([a,b,c,d]) �

[
a b
c d

]
,and L2:M22 → M22 is given by L2(K) �

[
4 3
3 9

]
K

2. In each part,find a symmetric matrix having the given eigenvalues and the given
bases for their associated eigenspaces.
�(a) �1 � 1,�2 � �1,E�1 � span

({1
5 [3,4]}) ,E�2 � span

({1
5 [4,�3]})

(b) �1 �0,�2 �1,�3 �2,E�1�span
({ 1

11 [6,2,�9]}),E�2�span
({ 1

11 [7,6,6]}),
E�3 � span

({ 1
11 [6,�9,2]})

(c) �1 � 1,�2 � 2,E�1 � span({[6,3,2], [8,�3,5]}),E�2 � span({[3,�2,�6]})
�(d) �1 � �1,�2 � 1, E�1 � span({[12,3,4,0], [12,�1,7,12]}), E�2 �

span({[�3,12,0,4], [�2,24,�12,11]})
3. In each part of this exercise, the matrix A with respect to the standard basis

for a symmetric linear operator on R
n is given. Orthogonally diagonalize each

operator by following Steps 2 and 3 of the method given in the text.Your answers
should include the ordered orthonormal basis B, the orthogonal matrix P, and
the diagonal matrix D. Check your work by verifying that D � P�1AP. (Hint:
In (e), pA(x) � (x � 2)2(x � 3)(x � 5).)

�(a) A �

[
144 �60

�60 25

]
(b) A �

1

25

[
39 48
48 11

]
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�(c) A �
1

9

⎡
⎣ 17 8 �4

8 17 �4
�4 �4 11

⎤
⎦

(d) A �
1

27

⎡
⎣�13 �40 �16

�40 176 �124
�16 �124 �1

⎤
⎦

�(e) A �
1

14

⎡
⎢⎢⎣

23 0 15 �10
0 31 �6 �9

15 �6 �5 48
�10 �9 48 35

⎤
⎥⎥⎦

(f) A �

⎡
⎣ 3 4 12

4 �12 3
12 3 �4

⎤
⎦

�(g) A �

⎡
⎣ 11 2 �10

2 14 5
�10 5 �10

⎤
⎦

4. In each part of this exercise,use the Orthogonal Diagonalization Method on the
given symmetric linear operator L,defined on a subspace V of R

n.Your answers
should include the ordered orthonormal basis C for V , the matrix A for L with
respect to C , the ordered orthonormal basis B for V , the orthogonal matrix P,
and the diagonal matrix D. Check your work by verifying that D � P�1AP.

�(a) L:V → V ,where V is the plane 6x � 10y � 15z � 0 in R
3, L([�10,15,6]) �

[50,�18,8], and L([15,6,10]) � [�5,36,22]
(b) L: V → V , where V is the subspace of R

4 spanned by {[1,�1,1,1],
[�1,1,1,1], [1,1,1,�1]} and L is given by

L

⎛
⎜⎜⎝
⎡
⎢⎢⎣

w
x
y
z

⎤
⎥⎥⎦
⎞
⎟⎟⎠�

⎡
⎢⎢⎣

1 �2 1 1
�1 2 0 2

2 2 1 2
1 1 1 �2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

w
x
y
z

⎤
⎥⎥⎦

5. In each case,use orthogonal diagonalization to find a symmetric matrix A such
that

�(a) A3 �
1

25

[
119 �108

�108 56

]
.

(b) A2 �

[
481 �360

�360 964

]
.

�(c) A2 �

⎡
⎣ 17 16 �16

16 41 �32
�16 �32 41

⎤
⎦.

�6. Give an example of a 3 � 3 matrix that is diagonalizable but not orthogonally
diagonalizable.

�7. Find the diagonal matrix D to which

[
a b
b c

]
is similar by an orthogonal change

of coordinates. (Hint:Think! The full method for orthogonal diagonalization is
not needed.)
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8. Let L be a symmetric linear operator on a subspace V of R
n.

(a) If 1 is the only eigenvalue for L, prove that L is the identity operator.
�(b) What must be true about L if zero is its only eigenvalue? Prove it.

9. Let L1 and L2 be symmetric operators on R
n. Prove that L2 ◦ L1 is symmetric if

and only if L2 ◦ L1 � L1 ◦ L2.

10. Two n � n matrices A and B are said to be orthogonally similar if and only
if there is an orthogonal matrix P such that B � P�1AP. Prove the following
statements are equivalent for n � n symmetric matrices A and B:

(i) A and B are similar.

(ii) A and B have the same characteristic polynomial.

(iii) A and B are orthogonally similar.

(Hint: Show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).)

11. Let L be a symmetric operator on a subspace V of R
n. Suppose that �1 and

�2 are distinct eigenvalues for L with corresponding eigenvectors v1 and v2.
Prove that v1 ⊥ v2. (Hint: Use the definition of a symmetric operator to show
that (�2 � �1)(v1 · v2) � 0.)

12. Let A be an n � n symmetric matrix. Prove that A is orthogonal if and only
if all eigenvalues for A are either 1 or �1. (Hint: For one half of the proof,
use Theorem 6.9. For the other half, orthogonally diagonalize to help calculate
A2 � AAT .)

�13. True or False:

(a) If V is a nontrivial subspace of R
n,a linear operator L on V with the property

v1 · L(v2) � L(v1) · v2 for every v1,v2 ∈ V has at least one eigenvalue.

(b) A symmetric operator on a nontrivial subspace V of R
n has a symmetric

matrix with respect to any ordered basis for V .

(c) If a linear operator L on a nontrivial subspace V of R
n is symmetric, then

the matrix for L with respect to any ordered orthonormal basis for V is
symmetric.

(d) A linear operator L on a nontrivial subspace V of R
n is symmetric if and

only if the matrix for L with respect to some ordered orthonormal basis for
V is diagonal.

(e) Let L be a symmetric linear operator on a nontrivial subspace of R
n having

matrix A with respect to an ordered orthonormal basis. In using the Orthog-
onal Diagonalization Method on L, the transition matrix P and the diagonal
matrix D obtained from this process have the property that A � PDPT .

(f) The orthogonal matrix P in the equation D � P�1AP for a symmetric
matrix A and diagonal matrix D is the transition matrix from some ordered
orthonormal basis to standard coordinates.
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REVIEW EXERCISES FOR CHAPTER 6
1. In each case, verify that the given ordered basis B is orthogonal. Then, for the

given v, find [v]B, using the method of Theorem 6.3.
�(a) v � [5,3,14]; B �

([1,3,�2], [�1,1,1], [5,1,4])
(b) v � [2,4,14]; B �

([1,�1,4], [�2,2,1], [1,1,0])
2. Each of the following represents a basis for a subspace of R

n, for some n. Use
the Gram-Schmidt Process to find an orthogonal basis for the subspace.
�(a) {[1,�1,�1,1], [5,1,1,5]} in R

4

(b) {[1,3,4,3,1], [1,7,12,11,5], [3,19,�4,11,�5]} in R
5

�3. Enlarge the orthogonal set {[6,3,�6], [3,6,6]} to an orthogonal basis for R
3.

(Avoid fractions by using appropriate scalar multiples.)

4. Consider the orthogonal set S � {[4,7,0,4], [2,0,1,�2]} in R
4.

(a) Enlarge S to an orthogonal basis for R
4.

(b) Normalize the vectors in the basis you found in part (a) to create an
orthonormal basis B for R

4.

(c) Find the transition matrix from standard coordinates to B-coordinates with-
out using row reduction. (Hint: The transition matrix from B-coordinates
to standard coordinates is an orthogonal matrix.)

5. Suppose A is an n � n matrix such that for all v,w ∈ R
n,v · w � Av · Aw. Prove

that A is an orthogonal matrix. (Note: This is the converse to Theorem 6.9.)
(Hint:Notice that Av · Aw � v · (AT Aw). Use this with the vectors ei and ej for
v and w to show that AT A � In.)

6. Let A be an n � n orthogonal matrix with n odd. We know from part (1) of
Theorem 6.6 that |A| �
 1.

(a) If |A| � 1, prove that A � In is singular. (Hint: Show that A � In �
�A(A � In)T , and then use determinants.)

(b) If |A| � 1, show that A has � � 1 as an eigenvalue.

(c) If |A| � 1 and n � 3,show that there is an orthogonal matrix Q with |Q| � 1
such that

QT AQ �

⎡
⎣cos� �sin � 0

sin � cos� 0
0 0 1

⎤
⎦, for some value of �.

(Hint:Let v be a unit eigenvector for A corresponding to � � 1. Expand the
set {v} to an orthonormal basis for R

3. Let Q be the matrix whose columns
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are these basis vectors,with v listed last and the first two columns ordered
so that |Q| � 1. Note that QT AQ is an orthogonal matrix. Show that the
last column of QT AQ is e3, and then that the last row of QT AQ is also
e3. Finally, use the facts that the columns of QT AQ are orthonormal and
|QT AQ| � 1 to show that the remaining entries of QT AQ have the desired
form.)

(d) Use part (c) of this problem to prove the claim made in Exercise 7 of
Section 6.1 that a linear operator on R

3 represented by a 3 � 3 orthogonal
matrix with determinant 1 (with respect to the standard basis) always rep-
resents a rotation about some axis in R

3. (Hint: With Q and � as in part (c),
A represents a rotation through the angle � about the axis in the direction
corresponding to the last column of Q.The rotation will be in the direction
from the first column of Q toward the second column of Q.)

�(e) Find the direction of the axis of rotation and the angle of rotation (to
the nearest degree) corresponding to the orthogonal matrix in part (a) of
Exercise 7 in Section 6.1. (Hint: Compute QT AQ as in part (c). Use the
signs of both cos� and sin � to determine the quadrant in which the angle
� resides. Note that the rotation will be in the direction from the first
column of Q toward the second column of Q. However, even though the
angle between these column vectors is 90◦, the angle of rotation could be
higher than 180◦.)

(f) If |A| � �1 and n � 3,prove that A is the product of an orthogonal reflec-
tion through a plane in R

3 followed by a rotation about some axis in R
3.

(Hence, every 3 � 3 orthogonal matrix can be thought of as the product
of an orthogonal reflection and a rotation.) (Hint:Let G be the matrix with
respect to the standard basis for any chosen orthogonal reflection through a
plane in R

3. Note that |G| � �1,and G2 � I3.Thus,A � AG2. Let C � AG,
and note that C is orthogonal and |C| � 1. Finally, use part (d) of this
problem.)

7. For each of the following subspaces W of R
n and for the given v ∈ R

n, find
projWv, and decompose v into w1 � w2,where w1 ∈ W and w2 ∈ W⊥. (Hint:
You may need to find an orthonormal basis for W first.)

�(a) W � span({[8,1,�4], [16,11,�26]}), v � [2,7,26]
(b) W � span({[�5,3,1,1], [0,�2,26,16], [�1,13,19,9]}), v � [2,10,7,�9]

8. In each part, find the minimum distance between the given point P and the
given subspace W of R

4:
�(a) W � span({[2,9,�6,0], [2,5,�12,12]}), P � (1,29,�29,�2)

(b) W � span({[6,7,0,6], [6,21,�1,30]}), P � (27,�20,�9,�44)

9. If W � span({[4,4,2,0], [4,8,3,�1]}), find a basis for W⊥.
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10. Let L:R3 → R
3 be the orthogonal projection onto the plane x � y � z � 0. Use

eigenvalues and eigenvectors to find the matrix representation of L with respect
to the standard basis.

�11. Let L:R3 → R
3 be the orthogonal reflection through the plane 2x � 3y � z � 0.

Use eigenvalues and eigenvectors to find the matrix representation of L with
respect to the standard basis.

12. Find the characteristic polynomial for each of the given linear operators. (Hint:
This requires almost no computation.)

(a) L: R
3 → R

3, where L is the orthogonal projection onto the plane 5x �
2y � 3z � 0

�(b) L: R
3 → R

3, where L is the orthogonal projection onto the line through
the origin spanned by [6,�1,4]

13. Determine which of the following linear operators are symmetric. Explain why
each is, or is not, symmetric.
�(a) L: R

4 → R
4 given by L � L�1

1 ◦ L2 ◦ L1, where L1: R
4 → P3 is given

by L1([a,b,c,d]) � ax3 � bx2 � cx � d, and L2: P3 → P3 is given by
L2(p(x)) � p′(x)

(b) L: R
3 → R

3 given by the orthogonal reflection through the plane 5x �
4y � 2z � 0

(c) L: R
9 → R

9 given by L � L�1
1 ◦ L2 ◦ L1, where L1: R

9 → M33 is given by

L1([a,b,c,d,e, f ,g,h, i]) �

⎡
⎣a b c

d e f
g h i

⎤
⎦, and L2: M33 → M33 is given by

L2(A) � AT

14. In each part of this exercise, the matrix A with respect to the standard basis
for a symmetric linear operator on R

3 is given. Orthogonally diagonalize each
operator by following Steps 2 and 3 of the method given in Section 6.3.
Your answers should include the ordered orthonormal basis B, the orthogo-
nal matrix P, and the diagonal matrix D. Check your work by verifying that
D � P�1AP.

�(a) A � 1
30

⎡
⎣�17 26 5

26 22 10
5 10 55

⎤
⎦ (b) A �

⎡
⎣ 2 1 �1

1 2 1
�1 1 2

⎤
⎦

15. Give an example of a 4 � 4 matrix that is diagonalizable but not orthogonally
diagonalizable.

16. Let A ∈ Mmn. Prove that AT A is orthogonally diagonalizable.
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�17. True or False:

(a) A set of nonzero mutually orthogonal vectors in R
n is linearly independent.

(b) When applying the Gram-Schmidt Process to a set of vectors,the first vector
produced for the orthogonal set is a scalar multiple of the first vector in
the original set of vectors.

(c) If S � {w1, . . . ,wk} is a subset of R
n such that wk � w1 � · · · � wk�1, then

attempting to apply the Gram-Schmidt Process to S will result in the zero
vector for vk, the kth vector obtained by the process.

(d)

⎡
⎣3

5 � 4
5

4
5

3
5

⎤
⎦ is an orthogonal matrix.

(e) If A is a matrix such that AAT � I, then A is an orthogonal matrix.

(f) All diagonal matrices are orthogonal matrices since the rows of diagonal
matrices clearly form a mutually orthogonal set of vectors.

(g) Every orthogonal matrix is nonsingular.

(h) If A is an orthogonal n � n matrix, and L: R
n → R

n is the linear transfor-
mation L(X) � AX, then for all v,w ∈ R

n, v⊥w implies that L(v)⊥L(w).

(i) Every subspace of R
n has an orthogonal complement.

(j) If W is a subspace of R
n and v1,v2 ∈ R

n, then projWv1 � projWv2 �
projW (v1 � v2).

(k) If W is a subspace of R
n, and L: R

n → R
n is given by L(v) � projWv, then

range(L) � W .

(l) If W is a subspace of R
n, and L: R

n → R
n is given by L(v) � projW⊥v,

then ker(L) � W .

(m) If W is a nontrivial subspace of R
n, and L : R

n → R
n is given by L(v) �

projWv, then the matrix for L with respect to the standard basis is an
orthogonal matrix.

(n) If W is a subspace of R
n, and L: R

n → R
n is given by L(v) � projWv, then

L ◦ L � L.

(o) If W is a plane through the origin in R
3, then the linear operator L on R

3

representing an orthogonal reflection through W has exactly two distinct
eigenvalues.

(p) If W is a subspace of R
n, P is a point in n-dimensional space, and v is

the vector from the origin to P, then the minimal distance from P to W is
‖projW⊥v‖.

(q) If W is a nontrivial subspace of R
n, and L: R

n → R
n is given by L(v) �

projWv, then L is a symmetric operator on R
n.

(r) The composition of two symmetric linear operators on R
n is a symmetric

linear operator.
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(s) If L is a symmetric linear operator on R
n and B is an ordered orthonormal

basis for R
n, then the matrix for L with respect to B is diagonal.

(t) If A is a symmetric matrix, then A has at least one eigenvalue �, and the
algebraic multiplicity of � equals its geometric multiplicity.

(u) Every orthogonally diagonalizable matrix is symmetric.

(v) Every n � n orthogonal matrix is the matrix for some symmetric linear
operator on R

n.

(w) If v1 and v2 are eigenvectors corresponding to two distinct eigenvalues of
a symmetric matrix A, then v1 · v2 � 0.



 

CHAPTER

7Complex Vector Spaces and
General Inner Products

A COMPLEX SITUATION

Until now, we have kept our theory of linear algebra within the real number system. But
many practical mathematical problems, especially in physics and electronics, involve square
roots of negative numbers (that is, complex numbers). For example, modern theories of heat
transfer, fluid flow, damped harmonic oscillation, alternating current circuit theory, quantum
mechanics, and relativity — all beyond the scope of this text — depend on the use of complex
quantities. Therefore, our next goal is to extend many of our previous results to the realm of
complex numbers.

One excellent reason for generalizing to the complex number system is that we can take
advantage of the Fundamental Theorem of Algebra, which states that every nth-degree
polynomial can be factored completely when complex roots are permitted. In particular, we
will see how this permits us to find additional (non-real) solutions to eigenvalue problems.

In this chapter, we extend many previous results to more complicated algebraic
structures. In Section 7.1, we study C

n, the set of complex n-vectors, and consider its
similarities to and differences from R

n. In Section 7.2, we examine properties of the
eigenspaces of matrices with complex entries. Section 7.3 compares the properties
of general complex vector spaces and linear transformations with their real counter-
parts. In Section 7.4, we study the complex analogs of the Gram-Schmidt Process and
orthogonal matrices. Finally, in Section 7.5, we discuss inner product spaces, which
possess an additional operation analogous to the dot product on R

n.
Section 7.1 can be covered any time after finishing Section 1.5. Each remaining

section of this chapter depends on those before it. In addition, Section 7.2 assumes
Section 3.4 as a prerequisite, while Section 7.3 assumes Section 5.2 as a prerequisite.
Finally, Sections 7.4 and 7.5 have Section 6.3 as a prerequisite. Section 7.5 could be

Elementary Linear Algebra
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covered without going through Sections 7.1 through 7.4 if attention is only paid to
real inner products.

We use the complex number system throughout this chapter, and we assume
you are familiar with its basic operations. For quick reference, Appendix C lists the
definition of a complex number and the rules for complex addition, multiplication,
conjugation, magnitude, and reciprocal.

7.1 COMPLEX n-VECTORS AND MATRICES
Prerequisite: Section 1.5, Matrix Multiplication

Until now, our scalars and entries in vectors and matrices have always been real num-
bers. In this section, however, we use the complex numbers to define and study
complex n-vectors and matrices, emphasizing their differences with real vectors and
matrices from Chapter 1.

Complex n-Vectors

Definition A complex n-vector is an ordered sequence (or ordered n-tuple) of n
complex numbers. The set of all complex n-vectors is denoted by C

n.

For example, [3 � 2i,4 � 3i,�i] is a vector in C
3. We often write z � [z1,z2, . . . ,zn]

(where z1,z2, . . . ,zn ∈ C) to represent an arbitrary vector in C
n.

For complex vectors, we usually need to extend our definition of scalar to include
complex numbers instead of only real numbers. In what follows, it will always be clear
from the context whether we are using complex scalars or real scalars.

Scalar multiplication and addition of complex vectors are defined coordinate-
wise, just as for real vectors. For example, (�2 � i)[4 � i,�1 � 2i] � [�3 � 2i,
�2 � i] � [�9 � 2i,4 � 3i] � [�3 � 2i,�2 � i] � [�12,2 � 4i]. You can verify that
all the properties inTheorem 1.3 carry over to complex vectors (with real or complex
scalars).

The complex conjugate of a vector z � [z1,z2, . . . ,zn] ∈ C
n is defined, using the

complex conjugate operation, to be z � [z1,z2, . . . ,zn]. For example, if z � [3 � 2i,
�5 � 4i,�2i], then z � [3 � 2i,�5 � 4i,2i].

We define the complex dot product of two vectors as follows:

Definition Let z � [z1,z2, . . . ,zn] and w � [w1,w2, . . . ,wn] be vectors in C
n.

The complex dot (inner) product of z and w is given by z · w � z1w1 �
z2w2 � · · · � znwn.

Notice that if z and w are both real vectors, then z · w is the familiar dot product
in R

n. The next example illustrates the complex dot product.
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Example 1
Let z � [3 � 2i,�2 � i,�4 � 3i] and w � [�2 � 4i,5 � i,�2i]. Then

z · w � (3 � 2i)(�2 � 4i) � (�2 � i)(5 � i) � (�4 � 3i)(�2i)

� (3 � 2i)(�2 � 4i) � (�2 � i)(5 � i) � (�4 � 3i)(�2i) � �19 � 13i.

However,

w · z � (�2 � 4i)(3 � 2i) � (5 � i)(�2 � i) � (�2i)(�4 � 3i) � �19 � 13i.

Notice that z · w � w · z. (This is true in general, as we will see shortly.)

Now, if z � [z1, . . . ,zn], then z · z � z1z1 � · · · � znzn � |z1|2 � · · · � |zn|2 , a non-
negative real number. We define the length of a complex vector z � [z1, . . . ,zn] as
‖z‖ �

√
z · z. For example, if z � [3 � i,�2i,4 � 3i], then

‖z‖ �
√

(3 � i)(3 � i) � (�2i)(2i) � (4 � 3i)(4 � 3i) �
√

10 � 4 � 25 �
√

39.

As with real n-vectors, a complex vector having length 1 is called a unit vector.
The following theorem lists the most important properties of the complex dot

product.You are asked to prove parts of this theorem in Exercise 2. Notice the use of
the complex conjugate in parts (1) and (5).

Theorem 7.1 Let z1, z2, and z3 be vectors in C
n, and let k ∈ C be any scalar. Then

(1) z1 · z2 � z2 · z1 Conjugate-Commutativity of
Complex Dot Product

(2) z1 · z1 � ‖z1‖2 	 0 Relationships between Complex

(3) z1 · z1 � 0 if and only if z1 � 0 Dot Product and Length

(4) k(z1 · z2) � (kz1) · z2 Relationships between Scalar

(5) k(z1 · z2) � z1 · (kz2) Multiplication and Complex
Dot Product

(6) z1 · (z2 � z3) � (z1 · z2) � (z1 · z3) Distributive Laws of Complex

(7) (z1 � z2) · z3 � (z1 · z3) � (z2 · z3) Dot Product over Addition

Unfortunately, we cannot define the angle between two complex n-vectors as we
did in Section 1.2 for real vectors, since the complex dot product is not necessarily a
real number and hence z·w

‖z‖‖w‖ does not always represent the cosine of an angle.
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Complex Matrices

Definition An m � n complex matrix is a rectangular array of complex numbers
arranged in m rows and n columns. The set of all m � n complex matrices is
denoted as MC

mn, or complex Mmn.

Addition and scalar multiplication of matrices are defined entrywise in the
usual manner, and the properties in Theorem 1.11 also hold for complex matrices.

We next define multiplication of complex matrices. Beware! Complex matrices
are multiplied the same way as real matrices. We do not take complex conjugates
of entries in the second matrix as we do with entries in the second vector for the
complex dot product.

Definition If Z is an m � n matrix and W is an n � r matrix, then ZW is the m � r
matrix whose (i, j) entry equals

(ZW)ij � zi1w1j � zi2w2j � · · · � zinwnj .

Example 2

Let Z �

[
1 � i 2i �2 � i
�3i 3 � 2i �1 � i

]
and W �

⎡
⎢⎣ �2i 1 � 4i

�1 � 3i 2 � 3i
�2 � i �4 � i

⎤
⎥⎦. Then the (1,1) entry of

ZW is

(1 � i)(�2i) � (2i)(�1 � 3i) � (�2 � i)(�2 � i) � �2i � 2 � 2i � 6 � 3 � 4i

� �5 � 8i.

You can verify that the entire product is ZW �

[
�5 � 8i 10 � 7i

12i �7 � 13i

]
.

The familiar properties of matrix multiplication carry over to the complex case.
The complex conjugate Z of a complex matrix Z � [zij] is the matrix

whose (i, j) entry is zij . The transpose ZT of an m � n complex matrix Z � [zij]
is the n � m matrix whose (j, i) entry is zij . You can verify that (Z)T �

(
ZT
)

for any
complex matrix Z, and so we can define the conjugate transpose Z∗ of a complex
matrix to be

Z∗ �
(
Z
)T

�
(
ZT
)
.
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Example 3

If Z �

[
2 � 3i �i 5

4i 1 � 2i �2 � 4i

]
, then Z �

[
2 � 3i i 5

�4i 1 � 2i �2 � 4i

]
, and

Z∗ �
(
Z
)T

�

⎡
⎢⎣

2 � 3i �4i

i 1 � 2i

5 �2 � 4i

⎤
⎥⎦ .

The following theorem lists the most important properties of the complex
conjugate and conjugate transpose operations:

Theorem 7.2 Let Z and Y be m � n complex matrices, let W be an n � p complex
matrix, and let k ∈ C. Then

(1)
(
Z
)

� Z, and (Z∗)∗ � Z

(2) (Z � Y)∗ � Z∗ � Y∗

(3) (kZ)∗ � k(Z∗)
(4) ZW � Z W

(5) (ZW)∗ � W∗Z∗.

Note the use of k in part (3). The proof of this theorem is straightforward, and
parts of it are left as Exercise 4. We also have the following useful result:

Theorem 7.3 If A is any n � n complex matrix and z and w are complex n-vectors,
then (Az) · w � z · (A∗w).

Compare the following proof of Theorem 7.3 with that of Theorem 6.9.

Proof. (Az) · w � (Az)T w � zT AT w � zT (A∗w) � z · (A∗w).

Hermitian, Skew-Hermitian, and Normal Matrices

Real symmetric and skew-symmetric matrices have complex analogs.

Definition Let Z be a square complex matrix. Then Z is Hermitian if and only if
Z∗ � Z, and Z is skew-Hermitian if and only if Z∗ � �Z.
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Notice that an n � n complex matrix Z is Hermitian if and only if zij � zji , for
1 � i, j � n.When i � j, we have zii � zii for all i, and so all main diagonal entries of
a Hermitian matrix are real. Similarly, Z is skew-Hermitian if and only if zij � �zji

for 1 � i, j � n. When i � j, we have zii � �zii for all i, and so all main diagonal
entries of a skew-Hermitian matrix are pure imaginary.

Example 4
Consider the matrix

H �

⎡
⎢⎣ 3 2 � i 1 � 2i

2 � i �1 �3i
1 � 2i 3i 4

⎤
⎥⎦ .

Notice that

H �

⎡
⎢⎣ 3 2 � i 1 � 2i

2 � i �1 3i
1 � 2i �3i 4

⎤
⎥⎦ , and so H∗ �

(
H
)T

�

⎡
⎢⎣ 3 2 � i 1 � 2i

2 � i �1 �3i
1 � 2i 3i 4

⎤
⎥⎦ .

Since H∗ � H, H is Hermitian. Similarly, you can verify that the matrix

K �

⎡
⎢⎣ �2i 5 � i �1 � 3i

�5 � i i 6
1 � 3i �6 3i

⎤
⎥⎦

is skew-Hermitian.

Some other useful results concerning Hermitian and skew-Hermitian matrices are
left for you to prove in Exercises 6, 7, and 8.

Another very important type of complex matrix is the following:

Definition Let Z be a square complex matrix. Then Z is normal if and only if
ZZ∗ � Z∗Z.

The next theorem gives two important classes of normal matrices.

Theorem 7.4 If Z is a Hermitian or skew-Hermitian matrix, then Z is normal.

The proof is left as Exercise 9.The next example gives a normal matrix that is neither
Hermitian nor skew-Hermitian, thus illustrating that the converse to Theorem 7.4
is false.
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Example 5

Consider Z �

[
1 � 2i �i

1 2 � 3i

]
. Now, Z∗ �

[
1 � 2i 1

i 2 � 3i

]
, and so

ZZ∗ �

[
1 � 2i �i

1 2 � 3i

][
1 � 2i 1

i 2 � 3i

]
�

[
6 4 � 4i

4 � 4i 14

]
.

Also, Z∗Z �

[
1 � 2i 1

i 2 � 3i

][
1 � 2i �i

1 2 � 3i

]
�

[
6 4 � 4i

4 � 4i 14

]
.

Since ZZ∗ � Z∗Z, Z is normal.

In Exercise 10 you are asked to prove that a matrix Z is normal if and only if
Z � H1 � H2, where H1 is Hermitian, H2 is skew-Hermitian, and H1H2 � H2H1. For
example, the normal matrix Z from Example 5 equals⎡

⎣ 1 1
2 � 1

2 i
1
2 � 1

2 i 2

⎤
⎦�

⎡
⎣ �2i � 1

2 � 1
2 i

1
2 � 1

2 i �3i

⎤
⎦.

New Vocabulary

addition (of complex vectors or matri-
ces)

complex conjugate (of a vector or
matrix)

complex matrix
complex scalar
complex vector
conjugate transpose (of a complex

matrix)
dot product (of complex vectors)

Hermitian matrix
length (of a complex vector)
multiplication (of complex matrices)
normal matrix
scalar multiplication (of complex vec-

tors or matrices)
skew-Hermitian matrix
transpose (of a complex matrix)
unit complex vector

Highlights

■ Scalar multiplication and addition are defined for complex vectors and matrices
in an analogous manner as for real vectors and matrices.

■ The dot product of complex vectors z � [z1,z2, . . . ,zn] and w � [w1,w2, . . . ,wn]
is given by z · w � z1w1 � z2w2 � · · · � znwn.

■ The length of a complex vector z is defined analogously as for real vectors:
‖z‖ �

√
z · z.
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■ Matrix multiplication is defined for complex matrices in an analogous manner
as for real matrices, except that complex conjugates of the entries in the second
matrix are not used in the “dot products” that are used to compute the entries
of the matrix product.

■ The complex conjugate of a complex matrix Z is the matrix Z whose (i, j) entry
equals zij .

■ The transpose ZT of a complex matrix Z is defined analogously as for a real

matrix, and the conjugate transpose of Z is the matrix Z∗�
(
Z
)T

.

■ For an m � n complex matrix Z, an n � p complex matrix W, and k ∈ C, we
have (kZ)∗ � k(Z∗), ZW � ZW, and (ZW)∗ � W∗Z∗.

■ A complex matrix Z is Hermitian if and only if Z∗ � Z, skew-Hermitian if and
only if Z∗ � �Z, and normal if and only if ZZ∗ � Z∗Z.

■ All main diagonal entries of a Hermitian [skew-Hermitian] matrix are real [pure
imaginary].

■ Any Hermitian or skew-Hermitian matrix is normal.

EXERCISES FOR SECTION 7.1
1. Perform the following computations involving complex vectors.

�(a) [2 � i,3,�i] � [�1 � 3i,�2 � i,6]
�(b) (�8 � 3i) [4i,2 � 3i,�7 � i]

(c) [5 � i,2 � i,�3i]
�(d) (�4)[6 � 3i,7 � 2i,�8i]
�(e) [�2 � i,5 � 2i,3 � 4i] · [1 � i,4 � 3i,�6i]

(f ) [5 � 2i,6i,�2 � i] · [3 � 6i,8 � i,1 � 4i]
2. (a) Prove parts (1) and (2) of Theorem 7.1.

(b) Prove part (5) of Theorem 7.1.

3. Perform the computations below with the following matrices:

A �

[
2 � 5i �4 � i

�3 � 6i 8 � 3i

]
B �

[
9 � i �3i
5 � 2i 4 � 3i

]

C �

⎡
⎣1 � i �2i 6 � 4i

0 3 � i 5
�10i 0 7 � 3i

⎤
⎦ D �

[
5 � i �i �3
2 � 3i 0 �4 � i

]
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�(a) A � B

(b) C

�(c) C∗

�(d) (�3i)D

(e) A � BT

�(f ) AB

(g) D
(
C∗)

(h) B2

�(i) CT D∗

(j)
(
C∗)2

4. (a) Prove part (3) of Theorem 7.2.

�(b) Prove part (5) of Theorem 7.2.

�5. Determine which of the following matrices are Hermitian or skew-Hermitian.

(a)

⎡
⎣ �4i 6 � 2i 8

�6 � 2i 0 �2 � i
�8 2 � i 5i

⎤
⎦

(b)

⎡
⎣2 � 3i 6i 1 � i

�6i 4 8 � 3i
1 � i �8 � 3i 5i

⎤
⎦

(c)

⎡
⎣2 0 0

0 �3 0
0 0 4

⎤
⎦

(d)

⎡
⎣5i 0 0

0 �2i 0
0 0 6i

⎤
⎦

(e)

⎡
⎣ 2 �2i 2

2i �2 �2i
2 2i �2

⎤
⎦

6. Let Z be any square complex matrix.

(a) Prove that H � 1
2 (Z � Z∗) is a Hermitian matrix and K � 1

2 (Z � Z∗) is
skew-Hermitian.

(b) Prove that Z can be expressed uniquely as the sum of a Hermitian matrix
H and a skew-Hermitian matrix K. (Hint: Use part (a).)

7. Let H be an n � n Hermitian matrix.

(a) Suppose J is an n � n Hermitian matrix. Prove that HJ is Hermitian if and
only if HJ � JH.

(b) Prove that Hk is Hermitian for all integers k 	 1. (Hint: Use part (a) and a
proof by induction.)

(c) Prove that P∗HP is Hermitian for any n � n complex matrix P.

8. Prove that for any complex matrix A, both AA∗ and A∗A are Hermitian.

�9. Prove Theorem 7.4.

10. Let Z be a square complex matrix. Prove that Z is normal if and only if there
exists a Hermitian matrix H1 and a skew-Hermitian matrix H2 such that Z �
H1 � H2 and H1H2 � H2H1. (Hint: If Z is normal, let H1 � (Z � Z∗)/2.)
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�11. True or False:

(a) The dot product of two complex n-vectors is always a real number.

(b) The (i, j) entry of the product ZW is the complex dot product of the ith
row of Z with the jth column of W.

(c) The complex conjugate of the transpose of Z is equal to the transpose of
the complex conjugate of Z.

(d) If v1,v2 ∈ C
n and k ∈ C, then k(v1 · v2) � (kv1) · v2 � v1 · (kv2).

(e) Every Hermitian matrix is symmetric.

(f ) The transpose of a skew-Hermitian matrix is normal.

7.2 COMPLEX EIGENVALUES AND COMPLEX EIGENVECTORS
Prerequisite: Section 3.4, Eigenvalues and Diagonalization

In this section,we consider row reduction and determinants using complex numbers
and matrices and then extend the concept of eigenvalues and eigenvectors to complex
n � n matrices.

Complex Linear Systems and Determinants

The Gaussian elimination and Gauss-Jordan row reduction methods can both be
used to solve systems of complex linear equations just as described in Sections 2.1
and 2.2 for real linear systems. However, the arithmetic involved is typically more
tedious.

Example 1
Let us solve the system ⎧⎪⎨

⎪⎩
(2 � 3i)w � (19+4i)z � �35 � 59i
(2 � i)w � (�4 � 13i)z � �40 � 30i
(1 � i)w � (9 � 6i)z � �32 � 25i

using Gaussian elimination. We begin with the augmented matrix⎡
⎢⎣2 � 3i 19 � 4i

2 � i �4 � 13i
1 � i 9 � 6i

∣∣∣∣∣∣∣
�35 � 59i

�40 � 30i
�32 � 25i

⎤
⎥⎦.

Performing the row operations

〈1〉 ← 1

2 � 3i
〈1〉 , or, 〈1〉 ←

(
2

13
�

3

13
i

)
〈1〉,

〈2〉 ← �(2 � i) 〈1〉 � 〈2〉 ,

and 〈3〉 ← �(1 � i) 〈1〉 � 〈3〉 yields
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⎡
⎢⎣1 2 � 5i

0 �3 � i
0 2 � 3i

∣∣∣∣∣∣∣
�19 � i

�1 � 13i
�14 � 5i

⎤
⎥⎦ .

Continuing with

〈2〉 ← 1

�3 � i
〈2〉 , or, 〈2〉 ←

(
�

3

10
�

1

10
i

)
〈2〉,

and 〈3〉 ← �(2 � 3i) 〈2〉 � 〈3〉 produces

⎡
⎢⎣1 2 � 5i

0 1
0 0

∣∣∣∣∣∣∣
�19 � i
�1 � 4i

0

⎤
⎥⎦.

Hence,

w � (2 � 5i)z � �19 � i, and

z � �1 � 4i.

Thus, w � �19 � i � (2 � 5i)(�1 � 4i) � 3 � 2i. Therefore, the unique solution to the system
is (w,z) � (3 � 2i,�1 � 4i).

All of our results for real matrices involving reduced row echelon form, rank,
row space, homogeneous systems, and inverse matrices carry over to complex
matrices. Similarly, determinants of complex matrices are computed in the same
manner as for real matrices, and the following results, which we state without proof,
are true:

Theorem 7.5 Let W and Z be complex n � n matrices. Then

(1) |WZ| � |W||Z|
(2) |W| � |WT |
(3) |W| � |W∗| � |W|
(4) |W| �� 0 iff W is nonsingular iff rank (W) � n.

In addition, all the equivalences inTable 3.1 also hold for complex n � n matrices.

Complex Eigenvalues and Complex Eigenvectors

If A is an n � n complex matrix, then � ∈ C is an eigenvalue for A if and only if
there is a nonzero vector v ∈ C

n such that Av � �v. As before, the nonzero vector v
is called an eigenvector for A associated with �. The characteristic polynomial
of A, defined as pA(x) � |xIn � A|, is used to find the eigenvalues of A, just as in
Section 3.4.
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Example 2
For the matrix

A �

⎡
⎢⎣�4 � 7i 2 � i 7 � 7i

1 � 3i 1 � i �3 � i
5 � 4i 1 � 2i 7 � 5i

⎤
⎥⎦ ,

we have

xI3 � A �

⎡
⎢⎣x � 4 � 7i �2 � i �7 � 7i

�1 � 3i x � 1 � i 3 � i
�5 � 4i �1 � 2i x � 7 � 5i

⎤
⎥⎦ .

After some calculation, you can verify that pA(x) �
∣∣xI3 � A

∣∣� x3 � (4 � i)x2 � (5 � 5i)x �

(6 � 6i). You can also check that pA(x) factors as (x � (1 � i))(x � 2i)(x � 3). Hence, the
eigenvalues of A are �1 � 1 � i, �2 � 2i, and �3 � 3. To find an eigenvector for �1, we look for
a nontrivial solution v of the system ((1 � i)I3 � A)v � 0. Hence, we row reduce

⎡
⎢⎣ 5 � 8i �2 � i �7 � 7i

�1 � 3i 0 3 � i
�5 � 4i �1 � 2i �6 � 4i

∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎦ to obtain

⎡
⎢⎣1 0 �i

0 1 i
0 0 0

∣∣∣∣∣∣∣
0
0
0

⎤
⎥⎦ .

Thus, we get the fundamental eigenvector [i,�i,1] corresponding to �1. A similar analysis shows
that [3i,�i,2] is a fundamental eigenvector corresponding to �2, and [i,0,1] is a fundamental
eigenvector corresponding to �3.

Diagonalizable Complex Matrices

We say a complex matrix A is diagonalizable if and only if there is a nonsingular
complex matrix P such that P�1AP � D is a diagonal matrix. Just as with real matrices,
the matrix P has fundamental eigenvectors for A as its columns, and the diagonal
matrix D has the eigenvalues for A on its main diagonal, with dii being an eigenvalue
corresponding to the fundamental eigenvector that is the ith column of P. The six-step
method for diagonalizing a matrix given in Section 3.4 works just as well for complex
matrices.

Algebraic Multiplicity of an Eigenvalue

The algebraic multiplicity of an eigenvalue of a complex matrix is defined just as for
real matrices — that is,k is the algebraic multiplicity of an eigenvalue � for a matrix A
if and only if (x � �)k is the highest power of (x � �) that divides pA(x). However, an
important property of complex polynomials makes the situation for complex matrices
a bit different than for real matrices. In particular, the Fundamental Theorem of
Algebra states that any complex polynomial of degree n factors into a product of n
linear factors. Thus, for every n � n matrix A, pA(x) can be expressed as a product



 

7.2 Complex Eigenvalues and Complex Eigenvectors 457

of n linear factors. Therefore, the algebraic multiplicities of the eigenvalues of A
must add up to n. This eliminates one of the two reasons that some real matrices
are not diagonalizable. However, there are still some complex matrices that are not
diagonalizable, as we will see later in Example 4.

Example 3
Consider the matrix

A �

[
cos� �sin �

sin � cos�

]

from Example 7 in Section 3.4 for a fixed value of � such that sin � �� 0. In that example, we
computed pA(x) � x2 � 2(cos�)x � 1, which factors into complex linear factors as pA(x) �

(x � (cos� � i sin �))(x � (cos� � i sin �)). Thus, the two complex eigenvalues for A are �1 �

cos� � i sin � and �2 � cos� � i sin �.1

Row reducing �1I2 � A yields

[
1 �i
0 0

]
, thus giving the fundamental eigenvector [i,1].

Similarly, row reducing �2I2 � A produces the fundamental eigenvector [�i,1]. Hence, P �[
i �i
1 1

]
. You can verify that

P�1AP �

(
1

2

[
�i 1

i 1

])[
cos� �sin �

sin � cos�

][
i �i
1 1

]

�

[
cos� � i sin � 0

0 cos� � i sin �

]
� D.

For example, if � � �
6 , then A � 1

2

[√
3 �1
1

√
3

]
and D � 1

2

[√
3 � i 0
0

√
3 � i

]
. Note that the

fundamental eigenvectors for A are independent of �, and hence so is the matrix P. However,
D and the eigenvalues of A change as � changes.

This example illustrates how a real matrix could be diagonalizable when thought
of as a complex matrix, even though it is not diagonalizable when considered as a real
matrix.

Nondiagonalizable Complex Matrices

It is still possible for a complex matrix to be nondiagonalizable. This occurs when-
ever the number of fundamental eigenvectors for a given eigenvalue produced in
Step 3 of the diagonalization process is less than the algebraic multiplicity of that
eigenvalue.

1 We could have solved for �1 and �2 by using the quadratic formula instead of factoring.
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Example 4
Consider the matrix

A �

⎡
⎢⎣

�3 � 15i �6 � 25i 43 � 18i

2 � 2i �4 � i 1 � 8i

2 � 5i �7 � 6i 9 � 14i

⎤
⎥⎦,

whose characteristic polynomial is pA(x) � x3 � 2x2 � x � x(x � 1)2. The eigenvalue �1 � 1
has algebraic multiplicity 2. However, �1I2 � A � I2 � A row reduces to

⎡
⎢⎢⎣

1 0 � 3
2 � 7

2 i

0 1 1
2 � 1

2 i

0 0 0

⎤
⎥⎥⎦ .

Hence, Step 3 produces only one fundamental eigenvector, namely
[

3
2 � 7

2 i,� 1
2 � 1

2 i,1
]
. Since

the number of fundamental eigenvectors produced for �1 is less than the algebraic multiplicity
of �1, A cannot be diagonalized.

New Vocabulary

algebraic multiplicity of a complex
eigenvalue

characteristic polynomial (of a complex
matrix)

determinant (of a complex matrix)
diagonalizable (complex) matrix
eigenvalue (of a complex matrix)
eigenvector (of a complex matrix)

homogeneous system (of complex lin-
ear equations)

inverse (of a complex matrix)
rank (of a complex matrix)
row space (of a complex matrix)
system of complex linear equations

(� complex linear system)

Highlights

■ The Gaussian elimination method and Gauss-Jordan Method apply to systems of
complex linear equations.

■ The rank and determinant of complex matrices are computed in the same manner
as for real matrices.

■ An n � n complex matrix W is nonsingular iff |W| �� 0 iff rank(W) � n.

■ If W, Z are n � n complex matrices, then |WZ| � |W||Z|, |WT | � |W|, and
|W∗| � |W| � |W|.

■ Eigenvalues, eigenvectors, and diagonalizable matrices are defined for complex
matrices in the same manner as for real matrices.



 

7.2 Complex Eigenvalues and Complex Eigenvectors 459

■ The characteristic polynomial of an n � n complex matrix factors into n linear
factors, and so the algebraic multiplicies of all eigenvalues for any n � n complex
matrix sum to n.

■ A complex n � n matrix is not diagonalizable if the number of fundamental
eigenvectors obtained in the Diagonalization Method does not equal n.

■ A matrix having real entries that is not diagonalizable when considered as a real
matrix may be diagonalizable when considered as a complex matrix.

EXERCISES FOR SECTION 7.2
1. Give the complete solution set for each of the following complex linear systems:

�(a)

{
(3 � i)w � (5 � 5i)z � 29 � 33i

(1 � i)w � (6 � 2i)z � 30 � 12i

(b)

⎧⎪⎨
⎪⎩

(1 � 2i)x � (�1 � 3i)y � (9 � 3i)z � 18 � 46i

(2 � 3i)x � (�1 � 5i)y � (15 � 5i)z � 30 � 76i

(5 � 2i)x � (7 � 3i)y � (11 � 20i)z � 120 � 25i

�(c)

⎧⎪⎨
⎪⎩

3ix � (�6 � 3i)y � (12 � 18i)z � �51 � 9i

(3 � 2i)x � (1 � 7i)y � (25 � 2i)z � �13 � 56i

(1 � i)x � 2iy � (9 � i)z � �7 � 17i

(d)

{
(1 � 3i)w � 10iz � �46 � 38i

(4 � 2i)w � (12 � 13i)z � �111

�(e)

{
(3 � 2i)w � (12 � 5i)z � 3 � 11i

(5 � 4i)w � (�2 � 23i)z � �14 � 15i

(f )

{
(2 � i)x � (1 � 3i)y � (21 � 2i)z � �14 � 13i

(1 � 2i)x � (6 � 2i)y � (3 � 46i)z � 24 � 27i

2. In each part, compute the determinant of the given matrix A, determine whether
A is nonsingular, and then calculate |A∗| to verify that |A∗| � |A|.

(a) A �

[
2 � i � 3 � 2i
4 � 3i 1 � 8i

]

�(b) A �

⎡
⎣ i 2 5i

1 � i 1 � i i
4 �2 2 � i

⎤
⎦

(c) A �

⎡
⎢⎢⎣

0 i 0 1
�i 0 0 0

0 �1 2 1
1 0 3i 4i

⎤
⎥⎥⎦



 

460 CHAPTER 7 Complex Vector Spaces and General Inner Products

3. For each of the following matrices, find all eigenvalues and express each
eigenspace as a set of linear combinations of fundamental eigenvectors:

�(a)

[
4 � 3i �1 � 3i
8 � 2i �5 � 2i

]

(b)

⎡
⎣11 2 �7

0 6 �5
10 2 �6

⎤
⎦

�(c)

⎡
⎣ 4 � 3i �4 � 2i 4 � 7i

2 � 4i �2 � 5i 7 � 4i
�4 � 2i 4 � 2i �4 � 6i

⎤
⎦

(d)

⎡
⎣ �i 2i �1 � 2i

1 �1 � i �i
�2 � i 2 � i 3 � 2i

⎤
⎦

4. �(a) Explain why the matrix A in part (a) of Exercise 3 is diagonalizable. Find a
nonsingular P and diagonal D such that P�1AP � D.

(b) Show that the matrix in part (d) of Exercise 3 is not diagonalizable.

(c) Show that the matrix from part (b) of Exercise 3 is diagonalizable as a
complex matrix, but not as a real matrix.

5. Give a convincing argument that if the algebraic multiplicity of every eigenvalue
of a complex n � n matrix is 1, then the matrix is diagonalizable.

�6. True or False:

(a) If A is a 4 � 4 complex matrix whose second row is i times its first row, then
|A| � 0.

(b) The algebraic multiplicity of any eigenvalue of an n � n complex matrix must
equal n.

(c) Every real n � n matrix is diagonalizable when thought of as a complex
matrix.

(d) The Fundamental Theorem of Algebra guarantees that every nth-degree
complex polynomial has n distinct roots.

7.3 COMPLEX VECTOR SPACES
Prerequisite: Section 5.2, The Matrix of a Linear Transformation

In this section, we examine complex vector spaces and their similarities and differ-
ences with real vector spaces.We also discuss linear transformations from one complex
vector space to another.

Complex Vector Spaces

We define complex vector spaces exactly the same way that we defined real vector
spaces in Section 4.1, except that the set of scalars is enlarged to allow the use of
complex numbers rather than just real numbers. Naturally, C

n is an example (in fact,
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the most important one) of a complex vector space. Also, under regular addition and
complex scalar multiplication, both MC

mn and PC
n (polynomials of degree �n with

complex coefficients) are complex vector spaces (see Exercise 1).
The concepts of subspace, span, linear independence, basis, and dimension

for real vector spaces carry over to complex vector spaces in an analogous way. All
of the results in Chapter 4 have complex counterparts. In particular, if W is any
subspace of a finite n-dimensional complex vector space (for example, C

n), then W
has a finite basis, and dim(W) � n.

Because every real scalar is also a complex number, every complex vector space is
also a real vector space. Therefore, we must be careful about whether a vector space
is being considered as a real or a complex vector space; that is, whether complex
scalars are to be used or just real scalars. For example, C3 is both a real vector space
and a complex vector space. As a real vector space, C3 has {[1,0,0], [i,0,0], [0,1,0],
[0, i,0], [0,0,1], [0,0, i]} as a basis and dim(C3) � 6. But as a complex vector space,
C

3 has {[1,0,0], [0,1,0], [0,0,1]} as a basis (since i can now be used as a scalar) and
so dim(C3) � 3. In general, dim(Cn) � 2n as a real vector space, but dim(Cn) � n
as a complex vector space. In Exercise 6, you are asked to prove that if V is an
n-dimensional complex vector space, then V is a 2n-dimensional real vector space.2

As usual, we let ei � [1,0,0, . . . ,0],e2 � [0,1,0, . . . ,0], . . . ,en � [0,0,0, . . . ,1] repre-
sent the standard basis vectors for the complex vector space C

n.
Coordinatization in a complex vector space is done in the usual manner, as the

following example indicates:

Example 1
Consider the subspace W of the complex vector space C

4 spanned by the vectors x1 �

[1 � i,3,0,�2i] and x2 � [�i,1 � i,3i,1 � 2i]. Since these vectors are linearly independent
(why?), the set B � (x1,x2) is an ordered basis for W and dim(W) � 2. The linear combination
z � (1 � i)x1 � 3x2 of these basis vectors is equal to

z � (1 � i)x1 � 3x2 � [2,3 � 3i,0,�2 � 2i] � [�3i,3 � 3i,9i,3 � 6i]
� [2 � 3i,6 � 6i,9i,1 � 4i].

Of course, the coordinatization of z with respect to B is [z]B � [1 � i,3].

Linear Transformations

Linear transformations from one complex vector space to another are defined just as
for real vector spaces, except that complex scalars are used in the rule L(kv) � kL(v).
The properties of complex linear transformations are completely analogous to those
for linear transformations between real vector spaces.

2 The two different dimensions are sometimes distinguished by calling them the real dimension and
the complex dimension.
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Now every complex vector space is also a real vector space.Therefore, if V and W
are complex vector spaces, and L:V → W is a complex linear transformation, then L is
also a real linear transformation when we consider V and W to be real vector spaces.
Beware! The converse is not true. It is possible to have a real linear transformation
T :V → W that is not a complex linear transformation, as in the next example.

Example 2
Let T : C

2 → C
2 be given by T ([z1,z2]) � [z2,z1]. Then T is a real linear transformation

because it satisfies the two properties, as follows:

(1) If k ∈ R, then T (k[z1, z2]) � T ([kz1, kz2]) � [kz2, kz1] � [kz2, kz1] � [kz2, kz1] �

k[z2, z1] � kT ([z1,z2]).
(2) T ([z1, z2] � [z3, z4])�T ([z1 � z3, z2 � z4])� [z2 � z4, z1 � z3]� [z2 � z4, z1 � z3]�

[z2, z1] � [z4, z3] � T ([z1, z2]) � T ([z3, z4]).
However, T is not a complex linear transformation. Consider T (i[1, i]) � T ([i,�1]) �

[�1,�i], while iT ([1, i]) � i[�i,1] � [1, i] instead. Hence, T is not a complex linear transfor-
mation.

New Vocabulary
basis (for a complex vector space)
complex dimension (of a complex vec-

tor space)
complex vector spaces
coordinatization of a vector with

respect to a basis (in a complex
vector space)

linear independence (of a set of com-
plex vectors)

linear transformation (from one com-
plex vector space to another)

matrix for a linear transformation (from
one complex vector space to
another)

real dimension (of a complex vector
space)

span (of a complex vector space)
standard basis vectors in C

n

subspace (of a complex vector space)

Highlights

■ Complex vector spaces and subspaces are defined in a manner analogous to real
vector spaces using the operations of complex vector addition and complex
scalar multiplication.

■ Span, linear independence, basis, dimension, and coordinatization are defined
for complex vector spaces in the same manner as for real vector spaces.

■ The same standard basis vectors are used for the complex vector space C
n as

for R
n.

■ When C
n is considered as a real vector space, dim(Cn) � 2n, but when C

n is
considered as a complex vector space, dim(Cn) � n.
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■ Linear transformations between complex vector spaces are defined as those
between real vector spaces, except that complex scalars may be used.

■ Every complex linear transformation from a complex vector space V to a com-
plex vector space W is a real linear transformation when V and W are considered
as real vector spaces, but not every real linear transformation is a complex linear
transformation.

EXERCISES FOR SECTION 7.3
1. (a) Show that the set PC

n of all polynomials of degree �n under addition and
complex scalar multiplication is a complex vector space.

(b) Show that the set MC
mn of all m � n complex matrices under addition and

complex scalar multiplication is a complex vector space.

2. Determine which of the following subsets of the complex vector space C
3 are

linearly independent. Also, in each case find the dimension of the span of the
subset.

(a) {[2 � i,�i,3], [�i,3 � i,�1]}
�(b) {[2 � i,�i,3], [�3 � 6i,3,9i]}

(c) {[3 � i,1 � 2i,�i], [1 � i,�2,4 � i], [1 � 3i,5 � 2i,�8 � 3i]}
�(d) {[3 � i,1 � 2i,�i], [1 � i,�2,4 � i], [3 � i,�2 � 5i,3 � 8i]}

3. Repeat Exercise 2 considering C
3 as a real vector space. (Hint: First coor-

dinatize the given vectors with respect to the basis {[1,0,0], [i,0,0], [0,1,0],
[0, i,0], [0,0,1], [0,0, i]} for C

3.This essentially replaces the original vectors with
vectors in R

6, a more intuitive setting.)

4. (a) Show that B � ([2i,�1 � 3i,4], [3 � i,�2,1 � i], [�3 � 5i,2i,�5 � 3i]) is
an ordered basis for the complex vector space C

3.

�(b) Let z � [3 � i,�5 � 5i,7 � i]. For the ordered basis B in part (a), find [z]B.

�5. With C
2 as a real vector space, give an ordered basis for C

2 and a matrix
with respect to this basis for the linear transformation L: C

2 → C
2 given

by L([z1, z2]) � [z2, z1]. (Hint: What is the dimension of C
2 as a real vector

space?)

6. Let V be an n-dimensional complex vector space with basis {v1,v2, . . . ,vn}. Prove
that {v1, iv1,v2, iv2, . . . ,vn, ivn} is a basis for V when considered as a real vector
space.

7. Prove that not every real vector space can be considered to be a complex vector
space. (Hint: Consider R

3 and Exercise 6.)
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�8. Give the matrix with respect to the standard bases for the linear transforma-
tion L: C

2 → C
3 (considered as complex vector spaces) such that L([1 � i,

�1 � 3i]) � [3 � i,5,�i] and L([1 � i,1 � 2i]) � [2 � i,1 � 3i,3].
�9. True or False:

(a) Every linearly independent subset of a complex vector space V is contained
in a basis for V .

(b) The function L: C → C given by L(z) � z is a complex linear transfor-
mation.

(c) If V is an n-dimensional complex vector space with ordered basis B, then
L: V → C

n given by L(v) � [v]B is a complex linear transformation.

(d) Every complex subspace of a finite dimensional complex vector space has
even (complex) dimension.

7.4 ORTHOGONALITY IN C
n

Prerequisite: Section 6.3, Orthogonal Diagonalization

In this section, we study orthogonality and the Gram-Schmidt Process in C
n, and the

complex analog of orthogonal diagonalization.

Orthogonal Bases and the Gram-Schmidt Process

Definition A subset {v1,v2, . . . ,vk} of vectors of C
n is orthogonal if and only if the

complex dot product of any two distinct vectors in the set is zero. An orthogonal
set of vectors in C

n is orthonormal if and only if each vector in the set is a unit
vector.

As with real vector spaces, any set of orthogonal nonzero vectors in a complex
vector space is linearly independent. The Gram-Schmidt Process for finding an
orthogonal basis extends to the complex case, as in the next example.

Example 1
We find an orthogonal basis for the complex vector space C

3 containing w1 � [i,1 � i,1]. First,
we use the Enlarging Method of Section 4.6 to find a basis for C

3 containing w1. Row reducing⎡
⎢⎣ i 1 0 0

1 � i 0 1 0
1 0 0 1

⎤
⎥⎦ to obtain

⎡
⎢⎣1 0 0 1

0 1 0 �i
0 0 1 �1 � i

⎤
⎥⎦

shows that if w2 � [1,0,0] and w3 � [0,1,0], then {w1,w2,w3} is a basis for C
3.
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Let v1 � w1. Following the steps of the Gram-Schmidt Process, we obtain

v2 � w2 �

(
w2 · v1

v1 · v1

)
v1 � [1,0,0] �

(
�i

4

)
[i,1 � i,1].

Multiplying by 4 to avoid fractions, we get

v2 � [4,0,0] � i[i,1 � i,1] � [3,�1 � i, i].

Continuing, we get

v3 � w3 �

(
w3 · v1

v1 · v1

)
v1 �

(
w3 · v2

v2 · v2

)
v2

� [0,1,0] �

(
1 � i

4

)
[i,1 � i,1] �

(
�1 � i

12

)
[3,�1 � i,1].

Multiplying by 12 to avoid fractions, we get

v3 � [0,12,0] � 3(�1 � i)[i,1 � i,1] � (1 � i)[3,�1 � i, i] � [0,4,�4 � 4i].

We can divide by 4 to avoid multiples, and so finally get v3 � [0,1,�1 � i]. Hence, {v1,v2,v3} �{[i,1 � i,1], [3,�1 � i, i], [0,1,�1 � i]} is an orthogonal basis for C
3 containing w1. (You should

verify that v1, v2, and v3 are mutually orthogonal.)
We can normalize v1, v2, and v3 to obtain the following orthonormal basis for C

3:

{[
i

2
,
1 � i

2
,
1

2

]
,

[
3

2
√

3
,

�1 � i

2
√

3
,

i

2
√

3

]
,

[
0,

1√
3

,
�1 � i√

3

]}
.

Recall that the complex dot product is not symmetric. Hence, in Example 1 we
were careful in the Gram-Schmidt Process to compute the dot products w2 · v1, w3 · v1,
and w3 · v2 in the correct order. If we had computed v1 · w2, v1 · w3, and v2 · w3

instead, the vectors obtained would not be orthogonal.

Unitary Matrices

We now examine the complex analog of orthogonal matrices.

Definition A nonsingular (square) complex matrix A is unitary if and only if
A∗ � A�1 (that is, if and only if (A)T � A�1).

It follows immediately that every unitary matrix is a normal matrix (why?).
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Example 2
For

A �

⎡
⎢⎢⎢⎢⎢⎣

1�i√
3

0 i√
3

�1�i√
15

3√
15

2i√
15

1�i√
10

2√
10

�2i√
10

⎤
⎥⎥⎥⎥⎥⎦ , we have A∗ �

(
A
)T

�

⎡
⎢⎢⎢⎢⎢⎣

1�i√
3

�1�i√
15

1�i√
10

0 3√
15

2√
10

� i√
3

� 2i√
15

2i√
10

⎤
⎥⎥⎥⎥⎥⎦ .

A quick calculation shows that AA∗ � I3 (verify!), so A is unitary.

The following theorem gives some basic properties of unitary matrices, and is
analogous to Theorem 6.6.

Theorem 7.6 If A and B are unitary matrices of the same size, then

(1) the absolute value of |A| equals 1
(
that is,

∣∣ |A| ∣∣� 1
)

(2) A∗ � A�1 �
(
A
)T is unitary, and

(3) AB is unitary.

The proofs of parts (1) and (2) are left as Exercise 4, while the proof of part (3) is
left as Exercise 5. The next two theorems are the analogs of Theorems 6.7 and 6.8.
They are left for you to prove in Exercises 7 and 8. You should verify that the unitary
matrix of Example 2 satisfies Theorem 7.7.

Theorem 7.7 Let A be an n � n complex matrix. Then A is unitary

(1) if and only if the rows of A form an orthonormal basis for C
n

(2) if and only if the columns of A form an orthonormal basis for C
n.

Theorem 7.8 Let B and C be ordered orthonormal bases for C
n. Then the transition

matrix from B to C is a unitary matrix.

Unitarily Diagonalizable Matrices

We now consider the complex analog of orthogonal diagonalization.

Definition An n � n complex matrix A is unitarily diagonalizable if and only if
there is a unitary matrix P such that P�1AP is diagonal.
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Example 3
Consider the matrix

P �
1

3

⎡
⎢⎣�2i 2 1

2i 1 2
1 �2i 2i

⎤
⎥⎦.

Notice that P is a unitary matrix, since the columns of P form an orthonormal basis for C
3.

Next, consider the matrix

A �
1

3

⎡
⎢⎣�1 � 3i 2 � 2i �2

2 � 2i 2i �2i

2 2i 1 � 4i

⎤
⎥⎦.

Now, A is unitarily diagonalizable because

P�1AP � P∗AP �

⎡
⎢⎣�1 0 0

0 2i 0
0 0 1 � i

⎤
⎥⎦,

a diagonal matrix.

We saw in Section 6.3 that a matrix is orthogonally diagonalizable if and only if
it is symmetric. The following theorem, stated without proof, characterizes unitarily
diagonalizable matrices:

Theorem 7.9 An n � n matrix A is unitarily diagonalizable if and only if A is normal.

A quick calculation shows that the matrix A in Example 3 is normal (see
Exercise 9).

Example 4

Let A �

[
�48 � 18i �24 � 36i

24 � 36i �27 � 32i

]
. A direct computation of AA∗ and A∗A shows that A is

normal (verify!). Therefore, A is unitarily diagonalizable by Theorem 7.9. After some calculation,
you can verify that the eigenvalues of A are �1 � 50i and �2 � �75. Hence, A is unitarily

diagonalizable to D �

[
50i 0
0 �75

]
.

In fact, �1 and �2 have associated eigenvectors v1 �
[

3
5 ,� 4

5 i
]

and v2 �
[
� 4

5 i, 3
5

]
. Since

{v1,v2} is an orthonormal set, the matrix P �

⎡
⎣ 3

5 � 4
5 i

� 4
5 i 3

5

⎤
⎦, whose columns are v1 and v2, is

a unitary matrix, and P�1AP � P∗AP � D.



 

468 CHAPTER 7 Complex Vector Spaces and General Inner Products

Self-Adjoint Operators and Hermitian Matrices

An immediate corollary of Theorems 7.4 and 7.9 is

Corollary 7.10 If A is a Hermitian or skew-Hermitian matrix, then A is unitarily
diagonalizable.

We can prove even more about Hermitian matrices. First, we introduce some new
terminology. If linear operators L and M on C

n have the property L(x) · y � x · M(y)

for all x,y ∈ C
n, then M is called an adjoint of L. Now, suppose that L: C

n → C
n is

the linear operator L(x) � Ax, where A is an n � n matrix, and let L∗: C
n → C

n be
given by L∗(x) � A∗x. By Theorem 7.3, (L(x)) · y � x · (L∗(y)) for all x,y ∈ C

n, and
so L∗ is an adjoint of L.

Now, if A is a Hermitian matrix, then A � A∗, and so L � L∗. Thus, (L(x)) · y �
x · (L(y)) for all x,y ∈ C

n. Such an operator is called self-adjoint, since it is its own
adjoint. It can be shown that every self-adjoint operator on C

n has a Hermitian matrix
representation with respect to any orthonormal basis. Self-adjoint operators are the
complex analogs of the symmetric operators in Section 6.3. Corollary 7.10 asserts that
all self-adjoint operators are unitarily diagonalizable. The converse to Corollary 7.10
is not true because there are unitarily diagonalizable (� normal) matrices that are not
Hermitian. This differs from the situation with linear operators on real vector spaces
where the analog of the converse of Corollary 7.10 is true; that is, every orthogonally
diagonalizable linear operator is symmetric.

The final theorem of this section shows that any diagonal matrix representation for
a self-adjoint operator has all real entries.

Theorem 7.11 All eigenvalues of a Hermitian matrix are real.

Proof. Let � be an eigenvalue for a Hermitian matrix A, and let u be a unit eigenvector for �.
Then � � �‖u‖2 � �(u · u) � (�u) · u � (Au) · u � u · (Au) (by Theorem 7.3) � u · �u �
�(u · u) (by part (5) of Theorem 7.1) � �. Hence, � is real.

Example 5
Consider the Hermitian matrix

A �

⎡
⎢⎣ 17 �24 � 8i �24 � 32i

�24 � 8i 53 4 � 12i
�24 � 32i 4 � 12i 11

⎤
⎥⎦ .

By Theorem 7.11, all eigenvalues of A are real. It can be shown that these eigenvalues are
�1 � 27, �2 � �27, and �3 � 81. By Corollary 7.10, A is unitarily diagonalizable. In fact, the
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unitary matrix

P �
1

9

⎡
⎢⎣ 4 6 � 2i �3 � 4i

6 � 2i 1 2 � 6i
�3 � 4i 2 � 6i 4

⎤
⎥⎦

has the property that P�1AP is the diagonal matrix with eigenvalues �1, �2, and �3 on the main
diagonal (verify!).

Every real symmetric matrix A can be thought of as a complex Hermitian matrix.
Now pA(x) must have at least one complex root. But by Theorem 7.11, this eigen-
value for A must be real. This gives us a shorter proof of Lemma 6.19 in Section 6.3.
(We did not use this method of proof in Section 6.3 since it entails complex
numbers.)

New Vocabulary
adjoint linear operator
Gram-Schmidt Process (for finding an

orthogonal basis for a subspace
of C

n)
orthogonal set (of complex vectors)

orthonormal set (of complex vectors)
self-adjoint linear operator
unitarily diagonalizable matrix
unitary matrix

Highlights

■ Orthogonal and orthonormal sets of complex vectors are defined as for real
vectors but using the complex dot product.

■ A complex matrix is unitary if A∗ � A�1.

■ An n � n complex matrix is unitary iff its rows [columns] form an orthonormal
basis for C

n.

■ Any transition matrix from one ordered orthonormal basis to another is a unitary
matrix.

■ A matrix A is unitarily diagonalizable iff there is a unitary matrix P such that
P�1AP is diagonal.

■ Any Hermitian matrix is unitarily diagonalizable and all of its eigenvalues are
real.

■ A matrix is unitarily diagonalizable iff it is normal.

■ Every self-adjoint operator is unitarily diagonalizable, but not every unitarily
diagonalizable operator is self-adjoint.
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EXERCISES FOR SECTION 7.4
1. Determine whether the following sets of vectors are orthogonal.

�(a) In C
2: {[1 � 2i,�3 � i], [4 � 2i,3 � i]}

(b) In C
3: {[1 � i,�1 � i,1 � i], [i,�2i,2i]}

�(c) In C
3: {[2i,�1, i], [1,�i,�1], [0,1, i]}

(d) In C
4: {[1, i,�1,1 � i], [4,�i,1,�1 � i], [0,3,�i,�1 � i]}

2. Suppose {z1, . . . ,zk} is an orthonormal subset of C
n, and c1, . . . ,ck ∈ C with

|ci| � 1 for 1 � i � k. Prove that {c1z1, . . . ,ckzk} is an orthonormal subset
of C

n.

�3. (a) Use the Gram-Schmidt Process to find an orthogonal basis for C
3 containing

[1 � i, i,1].
(b) Find a 3 � 3 unitary matrix having a multiple of [1 � i, i,1] as its first row.

4. Prove parts (1) and (2) of Theorem 7.6.

5. Prove part (3) of Theorem 7.6.

6. (a) Prove that a complex matrix A is unitary if and only if A is unitary.

(b) Let A be a unitary matrix. Prove that Ak is unitary for all integers k 	 1.

(c) Let A be a unitary matrix. Prove that A2 � In if and only if A is Hermitian.

7. �(a) Without using Theorem 7.7, prove that A is a unitary matrix if and only
if AT is unitary.

(b) Prove Theorem 7.7. (Hint: First prove part (1) of Theorem 7.7, and then
use part (a) of this exercise to prove part (2). Modify the proof of The-
orem 6.7. For instance, when i �� j, to show that the ith row of A is
orthogonal to the jth column of A, we must show that the complex dot
product of the ith row of A with the jth column of A equals zero.)

8. Prove Theorem 7.8. (Hint: Modify the proof of Theorem 6.8.)

9. Show that the matrix A in Example 3 is normal.

10. (a) Show that the linear operator L: C
2 → C

2 given by

L

([
z1

z2

])
�

[
1 � 6i �10 � 2i
2 � 10i 5

][
z1

z2

]
is unitarily diagonalizable.

�(b) If A is the matrix for L (with respect to the standard basis for C
2), find a

unitary matrix P such that P�1AP is diagonal.
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11. (a) Show that the following matrix is unitarily diagonalizable:

A �

⎡
⎢⎣�4 � 5i 2 � 2i 4 � 4i

2 � 2i �1 � 8i �2 � 2i

4 � 4i �2 � 2i �4 � 5i

⎤
⎥⎦.

(b) Find a unitary matrix P such that P�1AP is diagonal.

12. (a) Let A be a unitary matrix. Show that |�| � 1 for every eigenvalue � of A.
(Hint: Suppose Az � �z, for some z. Use Theorem 7.3 to calculate Az · Az
two different ways to show that �� � 1.)

(b) Prove that a unitary matrix A is Hermitian if and only if the eigenvalues of
A are 1 and/or �1.

�13. Verify directly that all of the eigenvalues of the following Hermitian matrix are
real: ⎡

⎢⎣ 1 2 � i 1 � 2i

2 � i �3 �i

1 � 2i i 2

⎤
⎥⎦.

14. (a) Prove that if A is normal and has real eigenvalues, then A is Hermitian.
(Hint: Use Theorem 7.9 to express A as PDP∗ for some unitary P and
diagonal D. Calculate A∗.)

(b) Prove that if A is normal and all eigenvalues have absolute value equal to 1,
then A is unitary. (Hint: With A � PDP∗ as in part (a), show DD∗ � I and
use this to calculate AA∗.)

(c) Prove that if A is unitary, then A is normal.

�15. True or False:

(a) Every Hermitian matrix is unitary.

(b) Every orthonormal basis for R
n is also an orthonormal basis for C

n.

(c) An n � n complex matrix A is unitarily diagonalizable if and only if there
is a unitary matrix P such that PAP∗ is diagonal.

(d) If the columns of an n � n matrix A form an orthonormal basis for C
n,

then the rows of A also form an orthonormal basis for C
n.

(e) If A is the matrix with respect to the standard basis for a linear operator
L on C

n, then AT is the matrix for the adjoint of L with respect to the
standard basis.
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7.5 INNER PRODUCT SPACES
Prerequisite: Section 6.3, Orthogonal Diagonalization

In R
n and C

n, we have the dot product along with the operations of vector addition
and scalar multiplication. In other vector spaces,we can often create a similar type of
product, known as an inner product.

Inner Products

Definition Let V be a real [complex] vector space with operations � and ·, and let
〈 , 〉 be an operation that assigns to each pair of vectors x, y ∈ V a real [complex]
number, denoted 〈x, y〉. Then 〈 , 〉 is a real [complex] inner product for V if
and only if the following properties hold for all x,y ∈ V and all k ∈ R [k ∈ C]:

(1) 〈x,x〉 is always real, and 〈x,x〉 	 0

(2) 〈x,x〉 � 0 if and only if x � 0

(3) 〈x,y〉 � 〈y,x〉 [〈x,y〉 � 〈y,x〉]
(4) 〈x � y,z〉 � 〈x,z〉 � 〈y,z〉
(5) 〈kx,y〉 � k 〈x,y〉.

A vector space together with a real [complex] inner product operation is known
as a real [complex] inner product space.

Example 1
Consider the real vector space R

n. Let x � [x1, . . . ,xn] and y � [y1, . . . ,yn] be vectors in R
n.

By Theorem 1.5, the operation 〈x,y〉 � x · y � x1y1 � · · · � xnyn (usual real dot product) is a
real inner product (verify!). Hence, R

n together with the dot product is a real inner product
space.

Similarly, let x � [x1, . . . ,xn] and y � [y1, . . . ,yn] be vectors in the complex vector space C
n.

By Theorem 7.1, the operation 〈x,y〉 � x · y � x1y1 � · · · � xnyn (usual complex dot product)
is an inner product on C

n. Thus, C
n together with the complex dot product is a complex inner

product space.

Example 2
Consider the real vector space R

2. For x � [x1,x2] and y � [y1,y2] in R
2, define 〈x,y〉 �

x1y1 � x1y2 � x2y1 � 2x2y2. We verify the five properties in the definition of an inner product
space.

Property (1): 〈x,x〉 � x1x1 � x1x2 � x2x1 � 2x2x2 � x2
1 � 2x1x2 � x2

2 � x2
2 � (x1�x2)2�

x2
2 	 0.

Property (2): 〈x,x〉 � 0 exactly when x1 � x2 � 0 (that is, when x � 0).



 

7.5 Inner Product Spaces 473

Property (3): 〈y,x〉 � y1x1�y1x2�y2x1 � 2y2x2 � x1y1 � x1y2 � x2y1 � 2x2y2 � 〈x,y〉.
Property (4): Let z � [z1,z2]. Then

〈x � y,z〉 � (x1 � y1)z1 � (x1 � y1)z2 � (x2 � y2)z1 � 2(x2 � y2)z2

� x1z1 � y1z1 � x1z2 � y1z2 � x2z1 � y2z1 � 2x2z2 � 2y2z2

� (x1z1 � x1z2 � x2z1 � 2x2z2) � (y1z1 � y1z2 � y2z1 � 2y2z2)

� 〈x,z〉 � 〈y,z〉 .

Property (5): 〈kx,y〉 � (kx1)y1 � (kx1)y2 � (kx2)y1 � 2(kx2)y2 � k(x1y1 � x1y2 � x2y1�

2x2y2) � k 〈x,y〉.
Hence, 〈 , 〉 is a real inner product on R

2, and R
2 together with this operation 〈 , 〉 is a real

inner product space.

Example 3
Consider the real vector space R

n. Let A be a nonsingular n � n real matrix. Let x,y ∈ R
n

and define 〈x,y〉 � (Ax) · (Ay) (the usual dot product of Ax and Ay). It can be shown (see
Exercise 1) that 〈 , 〉 is a real inner product on R

n, and so R
n together with this operation 〈 , 〉 is

a real inner product space.

Example 4
Consider the real vector space Pn. Let p1 � anxn � · · · � a1x � a0 and p2 � bnxn � · · · �

b1x � b0 be in Pn. Define 〈p1,p2〉 � anbn � · · · � a1b1 � a0b0. It can be shown (see
Exercise 2) that 〈 , 〉 is a real inner product on Pn, and so Pn together with this operation 〈 , 〉 is
a real inner product space.

Example 5
Let a,b ∈ R, with a < b, and consider the real vector space V of all real-valued continuous
functions defined on the interval [a,b] (for example, polynomials, sin x, e x). Let f ,g ∈ V . Define
〈f ,g〉 �

∫ b
a f (t)g(t)dt . It can be shown (see Exercise 3) that 〈 , 〉 is a real inner product on V,

and so V together with this operation 〈 , 〉 is a real inner product space.
Analogously, the operation 〈f ,g〉 �

∫ b
a f (t)g(t)dt makes the complex vector space of all

complex-valued continuous functions on [a,b] into a complex inner product space.

Of course, not every operation is an inner product. For example, for the vectors
x � [x1, x2] and y � [y1, y2] in R

2, consider the operation 〈x,y〉 � x2
1 � y2

1. Now,
with x � y � [1,0], we have 〈2x,y〉 � 22 � 12 � 5, but 2 〈x,y〉 � 2(12 � 12) � 4.
Thus, property (5) fails to hold.

The next theorem lists some useful results for inner product spaces.



 

474 CHAPTER 7 Complex Vector Spaces and General Inner Products

Theorem 7.12 Let V be a real [complex] inner product space with inner product 〈 , 〉.
Then for all x,y ∈ V and all k ∈ R [k ∈ C], we have

(1) 〈0,x〉 � 〈x,0〉 � 0
(2) 〈x,y � z〉 � 〈x,y〉 � 〈x,z〉
(3) 〈x,ky〉 � k 〈x,y〉 [〈x,ky〉 � k 〈x,y〉].

Note the use of k in part (3) for complex vector spaces. The proof of this theorem
is straightforward, and parts are left for you to do in Exercise 5.

Length, Distance, and Angles in Inner Product Spaces

The next definition extends the concept of the length of a vector to any inner product
space.

Definition If x is a vector in an inner product space, then the norm (length) of
x is ‖x‖ �

√〈x,x〉.

This definition yields a nonnegative real number for ‖x‖, since by definition, 〈x,x〉
is always real and nonnegative for any vector x. Also note that this definition agrees
with the earlier definition of length in R

n based on the usual dot product in R
n. We

also have the following result:

Theorem 7.13 Let V be a real [complex] inner product space, with x ∈ V. Let k ∈ R

[k ∈ C]. Then, ‖kx‖ � |k|‖x‖ .

The proof of this theorem is left for you to do in Exercise 6.
As before, we say that a vector of length 1 in an inner product space is a unit vector.

For instance, in the inner product space of Example 4, the polynomial p �
√

2
2 x �

√
2

2

is a unit vector since ‖p‖ �
√〈p,p〉 �

√(√
2

2

)2
�
(√

2
2

)2
� 1.

We define the distance between two vectors in the general inner product space
setting as we did for R

n.

Definition Let x,y ∈ V , an inner product space. Then the distance between x
and y is ‖x � y‖ .

Example 6
Consider the real vector space V of real continuous functions from Example 5, with a � 0 and
b � �. That is, 〈f ,g〉 �

∫ �
0 f (t)g(t)dt for all f ,g ∈ V . Let f � cos t and g � sin t . Then the distance
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between f and g is

‖f � g‖ �
√〈cos t � sin t , cos t � sin t〉 �

√∫ �

0
(cos t � sin t)2 dt

�

√∫ �

0

(
cos2 t � 2cos t sin t � sin2 t

)
dt

�

√∫ �

0
(1 � sin 2t) dt �

√(
t �

1

2
cos2t

)∣∣∣∣�
0

�
√

�.

Hence, the distance between cos t and sin t is
√

� under this inner product.

The next theorem shows that some other familiar results from the ordinary dot
product carry over to the general inner product.

Theorem 7.14 Let x,y ∈ V , an inner product space, with inner product 〈 , 〉. Then

(1) |〈x,y〉|� ‖x‖‖y‖ Cauchy-Schwarz Inequality
(2) ‖x � y‖� ‖x‖ � ‖y‖. Triangle Inequality

The proofs of these statements are analogous to the proofs for the ordinary dot
product and are left for you to do in Exercise 11.

From the Cauchy-Schwarz Inequality, we have �1 � 〈x,y〉/(‖x‖‖y‖)� 1, for any
nonzero vectors x and y in a real inner product space. Hence, we can make the
following definition:

Definition Let x,y ∈ V , a real inner product space. Then the angle between x
and y is the angle � from 0 to � such that cos� � 〈x,y〉/(‖x‖‖y‖).

Example 7
Consider again the inner product space of Example 6, where 〈f ,g〉 �

∫ �
0 f (t)g(t)dt . Let f � t

and g � sin t. Then 〈f ,g〉 �
∫ �

0 t sin t dt. Using integration by parts, we get (�t cos t)|�0 �∫ �
0 cos t dt � � � (sin t)|�0 � �. Also, ‖f‖2 � 〈f , f 〉 �

∫ �
0 (f (t))2 dt �

∫ �
0 t2 dt �

(
t3/3

)∣∣�
0 �

�3/3, and so ‖f‖ �
√

�3/3. Similarly, ‖g‖2 � 〈g,g〉 �
∫ �

0

(
g(t)

)2 dt �
∫ �

0 sin2 t dt �∫ �
0

1
2 (1 � cos2t)dt �

(
1
2 t � 1

4 sin 2t
)∣∣∣�

0
� �/2, and so ‖g‖ �

√
�/2. Hence, the cosine of

the angle � between t and sin t equals 〈f ,g〉/(‖f‖‖g‖)� �/
(√

�3/3
√

�/2
)

�
√

6/� ≈ 0.78.

Hence, � ≈ 0.68 radians (38.8◦).

Orthogonality in Inner Product Spaces

We next define orthogonal vectors in a general inner product space setting and show
that nonzero orthogonal vectors are linearly independent.
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Definition A subset {x1, . . . ,xn} of vectors in an inner product space V with inner
product 〈 , 〉 is orthogonal if and only if

〈
xi ,xj

〉
� 0 for 1 � i, j � n, with i �� j.

Also, an orthogonal set of vectors in V is orthonormal if and only if each vector
in the set is a unit vector.

The next theorem is the analog of Theorem 6.1, and its proof is left for you to do
in Exercise 15.

Theorem 7.15 If V is an inner product space and T is an orthogonal set of nonzero
vectors in V, then T is a linearly independent set.

Example 8
Consider again the inner product space V of Example 5 of real continuous functions with inner
product 〈f ,g〉 �

∫ b
a f (t)g(t)dt , with a � �� and b � �. The set {1,cos t ,sin t} is an orthogonal

set in V, since each of the following definite integrals equals zero (verify!):∫ �

��
(1)cos t dt ,

∫ �

��
(1)sin t dt ,

∫ �

��
(cos t)(sin t)dt .

Also, note that ‖1‖2 � 〈1,1〉 �
∫ �

��(1)(1)dt � 2�, ‖cos t‖2 � 〈cos t ,cos t〉 �
∫ �

�� cos2 t dt � �

(why?), and ‖sin t‖2 � 〈sin t ,sin t〉 �
∫ �

�� sin2 t dt � � (why?). Therefore, the set

{
1√
2�

,
cos t√

�
,

sin t√
�

}

is an orthonormal set in V.

Example 8 can be generalized. The set {1,cos t ,sin t ,cos2t ,sin 2t ,cos3t ,sin 3t , . . .}
is an orthogonal set (see Exercise 16) and therefore linearly independent by
Theorem 7.15. The functions in this set are important in the theory of partial
differential equations. It can be shown that every continuously differentiable func-
tion on the interval [��,�] can be represented as the (infinite) sum of constant
multiples of these functions. Such a sum is known as the Fourier series of the
function.

A basis for an inner product space V is an orthogonal [orthonormal] basis if
the vectors in the basis form an orthogonal [orthonormal] set.

Example 9
Consider again the inner product space Pn with the inner product of Example 4; that is,
if p1 � anxn � · · · � a1x � a0 and p2 � bnxn � · · · � b1x � b0 are in Pn, then 〈p1,p2〉 �

anbn � · · · � a1b1 � a0b0. Now,
{
xn,xn�1, . . . ,x,1

}
is an orthogonal basis for Pn with this inner
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product, since
〈
xk,xl 〉� 0, for 0 � k, l � n, with k �� l (why?). Since

∥∥xk
∥∥�

√〈
xk,xk

〉
� 1, for

all k, 0 � k � n (why?), the set
{
xn,xn�1, . . . ,x,1

}
is also an orthonormal basis for this inner

product space.

A proof analogous to that of Theorem 6.3 gives us the next theorem (see
Exercise 17).

Theorem 7.16 If B � (v1,v2, . . . ,vk) is an orthogonal ordered basis for a subspace W
of an inner product space V , and if v is any vector in W, then

[v]B �

[ 〈v,v1〉
〈v1,v1〉 ,

〈v,v2〉
〈v2,v2〉 , . . . ,

〈v,vk〉
〈vk,vk〉

]
.

In particular, if B is an orthonormal ordered basis for W, then [v]B � [〈v,v1〉,
〈v,v2〉 , . . . , 〈v,vk〉].

Example 10
Recall the inner product space R

2 in Example 2, with inner product given as follows: if
x � [x1,x2] and y � [y1,y2], then 〈x,y〉 � x1y1 � x1y2 � x2y1 � 2x2y2. An ordered orthog-
onal basis for this space is B � (v1,v2) � ([2,1], [0,1]) (verify!). Recall from Example 2 that
〈x,x〉 � (x1 � x2)2 � x2

2. Thus, 〈v1,v1〉 � (2 � 1)2 � 12 � 2, and 〈v2,v2〉 � (0 � 1)2 � 12 � 2.
Next, suppose that v � [a,b] is any vector in R

2. Now, 〈v,v1〉 � 〈[a,b], [2,1]〉 �

(a)(2) � (a)(1) � (b)(2) � 2(b)(1) � a. Also, 〈v,v2〉 � 〈[a,b], [0,1]〉 � (a)(0) � (a)(1) �

(b)(0) � 2(b)(1) � �a � 2b. Then,

[v]B �

[ 〈v,v1〉
〈v1,v1〉 ,

〈v,v2〉
〈v2,v2〉

]
�

[
a

2
,

�a � 2b

2

]
.

Notice that a
2 [2,1] �

(
�a�2b

2

)
[0,1] does equal [a,b] � v.

The Generalized Gram-Schmidt Process

We can generalize the Gram-Schmidt Process of Section 6.1 to any inner product space.
That is, we can replace any linearly independent set of k vectors with an orthogonal
set of k vectors that spans the same subspace.

Generalized Gram-Schmidt Process
Let {w1, . . . ,wk} be a linearly independent subset of an inner product space V, with inner
product 〈 , 〉. We create a new set {v1, . . . ,vk} of vectors as follows:
Let v1 � w1.
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Let v2 � w2 �

( 〈w2,v1〉
〈v1,v1〉

)
v1.

Let v3 � w3 �

(〈
w3,v1

〉
〈v1,v1〉

)
v1 �

(〈
w3,v2

〉
〈v2,v2〉

)
v2.

...

Let vk � wk �

( 〈wk,v1〉
〈v1,v1〉

)
v1 �

( 〈wk,v2〉
〈v2,v2〉

)
v2 � · · · �

( 〈wk,vk�1〉
〈vk�1,vk�1〉

)
vk�1.

A proof similar to that of Theorem 6.4 (see Exercise 21) gives

Theorem 7.17 Let B � {w1, . . . ,wk} be a basis for a finite dimensional inner product
space V. Then the set {v1, . . . ,vk} obtained by applying the Generalized Gram-Schmidt
Process to B is an orthogonal basis for V.

Hence, every nontrivial finite dimensional inner product space has an orthogonal
basis.

Example 11
Recall the inner product space V from Example 5 of real continuous functions using a � �1
and b � 1, that is, with inner product 〈f ,g〉 �

∫ 1
�1 f (t)g(t)dt . Now,

{
1, t , t2, t3} is a linearly

independent set in V. We use this set to find four orthogonal vectors in V.
Let w1 � 1, w2 � t , w3 � t2, and w4 � t3. Using the Generalized Gram-Schmidt Process,

we start with v1 � w1 � 1 and obtain

v2 � w2 �

( 〈w2,v1〉
〈v1,v1〉

)
v1 � t �

( 〈t ,1〉
〈1,1〉

)
1.

Now, 〈t ,1〉 �
∫ 1

�1 (t)(1) dt �
(
t2/2

)∣∣1
�1 � 0. Hence, v2 � t . Next,

v3 � w3 �

(〈
w3,v1

〉
〈v1,v1〉

)
v1 �

(〈
w3,v2

〉
〈v2,v2〉

)
v2 � t2 �

(〈
t2,1

〉
〈1,1〉

)
1 �

(〈
t2, t

〉
〈t , t〉

)
t .

After a little calculation, we obtain
〈
t2,1

〉
� 2

3 , 〈1,1〉 � 2, and
〈
t2, t

〉
� 0. Hence, v3 � t2 �((

2
3

)/
2
)

1 � t2 � 1
3 . Finally,

v4 � w4 �

(〈
w4,v1

〉
〈v1,v1〉

)
v1 �

(〈
w4,v2

〉
〈v2,v2〉

)
v2 �

(〈
w4,v3

〉〈
v3,v3

〉
)

v3

� t3 �

(〈
t3,1

〉
〈1,1〉

)
1 �

(〈
t3, t

〉
〈t , t〉

)
t �

(〈
t3, t2〉〈
t2, t2

〉
)

t2.



 

7.5 Inner Product Spaces 479

Now,
〈
t3,1

〉
� 0,

〈
t3, t

〉
� 2

5 , 〈t , t〉 � 2
3 , and

〈
t3, t2〉� 0. Hence, v4 � t3 �

((
2
5

)/(2
3

))
t �

t3 � 3
5 t .

Thus, the set {v1,v2,v3,v4} �
{

1, t , t2 � 1
3 , t3 � 3

5 t
}

is an orthogonal set of vectors in this

inner product space.3

We saw in Theorem 6.8 that the transition matrix between orthonormal bases of
R

n is an orthogonal matrix.This result generalizes to inner product spaces as follows:

Theorem 7.18 Let V be a finite dimensional real [complex] inner product space, and
let B and C be ordered orthonormal bases for V. Then the transition matrix from B to
C is an orthogonal [unitary] matrix.

Orthogonal Complements and Orthogonal Projections in Inner
Product Spaces

We can generalize the notion of an orthogonal complement of a subspace to inner
product spaces as follows:

Definition Let W be a subspace of a real (or complex) inner product space V .
Then the orthogonal complement W⊥ of W in V is the set of all vectors x ∈ V
with the property that 〈x,w〉 � 0, for all w ∈ W .

Example 12
Consider again the real vector space Pn, with the inner product of Example 4 — for p1 �

anxn � · · · � a1x � a0 and p2 � bnxn � · · · � b1x � b0, 〈p1,p2〉 � anbn � · · · � a1b1 � a0b0.
Example 9 showed that

{
xn,xn�1, . . . ,x,1

}
is an orthogonal basis for Pn under this inner

product. Now, consider the subspace W spanned by {x,1}. A little thought will convince you that
W⊥ � span

{
xn,xn�1, . . . ,x2} and so, dim(W) � dim

(W⊥)� 2 � (n � 1) � n � 1 � dim(Pn).

The following properties of orthogonal complements are the analogs to
Theorems 6.11 and 6.12 and Corollaries 6.13 and 6.14 and are proved in a similar
manner (see Exercise 22):

3 The polynomials 1, t , t2 � 1
3 , and t3 � 3

5 t from Example 11 are multiples of the first four Legendre

polynomials: 1, t , 3
2 t2 � 1

2 , 5
2 t3 � 3

2 t . All Legendre polynomials equal 1 when t � 1. To find the
complete set of Legendre polynomials, we can continue the Generalized Gram-Schmidt Process with
t4, t5, t6,and so on,and take appropriate multiples so that the resulting polynomials equal 1 when t � 1.
These polynomials form an (infinite) orthogonal set for the inner product space of Example 11.
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Theorem 7.19 Let W be a subspace of a real (or complex) inner product space V.
Then

(1) W⊥ is a subspace of V.

(2) W ∩ W⊥ � {0}.
(3) W ⊆ (W⊥)⊥.

Furthermore, if V is finite dimensional, then

(4) If {v1, . . . ,vk} is an orthogonal basis for W contained in an orthogonal basis
{v1, . . . ,vk,vk�1, . . . ,vn} for V, then {vk�1, . . . ,vn} is an orthogonal basis for
W⊥.

(5) dim(W) � dim
(W⊥)� dim(V).

(6)
(W⊥)⊥ � W.

Note that if V is not finite dimensional,
(W⊥)⊥ is not necessarily equal to W ,

although it is always true that W ⊆ (W⊥)⊥ .4

The next theorem is the analog of Theorem 6.15. It holds for any inner product
space V where the subspace W is finite dimensional. The proof is left for you to do
in Exercise 25.

Theorem 7.20 (Projection Theorem) Let W be a finite dimensional subspace of an
inner product space V. Then every vector v ∈ V can be expressed in a unique way as
w1 � w2, where w1 ∈ W and w2 ∈ W⊥.

As before, we define the orthogonal projection of a vector v onto a subspace
W as follows:

Definition If {v1, . . . ,vk} is an orthonormal basis for W , a subspace of an inner
product space V , then the vector projWv � 〈v,v1〉v1 � · · · � 〈v,vk〉vk is called
the orthogonal projection of v onto W . If W is the trivial subspace of V , then
projWv � 0.

It can be shown that the formula for projWv yields the unique vector w1 in
the Projection Theorem. Therefore, the choice of orthonormal basis in the definition

4 The following is an example of a subspace W of an infinite dimensional inner product space such
that W ��(W⊥)⊥. Let V be the inner product space of Example 5 with a � 0, b � 1, and let fn(x) �{

1, if x > 1
n

nx, if 0 � x � 1
n

. Let W be the subspace of V spanned by {f1, f2, f3, . . .}. It can be shown that f (x) � 1

is not in W , but f (x) ∈ (W⊥)⊥. Hence,W ��(W⊥)⊥.
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does not matter because any choice leads to the same vector for projWv. Hence, the
Projection Theorem can be restated as follows:

If W is a finite dimensional subspace of an inner product space V, and if v ∈ V, then v can
be expressed as w1 � w2, where w1 � projWv ∈ W and w2 � v � projWv ∈ W⊥.

Example 13
Consider again the real vector space V of real continuous functions in Example 8, where 〈f ,g〉 �∫ �

�� f (t)g(t)dt . Notice from that example that the set
{
1/

√
2�, (sin t)/

√
�
}

is an orthonormal
(and hence, linearly independent) set of vectors in V. Let W � span

({
1/

√
2�, (sin t)/

√
�
})

in
V. Then any continuous function f in V can be expressed uniquely as f1 � f2, where f1 ∈ W
and f2 ∈ W⊥.

We illustrate this decomposition for the function f � t � 1. Now,

f1 � projW f � c1

(
1√
2�

)
� c2

(
sin t√

�

)
,

where c1 �
〈
(t � 1),1/

√
2�
〉
and c2 �

〈
(t � 1),(sin t)/

√
�
〉
. Then

c1 �

∫ �

��
(t � 1)

(
1√
2�

)
dt �

1√
2�

∫ �

��
(t � 1)dt

�
1√
2�

(
t2

2
� t

)∣∣∣∣∣
�

��

�
2�√
2�

�
√

2�.

Also,

c2 �

∫ �

��
(t � 1)

(
sin t√

�

)
dt �

1√
�

∫ �

��
(t � 1) sin t dt

�
1√
�

(∫ �

��
t sin t dt �

∫ �

��
sin t dt

)
.

The very last integral equals zero. Using integration by parts on the other integral, we obtain

c2 �
1√
�

(
(�t cos t)|��� �

∫ �

��
cos t dt

)
�

(
1√
�

)
2� � 2

√
�.

Hence,

f1 � c1

(
1√
2�

)
� c2

(
sin t√

�

)
�

√
2�

(
1√
2�

)
� 2

√
�

(
sin t√

�

)
� 1 � 2sin t .

Then by the Projection Theorem, f2 � f � f1 � (t � 1) � (1 � 2sin t) � t � 2sin t is orthogonal
to W. We check that f2 ∈ W⊥ by showing that f2 is orthogonal to both 1/

√
2� and (sin t)/

√
�.

〈
f2,

1√
2�

〉
�

∫ �

��
(t � 2sin t)

(
1√
2�

)
dt �

(
1√
2�

)(
t2

2
� 2cos t

)∣∣∣∣∣
�

��

� 0.
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Also, 〈
f2,

sin t√
�

〉
�

∫ �

��
(t � 2sin t)

(
sin t√

�

)
dt �

1√
�

∫ �

��
t sin t dt �

2√
�

∫ �

��
sin2 t dt,

which equals 2
√

� � 2
√

� � 0.

New Vocabulary

angle between vectors (in an inner
product space)

Cauchy-Schwarz Inequality (in an inner
product space)

complex inner product (on a complex
vector space)

complex inner product space
distance between vectors (in an inner

product space)
Fourier series
Generalized Gram-Schmidt Process (in

an inner product space)
Legendre polynomials
norm (length) of a vector (in an inner

product space)
orthogonal basis (in an inner product

space)

orthogonal complement (of a subspace
in an inner product space)

orthogonal projection (of a vector onto
a subspace of an inner product
space)

orthogonal set of vectors (in an inner
product space)

orthonormal basis (in an inner product
space)

orthonormal set of vectors (in an inner
product space)

real inner product (on a real vector
space)

real inner product space
Triangle Inequality (in an inner product

space)
unit vector (in an inner product space)

Highlights

■ Real and complex inner products are generalizations of the real and complex
dot products, respectively.

■ An inner product space is a vector space that possesses three operations:vector
addition, scalar multiplication, and inner product.

■ For vectors x, y and scalar k in a real inner product space, 〈x,y〉 � 〈y,x〉, and
〈x,ky〉 � k 〈x,y〉.

■ For vectors x, y and scalar k in a real or complex inner product space, 〈kx,y〉 �
k 〈x,y〉.

■ For vectors x, y and scalar k in a complex inner product space, 〈x,y〉 � 〈y,x〉,
〈x,ky〉 � k 〈x,y〉, and ‖kx‖ � |k|‖x‖.

■ The length of a vector x in an inner product space is ‖x‖ �
√〈x,x〉, and the

distance between vectors x and y in an inner product space is ||x � y||.
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■ The angle � between two vectors in a real inner product space is defined as the
angle between 0 and � such that cos� � 〈x,y〉/(‖x‖‖y‖).

■ Orthogonal and orthonormal sets of vectors, and orthogonal complements of
subspaces, are defined for inner product spaces analogously as for real vector
spaces.

■ An orthogonal set of nonzero vectors in an inner product space is a linearly
independent set.

■ If B � (v1,v2, . . . ,vk) is an orthogonal ordered basis for a subspace W of
an inner product space V , and if v is any vector in W , then [v]B �[ 〈v,v1〉

〈v1,v1〉 , 〈v,v2〉
〈v2,v2〉 , . . . , 〈v,vk〉

〈vk,vk〉
]
.

■ The Generalized Gram-Schmidt Process can be used to find an orthogonal basis
for any subspace spanned by a finite linearly independent subset.

■ If W is a finite dimensional subspace of an inner product space V , then every
vector v in V can be expressed uniquely as the sum of vectors w1 � projWv ∈ W
and w2 � v � projWv ∈ W⊥.

■ The transition matrix from one ordered orthonormal basis to another in a real
[complex] inner product space is an orthogonal [unitary] matrix.

EXERCISES FOR SECTION 7.5
1. (a) Let A be a nonsingular n � n real matrix. For x,y ∈ R

n, define an opera-
tion 〈x,y〉 � (Ax) · (Ay) (dot product). Prove that this operation is a real
inner product on R

n.

�(b) For the inner product in part (a) with A �

⎡
⎣ 5 4 2

�2 3 1
1 �1 0

⎤
⎦, find 〈x,y〉

and ‖x‖, for x � [3,�2,4] and y � [�2,1,�1].
2. Define an operation 〈 , 〉 on Pn as follows: if p1 � anxn � · · · � a1x � a0 and

p2 � bnxn � · · · � b1x � b0, let 〈p1,p2〉 � anbn � · · · � a1b1 � a0b0. Prove
that this operation is a real inner product on Pn.

3. (a) Let a and b be fixed real numbers with a < b, and let V be the set of all real
continuous functions on [a,b]. Define 〈 , 〉 on V by 〈f ,g〉 �

∫ b
a f (t)g(t)dt .

Prove that this operation is a real inner product on V .

�(b) For the inner product of part (a) with a � 0 and b � �, find 〈f ,g〉 and
‖f‖ , for f � et and g � sin t .

4. Define 〈 , 〉 on the real vector space Mmn by 〈A,B〉 � trace(AT B). Prove that
this operation is a real inner product on Mmn. (Hint: Refer to Exercise 14 in
Section 1.4 and Exercise 26 in Section 1.5.)
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5. (a) Prove part (1) of Theorem 7.12. (Hint: 0 � 0 � 0. Use property (4) in the
definition of an inner product space.)

(b) Prove part (3) of Theorem 7.12. (Be sure to give a proof for both real and
complex inner product spaces.)

�6. Prove Theorem 7.13.

7. Let x,y ∈ V , a real inner product space.

(a) Prove that ‖x � y‖2 � ‖x‖2 � 2 〈x,y〉 � ‖y‖2 .

(b) Show that x and y are orthogonal in V if and only if ‖x � y‖2 �
‖x‖2 � ‖y‖2.

(c) Show that 1
2

(‖x � y‖2 � ‖x � y‖2
)

� ‖x‖2 � ‖y‖2 .

8. The following formulas show how the value of the inner product can be derived
from the norm (length):

(a) Let x,y ∈ V , a real inner product space. Prove the following (real)
Polarization Identity:

〈x,y〉 �
1

4

(‖x � y‖2 � ‖x � y‖2).
(b) Let x,y ∈ V , a complex inner product space. Prove the following

Complex Polarization Identity:

〈x,y〉 �
1

4

((‖x � y‖2 � ‖x � y‖2)� i
(‖x � iy‖2 � ‖x � iy‖2)).

9. Consider the inner product space V of Example 5, with a � 0 and b � �.
�(a) Find the distance between f � t and g � sin t in V .

(b) Find the angle between f � et and g � sin t in V .

10. Consider the inner product space V of Example 3, using

A �

⎡
⎣�2 0 1

1 �1 2
3 �1 �1

⎤
⎦.

(a) Find the distance between x � [2,�1,3] and y � [5,�2,2] in V .

�(b) Find the angle between x � [2,�1,3] and y � [5,�2,2] in V .

11. Let V be an inner product space.

(a) Prove part (1) of Theorem 7.14. (Hint:Modify the proof of Theorem 1.6.)

(b) Prove part (2) of Theorem 7.14. (Hint:Modify the proof of Theorem 1.7.)
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12. Let f and g be continuous real-valued functions defined on a closed interval
[a,b]. Show that(∫ b

a
f (t)g(t)dt

)2

�

∫ b

a

(
f (t)

)2
dt

∫ b

a

(
g(t)

)2
dt .

(Hint: Use the Cauchy-Schwarz Inequality in an appropriate inner product
space.)

13. A metric space is a set in which every pair of elements x, y has been assigned
a real number distance d with the following properties:

(i) d(x, y) � d(y, x).

(ii) d(x, y) 	 0, with d(x, y) � 0 if and only if x � y.

(iii) d(x, y) � d(x, z) � d(z, y), for all z in the set.

Prove that every inner product space is a metric space with d(x,y) taken to
be ‖x � y‖ for all vectors x and y in the space.

14. Determine whether the following sets of vectors are orthogonal:
�(a)

{
t2, t � 1, t � 1

}
in P3, under the inner product of Example 4

(b)
{[15,9,19], [�2,�1,�2], [�12,�9,�14]} in R

3, under the inner prod-
uct of Example 3, with

A �

⎡
⎣�3 1 2

0 �2 1
2 �1 �1

⎤
⎦

�(c)
{[5,�2], [3,4]} in R

2, under the inner product of Example 2

(d)
{
3t2 � 1, 4t , 5t3 � 3t

}
in P3, under the inner product of Example 11

15. Prove Theorem 7.15. (Hint: Modify the proof of Result 7 in Section 1.3.)

16. (a) Show that
∫ �

�� cosmt dt � 0 and
∫ �

�� sin nt dt � 0, for all integers m,n 	 1.

(b) Show that
∫ �

�� cosmt cosnt dt � 0 and
∫ �

�� sin mt sin nt dt � 0, for any
distinct integers m,n 	 1. (Hint: Use trigonometric identities.)

(c) Show that
∫ �

�� cosmt sin nt dt � 0, for any integers m,n 	 1.

(d) Conclude from parts (a), (b), and (c) that {1,cos t ,sin t ,cos2t ,sin 2t ,cos3t ,
sin 3t , . . .} is an orthogonal set of real continuous functions on [��,�], as
claimed after Example 8.

17. Prove Theorem 7.16. (Hint: Modify the proof of Theorem 6.3.)

18. Let {v1, . . . ,vk} be an orthonormal basis for a complex inner product space V .
Prove that for all v,w ∈ V ,

〈v,w〉 � 〈v,v1〉 〈w,v1〉 � 〈v,v2〉 〈w,v2〉 � · · · � 〈v,vk〉 〈w,vk〉.
(Compare this with Exercise 9(a) in Section 6.1.)
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�19. Use the Generalized Gram-Schmidt Process to find an orthogonal basis for P2

containing t2 � t � 1 under the inner product of Example 11.

20. Use the Generalized Gram-Schmidt Process to find an orthogonal basis for
R

3 containing [�9,�4,8] under the inner product of Example 3 with the
matrix

A �

⎡
⎣2 1 3

3 �1 3
2 �1 2

⎤
⎦.

21. Prove Theorem 7.17. (Hint: Modify the proof of Theorem 6.4.)

22. (a) Prove parts (1) and (2) of Theorem 7.19. (Hint: Modify the proof of
Theorem 6.11.)

�(b) Prove parts (4) and (5) of Theorem 7.19. (Hint: Modify the proofs of
Theorem 6.12 and Corollary 6.13.)

(c) Prove part (3) of Theorem 7.19.

�(d) Prove part (6) of Theorem 7.19. (Hint: Use part (5) of Theorem 7.19

to show that dim (W) � dim
((W⊥)⊥). Then use part (c) and apply

Theorem 4.16, or its complex analog.)

�23. Find W⊥ if W � span
({

t3 � t2, t � 1
})

in P3 with the inner product of
Example 4.

24. Find an orthogonal basis for W⊥ if W � span({(t � 1)2}) in P2,with the inner
product 〈f ,g〉 �

∫ 1
0 f (t)g(t)dt , for all f ,g ∈ P2.

�25. Prove Theorem 7.20. (Hint: Choose an orthonormal basis {v1, . . . ,vk} for W .
Then define w1 � projWv � 〈v,v1〉v1 � · · · � 〈v,vk〉vk. Let w2 � v � w1,
and prove w2 ∈ W⊥. Finally, see the proof of Theorem 6.15 for uniqueness.)

�26. In the inner product space of Example 8, decompose f � 1
k et , where k � e� �

e�� , as w1 � w2, where w1 ∈ W � span({cos t ,sin t}) and w2 ∈ W⊥. Check
that 〈w1,w2〉 � 0. (Hint: First find an orthonormal basis for W .)

27. Decompose v � 4t2 � t � 3 in P2 as w1 � w2, where w1 ∈ W � span({2t2 �
1, t � 1}) and w2 ∈ W⊥, under the inner product of Example 11. Check that
〈w1,w2〉 � 0. (Hint: First find an orthonormal basis for W .)

28. Bessel’s Inequality: Let V be a real inner product space, and let {v1, . . . ,vk}
be an orthonormal set in V . Prove that for any vector v ∈ V ,

∑k
i�1 〈v,vi〉2 �

‖v‖2. (Hint: Let W � span({v1, . . . ,vk}). Now, v � w1 � w2, where w1 �
projWv ∈ W and w2 ∈ W⊥. Expand 〈v,v〉 � 〈w1 � w2,w1 � w2〉. Show that
‖v‖2 	 ‖w1‖2, and use the definition of projWv.)
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29. Let W be a finite dimensional subspace of an inner product space V . Consider
the mapping L: V → W given by L(v) � projWv.

(a) Prove that L is a linear transformation.

�(b) What are the kernel and range of L?

(c) Show that L ◦ L � L.

�30. True or False:

(a) If V is a complex inner product space, then for all x ∈ V and all k ∈ C,
‖kx‖ � k‖x‖.

(b) In a complex inner product space, the distance between two distinct
vectors can be a pure imaginary number.

(c) Every linearly independent set of unit vectors in an inner product space
is an orthonormal set.

(d) It is possible to define more than one inner product on the same vector
space.

(e) The uniqueness proof of the ProjectionTheorem shows that if W is a sub-
space of R

n, then projWv is independent of the particular inner product
used on R

n.

REVIEW EXERCISES FOR CHAPTER 7
1. Let v, w, and z ∈ C

3 be given by v � [i,3 � i,2 � 3i], w � [�4 � 4i, 1 � 2i, 3 �
i], and z � [2 � 5i, 2 � 5i, �i].
�(a) Compute v · w.

�(b) Compute (1 � 2i)(v · z), ((1 � 2i)v) · z, and v · ((1 � 2i)z).

(c) Explain why not all of the answers to part (b) are identical.

(d) Compute w · z and w · (v � z).

2. (a) Compute H � A∗A, where A �

[
1 � i 2 � i 3 � 4i

0 5 � 2i �2 � i

]
and show that

H is Hermitian.

(b) Show that AA∗ is also Hermitian.

3. Prove that if A is a skew-Hermitian n � n matrix and w, z ∈ C
n, then

(Az) · w � �z · (Aw).

4. In each part, solve the given system of linear equations.

�(a)

⎧⎪⎨
⎪⎩

(i)w � (1 � i)z � �1 � 2i

(1 � i)w � (5 � 2i)z � 5 � 3i

(2 � i)w � (2 � 5i)z � 1 � 2i
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(b)

⎧⎪⎨
⎪⎩

(1 � i)x � (�1 � i)y � (�2 � 8i)z � 5 � 37i

(4 � 3i)x � (6 � 3i)y � (37 � i)z � 142 � 49i

(2 � i)x � (�1 � i)y � (2 � 13i)z � 29 � 51i

(c)

⎧⎪⎨
⎪⎩

x � y � z � 2i

(3 � i)x � 3y � (3 � i)z � �1 � 7i

(2 � 3i)y � (4 � 6i)z � 6 � i

�(d)

{
(1 � i)x � (3 � i)y � (5 � 5i)z � 23 � i

(4 � 3i)x � (11 � 4i)y � (19 � 16i)z � 86 � 7i

5. Prove that if A is a square matrix, then |A∗A| is a nonnegative real number and
equals zero if and only if A is singular.

6. In each part, if possible, diagonalize the given matrix A. Be sure to compute a
matrix P and a diagonal matrix D such that D � P�1AP.

�(a) A �

⎡
⎣�3 5 �10

2 �3 8
2 �3 7

⎤
⎦

(b) A �

⎡
⎢⎣ 1 � 5i �6 � 4i 11 � 5i

�2 � i �2 � 2i 3 � 4i

2 � i �3i 1 � 5i

⎤
⎥⎦

�7. (a) Give an example of a function L:V → V , where V is a complex vector
space, such that L(v � w) � L(v) � L(w) for all v,w ∈ V , but L is not a
linear operator on V .

(b) Is your example from part (a) a linear operator on V if V is considered to
be a real vector space?

8. �(a) Find an ordered orthogonal basis B � {v1,v2,v3,v4} for C
4 such that

{v1,v2} spans the same subspace as {[1, i,1,�i], [1 � i,2 � i,0,0]}.
(b) Normalize the vectors in B to produce an orthonormal basis C for C

4.

(c) Find the transition matrix from standard coordinates to C -coordinates
without using row reduction. (Hint: The transition matrix from C -
coordinates to standard coordinates is unitary.)

9. In each part, if possible, unitarily diagonalize the given matrix A. Be sure to
compute the unitary matrix P and the diagonal matrix D such that D � P∗AP.

�(a) A �

[
3 1 � i

1 � i 2

]

(b) A �

⎡
⎣ 13 � 13i 18 � 18i �12 � 12i

�18 � 18i 40 � 40i �6 � 6i
�12 � 12i 6 � 6i 45 � 45i

⎤
⎦

(Hint: pA(x) � x3 � (�98 � 98i)x2� 4802ix � x(x � 49 � 49i)2.)
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�10. Prove that A �

⎡
⎣1 � 5i �1 � 7i 2i

3 � 5i 2 � 11i 5 � i
2 � 4i �1 � 3i �1 � 8i

⎤
⎦ is unitarily diagonalizable.

11. Prove that A �

⎡
⎢⎢⎢⎢⎣

�16 � i 2 � 16i 16 � 4i 4 � 32i �1 � 77i
5i �5 � 2i 2 � 5i 10 � i �24 � 3i

�8 � 3i 4 � 8i 8 � 2i �7 � 16i 18 � 39i
2 � 8i 8 � 2i �2 � 8i �16 � 5i 39 � 11i
�6i 6 6i �12 29

⎤
⎥⎥⎥⎥⎦ is not

unitarily diagonalizable.

12. Prove that every unitary matrix is normal.

�13. Find the distance between f (x) � x and g(x) � x3 in the real inner product
space consisting of the set of all real-valued continuous functions defined on
the interval [0,1] with inner product 〈f ,g〉 �

∫ 1
0 f (t)g(t)dt .

�14. Use the Generalized Gram-Schmidt Process to find an orthogonal basis for R
3,

starting with the standard basis using the real inner product given by 〈x,y〉 �

Ax · Ay, where A �

⎡
⎣ 1 �1 2

�1 1 3
2 �3 1

⎤
⎦ .

15. Decompose v � x in the real inner product space consisting of the set of all real-
valued continuous functions defined on the interval [��,�] as w1 � w2, where
w1 ∈ W � span({sin x, x cosx}) and w2 ∈ W⊥, using the real inner product
given by 〈f ,g〉 �

∫ �
�� f (t)g(t)dt . (Note: Although it is not required, you may

want to use a computer algebra system to help calculate the integrals involved
in this problem.)

�16. True or False:

(a) Every real n-vector can be thought of as a complex n-vector as well.

(b) The angle � between two complex n-vectors v and w is the angle such
that cos� � v·w

‖v‖‖w‖ .

(c) If w, z ∈ C
n and A ∈ MC

nn, then Aw · Az � (A∗Aw) · z.

(d) Every normal n � n complex matrix is either Hermitian or skew-
Hermitian.

(e) Every skew-Hermitian matrix has all zeroes on its main diagonal.

(f ) The sum of the algebraic multiplicities of all eigenvalues for an n � n
complex matrix equals n.

(g) If A ∈ MC
nn and w ∈ C

n, then the linear system Az � w has a solution if
and only if |A| �� 0.

(h) If A ∈ MC
33 has [i, 1 � i, 1 � i] as an eigenvector, then it must also have

[�1, �1 � i, 1 � i] as an eigenvector.
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(i) The algebraic multiplicity of every eigenvalue of a square complex matrix
equals its geometric multiplicity.

(j) If A ∈ MC
nn, then |AA∗| �

∣∣|A|∣∣2.

(k) Every complex vector space can be thought of as a real vector space.

(l) A set of orthogonal nonzero vectors in C
n must be linearly independent.

(m) If the rows of an n � n complex matrix A form an orthonormal basis for
C

n, then AT A � In.

(n) Every orthogonal matrix in MR
nn can be thought of as a unitary matrix

in MC
nn.

(o) Every Hermitian matrix is unitarily similar to a matrix with all real entries.

(p) The algebraic multiplicity of every eigenvalue of a skew-Hermitian matrix
equals its geometric multiplicity.

(q) Care must be taken when using the Gram-Schmidt Process in C
n to per-

form the dot products in the formulas in the correct order because the
dot product in C

n is not commutative.

(r) C
n with its complex dot product is an example of a complex inner product

space.

(s) If W is a nontrivial subspace of a finite dimensional complex inner prod-
uct space V , then the linear operator L on V given by L(v) � projWv is
unitarily diagonalizable.

(t) If W is a nontrivial subspace of a finite dimensional complex inner product

space V , then
(W⊥)⊥ � W .

(u) If V is the inner product space PC
n with inner product 〈p1,p2〉 �∫ 1

�1 p1(t)p2(t) dt , then V has an ordered orthonormal basis {q1, . . . ,qn�1}
such that the degree of qk equals k � 1.

(v) Every complex inner product space has a distance function defined on
it that gives a nonnegative real number as the distance between any two
vectors.

(w) If V is the inner product space of continuous real-valued functions
defined on [�1,1] with inner product 〈f ,g〉 �

∫ 1
�1 f (t)g(t)dt , then the

set {1,cos t ,sin t ,cos2t ,sin 2t ,cos3t ,sin 3t , . . .} is an orthogonal set of
vectors in V .



 

CHAPTER

8Additional Applications

MATHEMATICIANS: APPLY WITHIN

Mathematics is everywhere. It is the language used to describe almost every aspect of our
physical world and our society. It is a tool used to analyze and solve problems regarding
almost everything we do. In particular, linear algebra is one of the most useful devices on
the mathematician’s toolbelt. There are important applications of linear algebra in almost
every discipline.

In this chapter, we explore important uses of linear algebra in fields ranging from elec-
tronics to psychology. We show how linear algebra can be used to find the number of paths
between two nodes in a network, find the current in a branch of an electrical circuit, fit
polynomial functions as closely as possible to raw data, investigate the long-term behavior
of a system that has several possible states, encode and decode messages, simplify the
equations of conic sections (and more general quadratic forms), manipulate graphics on a
computer screen, and solve certain types of differential equations. In fact, the final section on
quadratic forms generalizes the process of orthogonal diagonalization to a quadratic setting,
and thereby illustrates that linear algebra is useful even in certain nonlinear situations.

Overall, the applications given in this chapter are just a small sample of the myriad of
problems in which linear algebra is used in our society on a daily basis.

In this chapter,we present several additional practical applications of linear algebra in
mathematics and the sciences.

8.1 GRAPH THEORY
Prerequisite: Section 1.5, Matrix Multiplication

Multiplication of matrices is widely used in graph theory, a branch of mathematics
that has come into prominence for modeling many situations in computer science,
business, and the social sciences. We begin by introducing graphs and digraphs and

Elementary Linear Algebra
Copyright © 2010 by Elsevier, Inc. All rights reserved. 491



 

492 CHAPTER 8 Additional Applications

then examine their relationship with matrices. Our main goal is to show how matrices
are used to calculate the number of paths of a certain length between vertices of a
graph or digraph.

Graphs and Digraphs

Definition A graph is a finite collection of vertices (points) together with a finite
collection of edges (curves), each of which has two (not necessarily distinct)
vertices as endpoints.

For example, Figure 8.1 depicts two graphs. Note that a graph may have an edge
connecting some vertex to itself. Such edges are called loops. A graph with no loops,
such as G1 in Figure 8.1, is said to be loop-free.

A digraph, or directed graph, is a special type of graph in which each edge is
assigned a “direction.” Some examples of digraphs appear in Figure 8.2.

For the purposes of this section,we assume that every time the words“graph”and
“digraph” are used, they refer to “simple graphs” and “simple digraphs,” respectively.
A simple graph is one having at most one edge between each pair of vertices. Similarly,
a simple digraph is one having at most one edge in each direction between each
pair of vertices. All graphs and digraphs in the definitions, theorem, examples, and
exercises of this section are assumed to be simple.

P1 P1

P2

P2

P3

P3

Graph G1 Graph G2

P4

P4P5

FIGURE 8.1

Two examples of graphs

Digraph D1 Digraph D2

P1

P2

P3

P4P1

P2

P3

P4

P5

FIGURE 8.2

Two examples of digraphs
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Although the edges in a digraph may resemble vectors, they are not necessarily
vectors since there is usually no coordinate system present. One interpretation for
graphs and digraphs is to consider the vertices as towns and the edges as roads
connecting them. In the case of a digraph, we can think of the roads as one-way
streets. Notice that some pairs of towns may not be connected by roads. Another
interpretation for graphs and digraphs is to consider the vertices as relay stations and
the edges as communication channels (for example, phone lines) between the sta-
tions. The stations could be individual people, homes, radio/TV installations, or even
computer terminals hooked into a network. There are additional interpretations for
graphs and digraphs in the exercises.

The Adjacency Matrix

The pattern of edges between the vertices in a graph or digraph can be summarized
in an algebraic way using matrices.

Definition The adjacency matrix of a graph having vertices P1,P2, . . . ,Pn is the
n � n matrix whose (i, j) entry is 1 if there is an edge between Pi and Pj and 0
otherwise.

The adjacency matrix of a digraph having vertices P1,P2, . . . ,Pn is the
n � n matrix whose (i, j) entry is 1 if there is an edge directed from Pi to Pj and
0 otherwise.

Example 1
The adjacency matrices for the two graphs in Figure 8.1 and the two digraphs in Figure 8.2 are
as follows:

P1
P2
P3
P4
P5

P1 P2 P3 P4 P5⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Adjacency Matrix for G1

P1
P2
P3
P4

P1 P2 P3 P4⎡
⎢⎢⎣

0 1 1 0
1 1 1 1
1 1 0 1
0 1 1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Adjacency Matrix

for G2

P1
P2
P3
P4
P5

P1 P2 P3 P4 P5⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 0 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Adjacency Matrix for D1

P1
P2
P3
P4

P1 P2 P3 P4⎡
⎢⎢⎣

0 0 1 0
1 1 1 0
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Adjacency Matrix

for D2
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The adjacency matrix of any graph is symmetric, for the obvious reason that there
is an edge between Pi and Pj if and only if there is an edge (the same one) between
Pj and Pi . However, the adjacency matrix for a digraph is usually not symmetric, since
the existence of an edge from Pi to Pj does not necessarily imply the existence of an
edge in the reverse direction.

Paths in a Graph or Digraph

We often want to know how many different routes exist between two given vertices
in a graph or digraph.

Definition A path (or chain) between two vertices Pi and Pj in a graph or digraph
is a finite sequence of edges with the following properties:

(1) The first edge “begins”at Pi .

(2) The last edge “ends”at Pj .

(3) Each edge after the first one in the sequence“begins” at the vertex where
the previous edge “ended.”

The length of a path is the number of edges in the path.

Example 2
Consider the digraph pictured in Figure 8.3. There are many different types of paths from P1 to
P5. For example,

(1) P1 → P2 → P5

(2) P1 → P2 → P3 → P5

(3) P1 → P4 → P3 → P5

(4) P1 → P4 → P4 → P3 → P5

(5) P1 → P2 → P5 → P4 → P3 → P5.

(Can you find other paths from P1 to P5?) Path (1) is a path of length 2 (or a 2-chain); paths (2),
(3), (4), and (5) are paths of lengths 3, 3, 4, and 5, respectively.

P1

P2

P3

P4

P5

FIGURE 8.3

Digraph for Examples 2, 3, and 4
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Counting Paths

Our goal is to calculate exactly how many paths of a given length exist between two
vertices in a graph or digraph. For example, suppose we want to know precisely how
many paths of length 4 from vertex P2 to vertex P4 exist in the digraph of Figure 8.3.
We could attempt to list them, but the chance of making a mistake in counting them
all can cast doubt on our final total. However, the next theorem, which you are asked
to prove in Exercise 11, gives an algebraic method to get the exact count using the
adjacency matrix.

Theorem 8.1 Let A be the adjacency matrix for a graph or digraph having vertices
P1,P2, . . . ,Pn. Then the total number of paths from Pi to Pj of length k is given by the
(i, j) entry in the matrix Ak.

Example 3
Consider again the digraph in Figure 8.3. The adjacency matrix for this digraph is

P1 P2 P3 P4 P5

A �

P1

P2

P3

P4
P5

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 1 0
0 0 1 0 1
1 0 0 0 1
0 0 1 1 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦.

To find the number of paths of length 4 from P1 to P4, we need to calculate the (1,4) entry of
A4. Now,

A4 �
(
A2
)2

�

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

0 0 2 1 1
1 0 0 1 1
0 1 0 2 0
1 0 1 1 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

2

�

P1

P2

P3

P4
P5

P1 P2 P3 P4 P5⎡
⎢⎢⎢⎢⎢⎣

1 2 2 6 1
1 0 4 3 2
3 0 2 3 3
1 1 4 5 2
1 1 1 3 1

⎤
⎥⎥⎥⎥⎥⎦.

Since the (1,4) entry is 6, there are exactly six paths of length 4 from P1 to P4. Looking at the
digraph, we can see that these paths are

P1 → P2 → P3 → P1 → P4

P1 → P2 → P3 → P5 → P4

P1 → P2 → P5 → P4 → P4

P1 → P4 → P3 → P1 → P4

P1 → P4 → P3 → P5 → P4

P1 → P4 → P4 → P4 → P4.
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Of course, we can generalize the result in Theorem 8.1. A little thought will
convince you of the following:

The total number of paths of length � k from a vertex Pi to a vertex Pj in a graph or digraph
is the sum of the (i, j) entries of the matrices A,A2,A3, . . . ,Ak.

Example 4
For the digraph in Figure 8.3, we will calculate the total number of paths of length � 4 from P2

to P3. We listed the adjacency matrix A for this digraph in Example 3, as well as the products
A2 and A4. You can verify that A3 is given by

A3 �

P1

P2

P3

P4
P5

P1 P2 P3 P4 P5⎡
⎢⎢⎢⎢⎢⎣

2 0 1 2 2
0 1 1 3 0
0 0 3 2 1
1 1 1 3 1
1 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎦.

Then, a quick calculation gives

A � A2 � A3 � A4 �

P1

P2

P3

P4

P5

P1 P2 P3 P4 P5⎡
⎢⎢⎢⎢⎢⎢⎣

3 3 5 10 4

2 1 6 7 4

4 1 5 7 5

3 2 7 10 4

2 1 3 6 2

⎤
⎥⎥⎥⎥⎥⎥⎦.

Hence, the number of paths of length � 4 from P2 to P3 is the (2,3) entry of this matrix, which
is 6. A list of these paths is as follows:

P2 → P3

P2 → P5 → P4 → P3

P2 → P3 → P1 → P2 → P3

P2 → P3 → P1 → P4 → P3

P2 → P3 → P5 → P4 → P3

P2 → P5 → P4 → P4 → P3.

In fact, since we calculated all of the entries of the matrix A � A2 � A3 � A4, we can now find
the total number of paths of length � 4 between any pair of given vertices. For example, the total
number of paths of length � 4 between P3 and P5 is 5 because that is the (3,5) entry of the
sum. Of course, if we only want to know the number of paths of length � 4 from just one vertex
to one other vertex, we would only need a single entry of A � A2 � A3 � A4 and it would not be
necessary to compute all of the entries of the sum.
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New Vocabulary

adjacency matrix (for a simple graph or
simple digraph)

digraph
edge
graph
length of a path

loop
loop-free
path
simple digraph
simple graph
vertex

Highlights

■ Simple graphs have at most one edge between each pair of vertices.

■ Simple digraphs differ from simple graphs in that the edges are assigned a
direction.

■ Simple digraphs have at most one edge in each direction between each pair of
vertices.

■ The (i, j) entry of an adjacency matrix for a simple graph or simple digraph is 1
if there is an edge from vertex Pi to vertex Pj , and 0 otherwise.

■ If A is an adjacency matrix for a simple graph or simple digraph, the total number
of paths from vertex Pi to vertex Pj of length k is the (i, j) entry of Ak, and the
total number of paths of length � k is the (i, j) entry of A � A2 � A3 � · · · � Ak.

EXERCISES FOR SECTION 8.1
Note: You may want to use a computer or calculator to perform the matrix
computations in these exercises.

�1. For each of the graphs and digraphs in Figure 8.4, give the corresponding
adjacency matrix. Which of these matrices are symmetric?

�2. Which of the given matrices could be the adjacency matrix for a simple graph
or digraph? Draw the corresponding graph and/or digraph when appropriate.

A �

⎡
⎣�1 4

0 1
6 0

⎤
⎦ B �

[
2 0
0 �1

]
C �

⎡
⎢⎢⎣

6 0 0 0
0 6 0 0
0 0 6 0
0 0 0 6

⎤
⎥⎥⎦ D �

⎡
⎣�1

4
2

⎤
⎦

E �

⎡
⎢⎢⎣

0 0 0 6
0 0 6 0
0 �6 0 0

�6 0 0 0

⎤
⎥⎥⎦ F �

⎡
⎢⎢⎢⎢⎣

1 0 1 0 1
0 1 0 0 1
1 0 0 1 1
0 0 1 0 0
1 1 1 0 1

⎤
⎥⎥⎥⎥⎦ G �

⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦



 

498 CHAPTER 8 Additional Applications

(a) Graph G1 (b) Graph G2 (c) Graph G3 (d) Graph G4

(e) Digraph D1 (f) Digraph D2 (g) Digraph D3 (h) Digraph D4

P1

P2

P3

P1

P2

P3

P4

P1

P1

P1 P1
P2

P2

P2

P2

P5

P6

P7

P4

P3

P8
P3

P3
P3P4

P4

P4

P5

P1

P2

P3
P4

P5

P1

P2

P3 P4

P5

P6

FIGURE 8.4

Graphs and digraphs for Exercise 1

H �

⎡
⎣0 0 0

1 0 0
1 1 0

⎤
⎦ I �

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ J �

⎡
⎢⎢⎣

1 2 3 4
�2 1 5 6
�3 �5 1 7
�4 �6 �7 1

⎤
⎥⎥⎦

K �

[
0 1
1 0

]
L �

⎡
⎢⎢⎣

0 1 0 0
1 0 1 1
0 1 1 1
0 1 1 0

⎤
⎥⎥⎦ M �

⎡
⎣�2 0 0

4 0 0
�1 2 3

⎤
⎦

�3. Suppose the writings of six authors — labeled A,B,C,D,E, and F — have been
influenced by one another in the following ways:

A has been influenced by D and E.

B has been influenced by C and E.

C has been influenced by A.

D has been influenced by B, E, and F.

E has been influenced by B and C.

F has been influenced by D.

Draw the digraph that represents these relationships. What is its adjacency
matrix? What would the transpose of this adjacency matrix represent?

4. Using the adjacency matrix for the digraph in Figure 8.5, find the following:
�(a) The number of paths of length 3 from P2 to P4

(b) The number of paths of length 4 from P1 to P5
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�(c) The number of paths of length � 3 from P3 to P2

(d) The number of paths of length � 4 from P3 to P1

�(e) The length of the shortest path from P4 to P5

(f) The length of the shortest path from P4 to P1

5. Repeat parts (a) through (f) of Exercise 4 for the digraph in Figure 8.6.

6. A cycle in a graph or digraph is a path connecting a vertex to itself. For the
digraphs in each of Figures 8.5 and 8.6, find the following:
�(a) The number of cycles of length 3 connecting P2 to itself

(b) The number of cycles of length 4 connecting P1 to itself

�(c) The number of cycles of length � 4 connecting P4 to itself

�7. (a) Suppose that there is one vertex that is not connected to any other in a
graph. How will this situation be reflected in the adjacency matrix for the
graph?

(b) Suppose that there is one vertex that is not directed to any other in a
digraph. How will this situation be reflected in the adjacency matrix for
the digraph?

8. �(a) Recall the definition of the trace of a matrix (Exercise 14 of Section 1.4).
What information does the trace of the adjacency matrix of a graph or
digraph give?

P1

P2

P3
P4

P5

FIGURE 8.5

Digraph for Exercises 4, 6, and 9

P1
P2

P3 P4 P5

FIGURE 8.6

Digraph for Exercises 5, 6, and 9



 

500 CHAPTER 8 Additional Applications

(b) Suppose A is the adjacency matrix of a graph or digraph, and k > 0.What
information does the trace of Ak give? (Hint: See Exercise 6.)

9. �(a) A strongly connected digraph is a digraph in which, given any pair
of distinct vertices, there is a directed path (of some length) from each
of these two vertices to the other. Determine whether the digraphs in
Figures 8.5 and 8.6 are strongly connected.

(b) Prove that a digraph with n vertices having adjacency matrix A is strongly
connected if and only if A � A2 � A3 � · · · � An�1 has the property that
all entries not on the main diagonal are nonzero.

10. (a) A dominance digraph is one with no loops in which, for any two
distinct vertices Pi and Pj , there is either an edge from Pi to Pj , or an
edge from Pj to Pi , but not both. (Dominance digraphs are useful in
psychology, sociology, and communications.) Show that the following
matrix is the adjacency matrix for a dominance digraph:

P1

P2

P3

P4

P1 P2 P3 P4⎡
⎢⎢⎢⎣

0 1 0 1

0 0 1 0

1 0 0 1

0 1 0 0

⎤
⎥⎥⎥⎦.

�(b) Suppose six teams in a league play a tournament in which each team
plays every other team exactly once (with no tie games possible). Con-
sider a digraph representing the outcomes of such a tournament in
which an edge is drawn from the vertex for Team A to the vertex for
Team B if Team A defeats Team B. Is this a dominance digraph? Why or
why not?

(c) Suppose that A is a square matrix with each entry equal to 0 or to 1.
Show that A is the adjacency matrix for a dominance digraph if and only
if A � AT has all main diagonal entries equal to 0, and all other entries
equal to 1.

�11. Prove Theorem 8.1. (Hint: Use a proof by induction on the length of the
path between vertices Pi and Pj . In the Inductive Step, use the fact that the
total number of paths from Pi to Pj of length t � 1 is the sum of n products,
where each product is the number of paths of length t from Pi to some vertex
Pq (1 � q � n) times the number of paths of length 1 from Pq to Pj .)

�12. True or False:

(a) The adjacency matrix of a simple graph must be symmetric.

(b) The adjacency matrix for a simple digraph may contain negative numbers.
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(c) If A is the adjacency matrix for a simple digraph and the (1,2) entry of An

is zero for all n 	 1, then there is no path from vertex P1 to P2.

(d) The number of edges in any simple graph equals the number of 1’s in its
adjacency matrix.

(e) The number of edges in any simple digraph equals the number of 1’s in its
adjacency matrix.

(f) If a simple graph has a path of length k from P1 to P2 and a path of length
j from P2 to P3, then it has a path of length k � j from P1 to P3.

(g) The sum of the numbers in the ith column of the adjacency matrix for a
simple graph gives the number of edges connected to Pi .

8.2 OHM’S LAW
Prerequisite: Section 2.2, Gauss-Jordan Row Reduction and Reduced
Row Echelon Form

In this section, we examine an important application of systems of linear equations to
circuit theory in physics.

Circuit Fundamentals and Ohm’s Law

In a simple electrical circuit, such as the one in Figure 8.7, voltage sources (for
example, batteries) stimulate electric current to flow through the circuit. Voltage
(V ) is measured in volts, and current (I) is measured in amperes. The circuit in
Figure 8.7 has two voltage sources: 48V and 9V . Current flows from the positive (�)
end of the voltage source to the negative (�) end.

In contrast to voltage sources, there are voltage drops, or sinks, when resistors
are present, because resistors impede the flow of current. In particular, the following
principle holds:

Ohm’s Law
At any resistor, the amount of voltage V dropped is proportional to the amount of current
I flowing through the resistor. That is, V � IR, where the proportionality constant R is a
measure of the resistance to the current.

Resistance (R) is measured in ohms, or volts/ampere. The Greek letter � is used
to denote ohms.

Any point in the circuit where current-carrying branches meet is called a junction.
Any path that the current takes along the branches of a circuit is called a loop if the
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48V
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4V

12V1
12
2

FIGURE 8.7

Electrical circuit

path begins and ends at the same location. The following two principles involving
junctions and loops are very important:

Kirchhoff’s Laws
First Law: The sum of the currents flowing into a junction must equal the sum of the currents
leaving a junction.
Second Law: The sum of the voltage sources and drops around any loop of a circuit is zero.

Example 1
Consider the electrical circuit in Figure 8.7. We will use Ohm’s Law to find the amount of current
flowing through each branch of the circuit. We consider each of Kirchhoff’s Laws in turn.

Kirchhoff’s First Law: The circuit has the following two junctions: the first where current
I1 branches into the three currents I2, I3, and I4 and the second where these last three
currents merge again into I1. By the First Law, both junctions produce the same equation:
I1 � I2 � I3 � I4.

Kirchhoff’s Second Law: All of the current runs through the 48V voltage source, and there
are only three different loops that start and end at this voltage source:

(1) I1 → I2 → I1

(2) I1 → I3 → I1

(3) I1 → I4 → I1.

The Ohm’s Law equation for each of these loops is

48V � 9V � I1(2�) � I2(7�) � I1(4�) � 0 (loop 1)

48V � I1(2�) � I3(6�) � I1(4�) � 0 (loop 2)

48V � I1(2�) � I4(12�) � I1(4�) � 0. (loop 3)
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Thus, the First and Second Laws together lead to the following system of four equations and
four variables: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�I1 � I2 � I3 � I4 � 0

6I1 � 7I2 � 57

6I1 � 6I3 � 48

6I1 � 12I4 � 48

.

After applying the Gauss-Jordan Method to the augmented matrix for this system, we obtain

⎡
⎢⎢⎢⎣

1 0 0 0 6

0 1 0 0 3

0 0 1 0 2

0 0 0 1 1

⎤
⎥⎥⎥⎦ .

Hence, I1 � 6 amperes, I2 � 3 amperes, I3 � 2 amperes, and I4 � 1 ampere.

New Vocabulary
current (in amperes)
junction
Kirchhoff’s First Law
Kirchhoff’s Second Law
loop

Ohm’s Law
resistance (in ohms)
voltage (in volts)
voltage drops
voltage sources

Highlights

■ Ohm’s Law: At any resistor, V � IR (voltage � current � resistance)

■ Kirchhoff’s First Law: The sum of the currents entering a junction equals the
sum of currents leaving the junction.

■ Kirchhoff’s Second Law: Around any circuit loop, the sum of voltage sources and
drops is zero.

■ Kirchhoff’s First and Second Laws are used together to find the current in each
branch when the voltage sources and drops are known.

EXERCISES FOR SECTION 8.2
1. Use Ohm’s Law to find the current in each branch of the electrical circuits in

Figure 8.8, with the indicated voltage sources and resistances.
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FIGURE 8.8

Electrical circuits for Exercise 1

�2. True or False:

(a) Kirchhoff’s Laws produce one equation for each junction and one equation
for each loop.

(b) The resistance R is the constant of proportionality in Ohm’s Law relating the
current I and the voltage V .

8.3 LEAST-SQUARES POLYNOMIALS
Prerequisite: Section 2.2, Gauss-Jordan Row Reduction and Reduced
Row Echelon Form

In this section, we present the least-squares method for finding a polynomial “closest”
to a given set of data points. You should have a calculator or computer handy as you
work through some of the examples and exercises.
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Least-Squares Polynomials

In science and business, we often need to predict the relationship between two given
variables. In many cases, we begin by performing an appropriate laboratory exper-
iment or statistical analysis to obtain the necessary data. However, even if a simple
law governs the behavior of the variables, this law may not be easy to find because
of errors introduced in measuring or sampling. In practice, therefore, we are often
content with a polynomial equation that provides a close approximation to the data.

Suppose we are given a set of data points (a1,b1),(a2,b2),(a3,b3), . . . ,(an,bn)

that may have been obtained from an analysis or experiment. We want a method
for finding polynomial equations y � f (x) to fit these points as “closely” as possible.
One approach would be to minimize the sum of the vertical distances

∣∣ f (a1) � b1
∣∣,∣∣ f (a2) � b2

∣∣ , . . . , ∣∣ f (an) � bn
∣∣ between the graph of y � f (x) and the data points.

These distances are the lengths of the line segments in Figure 8.9. However, this is
not the approach typically used. Instead, we will minimize the distance between
the vectors y � [ f (a1), . . . , f (an)] and b � [b1, . . . ,bn], which equals ‖y � b‖. This
is equivalent to minimizing the sum of the squares of the vertical distances shown in
Figure 8.9.

Definition A degree t least-squares polynomial for the points (a1,b1),(a2,b2),
. . . ,(an,bn) is a polynomial y � f (x) � ctxt � · · · � c2x2 � c1x � c0 for which the
sum

Sf �
(

f (a1) � b1
)2

�
(

f (a2) � b2
)2

�
(

f
(
a3
)

� b3
)2

� · · · �
(

f (an) � bn
)2

of the squares of the vertical distances from each of the given points to the graph
of the polynomial is less than or equal to the corresponding sum, Sg, for any other
polynomial g of degree � t .

(a 3, b3)(a1, b1)

y 5 f (x )

(an, bn)

(a2, b2)

(a 2, f (a 2))

(an, f (an))(a 3, f (a 3))

(a 4, f (a 4))
(a 1, f (a 1))

(a4, b4)

x

y

FIGURE 8.9

Vertical distances from data points (ak,bk) to y � f (x), for 1 � k � n
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Note that it is possible for a “degree t least-squares polynomial” to actually have a
degree less than t because there is no guarantee that its leading coefficient will be
nonzero.

We will illustrate the computation of a least-squares line and a least-squares
quadratic in the examples to follow. After these concrete examples, we state a general
method for calculating least-squares polynomials in Theorem 8.2.

Least-Squares Lines

Suppose we are given a set of points (a1,b1),(a2,b2),(a3,b3), . . . ,(an,bn) and we want
to find a degree 1 least-squares polynomial for these points.This will give us a straight
line y � c1x � c0 that fits these points as “closely” as possible. Such a least-squares line
for a given set of data is often called a line of best fit, or a linear regression.

Let

A �

⎡
⎢⎢⎢⎢⎢⎢⎣

1 a1

1 a2

1 a3
...

...
1 an

⎤
⎥⎥⎥⎥⎥⎥⎦ and B �

⎡
⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

...

bn

⎤
⎥⎥⎥⎥⎥⎥⎦ .

We will see in Theorem 8.2 that the solutions c0 and c1 of the linear system AT A

[
c0

c1

]
�

AT B give the coefficients of a least-squares line y � c1x � c0.

Example 1
We will find a least-squares line y � c1x � c0 for the points (a1,b1) � (�4,6), (a2,b2) �

(�2,4), (a3,b3) � (1,1), (a4,b4) � (2,�1), and (a5,b5) � (4,�3).
We let

A �

⎡
⎢⎢⎢⎢⎢⎣

1 a1

1 a2

1 a3

1 a4

1 a5

⎤
⎥⎥⎥⎥⎥⎦�

⎡
⎢⎢⎢⎢⎢⎣

1 �4

1 �2

1 1

1 2

1 4

⎤
⎥⎥⎥⎥⎥⎦ and B �

⎡
⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5

⎤
⎥⎥⎥⎥⎥⎦�

⎡
⎢⎢⎢⎢⎢⎣

6

4

1

�1

�3

⎤
⎥⎥⎥⎥⎥⎦.

Then AT �

[
1 1 1 1 1

�4 �2 1 2 4

]
, and so AT A �

[
5 1
1 41

]
and AT B �

[
7

�45

]
. Hence, the

equation

AT A

[
c0

c1

]
� AT B becomes

[
5 1
1 41

][
c0

c1

]
�

[
7

�45

]
.
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Row reducing the augmented matrix[
5 1
1 41

∣∣∣∣∣ 7
�45

]
gives

[
1 0
0 1

∣∣∣∣∣ 1.63
�1.14

]
,

and so a least-squares line for the given data points is y � c1x � c0 � �1.14x � 1.63 (see
Figure 8.10).

Notice that, in this example, for each given ai value, this line produces a value “close” to the
given bi value. For example, when x � a1 � �4, y � �1.14(�4) � 1.63 � 6.19, which is close
to b1 � 6.

Once we have calculated a least-squares line, we can use it to find the values of
other potential data points beyond the range of the given data.This technique is called
extrapolation. Returning to Example 1, if x � 7, the value of y is �1.14(7) � 1.63 �
�6.35. Thus, we would expect the experiment that produced the original data to give
a y-value close to �6.35 if an x-value of 7 were encountered.

Least-Squares Quadratics

In the next example, we encounter data that suggest a parabolic rather than a linear
shape. Here we find a second-degree least-squares polynomial to fit the data. The

(2, �1)

(4, �3)

(�4, 6)

(�2, 4)

(1, 1)

x

y

FIGURE 8.10

Least-squares line for the data points in Example 1
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method is similar in spirit to that for least-squares lines. Let

A �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

...
...

...

1 an a2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and B �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

...

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The solutions c0,c1, and c2 of the linear system AT A

⎡
⎢⎣c0

c1

c2

⎤
⎥⎦� AT B give the coefficients

of a least-squares quadratic y � c2x2 � c1x � c0.

Example 2
We will find a quadratic least-squares polynomial for the points (�3,7), (�1,4), (2,0), (3,1), and
(5,6). We label these points (a1,b1) through (a5,b5), respectively. Let

A �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

...
...

...

1 an a2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 �3 9

1 �1 1

1 2 4

1 3 9

1 5 25

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and B �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

7

4

0

1

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence,

AT �

⎡
⎢⎢⎣

1 1 1 1 1

�3 �1 2 3 5

9 1 4 9 25

⎤
⎥⎥⎦, and so AT A �

⎡
⎢⎢⎣

5 6 48

6 48 132

48 132 804

⎤
⎥⎥⎦ and AT B �

⎡
⎢⎢⎣

18

8

226

⎤
⎥⎥⎦.

Then the equation

AT A

⎡
⎢⎢⎣

c0

c1

c2

⎤
⎥⎥⎦� AT B becomes

⎡
⎢⎢⎣

5 6 48

6 48 132

48 132 804

⎤
⎥⎥⎦
⎡
⎢⎢⎣

c0

c1

c2

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

18

8

226

⎤
⎥⎥⎦.

Solving, we find c0 � 1.21, c1 � �1.02, and c2 � 0.38. Hence, a least-squares quadratic
polynomial is y � c2x2 � c1x � c0 � 0.38x2 � 1.02x � 1.21 (see Figure 8.11).
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(23, 7)

(2, 0)

(3, 1)

(5, 6)

(21, 4)

x

y

FIGURE 8.11

Least-squares quadratic polynomial for the data points in Example 2

Generalization of the Method

The method illustrated in Examples 1 and 2 is generalized in the following theorem, in
which we are given n data points and construct a least-squares polynomial of degree
t for the data. (This method is usually used to find a least-squares polynomial whose
degree t is less than the given number n of data points.)

Theorem 8.2 Let (a1,b1),(a2,b2), . . . ,(an,bn) be n points, and let

A �

⎡
⎢⎢⎢⎣

1 a1 a2
1 · · · at

1

1 a2 a2
2 · · · at

2
...

...
...

. . .
...

1 an a2
n · · · at

n

⎤
⎥⎥⎥⎦, and B �

⎡
⎢⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎥⎦.

(A is an n � (t � 1) matrix, and B is an n � 1 matrix.) Then:

(1) A polynomial
ctx

t � · · · � c2x2 � c1x � c0

is a degree t least-squares polynomial for the given points if and only if its
coefficients c0,c1, . . . ,ct satisfy the linear system

AT A

⎡
⎢⎢⎢⎣

c0
c1
...
ct

⎤
⎥⎥⎥⎦� AT B.
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(2) The system (AT A)X � AT B is always consistent, and so, for the given set of
points, a degree t least-squares polynomial exists.

(3) Furthermore, if AT A row reduces to It�1, there is a unique degree t least-
squares polynomial for the given set of points.

Notice from Theorem 8.2 that AT is a (t � 1) � n matrix. Thus, AT A is a (t � 1) �
(t � 1) matrix, and so the matrix products in Theorem 8.2 make sense.

We do not prove Theorem 8.2 here. However, the theorem follows in a straightfor-
ward manner fromTheorem 8.12 in Section 8.10. You may want to proveTheorem 8.2
later if you study Section 8.10.

New Vocabulary

extrapolation
least-squares line (� line of

best fit � linear regression line)

least-squares polynomial
least-squares quadratic

Highlights

■ A degree t least-squares polynomial for a given set of data points is a polynomial
of degree � t for which the sum of the squares of the vertical distances to the
data points is a minimum.

■ A degree t least-squares polynomial for a given set of data points is a polynomial
ctxt � · · · � c2x2 � c1x � c0 whose corresponding vector of coefficients X �
[c0,c1, . . . ,ct ] satisfies the linear system

(
AT A

)
X � AT B, with A and B defined

as in Theorem 8.2.

■ Once a least-squares polynomial is calculated, it can be used to extrapolate the
values of other potential data points.

EXERCISES FOR SECTION 8.3
Note: You should have a calculator or computer handy for the computations in many
of these exercises.

1. For each of the following sets of points, find a line of best fit (that is, the least-
squares line). In each case, extrapolate to find the approximate y-value when
x � 5.
�(a) (3,�8), (1,�5), (0,�4), (2,�1)

(b) (�6,�6), (�4,�3), (�1,0), (1,2)

�(c) (�4,10), (�3,8), (�2,7), (�1,5), (0,4)
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2. For each of the following sets of points,find a least-squares quadratic polynomial:
�(a) (�4,8), (�2,5), (0,3), (2,6)

(b) (�1,�4), (0,�2), (2,�2), (3,�5)

�(c)
(
�4,�3

)
, (�3,�2) , (�2,�1) , (0,0) , (1,1)

3. For each of the following sets of points, find a least-squares cubic (degree 3)
polynomial:
�(a) (�3,�3), (�2,�1), (�1,0), (0,1), (1,4)

(b) (�2,5), (�1,4), (0,3), (1,3), (2,1)

4. Use the points given for each function to find the desired approximation.
�(a) Least-squares quadratic polynomial for y � x4, using x � �2,�1,0,1,2

(b) Least-squares quadratic polynomial for y � ex , using x � �2,�1,0,1,2
�(c) Least-squares quadratic polynomial for y � ln x, using x � 1,2,3,4

(d) Least-squares cubic polynomial for y � sin x, using x � � �
2 ,� �

4 ,0, �
4 , �

2
�(e) Least-squares cubic polynomial for y � cosx, using x � � �

2 ,� �
4 ,0, �

4 , �
2

5. An engineer is monitoring a leaning tower whose angle from the vertical over
a period of months is given below.

Month 1 2 3 4 5

Angle from vertical 3◦ 3.3◦ 3.7◦ 4.1◦ 4.6◦

�(a) Find a line of best fit for the data, and extrapolate to predict the month in
which the angle will be 20◦ from the vertical.

�(b) Find a least-squares quadratic approximation for the data, and extrapolate
to predict the month in which the angle will be 20◦ from the vertical.

(c) Compare your answers to parts (a) and (b).Which approximation do you
think is more accurate? Why?

6. The population of the United States (in millions), according to the Census
Bureau, is given here.

Year 1950 1960 1970 1980 1990 2000

Population 151.3 179.3 203.3 226.5 248.7 281.4

(a) Find a line of best fit for the data, and extrapolate to predict the popu-
lation in 2020. (Hint: Renumber the years as 1 through 6 to simplify the
computation.)

(b) Find a least-squares quadratic approximation for the data, and extrapolate
to predict the population in 2020.

(c) Compare your answers to parts (a) and (b). Which approximation do you
think is more accurate? Why?
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�7. Show that the method of least-squares gives the exact quadratic polynomial
that goes through the points (�2,6),(0,2), and (3,8).

8. Show that the following system has the same solutions for c0 and c1 as the
system in Theorem 8.2 when t � 1:⎧⎨

⎩
nc0 �

(∑n
i�1 ai

)
c1 �

∑n
i�1 bi(∑n

i�1 ai
)
c0 �

(∑n
i�1 a2

i

)
c1 �

∑n
i�1 aibi

.

9. Although an inconsistent system AX � B has no solutions, the least-squares
method is sometimes used to find values that come “close” to satisfying all
the equations in the system. Solutions to the related system AT AX � AT B
(obtained by multiplying on the left by AT ) are called least-squares solutions
for the inconsistent system AX � B. For each inconsistent system, find a least-
squares solution, and check that it comes close to satisfying each equation in the
system.

�(a)

⎧⎨
⎩

4x1 � 3x2 � 12
2x1 � 5x2 � 32
3x1 � x2 � 21

(b)

⎧⎪⎪⎨
⎪⎪⎩

2x1 � x2 � x3 � 11
�x1 � 3x2 � x3 � �9

x1 � 2x2 � 3x3 � 12
3x1 � 4x2 � 2x3 � 21

�10. True or False:

(a) If a set of data points all lie on the same line, then that line will be the line
of best fit for the data.

(b) A degree 3 least-squares polynomial for a set of points must have degree 3.

(c) A line of best fit for a set of points must pass through at least one of the
points.

(d) When finding a degree t least-squares polynomial using Theorem 8.2, the
product AT A is a t � t matrix.

8.4 MARKOV CHAINS
Prerequisite: Section 2.2, Gauss-Jordan Row Reduction and Reduced
Row Echelon Form

In this section, we introduce Markov chains and demonstrate how they are used to
predict the future states of an interdependent system. You should have a calculator or
computer handy as you work through the examples and exercises.
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An Introductory Example

The following example will introduce many of the ideas associated with Markov
chains:

Example 1
Suppose that three banks in a certain town are competing for investors. Currently, Bank A has
40% of the investors, Bank B has 10%, and Bank C has the remaining 50%. We can set up the
following probability (or state) vector p to represent this distribution:

p �

⎡
⎢⎢⎣

.4

.1

.5

⎤
⎥⎥⎦ .

Suppose the townsfolk are tempted by various promotional campaigns to switch banks. Records
show that each year Bank A keeps half of its investors, with the remainder switching equally to
Banks B and C. However, Bank B keeps two-thirds of its investors, with the remainder switching
equally to Banks A and C. Finally, Bank C keeps half of its investors, with the remainder switching
equally to Banks A and B. The following transition matrix M (rounded to three decimal places)
keeps track of the changing investment patterns:

M � Next Year

A

B

C

Current Year

A B C⎡
⎢⎢⎣

.500 .167 .250

.250 .667 .250

.250 .167 .500

⎤
⎥⎥⎦.

The (i, j) entry of M represents the fraction of current investors going from Bank j to Bank i next
year.1

To find the distribution of investors after one year, consider

p1 � Mp � Next Year

A

B

C

Current Year

A B C⎡
⎢⎢⎣

.500 .167 .250

.250 .667 .250

.250 .167 .500

⎤
⎥⎥⎦
⎡
⎢⎢⎣

.4

.1

.5

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

.342

.292

.367

⎤
⎥⎥⎦ .

1 It may seem more natural to let the (i, j) entry of M represent the fraction going from Bank i to Bank j.
However, we arrange the matrix entries this way to facilitate matrix multiplication.
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The entries of p1 give the distribution of investors after one year. For example, the first entry of
this product, .342, is obtained by taking the dot product of the first row of M with p as follows:

(.500)︸ ︷︷ ︸
at Bank A,
fraction of
investors
who stay at
Bank A

(.4)︸︷︷︸
fraction of
investors
currently at
Bank A

� (.167)︸ ︷︷ ︸
at Bank B,
fraction of
investors
who switch
to Bank A

(.1)︸︷︷︸
fraction of
investors
currently at
Bank B

� (.250)︸ ︷︷ ︸
at Bank C,
fraction of
investors
who switch
to Bank A

(.5)︸︷︷︸ ,

fraction of
investors
currently at
Bank C

which gives .342, the total fraction of investors at Bank A after one year. We can continue this
process for another year, as follows:

p2 � Mp1 �

A
B
C

A B C⎡
⎢⎣.500 .167 .250

.250 .667 .250

.250 .167 .500

⎤
⎥⎦
⎡
⎢⎣.342

.292

.367

⎤
⎥⎦�

⎡
⎢⎣.312

.372

.318

⎤
⎥⎦.

Since multiplication by M gives the yearly change and the entries of p1 represent the distribution
of investors at the end of the first year, we see that the entries of p2 represent the correct
distribution of investors at the end of the second year. That is, after two years, 31.2% of the
investors are at Bank A, 37.2% are at Bank B, and 31.8% are at Bank C. Notice that

p2 � Mp1 � M(Mp) � M2p.

In other words, the matrix M2 takes us directly from p to p2. Similarly, if p3 is the distribution
after three years, then

p3 � Mp2 � M(M2p) � M3p.

A simple induction proof shows that, in general, if pn represents the distribution after n years,
then pn � Mnp. We can use this formula to find the distribution of investors after 6 years. After
tedious calculation (rounding to three decimal places at each step), we find

M6 �

⎡
⎢⎢⎣

.288 .285 .288

.427 .432 .427

.288 .285 .288

⎤
⎥⎥⎦ .

Then

p6 � M6p �

⎡
⎢⎢⎣

.288 .285 .288

.427 .432 .427

.288 .285 .288

⎤
⎥⎥⎦
⎡
⎢⎢⎣

.4

.1

.5

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

.288

.428

.288

⎤
⎥⎥⎦.

Formal Definitions

We now recap many of the ideas presented in Example 1 and give them a more formal
treatment.
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The notion of probability is important when discussing Markov chains. Probabil-
ities of events are always given as values between 0 � 0% and 1 � 100%, where a
probability of 0 indicates no possibility, and a probability of 1 indicates certainty. For
example, if we draw a random card from a standard deck of 52 playing cards, the prob-
ability that the card is an ace is 4

52 � 1
13 , because exactly 4 of the 52 cards are aces.

The probability that the card is a red card is 26
52 � 1

2 , since there are 26 red cards in the

deck. The probability that the card is both red and black (at the same time) is 0
52 � 0,

since this event is impossible. Finally, the probability that the card is red or black is
52
52 � 1, since this event is certain.

Now consider a set of events that are completely “distinct” and “exhaustive” (that is,
one and only one of them must occur at any time).The sum of all of their probabilities
must total 100% � 1. For example, if we select a card at random, we have a 13

52 � 1
4

chance each of choosing a club, diamond, heart, or spade. These represent the only
distinct suit possibilities, and the sum of these four probabilities is 1.

Now recall that each column of the matrix M in Example 1 represents the probabil-
ities that an investor switches assets to Bank A, B, or C. Since these are the only banks
in town, the sum of the probabilities in each column of M must total 1, or Example 1
would not make sense as stated. Hence, M is a matrix of the following type:

Definition A stochastic matrix is a square matrix in which all entries are
nonnegative and the entries of each column add up to 1.

A column vector in which all coordinates are nonnegative and add up to 1 is called
a stochastic vector.The next theorem can be proven in a straightforward manner by
induction (see Exercise 9).

Theorem 8.3 The product of any finite number of stochastic matrices is a stochastic
matrix.

Now we are ready to formally define a Markov chain.

Definition A Markov chain (or Markov process) is a system containing a finite
number of distinct states S1,S2, . . . ,Sn on which steps are performed such that

(1) At any time, each element of the system resides in exactly one of the states.

(2) At each step in the process, elements in the system can move from one
state to another.

(3) The probabilities of moving from state to state are fixed — that is, they are
the same at each step in the process.
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In Example 1, the distinct states of the Markov chain are the three banks, A, B,
and C, and the elements of the system are the investors, each one keeping money in
only one of the three banks at any given time. Each new year represents another step
in the process, during which time investors could switch banks or remain with their
current bank. Finally, we have assumed that the probabilities of switching banks do
not change from year to year.

Definition A probability (or state) vector p for a Markov chain is a stochastic
vector whose ith entry is the probability that an element in the system is currently
in state Si . A transition matrix M for a Markov chain is a stochastic matrix whose
(i, j) entry is the probability that an element in state Sj will move to state Si during
the next step of the process.

The next theorem can be proven in a straightforward manner by induction (see
Exercise 10).

Theorem 8.4 Let p be the (current) probability vector and M be the transition matrix
for a Markov chain. After n steps in the process, where n 	 1, the (new) probability
vector is given by pn � Mnp.

Theorem 8.4 asserts that once the initial probability vector p and the transition
matrix M for a Markov chain are known, all future steps of the Markov chain are
determined.

Limit Vectors and Fixed Points

A natural question to ask about a given Markov chain is whether we can discern any
long-term trend.

Example 2
Consider the Markov chain from Example 1, with transition matrix

M �

⎡
⎢⎢⎢⎣

.500 .167 .250

.250 .667 .250

.250 .167 .500

⎤
⎥⎥⎥⎦ .

What happens in the long run? To discern this, we calculate pk for large values of k. Starting with
p � [.4, .1, .5] and computing pk � Mkp for increasing values of k (a calculator or computer is
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extremely useful here), we find that pk approaches2 the vector

pf � [.286, .429, .286],

where we are again rounding to three decimal places.3

Alternatively, to calculate pf , we could have first shown that as k gets larger, Mk approaches
the matrix

Mf �

⎡
⎢⎣

.286 .286 .286

.429 .429 .429

.286 .286 .286

⎤
⎥⎦,

by multiplying out higher powers of M until successive powers agree to the desired number of
decimal places. The probability vector pf could then be found by

pf � Mf p �

⎡
⎢⎣

.286 .286 .286

.429 .429 .429

.286 .286 .286

⎤
⎥⎦
⎡
⎢⎣

.4

.1

.5

⎤
⎥⎦�

⎡
⎢⎣

.286

.429

.286

⎤
⎥⎦.

Both techniques yield the same answer for pf . Ultimately, Banks A and C each capture 28.6%,
or 2

7 , of the investors, and Bank B captures 42.9%, or 3
7 , of the investors. The vector pf is called

a limit vector of the Markov chain.

We now give a formal definition for a limit vector of a Markov chain.

Definition Let M be the transition matrix, and let p be the current probability
vector for a Markov chain. Let pk represent the probability vector after k steps of
the Markov chain. If the sequence p,p1,p2, . . . of vectors approaches some vector
pf , then pf is called a limit vector for the Markov chain.

The computation of pk for large k, or equivalently, the computation of large powers
of the transition matrix M, is not always an easy task, even with the use of a computer.

2 The intuitive concept of a sequence of vectors approaching a vector can be defined precisely
using limits. We say that limk→� pk � pf if and only if limk→�

∥∥pk � pf
∥∥� 0. It can be shown

that this is equivalent to having the differences between the corresponding entries of pk and pf

approach 0 as k grows larger. A similar approach can be used with matrices, where we say that
limk→� Mk � Mf if the differences between corresponding entries of Mk and Mf approach 0 as k grows
larger.
3 When raising matrices, such as M, to high powers, roundoff error can quickly compound. Although
we have printed M rounded to 3 significant digits, we actually performed the computations using M
rounded to 12 digits of accuracy. In general, minimize your roundoff error by using as many digits as
your calculator or software will provide.
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We now show a quicker method to obtain the limit vector pf for the Markov chain of
Example 2. Notice that this vector pf has the property that

Mpf �

⎡
⎣.500 .167 .250

.250 .667 .250

.250 .167 .500

⎤
⎦
⎡
⎣.286

.429

.286

⎤
⎦�

⎡
⎣.286

.429

.286

⎤
⎦� pf .

This remarkable property says that pf is a vector that satisfies the equation Mx � x.
Such a vector is called a fixed point for the Markov chain. Now, if we did not know
pf , we could solve the equation

M

⎡
⎣x1

x2

x3

⎤
⎦�

⎡
⎣x1

x2

x3

⎤
⎦

to find it. We can rewrite this as

M

⎡
⎣x1

x2

x3

⎤
⎦�

⎡
⎣x1

x2

x3

⎤
⎦�

⎡
⎣0

0
0

⎤
⎦, or

(
M � I3

)⎡⎣x1

x2

x3

⎤
⎦�

⎡
⎣0

0
0

⎤
⎦.

The augmented matrix for this system is

⎡
⎣.500 � 1 .167 .250

.250 .667 � 1 .250

.250 .167 .500 � 1

∣∣∣∣∣∣
0
0
0

⎤
⎦�

⎡
⎣�.500 .167 .250

.250 �.333 .250

.250 .167 �.500

∣∣∣∣∣∣
0
0
0

⎤
⎦.

We can also add another condition, since we know that x1 � x2 � x3 � 1. Thus, the
augmented matrix gets a fourth row as follows:

⎡
⎢⎢⎣

�.500 .167 .250
.250 �.333 .250
.250 .167 �.500

1.000 1.000 1.000

∣∣∣∣∣∣∣∣
0
0
0
1

⎤
⎥⎥⎦.

After row reduction, we find that the solution set is x1 � .286, x2 � .429, and x3 �
.286, as expected.Thus, the fixed point solution to Mx � x equals the limit vector pf

we computed previously.
In general, if a limit vector pf exists, it is a fixed point, and so this technique

for finding the limit vector is especially useful where there is a unique fixed point.
However, we must be careful because a given state vector for a Markov chain does not
necessarily converge to a limit vector, as the next example shows.
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Example 3
Suppose that W, X, Y, and Z represent four train stations linked as shown in Figure 8.12. Suppose
that 12 trains shuttle between these stations. Currently, there are six trains at station W, three
trains at station X, two trains at station Y, and one train at station Z. The probability that a randomly
chosen train is at each station is given by the probability vector

p �

W

X

Y

Z

⎡
⎢⎢⎢⎢⎣

.500

.250

.167

.083

⎤
⎥⎥⎥⎥⎦.

Suppose that during every hour, each train moves to the next station in Figure 8.12. Then
we have a Markov chain whose transition matrix is

M � Next State

W

X

Y

Z

Current State

W X Y Z⎡
⎢⎢⎢⎢⎣

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎥⎥⎦.

Intuitively, we can see there is no limit vector for this system, since the number of trains in each
station never settles down to a fixed number but keeps rising and falling as the trains go around
the “loop.” This notion is borne out when we consider that the first few powers of the transition
matrix are

M2 �

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎥⎦ , M3 �

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎤
⎥⎥⎥⎥⎦, and M4 � I4 �

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦.

Y

Z

W

X

FIGURE 8.12

Four train stations
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Since M4 � I4, all higher powers of M are equal to M,M2,M3, or I4. (Why?) Therefore, the only
probability vectors produced by this Markov chain are p,

p1 � Mp �

⎡
⎢⎢⎢⎣

.083

.500

.250

.167

⎤
⎥⎥⎥⎦, p2 � M2p �

⎡
⎢⎢⎢⎣

.167

.083

.500

.250

⎤
⎥⎥⎥⎦, and p3 � M3p �

⎡
⎢⎢⎢⎣

.250

.167

.083

.500

⎤
⎥⎥⎥⎦

because p4 � M4p � I4p � p again. Since pk keeps changing to one of four distinct vectors,
the initial state vector p does not converge to a limit vector.

Regular Transition Matrices

Definition A square matrix R is regular if and only if R is a stochastic matrix and
some power Rk, for k 	 1, has all entries nonzero.

Example 4
The transition matrix M in Example 1 is a regular matrix, since M1 � M is a stochastic matrix with
all entries nonzero. However, the transition matrix M in Example 3 is not regular because, as we
saw in that example, all positive powers of M are equal to one of four matrices, each containing
zero entries. Finally,

R �

⎡
⎢⎢⎢⎣

0 1
2 0

1
2 0 1

1
2

1
2 0

⎤
⎥⎥⎥⎦

is regular since it is stochastic and

R4 �
(
R2
)2

�

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

1
4 0 1

2
1
2

3
4 0

1
4

1
4

1
2

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

2

�

⎡
⎢⎢⎢⎣

3
16

1
8

3
8

1
2

9
16

1
4

5
16

5
16

3
8

⎤
⎥⎥⎥⎦,

which has all entries nonzero.

The next theorem, stated without proof, shows that Markov chains with regu-
lar transition matrices always have a limit vector pf for every choice of an initial
probability vector p.

Theorem 8.5 If R is a regular n � n transition matrix for a Markov chain, then

(1) Rf � limk→� Rk exists.

(2) Rf has all entries positive, and every column of Rf is identical.
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(3) For all initial probability vectors p, the Markov chain has a limit vector pf . Also,
the limit vector pf is the same for all p.

(4) pf is equal to any of the identical columns of Rf .

(5) pf is the unique stochastic n-vector such that Rpf � pf . That is, pf is also the
unique fixed point of the Markov chain.

When the matrix for a Markov chain is regular, Theorem 8.5 shows that the Markov
chain has a unique fixed point, and that it agrees with the limit vector pf for any
initial state. When the transition matrix is regular, this unique vector pf is called the
steady-state vector for the Markov chain.

Example 5
Consider a school of fish hunting for food in three adjoining lakes L1, L2, and L3. Each day,
the fish select a different lake to hunt in than the previous day, with probabilities given in the
transition matrix below.

M � Next Day
L1

L2

L3

Current Day

L1 L2 L3⎡
⎢⎣ 0 .5 0

.5 0 1

.5 .5 0

⎤
⎥⎦ .

Can we determine what percentage of time the fish will spend in each lake in the long run? Notice
that M is equal to the matrix R in Example 4, and so M is regular. Theorem 8.5 asserts that the
associated Markov chain has a steady-state vector. To find this vector, we solve the system

(M � I3)

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦�

⎡
⎢⎣�1 .5 0

.5 �1 1

.5 .5 �1

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦�

⎡
⎢⎣0

0
0

⎤
⎥⎦,

to find a fixed point for the Markov chain, under the extra condition that x1 � x2 � x3 � 1. The
solution is x1 � .222, x2 � .444, and x3 � .333; that is, pf � [.222, .444, .333]. Therefore, in

the long run, the fish will hunt 22.2% � 2
9 of the time in lake L1, 44.4% � 4

9 of the time in lake

L2, and 33.3% � 1
3 of the time in lake L3.

Notice in Example 5 that the initial probability state vector p was unneeded to find
pf .The steady-state vector could also have been found by calculating larger and larger
powers of M to see that they converge to the matrix

Mf �

⎡
⎣.222 .222 .222

.444 .444 .444

.333 .333 .333

⎤
⎦.

Each of the identical columns of Mf is the steady-state vector for this Markov chain.
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New Vocabulary

fixed point (of a Markov chain)
limit vector (of a Markov chain)
Markov chain (process)
probability (state) vector (for a Markov

chain)

regular matrix
steady-state vector (of a Markov chain)
stochastic matrix (or vector)
transition matrix (for a Markov chain)

Highlights

■ In a stochastic matrix, all entries are nonnegative, and each column sums to 1.

■ The product of stochastic matrices is stochastic.

■ In a Markov chain, elements move from one state to another with the same
probabilities at each step in the process.

■ The transition matrix for a Markov chain is a stochastic matrix whose (i, j) entry
gives the probability that an element moves from the jth state to the ith state
during the next step of the process.

■ The probability vector after n steps of a Markov chain is Mnp, where p is the
initial probability vector and M is the transition matrix.

■ A limit vector for a Markov chain is always a fixed point (a vector x such that
Mx � x, if M is the transition matrix).

■ A stochastic square matrix is regular if some positive power has all entries
nonzero.

■ If the transition matrix M for a Markov chain is regular, then the Markov chain has
a unique limit vector (known as a steady-state vector), regardless of the values
of the initial probability vector.

■ If the transition matrix M for a Markov chain is regular, the positive powers of
M approach a limit (matrix) all of whose columns equal the chain’s steady-state
vector.

EXERCISES FOR SECTION 8.4
Note: You should have a calculator or computer handy for many of these exercises.

�1. Which of the following matrices are stochastic? Which are regular? Why?

A �

⎡
⎢⎢⎣

1
4
1
2
1
4

⎤
⎥⎥⎦ B �

⎡
⎣.2 .4 .5

.5 .1 .4

.3 .4 .1

⎤
⎦ C �

⎡
⎣ 1

5
2
3

4
5

1
3

⎤
⎦ D �

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦
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E �

⎡
⎣1

3
2
3

1
4

3
4

⎤
⎦ F �

⎡
⎢⎣

1
3

1
3 1

0 0 0
2
3

2
3 0

⎤
⎥⎦ G �

⎡
⎢⎢⎣

1
3 0

0 2
3

2
3

1
3

⎤
⎥⎥⎦ H �

⎡
⎢⎢⎣

1
2 0 1

2

0 1
2

1
2

1
2

1
2 0

⎤
⎥⎥⎦

2. Suppose that each of the following represents the transition matrix M and the
initial probability vector p for a Markov chain. Find the probability vectors p1

(after one step of the process) and p2 (after two steps).

�(a) M �

⎡
⎣1

4
1
3

3
4

2
3

⎤
⎦, p �

⎡
⎣2

3
1
3

⎤
⎦

(b) M �

⎡
⎢⎢⎣

1
2

1
3 0

0 2
3

1
2

1
2 0 1

2

⎤
⎥⎥⎦, p �

⎡
⎢⎢⎣

1
3
1
6
1
2

⎤
⎥⎥⎦

�(c) M �

⎡
⎢⎢⎣

1
4

1
3

1
2

1
2

1
3

1
6

1
4

1
3

1
3

⎤
⎥⎥⎦, p �

⎡
⎢⎢⎣

1
4
1
2
1
4

⎤
⎥⎥⎦

3. Suppose that each of the following regular matrices represents the transition
matrix M for a Markov chain. Find the steady-state vector for the Markov chain
by solving an appropriate system of linear equations.

�(a)

⎡
⎣1

2
1
3

1
2

2
3

⎤
⎦

(b)

⎡
⎢⎢⎣

1
3

1
4

1
3

1
6

1
2

1
3

1
2

1
4

1
3

⎤
⎥⎥⎦ (c)

⎡
⎢⎢⎢⎢⎢⎣

1
5

1
2 0 1

3
3
5 0 1

2 0

0 1
2

1
2 0

1
5 0 0 2

3

⎤
⎥⎥⎥⎥⎥⎦

4. Find the steady-state vector for the Markov chains in parts (a) and (b) of
Exercise 3 by calculating large powers of the transition matrix (using a
computer or calculator).

�5. Suppose that the citizens in a certain community tend to switch their votes
among political parties, as shown in the following transition matrix:

Next Election

Party A

Party B

Party C

Nonvoting

Current Election

Party A Party B Party C Nonvoting⎡
⎢⎢⎢⎣

.7 .2 .2 .1

.1 .6 .1 .1

.1 .2 .6 .1

.1 0 .1 .7

⎤
⎥⎥⎥⎦ .
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(a) Suppose that in the last election 30% of the citizens voted for Party A,
15% voted for Party B, and 45% voted for Party C. What is the likely out-
come of the next election? What is the likely outcome of the election
after that?

(b) If current trends continue, what percentage of the citizens will vote for
Party A one century from now? Party C?

�6. In a psychology experiment, a rat wanders in the maze in Figure 8.13. During
each time interval, the rat is allowed to pass through exactly one doorway.
Assume there is a 50% probability that the rat will switch rooms during each
interval. If it does switch rooms, assume that it has an equally likely chance of
using any doorway out of its current room.

(a) What is the transition matrix for the associated Markov chain?

(b) Show that the transition matrix from part (a) is regular.

(c) If the rat is known to be in room C, what is the probability it will be in
room D after two time intervals have passed?

(d) What is the steady-state vector for this Markov chain? Over time, which
room does the rat frequent the least? Which room does the rat frequent
the most?

7. Show that the converse to part (3) of Theorem 8.5 is not true by demonstrating
that the transition matrix

M �

⎡
⎢⎢⎢⎣

1 1
2

1
4

0 1
2

1
4

0 0 1
2

⎤
⎥⎥⎥⎦

has the same limit vector for any initial input but is not regular. Does this
Markov chain have a unique fixed point?

D

C

A B

E

FIGURE 8.13

Maze with five rooms
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8. (a) Show that the transition matrix

[
1 � a b

a 1 � b

]
has

( 1
a�b

)[b
a

]
as a steady-

state vector if a and b are not both 0.

(b) Use the result in part (a) to check that your answer for Exercise 3(a) is
correct.

�9. Prove Theorem 8.3.

�10. Prove Theorem 8.4.

�11. True or False:

(a) The transpose of a stochastic matrix is stochastic.

(b) For n > 1, no upper triangular n � n matrix is regular.

(c) If M is a regular n � n stochastic matrix, then there is a probability vector
p such that (M � In)p � 0.

(d) If M is a stochastic matrix and p and q are distinct probability vectors such
that Mp � q and Mq � p, then M is not regular.

(e) The entries of a transition matrix M give the probabilities of a Markov
process being in each of its states.

8.5 HILL SUBSTITUTION: AN INTRODUCTION TO CODING THEORY
Prerequisite: Section 2.4, Inverses of Matrices

In this section, we show how matrix inverses can be used in a simple manner to
encode and decode textual information.

Substitution Ciphers

The coding and decoding of secret messages has been important in times of warfare, of
course, but it is also quite valuable in peacetime for keeping government and business
secrets under tight security. Throughout history, many ingenious coding mechanisms
have been proposed. One of the simplest is the substitution cipher, in which an
array of symbols is used to assign each character of a given text (plaintext) to a cor-
responding character in coded text (ciphertext). For example, consider the cipher
array in Figure 8.14. A message can be encoded by replacing every instance of the
kth letter of the alphabet with the kth character in the cipher array. For example, the
message

LINEAR ALGEBRA IS EXCITING

is encoded as

FXUSRI RFTSWIR XG SNEXVXUT.
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R W E H S K T Q X B Z F P U M C Y I G V O D A N L J

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]

FIGURE 8.14

A cipher array

W J P V C L S D R Z F Y O X U M H A E G N T B I Q K

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]

FIGURE 8.15

A decipher array

This type of substitution can be extended to other characters, such as punctuation
symbols and blanks.

Messages can be decoded by reversing the process. In fact, we can create an
“inverse” array,or decipher array, as in Figure 8.15, to restore the symbols of FXUSRI
RFTSWIR XG SNEXVXUT back to LINEAR ALGEBRA IS EXCITING.

Cryptograms, a standard feature in newspapers and puzzle magazines,are substitu-
tion ciphers. However, these ciphers are relatively easy to“crack” because the relative
frequencies (occurrences per length of text) of the letters of the English alphabet have
been studied extensively.4

Hill Substitution

We now illustrate a method that uses matrices to create codes that are harder to break.
This technique is known as Hill substitution after the mathematician Lester Hill, who
developed it between the world wars. To begin, we choose any nonsingular n � n
matrix A. (Usually A is chosen with integer entries.) We split the message into blocks
of n symbols each and replace each symbol with an integer value. To simplify things,

4 The longer the enciphered text is, the easier it is to decode by comparing the number of times
each letter appears. The actual frequency of the letters depends on the type of text, but the letters
E, T , A, O, I , N , S, H , and R typically appear most often (about 70% of the time),with E usually the most
common (about 12–13% of the time). Once a few letters have been deciphered, the rest of the text is usu-
ally easy to determine. Sample frequency tables can be found on p. 219 of Cryptanalysis by Gaines (pub-
lished by Dover, 1956) and on p. 16 of Cryptography: A Primer by Konheim (published byWiley, 1981).
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we replace each letter by its position in the alphabet. The last block may have to be
“padded” with random values to ensure that each block contains exactly n integers. In
effect, we are creating a set of n-vectors that we can label as x1,x2, and so on. We then
multiply the matrix A by each of these vectors in turn to produce the following new
set of n-vectors: Ax1, Ax2, and so on. When these vectors are concatenated together,
they form the coded message. The matrix A used in the process is often called the
key matrix, or encoding matrix.

Example 1
Suppose we wish to encode the message LINEAR ALGEBRA IS EXCITING using the key matrix

A �

⎡
⎢⎣�7 5 3

3 �2 �2
3 �2 �1

⎤
⎥⎦.

Since we are using a 3 � 3 matrix, we break the characters of the message into blocks of length
3 and replace each character by its position in the alphabet. This procedure gives

L
I
N

⎡
⎢⎣12

9
14

⎤
⎥⎦

︸ ︷︷ ︸
x1

,
E
A
R

⎡
⎢⎣ 5

1
18

⎤
⎥⎦

︸ ︷︷ ︸
x2

,
A
L
G

⎡
⎢⎣ 1

12
7

⎤
⎥⎦

︸ ︷︷ ︸
x3

,
E
B
R

⎡
⎢⎣ 5

2
18

⎤
⎥⎦

︸ ︷︷ ︸
,

x4

A
I
S

⎡
⎢⎣ 1

9
19

⎤
⎥⎦

︸ ︷︷ ︸
x5

,
E
X
C

⎡
⎢⎣ 5

24
3

⎤
⎥⎦

︸ ︷︷ ︸
x6

,
I
T
I

⎡
⎢⎣ 9

20
9

⎤
⎥⎦

︸ ︷︷ ︸
x7

,
N
G
-

⎡
⎢⎣14

7
27

⎤
⎥⎦

︸ ︷︷ ︸
x8

,

where the last entry of the last vector was chosen outside the range from 1 to 26. Now, forming
the products with A, we have

Ax1 �

⎡
⎢⎣�7 5 3

3 �2 �2
3 �2 �1

⎤
⎥⎦
⎡
⎢⎣12

9
14

⎤
⎥⎦�

⎡
⎢⎣ 3

�10
4

⎤
⎥⎦,

Ax2 �

⎡
⎢⎣�7 5 3

3 �2 �2
3 �2 �1

⎤
⎥⎦
⎡
⎢⎣ 5

1
18

⎤
⎥⎦�

⎡
⎢⎣ 24

�23
�5

⎤
⎥⎦, and so on.
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The final encoded text is

3 �10 4 24 �23 �5 74 �35 �28 29 �25 �7

95 �53 �34 94 �39 �36 64 �31 �22 18 �26 1.

The code produced by a Hill substitution is much harder to break than a simple
substitution cipher, since the coding of a given letter depends not only on the way the
text is broken into blocks, but also on the letters adjacent to it. (Nevertheless, there are
techniques to decode Hill substitutions using high-speed computers.) However, a Hill
substitution is easy to decode if you know the inverse of the key matrix. In Example 6
of Section 2.4, we noted that

A�1 �

⎡
⎢⎣2 1 4

3 2 5

0 �1 1

⎤
⎥⎦.

Breaking the encoded text back into 3-vectors and multiplying A�1 by each of these
vectors in turn restores the original message. For example,

A�1 (Ax1) �

⎡
⎢⎣2 1 4

3 2 5

0 �1 1

⎤
⎥⎦
⎡
⎢⎣ 3

�10

4

⎤
⎥⎦�

⎡
⎢⎣12

9

14

⎤
⎥⎦� x1,

which represents the first three letters LIN.

New Vocabulary
cipher array
ciphertext
decipher array
decoding matrix
encoding matrix

Hill substitution
key matrix
plaintext
substitution cipher

Highlights

■ Hill substitution is an encoding method in which the plaintext to be encoded is
converted into numerical form, split into equal-length blocks, with each block
multiplied by the same (nonsingular) key matrix.

■ In Hill substitution, the coding is dependent not only on the choice of the key
matrix and the size of each block, but also on which letters in the plaintext are
adjacent to any particular letter.

■ Decoding a message after Hill substitution is accomplished using multiplication
by the inverse of the key matrix.
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EXERCISES FOR SECTION 8.5
1. Encode each message with the given key matrix.

�(a) PROOF BY INDUCTION using the matrix

[
3 �4
5 �7

]

(b) CONTACT HEADQUARTERS using the matrix

⎡
⎣4 1 5

7 2 9
6 2 7

⎤
⎦

2. Each of the following coded messages was produced with the key matrix
shown. In each case, find the inverse of the key matrix, and use it to decode the
message.

�(a)
�62 116 107 �32 59 67 �142 266 223 �160 301 251

�122 229 188 �122 229 202 �78 148 129 �111 207 183

with key matrix

⎡
⎣�8 1 �1

15 �2 2
12 �1 2

⎤
⎦

(b)
162 108 23 303 206 33 276 186 33 170 116 21

281 191 36 576 395 67 430 292 51 340 232 45

with key matrix

⎡
⎣�10 19 16

�7 13 11
�1 2 2

⎤
⎦

(c)
69 44 �28 �43 104 53 �38 �25

71 38 �3 �7 58 32 �11 �14

with key matrix

⎡
⎢⎢⎣

1 2 5 1
0 1 3 1

�2 0 0 �1
0 0 �1 �2

⎤
⎥⎥⎦

(d)
188 408 348 345 115 244 224 235 235 545 432 403 227 521 417 392

177 403 334 325 202 489 375 339 75 167 140 137 323 769 599 550

with key matrix

⎡
⎢⎢⎣

3 4 5 3
4 11 12 7
6 7 9 6
8 5 8 6

⎤
⎥⎥⎦
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�3. True or False:

(a) Text encoded with a Hill substitution is more difficult to decipher than text
encoded with a substitution cipher.

(b) The encoding matrix for a Hill substitution should not be singular.

(c) To encode a message using Hill substitution that is n characters long, an n � n
matrix is always used.

8.6 ELEMENTARY MATRICES
Prerequisite: Section 2.4, Inverses of Matrices

In this section, we introduce elementary matrices and show that performing a row
operation on a matrix is equivalent to multiplying it by an elementary matrix. We
conclude with some useful properties of elementary matrices.

Elementary Matrices

Definition An n � n matrix is an elementary matrix of type (I), (II), or (III) if
and only if it is obtained by performing a single row operation of type (I), (II), or
(III), respectively, on the identity matrix In.

That is, an elementary matrix is a matrix that is one step away from an identity
matrix in terms of row operations.

Example 1
The type (I) row operation 〈2〉 ← �3〈2〉 converts the identity matrix

I3 �

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ into A �

⎡
⎣1 0 0

0 �3 0
0 0 1

⎤
⎦ .

Hence, A is an elementary matrix of type (I) because it is the result of a single row operation of
that type on I3. Next, consider

B �

⎡
⎣1 0 �2

0 1 0
0 0 1

⎤
⎦ .

Since B is obtained from I3 by performing the single type (II) row operation 〈1〉 ← �2〈3〉 � 〈1〉,
B is an elementary matrix of type (II). Finally,

C �

[
0 1
1 0

]
is an elementary matrix of type (III) because it is obtained by performing the single type (III) row
operation 〈1〉 ↔ 〈2〉 on I2.
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Representing a Row Operation as Multiplication by an Elementary Matrix

The next theorem shows that there is a connection between row operations and
matrix multiplication.

Theorem 8.6 Let A and B be m � n matrices. If B is obtained from A by performing a
single row operation and if E is the m � m elementary matrix obtained by performing
that same row operation on Im, then B � EA.

In other words, the effect of a single row operation on A can be obtained by
multiplying A on the left by the appropriate elementary matrix.

Proof. Suppose B is obtained from A by performing the row operation R. Then E � R(Im).
Hence, by Theorem 2.1, B � R(A) � R(ImA) � (R(Im))A � EA.

Example 2
Consider the matrices

A �

⎡
⎢⎣2 �3 0 1

1 6 �2 �2
0 5 3 4

⎤
⎥⎦ and B �

⎡
⎢⎣ 2 �3 0 1

1 6 �2 �2
�3 �13 9 10

⎤
⎥⎦ .

Notice that B is obtained from A by performing the operation (II): 〈3〉 ← �3〈2〉 � 〈3〉. The
elementary matrix

E �

⎡
⎢⎣1 0 0

0 1 0
0 �3 1

⎤
⎥⎦

is obtained by performing this same row operation on I3. Notice that

EA �

⎡
⎢⎣1 0 0

0 1 0
0 �3 1

⎤
⎥⎦
⎡
⎢⎣2 �3 0 1

1 6 �2 �2
0 5 3 4

⎤
⎥⎦�

⎡
⎢⎣ 2 �3 0 1

1 6 �2 �2
�3 �13 9 10

⎤
⎥⎦� B.

That is, B can also be obtained from A by multiplying A on the left by the appropriate elementary
matrix.

Inverses of Elementary Matrices

Recall that every row operation has a corresponding inverse row operation. The
exact form for the inverse of a row operation of each type was given in Table 2.1 in
Section 2.3. These inverse row operations can be used to find inverses of elementary
matrices, as we see in the next theorem.
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Theorem 8.7 Every elementary matrix E is nonsingular, and its inverse E�1 is an
elementary matrix of the same type ((I), (II), or (III)).

Proof. Any n � n elementary matrix E is formed by performing a single row operation (of
type (I), (II), or (III)) on In. If we then perform its inverse operation on E, the result is In
again. But the inverse row operation has the same type as the original row operation, and so
its corresponding n � n elementary matrix F has the same type as E. Now by Theorem 8.6,
the product FE must equal In. Hence F and E are inverses and have the same type.

Example 3
Suppose we want the inverse of the elementary matrix

B �

⎡
⎢⎣1 0 �2

0 1 0
0 0 1

⎤
⎥⎦ .

The row operation corresponding to B is (II): 〈1〉 ← �2〈3〉 � 〈1〉. Hence, the inverse operation
is (II): 〈1〉 ← 2〈3〉 � 〈1〉, whose elementary matrix is

B�1 �

⎡
⎢⎣1 0 2

0 1 0
0 0 1

⎤
⎥⎦ .

Using Elementary Matrices to Show Row Equivalence

If two matrices A and B are row equivalent, there is some finite sequence of, say, k
row operations that converts A into B. But according to Theorem 8.6, performing
each of these row operations is equivalent to multiplying (on the left) by an appro-
priate elementary matrix. Hence, there must be a sequence of k elementary matrices
E1,E2, . . . ,Ek, such that B � Ek(· · ·(E3(E2(E1A))) · · ·). In fact, the converse is true as
well since if B � Ek(· · ·(E3(E2(E1A))) · · ·) for some collection of elementary matrices
E1,E2, . . . ,Ek, then B can be obtained from A through a sequence of k row operations.
Hence, we have the following result:

Theorem 8.8 Two m � n matrices A and B are row equivalent if and only if there is a
(finite) sequence E1,E2, . . . ,Ek of elementary matrices such that B � Ek · · ·E2E1A.

Example 4

Consider the matrix A �

[
0 1 �4
2 5 9

]
. We perform a series of row operations to obtain a row

equivalent matrix B. Next to each operation we give its corresponding elementary matrix.



 

8.6 Elementary Matrices 533

A �

[
0 1 �4
2 5 9

]

(III): 〈1〉 ↔ 〈2〉
[

2 5 9
0 1 �4

]
E1 �

[
0 1
1 0

]

(I): 〈1〉 ← 1
2 〈1〉

[
1 5

2
9
2

0 1 �4

]
E2 �

[
1
2 0
0 1

]

(II): 〈1〉 ← � 5
2 〈2〉 � 〈1〉

[
1 0 29

2
0 1 �4

]
� B. E3 �

[
1 � 5

2
0 1

]

Alternatively, the same result B is obtained if we multiply A on the left by the product of the
elementary matrices E3E2E1.

B �

[
1 0 29

2
0 1 �4

]
�

[
1 � 5

2
0 1

]
︸ ︷︷ ︸

E3

[
1
2 0
0 1

]
︸ ︷︷ ︸

E2

[
0 1
1 0

]
︸ ︷︷ ︸

E1

[
0 1 �4
2 5 9

]
︸ ︷︷ ︸

A

.

(Verify that the final product really does equal B.) Note that the product is written in the reverse
of the order in which the row operations were performed.

Nonsingular Matrices Expressed as a Product of Elementary Matrices

Suppose that we can convert a matrix A to a matrix B using row operations.
Then, by Theorem 8.8, B � Ek · · ·E2E1A, for some elementary matrices E1,E2, . . . ,Ek.
But we can multiply both sides by E�1

k , . . . ,E�1
2 ,E�1

1 (in that order) to obtain
E�1

1 E�1
2 · · ·E�1

k B � A. Now, by Theorem 8.7, each of the inverses E�1
1 , E�1

2 , . . ., E�1
k

is also an elementary matrix.Therefore, we have found a product of elementary matri-
ces that converts B back into the original matrix A. We can use this fact to express a
nonsingular matrix as a product of elementary matrices, as in the next example.

Example 5

Suppose that we want to express the nonsingular matrix A �

[
�5 �2

7 3

]
as a product of

elementary matrices. We begin by row reducing A, keeping track of the row operations used.

A �

[
�5 �2

7 3

]

(I): 〈1〉 ← � 1
5 〈1〉

⎡
⎣1 2

5

7 3

⎤
⎦
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(II): 〈2〉 ← �7〈1〉 � 〈2〉
⎡
⎣1 2

5

0 1
5

⎤
⎦

(I): 〈2〉 ← 5〈2〉
⎡
⎣1 2

5

0 1

⎤
⎦

(II): 〈1〉 ← � 2
5 〈2〉 � 〈1〉

[
1 0
0 1

]
� I2.

Reversing this process, we get a series of row operations that start with I2 and end with A. The
inverse of each of these row operations, in reverse order, is listed here along with its corresponding
elementary matrix.

(II): 〈1〉 ← 2
5 〈2〉 � 〈1〉 F1 �

⎡
⎣1 2

5

0 1

⎤
⎦

(I): 〈2〉 ← 1
5 〈2〉 F2 �

⎡
⎣1 0

0 1
5

⎤
⎦

(II): 〈2〉 ← 7〈1〉 � 〈2〉 F3 �

[
1 0
7 1

]

(I): 〈1〉 ← �5〈1〉 F4 �

[
�5 0

0 1

]

Therefore, we can express A as the product

A �

[
�5 0

0 1

]
︸ ︷︷ ︸

F4

[
1 0
7 1

]
︸ ︷︷ ︸

F3

[
1 0
0 1

5

]
︸ ︷︷ ︸

F2

[
1 2

5
0 1

]
︸ ︷︷ ︸

F1

[
1 0
0 1

]
︸ ︷︷ ︸

I2

.

You should verify that this product is really equal to A.

Example 5 motivates the following corollary of Theorem 8.8. We leave the proof
for you to do in Exercise 7.

Corollary 8.9 An n � n matrix A is nonsingular if and only if A is the product of a finite
collection of n � n elementary matrices.

New Vocabulary

elementary matrix (of type (I), (II), or (III))
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Highlights

■ Every row operation (of type (I), (II), or (III)) has a corresponding elementary
matrix.

■ Multiplying (on the left) by an elementary matrix has the same effect as its
corresponding row operation.

■ The inverse of an elementary matrix is an elementary matrix of the same type,
and the row operations corresponding to the matrix and its inverse are reverses
of each other.

■ Two matrices are row equivalent if and only if one is obtained from the other
after multiplication by a sequence of elementary matrices.

■ A matrix is nonsingular if and only if it is the product of elementary matrices.

EXERCISES FOR SECTION 8.6
1. For each elementary matrix below, determine its corresponding row operation.

Also, use the inverse operation to find the inverse of the given matrix.

�(a)

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦

�(b)

⎡
⎣1 0 0

0 �2 0
0 0 1

⎤
⎦

(c)

⎡
⎣ 1 0 0

0 1 0
�4 0 1

⎤
⎦

(d)

⎡
⎢⎢⎣

1 0 0 0
0 6 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

�(e)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 �2
0 0 0 1

⎤
⎥⎥⎦

(f)

⎡
⎢⎢⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤
⎥⎥⎦

2. Express each of the following as a product of elementary matrices (if possible),
in the manner of Example 5:

�(a)

[
4 9
3 7

]

(b)

⎡
⎣�3 2 1

13 �8 �9
1 �1 2

⎤
⎦

�(c)

⎡
⎢⎢⎣

0 0 5 0
�3 0 0 �2

0 6 �10 �1
3 0 0 3

⎤
⎥⎥⎦
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3. Let A and B be m � n matrices. Prove that A and B are row equivalent if and
only if B � PA, for some nonsingular m � m matrix P.

4. Prove that if U is an upper triangular matrix with all main diagonal entries
nonzero, then U�1 exists and is upper triangular. (Hint: Show that the method
for calculating the inverse of a matrix does not produce a row of zeroes on the
left side of the augmented matrix. Also, show that for each row reduction step,
the corresponding elementary matrix is upper triangular. Conclude that U�1

is the product of upper triangular matrices, and is therefore upper triangular
(see Exercise 18(b) in Section 1.5).)

5. If E is an elementary matrix, show that ET is also an elementary matrix. What
is the relationship between the row operation corresponding to E and the row
operation corresponding to ET ?

6. Let F be an elementary n � n matrix. Show that the product AFT is the matrix
obtained by performing a “column” operation on A analogous to one of the

three types of row operations. (Hint:What is
(
AFT

)T
?)

�7. Prove Corollary 8.9.

8. Consider the homogeneous system AX � O, where A is an n � n matrix. Show
that this system has a nontrivial solution if and only if A cannot be expressed
as the product of elementary n � n matrices.

9. Let A and B be m � n and n � p matrices, respectively, and let E be an m � m
elementary matrix.

(a) Prove that rank(EA) � rank(A).

(b) Show that if A has k rows of all zeroes, then rank(A) � m � k.

(c) Show that if A is in reduced row echelon form, then rank(AB) � rank(A).
(Use part (b).)

(d) Use parts (a) and (c) to prove that for a general matrix A, rank(AB) �
rank(A).

(e) Compare this exercise with Exercise 18 in Section 2.3.

�10. True or False:

(a) Every elementary matrix is square.

(b) If A and B are row equivalent matrices, then there must be an elementary
matrix E such that B � EA.

(c) If E1, . . . ,Ek are n � n elementary matrices, then the inverse of E1E2 · · ·Ek

is Ek · · ·E2E1.
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(d) If A is a nonsingular matrix, then A�1 can be expressed as a product of
elementary matrices.

(e) If R is a row operation, E is its corresponding m � m matrix, and A is
any m � n matrix, then the reverse row operation R�1 has the property
R�1(A) � E�1A.

8.7 ROTATION OF AXES FOR CONIC SECTIONS
Prerequisite: Section 4.7, Coordinatization

In this section, we show how to use a rotation of the plane to find the center or vertex
of a given conic section (ellipse, parabola, or hyperbola) along with all of its axes of
symmetry. The circle, a special case of the ellipse, has an axis of symmetry in every
direction. However, a non-circular ellipse as well as a hyperbola has two (perpendicu-
lar) axes of symmetry, which meet at the center of the figure. A parabola has only one
axis of symmetry, which intersects the figure at the vertex. (See Figure 8.16.)

Simplifying the Equation of a Conic Section

The general form of the equation of a conic section in the xy-plane is

ax2 � by2 � cxy � dx � ey � f � 0.
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FIGURE 8.16

Axis of symmetry and vertex for a parabola; axes of symmetry and center for an ellipse and a
hyperbola
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If the conic is not a circle, and if c �� 0, the term cxy in this equation causes all axes
of symmetry of the conic to be on a slant, rather than horizontal or vertical.5 In this
section, we show how to express the equation of a non-circular conic using a different
set of coordinates in the plane so that such a term does not appear. This new coordinate
system makes it easier to determine the center or vertex of the conic section, as well
as any axes of symmetry.

Our goal is to find an angle � between the positive x-axis and an axis of symmetry of
the conic section. Once � is known, we rotate all points in the plane clockwise about
the origin through the angle �. In particular, the original graph of the conic will move
clockwise about the origin through the angle �, so that all of its axes of symmetry
are now horizontal and/or vertical. Since this rotation has moved the original x- and
y-axes out of their customary positions, we establish a new coordinate system to
replace the original one. If we think of the horizontal direction after rotation as the
u-axis, and the vertical direction after rotation as the v-axis, then we have created a
new uv-coordinate system for the plane, in which all axes of symmetry of the conic
section are parallel to the new u- and/or v-axes. Thus, in this new coordinate system,
the equation for the conic section will not have a uv term. This process is illustrated
in Figure 8.17 for the hyperbola xy � 1.

Before the rotation occurs, each point in the plane has a set of coordinates (x,y)

in the original xy-coordinate system (with the x- and y-axes in their customary posi-
tions), and after that point has been rotated, it has a new set of coordinates (u,v)

relative to the u- and v-axes in the uv-coordinate system. A similar statement is

xy �1 u 2� v 2�2
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FIGURE 8.17

Clockwise rotation of the hyperbola xy � 1 through angle �

5 The equation of a circle never contains a nontrivial xy term.
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true for vectors. From Figure 8.18,we see that,in particular,the vectors [cos�,sin �] and
[�sin �,cos�] in original xy-coordinates before the rotation, correspond, respectively,
to the unit vectors [1,0] and [0,1] in uv-coordinates after the rotation.

Let B and C be the standard (ordered) bases, respectively, for the original
xy-coordinates and the new uv-coordinates. The transition matrix P from C (uv-
coordinates) to B (xy-coordinates) is the 2 � 2 matrix whose columns are the basis
vectors of C expressed in B-coordinates. We have just seen that the unit vectors [1,0]
and [0,1] in C -coordinates correspond, respectively, to [cos�,sin �] and [�sin �,cos�]
in B-coordinates. Hence,

P �

[
cos� �sin �
sin � cos�

]

is the transition matrix from C to B. Thus, we can convert points in C -
coordinates (uv-coordinates) to points in B-coordinates (xy-coordinates) using the
equation

[
x
y

]
�

[
cos� �sin �
sin � cos�

][
u
v

]
, or

{
x �ucos� � v sin �
y � usin � � vcos�

.

We now substitute these expressions for x and y into the original equation for the
conic section to obtain an equivalent equation in u and v:

a(ucos� � v sin �)2 � b(usin � � vcos�)2 � c (ucos� � v sin �)(usin � � vcos�)

� d(ucos� � v sin �) � e(usin � � vcos�) � f � 0.

[2sin �, cos �] [cos �, sin �]

� j

i

v

u

�

FIGURE 8.18

Vectors that map to the standard basis vectors in R
2 after a clockwise rotation through the angle �
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After expanding, we find that the uv term is

(
2sin �cos�(b � a) �

(
cos2 � � sin2 �

)
c
)
uv � ((sin 2�)(b � a) � (cos2�)c)uv.

In order to ensure the coefficient of uv is equal to zero in this expression, we set
(sin 2�)(b � a) � �(cos2�)c, which, if a �� b, leads to tan 2� � c

a�b . Thus, we choose
the clockwise angle � of rotation to be

� �

{1
2 arctan

( c
a�b

)
if a �� b

�
4 if a � b

.

(Adding multiples of �/2 to this solution yields other solutions for �.)

Example 1
Consider the ellipse having equation

5x2 � 7y2 � 10xy � 3x � 2y � 8 � 0.

In order to find its center and axes of symmetry, we first find a simpler equation for the ellipse
in the uv-coordinate system, that is, an equation that will have no uv term. From the preceding
formula, the appropriate clockwise angle of rotation is � � 1

2 arctan
(

�10
�2

)
≈ 39.35◦ (≈ 0.6867

radians).6 Now, cos� ≈ 0.7733 and sin � ≈ 0.6340. Hence, the expressions for x and y in terms
of u and v are {

x � 0.7733u � 0.6340v
y � 0.6340u � 0.7733v

.

Substituting these formulas for x and y into the equation for the ellipse, and simplifying, yields

0.9010u2 � 11.10v2 � 1.052u � 3.449v � 8 � 0.

Completing the squares gives

0.9010(u � 0.5838)2 � 11.10(v � 0.1554)2 � 8.575,

or

(u � 0.5838)2

(3.085)2 �
(v � 0.1554)2

(0.8790)2 � 1.

6 All computations in this example were done on a calculator rounding to 12 significant digits. However,
we have printed only four significant digits in the text.
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The graph of this equation in the uv-plane is an ellipse centered at (0.5838,�0.1554), with axes
of symmetry parallel to the u- and v-axes, as depicted in Figure 8.19. In this case, the major
axis is parallel to the u-axis, since the denominator of the u term is larger.

Finally, the original graph of the ellipse in xy-coordinates can be obtained by rotating all
of the points of the plane counterclockwise through the angle � ≈ 39.35◦. (See Figure 8.20.)
Hence, the major axis of the original ellipse has an angle of inclination with the x-axis of
approximately 39.35◦. The center of the original ellipse can be found by converting the cen-
ter of the ellipse in uv-coordinates, (0.5838,�0.1554), into xy-coordinates via the transition
matrix

P �

[
cos� �sin �

sin � cos�

]
≈
[

0.7733 �0.6340

0.6340 0.7733

]
.

That is, the center of 5x2 � 7y2 � 10xy � 3x � 2y � 8 � 0 is

[
x0

y0

]
�

[
0.7733 �0.6340

0.6340 0.7733

][
0.5838

�0.1554

]
≈
[

0.5500

0.2500

]
.

Multiplication by P can be thought of as rotating counterclockwise so that uv-coordinates are
restored to xy-coordinates.

(0.5838, �0.1554)

v

u

�1

�1 1 2 3 4�2�3

�2

2

1

FIGURE 8.19

The ellipse (u�0.5838)2

(3.085)2 � (v�0.1554)2

(0.8790)2 � 1
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FIGURE 8.20

The ellipse 5x2 � 7y2 � 10xy � 3x � 2y � 8 � 0 with center and axes of symmetry indicated

Since we can convert directly from uv-coordinates to xy-coordinates using the
transition matrix

P �

[
cos� �sin �

sin � cos�

]
, it follows that P�1 �

[
cos� sin �

�sin � cos�

]

provides the means for converting from xy-coordinates to uv-coordinates. For exam-
ple, with the angle � ≈ 39.35◦ in Example 1, the point (�1,0) on the ellipse in
xy-coordinates corresponds to the point[

u0

v0

]
�

[
cos� sin �

�sin � cos�

][
�1

0

]
≈
[

0.7733 0.6340

�0.6340 0.7733

][
�1

0

]
≈
[

�0.7733

0.6340

]

in uv-coordinates. Multiplication by P�1 can be thought of as rotating clockwise so
that xy-coordinates convert to uv-coordinates.

The material in this section is revisited in a more general, abstract manner in
Section 8.11,“Quadratic Forms.”

New Vocabulary
axes of symmetry for a conic

section
center of an ellipse or hyperbola

transition matrix from xy-coordinates to
uv-coordinates

vertex of a parabola



 

8.7 Rotation of Axes for Conic Sections 543

Highlights

■ A clockwise rotation of a (non-circular) conic section ax2 � by2 � cxy � dx �
ey � f � 0 through an angle � � arctan

( c
a�b

)
(or, � � �

4 if a � b) establishes a
new uv-coordinate system for the conic so that all of its axes of symmetry are
parallel to the u- and/or v-axes.

■ The corresponding equation for a conic section in uv-coordinates (that is, after
rotation through the angle � as defined in this section) has no uv term.

■ The transition matrix P converts uv-coordinates of points in the plane (after
rotation) to xy-coordinates (before rotation), while its inverse P�1 converts
xy-coordinates of points in the plane (before rotation) to uv-coordinates (after
rotation).

■ The axes of symmetry and the center or vertex of a conic section in xy-
coordinates can be found by calculating them in uv-coordinates, and then
rotating the results counterclockwise through the angle � as defined in this
section.

EXERCISES FOR SECTION 8.7
1. For each of the given conic sections, perform the following steps:

(i) Find an appropriate angle � through which to rotate clockwise from xy-
coordinates into uv-coordinates so that the resulting conic has no uv term.

(ii) Calculate the transition matrix P from uv-coordinates to xy-coordinates.

(iii) Solve for the equation of the conic in uv-coordinates.

(iv) Determine the center of the conic in uv-coordinates if it is an ellipse or
hyperbola, or the vertex in uv-coordinates if it is a parabola. Graph the
conic in uv-coordinates.

(v) Use the transition matrix P to solve for the center or vertex of the conic in
xy-coordinates. Draw the graph of the conic in xy-coordinates.

(a) 3x2 � 3y2 � 2
√

3(xy) � 4
√

3 � 0 (hyperbola)

(b) 13x2 � 13y2 � 10xy � 8
√

2x � 8
√

2y � 64 � 0 (ellipse)

�(c) 3x2 � y2 � 2
√

3xy � (1 � 12
√

3)x � (12 �
√

3)y � 26 � 0 (parabola)

�(d) 29x2 � 36y2 � 24xy � 118x � 24y � 55 � 0 (ellipse)

(e) �16x2 � 9y2 � 24xy � 60x � 420y � 0 (parabola)

�(f) 8x2 � 5y2 � 16xy � 37 � 0 (hyperbola)

�2. True or False:

(a) The conic section x2 � xy � y2 � 12 has an axis of symmetry that makes a
45◦ angle with the positive x-axis.
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(b) The coordinates of the center of a hyperbola always stay fixed when
changing from xy-coordinates to uv-coordinates.

(c) If P is the transition matrix that converts from uv-coordinates to xy-
coordinates, then P�1 is the matrix that converts from xy-coordinates to
uv-coordinates.

(d) The equation of a conic section with no xy term has a graph in xy-coordinates
that is symmetric with respect to the x-axis.

8.8 COMPUTER GRAPHICS
Prerequisite: Section 5.2, The Matrix of a Linear Transformation

In this section, we give some insight into how linear algebra is used to manipulate
objects on a computer screen. We will see that, in many cases, shifting the position or
size of objects can be accomplished using matrix multiplication. However, to represent
all possible movements by matrix multiplication, we will find it necessary to work in
higher dimensions and use a somewhat different method of coordinatizing vectors,
known as “homogeneous coordinates.”

Introduction to Computer Graphics

Computer screens consist of pixels, tiny areas of the screen arranged in rows and
columns. Pixels are turned “off” and “on” to create patterns on the screen.7 A typical
1024 � 768 screen, for example, would have 1024 pixels in each row (labeled “0”
through “1023”) and 768 pixels in each column (labeled “0” through “767”). (See
Figure 8.21.) We can think of the screen pixels as forming a lattice (grid), with a single
pixel at the intersection of each row and column.

Notice that pixels are normally labeled so that the y-coordinates increase as one
proceeds down a computer screen. In other words, the positive y-axis points “down-
ward”instead of pointing upward as it is conventionally depicted. However, to simplify
our study of transformations conceptually, throughout this section we will continue
to draw our xy-coordinate systems in the usual manner — that is, with the positive
y-axis pointing “upward.” Essentially, then, all of the figures depicted in this section
should be envisioned as vertically inverted versions of actual figures on computer
screens.

Today, the most common computer graphics technique is raster graphics, in
which the current screen content (text, figures, icons, etc.) is stored in the memory
of the computer and updated and displayed whenever a change of screen contents is

7 When a pixel is“on,” commands can be given that adjust its brightness and color to produce a desired
effect. However,to avoid complications,we will ignore brightness and color in what follows, and simply
consider a pixel to be “off”or“on.”



 

8.8 Computer Graphics 545

0
0

1

2

3

4

5

6

7

765

766

767

1 2 3 4 5 6 7 8 9 10 11 1021 1022 1023

FIGURE 8.21

A typical 1024 � 768 computer screen, with labeled pixels

necessary. In this system, algorithms have been created to draw fundamental geomet-
ric figures at specified areas on the screen. For example, given two different points
(pixels), we can display the line connecting them by calling an algorithm to turn on
the appropriate pixels. Similarly,given the points that represent the vertices of a trian-
gle (or any polygon), we can have the computer connect them to form the appropriate
screen figure.

In this system,we can represent a polygon algebraically by storing its n vertices as
columns in a 2 � n matrix, as in the next example.

Example 1
The polygon in Figure 8.22 (a “Knee”) can be associated with the 2 � 6 matrix

[
8 8 6 8 10 10
6 8 10 12 10 6

]
.

Each column lists a pair of x- and y-coordinates representing a different vertex of the figure.

The “edges” of a polygonal figure could also be represented in computer memory.
For example, we could represent the“edges” with a 6 � 6 matrix, with (i, j) entry equal
to 1 if the ith and jth vertices are connected by an edge, and 0 otherwise. However,
we will focus on the vertices only in this section.

Whenever we rotate a given figure on the screen, each computed vertex for the
new figure may not land “exactly”on a single pixel, since the new x- and y-coordinates
may not be integers. For simplicity, we assume that whenever a figure is manipulated,
we round off each computation of a pixel coordinate to the nearest integer. Also, a
figure must be “clipped” whenever portions of the figure extend beyond the current
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FIGURE 8.22

Graphic with six vertices and six edges

screen window. Powerful algorithms have been developed to address such problems,
but these and many similar issues are beyond the scope of this text.

In this section, we will illustrate how to manipulate two-dimensional figures on the
screen. Similar methods are used to manipulate three-dimensional figures, although
we will not consider them here. For further details, consult Chapter 5 of Computer
Graphics: Principles and Practice in C, 2nd edition, by Foley, vanDam, Feiner, and
Hughes, published by Addison-Wesley, 1996.

Fundamental Movements in the Plane

A similarity is a mapping of the plane to itself so that every figure in the plane and its
image are similar in shape and related by the same ratio of sizes. Geometric arguments
can be given to show that any similarity can be accomplished by composing one or
more of the following mappings:8

(1) Translation: shifting all points of a figure along a fixed vector.

(2) Rotation: rotating all points of a figure about a given center point, through
a given angle �. We will assume that all rotations are in a counterclockwise
direction in the plane unless otherwise specified.

(3) Reflection: reflecting all points of a figure about a given line.

8 In fact, it can be shown that any translation or rotation can be expressed as the composition of
appropriate reflections. However, translations and rotations are used so often in computer graphics that
it is useful to consider these mappings separately.
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Finally, we also consider a fourth type of movement, which can change the
size of a figure.

(4) Scaling: dilating/contracting the distance of all points in the figure from a
given center point.

Each of these first three fundamental movements is actually an isometry; it maps
a given figure to a congruent figure.

We consider each movement briefly in turn. As we will see, all translations are
straightforward, but we begin with only the simplest possible type of rotation (about
the origin), reflection (about a line through the origin), and scaling (with the origin as
center point).

(1) Translation: To perform a translation of a vertex along a vector

[
a
b

]
, we

simply add

[
a
b

]
to the vertex.

(2) Rotation about the origin: In Section 5.1, we saw that multiplying on the
left by the matrix [

cos� �sin �

sin � cos�

]

rotates a vertex through an angle � about the origin.

(3) Reflection about a line through the origin: In Exercise 22 of Section 5.2,
we found that multiplying on the left by the matrix

1

1 � m2

[
1 � m2 2m

2m m2 � 1

]

reflects a vertex about the line y � mx. In the special case where the line of
reflection is the y-axis, the reflection matrix is simply

[
�1 0

0 1

]
. (Why?)

(4) Scaling from the origin: For a similarity, the scale factors in both the x- and
y-directions need to be the same, but in what follows, we will, in fact, allow
different scale factors in each direction since it is easy to do so. We multiply
distances from the center point by c in the x-direction and d in the y-direction.
With the origin as center point, we can achieve the desired scaling of a vertex
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simply by multiplying the vertex by the matrix[
c 0
0 d

]
.

We have seen that the last three types of mappings (rotation about the origin,
reflection about a line through the origin, scaling with the origin as center) can all
be performed using matrix multiplication. Of course, by Example 10 in Section 5.1,
these are linear transformations. However, (nontrivial) translations are not linear trans-
formations, and neither are rotations, reflections, or scaling if they are not centered
at the origin. Nevertheless, there is a way to represent all of these movements using
matrix multiplication in a different type of coordinate system taken from projective
geometry, called“homogeneous coordinates.”

Homogeneous Coordinates

Our goal is to create a useful coordinate representation for the points in two-
dimensional space by “going up” one dimension. We define any three-dimensional
“point” of the form (tx, ty, t) � t(x,y,1), where t �� 0, to be equivalent to the ordi-
nary two-dimensional point (x, y). That is, as far as we are concerned, the points
(3,4,1), (6,8,2) � 2(3,4,1), and (9,12,3) � 3(3,4,1) are all equivalent to (3,4). Sim-
ilarly, the point (2,�5) has three-dimensional representations, such as (2,�5,1),
(4,�10,2),and (�8,20,�4).This three-dimensional coordinate system gives each two-
dimensional point a corresponding set of homogeneous coordinates. Notice that
there is an infinite set of homogeneous coordinates for each two-dimensional point.
However, by dividing all three coordinates of a triple by its last coordinate, any point
in homogeneous coordinates can be normalized so that its last coordinate equals 1.
Each two-dimensional point thus has a unique set of normalized homogeneous coor-
dinates, which is said to be its standard form. Thus, (5/2,�3/2,1) is the standard
form for the equivalent triples (15,�9,6) and (10,�6,4).

Representing Movements with Matrix Multiplication in
Homogeneous Coordinates

Translation: To translate vertex (x,y) along a given vector [a,b], we first con-
vert (x,y) to homogeneous coordinates. The simplest way to do this is to replace
(x,y) with the equivalent vector [x,y,1]. Then, multiplication on the left by the
matrix ⎡

⎣1 0 a
0 1 b
0 0 1

⎤
⎦ gives

⎡
⎣1 0 a

0 1 b
0 0 1

⎤
⎦
⎡
⎣x

y
1

⎤
⎦�

⎡
⎣x � a

y � b
1

⎤
⎦,

which is equivalent to the two-dimensional point (x � a, y � b), the desired result.
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Rotation, Reflection, Scaling: You can verify that multiplying [x,y,1] on the
left by the following matrices performs, respectively, a rotation of (x,y) about the
origin through angle �, a reflection of (x,y) about the line y � mx, and a scal-
ing of (x,y) about the origin by a factor of c in the x-direction and d in the
y-direction.

⎡
⎢⎣cos� �sin � 0

sin � cos� 0

0 0 1

⎤
⎥⎦,

(
1

1 � m2

)⎡⎢⎣1 � m2 2m 0

2m m2 � 1 0

0 0 1 � m2

⎤
⎥⎦,

⎡
⎢⎣c 0 0

0 d 0

0 0 1

⎤
⎥⎦

Finally, the special case of a reflection about the y-axis can be accomplished by
multiplying on the left by the matrix

⎡
⎢⎣�1 0 0

0 1 0

0 0 1

⎤
⎥⎦.

Recall that for any matrix A and vector v (of compatible sizes) and any scalar t ,
we have A(tv) � t(Av). Hence, multiplying a 3 � 3 matrix A by any two vectors of
the form t[x,y,1] � [tx, ty, t] equivalent to (x,y) always produces two results that are
equivalent in homogeneous coordinates.

Movements Not Centered at the Origin

Our next goal is to determine the matrices for rotations, reflections, and scaling
that are not centered about the origin. This can be done by combining appropriate
translation matrices with the matrices for origin-centered rotations, reflections, and
scaling.

Similarity Method

Step 1: Use a translation to move the figure so that the rotation, reflection, or scaling to be
performed is “about the origin.” (This means moving the figure so that the center
of rotation/scaling is the origin, or so that the line of reflection goes through the
origin.)

Step 2: Perform the desired rotation, reflection, or scaling “about the origin.”

Step 3: Translate the altered figure back to the position of the original figure by reversing
the translation in Step 1.
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The Similarity Method requires the composition of three movements. Theorem 5.7
shows that the matrix for a composition is the product of the corresponding matrices
for the individual mappings in reverse order, as we will illustrate in Examples 2, 3,
and 4. A little thought will convince you that the Similarity Method also has the overall
effect of multiplying a vertex in homogeneous coordinates by a matrix similar to the
matrix for the movement in Step 2 (see Exercise 10).

We will demonstrate the Similarity Method for each type of movement in turn.

Example 2
Rotation: Suppose we rotate the vertices of the “Knee” from Example 1 through an angle of
� � 90◦ about the point (r,s) � (12,6). We first replace each (x,y) with its vector [x,y,1] in
homogeneous coordinates and follow the Similarity Method. In Step 1, we translate from (12,6)

to (0,0) in order to establish the origin as center. In Step 2, we perform a rotation through angle
� � 90◦ about the origin. Finally, in Step 3, we translate from (0,0) back to (12,6). The net effect
of these three operations is to rotate each vertex about (12,6). (Why?) The combined result of
these operations is

⎡
⎢⎣

1 0 12

0 1 6

0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
translate from

(0,0) back to (12,6)

⎡
⎢⎣

cos90◦ �sin 90◦ 0

sin 90◦ cos90◦ 0

0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
rotate about (0,0)

through angle 90◦

⎡
⎢⎣

1 0 �12

0 1 �6

0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
translate from
(12,6) to (0,0)

⎡
⎢⎣

x

y

1

⎤
⎥⎦.

This reduces to

⎡
⎢⎣

0 �1 18

1 0 �6

0 0 1

⎤
⎥⎦
⎡
⎢⎣

x

y

1

⎤
⎥⎦. (Verify!)

Therefore, performing the rotation on all vertices of the figure simultaneously, we obtain

⎡
⎢⎣

0 �1 18

1 0 �6

0 0 1

⎤
⎥⎦
⎡
⎢⎣

8 8 6 8 10 10

6 8 10 12 10 6

1 1 1 1 1 1

⎤
⎥⎦�

⎡
⎢⎣

12 10 8 6 8 12

2 2 0 2 4 4

1 1 1 1 1 1

⎤
⎥⎦ .

The columns of the final matrix (ignoring the last row entries) give the vertices of the rotated
figure, as illustrated in Figure 8.23(a).
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FIGURE 8.23

Movements of “Knee”: (a) rotation through 90◦ about (12,6); (b) reflection about line y � �3x � 30;
(c) scaling with c � 1/2, d � 4 about (6,10)

Example 3
Reflection: Suppose we reflect the vertices of the “Knee” in Example 1 about the line
y � �3x � 30. In this case, m � �3 and b � 30. As before, we replace (x,y) with its equivalent
vector [x,y,1], and follow the Similarity Method. In Step 1, we translate from (0,30) to (0,0)
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in order to “drop” the line 30 units vertically so that it passes through the origin. In Step 2, we
perform a reflection about the corresponding line y � �3x. Finally, in Step 3, we translate from
(0,0) back to (0,30). The net effect of these three operations is to reflect each vertex about the
line y � �3x � 30. (Why?) The combined result of these operations is⎡
⎢⎣1 0 0

0 1 30
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
translate from

(0,0) back
to (0,30)

(
1

1 � (�3)2

)⎡⎢⎣1 � (�3)2 2(�3) 0
2(�3) (�3)2�1 0

0 0 1 � (�3)2

⎤
⎥⎦

︸ ︷︷ ︸
reflect about

the line y � �3x

⎡
⎢⎣1 0 0

0 1 �30
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
translate from
(0,30) to (0,0)

⎡
⎢⎣x

y
1

⎤
⎥⎦.

This reduces to

(
1

10

)⎡⎢⎣�8 �6 180
�6 8 60

0 0 10

⎤
⎥⎦
⎡
⎢⎣x

y
1

⎤
⎥⎦.

Performing the reflection on all vertices of the figure simultaneously, we obtain

1

10

⎡
⎢⎣�8 �6 180

�6 8 60
0 0 10

⎤
⎥⎦
⎡
⎢⎣8 8 6 8 10 10

6 8 10 12 10 6
1 1 1 1 1 1

⎤
⎥⎦≈

⎡
⎢⎣8 7 7 4 4 6

6 8 10 8 8 5
1 1 1 1 1 1

⎤
⎥⎦,

after rounding the results for each vertex to the nearest integer. The columns of the final
matrix (ignoring the last row entries) give the vertices of the reflected figure, as illustrated in
Figure 8.23(b). Notice that the reflected figure is slightly distorted because of the rounding
involved. For simplicity in this example, small pixel values were used, but a larger figure on the
screen would probably undergo less distortion after such a reflection.

The special case of a reflection about a line parallel to the y-axis is treated in
Exercise 8.

Example 4
Scaling: Suppose we scale the vertices of the “Knee” in Example 1 about the point (r,s) � (6,10)

with a factor of c � 1/2 in the x-direction and d � 4 in the y-direction. In a manner similar to
Examples 2 and 3 we obtain⎡

⎢⎣1 0 6
0 1 10
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
translate from

(0,0) back
to (6,10)

⎡
⎢⎣

1
2 0 0
0 4 0
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
scale about (0,0)

using scale factors 1
2

and 4, respectively

⎡
⎢⎣1 0 �6

0 1 �10
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
translate from
(6,10) to (0,0)

⎡
⎢⎣x

y
1

⎤
⎥⎦�

⎡
⎢⎣

1
2 0 3
0 4 �30
0 0 1

⎤
⎥⎦
⎡
⎢⎣x

y
1

⎤
⎥⎦ .
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Therefore, scaling all vertices of the figure simultaneously, we obtain

⎡
⎢⎣

1
2 0 3

0 4 �30

0 0 1

⎤
⎥⎦
⎡
⎢⎣

8 8 6 8 10 10

6 8 10 12 10 6

1 1 1 1 1 1

⎤
⎥⎦�

⎡
⎢⎣

7 7 6 7 8 8

�6 2 10 18 10 �6

1 1 1 1 1 1

⎤
⎥⎦,

as illustrated in Figure 8.23(c). Two of the scaled vertices have negative y-values, and so would
not be displayed on the computer screen.

Composition of Movements

Now that we have established that all translations, rotations, reflections, and scaling
operations can be performed by appropriate matrix multiplications in homogeneous
coordinates, we can find the matrix for a composition of such movements.

Example 5
Suppose we rotate the “Knee” in Example 1 through an angle of 300◦ about the point
(8,10), and then reflect the resulting figure about the line y � �(1/2)x � 20. With � � 300◦,
m � �1/2, and b � 20, the matrix for this composition is the product of the following six
matrices:

⎡
⎢⎣ 1 0 0

0 1 20
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
translate from

(0,0) back
to (0,20)

⎛
⎜⎝ 1

1 �
(

� 1
2

)2

⎞
⎟⎠
⎡
⎢⎢⎢⎢⎣

1 �
(

� 1
2

)2
2
(

� 1
2

)
0

2
(

� 1
2

) (
� 1

2

)2
� 1 0

0 0 1 �
(

� 1
2

)2

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
reflect about

the line y � � 1
2 x

⎡
⎢⎣ 1 0 0

0 1 �20
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
translate from
(0,20) to (0,0)

⎡
⎢⎣ 1 0 8

0 1 10
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
translate from

(0,0) back to (8,10)

⎡
⎢⎣ cos300◦ �sin 300◦ 0

sin 300◦ cos300◦ 0
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
rotate about (0,0)

through angle 300◦

⎡
⎢⎣ 1 0 �8

0 1 �10
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
translate from
(8,10) to (0,0)

.

This reduces to (approximately)⎡
⎢⎣ 0.9928 0.1196 3.6613

0.1196 �0.9928 28.5713
0 0 1

⎤
⎥⎦ .
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Multiplying this matrix by all vertices of the figure simultaneously and rounding the results for
each vertex to the nearest integer, we have

⎡
⎢⎣

0.9928 0.1196 3.6613

0.1196 �0.9928 28.5713

0 0 1

⎤
⎥⎦
⎡
⎢⎣

8 8 6 8 10 10

6 8 10 12 10 6

1 1 1 1 1 1

⎤
⎥⎦≈

⎡
⎢⎣

12 13 11 13 15 14

24 22 19 18 20 24

1 1 1 1 1 1

⎤
⎥⎦.

The columns of the final matrix (ignoring the last row entries) give the vertices of the final figure
after the indicated rotation and reflection. These are illustrated in Figure 8.24.

New Vocabulary
homogeneous coordinates
isometry
normalized homogeneous coordinates
pixel

reflection (of a figure) about a line
rotation (of a figure) about a point
scaling (of a figure)
Similarity Method
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FIGURE 8.24

Movement of “Knee” after rotation through an angle of 300◦ about the point (8,10), followed by
reflection about the line y � �(1/2)x � 20
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similarity of figures in the plane
standard form (for homogeneous coor-

dinates)

translation (of a figure)

Highlights

■ Any similarity of the plane is the composition of one or more of the following:
translation, rotation (about a fixed point), reflection (about a fixed line), and
scaling.

■ Nontrivial translations are not linear transformations, so homogeneous coordi-
nates are used in order that translations, along with rotations, reflections, and
scaling can be expressed using matrix multiplication.

■ Homogeneous coordinates (a,b,c) and (x,y,z) in R
3 represent the same point

if (a,b,c) � t(x,y,z) for some t �� 0.

■ Each point (x,y) in R
2 is equivalent to the set of homogeneous coordinates

(tx, ty, t) (t �� 0) in R
3, and has a unique set of normalized homogeneous

coordinates (x,y,1).

■ The result after translation of a point (x,y) along the vector [a,b] is⎡
⎢⎣ 1 0 a

0 1 b

0 0 1

⎤
⎥⎦
⎡
⎢⎣ x

y

1

⎤
⎥⎦�

⎡
⎢⎣ x � a

y � b

1

⎤
⎥⎦ in homogeneous coordinates.

■ The result after rotation of a point (x,y) about the origin counterclockwise

through angle � is

⎡
⎢⎣ cos� �sin � 0

sin � cos� 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣ x

y

1

⎤
⎥⎦ in homogeneous coordinates.

■ The result after reflection of a point (x,y) about the line y � mx is

( 1
1�m2

)⎡⎢⎣ 1 � m2 2m 0

2m m2 � 1 0

0 0 1 � m2

⎤
⎥⎦
⎡
⎢⎣ x

y

1

⎤
⎥⎦ in homogeneous coordinates.

■ The result after scaling of a point (x,y) about the origin by a factor of c in

the x-direction and a factor of d in the y-direction is

⎡
⎣ c 0 0

0 d 0
0 0 1

⎤
⎦
⎡
⎣ x

y
1

⎤
⎦ in

homogeneous coordinates.

■ The purpose of the Similarity Method is to perform a rotation or scaling about a
point (x,y) other than the origin, or a reflection about a (nonvertical) line that
does not go through the origin.
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■ The Similarity Method is accomplished for rotation or scaling about center
(x,y) �� (0,0) by first applying the translation that takes (x,y) to (0,0), then by
performing the intended rotation or scaling about the origin, and then applying
the reverse translation.

■ The Similarity Method is accomplished for reflection about the line y � mx � b
by vertically translating the plane down b units, then performing a reflection
through the line y � mx, and then applying the reverse translation.

■ The matrix for any composition of translations, rotations, reflections, and scaling
is obtained by multiplying the matrices for the respective mappings in reverse
order.

■ A similarity can be performed simultaneously on multiple points by multiplying
the matrix for the similarity by a matrix whose columns represent the normalized
homogeneous coordinates for each point.

EXERCISES FOR SECTION 8.8
Round all calculations of pixel coordinates to the nearest integer. Some of the resulting
coordinate values may be“outside”a typical pixel configuration.

1. For the graphic in Figure 8.25(a), use ordinary coordinates in R
2 to find the

new vertices after performing each indicated operation.
�(a) translation along the vector [4,�2]
(b) rotation about the origin through � � 30◦

�(c) reflection about the line y � 3x

(d) scaling about the origin with scale factors of 4 in the x-direction and 2 in
the y-direction

2. For the graphic in Figure 8.25(b), use ordinary coordinates in R
2 to find the

new vertices after performing each indicated operation. Then sketch the figure
that would result from this movement.

(a) translation along the vector [�3,5]
�(b) rotation about the origin through � � 120◦

(c) reflection about the line y � 1
2x

�(d) scaling about the origin with scale factors of 1
2 in the x-direction and 3

in the y-direction

3. For the graphic in Figure 8.25(c), use homogeneous coordinates to find the
new vertices after performing each indicated sequence of operations.
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FIGURE 8.25

(a) Figure for Exercise 1; (b) figure for Exercise 2; (c) figure for Exercise 3
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�(a) rotation about the origin through � � 45◦, followed by a reflection about
the line y � 1

2x

(b) reflection about the line y � 1
2x, followed by a rotation about the origin

through � � 45◦
�(c) scaling about the origin with scale factors of 3 in the x-direction and 1

2
in the y-direction, followed by a reflection about the line y � 2x

(d) translation along the vector [�2,3], followed by a rotation about the
origin through � � 300◦

4. For the graphic in Figure 8.26(a), use homogeneous coordinates to find the new
vertices after performing each indicated operation.
�(a) rotation about (8,9) through � � 120◦

(b) reflection about the line y � 2 � x

�(c) scaling about (8,4) with scale factors of 2 in the x-direction and 1
3 in the

y-direction

5. For the graphic in Figure 8.26(b), use homogeneous coordinates to find the
new vertices after performing each indicated operation.

(a) rotation about (10,8) through � � 315◦

�(b) reflection about the line y � 4x � 10

(c) scaling about (7,3) with scale factors of 1
2 in the x-direction and 3 in the

y-direction

6. For the graphic in Figure 8.26(c), use homogeneous coordinates to find the new
vertices after performing each indicated sequence of operations. Then sketch
the final figure that would result from these movements.
�(a) rotation about (12,8) through � � 60◦, followed by a reflection about the

line y � 1
2x � 6

(b) reflection about the line y � 2x � 1, followed by a rotation about (10,10)

through � � 210◦

�(c) scaling about (9,4) with scale factors 1
3 in the x-direction and 2 in the

y-direction, followed by a rotation about (2,9) through � � 150◦

(d) reflection about the line y � 3x � 2, followed by scaling about (8,6) using
scale factors of 3 in the x-direction and 1

2 in the y-direction

7. Use the Similarity Method to verify each of the following assertions:

(a) A rotation about (r,s) through angle � is represented by the matrix⎡
⎣cos� �sin � r(1 � cos�) � s(sin �)

sin � cos� s(1 � cos�) � r(sin �)

0 0 1

⎤
⎦.
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FIGURE 8.26

(a) Figure for Exercise 4; (b) figure for Exercise 5; (c) figure for Exercise 6
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(b) A reflection about the line y � mx � b is represented by the matrix

(
1

1 � m2

)⎡⎣ 1 � m2 2m �2mb
2m m2 � 1 2b
0 0 1 � m2

⎤
⎦.

(c) A scaling about (r,s) with scale factors c in the x-direction and d in the
y-direction is represented by the matrix⎡

⎣ c 0 r(1 � c)
0 d s(1 � d)

0 0 1

⎤
⎦.

8. Show that a reflection about the line x � k is represented by the matrix⎡
⎣ �1 0 2k

0 1 0
0 0 1

⎤
⎦.

(Hint: First, translate from (k,0) to (0,0), then, reflect about the y-axis, and
finally, translate from (0,0) back to (k,0).)

9. Redo each part of Exercise 5 with a single matrix multiplication by using an
appropriate matrix from Exercise 7 in each case.

10. (a) Verify computationally that the translation matrices⎡
⎣ 1 0 a

0 1 b
0 0 1

⎤
⎦ and

⎡
⎣ 1 0 �a

0 1 �b
0 0 1

⎤
⎦

are inverses of each other.

(b) Explain geometrically why it makes sense that the translation matrices from
part (a) are inverses.

(c) Explain why the matrices for a rotation about the origin through a given
angle � and a rotation about any other point (r,s) through the same angle
� must be similar. (Hint: Use part (a).)

11. (a) Let L1 be a scaling about the point (r,s) with equal scale factors in the
x- and y-directions, and let L2 be a rotation about the point (r,s) through
angle �. Show that L1 and L2 commute. (That is, show L1 ◦ L2 � L2 ◦ L1.)

�(b) Give a counterexample to show that, in general, a reflection and a rotation
do not commute.

(c) Give a counterexample to show that, in general, a scaling and a reflection
do not commute.
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12. An n � n matrix A is an orthogonal matrix if and only if AAT � In.

(a) Show that the 2 � 2 matrix for rotation about the origin through an angle �,
and its 3 � 3 counterpart in homogeneous coordinates (as given in this
section), are both orthogonal matrices.

(b) Show that the single matrix for the rotation of the plane through an angle of
90◦ about the point (12,6) given in Example 2 is not an orthogonal matrix.

(c) Is either the 2 � 2 matrix for a reflection about a line through the origin,or
its 3 � 3 counterpart in homogeneous coordinates (as given in this section),
an orthogonal matrix?Why? (Hint:Let A be either matrix. Note that A2 � I.)

�13. True or False:

(a) We may use vectors in homogeneous coordinates having third coordinate
0 to represent pixels on the screen.

(b) Every pixel on the screen has a unique representation in homogeneous
coordinates.

(c) Every rotation has a unique 3 � 3 matrix representing it in homogeneous
coordinates.

(d) Every isometry in the plane can be expressed using the basic motions of
rotation, reflection, and translation.

(e) Non-identity translations are not linear transformations.

(f) All rotations and reflections in the plane are linear transformations.

8.9 DIFFERENTIAL EQUATIONS
Prerequisite: Section 5.6, Diagonalization of Linear Operators

In this section, we use the diagonalization process to solve certain first-order linear
homogeneous systems of differential equations. We then adjust this technique to solve
higher-order homogeneous differential equations as well.

First-Order Linear Homogeneous Systems

Definition Let

F(t) �

⎡
⎢⎣

f1(t)
...

fn(t)

⎤
⎥⎦

represent an n � 1 matrix whose entries are real-valued functions, and let A
be an n � n matrix of real numbers. Then the equation F′(t) � AF(t) � 0, or
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F′(t) � AF(t), is called a first-order linear homogeneous system of differ-
ential equations. A solution for such a system is a particular function F(t) that
satisfies the equation for all values of t .

For brevity, in the remainder of this section we will refer to an equation of the form
F′(t) � AF(t) as a first-order system.

Example 1

Let F �

[
f1(t)
f2(t)

]
and A �

[
13 �45
6 �20

]
, and consider the first-order system F′(t) � AF(t), or

[
f ′
1(t)

f ′
2(t)

]
�

[
13 �45
6 �20

][
f1(t)
f2(t)

]
.

Multiplying yields

{
f ′
1(t) � 13 f1(t) � 45 f2(t)

f ′
2(t) � 6 f1(t) � 20 f2(t)

.

A solution for this system consists of a pair of functions, f1(t) and f2(t), that satisfy both of these
differential equations. One such solution is

F(t) �

[
f1(t)
f2(t)

]
�

[
5e�5t

2e�5t

]
.

(Verify.) We will see how to obtain such solutions later in this section.

In what follows, we concern ourselves only with solutions that are contin-
uously differentiable (that is, solutions having continuous derivatives). First, we
state, without proof, a well-known result from the theory of differential equations
about solutions of a single first-order equation.

Lemma 8.10 A real-valued continuously differentiable function f (t) is a solution to the
differential equation f ′(t) � af (t) if and only if f (t) � beat for some real number b.

A first-order system of the form F′(t) � AF(t) is more complicated than the differ-
ential equation in Lemma 8.10, since it involves a matrix A instead of a real number
a. However, in the special case when A is a diagonal matrix, the system F′(t) � AF(t)
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can be written as ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ′
1(t) � a11 f1(t)

f ′
2(t) � a22 f2(t)

...
f ′
n(t) � ann fn(t)

.

Each of the differential equations in this system can be solved separately using
Lemma 8.10. Hence, when A is diagonal, the general solution has the form

F(t) �
[
b1ea11t ,b2ea22t , . . . ,bneannt] ,

for some b1, . . . ,bn ∈ R.

Example 2

Consider the first-order system F′(t) �

[
3 0
0 �2

]
F(t), whose matrix is diagonal. This system is

equivalent to {
f ′
1(t) � 3 f1(t)

f ′
2(t) � �2 f2(t)

.

Using Lemma 8.10, we see that the solutions are all functions of the form

F(t) � [ f1(t), f2(t)] �
[
b1e3t , b2e�2t

]
.

Since first-order systems F′(t) � AF(t) are easily solved when the matrix A is diag-
onal, it is natural to consider the case when A is diagonalizable. Thus, suppose A is a
diagonalizable n � n matrix with (not necessarily distinct) eigenvalues �1, . . . ,�n cor-
responding to the eigenvectors in the ordered basis B � (v1, . . . ,vn) for R

n. The matrix
P having columns v1, . . . ,vn is the transition matrix from B to standard coordinates,
and P�1AP � D, the diagonal matrix having eigenvalues �1,�2, . . . ,�n along its main
diagonal. Hence,

F′(t) � AF(t) ⇐⇒ F′(t) � (PP�1APP�1)F(t)

⇐⇒ F′(t) � PDP�1F(t)

⇐⇒ P�1F′(t) � DP�1F(t).

Letting G(t) � P�1F(t), we see that the original system F′(t) � AF(t) is equivalent to
the system G′(t) � DG(t). Since D is diagonal, with diagonal entries �1, . . . ,�n, the
latter system is solved as follows:

G(t) �
[
b1e�1t , b2e�2t , . . . , bne�nt

]
.
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But, F(t) � PG(t). Since the columns of P are the eigenvectors v1,v2, . . . ,vn, we
obtain

F(t) � b1e�1tv1 � b2e�2tv2 � · · · � bne�ntvn.

Thus, we have proved the following:

Theorem 8.11 Let A be a diagonalizable n � n matrix and let (v1, . . . ,vn) be an ordered
basis for R

n consisting of eigenvectors for A corresponding to the (not necessarily
distinct) eigenvalues �1, . . . ,�n. Then the continuously differentiable solutions for the
first-order system F′(t) � AF(t) are all functions of the form

F(t) � b1e�1tv1 � b2e�2tv2 � · · · � bne�ntvn,

where b1, . . . ,bn ∈ R.

Example 3
We will solve the first-order system F′(t) � AF(t), where

A �

⎡
⎢⎢⎢⎣

1 0 �2 6
4 �1 �4 12

�32 9 40 �114
�11 3 14 �40

⎤
⎥⎥⎥⎦.

Following Steps 3 through 6 of the method in Section 5.6 for diagonalizing a linear operator, we
find that A has the following fundamental eigenvectors and corresponding eigenvalues:

v1 � [�2,�4,5,2] corresponding to �1 � 0
v2 � [�3,2,0,1] corresponding to �2 � �1
v3 � [1,�1,1,0] corresponding to �3 � �1
v4 � [0,0,3,1] corresponding to �4 � 2.

(Notice that v2 and v3 are linearly independent eigenvectors for the eigenvalue �1, so that
{v2,v3} forms a basis for E�1.) Therefore, Theorem 8.11 tells us that the continuously dif-
ferentiable solutions to the first-order system F′(t) � AF(t) consist precisely of all functions of
the form

F(t) � [ f1(t), f2(t), f3(t), f4(t)]
� b1[�2,�4,5,2] � b2e�t [�3,2,0,1] � b3e�t [1,�1,1,0] � b4e2t [0,0,3,1]
� [�2b1 � 3b2e�t � b3e�t , �4b1 � 2b2e�t � b3e�t , 5b1 � b3e�t � 3b4e2t ,

2b1 � b2e�t � b4e2t ].
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Notice that in order to useTheorem 8.11 to solve a first-order system F′(t) � AF(t),
A must be a diagonalizable matrix. If it is not, you can still find some of the solutions
to the system using an analogous process. If {v1, . . . ,vk} is a linearly independent set
of eigenvectors for A corresponding to the eigenvalues �1, . . . ,�k, then functions of
the form

F(t) � b1e�1tv1 � b2e�2tv2 � · · · � bke�ktvk

are solutions (see Exercise 3). However, these are not all the possible solutions for the
system. To find all the solutions, you must use complex eigenvalues and eigenvectors,
as well as generalized eigenvectors. Complex eigenvalues are studied in Section 7.2;
generalized eigenvectors are not covered in this book.

Higher-Order Homogeneous Differential Equations

Our next goal is to solve higher-order homogeneous differential equations of the form

y(n) � an�1y(n�1) � · · · � a2y′′ � a1y′ � a0y � 0.

Example 4
Consider the differential equation y′′′ � 6y′′ � 3y′ � 10y � 0. To find solutions for this equation,
we define the functions f1(t), f2(t), and f3(t) as follows: f1 � y, f2 � y′, and f3 � y′′. We then
have the system ⎧⎪⎨

⎪⎩
f ′
1 � f2

f ′
2 � f3

f ′
3 � �10f1 � 3f2 � 6f3

.

The first two equations in this system come directly from the definitions of f1, f2, and f3. The
third equation is obtained from the original differential equation by moving all terms except y′′′
to the right side. But this system can be expressed as

⎡
⎢⎣

f ′
1(t)

f ′
2(t)

f ′
3(t)

⎤
⎥⎦�

⎡
⎢⎣

0 1 0

0 0 1

�10 �3 6

⎤
⎥⎦
⎡
⎢⎣

f1(t)

f2(t)

f3(t)

⎤
⎥⎦;

that is, as F′(t) � AF(t), with

F(t) �

⎡
⎢⎣

f1(t)

f2(t)

f3(t)

⎤
⎥⎦ and A �

⎡
⎢⎣

0 1 0

0 0 1

�10 �3 6

⎤
⎥⎦ .

We now use the method of Theorem 8.11 to solve this first-order system.
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A quick calculation yields pA(x) � x3 � 6x2 � 3x � 10 � (x � 1)(x � 2)(x � 5), giving the
eigenvalues �1 � �1, �2 � 2, and �3 � 5. Solving for fundamental eigenvectors for each of these
eigenvalues, we obtain

v1 � [1,�1,1] corresponding to �1 � �1

v2 � [1,2,4] corresponding to �2 � 2

v3 � [1,5,25]. corresponding to �3 � 5

Hence, Theorem 8.11 gives us the general solution

F(t) � b1e�t [1,�1,1] � b2e2t [1,2,4] � b3e5t [1,5,25]
�
[
b1e�t � b2e2t � b3e5t , �b1e�t � 2b2e2t � 5b3e5t , b1e�t � 4b2e2t � 25b3e5t

]
.

Since the first entry of this result equals f1(t) � y, the general continuously differentiable solution
to the original third-order differential equation is

y � b1e�t � b2e2t � b3e5t .

The method of Example 4 can be generalized to many homogeneous higher-order
differential equations y(n) � an�1y(n�1) � · · · � a1y′ � a0y � 0. In Exercise 5(a), you
are asked to show that this equation can be represented as a linear system F′(t) � AF(t),
where F(t) � [ f1(t), f2(t), . . . , fn(t)], with f1(t) � y, f2(t) � y′, . . . , fn(t) � y(n�1) and
where

A �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0

0 0 1 0 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · 1

�a0 �a1 �a2 �a3 · · · �an�1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The corresponding linear system can then be solved using the method of Theorem 8.11,
as in Example 4.

Several startling patterns were revealed in Example 4. First, notice the similar-
ity between the original differential equation y′′′ � 6y′′ � 3y′ � 10y � 0 and pA(x) �
x3 � 6x2 � 3x � 10. This observation leads to the following general principle, which
you are asked to prove in Exercise 5(b):

If y(n) � an�1y(n�1) � · · · � a1y′ � a0y � 0 is represented as a linear system F′(t) �

AF(t), where F(t) and A are as just described, then

pA(x) � xn � an�1xn�1 � · · · � a1x � a0.
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Hence, from now on, we can avoid the long calculations necessary to determine
pA(x).When solving differential equations, pA(x) is always derived from this shortcut.
The equation pA(x) � 0 is called the characteristic equation of the original differ-
ential equation. The roots of this equation, the eigenvalues of A, are frequently called
the characteristic values of the differential equation.

Also, notice in Example 4 that the eigenspace E� for each eigenvalue � is one-
dimensional and is spanned by the vector [1,�,�2]. More generally, you are asked to
prove the following in Exercise 6:

If y(n) � an�1y(n�1) � · · · � a1y′ � a0y � 0 is represented as a linear system F′(t) �

AF(t), where F(t) and A are as just described, and if � is any eigenvalue for A, then
the eigenspace E� is one-dimensional and is spanned by the vector

[
1,�,�2, . . . ,�n�1].

Combining the preceding facts, we can state the solution set for many higher-
order homogeneous differential equations directly (and avoid linear algebra techniques
altogether), as follows:

Consider the differential equation

y(n) � an�1y(n�1) � · · · � a2y′′ � a1y′ � a0y � 0.

Suppose that �1, . . . ,�n are n distinct solutions to the characteristic equation

xn � an�1xn�1 � · · · � a2x2 � a1x � a0 � 0.

Then all continuously differentiable solutions of the differential equation have the form

y � b1e�1t � b2e�2t � · · · � bne�nt .

Example 5
To solve the homogeneous differential equation

y′′′′ � 2y′′′ � 28y′′ � 50y′ � 75y � 0,

we first find its characteristic values by solving the characteristic equation

x4 � 2x3 � 28x2 � 50x � 75 � 0.

By factoring, or using an appropriate numerical technique, we obtain four distinct characteristic
values. These are �1 � �5, �2 � �3, �3 � 1, and �4 � 5. Thus, the continuously differentiable
solutions for the original differential equation are precisely those functions of the form

y � b1e�5t � b2e�3t � b3et � b4e5t .
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Notice that the method in Example 5 cannot be used if the differential equation
has fewer than n distinct characteristic values. If you can find only k distinct charac-
teristic values for an nth-order equation, with k < n, then the method yields only a
k-dimensional subspace of the full n-dimensional solution space. As with first-order
systems, finding the complete solution set in such a case requires the use of complex
eigenvalues, complex eigenvectors, and generalized eigenvectors.

New Vocabulary

characteristic equation (of a higher-
order differential equation)

characteristic values (of a higher-order
differential equation)

continuously differentiable functions

first-order linear homogeneous system
of differential equations

higher-order homogeneous differential
equation

Highlights

■ If A is a diagonalizable n � n matrix, the continuously differentiable solutions
for the first-order system F′(t) � AF(t) are F(t) � b1e�1tv1 � b2e�2tv2 � · · · �
bne�ntvn, where (v1, . . . ,vn) is an ordered basis for R

n of eigenvectors for
A corresponding to the (not necessarily distinct) eigenvalues �1, . . . ,�n, and
b1, . . . ,bn ∈ R.

■ If the characteristic equation xn � an�1xn�1 � · · · � a2x2 � a1x � a0 � 0 has n
distinct solutions �1, . . . ,�n, then all continuously differentiable solutions of the
differential equation y(n) � an�1y(n�1) � · · · � a2y′′ � a1y′ � a0y � 0 have the
form y � b1e�1t � b2e�2t � · · · � bne�nt .

EXERCISES FOR SECTION 8.9
1. In each part of this exercise, the given matrix represents A in a first-order system

of the form F′(t) � AF(t). UseTheorem 8.11 to find the general form of a solution
to each system.

�(a)

[
13 �28
6 �13

]

(b)

[
18 �15
20 �17

]

�(c)

⎡
⎣ 1 4 4

�1 2 2
1 1 1

⎤
⎦

�(d)

⎡
⎣ �5 �6 15

�6 �5 15
�6 �6 16

⎤
⎦

(e)

⎡
⎢⎢⎣

�1 0 �2 2
�3 5 1 �9

0 4 5 �12
�1 4 3 �10

⎤
⎥⎥⎦
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2. Find the solution set for each given homogeneous differential equation.
�(a) y′′ � y′ � 6y � 0

(b) y′′′ � 5y′′ � y′ � 5y � 0

�(c) y′′′′ � 6y′′ � 8y � 0

3. Let A be an n � n matrix with linearly independent eigenvectors v1, . . . ,vk

corresponding, respectively, to the eigenvalues �1, . . . ,�k. Prove that

F(t) � b1e�1tv1 � b2e�2tv2 � · · · � bke�ktvk

is a solution for the first-order system F′(t) � AF(t), for every choice of
b1, . . . ,bk ∈ R.

4. (a) Let A be a diagonalizable n � n matrix, and let v be a fixed vector in R
n. Show

there is a unique function F(t) that satisfies the first-order system F′(t) �
AF(t) such that F(0) � v. (The vector v is called an initial condition for
the system.)

�(b) Find the unique solution to F′(t) � AF(t) with initial condition F(0) � v,
where

A �

⎡
⎣ �11 �6 16

�4 �1 4
�12 �6 17

⎤
⎦ and v � [1,�4,0].

5. (a) Verify that the homogeneous differential equation

y(n) � an�1y(n�1) � · · · � a1y′ � a0y � 0

can be represented as F′(t) � AF(t), where F(t) � [ f1(t), f2(t), . . . , fn(t)],
with f1(t) � y, f2(t) � y′, . . . , fn(t) � y(n�1), and where

A �

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

�a0 �a1 �a2 �a3 · · · �an�1

⎤
⎥⎥⎥⎥⎥⎦ .

�(b) If A is the matrix given in part (a), prove that

pA (x) � xn � an�1xn�1 � · · · � a1x � a0.

(Hint: Use induction on n and a cofactor expansion on the first column of
(xIn � A).)
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6. Let A be the n � n matrix from Exercise 5, for some a0,a1, . . . ,an�1 ∈ R.

(a) Calculate A

⎡
⎢⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎥⎦, for a general n-vector

⎡
⎢⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎥⎦.

(b) Let � be an eigenvalue for A. Show that [1,�,�2, . . . ,�n�1] is an eigenvector
corresponding to �. (Hint: Use part (b) of Exercise 5.)

(c) Show that if v is a vector with first coordinate c such that Av � �v, for some
� ∈ R, then v � c[1,�,�2, . . . ,�n�1].

(d) Conclude that the eigenspace E� for an eigenvalue � of A is always one-
dimensional.

�7. True or False:

(a) F(t) � 0 is always a solution of F′(t) � AF(t).

(b) The set of all continuously differentiable solutions of F′(t) � AF(t) is a vector
space.

(c) F′(t) �

[
1 2
0 3

]
F(t) has solution set

{[
b1et � b2e3t

b2e3t

] ∣∣∣∣ b1,b2 ∈ R

}
.

(d) F′(t) �

[
0 1

�1 0

]
F(t) has no nontrivial solutions because

[
0 1

�1 0

]
is not

diagonalizable.

8.10 LEAST-SQUARES SOLUTIONS FOR INCONSISTENT SYSTEMS
Prerequisite: Section 6.2, Orthogonal Complements

When attempting to solve a system of linear equations Ax � b, there is always the
possibility that the system is inconsistent. However, in practical situations, even if no
solutions to Ax � b exist, it is usually helpful to find an approximate solution; that is,
a vector v such that Av is as close as possible to b.

Finding Approximate Solutions

If A is an m � n matrix, consider the linear transformation L: R
n → R

m given by
L(x) � Ax. If b ∈ R

m, then any solution to the linear system Ax � b is a pre-image for
b under L. However, if b /∈ range(L), the system is inconsistent, but we can calculate
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an approximate solution to the system Ax � b by finding a pre-image under L of a
vector in the subspace W � range(L) that is as close as possible to b. Theorem 6.17
implies that, among the vectors in W , projWb has minimal distance to b. The fol-
lowing theorem shows that projWb is the unique closest vector in W to b and
that the set of pre-images L�1({projWb}) can be found by solving the linear system
(AT A)x � AT b.

Theorem 8.12 Let A be an m � n matrix, let b ∈ R
m, and let W be the subspace

{Ax |x ∈ R
n}. Then the following three conditions on a vector v ∈ R

n are equivalent:

(1) Av � projWb

(2) ‖Av � b‖ � ‖Az � b‖ for all z ∈ R
n

(3) (AT A)v � AT b.

Such a vector v is called a least-squares solution to the linear system Ax � b.

The inequality ‖Av � b‖ � ‖Az � b‖ in Theorem 8.12 implies that there is no better
approximation than v for a solution to Ax � b because the distance from Av to b is
never larger than the distance from Az to b for any other vector z. Of course, if Ax � b
is consistent, then v is an actual solution to Ax � b (see Exercise 4).

The inequality ‖Av � b‖ � ‖Az � b‖ also shows why v is called a least-squares
solution. Since calculating a norm involves finding a sum of squares, this inequal-
ity implies that the solution v produces the least possible value for the sum of the
squares of the differences in each coordinate between Az and b over all possible
vectors z.

Proof. Let A and b be as given in the statement of the theorem, and let L: R
n → R

m be
the linear transformation given by L(x) � Ax. Then W � {Ax |x ∈ R

n} � range(L).
Our first goal is to prove (1) if and only if (2). Now, let Av � projWb. Since Az ∈ W,

Theorem 6.17 shows that ‖Av � b‖ � ‖Az � b‖ for all z ∈ R
n.

Conversely, suppose ‖Av � b‖ � ‖Az � b‖ for all z ∈ R
n. Let p � projWb. We need to

show that Av � p. Now p ∈ W, so p is a vector of the form Az for some z ∈ R
n. Hence,

‖Av � b‖ � ‖p � b‖ by assumption. But ‖p � b‖ � ‖Av � b‖ by Theorem 6.17. Therefore,
‖Av � b‖ � ‖p � b‖.

Now Av, p ∈ W, so Av � p ∈ W. Also, p � b � �(b � p) � �projW⊥b ∈ W⊥, from
the remark just before Example 7 in Section 6.2. Thus, (Av � p) · (p � b) � 0. Therefore,

‖Av � b‖2 � ‖(Av � p) � (p � b)‖2

� ((Av � p) � (p � b)) · ((Av � p) � (p � b))

� ‖Av � p‖2 � 2(Av � p) · (p � b) � ‖p � b‖2

� ‖Av � p‖2 � ‖p � b‖2 .
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But ‖Av � b‖ � ‖p � b‖, implying ‖Av � p‖2 � 0. Hence, Av � p � 0, or Av � p. This
completes our first goal.

To finish the proof, we will prove (1) if and only if (3). First, suppose AT Av � AT b. We
will prove that Av � projWb. Let u � b � Av, and hence b � Av � u. If we can show that
Av ∈ W and u ∈ W⊥, then we will have Av � projWb by the uniqueness assertion in the
Projection Theorem (Theorem 6.15). But Av ∈ W, since W consists precisely of vectors
of this form. Also, u � b � Av, and so AT u � AT b � AT Av � 0, since AT Av � AT b. Now
AT u � 0 implies that u is orthogonal to every row of AT , and hence u is orthogonal to every
column of A. But recall from Section 5.3 that the columns of A span W � range(L). Hence,
u ∈ W⊥ by Theorem 6.10, completing this half of the proof.

Conversely, suppose Av � projWb. Then b � Av � u, where u ∈ W⊥. Hence,
AT u � 0, since u must be orthogonal to the rows of AT , which form a spanning set for
W. Therefore,

b � Av � u ” AT b � AT Av � AT u ” AT b � AT Av.

Example 1
Consider the inconsistent linear system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
7x � 7y � 5z � 15
4x � z � 1
2x � y � z � 4
5x � 8y � 5z � 16

.

Letting A �

⎡
⎢⎢⎢⎣

7 7 5
4 0 1
2 1 1
5 8 5

⎤
⎥⎥⎥⎦ and b �

⎡
⎢⎢⎢⎣

15
1
4

16

⎤
⎥⎥⎥⎦, we will find a least-squares solution to Ax � b.

By part (3) of Theorem 8.12, we need to solve the linear system AT Ax � AT b. Now,

AT A �

⎡
⎢⎣ 94 91 66

91 114 76
66 76 52

⎤
⎥⎦ and AT b �

⎡
⎢⎣ 197

237
160

⎤
⎥⎦ .

Row reducing

⎡
⎢⎣ 94 91 66

91 114 76
66 76 52

∣∣∣∣∣∣∣
197
237
160

⎤
⎥⎦ to obtain

⎡
⎢⎣ 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣∣
�7

�12
29.5

⎤
⎥⎦ shows that v �

[�7,�12,29.5] is the desired solution. Notice that

Av �

⎡
⎢⎢⎢⎣

7 7 5
4 0 1
2 1 1
5 8 5

⎤
⎥⎥⎥⎦
⎡
⎢⎣ �7

�12
29.5

⎤
⎥⎦�

⎡
⎢⎢⎢⎣

14.5
1.5
3.5

16.5

⎤
⎥⎥⎥⎦ ,

and so Av comes close to producing the vector b.
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In fact, for any z ∈ R
3, ‖Av � b‖ � ‖Az � b‖. For example, if z � [�11,�19,45], which is

the unique solution to the first three equations in the system, then ‖Az � b‖ � ‖[15,1,4,18]�
[15,1,4,16]‖ � ‖[0,0,0,2]‖ � 2. However, ‖Av � b‖ � ‖[14.5,1.5,3.5,16.5] � [15,1,4,16]‖ �

‖[�0.5,0.5,�0.5,0.5]‖ � 1, which is less than ‖Az � b‖.

Non-unique Least-Squares Solutions

Theorem 8.12 shows that if v is a least-squares solution for a linear system Ax � b,
then Av � projWb, where W � {Ax |x ∈ R

n}. Now, even though projWb is uniquely
determined, there may be more than one vector v with Av � projWb. In such a case,
there are infinitely many least-squares solutions for Ax � b, all of which produce the
same value for Ax.

Example 2
Consider the system Ax � b, where

A �

⎡
⎢⎣2 3 �1

4 1 3
2 �7 9

⎤
⎥⎦ and b �

⎡
⎢⎣ 9

8
�1

⎤
⎥⎦.

We find a least-squares solution to Ax � b by solving the linear system AT Ax � AT b. Now,

AT A �

⎡
⎢⎣ 24 �4 28

�4 59 �63
28 �63 91

⎤
⎥⎦ and AT b �

⎡
⎢⎣ 48

42
6

⎤
⎥⎦ .

Row reducing

⎡
⎢⎣ 24 �4 28

�4 59 �63
28 �63 91

∣∣∣∣∣∣∣
48
42
6

⎤
⎥⎦ to obtain

⎡
⎢⎣ 1 0 1

0 1 �1
0 0 0

∣∣∣∣∣∣∣
15
7
6
7
0

⎤
⎥⎦ shows that this

system has infinitely many solutions. The solution set is S �
{[

15
7 � c, 6

7 � c, c
]

|c ∈ R

}
. Two

particular solutions are v1 �
[

15
7 , 6

7 ,0
]
, and v2 �

[
3,0,� 6

7

]
. You can verify that Av1 � Av2 �[

48
7 , 66

7 ,� 12
7

]
. In general, multiplying A by any vector in S produces the result

[
48
7 , 66

7 ,� 12
7

]
.

Every vector in S is a least-squares solution for Ax � b. They all produce the same result for Ax,
which is as close as possible to b.

Approximate Eigenvalues and Eigenvectors

When solving for eigenvalues and eigenvectors for a square matrix C, a problem can
arise if the exact value of an eigenvalue � is not known, but only a close approxi-
mation �′ instead. Then, since �′ is not the precise eigenvalue, the matrix �′I � C is
nonsingular.This makes it impossible to solve (�′I � C)x � 0 directly for an eigenvec-
tor because only the trivial solution exists. One of several possible approaches to this
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problem9 is to use the method of least-squares to find an approximate eigenvector
associated with the approximate eigenvalue �′. To do this, first add an extra equation
to the system (�′I � C)x � 0 to force the solution to be nontrivial. One possibility
is to require that the sum of the coordinates of the solution equals 1. Even though
this new nonhomogeneous system formed is inconsistent, a least-squares solution for
this expanded system frequently serves as the desired approximate eigenvector. We
illustrate this technique in the following example:

Example 3
Consider the matrix

C �

⎡
⎢⎣ 2 �3 �1

7 �6 �1
�16 14 3

⎤
⎥⎦,

which has eigenvalues
√

5, �
√

5, and �1.
Suppose the best estimate we have for the eigenvalue � �

√
5 ≈ 2.23606 is �′ � 9

4 � 2.25.
Then

�′I3 � C �

⎡
⎢⎣

1
4 3 1

�7 33
4 1

16 �14 � 3
4

⎤
⎥⎦,

which is nonsingular.
(
Its determinant is 13

64 .
)

Hence, the system (�′I3 � C)x � 0 has only the
trivial solution. We now force a nontrivial solution x by adding the condition that the sum of the
coordinates of x equals 1. This produces the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4 x1 � 3x2 � x3 � 0

�7x1 � 33
4 x2 � x3 � 0

16x1 � 14x2 � 3
4 x3 � 0

x1 � x2 � x3 � 1

.

However, this new system is inconsistent since the first three equations together have only the
trivial solution, which does not satisfy the last equation. We will find a least-squares solution to
this system.

9 Numerical techniques exist for finding approximate eigenvectors that produce more accurate results
than the method of least-squares. The major problem with the least-squares technique is that the accuracy
of the approximate eigenvector is limited by the accuracy of the approximate eigenvalue used. Other
numerical methods, such as an adaptation of the inverse power method, are iterative and adjust the
approximation for the eigenvalue while solving for the eigenvector. For more information on the inverse
power method and other numerical techniques for solving for eigenvalues and eigenvectors, consult a
text on numerical methods in your library. One classic text is Numerical Analysis, 7th ed., by Burden
and Faires (published by Brooks/Cole, 2001).
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Let A �

⎡
⎢⎢⎢⎣

1
4 3 1

�7 33
4 1

16 �14 � 3
4

1 1 1

⎤
⎥⎥⎥⎦ and b �

⎡
⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎦. Then

AT A �

⎡
⎢⎢⎣

4897
16 �280 � 71

4

�280 4385
16

91
4

� 71
4

91
4

57
16

⎤
⎥⎥⎦ and AT b �

⎡
⎢⎣ 1

1
1

⎤
⎥⎦ .

Row reducing

⎡
⎢⎢⎣

4897
16 �280

�280 4385
16

� 71
4

91
4

� 71
4
91
4

57
16

∣∣∣∣∣∣∣∣
1

1

1

⎤
⎥⎥⎦ produces

⎡
⎢⎣ 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣∣
�0.50
�0.69

2.19

⎤
⎥⎦, where we

have rounded the results to two places after the decimal point. Hence, v � [�0.50, �0.69, 2.19]
is an approximate eigenvector for C corresponding to the approximate eigenvalue �′ � 9

4 . In fact,
(�′I3 � C)v � [�0.005, �0.0025, 0.0175], which is close to the zero vector. This implies that Cv
is very close to �′v. In fact, the maximum difference among the three coordinates (≈ 0.0175) is
about the same magnitude as the error in the estimation of the eigenvalue (≈ 0.01394). Also, a
lengthy computation would show that the unit vector v/‖v‖ ≈ [�0.21, �0.29, 0.93] agrees with
an actual unit eigenvector for C corresponding to � �

√
5 in every coordinate, after rounding to

the first two places after the decimal point.

There may be a problem with the technique described in Example 3 if the actual
eigenspace for � is orthogonal to the vector t � [1,1, . . . ,1] since our added require-
ment implies that the dot product of the approximate eigenvector with t equals 1.
If this problem arises, simply change the requirement to specify that the dot product
with any nonzero vector of your choice (other than t) equals 1 and try again.10

Least-Squares Polynomials

InTheorem 8.2 of Section 8.3, we presented a method for finding a polynomial function
p in Pk that comes closest to passing through a given set of data points (a1,b1),
(a2,b2), . . . , (an,bn).This method sets up a linear system whose intended solution is a
polynomial that passes through all n data points. However, if the desired degree k of the
polynomial is less than n � 1, then the linear system is inconsistent (in most cases).
Thus, we find that a least-squares solution to the system produces a least-squares
polynomial that approximates the given data.

10 For a more detailed technical analysis of the process of finding approximate eigenvectors using
the method of least-squares, see “Using Least-Squares to Find an Approximate Eigenvector,” Elec-
tronic Journal of Linear Algebra, Volume 1, pp. 99–110, March 2007, by D. Hecker and D. Lune at
http://www.math.technion.ac.il/iic/ela/.
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Theorem 8.2 is a corollary of Theorem 8.12 in this section. We ask you to prove
Theorem 8.2 using Theorem 8.12 in Exercise 6. See Section 8.3 if you have further
interest in least-squares polynomials.

New Vocabulary

least-squares polynomial (for a given set
of data points)

least-squares solution to the linear sys-
tem Ax � b

Highlights

■ If the linear system Ax � b is inconsistent (that is, if b is not in the range of L(x) �
Ax), then a vector v for which Av is as close as possible to b is a least-squares
solution to Ax � b.

■ For L(x) � Ax, let W � range(L). Then projWb is the unique closest vector in
W to b and the vectors that map to projWb under L (that is, the least-squares
solutions to Ax � b) are the solutions of the linear system (AT A)x � AT b.

■ If an approximate value �′ of an eigenvalue � for a matrix C is used, approximate
eigenvectors for � can often be obtained by finding the least-squares solutions to
(�′I � C)x � 0 together with an extra equation (such as x1 � x2 � · · · � xn � 1)
that forces the solution to be nontrivial.

EXERCISES FOR SECTION 8.10
We strongly recommend that you use a computer or calculator to help you perform
the required computations in these exercises.

1. In each part, find the set of all least-squares solutions for the linear system Ax � b
for the given matrix A and vector b. If there is more than one least-squares
solution, find at least two particular least-squares solutions. Finally, illustrate the
inequality ‖Av � b‖ � ‖Az � b‖ by computing ‖Av � b‖ for a particular least-
squares solution v and ‖Az � b‖ for the given vector z.

�(a) A �

⎡
⎢⎣ 2 3

1 �1

4 1

⎤
⎥⎦, b �

⎡
⎢⎣ 5

0

4

⎤
⎥⎦, z �

[
1

1

]

(b) A �

⎡
⎢⎣ 5 2

3 1

4 3

⎤
⎥⎦, b �

⎡
⎢⎣ 12

15

14

⎤
⎥⎦, z �

[
3

0

]
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�(c) A �

⎡
⎢⎣ 2 1 �1

3 2 5

1 0 �7

⎤
⎥⎦, b �

⎡
⎢⎣ 3

2

6

⎤
⎥⎦, z �

⎡
⎢⎣ 1

1

�1

⎤
⎥⎦

(d) A �

⎡
⎢⎢⎢⎣

3 1 0 �1

5 3 2 2

2 2 2 3

7 5 4 5

⎤
⎥⎥⎥⎦, b �

⎡
⎢⎢⎢⎣

3

14

10

25

⎤
⎥⎥⎥⎦, z �

⎡
⎢⎢⎢⎣

�1

6

0

0

⎤
⎥⎥⎥⎦

2. In practical applications, we are frequently interested in only those solutions
having nonnegative entries in every coordinate. In each part, find the set of all
such least-squares solutions to the linear system Ax � b for the given matrix A
and vector b.

�(a) A �

⎡
⎢⎣ 2 1 0

3 �2 4

7 0 4

⎤
⎥⎦, b �

⎡
⎢⎣ 1

2

3

⎤
⎥⎦

(b) A �

⎡
⎢⎣ 2 3 3

1 �1 1

1 9 3

⎤
⎥⎦, b �

⎡
⎢⎣ 5

2

7

⎤
⎥⎦

3. In each part, find an approximate eigenvector v for the given matrix C corre-
sponding to the given approximate eigenvalue �′ using the method of Example 3.
Round the entries of v to two places after the decimal point. Then compute
(�′I � C)v to estimate the error in your answer.

(a) C �

[
3 �2

�1 1

]
, �′ �

15

4

�(b) C �

⎡
⎣ 3 �3 �2

�5 5 4
11 �12 �9

⎤
⎦, �′ �

3

2

(c) C �

⎡
⎣ 1 18 �7

�1 12 �5
�3 32 �13

⎤
⎦, �′ �

9

4

4. Prove that if a linear system Ax � b is consistent, then the set of least-squares
solutions for the system equals the set of actual solutions.

5. Let A be an m � n matrix, and let v1,v2 ∈ R
n. Prove that if AT Av1 � AT Av2,

then Av1 � Av2.

�6. Use Theorem 8.12 to prove Theorem 8.2 in Section 8.3.



 

578 CHAPTER 8 Additional Applications

�7. True or False:

(a) A least-squares solution to an inconsistent system is a vector v that satisfies
as many equations in the system as possibly can be satisfied.

(b) For any matrix A, the matrix AT A is square and symmetric.

(c) Every system Ax � b must have at least one least-squares solution.

(d) If v1 and v2 are both least-squares solutions to Ax � b, then Av1 � Av2.

(e) In this section, the least-squares method is applied to solve for eigenvectors
in cases in which only an estimate of the eigenvalue is known.

8.11 QUADRATIC FORMS
Prerequisite: Section 6.3, Orthogonal Diagonalization

In Section 8.7, we used a change of coordinates to simplify a general second-degree
equation (conic section) in two variables x and y. In this section, we generalize this
process to any finite number of variables, using orthogonal diagonalization.

Quadratic Forms

Definition A quadratic form on R
n is a function Q: R

n → R of the form

Q ([x1, . . . ,xn]) �
∑

1�i�j�n

cijxixj ,

for some real numbers cij , 1 � i � j � n.

Thus, a quadratic form on R
n is a polynomial in n variables in which each term has

degree 2.

Example 1
The function Q1([x1,x2,x3]) � 7x2

1 � 5x1x2 � 6x2
2 � 9x2x3 � 14x2

3 is a quadratic form on R
3.

Q1 is a polynomial in three variables in which each term has degree 2. Note that the coefficient
c13 of the x1x3 term is zero.

The function Q2([x,y]) � 8x2 � 3y2 � 12xy is a quadratic form on R
2 with coefficients

c11 � 8, c22 � �3, and c12 � 12. On R
2, a quadratic form consists of the x2, y2, and xy terms

from the general form for the equation of a conic section.

In general, a quadratic form Q on R
n can be expressed as Q(x) � xT Cx, where x

is a column matrix and C is the upper triangular matrix whose entries on and above
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the main diagonal are given by the coefficients cij in the definition of a quadratic
form above. For example, the quadratic forms Q1 and Q2 in Example 1 can be
expressed as

Q1

⎛
⎜⎝
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦
⎞
⎟⎠� [x1,x2,x3]

⎡
⎢⎣ 7 5 0

0 �6 9

0 0 14

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ and

Q2

([
x

y

])
� [x,y]

[
8 12

0 �3

][
x

y

]
.

However, this representation for a quadratic form is not the most useful one for our
purposes. Instead, we will replace the upper triangular matrix C with a symmetric
matrix A.

Theorem 8.13 Let Q: R
n → R be a quadratic form. Then there is a unique symmetric

n � n matrix A such that Q(x) � xT Ax.

Proof. (Abridged) The uniqueness of the matrix A in the theorem is unimportant in what
follows. Its proof is left for you to provide in Exercise 3.

To prove the existence of A, let Q([x1, . . . ,xn]) �
∑

1�i�j�n cijxixj . If C � [cij] is the
upper triangular matrix of coefficients for Q, then define A � 1

2

(
C � CT

)
. Notice that A is

symmetric (verify!). A straightforward calculation of xT Ax shows that the coefficient of its
xixj term is cij . (Verify.) Hence, xT Ax � Q(x).

Example 2

Let Q3

([
x1

x2

])
� 17x2

1 � 8x1x2 � 9x2
2 . Then the corresponding symmetric matrix A for Q3 is[

c11
1
2 c12

1
2 c12 c22

]
�

[
17 4

4 �9

]
. You can verify that

Q3

([
x1

x2

])
� [x1,x2]

[
17 4

4 �9

][
x1

x2

]
.

Orthogonal Change of Basis

The next theorem indicates how the symmetric matrix for a quadratic form is altered
when we perform an orthogonal change of coordinates.
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Theorem 8.14 Let Q: R
n → R be a quadratic form given by Q(x) � xT Ax, for some

symmetric matrix A. Let B be an orthonormal basis for R
n. Let P be the transition matrix

from B-coordinates to standard coordinates, and let K � P�1AP. Then K is symmetric
and Q(x) � [x]TBK[x]B.

Proof. Since B is an orthonormal basis, P is an orthogonal matrix by Theorem 6.8. Hence,
P�1 � PT . Now, [x]B � P�1x � PT x, and thus, [x]T

B � (PT x)T � xT P. Therefore,

Q(x) � xT Ax � xT PP�1APP�1x � [x]TBP�1AP [x]B .

Letting K � P�1AP, we have Q(x) � [x]TBK[x]B. Finally, notice that K is symmetric, since

KT �
(
P�1AP

)T
�
(
PT AP

)T
� PT AT

(
PT
)T

� P�1AP � K.

Example 3
Consider the quadratic form Q([x,y,z]) � 2xy � 4xz � 2yz � y2 � 3z2. Then

Q

⎛
⎜⎝
⎡
⎢⎣ x

y
z

⎤
⎥⎦
⎞
⎟⎠� [x,y,z] A

⎡
⎢⎣ x

y
z

⎤
⎥⎦, where A �

⎡
⎢⎣ 0 1 2

1 �1 1
2 1 3

⎤
⎥⎦ .

Consider the orthonormal basis B �
(

1
3 [2,1,2], 1

3 [2,�2,�1], 1
3 [1,2,�2]

)
for R

3. We will find

the symmetric matrix for Q with respect to this new basis B.
The transition matrix from B-coordinates to standard coordinates is the orthogonal matrix

P �
1

3

⎡
⎢⎣ 2 2 1

1 �2 2
2 �1 �2

⎤
⎥⎦ and so P�1 � PT �

1

3

⎡
⎢⎣ 2 1 2

2 �2 �1
1 2 �2

⎤
⎥⎦ .

Then,

K � P�1AP �
1

9

⎡
⎢⎣ 35 �7 �11

�7 �13 4
�11 4 �4

⎤
⎥⎦ .

Let [u,v,w] be the representation of the vector [x,y,z] in B-coordinates; that is, [x,y,z]B �

[u,v,w]. Then, by Theorem 8.14, Q can be expressed as

Q

⎛
⎜⎝
⎡
⎢⎣ u

v
w

⎤
⎥⎦
⎞
⎟⎠� [u,v,w]

⎛
⎜⎝1

9

⎡
⎢⎣ 35 �7 �11

�7 �13 4
�11 4 �4

⎤
⎥⎦
⎞
⎟⎠
⎡
⎢⎣ u

v
w

⎤
⎥⎦

�
35

9
u2 �

13

9
v2 �

4

9
w2 �

14

9
uv �

22

9
uw �

8

9
vw.
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Let us check this formula for Q in a particular case. If [x,y,z] � [9,2,�1], then the original
formula for Q yields

Q([9,2,�1]) � (2)(9)(2) � (4)(9)(�1) � (2)(2)(�1) � (2)2 � (3)(�1)2 � �5.

On the other hand,⎡
⎢⎣ u

v
w

⎤
⎥⎦�

⎡
⎢⎣ 9

2
�1

⎤
⎥⎦

B

� P�1

⎡
⎢⎣ 9

2
�1

⎤
⎥⎦�

1

3

⎡
⎢⎣ 2 1 2

2 �2 �1
1 2 �2

⎤
⎥⎦
⎡
⎢⎣ 9

2
�1

⎤
⎥⎦�

⎡
⎢⎣ 6

5
5

⎤
⎥⎦ .

Calculating Q using the formula for B-coordinates, we get

Q([u,v,w]) �
35

9
(6)2 �

13

9
(5)2 �

4

9
(5)2 �

14

9
(6)(5) �

22

9
(6)(5) �

8

9
(5)(5) � �5,

which agrees with our previous calculation for Q.

The Principal Axes Theorem

We are now ready to prove the main result of this section — given any quadratic form
Q on R

n, an orthonormal basis B for R
n can be chosen so that the expression for Q

in B-coordinates contains no “mixed-product” terms (that is, Q contains only “square”
terms).

Theorem 8.15 (Principal Axes Theorem) Let Q : R
n → R be a quadratic form. Then

there is an orthonormal basis B for R
n such that Q(x) � [x]TBD[x]B for some diagonal

matrix D. That is, if [x]B � y � [y1,y2, . . . ,yn], then

Q(x) � d11y2
1 � d22y2

2 � · · · � dnny2
n.

Proof. Let Q be a quadratic form on R
n. Then by Theorem 8.13, there is a symmetric n � n

matrix A such that Q(x) � xT Ax. Now, by Theorems 6.18 and 6.20, A can be orthogonally
diagonalized; that is, there is an orthogonal matrix P such that P�1AP � D is diagonal. Let
B be the orthonormal basis for R

n given by the columns of P. Then Theorem 8.14 implies
that Q(x) � [x]TBD[x]B.

The process of finding a diagonal matrix for a given quadratic form Q is referred to
as diagonalizing Q. We now outline the method for diagonalizing a quadratic form,
as presented in the proof of Theorem 8.15.

Method for Diagonalizing a Quadratic Form (Quadratic Form Method)
Given a quadratic form Q: R

n → R,

Step 1: Find a symmetric n � n matrix A such that Q(x) � xT Ax.
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Step 2: Apply Steps 3 through 8 of the method in Section 6.3 for orthogonally diagonalizing
a symmetric operator, using the matrix A. This process yields an orthonormal basis
B, an orthogonal matrix P whose columns are the vectors in B, and a diagonal
matrix D with D � P�1AP.

Step 3: Then Q(x) � [x]TB D [x]B, with [x]B � P�1x � PT x. If [x]B � [y1, y2, . . . , yn],
then Q(x) � d11y2

1 � d22y2
2 � · · · � dnny2

n.

Example 4
Let Q([x,y,z]) � 1

121 (183x2 � 266y2 � 35z2 � 12xy � 408xz � 180yz). We will diagonal-
ize Q.

Step 1: Note that Q(x) � xT Ax, where A is the symmetric matrix

1

121

⎡
⎢⎣ 183 6 204

6 266 90
204 90 35

⎤
⎥⎦ .

Step 2: We apply Steps 3 through 8 of the method for orthogonally diagonalizing A. We list the
results here but leave the details of the calculations for you to check.

(3) A quick computation gives

pA(x) � x3 � 4x2 � x � 6 � (x � 3)(x � 2)(x � 1) .

Therefore, the eigenvalues of A are �1 � 3, �2 � 2, and �3 � �1.

(4) Next, we find a basis for each eigenspace for A. To find a basis for E�1, we solve the
system (3I3 � A)x � 0, which yields the basis {[7,6,6]}. Similarly, we solve appropriate
systems to find

Basis for E�2 � {[6,�9,2]}
Basis for E�3 � {[6,2,�9]}.

(5) Since each eigenspace from (4) is one-dimensional, we need only normalize each basis
vector to find orthonormal bases for E�1, E�2 , and E�3 .

Orthonormal basis for E�1 �
{

1
11 [7,6,6]

}
Orthonormal basis for E�2 �

{
1

11 [6,�9,2]
}

Orthonormal basis for E�3 �
{

1
11 [6,2,�9]

}
.

(6) Let B be the ordered orthonormal basis
(

1
11 [7,6,6], 1

11 [6,�9,2], 1
11 [6,2,�9]

)
.
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(7) The desired diagonal matrix for Q with respect to the basis B is

D �

⎡
⎢⎣ 3 0 0

0 2 0
0 0 �1

⎤
⎥⎦ ,

which has eigenvalues �1 � 3, �2 � 2, and �3 � �1 along the main diagonal.

(8) The transition matrix P from B-coordinates to standard coordinates is the matrix whose
columns are the vectors in B — namely,

P �
1

11

⎡
⎢⎣ 7 6 6

6 �9 2
6 2 �9

⎤
⎥⎦ .

Of course, D � P�1AP. In this case, P is not only orthogonal but is symmetric as well,
so P�1 � PT � P. (Be careful! P will not always be symmetric.)

This concludes Step 2.

Step 3: Let [x,y,z]B � [u,v,w]. Then using D, we have Q � 3u2 � 2v2 � w2. Notice that Q
has only “square” terms, since D is diagonal.

For a particular example, let [x,y,z] � [2,6,�1]. Then⎡
⎢⎣ u

v
w

⎤
⎥⎦� P�1

⎡
⎢⎣ 2

6
�1

⎤
⎥⎦�

1

11

⎡
⎢⎣ 7 6 6

6 �9 2
6 2 �9

⎤
⎥⎦
⎡
⎢⎣ 2

6
�1

⎤
⎥⎦�

⎡
⎢⎣ 4

�4
3

⎤
⎥⎦ .

Hence, Q([2,6,�1]) � 3(4)2 � 2(�4)2 � (3)2 � 71. As an independent check, notice
that plugging [2,6,�1] into the original equation for Q produces the same result.

New Vocabulary

diagonalizing a quadratic form
positive definite quadratic form
positive semidefinite quadratic form

Principal Axes Theorem
quadratic form
Quadratic Form Method

Highlights

■ For any quadratic form Q: R
n → R, there is a unique symmetric n � n matrix A

such that Q(x) � xT Ax.

■ Let Q: R
n → R be a quadratic form given by Q(x) � xT Ax, for some symmetric

matrix A. If B is an orthonormal basis for R
n, and P is the transition matrix from

B-coordinates to standard coordinates, then Q is expressed using B-coordinates
as Q(x) � [x]TBK[x]B, where K � P�1AP, and K is a symmetric matrix.
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■ The Principal Axes Theorem assures that every quadratic form has a repre-
sentation with no mixed-product terms. In particular, there is an orthonormal
basis B for R

n for every quadratic form Q: R
n → R such that Q(x) � d11y2

1 �
d22y2

2 � · · · � dnny2
n. In fact, Q(x) � [x]TBD[x]B for some diagonal matrix D and

the yi’s are defined by: [x]B � [y1, y2, . . . , yn].

EXERCISES FOR SECTION 8.11
1. In each part of this exercise,a quadratic form Q : R

n → R is given. Find an upper
triangular matrix C and a symmetric matrix A such that, for every x ∈ R

n, Q(x) �
xT Cx � xT Ax.

�(a) Q([x,y]) � 8x2 � 9y2 � 12xy

(b) Q([x,y]) � 7x2 � 11y2 � 17xy

�(c) Q([x1,x2,x3]) � 5x2
1 � 2x2

2 � 4x1x2 � 3x1x3 � 5x2x3

2. In each part of this exercise, diagonalize the given quadratic form Q: R
n → R

by following the three-step method described in the text. Your answers should
include the matrices A, P, and D defined in that method, as well as the orthonor-
mal basis B. Finally, calculate Q(x) for the given vector x in the following
two different ways: first, using the given formula for Q, and second, calculating
Q � [x]TBD[x]B, where [x]B � P�1x and D � P�1AP.

�(a) Q([x,y]) � 43x2 � 57y2 � 48xy; x � [1,�8]
(b) Q([x1,x2,x3]) � �5x2

1 � 37x2
2 � 49x2

3 � 32x1x2 � 80x1x3 � 32x2x3;
x � [7,�2,1]

�(c) Q([x1,x2,x3]) � 18x2
1 � 68x2

2 � x2
3 � 96x1x2 � 60x1x3 � 36x2x3;

x � [4,�3,6]
(d) Q([x1,x2,x3,x4]) � x2

1 � 5x2
2 � 864x2

3 � 864x2
4 � 24x1x3 � 24x1x4 �

120x2x3 � 120x2x4 � 1152x3x4; x � [5,9,�3,�2]
3. Let Q: R

n → R be a quadratic form,and let A and B be symmetric matrices such
that Q(x) � xT Ax � xT Bx. Prove that A � B (the uniqueness assertion from
Theorem 8.13). (Hint: Use x � ei to show that aii � bii . Then use x � ei � ej to
prove that aij � bij when i �� j.)

�4. Let Q: R
n → R be a quadratic form. Is the upper triangular representation for Q

necessarily unique?That is, if C1 and C2 are upper triangular n � n matrices with
Q(x) � xT C1x � xT C2x, for all x ∈ R

n, must C1 � C2? Prove your answer.

5. A quadratic form Q(x) on R
n is positive definite if and only if both of the

following conditions hold:

(i) Q(x) 	 0, for all x ∈ R
n.

(ii) Q(x) � 0 if and only if x � 0.
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A quadratic form having only property (i) is said to be positive semidefinite.

Let Q be a quadratic form on R
n, and let A be the symmetric matrix such that

Q(x) � xT Ax.

(a) Prove that Q is positive definite if and only if every eigenvalue of A is positive.

(b) Prove that Q is positive semidefinite if and only if every eigenvalue of A is
nonnegative.

�6. True or False:

(a) If Q(x) � xT Cx is a quadratic form, and A � 1
2 (C � CT ), then Q(x) � xT Ax.

(b) Q(x, y) � xy is not a quadratic form because it has no x2 or y2 terms.

(c) If xT Ax � xT Bx for every x ∈ R
n, then A � B.

(d) Every quadratic form can be diagonalized.

(e) If A is a symmetric matrix and Q(x) � xT Ax is a quadratic form that diag-
onalizes to Q(x) � [x]TBD[x]B, then the main diagonal entries of D are the
eigenvalues of A.
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CHAPTER

9Numerical Methods

A CALCULATING MINDSET

Although we have focused on many theoretical results in this book, computation is
also an extremely important part of mathematics. Some mathematical problems that can not
be solved with perfect precision can be solved numerically to within a specified margin of
error. For example, with large-degree polynomials, we may not always know the exact value
of their roots, but there are many computational techniques that can be used to approximate
these roots to any desired degree of accuracy.

In this chapter, we present several additional computational techniques that are useful in
linear algebra. For example, in certain types of linear systems, two or more of the equations in
the system are so close that it becomes more difficult to find the numerical solution because
calculations are rounded at each step and roundoff errors can accumulate. To offset these
problems, such techniques as partial pivoting and iterative methods are used that help to
minimize such roundoff errors. An important iterative method for finding eigenvalues, known
as the Power Method, is also explored.

Methods for decomposing (or factoring) a matrix into a product of two or more special
types of matrices are very useful in numerical linear algebra for solving linear systems. In
this chapter, three such methods are introduced: LDU Decomposition, QR Factorization, and
Singular Value Decomposition. In particular, we will see that Singular Value Decomposition
is especially helpful in reducing the amount of information that needs to be kept in storage
in order to reproduce a given image to a desired degree of accuracy.

Throughout the book, we have urged you to use a calculator or computer with
appropriate software to perform tedious calculations after you have mastered a com-
putational technique. A calculator or computer is especially useful when solving a
linear system or when finding eigenvalues and eigenvectors for a linear operator. In
this chapter, we discuss additional numerical methods for solving systems and find-
ing eigenvalues that are best suited for the calculator or computer. If you have some

Elementary Linear Algebra
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programming experience, you should find it a straightforward task to write your own
programs to implement these algorithms.

9.1 NUMERICAL METHODS FOR SOLVING SYSTEMS
Prerequisite: Section 2.3, Equivalent Systems, Rank, and Row Space

In this section,we discuss some considerations for solving linear systems by calculator
or computer and investigate some alternate methods for solving systems, including
partial pivoting, the Jacobi Method, and the Gauss-Seidel Method.

Computational Accuracy

One basic problem in using a computational device in linear algebra is that real num-
bers cannot always be represented exactly in its memory. Because the physical storage
space of any device is limited,a predetermined amount of space is assigned in the mem-
ory for the storage of any real number. Thus, only the most significant digits of any
real number can be stored.1 Nonterminating decimals, such as 1

3 � 0.333333 . . . or
e � 2.718281828459045 . . . , can never be represented fully. Using the first few deci-
mal places of such numbers may be enough for most practical purposes, but it is not
completely accurate.

As calculations are performed,all computational results are truncated and rounded
to fit within the limited storage space allotted. Numerical errors caused by this pro-
cess are called roundoff errors. Unfortunately, if many operations are performed,
roundoff errors can compound, thus producing a significant error in the final result.
This is one reason that Gaussian elimination is computationally more accurate than
the Gauss-Jordan Method. Since fewer arithmetic operations generally need to be per-
formed, Gaussian elimination allows less chance for roundoff errors to compound.

Ill-Conditioned Systems

Sometimes the number of significant digits used in computations has a great effect on
the answers. For example, consider the similar systems

(A)

{
2x1 �x2 � 2

2.005x1 �x2 � 7
and (B)

{
2x1 �x2 �2

2.01x1 �x2 �7
.

The linear equations of these systems are graphed in Figure 9.1.

1 The first n significant digits of a decimal number are its leftmost n digits, beginning with the first
nonzero digit. For example,consider the real numbers r1 � 47.26835,r2 � 9.00473,and r3 � 0.000456.
Approximating these by stopping after the first three significant digits and rounding to the nearest digit,
we get r1 ≈ 47.3, r2 ≈ 9.00, and r3 ≈ 0.000456 (since the first nonzero digit in r3 is 4).
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(a)

100021000

21000

22000

22000

2000

(1000, 21998)

2000

1000

(b)

100021000

21000

22000

22000

2000

(500, 2998)

2000

1000

FIGURE 9.1

(a) Lines of system (A); (b) lines of system (B)

Even though the coefficients of systems (A) and (B) are almost identical, the
solutions to the systems are very different.

Solution to (A) � (1000,�1998) and solution to (B) � (500,�998).

Systems like these,in which a very small change in a coefficient leads to a very large
change in the solution set, are called ill-conditioned systems. In this case, there is
a geometric way to see that these systems are ill-conditioned; the pair of lines in each
system are almost parallel. Therefore, a small change in one line can move the point
of intersection very far along the other line, as in Figure 9.1.

Suppose the coefficients in system (A) had been obtained after a series of long
calculations. A slight difference in the roundoff error of those calculations could have
led to a very different final solution set.Thus,we need to be very careful when working
with ill-conditioned systems. Special methods have been developed for recognizing
ill-conditioned systems,and a technique known as iterative refinement is used when
the coefficients are known only to a certain degree of accuracy. These methods are
beyond the scope of this book,but further details can be found in Numerical Analysis,
7th ed., by Burden and Faires (published by Brooks/Cole, 2001).

Partial Pivoting

A common problem in numerical linear algebra occurs when dividing by real numbers
that are very close to zero — for example, during the row reduction process when a
pivot element is extremely small.This small number might be inaccurate itself because
of a previous roundoff error. Performing a type (I) row operation with this number
might result in additional roundoff error.
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Even when dealing with accurate small numbers,we can still have problems.When
we divide every entry of a row by a very small pivot value, the remaining row entries
could become much larger (in absolute value) than the other matrix entries. Then,
when these larger row entries are added to the (smaller) entries of another row in a
type (II) operation, the most significant digits of the larger row entries may not be
affected at all. That is, the data stored in smaller row entries may not be playing their
proper role in determining the final solution set.As more computations are performed,
these roundoff errors can accumulate, making the final result inaccurate.

Example 1
Consider the linear system ⎧⎪⎨

⎪⎩
0.0006x1 � x2 � x3 �10

0.03x1 �30x2 �5x3 �15
0.04x1 �40x2 �7x3 �19

.

The unique solution is (x1,x2,x3) � (5000,�4,3). But if we attempt to solve the system by row
reduction and round all computations to four significant figures, we get an inaccurate result. For
example, using Gaussian elimination, the augmented matrices are⎡

⎢⎣0.0006 �1 1
0.03 30 �5
0.04 40 �7

∣∣∣∣∣∣∣
10
15
19

⎤
⎥⎦

(I): 〈1〉←(1/0.0006) 〈1〉
⎡
⎢⎣1 �1667 1667

0.03 30 �5
0.04 40 �7

∣∣∣∣∣∣∣
16670

15
19

⎤
⎥⎦

(II): 〈2〉←�0.03 〈1〉 � 〈2〉
(II): 〈3〉←�0.04 〈1〉 � 〈3〉

⎡
⎢⎣1 �1667 1667

0 80.01 �55.01
0 106.7 �73.68

∣∣∣∣∣∣∣
16670
�485.1
�647.8

⎤
⎥⎦

(I): 〈2〉←(1/80.01) 〈2〉
⎡
⎢⎣1 �1667 1667

0 1 �0.6876
0 106.7 �73.68

∣∣∣∣∣∣∣
16670

�6.064
�647.8

⎤
⎥⎦

(II): 〈3〉←�106.7 〈2〉 � 〈3〉
⎡
⎢⎣1 �1667 1667

0 1 �0.6876
0 0 �0.3131

∣∣∣∣∣∣∣
16670

�6.064
�0.7712

⎤
⎥⎦

(I): 〈3〉←(�1/0.3131) � 〈3〉
⎡
⎢⎣1 �1667 1667

0 1 �0.6876
0 0 1

∣∣∣∣∣∣∣
16670

�6.064
2.463

⎤
⎥⎦.

Back substitution produces the solution (x1, x2, x3) � (5279,�4.370,2.463). This inaccurate
answer is largely the result of dividing row 1 through by 0.0006, a number much smaller than
the other entries of the matrix, in the first step of the row reduction.
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A method known as partial pivoting is employed to avoid roundoff errors like
those encountered in Example 1. In this method, when choosing a pivot element, we
first determine whether there are any entries below the next pivot candidate that
have a greater absolute value. If so,we switch rows to move the entry with the highest
absolute value into the pivot position.

Example 2
We use partial pivoting on the system in Example 1. The initial augmented matrix is⎡

⎢⎣0.0006 �1 1
0.03 30 �5
0.04 40 �7

∣∣∣∣∣∣∣
10
15
19

⎤
⎥⎦.

The entry in the first column with the largest absolute value is in the third row, so we interchange
the first and third rows to obtain

(III): 〈1〉 ↔ 〈3〉
⎡
⎢⎣0.04 40 �7

0.03 30 �5
0.0006 �1 1

∣∣∣∣∣∣∣
19
15
10

⎤
⎥⎦.

Continuing the row reduction, we obtain

(I): 〈1〉←(1/0.04) 〈1〉
⎡
⎢⎣1 1000 �175.0

0.03 30 �5
0.0006 �1 1

∣∣∣∣∣∣∣
475.0

15
10

⎤
⎥⎦

(II): 〈2〉← � 0.03 〈1〉 � 〈2〉
(II): 〈3〉← � 0.0006 〈1〉 � 〈3〉

⎡
⎢⎣1 1000 �175.0

0 0.000 0.2500
0 �1.600 1.105

∣∣∣∣∣∣∣
475.0

0.7500
9.715

⎤
⎥⎦

(III): 〈2〉←→〈3〉
⎡
⎢⎣1 1000 �175.0

0 �1.600 1.105
0 0 0.2500

∣∣∣∣∣∣∣
475.0

9.715
0.7500

⎤
⎥⎦

(I): 〈2〉←(
�1/1.600

) 〈2〉
⎡
⎢⎣1 1000 �175.0

0 1 �0.6906
0 0 0.2500

∣∣∣∣∣∣∣
475.0
�6.072

0.7500

⎤
⎥⎦

(I): 〈3〉←(1/0.2500) 〈3〉
⎡
⎢⎣1 1000 �175.0

0 1 �0.6906
0 0 1

∣∣∣∣∣∣∣
475.0
�6.072

3.000

⎤
⎥⎦.

Back substitution produces the solution (x1, x2, x3) � (5000,�4.000,3.000). Therefore, by par-
tial pivoting, we have obtained the correct solution, a big improvement over the answer obtained
in Example 1 without partial pivoting.

For many systems, the method of partial pivoting is powerful enough to provide
reasonably accurate answers. However, in more difficult cases, partial pivoting is not
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enough. An even more useful technique is total pivoting (also called full pivoting
or complete pivoting), in which columns as well as rows are interchanged. The
strategy in total pivoting is to select the entry with the largest absolute value from all
the remaining rows and columns to be the next pivot.

Iterative Techniques: Jacobi and Gauss-Seidel Methods

When we have a rough approximation of the unique solution to a certain n � n linear
system,an iterative method may be the fastest way to obtain the actual solution. We
use the initial approximation to generate a second (preferably better) approximation.
We then use the second approximation to generate a third, and so on. The process
stops if the approximations “stabilize”— that is, if the difference between successive
approximations becomes negligible. In this section, we illustrate the following two
iterative methods: the Jacobi Method and the Gauss-Seidel Method.

For these iterative methods, it is convenient to express linear systems in a slightly
different form. Suppose we are given the following system of n equations in n
unknowns:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a11x1 � a12x2 � a13x3 � · · ·� a1nxn � b1

a21x1 � a22x2 � a23x3 � · · ·� a2nxn � b2
...

...
...

...
...

...
an1x1 �an2x2 �an3x3 � · · ·�annxn � bn

.

If the coefficient matrix has rank n,every row and column of the reduced row echelon
form of the coefficient matrix contains a (nonzero) pivot. In this case, it is always
possible to rearrange the equations so that the coefficient of xi is nonzero in the ith
equation,for 1 � i � n. Let us assume that the equations have already been rearranged
in this way.2 Solving for xi in the ith equation in terms of the remaining unknowns,
we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 � c12x2 � c13x3 � · · ·�c1nxn � d1

x2 � c21x1 � c23x3 � · · ·�c2nxn � d2

x3 � c31x1 � c32x2 � · · ·�c3nxn � d3
...

...
...

...
...

...
...

xn �cn1x1 �cn2x2 �cn3x3 � · · · �dn

,

where each cij and di represents a new coefficient obtained after we reorder the
equations and solve for each xi .

2 In fact, the Jacobi and Gauss-Seidel Methods often require fewer steps if the equations are rearranged
so that the coefficient of xi in the ith row is as large as possible.
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For example, suppose we are given the system⎧⎨
⎩

3x1 �2x2 � x3 � 11
2x1 �7x2 �3x3 ��14
9x1 � x2 �4x3 � 17

.

Solving for x1 in the first equation, x2 in the second equation, and x3 in the third
equation, we obtain

⎧⎪⎪⎨
⎪⎪⎩

x1 � 2
3x2 � 1

3x3 � 11
3

x2 �� 2
7 x1 � 3

7 x3 � 2

x3 � 9
4 x1 � 1

4x2 � 17
4

.

For the Jacobi Method, we solve a system in the form⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 � c12x2 � c13x3 � · · ·�c1nxn � d1

x2 � c21x1 � c23x3 � · · ·�c2nxn � d2

x3 � c31x1 � c32x2 � · · ·�c3nxn � d3
...

...
...

...
...

...
...

xn �cn1x1 �cn2x2 �cn3x3 � · · · �dn

by substituting an initial approximation for x1,x2, . . . ,xn into the right-hand side to
obtain new values for x1,x2, . . . ,xn on the left-hand side. These new values are then
substituted into the right-hand side to obtain another set of values for x1,x2, . . . ,xn on
the left-hand side. This process is repeated as many times as necessary. If the values
on the left-hand side “stabilize,” they are a good approximation for a solution.

Example 3
We solve ⎧⎪⎨

⎪⎩
8x1 � x2 � 2x3 ��11
2x1 �9x2 � x3 � 22

�x1 �2x2 �11x3 ��15

with the Jacobi Method. The true solution is (x1,x2,x3) � (�2,3,�1). Let us use x1 �

�1.5,x2 � 2.5, and x3 � �0.5 as an initial approximation (or guess) of the solution.
First, we rewrite the system in the form⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x1 �� 1

8 x2 � 1
4 x3 � 11

8

x2 �� 2
9 x1 � 1

9 x3 � 22
9

x3 � 1
11 x1 � 2

11 x2 � 15
11

.
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In the following calculations, we round all results to three decimal places. Plugging the initial
guess into the right-hand side of each equation, we get⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x1 � � 1

8 (2.5)� 1
4 (�0.5)� 11

8

x2 �� 2
9 (�1.5)� 1

9 (�0.5)� 22
9

x3 � 1
11 (�1.5)� 2

11 (2.5)� 15
11

,

yielding the new values x1 � �1.813, x2 � 2.833, x3 � �1.045. We then plug these values into
the right-hand side of each equation to obtain⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x1 � � 1

8 (2.833)� 1
4 (�1.045)� 11

8

x2 �� 2
9 (�1.813)� 1

9 (�1.045)� 22
9

x3 � 1
11 (�1.813)� 2

11 (2.833)� 15
11

,

yielding the values x1 � �1.990, x2 � 2.963, x3 � �1.013. Repeating this process, we get the
values in the following chart:

x1 x2 x3

Initial values �1.500 2.500 �0.500
After 1 step �1.813 2.833 �1.045
After 2 steps �1.990 2.963 �1.013
After 3 steps �1.999 2.999 �1.006
After 4 steps �2.001 3.000 �1.000
After 5 steps �2.000 3.000 �1.000
After 6 steps �2.000 3.000 �1.000

After six steps, the values for x1, x2, and x3 have stabilized at the true solution.

In Example 3,we could have used any starting values for x1,x2,and x3 as the initial
approximation. In the absence of any information about the solution, we can begin
with x1 � x2 � x3 � 0. If we use the Jacobi Method on the system in Example 3 with
x1 � x2 � x3 � 0 as the initial values, we obtain the following chart (again, rounding
each result to three decimal places):

x1 x2 x3

Initial values 0.000 0.000 0.000
After 1 step �1.375 2.444 �1.364
After 2 steps �2.022 2.902 �1.044
After 3 steps �1.999 3.010 �1.020
After 4 steps �2.006 3.002 �0.998
After 5 steps �2.000 3.001 �1.000
After 6 steps �2.000 3.000 �1.000
After 7 steps �2.000 3.000 �1.000
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In this case,the Jacobi Method still produces the correct solution,although an extra
step is required.

The Gauss-Seidel Method is similar to the Jacobi Method except that as each new
value xi is obtained, it is used immediately in place of the previous value for xi when
plugging values into the right-hand side of the equations.

Example 4
Consider the system ⎧⎪⎨

⎪⎩
8x1 � x2 � 2x3 ��11
2x1 �9x2 � x3 � 22

�x1 �2x2 �11x3 ��15

of Example 3. We solve this system with the Gauss-Seidel Method, using the initial approximation
x1 � x2 � x3 � 0. Again, we begin by rewriting the system in the form⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x1 �� 1

8 x2 � 1
4 x3 � 11

8

x2 �� 2
9 x1 � 1

9 x3 � 22
9

x3 � 1
11 x1 � 2

11 x2 � 15
11

.

Plugging the initial approximation into the right-hand side of the first equation, we get

x1 �� 1
8 (0)� 1

4 (0)� 11
8 ��1.375.

We now plug this new value for x1 and the current values for x2 and x3 into the right-hand side
of the second equation to get

x2 �� 2
9 (�1.375)� 1

9 (0)� 22
9 �2.750.

We then plug the new values for x1 and x2 and the current value for x3 into the right-hand side
of the third equation to get

x3 � 1
11 (�1.375)� 2

11 (2.750)� 15
11 ��0.989.

The process is then repeated as many times as necessary with the newest values of x1, x2, and
x3 used in each case. The results are given in the following chart (rounding all results to three
decimal places):

x1 x2 x3

Initial values 0.000 0.000 0.000
After 1 step �1.375 2.750 �0.989
After 2 steps �1.966 2.991 �0.999
After 3 steps �1.999 3.000 �1.000
After 4 steps �2.000 3.000 �1.000
After 5 steps �2.000 3.000 �1.000
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After five steps, we see that the values for x1, x2, and x3 have stabilized to the correct
solution.

For certain classes of linear systems,the Jacobi and Gauss-Seidel Methods will always
stabilize to the correct solution for any given initial approximation (see Exercise 7).
In most ordinary applications, the Gauss-Seidel Method takes fewer steps than the
Jacobi Method,but for some systems,the Jacobi Method is superior to the Gauss-Seidel
Method. However,for other systems,neither method produces the correct answer (see
Exercise 8).3

Comparing Iterative and Row Reduction Methods

When are iterative methods useful? A major advantage of iterative methods is that
roundoff errors are not given a chance to “accumulate,” as they are in Gaussian elimi-
nation and the Gauss-Jordan Method, because each iteration essentially creates a new
approximation to the solution.The only roundoff error that we need to consider with
an iterative method is the error involved in the most recent step.

Also, in many applications, the coefficient matrix for a given system contains a
large number of zeroes. Such matrices are said to be sparse. When a linear system
has a sparse matrix, each equation in the system may involve very few variables. If so,
each step of the iterative process is relatively easy. However,neither the Gauss-Jordan
Method nor Gaussian elimination would be very attractive in such a case because the
cumulative effect of many row operations would tend to replace the zero coefficients
with nonzero numbers. But even if the coefficient matrix is not sparse, iterative meth-
ods often give more accurate answers when large matrices are involved because fewer
arithmetic operations are performed overall.

On the other hand, when iterative methods take an extremely large number of
steps to stabilize or do not stabilize at all, it is much better to use the Gauss-Jordan
Method or Gaussian elimination.

New Vocabulary
Gauss-Seidel Method
ill-conditioned systems
iterative methods
Jacobi Method

partial pivoting
roundoff errors
sparse (coefficient) matrix
total (full, complete) pivoting

3 In cases where the Jacobi and Gauss-Seidel Methods do not stabilize, related iterative methods (known
as relaxation methods) may still work. For further details, see Numerical Analysis, 7th ed.,by Burden
and Faires (published by Brooks/Cole, 2001).
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Highlights

■ Partial pivoting is used to avoid roundoff errors that could be caused by dividing
every entry of a row by a pivot value that is relatively small compared to the rest
of its remaining row entries.

■ In partial pivoting, as work begins on a new pivot column, the entries in
this column below the pivot row are examined, and we switch rows, if nec-
essary, to place the entry having the highest absolute value into the pivot
position.

■ Iterative methods, such as the Jacobi Method, or the Gauss-Seidel Method, are
used to find a solution to a linear system with variables x1,x2, . . . ,xn by beginning
with an initial guess at the solution, and then repeatedly substituting values
for x1,x2, . . . ,xn into the equations of the system to obtain new values. The
methods are successful if the values for x1,x2, . . . ,xn eventually stabilize,thereby
producing the actual solution.

■ Before applying the Jacobi Method or the Gauss-Seidel Method, the equations
are rearranged so that in the ith equation the coefficient of xi is nonzero,and so
that xi is expressed in terms of the other variables.

■ In each iteration of the Jacobi Method, the most recently obtained values for
x1,x2, . . . ,xn are substituted into every equation in the system simultaneously to
obtain the next set of values for x1,x2, . . . ,xn.

■ The Gauss-Seidel Method differs from the Jacobi Method in that immediately
after a new xi value is obtained from the ith equation, it is used in place of the
old value in successive substitutions.

■ The Gauss-Seidel Method generally takes fewer steps to stabilize, but there are
linear systems for which the Jacobi Method is superior.

■ Iterative methods are often effective on sparse matrices. Another advantage of
iterative methods is that roundoff errors are not compounded.

EXERCISES FOR SECTION 9.1
Note: You should use a calculator or appropriate computer software to solve these
problems.

1. In each part of this exercise, find the exact solution sets for the two given
systems. Are the systems ill-conditioned? Why or why not?

�(a)

{
5x � 2y � 10
5x � 1.995y � 17.5

,

{
5x � 2y � 10
5x � 1.99y � 17.5
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(b)

⎧⎪⎨
⎪⎩

6x � z � 400

3y � z � 400

25x �12y �8z �3600

,

⎧⎪⎨
⎪⎩

6x �1.01z � 400

3y � z � 400

25x �12y � 8z �3600

2. First, use Gaussian elimination without partial pivoting to solve each of the
following systems. Then, solve each system using Gaussian elimination with
partial pivoting. Which solution is more accurate? In each case, round all
numbers in the problem to three significant digits before beginning, and
round the results after each row operation is performed to three significant
digits.

�(a)

{
0.00072x � 4.312y ��0.9846

2.31x �9876.0y � �130.8

(b)

⎧⎪⎨
⎪⎩

0.0004x1 �0.6234x2 �2.123x3 � 5.581

0.0832x1 � 26.17x2 �1.759x3 ��3.305

0.09512x1 �0.1458x2 �55.13x3 � 11.168

�(c)

⎧⎪⎨
⎪⎩

0.00032x1 �0.2314x2 �0.127x3 ��0.03456

�241x1 � 217x2 � 8x3 � �576

49x1 � 45x2 � 2.4x3 � 283.2

3. Repeat Exercise 2, but round all computations to four significant digits.

4. Solve each of the following systems using the Jacobi Method. Round all results
to three decimal places,and stop when successive values of the variables agree
to three decimal places. Let the initial values of all variables be zero. List the
values of the variables after each step of the iteration.

�(a)

{
5x1 � x2 � 26

3x1 �7x2 ��42

(b)

⎧⎪⎨
⎪⎩

9x1 � x2 � x3 ��7

2x1 �8x2 � x3 � 35

x1 �2x2 �11x3 � 22

�(c)

⎧⎪⎨
⎪⎩

7x1 � x2 �2x3 ��62

�x1 �6x2 � x3 � 27

2x1 � x2 �6x3 � 26

(d)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10x1 � x2 �2x3 � x4 � 9

�x1 �9x2 � x3 � 2x4 � 15

�2x1 � x2 �7x3 � x4 � 21

x1 � x2 � x3 �13x4 ��27

5. Repeat Exercise 4 using the Gauss-Seidel Method instead of the Jacobi
Method.

�6. A square matrix is strictly diagonally dominant if the absolute value of each
diagonal entry is larger than the sum of the absolute values of the remaining
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entries in its row. That is, if A is an n � n matrix, then A is strictly diagonally
dominant if,for 1 � i � n, |aii| >

∑
1�j�n

j ��i

∣∣aij
∣∣.Which of the following matrices

are strictly diagonally dominant?

(a)

[
�3 1
�2 4

]

(b)

[
2 2
4 3

]

(c)

⎡
⎣�6 2 1

2 5 �2
�1 4 7

⎤
⎦

(d)

⎡
⎣15 9 �3

3 6 4
7 �2 11

⎤
⎦

(e)

⎡
⎣6 2 3

4 5 1
7 1 9

⎤
⎦

7. The Jacobi and Gauss-Seidel Methods stabilize to the correct solution (for
any choice of initial values) if the equations can be rearranged to make
the coefficient matrix for the system strictly diagonally dominant (see Exer-
cise 6). For the following systems, rearrange the equations accordingly, and
then perform the Gauss-Seidel Method. Use initial values of zero for all
variables. Round all results to three decimal places. List the values of the
variables after each step of the iteration, and give the final solution set in
each case.

�(a)

⎧⎪⎨
⎪⎩

2x1 �13x2 � x3 � 0

x1 � 2x2 �15x3 �26

8x1 � x2 � 3x3 �25

(b)

⎧⎪⎨
⎪⎩

�3x1 � x2 �7x3 ��39

10x1 � x2 � x3 � 37

x1 �9x2 �2x3 ��58

�(c)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 � x2 �13x3 � 2x4 �120

9x1 � 2x2 � x3 � x4 � 49

�2x1 � 3x2 � x3 �14x4 �110

�x1 �17x2 � 3x3 � 2x4 � 86

�8. Show that neither the Jacobi Method nor the Gauss-Seidel Method seems to
stabilize when applied to the following system by observing what happens
during the first six steps of the Jacobi Method and the first four steps of
the Gauss-Seidel Method. Let the initial value of all variables be zero, and
round all results to three decimal places.Then find the solution using Gaussian
elimination. ⎧⎪⎨

⎪⎩
x1 �5x2 � x3 �16

6x1 � x2 �2x3 �13

7x1 � x2 � x3 �12
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9. (a) For the following system, show that with initial values of zero for each
variable, the Gauss-Seidel Method stabilizes to the correct solution. Round
all results to three decimal places,and give the values of the variables after
each step of the iteration.⎧⎪⎨

⎪⎩
2x1 � x2 � x3 �7

x1 �2x2 � x3 �8

x1 � x2 �2x3 �9

(b) Work out the first eight steps of the Jacobi Method for the system
in part (a) (again using initial values of zero for each variable), and
observe that this method does not stabilize. On alternate passes, the
results oscillate between values near x1 � 3, x2 � 4, x3 � 5 and x1 � �1,
x2 � 0, x3 � 1.

�10. True or False:

(a) Roundoff error occurs when fewer digits are used to represent a number
than are actually required.

(b) An ill-conditioned system of linear equations is a system in which some of
the coefficients are unknown.

(c) In partial pivoting,we use row swaps to ensure that each pivot element is
as small as possible in absolute value.

(d) Iterative methods generally tend to introduce less roundoff error than
Gauss-Jordan row reduction.

(e) In the Jacobi Method, the new value of xi is immediately used to compute
xi�1 (for i < n) on the same iteration.

(f) The first approximate solution obtained using initial values of 0 for all

variables in the system

{
x �2y � 6

2x �3y �15
using the Gauss-Seidel Method is

x � 6, y � 5.

9.2 LDU DECOMPOSITION
Prerequisite: Section 2.4, Inverses of Matrices

In this section,we show that many nonsingular matrices can be written as the product
of a lower triangular matrix L, a diagonal matrix D, and an upper triangular matrix U.
As you will see, this LDU decomposition is useful in solving certain types of linear
systems. Although LDU decomposition is used here only to solve systems having
square coefficient matrices, the method can be generalized to solve systems with
nonsquare coefficient matrices as well.
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Calculating the LDU Decomposition

For a given matrix A, we can find matrices L, D, and U such that A � LDU by using
row reduction. It is not necessary to bring A completely to reduced row echelon form.
Instead, we put A into row echelon form.

In our discussion, we need to give a name to a row operation of type (II) in
which the pivot row is used to zero out an entry below it. Let us call this a lower
type (II) row operation. Notice that a matrix can be put in row echelon form using
only type (I) and lower type (II) operations if you do not need to interchange any
rows.

Throughout this section, we assume that row reduction into row echelon form is
performed exactly as described in Section 2.1 for Gaussian elimination. Beware! If
you try to be“creative” in your choice of row operations and stray from this standard
method of row reduction, you may obtain incorrect answers.

We can now state the LDU decomposition theorem, as follows:

Theorem 9.1 Let A be a nonsingular n � n matrix. If A can be row reduced to row
echelon form using only type (I) and lower type (II) operations, then A � LDU where
L is an n � n lower triangular matrix, D is an n � n diagonal matrix, and U is an n � n
upper triangular matrix and where all main diagonal entries of L and U equal 1.

Furthermore, this decomposition of A is unique; that is, if A � L′D′U′, where L′ is
n � n lower triangular, D′ is n � n diagonal, and U′ is n � n upper triangular with all
main diagonal entries of L′ and U′ equal to 1, then L′ � L, D′ � D, and U′ � U.

We now outline the proof of this theorem, which illustrates how to calculate the
LDU decomposition for a matrix A when it exists. We omit the proof of uniqueness,
since that property is not needed for the applications.

Proof. (Outline) Suppose that A is a nonsingular n � n matrix and we can reduce A to
row echelon form using only type (I) and lower type (II) row operations. Let U be the
row echelon form matrix obtained from this process. Then U is an upper triangular matrix
(why?). Since A is nonsingular, all of the main diagonal entries of U must equal 1 (why?).
Now, U � Rt (Rt�1(· · ·(R2(R1(A))) · · ·)) where R1, . . . ,Rt are the type (I) and lower type (II)
row operations used to obtain U from A. Hence,

A � R�1
1 (R�1

2 (· · ·(R�1
t�1(R

�1
t (U))) · · ·))

� R�1
1 (R�1

2 (· · ·(R�1
t�1(R

�1
t (InU))) · · ·))

� R�1
1 (R�1

2 (· · ·(R�1
t�1(R

�1
t (In))) · · ·))U,

by Theorem 2.1. Let K � R�1
1 (R�1

2 (· · ·(R�1
t�1(R

�1
t (In))) · · ·)). Then A � KU.

Consulting Table 2.1 in Section 2.3, we see that each of R�1
1 , R�1

2 , . . . , R�1
t is also

either type (I) or lower type (II). Now, since In is lower triangular and applying type (I)
and lower type (II) row operations to a lower triangular matrix always produces a lower
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triangular matrix (why?), it follows that K is a lower triangular matrix. Thus, K has the
general form

⎡
⎢⎢⎢⎢⎢⎣

k11 0 0 · · · 0
k21 k22 0 · · · 0
k31 k32 k33 · · · 0

...
...

...
. . .

...
kn1 kn2 kn3 · · · knn

⎤
⎥⎥⎥⎥⎥⎦ .

In fact, if we are careful to follow the standard method of row reduction, we get the
following values for the entries of K:

⎧⎪⎪⎨
⎪⎪⎩

kii � 1
c if we performed 〈i〉 ← c 〈i〉 to convert

the pivot to 1 in column i
kij � �c if we performed

〈
j
〉← c 〈i〉 �

〈
j
〉

to zero out the (i, j) entry (where i > j)

.

Thus, the main diagonal entries of K are the reciprocals of the constants used in the type (I)
operations, and the entries of K below the main diagonal are the additive inverses of the
constants used in the lower type (II) operations (verify!). In particular, all of the main diagonal
entries of K are nonzero.

Finally, K can be expressed as LD, where

L �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
k21
k11

1 0 · · · 0
k31
k11

k32
k22

1 · · · 0

...
...

...
. . .

...
kn1
k11

kn2
k22

kn3
k33

· · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and D �

⎡
⎢⎢⎢⎢⎢⎣

k11 0 0 · · · 0
0 k22 0 · · · 0
0 0 k33 · · · 0
...

...
...

. . .
...

0 0 0 · · · knn

⎤
⎥⎥⎥⎥⎥⎦ .

Therefore, we have A � KU � LDU, with L lower triangular, D diagonal, U upper triangular,
and all main diagonal entries of L and U equal to 1.

In the next example, we decompose a nonsingular matrix A into LDU form. As in
the proof ofTheorem 9.1,we first decompose A into KU form,with K � LD. We then
find the matrices L and D using K.

Example 1
Let us express

A �

⎡
⎢⎣2 1 4

3 2 5
4 1 9

⎤
⎥⎦
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in LDU form. To do this, we convert A into row echelon form U. Notice that only type (I) and
lower type (II) row operations are used.

A �

⎡
⎢⎣2 1 4

3 2 5
4 1 9

⎤
⎥⎦

(I): 〈1〉←1
2 〈1〉

⎡
⎢⎣

1 1
2 2

3 2 5
4 1 9

⎤
⎥⎦

(II): 〈2〉← � 3 〈1〉 � 〈2〉

⎡
⎢⎢⎣

1 1
2 2

0 1
2 �1

4 1 9

⎤
⎥⎥⎦

(II): 〈3〉← � 4 〈1〉 � 〈3〉

⎡
⎢⎢⎣

1 1
2 2

0 1
2 �1

0 �1 1

⎤
⎥⎥⎦

(I): 〈2〉←2 〈2〉
⎡
⎢⎣

1 1
2 2

0 1 �2
0 �1 1

⎤
⎥⎦

(II): 〈3〉 ← 1 〈2〉 � 〈3〉
⎡
⎢⎣

1 1
2 2

0 1 �2
0 0 �1

⎤
⎥⎦

(I): 〈3〉 ← �1 〈3〉
⎡
⎢⎣

1 1
2 2

0 1 �2
0 0 1

⎤
⎥⎦� U.

Using the formulas in the proof of Theorem 9.1 for kii and kij , we have

K �

⎡
⎢⎣

2 0 0
3 1

2 0

4 �1 �1

⎤
⎥⎦ .

For example, k22 � 1
2 because it is the reciprocal of the constant c � 2 used in the row operation

〈2〉 ← 2〈2〉 to make the pivot equal 1 in the (2,2) position. Similarly, k31 � 4 because it is the
additive inverse of the constant c � �4 used in the row operation 〈3〉 ← �4〈1〉 � 〈3〉 to zero out
the (3,1) entry of A.

Finally, K can be broken into a product LD as follows: take the main diagonal entries of
D to be those of K and create L by dividing each column of K by the main diagonal entry in
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that column. Performing these steps yields

L �

⎡
⎢⎣

1 0 0
3
2 1 0

2 �2 1

⎤
⎥⎦ and D �

⎡
⎢⎣

2 0 0
0 1

2 0

0 0 �1

⎤
⎥⎦ .

You should verify that A � LDU.

Solving a System Using LDU Decomposition

When solving a system of linear equations with coefficient matrix A, it is often useful
to leave the LDU decomposition of A in KU form. We can then find the solution of
the system using substitution techniques, as in the next example.

Example 2
We solve ⎧⎪⎨

⎪⎩
�4x1 �5x2 �2x3 � 5
�3x1 �2x2 � x3 � 4

x1 � x2 ��1

by decomposing the coefficient matrix into KU form. Let A be the coefficient matrix. First, putting
A into row echelon form U, we have

A �

⎡
⎢⎣�4 5 �2

�3 2 �1
1 1 0

⎤
⎥⎦

(I): 〈1〉← � 1
4 〈1〉

⎡
⎢⎣

1 � 5
4

1
2

�3 2 �1
1 1 0

⎤
⎥⎦

(II): 〈2〉←3 〈1〉 � 〈2〉
(II): 〈3〉← � 1 〈1〉 � 〈3〉

⎡
⎢⎢⎢⎣

1 � 5
4

1
2

0 � 7
4

1
2

0 9
4 � 1

2

⎤
⎥⎥⎥⎦

(I): 〈2〉← � 4
7 〈2〉

⎡
⎢⎢⎢⎣

1 � 5
4

1
2

0 1 � 2
7

0 9
4 � 1

2

⎤
⎥⎥⎥⎦
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(II): 〈3〉← � 9
4 〈2〉 � 〈3〉

⎡
⎢⎢⎢⎣

1 � 5
4

1
2

0 1 � 2
7

0 0 1
7

⎤
⎥⎥⎥⎦

(I): 〈3〉 ← 7 〈3〉

⎡
⎢⎢⎢⎣

1 � 5
4

1
2

0 1 � 2
7

0 0 1

⎤
⎥⎥⎥⎦ � U.

Then

K �

⎡
⎢⎢⎣

�4 0 0
�3 � 7

4 0

1 9
4

1
7

⎤
⎥⎥⎦

because the main diagonal entries of K are the reciprocals of the constants used in the type (I)
operations and the entries of K below the main diagonal are the additive inverses of the constants
used in the lower type (II) operations.

Now the original system can be written as

A

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦�

⎡
⎢⎣ 5

4
�1

⎤
⎥⎦ , or KU

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦�

⎡
⎢⎣ 5

4
�1

⎤
⎥⎦ .

If we let ⎡
⎢⎣y1

y2

y3

⎤
⎥⎦� U

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ , then we have K

⎡
⎢⎣y1

y2

y3

⎤
⎥⎦�

⎡
⎢⎣ 5

4
�1

⎤
⎥⎦ .

Both of the last two systems can be solved using substitution. We solve the second system for
the y-values, and once they are known, we solve the first system for the x-values.

The second system,

K

⎡
⎢⎣y1

y2

y3

⎤
⎥⎦�

⎡
⎢⎣ 5

4
�1

⎤
⎥⎦ ,

is equivalent to ⎧⎪⎪⎨
⎪⎪⎩

�4y1 � 5
�3y1 � 7

4 y2 � 4

y1 � 9
4 y2 � 1

7 y3 ��1

.

The first equation gives y1 � � 5
4 . Substituting this solution into the second equation and solving

for y2, we get �3
(

� 5
4

)
� 7

4 y2 � 4, or y2 � � 1
7 . Finally, substituting for y1 and y2 in the third
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equation, we get � 5
4 � 9

4 (� 1
7 ) � 1

7 y3 � �1, or y3 � 4. But then the first system,

U

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦�

⎡
⎢⎣y1

y2

y3

⎤
⎥⎦ ,

is equivalent to ⎧⎪⎪⎨
⎪⎪⎩

x1 � 5
4 x2 � 1

2 x3 �� 5
4

x2 � 2
7 x3 �� 1

7

x3 � 4

.

This time, we solve the equations in reverse order. The last equation gives x3 � 4. Then x2 �
2
7 (4) � � 1

7 , or x2 � 1. Finally, x1 � 5
4 (1) � 1

2 (4) � � 5
4 , or x1 � �2. Therefore, (x1,x2,x3) �

(�2,1,4).

Solving a system of linear equations using ( KU �) LDU decomposition has an
advantage over Gaussian elimination when there are many systems to be solved with
the same coefficient matrix A. In that case,K and U need to be calculated just once,and
the solutions to each system can be obtained relatively efficiently using substitution.
We saw a similar philosophy in Section 2.4 when we discussed the practicality of
solving several systems that had the same coefficient matrix by using the inverse of
that matrix.

In our discussion of LDU decomposition, we have not encountered type (III)
row operations. If we need to use type (III) row operations to reduce a nonsingu-
lar matrix A to row echelon form, it turns out that A � PLDU, for some matrix P
formed by rearranging the rows of the n � n identity matrix, and with L, D, and U
as before. (Rearranging the rows of P essentially corresponds to putting the equa-
tions of the system in the correct order first so that no type (III) row operations are
needed thereafter.) However,the PLDU decomposition thus obtained is not necessarily
unique.

New Vocabulary

LDU decomposition (for a matrix)
lower type (II) row operation

PLDU decomposition (for a matrix)

Highlights

■ If a nonsingular matrix A can be placed in row echelon form using only type (I)
and lower type (II) row operations, then A � LDU, where L is lower triangular
with all main diagonal entries equal to 1,D is diagonal,and U is upper triangular
with all main diagonal entries equal to 1. Such an LDU decomposition of A is
unique.
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■ The LDU decomposition for a matrix A as just described can be obtained by
first decomposing A into KU form,with K lower triangular,where kii � 1

c if we
performed 〈i〉 ← c〈i〉 to convert the pivot to 1 in column i, and kij � �c if we
performed 〈 j〉 ← c〈i〉 � 〈 j〉 to zero out the (i, j) entry (where i > j).

■ The matrix K as described above can be decomposed as LD, where

L �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
k21
k11

1 0 · · · 0
k31
k11

k32
k22

1 · · · 0

...
...

...
. . .

...
kn1
k11

kn2
k22

kn3
k33

· · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and D �

⎡
⎢⎢⎢⎢⎢⎣

k11 0 0 · · · 0
0 k22 0 · · · 0
0 0 k33 · · · 0
...

...
...

. . .
...

0 0 0 · · · knn

⎤
⎥⎥⎥⎥⎥⎦.

■ It is often convenient to solve a linear system AX � B as follows:First,decompose
A into KU form to obtain K(UX) � B, and let Y � UX. Next, solve KY � B for
Y using substitution. Finally, solve UX � Y for X using back substitution.

■ The LDU decomposition method has an advantage over Gaussian elimination
when solving several systems involving the same coefficient matrix.

■ If type (III) row operations are needed to place an n � n matrix A in row echelon
form, A � PLDU, with L, D, U as before, and with P equal to an appropriate
rearrangement of the rows of In.

EXERCISES FOR SECTION 9.2
1. Find the LDU decomposition for each of the following matrices:

�(a)

[
2 �4

�6 17

]

(b)

[
3 1
3
2 � 3

2

]

�(c)

⎡
⎣�1 4 �2

2 �6 �4
2 0 �25

⎤
⎦

(d)

⎡
⎣2 6 �4

5 11 10
1 9 �29

⎤
⎦

�(e)

⎡
⎢⎢⎣

�3 1 1 �1
4 �2 �3 5
6 �1 1 �2

�2 2 4 �7

⎤
⎥⎥⎦

(f )

⎡
⎢⎢⎣

�3 �12 6 9
�6 �26 12 20

9 42 �17 �28
3 8 �8 �18

⎤
⎥⎥⎦
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2. (a) Show that the matrix

[
0 1
1 0

]
has no LDU decomposition by showing that

there are no values w,x,y, and z such that

[
0 1
1 0

]
�

[
1 0
w 1

]
︸ ︷︷ ︸

L

[
x 0
0 y

]
︸ ︷︷ ︸

D

[
1 z
0 1

]
︸ ︷︷ ︸

U

.

(b) The result of part (a) does not contradict Theorem 9.1. Why not?

3. For each system,find the KU decomposition (where K � LD) for the coefficient
matrix, and use it to solve the system by substitution, as in Example 2.

�(a)

{
�x1 � 5x2 ��9
2x1 �13x2 � 21 �(c)

⎧⎨
⎩

�x1 � 3x2 � 2x3 ��13
4x1 � 9x2 � 7x3 � 28

�2x1 �11x2 �31x3 ��68

(b)

⎧⎨
⎩

2x1 �4x2 �10x3 �34
2x1 �5x2 � 7x3 �29
x1 �5x2 � x3 � 8

(d)

⎧⎪⎪⎨
⎪⎪⎩

3x1 �15x2 �6x3 � 6x4 � 60
x1 � 7x2 �8x3 � 2x4 � 30

�5x1 �24x2 �3x3 �18x4 ��115
x1 � 2x2 �7x3 � x4 � �4

�4. True or False:

(a) Every nonsingular matrix has a unique LDU decomposition.

(b) The entries of the matrix K (as defined in this section) can be obtained
just by examining the row operations that were used to reduce A to upper
triangular form.

(c) The operation R given by 〈2〉← � 2〈3〉 � 〈2〉 is a lower type (II) row
operation.

(d) If A � KU (as described in this section), then AX � B is solved by first
solving for Y in U Y � B and then solving for X in K X � Y.

9.3 THE POWER METHOD FOR FINDING EIGENVALUES
Prerequisite: Section 3.4, Eigenvalues and Diagonalization

The only method given in Sections 3.4 and 5.6 for finding the eigenvalues of an n � n
matrix A is to calculate the characteristic polynomial of A and find its roots. However,
if n is large, pA(x) is often difficult to calculate. Also, numerical techniques may be
required to find its roots. Finally, if an eigenvalue � is not known to a high enough
degree of accuracy, we may have difficulty finding a corresponding eigenvector v,
because the matrix �I � A in the equation (�I � A)v � 0 may not be singular for the
given value of �.
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Therefore, in this section we present a numerical technique known as the Power
Method for finding the largest eigenvalue (in absolute value) of a matrix and a
corresponding eigenvector. Such an eigenvalue is called a dominant eigenvalue.

All calculations for the examples and exercises in this section were performed on
a calculator that stores numbers with 12-digit accuracy, but only the first 4 significant
digits are printed here. Your own computations may differ slightly if you are using a
different number of significant digits. If you do not have a calculator with the ability to
perform matrix calculations, use an appropriate linear algebra software package. You
might also consider writing your own Power Method program, since the algorithm
involved is not difficult.

The Power Method

Suppose A is a diagonalizable n � n matrix having (not necessarily distinct) eigenval-
ues �1,�2, . . . ,�n,with �1 being the dominant eigenvalue.The Power Method can be
used to find �1 and an associated eigenvector. In fact, it often works in cases where A
is not diagonalizable, but it is not guaranteed to work in such a case.

The idea behind the Power Method is as follows: choose any unit n-vector v and
calculate (Akv)/

∥∥Akv
∥∥ for some large positive integer k. The result should be a good

approximation for a unit eigenvector corresponding to �1.
To see why, first express v in the form v � a1v1 � a2v2 � · · · � anvn, where

{v1, . . . ,vn} is a basis of eigenvectors for A corresponding to the eigenvalues �1, . . . ,�n.
Then

Akv � a1Akv1 � a2Akv2 � · · · � anAkvn

� a1�k
1v1 � a2�k

2v2 � · · · � an�k
nvn.

Because |�1| > |�i| for 2 � i � n, we see that for large k,
∣∣�k

1

∣∣ is significantly larger
than

∣∣�k
i

∣∣, since the ratio |�i|k / |�1|k approaches 0 as k → �. Thus, the term a1�k
1v1

dominates the expression for Akv for large enough values of k.4 If we normalize Akv,
we have u �

(
Akv

)
/
∥∥Akv

∥∥≈ (
a1�k

1v1
)
/
∥∥a1�k

1v1
∥∥, which is a scalar multiple of v1,

and thus, u is a unit eigenvector corresponding to �1.
Finally,Au ≈ �1u, and so ‖Au‖ approximates |�1|. The sign of �1 is determined by

checking whether Au is in the same direction as u or in the opposite direction. We
now outline the Power Method in detail.

Power Method for Finding the Dominant Eigenvalue of a Square Matrix (Power Method)
Let A be an n � n matrix.

Step 1: Choose an arbitrary unit n-vector u0.

4 Theoretically,a problem may arise if a1 � 0. However, in most practical situations,this will not happen.
If the method does not work and you suspect it is because a1 � 0,try using instead some v that is linearly
independent from those you have already tried.



 

610 CHAPTER 9 Numerical Methods

Step 2: Create a sequence of unit n-vectors u1,u2,u3, . . . by repeating Steps 2(a)
through 2(d) until one of the terminal conditions in Steps 2(c) or 2(d) is reached or
until it becomes clear that the method is not converging to an answer.

(a) Given uk�1, calculate wk � Auk�1.

(b) Calculate uk � wk/‖wk‖.

(c) If uk�1 equals uk to the desired degree of accuracy, let � � ‖wk‖ and go to
Step 3.

(d) If uk�1 equals �uk to the desired degree of accuracy, let � � �‖wk‖ and go
to Step 3.

Step 3: The last uk vector calculated in Step 2 is an approximate eigenvector of A
corresponding to the (approximate) eigenvalue �.

Notice that in the Power Method,we normalize each new vector after multiplying
by A, while in our prior discussion we normalized the final vector Akv. However, the
fact that matrix and scalar multiplication commute and that both methods result in a
unit vector should convince you that the two techniques are equivalent.

It is possible (but unlikely) to get wk � 0 in Step 2(a) of the Power Method,which
makes Step 2(b) impossible to perform. In this case, uk�1 is an eigenvector for A
corresponding to � � 0. You can then return to Step 1, choosing a different u0, in
hope of finding another eigenvalue for A.

Example 1
Let

A �

⎡
⎢⎣�16 6 30

4 1 �8
�9 3 17

⎤
⎥⎦ .

We use the Power Method to find the dominant eigenvalue for A and a corresponding eigenvector
correct to four decimal places.

Step 1: We choose u0 � [1,0,0].
Step 2: A first pass through this step gives the following:

(a) w1 � Au0 ≈ [�16,4,�9].
(b) ‖w1‖ �

√
(�16)2 � 42 � (�9)2 ≈ 18.79.

So u1 � w1/‖w1‖ ≈ [�0.8516,0.2129,�0.4790].
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Because u0 and 
u1 do not agree to four decimal places, we return to Step 2(a). Subsequent
iterations of Step 2 lead to the results in the following table:

k wk � Auk�1 ‖wk‖ uk � wk‖wk‖

1 [�16,4,�9] 18.79 [�0.8516,0.2129,�0.4790]
2 [0.5322,0.6387,0.1597] 0.8466 [0.6287,0.7544,0.1886]
3 [0.1257,1.760,�0.1886] 1.775 [0.0708,0.9918,�0.1063]
4 [1.629,2.125,0.5313] 2.730 [0.5968,0.7784,0.1946]
5 [0.9601,1.609,0.2725] 1.893 [0.5071,0.8498,0.1439]
6 [1.302,1.727,0.4317] 2.205 [0.5904,0.7830,0.1958]
7 [1.125,1.578,0.3635] 1.972 [0.5704,0.8004,0.1843]
8 [1.207,1.607,0.4018] 2.050 [0.5889,0.7841,0.1960]
9 [1.164,1.571,0.3851] 1.993 [0.5840,0.7884,0.1932]
10 [1.184,1.578,0.3946] 2.012 [0.5885,0.7844,0.1961]
11 [1.173,1.570,0.3905] 1.998 [0.5873,0.7855,0.1954]
12 [1.179,1.571,0.3928] 2.003 [0.5884,0.7844,0.1961]
13 [1.176,1.569,0.3918] 2.000 [0.5881,0.7847,0.1959]
14 [1.177,1.570,0.3924] 2.001 [0.5884,0.7845,0.1961]
15 [1.176,1.569,0.3921] 2.000 [0.5883,0.7845,0.1961]
16 [1.177,1.569,0.3923] 2.000 [0.5884,0.7845,0.1961]
17 [1.177,1.569,0.3922] 2.000 [0.5883,0.7845,0.1961]
18 [1.177,1.569,0.3922] 2.000 [0.5883,0.7845,0.1961]

After 18 iterations, we find that u17 and u18 agree to four decimal places. Therefore, Step 2
terminates with � � 2.000.

Step 3: Thus, � � 2.000 is the dominant eigenvalue for A with corresponding unit eigen-

vector u18 � [0.5883,0.7845,0.1961].

We can check that the Power Method gives the correct result in this particular case.
A quick calculation shows that for the given matrix A, pA(x) � x3 � 2x2 � x � 2 �
(x � 2)(x � 1)(x � 1). Thus, �1 � 2 is the dominant eigenvalue for A.

Solving the system (2I3 � A)v � 0 produces an eigenvector v � [3,4,1] corre-
sponding to �1 � 2. Normalizing v yields a unit eigenvector v/‖v‖ ≈ [0.5883,0.7845,
0.1961].

Problems with the Power Method

Unfortunately, the Power Method does not always work. Note that it depends on
the fact that multiplying by A magnifies the size of an eigenvector for the dominant
eigenvalue more than for any other vector in R

n. For example, if A is a diagonalizable
matrix,the Power Method fails if both 
� are eigenvalues of A with the largest absolute
value. In particular,suppose A is a 3 � 3 matrix with eigenvalues �1 � 2,�2 � �2,and
�3 � 1 and corresponding eigenvectors v1, v2, and v3. Multiplying A by any vector
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v � a1v1 � a2v2 � a3v3 produces Av � 2a1v1 � 2a2v2 � a3v3. The contribution of
neither eigenvector v1 nor v2 dominates over the other, since both terms are doubled
simultaneously.

The next example illustrates that the Power Method is not guaranteed to work for
a nondiagonalizable matrix.

Example 2
Consider the matrix

A �

⎡
⎢⎣ 7 �15 �24

�12 25 42
6 �15 �23

⎤
⎥⎦.

This matrix has only one eigenvalue, � � 1, with a corresponding one-dimensional eigenspace
spanned by v1 � [3,�2,2]. The Power Method cannot be used to find this eigenvalue, since
some vectors in R

3 that are not eigenvectors have their magnitudes increased when multiplied
by A while the magnitude of v1 is fixed by A. If we attempt the Power Method anyway, starting
with u0 � [1,0,0], the following results are produced:

k wk � Auk�1 ‖wk‖ uk � wk‖wk‖

1 [7,�12,6] 15.13 [0.4626,�0.7930,0.3965]
2 [5.617,�8.723,5.551] 11.77 [0.4774,�0.7413,0.4718]
3 [3.139,�4.448,3.134] 6.282 [0.4998,�0.7081,0.4989]
...

...
...

...
25 [0.3434,0.3341,0.3434] 0.5894 [0.5825,0.5668,0.5825]
26 [�18.41,31.65,�18.41] 40.98 [�0.4492,0.7723,�0.4492]
27 [�3.949,5.833,�3.949] 8.075 [�0.4890,0.7223,�0.4890]
...

...
...

...
50 [2.589,�5.325,2.589] 6.462 [0.4006,�0.8240,0.4006]
51 [5.551,�8.583,5.551] 11.63 [0.4772,�0.7379,0.4772]
52 [2.957,�4.132,2.957] 5.879 [0.5029,�0.7029,0.5029]
...

...
...

...

As you can see, there is no evidence of any convergence at all in either the ‖wk‖ or uk

columns. If the Power Method were successful, these would be converging to, respectively, the
absolute value of the dominant eigenvalue and a corresponding unit eigenvector.

One disadvantage of the Power Method is that it can only be used to find the domi-
nant eigenvalue for a matrix.There are additional numerical techniques for calculating
other eigenvalues. One such technique is the Inverse Power Method, which finds
the smallest eigenvalue of a matrix essentially by using the Power Method on the
inverse of the matrix. If you are interested in learning more about this technique
and other more sophisticated methods for finding eigenvalues, check the numerical
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analysis books in your library. One classic reference is Numerical Analysis,7th ed.,by
Burden and Faires (published by Brooks/Cole, 2001).

New Vocabulary

dominant eigenvalue
Inverse Power Method

Power Method (for finding a dominant
eigenvalue)

Highlights

■ The Power Method is used to find a dominant eigenvalue (one with the largest
absolute value), if one exists, and a corresponding eigenvector.

■ To apply the Power Method to a square matrix A, begin with an initial guess for
the eigenvector of the dominant eigenvalue. Multiply the most recently obtained
vector on the left by A, normalize the result, and repeat the process until the
answers converge to the desired eigenvector (or until it is clear the results are not
converging). If convergence occurs, the norm of the final vector is the absolute
value of the dominant eigenvalue.

■ The Power Method is very useful,but is not always guaranteed to converge if the
given matrix is nondiagonalizable.

■ The Inverse Power Method (if convergent) calculates the eigenvalue with
smallest absolute value.

EXERCISES FOR SECTION 9.3
1. Use the Power Method on each of the given matrices, starting with the given

vector,5 to find the dominant eigenvalue and a corresponding unit eigenvector
for each matrix. Perform as many iterations as needed until two successive vec-
tors agree in every entry in the first m digits after the decimal point for the
given value of m. Carry out all calculations using as many significant digits as are
feasible with your calculator or computer software.

�(a)

[
2 36

36 23

]
,

[
1
0

]
, m � 2 �(c)

⎡
⎣2 3 �1

1 0 1
3 1 1

⎤
⎦ ,

⎡
⎣0

1
0

⎤
⎦ , m � 2

(b)

[
3 5
2 1

]
,

[
0
1

]
, m � 2

(d)

⎡
⎢⎢⎣

3 1 1 2
1 1 0 4
0 1 0 �1
2 3 2 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , m � 2

5 In parts (e) and (f), the initial vector u0 is not a unit vector. This does not affect the outcome of the
Power Method since all subsequent vectors u1,u2, . . . will be unit vectors.
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�(e)

⎡
⎢⎢⎣

�10 2 �1 11
4 2 �3 6

�44 7 3 28
�17 4 1 12

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
8
2
3

⎤
⎥⎥⎦ , m � 3

(f )

⎡
⎢⎢⎣

5 3 �4 6
�2 �1 6 �10
�6 �6 8 �7
�2 �2 1 2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

4
�5
�6
�1

⎤
⎥⎥⎦ , m � 4

2. In each part of this exercise, show that the Power Method does not work on the
given matrix using [1,0,0] as an initial vector. Explain why the method fails in
each case.

(a)

⎡
⎣�21 10 �74

25 �9 80
10 �4 33

⎤
⎦ (b)

⎡
⎣ 13 �10 8

�8 11 �4
�40 40 �23

⎤
⎦

3. (a) Suppose that A is a diagonalizable 2 � 2 matrix with eigenvalues �1 and
�2 such that |�1| > |�2| �� 0. Let v1,v2 be unit eigenvectors in R

2 cor-
responding to �1 and �2, respectively. Assume each vector x ∈ R

2 can
be expressed uniquely in the form x � av1 � bv2. (This will follow from
results in Section 4.4.) Finally, suppose u0 is the initial vector used in the
Power Method for finding the dominant eigenvalue of A. Expressing ui in
that method as aiv1 � biv2, prove that for all i 	 0,

|ai|
|bi| �

∣∣∣∣�1

�2

∣∣∣∣i · |a0|
|b0| ,

assuming that bi �� 0. Explain what this result implies about the rate of
convergence of the Power Method in this case.

�(b) Suppose A is a diagonalizable n � n matrix with eigenvalues �1, . . .�n such
that |�1| > |�j |, for 2 � j � n. Let {v1, . . . ,vn} be fundamental eigenvectors
for A corresponding to �1, . . . ,�n, respectively. Assume that every vector
x ∈ R

n can be expressed uniquely in the form x � b1v1 � b2v2 � · · · �
bvn. (This will follow from results in Section 4.4.) Finally, suppose the
initial vector in the Power Method is u0 � a01v1 � · · · � a0nvn and the ith
iteration yields ui � ai1v1 � · · · � ainvn. Prove that, for 2 � j � n, �j �� 0,
and a0j �� 0, we have

|ai1|
|aij | �

∣∣∣∣�1

�j

∣∣∣∣i |a01|
|a0j | .

�4. True or False:

(a) If the Power Method succeeds in finding a dominant eigenvalue � for a matrix
A, then we must have � � ||Auk�1||, where uk is the final vector found in
the process.
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(b) The Power Method does not find the dominant eigenvalue of a matrix A if
the initial vector used is an eigenvector for a different eigenvalue for A.

(c) Starting with the vector [1,0,0,0], the Power Method produces the eigen-
value 4 for the 4 � 4 matrix A having all entries equal to 1.

(d) If 2 and �3 are eigenvalues for a 2 � 2 matrix A, then the Power Method
produces an eigenvector corresponding to the eigenvalue 2 because 2 > �3.

9.4 QR FACTORIZATION
Prerequisite: Section 6.1, Orthogonal Bases and the Gram-Schmidt
Process

In this section,we show that any matrix A with linearly independent columns can be
factored into a product of two matrices, one having orthonormal columns, and the
other being nonsingular and upper triangular. Such a product is often called a QR
factorization for A.

QR Factorization Theorem

The proof of the following theorem illustrates the method for QR factorization.

Theorem 9.2 Let A be an n � k matrix, with n 	 k, whose k columns are linearly
independent. Then A � QR, where Q is an n � k matrix whose columns form an
orthonormal basis for the subspace of R

n spanned by the columns of A, and R is
a nonsingular upper triangular k � k matrix.

The matrix R in Theorem 9.2 as constructed in the following proof has its main
diagonal entries all positive. If this additional restriction is placed on R, then the QR
factorization of A is unique. You are asked to prove this in Exercise 3.

Proof. Let A be an n � k matrix with linearly independent columns w1, . . . ,wk, respectively.
Apply the Gram-Schmidt Process to {w1, . . . ,wk} to obtain an orthogonal set of vectors
{v1, . . . ,vk}. That is,

v1 � w1,

v2 � w2 �
(

w2·v1
v1·v1

)
v1,

v3 � w3 �
(

w3·v1
v1·v1

)
v1 �

(
w3·v2
v2·v2

)
v2,

etc.

Notice that if W is the subspace of R
n spanned by {w1, . . . ,wk}, then {v1, . . . ,vk} is an

orthogonal basis for W by Theorem 6.4.
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Now, let Q be the n � k matrix with columns u1, . . . ,uk, where

u1 �
v1

||v1|| , . . . ,uk �
vk

||vk|| .

Then {u1, . . . ,uk} is an orthonormal basis for W, and the columns of Q form an orthonormal
set.

We can finish the proof if we can find a nonsingular upper triangular matrix R such
that A � QR. To find the entries of R, let us express each wi (ith column of A) as a linear
combination of the ui ’s (columns of Q). Now, from the Gram-Schmidt Process, we know

w1�v1 � ||v1||u1, and

w2�
(

w2·v1
v1·v1

)
v1 � v2

�
(

w2·v1
v1·v1

)
||v1||u1 � ||v2||u2

� w2·v1‖v1‖ u1 � ||v2||u2

�(w2 · u1)u1 � ||v2||u2.

By an argument similar to that for w2, it is easy to show that

w3 �
(

w3·v1
v1·v1

)
v1 �

(
w3·v2
v2·v2

)
v2 � v3

�
(
w3 · u1

)
u1 �

(
w3 · u2

)
u2 � ||v3||u3.

In general,

ith column of A �wi
�(wi · u1)u1 � (wi · u2)u2 � · · · � (wi · ui�1)ui�1 � ||vi||ui .

� [u1, . . . ,uk]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wi · u1
wi · u2

...
||vi||

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Q

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wi · u1
wi · u2

...
||vi||

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.← ith row

Thus, A � QR, where

R �

⎡
⎢⎢⎢⎢⎢⎣

||v1|| w2 · u1 w3 · u1 · · · wk · u1
0 ||v2|| w3 · u2 · · · wk · u2
0 0 ||v3|| · · · wk · u3
...

...
...

. . .
...

0 0 0 · · · ||vk||

⎤
⎥⎥⎥⎥⎥⎦ .
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Finally, note that since {v1, . . . ,vk} is a basis for W, all ||vi|| �� 0. Thus, R is nonsingular,
since it is upper triangular with all main diagonal entries nonzero.

Notice in the special case when A is square, the matrix Q is square also, and then
by part (2) ofTheorem 6.7,Q is an orthogonal matrix. However, in all cases,QT Q � Ik

because the columns of Q are orthonormal. After multiplying both sides of A � QR
by QT on the left, we obtain R � QT A.

The technique for QR factorization is summarized in the following formal
method:

Method for QR Factorization
Let A be an n � k matrix, with n 	 k, having columns w1, . . . ,wk which are linearly
independent. To find the QR factorization of A:

(1) Use the Gram-Schmidt Process on {w1, . . . ,wk} to obtain an orthogonal set of
vectors {v1, . . . ,vk}.

(2) Normalize {v1, . . . ,vk} to create an orthonormal set of vectors {u1, . . . ,uk}.
(3) Create the n � k matrix Q whose columns are u1, . . . ,uk, respectively.

(4) Create the k � k matrix R � QT A.

Then A � QR.

In using the Gram-Schmidt Process in Section 6.1,we often replaced certain vectors
with scalar multiples in order to avoid fractions. We can perform a similar procedure
here. Replacing the vi vectors obtained in the Gram-Schmidt Process with suitable posi-
tive scalar multiples will not affect the final orthonormal vectors ui that are obtained,
and thus the matrix Q will not change. However, if some vector vi is replaced with
a negative scalar multiple civi , then all entries in the corresponding ith column of Q
and ith row of R will have the opposite sign from what they would have had if the
positive scalar |ci| had been used instead.Therefore,if any of the vi’s are replaced with
negative scalar multiples during the Gram-Schmidt Process, R will have one or more
negative entries on its main diagonal.

The QR Factorization Method is illustrated in the following example, where only
positive scalar multiples are used in the Gram-Schmidt Process:

Example 1
We find the QR factorization for the matrix

A �

⎡
⎢⎢⎢⎣

1 0 0
0 1 1
1 1 0
0 0 1

⎤
⎥⎥⎥⎦ .
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We label the columns of A as w1 � [1,0,1,0], w2 � [0,1,1,0], and w3 � [0,1,0,1], and let
W be the subspace of R

4 generated by these vectors. We will use the Gram-Schmidt Pro-
cess to find an orthogonal basis

{
v1,v2,v3

}
for W, and then an orthonormal basis

{
u1,u2,u3

}
for W.

Beginning the Gram-Schmidt Process, we obtain

v1 �w1 � [1,0,1,0], and

v2 �w2 �
(

w2·v1
v1·v1

)
v1

� [0,1,1,0] � [0,1,1,0]·[1,0,1,0]
[1,0,1,0]·[1,0,1,0] [1,0,1,0]

� [0,1,1,0] � 1
2 [1,0,1,0]

�
[
� 1

2 ,1, 1
2 ,0

]
.

Multiplying this vector by a factor of c2 � 2 to avoid fractions, we let v2 � [�1,2,1,0]. Finally,

v3 �w3 �
(

w3·v1
v1·v1

)
v1 �

(
w3·v2
v2·v2

)
v2

� [0,1,0,1] � [0,1,0,1]·[1,0,1,0]
[1,0,1,0]·[1,0,1,0] [1,0,1,0] � [0,1,0,1]·[�1,2,1,0]

[�1,2,1,0]·[�1,2,1,0] [�1,2,1,0]

� [0,1,0,1] � 0[1,0,1,0] � 2
6 [�1,2,1,0]

�
[

1
3 , 1

3 ,� 1
3 ,1

]
.

Multiplying this vector by a factor of c3 � 3 to avoid fractions, we obtain v3 � [1,1,�1,3].
Normalizing v1,v2,v3, we get

u1 �

[
1√
2

,0,
1√
2

,0

]
, u2 �

[
�

1√
6

,
2√
6

,
1√
6

,0

]
, u3 �

[
1

2
√

3
,

1

2
√

3
,�

1

2
√

3
,

3

2
√

3

]
.

From the preceding method, we know that these vectors are the columns of Q. Also, we know
that

R � QT A �

⎡
⎢⎢⎢⎢⎢⎣

1√
2

0 1√
2

0

� 1√
6

2√
6

1√
6

0

1
2
√

3
1

2
√

3
� 1

2
√

3
3

2
√

3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0
0 1 1
1 1 0
0 0 1

⎤
⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

√
2 1√

2
0

0
√

6
2

2√
6

0 0 2
√

3
3

⎤
⎥⎥⎥⎥⎦ .

You should check that QR really does equal A.
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QR Factorization and Least Squares

Suppose AX � B is an inconsistent linear system; that is, a system with no solutions.
Exercise 9 of Section 8.3 and all of Section 8.10 show how the method of least squares
can be used to find values that come“close”to satisfying all the equations in this system.
Specifically,the solutions of the related system AT AX � AT B are called least-squares
solutions for the original system AX � B.

The QR Factorization Method affords a way of finding certain least-squares
solutions, as shown in the following theorem:

Theorem 9.3 Suppose A is an n � k matrix, with n 	 k, whose k columns are lin-
early independent. Then the least-squares solution of the linear system AX � B is
given by X � R�1QT B, where Q and R are the matrices obtained from the QR
factorization of A.

Proof. From the preceding remarks, the least-squares solutions of AX � B are the solutions
of AT AX � AT B. Let A � QR, where Q and R are the matrices obtained from the QR
factorization of A. Then, (QR)T (QR)X � (QR)T B, which gives RT QT QRX � RT QT B. But
the columns of Q are orthonormal, so QT Q � Ik. Thus, RT RX � RT QT B. Since R�1 exists
(by the previous theorem), and since (R�1)T � (RT )�1, the matrix RT is also nonsingular,
and we have (RT )�1RT RX � (RT )�1RT QT B, which reduces to RX � QT B, and hence
X � R�1QT B, as desired.

In practice,it is often easier,and involves less roundoff error,to find the least-squares
solutions of AX � B by solving RX � QT B using back substitution. This process is
illustrated in the next example.

Example 2
Consider the linear system ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x � 3

y � z � 9
x � y � 7.5

z � 5

,

which is clearly inconsistent, since the first and last equations imply x � 3, z � 5, and the two
middle equations then give two different values for y (y � 4 or y � 4.5). We will find a least-
squares solution for this system which will come “close” to satisfying all of the equations. We
express the system in the form AX � B, with

A �

⎡
⎢⎢⎢⎣

1 0 0
0 1 1
1 1 0
0 0 1

⎤
⎥⎥⎥⎦ and B �

⎡
⎢⎢⎢⎣

3
9

7.5
5

⎤
⎥⎥⎥⎦ .

Note that A is the matrix from Example 1.
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Recall from Example 1 that the QR factorization of A is given by A � QR, where

Q �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

� 1√
6

1
2
√

3

0 2√
6

1
2
√

3

1√
2

1√
6

� 1
2
√

3

0 0 3
2
√

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎣

0.707107 �0.408208 0.288675
0 0.816497 0.288675

0.707107 0.408248 �0.288675
0 0 0.866025

⎤
⎥⎥⎥⎦ , and

R �

⎡
⎢⎢⎢⎢⎢⎣

√
2 1√

2
0

0
√

6
2

2√
6

0 0 2
√

3
3

⎤
⎥⎥⎥⎥⎥⎦≈

⎡
⎢⎣1.41421 0.707107 0

0 1.22474 0.816497
0 0 1.15470

⎤
⎥⎦ .

Now, a straightforward computation shows that

QT B ≈
⎡
⎢⎣7.42462

9.18559
5.62917

⎤
⎥⎦ , and hence,

RX ≈
⎡
⎢⎣1.41421 0.707107 0

0 1.22474 0.816497
0 0 1.15470

⎤
⎥⎦
⎡
⎢⎣x

y
z

⎤
⎥⎦�

⎡
⎢⎣7.42462

9.18559
5.62917

⎤
⎥⎦ .

Since R is upper triangular, we can quickly find the solution by using back substitution. The last
equation asserts 1.15470z � 5.62917, which leads to z � 4.875. From the middle equation, we
have 1.22474y � 0.816497z � 9.18559. Substituting 4.875 for z and solving for y, we obtain
y � 4.250. Finally, the first equation gives 1.41421x � 0.707107y � 7.42462. Substituting 4.25
for y and solving for x leads to x � 3.125. Hence,⎡

⎢⎣x
y
z

⎤
⎥⎦≈

⎡
⎢⎣3.125

4.250
4.875

⎤
⎥⎦ .

Finally, notice that the values x � 3.125, y � 4.250, z � 4.875 do, in fact, come close to satisfying
each equation in the original system. For example, y � z � 9.125 (close to 9) and x � y � 7.375
(close to 7.5).

Normally, the back substitution method is preferable when finding least-squares
solutions. However, in this particular case, the roundoff error involved in finding and
using the inverse of R is minimal, and so the result in the previous example can also
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be obtained by calculating

R�1 �

⎡
⎢⎢⎢⎣

1√
2

� 1√
6

1
2
√

3

0 2√
6

�1√
3

0 0 3
2
√

3

⎤
⎥⎥⎥⎦ , and then computing

⎡
⎣x

y
z

⎤
⎦� R�1QT B ≈

⎡
⎣3.125

4.250
4.875

⎤
⎦ .

It should be noted that when a system AX � B is consistent, the least-squares
method produces an actual solution to the system. Thus, for a consistent sys-
tem AX � B, the least-squares solution X � R�1QT B in Theorem 9.3 is an actual
solution.

A More General QR Factorization

Although we do not prove it here,it can be shown that any n � k matrix A,with n 	 k,
has a QR factorization into the product of matrices Q and R,where Q is an n � k matrix
with orthonormal columns,and where R is a k � k upper triangular matrix.The proof is
similar to that ofTheorem 9.2,but it requires a few changes:First we determine which
columns of A are linear combinations of previous columns of A. We replace these
columns with new vectors so that the new matrix A′ will have all columns linearly
independent.Then we use A′ as inTheorem 9.2 to determine Q. As before,R � QT A.
Notice that R is singular when the columns of A are not linearly independent.The main
diagonal entry of any column of R whose corresponding column of A was replaced
will equal zero.

New Vocabulary

Cholesky factorization (see Exercise 4)
least-squares solutions (for a linear sys-

tem)

QR factorization
QR Factorization Method

Highlights

■ An n � k matrix A, with n 	 k, whose k columns are linearly independent has a
QR factorization of the form A � QR,where Q is an n � k matrix whose columns
form an orthonormal basis for the subspace of R

n spanned by the columns of
A, and R is a nonsingular upper triangular k � k matrix.

■ For such a matrix A, the columns of the matrix Q are obtained from the QR
Factorization Method by applying the Gram-Schmidt Process to the columns of
A and normalizing the results (thus producing an orthonormal set of k vectors).
If A is square, then Q is an orthogonal matrix.

■ For such a matrix A, the matrix R obtained from the QR Factorization Method
is R � QT A.
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■ For an n � k matrix A, with n 	 k, whose k columns are linearly independent,
the least-squares solution of the linear system AX � B is given by X � R�1QT B,
where Q and R are the matrices obtained from the QR factorization of A. The
least-squares solution could also be obtained by solving RX � QT B using back
substitution.

■ A QR factorization is possible for any any n � k matrix A,with n 	 k,where the
columns of Q form an orthonormal basis, and where R is an upper triangular
matrix, but with R singular if the columns of A are not linearly independent.

EXERCISES FOR SECTION 9.4
1. Find a QR factorization for each of the following matrices. (That is, if A is the

given n � k matrix, find an n � k matrix Q and a k � k matrix R such that
A � QR, where the columns of Q form an orthonormal set in R

n, and where R
is nonsingular and upper triangular.)

�(a)

⎡
⎣ 2 6 �3

�2 0 �9
1 6 �3

⎤
⎦

(d)

⎡
⎢⎢⎣

4 4 14
4 �8 3
0 �3 �14
2 �1 �7

⎤
⎥⎥⎦

(b)

⎡
⎣6 10 �7

7 8 1
6 21 26

⎤
⎦

(e)

⎡
⎢⎢⎣

14 212 83 381
70 70 �140 �210
77 41 �31 408

0 60 75 90

⎤
⎥⎥⎦

�(c)

⎡
⎣ 1 5 �3

�2 �4 �2
1 5 �5

⎤
⎦

2. Find a least-squares solution for each of the following inconsistent linear systems
using the method of Example 2. Round your answers to three places after the
decimal point.

�(a)

⎧⎨
⎩

3x � 10y � �8
4x � 4y � 30

12x � 27y � 10
�(c)

⎧⎪⎪⎨
⎪⎪⎩

x � 15y � z � 7
4x � 4y � 18z � 11

8y � 22z � �5
�8x � 10y � z � 12

(b)

⎧⎪⎪⎨
⎪⎪⎩

2x � 2y � 2z � 15
x � 3y � 6z � �20

� 2y � 11z � �50
2x � 10y � 10z � 50

(d)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3x �16z � 60
2x � 6z � 25
4x � 6y � 4z ��15
4x �12y � 2z ��59
6x �15y �13z ��39
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3. Assume A is a given n � k matrix, where n 	 k, such that the columns of A are
linearly independent. Suppose A � QR, where Q is n � k and the columns of
Q are orthonormal,and R is a nonsingular upper triangular k � k matrix whose
main diagonal entries are positive. Show that Q and R are unique. (Hint: Prove
uniqueness for both matrices simultaneously, column by column, starting with
the first column.)

4. (a) If A is square, prove that AT A � UT U, where U is upper triangular and has
nonnegative diagonal entries. (Hint:You will need to assume the existence
of the QR factorization,even if the columns A are not linearly independent.)

(b) If A is nonsingular, prove that the matrix U in part (a) is unique. (This
is known as the Cholesky factorization of AT A.) (Hint: If A � QR is a
QR factorization of A, and AT A � UT U, show that (Q(RT )�1UT )U is a QR
factorization of A. Then apply Exercise 3.)

�5. True or False:

(a) If A is a nonsingular matrix, then applying the QR Factorization Method to
A produces a matrix Q that is orthogonal.

(b) If A is a singular matrix, then applying the QR Factorization Method to A
produces a matrix R having at least one main diagonal entry equal to zero.

(c) If A is an n � n upper triangular matrix with linearly independent columns,
then applying the QR Factorization Method to A produces a matrix Q that
is diagonal.

(d) If A is an n � k matrix with k linearly independent columns,the inconsistent
system AX � B has X � RT Q�1B as a least-squares solution,where Q and R
are the matrices obtained after applying the QR Factorization Method to A.

(e) If A is an n � k matrix, with n 	 k, and A � QR is a QR factorization of A,
then R � QT A.

9.5 SINGULAR VALUE DECOMPOSITION
Prerequisite: Section 6.3, Orthogonal Diagonalization

We have seen that for a linear operator L on R
n, finding an ordered basis B such

that the matrix for L with respect to B is diagonal makes the operator L easier to
handle and to understand. In this section, we consider the more general situation of
linear transformations L: Rn → R

m. We will discover that we can always find ordered
orthonormal bases B and C for R

n and R
m, respectively, so that the m � n matrix for

L with respect to B and C is, in some sense “diagonal.” In particular, we will see that
every m � n matrix A can be expressed as A � QDPT , where D is an m � n matrix
with nonnegative entries on its main diagonal and zeroes elsewhere, and P and Q are
orthogonal matrices.The specific product for A of this type introduced in this section
is called a singular value decomposition of A.
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Singular Values and Right Singular Vectors

If A is any m � n matrix,then AT A is symmetric because
(
AT A

)T
� AT

(
AT
)T

� AT A.
Thus,byTheorems 6.18 and 6.20, AT A is orthogonally diagonalizable.That is, there is
an orthogonal matrix P such that PT

(
AT A

)
P is diagonal. Also, if � is one of the eigen-

values of AT A with corresponding unit eigenvector v (which is one of the columns
of P), then

‖Av‖2 � (Av) · (Av) �
(
v

T
AT )(Av) � vT (AT Av

)
� vT (�v) � �(v · v) � �.

Hence, � 	 0, and so all the eigenvalues of AT A are nonnegative.

Example 1
Suppose

A �

⎡
⎢⎣ 1 �1

1 1
�1 �1

⎤
⎥⎦ . Then AT A �

[
3 1
1 3

]
.

Following the Orthogonal Diagonalization Method of Section 6.3, we first find the eigenvalues and
eigenvectors for AT A. Now, pAT A(x) � x2 � 6x � 8 � (x � 4)(x � 2). Solving for fundamental
eigenvectors for �1 � 4 and �2 � 2, respectively, yields v1 � [1,1] for �1 and v2 � [�1,1] for
�2. Normalizing these vectors and using these as columns for a matrix produces the orthogonal

matrix P � 1√
2

[
1 �1
1 1

]
, for which PT (AT A)P � D, a diagonal matrix with the eigenvalues 4

and 2 appearing on the main diagonal.

Because all eigenvalues of AT A are nonnegative, we can make the following
definition:

Definition Let A be an m � n matrix, and let �1 	 �2 	 · · · 	 �k > �k�1 � · · · �
�n � 0 be the eigenvalues of AT A, written in decreasing order. If �i �

√
�i , then

�1 	 �2 	 · · · 	 �k > �k�1 � · · · � �n � 0 are called the singular values of A.
Also suppose that {v1, . . . ,vn} is an orthonormal set of eigenvectors for AT A,with
vi corresponding to �i . Then {v1, . . . ,vn} is called a corresponding set of right
singular vectors for A.

We will assume throughout this section that the eigenvalues for AT A and the sin-
gular values of the matrix A are always labeled in nonincreasing order, as in this
definition.

The singular values of the matrix A in Example 1 are �1 �
√

�1 �
√

4 � 2 and �2 �√
�2 �

√
2. A corresponding set of right singular vectors is

{
1√
2
[1,1], 1√

2
[�1,1]

}
.
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We will use the following lemma throughout this section:

Lemma 9.4 Suppose A is an m � n matrix, �1, . . . ,�n are the eigenvalues of
AT A,�1, . . . ,�n are the singular values of A, and {v1, . . . ,vn} is a corresponding set
of right singular vectors for A. Then:

(1) For all x ∈ R
n, (Ax) · (Avi) � �i(x · vi).

(2) For i �� j, (Avi)⊥(Avj).

(3) (Avi) · (Avi) � ‖Avi‖2 � �i � �2
i .

(4) If x � a1v1 � · · · � anvn, then (Ax) · (Avi) � ai�i.

Proof. Part (1): (Ax) · (Avi) � (xT AT )(Avi) � xT (AT Avi) � xT (�ivi) � �i(x · vi).
Part (2): By part (1), (Avi) · (Avj) � �j(vi · vj) � 0, since vi⊥vj . Hence, (Avi)⊥(Avj).
Part (3): (Avi) · (Avi) � ‖Avi‖2, by part (2) of Theorem 1.5. Also, by part (1),

(Avi) · (Avi) � �i(vi · vi) � �i.
Part (4): If x � a1v1 � · · · � anvn, then (Ax) · (Avi) � (a1Av1 � · · · � anAvn) · (Avi) �

a1(Av1) · (Avi) � · · · � an(Avn) · (Avi) � ai�i, by parts (2) and (3).

Example 2

Suppose A �

⎡
⎢⎣ 1 �1

1 1
�1 �1

⎤
⎥⎦ is the 3 � 2 matrix from Example 1, with �1 � 4, �2 � 2, v1 �

1√
2
[1,1], and v2 � 1√

2
[�1,1]. Matrix multiplication gives Av1 � 1√

2
[0,2,�2] and Av2 �

1√
2
[�2,0,0]. Note that (Av1) · (Av2) � 0, (Av1) · (Av1) � 1

2 (0 � 4 � 4) � 4 � �1, and (Av2) ·
(Av2) � 1

2 (4 � 0 � 0) � 2 � �2, verifying parts (2) and (3) of Lemma 9.4.
Let x � [5,1]. It is easy to check that x � a1v1 � a2v2, where a1 � 3

√
2 and a2 � �2

√
2.

Then Ax � [4,6,�6], and so (Ax) · (Av1) � [4,6,�6] ·
(

1√
2
[0,2,�2]

)
� 1√

2
(0 � 12 � 12) �

12
√

2 � (3
√

2)�1 � a1�1. Similarly, (Ax) · (Av2) � [4,6,�6] ·
(

1√
2
[�2,0,0]

)
� 1√

2
(�8 � 0 �

0) � �4
√

2 � (�2
√

2)�2 � a2�2. This verifies part (4) for this vector x.

Singular Values and Left Singular Vectors

Since a set of right singular vectors {v1, . . . ,vn} forms an orthonormal basis for R
n, the

set {Av1, . . . ,Avn} spans the range of the linear transformation L: Rn → R
m given by

L(v) � Av. Now,assuming that �1 	 �2 	 · · · 	 �k > �k�1 � · · · � �n � 0,we see that,
by parts (2) and (3) of Lemma 9.4,Avk�1 � · · · � Avn � 0,while {Av1, . . . ,Avk} forms
a nonzero orthogonal spanning set for range(L), and hence an orthogonal basis for
range(L) byTheorem 6.1.The important role played by the vectors Av1, . . . ,Avk leads
to the following definition.
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Definition Let A be an m � n matrix, and let �1 	 �2 	 · · · 	 �k > �k�1 � · · · �
�n � 0 be the singular values of A. Also suppose that {v1, . . . ,vn} is a set of right
singular vectors for A, with vi corresponding to �i . If ui � 1

�i
Avi , for 1 � i � k,

and uk�1, . . . ,um are chosen so that {u1, . . . ,um} is an orthonormal basis for R
m,

then {u1, . . . ,um} is called a set of left singular vectors for A corresponding to
the set {v1, . . . ,vn} of right singular vectors.

Notice that {u1, . . . ,uk} is an orthonormal basis for range(L) because {Av1, . . . ,Avk}
is an orthogonal basis for range(L) and each ui is also a unit vector by part (3) of
Lemma 9.4.Therefore, to find a set of left singular vectors,we first compute u1, . . . ,uk,
and then expand this set to an orthonormal basis for R

m.

Example 3

Suppose A �

⎡
⎢⎣ 1 �1

1 1
�1 �1

⎤
⎥⎦ is the 3 � 2 matrix from Example 1, with �1 � 2, �2 �

√
2, v1 �

1√
2
[1,1], and v2 � 1√

2
[�1,1]. In Example 2 we found that Av1 � 1√

2
[0,2,�2] and Av2 �

1√
2
[�2,0,0]. Hence, u1 � 1

�1
Av1 � 1√

2
[0,1,�1], and u2 � 1

�2
Av2 � [�1,0,0]. To find u3, we

must expand the orthonormal set
{

1√
2
[0,1,�1], [�1,0,0]

}
to a basis for R

3. Inspection (or

row reduction) shows that
{

1√
2
[0,1,�1], [�1,0,0], [0,1,0]

}
is a linearly independent set. To

convert this to an orthonormal basis for R
3, we perform the Gram-Schmidt Process on this set

and normalize. This does not affect the first two vectors, but changes the third vector to u3 �
1√
2
[0,1,1]. Thus,

{
u1,u2,u3

}
�
{

1√
2
[0,1,�1], [�1,0,0], 1√

2
[0,1,1]

}
is a set of left singular

vectors for A corresponding to the set {v1,v2} �
{

1√
2
[1,1], 1√

2
[�1,1]

}
of right singular vectors.

Orthonormal Bases Derived from the Left and Right Singular Vectors

We can now prove that the sets of left and right singular vectors can each be split into
two parts, with each part being an orthonormal basis for an important subspace of
R

n or R
m.

Theorem 9.5 Let A be an m � n matrix, and let �1 	 �2 	 · · · 	 �k > �k�1 � · · · �
�n � 0 be the singular values of A. Also suppose that {v1, . . . ,vn} is a set of right singular
vectors for A, with vi corresponding to �i and that {u1, . . . ,um} is a corresponding set
of left singular vectors for A. Finally, suppose that L: R

n → R
m and LT : R

m → R
n are

linear transformations given, respectively, by L(x) � Ax and LT (y) � AT y. Then,

(1) rank(A) � k,

(2) {u1, . . . ,uk} is an orthonormal basis for range(L),
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(3) {uk�1, . . . ,um} is an orthonormal basis for ker(LT ) � (range(L))⊥,

(4) {v1, . . . ,vk} is an orthonormal basis for range(LT ) � (ker(L))⊥ � the row space
of A, and

(5) {vk�1, . . . ,vn} is an orthonormal basis for ker(L).

Proof. Part (2) was proven in the discussion before and after the definition of left singular
vectors. This combined with part (1) of Theorem 5.9 proves that rank(A) � k, giving us part
(1) of the theorem.

The fact that {uk�1, . . . ,um} is an orthonormal basis for (range(L))⊥ in part (3) follows
directly from part (2) and Theorem 6.12.

To prove the set equality ker(LT ) � (range(L))⊥ in part (3), we first show that ker(LT ) ⊆
(range(L))⊥. Let x ∈ ker(LT ). Then LT (x) � AT x � 0. To show that x ∈ (range(L))⊥, we will
show that x is orthogonal to every vector in the orthonormal basis {u1, . . . ,uk} for range(L).
Now, for 1 � i � k,

x · ui � x ·
(

1

�i
Avi

)
�

1

�i
(x · (Avi)) �

1

�i
xT Avi�

1

�i

(
AT x

)T
vi �

1

�i
(0)T vi � 0.

Therefore, ker(LT ) ⊆ (range(L))⊥.
We know from part (3) that dim

(
(range(L))⊥

)
� m � k. But, by part (2) of Theorem 5.9,

part (1) of this theorem, and Corollary 5.11, we see that dim(ker(LT )) � m � rank(AT ) �
m � rank(A) � m � k. Hence, ker(LT ) is a subspace of (range(L))⊥ having the same
dimension, and so ker(LT ) � (range(L))⊥.

To prove part (5), notice that for i 	 k � 1, ‖Avi‖ �
√

�i � �i � 0, by part (3) of
Lemma 9.4. Hence, {vk�1, . . . ,vn} is an orthonormal subset of ker(L). Also, vk�1, . . . ,vn
are nonzero (eigen)vectors, and so are linearly independent by Theorem 6.1. But part (2) of
Theorem 5.9 shows that dim(ker(L)) � n � rank(A) � n � k. Therefore, since
{vk�1, . . . ,vn} is a linearly independent subset of ker(L) having the correct size, it is
an orthonormal basis for ker(L).

Finally, to prove part (4), first note that {v1, . . . ,vk} is an orthonormal basis for (ker(L))⊥
by part (5) and Theorem 6.12. Now, from part (3), ker(LT ) � (range(L))⊥. If we replace the
m � n matrix A with the n � m matrix AT , the roles of L and LT are reversed. Thus, applying
part (3) of the theorem (with the matrix AT ) shows that ker(L) � (range(LT ))⊥. Taking the
orthogonal complement of both sides yields (ker(L))⊥ �

(
(range(LT ))⊥

)⊥
� range(LT ).

To finish the proof of part (4), recall from Section 5.3 that the range of a linear transforma-
tion equals the column space of the matrix for the transformation. Therefore, range(LT ) �
the column space of AT � the row space of A.

Example 4
Once again, consider the 3 � 2 matrix A from Examples 1, 2, and 3 having right
singular vectors {v1,v2} �

{
1√
2
[1,1], 1√

2
[�1,1]

}
and left singular vectors

{
u1,u2,u3

}
�{

1√
2
[0,1,�1], [�1,0,0], 1√

2
[0,1,1]

}
. Let L and LT be as given in Theorem 9.5. Since �1 � 2
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and �2 �
√

2, we see that k � 2. Then part (1) of Theorem 9.5 asserts that rank(A) = 2. We can
verify this by noting that

A �

⎡
⎢⎣ 1 �1

1 1
�1 �1

⎤
⎥⎦ row reduces to

⎡
⎢⎣1 0

0 1
0 0

⎤
⎥⎦ ,

which has rank 2.
Since k � 2, part (2) of Theorem 9.5 asserts that {u1,u2} �

{
1√
2
[0,1,�1], [�1,0,0]

}
is

an orthonormal basis for range(L), and part (3) asserts that
{
u3
}

is an orthonormal basis for
ker(LT ) � (range(L))⊥. We can verify these facts independently. Notice that by applying the
Range Method to the row reduced matrix for A, we see that dim(range(L)) � 2. Also note that

L
(

1
2
√

2
[1,1]

)
� 1√

2
[0,1,�1] � u1 and L

(
1
2 [�1,1]

)
� [�1,0,0] � u2. Thus, u1 and u2 are in

range(L), and since they are orthogonal unit vectors, they form a linearly independent set of
the right size, making {u1,u2} an orthonormal basis for range(L). Finally, the vector u3 is easily
shown to be in ker(LT ) by computing

LT (u3) � AT u3 �

[
1 1 �1

�1 1 �1

]⎡⎢⎢⎢⎣
0

1√
2

1√
2

⎤
⎥⎥⎥⎦�

⎡
⎢⎣0

0
0

⎤
⎥⎦ .

Since dim(range(L)) � 2, and the codomain of L is R
3, we have dim((range(L))⊥) � 1. Thus,

since u3 is a unit vector,
{
u3
}

is an orthonormal basis for (range(LT ))⊥ � ker(LT ).
Notice that the row space of A equals R

2, so by part (4) of Theorem 9.5, range(LT ) � R
2.

We can confirm this by noting that the orthonormal set {v1,v2} of right singular vectors is clearly
a basis for R

2. Finally, part (5) of Theorem 9.5 asserts dim(ker(L)) � 0, which can be verified
by applying the Kernel Method to the reduced row echelon form of A given earlier.

Singular Value Decomposition

We now have the machinery in place to easily prove the existence of a singular value
decomposition for any matrix.

Theorem 9.6 Let A be an m � n matrix, and let �1 	 �2 	 · · · 	 �k > �k�1 � · · · �
�n � 0 be the singular values of A. Also suppose that {v1, . . . ,vn} is a set of right singular
vectors for A, with vi corresponding to �i, and that {u1, . . . ,um} is a corresponding set
of left singular vectors for A. Let U be the m � m orthogonal matrix whose columns
are u1, . . . ,um, and let V be the n � n orthogonal matrix whose columns are v1, . . . ,vn.
Finally, let S represent the m � n “diagonal” matrix whose (i, i) entry equals �i, for
i � k, with all other entries equal to zero. Then

A � USVT .
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The expression of the matrix A as the product USVT, as given in Theorem 9.6, is
known as a singular value decomposition of A.6

Note that since rank(A) � k must be less than or equal to both m and n, all k of
the nonzero singular values for A will appear on the main diagonal of S, even though
some of the zero-valued singular values will not appear if m < n. If m > n, there
will be more main diagonal terms than there are singular values. All of these main
diagonal terms will be zero. Finally, note that we have used the capital Greek letter S
(sigma) for the diagonal matrix.This is traditional usage, and refers to the fact that the
singular values,which are denoted using the lowercase � (sigma),appear on the main
diagonal.

Proof. In general, we can prove that two m � n matrices B and C are equal by showing that
Bwi � Cwi for every wi in a basis {w1, . . . ,wn} for R

n. This is because we can consider B
and C to be matrices for linear transformations from R

n to R
m with respect to the standard

bases, and then by Theorem 5.4, since Bwi � Cwi for every wi in a basis, these linear
transformations must be the same. Finally, by the uniqueness of the matrix for a linear
transformation in Theorem 5.5, we must have B � C. We use this technique here to show
that A � USVT .

Consider the basis {v1, . . . ,vn} for R
n. For each i, 1 � i � n, USVT vi � USei, because

the basis {v1, . . . ,vn} is orthonormal, and the rows of VT are the vectors v1, . . . ,vn. If i � k,
USei � U(�iei) � �iUei � �i(ith column of U) � �iui � �i

1
�i

Avi � Avi. If i > k, then

USei � U(0) � 0. But when i > k, Avi � 0 by part (5) of Theorem 9.5. Hence, USVT vi �

Avi for every basis vector vi, and so A � USVT .

Example 5

Let us find a singular value decomposition for the matrix A �

⎡
⎢⎣ 1 �1

1 1
�1 �1

⎤
⎥⎦ from Examples 1

through 4. In these previous examples, we found the singular values �1 � 2 and �2 �
√

2, the
set of right singular vectors

{
1√
2
[1,1], 1√

2
[�1,1]

}
, and the corresponding set of left singular

vectors
{

1√
2
[0,1,�1], [�1,0,0], 1√

2
[0,1,1]

}
. Using the right singular vectors as the columns for

V, the left singular vectors as the columns of U, and the singular values on the diagonal of S

yields

V �
1√
2

[
1 �1
1 1

]
, U �

⎡
⎢⎢⎢⎣

0 �1 0

1√
2

0 1√
2

� 1√
2

0 1√
2

⎤
⎥⎥⎥⎦ , and S �

⎡
⎢⎣2 0

0
√

2
0 0

⎤
⎥⎦ .

6 We will see in Exercise 9 that a general decomposition of A of the form USVT ,where U,V are orthogonal
and with S as given in Theorem 9.6 is not necessarily unique.
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A quick computation verifies that

USVT �

⎡
⎢⎢⎢⎣

0 �1 0

1√
2

0 1√
2

� 1√
2

0 1√
2

⎤
⎥⎥⎥⎦
⎡
⎢⎣2 0

0
√

2
0 0

⎤
⎥⎦
(

1√
2

[
1 1

�1 1

])
�

⎡
⎢⎣ 1 �1

1 1
�1 �1

⎤
⎥⎦� A.

Example 6
Consider the 3 � 4 matrix

A �

⎡
⎢⎣ 4 0 4 0

�2 �6 �2 �6
5 3 5 3

⎤
⎥⎦ , for which AT A �

⎡
⎢⎢⎢⎣

45 27 45 27
27 45 27 45
45 27 45 27
27 45 27 45

⎤
⎥⎥⎥⎦ .

Now pAT A(x) � x4 � 180x3 � 5184x2 � x2(x � 144)(x � 36). Hence, the eigenvalues of AT A
are �1 � 144, �2 � 36, and �3 � �4 � 0. Thus, the singular values for A are the square
roots of these eigenvalues, namely �1 � 12, �2 � 6, and �3 � �4 � 0. Note that k � 2. Thus
rank (A) � 2.

Solving for fundamental eigenvectors for AT A and normalizing produces the following right
singular vectors for A: v1 � 1

2 [1,1,1,1],v2 � 1
2 [�1,1,�1,1], v3 � 1√

2
[�1,0,1,0], and v4 �

1√
2
[0,�1,0,1]. Luckily, the method for finding fundamental eigenvectors happened to produce

vectors v3 and v4 in this case that are already orthogonal. Otherwise we would have had to apply
the Gram-Schmidt Process to find an orthogonal basis for the eigenspace for �3 � �4 � 0.

Next we solve for the left singular vectors. Now, u1 � 1
�1

Av1 � 1
12 [4,�8,8] � 1

3 [1,�2,2].
Similarly, u2 � 1

�2
Av2 � 1

6 [�4,�4,�2] � 1
3 [�2,�2,�1]. To find u3, we apply the Indepen-

dence Test Method to the set {u1,u2,e1,e2,e3} and discover that {u1,u2,e1} is linearly
independent. Since u1 and u2 are already orthogonal, applying the Gram-Schmidt Process
to this set of vectors only affects the third vector, replacing it with 1

9 [4,�2,�4], which normalizes

to yield u3 � 1
3 [2,�1,�2].

Using all of these singular vectors and singular values, we obtain the matrices

U �
1

3

⎡
⎢⎣ 1 �2 2

�2 �2 �1
2 �1 �2

⎤
⎥⎦ , S �

⎡
⎢⎣12 0 0 0

0 6 0 0
0 0 0 0

⎤
⎥⎦ , and V �

⎡
⎢⎢⎢⎢⎢⎣

1
2 � 1

2 � 1√
2

0

1
2

1
2 0 � 1√

2
1
2 � 1

2
1√
2

0

1
2

1
2 0 1√

2

⎤
⎥⎥⎥⎥⎥⎦ .

You can verify that A � USVT .
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Let us also verify the various parts of Theorem 9.5. The matrix A row reduces to

B �

⎡
⎢⎣1 0 1 0

0 1 0 1
0 0 0 0

⎤
⎥⎦ ,

and so we have independently confirmed that rank(A) � 2, as part (1) of Theorem 9.5 claims.
Note that both u1 and u2 are in range(L), since L

([
1

12 , 1
12 ,0,0

])
�
[

1
3 ,� 2

3 , 2
3

]
� u1,

and L
([

� 1
6 , 1

6 ,0,0
])

�
[
� 2

3 ,� 2
3 ,� 1

3

]
� u2. Since rank(A) = 2,dim(range(L)) � 2. Therefore,

{u1,u2} is an orthonormal basis for range(L), as claimed in part (2) of Theorem 9.5. Check-
ing that AT u3 � 0 verifies the claim in part (3) of Theorem 9.5 that {u3} ⊆ ker(AT ). Since
ker(LT ) � (range(L))⊥ ⊆ R

3, we have dim((range(L))⊥) � 1. Therefore, {u3} is an orthonormal
basis for (range(L))⊥ � ker(LT ), as claimed by part (3) of Theorem 9.5.

Also, the 2 � 4 matrix whose rows are the vectors v1 and v2 row reduces to the matrix
whose two rows are the same as the first two rows of B. Therefore, by the Simplified Span
Method, the set {v1,v2} spans the same subspace as the rows of A. This verifies the claim
in part (4) of Theorem 9.5 that {v1,v2} is an orthonormal basis for the row space of A.
Finally, for part (5) of Theorem 9.5, a quick computation verifies that Av3 � Av4 � 0, and so
{v3,v4} ⊆ ker(A).

A Geometric Interpretation

Theorem 6.9 and Exercise 18 in Section 6.1 indicate that multiplying vectors in R
n by

an orthogonal matrix preserves the lengths of vectors and angles between them. Such
a transformation on R

n represents an isometry on R
n. In R

3, such isometries can
be shown to be compositions of orthogonal reflections and rotations. (See Exercise 6
in the Chapter Review Exercises for Chapter 6.) Therefore, by expressing an m � n
matrix A as the product USVT from a singular value decomposition, we are showing
that the linear transformation L:Rm → R

n given by L(v) � Av can be thought of as the
composition of an isometry on R

m, followed by a projection onto the first k axes of R
n

that is combined with a contraction or dilation along each of these k axes, followed
by another isometry on R

n.

Example 7

Let A �

[
9 12 �8

12 16 6

]
. Computing the eigenvalues and corresponding fundamental unit

eigenvectors for AT A yields �1 � 625, �2 � 100, and �3 � 0, with v1 � 1
5 [3,4,0], v2 � [0,0,1],

and v3 � 1
5 [�4,3,0]. Hence, k � 2, and the singular values for A are �1 � 25,�2 � 10, and

�3 � 0. The corresponding left singular vectors are u1 � 1
25 Av1 � 1

5 [3,4] and u2 � 1
10 Av2 �

1
5 [�4,3]. Hence, a singular value decomposition for A is

A � USVT �

⎡
⎣3

5 � 4
5

4
5

3
5

⎤
⎦[25 0 0

0 10 0

]⎡⎢⎣
3
5

4
5 0

0 0 1

� 4
5

3
5 0

⎤
⎥⎦ .
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Using methods from Chapter 6, the matrix VT can be shown, with some effort, to represent an
orthogonal reflection through the plane x � 2y � 2z � 0, followed by a clockwise rotation about
the axis [1,�2,2] through an angle of arccos

(4
5

)≈ 37◦.7 The matrix S then projects R
3 onto

the xy-plane, dilating by a factor of 25 in the x-direction and by a factor of 10 in the y-direction.
Finally, multiplying the result of this transformation by U rotates the plane counterclockwise
through an angle of arccos( 3

5 ) ≈ 53◦.

The Outer Product Form for Singular Value Decomposition

The next theorem introduces a different form for a singular value decomposition that
is frequently useful.

Theorem 9.7 Let A be an m � n matrix, and let �1 	 �2 	 · · · 	 �k > �k�1 � · · · �
�n � 0 be the singular values of A. Also suppose that {v1, . . . ,vn} is a set of right singular
vectors for A, with vi corresponding to �i, and that {u1, . . . ,um} is a corresponding set
of left singular vectors for A. Then

A � �1u1vT
1 � �2u2vT

2 � · · · � �kukvT
k .

The expression for A inTheorem 9.7 is called the outer product form of the given
singular value decomposition for A. In this decomposition,each ui is considered to be
a m � 1 matrix (that is, a column vector), while each vi is considered to be an n � 1
matrix (and so, vT

i is a row vector). Hence, each uivT
i is an m � n matrix.

Proof. To prove that A � �1u1vT
1 � · · · � �kukvT

k , we use the same strategy employed to
prove Theorem 9.6. In particular, we will show that the result of multiplying the matrix
(�1u1vT

1 � · · · � �kukvT
k ) by each vector in the basis {v1, . . . ,vn} for R

n gives the same
result as multiplying A times that vector.

For each i, 1 � i � k, we have

(�1u1vT
1 � · · · � �kukvT

k )vi � �1u1vT
1 vi � · · · � �iuiv

T
i vi � · · · � �kukvT

k vi

� 0 � · · · � �iui(1) � · · · � 0
(because the basis {v1, . . . ,vn} is orthonormal)

� �i

(
1

�i
Avi

)
� Avi .

7 Notice that �1 is an eigenvalue of VT with corresponding unit eigenvector 1
3 [1,�2,2]. An ordered

orthonormal basis for R
3 containing this vector is

(
1
3 [1,�2,2], 1

3 [2,�1,�2], 1
3 [2,2,1]

)
.The matrix for VT

with respect to this basis is

⎡
⎢⎣

�1 0 0
0 4

5
3
5

0 � 3
5

4
5

⎤
⎥⎦. This is equal to the product

⎡
⎢⎣

1 0 0
0 4

5
3
5

0 � 3
5

4
5

⎤
⎥⎦
⎡
⎣�1 0 0

0 1 0
0 0 1

⎤
⎦,

where the latter matrix represents an orthogonal reflection through the plane perpendicular to the first
ordered basis vector (that is, the plane perpendicular to [1,�2,2]) and the former matrix represents a
counterclockwise rotation of angle arcsin

(
�3

5

) (
or, a clockwise rotation of angle arccos

( 4
5

))
about an

axis in the direction of the vector [1,�2,2].
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If i > k, then

(�1u1vT
1 � · · · � �kukvT

k )vi � 0 � Avi, by part (5) of Theorem 9.5.

Therefore, for every i, (�1u1vT
1 � · · · � �kukvT

k )vi � Avi, completing the proof of the
theorem.

Example 8

Consider again the matrix A �

⎡
⎢⎣ 1 �1

1 1
�1 �1

⎤
⎥⎦ from Examples 1 through 5. Note that

�1u1vT
1 � �2u2vT

2 � 2

⎛
⎜⎝ 1√

2

⎡
⎢⎣ 0

1
�1

⎤
⎥⎦
⎞
⎟⎠( 1√

2
[1,1]

)
�

√
2

⎡
⎢⎣�1

0
0

⎤
⎥⎦( 1√

2
[�1,1]

)

�

⎡
⎢⎣ 0 0

1 1
�1 �1

⎤
⎥⎦�

⎡
⎢⎣1 �1

0 0
0 0

⎤
⎥⎦�

⎡
⎢⎣ 1 �1

1 1
�1 �1

⎤
⎥⎦� A.

Similarly, if A �

⎡
⎢⎣ 4 0 4 0

�2 �6 �2 �6
5 3 5 3

⎤
⎥⎦, the matrix from Example 6, then

�1u1vT
1 � �2u2vT

2 � 12

⎛
⎜⎝1

3

⎡
⎢⎣ 1

�2
2

⎤
⎥⎦
⎞
⎟⎠(1

2
[1,1,1,1]

)
� 6

⎛
⎜⎝1

3

⎡
⎢⎣�2

�2
�1

⎤
⎥⎦
⎞
⎟⎠(1

2
[�1,1,�1,1]

)

�

⎡
⎢⎣ 2 2 2 2

�4 �4 �4 �4
4 4 4 4

⎤
⎥⎦�

⎡
⎢⎣2 �2 2 �2

2 �2 2 �2
1 �1 1 �1

⎤
⎥⎦

�

⎡
⎢⎣ 4 0 4 0

�2 �6 �2 �6
5 3 5 3

⎤
⎥⎦� A.

Digital Images

One application of the outer product form for a singular value decomposition is in the
compression of digital images. For example,a black-and-white image8 is represented by
an m � n array of integers,with each entry giving a grayscale value (based on its relative
lightness/darkness to the other pixels) for a single pixel in the image. If A represents

8 Color images can be handled by considering each of the three fundamental colors separately.
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this matrix of values, we can compute its singular values and corresponding singular
vectors. In a typical photograph, many of the singular values are significantly smaller
than the first few. As the values of �i get smaller, the corresponding terms �iuivT

i in
the outer product form of the singular value decomposition have considerably less
influence on the final image than the larger terms that came before them. In this way,
we can still get a reasonably close rendition of the picture even if we cut out many
of the nonzero terms in the outer product form. Thus, the picture can essentially be
stored digitally using much less storage space.

For example, consider the black-and-white photograph in Figure 9.2, which is 530
pixels by 779 pixels.This particular picture is represented by a 530 � 779 matrix A of
grayscale values. Thus, A has 530 singular values. Using computer software (we used
MATLAB),we can compute the outer product form of the singular value decomposition
for A, and then truncate the sum by eliminating many of the terms corresponding to
smaller singular values. In Figure 9.3 we illustrate the resulting photograph by using
just 10,25,50,75,100,and 200 of the 530 terms in the decomposition. Instructions for
how to perform these computations in MATLAB can be found in the Student Solutions
Manual for this textbook as part of the answer to Exercise 15.

The Pseudoinverse

If D is a “diagonal” m � n matrix having rank k, whose first k diagonal entries are
nonzero, then the n � m “diagonal” matrix D� whose first k diagonal entries are the
reciprocals of those of D, with the rest being zero, has the property that D�D is the
n � n diagonal matrix whose first k diagonal entries are 1, and the rest are zero.Thus,

FIGURE 9.2

Grand Tetons, 1984, by Lyn Hecker. Used with permission
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(a) (b)

(c) (d)

(e) (f )

FIGURE 9.3

Compressed images of “Grand Tetons”: (a) using 10 terms; (b) using 25 terms; (c) using 50 terms;
(d) using 75 terms; (e) using 100 terms; (f) using 200 terms
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D� is as close as we can get to creating a left inverse for the matrix D, considering
that D has rank k. We will use the singular value decomposition to find an analogous
pseudoinverse for any m � n matrix A.

Definition Suppose A is an m � n matrix of rank k with singular value decompo-
sition A � USVT . Let S� be the n � m “diagonal” matrix whose first k diagonal
entries are the reciprocals of those of S,with the rest being zero.Then the n � m
matrix A� � VS�UT is called a pseudoinverse of A.

Example 9

A pseudoinverse of the matrix A �

⎡
⎢⎣ 1 �1

1 1
�1 �1

⎤
⎥⎦ from Examples 1 through 5 is

A� � VS�UT �

(
1√
2

[
1 �1
1 1

])⎡⎣1
2 0 0

0 1√
2

0

⎤
⎦
⎡
⎢⎢⎢⎣

0 1√
2

� 1√
2

�1 0 0

0 1√
2

1√
2

⎤
⎥⎥⎥⎦�

⎡
⎣ 1

2
1
4 � 1

4

� 1
2

1
4 � 1

4

⎤
⎦ .

Note that A�A � I2.

If A �

⎡
⎢⎣ 4 0 4 0

�2 �6 �2 �6
5 3 5 3

⎤
⎥⎦, the matrix from Example 6, then

A� � VS�UT �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 � 1

2 � 1√
2

0

1
2

1
2 0 � 1√

2

1
2 � 1

2
1√
2

0

1
2

1
2 0 1√

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
12 0 0

0 1
6 0

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
3 � 2

3
2
3

� 2
3 � 2

3 � 1
3

2
3 � 1

3 � 2
3

⎤
⎥⎥⎥⎦

�
1

72

⎡
⎢⎢⎢⎣

5 2 4
�3 �6 0

5 2 4
�3 �6 0

⎤
⎥⎥⎥⎦ .

In this case,

A�A �
1

2

⎡
⎢⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎥⎦ .
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We can see why the product A�A cannot equal I4 when we consider the linear transformation
L whose matrix with respect to the standard basis is A. Since L sends all vectors in ker(L) to
zero, the only vectors in R

4 that can be restored after left multiplication by A� are those in
(ker(L))⊥. In fact, in part (c) of Exercise 11 you are asked to prove that A�A is the matrix for the
orthogonal projection of R

4 onto (ker(L))⊥ with respect to the standard basis. By parts (4) and (5)
of Theorem 9.5,

{
v1,v2

}
�
{

1
2 [1,1,1,1], 1

2 [�1,1,�1,1]
}

is an orthonormal basis for (ker(L))⊥,

while {v3,v4} �
{

1√
2
[�1,0,1,0], 1√

2
[0,�1,0,1]

}
is an orthonormal basis for ker(L). You can

verify that A�A represents the desired projection by checking that A�Av1 � v1, A�Av2 �

v2,A�Av3 � 0, and A�Av4 � 0.

In Section 8.10, we studied least-squares solutions for inconsistent linear systems
Ax � b. In that section we discovered that if such a system does not have a solution,
we can still find a vector x such that Ax is as close as possible to b; that is, where
‖Ax � b‖ is a minimum. Such least-squares solutions are useful in many applications.
Our next theorem shows that a least-squares solution can be found for a linear system
by using a pseudoinverse of A.

Theorem 9.8 Let A be an m � n matrix and let A� be a pseudoinverse for A. Then
x � A�b is a least-squares solution to the linear system Ax � b.

Proof. Let A be an m � n matrix, let A� be a pseudoinverse for A, and let Ax � b be a
linear system. By part (3) of Theorem 8.8, x is a least-squares solution to Ax � b if and
only if (AT A)x � AT b. We will prove that this equation holds for x � A�b.

Now, by Theorem 6.3, since the left singular vectors {u1, . . . ,um} form an orthonormal
basis for R

m, b � a1u1 � · · · � amum, with ai � b · ui. Writing A as USVT and A� as
VS�UT , we get

(AT A)x � (AT A)A�b � AT (USVT
)(VS�UT )(a1u1 � · · · � amum)

� AT US(VT V)S�
(a1e1 � · · · � amem) (since UT ui � ei)

� AT US(In)

(
a1

1

�1
e1 � · · · � ak

1

�k
ek

)

� AT U(a1e1 � · · · � akek)

� AT (a1u1 � · · · � akuk)

� AT (a1u1 � · · · � amum) (since AT ui � 0 for i > k
by part (3) of Theorem 9.5)

� AT b.
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Example 10
Consider the linear system

⎡
⎢⎣ 4 0 4 0

�2 �6 �2 �6
5 3 5 3

⎤
⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦�

⎡
⎢⎣7

1
2

⎤
⎥⎦ .

Gaussian elimination shows that this system is inconsistent. Let A be the given coefficient matrix.
We can find a least-squares solution to this system using the pseudoinverse A� for A that
we computed in Example 8. Using b � [7,1,2] yields x � A�b � 1

8 [5,�3,5,�3]. Note that
Ax � [5,2,4]. While this might not seem particularly close to b � [7,1,2], it is, in fact, the
closest product of the form Ax to the vector b. The reason for this is that vectors of the form
Ax constitute range(L), and by Theorem 6.17, the projection of b onto range(L) is the closest
vector in range(L) to b. If we express b as a linear combination of u1,u2,u3 from Example 8,
we see that b � 3u1 � 6u2 � 3u3. By part (2) of Theorem 9.5, the projection vector equals
3u1 � 6u2 � [5,2,4], which is exactly what we have obtained.

New Vocabulary

isometry
left singular vectors (for a matrix)
outer product form (of singular value

decomposition)

pseudoinverse (of a matrix)
right singular vectors (for a matrix)
singular value decomposition
singular values (of a matrix)

Highlights

■ If A is an m � n matrix, and �1 	 �2 	 · · · 	 �k > �k�1 � · · · � �n � 0 are the
eigenvalues of AT A, written in nonincreasing order, and if �i �

√
�i , then �1 	

�2 	 · · · 	 �k > �k�1 � · · · � �n � 0 are called the singular values of A.

■ If A is an m � n matrix,and if {v1, . . . ,vn} is an orthonormal set of eigenvectors for
AT A,with vi corresponding to �i (where the �i values are listed in nonincreasing
order), then {v1, . . . ,vn} is called a corresponding set of right singular vectors
for A. If ui � 1

�i
Avi ,for 1 � i � k (where the �i values are listed in nonincreasing

order), and uk�1, . . . ,um are chosen so that {u1, . . . ,um} is an orthonormal basis
for R

m,then {u1, . . . ,um} is called a set of left singular vectors for A corresponding
to the set {v1, . . . ,vn} of right singular vectors.

■ If A is an m � n matrix, �1, . . . ,�n are the eigenvalues of AT A, �1, . . . ,�n are
the singular values of A, and {v1, . . . ,vn} is a corresponding set of right singular
vectors for A, then (Avi)⊥(Avj) for i �� j,and (Avi) · (Avi) � ‖Avi‖2 � �i � �2

i .

■ If A is an m � n matrix, �1, . . . ,�n are the eigenvalues of AT A, {v1, . . . ,vn} is a
corresponding set of right singular vectors for A, and x � a1v1 � · · · � anvn,
then (Ax) · (Avi) � ai�i .
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■ If A is an m � n matrix, with singular values �1 	 �2 	 · · · 	 �k > �k�1 � · · · �
�n � 0, a corresponding set {v1, . . . ,vn} of right singular vectors for A, and a
corresponding set {u1, . . . ,um} of left singular vectors for A, and if L : R

n → R
m

is a linear transformation given by L(x) � Ax, then rank(A) � k, {v1, . . . ,vk} is
an orthonormal basis for (ker(L))⊥, {vk�1, . . . ,vn} is an orthonormal basis for
ker(L), {u1, . . . ,uk} is an orthonormal basis for range(L), and {uk�1, . . . ,um} is an
orthonormal basis for (range(L))⊥.

■ Let A be an m � n matrix,with singular values �1 	 �2 	 · · · 	 �k > �k�1 � · · · �
�n � 0. Then a singular value decomposition for A is given by USVT , where V
is an n � n orthogonal matrix whose columns are v1, . . . ,vn, a corresponding
set of right singular vectors for A, and U is the m � m orthogonal matrix whose
columns are u1, . . . ,um, a corresponding set of left singular vectors for A, and
S is the m � n “diagonal” matrix whose (i, i) entry equals �i , for i � k, with all
other entries equal to zero.

■ If A is an m � n matrix, and �1 	 �2 	 · · · 	 �k > �k�1 � · · · � �n � 0 are the
singular values of A, with a corresponding set {v1, . . . ,vn} of right singular vectors
for A, and a corresponding set {u1, . . . ,um} of left singular vectors for A, then
the outer product form of the related singular value decomposition for A is
�1u1vT

1 � �2u2vT
2 � · · · � �kukvT

k .

■ If A is an m � n matrix of rank k with singular value decomposition A � USVT,
and S� is the n � m “diagonal” matrix whose first k diagonal entries are the
reciprocals of those of S, with the rest being zero, then a pseudoinverse of A is
given by the n � m matrix A� � VS�UT .

■ If A is an m � n matrix and A� is a pseudoinverse for A, then x � A�b is a
least-squares solution to the linear system Ax � b.

EXERCISES FOR SECTION 9.5
1. In each part, find a singular value decomposition for the given matrix A.

�(a) A �

[
3 4
5 0

]

(b) A �

[
1 �17

18 �6

]

�(c) A �

[
7 20 �17

�9 0 9

]

(d) A �

[
3 �4 �10
6 �8 5

]

(e) A � 1
49

⎡
⎣40 6 18

6 45 �12
18 �12 13

⎤
⎦

�(f ) A � 1
7

⎡
⎣10 14

12 0
1 7

⎤
⎦
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(g) A � 1
11

⎡
⎣12 6

12 �27
14 18

⎤
⎦ (h) A � 1

15

⎡
⎣16 12 �12 �16

5 �15 15 �5
13 �9 9 �13

⎤
⎦

2. In each part, find a pseudoinverse A� for the given matrix A. Then use the
pseudoinverse to find a least-squares solution v for the system Ax � b with the
given vector b. Finally, verify that AT Av � AT b.

�(a) A � 1
15

⎡
⎣ 94 �128

95 110
142 46

⎤
⎦; b �

⎡
⎣ 3

27
28

⎤
⎦

(b) A �

⎡
⎣ 4 �3

11 �2
5 �10

⎤
⎦; b �

⎡
⎣ 0

15
�20

⎤
⎦

�(c) A � 1
14

⎡
⎢⎢⎣

23 �11 �6
5 25 6

19 �17 6
1 19 18

⎤
⎥⎥⎦; b �

⎡
⎢⎢⎣

3
2
9
4

⎤
⎥⎥⎦

(d) A �

⎡
⎢⎢⎣

1 3 1
0 2 2
2 2 �2
2 1 �3

⎤
⎥⎥⎦; b �

⎡
⎢⎢⎣

5
2
1
3

⎤
⎥⎥⎦

3. In each part, write out the outer product form of the singular value decompo-
sition of the given matrix A. Note that these are all matrices from Exercise 1.
In parts (a), (b), and (c), a regular singular value decomposition for A appears
in the Answer Key for Exercise 1. For these three parts,you may start from that
point, using the information in Appendix D.

�(a) A �

[
3 4
5 0

]

(b) A �

[
7 20 �17

�9 0 9

]

�(c) A � 1
7

⎡
⎣10 14

12 0
1 7

⎤
⎦

(d) A � 1
11

⎡
⎣12 6

12 �27
14 18

⎤
⎦

(e) A � 1
15

⎡
⎣16 12 �12 �16

5 �15 15 �5
13 �9 9 �13

⎤
⎦

4. Prove that if A is an n � n orthogonal matrix, then two possible singular value
decompositions for A are AInIn and InInA.

5. Let A be an m � n matrix. Suppose that A � USVT, with U and V orthogonal
matrices and S a diagonal m � n matrix. Prove that the ith column of V must
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be an eigenvector for AT A corresponding to the eigenvalue equal to the square
of the (i, i) entry of S if i � m, and corresponding to the eigenvalue 0 if i > m.

6. Let A be a symmetric matrix. Prove that the singular values of A equal the
absolute values of its eigenvalues. (Hint: Let D � PT AP be an orthogonal diag-
onalization for A,with the eigenvalues of A along the main diagonal of D. Also,
use Exercise 5.)

7. If A is an m � n matrix and �1 is the largest singular value for A, then ‖Av‖ �
�1 ‖v‖ for all v ∈ R

n. (Note that ‖Av1‖ � �1 by part (3) of Lemma 9.4.)

8. Let A be an m � n matrix and let USVT be a singular value decomposition
for A.
�(a) Show that V is not unique, because a different singular value decompo-

sition for A could be found by multiplying any column of V by �1, and
then adjusting U in an appropriate manner.

�(b) Show that if one of the eigenspaces of AT A has dimension greater than
1, there is a greater choice involved for the columns of V than indicated
in part (a).

(c) Prove that � is uniquely determined by A. (Hint: Use Exercise 5.)

(d) If there are k nonzero singular values of A, show that the first k columns
of U are uniquely determined by the matrix V.

(e) If there are k nonzero singular values of A, and if k < m, show that
columns k � 1 through m of U are not uniquely determined, with two
choices if m � k � 1, and an infinite number of choices if m > k � 1.

�9. Let A be an m � n matrix having rank k, with k < n.

(a) Explain why right singular vectors v1, . . . ,vk for A can not be found
by merely performing the Gram-Schmidt Process on the set of rows of
A, eliminating the zero vectors, and normalizing, even though part (4)
of Theorem 9.5 says that {v1, . . . ,vk} is an orthonormal basis for the row
space of A.

(b) Explain why right singular vectors vk�1, . . . ,vn can be found using the
Kernel Method on A, and then using the Gram-Schmidt Process and
normalizing.

10. Let A be an m � n matrix having rank k, let USVT be a singular value
decomposition for A, and let A� be the corresponding pseudoinverse for A.
�(a) Compute A�Avi for each i, for 1 � i � k.

�(b) Compute A�Avi for each i, for k < i.

(c) Let L: Rn → R
m be the linear transformation whose matrix with respect

to the standard bases is A. Use parts (a) and (b) to prove that A�A is the
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matrix for the orthogonal projection onto (ker(L))⊥ with respect to the
standard basis for R

n.

(d) Prove that AA�A � A. (Hint: Show that multiplying by AA�A has the
same effect on {v1, . . . ,vn} as multiplication by A.)

(e) Show that if A is a nonsingular matrix, then A� � A�1. (Hint: Use part
(d).)

11. Let A be an m � n matrix having rank k, let USVT be a singular value
decomposition for A, and let A� be the corresponding pseudoinverse for A.
�(a) Compute A�ui and AA�ui for each i, for 1 � i � k.
�(b) Compute A�ui and AA�ui for each i, for k < i.

(c) Let L: Rn → R
m be the linear transformation whose matrix with respect

to the standard bases is A. Use parts (a) and (b) to prove that AA� is the
matrix for the orthogonal projection onto range(L) with respect to the
standard basis for R

m.

(d) Prove that A�AA� � A�. (Hint: Show that multiplying by A�AA� has
the same effect on {u1, . . . ,um} as multiplication by A�.)

(e) Prove that A� is independent of the particular singular value decompo-
sition used for A. That is, show that every m � n matrix A has a unique
pseudoinverse. (Hint: Use part (c) of Exercise 10 to show that A�u is
uniquely determined for all u ∈ range(L). Then use part (b) of this exer-
cise to show that A�u is uniquely determined for all u ∈ (range(L))⊥.
Combine these results to show that A�u is uniquely determined on a
basis for R

m.)

12. Let A be an m � n matrix having rank k, and let �1, . . . ,�k be the nonzero
singular values for A. Prove that the sum of the squares of the entries of A equals
�2

1 � · · · � �2
k . (Hint: Use the singular value decomposition of A and parts (a)

and (c) of Exercise 26 in Section 1.5.)

13. Let A be an m � n matrix having rank k, and suppose that �1, . . . ,�k are the
nonzero singular values for A, and that {u1, . . . ,um} and {v1, . . . ,vn} are corre-
sponding sets of right and left singular vectors, respectively, for A. For i, j with
1 � i < j � k,suppose that Aij � �iuivT

i � · · · � �jujvT
j . Prove that Aij has rank

j � i � 1 and that the nonzero singular values for Aij are �i , . . . ,�j . (Hint: Con-
sider the matrices V1 and U1,which are obtained,respectively,from V and U by
moving columns i through j to the beginning of each matrix and rearranging
the other columns accordingly. Also let S1 be the diagonal m � n matrix with
�i through �j as its first diagonal entries, and with all other diagonal entries
equal to zero. Show that U1S1V1 is a singular value decomposition for Aij .)

�14. Suppose A is a 5 � 6 matrix determined by the following singular values and
left and right singular vectors:
�1 � 150, �2 � 30, �3 � 15, �4 � 6, �5 �3,
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v1 � 1
2 [1,0,1,�1,0,�1], v2 � 1

2 [1,0,�1,1,0,�1], v3 � 1
2 [1,�1,0,0,1,1],

v4 � 1
2 [1,1,0,0,�1,1], v5 � 1

2 [0,1,1,1,1,0], v6 � 1
2 [0,1,�1,�1,1,0],

u1 � 1
3 [1,0,2,0,2], u2 � 1

3 [2,0,1,0,�2], u3 � 1
3 [2,0,�2,0,1],

u4 � 1
5 [0,3,0,�4,0], and u5 � 1

5 [0,4,0,3,0].
(a) Use the outer product form of the singular value decomposition to find

the matrix A.

(b) For each i with 1 � i � 4, compute Ai � �1u1vT
1 � · · · � �iuivT

i .

(c) For any matrix B, define N (B) to be the square root of the sum of the
squares of the entries of B. (If you think of an m � n matrix as a vector
with mn entries in R

mn, this would be its norm.) For each i with 1 � i � 4,
compute N (A � Ai)/N (A). (Hint: Use Exercises 12 and 13.)

(d) Explain how this exercise relates to the discussion of the compression of
digital images in the textbook.

�15. Using a black-and-white digital image file, use appropriate software to analyze
the effect of eliminating some of the smaller singular values by producing a
sequence of adjusted images,starting with using only a small percentage of the
singular values and progressing up to using all of them. Detailed instructions
on how to do this in MATLAB are included in the Student Solutions Manual
under this exercise.

�16. True or False:

(a) For every matrix A, AT A � AAT .

(b) All of the singular values of a matrix are nonnegative.

(c) If A is an m � n matrix and v,w ∈ R
n,with v · w � 0,then (Av) · (Aw) � 0.

(d) If A is an m � n matrix,then a set of left singular vectors for A is completely
determined by A and the corresponding set of right singular vectors.

(e) The right singular vectors {vk�1, . . . ,vn} form an orthonormal basis for
(ker(L))⊥.

(f ) If A and B are m � n matrices such that Av � Bv for every vector v in a
basis for R

n, then A � B.

(g) Every m � n matrix has a unique singular value decomposition.

(h) If USVT is a singular value decomposition for a matrix A, then VST UT is
a singular value decomposition for AT .

(i) Only nonsingular square matrices have pseudoinverses.

(j) For a nonsingular matrix, its pseudoinverse must equal its inverse.

(k) The outer product form of the singular value decomposition for a matrix
might not use all of the right singular vectors.
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APPENDIX

AMiscellaneous Proofs

In this appendix, we present some proofs of theorems that were omitted from the
text.

Proof of Theorem 1.14, Part (1)

Part (1) of Theorem 1.14 can be restated as follows:

Theorem 1.14, Part (1) If A is an m � n matrix, B is an n � p matrix, and C is a p � r
matrix, then A(BC) � (AB)C.

Proof. We must show that the (i, j) entry of A(BC) is the same as the (i, j) entry of (AB)C.
Now,

(i, j) entry of A(BC) � [ith row of A] · [ jth column of BC]

� [ith row of A] ·
[ p∑

k�1

b1kckj ,
p∑

k�1

b2kckj , . . . ,
p∑

k�1

bnkckj

]

� ai1

( p∑
k�1

b1kckj

)
� ai2

( p∑
k�1

b2kckj

)
� · · · � ain

( p∑
k�1

bnkckj

)

�

p∑
k�1

(
ai1b1kckj � ai2b2kckj � · · · � ainbnkckj

)
.

Similarly, we have

(i, j) entry of (AB)C � [ith row of AB] · [ jth column of C]

�

[
n∑

k�1

aikbk1,
n∑

k�1

aikbk2, . . . ,
n∑

k�1

aikbkp

]
· [ jth column of C]

Elementary Linear Algebra
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�

(
n∑

k�1

aikbk1

)
c1j �

(
n∑

k�1

aikbk2

)
c2j � · · · �

(
n∑

k�1

aikbkp

)
cpj

�

n∑
k�1

(
aikbk1c1j � aikbk2c2j � · · · � aikbkpcpj

)
.

It then follows that the final sums for the (i, j) entries of A(BC) and (AB)C are equal,
because both are equal to the giant sum of terms⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ai1b11c1j � ai1b12c2j � ai1b13c3j � · · · � ai1b1pcpj
ai2b21c1j � ai2b22c2j � ai2b23c3j � · · · � ai2b2pcpj

...
ainbn1c1j � ainbn2c2j � ainbn3c3j � · · · � ainbnpcpj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

Notice that the ith term in the sum for A(BC) represents the ith column of terms in the
giant sum, whereas the ith term in the sum for (AB)C represents the ith row of terms in
the giant sum. Hence, the (i, j) entries of A(BC) and (AB)C agree.

Proof of Theorem 2.4

Theorem 2.4 Every matrix is row equivalent to a unique matrix in reduced row echelon
form.

The proof of this theorem uses Theorem 2.8, which states that two row equivalent
matrices have the same row space. Please note that, although Theorem 2.8 appears
later in the text than Theorem 2.4, the proof of Theorem 2.8 given in the text is
independent of Theorem 2.4, so we are not employing a circular argument here.

Proof. Suppose A and B are two m � n matrices in reduced row echelon form, both row
equivalent to an m � n matrix C. We will prove that A � B.

We begin by showing that the pivots in A and B are in the same locations. Suppose
that a1, . . . ,am are the rows of A and �1, . . . ,�m are defined so that if there is a pivot in row
i, then �i is the column in which the pivot appears, and otherwise �i � n � 1. Note that
�1 � �2 � . . . � �m, with �i � �i�1 only if both equal n � 1. Similarly define b1, . . . ,bm and
�1, . . . ,�m for the matrix B. We need to prove that �i � �i for all i.

If not, let j be the smallest subscript such that �j �� �j . That is, �i � �i for all i < j.
Without loss of generality, assume that �j < �j . Now, because A and B are both row
equivalent to C, we know that A is row equivalent to B. (If C � Rk(· · ·(R2(R1(A))) · · ·)
and C � Sl(· · ·(S2(S1(B))) · · ·) for some row operations R1, . . . ,Rk,S1, . . . ,Sl , then B �
S�1

1 (· · ·(S�1
l�1(S

�1
l (Rk(· · ·(R2(R1(A))) · · ·)))) · · ·).) Hence, by Theorem 2.8, A and B have

the same row spaces. In particular, the jth row of A is in the row space of B. That is, there
are real numbers d1, . . . ,dm such that

aj � d1b1 � · · · � djbj � · · · � dmbm.
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Since B is in reduced row echelon form, the entries in columns �1, . . . ,�j�1 of (d1b1 � · · · �
djbj � · · · � dmbm) must equal d1, . . . ,dj�1. But, because �i � �i for all i < j, a j has a zero
in all of these columns, and so d1 � d2 � · · · � dj�1 � 0. Also, since �j < �j , (djbj � · · · �
dmbm) equals zero in the �j column, while a j equals 1 in this column. (Note that �j �� n � 1,
since we must have �j < �j � n � 1.) This contradiction shows that we can not have any �j ��
�j . Therefore, the reduced row echelon form matrices A and B have pivots in exactly the same
columns.

Finally, we prove that a i � bi for all i. For a given i, if �i � �i � n � 1, then a i � bi � 0.
If �i � �i < n � 1, then, again, since A and B have the same row spaces, there are real
numbers d1, . . . ,dm such that

a i � d1b1 � · · · � dibi � · · · � dmbm.

But the entries in columns �1, . . . ,�i�1,�i�1, . . . ,�m of a i equal zero, implying that
d1 � · · · � di�1 � di�1 � · · · � dm � 0, since the same columns contain the pivots for B.
Similarly, the entry in the �i column of both a i and bi equals 1. Hence, di � 1, and so
a i � bi.

Proof of Theorem 2.9

Theorem 2.9 Let A and B be n � n matrices. If either product AB or BA equals In,
then the other product also equals In, and A and B are inverses of each other.

We say that B is a left inverse of A and A is a right inverse of B whenever BA � In.

Proof. We need to show that any left inverse of a matrix is also a right inverse, and vice
versa.

First, suppose that B is a left inverse of A; that is, BA � In. We will show that AB � In.
To do this, we show that rank(A) � n, then use this to find a right inverse C of A, and finally
show B � C.

Consider the homogeneous system AX � O of n equations and n unknowns. This sys-
tem has only the trivial solution, because multiplying both sides of AX � O by B on the left,
we obtain

B(AX) � BO ” (BA)X � O ” InX � O ” X � O.

By Theorem 2.5, rank(A) � n, and every column of A becomes a pivot column during the
Gauss-Jordan method. Therefore, each of the augmented matrices

⎡
⎣ A

∣∣∣∣∣∣
1st

column
of In

⎤
⎦ ,

⎡
⎣ A

∣∣∣∣∣∣
2nd

column
of In

⎤
⎦ , . . . ,

⎡
⎣ A

∣∣∣∣∣∣
nth

column
of In

⎤
⎦

represents a system with a unique solution. Consider the matrix C, whose ith column is the
solution to the ith of these systems. Then C is a right inverse for A, because the product
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AC � In. But then

B � B(In) � B(AC) � (BA)C � InC � C.

Hence, B is also a right inverse for A.
Conversely, suppose that B is a right inverse for A; that is, AB � In. We must show that

B is also a left inverse for A. By assumption, A is a left inverse for B. However, we have
already shown that any left inverse is also a right inverse. Therefore, A must be a (full)
inverse for B, and AB � BA � In. Hence, B is a left (and a full) inverse for A.

Proof of Theorem 3.3, Part (3), Case 2

Theorem 3.3, Part (3), Case 2 Let A be an n � n matrix with n > 2. If R is the row
operation 〈n � 1〉 ↔ 〈n〉, then |R(A)| � �|A|.

Proof. Suppose R is the row operation 〈n � 1〉 ↔ 〈n〉, switching the last two rows of A. Let
B � R(A). Define the notation Ai, j to represent the (n � 2) � (n � 2) submatrix formed
by deleting rows n � 1 and n, as well as deleting columns i and j from A. Define Bi, j

similarly. Notice that because the first n � 2 rows of A and B are identical, Ai, j � Bi, j , for
1 � i, j � n.

The following observation is useful in what follows: Since the ith column of B is removed
from the submatrix Bni, any element of the form bkj is in the jth column of Bni if j < i, but
bkj is in the ( j � 1)st column of Bni if j > i. Similarly, since the jth column of A is removed
from Anj , any element of the form aki is in the ith column of Anj if i < j, but aki is in the
(i � 1)st column of Anj if i > j.

Now,

|B| �

n∑
i�1

bniBni �

n∑
i�1

(�1)n�ibni|Bni|

�

n∑
i�1

(�1)n�ibni

⎛
⎝i�1∑

j�1

(�1)(n�1)�jb(n�1)j |Bi, j | �

n∑
j�i�1

(�1)(n�1)�(j�1)b(n�1)j |Bi, j |
⎞
⎠

�

n∑
i�1

i�1∑
j�1

(�1)2n�i�j�1bnib(n�1)j |Bi, j | �

n∑
i�1

n∑
j�i�1

(�1)2n�i�j�2bnib(n�1)j |Bi, j |

�
∑
i,j
j<i

(�1)2n�i�j�1bnib(n�1)j |Bi, j | �
∑
i,j
j>i

(�1)2n�i�j�2bnib(n�1)j |Bi, j |.

But, bni � a(n�1)i, and b(n�1)j � anj , because we are switching rows n and n � 1. Also
recall that Ai, j � Bi, j . Making these substitutions and then reversing the previous steps,
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we have

|B| �
∑
i, j
j<i

(�1)2n�i�j�1a(n�1)ianj |Ai, j | �
∑
i, j
j>i

(�1)2n�i�j�2a(n�1)ianj |Ai, j |

� (�1)
∑
i, j
j<i

(�1)2n�i�j�2anja(n�1)i|Ai, j | � (�1)
∑
i, j
j>i

(�1)2n�i�j�1anja(n�1)i|Ai, j |

� �

⎛
⎝ n∑

j�1

n∑
i�j�1

(�1)2n�i�j�2anja(n�1)i|Ai, j | �

n∑
j�1

j�1∑
i�1

(�1)2n�i�j�1anja(n�1)i|Ai, j |
⎞
⎠

� �

⎛
⎝ n∑

j�1

(�1)n�janj

⎛
⎝ n∑

i�j�1

(�1)n�i�2a(n�1)i|Ai, j | �

j�1∑
i�1

(�1)n�i�1a(n�1)i|Ai, j |
⎞
⎠
⎞
⎠

� �

n∑
j�1

(�1)n�janj

⎛
⎝ n∑

i�j�1

(�1)(n�1)�(i�1)a(n�1)i|Ai, j | �

j�1∑
i�1

(�1)(n�1)�ia(n�1)i|Ai, j |
⎞
⎠

� �

n∑
j�1

(�1)n�janj |Anj | � �

n∑
j�1

anjAnj � �|A|.

This completes Case 2.

Proof of Theorem 5.29

Theorem 5.29 (Cayley-Hamilton Theorem) Let A be an n � n matrix, and let pA(x) be
its characteristic polynomial. Then pA(A) � On.

Proof. Let A be an n � n matrix with characteristic polynomial pA(x) � |xIn � A| � xn �
an�1xn�1 � an�2xn�2 � · · · � a1x � a0, for some real numbers a0, . . . ,an�1. Consider the
(classical) adjoint B(x) of xIn � A (see Section 3.3). By Theorem 3.11,

(xIn � A)B(x) � pA(x)In,

for every x ∈ R. We will find an expanded form for B(x) and then use the preceding equation
to show that pA(A) reduces to On.

Now, each entry of B(x) is defined as 
 the determinant of an (n � 1) � (n � 1) minor of
xIn � A and hence is a polynomial in x of degree �n � 1 (see Exercise 22 in Section 3.4).
For each k, 0 � k � n � 1, create the matrix Bk whose (i, j) entry is the coefficient of xk in
the (i, j) entry of B(x). Thus,

B(x) � xn�1Bn�1 � xn�2Bn�2 � · · · � xB1 � B0.
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Therefore,

(xIn � A)B(x) � (xnBn�1 � xn�1ABn�1) � (xn�1Bn�2 � xn�2ABn�2)

� · · · � (x2B1 � xAB1) � (xB0 � AB0)

� xnBn�1 � xn�1(�ABn�1 � Bn�2) � xn�2(�ABn�2 � Bn�3)

� · · · � x(�AB1 � B0) � (�AB0).

Setting the coefficient of x k in this expression equal to the coefficient of xk in pA(x)In yields

⎧⎨
⎩

Bn�1 � In

�ABk � Bk�1 � akIn, for 1 � k � n � 1.
�AB0 � a0In

Hence,

pA(A) � An � an�1An�1 � an�2An�2 � · · · � a1A � a0In

� AnIn � An�1(an�1In) � An�2(an�2In) � · · · � A(a1In) � a0In

� An(Bn�1) � An�1(�ABn�1 � Bn�2) � An�2(�ABn�2 � Bn�3)

� · · · � A(�AB1 � B0) � (�AB0)

� AnBn�1 � (�AnBn�1 � An�1Bn�2) � (�An�1Bn�2 � An�2Bn�3)

� · · · � (�A2B1 � AB0) � (�AB0)

� An(Bn�1 � Bn�1) � An�1(Bn�2 � Bn�2) � An�2(Bn�3 � Bn�3)

� · · · � A2(B1 � B1) � A(B0 � B0)

� On.

Proof of Theorem 6.18

Theorem 6.18 Let V be a nontrivial subspace of R
n, and let L be a linear operator

on V. Let B be an ordered orthonormal basis for V, and let A be the matrix for L
with respect to B. Then L is a symmetric operator if and only if A is a symmetric
matrix.

Proof. Let V , L, B, and A be given as in the statement of the theorem, and let k � dim(V).
Also, suppose that B � (v1, . . . ,vk).
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First we claim that, for all w1,w2,∈ V, [w1]B · [w2]B � w1 · w2, where the first dot
product is in R

k and the second is in R
n. To prove this statement, suppose that

[w1]B � [a1, . . . ,ak] and [w2]B � [b1, . . . ,bk]. Then,

w1 · w2 � (a1v1 � · · · � akvk) · (b1v1 � · · · � bkvk)

�

k∑
i�1

k∑
j�1

(
aibj

)
vi · vj �

k∑
i�1

(aibi)vi · vi (since vi · vj � 0 if i �� j)

�

k∑
i�1

aibi (since vi · vi � 1)

� [w1]B · [w2]B .

Now suppose that L is a symmetric operator on V. We will prove that A is symmetric by
showing that its (i, j) entry equals its ( j, i) entry. We have

(i, j) entry of A � ei · (Aej) � [vi]B · (A[vj]B
)

� [vi]B · [L(vj)]B
� vi · L(vj) by the claim verified

earlier in this proof
� L(vi) · vj since L is symmetric
� [L(vi)]B · [vj]B by the claim
� (A[vi]B) · [vj]B
� (Aei) · ej � (j, i) entry of A.

Conversely, if A is a symmetric matrix and w1,w2 ∈ V, we have

L(w1) · w2� [L(w1)]B · [w2]B by the claim
� (A[w1]B) · [w2]B
� (A[w1]B)T [w2]B changing vector dot product

to matrix multiplication
� [w1]TBAT [w2]B
� [w1]TBA[w2]B since A is symmetric
� [w1]B · (A[w2]B) changing matrix multiplication

to vector dot product
� [w1]B · [L(w2)]B
� w1 · L(w2) by the claim

Thus, L is a symmetric operator on V, and the proof is complete.
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APPENDIX

BFunctions

In this appendix, we define some basic terms associated with functions: domain,
codomain, range, image, pre-image, one-to-one, onto, composition, and inverses. It
is a good idea to review this material thoroughly before beginning Chapter 5.

Functions: Domain, Codomain, and Range

A function f from a set X to a set Y,expressed as f :X → Y,is a mapping (assignment)
of elements of X (called the domain) to elements of Y (called the codomain) in such
a way that each element of X is assigned to some (single) chosen element of Y .That is,
every element of X must be assigned to some element of Y and only one element of
Y . For example, f : Z → R (where Z represents the set {. . . ,�3,�2,�1,0,1,2,3, . . .}
of all integers) given by f (x) � x2 is a function, since each integer in Z is assigned by
f to one and only one element of R.

Notice that the definition of a function allows two different elements of X to map
(be assigned) to the same element of Y,as in the function f : Z → R given by f (x) � x2,
where f (3) � f (�3) � 9. However, no function allows any member of the domain to
map to more than one element of the codomain. Hence,the rule x → 


√
x,for x ∈ R

�

(positive real numbers), is not a function, since, for example, 4 would have to map to
both 2 and �2.

The image of a domain element is the unique codomain element to which it is
mapped, and the pre-images of a codomain element are the domain elements that
map to it.With the function f :Z → R given by f (x) � x2,4 is the image of 2,and both
2 and �2 are pre-images of 4, since 22 � (�2)2 � 4.

If f : X → Y is a function, not every element of Y necessarily has a pre-image. For
the function f :Z → R given by f (x) � x2 given above, the element 5 in the codomain
has no pre-image, because no integer squared equals 5.

The image of a subset S of the domain under a function f, written as f (S), is the
set of all values in the codomain that are mapped to by elements of S.The pre-image
of a subset T of the codomain under f, or f �1(T ), is the set of all values in the
domain that map to elements of T under f . For example, for the function f: Z → R

Elementary Linear Algebra
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given by f (x) � x2, the image of the subset {�5,�3,3,5} of the domain is {9,25}, and
the pre-image of {15,16,17} is {4,�4}.

The image of the entire domain is called the range of the function. For the function
f :Z → R given by f (x) � x2, the range is the set of all squares of integers. In this case,
the range is a proper subset of the codomain. This situation is depicted in Figure B.1.
For some functions, however, the range is the whole codomain, as we will see
shortly.

One-to-One and Onto Functions

We now consider two very important types of functions:one-to-one and onto functions.
We say that a function f : X → Y is one-to-one if and only if distinct elements of X map
to distinct elements of Y .That is, f is one-to-one if and only if no two different elements
of X map to the same element of Y . For example, f : R → R given by f (x) � x3 is
one-to-one, since no two distinct real numbers have the same cube.

A standard method of proving that a function f is one-to-one is as follows:

To show that f : X → Y is one-to-one: Prove that for arbitrary elements x1, x2 ∈ X , if f (x1) �

f (x2), then x1 � x2.

In other words, the only way x1 and x2 can have the same image is if they are
not really distinct. We will use this technique to show that f : R → R given by f (x) �
3x � 7 is one-to-one. Suppose that f (x1) � f (x2), for some x1, x2 ∈ R.Then 3x1 � 7 �
3x2 � 7. Hence, 3x1 � 3x2, which implies x1 � x2. Thus, f is one-to-one.

On the other hand, we sometimes need to show that a function is not one-to-one.
The usual method for doing this is as follows:

To show that f : X → Y is not one-to-one: Find two different elements x1 and x2 in the
domain X such that f (x1) � f (x2).

x

X Y

f (x)
Range

FIGURE B.1

The domain X , codomain Y , and range of a function f : X → Y
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For example, g: R → R given by g(x) � x2 is not one-to-one, because g(3) �
g(�3) � 9. That is, both elements 3 and �3 in the domain R of g have the same
image 9, so g is not one-to-one.

We say that a function f: X → Y is onto if and only if every element of Y is an
image of some element in X . That is, f is onto if and only if the range of f equals the
codomain of f . For example, the function f : R → R given by f (x) � 2x is onto, since
every real number y1 in the codomain R is the image of the real number x1� 1

2y1;
that is, f (x1) � f

(1
2y1

)
� y1. Here we are using the standard method of proving that

a given function is onto:

To show that f: X → Y is onto: Choose an arbitrary element y1 ∈ Y , and show that there is
some x1 ∈ X such that y1 � f (x1).

On the other hand, we sometimes need to show that a function is not onto. The
usual method for doing this is as follows:

To show that f: X → Y is not onto: Find an element y1 in the codomain Y that is not the
image of any element x1 in the domain X .

For example, f: R → R given by f (x) � x2 is not onto, since the real number �4
in the codomain R is never the image of any real number in the domain; that is, for all
x ∈ R, f (x) �� �4.

Composition and Inverses of Functions

If f: X → Y and g:Y → Z are functions,we define the composition of f and g to be
the function g ◦ f: X → Z given by ( g ◦ f )(x) � g( f (x)).This composition mapping is
pictured in Figure B.2. For example,if f: R → R is given by f (x) � 1 � x2 and g: R → R

is given by g(x) � 5cosx, then ( g ◦ f )(x) � g( f (x)) � g(1 � x2) � 5cos(1 � x2). In
particular, ( g ◦ f )(2) � g( f (2)) � g(1 � 22) � g(�3) � 5cos(�3) ≈ �4.95.

x

X

f g

Y Z

f(x) g(f(x))

FIGURE B.2

Composition g ◦ f of f: X → Y and g: Y → Z
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Theorem B.1

(1) If f: X → Y and g: Y → Z are both one-to-one, then g ◦ f: X → Z is one-to-one.

(2) If f: X → Y and g: Y → Z are both onto, then g ◦ f: X → Z is onto.

Proof. Part (1): Assume that f and g are both one-to-one. To prove g ◦ f is one-to-one, we
assume that ( g ◦ f )(x1) � ( g ◦ f )(x2), for two elements x1, x2 ∈ X , and prove that x1 �
x2. However, ( g ◦ f )(x1) � ( g ◦ f )(x2) implies that g( f (x1)) � g( f (x2)). Hence, f (x1) and
f (x2) have the same image under g. Since g is one-to-one, we must have f (x1) � f (x2).
Then x1 and x2 have the same image under f . Since f is one-to-one, x1 � x2. Hence, g ◦ f
is one-to-one.

Part (2): Assume that f and g are both onto. To prove that g ◦ f: X → Z is onto, we
choose an arbitrary element z1 ∈ Z and try to find some element in X that g ◦ f maps to z1.
Now, since g is onto, there is some y1 ∈ Y for which g( y1) � z1. Also, since f is onto, there
is some x1 ∈ X for which f (x1) � y1. Therefore, ( g ◦ f )(x1) � g( f (x1)) � g( y1) � z1, and
so g ◦ f maps x1 to z1. Hence, g ◦ f is onto.

Two functions f: X → Y and g: Y → X are inverses of each other if ( g ◦ f )(x) �
x and ( f ◦ g)(y) � y, for every x ∈ X and y ∈ Y . For example, f: R → R given
by f (x) � x3 and g: R → R given by g(x) � 3

√
x are inverses of each other

because ( g ◦ f )(x) � g( f (x))�g(x3)�
3
√

x3 �x, and ( f ◦ g)(x)� f ( g(x))� f
(

3
√

x
)

�
( 3
√

x)3 � x.
Not every function can be paired with an inverse function. The next theorem

characterizes those functions that do have an inverse.

Theorem B.2 The function f : X → Y has an inverse g: Y → X if and only if f is both
one-to-one and onto.

Notice that the inverse functions f:R → R given by f (x) � x3 and g:R → R given
by g(x) � 3

√
x are both one-to-one and onto. However, a function such as f: R → R

given by f (x) � x2 has no inverse,since it is not one-to-one. In this case,we could also
have shown that f has no inverse since it is not onto.

Proof. First, suppose that f: X → Y has an inverse g: Y → X . We show that f is one-to-one
and onto. To prove f is one-to-one, we assume that f (x1) � f (x2), for some x1, x2 ∈ X , and
try to prove x1 � x2. Since f (x1) � f (x2), we have g( f (x1)) � g( f (x2)). However, since g
is an inverse for f, x1 � ( g ◦ f)(x1) � g( f (x1)) � g( f (x2)) � x2, and so x1 � x2. Hence,
f is one-to-one. To prove f is onto, we choose an arbitrary y1 ∈ Y . We must show that y1
is the image of some x1 ∈ X . Now, g maps y1 to an element x1 of X ; that is, g(y1) � x1.
However, f (x1) � f (g(y1)) � (f ◦ g)(y1) � y1, since f and g are inverses. Hence, f maps
x1 to y1, and f is onto.

Conversely, we assume that f: X → Y is one-to-one and onto and show that f has an
inverse g: Y → X . Let y1 be an arbitrary element of Y . Since f is onto, the element y1 in
Y is the image of some element in X . Since f is one-to-one, y1 is the image of precisely
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one element, say x1, in X . Hence, y1 has a unique pre-image under f . Now consider the
mapping g: Y → X , which maps each element y1 in Y to its unique pre-image x1 in X
under f . Then (f ◦ g)(y1) � f (g(y1)) � f (x1) � y1.

To finish the proof, we must show that (g ◦ f )(x1) � x1, for any x1 ∈ X . But (g ◦ f )(x1) �
g( f (x1)) is defined to be the unique pre-image of f (x1) under f . Since x1 is this pre-image,
we have (g ◦ f )(x1) � x1. Thus, g and f are inverses.

The next result assures us that when inverses exist, they are unique.

Theorem B.3 If f: X → Y has an inverse g: Y → X , then g is the only inverse of f .

Proof. Suppose that g1: Y → X and g2: Y → X are both inverse functions for f . Our goal
is to show that g1(y) � g2(y), for all y ∈ Y , for then g1 and g2 are identical functions, and
the inverse of f is unique.

Now, (g2 ◦ f )(x) � x, for every x ∈ X , since f and g2 are inverses. Thus, since g1( y) ∈
X , g1(y) � (g2 ◦ f )(g1(y)) � g2( f (g1(y))) � g2(( f ◦ g1)(y)) � g2( y), since f and g1 are
inverses.

Whenever a function f: X → Y has an inverse, we denote this unique inverse by
f �1: Y → X .

Theorem B.4 If f: X → Y and g: Y → Z both have inverses, then g ◦ f: X → Z has an
inverse, and ( g ◦ f )�1 � f �1 ◦ g�1.

Proof. Because g�1: Z → Y and f �1: Y → X , it follows that f �1 ◦ g�1 is a well-defined
function from Z to X . We need to show that the inverse of g ◦ f is f �1 ◦ g�1. If we can show
that both (

(g ◦ f ) ◦ (f �1 ◦ g�1))(z) � z, for all z ∈ Z ,

and
((

f �1 ◦ g�1) ◦ (g ◦ f )
)
(x) � x, for all x ∈ X ,

then by definition, g ◦ f and f �1 ◦ g�1 are inverses. Now,(
(g ◦ f ) ◦ ( f �1 ◦ g�1

))
(z) � g

(
f
(

f �1
(

g�1 (z)
)))

� g
(
g�1 (z)

)
since f and f �1 are inverses

� z. since g and g�1 are inverses

A similar argument establishes the other statement.

As an example of Theorem B.4, consider f: R → R given by f (x) � x3 and g:

R → R
� given by g(x) � ex . Then, g ◦ f : R → R

� is (g ◦ f )(x) � ex3
. However, since

f �1(x) � 3
√

x and g�1(x) � ln x, (g ◦ f )�1: R� → R is given by

(g ◦ f )�1(x) �
(
f �1 ◦ g�1)(x) � f �1(g�1(x)

)
�

3
√

ln x.
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Exercises for Appendix B

1. Which of the following are functions? For those that are functions, deter-
mine the range, as well as the image and all pre-images of the value 2. For
those that are not functions, explain why with a precise reason. (Note: N

represents the set {0,1,2,3, . . .} of natural numbers, and Z represents the set
{. . . ,�2,�1,0,1,2, . . .} of integers.)
�(a) f : R → R, given by f (x) �

√
x � 1

(b) g: R → R, given by g(x) �
√|x � 1|

�(c) h: R → R, given by h(x) �

√|x � 1|

(d) j: N → Z, given by j (a) �

{
a � 5 if a is odd
a � 4 if a is even

�(e) k: R → R, given by k(�) � tan � (where � is in radians)
�(f) l: N → N, where l(t) is the smallest prime number 	 t

(g) m: R → R, given by m(x) �

{
x � 3 if x � 2
x � 4 if x 	 2

2. Let f: Z → N (with Z and N as in Exercise 1) be given by f (x) � 2 |x|.
�(a) Find the pre-image of the set {10,20,30}.
(b) Find the pre-image of the set {10,11,12, . . . ,19}.

�(c) Find the pre-image of the multiples of 4 in N.

�3. Let f, g: R → R be given by f (x) � (5x � 1)/4 and g(x) �
√

3x2 � 2. Find
g ◦ f and f ◦ g.

�4. Let f: R
2 → R

2 be given by f

([
x
y

])
�

[
3 �2
1 4

][
x
y

]
. Let g: R

2 → R
2 be

given by g

([
x
y

])
�

[
�4 4

0 2

][
x
y

]
. Describe g ◦ f and f ◦ g.

5. Let A � {1,2,3}, B � {4,5,6,7}, and C � {8,9,10}.
(a) Give an example of functions f: A → B and g: B → C such that g ◦ f is

onto but f is not onto.

(b) Give an example of functions f: A → B and g: B → C such that g ◦ f is
one-to-one but g is not one-to-one.

6. For n 	 2, show that f: Mnn → R given by f (A) � |A| is onto but not one-
to-one.

7. Show that f:M33 → M33 given by f (A) � A � AT is neither one-to-one nor
onto.

�8. For n 	 1, show that the function f: Pn → Pn given by f (p) � p′ is neither
one-to-one nor onto. When n 	 3, what is the pre-image of the subset P2 of
the codomain?
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9. Prove that f: R → R given by f (x) � 3x3 � 5 has an inverse by showing that
it is both one-to-one and onto. Give a formula for f �1: R → R.

�10. Let B be a fixed nonsingular matrix in Mnn. Show that the map f: Mnn →
Mnn given by f (A) � B�1AB is both one-to-one and onto.What is the inverse
of f ?

11. Let f: A → B and g: B → C be functions.

(a) Prove that if g ◦ f is onto, then g is onto. (Compare this exercise with
Exercise 5(a).)

(b) Prove that if g ◦ f is one-to-one, then f is one-to-one. (Compare this
exercise with Exercise 5(b).)

�12. True or False:

(a) If f assigns elements of X to elements of Y , and two different elements
of X are assigned by f to the same element of Y, then f is not a function.

(b) If f assigns elements of X to elements of Y, and each element of X
is assigned to exactly one element of Y, but not every element of Y
corresponds to an element of X , then f is a function.

(c) If f: R → R is a function, and f (5) � f (6), then f �1(5) � 6.

(d) If f:X → Y and the domain of f equals the codomain of f , then f must
be onto.

(e) If f: X → Y then f is one-to-one if x1 � x2 implies f (x1) � f (x2).

(f) If f: X → Y and g: Y → Z are functions, and g ◦ f: X → Z is one-to-one,
then both f and g are one-to-one.

(g) If f: X → Y is a function, then f has an inverse if f is either one-to-one
or onto.

(h) If f: X → Y and g: Y → Z both have inverses, and g ◦ f: X → Z has an
inverse, then ( g ◦ f )�1 � g�1 ◦ f �1.
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APPENDIX

CComplex Numbers

In this appendix, we define complex numbers and, for reference, list their most
important operations and properties. Complex numbers employ the use of the number
i, which is outside the real number system, and has the property that i2 � �1.

Definition The set of complex numbers is the set of all numbers of the form
a � bi, where i2 � �1 and where a and b are real numbers. The real part of
a � bi is a, and the imaginary part of a � bi is b.

Some examples of complex numbers are 2 � 3i,�1
2 � 1

4 i, and
√

3 � i. Any real
number a can be expressed as a � 0i, so the real numbers are a subset of the complex
numbers; that is, R ⊂ C. A complex number of the form 0 � bi � bi is called a pure
imaginary complex number.

Two complex numbers a � bi and c � di are equal if and only if a � c and b � d.
For example, if 3 � bi � c � 4i, then b � �4 and c � 3.

The magnitude,or absolute value, of a � bi is defined to be |a � bi| �
√

a2 � b2,
a nonnegative real number. For example, the magnitude of 3 � 2i is |3 � 2i| �√

32 � (�2)2 �
√

13.
We define addition of complex numbers by

(a � bi) � (c � di) � (a � c) � (b � d)i,

where a,b,c,d ∈ R. Complex number multiplication is defined by

(a � bi)(c � di) � (ac � bd) � (ad � bc)i.

Elementary Linear Algebra
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For example,

(3 � 2i)[(2 � i) � (�3 � 5i)] � (3 � 2i)(�1 � 4i)

� [(3)(�1) � (�2)(4)] � [(3)(4) � (�2)(�1)] i

� 5 � 14i.

If z � a � bi,we let �z denote the special product �1z � �a � bi. The complex
conjugate of a complex number a � bi is defined as

a � bi � a � bi.

For example, �4 � 3i � �4 � 3i. Notice that if z � a � bi, then z � a � bi, and
so zz � (a � bi)(a � bi) � a2 � b2 � |a � bi|2 � |z|2, a real number. We can use this
property to calculate the multiplicative inverse, or reciprocal, of a complex
number, as follows:

If z � a � bi �� 0, then

1

z
�

1

a � bi
�

1

a � bi
· a � bi

a � bi
�

a � bi

a2 � b2 �
z

|z|2 .

For example, the reciprocal of z � 8 � 15i is

1

z
�

z

|z|2 �
8 � 15i

82 � 152
�

8 � 15i

289
�

8

289
�

15

289
i.

It is a straightforward matter to show that the operations of complex addition and
multiplication satisfy the commutative, associative, and distributive laws. Some other
useful properties are listed in the next theorem,whose proof is left as Exercise 3.You
are asked to prove further properties in Exercise 4.

Theorem C.1 Let z1,z2,z3 ∈ C. Then

(1) z1 � z2 � z1 � z2 Additive Conjugate Law
(2) (z1z2) � z1 z2 Multiplicative Conjugate Law
(3) If z1z2 � 0, then either Zero Product Property

z1 � 0 or z2 � 0

(4) z1 � z1 if and only if Condition for complex number
z1 is real to be real

(5) z1 � �z1 if and only if Condition for complex number
z1 is pure imaginary to be pure imaginary
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Exercises for Appendix C

1. Perform the following computations involving complex numbers:

�(a) (6 � 3i) � (5 � 2i)

(b) 8(3 � 4i)

�(c) 4((8 � 2i) � (3 � i))

(d) �3((�2 � i) � (4 � 2i))

�(e) (5 � 3i)(3 � 2i)

(f ) (�6 � 4i)(3 � 5i)

�(g) (7 � i)(�2 � 3i)

(h) 5 � 4i

�(i) 9 � 2i

(j) �6

�(k) (6 � i)(2 � 4i)

(l) |8 � 3i|
�(m) |�2 � 7i|

(n)
∣∣∣3 � 4i

∣∣∣
2. Find the multiplicative inverse (reciprocal) of each of the following:

�(a) 6 � 2i

( b) 3 � 4i

�(c) �4 � i

(d) �5 � 3i

�3. (a) Prove parts (1) and (2) of Theorem C.1.

(b) Prove part (3) of Theorem C.1.

(c) Prove parts (4) and (5) of Theorem C.1.

4. Let z1 and z2 be complex numbers.

(a) Prove that |z1z2| � |z1||z2|.
(b) If z1 �� 0, prove that

∣∣∣ 1
z1

∣∣∣� 1
|z1| .

(c) If z2 �� 0, prove that
(

z1
z2

)
� z1

z2
.

�5. True or False:

(a) The magnitude (absolute value) of a complex number is the product of the
number and its conjugate.

(b) A complex number equals its conjugate if and only if it is zero.

(c) The conjugate of a pure imaginary number is equal to its negative.

(d) Every complex number has an additive inverse.

(e) Every complex number has a multiplicative inverse.
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APPENDIX

DAnswers to Selected
Exercises

Section 1.1 (pp. 14–18)
1. (a) [9,�4]; distance �

√
97 (c) [�1,�1,2,�3,�4]; distance �

√
31

2. (a) (3,4,2) (see accompanying figure)

x

y
(1, 1, 1)

z

(3, 4, 2)

(c) (1,�2,0) (see accompanying figure)

x

y
(1, 1, 1)

(1, 22, 0)

z

Elementary Linear Algebra
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3. (a) (7,�13) (c) (�1,3,�1,4,6)

4. (a)
(

16
3 ,�13

3 ,8
)

5. (a)
[

3√
70

,� 5√
70

, 6√
70

]
; shorter, since length of original vector is > 1

(c) [0.6,�0.8]; neither, since given vector is a unit vector

6. (a) Parallel (c) Not parallel

7. (a) [�6,12,15] (c) [�3,4,8] (e) [6,�20,�13]

8. (a) x � y � [1,1]; x � y � [�3,9]; y � x � [3,�9] (see accompanying figure)

9

8

7

6

5

4

4

3

323

23

24

25

26

27

28

29

2

222

22

1

121

2y

x 2 y

y 2 x
2x

x 1 y

21

y

y

y

x

x
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(c) x � y � [1,8,�5]; x � y � [3,2,�1]; y � x � [�3,�2,1] (see accompany-
ing figure)

4

4 5 6 7 8

3

323

23

23

24

25

2

222

22

22

1

1
1

2

3

21

21

y 2 x

2y

2x

xx

y

x 1 y
x 2 y

21

z

y

y

10. (a) [10,�10] (b) [�5
√

3,�15]
13. [0.5 � 0.6

√
2,�0.4

√
2] ≈ [�0.3485,�0.5657]

15. Net velocity � [�2
√

2,�3 � 2
√

2]; resultant speed ≈ 2.83 km/hr

17.
[
� 8 �

√
2,�

√
2
]

18. Acceleration � 1
20

[
12
13 ,� 344

65 , 392
65

]
≈ [0.0462,�0.2646,0.3015]

21. a �
[

�mg
1�

√
3
, mg

1�
√

3

]
; b �

[
mg

1�
√

3
, mg

√
3

1�
√

3

]
27. (a) F

(b) T

(c) T

(d) F

(e) T

(f ) F

(g) F

Section 1.2 (pp. 28–31)

1. (a) arccos
(

� 27
5
√

37

)
≈ 152.6◦, or 2.66 radians

(c) arccos(0) � 90◦, or �
2 radians

4. (b) 1040
√

5
9 ≈ 258.4 joules

7. No; consider x � [1,0], y � [0,1], and z � [1,1].
13. cos�1 � a√

a2�b2�c2
, cos�2 � b√

a2�b2�c2
, and cos�3 � c√

a2�b2�c2
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14. (a) Length of diagonal �
√

3s

(b) Angle � arccos
(√

3
3

)
≈ 54.7◦, or 0.955 radians

15. (a)
[
� 3

5 ,� 3
10 ,� 3

2

]
(c)

[
1
6 ,0,� 1

6 , 1
3

]
17. ai, bj, ck

18. (a) Parallel:
[

20
29 ,� 30

29 , 40
29

]
; orthogonal:

[
� 194

29 , 88
29 , 163

29

]
(c) Parallel:

[
60
49 ,� 40

49 , 120
49

]
; orthogonal:

[
� 354

49 , 138
49 , 223

49

]
23. (a) T

(b) T

(c) F

(d) F

(e) T

(f ) F

Section 1.3 (pp. 44–47)

1. (b) Let m � max{|c|, |d|}. Then ‖cx 
 dy‖ � m(‖x‖ � ‖y‖).
2. (b) Consider the number 4.

5. (a) Consider x � [1,0,0] and y � [1,1,0].
(b) If x �� y, then x · y �� ‖x‖2.

(c) Yes

8. (a) Contrapositive: If x � 0, then x is not a unit vector.
Converse: If x is nonzero, then x is a unit vector.
Inverse: If x is not a unit vector, then x � 0.

(c) (Let x, y be nonzero vectors.)
Contrapositive: If projyx �� 0, then projxy �� 0.
Converse: If projyx � 0, then projxy � 0.
Inverse: If projxy �� 0, then projyx �� 0.

10. (b) Converse: Let x and y be vectors in R
n. If ‖x � y‖ 	 ‖y‖, then x · y � 0.

The original statement is true, but the converse is false in general. Proof of
the original statement follows from

‖x � y‖2 � (x � y) · (x � y)

� ‖x‖2 � 2(x · y) � ‖y‖2

� ‖x‖2 � ‖y‖2 	 ‖y‖2.

Counterexample to converse: Let x � [1,0], y � [1,1].
18. Step 1 cannot be reversed, because y could equal 
(x2 � 2).

Step 2 cannot be reversed, because y2 could equal x4 � 4x2 � c.

Step 4 cannot be reversed, because in general y does not have to equal x2 � 2.

Step 6 cannot be reversed, since dy
dx could equal 2x � c.

All other steps remain true when reversed.
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19. (a) For every unit vector x in R
3, x · [1,�2,3] �� 0.

(c) x � 0 or ‖x � y‖ �� ‖y‖, for all x,y ∈ R
n.

(e) There is an x ∈ R
3 such that for every nonzero y ∈ R

3, x · y �� 0.

20. (a) Contrapositive: If x �� 0 and ‖x � y‖ � ‖y‖, then x · y �� 0.
Converse: If x � 0 or ‖x � y‖ > ‖y‖, then x · y � 0.
Inverse: If x · y �� 0, then x �� 0 and ‖x � y‖ � ‖y‖.

25. (a) F

(b) T

(c) T

(d) F

(e) F

(f ) F

(g) F

(h) T

(i) F

Section 1.4 (pp. 56–58)

1. (a)

⎡
⎣ 2 1 3

2 7 �5
9 0 �1

⎤
⎦

(c)

⎡
⎣ �16 8 12

0 20 �4
24 4 �8

⎤
⎦

(e) Impossible

(g)

⎡
⎣ �23 14 �9

�5 8 8
�9 �18 1

⎤
⎦

(i)

⎡
⎣ �1 1 12

�1 5 8
8 �3 �4

⎤
⎦

(l) Impossible

(n)

⎡
⎣ 13 �6 2

3 �3 �5
3 5 1

⎤
⎦

2. Square: B,C,E,F,G,H,J,K,L,M,N,P,Q
Diagonal: B,G,N
Upper triangular: B,G,L,N
Lower triangular: B,G,M,N,Q
Symmetric: B,F,G,J,N,P
Skew-symmetric: H (but not C,E,K)

Transposes: AT �

[
�1 0 6

4 1 0

]
, BT � B, CT �

[
�1 �1

1 1

]
, and so on

3. (a)

⎡
⎢⎢⎣

3 � 1
2

5
2

� 1
2 2 1
5
2 1 2

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

0 � 1
2

3
2

1
2 0 4

� 3
2 �4 0

⎤
⎥⎥⎦

5. (d) The matrix must be a square zero matrix.

14. (a) Trace (B)�1; trace (C)�0; trace (E)� � 6; trace (F)�2; trace (G) � 18;
trace (H) � 0; trace (J) � 1; trace (K) � 4; trace (L) � 3; trace (M) � 0;
trace (N) � 3; trace (P) � 0; trace (Q) � 1

(c) No; consider matrices L and N in Exercise 2. (Note: If n � 1, the statement
is true.)
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15. (a) F (b) T (c) F (d) T (e) T

Section 1.5 (pp. 68–74)

1. (b)

⎡
⎣ 34 �24

42 49
8 �22

⎤
⎦

(c) Impossible

(e) [�38]

(f )

⎡
⎣ �24 48 �16

3 �6 2
�12 24 �8

⎤
⎦

(g) Impossible

(j) Impossible

(l)

⎡
⎢⎢⎣

5 3 2 5
4 1 3 1
1 1 0 2
4 1 3 1

⎤
⎥⎥⎦

(n)

⎡
⎣ 146 5 �603

154 27 �560
38 �9 �193

⎤
⎦

2. (a) No (c) No (d) Yes

3. (a) [15,�13,�8] (c) [4]

4. (a) Valid, by Theorem 1.14, part (1)

(b) Invalid

(c) Valid, by Theorem 1.14, part (1)

(d) Valid, by Theorem 1.14, part (2)

(e) Valid, by Theorem 1.16

(f ) Invalid

(g) Valid, by Theorem 1.14, part (3)

(h) Valid, by Theorem 1.14, part (2)

(i) Invalid

(j) Valid, by Theorem 1.14, part (3), and Theorem 1.16

5.

Outlet 1
Outlet 2
Outlet 3
Outlet 4

Salary Fringe Benefits⎡
⎢⎢⎣

$367500 $78000
$225000 $48000
$765000 $162000
$360000 $76500

⎤
⎥⎥⎦

7.
Nitrogen
Phosphate
Potash

Field 1 Field 2 Field 3⎡
⎣ 1.00 0.45 0.65

0.90 0.35 0.75
0.95 0.35 0.85

⎤
⎦ (in tons)
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9. (a) One example:

[
1 1
0 �1

]

(b) One example:

⎡
⎣ 1 1 0

0 �1 0
0 0 1

⎤
⎦

(c) Consider

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦.

10. (a) Third row, fourth column entry of AB

(c) Third row, second column entry of BA

11. (a)
∑n

k�1 a3kbk2

12. (a) [�27,43,�56]
(b)

⎡
⎣ 56

�57
18

⎤
⎦

27. (a) Consider any matrix of the form

[
1 0
x 0

]
.

28. (b) Consider A �

[
1 2 �1
2 4 �2

]
and B �

⎡
⎣ 1 �2

0 1
1 0

⎤
⎦.

29. See Exercise 30(c).

31. (a) T (b) T (c) T (d) F (e) F (f ) F

Chapter 1 Review Exercises (pp. 74–77)

2. u �
[

5√
394

,� 12√
394

, 15√
394

]
≈ [0.2481,�0.5955,0.7444]; slightly longer

4. a � [�10,9,10]
6. � ≈ 136◦

8. �1782 joules

10. First, x �� 0 and y �� 0 (why?). Assume x‖y. Then, there is a scalar c �� 0 such

that y � cx. Hence,projxy �
(

x ·cx
‖x‖2

)
x �

(
c‖x‖2

‖x‖2

)
x � cx � y, a contradiction.

11. (a) 3A � 4CT �

[
3 2 13

�11 �19 0

]
; AB �

[
15 �21 �4
22 �30 11

]
; BA is not

defined; AC �

[
23 14

�5 23

]
; CA �

⎡
⎣ 30 �11 17

2 0 18
�11 5 16

⎤
⎦; A3 is not defined;

B3 �

⎡
⎣ 97 �128 24

�284 375 �92
268 �354 93

⎤
⎦.

(b) Third row of BC � [5 8].
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13. (a)
(
3(A � B)T

)T
� 3

(
(A � B)T

)T
� 3(A � B) � 3

(
� AT � (�BT )

)
(since A,B

are skew-symmetric) � �3
(
AT � BT

)
� (�1)

(
3(A � B)T

)
.

14.
Company I
Company II
Company III

Price Shipping⎡
⎣ $168500 $24200

$202500 $29100
$155000 $22200

⎤
⎦

15. Take transpose of both sides of AT BT � BT AT to get BA � AB. Then, (AB)2 �
(AB)(AB) � A(BA)B � A(AB)B � A2B2.

17. If A �� O22, then some row of A, say the ith row, is nonzero. Apply Result 5 in
Section 1.3 with x � (ith row of A).

19. (a) Let A and B be n � n matrices having the properties given in the exer-
cise. Let C � AB. Then we know that aij � 0 for all i < j, bij � 0 for all
i > j, cij � 0 for all i �� j, and that aii �� 0 and bii �� 0 for all i. We need
to prove that aij � 0 for all i > j. Use a proof by induction on j. In the
Base Step, express ci1 as

∑n
k�1 aikbk1 and simplify. In the Inductive Step,

assume for all j < m (with m 	 2) that aij � 0, for all i > j. (That is, assume
that the first m � 1 columns of A have zeroes below the main diagonal.)
Let i > m. Then express cim as

∑n
k�1 aikbkm and simplify to show that

cim � 0. (That is,prove that the mth column of A has zeroes below the main
diagonal.)

20. (a) F

(b) T

(c) F

(d) F

(e) F

(f ) T

(g) F

(h) F

(i) F

(j) T

(k) T

(l) T

(m) T

(n) F

(o) F

(p) F

(q) F

(r) T

Section 2.1 (pp. 96–98)

1. (a) Consistent; solution set � {(�2,3,5)}
(c) Inconsistent; solution set � {}
(e) Consistent;solution set � {(2b � d � 4, b, 2d � 5, d, 2) |b,d ∈ R};three par-

ticular solutions are (�4,0,5,0,2) (with b � d � 0), (�2,1,5,0,2) (with
b � 1, d � 0), and (�5,0,7,1,2) (with b � 0, d � 1)

(g) Consistent; solution set � {(6,�1,3)}
2. (a) Solution set � {(3c � 11e � 46, c � e � 13, c, �2e � 5, e) | c,e ∈ R}

(c) Solution set � {(�20c � 9d � 153f � 68, 7c � 2d � 37f � 15, c, d,
4 f � 2, f ) |c,d, f ∈ R}

3. 51 nickels, 62 dimes, 31 quarters

4. y � 2x2 � x � 3
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6. x2 � y2 � 6x � 8y � 0, or (x � 3)2 � ( y � 4)2 � 25

7. (a) R(AB) � (R(A))B �

⎡
⎢⎢⎣

26 15 �6
6 4 1
0 �6 12

10 4 �14

⎤
⎥⎥⎦

11. (a) T

(b) F

(c) F

(d) F

(e) T

(f ) T

Section 2.2 (pp. 107–110)

1. Matrices in (a), (b), (c), (d), and (f ) are not in reduced row echelon form.
Matrix in (a) fails condition 2 of the definition.
Matrix in (b) fails condition 4 of the definition.
Matrix in (c) fails condition 1 of the definition.
Matrix in (d) fails conditions 1, 2, and 3 of the definition.
Matrix in (f ) fails condition 3 of the definition.

2. (a)

⎡
⎣ 1 4 0

0 0 1
0 0 0

∣∣∣∣∣∣
�13

�3
0

⎤
⎦

(b)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦� I4

(c)

⎡
⎢⎢⎣

1 �2 0 11
0 0 1 �2
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
�23

5
0
0

⎤
⎥⎥⎦

(e)

[
1 �2 0 2 �1
0 0 1 �1 3

∣∣∣∣ 1
2

]

3. (a) Solution set � {(�2,3,5)}
(e) Solution set � {(2b � d � 4, b, 2d � 5, d, 2) |b,d ∈ R}; three particular solu-

tions are (�4,0,5,0,2) (with b � d � 0), (�2,1,5,0,2) (with b � 1,d � 0),
and (�5,0,7,1,2) (with b � 0, d � 1)

(g) Solution set � {(6,�1,3)}
4. (a) Solution set � {(c � 2d, �3d, c, d) |c,d ∈ R}; one particular solution �

(�3,�6,1,2)

(c) Solution set � {(�4b � 2d � f , b, �3d � 2f , d, �2f , f ) |b,d, f ∈ R}; one
particular solution � (�3,1,0,2,�6,3)

5. (a) Solution set � {(2c,�4c,c) |c ∈ R} � {c(2,�4,1) |c ∈ R}
(c) Solution set � {(0,0,0,0)}

6. (a) a � 2, b � 15, c � 12, d � 6

(c) a � 4, b � 2, c � 4, d � 1, e � 4

7. (a) A � 3, B � 4, C � �2
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8. Solution for system AX � B1: (6,�51,21);

solution for system AX � B2:
(

35
3 ,�98, 79

2

)
11. (b) Any nonhomogeneous system with two equations and two unknowns that

has a unique solution will serve as a counterexample. For instance,consider{
x � y � 1
x � y � 1

.

This system has a unique solution: (1,0). Let (s1,s2) and (t1, t2) both equal
(1,0). Then the sum of solutions is not a solution in this case. Also, let c be
any real number other than 1. The scalar multiple of a solution by c is not a
solution in this case.

14. (a) T

(b) T

(c) F

(d) T

(e) F

(f ) F

Section 2.3 (pp. 121–125)

1. (a) A row operation of type (I) converts A to B: 〈2〉 ← �5 〈2〉.
(c) A row operation of type (II) converts A to B: 〈2〉 ← 〈3〉 � 〈2〉.

2. (b) The sequence of row operations converting B to A is
(II): 〈1〉 ← � 5 〈3〉 � 〈1〉
(III): 〈2〉 ←→ 〈3〉
(II): 〈3〉 ← 3 〈1〉 � 〈3〉
(II): 〈2〉 ← �2 〈1〉 � 〈2〉
(I): 〈1〉 ← 4 〈1〉

3. (a) Common reduced row echelon form is I3.
(b) The sequence of row operations is

(II): 〈3〉 ← 2 〈2〉 � 〈3〉
(I): 〈3〉 ← �1 〈3〉
(II): 〈1〉 ← �9 〈3〉 � 〈1〉
(II): 〈2〉 ← 3 〈3〉 � 〈2〉
(II): 〈3〉 ← � 9

5 〈2〉 � 〈3〉
(II): 〈1〉 ← � 3

5 〈2〉 � 〈1〉
(I): 〈2〉 ← � 1

5 〈2〉
(II): 〈3〉 ← �3 〈1〉 � 〈3〉
(II): 〈2〉 ← �2 〈1〉 � 〈2〉
(I): 〈1〉 ← �5 〈1〉

5. (a) 2 (c) 2 (e) 3

6. (a) Corollary 2.6 does not apply here. Rank � 3. Thus, Theorem 2.5 predicts
the system has only the trivial solution. In fact, solution set � {(0,0,0)}.



 

Answers to Selected Exercises 675

7. In the following answers, the asterisk represents any real entry:

(a) Smallest rank � 1:

⎡
⎢⎢⎣

1 ∗ ∗
0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣∣∣
∗
0
0
0

⎤
⎥⎥⎦;

largest rank � 4:

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣∣∣
0
0
0
1

⎤
⎥⎥⎦

(c) Smallest rank � 2:

⎡
⎣ 1 ∗ ∗ ∗

0 0 0 0
0 0 0 0

∣∣∣∣∣∣
0
1
0

⎤
⎦;

largest rank � 3:

⎡
⎣ 1 0 ∗ ∗

0 1 ∗ ∗
0 0 0 0

∣∣∣∣∣∣
0
0
1

⎤
⎦

8. (a) x � � 21
11a1 � 6

11a2

(c) Not possible

(e) The answer is not unique; one possible answer is x � �3a1 � 2a2 � 0a3.

(g) x � 2a1 � a2 � a3

9. (a) Yes: 5(row 1) � 3(row 2) � 1(row 3)

(c) Not in row space

(e) Yes, but the linear combination of the rows is not unique; one possible
expression for the given vector is �3(row 1) � 1(row 2) � 0(row 3).

10. (a) [13, �23, 60] � �2q1 � q2 � 3q3

(b) q1 � 3r1 � r2 � 2r3

q2 � 2r1 � 2r2 � 5r3

q3 � r1 � 6r2 � 4r3

(c) [13, �23, 60] � �r1 � 14r2 � 11r3

11. (a) B�

⎡
⎣ 1 0 �1 2

0 1 3 2
0 0 0 0

⎤
⎦; [1,0,�1,2] � � 7

8 [0,4,12,8] � 1
2 [2,7,19,18] �

0[1,2,5,6]; [0,1,3,2] � 1
4 [0,4,12,8] � 0[2,7,19,18] � 0[1,2,5,6] (other

solutions are possible for [1,0,�1,2] and [0,1,3,2]); [0,4,12,8] � 0[1,0,
�1,2] � 4[0,1,3,2]; [2,7,19,18] � 2[1,0,�1,2] � 7[0,1,3,2]; [1,2,5,6] �
1[1,0,�1,2] � 2[0,1,3,2].

14. The zero vector is a solution to AX � O, but it is not a solution for AX � B.
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15. Consider the systems {
x � y � 1
x � y � 0

and

{
x � y � 1
x � y � 2

.

The reduced row echelon matrices for these inconsistent systems are, respec-
tively,[

1 1
0 0

∣∣∣∣ 0
1

]
and

[
1 �1
0 0

∣∣∣∣ 0
1

]
.

Thus,the original augmented matrices are not row equivalent,since their reduced
row echelon forms are different.

22. (a) T

(b) T

(c) F

(d) F

(e) F

(f ) T

Section 2.4 (pp. 135–139)

2. (a) Rank � 2; nonsingular

(c) Rank � 3; nonsingular

(e) Rank � 3; singular

3. (a)

[
1

10
1

15
3

10 � 2
15

]
(c)

[
� 2

21 � 5
84

1
7 � 1

28

]
(e) No inverse exists.

4. (a)

⎡
⎣ 1 3 2

�1 0 2
2 2 �1

⎤
⎦

(c)

⎡
⎢⎣

3
2 0 1

2

�3 1
2 � 1

2

� 8
3

1
3 � 2

3

⎤
⎥⎦ (e) No inverse exists.

5. (c)

⎡
⎢⎢⎢⎣

1
a11

0 · · · 0

0 1
a22

· · · 0
...

...
. . .

...
0 0 · · · 1

ann

⎤
⎥⎥⎥⎦

6. (a) The general inverse is

[
cos� sin �

�sin � cos�

]
.

When � � �
6 , matrix �

[ √
3

2 � 1
2

1
2

√
3

2

]
; inverse �

[ √
3

2
1
2

� 1
2

√
3

2

]
.

When � � �
4 , matrix �

[ √
2

2 �
√

2
2√

2
2

√
2

2

]
; inverse �

[ √
2

2

√
2

2

�
√

2
2

√
2

2

]
.

When � � �
2 , matrix �

[
0 �1
1 0

]
; inverse �

[
0 1

�1 0

]
.
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(b) The general inverse is

⎡
⎣ cos� sin � 0

�sin � cos� 0
0 0 1

⎤
⎦.

When � � �
6 , matrix �

⎡
⎢⎢⎣

√
3

2 � 1
2 0

1
2

√
3

2 0

0 0 1

⎤
⎥⎥⎦; inverse �

⎡
⎢⎢⎣

√
3

2
1
2 0

� 1
2

√
3

2 0

0 0 1

⎤
⎥⎥⎦.

When � � �
4 , matrix �

⎡
⎢⎢⎣

√
2

2 �
√

2
2 0

√
2

2

√
2

2 0

0 0 1

⎤
⎥⎥⎦; inverse �

⎡
⎢⎢⎣

√
2

2

√
2

2 0

�
√

2
2

√
2

2 0

0 0 1

⎤
⎥⎥⎦.

When � � �
2 , matrix �

⎡
⎣ 0 �1 0

1 0 0
0 0 1

⎤
⎦; inverse �

⎡
⎣ 0 1 0

�1 0 0
0 0 1

⎤
⎦.

7. (a) Inverse �

[
2
3

1
3

7
3

5
3

]
; solution set � {(3,�5)}

(c) Inverse �

⎡
⎢⎢⎣

1 �13 �15 5
�3 3 0 �7
�1 2 1 �3

0 �4 �5 1

⎤
⎥⎥⎦; solution set � {(5,�8,2,�1)}

8. (a) Consider

[
0 1
1 0

]
.

(b) Consider

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦.

(c) A � A�1 if A is involutory.

10. (a) B must be the zero matrix.

(b) No, since A�1 � B exists, AC � On ”A�1AC � A�1On ”C � On.

11. . . . ,A�11,A�6,A�1,A4,A9,A14, . . .

12. B�1A is the inverse of A�1B.

14. (a) All steps in the row reduction process will not alter the column of zeroes,
and so the matrix cannot be reduced to In.

21. (a) F

(b) T

(c) T

(d) F

(e) F

(f ) T
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Chapter 2 Review Exercises (pp. 139–142)

1. (a) x1 � �6, x2 � 8, x3 � �5

(b) No solutions

(c) {[�5 � c � e,1 � 2c � e,c,1 �
2e,e] | c,e ∈ R}

2. y � �2x3 � 5x2 � 6x � 3

4. a � 4, b � 7, c � 4, d � 6

8. (a) rank(A) � 2, rank(B) � 4, rank(C) � 3

(b) AX � 0 and CX � 0: infinite number of solutions; BX � 0: one solution

10. (a) Yes. [�34,29,�21] � 5[2,3,�1] � 2[5,�2,�1] � 6[9,�8,3]
(b) Yes. [�34,29,�21] is a linear combination of the rows of the matrix.

12. (b) Singular

15. x1 � �27, x2 � �21, x3 � �1

17. (a) F

(b) F

(c) F

(d) T

(e) F

(f ) T

(g) T

(h) T

(i) F

(j) T

(k) F

(l) F

(m) T

(n) T

(o) F

(p) T

(q) T

(r) T

(s) T

Section 3.1 (pp. 151–155)

1. (a) �17

(c) 0

(e) �108

(g) �40

(i) 0

(j) �3

2. (a)

∣∣∣∣ 4 3
�2 4

∣∣∣∣� 22
(c)

∣∣∣∣∣∣
�3 0 5

2 �1 4
6 4 0

∣∣∣∣∣∣� 118

3. (a) (�1)2�2

∣∣∣∣ 4 �3
9 �7

∣∣∣∣� �1

(c) (�1)4�3

∣∣∣∣∣∣
�5 2 13
�8 2 22
�6 �3 �16

∣∣∣∣∣∣� 222

(d) (�1)1�2

∣∣∣∣ x � 4 x � 3
x � 1 x � 2

∣∣∣∣� �2x � 11

5. (a) 0 (d) 352

7. Let A �

[
1 1
1 1

]
, and let B �

[
1 0
0 1

]
.
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9. (a) 7 (c) 12

11. (a) 18 (c) 63

15. (a) x � �5 or x � 2 (c) x � 3, x � 1, or x � 2

16. (b) 20

18. (a) F (b) T (c) F (d) F (e) T

Section 3.2 (pp. 162–165)

1. (a) (II): 〈1〉 ← � 3 〈2〉 � 〈1〉; determinant � 1

(c) (I): 〈3〉 ← � 4 〈3〉; determinant � �4

(f ) (III): 〈1〉 ←→ 〈2〉; determinant � �1

2. (a) 30 (c) �4 (e) 35

3. (a) Determinant � �2; matrix is nonsingular because determinant is nonzero

(c) Determinant � �79; matrix is nonsingular

4. (a) Determinant � �1; system has only the trivial solution

6. �a16a25a34a43a52a61

16. (a) F

(b) T

(c) F

(d) F

(e) F

(f ) T

Section 3.3 (pp. 173–178)

1. (a) a31(�1)3�1|A31|�a32(�1)3�2|A32|�a33(�1)3�3|A33|�a34(�1)3�4|A34|
(c) a14(�1)1�4|A14|�a24(�1)2�4|A24|�a34(�1)3�4|A34|�a44(�1)4�4|A44|

2. (a) �76 (c) 102

3. (a) Adjoint �

⎡
⎣�6 9 3

6 �42 0
�4 8 2

⎤
⎦; determinant � �6; inverse �

⎡
⎢⎣ 1 � 3

2 � 1
2

�1 7 0
2
3 � 4

3 � 1
3

⎤
⎥⎦

(c) Adjoint �

⎡
⎢⎢⎣

�3 0 3 �3
0 0 0 0

�3 0 3 �3
6 0 �6 6

⎤
⎥⎥⎦; determinant � 0; no inverse

(e) Adjoint �

⎡
⎣ 3 �1 �2

0 �3 �6
0 0 �9

⎤
⎦; determinant � 9; inverse �

⎡
⎢⎣

1
3 � 1

9 � 2
9

0 � 1
3 � 2

3

0 0 �1

⎤
⎥⎦
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4. (a) {(�4,3,�7)} (d) {(4,�1,�3,6)}

8. (b) Consider A �

[
0 �1
1 0

]
.

9. (b) Consider

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦.

13. (b) For example, consider B �

[
2 1
1 1

]�1

A

[
2 1
1 1

]
�

[
�6 �4
16 11

]
, or B �[

2 �5
�1 3

]�1

A

[
2 �5

�1 3

]
�

[
10 �12

4 �5

]
.

14. (BA)/(|AB|)

18. (b) Consider A �

⎡
⎣ 0 1 1

�1 0 1
�1 �1 0

⎤
⎦. Then A �

⎡
⎣ 1 �1 1

�1 1 �1
1 �1 1

⎤
⎦,which is not

skew-symmetric.

22. (a) T (b) T (c) F (d) T (e) F (f ) T

Section 3.4 (pp. 192–196)

1. (a) x2 � 7x � 14

(c) x3 � 8x2 � 21x � 18

(e) x4 � 3x3 � 4x2 � 12x

2. (a) E2 � {a[1,1] |a ∈ R}
(c) E�1 � {a[1,2,0] � b[0,0,1] |a,b ∈ R}

3. (a) � � 1; E1 � {a[1,0] |a ∈ R}; algebraic multiplicity of � is 2

(c) �1 � 1; E1 � {a[1,0,0] |a ∈ R}; algebraic multiplicity of �1 is 1; �2 � 2;
E2 � {b[0,1,0] |b ∈ R}; algebraic multiplicity of �2 is 1; �3 � �5; E�5 �{
c
[
� 1

6 , 3
7 ,1
] ∣∣c ∈ R

}
; algebraic multiplicity of �3 is 1

(e) �1 � 0; E0 � {a[1,3,2] |a ∈ R}; algebraic multiplicity of �1 is 1; �2 � 2;
E2 � {c[1,0,1] � b[0,1,0] |c,b ∈ R}; algebraic multiplicity of �2 is 2

(h) �1 � 0; E0 � {c[�1,1,1,0] � d[0,�1,0,1] |c,d ∈ R}; algebraic multiplicity
of �1 is 2; �2 � �3; E�3 � {d[�1,0,2,2] |d ∈ R}; algebraic multiplicity of
�2 is 2

4. (a) P �

[
3 2

1 1

]
; D �

[
3 0

0 �5

]
(c) Not diagonalizable
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(d) P �

⎡
⎣ 6 1 1

2 2 1
5 1 1

⎤
⎦; D �

⎡
⎣ 1 0 0

0 �1 0
0 0 2

⎤
⎦

(f ) Not diagonalizable

(g) P �

⎡
⎣ 2 1 0

3 0 �1
0 3 1

⎤
⎦; D �

⎡
⎣ 2 0 0

0 2 0
0 0 3

⎤
⎦

(i) P �

⎡
⎢⎢⎣

2 1 1 1
2 0 2 �1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦; D �

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 0

⎤
⎥⎥⎦

5. (a)

[
32770 �65538
32769 �65537

]
(c) A49 � A

(e)

⎡
⎢⎣ 4188163 6282243 �9421830

4192254 6288382 �9432060

4190208 6285312 �9426944

⎤
⎥⎦

7. (b) A has a square root if and only if A has all eigenvalues nonnegative.

8. One possible answer:

⎡
⎣ 3 �2 �2

�7 10 11
8 �10 �11

⎤
⎦

10. (b) Consider the matrix A �

[
0 �1
1 0

]
, which represents a rotation about

the origin in R
2 through an angle of �

2 radians, or 90◦. Although A has

no eigenvalues, A4 � I2 has 1 as an eigenvalue.

24. (a) T

(b) F

(c) T

(d) T

(e) F

(f ) T

(g) T

(h) F

Chapter 3 Review Exercises (pp. 197–201)

1. (b) A34 � �|A34| � 30 (d) |A| � �830

3. |A| � �42

5. (a) |B| � 60 (b) |B| � �15 (c) |B| � 15

7. 378

10. x1 � �4, x2 � �3, x3 � 5
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11. (a) The determinant of the given matrix is �289. Thus, we would need |A|4 �
�289. But no real number raised to the fourth power is negative.

(b) The determinant of the given matrix is zero,making it singular. Hence it can
not be the inverse of any matrix.

12. B similar to A implies there is a matrix P such that B � P�1AP.

(b) |BT | � |B| � |P�1AP| � |P�1||A||P| � 1
|P| |A||P| � |A| � |AT |

(e) B � In � P�1AP � In � P�1AP � P�1InP � P�1(A � In)P

14. (b) pA(x) � x3 � x2 � 21x � 45 � (x � 3)2(x � 5); eigenvalues: �1 � �3,
�2 �5; eigenspaces: E�3 � {a[�2,1,0] � b[2,0,1] | a,b ∈ R}, E5 �

{a[�1,4,4] | a ∈ R}; P �

⎡
⎣ �2 2 �1

1 0 4
0 1 4

⎤
⎦; D �

⎡
⎣ �3 0 0

0 �3 0
0 0 5

⎤
⎦

15. (b) pA(x) � x4 � 6x3 � 9x2 � x2(x � 3)2. Even though the eigenvalue �3 has
algebraic multiplicity 2, only one fundamental eigenvector is produced for
� � �3 because (�3I4 � A) has rank 3. Hence,we get only three fundamen-
tal eigenvectors overall,which is insufficient by Step 4 of the Diagonalization
Method.

16. A13 �

⎡
⎣ �9565941 9565942 4782976

�12754588 12754589 6377300
3188648 �3188648 �1594325

⎤
⎦

17. (a) �1 � 2, �2 � �1, �3 � 3

(b) E2 �{a[1,�2,1,1] |a ∈ R},E�1 � {a[1,0,0,1] � b[3,7,�3,2] |a,b ∈ R},
E3 � {a[2,8,�4,3] |a ∈ R}

(c) |A| � 6

18. (a) F

(b) T

(c) F

(d) F

(e) T

(f ) T

(g) T

(h) T

(i) F

(j) T

(k) F

(l) F

(m) T

(n) F

(o) F

(p) F

(q) F

(r) T

(s) T

(t) F

(u) F

(v) T

(w) T

(x) T

(y) F

(z) F

Section 4.1 (pp. 213–215)

5. The set of singular 2 � 2 matrices is not closed under addition. For exam-

ple,

[
1 0
0 0

]
and

[
0 0
0 1

]
are both singular, but their sum

[
1 0
0 1

]
� I2 is

nonsingular.

8. Properties (2), (3), and (6) are not satisfied, and property (4) makes no sense
without property (3). The following is a counterexample for property (2): 3 ⊕
(4 ⊕ 5) � 3 ⊕ 18 � 42, but (3 ⊕ 4) ⊕ 5 � 14 ⊕ 5 � 38.
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20. (a) F (b) F (c) T (d) T (e) F (f ) T (g) T

Section 4.2 (pp. 223–227)

1. (a) Not a subspace; no zero vector

(c) Subspace

(e) Not a subspace; no zero vector

(g) Not a subspace; not closed under addition

(j) Not a subspace; not closed under addition

(l) Not a subspace; not closed under scalar multiplication

2. Only starred parts are listed:
Subspaces: (a), (c), (e), (g)
Part (h) is not a subspace because it is not closed under addition.

3. Only starred parts are listed:
Subspaces: (a), (b), (g)
Part (e) is not a subspace because it does not contain the zero polynomial. Also,
it is not closed under addition.

12. (e) No; if |A| �� 0 and c � 0, then |cA| � 0.

15. S � {0}, the trivial subspace of R
n.

22. (a) F

(b) T

(c) F

(d) T

(e) T

(f ) F

(g) T

(h) T

Section 4.3 (pp. 236–239)

1. (a) {[a,b,�a � b] | a,b ∈ R}
(c) {[a,b,�b] | a,b ∈ R}

(e) {[a,b,c,�2a � b � c] | a,b,c ∈ R}

2. (a) {ax3 � bx2 � cx � (a � b � c) | a,b,c ∈ R}
(c) {ax3 � ax � b | a,b ∈ R}

3. (a)

{[
a b
c �a � b � c

] ∣∣∣∣ a,b,c ∈ R

}

(c)

{[
a b
c d

] ∣∣∣∣ a,b,c,d ∈ R

}
� M22

4. (a) [a � b,a � c,b � c,c] � a[1,1,0,0] � b[1,0,1,0] � c[0,1,1,1]. The set of

vectors of this form is the row space of A �

⎡
⎣ 1 1 0 0

1 0 1 0
0 1 1 1

⎤
⎦.
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(b) B �

⎡
⎢⎣

1 0 0 � 1
2

0 1 0 1
2

0 0 1 1
2

⎤
⎥⎦

(c) Row space of B�
{
a
[
1,0,0,� 1

2

]
� b

[
0,1,0, 1

2

]
� c

[
0,0,1, 1

2

] ∣∣a,b,c ∈ R
}

�{[
a,b,c,� 1

2a � 1
2b � 1

2c
] ∣∣a,b,c ∈ R

}
11. One answer is �1(x3 � 2x2 � x � 3) � 2(2x3 � 3x2 � 2x � 5) � 1(4x2 � x �

3) � 0(4x3 � 7x2 � 4x � 1).

14. (a) Hint: Use Theorem 1.13.

16. (a) S � {[�3,2,0], [4,0,5]}
24. (b) S1 � {[1,0,0], [0,1,0]}, S2 � {[0,1,0], [0,0,1]}

(c) S1 � {[1,0,0], [0,1,0]}, S2 � {[1,0,0], [1,1,0]}
25. (c) S1 � {x5}, S2 � {x4}
29. (a) F (b) T (c) F (d) F (e) F (f ) T (g) F

Section 4.4 (pp. 251–255)

1. Linearly independent: (a), (b)
Linearly dependent: (c), (d), (e)

2. Answers given for starred parts only:
Linearly independent: (b)
Linearly dependent: (a), (e)

3. Answers given for starred parts only:
Linearly independent: (a)
Linearly dependent: (c)

4. Answers given for starred parts only:
Linearly independent: (a), (e)
Linearly dependent: (c)

7. (b) [0,1,0]
(c) No; [0,0,1] also works.

(d) Any linear combination of [1,1,0] and [�2,0,1] works, other than [1,1,0]
and [�2,0,1] themselves.

11. (a) One answer is {[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]}.
(c) One answer is {1, x, x2, x3}.

(e) One answer is

⎧⎨
⎩
⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦,

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦,

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦,

⎡
⎣ 0 0 0

0 1 0
0 0 0

⎤
⎦
⎫⎬
⎭.

(Notice that each matrix is symmetric.)
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13. (b) [0,0,�6,0] is redundant because [0,0,�6,0] � 6[1,1,0,0] � 6[1,1,1,0].
Hence, a[1,1,0,0] � b[1,1,1,0] � c[0,0,�6,0] � (a � 6c)[1,1,0,0] � (b �
6c)[1,1,1,0].

19. (b) Let A be the zero matrix.

28. (a) F

(b) T

(c) T

(d) F

(e) T

(f ) T

(g) F

(h) T

(i) T

Section 4.5 (pp. 265–269)

4. (a) Not a basis (linearly independent but does not span)

(c) Basis

(e) Not a basis (linearly dependent but spans)

5. (b) 2 (c) No; dim(span(S)) � 2 �� 4 � dim(R4).

11. (b) 5

(c) {(x � 2)(x � 3),x(x � 2)(x � 3),x2(x � 2)(x � 3),x3(x � 2)(x � 3)}
(d) 4

12. (a) Let V � R
3, and let S � {[1,0,0], [2,0,0], [3,0,0]}.

(b) Let V � R
3, and let T � {[1,0,0], [2,0,0], [3,0,0]}.

25. (a) T

(b) F

(c) F

(d) F

(e) F

(f ) T

(g) F

(h) F

(i) F

(j) T

Section 4.6 (pp. 277–280)

1. (a) {[1,0,0,2,�2], [0,1,0,0,1], [0,0,1,�1,0]}
(d)

{[
1,0,0,�2,� 13

4

]
,
[
0,1,0,3, 9

2

]
,
[
0,0,1,0,� 1

4

]}
2. {x3 � 3x,x2 � x,1}

3.

⎧⎨
⎩
⎡
⎣ 1 0

4
3

1
3

2 0

⎤
⎦,

⎡
⎣ 0 1

� 1
3 � 1

3
0 0

⎤
⎦,

⎡
⎣ 0 0

0 0
0 1

⎤
⎦
⎫⎬
⎭

4. (a) {[3,1,�2], [6,2,�3]}
(c) One answer is {[1,3,�2], [2,1,4], [0,1,�1]}.
(e) One answer is {[3,�2,2], [1,2,�1], [3,�2,7]}.
(h) One answer is {[1,�3,0], [0,1,1]}.
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5. (a) One answer is {x3 � 8x2 � 1,3x3 � 2x2 � x,4x3 � 2x � 10,x3 � 20x2 �
x � 12}.

(c) One answer is {x3,x2,x}.
(e) One answer is {x3 � x2,x,1}.

6. (a) One answer is {Cij |1 � i, j � 3}, where Cij is the 3 � 3 matrix with (i, j)
entry � 1 and all other entries 0.

(c) One answer is

⎧⎨
⎩
⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦,

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦,

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦,

⎡
⎣ 0 0 0

0 1 0
0 0 0

⎤
⎦,

⎡
⎣ 0 0 0

0 0 1
0 1 0

⎤
⎦,

⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦
⎫⎬
⎭.

7. (a) One answer is {[1,�3,0,1,4], [2,2,1,�3,1], [1,0,0,0,0], [0,1,0,0,0],
[0,0,1,0,0]}.

(c) One answer is {[1,0,�1,0,0], [0,1,�1,1,0], [2,3,�8,�1,0], [1,0,0,0,0],
[0,0,0,0,1]}.

8. (a) One answer is {x3 � x2, x4 � 3x3 � 5x2 � x, x4, x3, 1}.
(c) One answer is {x4 � x3 � x2 � x � 1, x3 � x2 � x � 1, x2 � x � 1, x2, x}.

9. (a) One answer is

⎧⎨
⎩
⎡
⎣ 1 �1

�1 1
0 0

⎤
⎦,

⎡
⎣ 0 0

1 �1
�1 1

⎤
⎦,

⎡
⎣ 1 0

0 0
0 0

⎤
⎦,

⎡
⎣ 0 1

0 0
0 0

⎤
⎦,

⎡
⎣ 0 0

1 0
0 0

⎤
⎦,

⎡
⎣ 0 0

0 0
1 0

⎤
⎦
⎫⎬
⎭.

(c) One answer is

⎧⎨
⎩
⎡
⎣ 3 0

�1 7
0 1

⎤
⎦,

⎡
⎣ �1 0

1 3
0 �2

⎤
⎦,

⎡
⎣ 2 0

3 1
0 �1

⎤
⎦,

⎡
⎣ 6 0

0 1
0 �1

⎤
⎦,

⎡
⎣ 0 1

0 0
0 0

⎤
⎦,

⎡
⎣ 0 0

0 0
1 0

⎤
⎦
⎫⎬
⎭.

10. {Cij |1 � i � j � 4}, where Cij is the 4 � 4 matrix with (i, j) entry � 1 and all
other entries 0. Notice that the condition 1 � i � j � 4 assures that only upper
triangular matrices are included.

11. (b) 8 (d) 3

12. (b) (n2 � n)/2

15. (b) No; consider the subspace W of R
3 given by W � {[a,0,0] |a ∈ R}. No

subset of B � {[1,1,0], [1,�1,0], [0,0,1]} (a basis for R
3) is a basis for W .

(c) Yes; consider Y � span(B′).
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16. (b) In R
3, consider W � {[a,b,0] |a,b ∈ R}. We could let W ′ � {[0,0,c] |c ∈ R}

or W ′ � {[0,c,c] |c ∈ R}.
20. (a) T

(b) T

(c) F

(d) T

(e) T

(f ) F

(g) F

Section 4.7 (pp. 294–297)

1. (a) [v]B � [7,�1,�5]
(c) [v]B � [�2,4,�5]
(e) [v]B � [4,�5,3]

(g) [v]B � [�1,4,�2]
(h) [v]B � [2,�3,1]
(j) [v]B � [5,�2]

2. (a)

⎡
⎢⎣ �102 20 3

67 �13 �2

36 �7 �1

⎤
⎥⎦

(c)

⎡
⎢⎣ 20 �30 �69

24 �24 �80

�9 11 31

⎤
⎥⎦

(d)

⎡
⎢⎢⎢⎣

�1 �4 2 �9

4 5 1 3

0 2 �3 1

�4 �13 13 �15

⎤
⎥⎥⎥⎦

(f )

⎡
⎢⎣ 6 1 2

1 1 2

�1 �1 �3

⎤
⎥⎦

4. (a) P �

[
13 31

�18 �43

]
; Q �

[
�11 �8

29 21

]
; T �

[
1 3

�1 �4

]

(c) P �

⎡
⎢⎣ 2 8 13

�6 �25 �43

11 45 76

⎤
⎥⎦; Q �

⎡
⎢⎣ �24 �2 1

30 3 �1

139 13 �5

⎤
⎥⎦;

T �

⎡
⎢⎣ �25 �97 �150

31 120 185

145 562 868

⎤
⎥⎦

5. (a) C � ([1,�4,0,�2,0], [0,0,1,4,0], [0,0,0,0,1]); P �

⎡
⎣ 1 6 3

1 5 3
1 3 2

⎤
⎦;

Q � P�1 �

⎡
⎣ 1 �3 3

1 �1 0
�2 3 �1

⎤
⎦; [v]B � [17,4,�13]; [v]C � [2,�2,3]
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(c) C � ([1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]); P �

⎡
⎢⎢⎣

3 6 �4 �2
�1 7 �3 0

4 �3 3 1
6 �2 4 2

⎤
⎥⎥⎦;

Q � P�1 �

⎡
⎢⎢⎢⎣

1 �4 �12 7
�2 9 27 � 31

2

�5 22 67 � 77
2

5 �23 �71 41

⎤
⎥⎥⎥⎦; [v]B � [2,1,�3,7]; [v]C � [10,14,

3,12]

7. (a) Transition matrix to C1 �

⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦

Transition matrix to C2 �

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦

Transition matrix to C3 �

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦

Transition matrix to C4 �

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦

Transition matrix to C5 �

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦

10. C � ([�142,64,167], [�53,24,63], [�246,111,290])
11. (b) D[v]B � [Av]B � [2,�2,3]
16. (a) F

(b) T

(c) T

(d) F

(e) F

(f ) T

(g) F

Chapter 4 Review Exercises (pp. 298–303)

2. Zero vector � [�4,5]; additive inverse of [x,y] is [�x � 8,�y � 10]
3. (a), (d), and (f ) are not subspaces; (c) is a subspace.

4. (a) span(S) � {[a,b,c,5a � 3b � c] |a,b,c ∈ R} �� R
4

(b) Basis � {[1,0,0,5], [0,1,0,�3], [0,0,1,1]}; dim(span(S)) � 3

7. (a) S is linearly independent
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(b) S is a maximal linearly independent subset of itself. S spans R
3.

(c) No, by Theorem 4.9

8. (a) S is linearly dependent; x3 � 2x2 � x � 2 � 3(�5x3 � 2x2 � 5x � 2) �
8(2x3 � x2 � 2x � 1).

(b) S does not span P3. Maximal linearly independent subset � {�5x3 � 2x2 �
5x � 2, 2x3 � x2 � 2x � 1, �2x3 � 2x2 � 3x � 5}

(c) Yes, there is. See part (b) of Exercise 24 in Section 4.4.

12. (a) The matrix whose rows are the given vectors row reduces to I4, so the
Simplified Span Method shows that the set spans R

4. Since the set has four
vectors and dim(R4) � 4, part (1) of Theorem 4.13 shows that it is a basis.

13. (a) W nonempty:0 ∈ W because A0 � 0. Closure under addition:If X1,X2 ∈ W ,
A(X1 � X2) � AX1 � AX2 � 0 � 0 � 0. Closure under scalar multiplication:
If X ∈ W , A(cX) � c(AX) � c0 � 0.

(b) Basis � {[3,1,0,0], [�2,0,1,1]}
(c) dim(W) � 2, rank(A) � 2; 2 � 2 � 4

14. (a) First, use direct computation to check that every polynomial in B is in V .

Next,

⎡
⎢⎢⎢⎣

1 0 0

0 1 0

�3 �2 0

0 0 1

⎤
⎥⎥⎥⎦ clearly row reduces to

⎡
⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎦, and so B

is linearly independent by the Independence Test Method. Finally, since
p(x) � x /∈ V , dim(V) < dim(P3) � 4. Hence, |B| 	 dim(V), implying that
|B| � dim(V) and B is a basis for V , by Theorem 4.13. Thus, dim(V) � 3.

(b) C � {1,x3 � 3x2 � 3x} is a basis for W ; dim(W) � 2.

15. (a) T � {[2,�3,0,1], [4,3,0,4], [1,0,2,1]} (b) Yes

17. {[2,1,�1,2], [1,�2,2,�4], [0,1,0,0], [0,0,1,0]}

20. (a) [v]B � [�3,�1,�2] (c) [v]B � [�3,5,�1]

21. (a) [v]B � [27,�62,6]; P �

⎡
⎢⎣ 4 2 5

�1 0 1

3 1 �2

⎤
⎥⎦; [v]C � [14,�21,7]

(b) [v]B � [�4,�1,3]; P �

⎡
⎢⎣ 4 1 �2

1 2 0

�1 1 1

⎤
⎥⎦; [v]C � [�23,�6,6]
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23. (c)

⎡
⎢⎣ 4 �3 3

4 2 0

13 0 4

⎤
⎥⎦

26. (a) T

(b) T

(c) F

(d) T

(e) F

(f ) T

(g) T

(h) F

(i) F

(j) T

(k) F

(l) F

(m) T

(n) T

(o) F

(p) F

(q) T

(r) F

(s) T

(t) T

(u) T

(v) T

(w) F

(x) T

(y) T

(z) F

Section 5.1 (pp. 316–321)

1. Only starred parts are listed:
Linear transformations: (a), (d), (h)
Linear operators: (a), (d)

10. (c)

⎡
⎣ sin � 0 cos�

0 1 0
cos� 0 �sin �

⎤
⎦

26. L(i) � 7
5 i � 11

5 j; L( j) � � 2
5 i � 4

5 j

30. (b) Consider the zero linear transformation.

36. (a) F

(b) T

(c) F

(d) F

(e) T

(f ) F

(g) T

(h) T

Section 5.2 (pp. 332–338)

2. (a)

⎡
⎣ �6 4 �1

�2 3 �5
3 �1 7

⎤
⎦ (c)

⎡
⎣ 4 �1 3 3

1 3 �1 5
�2 �7 5 �1

⎤
⎦

3. (a)

[
�47 128 �288
�18 51 �104

]

(c)

⎡
⎣ 22 14

62 39
68 43

⎤
⎦ (e)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5 6 0
�11 �26 �6
�14 �19 �1

6 3 �2
�1 1 1
11 13 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4. (a)

⎡
⎣ �202 �32 �43

�146 �23 �31
83 14 18

⎤
⎦ (b)

[
21 7 21 16

�51 �13 �51 �38

]
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6. (a)

[
67 �123
37 �68

]
(b)

⎡
⎣ �7 2 10

5 �2 �9
�6 1 8

⎤
⎦

7. (a)

⎡
⎣ 3 0 0 0

0 2 0 0
0 0 1 0

⎤
⎦; 12x2 � 10x � 6

8. (a)

[ √
3

2 � 1
2

1
2

√
3

2

]

9. (b) 1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 �1 0 0
1 0 0 1 0 0
0 1 1 0 �1 0
0 1 1 0 1 0
0 �1 0 0 �1 1
0 �1 0 0 1 �1

⎤
⎥⎥⎥⎥⎥⎥⎦

10.

⎡
⎣ �12 12 �2

�4 6 �2
�10 �3 7

⎤
⎦

13. (a) In

(c) cIn

(e) The n � n matrix whose columns are en, e1, e2, . . . ,en�1,
respectively

18. (a) pABB(x) � x3 � 2x2 � x � x(x � 1)2

(b) Basis for E1 � ([2,1,0], [2,0,1]); basis for E0 � ([�1,2,2])

(c) One answer is P �

⎡
⎣ 2 2 �1

1 0 2
0 1 2

⎤
⎦.

26. (a) T

(b) T

(c) F

(d) F

(e) T

(f ) F

(g) T

(h) T

(i) T

(j) F

Section 5.3 (pp. 345–349)

1. (a) Yes, because L([1,�2,3]) � [0,0,0]
(c) No, because the system⎧⎨

⎩
5x1 � x2 � x3 � 2

�3x1 � x3 � �1
x1 � x2 � x3 � 4

has no solutions

2. (a) No, since L(x3 � 5x2 � 3x � 6) �� 0

(c) Yes, because, for example, L(x3 � 4x � 3) � 8x3 � x � 1
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3. (a) dim(ker(L)) � 1; basis for ker(L) � {[�2,3,1]};dim(range(L)) � 2; basis for
range(L) � {[1,�2,3], [�1,3,�3]}

(d) dim(ker(L)) � 2;basis for ker(L) � {[1,�3,1,0], [�1,2,0,1]};dim(range(L))

� 2; basis for range(L) � {[�14,�4,�6,3,4], [�8,�1,2,�7,2]}
4. (a) dim(ker(L)) � 2; basis for ker(L) � {[1,0,0], [0,0,1]}; dim(range(L)) � 1;

basis for range(L) � {[0,1]}
(d) dim(ker(L)) � 2; basis for ker(L) � {x4, x3}; dim(range(L)) � 3; basis for

range(L) � {x2, x,1}
(f ) dim(ker(L)) � 1; basis for ker(L) � {[0,1,1]}; dim(range(L)) � 2; basis for

range(L) � {[1,0,1], [0,0,�1]} (A simpler basis for range(L) � {[1,0,0],
[0,0,1]}.)

(g) dim(ker(L)) � 0; basis for ker(L) � { } (empty set); dim(range(L)) � 4; basis
for range(L) � standard basis for M22

(i) dim(ker(L)) � 1; basis for ker(L) � {x2 � 2x � 1}; dim(range(L)) � 2; basis
for range(L) � {[1,2], [1,1]} (A simpler basis for range(L) � standard basis
for R

2.)

6. ker(L) �

⎧⎨
⎩
⎡
⎣ a b c

d e f
g h �a � e

⎤
⎦
∣∣∣∣∣∣a,b,c,d,e, f ,g,h ∈ R

⎫⎬
⎭; dim(ker(L))�8; range(L)�

R; dim(range(L)) � 1

8. ker(L) � {0}; range(L)�{ax4 � bx3 � cx2}; dim(ker(L))�0; dim(range(L))�3

10. When k � n, ker(L) � all polynomials of degree less than k, dim(ker(L)) � k,
range(L) � Pn�k, and dim(range(L)) � n � k � 1. When k > n, ker(L) � Pn,
dim(ker(L)) � n � 1, range(L) � {0}, and dim(range(L)) � 0.

12. ker(L) � {[0,0, . . . ,0]}; range(L) � R
n (Note:Every vector X is in the range since

L(A�1X) � A(A�1X) � X.)

16. Consider L

([
x
y

])
�

[
1 �1
1 �1

][
x
y

]
. Then, ker(L)� range(L)�{[a,a] |a ∈ R}.

20. (a) F

(b) F

(c) T

(d) F

(e) T

(f ) F

(g) F

(h) F

Section 5.4 (pp. 354–356)

1. (a) Not one-to-one, because L([1,0,0]) � L([0,0,0]) � [0,0,0,0]; not onto,
because [0,0,0,1] is not in range(L)

(c) One-to-one, because L([x,y,z])� [0,0,0] implies that [2x,x � y � z,�y] �
[0,0,0], which gives x �y �z �0; onto, because every vector [a,b,c] can be
expressed as [2x, x � y � z,�y], where x � a

2 , y � �c, and z � b � a
2 � c
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(e) One-to-one, because L(ax2 � bx � c) � 0 implies that a � b � b � c � a �
c � 0,which gives b � c, and hence a � b � c � 0;onto,because every poly-
nomial Ax2 � Bx � C can be expressed as (a � b)x2 � (b � c)x � (a � c),
where a � (A � B � C)/2, b � (A � B � C)/2, and c � (�A � B � C)/2

(g) Not one-to-one, because L

([
0 1 0
1 0 �1

])
� L

([
0 0 0
0 0 0

])
�

[
0 0
0 0

]
;

onto, because every 2 � 2 matrix

[
A B
C D

]
can be expressed as[

a �c
2e d � f

]
, where a � A, c � �B, e � C/2, d � D, and f � 0

(h) One-to-one, because L(ax2 � bx � c) �

[
0 0
0 0

]
implies that a � c � b �

c � �3a � 0, which gives a � b � c � 0; not onto, because

[
0 1
0 0

]
is not

in range(L)

2. (a) One-to-one; onto; the matrix row reduces to I2, which means that
dim(ker(L)) � 0 and dim(range(L)) � 2.

(b) One-to-one;not onto; the matrix row reduces to

⎡
⎣ 1 0

0 1
0 0

⎤
⎦,which means that

dim(ker(L)) � 0 and dim(range(L)) � 2.

(c) Not one-to-one; not onto; the matrix row reduces to

⎡
⎢⎢⎣

1 0 �2
5

0 1 �6
5

0 0 0

⎤
⎥⎥⎦, which

means that dim(ker(L)) � 1 and dim(range(L)) � 2.

3. (a) One-to-one; onto; the matrix row reduces to I3, which means that
dim(ker(L)) � 0 and dim(range(L)) � 3.

(c) Not one-to-one; not onto; the matrix row reduces to

⎡
⎢⎢⎢⎢⎢⎣

1 0 � 10
11

19
11

0 1 3
11 � 9

11

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦,

which means that dim(ker(L)) � 2 and dim(range(L)) � 2.

9. (a) F

(b) F

(c) T

(d) T

(e) T

(f ) T

(g) F

(h) F
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Section 5.5 (pp. 366–371)

1. In each part, let A represent the given matrix for L1 and let B represent the given
matrix for L2. By Theorem 5.15, both L1 and L2 are isomorphisms if and only if
A and B are nonsingular. In each part,we state |A| and |B| to show that A and B
are nonsingular.

(a) |A| � 1, |B| � 3, L�1
1

⎛
⎝
⎡
⎣ x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 0 0 1

0 �1 0
1 �2 0

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦,

L�1
2

⎛
⎝
⎡
⎣ x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 1 0 0

0 0 � 1
3

2 1 0

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦,

(L2 ◦ L1)

⎛
⎝
⎡
⎣ x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 0 �2 1

1 4 �2
0 3 0

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦,

(L2 ◦ L1)
�1

⎛
⎝
⎡
⎣ x1

x2

x3

⎤
⎦
⎞
⎠�

(
L�1

1 ◦ L�1
2

)⎛⎝
⎡
⎣ x1

x2

x3

⎤
⎦
⎞
⎠

�

⎡
⎢⎢⎣

2 1 0

0 0 1
3

1 0 2
3

⎤
⎥⎥⎦
⎡
⎣ x1

x2

x3

⎤
⎦

(c) |A| � �1, |B| � 1, L�1
1

⎛
⎝
⎡
⎣ x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 2 �4 �1

7 �13 �3
5 �10 �3

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦,

L�1
2

⎛
⎝
⎡
⎣ x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 1 0 �1

3 1 �3
�1 �2 2

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦,

(L2 ◦ L1)

⎛
⎝
⎡
⎣ x1

x2

x3

⎤
⎦
⎞
⎠�

⎡
⎣ 29 �6 �4

21 �5 �2
38 �8 �5

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦,

(L2 ◦ L1)
�1

⎛
⎝
⎡
⎣ x1

x2

x3

⎤
⎦
⎞
⎠�

(
L�1

1 ◦ L�1
2

)⎛⎝
⎡
⎣ x1

x2

x3

⎤
⎦
⎞
⎠

�

⎡
⎣ �9 �2 8

�29 �7 26
�22 �4 19

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦
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5. (a)

[
0 1
1 0

]
13. (a) No, by Corollary 5.21, because dim(R6) � dim(P5)

(b) No, by Corollary 5.21, because dim(M22) � dim(P3)

23. (a) T

(b) T

(c) F

(d) F

(e) F

(f ) T

(g) T

(h) T

(i) T

Section 5.6 (pp. 386–389)

1. (a) �1 � 2; basis for E2 � ([1,0]); algebraic multiplicity of �1 is 2; geometric
multiplicity of �1 is 1

(c) �1 �1;basis for E1 �([2,1,1]);�2 � � 1;basis for E�1 �([�1,0,1]); �3 � 2;
basis for E2 � ([1,1,1]); all three eigenvalues have algebraic multiplicity �
geometric multiplicity � 1

(d) �1 � 2;basis for E2 � ([5,4,0], [3,0,2]); algebraic multiplicity of �1 is 2;geo-
metric multiplicity of �1 is 2; �2 � 3; basis for E3 � ([0,�1,1]); algebraic
multiplicity of �2 is 1; geometric multiplicity of �2 is 1

2. (b) C � (x2,x,1); A �

⎡
⎣ 2 0 0

�2 1 0
0 �1 0

⎤
⎦; B � (x2 � 2x � 1,�x � 1,1);

D �

⎡
⎣2 0 0

0 1 0
0 0 0

⎤
⎦; P �

⎡
⎣ 1 0 0

�2 �1 0
1 1 1

⎤
⎦

(d) C � (x2,x,1); A �

⎡
⎣ �1 0 0

�12 �4 0
18 0 �5

⎤
⎦; B � (2x2 � 8x � 9, x,1);

D �

⎡
⎣ �1 0 0

0 �4 0
0 0 �5

⎤
⎦; P �

⎡
⎣ 2 0 0

�8 1 0
9 0 1

⎤
⎦

(e) C � (i, j); A � 1
2

[
1 �

√
3√

3 1

]
; no eigenvalues; not diagonalizable

(h) C �

([
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

])
; A �

⎡
⎢⎢⎣

�4 0 3 0
0 �4 0 3

�10 0 7 0
0 �10 0 7

⎤
⎥⎥⎦;
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B �

([
3 0
5 0

]
,

[
0 3
0 5

]
,

[
1 0
2 0

]
,

[
0 1
0 2

])
; D �

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦;

P �

⎡
⎢⎢⎣

3 0 1 0
0 3 0 1
5 0 2 0
0 5 0 2

⎤
⎥⎥⎦

4. (a) The only eigenvalue is � � 1; E1 � {1}.

7. (a)

⎡
⎢⎣ 1 1 �1

0 1 0

0 0 1

⎤
⎥⎦; eigenvalue � � 1; basis for E1 � {[0,1,1], [1,0,0]}; � has

algebraic multiplicity 3 and geometric multiplicity 2.

(b)

⎡
⎢⎣ 1 0 0

0 1 0

0 0 0

⎤
⎥⎦; eigenvalues �1 � 1, �2 � 0; basis for E1 � {[1,0,0], [0,1,0]};

�1 has algebraic and geometric multiplicity 2.

18. (a) F

(b) T

(c) T

(d) F

(e) T

(f ) T

(g) T

(h) F

(i) F

(j) T

Chapter 5 Review Exercises (pp. 389–395)

1. (a) Not a linear transformation

3. f (A1)� f (A2)�CA1B�1 �CA2B�1 �C(A1B�1 �A2B�1)�C(A1 �A2)B�1 �
f (A1 � A2); f (kA) � C(kA)B�1 � kCAB�1 � kf (A)

4. L([6,2,�7]) � [20,10,44]; L([x,y,z]) �

⎡
⎣ �3 5 �4

2 �1 0
4 3 �2

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦

5. (b) Use Theorem 5.2 and part (2) of Theorem 5.3.

6. (a) ABC �

[
29 32 �2

43 42 �6

]

7. (b) ADE �

⎡
⎢⎢⎢⎣

115 �45 59

374 �146 190

�46 15 �25

�271 108 �137

⎤
⎥⎥⎥⎦
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9. (a) pABB(x) � x3 � x2 � x � 1 � (x � 1)(x � 1)2

10. (a) Basis for ker(L) � {[2,�3,1,0], [�3,4,0,1]};
basis for range(L) � {[3,2,2,1], [1,1,3,4]}

12. (a) First show that ker(L1) ⊆ ker(L2 ◦ L1). Conclude that dim(ker(L1)) �
dim(ker(L2 ◦ L1)).

(b) Let L1([x,y]) � [x,0] and L2([x,y]) � [0,y].
15. (a) dim(ker(L)) � 0, dim(range(L)) � 3. L is both one-to-one and onto.

18. (a) The matrices for L1 and L2, respectively, have determinants 5 and 2. Apply
Theorem 5.15.

(b) Matrix for L2 ◦ L1 �

⎡
⎢⎢⎢⎣

81 71 �15 18

107 77 �31 19

69 45 �23 11

�29 �36 �1 �9

⎤
⎥⎥⎥⎦; for L�1

1 :

1
5

⎡
⎢⎢⎢⎣

2 �10 19 11

0 5 �10 �5

3 �15 26 14

�4 15 �23 �17

⎤
⎥⎥⎥⎦; for L�1

2 : 1
2

⎡
⎢⎢⎢⎣

�8 26 �30 2

10 �35 41 �4

10 �30 34 �2

�14 49 �57 6

⎤
⎥⎥⎥⎦.

21. (a) L(ax4�bx3�cx2)�4ax3�(3b � 12a)x2�(2c � 6b)x�2c. Clearly, ker(L)�
{0}. Apply part (1) of Theorem 5.12.

22. In each part, let A represent the given matrix.

(a) (i) pA(x) � x3 � 3x2 � x � 3 � (x � 1)(x � 1)(x � 3); eigenvalues for L:
�1 � 1, �2 � �1, and �3 � 3; basis for E1: {[�1,3,4]}; basis for E�1:
{[�1,4,5]}; basis for E3: {[�6,20,27]}

(ii) All algebraic and geometric multiplicities equal 1; L is diagonalizable.

(iii) B � {[�1,3,4], [�1,4,5], [�6,20,27]}; D �

⎡
⎢⎣ 1 0 0

0 �1 0

0 0 3

⎤
⎥⎦;

P �

⎡
⎢⎣ �1 �1 �6

3 4 20

4 5 27

⎤
⎥⎦
⎛
⎜⎝Note that P�1 �

⎡
⎢⎣ �8 3 �4

1 3 �2

1 �1 1

⎤
⎥⎦
⎞
⎟⎠.

(c) (i) pA(x) � x3 � 5x2 � 3x � 9 � (x � 1)(x � 3)2; eigenvalues for L:
�1 � �1, and �2 � 3; basis for E�1: {[1,3,3]}; basis for E3: {[1,5,0],
[3,0,25]}

(ii) For �1 � �1: algebraic multiplicity � geometric multiplicity � 1; for
�2 � 3: algebraic multiplicity � geometric multiplicity � 2; L is diago-
nalizable.
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(iii) B � {[1,3,3], [1,5,0], [3,0,25]}; D �

⎡
⎢⎣�1 0 0

0 3 0

0 0 3

⎤
⎥⎦; P �

⎡
⎢⎣1 1 3

3 5 0

3 0 25

⎤
⎥⎦

⎛
⎜⎝Note that P�1 � 1

5

⎡
⎢⎣ 125 �25 �15

�75 16 9

�15 3 2

⎤
⎥⎦
⎞
⎟⎠.

25. (a) T

(b) F

(c) T

(d) T

(e) T

(f ) F

(g) F

(h) T

(i) T

(j) F

(k) F

(l) T

(m) F

(n) T

(o) T

(p) F

(q) F

(r) T

(s) F

(t) T

(u) T

(v) F

(w) T

(x) T

(y) T

(z) T

Section 6.1 (pp. 408–411)

1. (a) Orthogonal, not orthonormal

(c) Neither

(f ) Orthogonal, not orthonormal

2. (a) Orthogonal

(c) Not orthogonal: columns
not normalized

(e) Orthogonal

3. (a) [v]B �
[

2
√

3�3
2 , 3

√
3�2
2

]
(c) [v]B �

[
3, 13

√
3

3 , 5
√

6
3 ,4

√
2
]

4. (a) {[5,�1,2], [5,�3,�14]}
(c) {[2,1,0,�1], [�1,1,3,�1], [5,�7,5,3]}

5. (a) {[2,2,�3], [13,�4,6], [0,3,2]}
(c) {[1,�3,1], [2,5,13], [4,1,�1]}
(e) {[2,1,�2,1], [3,�1,2,�1], [0,5,2,�1], [0,0,1,2]}

7. (a) [�1,3,3] (c) [5,1,1]

8. (b) No
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16. (b)

⎡
⎢⎢⎢⎣

√
6

6

√
6

3

√
6

6
√

30
6 �

√
30

15 �
√

30
30

0
√

5
5 � 2

√
5

5

⎤
⎥⎥⎥⎦

22. (a) F

(b) T

(c) T

(d) F

(e) T

(f ) T

(g) T

(h) F

(i) T

(j) T

Section 6.2 (pp. 424–428)

1. (a) W⊥ � span({[2,3]})
(c) W⊥ � span({[2,3,7]})
(e) W⊥ � span({[�2,5,�1]})
(f ) W⊥ � span({[7,1,�2,�3], [0,4,�1,2]})

2. (a) w1 � projWv �
[
� 33

35 , 111
35 , 12

7

]
; w2 �

[
� 2

35 ,� 6
35 , 2

7

]
(b) w1 � projWv �

[
� 17

9 ,� 10
9 , 14

9

]
; w2 �

[
26
9 ,� 26

9 , 13
9

]

4. (a) 3
√

129
43 (d) 8

√
17

17

5. (a) Orthogonal projection onto 3x � y � z � 0

(d) Neither

6. 1
9

⎡
⎣ 5 2 �4

2 8 2
�4 2 5

⎤
⎦

9. (a) x3 � 2x2 � x (c) x3 � x2 � x � 1

10. (a) 1
59

⎡
⎣ 50 �21 �3

�21 10 �7
�3 �7 58

⎤
⎦

(c) 1
9

⎡
⎢⎢⎣

2 2 3 �1
2 8 0 2
3 0 6 �3

�1 2 �3 2

⎤
⎥⎥⎦

26. (a) T

(b) T

(c) F

(d) F

(e) T

(f ) F

(g) T

(h) T

(i) T

(j) F

(k) T

(l) T
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Section 6.3 (pp. 437–439)

1. (a) Symmetric, because the matrix for L with respect to the standard basis is
symmetric

(d) Symmetric, since L is orthogonally diagonalizable

(e) Not symmetric, since L is not diagonalizable, and hence not orthogonally
diagonalizable

(g) Symmetric, because the matrix with respect to the standard basis is
symmetric

2. (a) 1
25

[
�7 24
24 7

]
(d) 1

169

⎡
⎢⎢⎢⎣

�119 �72 �96 0

�72 119 0 96

�96 0 119 �72

0 96 �72 �119

⎤
⎥⎥⎥⎦

3. (a) B �
(

1
13 [5,12], 1

13 [�12,5]
)

; P � 1
13

[
5 �12

12 5

]
; D �

[
0 0

0 169

]

(c) B �
(

1√
2
[�1,1,0], 1

3
√

2
[1,1,4], 1

3 [�2,�2,1]
)

(other bases are possible,

since E1 is two-dimensional), P �

⎡
⎢⎢⎣

� 1√
2

1
3
√

2
� 2

3

1√
2

1
3
√

2
� 2

3

0 4
3
√

2
1
3

⎤
⎥⎥⎦, D �

⎡
⎣ 1 0 0

0 1 0
0 0 3

⎤
⎦

(e) B �
(

1√
14

[3,2,1,0], 1√
14

[�2,3,0,1], 1√
14

[1,0,�3,2], 1√
14

[0,�1,2,3]
)

;

P � 1√
14

⎡
⎢⎢⎣

3 �2 1 0
2 3 0 �1
1 0 �3 2
0 1 2 3

⎤
⎥⎥⎦; D �

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 �3 0
0 0 0 5

⎤
⎥⎥⎦

(g) B�
(

1√
5
[1,2,0], 1√

6
[�2,1,1], 1√

30
[2,�1,5]

)
(other bases are possible, since

E15 is two-dimensional); P�

⎡
⎢⎢⎣

1√
5

� 2√
6

2√
30

2√
5

1√
6

� 1√
30

0 1√
6

5√
30

⎤
⎥⎥⎦; D �

⎡
⎣15 0 0

0 15 0
0 0 �15

⎤
⎦

4. (a) C �
(

1
19 [�10,15,6], 1

19 [15,6,10]
)

; A �

[
�2 2

2 1

]
;



 

Answers to Selected Exercises 701

B �
(

1
19

√
5
[20,27,26], 1

19
√

5
[35,�24,�2]

)
; P� 1√

5

[
1 �2
2 1

]
; D �

[
2 0
0 �3

]

5. (a) 1
25

[
23 �36

�36 2

]
(c) 1

3

⎡
⎣ 11 4 �4

4 17 �8
�4 �8 17

⎤
⎦

6. For example, the matrix A in Example 7 of Section 5.6 is diagonalizable,but not
symmetric, and hence, not orthogonally diagonalizable.

7. 1
2

[
a � c �

√
(a � c)2 � 4b2 0

0 a � c �
√

(a � c)2 � 4b2

]

8. (b) L must be the zero linear operator. Since L is diagonalizable, the eigenspace
for 0 must be all of V .

13. (a) T (b) F (c) T (d) T (e) T (f ) T

Chapter 6 Review Exercises (pp. 440–444)

1. (a) [v]B � [�1,4,2]
2. (a) {[1,�1,�1,1], [1,1,1,1]}
3. {[6,3,�6], [3,6,6], [2,�2,1]}
6. (e) � ≈ 278◦. This is a rotation about the axis in the direction of the vector

[�1,3,3] in the direction from [6,1,1] toward [0,1,�1].
7. (a) w1 � projWv � [0,�9,18]; w2 � projW⊥v � [2,16,8]
8. (a) Distance ≈ 10.141294

11. 1
7

⎡
⎢⎣ 3 6 �2

6 �2 3

�2 3 6

⎤
⎥⎦

12. (b) pL(x) � x2(x � 1) � x3 � x2

13. (a) Not a symmetric operator,since the matrix for L with respect to the standard

basis is

⎡
⎢⎢⎢⎢⎣

0 0 0 0

3 0 0 0

0 2 0 0

0 0 1 0

⎤
⎥⎥⎥⎥⎦ , which is not symmetric
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14. (a) B �
(

1√
6
[�1,�2,1], 1√

30
[1,2,5], 1√

5
[�2,1,0]

)
; P �

⎡
⎢⎢⎣

� 1√
6

1√
30

� 2√
5

� 2√
6

2√
30

1√
5

1√
6

5√
30

0

⎤
⎥⎥⎦;

D �

⎡
⎣ 1 0 0

0 2 0
0 0 �1

⎤
⎦

17. (a) T

(b) T

(c) T

(d) T

(e) F

(f ) F

(g) T

(h) T

(i) T

(j) T

(k) T

(l) T

(m) F

(n) T

(o) T

(p) T

(q) T

(r) F

(s) F

(t) T

(u) T

(v) F

(w) T

Section 7.1 (pp. 452–454)

1. (a) [1 � 4i,1 � i,6 � i]
(b) [�12 � 32i,�7 � 30i,53 � 29i]

(d) [�24 � 12i,�28 � 8i,�32i]
(e) 1 � 28i

3. (a)

[
11 � 4i �4 � 2i
2 � 4i 12

]

(c)

⎡
⎣ 1 � i 0 10i

2i 3 � i 0
6 � 4i 5 7 � 3i

⎤
⎦

(d)

[
�3 � 15i �3 9i

9 � 6i 0 3 � 12i

]

(f )

[
1 � 40i �4 � 14i
13 � 50i 23 � 21i

]

(i)

⎡
⎣ 4 � 36i �5 � 39i

1 � 7i �6 � 4i
5 � 40i �7 � 5i

⎤
⎦

5. (a) Skew-Hermitian

(b) Neither

(c) Hermitian

(d) Skew-Hermitian

(e) Hermitian

11. (a) F (b) F (c) T (d) F (e) F (f ) T

Section 7.2 (pp. 459–460)

1. (a) w � 1
5 � 13

5 i, z � 28
5 � 3

5 i

(c) x � (2 � 5i) � (4 � 3i)c, y � (5 � 2i) � ic, z � c

(e) Solution set � { }
2. (b) |A| � �15 � 23i; A is nonsingular; |A∗| � �15 � 23i � |A|
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3. (a) Eigenvalues: �1 � i; �2 � �1, with respective eigenvectors [1� i,2] and
[7�6i,17]. Hence, Ei �{c[1� i,2] |c ∈ C}, and E�1 � {c[7 � 6i,17] |c ∈ C}.

(c) Eigenvalues: �1 � i and �2 � � 2, with eigenvectors [1,1,0] and
[(�3 � 2i),0,2] for �1, and eigenvector [�1, i,1] for �2. Hence,
Ei � {c[1,1,0] � d[(�3 � 2i),0,2] |c,d ∈ C} and E�2 � {c[�1, i,1] |c ∈ C}.

4. (a) The 2 � 2 matrix A is diagonalizable since two eigenvectors were found in

the diagonalization process; P �

[
1 � i 7 � 6i

2 17

]
; D �

[
i 0
0 �1

]
.

6. (a) T (b) F (c) F (d) F

Section 7.3 (pp. 463–464)

2. (b) Not linearly independent, dim � 1 (d) Not linearly independent, dim � 2

3. (b) Linearly independent, dim � 2 (d) Linearly independent, dim � 3

4. (b) [i,1 � i,�1]

5. Ordered basis � ([1,0], [i,0], [0,1], [0, i]); matrix �

⎡
⎢⎢⎣

0 0 1 0
0 0 0 �1
1 0 0 0
0 �1 0 0

⎤
⎥⎥⎦

8.

⎡
⎢⎣

�3 � i � 2
5 � 11

5 i
1
2 � 3

2 i �i

� 1
2 � 7

2 i � 8
5 � 4

5 i

⎤
⎥⎦

9. (a) T (b) F (c) T (d) F

Section 7.4 (pp. 470–471)

1. (a) Not orthogonal (c) Orthogonal

3. (a) {[1 � i, i,1], [2,�1 � i,�1 � i], [0,1, i]}

(b)

⎡
⎢⎢⎣

1�i
2

i
2

1
2

2√
8

�1�i√
8

�1�i√
8

0 1√
2

i√
2

⎤
⎥⎥⎦

10. (b) P�

⎡
⎣�1�i√

6
1�i√

3
2√
6

1√
3

⎤
⎦; the corresponding diagonal matrix is

[
9 � 6i 0

0 �3 � 12i

]
.
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13. Eigenvalues are �4, 2 �
√

6 and 2 �
√

6.

15. (a) F (b) T (c) T (d) T (e) F

Section 7.5 (pp. 483–487)

1. (b) < x,y > � � 183;‖x‖ �
√

314

3. (b) < f ,g > � 1
2 (e� � 1); ‖f‖ �

√
1
2

(
e2� � 1

)
9. (a)

√
�3

3 � 3�
2

10. (b) 0.586 radians, or 33.6◦

14. (a) Orthogonal (c) Not orthogonal

19. Using w1 � t2 � t � 1,w2 �1,and w3 � t yields the orthogonal basis {v1,v2,v3},
with v1 � t2 � t � 1, v2 � � 20t2 � 20t � 13, and v3 �15t2 � 4t � 5.

23. W⊥ � span({t3 � t2, t � 1})
26. w1 � 1

2� (sin t � cos t), w2 � 1
k et � 1

2� sin t � 1
2� cos t

29. (b) ker(L) � W⊥; range(L) � W
30. (a) F (b) F (c) F (d) T (e) F

Chapter 7 Review Exercises (pp. 487–490)

1. (a) 0

(b) (1 � 2i)(v · z) � ((1 � 2i)v) · z � �21 � 43i; v · ((1 � 2i)z) � 47 � 9i

4. (a) w � 4 � 3i, z � �2i

(d) {[(2 � i) � (3 � i)c, (7 � i) � ic, c] |c ∈ C} � {[(2 � 3c) � (1 � c)i,7 �
(1 � c)i,c] |c ∈ C}

6. (a) pA(x) � x3 � x2 � x � 1 � (x2 � 1)(x � 1) � (x � i)(x � i)(x � 1);

D �

⎡
⎣ i 0 0

0 �i 0
0 0 1

⎤
⎦; P �

⎡
⎣ �2 � i �2 � i 0

1 � i 1 � i 2
1 1 1

⎤
⎦

7. (a) One possibility: Consider L : C → C given by L(z) � z. Note that L(v �
w) � (v � w) � v � w � L(v) � L(w). But L is not a linear operator on C

because L(i) � �i, but iL(1) � i(1) � i, so the rule “L(cv) � cL(v)” is not
satisfied.
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(b) The example given in part (a) is a linear operator on C, thought of as a real
vector space. In that case we may use only real scalars,and so, if v � a � bi,
then L(cv) � L(ca � cbi) � ca � cbi � c(a � bi) � cL(v).

8. (a) B � {[1, i,1,�i], [4 � 5i, 7 � 4i, i, 1] , [10, �2 � 6i, �8 � i, �1 � 8i] ,
[0,0,1, i]}

9. (a) pA(x) � x2 � 5x � 4 � (x � 1)(x � 4); D �

[
1 0
0 4

]
;

P �

⎡
⎣ 1√

6
(�1 � i) 1√

3
(1 � i)

2√
6

1√
3

⎤
⎦

10. Show that A is normal, and then apply Theorem 7.9.

13. Distance �
√

8
105 ≈ 0.276

14. {[1,0,0], [4,3,0], [5,4,2]}

16. (a) T

(b) F

(c) T

(d) F

(e) F

(f ) T

(g) F

(h) T

(i) F

(j) T

(k) T

(l) T

(m) F

(n) T

(o) T

(p) T

(q) T

(r) T

(s) T

(t) T

(u) T

(v) T

(w) F

Section 8.1 (pp. 497–501)

1. Symmetric: (a), (b), (c), (d), (g)

(a) Matrix for G1 �

⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦

(b) Matrix for G2 �

⎡
⎢⎢⎢⎢⎣

1 1 0 0 1
1 0 0 1 0
0 0 1 0 1
0 1 0 0 1
1 0 1 1 1

⎤
⎥⎥⎥⎥⎦

(c) Matrix for G3 �

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦
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(d) Matrix for G4 �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
1 0 1 1 0 0
0 1 0 0 1 1
1 1 0 0 1 0
0 0 1 1 0 1
0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(e) Matrix for D1 �

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0

⎤
⎥⎥⎦

(f ) Matrix for D2 �

⎡
⎢⎢⎣

0 1 1 0
0 1 1 1
0 1 0 1
0 0 0 1

⎤
⎥⎥⎦

(g) Matrix for D3 �

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 0 0 1
1 0 0 1 0
0 0 1 0 1
0 1 0 1 0

⎤
⎥⎥⎥⎥⎦

(h) Matrix for D4 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2. F can be the adjacency matrix for either a graph or digraph.

Graph for F �

P1 P3

P4P5

P2

G can be the adjacency matrix for a digraph (only).

Digraph for G �

P1

P3P2
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H can be the adjacency matrix for a digraph (only).

Digraph for H �

P1

P3P2

I can be the adjacency matrix for a graph or digraph.

P1 P2

Graph for I �

P3

K can be the adjacency matrix for a graph or digraph.

Graph for K �
P1 P2

L can be the adjacency matrix for a graph or digraph.

Graph for L �

P1 P2

P4P3

3. The digraph is shown in the accompanying figure, and the adjacency matrix is

A
B
C
D
E
F

A B C D E F⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 1 0
0 1 0 0 1 0
1 0 0 0 0 1
1 1 0 1 0 0
0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦.

A
B

D

F

E

C

The transpose gives no new information. But it does suggest a different interpre-
tation of the results: namely, the (i, j) entry of the transpose equals 1 if author j
influences author i.

4. (a) 3 (c) 6 � 1 � 1 � 4 (e) Length 4

5. (a) 4 (c) 5 � 1 � 1 � 3 (e) No such path exists.
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6. (a) Figure 8.5: 7; Figure 8.6: 2

(c) Figure 8.5: 3 � 0 � 1 � 0 � 2; Figure 8.6: 17 � 1 � 2 � 4 � 10

7. (a) If the vertex is the ith vertex, then the ith row and ith column entries of
the adjacency matrix all equal 0, except possibly for the (i, i) entry.

(b) If the vertex is the ith vertex, then the ith row entries of the adjacency
matrix all equal 0,except possibly for the (i, i) entry. (Note: The ith column
entries may be nonzero.)

8. (a) The trace equals the number of loops in the graph or digraph.

9. (a) Figure 8.5: strongly connected; Figure 8.6: not strongly connected (since
there is no path to P5 from any other vertex)

10. (b) Yes,it is a dominance digraph because no tie games are possible and because
each team plays every other team. Thus, if Pi and Pj are two given teams,
either Pi defeats Pj or vice versa.

12. (a) T (b) F (c) T (d) F (e) T (f ) T (g) T

Section 8.2 (pp. 503–504)

1. (a) I1 � 8, I2 � 5, I3 � 3

(c) I1 � 12, I2 � 5, I3 � 3, I4 � 2, I5 � 2, I6 � 7

2. (a) T (b) T

Section 8.3 (pp. 510–512)

1. (a) y � �0.8x � 3.3, y � �7.3 when x � 5

(c) y � �1.5x � 3.8, y � �3.7 when x � 5

2. (a) y � 0.375x2 � 0.35x � 3.60

(c) y � �0.042x2 � 0.633x � 0.266

3. (a) y � 1
4x3 � 25

28 x2 � 25
14x � 37

35

4. (a) y � 4.4286x2 � 2.0571

(c) y � �0.1014x2 � 0.9633x � 0.8534

(e) y � 0x3 � 0.3954x2 � 0.9706

5. (a) y � 0.4x � 2.54; the angle reaches 20◦ in the 44th month

(b) y � 0.02857x2 � 0.2286x � 2.74; the angle reaches 20◦ in the 21st
month
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7. The least-squares polynomial is y � 4
5x2 � 2

5x � 2, which is the exact quadratic
through the three given points.

9. (a) x1 � 230
39 , x2 � 155

39 ;

⎧⎪⎪⎨
⎪⎪⎩

4x1 � 3x2 � 11 2
3 , which is almost 12

2x1 � 5x2 � 31 2
3 , which is almost 32

3x1 � x2 � 21 2
3 , which is close to 21

10. (a) T (b) F (c) F (d) F

Section 8.4 (pp. 522–525)

1. A is not stochastic,since A is not square;A is not regular,since A is not stochastic.

B is not stochastic,since the entries of column 2 do not sum to 1;B is not regular,
since B is not stochastic.

C is stochastic; C is regular, since C is stochastic and has all nonzero entries.

D is stochastic;D is not regular,since every positive power of D is a matrix whose
rows are the rows of D rearranged in some order, and hence every such power
contains zero entries.

E is not stochastic,since the entries of column 1 do not sum to 1;E is not regular,
since E is not stochastic.

F is stochastic; F is not regular, since every positive power of F has all second
row entries zero.

G is not stochastic,since G is not square;G is not regular,since G is not stochastic.

H is stochastic;H is regular,since H is stochastic and H2 �

⎡
⎢⎣

1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

⎤
⎥⎦, which

has all nonzero entries.

2. (a) p1 �
[ 5

18 , 13
18

]
, p2 �

[
67

216 , 149
216

]
(c) p1 �

[
17
48 , 1

3 , 5
16

]
,p2 �

[
205
576 , 49

144 , 175
576

]
3. (a)

[2
5 , 3

5

]
5. (a) [0.34,0.175,0.34,0.145] in the next election; [0.3555,0.1875,0.2875,

0.1695] in the election after that

(b) The steady-state vector is [0.36,0.20,0.24,0.20]. After a century, the votes
would be 36% for Party A and 24% for Party C.
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6. (a) M �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
6

1
6

1
5 0

1
8

1
2 0 0 1

5
1
8 0 1

2
1

10
1

10
1
4 0 1

6
1
2

1
5

0 1
3

1
6

1
5

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(b) M2 has all nonzero entries.

(c) 29
120 , since the probability vector after two time intervals is[1
5 , 13

240 , 73
240 , 29

120 , 1
5

]
(d)

[1
5 , 3

20 , 3
20 , 1

4 , 1
4

]
; over time, the rat frequents rooms B and C the least, and

rooms D and E the most.

11. (a) F (b) T (c) T (d) T (e) F

Section 8.5 (pp. 529–530)

1. (a) �24 �46 �15 �30 10 16 39 62 26 42 51 84 24 37 �11 �23

2. (a) HOMEWORK IS GOOD FOR THE SOUL

3. (a) T (b) T (c) F

Section 8.6 (pp. 535–537)

1. (a) (III): 〈2〉 ↔ 〈3〉 ; inverse operation is (III): 〈2〉 ↔ 〈3〉. The matrix is its own
inverse.

(b) (I): 〈2〉 ← �2 〈2〉 ; inverse operation is (I): 〈2〉 ← � 1
2 〈2〉 . The inverse

matrix is

⎡
⎣ 1 0 0

0 � 1
2 0

0 0 1

⎤
⎦.

(e) (II): 〈3〉 ← �2
〈
4
〉
� 〈3〉 ; inverse operation is (II): 〈3〉 ← 2

〈
4
〉
� 〈3〉. The

inverse matrix is

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 2
0 0 0 1

⎤
⎥⎥⎦.

2. (a)

[
4 9
3 7

]
�

[
4 0
0 1

][
1 0
3 1

][
1 0
0 1

4

][
1 9

4
0 1

][
1 0
0 1

]



 

Answers to Selected Exercises 711

(c) The product of the following matrices in the order listed:⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

�3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
3 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 6 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 � 5

3 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 2
3

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 � 1

6
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦.

10. (a) T (b) F (c) F (d) T (e) T

Section 8.7 (pp. 543–544)

1. (c) � � 1
2 arctan(�

√
3) � � �

6 ;P �

[ √
3

2
1
2

� 1
2

√
3

2

]
;equation in uv-coordinates:v �

2u2 � 12u � 13, or, (v � 5) � 2(u � 3)2; vertex in uv-coordinates: (3,�5);
vertex in xy-coordinates: (0.0981,�5.830) (see accompanying figures)

y

x

(0.0981, 25.830)

v

u

(3, 25)

�

6
 radians
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(d) � ≈ 0.6435 radians (about 36◦52′); P � 1
5

[
4 �3
3 4

]
; equation in uv-

coordinates: (u�2)2

9 � (v�1)2

4 � 1; center in uv-coordinates � (2,�1); center

in xy-coordinates �
( 11

5 , 2
5

)
(see accompanying figures)

v

u

�4

�4 4

�2

�2 2

2

4

y

x

0.6435
radians

�4

�4 4

�2

�2 2

2

4

(f ) All answers rounded to four significant digits: � ≈ 0.4442 radians (about

25◦27′); P �

[
0.9029 �0.4298
0.4298 0.9029

]
; equation in uv-coordinates: u2

(1.770)2 �

v2

(2.050)2 �1; center in uv-coordinates: (0,0); center in xy-coordinates � (0,0)

(see accompanying figures)

21.770 1.770

v

u
0.4442 radians

y

x

2. (a) T (b) F (c) T (d) F
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Section 8.8 (pp. 556–561)

1. (a) (9,1), (9,5), (12,1), (12,5), (14,3)

(c) (�2,5), (0,9), (�5,7), (�2,10), (�5,10)

2. (b) (�8,2), (�7,5), (�10,6), (�9,11), (�14,13) (see accompanying figure)

(214, 13)

(29, 11)

(27, 5)
(210, 6)

(28, 2)

14

12

10

8

6

242628210212214

4

22

2

(d) (3,18), (4,12), (5,18), (7,6), (9,18) (see accompanying figure)

18
(9, 18)(5, 18)(3, 18)

(4, 12)

(7, 6)

16

14

12

10

8

6

4

2 4 6 8 10 12

2

3. (a) (3,�4), (3,�10), (7,�6), (9,�9), (10,�3)

(c) (�2,6), (0,8), (�8,17), (�10,22), (�16,25)
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4. (a) (14,9), (10,6), (11,11), (8,9), (6,8), (11,14)

(c) (2,4), (2,6), (8,5), (8,6), (8,6), (14,4)

5. (b) (0,5), (1,7), (0,11), (�5,8), (�4,10)

6. (a) (2,20), (3,17), (5,14), (6,19), (6,16), (9,14) (see accompanying figure)

18

(6, 19)
(2, 20)

(3, 17)

(5, 14) (9, 14)

(6, 16)16

14

12

10

8

6

4

2 4 6 8 10 12

2

(c) (1,18), (�3,13), (�6,8), (�2,17), (�5,12), (�6,10) (see accompanying
figure)

18
(1, 18)

(22, 17)

(23, 13)(25, 12)

(26, 10)

(26, 8)

16

14

12

10

8

6

242628210

4

222

2
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11. (b) Consider the reflection about the y-axis and a counterclockwise rotation of
90◦ about the origin. Starting from the point (1,0), performing the rotation
and then the reflection yields (0,1). However, performing the reflection
followed by the rotation produces (0,�1). Hence, the two transformations
do not commute.

13. (a) F (b) F (c) F (d) T (e) T (f ) F

Section 8.9 (pp. 568–570)

1. (a) b1et

[
7
3

]
� b2e�t

[
2
1

]

(c) b1

⎡
⎣ 0

�1
1

⎤
⎦� b2et

⎡
⎣ 1

�1
1

⎤
⎦� b3e3t

⎡
⎣ 2

0
1

⎤
⎦

(d) b1et

⎡
⎣ 6

�1
2

⎤
⎦� b2et

⎡
⎣ 1

�1
0

⎤
⎦� b3e4t

⎡
⎣ 1

1
1

⎤
⎦ (There are other possible answers.

For example, the first two vectors in the sum could be any basis for the
two-dimensional eigenspace corresponding to the eigenvalue 1.)

2. (a) y � b1e2t � b2e�3t

(c) y � b1e2t � b2e�2t � b3e
(√

2
)
t � b4e�

(√
2
)
t

4. (b) F(t) � 2e5t

⎡
⎣ 1

0
1

⎤
⎦� et

⎡
⎣ 1

�2
0

⎤
⎦� 2e�t

⎡
⎣ 1

1
1

⎤
⎦

7. (a) T (b) T (c) T (d) F

Section 8.10 (pp. 576–578)

1. (a) Unique least-squares solution: v �
[

23
30 , 11

10

]
; ||Av � b|| �

√
6

6 ≈ 0.408;

||Az � b|| � 1

(c) Infinite number of least-squares solutions, all of the form
[
7c � 17

3 ,�13c �

23
3 ,c

]
.Two particular least-squares solutions are

[
17
3 ,� 23

3 ,0
]

and
[
8,�12, 1

3

]
.

Also,with v as either of these vectors,||Av � b||�
√

6
3 ≈ 0.816; ||Az � b||�3.

2. (a) Infinite number of least-squares solutions, all of the form[
� 4

7 c � 19
42 , 8

7 c � 5
21 ,c

]
, with 5

24 � c � 19
24 .

3. (b) v ≈ [0.46,�0.36,0.90]; (�′I � C)v ≈ [0.03,�0.04,0.07]
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7. (a) F (b) T (c) T (d) T (e) T

Section 8.11 (pp. 584–585)

1. (a) C �

[
8 12
0 �9

]
; A �

[
8 6
6 �9

]

(c) C �

⎡
⎣ 5 4 �3

0 �2 5
0 0 0

⎤
⎦; A �

⎡
⎢⎣

5 2 � 3
2

2 �2 5
2

� 3
2

5
2 0

⎤
⎥⎦

2. (a) A �

[
43 �24

�24 57

]
;P � 1

5

[
3 4

�4 3

]
;D �

[
75 0
0 25

]
;B �

(1
5 [3,�4], 1

5 [4,3]);
[x]B � [7,�4]; Q(x) � 4075

(c) A �

⎡
⎣ 18 48 �30

48 �68 18
�30 18 1

⎤
⎦; P � 1

7

⎡
⎣2 �6 3

3 �2 �6
6 3 2

⎤
⎦; D �

⎡
⎣0 0 0

0 49 0
0 0 �98

⎤
⎦;

B �
( 1

7 [2,3,6], 1
7 [�6,�2,3], 1

7 [3,�6,2]); [x]B � [5,0,6]; Q(x) � �3528

4. Yes. If Q(x) �
∑

1�i�j�n
aijxixj , then Q(x) � xT C1x and C1 upper triangular

imply that the (i, j) entry for C1 is 0 if i > j and aij if i � j. A similar argument
describes C2. Thus C1 � C2.

6. (a) T (b) F (c) F (d) T (e) T

Section 9.1 (pp. 597–600)

1. (a) Solution to first system: (602,1500); solution to second system: (302,750).
The system is ill-conditioned because a very small change in the coefficient
of y leads to a very large change in the solution.

2. Answers to this problem may differ significantly from the following depending
on where rounding is done in the algorithm.
(a) Without partial pivoting: (3210,0.765); with partial pivoting: (3230,0.767).

(Actual solution is (3214,0.765).)
(c) Without partial pivoting: (2.26,1.01,�2.11); with partial pivoting:

(277,�327,595). (Actual solution is (267,�315,573).)

3. Answers to this problem may differ significantly from the following depending
on where rounding is done in the algorithm.
(a) Without partial pivoting: (3214,0.7651); with partial pivoting: (3213,

0.7648). (Actual solution is (3214,0.765).)
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(c) Without partial pivoting: (�2.380,8.801,�16.30); with partial pivoting:
(267.8,�315.9,574.6). (Actual solution is (267,�315,573).)

4. (a)
x1 x2

Initial values 0.000 0.000
After 1 step 5.200 �6.000
After 2 steps 6.400 �8.229
After 3 steps 6.846 �8.743
After 4 steps 6.949 �8.934
After 5 steps 6.987 �8.978
After 6 steps 6.996 �8.994
After 7 steps 6.999 �8.998
After 8 steps 7.000 �9.000
After 9 steps 7.000 �9.000

(c)
x1 x2 x3

Initial values 0.000 0.000 0.000
After 1 step �8.857 4.500 �4.333
After 2 steps �10.738 3.746 �8.036
After 3 steps �11.688 4.050 �8.537
After 4 steps �11.875 3.975 �8.904
After 5 steps �11.969 4.005 �8.954
After 6 steps �11.988 3.998 �8.991
After 7 steps �11.997 4.001 �8.996
After 8 steps �11.999 4.000 �8.999
After 9 steps �12.000 4.000 �9.000
After 10 steps �12.000 4.000 �9.000

5. (a)
x1 x2

Initial values 0.000 0.000
After 1 step 5.200 �8.229
After 2 steps 6.846 �8.934
After 3 steps 6.987 �8.994
After 4 steps 6.999 �9.000
After 5 steps 7.000 �9.000
After 6 steps 7.000 �9.000
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(c) x1 x2 x3

Initial values 0.000 0.000 0.000
After 1 step �8.857 3.024 �7.790
After 2 steps �11.515 3.879 �8.818
After 3 steps �11.931 3.981 �8.974
After 4 steps �11.990 3.997 �8.996
After 5 steps �11.998 4.000 �8.999
After 6 steps �12.000 4.000 �9.000
After 7 steps �12.000 4.000 �9.000

6. Strictly diagonally dominant: (a), (c)

7. (a) Put the third equation first, and move the other two down to get the
following:

x1 x2 x3

Initial values 0.000 0.000 0.000
After 1 step 3.125 �0.481 1.461
After 2 steps 2.517 �0.500 1.499
After 3 steps 2.500 �0.500 1.500
After 4 steps 2.500 �0.500 1.500

(c) Put the second equation first, the fourth equation second, the first equation
third, and the third equation fourth to get the following:

x1 x2 x3 x4

Initial values 0.000 0.000 0.000 0.000
After 1 step 5.444 �5.379 9.226 �10.447
After 2 steps 8.826 �8.435 10.808 �11.698
After 3 steps 9.820 �8.920 10.961 �11.954
After 4 steps 9.973 �8.986 10.994 �11.993
After 5 steps 9.995 �8.998 10.999 �11.999
After 6 steps 9.999 �9.000 11.000 �12.000
After 7 steps 10.000 �9.000 11.000 �12.000
After 8 steps 10.000 �9.000 11.000 �12.000

8. The Jacobi method yields the following:

x1 x2 x3

Initial values 0.0 0.0 0.0
After 1 step 16.0 �13.0 12.0
After 2 steps �37.0 59.0 �87.0
After 3 steps 224.0 �61.0 212.0
After 4 steps �77.0 907.0 �1495.0
After 5 steps 3056.0 2515.0 �356.0
After 6 steps 12235.0 19035.0 �23895.0
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The Gauss-Seidel method yields the following:

x1 x2 x3

Initial values 0.0 0.0 0.0
After 1 step 16.0 83.0 �183.0
After 2 steps 248.0 1841.0 �3565.0
After 3 steps 5656.0 41053.0 �80633.0
After 4 steps 124648.0 909141.0 �1781665.0

The actual solution is (2,�3,1).

10. (a) T (b) F (c) F (d) T (e) F (f ) F

Section 9.2 (pp. 607–608)

1. (a) LDU �

[
1 0

�3 1

] [
2 0
0 5

] [
1 �2
0 1

]

(c) LDU �

⎡
⎣ 1 0 0

�2 1 0
�2 4 1

⎤
⎦
⎡
⎣ �1 0 0

0 2 0
0 0 3

⎤
⎦
⎡
⎣ 1 �4 2

0 1 �4
0 0 1

⎤
⎦

(e) LDU �

⎡
⎢⎢⎢⎢⎣

1 0 0 0

� 4
3 1 0 0

�2 � 3
2 1 0

2
3 �2 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�3 0 0 0

0 � 2
3 0 0

0 0 1
2 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 � 1
3 � 1

3
1
3

0 1 5
2 � 11

2

0 0 1 3

0 0 0 1

⎤
⎥⎥⎥⎥⎦

3. (a) KU �

[
�1 0

2 �3

] [
1 �5
0 1

]
; the solution is {(4,�1)}.

(c) KU �

⎡
⎣ �1 0 0

4 3 0
�2 5 �2

⎤
⎦
⎡
⎣ 1 �3 2

0 1 �5
0 0 1

⎤
⎦; the solution is {(2,�3,1)}.

4. (a) F (b) T (c) F (d) F

Section 9.3 (pp. 613–615)

1. (a) After 9 iterations, eigenvector � [0.60,0.80], eigenvalue � 50

(c) After 7 iterations, eigenvector � [0.41,0.41,0.82], eigenvalue � 3.0

(e) After 15 iterations, eigenvector � [0.346,0.852,0.185,0.346], eigenvalue �
5.405
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3. (b) Let �1, . . .�n be the eigenvalues of A with |�1| > |�j |, for 2 � j � n. Let
{v1, . . . ,vn} be as given in the exercise. Suppose the initial vector
in the Power Method is u0 � a01v1 � · · · � a0nvn and the ith itera-
tion yields ui � ai1v1 � · · · � ainvn. A proof by induction shows that
ui � kiAiu0 for some nonzero constant ki . Therefore, ui � kia01Aiv1 �
kia02Aiv2 � · · · � kia0nAivn � kia01�i

1v1 � kia02�i
2v2 � · · · � kia0n�i

nvn.
Hence, aij � kia0j�

i
j . Thus, for 2 � j � n, �j �� 0, and a0j �� 0, we have

|ai1|
|aij | �

∣∣kia01�i
1

∣∣∣∣∣kia0j�
i
j

∣∣∣ �

∣∣∣∣�1

�j

∣∣∣∣i |a01|
|a0j | .

4. (a) F (b) T (c) T (d) F

Section 9.4 (pp. 622–623)

1. (a) Q � 1
3

⎡
⎣ 2 1 �2

�2 2 �1
1 2 2

⎤
⎦; R �

⎡
⎣ 3 6 3

0 6 �9
0 0 3

⎤
⎦

(c) Q �

⎡
⎢⎢⎢⎣

√
6

6

√
3

3

√
2

2

�
√

6
3

√
3

3 0
√

6
6

√
3

3 �
√

2
2

⎤
⎥⎥⎥⎦; R �

⎡
⎢⎢⎣

√
6 3

√
6 � 2

√
6

3

0 2
√

3 � 10
√

3
3

0 0
√

2

⎤
⎥⎥⎦

2. (a) x ≈ 5.562, y ≈ �2.142 (c) x ≈ �0.565, y ≈ 0.602, z ≈ 0.611

5. (a) T (b) T (c) T (d) F (e) T

Section 9.5 (pp. 639–643)

1. For each part, one possible answer is given.

(a) U � 1√
2

[
1 1
1 �1

]
, S �

[
2
√

10 0
0

√
10

]
, V � 1√

5

[
2 �1
1 2

]

(c) U � 1√
10

[
�3 1

1 3

]
, S �

[
9
√

10 0 0
0 3

√
10 0

]
, V � 1

3

⎡
⎣ �1 �2 2

�2 2 1
2 1 2

⎤
⎦

(f ) U � 1
7

⎡
⎣ 6 2 3

3 �6 �2
2 3 �6

⎤
⎦, S �

⎡
⎣ 2

√
2 0
0

√
2

0 0

⎤
⎦, V � 1√

2

[
1 �1
1 1

]

2. (a) A� � 1
2250

[
104 70 122

�158 110 31

]
, v � 1

2250

[
5618
3364

]
, AT Av � AT b �

1
15

[
6823
3874

]
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(c) A� � 1
84

⎡
⎣ 36 24 12 0

12 36 �24 0
�31 �23 41 49

⎤
⎦, v � 1

14

⎡
⎣ 44

�18
71

⎤
⎦, AT Av � AT b �

1
7

⎡
⎣ 127

�30
60

⎤
⎦

3. (a) A � 2
√

10

(
1√
2

[
1
1

])(
1√
5

[
2 1

])
�

√
10

(
1√
2

[
1

�1

])(
1√
5

[
�1 2

])

(c) A � 2
√

2

⎛
⎝ 1

7

⎡
⎣ 6

3
2

⎤
⎦
⎞
⎠( 1√

2

[
1 1

])
�

√
2

⎛
⎝ 1

7

⎡
⎣ 2

�6
3

⎤
⎦
⎞
⎠( 1√

2

[
�1 1

])
8. (a) The ith column of V is the right singular vector vi ,which is a unit eigenvector

corresponding to the eigenvalue �i of AT A. But �vi is also a unit eigenvector
corresponding to the eigenvalue �i of AT A. Changing the sign of any of the
vi’s still results in {v1, . . . ,vn} being an orthonormal basis for R

n consisting
of eigenvectors for AT A. Since the vectors are kept in the same order,the �i

do not increase, and thus {v1, . . . ,vn} fulfills all the necessary conditions to
be a set of right singular vectors for A. Assume there are k nonzero singular
values. For i � k,the left singular vector ui � 1

�i
Avi ,so when we change the

sign of vi , we must adjust U by changing the sign of ui as well. For i > k,
changing the sign of vi has no effect on U,but still produces a valid singular
value decomposition.

(b) If the eigenspace E� for AT A has dimension higher than 1, then the corre-
sponding right singular vectors can be replaced by any orthonormal basis
for E�, for which there are an infinite number of choices.Assume there are k
nonzero singular values.Then the associated left singular vectors u1, . . . ,uk

must be adjusted accordingly.

9. (a) Each right singular vector vi , for 1 � i � k,must be an eigenvector for AT A.
Performing the Gram-Schmidt Process on the rows of A, eliminating zero
vectors, and normalizing will produce an orthonormal basis for the row
space of A, but there is no guarantee that it will consist of eigenvectors for

AT A. For example, if A �

[
1 1
0 1

]
, performing the Gram-Schmidt Process

on the rows of A produces the two vectors [1,1] and
[
� 1

2 , 1
2

]
, neither of

which is an eigenvector for AT A �

[
1 1
1 2

]
.

(b) The right singular vectors vk�1, . . . ,vn form an orthonormal basis for the
eigenspace E0 of AT A. Any orthonormal basis for E0 will do. By part (5) of
Theorem 9.5, E0 equals the kernel of the linear transformation L whose
matrix with respect to the standard bases is A. A basis for ker(L) can
be found by using the Kernel Method. That basis can be turned into an
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orthonormal basis for ker(L) by applying the Gram-Schmidt Process and
normalizing.

10. If A � USVT, as given in the exercise, then A� � VS�UT , and so A�A �
VS�UT USVT � VS�SVT . Note that S�S is an n � n diagonal matrix whose
first k diagonal entries equal 1, with the remaining diagonal entries equal to 0.
Note also that since the columns v1, . . . ,vn of V are orthonormal, VT vi � ei , for
1 � i � n.

(a) If 1 � i � k, then A�Avi � VS�SVT vi � VS�Sei � Vei � vi .

(b) If i > k, then A�Avi � VS�SVT vi � VS�Sei � V (0) � 0.

11. If A � USVT, as given in the exercise, then A� � VS�UT. Note that since the
columns u1, . . . ,um of U are orthonormal, UT ui � ei , for 1 � i � m.

(a) If 1 � i � k, then A�ui � VS�UT ui � VS�ei � V
(

1
�i

ei

)
� 1

�i
vi . Thus,

AA�ui � A
(
A�ui

)
� A

(
1
�i

vi

)
� 1

�i
Avi � ui .

(b) If i > k, then A�ui � VS�UT ui � VS�ei � V (0) � 0. Thus, AA�ui �
A
(
A�ui

)
� A (0) � 0.

14. (a) A �

⎡
⎢⎢⎢⎢⎢⎣

40 �5 15 �15 5 �30

1.8 3 1.2 1.2 �0.6 1.8

50 5 45 �45 �5 �60
�2.4 �1.5 0.9 0.9 3.3 �2.4

42.5 �2.5 60 �60 2.5 �37.5

⎤
⎥⎥⎥⎥⎥⎦

(b) A1 �

⎡
⎢⎢⎢⎢⎢⎣

25 0 25 �25 0 �25

0 0 0 0 0 0

50 0 50 �50 0 �50

0 0 0 0 0 0

50 0 50 �50 0 �50

⎤
⎥⎥⎥⎥⎥⎦

A2 �

⎡
⎢⎢⎢⎢⎢⎣

35 0 15 �15 0 �35

0 0 0 0 0 0

55 0 45 �45 0 �55

0 0 0 0 0 0

40 0 60 �60 0 �40

⎤
⎥⎥⎥⎥⎥⎦

A3 �

⎡
⎢⎢⎢⎢⎢⎣

40 �5 15 �15 5 �30

0 0 0 0 0 0

50 5 45 �45 �5 �60

0 0 0 0 0 0

42.5 �2.5 60 �60 2.5 �37.5

⎤
⎥⎥⎥⎥⎥⎦
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A4 �

⎡
⎢⎢⎢⎢⎢⎣

40 �5 15 �15 5 �30

1.8 1.8 0 0 �1.8 1.8

50 5 45 �45 �5 �60

�2.4 �2.4 0 0 2.4 �2.4

42.5 �2.5 60 �60 2.5 �37.5

⎤
⎥⎥⎥⎥⎥⎦

(c) N (A) ≈ 153.85; N (A � A1)/N (A) ≈ 0.2223; N (A � A2)/N (A) ≈ 0.1068;
N (A � A3)/N (A) ≈ 0.0436; N (A � A4)/N (A) ≈ 0.0195

(d) The method described in the text for the compression of digital images
takes the matrix describing the image and alters it by zeroing out some of
the lower singular values. This exercise illustrates how the matrices Ai that
use only the first i singular values for a matrix A get closer to approximating
A as i increases.

16. (a) F

(b) T

(c) F

(d) F

(e) F

(f ) T

(g) F

(h) T

(i) F

(j) T

(k) T

Appendix B (pp. 658–659)

1. (a) Not a function; undefined for x < 1

(c) Not a function; two values assigned to each x �� 1

(e) Not a function (k is undefined at � � �
2 )

(f ) Function; range � all prime numbers; image of 2 is 2; pre-image of 2 �
{0,1,2}

2. (a) {�15,�10,�5,5,10,15} (c) {. . . ,�8,�6,�4,�2,0,2,4,6,8, . . .}

3. (g ◦ f )(x) � 1
4

√
75x2 � 30x � 35; (f ◦ g)(x) � 1

4 (5
√

3x2 � 2 � 1)

4. (g ◦ f )

([
x
y

])
�

[
�8 24

2 8

][
x
y

]
; (f ◦ g)

([
x
y

])
�

[
�12 8

�4 12

][
x
y

]
8. f is not one-to-one because f (x2 � 1) � f (x2 � 2) � 2x; f is not onto because

there is no pre-image for xn. The pre-image of P2 is P3.

10. f is one-to-one because if f (A1) � f (A2), then B(f (A1))B�1 � B(f (A2))B�1 ”
BB�1A1BB�1 � BB�1A2BB�1 ”A1 � A2. f is onto because, for any C ∈ Mnn,
f (BCB�1) � B�1(BCB�1)B � C. Finally, f �1(A) � BAB�1.

12. (a) F

(b) T

(c) F

(d) F

(e) F

(f ) F

(g) F

(h) F
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Appendix C (p. 663)

1. (a) 11 � i

(c) 20 � 12i

(e) 9 � 19i

(g) �17 � 19i

(i) 9 � 2i

(k) 16 � 22i

(m)
√

53

2. (a) 3
20 � 1

20 i (c) � 4
17 � 1

17 i

5. (a) F (b) F (c) T (d) T (e) F
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A
Absolute value of a complex

number, 661
Acceleration, 12
Accuracy, computational, 588
Addition of complex numbers,

661
Addition of matrices, 51–52, 448

associative law, 52
commutative law, 52
complex, 448
definition of, 51
distributive law, 52
fundamental properties of, 52
identity element for, 52
inverse, 52

Addition of vectors, 8–10, 204
associative law, 9, 204
cancellation laws, 214
commutative law, 9, 204
complex n-vectors, 446
definition of, 8, 204
distributive laws, 9, 18, 204,

447
fundamental properties of, 9,

204
identity element for, 9, 204,

214
inverse, 204
inverse element for, 9, 210
uniqueness of identity, 205,

214
uniqueness of inverse, 205

Additive Conjugate Law, 662
Adjacency matrix, 493
Adjoint matrix (classical),

169–171, 202
Adjoint of a linear operator, 468
Algebraic multiplicity, 188–189,

381–384, 456
definition of, 381

Ampere, 501
Angle between two vectors,

21–22, 447, 475
Application

areas and volumes
(determinant), 145

chemical equations (system of
linear equations), 104

coding theory (Hill
substitution), 525–528

computer graphics, 544–554
curve fitting (system of linear

equations), 93
differential equations,

561–568
distance from a point to a

subspace (orthogonal
projection), 422

graph theory, 491–496
large powers of a matrix

(diagonalization), 189
least-squares polynomial,

504–510
least-squares solutions for

inconsistent systems,
570–576

Markov chains, 512–521
Newton’s Second Law of

Motion (addition and
scalar multiplication), 12

numerical methods, see
Numerical methods

Ohm’s Law, 501–503
orthogonal projections and

reflections in R
3

(diagonalization),
419–422

quadratic forms, 578–583
resultant velocity (addition

and scalar multiplication),
11

rotation of axes of a conic
section, 537–542

shipping cost and profit
(matrix multiplication),61

work (dot product), 26
Area of a parallelogram, 145
Associative law

addition of complex numbers,
662

addition of matrices, 52
addition of vectors, 9, 204
matrix multiplication, 64, 645
scalar multiplication of

matrices, 52, 64
scalar multiplication of

vectors, 9, 204
Augmented matrix, 81
Axes of symmetry (of a conic

section), 537–542

B
B-coordinates, 281, see also

Coordinatization
Back substitution, 86
Balancing (a chemical equation),

104
Base step (in proof by induction),

39
Basis (bases), 255–292, 461

coordinatization with respect
to, 281–292, see also
Coordinatization

definition of, 255
enlarging a linearly

independent set to a basis,
275–276

finding by inspection, 274
finding using row reduction,

269, 272
kernel, 341
maximal linearly independent

subset of a spanning set,
262, 271

minimal spanning set, 263
ordered, 281
orthogonal, see Orthogonal

basis
orthonormal, 580–583, see

also Orthonormal basis
preservation of under an

isomorphism, 365, 368
range, 342
shrinking a spanning set to a

basis, 270–274
size of, see Dimension
standard for Cn, 461
standard for Mmn, 256
standard for P , 257
standard for Pn, 257
standard for R

n, 256
trivial vector space, 257

Basketweaving, 144, 202
Bessel’s Inequality, 410, 486

C
Cancellation laws

for vectors, 214
of algebra, 29, 64

Cauchy-Schwarz Inequality, 19,
475 725
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Cayley-Hamilton Theorem, 384,
649

Chain in a graph or digraph, 494
Chain of implications, 39
Change of basis, 286–292,

327–330, 367
Change of coordinates, 286–291,

see also Coordinatization
Characteristic equation, 567
Characteristic polynomial, 180,

202, 373, 455
inverse of a matrix, 195
linear operator, 373
matrix, 455–456
transpose of a matrix, 195

Characteristic value, 179, 567, see
also Eigenvalue

Characteristic vector, 179, see
also Eigenvector

Chemical equations, 104
Cholesky factorization, 621, 623
Cipher array, 525, 526
Ciphertext, 525
Circle (as a conic section), 537,

538
Circuit theory, see Ohm’s Law
Clipping (in computer graphics),

545
Clockwise rotation operator, 350,

358
Closure properties, 204, 218, 231
Coding theory, 525–528
Codomain, 306, 653
Coefficient matrix, 80
Cofactor, (i, j), 147
Cofactor expansion, 148–150,

168–169, 202
recursive, 148–150

Column of a matrix product, 62
Column operations (type (I), (II),

and (III)), 167
effect on determinant,

167–168
Column rank of a matrix, 344
Column space, 344
Commutative diagram, 285
Commutative law

addition of complex numbers,
662

addition of matrices, 52
addition of vectors, 9, 204
conjugate-commutativity of

complex dot product, 447
dot product, 18

Commuting matrices, 61
Complement, orthogonal,

412–422, 479–482, see
also Orthogonal
complement

Complete pivoting, 592
Complete solution set for linear

system, 80
Complex conjugate,446,448,662
Complex dimension, 461
Complex dot product, 446
Complex eigenvalue, 455–458
Complex eigenvector, 455–458
Complex inner product, 472, see

also Inner product space
Complex inner product space,

see Inner product space
Complex matrix, 448–451, see

also Matrix
Complex n-vector, 446
Complex number, 661–662

absolute value of, 661
addition of, 661
complex conjugate, 662
equality with, 661
imaginary part, 661
inverse, multiplicative, 662
magnitude of, 661
multiplication of, 661
multiplicative inverse, 662
pure imaginary, 661
real part, 661
reciprocal, 662

Complex Polarization Identity,
484

Complex vector space, 460–469,
see also Vector space

definition of, 460
Component vectors, 25
Composition

functions, 312–313, 331, 655
in computer graphics,

550–554
inverses, 657
isomorphisms, 359
linear transformations,

312–313, 330–331
one-to-one functions, 351
onto functions, 351

Compression of digital images,
633, 643

Computational accuracy, 588
Computer graphics, 544–554

Conclusion, 33
Conic section, 124, 537–542, 578
Conjugate, 446, 448, 662
Conjugate transpose, 354, see

also Adjoint of a linear
operator

Conjugate-Commutativity (of
complex dot product),
447

Connective, 41
Consistent system, 82
Continuously differentiable, 562
Contraction of a vector, 6, 179,

547–554
Contraction operator, 309, 325,

369–370, 547–554, 631
Contradiction, proof by, 38–39
Contrapositive

of a statement, 36
proof by, 36

Converse of a statement, 37
Coordinate-wise proof, 9
Coordinates of n-vectors, 2
Coordinatization, 281–292, 461

as a linear transformation, 307
as an isomorphism, 360, 362,

363
B-coordinates, 281
change of coordinates,

286–291
Coordinatization Method, 283
definition of, 281
geometric viewpoint, 281
properties of, 284, 406–407
transition matrix

between orthonormal
bases, 406–407, 466, 479

definition of, 286
properties of, 286–292

using row reduction to
coordinatize a vector, 283

Coordinatization Method, 283
Coordinatize, 281, see also

Coordinatization
Counterclockwise rotation

operator, see Rotation
operator

Counterexample, 42
Cramer’s Rule, 171–172, 201
Cross product of 3-vectors, 152
Cryptogram, 526
Current, 501
Curve fitting, 93
Cycle in a graph or digraph, 499
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D
Decipher array, 526
Decomposition

LDU, 600–606
PLDU, 606
singular value, 623–638

definition of, 629
vector, 25, 416–418, 481–482

DeMorgan’s Laws, 41
Dependent variable, 92
Destination vector, 10, 117, 119,

120, 221, 229, 241, 246
Determinant, 129, 143–172, 455

area, 145
basketweaving, 144, 202
calculate using row reduction,

158–159, 202
cofactor expansion for,

148–150, 168–169, 202
complex matrix, 455
definition of, 148, 455
effect of row operations on,

156–157
geometric interpretation of,

145–146
In, 156
inverse of a matrix, 166
nonsingular matrices,160–161
1 � 1 matrix, 143
product of matrices, 166
singular matrices, 160–161
3 � 3 matrix, 144–145, 202
transpose, 167
2 � 2 matrix, 129, 144, 202
upper triangular, 155
volume, 145

Diagonal
main, 49
matrix, 50, 185, 219, 600–606

Diagonalizable, see also
Diagonalization;
Orthogonally
diagonalizable

criteria for, 185
linear operator, 374–384,

419–422
matrix, 187, 456–457
nondiagonalizable matrix,

187–188, 457–458
nondiagonalizable operator,

375, 384
Diagonalization, 184–191,

374–384, see also
Diagonalizable;

Orthogonal
diagonalization

criteria for, 374, 376, 383
formal method for, 185, 292,

378
transition matrix for, 291–292,

378, 433
Diagonalization Method, 185, 292
Diagonalizing a quadratic form,

581–583
Differential equations, 561–568
Differentiation transformation,

307, 319, 334, 339,
347, 351

Digital images, compression, 633,
643

Digits, significant, 588
Digraph, 492

adjacency matrix, 493
cycle, 499
dominance, 500
path, 494–496
simple, 492
strongly connected, 500

Dilation of a vector, 6, 179,
547–554

Dilation operator, 309, 325,
369–370, 547–554, 631

Dimension, 260–264, 461
C

n, 461
complex dimension, 461
definition of, 260
Dimension Theorem, 343, 363
eigenspace, 381–384
finite dimension, 263–264
infinite dimensional, 260, 267
kernel of a linear

transformation,
339–343, 351

Mmn, 260
orthogonal complement,

414–416, 480
Pn, 260
range of a linear

transformation,
339–343, 351

real dimension, 461
relation to size of linearly

independent set, 261
relation to size of spanning

set, 261
R

n, 260
subspace, 263–264
trivial vector space, 260

Dimension Theorem, 343, 363

Direct proof, 31–32
Directed graph (digraph), 492
Direction cosines, 16, 29
Disproving statements, 42
Distance formula in plane, 4
Distance from a point to a

subspace, 422
Distance in an inner product

space, 474
Distributive laws

complex numbers, 662
dot product over addition

(complex), 447
dot product over addition

(real), 18
matrix multiplication over

addition, 64
scalar multiplication over

matrix addition, 52
scalar multiplication over

vector addition, 9, 204
Domain, 306, 653
Dominance digraph, 500
Dominant eigenvalue, 609
Dot product, 18–27, 446

as an inner product, 472
complex, 446–472
definition of, 18
fundamental properties of, 18,

447

E
Edge (of a figure in computer

graphics), 545
Edge of a graph, 492
Effect of row operations on

matrix multiplication,
94–95

Eigenspace, 222, 234
basis for, 342
definition of (linear operator),

372
definition of (matrix), 179
dimension of, 381–384

Eigenvalue, 222, 234, 329,
371–384, 455–458

algebraic multiplicity of,
188–189, 381–384, 456

definition of, 381
approximate, 573–575
complex, 455–458, 565, 568
definition of (linear operator),

371
definition of (matrix),179,455
dominant, 609
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Eigenvalue (continued)
existence of, for symmetric

operators, 429–430
geometric multiplicity of,

381–384
definition of, 381

how to calculate
(characteristic
polynomial), 180–184,
202, 455–456

how to calculate (Power
Method), 608–613

orthogonal projection
operator, 419–421, 435

orthogonal reflection
operator, 330, 421–422

rotation operator, 188, 409
stochastic matrix, 195
using to diagonalize, see

Diagonalization;
Orthogonal
diagonalization

Eigenvector, 222, 234, 329,
371–384, 455–458, see
also Eigenvalue

approximate, 573–575
complex, 455–458, 565, 568
definition of (linear operator),

371
definition of (matrix),179,455
fundamental, 186, 187, 189,

234, 235, 238, 247, 340,
342, 377, 379, 456

generalized, 565, 568
how to calculate (Power

Method), 608–613
how to calculate (solving a

system), 181–183, 202,
456, 458

linear independence of, 247,
375, 377, 388

orthogonal projection
operator, 419–421, 435

orthogonal reflection
operator, 330, 421–422

rotation operator, 188, 409
stochastic matrix, 195
using to diagonalize, see

Diagonalization;
Orthogonal
diagonalization

Elementary matrix (type (I), (II)
and (III)), 530–534

inverse of, 532

Ellipse (as a conic section), 537,
541, 543

Empirical formula (chemical
equation), 104

Empty linear combination, 235
Empty set

linear independence of, 239
span of, 235

Encoding matrix, 527
Enlarging a linearly independent

set to a basis, 275–276
Enlarging Method, 275
Entries of a matrix, 48
Equality of complex numbers,

661
Equality of matrices, 49
Equality of vectors, 2
Equilibrium of forces, 13
Equivalence of homogeneous

coordinates, 548
Equivalent systems, 110–113

definition of, 111
Error, roundoff, 517, 588–591
Exclusive or, 36
Existential quantifier, 41
Extension of a linear

transformation, 337
Extrapolation, 507

F
Factorization, QR, 615–622
Finite dimension, 260, 263–264,

see also Dimension;
Infinite dimensional
vector space

Finite dimensional vector space
definition of, 260

Finite linear combination, 228,
see also Linear
combination

First-order linear homogeneous
system of differential
equations, 562

First-order system, 562
Fixed point (for a Markov chain),

195, 518
Force(s), 12, 26

equilibrium of, 13
Fourier series, 476
Full pivoting, 592
Function, 208, 217, 225, 306,

653–657
codomain, 306, 653
composition, 655

domain, 306, 653
image, 306, 653
image of a subset, 314, 653
inverse, 356–359, 656–657
one-to-one, 350–353, 654
onto, 350–353, 655
pre-image, 306, 653
pre-image of a subset, 314, 653
range, 306, 314, 654

Fundamental eigenvector, 186,
187, 189, 234, 235, 238,
247, 340, 342, 377, 379,
456

Fundamental Theorem of Algebra,
456

G
Gauss-Jordan row reduction,

99–102, 201, 588, 596, see
also Gaussian elimination

complex matrix, 454
number of solutions after, 102
partial pivoting, 589–592
reduced row echelon form,

101, 113, 646
staircase pattern of pivots, 99
using to calculate a transition

matrix, 287
using to calculate

determinant, 158–159,
202

using to calculate
eigenvectors, 202

using to construct a basis, 269,
272

using to coordinatize a vector,
283

using to find an inverse
matrix, 130–133, 202

using to find eigenvectors, 181
using to simplify the form of a

span of vectors, 232
using to test for linear

independence, 242
Gauss-Seidel method, 592,

595–596
Gaussian elimination, 82–93, 201,

588, 596, see also
Gauss-Jordan row
reduction

complex matrix, 454
consistent system, 92
dependent variable, 92
inconsistent systems, 89–90
independent variable, 92
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infinite solution sets, 90–93
nonpivot column, 92
pivot (entry), 86
pivot column, 92
pivot row, 84, 86
row echelon form, 99,

601–606
row operations

definition of, 83
elementary matrices for,

530, 531
inverses of, 111, 531
lower type (II), 601–605
notation for, 84
reversals of, 111, 531
type (III) operations

(using), 87–88
simplest case, 86
skipping a column, 88–92
staircase pattern of pivots, 99
target entry, 84
target row, 84

Generalized Diagonalization
Method, 378

Generalized eigenvector,565,568
Generalized Gram-Schmidt

Process, 477
Geometric interpretation of

vectors, 2
Geometric multiplicity, 381–384

definition of, 381
Gram-Schmidt Process, 400–404,

432–436, 464–465,
477–479

Grand Tetons, 492
Graph, 492

adjacency matrix for, 493
cycle, 499
directed, see Digraph
edge of, 492
loop, 492
loop-free, 492
path, 494–496
simple, 492
vertex of, 492

Graph theory, 491–496

H
Hecker, Lyn, 634
Hermitian matrix, 449–451, 453,

468–469
Higher-order homogeneous

differential equations,
565–568

Hill substitution, 525–528
Hill, Lester, 526
Homogeneous coordinates,

548–554
Homogeneous differential

equations, 562, 565
Homogeneous system, 102–104,

114
complex, 455

Hyperbola (as a conic section),
537, 538, 543

Hyperplane, 268

I
Idempotent matrix, 73
Identity element for addition, 9,

52, 204, 205, 214
Identity linear operator, 308, 316,

335, 347
Identity linear transformation,

308, 316, 335, 347
Identity matrix, 50, 61, 530

determinant, 156
Identity property

for scalar multiplication of
matrices, 52

for scalar multiplication of
vectors, 9, 204

If A then (B or C) proofs, 36
If A then B proofs, 33–34
If and only if proofs, 34–35
Ill-conditioned systems, 588–589
Image, 306, 653

of a subset, 653
of a subspace, 314

Imaginary part of a complex
number, 661

Implication, 33
Inclusive or, 36
Inconsistent system, 82, 89–90,

637
Independence Test Method, 242,

271, 361
for finding a basis, 272

Independent variable, 92
Induction, proof by, 39–41

base step, 39
inductive hypothesis, 40
inductive step, 39

Inductive hypothesis, 40
Infinite dimensional vector space,

260, 267, see also Finite
dimension; Dimension

Infinite solution sets, 82, 90–93,
161

Initial condition, 569
Inner product, 18, 472
Inner product space, 472–482

angle between two vectors,
475

Bessel’s Inequality, 486
Cauchy-Schwarz Inequality,

475
Complex Polarization Identity,

484
definition of, 472
distance between vectors in,

474
Fourier series, 476
fundamental properties of,

472–474
Gram-Schmidt Process,

477–479
Legendre polynomials, 479
length of a vector in, 474
norm of a vector in, 474
orthogonal complement,

479–482
orthogonal projection (of a

vector), 480
orthogonality, 475–482
Polarization Identity, 484
projection (of a vector), 480
Projection Theorem, 480
Triangle Inequality, 475
unit vector in, 474

Inspection Method, 274
Integration transformation, 318,

334
Inverse Method, 130
Inverse of a complex number

(multiplicative), 662
Inverse of a function, 356,

656–657
Inverse of a linear

transformation, 356–359
Inverse of a matrix (additive), 52
Inverse of a matrix

(multiplicative), 125–134,
455

calculate using adjoint matrix,
171, 202

characteristic polynomial of,
195

complex matrix, 455
definition of, 126
determinant of, 166
elementary matrix, 532
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Inverse of a matrix (multiplica-
tive) (continued)

existence of, see Nonsingular
matrix

fundamental properties, 128
left inverse, 647
method to calculate (formal),

130–132, 202
right inverse, 647
solving a linear system using,

133–134, 201
2 � 2 matrices, 129, 202
uniqueness of, 127

Inverse of a statement, 37
Inverse of a vector (additive), 9,

204, 205, 210
Inverse Power Method, 612
Inverse row operations, 111
Invertible linear transformation,

356, see also Isomorphism
Involutory matrix, 137
Irrational number, 154
Isometry, 547, 631
Isomorphic, 359, 360, see also

Isomorphism
Isomorphism, 356–365

basis, preservation of, 365, 368
composition of, 359
coordinatization, 360, 362,

363, 378
definition of, 357
dimension of domain and

codomain, 359
existence of, 359
fundamental properties of,

357–359
inverse of, 357–359
preservation of kernel, 362
preservation of linear

independence, 359
preservation of range, 362
preservation of span, 359
summary of properties, 365
using Methods on other

vector spaces, 361
Iterative methods, 592–596
Iterative refinement, 589

J
Jacobi method, 592–596
Jordan, see Gauss-Jordan row

reduction
Joule, 26
Junction in a circuit, 501

K
Kernel, 339–343, 362

basis for, 341
dimension of, 339–343, 351

Kernel Method, 341, 362
Key matrix, 527
Kirchhoff’s Laws, 502
Kronecker delta, 58

L
Laplace expansion, 148, 168, see

also Cofactor expansion
Large powers of a matrix, 189
Lattice points, 154
Law of cosines, 21
LDU decomposition, 600–606
Least-squares polynomial,

504–510, 575
degree t , 505
linear regression, 506

Least-squares solution (to a
system), 512, 570–576,
619, 637

Left inverse of a matrix, 647
Left singular vectors, 626
Legendre polynomials, 479
Length in an inner product

space, 474
Length of a path in a graph or

digraph, 494
Length of an n-vector, 4, 18

complex, 447
Limit of matrices, 517
Limit of vectors, 517
Limit vector, 517
Line of best fit, 397
Linear combination

from empty set, 235
of matrices, 52
of rows/columns of a matrix,

63
of vectors, 10, 114–120, 221,

227–229, see also Span
destination vector, 10

Linear dependence, 239–249, see
also Linear independence

equivalent characteristics,
summarized, 250

Linear equation(s), 80
system of, 79–114, 133–134,

see also System of linear
equations

Linear independence, 239–249,
461

definition of, 239, 240, 247

eigenvectors, 247, 375, 377,
388

empty set, 239
enlarging a linearly

independent set to a basis,
275–276

equivalent characteristics,
summarized, 250

maximal linearly independent
subset, 262, 271

preservation of under a
one-to-one transformation,
352 355, 365

preserved by isomorphism,
359

redundant vector, 253
size of linearly independent

set, 261
test for, using row reduction,

242
uniqueness statement, 246,

248, 255
Linear operator, 308, see also

Linear transformation
Linear regression, 506
Linear system, 79–114, 133–134,

see also System of linear
equations

Linear transformation, 305–384,
461

adjoint of, 468
characteristic polynomial of,

373
characteristic value, see

Eigenvalue
characteristic vector, see

Eigenvector
complex vector spaces, 461
composition of, 312–313,

330–331
contraction,309,325,369–370
coordinatization

transformation, 307, 360
definition of, 306
diagonalizable, 374, see also

Diagonalizable
differentiation, 307, 318, 334,

339, 347, 351
dilation, 309, 325, 369–370
Dimension Theorem, 343, 363
eigenvalue, 371–384, see also

Eigenvalue
eigenvector, 371–388, see also

Eigenvector
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elementary properties of,
312–315

extension of, 337
geometric examples, 308–311,

325
identity linear operator, 308,

316, 335, 347
identity linear transformation,

308, 316, 335, 347
image of a subspace, 314
integration, 318, 334
inverse of, 356–359
invertible, 356, see also

Isomorphism
isomorphism, see

Isomorphism
kernel of, 339–343, 351, 362

basis for, 341
dimension of, 339–343, 351

linear operator, 308
matrix multiplication, 311
matrix of, 321–331, 340–343,

358
after change of basis,

327–330
calculating kernel and

range, 340–343
composition, 330–331
definition of, 323
geometric operation on R

3,
257

one-to-one, 350–353, 365, see
also Isomorphism

onto, 350–353, 365, see also
Isomorphism

orthogonal projection,
416–421, 425–426,
434–436

orthogonal reflection,
421–422, 425

orthogonally diagonalizable,
430–436

pre-image of a subspace, 314
projection, 309, 316–317, 325,

339, see also Orthogonal
projection operator

range of, 314, 339–343, 351,
see also Range

basis for, 342
dimension of, 339–343, 351

reflection, 308, 316, 324, 325,
330, 337, 369–370, 372,
547, 549, see also
Orthogonal reflection
operator

restriction to a subspace, 426,
432

rotation, 310, 317–318, 325, 334,
335, 340, 350, 358, 375,
384, 409, 441, 547, 549

self-adjoint, 468
shear, 318, 325, 358, 369–370
symmetric operator, 428–436,

see also Orthogonally
diagonalizable

transpose transformation, 307,
334, 367

unitarily diagonalizable,
466–469

zero linear operator, 308, 316,
336, 347, 368

zero linear transformation,
308, 316, 336, 347, 368

Linearly independent, see Linear
independence

Loop in a circuit, 394, 502
Loop in a graph, 492
Loop-free graph, 492
Lower triangular matrix, 51, 219,

279, 367, 600–606
determinant, 167

Lower type (II) row operations,
601–605

M
Magnitude of a complex number,

661
Magnitude of an n-vector, 4
Main diagonal, 49
Mapping, 653, see also Function
Markov chain, 512–521

definition of, 515
fixed point, 195, 518
limit vector, 517
probability vector, 513, 516
state vector, 513, 516
steady-state vector, 521
transition matrix for, 516

Markov process, 515
Matrix (matrices), 48–67

addition of, 51–52, 448
adjacency, 493
adjoint (classical), 169–171, 202
augmented, 81
characteristic polynomial of,

180, 202, 455
characteristic value, 179
characteristic vector, 179
coefficient, 80
cofactor, (i, j), 147

column rank of, 344
column space, 344
complex, 448–451
complex conjugate, 448–449
conjugate transpose, 448–449,

see also Adjoint matrix
definition of, 48
determinant of, see

Determinant
diagonal, 50, 185, 219,

600–606
diagonalizable, 187, see also

Diagonalizable
diagonalizing, 184–191
eigenvalue for, 179, 202, 455,

see also Eigenvalue
eigenvector for, 179, 202, 455,

see also Eigenvector
elementary, 530–534
encoding, 527
entries, 48
equality of, 49
fundamental properties under

addition and scalar
multiplication, 52

Hermitian, 449–451, 453,
468–469

idempotent, 73
identity, 50, 61, 530
inverse of (multiplicative), see

Inverse of a matrix
involutory, 137
isomorphism, 358
key, 527
limit of, 517
linear combination of, 52
linear combinations of

rows/columns, 63
linear transformation,

321–331, 340–343, 358
lower triangular, 51, 219, 279,

367, 600–606
main diagonal, 49
minor, (i, j), 146
multiplication of, see

Multiplication of matrices
negative integer powers of,

127–129
nondiagonalizable, 187–188,

457
nonsingular, 127, 160–161,

219, 226, 533–534
normal, 450, 453, 467, see also

Unitarily diagonalizable
notation, 48–49
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Matrix (matrices) (continued)
orthogonal, 175, 404–407,

433–436, 479, 561, see
also Unitary matrix

orthogonally diagonalizable,
430–431, see also
Orthogonally
diagonalizable

orthogonally similar, 439
powers of, 65, 127–129
powers of (large), 189
rank of, 113–114, 160–161,

280, 343, 344, 536
reduced row echelon form,

101, 113, 646
regular, 520
row echelon form, 99,

601–606
row equivalent, 111–114,

119–120, 161, 532
row operations (type (I), (II)

and (III)),see Gauss-Jordan
row reduction

row rank of, 344, see also
Rank of a matrix

row space of, 116–120, 229,
232, see also Span

scalar multiplication of, 51–52,
448

similar, 175, 185, 194, 329, 337,
439, 550, see also
Orthogonally similar

singular, 127, 160–161, 219,
226

size of, 48
skew-Hermitian, 449–451, 453
skew-symmetric, 53–55, 279,

343, 371–372, 426
sparse, 596
square, 50
stochastic, 195, 515
strictly diagonally dominant,

598
submatrix, (i, j), 146
subtraction of, 52
symmetric, 53–55, 279, 343,

371–372, 426, 429,
579–581, 650, see also
Symmetric operator

trace of, 58, 73, 279, 347, 483
transition, 286–292, 378,

406–407, 421–422,
433–436, 466, 479, see
also Coordinatization

transition (for Markov chain),
513, 516

transpose of, 53, 448
rank, 344

unitarily diagonalizable,
466–469

unitary, 465–466, 479
upper triangular, 50, 219, 279,

367, 387, 410, 536, 578,
600–606

Vandermonde, 154, 176, see
also Vandermonde

zero, 51
Maximal linearly independent

subset, 262, 271
Methods

Coordinatization Method
(coordinatizing a vector
with respect to an
ordered basis), 283

Diagonalization Method
(diagonalizing a square
matrix), 185, 292

Enlarging Method (enlarging a
linearly independent set
to a basis), 275

Generalized Diagonalization
Method (diagonalizing a
linear operator), 378–380

Generalized Gram-Schmidt
Process, 477

Gram-Schmidt Process, 400
Independence Test Method

(determining whether
vectors are linearly
independent by row
reduction), 242, 271, 272,
361

Inspection Method (finding a
basis from a spanning set
by inspection), 274

Inverse Method (finding
inverse of a matrix using
row reduction), 130, 202

Kernel Method (finding the
kernel by row reduction),
341, 362

Orthogonally Diagonalizing a
Symmetric Operator,
432–436

Power Method (finding the
dominant eigenvalue of a
square matrix), 609

QR Factorization Method (for
expressing a square
matrix as a product of an
orthogonal matrix and
an upper triangular
matrix), 617

Quadratic Form Method
(diagonalizing a quadratic
form), 581

Range Method (finding the
range by row reduction),
342, 362

Similarity Method (finding a
matrix for a
transformation centered
at a point other than the
origin), 549

Simplified Span Method
(finding a simplified form
of a span of vectors), 232,
269, 272, 361

Transition Matrix Method
(calculating a transition
matrix using row
reduction), 287

Metric space, 485
Minimal spanning set, 263
Minimum distance from a point

to a subspace, 422
Minkowski’s Inequality, 20
Minor, (i, j), 146
Multiplication of complex

numbers, 661
Multiplication of matrices, 59–67

as a linear transformation, 311
associative law, 64, 645
cancellation laws, 64
column of a product, 62
commuting matrices, 61
complex matrices, 448
definition of, 59
determinant of, 166
distributive laws, 64
effect of row operations on,

94–95
inverse, 125–134
powers of a square matrix, 65,

127–129
row of a product, 62
transpose of a product, 66

Multiplicative Conjugate Law,662
Multiplicative inverse of a

complex number, 662
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Multiplicity of eigenvalue
algebraic, 188–189, 381–384
geometric, 381–384

Mutually orthogonal set of
vectors, 23, see also
Orthogonal set of vectors

N
n-tuple, ordered, 2, 446
n-vector,

complex, 446–447
real, 2

Necessary and sufficient
condition, 35

Necessary condition, 34
Negating statements, 41–42
Negation, 41
Negative integer powers of a

square matrix, 127–129
Newton (unit of force), 12
Newton’s Second Law of Motion,

12
Nondiagonalizable matrix,

187–188, 457
Nondiagonalizable operator (not

diagonalizable), 375, 384
Nonpivot column, 92
Nonsingular matrix, 127,

160–161, 219, 226
as a product of elementary

matrices, 533–534
Nontrivial solution, 103, 114, 161,

536
Norm of a vector in an inner

product space, 474
Norm of an n-vector, 4
Normal matrix, 450, 453, 467,

see also Unitarily
diagonalizable

Normalization of homogeneous
coordinates, 548

Normalizing a vector, 6, 398
Notation for row operations, 84
Nullspace, 339, see also Kernel
Number of solutions to a system,

82, 102
Numerical methods

back substitution, 86
basketweaving, 144, 202
cofactor expansion, 148,

168–169, 202
Cramer’s Rule, 171, 201
determinant by row

reduction, 158–159, 202

Gauss-Jordan row reduction,
99, 201, 588, 596

Gauss-Seidel method, 592,
595–596

Gaussian elimination, 82–93,
201, 588, 596, 601

ill-conditioned systems,
588–589

iterative methods, 592–596
Jacobi method, 592–596
LDU decomposition, 600–606
least-squares solutions for

inconsistent systems,
570–576

linear regression (line of best
fit), 506

partial pivoting, 589–592
Power Method for finding

eigenvalues, 608–613
QR factorization, 615–622
solving a linear system using

the inverse of the
coefficient matrix, 133,
201

solving several systems
simultaneously, 105

O
Ohm (unit of resistance), 501
Ohm’s Law, 501–503
One-to-one, 350–353, 365, 654,

see also Isomorphism
Onto, 350–353, 365, 655, see also

Isomorphism
Opposite direction, 6
Or, inclusive vs. exclusive, 36
Ordered basis, 281
Ordered n-tuple, 2, 446
Orthogonal basis, 398–404, 464,

476, see also Orthonormal
basis

coordinatization with respect
to, 399, 477

for orthogonal complement,
413

Gram-Schmidt Process,
400–404, 464–465,
477–479

Orthogonal complement,
412–422, 479–482

definition of, 412, 479
dimension of, 414–416, 480
fundamental properties of,

413–416, 479–480

orthogonal basis for, 413–416,
480

orthogonal complement
within a subspace of Rn,
427

Projection Theorem, 416–418,
480

Orthogonal diagonalization,
430–436, see also
Orthogonally
diagonalizable

formal method for, 432
Orthogonal Diagonalization

Method, 432
Orthogonal matrix, 175, 404–407,

433–436, 479, 561, see
also Unitary matrix

Orthogonal projection operator,
416–421, 425–426,
434–436

Orthogonal reflection operator,
421–422, 425, 631, see
also Reflection operator

Orthogonal set of vectors, 398,
464, see also Orthogonal
basis

linear independence of, 398,
476

Orthogonal vectors, 23, 464, 476
Orthogonally diagonalizable, see

also Orthogonal
diagonalization; Unitarily
diagonalizable

equivalence with symmetric
operator, 431–432

linear operator, 430–436
matrix, 430–431

Orthogonally similar matrices,
439

Orthonormal basis, 398–407,
432–436, 466, 476, 479,
580–583, see also
Orthonormal basis

coordinatization with respect
to, 399, 477

for range(L), range(L)⊥, ker(L)

and ker(L)⊥, 626
Orthonormal set of vectors, 398,

464, 476, see also
Orthonormal basis

Orthonormal vectors, 464, 476
Outer product form (of a singular

value decomposition),
632–634

definition of, 632
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P
Parabola (as a conic section), 537,

543
Parallel vectors, 6, 23
Parallelepiped, volume of, 146
Parallelogram, area of, 145
Parallelogram Identity, 29
Parseval’s Equality, 410
Partial pivoting, 589–592
Particular solution, 80
Path in a graph or digraph,

494–496
length of, 494
number of, 495–496

Perpendicular vectors, 23
Pivot (entry), 82, 86
Pivot column, 92
Pivot row, 84, 86
Pivoting, 82–92

complete, 592
full, 592
partial, 589–592
total, 592

Pixel, 544, 633
Plaintext, 525
PLDU decomposition, 606
Polarization Identity, 29, 484
Positive definite quadratic form,

584
Positive semi-definite quadratic

form, 585
Power Method for finding

eigenvalues, 608–613
formal method, 609

Powers of a matrix (large), 189
Powers of a square matrix, 65,

127–129
Pre-image, 306, 653

of a subset, 653
of a subspace, 314

Premise, 33
Prime number, 175
Principal Axes Theorem, 581
Probability vector, 513, 515–516
Product (chemical), 104
Product of matrices, see

Multiplication of matrices
Profit, 61
Projection Theorem, 416–418,

480
Projection transformation, 309,

316–317, 325, 339, see
also Orthogonal
projection operator

Projection vector, 24–26, 480, see
also Orthogonal
projection operator

Proof technique
contradiction, 38–39
contrapositive, 36
coordinate-wise, 9
direct proof, 31–32
if and only if, 34–35
if A then (B or C), 36
if A then B, 33–34
induction, 39–41
working backward, 32–33

Proper subspace, 217
Pseudoinverse (of a matrix),

634–638, 641–642
definition of, 636

Pure imaginary complex number,
661

Q
QR factorization, 615–622

least-squares, 619–621
QR Factorization Method, 617
Quadratic form, 578–583

definition of, 578
diagonalizing, 581–583
positive definite, 584
positive semi-definite, 585
Principal Axes Theorem, 581
symmetric matrix for,579–581
upper triangular matrix for,

578
Quadratic Form Method, 581
Quantifier, 41

existential, 41
universal, 41

R
Range, 306, 314, 339–343, 362,

654, see also Linear
transformation, range of

basis for, 342
dimension of, 339–343, 351

Range Method, 342, 362
Rank of a matrix, 113–114,

160–161, 280, 343, 344,
536

complex matrix, 455
Raster graphics, 544
Reactant, 104
Real dimension, 461,
Real inner product, 18, 472, see

also Inner product space

Real inner product space, see
Inner product space

Real n-vector, 2
Real numbers, 2
Real part of a complex number,

661
Real vector space, 292, 460, 461,

see also Vector space
Reciprocal of a complex number,

662
Recursiveness of cofactor

expansion, 148–150
Reduced row echelon form

complex matrix, 455
definition of, 101
uniqueness of, 113, 646

Redundant vector, 253
Reflection of a vector through a

line, 30, 316, 337, 372,
546–554, 560

Reflection of a vector through a
plane, 308, 316, 324, 325,
330, 421

Reflection operator,308,316,324,
325, 330, 337, 369–370,
372, 546–554, 560, 631,
see also Orthogonal
reflection operator

Regular matrix, 520
Relaxation methods, 596
Resistor, 501
Restriction of a linear operator to

a subspace, 426, 432
Resultant velocity, 11
Reverse row operations, 111
Reverse Triangle Inequality, 30
Right inverse of a matrix, 647
Right singular vectors, 624
Rotation of axes, 537–542
Rotation operator (clockwise),

350, 358
Rotation operator

(counterclockwise), 188,
310, 317–318, 325, 334,
335, 340, 350, 358, 375,
384, 409, 441, 546–554,
558, 631

Roundoff error, 517, 588–591
Row echelon form, 99, 601–606
Row equivalent matrices,

111–114, 119–120, 161,
532

definition of, 111
Row of a matrix product, 62
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Row operations (type (I), (II) and
(III)), 83, 530, see also
Gaussian elimination

effect on determinant,
156–157

effect on matrix
multiplication, 94

Row operations, lower type (II),
601–605

Row rank of a matrix, 344, see
also Rank of matrix

Row reduction, see Gauss-Jordan
row reduction

Row space, 116–120, 229, 232,
see also Span

as set of all destination
vectors, 117, 229

S
Same direction, 6
Scalar, 2, 446
Scalar multiplication of matrices,

51–52
associative law, 52
complex, 448
definition of, 51
distributive laws, 52
fundamental properties of, 52,

64
identity property, 52

Scalar multiplication of vectors
associative law, 9, 204
cancellation laws, 214
complex n-vectors, 446
definition of, 5, 204
distributive laws, 9, 204
fundamental properties of, 9,

204, 212
identity property, 9, 204
relationship with dot product

(complex), 447
relationship with dot product

(real), 18
Scaling operator, 547–554, 560
Seidel, see Gauss-Seidel method
Self-adjoint operator, 468
Shear operator, 318, 325, 358,

369–370
Shipping cost, 61
Significant digits, 588
Similar matrices, 175, 185, 194,

329, 337, 439, 550, see
also Orthogonally similar

Similarity (of the plane), 546–554

Similarity Method (finding a
matrix for a
transformation centered
at a point other than the
origin), 549

Simple graph or digraph, 492
Simplified Span Method,232,269,

361
for finding a basis, 272

Singular matrix, 127, 160–161,
219, 226

Singular value decomposition,
623–638

definition of, 629
outer product form, 632–634

definition of, 632
Singular values, 624
Singular vectors

left, 626
right, 624

Size of a matrix, 48
Skew-Hermitian matrix, 449–451,

453
Skew-symmetric matrix, 53–55,

279, 343, 371–372, 426
Solution (system of differential

equations), 562
Solution set (linear system), 80

approximate, 570–576, 637
Solving several systems

simultaneously, 105–106
Span, 227–235, 461

as an existence statement, 255
definition of, 229
empty set, 235
finding a basis for

by inspection, 274
using row reduction, 269,

272
finding a simplified form for,

using row reduction, 232
minimal spanning set, 263
minimal subspace

characterization, 230–231
preservation of under an onto

transformation, 352, 355,
365

preserved by isomorphism,
359

redundant vector, 253
shrinking a spanning set to a

basis, 270–274
size of spanning set, 261
usage as a verb, 230

Sparse matrix, 596
Square matrix, 50
Staircase pattern of pivots, 99
Standard basis, see Basis
Standard form (of a vector in

homogeneous
coordinates), 548

Standard unit vector, 5
State vector, 513, 516
Steady-state vector, 521
Stochastic matrix

definition of, 515
eigenvalue and eigenvector

for, 195
regular, 520

Stochastic vector, 515
Strictly diagonally dominant

matrix, 598
Strongly connected digraph, 500
Submatrix, (i, j), 146
Subspace, 215–461, see also

Vector space
definition of, 216
dimension of, 263–264
image of, 314
pre-image of, 314
proper, 217
trivial, 217

Substitution cipher, 525
Subtraction of matrices, 52
Subtraction of vectors, 8
Sufficient condition, 34
Sum of matrices, 51
Sum of n-vectors, 8, 446, see also

Addition of vectors
Sum of vectors (general), 204
Symmetric matrix, 53–55, 279,

343, 371–372, 426, 429,
579–581, 650, see also
Symmetric operator

Symmetric operator, 428–436,
650, see also Orthogonally
diagonalizable

System of linear equations,
79–114, 133–134, 201

augmented matrix for, 81
back substitution, 86
coefficient matrix for, 80
complex linear system, 454
consistent, 82
definition of, 80
dependent variable, 92
equivalent systems, 110–113
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System of linear
equations (continued)

Gauss-Jordan row reduction,
99–102, see also
Gauss-Jordan row
reduction

Gaussian elimination, 79–93,
see also Gaussian
elimination

homogeneous, 102–104, 114
ill-conditioned, 588–589
inconsistent, 82, 89–90,

570–576, 637
independent variable, 92
infinite solution sets, 82,

90–93
nontrivial solution, 103, 114,

161, 536
number of solutions to, 82,

102
particular solution for, 80
solution set for, 80
solution techniques

Cramer’s Rule, 171–172,
201

Gauss-Jordan row
reduction, 99–102, 201,
588, see also
Gauss-Jordan row
reduction

Gauss-Seidel method, 592,
595–596

Gaussian elimination,
82–93, 201, 588, 596

inverse of a matrix, 133,
201

iterative methods, 592–596
Jacobi method, 592–596
LDU decomposition,

600–606
least-squares

approximation,
570–576, 637

partial pivoting, 589–592
solving several systems

simultaneously, 105–106
summary, 201

solving several systems
simultaneously, 105–106

trivial solution, 102, 114, 161

T
Target entry, 84
Target row, 84

Total pivoting, 592
Trace of a matrix, 58, 73, 279, 347,

483
Transition matrix, 286–292,

406–407, 466, 479, see
also Coordinatization

composition with, 289
for diagonalization, 291–292,

378, 421–422, 433–436
for Markov chain, 513, 516

regular, 520
using row reduction to

calculate, 287
Transition Matrix Method, 287
Translation operator, 308, 319,

387, 546–554, 560
Transpose, 53

characteristic polynomial of,
195

conjugate transpose, 448–449
definition of, 53, 448
determinant of, 167
fundamental properties of, 53
linear transformation, 307,

334, 367
matrix product, 66
rank of, 344

Triangle Inequality, 20, 475
Triangle Inequality, Reverse, 30
Trivial solution, 102, 114, 161
Trivial subspace, 217
Trivial vector space, 205

dimension of, 260
Type (I), (II) and (III) row

operations, 83, 156, 530,
see also Row operations
(type (I), (II) and (III))

effect on matrix
multiplication, 94

U
Unit vector, 5, 6, 447, 474
Unitarily diagonalizable, 466–469

equivalence with normal
matrix, 467

matrix, 466–469
Unitary matrix, 465–466, 479
Universal quantifier, 41
Upper triangular matrix, 50, 219,

279, 367, 387, 410, 578,
600–606

determinant, 155
inverse, 536

V
Vandermonde matrix, 154, 176
Vector(s), 1–27, 204–212

addition of, 8, 204, see also
Addition of vectors

angle between, 21–22, 447,
475

complex n-vector, 446–447
component, 25
contraction, 6, 179
coordinates of, 2
coordinatization, 281–292,

461
cross product of 3-vectors,

152
decomposition of, 25,

416–418, 481–482
definition of (general), 204
definition of (n-vector), 2
destination, 10, 117, 119, 120,

241, 246
dilation, 6, 179
direction cosines, 16, 29
distance between, 474
dot product of, 18, 446, see

also Dot product
equality of, 2
force, 12, 26
fundamental properties of,

204, 212
fundamental properties under

n-vector operations, 9
geometric interpretation of, 2
identity element for addition,

9, 204, 205, 214
inner product, 18, 472, see

also Inner product space
inverse of (additive), 9, 204,

205
length of, 4, 18, 447, 474
limit of, 517
limit vector, 517
linear combination of, 10,

114–120, 221, 227–229,
see also Span

linear dependence, 239–249,
see also Linear
independence

linear independence,
239–249, 461, see also
Linear independence

magnitude of, 4
mutually orthogonal, 23, see

also Orthogonal set of
vectors
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norm of, 4, 474
normalizing, 6, 398
opposite direction, 6
orthogonal, 23, 398, 464, 476
orthogonal set of, 398, 464,

476, see also Orthogonal
basis

orthonormal, 398, 464, 476
orthonormal set of, 398, 464,

476, see also Orthonormal
basis

parallel, 6, 23
perpendicular, 23
probability, 513, 516
projection, 24–26, 325, 480,

see also Orthogonal
projection operator

real n-vector, 2
redundant, 253
reflection through a line, 30,

308, 337, 369–370, 372,
546–554, 560

reflection through a plane,
308, 316, 324, 325, 330,
421–422, 425

rotation about a line, 317, 325,
384, 409, 441

rotation about a point, 310,
317, 334, 335, 340, 350,
358, 375, 546–554, 558

same direction, 6
scalar multiplication of, 5, 204,

see also Scalar
multiplication of vectors

scaling from a point, 547–554,
560

span of a set of, 227–235, 461,
see also Span

standard unit, 5
state, 513, 516
steady-state, 521
stochastic, 515
subtraction of, 8
sum of, see Addition of vectors
translation of, 308, 319, 387,

546–554, 560

uniqueness of additive
identity, 205, 214

uniqueness of additive
inverse, 205

unit, 5, 6, 447, 474
zero, 204, 210, see also

Identity element for
addition

zero n-vector, 2
Vector space(s), 203–293,

460–469
basis for, see Basis
cancellation laws, 214
closure properties, 204, 218,

231
complex, 204, 460–469
definition of, 204, 460
dimension of, see Dimension
dimension of a subspace,

263–264
finite dimensional, 260,

263–264, see also
Dimension; Infinite
dimensional vector space

fundamental properties of,
204, 212

identity element for addition,
204, 205, 214

infinite dimensional, 260, 267,
see also Dimension; Finite
dimension

inner product space, see Inner
product space

inverse element for addition,
204, 205

isomorphic, 359–360
linear dependence, 239–250,

see also Linear
dependence

linear independence,
239–250, 461, see also
Linear independence

orthogonal complement of
subspace, see Orthogonal
complement

proper subspace, 217
real, 292
real vs. complex, 460, 461
row space of a matrix,

116–120, 229, see also
Span

span, 227–235, 461, see also
Span

subspace, 215–264, 461
trivial, 205, 260
trivial subspace, 217
uniqueness of additive

identity, 205, 214
uniqueness of additive

inverse, 205
zero vector, see Identity

element for addition
Velocity, resultant, 11
Vertex

of a figure in computer
graphics, 545

of a graph, 492
Voltage (sources, drops and

sinks), 501
Volts, 501
Volume of a parallelepiped, 146

W
Without loss of generality, 38
Work, 26
Working backward to discover a

proof, 32–33

Z
Zero linear operator, 308, 316,

336, 347, 368
Zero linear transformation, 308,

316, 336, 347, 368
Zero matrix, 51
Zero n-vector, 2
Zero Product Property, 662
Zero vector, see Identity element

for addition
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