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Introduction

This is an introduction to linear algebra. The main part of the book features row operations
and everything is done in terms of the row reduced echelon form and specific algorithms.
At the end, the more abstract notions of vector spaces and linear transformations on vector
spaces are presented. However, this is intended to be a first course in linear algebra for
students who are sophomores or juniors who have had a course in one variable calculus
and a reasonable background in college algebra. I have given complete proofs of all the
fundamental ideas but some topics such as Markov matrices are not complete in this book but
receive a plausible introduction. The book contains a complete treatment of determinants
and a simple proof of the Cayley Hamilton theorem although these are optional topics.
The Jordan form is presented as an appendix. I see this theorem as the beginning of more
advanced topics in linear algebra and not really part of a beginning linear algebra course.
There are extensions of many of the topics of this book in my on line book [9]. I have also
not emphasized that linear algebra can be carried out with any field although I have done
everything in terms of either the real numbers or the complex numbers. It seems to me this
is a reasonable specialization for a first course in linear algebra.
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Fn

2.0.1 Outcomes

A. Understand the symbol, Fn in the case where F equals the real numbers, R or the
complex numbers, C.

B. Know how to do algebra with vectors in Fn, including vector addition and scalar
multiplication.

C. Understand the geometric significance of an element of Fn when possible.

The notation, Cn refers to the collection of ordered lists of n complex numbers. Since
every real number is also a complex number, this simply generalizes the usual notion of
Rn, the collection of all ordered lists of n real numbers. In order to avoid worrying about
whether it is real or complex numbers which are being referred to, the symbol F will be
used. If it is not clear, always pick C.

Definition 2.0.1 Define Fn ≡ {(x1, · · · , xn) : xj ∈ F for j = 1, · · · , n} .

(x1, · · · , xn) = (y1, · · · , yn)

if and only if for all j = 1, · · · , n, xj = yj . When (x1, · · · , xn) ∈ Fn, it is conventional
to denote (x1, · · · , xn) by the single bold face letter, x. The numbers, xj are called the
coordinates. The set

{(0, · · · , 0, t, 0, · · · , 0) : t ∈ F}
for t in the ith slot is called the ith coordinate axis. The point 0 ≡ (0, · · · , 0) is called the
origin. Elements in Fn are called vectors.

Thus (1, 2, 4i) ∈ F3 and (2, 1, 4i) ∈ F3 but (1, 2, 4i) 6= (2, 1, 4i) because, even though the
same numbers are involved, they don’t match up. In particular, the first entries are not
equal.

The geometric significance of Rn for n ≤ 3 has been encountered already in calculus or
in pre-calculus. Here is a short review. First consider the case when n = 1. Then from the
definition, R1 = R. Recall that R is identified with the points of a line. Look at the number
line again. Observe that this amounts to identifying a point on this line with a real number.
In other words a real number determines where you are on this line. Now suppose n = 2
and consider two lines which intersect each other at right angles as shown in the following
picture.

9



10 FN

2

6 · (2, 6)

−8

3·(−8, 3)

Notice how you can identify a point shown in the plane with the ordered pair, (2, 6) .
You go to the right a distance of 2 and then up a distance of 6. Similarly, you can identify
another point in the plane with the ordered pair (−8, 3) . Go to the left a distance of 8 and
then up a distance of 3. The reason you go to the left is that there is a − sign on the eight.
From this reasoning, every ordered pair determines a unique point in the plane. Conversely,
taking a point in the plane, you could draw two lines through the point, one vertical and the
other horizontal and determine unique points, x1 on the horizontal line in the above picture
and x2 on the vertical line in the above picture, such that the point of interest is identified
with the ordered pair, (x1, x2) . In short, points in the plane can be identified with ordered
pairs similar to the way that points on the real line are identified with real numbers. Now
suppose n = 3. As just explained, the first two coordinates determine a point in a plane.
Letting the third component determine how far up or down you go, depending on whether
this number is positive or negative, this determines a point in space. Thus, (1, 4,−5) would
mean to determine the point in the plane that goes with (1, 4) and then to go below this
plane a distance of 5 to obtain a unique point in space. You see that the ordered triples
correspond to points in space just as the ordered pairs correspond to points in a plane and
single real numbers correspond to points on a line.

You can’t stop here and say that you are only interested in n ≤ 3. What if you were
interested in the motion of two objects? You would need three coordinates to describe
where the first object is and you would need another three coordinates to describe where
the other object is located. Therefore, you would need to be considering R6. If the two
objects moved around, you would need a time coordinate as well. As another example,
consider a hot object which is cooling and suppose you want the temperature of this object.
How many coordinates would be needed? You would need one for the temperature, three
for the position of the point in the object and one more for the time. Thus you would need
to be considering R5. Many other examples can be given. Sometimes n is very large. This
is often the case in applications to business when they are trying to maximize profit subject
to constraints. It also occurs in numerical analysis when people try to solve hard problems
on a computer.

There are other ways to identify points in space with three numbers but the one presented
is the most basic. In this case, the coordinates are known as Cartesian coordinates after
Descartes1 who invented this idea in the first half of the seventeenth century. I will often
not bother to draw a distinction between the point in space and its Cartesian coordinates.

The geometric significance of Cn for n > 1 is not available because each copy of C
corresponds to the plane or R2.

1René Descartes 1596-1650 is often credited with inventing analytic geometry although it seems the ideas
were actually known much earlier. He was interested in many different subjects, physiology, chemistry, and
physics being some of them. He also wrote a large book in which he tried to explain the book of Genesis
scientifically. Descartes ended up dying in Sweden.



2.1. ALGEBRA IN FN 11

2.1 Algebra in Fn

There are two algebraic operations done with elements of Fn. One is addition and the other
is multiplication by numbers, called scalars. In the case of Cn the scalars are complex
numbers while in the case of Rn the only allowed scalars are real numbers. Thus, the scalars
always come from F in either case.

Definition 2.1.1 If x ∈ Fn and a ∈ F, also called a scalar, then ax ∈ Fn is defined by

ax = a (x1, · · · , xn) ≡ (ax1, · · · , axn) . (2.1)

This is known as scalar multiplication. If x,y ∈ Fn then x + y ∈ Fn and is defined by

x + y = (x1, · · · , xn) + (y1, · · · , yn)
≡ (x1 + y1, · · · , xn + yn) (2.2)

Fn is often called n dimensional space. With this definition, the algebraic properties
satisfy the conclusions of the following theorem.

Theorem 2.1.2 For v,w ∈ Fn and α, β scalars, (real numbers), the following hold.

v + w = w + v, (2.3)

the commutative law of addition,

(v + w) + z = v+(w + z) , (2.4)

the associative law for addition,
v + 0 = v, (2.5)

the existence of an additive identity,

v+(−v) = 0, (2.6)

the existence of an additive inverse, Also

α (v + w) = αv+αw, (2.7)

(α + β)v =αv+βv, (2.8)

α (βv) = αβ (v) , (2.9)

1v = v. (2.10)

In the above 0 = (0, · · · , 0).

You should verify these properties all hold. For example, consider 2.7

α (v + w) = α (v1 + w1, · · · , vn + wn)
= (α (v1 + w1) , · · · , α (vn + wn))
= (αv1 + αw1, · · · , αvn + αwn)
= (αv1, · · · , αvn) + (αw1, · · · , αwn)
= αv + αw.

As usual subtraction is defined as x− y ≡ x+(−y) .
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2.2 Geometric Meaning Of Vectors

The geometric meaning is especially significant in the case of Rn for n = 2, 3. Here is a
short discussion of this topic.

Definition 2.2.1 Let x = (x1, · · · , xn) be the coordinates of a point in Rn. Imagine an
arrow with its tail at 0 = (0, · · · , 0) and its point at x as shown in the following picture in
the case of R3.

¡
¡

¡

´
´

´́3
r(x1, x2, x3) = x

Then this arrow is called the position vector of the point, x. Given two points, P, Q
whose coordinates are (p1, · · · , pn) and (q1, · · · , qn) respectively, one can also determine the
position vector from P to Q defined as follows.

−−→
PQ ≡ (q1 − p1, · · · , qn − pn)

Thus every point determines a vector and conversely, every such vector (arrow) which
has its tail at 0 determines a point of Rn, namely the point of Rn which coincides with the
point of the vector. Also two different points determine a position vector going from one to
the other as just explained.

Imagine taking the above position vector and moving it around, always keeping it point-
ing in the same direction as shown in the following picture.

¡
¡

¡

´
´

´́3
r(x1, x2, x3) = x

´
´

´́3

´
´

´́3

´
´

´́3

After moving it around, it is regarded as the same vector because it points in the same
direction and has the same length.2Thus each of the arrows in the above picture is regarded
as the same vector. The components of this vector are the numbers, x1, · · · , xn. You
should think of these numbers as directions for obtainng an arrow. Starting at some point,
(a1, a2, · · · , an) in Rn, you move to the point (a1 + x1, · · · , an) and from there to the point
(a1 + x1, a2 + x2, a3 · · · , an) and then to (a1 + x1, a2 + x2, a3 + x3, · · · , an) and continue
this way until you obtain the point (a1 + x1, a2 + x2, · · · , an + xn) . The arrow having its
tail at (a1, a2, · · · , an) and its point at (a1 + x1, a2 + x2, · · · , an + xn) looks just like the
arrow which has its tail at 0 and its point at (x1, · · · , xn) so it is regarded as the same
vector.

2.3 Geometric Meaning Of Vector Addition

It was explained earlier that an element of Rn is an n tuple of numbers and it was also
shown that this can be used to determine a point in three dimensional space in the case

2I will discuss how to define length later. For now, it is only necessary to observe that the length should
be defined in such a way that it does not change when such motion takes place.
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where n = 3 and in two dimensional space, in the case where n = 2. This point was specified
relative to some coordinate axes.

Consider the case where n = 3 for now. If you draw an arrow from the point in three
dimensional space determined by (0, 0, 0) to the point (a, b, c) with its tail sitting at the
point (0, 0, 0) and its point at the point (a, b, c) , this arrow is called the position vector
of the point determined by u ≡ (a, b, c) . One way to get to this point is to start at (0, 0, 0)
and move in the direction of the x1 axis to (a, 0, 0) and then in the direction of the x2 axis
to (a, b, 0) and finally in the direction of the x3 axis to (a, b, c) . It is evident that the same
arrow (vector) would result if you began at the point, v ≡ (d, e, f) , moved in the direction
of the x1 axis to (d + a, e, f) , then in the direction of the x2 axis to (d + a, e + b, f) , and
finally in the x3 direction to (d + a, e + b, f + c) only this time, the arrow would have its
tail sitting at the point determined by v ≡ (d, e, f) and its point at (d + a, e + b, f + c) . It
is said to be the same arrow (vector) because it will point in the same direction and have
the same length. It is like you took an actual arrow, the sort of thing you shoot with a bow,
and moved it from one location to another keeping it pointing the same direction. This
is illustrated in the following picture in which v + u is illustrated. Note the parallelogram
determined in the picture by the vectors u and v.

¡
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u + v@
@I
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¡

¡
¡µ

u

x1

x3

x2

Thus the geometric significance of (d, e, f) + (a, b, c) = (d + a, e + b, f + c) is this. You
start with the position vector of the point (d, e, f) and at its point, you place the vector
determined by (a, b, c) with its tail at (d, e, f) . Then the point of this last vector will be
(d + a, e + b, f + c) . This is the geometric significance of vector addition. Also, as shown
in the picture, u + v is the directed diagonal of the parallelogram determined by the two
vectors u and v. A similar interpretation holds in Rn, n > 3 but I can’t draw a picture in
this case.

Since the convention is that identical arrows pointing in the same direction represent
the same vector, the geometric significance of vector addition is as follows in any number of
dimensions.

Procedure 2.3.1 Let u and v be two vectors. Slide v so that the tail of v is on the point
of u. Then draw the arrow which goes from the tail of u to the point of the slid vector, v.
This arrow represents the vector u + v.
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-¡
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u

u + v
v

Note that P+
−−→
PQ = Q.

2.4 Distance Between Points In Rn Length Of A Vector

How is distance between two points in Rn defined?

Definition 2.4.1 Let x =(x1, · · · , xn) and y = (y1, · · · , yn) be two points in Rn. Then
|x− y| to indicates the distance between these points and is defined as

distance between x and y ≡ |x− y| ≡
(

n∑

k=1

|xk − yk|2
)1/2

.

This is called the distance formula. Thus |x| ≡ |x− 0| . The symbol, B (a, r) is defined
by

B (a, r) ≡ {x ∈ Rn : |x− a| < r} .

This is called an open ball of radius r centered at a. It means all points in Rn which are
closer to a than r. The length of a vector x is the distance between x and 0.

First of all note this is a generalization of the notion of distance in R. There the distance
between two points, x and y was given by the absolute value of their difference. Thus |x− y|
is equal to the distance between these two points on R. Now |x− y| =

(
(x− y)2

)1/2

where
the square root is always the positive square root. Thus it is the same formula as the above
definition except there is only one term in the sum. Geometrically, this is the right way to
define distance which is seen from the Pythagorean theorem. Often people use two lines
to denote this distance, ||x− y||. However, I want to emphasize this is really just like the
absolute value. Also, the notation I am using is fairly standard.

Consider the following picture in the case that n = 2.

(x1, x2) (y1, x2)

(y1, y2)

There are two points in the plane whose Cartesian coordinates are (x1, x2) and (y1, y2)
respectively. Then the solid line joining these two points is the hypotenuse of a right triangle
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which is half of the rectangle shown in dotted lines. What is its length? Note the lengths
of the sides of this triangle are |y1 − x1| and |y2 − x2| . Therefore, the Pythagorean theorem
implies the length of the hypotenuse equals

(
|y1 − x1|2 + |y2 − x2|2

)1/2

=
(
(y1 − x1)

2 + (y2 − x2)
2
)1/2

which is just the formula for the distance given above. In other words, this distance defined
above is the same as the distance of plane geometry in which the Pythagorean theorem
holds.

Now suppose n = 3 and let (x1, x2, x3) and (y1, y2, y3) be two points in R3. Consider the
following picture in which one of the solid lines joins the two points and a dotted line joins
the points (x1, x2, x3) and (y1, y2, x3) .

(x1, x2, x3) (y1, x2, x3)

(y1, y2, x3)

(y1, y2, y3)

By the Pythagorean theorem, the length of the dotted line joining (x1, x2, x3) and
(y1, y2, x3) equals (

(y1 − x1)
2 + (y2 − x2)

2
)1/2

while the length of the line joining (y1, y2, x3) to (y1, y2, y3) is just |y3 − x3| . Therefore, by
the Pythagorean theorem again, the length of the line joining the points (x1, x2, x3) and
(y1, y2, y3) equals

{[(
(y1 − x1)

2 + (y2 − x2)
2
)1/2

]2

+ (y3 − x3)
2

}1/2

=
(
(y1 − x1)

2 + (y2 − x2)
2 + (y3 − x3)

2
)1/2

,

which is again just the distance formula above.
This completes the argument that the above definition is reasonable. Of course you

cannot continue drawing pictures in ever higher dimensions but there is no problem with
the formula for distance in any number of dimensions. Here is an example.

Example 2.4.2 Find the distance between the points in R4,a =(1, 2,−4, 6) and b =(2, 3,−1, 0)

Use the distance formula and write

|a− b|2 = (1− 2)2 + (2− 3)2 + (−4− (−1))2 + (6− 0)2 = 47
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Therefore, |a− b| = √
47.

All this amounts to defining the distance between two points as the length of a straight
line joining these two points. However, there is nothing sacred about using straight lines.
One could define the distance to be the length of some other sort of line joining these points.
It won’t be done in this book but sometimes this sort of thing is done.

Another convention which is usually followed, especially in R2 and R3 is to denote the
first component of a point in R2 by x and the second component by y. In R3 it is customary
to denote the first and second components as just described while the third component is
called z.

Example 2.4.3 Describe the points which are at the same distance between (1, 2, 3) and
(0, 1, 2) .

Let (x, y, z) be such a point. Then

√
(x− 1)2 + (y − 2)2 + (z − 3)2 =

√
x2 + (y − 1)2 + (z − 2)2.

Squaring both sides

(x− 1)2 + (y − 2)2 + (z − 3)2 = x2 + (y − 1)2 + (z − 2)2

and so
x2 − 2x + 14 + y2 − 4y + z2 − 6z = x2 + y2 − 2y + 5 + z2 − 4z

which implies
−2x + 14− 4y − 6z = −2y + 5− 4z

and so
2x + 2y + 2z = −9. (2.11)

Since these steps are reversible, the set of points which is at the same distance from the two
given points consists of the points, (x, y, z) such that 2.11 holds.

There are certain properties of the distance which are obvious. Two of them which follow
directly from the definition are

|x− y| = |y − x| ,

|x− y| ≥ 0 and equals 0 only if y = x.

The third fundamental property of distance is known as the triangle inequality. Recall that
in any triangle the sum of the lengths of two sides is always at least as large as the third
side. I will show you a proof of this later. This is usually stated as

|x + y| ≤ |x|+ |y| .

Here is a picture which illustrates the statement of this inequality in terms of geometry.

-´
´

´
´

´
3́

¢
¢
¢
¢̧x + y

x

y
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2.5 Geometric Meaning Of Scalar Multiplication

As discussed earlier, x = (x1, x2, x3) determines a vector. You draw the line from 0 to
x placing the point of the vector on x. What is the length of this vector? The length
of this vector is defined to equal |x| as in Definition 2.4.1. Thus the length of x equals√

x2
1 + x2

2 + x2
3. When you multiply x by a scalar, α, you get (αx1, αx2, αx3) and the length

of this vector is defined as
√(

(αx1)
2 + (αx2)

2 + (αx3)
2
)

= |α|
√

x2
1 + x2

2 + x2
3. Thus the

following holds.

|αx| = |α| |x| .

In other words, multiplication by a scalar magnifies the length of the vector. What about
the direction? You should convince yourself by drawing a picture that if α is negative, it
causes the resulting vector to point in the opposite direction while if α > 0 it preserves the
direction the vector points.

You can think of vectors as quantities which have direction and magnitude, little arrows.
Thus any two little arrows which have the same length and point in the same direction are
considered to be the same vector even if their tails are at different points.

£
£
££±£

£
££±

£
£
££±

£
£
££±

You can always slide such an arrow and place its tail at the origin. If the resulting
point of the vector is (a, b, c) , it is clear the length of the little arrow is

√
a2 + b2 + c2.

Geometrically, the way you add two geometric vectors is to place the tail of one on the
point of the other and then to form the vector which results by starting with the tail of the
first and ending with this point as illustrated in the following picture. Also when (a, b, c)
is referred to as a vector, you mean any of the arrows which have the same direction and
magnitude as the position vector of this point. Geometrically, for u = (u1, u2, u3) , αu is any
of the little arrows which have the same direction and magnitude as (αu1, αu2, αu3) .

£
£
£
£
£
££±

³³³³³³1

³³³³³³1

¡
¡

¡
¡
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¡

¡
¡µ

u

v

u + v

The following example is art which illustrates these definitions and conventions.

Exercise 2.5.1 Here is a picture of two vectors, u and v.



18 FN

u

¡
¡

¡
¡

¡µ

v

HHHHHj

Sketch a picture of u + v,u− v, and u+2v.

First here is a picture of u + v. You first draw u and then at the point of u you place the
tail of v as shown. Then u + v is the vector which results which is drawn in the following
pretty picture.

u

¡
¡

¡
¡

¡µ
v

HHHHHj
u + v

»»»»»»»»»»:

Next consider u− v. This means u+(−v) . From the above geometric description of
vector addition, −v is the vector which has the same length but which points in the opposite
direction to v. Here is a picture.

u

¡
¡

¡
¡

¡µ

−v

HHHHHY

u + (−v)

6

Finally consider the vector u+2v. Here is a picture of this one also.

u

¡
¡

¡
¡

¡µ 2v
HHHHHHHHHHj

u + 2v
-
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2.6 Exercises

1. Verify all the properties 2.3-2.10.

2. Compute 5 (1, 2 + 3i, 3,−2) + 6 (2− i, 1,−2, 7) .

3. Draw a picture of the points in R2 which are determined by the following ordered
pairs.

(a) (1, 2)

(b) (−2,−2)

(c) (−2, 3)

(d) (2,−5)

4. Does it make sense to write (1, 2) + (2, 3, 1)? Explain.

5. Draw a picture of the points in R3 which are determined by the following ordered
triples.

(a) (1, 2, 0)

(b) (−2,−2, 1)

(c) (−2, 3,−2)

2.7 Vectors And Physics

Suppose you push on something. What is important? There are really two things which are
important, how hard you push and the direction you push. This illustrates the concept of
force.

Definition 2.7.1 Force is a vector. The magnitude of this vector is a measure of how hard
it is pushing. It is measured in units such as Newtons or pounds or tons. Its direction is
the direction in which the push is taking place.

Vectors are used to model force and other physical vectors like velocity. What was just
described would be called a force vector. It has two essential ingredients, its magnitude and
its direction. Geometrically think of vectors as directed line segments or arrows as shown in
the following picture in which all the directed line segments are considered to be the same
vector because they have the same direction, the direction in which the arrows point, and
the same magnitude (length).

£
£
££±£

£
££±

£
£
££±

£
£
££±

Because of this fact that only direction and magnitude are important, it is always possible
to put a vector in a certain particularly simple form. Let −→pq be a directed line segment or
vector. Then it follows that −→pq consists of the points of the form

p + t (q− p)
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where t ∈ [0, 1] . Subtract p from all these points to obtain the directed line segment con-
sisting of the points

0 + t (q− p) , t ∈ [0, 1] .

The point in Rn,q− p, will represent the vector.
Geometrically, the arrow, −→pq, was slid so it points in the same direction and the base is

at the origin, 0. For example, see the following picture.

£
£
££±

£
£
££±

£
£
££±

In this way vectors can be identified with points of Rn.

Definition 2.7.2 Let x =(x1, · · · , xn) ∈ Rn. The position vector of this point is the
vector whose point is at x and whose tail is at the origin, (0, · · · , 0). If x =(x1, · · · , xn)
is called a vector, the vector which is meant is this position vector just described. Another
term associated with this is standard position. A vector is in standard position if the tail
is placed at the origin.

It is customary to identify the point in Rn with its position vector.
The magnitude of a vector determined by a directed line segment −→pq is just the distance

between the point p and the point q. By the distance formula this equals

(
n∑

k=1

(qk − pk)2
)1/2

= |p− q|

and for v any vector in Rn the magnitude of v equals
(∑n

k=1 v2
k

)1/2 = |v|.

Example 2.7.3 Consider the vector, v ≡ (1, 2, 3) in Rn. Find |v| .

First, the vector is the directed line segment (arrow) which has its base at 0 ≡ (0, 0, 0)
and its point at (1, 2, 3) . Therefore,

|v| =
√

12 + 22 + 32 =
√

14.

What is the geometric significance of scalar multiplication? If a represents the vector, v
in the sense that when it is slid to place its tail at the origin, the element of Rn at its point
is a, what is rv?

|rv| =
(

n∑

k=1

(rai)
2

)1/2

=

(
n∑

k=1

r2 (ai)
2

)1/2

=
(
r2

)1/2

(
n∑

k=1

a2
i

)1/2

= |r| |v| .

Thus the magnitude of rv equals |r| times the magnitude of v. If r is positive, then the
vector represented by rv has the same direction as the vector, v because multiplying by the
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scalar, r, only has the effect of scaling all the distances. Thus the unit distance along any
coordinate axis now has length r and in this rescaled system the vector is represented by a.
If r < 0 similar considerations apply except in this case all the ai also change sign. From
now on, a will be referred to as a vector instead of an element of Rn representing a vector
as just described. The following picture illustrates the effect of scalar multiplication.

£
££±

v £
£
£
££±

2v £
£

£
££°

−2v

Note there are n special vectors which point along the coordinate axes. These are

ei ≡ (0, · · · , 0, 1, 0, · · · , 0)

where the 1 is in the ith slot and there are zeros in all the other spaces. See the picture in
the case of R3.

-
ye2
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z

e3

¡¡ª

x

e1

¡
¡
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¡
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¡

¡

The direction of ei is referred to as the ith direction. Given a vector, v = (a1, · · · , an) ,
aiei is the ith component of the vector. Thus aiei = (0, · · · , 0, ai, 0, · · · , 0) and so this
vector gives something possibly nonzero only in the ith direction. Also, knowledge of the ith

component of the vector is equivalent to knowledge of the vector because it gives the entry
in the ith slot and for v = (a1, · · · , an) ,

v =
n∑

k=1

aiei.

What does addition of vectors mean physically? Suppose two forces are applied to some
object. Each of these would be represented by a force vector and the two forces acting
together would yield an overall force acting on the object which would also be a force vector
known as the resultant. Suppose the two vectors are a =

∑n
k=1 aiei and b =

∑n
k=1 biei.

Then the vector, a involves a component in the ith direction, aiei while the component in
the ith direction of b is biei. Then it seems physically reasonable that the resultant vector
should have a component in the ith direction equal to (ai + bi) ei. This is exactly what is
obtained when the vectors, a and b are added.

a + b = (a1 + b1, · · · , an + bn) .

=
n∑

i=1

(ai + bi) ei.

Thus the addition of vectors according to the rules of addition in Rn which were presented
earlier, yields the appropriate vector which duplicates the cumulative effect of all the vectors
in the sum.
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What is the geometric significance of vector addition? Suppose u,v are vectors,

u =(u1, · · · , un) ,v =(v1, · · · , vn)

Then u + v =(u1 + v1, · · · , un + vn) . How can one obtain this geometrically? Consider the
directed line segment,

−→
0u and then, starting at the end of this directed line segment, follow

the directed line segment
−−−−−−→
u (u + v) to its end, u + v. In other words, place the vector u in

standard position with its base at the origin and then slide the vector v till its base coincides
with the point of u. The point of this slid vector, determines u + v. To illustrate, see the
following picture
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u + v

Note the vector u + v is the diagonal of a parallelogram determined from the two vec-
tors u and v and that identifying u + v with the directed diagonal of the parallelogram
determined by the vectors u and v amounts to the same thing as the above procedure.

An item of notation should be mentioned here. In the case of Rn where n ≤ 3, it is
standard notation to use i for e1, j for e2, and k for e3. Now here are some applications of
vector addition to some problems.

Example 2.7.4 There are three ropes attached to a car and three people pull on these ropes.
The first exerts a force of 2i+3j−2k Newtons, the second exerts a force of 3i+5j + k Newtons
and the third exerts a force of 5i− j+2k. Newtons. Find the total force in the direction of
i.

To find the total force add the vectors as described above. This gives 10i+7j + k
Newtons. Therefore, the force in the i direction is 10 Newtons.

As mentioned earlier, the Newton is a unit of force like pounds.

Example 2.7.5 An airplane flies North East at 100 miles per hour. Write this as a vector.

A picture of this situation follows.

¡
¡

¡
¡

¡µ

The vector has length 100. Now using that vector as the hypotenuse of a right triangle
having equal sides, the sides should be each of length 100/

√
2. Therefore, the vector would

be 100/
√

2i + 100/
√

2j.
This example also motivates the concept of velocity.
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Definition 2.7.6 The speed of an object is a measure of how fast it is going. It is measured
in units of length per unit time. For example, miles per hour, kilometers per minute, feet
per second. The velocity is a vector having the speed as the magnitude but also specifying
the direction.

Thus the velocity vector in the above example is 100/
√

2i + 100/
√

2j.

Example 2.7.7 The velocity of an airplane is 100i+ j+k measured in kilometers per hour
and at a certain instant of time its position is (1, 2, 1) . Here imagine a Cartesian coordinate
system in which the third component is altitude and the first and second components are
measured on a line from West to East and a line from South to North. Find the position of
this airplane one minute later.

Consider the vector (1, 2, 1) , is the initial position vector of the airplane. As it moves,
the position vector changes. After one minute the airplane has moved in the i direction a
distance of 100× 1

60 = 5
3 kilometer. In the j direction it has moved 1

60 kilometer during this
same time, while it moves 1

60 kilometer in the k direction. Therefore, the new displacement
vector for the airplane is

(1, 2, 1) +
(

5
3
,

1
60

,
1
60

)
=

(
8
3
,
121
60

,
121
60

)

Example 2.7.8 A certain river is one half mile wide with a current flowing at 4 miles per
hour from East to West. A man swims directly toward the opposite shore from the South
bank of the river at a speed of 3 miles per hour. How far down the river does he find himself
when he has swam across? How far does he end up swimming?

Consider the following picture.

¾ 4

6

3

You should write these vectors in terms of components. The velocity of the swimmer in
still water would be 3j while the velocity of the river would be −4i. Therefore, the velocity
of the swimmer is −4i+3j. Since the component of velocity in the direction across the river
is 3, it follows the trip takes 1/6 hour or 10 minutes. The speed at which he travels is√

42 + 32 = 5 miles per hour and so he travels 5 × 1
6 = 5

6 miles. Now to find the distance
downstream he finds himself, note that if x is this distance, x and 1/2 are two legs of a
right triangle whose hypotenuse equals 5/6 miles. Therefore, by the Pythagorean theorem
the distance downstream is

√
(5/6)2 − (1/2)2 =

2
3

miles.

2.8 Exercises

1. The wind blows from West to East at a speed of 50 kilometers per hour and an airplane
which travels at 300 Kilometers per hour in still air is heading North West. What is
the velocity of the airplane relative to the ground? What is the component of this
velocity in the direction North?
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2. In the situation of Problem 1 how many degrees to the West of North should the
airplane head in order to fly exactly North. What will be the speed of the airplane
relative to the ground?

3. In the situation of 2 suppose the airplane uses 34 gallons of fuel every hour at that air
speed and that it needs to fly North a distance of 600 miles. Will the airplane have
enough fuel to arrive at its destination given that it has 63 gallons of fuel?

4. An airplane is flying due north at 150 miles per hour. A wind is pushing the airplane
due east at 40 miles per hour. After 1 hour, the plane starts flying 30◦ East of North.
Assuming the plane starts at (0, 0) , where is it after 2 hours? Let North be the
direction of the positive y axis and let East be the direction of the positive x axis.

5. City A is located at the origin while city B is located at (100, 200) where distances
are in miles. An airplane flies at 300 miles per hour in still air. This airplane wants
to fly from city A to city B but the wind is blowing in the direction of the positive y
axis at a speed of 20 miles per hour. Find a unit vector such that if the plane heads
in this direction, it will end up at city B having flown the shortest possible distance.
How long will it take to get there?

6. A certain river is one half mile wide with a current flowing at 2 miles per hour from
East to West. A man swims directly toward the opposite shore from the South bank
of the river at a speed of 3 miles per hour. How far down the river does he find himself
when he has swam across? How far does he end up swimming?

7. A certain river is one half mile wide with a current flowing at 2 miles per hour from
East to West. A man can swim at 3 miles per hour in still water. In what direction
should he swim in order to travel directly across the river? What would the answer to
this problem be if the river flowed at 3 miles per hour and the man could swim only
at the rate of 2 miles per hour?

8. Three forces are applied to a point which does not move. Two of the forces are
2i + j + 3k Newtons and i− 3j + 2k Newtons. Find the third force.

9. The total force acting on an object is to be 2i + j + k Newtons. A force of −i + j + k
Newtons is being applied. What other force should be applied to achieve the desired
total force?

10. A bird flies from its nest 5 km. in the direction 60◦ north of east where it stops to
rest on a tree. It then flies 10 km. in the direction due southeast and lands atop a
telephone pole. Place an xy coordinate system so that the origin is the bird’s nest,
and the positive x axis points east and the positive y axis points north. Find the
displacement vector from the nest to the telephone pole.

11. A car is stuck in the mud. There is a cable stretched tightly from this car to a tree
which is 20 feet long. A person grasps the cable in the middle and pulls with a force
of 100 pounds perpendicular to the stretched cable. The center of the cable moves
two feet and remains still. What is the tension in the cable? The tension in the cable
is the force exerted on this point by the part of the cable nearer the car as well as the
force exerted on this point by the part of the cable nearer the tree.
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2.9 Exercises With Answers

1. The wind blows from West to East at a speed of 30 kilometers per hour and an airplane
which travels at 300 Kilometers per hour in still air is heading North West. What is
the velocity of the airplane relative to the ground? What is the component of this
velocity in the direction North?

Let the positive y axis point in the direction North and let the positive x axis point in
the direction East. The velocity of the wind is 30i. The plane moves in the direction
i + j. A unit vector in this direction is 1√

2
(i + j) . Therefore, the velocity of the plane

relative to the ground is 30i+ 300√
2

(i + j) = 150
√

2j +
(
30 + 150

√
2
)
i. The component

of velocity in the direction North is 150
√

2.

2. In the situation of Problem 1 how many degrees to the West of North should the
airplane head in order to fly exactly North. What will be the speed of the airplane
relative to the ground?

In this case the unit vector will be − sin (θ) i + cos (θ) j. Therefore, the velocity of the
plane will be

300 (− sin (θ) i + cos (θ) j)

and this is supposed to satisfy

300 (− sin (θ) i + cos (θ) j) + 30i = 0i+?j.

Therefore, you need to have sin θ = 1/10, which means θ = . 100 17 radians. Therefore,
the degrees should be .1×180

π = 5. 729 6 degrees. In this case the velocity vector of the

plane relative to the ground is 300
(√

99
10

)
j.

3. In the situation of 2 suppose the airplane uses 34 gallons of fuel every hour at that air
speed and that it needs to fly North a distance of 600 miles. Will the airplane have
enough fuel to arrive at its destination given that it has 63 gallons of fuel?

The airplane needs to fly 600 miles at a speed of 300
(√

99
10

)
. Therefore, it takes

600(
300

(√
99

10

)) = 2. 010 1 hours to get there. Therefore, the plane will need to use about

68 gallons of gas. It won’t make it.

4. A certain river is one half mile wide with a current flowing at 3 miles per hour from
East to West. A man swims directly toward the opposite shore from the South bank
of the river at a speed of 2 miles per hour. How far down the river does he find himself
when he has swam across? How far does he end up swimming?

The velocity of the man relative to the earth is then −3i + 2j. Since the component
of j equals 2 it follows he takes 1/8 of an hour to get across. During this time he is
swept downstream at the rate of 3 miles per hour and so he ends up 3/8 of a mile

down stream. He has gone
√(

3
8

)2 +
(

1
2

)2 = . 625 miles in all.

5. Three forces are applied to a point which does not move. Two of the forces are
2i− j + 3k Newtons and i− 3j− 2k Newtons. Find the third force.

Call it ai + bj + ck Then you need a + 2 + 1 = 0, b − 1 − 3 = 0, and c + 3 − 2 = 0.
Therefore, the force is −3i + 4j− k.
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Systems Of Equations

3.0.1 Outcomes

A. Relate the types of solution sets of a system of two or three variables to the intersections
of lines in a plane or the intersection of planes in three space.

B. Determine whether a system of linear equations has no solution, a unique solution or
an infinite number of solutions from its echelon form.

C. Solve a system of equations using Gauss elimination.

D. Model a physical system with linear equations and then solve.

3.1 Systems Of Equations, Geometric Interpretations

As you know, equations like 2x + 3y = 6 can be graphed as straight lines in R2. To find
the solution to two such equations, you could graph the two straight lines and the ordered
pairs identifying the point (or points) of intersection would give the x and y values of the
solution to the two equations because such an ordered pair satisfies both equations. The
following picture illustrates what can occur with two equations involving two variables.
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In the first example of the above picture, there is a unique point of intersection. In the
second, there are no points of intersection. The other thing which can occur is that the
two lines are really the same line. For example, x + y = 1 and 2x + 2y = 2 are relations
which when graphed yield the same line. In this case there are infinitely many points in the
simultaneous solution of these two equations, every ordered pair which is on the graph of
the line. It is always this way when considering linear systems of equations. There is either
no solution, exactly one or infinitely many although the reasons for this are not completely
comprehended by considering a simple picture in two dimensions, R2.

Example 3.1.1 Find the solution to the system x + y = 3, y − x = 5.

27
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You can verify the solution is (x, y) = (−1, 4) . You can see this geometrically by graphing
the equations of the two lines. If you do so correctly, you should obtain a graph which looks
something like the following in which the point of intersection represents the solution of the
two equations.
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(x, y) = (−1, 4) - r

Example 3.1.2 You can also imagine other situations such as the case of three intersecting
lines having no common point of intersection or three intersecting lines which do intersect
at a single point as illustrated in the following picture.

¡
¡

¡
¡¡

@
@@

x

y

¡
¡

¡
¡¡

»»»»»»»»»

x

@
@

@@

@@

y

In the case of the first picture above, there would be no solution to the three equations
whose graphs are the given lines. In the case of the second picture there is a solution to the
three equations whose graphs are the given lines.

The points, (x, y, z) satisfying an equation in three variables like 2x + 4y − 5z = 8 form
a plane 1 and geometrically, when you solve systems of equations involving three variables,
you are taking intersections of planes. Consider the following picture involving two planes.
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1Don’t worry about why this is at this time. It is not important. The following discussion is intended
to show you that geometric considerations like this don’t take you anywhere. It is the algebraic procedures
which are important and lead to important applications.
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Notice how these two planes intersect in a line. It could also happen the two planes
could fail to intersect.

Now imagine a third plane. One thing that could happen is this third plane could have
an intersection with one of the first planes which results in a line which fails to intersect the
first line as illustrated in the following picture.
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New Plane

Thus there is no point which lies in all three planes. The picture illustrates the situation
in which the line of intersection of the new plane with one of the original planes forms a line
parallel to the line of intersection of the first two planes. However, in three dimensions, it
is possible for two lines to fail to intersect even though they are not parallel. Such lines are
called skew lines. You might consider whether there exist two skew lines, each of which
is the intersection of a pair of planes selected from a set of exactly three planes such that
there is no point of intersection between the three planes. You can also see that if you tilt
one of the planes you could obtain every pair of planes having a nonempty intersection in a
line and yet there may be no point in the intersection of all three.

It could happen also that the three planes could intersect in a single point as shown in
the following picture.
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In this case, the three planes have a single point of intersection. The three planes could
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also intersect in a line.
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Thus in the case of three equations having three variables, the planes determined by
these equations could intersect in a single point, a line, or even fail to intersect at all. You
see that in three dimensions there are many possibilities. If you want to waste some time,
you can try to imagine all the things which could happen but this will not help for more
variables than 3 which is where many of the important applications lie.

Relations like x + y − 2z + 4w = 8 are often called hyper-planes.2 However, it is
impossible to draw pictures of such things.The only rational and useful way to deal with
this subject is through the use of algebra not art. Mathematics exists partly to free us from
having to always draw pictures in order to draw conclusions.

3.2 Systems Of Equations, Algebraic Procedures

3.2.1 Elementary Operations

Consider the following example.

Example 3.2.1 Find x and y such that

x + y = 7 and 2x− y = 8. (3.1)

The set of ordered pairs, (x, y) which solve both equations is called the solution set.

You can verify that (x, y) = (5, 2) is a solution to the above system. The interesting
question is this: If you were not given this information to verify, how could you determine
the solution? You can do this by using the following basic operations on the equations, none
of which change the set of solutions of the system of equations.

Definition 3.2.2 Elementary operations are those operations consisting of the follow-
ing.

1. Interchange the order in which the equations are listed.
2The evocative semi word, “hyper” conveys absolutely no meaning but is traditional usage which makes

the terminology sound more impressive than something like long wide flat thing.Later we will discuss some
terms which are not just evocative but yield real understanding.
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2. Multiply any equation by a nonzero number.

3. Replace any equation with itself added to a multiple of another equation.

Example 3.2.3 To illustrate the third of these operations on this particular system, con-
sider the following.

x + y = 7
2x− y = 8

The system has the same solution set as the system

x + y = 7
−3y = −6 .

To obtain the second system, take the second equation of the first system and add -2 times
the first equation to obtain

−3y = −6.

Now, this clearly shows that y = 2 and so it follows from the other equation that x + 2 = 7
and so x = 5.

Of course a linear system may involve many equations and many variables. The solution
set is still the collection of solutions to the equations. In every case, the above operations
of Definition 3.2.2 do not change the set of solutions to the system of linear equations.

Theorem 3.2.4 Suppose you have two equations, involving the variables, (x1, · · · , xn)

E1 = f1, E2 = f2 (3.2)

where E1 and E2 are expressions involving the variables and f1 and f2 are constants. (In
the above example there are only two variables, x and y and E1 = x+ y while E2 = 2x− y.)
Then the system E1 = f1, E2 = f2 has the same solution set as

E1 = f1, E2 + aE1 = f2 + af1. (3.3)

Also the system E1 = f1, E2 = f2 has the same solutions as the system, E2 = f2, E1 = f1.
The system E1 = f1, E2 = f2 has the same solution as the system E1 = f1, aE2 = af2

provided a 6= 0.

Proof: If (x1, · · · , xn) solves E1 = f1, E2 = f2 then it solves the first equation in
E1 = f1, E2+aE1 = f2+af1. Also, it satisfies aE1 = af1 and so, since it also solves E2 = f2

it must solve E2 + aE1 = f2 + af1. Therefore, if (x1, · · · , xn) solves E1 = f1, E2 = f2 it
must also solve E2 +aE1 = f2 +af1. On the other hand, if it solves the system E1 = f1 and
E2 + aE1 = f2 + af1, then aE1 = af1 and so you can subtract these equal quantities from
both sides of E2+aE1 = f2+af1 to obtain E2 = f2 showing that it satisfies E1 = f1, E2 = f2.

The second assertion of the theorem which says that the system E1 = f1, E2 = f2 has the
same solution as the system, E2 = f2, E1 = f1 is seen to be true because it involves nothing
more than listing the two equations in a different order. They are the same equations.

The third assertion of the theorem which says E1 = f1, E2 = f2 has the same solution
as the system E1 = f1, aE2 = af2 provided a 6= 0 is verified as follows: If (x1, · · · , xn) is a
solution of E1 = f1, E2 = f2, then it is a solution to E1 = f1, aE2 = af2 because the second
system only involves multiplying the equation, E2 = f2 by a. If (x1, · · · , xn) is a solution
of E1 = f1, aE2 = af2, then upon multiplying aE2 = af2 by the number, 1/a, you find that
E2 = f2.

Stated simply, the above theorem shows that the elementary operations do not change
the solution set of a system of equations.
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Here is an example in which there are three equations and three variables. You want to
find values for x, y, z such that each of the given equations are satisfied when these values
are plugged in to the equations.

Example 3.2.5 Find the solutions to the system,

x + 3y + 6z = 25
2x + 7y + 14z = 58

2y + 5z = 19
(3.4)

To solve this system replace the second equation by (−2) times the first equation added
to the second. This yields the system

x + 3y + 6z = 25
y + 2z = 8

2y + 5z = 19
(3.5)

Now take (−2) times the second and add to the third. More precisely, replace the third
equation with (−2) times the second added to the third. This yields the system

x + 3y + 6z = 25
y + 2z = 8

z = 3
(3.6)

At this point, you can tell what the solution is. This system has the same solution as the
original system and in the above, z = 3. Then using this in the second equation, it follows
y + 6 = 8 and so y = 2. Now using this in the top equation yields x + 6 + 18 = 25 and so
x = 1. This process is called back substitution.

Alternatively, in 3.6 you could have continued as follows. Add (−2) times the bottom
equation to the middle and then add (−6) times the bottom to the top. This yields

x + 3y = 7
y = 2
z = 3

Now add (−3) times the second to the top. This yields

x = 1
y = 2
z = 3

,

a system which has the same solution set as the original system. This avoided back substi-
tution and led to the same solution set.

3.2.2 Gauss Elimination

A less cumbersome way to represent a linear system is to write it as an augmented matrix.
For example the linear system, 3.4 can be written as




1 3 6 | 25
2 7 14 | 58
0 2 5 | 19


 .

It has exactly the same information as the original system but here it is understood there is

an x column,




1
2
0


 , a y column,




3
7
2


 and a z column,




6
14
5


 . The rows correspond
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to the equations in the system. Thus the top row in the augmented matrix corresponds to
the equation,

x + 3y + 6z = 25.

Now when you replace an equation with a multiple of another equation added to itself, you
are just taking a row of this augmented matrix and replacing it with a multiple of another
row added to it. Thus the first step in solving 3.4 would be to take (−2) times the first row
of the augmented matrix above and add it to the second row,




1 3 6 | 25
0 1 2 | 8
0 2 5 | 19


 .

Note how this corresponds to 3.5. Next take (−2) times the second row and add to the
third, 


1 3 6 | 25
0 1 2 | 8
0 0 1 | 3




This augmented matrix corresponds to the system

x + 3y + 6z = 25
y + 2z = 8

z = 3

which is the same as 3.6. By back substitution you obtain the solution x = 1, y = 6, and
z = 3.

In general a linear system is of the form

a11x1 + · · ·+ a1nxn = b1

...
am1x1 + · · ·+ amnxn = bm

, (3.7)

where the xi are variables and the aij and bi are constants. This system can be represented
by the augmented matrix,




a11 · · · a1n | b1

...
... | ...

am1 · · · amn | bm


 . (3.8)

Changes to the system of equations in 3.7 as a result of an elementary operations translate
into changes of the augmented matrix resulting from a row operation. Note that Theorem
3.2.4 implies that the row operations deliver an augmented matrix for a system of equations
which has the same solution set as the original system.

Definition 3.2.6 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

Gauss elimination is a systematic procedure to simplify an augmented matrix to a
reduced form. In the following definition, the term “leading entry” refers to the first
nonzero entry of a row when scanning the row from left to right.
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Definition 3.2.7 An augmented matrix is in echelon form if

1. All nonzero rows are above any rows of zeros.

2. Each leading entry of a row is in a column to the right of the leading entries of any
rows above it.

Definition 3.2.8 An augmented matrix is in row reduced echelon form if

1. All nonzero rows are above any rows of zeros.

2. Each leading entry of a row is in a column to the right of the leading entries of any
rows above it.

3. All entries in a column above and below a leading entry are zero.

4. Each leading entry is a 1, the only nonzero entry in its column.

Example 3.2.9 Here are some augmented matrices which are in row reduced echelon form.




1 0 0 5 8 | 0
0 0 1 2 7 | 0
0 0 0 0 0 | 1
0 0 0 0 0 | 0


 ,




1 0 0 | 0
0 1 0 | 0
0 0 1 | 0
0 0 0 | 1
0 0 0 | 0




.

Example 3.2.10 Here are augmented matrices in echelon form which are not in row re-
duced echelon form but which are in echelon form.




1 0 6 5 8 | 2
0 0 2 2 7 | 3
0 0 0 0 0 | 1
0 0 0 0 0 | 0


 ,




1 3 5 | 4
0 2 0 | 7
0 0 3 | 0
0 0 0 | 1
0 0 0 | 0




Example 3.2.11 Here are some augmented matrices which are not in echelon form.



0 0 0 | 0
1 2 3 | 3
0 1 0 | 2
0 0 0 | 1
0 0 0 | 0




,




1 2 | 3
2 4 | −6
4 0 | 7


 ,




0 2 3 | 3
1 5 0 | 2
7 5 0 | 1
0 0 1 | 0


 .

Definition 3.2.12 A pivot position in a matrix is the location of a leading entry in an
echelon form resulting from the application of row operations to the matrix. A pivot column
is a column that contains a pivot position.

For example consider the following.

Example 3.2.13 Suppose

A =




1 2 3 | 4
3 2 1 | 6
4 4 4 | 10




Where are the pivot positions and pivot columns?
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Replace the second row by −3 times the first added to the second. This yields



1 2 3 | 4
0 −4 −8 | −6
4 4 4 | 10


 .

This is not in reduced echelon form so replace the bottom row by −4 times the top row
added to the bottom. This yields




1 2 3 | 4
0 −4 −8 | −6
0 −4 −8 | −6


 .

This is still not in reduced echelon form. Replace the bottom row by −1 times the middle
row added to the bottom. This yields




1 2 3 | 4
0 −4 −8 | −6
0 0 0 | 0




which is in echelon form, although not in reduced echelon form. Therefore, the pivot posi-
tions in the original matrix are the locations corresponding to the first row and first column
and the second row and second columns as shown in the following:




1 2 3 | 4
3 2 1 | 6
4 4 4 | 10




Thus the pivot columns in the matrix are the first two columns.
The following is the algorithm for obtaining a matrix which is in row reduced echelon

form.

Algorithm 3.2.14

This algorithm tells how to start with a matrix and do row operations on it in such a
way as to end up with a matrix in row reduced echelon form.

1. Find the first nonzero column from the left. This is the first pivot column. The
position at the top of the first pivot column is the first pivot position. Switch rows if
necessary to place a nonzero number in the first pivot position.

2. Use row operations to zero out the entries below the first pivot position.

3. Ignore the row containing the most recent pivot position identified and the rows above
it. Repeat steps 1 and 2 to the remaining sub-matrix, the rectangular array of numbers
obtained from the original matrix by deleting the rows you just ignored. Repeat the
process until there are no more rows to modify. The matrix will then be in echelon
form.

4. Moving from right to left, use the nonzero elements in the pivot positions to zero out
the elements in the pivot columns which are above the pivots.

5. Divide each nonzero row by the value of the leading entry. The result will be a matrix
in row reduced echelon form.
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This row reduction procedure applies to both augmented matrices and non augmented
matrices. There is nothing special about the augmented column with respect to the row
reduction procedure.

Example 3.2.15 Here is a matrix.



0 0 2 3 2
0 1 1 4 3
0 0 1 2 2
0 0 0 0 0
0 0 0 2 1




Do row reductions till you obtain a matrix in echelon form. Then complete the process by
producing one in reduced echelon form.

The pivot column is the second. Hence the pivot position is the one in the first row and
second column. Switch the first two rows to obtain a nonzero entry in this pivot position.




0 1 1 4 3
0 0 2 3 2
0 0 1 2 2
0 0 0 0 0
0 0 0 2 1




Step two is not necessary because all the entries below the first pivot position in the resulting
matrix are zero. Now ignore the top row and the columns to the left of this first pivot
position. Thus you apply the same operations to the smaller matrix,




2 3 2
1 2 2
0 0 0
0 2 1


 .

The next pivot column is the third corresponding to the first in this smaller matrix and the
second pivot position is therefore, the one which is in the second row and third column. In
this case it is not necessary to switch any rows to place a nonzero entry in this position
because there is already a nonzero entry there. Multiply the third row of the original matrix
by −2 and then add the second row to it. This yields




0 1 1 4 3
0 0 2 3 2
0 0 0 −1 −2
0 0 0 0 0
0 0 0 2 1




.

The next matrix the steps in the algorithm are applied to is


−1 −2
0 0
2 1


 .

The first pivot column is the first column in this case and no switching of rows is necessary
because there is a nonzero entry in the first pivot position. Therefore, the algorithm yields
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for the next step 


0 1 1 4 3
0 0 2 3 2
0 0 0 −1 −2
0 0 0 0 0
0 0 0 0 −3




.

Now the algorithm will be applied to the matrix,
(

0
−3

)

There is only one column and it is nonzero so this single column is the pivot column.
Therefore, the algorithm yields the following matrix for the echelon form.




0 1 1 4 3
0 0 2 3 2
0 0 0 −1 −2
0 0 0 0 −3
0 0 0 0 0




.

To complete placing the matrix in reduced echelon form, multiply the third row by 3 and
add −2 times the fourth row to it. This yields




0 1 1 4 3
0 0 2 3 2
0 0 0 −3 0
0 0 0 0 −3
0 0 0 0 0




Next multiply the second row by 3 and take 2 times the fourth row and add to it. Then
add the fourth row to the first.




0 1 1 4 0
0 0 6 9 0
0 0 0 −3 0
0 0 0 0 −3
0 0 0 0 0




.

Next work on the fourth column in the same way.



0 3 3 0 0
0 0 6 0 0
0 0 0 −3 0
0 0 0 0 −3
0 0 0 0 0




Take −1/2 times the second row and add to the first.



0 3 0 0 0
0 0 6 0 0
0 0 0 −3 0
0 0 0 0 −3
0 0 0 0 0




.
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Finally, divide by the value of the leading entries in the nonzero rows.



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




.

The above algorithm is the way a computer would obtain a reduced echelon form for a
given matrix. It is not necessary for you to pretend you are a computer but if you like to do
so, the algorithm described above will work. The main idea is to do row operations in such
a way as to end up with a matrix in echelon form or row reduced echelon form because when
this has been done, the resulting augmented matrix will allow you to describe the solutions
to the linear system of equations in a meaningful way.

Example 3.2.16 Give the complete solution to the system of equations, 5x+10y−7z = −2,
2x + 4y − 3z = −1, and 3x + 6y + 5z = 9.

The augmented matrix for this system is



2 4 −3 | −1
5 10 −7 | −2
3 6 5 | 9




Multiply the second row by 2, the first row by 5, and then take (−1) times the first row and
add to the second. Then multiply the first row by 1/5. This yields




2 4 −3 | −1
0 0 1 | 1
3 6 5 | 9




Now, combining some row operations, take (−3) times the first row and add this to 2 times
the last row and replace the last row with this. This yields.




2 4 −3 | −1
0 0 1 | 1
0 0 1 | 21


 .

One more row operation, taking (−1) times the second row and adding to the bottom yields.



2 4 −3 | −1
0 0 1 | 1
0 0 0 | 20


 .

This is impossible because the last row indicates the need for a solution to the equation

0x + 0y + 0z = 20

and there is no such thing because 0 6= 20. This shows there is no solution to the three given
equations. When this happens, the system is called inconsistent. In this case it is very
easy to describe the solution set. The system has no solution.

Here is another example based on the use of row operations.

Example 3.2.17 Give the complete solution to the system of equations, 3x − y − 5z = 9,
y − 10z = 0, and −2x + y = −6.
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The augmented matrix of this system is



3 −1 −5 | 9
0 1 −10 | 0
−2 1 0 | −6




Replace the last row with 2 times the top row added to 3 times the bottom row. This gives



3 −1 −5 | 9
0 1 −10 | 0
0 1 −10 | 0


 .

The entry, 3 in this sequence of row operations is called the pivot. It is used to create
zeros in the other places of the column. Next take −1 times the middle row and add to the
bottom. Here the 1 in the second row is the pivot.




3 −1 −5 | 9
0 1 −10 | 0
0 0 0 | 0




Take the middle row and add to the top and then divide the top row which results by 3.



1 0 −5 | 3
0 1 −10 | 0
0 0 0 | 0


 .

This is in reduced echelon form. The equations corresponding to this reduced echelon form
are y = 10z and x = 3 + 5z. Apparently z can equal any number. Lets call this number,
t. 3Therefore, the solution set of this system is x = 3 + 5t, y = 10t, and z = t where t
is completely arbitrary. The system has an infinite set of solutions which are given in the
above simple way. This is what it is all about, finding the solutions to the system.

There is some terminology connected to this which is useful. Recall how each column
corresponds to a variable in the original system of equations. The variables corresponding to
a pivot column are called basic variables . The other variables are called free variables.
In Example 3.2.17 there was one free variable, z, and two basic variables, x and y. In de-
scribing the solution to the system of equations, the free variables are assigned a parameter.
In Example 3.2.17 this parameter was t. Sometimes there are many free variables and in
these cases, you need to use many parameters. Here is another example.

Example 3.2.18 Find the solution to the system

x + 2y − z + w = 3
x + y − z + w = 1
x + 3y − z + w = 5

The augmented matrix is



1 2 −1 1 | 3
1 1 −1 1 | 1
1 3 −1 1 | 5


 .

Take −1 times the first row and add to the second. Then take −1 times the first row and
add to the third. This yields




1 2 −1 1 | 3
0 −1 0 0 | −2
0 1 0 0 | 2




3In this context t is called a parameter.
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Now add the second row to the bottom row



1 2 −1 1 | 3
0 −1 0 0 | −2
0 0 0 0 | 0


 (3.9)

This matrix is in echelon form and you see the basic variables are x and y while the free
variables are z and w. Assign s to z and t to w. Then the second row yields the equation,
y = 2 while the top equation yields the equation, x + 2y− s + t = 3 and so since y = 2, this
gives x + 4− s + t = 3 showing that x = −1 + s− t, y = 2, z = s, and w = t. It is customary
to write this in the form 



x
y
z
w


 =




−1 + s− t
2
s
t


 . (3.10)

This is another example of a system which has an infinite solution set but this time
the solution set depends on two parameters, not one. Most people find it less confusing
in the case of an infinite solution set to first place the augmented matrix in row reduced
echelon form rather than just echelon form before seeking to write down the description of
the solution. In the above, this means we don’t stop with the echelon form 3.9. Instead we
first place it in reduced echelon form as follows.




1 0 −1 1 | −1
0 1 0 0 | 2
0 0 0 0 | 0


 .

Then the solution is y = 2 from the second row and x = −1 + z − w from the first. Thus
letting z = s and w = t, the solution is given in 3.10.

The number of free variables is always equal to the number of different parameters
used to describe the solution. If there are no free variables, then either there is no solution
as in the case where row operations yield an echelon form like




1 2 | 3
0 4 | −2
0 0 | 1




or there is a unique solution as in the case where row operations yield an echelon form like



1 2 2 | 3
0 4 3 | −2
0 0 4 | 1


 .

Also, sometimes there are free variables and no solution as in the following:



1 2 2 | 3
0 4 3 | −2
0 0 0 | 1


 .

There are a lot of cases to consider but it is not necessary to make a major production of
this. Do row operations till you obtain a matrix in echelon form or reduced echelon form
and determine whether there is a solution. If there is, see if there are free variables. In this
case, there will be infinitely many solutions. Find them by assigning different parameters
to the free variables and obtain the solution. If there are no free variables, then there will
be a unique solution which is easily determined once the augmented matrix is in echelon
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or row reduced echelon form. In every case, the process yields a straightforward way to
describe the solutions to the linear system. As indicated above, you are probably less likely
to become confused if you place the augmented matrix in row reduced echelon form rather
than just echelon form.

In summary,

Definition 3.2.19 A system of linear equations is a list of equations,

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

where aij are numbers, and bj is a number. The above is a system of m equations in the n
variables, x1, x2 · · · , xn. Nothing is said about the relative size of m and n. Written more
simply in terms of summation notation, the above can be written in the form

n∑

j=1

aijxj = fj , i = 1, 2, 3, · · · ,m

It is desired to find (x1, · · · , xn) solving each of the equations listed.

As illustrated above, such a system of linear equations may have a unique solution, no
solution, or infinitely many solutions and these are the only three cases which can occur for
any linear system. Furthermore, you do exactly the same things to solve any linear system.
You write the augmented matrix and do row operations until you get a simpler system in
which it is possible to see the solution, usually obtaining a matrix in echelon or reduced
echelon form. All is based on the observation that the row operations do not change the
solution set. You can have more equations than variables, fewer equations than variables,
etc. It doesn’t matter. You always set up the augmented matrix and go to work on it.

Definition 3.2.20 A system of linear equations is called consistent if there exists a solu-
tion. It is called inconsistent if there is no solution.

These are reasonable words to describe the situations of having or not having a solu-
tion. If you think of each equation as a condition which must be satisfied by the variables,
consistent would mean there is some choice of variables which can satisfy all the conditions.
Inconsistent would mean there is no choice of the variables which can satisfy each of the
conditions.

3.3 Exercises

1. Find the point, (x1, y1) which lies on both lines, x + 3y = 1 and 4x− y = 3.

2. Solve Problem 1 graphically. That is, graph each line and see where they intersect.

3. Find the point of intersection of the two lines 3x + y = 3 and x + 2y = 1.

4. Solve Problem 3 graphically. That is, graph each line and see where they intersect.

5. Do the three lines, x + 2y = 1, 2x − y = 1, and 4x + 3y = 3 have a common point of
intersection? If so, find the point and if not, tell why they don’t have such a common
point of intersection.
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6. Do the three planes, x + y − 3z = 2, 2x + y + z = 1, and 3x + 2y − 2z = 0 have
a common point of intersection? If so, find one and if not, tell why there is no such
point.

7. You have a system of k equations in two variables, k ≥ 2. Explain the geometric
significance of

(a) No solution.

(b) A unique solution.

(c) An infinite number of solutions.

8. Here is an augmented matrix in which ∗ denotes an arbitrary number and ¥ denotes
a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?




¥ ∗ ∗ ∗ ∗ | ∗
0 ¥ ∗ ∗ 0 | ∗
0 0 ¥ ∗ ∗ | ∗
0 0 0 0 ¥ | ∗




9. Here is an augmented matrix in which ∗ denotes an arbitrary number and ¥ denotes
a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?




¥ ∗ ∗ | ∗
0 ¥ ∗ | ∗
0 0 ¥ | ∗




10. Here is an augmented matrix in which ∗ denotes an arbitrary number and ¥ denotes
a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?




¥ ∗ ∗ ∗ ∗ | ∗
0 ¥ 0 ∗ 0 | ∗
0 0 0 ¥ ∗ | ∗
0 0 0 0 ¥ | ∗




11. Here is an augmented matrix in which ∗ denotes an arbitrary number and ¥ denotes
a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?




¥ ∗ ∗ ∗ ∗ | ∗
0 ¥ ∗ ∗ 0 | ∗
0 0 0 0 ¥ | 0
0 0 0 0 ∗ | ¥




12. Suppose a system of equations has fewer equations than variables. Must such a system
be consistent? If so, explain why and if not, give an example which is not consistent.

13. If a system of equations has more equations than variables, can it have a solution? If
so, give an example and if not, tell why not.
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14. Find h such that (
2 h | 4
3 6 | 7

)

is the augmented matrix of an inconsistent matrix.

15. Find h such that (
1 h | 3
2 4 | 6

)

is the augmented matrix of a consistent matrix.

16. Find h such that (
1 1 | 4
3 h | 12

)

is the augmented matrix of a consistent matrix.

17. Choose h and k such that the augmented matrix shown has one solution. Then choose
h and k such that the system has no solutions. Finally, choose h and k such that the
system has infinitely many solutions.

(
1 h | 2
2 4 | k

)
.

18. Choose h and k such that the augmented matrix shown has one solution. Then choose
h and k such that the system has no solutions. Finally, choose h and k such that the
system has infinitely many solutions.

(
1 2 | 2
2 h | k

)
.

19. Determine if the system is consistent. If so, is the solution unique?

x + 2y + z − w = 2
x− y + z + w = 1

2x + y − z = 1
4x + 2y + z = 5

20. Determine if the system is consistent. If so, is the solution unique?

x + 2y + z − w = 2
x− y + z + w = 0

2x + y − z = 1
4x + 2y + z = 3

21. Find the general solution of the system whose augmented matrix is



1 2 0 | 2
1 3 4 | 2
1 0 2 | 1


 .

22. Find the general solution of the system whose augmented matrix is



1 2 0 | 2
2 0 1 | 1
3 2 1 | 3


 .
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23. Find the general solution of the system whose augmented matrix is
(

1 1 0 | 1
1 0 4 | 2

)
.

24. Find the general solution of the system whose augmented matrix is



1 0 2 1 1 | 2
0 1 0 1 2 | 1
1 2 0 0 1 | 3
1 0 1 0 2 | 2


 .

25. Find the general solution of the system whose augmented matrix is



1 0 2 1 1 | 2
0 1 0 1 2 | 1
0 2 0 0 1 | 3
1 −1 2 2 2 | 0


 .

26. Give the complete solution to the system of equations, 7x+14y +15z = 22, 2x+4y +
3z = 5, and 3x + 6y + 10z = 13.

27. Give the complete solution to the system of equations, 3x − y + 4z = 6, y + 8z = 0,
and −2x + y = −4.

28. Give the complete solution to the system of equations, 9x−2y +4z = −17, 13x−3y +
6z = −25, and −2x− z = 3.

29. Give the complete solution to the system of equations, 65x + 84y + 16z = 546, 81x +
105y + 20z = 682, and 84x + 110y + 21z = 713.

30. Give the complete solution to the system of equations, 8x+2y+3z = −3, 8x+3y+3z =
−1, and 4x + y + 3z = −9.

31. Give the complete solution to the system of equations, −8x + 2y + 5z = 18,−8x +
3y + 5z = 13, and −4x + y + 5z = 19.

32. Give the complete solution to the system of equations, 3x − y − 2z = 3, y − 4z = 0,
and −2x + y = −2.

33. Give the complete solution to the system of equations, −9x+15y = 66,−11x+18y = 79
,−x + y = 4, and z = 3.

34. Give the complete solution to the system of equations, −19x+8y = −108,−71x+30y =
−404, −2x + y = −12, 4x + z = 14.

35. Consider the system −5x + 2y − z = 0 and −5x − 2y − z = 0. Both equations equal
zero and so −5x + 2y − z = −5x − 2y − z which is equivalent to y = 0. Thus x and
z can equal anything. But when x = 1, z = −4, and y = 0 are plugged in to the
equations, it doesn’t work. Why?

36. Four times the weight of Gaston is 150 pounds more than the weight of Ichabod.
Four times the weight of Ichabod is 660 pounds less than seventeen times the weight
of Gaston. Four times the weight of Gaston plus the weight of Siegfried equals 290
pounds. Brunhilde would balance all three of the others. Find the weights of the four
people.
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37. The steady state temperature, u in a plate solves Laplace’s equation, ∆u = 0. One
way to approximate the solution which is often used is to divide the plate into a square
mesh and require the temperature at each node to equal the average of the temperature
at the four adjacent nodes. This procedure is justified by the mean value property
of harmonic functions. In the following picture, the numbers represent the observed
temperature at the indicated nodes. Your task is to find the temperature at the interior
nodes, indicated by x, y, z, and w. One of the equations is z = 1

4 (10 + 0 + w + x).
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Matrices

4.0.1 Outcomes

A. Perform the basic matrix operations of matrix addition, scalar multiplication, trans-
position and matrix multiplication. Identify when these operations are not defined.
Represent the basic operations in terms of double subscript notation.

B. Recall and prove algebraic properties for matrix addition, scalar multiplication, trans-
position, and matrix multiplication. Apply these properties to manipulate an algebraic
expression involving matrices.

C. Recall the cancelation laws for matrix multiplication. Demonstrate when cancelation
laws do not apply.

D. Evaluate the inverse of a matrix using row operations.

E. Solve a linear system using matrix algebra.

F. Recall and prove identities involving matrix inverses.

4.1 Matrix Arithmetic

4.1.1 Addition And Scalar Multiplication Of Matrices

You have now solved systems of equations by writing them in terms of an augmented matrix
and then doing row operations on this augmented matrix. It turns out such rectangular
arrays of numbers are important from many other different points of view. Numbers are
also called scalars. In these notes numbers will always be either real or complex numbers.
I will refer to the set of numbers as F sometimes when it is not important to worry about
whether the number is real or complex. Thus F can be either the real numbers, R or the
complex numbers, C.

A matrix is a rectangular array of numbers. Several of them are referred to as matrices.
For example, here is a matrix. 


1 2 3 4
5 2 8 7
6 −9 1 2




The size or dimension of a matrix is defined as m×n where m is the number of rows and n
is the number of columns. The above matrix is a 3× 4 matrix because there are three rows
and four columns. The first row is (1 2 3 4) , the second row is (5 2 8 7) and so forth. The

47
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first column is




1
5
6


 . When specifying the size of a matrix, you always list the number of

rows before the number of columns. Also, you can remember the columns are like columns
in a Greek temple. They stand upright while the rows just lay there like rows made by
a tractor in a plowed field. Elements of the matrix are identified according to position in
the matrix. For example, 8 is in position 2, 3 because it is in the second row and the third
column. You might remember that you always list the rows before the columns by using
the phrase Rowman Catholic. The symbol, (aij) refers to a matrix. The entry in the ith

row and the jth column of this matrix is denoted by aij . Using this notation on the above
matrix, a23 = 8, a32 = −9, a12 = 2, etc.

There are various operations which are done on matrices. Matrices can be added mul-
tiplied by a scalar, and multiplied by other matrices. To illustrate scalar multiplication,
consider the following example in which a matrix is being multiplied by the scalar, 3.

3




1 2 3 4
5 2 8 7
6 −9 1 2


 =




3 6 9 12
15 6 24 21
18 −27 3 6


 .

The new matrix is obtained by multiplying every entry of the original matrix by the given
scalar. If A is an m× n matrix, −A is defined to equal (−1)A.

Two matrices must be the same size to be added. The sum of two matrices is a matrix
which is obtained by adding the corresponding entries. Thus




1 2
3 4
5 2


 +



−1 4
2 8
6 −4


 =




0 6
5 12
11 −2


 .

Two matrices are equal exactly when they are the same size and the corresponding entries
are identical. Thus 


0 0
0 0
0 0


 6=

(
0 0
0 0

)

because they are different sizes. As noted above, you write (cij) for the matrix C whose
ijth entry is cij . In doing arithmetic with matrices you must define what happens in terms
of the cij sometimes called the entries of the matrix or the components of the matrix.

The above discussion stated for general matrices is given in the following definition.

Definition 4.1.1 (Scalar Multiplication) If A = (aij) and k is a scalar, then kA = (kaij) .

Example 4.1.2 7
(

2 0
1 −4

)
=

(
14 0
7 −28

)
.

Definition 4.1.3 (Addition) If A = (aij) and B = (bij) are two m × n matrices. Then
A + B = C where

C = (cij)

for cij = aij + bij .

Example 4.1.4
(

1 2 3
1 0 4

)
+

(
5 2 3
−6 2 1

)
=

(
6 4 6
−5 2 5

)
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To save on notation, we will often use Aij to refer to the ijth entry of the matrix, A.

Definition 4.1.5 (The zero matrix) The m × n zero matrix is the m × n matrix having
every entry equal to zero. It is denoted by 0.

Example 4.1.6 The 2× 3 zero matrix is
(

0 0 0
0 0 0

)
.

Note there are 2×3 zero matrices, 3×4 zero matrices, etc. In fact there is a zero matrix
for every size.

Definition 4.1.7 (Equality of matrices) Let A and B be two matrices. Then A = B means
that the two matrices are of the same size and for A = (aij) and B = (bij) , aij = bij for all
1 ≤ i ≤ m and 1 ≤ j ≤ n.

The following properties of matrices can be easily verified. You should do so.

• Commutative Law Of Addition.

A + B = B + A, (4.1)

• Associative Law for Addition.

(A + B) + C = A + (B + C) , (4.2)

• Existence of an Additive Identity

A + 0 = A, (4.3)

• Existence of an Additive Inverse

A + (−A) = 0, (4.4)

Also for α, β scalars, the following additional properties hold.

• Distributive law over Matrix Addition.

α (A + B) = αA + αB, (4.5)

• Distributive law over Scalar Addition

(α + β)A = αA + βA, (4.6)

• Associative law for Scalar Multiplication

α (βA) = αβ (A) , (4.7)

• Rule for Multiplication by 1.
1A = A. (4.8)

As an example, consider the Commutative Law of Addition. Let A + B = C and
B + A = D. Why is D = C?

Cij = Aij + Bij = Bij + Aij = Dij .

Therefore, C = D because the ijth entries are the same. Note that the conclusion follows
from the commutative law of addition of numbers.
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4.1.2 Multiplication Of Matrices

Definition 4.1.8 Matrices which are n×1 or 1×n are called vectors and are often denoted
by a bold letter. Thus the n× 1 matrix

x =




x1

...
xn




is also called a column vector. The 1× n matrix

(x1 · · ·xn)

is called a row vector.

Although the following description of matrix multiplication may seem strange, it is in
fact the most important and useful of the matrix operations. To begin with consider the
case where a matrix is multiplied by a column vector. First consider a special case.

(
1 2 3
4 5 6

) 


7
8
9


 =?

One way to remember this is as follows. Slide the vector, placing it on top the two rows as
shown and then do the indicated operation.




7
1

8
2

9
3

7
4

8
5

9
6


 →

(
7× 1 + 8× 2 + 9× 3
7× 4 + 8× 5 + 9× 6

)
=

(
50
122

)
.

multiply the numbers on the top by the numbers on the bottom and add them up to get a
single number for each row of the matrix as shown above.

In more general terms,

(
a11 a12 a13

a21 a22 a23

) 


x1

x2

x3


 =

(
a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

)
.

Another way to think of this is

x1

(
a11

a21

)
+ x2

(
a12

a22

)
+ x3

(
a13

a23

)

Thus you take x1 times the first column, add to x2 times the second column, and finally
x3 times the third column. In general, here is the definition of how to multiply an (m× n)
matrix times a (n× 1) matrix.

Definition 4.1.9 Let A = Aij be an m× n matrix and let v be an n× 1 matrix,

v =




v1

...
vn




Then Av is an m× 1 matrix and the ith component of this matrix is

(Av)i = Ai1v1 + Ai2v2 + · · ·+ Ainvn =
n∑

j=1

Aijvj .
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Thus

Av =




∑n
j=1 A1jvj

...∑n
j=1 Amjvj


 . (4.9)

In other words, if
A = (a1, · · · ,an)

where the ak are the columns,

Av =
n∑

k=1

vkak

This follows from 4.9 and the observation that the jth column of A is



A1j

A2j

...
Amj




so 4.9 reduces to

v1




A11

A21

...
Am1


 + v2




A12

A22

...
Am2


 + · · ·+ vn




A1n

A2n

...
Amn




Note also that multiplication by an m × n matrix takes an n × 1 matrix, and produces an
m× 1 matrix.

Here is another example.

Example 4.1.10 Compute




1 2 1 3
0 2 1 −2
2 1 4 1







1
2
0
1


 .

First of all this is of the form (3× 4) (4× 1) and so the result should be a (3× 1) . Note
how the inside numbers cancel. To get the element in the second row and first and only
column, compute

4∑

k=1

a2kvk = a21v1 + a22v2 + a23v3 + a24v4

= 0× 1 + 2× 2 + 1× 0 + (−2)× 1 = 2.

You should do the rest of the problem and verify




1 2 1 3
0 2 1 −2
2 1 4 1







1
2
0
1


 =




8
2
5


 .
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The next task is to multiply an m × n matrix times an n × p matrix. Before doing so,
the following may be helpful.

For A and B matrices, in order to form the product, AB the number of columns of A
must equal the number of rows of B.

(m×
these must match!

n̂) (n× p ) = m× p

Note the two outside numbers give the size of the product. Remember:

If the two middle numbers don’t match, you can’t multiply the matrices!

Definition 4.1.11 When the number of columns of A equals the number of rows of B the
two matrices are said to be conformable and the product, AB is obtained as follows. Let
A be an m× n matrix and let B be an n× p matrix. Then B is of the form

B = (b1, · · · ,bp)

where bk is an n × 1 matrix or column vector. Then the m × p matrix, AB is defined as
follows:

AB ≡ (Ab1, · · · , Abp) (4.10)

where Abk is an m× 1 matrix or column vector which gives the kth column of AB.

Example 4.1.12 Multiply the following.

(
1 2 1
0 2 1

) 


1 2 0
0 3 1
−2 1 1




The first thing you need to check before doing anything else is whether it is possible to
do the multiplication. The first matrix is a 2×3 and the second matrix is a 3×3. Therefore,
is it possible to multiply these matrices. According to the above discussion it should be a
2× 3 matrix of the form




First column︷ ︸︸ ︷
(

1 2 1
0 2 1

) 


1
0
−2


,

Second column︷ ︸︸ ︷
(

1 2 1
0 2 1

) 


2
3
1


,

Third column︷ ︸︸ ︷
(

1 2 1
0 2 1

) 


0
1
1







You know how to multiply a matrix times a vector and so you do so to obtain each of the
three columns. Thus

(
1 2 1
0 2 1

) 


1 2 0
0 3 1
−2 1 1


 =

( −1 9 3
−2 7 3

)
.

Example 4.1.13 Multiply the following.



1 2 0
0 3 1
−2 1 1




(
1 2 1
0 2 1

)
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First check if it is possible. This is of the form (3× 3) (2× 3) . The inside numbers do not
match and so you can’t do this multiplication. This means that anything you write will be
absolute nonsense because it is impossible to multiply these matrices in this order. Aren’t
they the same two matrices considered in the previous example? Yes they are. It is just
that here they are in a different order. This shows something you must always remember
about matrix multiplication.

Order Matters!

Matrix Multiplication Is Not Commutative!

This is very different than multiplication of numbers!

4.1.3 The ijth Entry Of A Product

It is important to describe matrix multiplication in terms of entries of the matrices. What
is the ijth entry of AB? It would be the ith entry of the jth column of AB. Thus it would
be the ith entry of Abj . Now

bj =




B1j

...
Bnj




and from the above definition, the ith entry is

n∑

k=1

AikBkj . (4.11)

In terms of pictures of the matrix, you are doing



A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn







B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

...
Bn1 Bn2 · · · Bnp




Then as explained above, the jth column is of the form



A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn







B1j

B2j

...
Bnj




which is a m× 1 matrix or column vector which equals



A11

A21

...
Am1


 B1j +




A12

A22

...
Am2


 B2j + · · ·+




A1n

A2n

...
Amn


 Bnj .

The second entry of this m× 1 matrix is

A21B1j + A22B2j + · · ·+ A2nBnj =
m∑

k=1

A2kBkj .
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Similarly, the ith entry of this m× 1 matrix is

Ai1B1j + Ai2B2j + · · ·+ AinBnj =
m∑

k=1

AikBkj .

This shows the following definition for matrix multiplication in terms of the ijth entries of
the product coincides with Definition 4.1.11.

Definition 4.1.14 Let A = (Aij) be an m×n matrix and let B = (Bij) be an n×p matrix.
Then AB is an m× p matrix and

(AB)ij =
n∑

k=1

AikBkj . (4.12)

Another way to write this is

(AB)ij =
(

Ai1 Ai2 · · · Ain

)



B1j

B2j

...
Bnj




Note that to get (AB)ij you involve the ith row of A and the jth column of B.

Example 4.1.15 Multiply if possible




1 2
3 1
2 6




(
2 3 1
7 6 2

)
.

First check to see if this is possible. It is of the form (3× 2) (2× 3) and since the inside
numbers match, the two matrices are conformable and it is possible to do the multiplication.
The result should be a 3× 3 matrix. The answer is of the form







1 2
3 1
2 6




(
2
7

)
,




1 2
3 1
2 6




(
3
6

)
,




1 2
3 1
2 6




(
1
2

)


where the commas separate the columns in the resulting product. Thus the above product
equals 


16 15 5
13 15 5
46 42 14


 ,

a 3× 3 matrix as desired. In terms of the ijth entries and the above definition, the entry in
the third row and second column of the product should equal

∑

j

a3kbk2 = a31b12 + a32b22

= 2× 3 + 6× 6 = 42.

You should try a few more such examples to verify the above definition in terms of the ijth

entries works for other entries.

Example 4.1.16 Multiply if possible




1 2
3 1
2 6







2 3 1
7 6 2
0 0 0


 .
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This is not possible because it is of the form (3× 2) (3× 3) and the middle numbers
don’t match. In other words the two matrices are not conformable in the indicated order.

Example 4.1.17 Multiply if possible




2 3 1
7 6 2
0 0 0







1 2
3 1
2 6


 .

This is possible because in this case it is of the form (3× 3) (3× 2) and the middle
numbers do match so the matrices are conformable. When the multiplication is done it
equals 


13 13
29 32
0 0


 .

Check this and be sure you come up with the same answer.

Example 4.1.18 Multiply if possible




1
2
1


(

1 2 1 0
)
.

In this case you are trying to do (3× 1) (1× 4) . The inside numbers match so you can
do it. Verify 


1
2
1


(

1 2 1 0
)

=




1 2 1 0
2 4 2 0
1 2 1 0




4.1.4 Properties Of Matrix Multiplication

As pointed out above, sometimes it is possible to multiply matrices in one order but not
in the other order. What if it makes sense to multiply them in either order? Will the two
products be equal then?

Example 4.1.19 Compare
(

1 2
3 4

)(
0 1
1 0

)
and

(
0 1
1 0

)(
1 2
3 4

)
.

The first product is (
1 2
3 4

)(
0 1
1 0

)
=

(
2 1
4 3

)
.

The second product is (
0 1
1 0

)(
1 2
3 4

)
=

(
3 4
1 2

)
.

You see these are not equal. Again you cannot conclude that AB = BA for matrix mul-
tiplication even when multiplication is defined in both orders. However, there are some
properties which do hold.

Proposition 4.1.20 If all multiplications and additions make sense, the following hold for
matrices, A,B,C and a, b scalars.

A (aB + bC) = a (AB) + b (AC) (4.13)

(B + C)A = BA + CA (4.14)

A (BC) = (AB) C (4.15)
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Proof: Using Definition 4.1.14,

(A (aB + bC))ij =
∑

k

Aik (aB + bC)kj

=
∑

k

Aik (aBkj + bCkj)

= a
∑

k

AikBkj + b
∑

k

AikCkj

= a (AB)ij + b (AC)ij

= (a (AB) + b (AC))ij .

Thus A (B + C) = AB + AC as claimed. Formula 4.14 is entirely similar.
Formula 4.15 is the associative law of multiplication. Using Definition 4.1.14,

(A (BC))ij =
∑

k

Aik (BC)kj

=
∑

k

Aik

∑

l

BklClj

=
∑

l

(AB)il Clj

= ((AB)C)ij .

This proves 4.15.

4.1.5 The Transpose

Another important operation on matrices is that of taking the transpose. The following
example shows what is meant by this operation, denoted by placing a T as an exponent on
the matrix. 


1 4
3 1
2 6




T

=
(

1 3 2
4 1 6

)

What happened? The first column became the first row and the second column became the
second row. Thus the 3× 2 matrix became a 2× 3 matrix. The number 3 was in the second
row and the first column and it ended up in the first row and second column. Here is the
definition.

Definition 4.1.21 Let A be an m × n matrix. Then AT denotes the n ×m matrix which
is defined as follows. (

AT
)
ij

= Aji

Example 4.1.22
(

1 2 −6
3 5 4

)T

=




1 3
2 5
−6 4


 .

The transpose of a matrix has the following important properties.

Lemma 4.1.23 Let A be an m× n matrix and let B be a n× p matrix. Then

(AB)T = BT AT (4.16)
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and if α and β are scalars,

(αA + βB)T = αAT + βBT (4.17)

Proof: From the definition,
(
(AB)T

)
ij

= (AB)ji

=
∑

k

AjkBki

=
∑

k

(
BT

)
ik

(
AT

)
kj

=
(
BT AT

)
ij

The proof of Formula 4.17 is left as an exercise and this proves the lemma.

Definition 4.1.24 An n × n matrix, A is said to be symmetric if A = AT . It is said to
be skew symmetric if A = −AT .

Example 4.1.25 Let

A =




2 1 3
1 5 −3
3 −3 7


 .

Then A is symmetric.

Example 4.1.26 Let

A =




0 1 3
−1 0 2
−3 −2 0




Then A is skew symmetric.

4.1.6 The Identity And Inverses

There is a special matrix called I and referred to as the identity matrix. It is always a
square matrix, meaning the number of rows equals the number of columns and it has the
property that there are ones down the main diagonal and zeroes elsewhere. Here are some
identity matrices of various sizes.

(1) ,

(
1 0
0 1

)
,




1 0 0
0 1 0
0 0 1


 ,




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

The first is the 1 × 1 identity matrix, the second is the 2 × 2 identity matrix, the third is
the 3× 3 identity matrix, and the fourth is the 4× 4 identity matrix. By extension, you can
likely see what the n×n identity matrix would be. It is so important that there is a special
symbol to denote the ijth entry of the identity matrix

Iij = δij

where δij is the Kroneker symbol defined by

δij =
{

1 if i = j
0 if i 6= j

It is called the identity matrix because it is a multiplicative identity in the following
sense.



58 MATRICES

Lemma 4.1.27 Suppose A is an m× n matrix and In is the n× n identity matrix. Then
AIn = A. If Im is the m×m identity matrix, it also follows that ImA = A.

Proof:

(AIn)ij =
∑

k

Aikδkj

= Aij

and so AIn = A. The other case is left as an exercise for you.

Definition 4.1.28 An n×n matrix, A has an inverse, A−1 if and only if AA−1 = A−1A =
I. Such a matrix is called invertible.

It is very important to observe that the inverse of a matrix, if it exists, is unique. Another
way to think of this is that if it acts like the inverse, then it is the inverse.

Theorem 4.1.29 Suppose A−1 exists and AB = BA = I. Then B = A−1.

Proof:
A−1 = A−1I = A−1 (AB) =

(
A−1A

)
B = IB = B.

Unlike ordinary multiplication of numbers, it can happen that A 6= 0 but A may fail to
have an inverse. This is illustrated in the following example.

Example 4.1.30 Let A =
(

1 1
1 1

)
. Does A have an inverse?

One might think A would have an inverse because it does not equal zero. However,
(

1 1
1 1

)( −1
1

)
=

(
0
0

)

and if A−1 existed, this could not happen because you could write
(

0
0

)
= A−1

((
0
0

))
= A−1

(
A

( −1
1

))
=

=
(
A−1A

) ( −1
1

)
= I

( −1
1

)
=

( −1
1

)
,

a contradiction. Thus the answer is that A does not have an inverse.

Example 4.1.31 Let A =
(

1 1
1 2

)
. Show

(
2 −1
−1 1

)
is the inverse of A.

To check this, multiply
(

1 1
1 2

)(
2 −1
−1 1

)
=

(
1 0
0 1

)

and (
2 −1
−1 1

)(
1 1
1 2

)
=

(
1 0
0 1

)

showing that this matrix is indeed the inverse of A.
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4.1.7 Finding The Inverse Of A Matrix

In the last example, how would you find A−1? You wish to find a matrix,
(

x z
y w

)
such

that (
1 1
1 2

) (
x z
y w

)
=

(
1 0
0 1

)
.

This requires the solution of the systems of equations,

x + y = 1, x + 2y = 0

and
z + w = 0, z + 2w = 1.

Writing the augmented matrix for these two systems gives
(

1 1 | 1
1 2 | 0

)
(4.18)

for the first system and (
1 1 | 0
1 2 | 1

)
(4.19)

for the second. Lets solve the first system. Take (−1) times the first row and add to the
second to get (

1 1 | 1
0 1 | −1

)

Now take (−1) times the second row and add to the first to get
(

1 0 | 2
0 1 | −1

)
.

Putting in the variables, this says x = 2 and y = −1.
Now solve the second system, 4.19 to find z and w. Take (−1) times the first row and

add to the second to get (
1 1 | 0
0 1 | 1

)
.

Now take (−1) times the second row and add to the first to get
(

1 0 | −1
0 1 | 1

)
.

Putting in the variables, this says z = −1 and w = 1. Therefore, the inverse is
(

2 −1
−1 1

)
.

Didn’t the above seem rather repetitive? Note that exactly the same row operations
were used in both systems. In each case, the end result was something of the form (I|v)

where I is the identity and v gave a column of the inverse. In the above,
(

x
y

)
, the first

column of the inverse was obtained first and then the second column
(

z
w

)
.
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To simplify this procedure, you could have written
(

1 1 | 1 0
1 2 | 0 1

)

and row reduced till you obtained
(

1 0 | 2 −1
0 1 | −1 1

)

and read off the inverse as the 2× 2 matrix on the right side.
This is the reason for the following simple procedure for finding the inverse of a matrix.

This procedure is called the Gauss-Jordan procedure.

Procedure 4.1.32 Suppose A is an n × n matrix. To find A−1 if it exists, form the
augmented n× 2n matrix,

(A|I)

and then, if possible do row operations until you obtain an n× 2n matrix of the form

(I|B) . (4.20)

When this has been done, B = A−1. If it is impossible to row reduce to a matrix of the form
(I|B) , then A has no inverse.

Example 4.1.33 Let A =




1 2 2
1 0 2
3 1 −1


. Find A−1 if it exists.

Set up the augmented matrix, (A|I)



1 2 2 | 1 0 0
1 0 2 | 0 1 0
3 1 −1 | 0 0 1




Next take (−1) times the first row and add to the second followed by (−3) times the first
row added to the last. This yields




1 2 2 | 1 0 0
0 −2 0 | −1 1 0
0 −5 −7 | −3 0 1


 .

Then take 5 times the second row and add to -2 times the last row.



1 2 2 | 1 0 0
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2




Next take the last row and add to (−7) times the top row. This yields


−7 −14 0 | −6 5 −2
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2


 .

Now take (−7/5) times the second row and add to the top.


−7 0 0 | 1 −2 −2
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2


 .
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Finally divide the top row by -7, the second row by -10 and the bottom row by 14 which
yields 



1 0 0 | − 1
7

2
7

2
7

0 1 0 | 1
2 − 1

2 0

0 0 1 | 1
14

5
14 − 1

7




.

Therefore, the inverse is 


− 1
7

2
7

2
7

1
2 − 1

2 0

1
14

5
14 − 1

7




Example 4.1.34 Let A =




1 2 2
1 0 2
2 2 4


. Find A−1 if it exists.

Write the augmented matrix, (A|I)



1 2 2 | 1 0 0
1 0 2 | 0 1 0
2 2 4 | 0 0 1




and proceed to do row operations attempting to obtain
(
I|A−1

)
. Take (−1) times the top

row and add to the second. Then take (−2) times the top row and add to the bottom.



1 2 2 | 1 0 0
0 −2 0 | −1 1 0
0 −2 0 | −2 0 1




Next add (−1) times the second row to the bottom row.



1 2 2 | 1 0 0
0 −2 0 | −1 1 0
0 0 0 | −1 −1 1




At this point, you can see there will be no inverse because you have obtained a row of zeros
in the left half of the augmented matrix, (A|I) . Thus there will be no way to obtain I on
the left.

Example 4.1.35 Let A =




1 0 1
1 −1 1
1 1 −1


. Find A−1 if it exists.

Form the augmented matrix,



1 0 1 | 1 0 0
1 −1 1 | 0 1 0
1 1 −1 | 0 0 1


 .
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Now do row operations until the n×n matrix on the left becomes the identity matrix. This
yields after some computations,




1 0 0 | 0 1
2

1
2

0 1 0 | 1 −1 0
0 0 1 | 1 − 1

2 − 1
2




and so the inverse of A is the matrix on the right,



0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


 .

Checking the answer is easy. Just multiply the matrices and see if it works.




1 0 1
1 −1 1
1 1 −1







0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


 =




1 0 0
0 1 0
0 0 1


 .

Always check your answer because if you are like some of us, you will usually have made a
mistake.

Example 4.1.36 In this example, it is shown how to use the inverse of a matrix to find
the solution to a system of equations. Consider the following system of equations. Use the
inverse of a suitable matrix to give the solutions to this system.




x + z = 1
x− y + z = 3
x + y − z = 2


 .

The system of equations can be written in terms of matrices as



1 0 1
1 −1 1
1 1 −1







x
y
z


 =




1
3
2


 . (4.21)

More simply, this is of the form Ax = b. Suppose you find the inverse of the matrix, A−1.
Then you could multiply both sides of this equation by A−1 to obtain

x =
(
A−1A

)
x = A−1 (Ax) = A−1b.

This gives the solution as x = A−1b. Note that once you have found the inverse, you can
easily get the solution for different right hand sides without any effort. It is always just
A−1b. In the given example, the inverse of the matrix is




0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2




This was shown in Example 4.1.35. Therefore, from what was just explained the solution
to the given system is




x
y
z


 =




0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2







1
3
2


 =




5
2
−2
− 3

2


 .
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What if the right side of 4.21 had been



0
1
3


?

What would be the solution to



1 0 1
1 −1 1
1 1 −1







x
y
z


 =




0
1
3


?

By the above discussion, it is just



x
y
z


 =




0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2







0
1
3


 =




2
−1
−2


 .

This illustrates why once you have found the inverse of a given matrix, you can use it to
solve many different systems easily.

4.2 Exercises

1. Here are some matrices:

A =
(

1 2 3
2 1 7

)
, B =

(
3 −1 2
−3 2 1

)
,

C =
(

1 2
3 1

)
, D =

( −1 2
2 −3

)
, E =

(
2
3

)
.

Find if possible −3A, 3B −A,AC,CB, AE, EA. If it is not possible explain why.

2. Here are some matrices:

A =




1 2
3 2
1 −1


 , B =

(
2 −5 2
−3 2 1

)
,

C =
(

1 2
5 0

)
, D =

( −1 1
4 −3

)
, E =

(
1
3

)
.

Find if possible −3A, 3B − A,AC, CA,AE, EA, BE,DE. If it is not possible explain
why.

3. Here are some matrices:

A =




1 2
3 2
1 −1


 , B =

(
2 −5 2
−3 2 1

)
,

C =
(

1 2
5 0

)
, D =

( −1 1
4 −3

)
, E =

(
1
3

)
.

Find if possible −3AT , 3B − AT , AC, CA,AE, ET B, BE,DE,EET , ET E. If it is not
possible explain why.
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4. Here are some matrices:

A =




1 2
3 2
1 −1


 , B =

(
2 −5 2
−3 2 1

)
,

C =
(

1 2
5 0

)
, D =

( −1
4

)
, E =

(
1
3

)
.

Find the following if possible and explain why it is not possible if this is the case.
AD, DA,DT B, DT BE,ET D, DET .

5. Let A =




1 1
−2 −1
1 2


, B =

(
1 −1 −2
2 1 −2

)
, and C =




1 1 −3
−1 2 0
−3 −1 0


 . Find

if possible.

(a) AB

(b) BA

(c) AC

(d) CA

(e) CB

(f) BC

6. Suppose A and B are square matrices of the same size. Which of the following are
correct?

(a) (A−B)2 = A2 − 2AB + B2

(b) (AB)2 = A2B2

(c) (A + B)2 = A2 + 2AB + B2

(d) (A + B)2 = A2 + AB + BA + B2

(e) A2B2 = A (AB)B

(f) (A + B)3 = A3 + 3A2B + 3AB2 + B3

(g) (A + B) (A−B) = A2 −B2

7. Let A =
( −1 −1

3 3

)
. Find all 2× 2 matrices, B such that AB = 0.

8. Let x =(−1,−1, 1) and y =(0, 1, 2) . Find xT y and xyT if possible.

9. Let A =
(

1 2
3 4

)
, B =

(
1 2
3 k

)
. Is it possible to choose k such that AB = BA?

If so, what should k equal?

10. Let A =
(

1 2
3 4

)
, B =

(
1 2
1 k

)
. Is it possible to choose k such that AB = BA?

If so, what should k equal?

11. In 4.1 - 4.8 describe −A and 0.

12. Let A be an n×n matrix. Show A equals the sum of a symmetric and a skew symmetric
matrix. Hint: Show that 1

2

(
AT + A

)
is symmetric and then consider using this as

one of the matrices.
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13. Show every skew symmetric matrix has all zeros down the main diagonal. The main
diagonal consists of every entry of the matrix which is of the form aii. It runs from
the upper left down to the lower right.

14. Using only the properties 4.1 - 4.8 show −A is unique.

15. Using only the properties 4.1 - 4.8 show 0 is unique.

16. Using only the properties 4.1 - 4.8 show 0A = 0. Here the 0 on the left is the scalar 0
and the 0 on the right is the zero for m× n matrices.

17. Using only the properties 4.1 - 4.8 and previous problems show (−1)A = −A.

18. Prove 4.17.

19. Prove that ImA = A where A is an m× n matrix.

20. Give an example of matrices, A, B,C such that B 6= C, A 6= 0, and yet AB = AC.

21. Suppose AB = AC and A is an invertible n× n matrix. Does it follow that B = C?
Explain why or why not. What if A were a non invertible n× n matrix?

22. Find your own examples:

(a) 2× 2 matrices, A and B such that A 6= 0, B 6= 0 with AB 6= BA.

(b) 2× 2 matrices, A and B such that A 6= 0, B 6= 0, but AB = 0.

(c) 2× 2 matrices, A, D, and C such that A 6= 0, C 6= D, but AC = AD.

23. Explain why if AB = AC and A−1 exists, then B = C.

24. Give an example of a matrix, A such that A2 = I and yet A 6= I and A 6= −I.

25. Give an example of matrices, A,B such that neither A nor B equals zero and yet
AB = 0.

26. Give another example other than the one given in this section of two square matrices,
A and B such that AB 6= BA.

27. Let

A =
(

2 1
−1 3

)
.

Find A−1 if possible. If A−1 does not exist, determine why.

28. Let

A =
(

0 1
5 3

)
.

Find A−1 if possible. If A−1 does not exist, determine why.

29. Let

A =
(

2 1
3 0

)
.

Find A−1 if possible. If A−1 does not exist, determine why.
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30. Let

A =
(

2 1
4 2

)
.

Find A−1 if possible. If A−1 does not exist, determine why.

31. Let A be a 2 × 2 matrix which has an inverse. Say A =
(

a b
c d

)
. Find a formula

for A−1 in terms of a, b, c, d.

32. Let

A =




1 2 3
2 1 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

33. Let

A =




1 0 3
2 3 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

34. Let

A =




1 2 3
2 1 4
4 5 10


 .

Find A−1 if possible. If A−1 does not exist, determine why.

35. Let

A =




1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2




Find A−1 if possible. If A−1 does not exist, determine why.

36. Write




x1 − x2 + 2x3

2x3 + x1

3x3

3x4 + 3x2 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.

37. Write




x1 + 3x2 + 2x3

2x3 + x1

6x3

x4 + 3x2 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.

38. Write




x1 + x2 + x3

2x3 + x1 + x2

x3 − x1

3x4 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.
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39. Using the inverse of the matrix, find the solution to the systems



1 0 3
2 3 4
1 0 2







x
y
z


 =




1
2
3


 ,




1 0 3
2 3 4
1 0 2







x
y
z


 =




2
1
0







1 0 3
2 3 4
1 0 2







x
y
z


 =




1
0
1


 ,




1 0 3
2 3 4
1 0 2







x
y
z


 =




3
−1
−2


 .

Now give the solution in terms of a, b, and c to



1 0 3
2 3 4
1 0 2







x
y
z


 =




a
b
c


 .

40. Using the inverse of the matrix, find the solution to the systems



1 0 3
2 3 4
1 0 2







x
y
z


 =




1
2
3


 ,




1 0 3
2 3 4
1 0 2







x
y
z


 =




2
1
0







1 0 3
2 3 4
1 0 2







x
y
z


 =




1
0
1


 ,




1 0 3
2 3 4
1 0 2







x
y
z


 =




3
−1
−2


 .

Now give the solution in terms of a, b, and c to



1 0 3
2 3 4
1 0 2







x
y
z


 =




a
b
c


 .

41. Using the inverse of the matrix, find the solution to the system



−1 1
2

1
2

1
2

3 1
2 − 1

2 − 5
2

−1 0 0 1
−2 − 3

4
1
4

9
4







x
y
z
w


 =




a
b
c
d


 .

42. Show that if A is an n×n invertible matrix and x is a n× 1 matrix such that Ax = b
for b an n× 1 matrix, then x = A−1b.

43. Prove that if A−1 exists and Ax = 0 then x = 0.

44. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and
AB = I, then B = A−1.

45. Show that if A is an invertible n× n matrix, then so is AT and
(
AT

)−1 =
(
A−1

)T
.

46. Show (AB)−1 = B−1A−1 by verifying that AB
(
B−1A−1

)
= I and B−1A−1 (AB) = I.

Hint: Use Problem 44.

47. Show that (ABC)−1 = C−1B−1A−1 by verifying that (ABC)
(
C−1B−1A−1

)
= I and(

C−1B−1A−1
)

(ABC) = I. Hint: Use Problem 44.

48. If A is invertible, show
(
AT

)−1 =
(
A−1

)T
. Hint: Use Problem 44.

49. If A is invertible, show
(
A2

)−1 =
(
A−1

)2
. Hint: Use Problem 44.

50. If A is invertible, show
(
A−1

)−1 = A. Hint: Use Problem 44.
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Vector Products

5.0.1 Outcomes

1. Evaluate a dot product from the angle formula or the coordinate formula.

2. Interpret the dot product geometrically.

3. Evaluate the following using the dot product:

(a) the angle between two vectors

(b) the magnitude of a vector

(c) the work done by a constant force on an object

4. Evaluate a cross product from the angle formula or the coordinate formula.

5. Interpret the cross product geometrically.

6. Evaluate the following using the cross product:

(a) the area of a parallelogram

(b) the area of a triangle

(c) physical quantities such as the torque and angular velocity.

7. Find the volume of a parallelepiped using the box product.

8. Recall, apply and derive the algebraic properties of the dot and cross products.

5.1 The Dot Product

There are two ways of multiplying vectors which are of great importance in applications.
The first of these is called the dot product, also called the scalar product and sometimes
the inner product.

Definition 5.1.1 Let a,b be two vectors in Rn define a · b as

a · b ≡
n∑

k=1

akbk.

With this definition, there are several important properties satisfied by the dot product.
In the statement of these properties, α and β will denote scalars and a,b, c will denote
vectors.

69
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Proposition 5.1.2 The dot product satisfies the following properties.

a · b = b · a (5.1)

a · a ≥ 0 and equals zero if and only if a = 0 (5.2)

(αa + βb) · c =α (a · c) + β (b · c) (5.3)

c · (αa + βb) = α (c · a) + β (c · b) (5.4)

|a|2 = a · a (5.5)

You should verify these properties. Also be sure you understand that 5.4 follows from
the first three and is therefore redundant. It is listed here for the sake of convenience.

Example 5.1.3 Find (1, 2, 0,−1) · (0, 1, 2, 3) .

This equals 0 + 2 + 0 +−3 = −1.

Example 5.1.4 Find the magnitude of a =(2, 1, 4, 2) . That is, find |a| .
This is

√
(2, 1, 4, 2) · (2, 1, 4, 2) = 5.

The dot product satisfies a fundamental inequality known as the Cauchy Schwarz
inequality.

Theorem 5.1.5 The dot product satisfies the inequality

|a · b| ≤ |a| |b| . (5.6)

Furthermore equality is obtained if and only if one of a or b is a scalar multiple of the other.

Proof: First note that if b = 0 both sides of 5.6 equal zero and so the inequality holds
in this case. Therefore, it will be assumed in what follows that b 6= 0.

Define a function of t ∈ R
f (t) = (a + tb) · (a + tb) .

Then by 5.2, f (t) ≥ 0 for all t ∈ R. Also from 5.3,5.4,5.1, and 5.5

f (t) = a · (a + tb) + tb · (a + tb)

= a · a + t (a · b) + tb · a + t2b · b
= |a|2 + 2t (a · b) + |b|2 t2.

Now this means the graph, y = f (t) is a polynomial which opens up and either its vertex
touches the t axis or else the entire graph is above the x axis. In the first case, there exists
some t where f (t) = 0 and this requires a + tb = 0 so one vector is a multiple of the other.
Then clearly equality holds in 5.6. In the case where b is not a multiple of a, it follows
f (t) > 0 for all t which says f (t) has no real zeros and so from the quadratic formula,

(2 (a · b))2 − 4 |a|2 |b|2 < 0

which is equivalent to |(a · b)| < |a| |b|. This proves the theorem.
You should note that the entire argument was based only on the properties of the dot

product listed in 5.1 - 5.5. This means that whenever something satisfies these properties,
the Cauchy Schwartz inequality holds. There are many other instances of these properties
besides vectors in Rn.

The Cauchy Schwartz inequality allows a proof of the triangle inequality for distances
in Rn in much the same way as the triangle inequality for the absolute value.
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Theorem 5.1.6 (Triangle inequality) For a,b ∈ Rn

|a + b| ≤ |a|+ |b| (5.7)

and equality holds if and only if one of the vectors is a nonnegative scalar multiple of the
other. Also

||a| − |b|| ≤ |a− b| (5.8)

Proof : By properties of the dot product and the Cauchy Schwartz inequality,

|a + b|2 = (a + b) · (a + b)
= (a · a) + (a · b) + (b · a) + (b · b)

= |a|2 + 2 (a · b) + |b|2

≤ |a|2 + 2 |a · b|+ |b|2

≤ |a|2 + 2 |a| |b|+ |b|2

= (|a|+ |b|)2 .

Taking square roots of both sides you obtain 5.7.
It remains to consider when equality occurs. If either vector equals zero, then that

vector equals zero times the other vector and the claim about when equality occurs is
verified. Therefore, it can be assumed both vectors are nonzero. To get equality in the
second inequality above, Theorem 5.1.5 implies one of the vectors must be a multiple of the
other. Say b = αa. If α < 0 then equality cannot occur in the first inequality because in
this case

(a · b) = α |a|2 < 0 < |α| |a|2 = |a · b|
Therefore, α ≥ 0.

To get the other form of the triangle inequality,

a = a− b + b

so

|a| = |a− b + b|
≤ |a− b|+ |b| .

Therefore,
|a| − |b| ≤ |a− b| (5.9)

Similarly,
|b| − |a| ≤ |b− a| = |a− b| . (5.10)

It follows from 5.9 and 5.10 that 5.8 holds. This is because ||a| − |b|| equals the left side of
either 5.9 or 5.10 and either way, ||a| − |b|| ≤ |a− b| . This proves the theorem.

5.2 The Geometric Significance Of The Dot Product

5.2.1 The Angle Between Two Vectors

Given two vectors, a and b, the included angle is the angle between these two vectors which
is less than or equal to 180 degrees. The dot product can be used to determine the included
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angle between two vectors. To see how to do this, consider the following picture.
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By the law of cosines,

|a− b|2 = |a|2 + |b|2 − 2 |a| |b| cos θ.

Also from the properties of the dot product,

|a− b|2 = (a− b) · (a− b)

= |a|2 + |b|2 − 2a · b
and so comparing the above two formulas,

a · b = |a| |b| cos θ. (5.11)

In words, the dot product of two vectors equals the product of the magnitude of the two
vectors multiplied by the cosine of the included angle. Note this gives a geometric description
of the dot product which does not depend explicitly on the coordinates of the vectors.

Example 5.2.1 Find the angle between the vectors 2i + j− k and 3i + 4j + k.

The dot product of these two vectors equals 6+4−1 = 9 and the norms are
√

4 + 1 + 1 =√
6 and

√
9 + 16 + 1 =

√
26. Therefore, from 5.11 the cosine of the included angle equals

cos θ =
9√

26
√

6
= . 720 58

Now the cosine is known, the angle can be determines by solving the equation, cos θ = .
720 58. This will involve using a calculator or a table of trigonometric functions. The answer
is θ = . 766 16 radians or in terms of degrees, θ = . 766 16× 360

2π = 43. 898◦. Recall how this
last computation is done. Set up a proportion, x

.76616 = 360
2π because 360◦ corresponds to 2π

radians. However, in calculus, you should get used to thinking in terms of radians and not
degrees. This is because all the important calculus formulas are defined in terms of radians.

Example 5.2.2 Let u,v be two vectors whose magnitudes are equal to 3 and 4 respectively
and such that if they are placed in standard position with their tails at the origin, the angle
between u and the positive x axis equals 30◦ and the angle between v and the positive x axis
is -30◦. Find u · v.

From the geometric description of the dot product in 5.11

u · v = 3× 4× cos (60◦) = 3× 4× 1/2 = 6.

Observation 5.2.3 Two vectors are said to be perpendicular if the included angle is π/2
radians (90◦). You can tell if two nonzero vectors are perpendicular by simply taking their
dot product. If the answer is zero, this means they are perpendicular because cos θ = 0.
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Example 5.2.4 Determine whether the two vectors, 2i+ j−k and 1i+3j+5k are perpen-
dicular.

When you take this dot product you get 2 + 3 − 5 = 0 and so these two are indeed
perpendicular.

Definition 5.2.5 When two lines intersect, the angle between the two lines is the smaller
of the two angles determined.

Example 5.2.6 Find the angle between the two lines, (1, 2, 0) + t (1, 2, 3) and (0, 4,−3) +
t (−1, 2,−3) .

These two lines intersect, when t = 0 in the first and t = −1 in the second. It is only a
matter of finding the angle between the direction vectors. One angle determined is given by

cos θ =
−6
14

=
−3
7

. (5.12)

We don’t want this angle because it is obtuse. The angle desired is the acute angle given by

cos θ =
3
7
.

It is obtained by using replacing one of the direction vectors with −1 times it.

5.2.2 Work And Projections

Our first application will be to the concept of work. The physical concept of work does not in
any way correspond to the notion of work employed in ordinary conversation. For example,
if you were to slide a 150 pound weight off a table which is three feet high and shuffle along
the floor for 50 yards, sweating profusely and exerting all your strength to keep the weight
from falling on your feet, keeping the height always three feet and then deposit this weight
on another three foot high table, the physical concept of work would indicate that the force
exerted by your arms did no work during this project even though the muscles in your hands
and arms would likely be very tired. The reason for such an unusual definition is that even
though your arms exerted considerable force on the weight, enough to keep it from falling,
the direction of motion was at right angles to the force they exerted. The only part of a
force which does work in the sense of physics is the component of the force in the direction
of motion (This is made more precise below.). The work is defined to be the magnitude
of the component of this force times the distance over which it acts in the case where this
component of force points in the direction of motion and (−1) times the magnitude of this
component times the distance in case the force tends to impede the motion. Thus the work
done by a force on an object as the object moves from one point to another is a measure of
the extent to which the force contributes to the motion. This is illustrated in the following
picture in the case where the given force contributes to the motion.
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In this picture the force, F is applied to an object which moves on the straight line from
p1 to p2. There are two vectors shown, F|| and F⊥ and the picture is intended to indicate
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that when you add these two vectors you get F while F|| acts in the direction of motion and
F⊥ acts perpendicular to the direction of motion. Only F|| contributes to the work done
by F on the object as it moves from p1 to p2. F|| is called the component of the force
in the direction of motion. From trigonometry, you see the magnitude of F|| should equal
|F| |cos θ| . Thus, since F|| points in the direction of the vector from p1 to p2, the total work
done should equal

|F|
∣∣−−−→p1p2

∣∣ cos θ = |F| |p2 − p1| cos θ

If the included angle had been obtuse, then the work done by the force, F on the object
would have been negative because in this case, the force tends to impede the motion from
p1 to p2 but in this case, cos θ would also be negative and so it is still the case that the
work done would be given by the above formula. Thus from the geometric description of
the dot product given above, the work equals

|F| |p2 − p1| cos θ = F· (p2−p1) .

This explains the following definition.

Definition 5.2.7 Let F be a force acting on an object which moves from the point, p1 to
the point p2. Then the work done on the object by the given force equals F· (p2 − p1) .

The concept of writing a given vector, F in terms of two vectors, one which is parallel
to a given vector, D and the other which is perpendicular can also be explained with no
reliance on trigonometry, completely in terms of the algebraic properties of the dot product.
As before, this is mathematically more significant than any approach involving geometry or
trigonometry because it extends to more interesting situations. This is done next.

Theorem 5.2.8 Let F and D be nonzero vectors. Then there exist unique vectors F|| and
F⊥ such that

F = F|| + F⊥ (5.13)

where F|| is a scalar multiple of D, also referred to as

projD (F) ,

and F⊥ ·D = 0. The vector projD (F) is called the projection of F onto D.

Proof: Suppose 5.13 and F|| = αD. Taking the dot product of both sides with D and
using F⊥ ·D = 0, this yields

F ·D = α |D|2

which requires α = F ·D/ |D|2 . Thus there can be no more than one vector, F||. It follows
F⊥ must equal F− F||. This verifies there can be no more than one choice for both F|| and
F⊥.

Now let
F|| ≡

F ·D
|D|2 D

and let
F⊥ = F− F|| = F−F ·D

|D|2 D

Then F|| = α D where α = F·D
|D|2 . It only remains to verify F⊥ ·D = 0. But

F⊥ ·D = F ·D−F ·D
|D|2 D ·D

= F ·D− F ·D = 0.

This proves the theorem.
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Example 5.2.9 Let F = 2i+7j− 3k Newtons. Find the work done by this force in moving
from the point (1, 2, 3) to the point (−9,−3, 4) along the straight line segment joining these
points where distances are measured in meters.

According to the definition, this work is

(2i+7j− 3k) · (−10i− 5j + k) = −20 + (−35) + (−3)
= −58 Newton meters.

Note that if the force had been given in pounds and the distance had been given in feet,
the units on the work would have been foot pounds. In general, work has units equal to
units of a force times units of a length. Instead of writing Newton meter, people write joule
because a joule is by definition a Newton meter. That word is pronounced “jewel” and it is
the unit of work in the metric system of units. Also be sure you observe that the work done
by the force can be negative as in the above example. In fact, work can be either positive,
negative, or zero. You just have to do the computations to find out.

Example 5.2.10 Find proju (v) if u = 2i + 3j− 4k and v = i− 2j + k.

From the above discussion in Theorem 5.2.8, this is just

1
4 + 9 + 16

(i− 2j + k) · (2i + 3j− 4k) (2i + 3j− 4k)

=
−8
29

(2i + 3j− 4k) = −16
29

i− 24
29

j +
32
29

k.

Example 5.2.11 Suppose a, and b are vectors and b⊥ = b− proja (b) . What is the mag-
nitude of b⊥ in terms of the included angle?

|b⊥|2 = (b− proja (b)) · (b− proja (b))

=

(
b−b · a

|a|2 a

)
·
(

b−b · a
|a|2 a

)

= |b|2 − 2
(b · a)2

|a|2 +

(
b · a
|a|2

)2

|a|2

= |b|2
(

1− (b · a)2

|a|2 |b|2
)

= |b|2 (
1− cos2 θ

)
= |b|2 sin2 (θ)

where θ is the included angle between a and b which is less than π radians. Therefore,
taking square roots,

|b⊥| = |b| sin θ.

5.2.3 The Dot Product And Distance In Cn

It is necessary to give a generalization of the dot product for vectors in Cn. This definition
reduces to the usual one in the case the components of the vector are real.
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Definition 5.2.12 Let x,y ∈ Cn. Thus x = (x1, · · · , xn) where each xk ∈ C and a similar
formula holding for y. Then the dot product of these two vectors is defined to be

x · y ≡
∑

j

xjyj ≡ x1y1 + · · ·+ xnyn.

Notice how you put the conjugate on the entries of the vector, y. It makes no difference
if the vectors happen to be real vectors but with complex vectors you must do it this way.
The reason for this is that when you take the dot product of a vector with itself, you want
to get the square of the length of the vector, a positive number. Placing the conjugate on
the components of y in the above definition assures this will take place. Thus

x · x =
∑

j

xjxj =
∑

j

|xj |2 ≥ 0.

If you didn’t place a conjugate as in the above definition, things wouldn’t work out correctly.
For example,

(1 + i)2 + 22 = 4 + 2i

and this is not a positive number.
The following properties of the dot product follow immediately from the definition and

you should verify each of them.
Properties of the dot product:

1. u · v = v · u.

2. If a, b are numbers and u,v, z are vectors then (au + bv) · z = a (u · z) + b (v · z) .

3. u · u ≥ 0 and it equals 0 if and only if u = 0.

Note this implies (x·αy) = α (x · y) because

(x·αy) = (αy · x) = α (y · x) = α (x · y)

The norm is defined in the usual way.

Definition 5.2.13 For x ∈ Cn,

|x| ≡
(

n∑

k=1

|xk|2
)1/2

= (x · x)1/2

Here is a fundamental inequality called the Cauchy Schwarz inequality which is
stated here in Cn. First here is a simple lemma.

Lemma 5.2.14 If z ∈ C there exists θ ∈ C such that θz = |z| and |θ| = 1.

Proof: Let θ = 1 if z = 0 and otherwise, let θ =
z

|z| . Recall that for z = x+iy, z = x−iy

and zz = |z|2.
I will give a proof of this important inequality which depends only on the above list of

properties of the dot product. It will be slightly different than the earlier proof.

Theorem 5.2.15 (Cauchy Schwarz)The following inequality holds for x and y ∈ Cn.

|(x · y)| ≤ (x · x)1/2 (y · y)1/2 (5.14)

Equality holds in this inequality if and only if one vector is a multiple of the other.
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Proof: Let θ ∈ C such that |θ| = 1 and

θ (x · y) = |(x · y)|
Consider p (t) ≡ (

x + θty,x + tθy
)

where t ∈ R. Then from the above list of properties of
the dot product,

0 ≤ p (t) = (x · x) + tθ (x · y) + tθ (y · x) + t2 (y · y)
= (x · x) + tθ (x · y) + tθ(x · y) + t2 (y · y)
= (x · x) + 2tRe (θ (x · y)) + t2 (y · y)
= (x · x) + 2t |(x · y)|+ t2 (y · y) (5.15)

and this must hold for all t ∈ R. Therefore, if (y · y) = 0 it must be the case that |(x · y)| = 0
also since otherwise the above inequality would be violated. Therefore, in this case,

|(x · y)| ≤ (x · x)1/2 (y · y)1/2
.

On the other hand, if (y · y) 6= 0, then p (t) ≥ 0 for all t means the graph of y = p (t) is a
parabola which opens up and it either has exactly one real zero in the case its vertex touches
the t axis or it has no real zeros. From the quadratic formula this happens exactly when

4 |(x · y)|2 − 4 (x · x) (y · y) ≤ 0

which is equivalent to 5.14.
It is clear from a computation that if one vector is a scalar multiple of the other that

equality holds in 5.14. Conversely, suppose equality does hold. Then this is equivalent to
saying 4 |(x · y)|2 − 4 (x · x) (y · y) = 0 and so from the quadratic formula, there exists one
real zero to p (t) = 0. Call it t0. Then

p (t0) ≡
(
x + θt0y,x + t0θy

)
=

∣∣x + θty
∣∣2 = 0

and so x = −θt0y. This proves the theorem.
Note that I only used part of the above properties of the dot product. It was not

necessary to use the one which says that if (x · x) = 0 then x = 0.
By analogy to the case of Rn, length or magnitude of vectors in Cn can be defined.

Definition 5.2.16 Let z ∈ Cn. Then |z| ≡ (z · z)1/2.

Theorem 5.2.17 For length defined in Definition 5.2.16, the following hold.

|z| ≥ 0 and |z| = 0 if and only if z = 0 (5.16)

If α is a scalar, |αz| = |α| |z| (5.17)

|z + w| ≤ |z|+ |w| . (5.18)

Proof: The first two claims are left as exercises. To establish the third, you use the
same argument which was used in Rn.

|z + w|2 = (z + w, z + w)
= z · z + w ·w + w · z + z ·w
= |z|2 + |w|2 + 2 Rew · z
≤ |z|2 + |w|2 + 2 |w · z|
≤ |z|2 + |w|2 + 2 |w| |z| = (|z|+ |w|)2 .



78 VECTOR PRODUCTS

5.3 Exercises

1. Use formula 5.11 to verify the Cauchy Schwartz inequality and to show that equality
occurs if and only if one of the vectors is a scalar multiple of the other.

2. For u,v vectors in R3, define the product, u ∗ v ≡ u1v1 + 2u2v2 + 3u3v3. Show the
axioms for a dot product all hold for this funny product. Prove

|u ∗ v| ≤ (u ∗ u)1/2 (v ∗ v)1/2
.

Hint: Do not try to do this with methods from trigonometry.

3. Find the angle between the vectors 3i− j− k and i + 4j + 2k.

4. Find the angle between the vectors i− 2j + k and i + 2j− 7k.

5. Find proju (v) where v =(1, 0,−2) and u =(1, 2, 3) .

6. Find proju (v) where v =(1, 2,−2) and u =(1, 0, 3) .

7. Find proju (v) where v =(1, 2,−2, 1) and u =(1, 2, 3, 0) .

8. Does it make sense to speak of proj0 (v)?

9. If F is a force and D is a vector, show projD (F) = (|F| cos θ)u where u is the unit
vector in the direction of D, u = D/ |D| and θ is the included angle between the two
vectors, F and D. |F| cos θ is sometimes called the component of the force, F in the
direction, D.

10. A boy drags a sled for 100 feet along the ground by pulling on a rope which is 20
degrees from the horizontal with a force of 40 pounds. How much work does this force
do?

11. A girl drags a sled for 200 feet along the ground by pulling on a rope which is 30
degrees from the horizontal with a force of 20 pounds. How much work does this force
do?

12. A large dog drags a sled for 300 feet along the ground by pulling on a rope which is
45 degrees from the horizontal with a force of 20 pounds. How much work does this
force do?

13. How much work in Newton meters does it take to slide a crate 20 meters along a
loading dock by pulling on it with a 200 Newton force at an angle of 30◦ from the
horizontal?

14. An object moves 10 meters in the direction of j. There are two forces acting on this
object, F1 = i + j + 2k, and F2 = −5i + 2j−6k. Find the total work done on the
object by the two forces. Hint: You can take the work done by the resultant of the
two forces or you can add the work done by each force. Why?

15. An object moves 10 meters in the direction of j + i. There are two forces acting on
this object, F1 = i + 2j + 2k, and F2 = 5i + 2j−6k. Find the total work done on the
object by the two forces. Hint: You can take the work done by the resultant of the
two forces or you can add the work done by each force. Why?
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16. An object moves 20 meters in the direction of k + j. There are two forces acting on
this object, F1 = i + j + 2k, and F2 = i + 2j−6k. Find the total work done on the
object by the two forces. Hint: You can take the work done by the resultant of the
two forces or you can add the work done by each force.

17. If a,b, and c are vectors. Show that (b + c)⊥ = b⊥ + c⊥ where b⊥ = b− proja (b) .

18. Find (1, 2, 3, 4) · (2, 0, 1, 3) .

19. Show that (a · b) = 1
4

[
|a + b|2 − |a− b|2

]
.

20. Prove from the axioms of the dot product the parallelogram identity, |a + b|2 +
|a− b|2 = 2 |a|2 + 2 |b|2 .

21. Let A and be a real m × n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)Rm =(
x,AT y

)
Rn where (·, ·)Rk denotes the dot product in Rk. In the notation above,

Ax · y = x·AT y. Use the definition of matrix multiplication to do this.

22. Use the result of Problem 21 to verify directly that (AB)T = BT AT without making
any reference to subscripts.

23. Suppose f, g are two continuous functions defined on [0, 1] . Define

(f · g) =
∫ 1

0

f (x) g (x) dx.

Show this dot product satisfies conditions 5.1 - 5.5. Explain why the Cauchy Schwarz
inequality continues to hold in this context and state the Cauchy Schwarz inequality
in terms of integrals. Does the Cauchy Schwarz inequality still hold if

(f · g) =
∫ 1

0

f (x) g (x) p (x) dx

where p (x) is a given nonnegative function?

5.4 Exercises With Answers

1. Find the angle between the vectors 3i− j− k and i + 4j + 2k.

cos θ = 3−4−2√
9+1+1

√
1+16+4

= −. 197 39. Therefore, you have to solve the equation cos θ =
−. 197 39, Solution is : θ = 1. 769 5 radians. You need to use a calculator or table to
solve this.

2. Find proju (v) where v =(1, 3,−2) and u =(1, 2, 3) .

Remember to find this you take v·u
u·uu. Thus the answer is 1

14 (1, 2, 3) .

3. If F is a force and D is a vector, show projD (F) = (|F| cos θ)u where u is the unit
vector in the direction of D, u = D/ |D| and θ is the included angle between the two
vectors, F and D. |F| cos θ is sometimes called the component of the force, F in the
direction, D.

projD (F) = F·D
D·DD = |F| |D| cos θ 1

|D|2 D = |F| cos θ D
|D| .
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4. A boy drags a sled for 100 feet along the ground by pulling on a rope which is 40
degrees from the horizontal with a force of 10 pounds. How much work does this force
do?

The component of force is 10 cos
(

40
180π

)
and it acts for 100 feet so the work done is

10 cos
(

40
180

π

)
× 100 = 766. 04

5. If a,b, and c are vectors. Show that (b + c)⊥ = b⊥ + c⊥ where b⊥ = b− proja (b) .

6. Find (1, 0, 3, 4) · (2, 7, 1, 3) . (1, 0, 3, 4) · (2, 7, 1, 3) = 17.

7. Show that (a · b) = 1
4

[
|a + b|2 − |a− b|2

]
.

This follows from the axioms of the dot product and the definition of the norm. Thus

|a + b|2 = (a + b,a + b) = |a|2 + |b|2 + 2 (a · b)

Do something similar for |a− b|2.

8. Prove from the axioms of the dot product the parallelogram identity, |a + b|2 +
|a− b|2 = 2 |a|2 + 2 |b|2 .

Use the properties of the dot product and the definition of the norm in terms of the
dot product.

9. Let A and be a real m × n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)Rm =(
x,AT y

)
Rn where (·, ·)Rk denotes the dot product in Rk. In the notation above,

Ax · y = x·AT y. Use the definition of matrix multiplication to do this.

Remember the ijth entry of Ax =
∑

j Aijxj . Therefore,

Ax · y =
∑

i

(Ax)i yi =
∑

i

∑

j

Aijxjyi.

Recall now that
(
AT

)
ij

= Aji. Use this to write a formula for
(
x,AT y

)
Rn .

5.5 The Cross Product

The cross product is the other way of multiplying two vectors in R3. It is very different
from the dot product in many ways. First the geometric meaning is discussed and then
a description in terms of coordinates is given. Both descriptions of the cross product are
important. The geometric description is essential in order to understand the applications
to physics and geometry while the coordinate description is the only way to practically
compute the cross product.

Definition 5.5.1 Three vectors, a,b, c form a right handed system if when you extend the
fingers of your right hand along the vector, a and close them in the direction of b, the thumb
points roughly in the direction of c.

For an example of a right handed system of vectors, see the following picture.
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In this picture the vector c points upwards from the plane determined by the other two
vectors. You should consider how a right hand system would differ from a left hand system.
Try using your left hand and you will see that the vector, c would need to point in the
opposite direction as it would for a right hand system.

From now on, the vectors, i, j,k will always form a right handed system. To repeat, if
you extend the fingers of our right hand along i and close them in the direction j, the thumb
points in the direction of k.
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The following is the geometric description of the cross product. It gives both the direction
and the magnitude and therefore specifies the vector.

Definition 5.5.2 Let a and b be two vectors in R3. Then a× b is defined by the following
two rules.

1. |a× b| = |a| |b| sin θ where θ is the included angle.

2. a× b · a = 0, a× b · b = 0, and a,b,a× b forms a right hand system.

Note that |a× b| is the area of the parallelogram determined by a and b.
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The cross product satisfies the following properties.

a× b = − (b× a) , a× a = 0, (5.19)

For α a scalar,
(αa)×b = α (a× b) = a× (αb) , (5.20)

For a,b, and c vectors, one obtains the distributive laws,

a× (b + c) = a× b + a× c, (5.21)

(b + c)× a = b× a + c× a. (5.22)

Formula 5.19 follows immediately from the definition. The vectors a× b and b× a have
the same magnitude, |a| |b| sin θ, and an application of the right hand rule shows they have
opposite direction. Formula 5.20 is also fairly clear. If α is a nonnegative scalar, the direction
of (αa)×b is the same as the direction of a× b,α (a× b) and a× (αb) while the magnitude
is just α times the magnitude of a× b which is the same as the magnitude of α (a× b)
and a× (αb) . Using this yields equality in 5.20. In the case where α < 0, everything works
the same way except the vectors are all pointing in the opposite direction and you must
multiply by |α| when comparing their magnitudes. The distributive laws are much harder
to establish but the second follows from the first quite easily. Thus, assuming the first, and
using 5.19,

(b + c)× a = −a× (b + c)
= − (a× b + a× c)
= b× a + c× a.

A proof of the distributive law is given in a later section for those who are interested.
Now from the definition of the cross product,

i× j = k j× i = −k
k× i = j i× k = −j
j× k = i k× j = −i

With this information, the following gives the coordinate description of the cross product.

Proposition 5.5.3 Let a = a1i + a2j + a3k and b = b1i + b2j + b3k be two vectors. Then

a× b = (a2b3 − a3b2) i+(a3b1 − a1b3) j+
+ (a1b2 − a2b1)k. (5.23)

Proof: From the above table and the properties of the cross product listed,

(a1i + a2j + a3k)× (b1i + b2j + b3k) =

a1b2i× j + a1b3i× k + a2b1j× i + a2b3j× k+

+a3b1k× i + a3b2k× j

= a1b2k− a1b3j− a2b1k + a2b3i + a3b1j− a3b2i

= (a2b3 − a3b2) i+(a3b1 − a1b3) j+(a1b2 − a2b1)k (5.24)

This proves the proposition.
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It is probably impossible for most people to remember 5.23. Fortunately, there is a
somewhat easier way to remember it. Define the determinant of a 2× 2 matrix as follows

∣∣∣∣
a b
c d

∣∣∣∣ ≡ ad− bc

Then

a× b =

∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
(5.25)

where you expand the determinant along the top row. This yields

i (−1)1+1

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ + j (−1)2+1

∣∣∣∣
a1 a3

b1 b3

∣∣∣∣ + k (−1)3+1

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣

= i
∣∣∣∣

a2 a3

b2 b3

∣∣∣∣− j
∣∣∣∣

a1 a3

b1 b3

∣∣∣∣ + k
∣∣∣∣

a1 a2

b1 b2

∣∣∣∣
Note that to get the scalar which multiplies i you take the determinant of what is left after
deleting the first row and the first column and multiply by (−1)1+1 because i is in the first
row and the first column. Then you do the same thing for the j and k. In the case of the j
there is a minus sign because j is in the first row and the second column and so(−1)1+2 = −1
while the k is multiplied by (−1)3+1 = 1. The above equals

(a2b3 − a3b2) i− (a1b3 − a3b1) j+(a1b2 − a2b1)k (5.26)

which is the same as 5.24. There will be much more presented on determinants later. For
now, consider this an introduction if you have not seen this topic.

Example 5.5.4 Find (i− j + 2k)× (3i− 2j + k) .

Use 5.25 to compute this.
∣∣∣∣∣∣

i j k
1 −1 2
3 −2 1

∣∣∣∣∣∣
=

∣∣∣∣
−1 2
−2 1

∣∣∣∣ i−
∣∣∣∣

1 2
3 1

∣∣∣∣ j+
∣∣∣∣

1 −1
3 −2

∣∣∣∣k

= 3i + 5j + k.

Example 5.5.5 Find the area of the parallelogram determined by the vectors, (i− j + 2k)
and (3i− 2j + k) . These are the same two vectors in Example 5.5.4.

From Example 5.5.4 and the geometric description of the cross product, the area is just
the norm of the vector obtained in Example 5.5.4. Thus the area is

√
9 + 25 + 1 =

√
35.

Example 5.5.6 Find the area of the triangle determined by (1, 2, 3) , (0, 2, 5) , and (5, 1, 2) .

This triangle is obtained by connecting the three points with lines. Picking (1, 2, 3) as a
starting point, there are two displacement vectors, (−1, 0, 2) and (4,−1,−1) such that the
given vector added to these displacement vectors gives the other two vectors. The area of
the triangle is half the area of the parallelogram determined by (−1, 0, 2) and (4,−1,−1) .
Thus (−1, 0, 2) × (4,−1,−1) = (2, 7, 1) and so the area of the triangle is 1

2

√
4 + 49 + 1 =

3
2

√
6.
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Observation 5.5.7 In general, if you have three points (vectors) in R3,P,Q,R the area
of the triangle is given by

1
2
|(Q−P)× (R−P)| .

-
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5.5.1 The Distributive Law For The Cross Product

This section gives a proof for 5.21, a fairly difficult topic. It is included here for the interested
student. If you are satisfied with taking the distributive law on faith, it is not necessary
to read this section. The proof given here is quite clever and follows the one given in [3].
Another approach, based on volumes of parallelepipeds is found in [12] and is discussed a
little later.

Lemma 5.5.8 Let b and c be two vectors. Then b× c = b× c⊥ where c|| + c⊥ = c and
c⊥ · b = 0.

Proof: Consider the following picture.

-
b

¡
¡¡µ
θ

c6c⊥

Now c⊥ = c− c· b
|b|

b
|b| and so c⊥ is in the plane determined by c and b. Therefore, from

the geometric definition of the cross product, b× c and b× c⊥ have the same direction.
Now, referring to the picture,

|b× c⊥| = |b| |c⊥|
= |b| |c| sin θ

= |b× c| .

Therefore, b× c and b× c⊥ also have the same magnitude and so they are the same vector.
With this, the proof of the distributive law is in the following theorem.

Theorem 5.5.9 Let a,b, and c be vectors in R3. Then

a× (b + c) = a× b + a× c (5.27)
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Proof: Suppose first that a · b = a · c = 0. Now imagine a is a vector coming out of the
page and let b, c and b + c be as shown in the following picture.

-
b

¡
¡¡µc

³³³³³³³³1
b + cHH

6
a× b

B
B

B
B

B
B

B
B

B
B

B
B

B
B

BBM
a× (b + c)

@
@

@
@

@I
a× c

Then a× b,a× (b + c) , and a× c are each vectors in the same plane, perpendicular to a
as shown. Thus a× c · c = 0,a× (b + c) · (b + c) = 0, and a× b · b = 0. This implies that
to get a× b you move counterclockwise through an angle of π/2 radians from the vector, b.
Similar relationships exist between the vectors a× (b + c) and b + c and the vectors a× c
and c. Thus the angle between a× b and a× (b + c) is the same as the angle between b + c
and b and the angle between a× c and a× (b + c) is the same as the angle between c and
b + c. In addition to this, since a is perpendicular to these vectors,

|a× b| = |a| |b| , |a× (b + c)| = |a| |b + c| , and

|a× c| = |a| |c| .
Therefore,

|a× (b + c)|
|b + c| =

|a× c|
|c| =

|a× b|
|b| = |a|

and so
|a× (b + c)|
|a× c| =

|b + c|
|c| ,

|a× (b + c)|
|a× b| =

|b + c|
|b|

showing the triangles making up the parallelogram on the right and the four sided figure on
the left in the above picture are similar. It follows the four sided figure on the left is in fact
a parallelogram and this implies the diagonal is the vector sum of the vectors on the sides,
yielding 5.27.

Now suppose it is not necessarily the case that a · b = a · c = 0. Then write b = b||+b⊥
where b⊥ · a = 0. Similarly c = c|| + c⊥. By the above lemma and what was just shown,

a× (b + c) = a× (b + c)⊥
= a× (b⊥ + c⊥)
= a× b⊥ + a× c⊥
= a× b + a× c.

This proves the theorem.
The result of Problem 17 of the exercises 5.3 is used to go from the first to the second

line.
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5.5.2 The Box Product

Definition 5.5.10 A parallelepiped determined by the three vectors, a,b, and c consists of

{ra+sb + tc : r, s, t ∈ [0, 1]} .

That is, if you pick three numbers, r, s, and t each in [0, 1] and form ra+sb + tc, then the
collection of all such points is what is meant by the parallelepiped determined by these three
vectors.

The following is a picture of such a thing.

-
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a× b

θ

You notice the area of the base of the parallelepiped, the parallelogram determined by
the vectors, a and b has area equal to |a× b| while the altitude of the parallelepiped is
|c| cos θ where θ is the angle shown in the picture between c and a× b. Therefore, the
volume of this parallelepiped is the area of the base times the altitude which is just

|a× b| |c| cos θ = a× b · c.
This expression is known as the box product and is sometimes written as [a,b, c] . You
should consider what happens if you interchange the b with the c or the a with the c. You
can see geometrically from drawing pictures that this merely introduces a minus sign. In any
case the box product of three vectors always equals either the volume of the parallelepiped
determined by the three vectors or else minus this volume.

Example 5.5.11 Find the volume of the parallelepiped determined by the vectors, i + 2j−
5k, i + 3j− 6k,3i + 2j + 3k.

According to the above discussion, pick any two of these, take the cross product and
then take the dot product of this with the third of these vectors. The result will be either
the desired volume or minus the desired volume.

(i + 2j− 5k)× (i + 3j− 6k) =

∣∣∣∣∣∣

i j k
1 2 −5
1 3 −6

∣∣∣∣∣∣
= 3i + j + k

Now take the dot product of this vector with the third which yields

(3i + j + k) · (3i + 2j + 3k) = 9 + 2 + 3 = 14.

This shows the volume of this parallelepiped is 14 cubic units.
There is a fundamental observation which comes directly from the geometric definitions

of the cross product and the dot product.
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Lemma 5.5.12 Let a,b, and c be vectors. Then (a× b) ·c = a· (b× c) .

Proof: This follows from observing that either (a× b) ·c and a· (b× c) both give the
volume of the parallellepiped or they both give −1 times the volume.

5.5.3 A Proof Of The Distributive Law

Here is another proof of the distributive law for the cross product. Let x be a vector. From
the above observation,

x · a× (b + c) = (x× a) · (b + c)
= (x× a) · b+(x× a) · c
= x · a× b + x · a× c

= x· (a× b + a× c) .

Therefore,
x· [a× (b + c)− (a× b + a× c)] = 0

for all x. In particular, this holds for x = a× (b + c) − (a× b + a× c) showing that
a× (b + c) = a× b + a× c and this proves the distributive law for the cross product another
way.

Observation 5.5.13 Suppose you have three vectors, u =(a, b, c) ,v =(d, e, f) , and w =
(g, h, i) . Then u · v ×w is given by the following.

u · v ×w = (a, b, c) ·
∣∣∣∣∣∣

i j k
d e f
g h i

∣∣∣∣∣∣

= a

∣∣∣∣
e f
h i

∣∣∣∣− b

∣∣∣∣
d f
g i

∣∣∣∣ + c

∣∣∣∣
d e
g h

∣∣∣∣

≡ det




a b c
d e f
g h i


 .

The message is that to take the box product, you can simply take the determinant of the
matrix which results by letting the rows be the rectangular components of the given vectors
in the order in which they occur in the box product. More will be presented on determinants
in the next chapter.

5.6 Exercises

1. Show that if a× u = 0 for all unit vectors, u, then a = 0.

2. Find the area of the triangle determined by the three points, (1, 2, 3) , (4, 2, 0) and
(−3, 2, 1) .

3. Find the area of the triangle determined by the three points, (1, 0, 3) , (4, 1, 0) and
(−3, 1, 1) .

4. Find the area of the triangle determined by the three points, (1, 2, 3) , (2, 3, 1) and
(0, 1, 2) . Did something interesting happen here? What does it mean geometrically?

5. Find the area of the parallelogram determined by the vectors, (1, 2, 3) and (3,−2, 1) .
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6. Find the area of the parallelogram determined by the vectors, (1, 0, 3) and (4,−2, 1) .

7. Find the area of the parallelogram determined by the vectors, (1,−2, 2) and (3, 1, 1) .

8. Find the volume of the parallelepiped determined by the vectors, i− 7j− 5k, i− 2j−
6k,3i + 2j + 3k.

9. Find the volume of the parallelepiped determined by the vectors, i + j − 5k, i + 5j −
6k,3i + j + 3k.

10. Find the volume of the parallelepiped determined by the vectors, i + 6j + 5k, i + 5j−
6k,3i + j + k.

11. Suppose a,b, and c are three vectors whose components are all integers. Can you
conclude the volume of the parallelepiped determined from these three vectors will
always be an integer?

12. What does it mean geometrically if the box product of three vectors gives zero?

13. Using Problem 12, find an equation of a plane containing the two two position vectors,
a and b and the point 0. Hint: If (x, y, z) is a point on this plane the volume of the
parallelepiped determined by (x, y, z) and the vectors a,b equals 0.

14. Using the notion of the box product yielding either plus or minus the volume of the
parallelepiped determined by the given three vectors, show that

(a× b) ·c = a· (b× c)

In other words, the dot and the cross can be switched as long as the order of the
vectors remains the same. Hint: There are two ways to do this, by the coordinate
description of the dot and cross product and by geometric reasoning. It is better if
you use geometric reasoning.

15. Is a× (b× c) = (a× b)× c? What is the meaning of a× b× c? Explain. Hint: Try
(i× j)×j.

16. Verify directly that the coordinate description of the cross product, a× b has the
property that it is perpendicular to both a and b. Then show by direct computation
that this coordinate description satisfies

|a× b|2 = |a|2 |b|2 − (a · b)2

= |a|2 |b|2 (
1− cos2 (θ)

)

where θ is the angle included between the two vectors. Explain why |a× b| has the
correct magnitude. All that is missing is the material about the right hand rule.
Verify directly from the coordinate description of the cross product that the right
thing happens with regards to the vectors i, j,k. Next verify that the distributive law
holds for the coordinate description of the cross product. This gives another way to
approach the cross product. First define it in terms of coordinates and then get the
geometric properties from this. However, this approach does not yield the right hand
rule property very easily.



Determinants

6.0.1 Outcomes

A. Evaluate the determinant of a square matrix using by applying

(a) the cofactor formula or

(b) row operations.

B. Recall the effects that row operations have on determinants.

C. Recall

1. and verify the following:

(a) The determinant of a product of matrices is the product of the determinants.

(b) The determinant of a matrix is equal to the determinant of its transpose.

D. Apply Cramer’s Rule to solve a 2× 2 or a 3× 3 linear system.

E. Use determinants to determine whether a matrix has an inverse.

F. Evaluate the inverse of a matrix using cofactors.

6.1 Basic Techniques And Properties

6.1.1 Cofactors And 2× 2 Determinants

Let A be an n× n matrix. The determinant of A, denoted as det (A) is a number. If the
matrix is a 2×2 matrix, this number is very easy to find.

Definition 6.1.1 Let A =
(

a b
c d

)
. Then

det (A) ≡ ad− cb.

The determinant is also often denoted by enclosing the matrix with two vertical lines. Thus

det
(

a b
c d

)
=

∣∣∣∣
a b
c d

∣∣∣∣ .

Example 6.1.2 Find det
(

2 4
−1 6

)
.

89



90 DETERMINANTS

From the definition this is just (2) (6)− (−1) (4) = 16.
Having defined what is meant by the determinant of a 2× 2 matrix, what about a 3× 3

matrix?

Definition 6.1.3 Suppose A is a 3 × 3 matrix. The ijth minor, denoted as minor(A)ij ,

is the determinant of the 2 × 2 matrix which results from deleting the ith row and the jth

column.

Example 6.1.4 Consider the matrix,



1 2 3
4 3 2
3 2 1


 .

The (1, 2) minor is the determinant of the 2 × 2 matrix which results when you delete the
first row and the second column. This minor is therefore

det
(

4 2
3 1

)
= −2.

The (2, 3) minor is the determinant of the 2 × 2 matrix which results when you delete the
second row and the third column. This minor is therefore

det
(

1 2
3 2

)
= −4.

Definition 6.1.5 Suppose A is a 3×3 matrix. The ijth cofactor is defined to be (−1)i+j×(
ijth minor

)
. In words, you multiply (−1)i+j times the ijth minor to get the ijth cofactor.

The cofactors of a matrix are so important that special notation is appropriate when referring
to them. The ijth cofactor of a matrix, A will be denoted by cof (A)ij . It is also convenient
to refer to the cofactor of an entry of a matrix as follows. For aij an entry of the matrix,
its cofactor is just cof (A)ij . Thus the cofactor of the ijth entry is just the ijth cofactor.

Example 6.1.6 Consider the matrix,

A =




1 2 3
4 3 2
3 2 1


 .

The (1, 2) minor is the determinant of the 2 × 2 matrix which results when you delete the
first row and the second column. This minor is therefore

det
(

4 2
3 1

)
= −2.

It follows

cof (A)12 = (−1)1+2 det
(

4 2
3 1

)
= (−1)1+2 (−2) = 2

The (2, 3) minor is the determinant of the 2 × 2 matrix which results when you delete the
second row and the third column. This minor is therefore

det
(

1 2
3 2

)
= −4.
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Therefore,

cof (A)23 = (−1)2+3 det
(

1 2
3 2

)
= (−1)2+3 (−4) = 4.

Similarly,

cof (A)22 = (−1)2+2 det
(

1 3
3 1

)
= −8.

Definition 6.1.7 The determinant of a 3× 3 matrix, A, is obtained by picking a row (col-
umn) and taking the product of each entry in that row (column) with its cofactor and adding
these up. This process when applied to the ith row (column) is known as expanding the
determinant along the ith row (column).

Example 6.1.8 Find the determinant of

A =




1 2 3
4 3 2
3 2 1


 .

Here is how it is done by “expanding along the first column”.

1

cof(A)11︷ ︸︸ ︷
(−1)1+1

∣∣∣∣
3 2
2 1

∣∣∣∣ + 4

cof(A)21︷ ︸︸ ︷
(−1)2+1

∣∣∣∣
2 3
2 1

∣∣∣∣ + 3

cof(A)31︷ ︸︸ ︷
(−1)3+1

∣∣∣∣
2 3
3 2

∣∣∣∣ = 0.

You see, we just followed the rule in the above definition. We took the 1 in the first column
and multiplied it by its cofactor, the 4 in the first column and multiplied it by its cofactor,
and the 3 in the first column and multiplied it by its cofactor. Then we added these numbers
together.

You could also expand the determinant along the second row as follows.

4

cof(A)21︷ ︸︸ ︷
(−1)2+1

∣∣∣∣
2 3
2 1

∣∣∣∣ + 3

cof(A)22︷ ︸︸ ︷
(−1)2+2

∣∣∣∣
1 3
3 1

∣∣∣∣ + 2

cof(A)23︷ ︸︸ ︷
(−1)2+3

∣∣∣∣
1 2
3 2

∣∣∣∣ = 0.

Observe this gives the same number. You should try expanding along other rows and
columns. If you don’t make any mistakes, you will always get the same answer.

What about a 4 × 4 matrix? You know now how to find the determinant of a 3 × 3
matrix. The pattern is the same.

Definition 6.1.9 Suppose A is a 4× 4 matrix. The ijth minor is the determinant of the
3×3 matrix you obtain when you delete the ith row and the jth column. The ijth cofactor,
cof (A)ij is defined to be (−1)i+j × (

ijth minor
)
. In words, you multiply (−1)i+j times the

ijth minor to get the ijth cofactor.

Definition 6.1.10 The determinant of a 4 × 4 matrix, A, is obtained by picking a row
(column) and taking the product of each entry in that row (column) with its cofactor and
adding these up. This process when applied to the ith row (column) is known as expanding
the determinant along the ith row (column).

Example 6.1.11 Find det (A) where

A =




1 2 3 4
5 4 2 3
1 3 4 5
3 4 3 2
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As in the case of a 3 × 3 matrix, you can expand this along any row or column. Lets
pick the third column. det (A) =

3 (−1)1+3

∣∣∣∣∣∣

5 4 3
1 3 5
3 4 2

∣∣∣∣∣∣
+ 2 (−1)2+3

∣∣∣∣∣∣

1 2 4
1 3 5
3 4 2

∣∣∣∣∣∣
+

4 (−1)3+3

∣∣∣∣∣∣

1 2 4
5 4 3
3 4 2

∣∣∣∣∣∣
+ 3 (−1)4+3

∣∣∣∣∣∣

1 2 4
5 4 3
1 3 5

∣∣∣∣∣∣
.

Now you know how to expand each of these 3×3 matrices along a row or a column. If you do
so, you will get −12 assuming you make no mistakes. You could expand this matrix along
any row or any column and assuming you make no mistakes, you will always get the same
thing which is defined to be the determinant of the matrix, A. This method of evaluating
a determinant by expanding along a row or a column is called the method of Laplace
expansion.

Note that each of the four terms above involves three terms consisting of determinants
of 2×2 matrices and each of these will need 2 terms. Therefore, there will be 4×3×2 = 24
terms to evaluate in order to find the determinant using the method of Laplace expansion.
Suppose now you have a 10 × 10 matrix and you follow the above pattern for evaluating
determinants. By analogy to the above, there will be 10! = 3, 628 , 800 terms involved in
the evaluation of such a determinant by Laplace expansion along a row or column. This is
a lot of terms.

In addition to the difficulties just discussed, you should regard the above claim that you
always get the same answer by picking any row or column with considerable skepticism. It
is incredible and not at all obvious. However, it requires a little effort to establish it. This
is done in the section on the theory of the determinant.

Definition 6.1.12 Let A = (aij) be an n × n matrix and suppose the determinant of a
(n− 1) × (n− 1) matrix has been defined. Then a new matrix called the cofactor ma-
trix, cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and
the jth column of A, take the determinant of the (n− 1) × (n− 1) matrix which results,
(This is called the ijth minor of A. ) and then multiply this number by (−1)i+j. Thus
(−1)i+j × (

the ijth minor
)

equals the ijth cofactor. To make the formulas easier to remem-
ber, cof (A)ij will denote the ijth entry of the cofactor matrix.

With this definition of the cofactor matrix, here is how to define the determinant of an
n× n matrix.

Definition 6.1.13 Let A be an n× n matrix where n ≥ 2 and suppose the determinant of
an (n− 1)× (n− 1) has been defined. Then

det (A) =
n∑

j=1

aij cof (A)ij =
n∑

i=1

aij cof (A)ij . (6.1)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Theorem 6.1.14 Expanding the n × n matrix along any row or column always gives the
same answer so the above definition is a good definition.
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6.1.2 The Determinant Of A Triangular Matrix

Notwithstanding the difficulties involved in using the method of Laplace expansion, certain
types of matrices are very easy to deal with.

Definition 6.1.15 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii, as shown.




∗ ∗ · · · ∗
0 ∗ . . .

...
...

. . . . . . ∗
0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

You should verify the following using the above theorem on Laplace expansion.

Corollary 6.1.16 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

Example 6.1.17 Let

A =




1 2 3 77
0 2 6 7
0 0 3 33.7
0 0 0 −1




Find det (A) .

From the above corollary, it suffices to take the product of the diagonal elements. Thus
det (A) = 1× 2× 3× (−1) = −6. Without using the corollary, you could expand along the
first column. This gives

1

∣∣∣∣∣∣

2 6 7
0 3 33.7
0 0 −1

∣∣∣∣∣∣
+ 0 (−1)2+1

∣∣∣∣∣∣

2 3 77
0 3 33.7
0 0 −1

∣∣∣∣∣∣
+

0 (−1)3+1

∣∣∣∣∣∣

2 3 77
2 6 7
0 0 −1

∣∣∣∣∣∣
+ 0 (−1)4+1

∣∣∣∣∣∣

2 3 77
2 6 7
0 3 33.7

∣∣∣∣∣∣
and the only nonzero term in the expansion is

1

∣∣∣∣∣∣

2 6 7
0 3 33.7
0 0 −1

∣∣∣∣∣∣
.

Now expand this along the first column to obtain

1×
(

2×
∣∣∣∣

3 33.7
0 −1

∣∣∣∣ + 0 (−1)2+1

∣∣∣∣
6 7
0 −1

∣∣∣∣ + 0 (−1)3+1

∣∣∣∣
6 7
3 33.7

∣∣∣∣
)

= 1× 2×
∣∣∣∣

3 33.7
0 −1

∣∣∣∣
Next expand this last determinant along the first column to obtain the above equals

1× 2× 3× (−1) = −6

which is just the product of the entries down the main diagonal of the original matrix.
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6.1.3 Properties Of Determinants

There are many properties satisfied by determinants. Some of these properties have to do
with row operations. Recall the row operations.

Definition 6.1.18 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to itself.

Theorem 6.1.19 Let A be an n × n matrix and let A1 be a matrix which results from
multiplying some row of A by a scalar, c. Then c det (A) = det (A1).

Example 6.1.20 Let A =
(

1 2
3 4

)
, A1 =

(
2 4
3 4

)
. det (A) = −2, det (A1) = −4.

Theorem 6.1.21 Let A be an n × n matrix and let A1 be a matrix which results from
switching two rows of A. Then det (A) = − det (A1) . Also, if one row of A is a multiple of
another row of A, then det (A) = 0.

Example 6.1.22 Let A =
(

1 2
3 4

)
and let A1 =

(
3 4
1 2

)
. det A = −2, det (A1) = 2.

Theorem 6.1.23 Let A be an n × n matrix and let A1 be a matrix which results from
applying row operation 3. That is you replace some row by a multiple of another row added
to itself. Then det (A) = det (A1).

Example 6.1.24 Let A =
(

1 2
3 4

)
and let A1 =

(
1 2
4 6

)
. Thus the second row of A1

is one times the first row added to the second row. det (A) = −2 and det (A1) = −2.

Theorem 6.1.25 In Theorems 6.1.19 - 6.1.23 you can replace the word, “row” with the
word “column”.

There are two other major properties of determinants which do not involve row opera-
tions.

Theorem 6.1.26 Let A and B be two n× n matrices. Then

det (AB) = det (A) det (B).

Also,

det (A) = det
(
AT

)
.

Example 6.1.27 Compare det (AB) and det (A) det (B) for

A =
(

1 2
−3 2

)
, B =

(
3 2
4 1

)
.
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First

AB =
(

1 2
−3 2

)(
3 2
4 1

)
=

(
11 4
−1 −4

)

and so

det (AB) = det
(

11 4
−1 −4

)
= −40.

Now

det (A) = det
(

1 2
−3 2

)
= 8

and

det (B) = det
(

3 2
4 1

)
= −5.

Thus det (A) det (B) = 8× (−5) = −40.

6.1.4 Finding Determinants Using Row Operations

Theorems 6.1.23 - 6.1.25 can be used to find determinants using row operations. As pointed
out above, the method of Laplace expansion will not be practical for any matrix of large
size. Here is an example in which all the row operations are used.

Example 6.1.28 Find the determinant of the matrix,

A =




1 2 3 4
5 1 2 3
4 5 4 3
2 2 −4 5




Replace the second row by (−5) times the first row added to it. Then replace the third
row by (−4) times the first row added to it. Finally, replace the fourth row by (−2) times
the first row added to it. This yields the matrix,

B =




1 2 3 4
0 −9 −13 −17
0 −3 −8 −13
0 −2 −10 −3




and from Theorem 6.1.23, it has the same determinant as A. Now using other row operations,
det (B) =

(−1
3

)
det (C) where

C =




1 2 3 4
0 0 11 22
0 −3 −8 −13
0 6 30 9


 .

The second row was replaced by (−3) times the third row added to the second row. By
Theorem 6.1.23 this didn’t change the value of the determinant. Then the last row was
multiplied by (−3) . By Theorem 6.1.19 the resulting matrix has a determinant which is
(−3) times the determinant of the unmultiplied matrix. Therefore, we multiplied by −1/3
to retain the correct value. Now replace the last row with 2 times the third added to
it. This does not change the value of the determinant by Theorem 6.1.23. Finally switch
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the third and second rows. This causes the determinant to be multiplied by (−1) . Thus
det (C) = − det (D) where

D =




1 2 3 4
0 −3 −8 −13
0 0 11 22
0 0 14 −17




You could do more row operations or you could note that this can be easily expanded along
the first column followed by expanding the 3×3 matrix which results along its first column.
Thus

det (D) = 1 (−3)
∣∣∣∣

11 22
14 −17

∣∣∣∣ = 1485

and so det (C) = −1485 and det (A) = det (B) =
(−1

3

)
(−1485) = 495.

Example 6.1.29 Find the determinant of the matrix



1 2 3 2
1 −3 2 1
2 1 2 5
3 −4 1 2




Replace the second row by (−1) times the first row added to it. Next take −2 times the
first row and add to the third and finally take −3 times the first row and add to the last
row. This yields 



1 2 3 2
0 −5 −1 −1
0 −3 −4 1
0 −10 −8 −4


 .

By Theorem 6.1.23 this matrix has the same determinant as the original matrix. Remember
you can work with the columns also. Take −5 times the last column and add to the second
column. This yields 



1 −8 3 2
0 0 −1 −1
0 −8 −4 1
0 10 −8 −4




By Theorem 6.1.25 this matrix has the same determinant as the original matrix. Now take
(−1) times the third row and add to the top row. This gives.




1 0 7 1
0 0 −1 −1
0 −8 −4 1
0 10 −8 −4




which by Theorem 6.1.23 has the same determinant as the original matrix. Lets expand it
now along the first column. This yields the following for the determinant of the original
matrix.

det




0 −1 −1
−8 −4 1
10 −8 −4




which equals

8 det
( −1 −1
−8 −4

)
+ 10det

( −1 −1
−4 1

)
= −82



6.2. APPLICATIONS 97

We suggest you do not try to be fancy in using row operations. That is, stick mostly to
the one which replaces a row or column with a multiple of another row or column added to
it. Also note there is no way to check your answer other than working the problem more
than one way. To be sure you have gotten it right you must do this.

6.2 Applications

6.2.1 A Formula For The Inverse

The definition of the determinant in terms of Laplace expansion along a row or column also
provides a way to give a formula for the inverse of a matrix. Recall the definition of the
inverse of a matrix in Definition 4.1.28 on Page 58. Also recall the definition of the cofactor
matrix given in Definition 6.1.12 on Page 92. This cofactor matrix was just the matrix
which results from replacing the ijth entry of the matrix with the ijth cofactor.

The following theorem says that to find the inverse, take the transpose of the cofactor
matrix and divide by the determinant. The transpose of the cofactor matrix is called the
adjugate or sometimes the classical adjoint of the matrix A. In other words, A−1 is
equal to one divided by the determinant of A times the adjugate matrix of A. This is what
the following theorem says with more precision.

Theorem 6.2.1 A−1 exists if and only if det(A) 6= 0. If det(A) 6= 0, then A−1 =
(
a−1

ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Example 6.2.2 Find the inverse of the matrix,

A =




1 2 3
3 0 1
1 2 1




First find the determinant of this matrix. Using Theorems 6.1.23 - 6.1.25 on Page 94,
the determinant of this matrix equals the determinant of the matrix,




1 2 3
0 −6 −8
0 0 −2




which equals 12. The cofactor matrix of A is


−2 −2 6
4 −2 0
2 8 −6


 .

Each entry of A was replaced by its cofactor. Therefore, from the above theorem, the inverse
of A should equal

1
12



−2 −2 6
4 −2 0
2 8 −6




T

=




− 1
6

1
3

1
6

− 1
6 − 1

6
2
3

1
2 0 − 1

2




.



98 DETERMINANTS

Does it work? You should check to see if it does. When the matrices are multiplied



− 1
6

1
3

1
6

− 1
6 − 1

6
2
3

1
2 0 − 1

2







1 2 3
3 0 1
1 2 1


 =




1 0 0
0 1 0
0 0 1




and so it is correct.

Example 6.2.3 Find the inverse of the matrix,

A =




1
2 0 1

2

− 1
6

1
3 − 1

2

− 5
6

2
3 − 1

2




First find its determinant. This determinant is 1
6 . The inverse is therefore equal to

6




∣∣∣∣∣∣

1
3 − 1

2

2
3 − 1

2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

− 1
6 − 1

2

− 5
6 − 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣

− 1
6

1
3

− 5
6

2
3

∣∣∣∣∣∣

−
∣∣∣∣∣∣

0 1
2

2
3 − 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣

1
2

1
2

− 5
6 − 1

2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

1
2 0

− 5
6

2
3

∣∣∣∣∣∣
∣∣∣∣∣∣

0 1
2

1
3 − 1

2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

1
2

1
2

− 1
6 − 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣

1
2 0

− 1
6

1
3

∣∣∣∣∣∣




T

.

Expanding all the 2× 2 determinants this yields

6




1
6

1
3

1
6

1
3

1
6 − 1

3

− 1
6

1
6

1
6




T

=




1 2 −1
2 1 1
1 −2 1




Always check your work.




1 2 −1
2 1 1
1 −2 1







1
2 0 1

2

− 1
6

1
3 − 1

2

− 5
6

2
3 − 1

2




=




1 0 0
0 1 0
0 0 1




and so we got it right. If the result of multiplying these matrices had been something other
than the identity matrix, you would know there was an error. When this happens, you
need to search for the mistake if you am interested in getting the right answer. A common
mistake is to forget to take the transpose of the cofactor matrix.
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Proof of Theorem 6.2.1: From the definition of the determinant in terms of expansion
along a column, and letting (air) = A, if det (A) 6= 0,

n∑

i=1

air cof (A)ir det(A)−1 = det(A) det(A)−1 = 1.

Now consider
n∑

i=1

air cof (A)ik det(A)−1

when k 6= r. Replace the kth column with the rth column to obtain a matrix, Bk whose
determinant equals zero by Theorem 6.1.21. However, expanding this matrix, Bk along the
kth column yields

0 = det (Bk) det (A)−1 =
n∑

i=1

air cof (A)ik det (A)−1

Summarizing,
n∑

i=1

air cof (A)ik det (A)−1 = δrk ≡
{

1 if r = k
0 if r 6= k

.

Now
n∑

i=1

air cof (A)ik =
n∑

i=1

air cof (A)T
ki

which is the krth entry of cof (A)T
A. Therefore,

cof (A)T

det (A)
A = I. (6.2)

Using the other formula in Definition 6.1.13, and similar reasoning,

n∑

j=1

arj cof (A)kj det (A)−1 = δrk

Now
n∑

j=1

arj cof (A)kj =
n∑

j=1

arj cof (A)T
jk

which is the rkth entry of A cof (A)T
. Therefore,

A
cof (A)T

det (A)
= I, (6.3)

and it follows from 6.2 and 6.3 that A−1 =
(
a−1

ij

)
, where

a−1
ij = cof (A)ji det (A)−1

.

In other words,

A−1 =
cof (A)T

det (A)
.
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Now suppose A−1 exists. Then by Theorem 6.1.26,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)

so det (A) 6= 0. This proves the theorem.
This way of finding inverses is especially useful in the case where it is desired to find the

inverse of a matrix whose entries are functions.

Example 6.2.4 Suppose

A (t) =




et 0 0
0 cos t sin t
0 − sin t cos t




Show that A (t)−1 exists and then find it.

First note det (A (t)) = et 6= 0 so A (t)−1 exists. The cofactor matrix is

C (t) =




1 0 0
0 et cos t et sin t
0 −et sin t et cos t




and so the inverse is

1
et




1 0 0
0 et cos t et sin t
0 −et sin t et cos t




T

=




e−t 0 0
0 cos t − sin t
0 sin t cos t


 .

6.2.2 Cramer’s Rule

This formula for the inverse also implies a famous procedure known as Cramer’s rule.
Cramer’s rule gives a formula for the solutions, x, to a system of equations, Ax = y in the
special case that A is a square matrix. Note this rule does not apply if you have a system
of equations in which there is a different number of equations than variables.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =
n∑

j=1

a−1
ij yj =

n∑

j=1

1
det (A)

cof (A)ji yj .

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det



∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.
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Procedure 6.2.5 Suppose A is an n × n matrix and it is desired to solve the system
Ax = y,y = (y1, · · · , yn)T for x = (x1, · · · , xn)T

. Then Cramer’s rule says

xi =
detAi

detA

where Ai is obtained from A by replacing the ith column of A with the column (y1, · · · , yn)T
.

Example 6.2.6 Find x, y if



1 2 1
3 2 1
2 −3 2







x
y
z


 =




1
2
3


 .

From Cramer’s rule,

x =

∣∣∣∣∣∣

1 2 1
2 2 1
3 −3 2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1
3 2 1
2 −3 2

∣∣∣∣∣∣

=
1
2

Now to find y,

y =

∣∣∣∣∣∣

1 1 1
3 2 1
2 3 2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1
3 2 1
2 −3 2

∣∣∣∣∣∣

= −1
7

z =

∣∣∣∣∣∣

1 2 1
3 2 2
2 −3 3

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1
3 2 1
2 −3 2

∣∣∣∣∣∣

=
11
14

You see the pattern. For large systems Cramer’s rule is less than useful if you want to find
an answer. This is because to use it you must evaluate determinants. However, you have no
practical way to evaluate determinants for large matrices other than row operations and if
you are using row operations, you might just as well use them to solve the system to begin
with. It will be a lot less trouble. Nevertheless, there are situations in which Cramer’s rule
is useful.

Example 6.2.7 Solve for z if



1 0 0
0 et cos t et sin t
0 −et sin t et cos t







x
y
z


 =




1
t
t2
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You could do it by row operations but it might be easier in this case to use Cramer’s
rule because the matrix of coefficients does not consist of numbers but of functions. Thus

z =

∣∣∣∣∣∣

1 0 1
0 et cos t t
0 −et sin t t2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 0 0
0 et cos t et sin t
0 −et sin t et cos t

∣∣∣∣∣∣

= t ((cos t) t + sin t) e−t.

You end up doing this sort of thing sometimes in ordinary differential equations in the
method of variation of parameters.

6.3 Exercises

1. Find the determinants of the following matrices.

(a)




1 2 3
3 2 2
0 9 8


 (The answer is 31.)

(b)




4 3 2
1 7 8
3 −9 3


(The answer is 375.)

(c)




1 2 3 2
1 3 2 3
4 1 5 0
1 2 1 2


, (The answer is −2.)

2. Find the following determinant by expanding along the first row and second column.
∣∣∣∣∣∣

1 2 1
2 1 3
2 1 1

∣∣∣∣∣∣

3. Find the following determinant by expanding along the first column and third row.
∣∣∣∣∣∣

1 2 1
1 0 1
2 1 1

∣∣∣∣∣∣

4. Find the following determinant by expanding along the second row and first column.
∣∣∣∣∣∣

1 2 1
2 1 3
2 1 1

∣∣∣∣∣∣

5. Compute the determinant by cofactor expansion. Pick the easiest row or column to
use. ∣∣∣∣∣∣∣∣

1 0 0 1
2 1 1 0
0 0 0 2
2 1 3 1

∣∣∣∣∣∣∣∣
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6. Find the determinant using row operations.
∣∣∣∣∣∣

1 2 1
2 3 2
−4 1 2

∣∣∣∣∣∣

7. Find the determinant using row operations.
∣∣∣∣∣∣

2 1 3
2 4 2
1 4 −5

∣∣∣∣∣∣

8. Find the determinant using row operations.
∣∣∣∣∣∣∣∣

1 2 1 2
3 1 −2 3
−1 0 3 1
2 3 2 −2

∣∣∣∣∣∣∣∣

9. Find the determinant using row operations.
∣∣∣∣∣∣∣∣

1 4 1 2
3 2 −2 3
−1 0 3 3
2 1 2 −2

∣∣∣∣∣∣∣∣

10. Verify an example of each property of determinants found in Theorems 6.1.23 - 6.1.25
for 2× 2 matrices.

11. An operation is done to get from the first matrix to the second. Identify what was
done and tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
a c
b d

)

12. An operation is done to get from the first matrix to the second. Identify what was
done and tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
c d
a b

)

13. An operation is done to get from the first matrix to the second. Identify what was
done and tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
a b

a + c b + d

)

14. An operation is done to get from the first matrix to the second. Identify what was
done and tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
a b
2c 2d

)
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15. An operation is done to get from the first matrix to the second. Identify what was
done and tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
b a
d c

)

16. Let A be an r×r matrix and suppose there are r−1 rows (columns) such that all rows
(columns) are linear combinations of these r − 1 rows (columns). Show det (A) = 0.

17. Show det (aA) = an det (A) where here A is an n× n matrix and a is a scalar.

18. Prove by doing computations that det (AB) = det (A) det (B) if A and B are 2 × 2
matrices.

19. Illustrate with an example of 2× 2 matrices that the determinant of a product equals
the product of the determinants.

20. Is it true that det (A + B) = det (A) + det (B)? If this is so, explain why it is so and
if it is not so, give a counter example.

21. An n×n matrix is called nilpotent if for some positive integer, k it follows Ak = 0. If
A is a nilpotent matrix and k is the smallest possible integer such that Ak = 0, what
are the possible values of det (A)?

22. A matrix is said to be orthogonal if AT A = I. Thus the inverse of an orthogonal ma-
trix is just its transpose. What are the possible values of det (A) if A is an orthogonal
matrix?

23. Fill in the missing entries to make the matrix orthogonal as in Problem 22.



−1√
2

1√
6

√
12
6

1√
2 √

6
3




.

24. Let A and B be two n×n matrices. A ∼ B (A is similar to B) means there exists an
invertible matrix, S such that A = S−1BS. Show that if A ∼ B, then B ∼ A. Show
also that A ∼ A and that if A ∼ B and B ∼ C, then A ∼ C.

25. In the context of Problem 24 show that if A ∼ B, then det (A) = det (B) .

26. Two n × n matrices, A and B, are similar if B = S−1AS for some invertible n × n
matrix, S. Show that if two matrices are similar, they have the same characteristic
polynomials. The characteristic polynomial of an n× n matrix, M is the polynomial,
det (λI −M) .

27. Tell whether the statement is true or false.

(a) If A is a 3×3 matrix with a zero determinant, then one column must be a multiple
of some other column.

(b) If any two columns of a square matrix are equal, then the determinant of the
matrix equals zero.

(c) For A and B two n× n matrices, det (A + B) = det (A) + det (B) .
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(d) For A an n× n matrix, det (3A) = 3 det (A)

(e) If A−1 exists then det
(
A−1

)
= det (A)−1

.

(f) If B is obtained by multiplying a single row of A by 4 then det (B) = 4 det (A) .

(g) For A an n× n matrix, det (−A) = (−1)n det (A) .

(h) If A is a real n× n matrix, then det
(
AT A

) ≥ 0.

(i) Cramer’s rule is useful for finding solutions to systems of linear equations in which
there is an infinite set of solutions.

(j) If Ak = 0 for some positive integer, k, then det (A) = 0.

(k) If Ax = 0 for some x 6= 0, then det (A) = 0.

28. Use Cramer’s rule to find the solution to

x + 2y = 1
2x− y = 2

29. Use Cramer’s rule to find the solution to

x + 2y + z = 1
2x− y − z = 2

x + z = 1

30. Here is a matrix, 


1 2 3
0 2 1
3 1 0




Determine whether the matrix has an inverse by finding whether the determinant is
non zero. If the determinant is nonzero, find the inverse using the formula for the
inverse which involves the cofactor matrix.

31. Here is a matrix, 


1 2 0
0 2 1
3 1 1




Determine whether the matrix has an inverse by finding whether the determinant is
non zero. If the determinant is nonzero, find the inverse using the formula for the
inverse which involves the cofactor matrix.

32. Here is a matrix, 


1 3 3
2 4 1
0 1 1




Determine whether the matrix has an inverse by finding whether the determinant is
non zero. If the determinant is nonzero, find the inverse using the formula for the
inverse which involves the cofactor matrix.

33. Here is a matrix, 


1 2 3
0 2 1
2 6 7




Determine whether the matrix has an inverse by finding whether the determinant is
non zero. If the determinant is nonzero, find the inverse using the formula for the
inverse which involves the cofactor matrix.



106 DETERMINANTS

34. Here is a matrix, 


1 0 3
1 0 1
3 1 0




Determine whether the matrix has an inverse by finding whether the determinant is
non zero. If the determinant is nonzero, find the inverse using the formula for the
inverse which involves the cofactor matrix.

35. Use the formula for the inverse in terms of the cofactor matrix to find if possible the
inverses of the matrices

(
1 1
1 2

)
,




1 2 3
0 2 1
4 1 1


 ,




1 2 1
2 3 0
0 1 2


 .

If the inverse does not exist, explain why.

36. Here is a matrix, 


1 0 0
0 cos t − sin t
0 sin t cos t




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

37. Here is a matrix, 


1 t t2

0 1 2t
t 0 2




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

38. Here is a matrix, 


et cosh t sinh t
et sinh t cosh t
et cosh t sinh t




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

39. Show that if det (A) 6= 0 for A an n× n matrix, it follows that if Ax = 0, then x = 0.

40. Suppose A,B are n × n matrices and that AB = I. Show that then BA = I. Hint:
You might do something like this: First explain why det (A) , det (B) are both nonzero.
Then (AB) A = A and then show BA (BA− I) = 0. From this use what is given to
conclude A (BA− I) = 0. Then use Problem 39.

41. Use the formula for the inverse in terms of the cofactor matrix to find the inverse of
the matrix,

A =




et 0 0
0 et cos t et sin t
0 et cos t− et sin t et cos t + et sin t


 .

42. Find the inverse if it exists of the matrix,



et cos t sin t
et − sin t cos t
et − cos t − sin t


 .
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43. Here is a matrix,



et e−t cos t e−t sin t
et −e−t cos t− e−t sin t −e−t sin t + e−t cos t
et 2e−t sin t −2e−t cos t




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

44. Suppose A is an upper triangular matrix. Show that A−1 exists if and only if all
elements of the main diagonal are non zero. Is it true that A−1 will also be upper
triangular? Explain. Is everything the same for lower triangular matrices?

45. If A,B, and C are each n× n matrices and ABC is invertible, why are each of A,B,
and C invertible.

46. Let F (t) = det
(

a (t) b (t)
c (t) d (t)

)
. Verify

F ′ (t) = det
(

a′ (t) b′ (t)
c (t) d (t)

)
+ det

(
a (t) b (t)
c′ (t) d′ (t)

)
.

Now suppose

F (t) = det




a (t) b (t) c (t)
d (t) e (t) f (t)
g (t) h (t) i (t)


 .

Use Laplace expansion and the first part to verify F ′ (t) =

det




a′ (t) b′ (t) c′ (t)
d (t) e (t) f (t)
g (t) h (t) i (t)


 + det




a (t) b (t) c (t)
d′ (t) e′ (t) f ′ (t)
g (t) h (t) i (t)




+ det




a (t) b (t) c (t)
d (t) e (t) f (t)
g′ (t) h′ (t) i′ (t)


 .

Conjecture a general result valid for n × n matrices and explain why it will be true.
Can a similar thing be done with the columns?

47. Let Ly = y(n) + an−1 (x) y(n−1) + · · · + a1 (x) y′ + a0 (x) y where the ai are given
continuous functions defined on a closed interval, (a, b) and y is some function which
has n derivatives so it makes sense to write Ly. Suppose Lyk = 0 for k = 1, 2, · · · , n.
The Wronskian of these functions, yi is defined as

W (y1, · · · , yn) (x) ≡ det




y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y
(n−1)
1 (x) · · · y

(n−1)
n (x)




Show that for W (x) = W (y1, · · · , yn) (x) to save space,

W ′ (x) = det




y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y
(n)
1 (x) · · · y

(n)
n (x)


 .
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Now use the differential equation, Ly = 0 which is satisfied by each of these functions,
yi and properties of determinants presented above to verify that W ′+an−1 (x)W = 0.
Give an explicit solution of this linear differential equation, Abel’s formula, and use
your answer to verify that the Wronskian of these solutions to the equation, Ly = 0
either vanishes identically on (a, b) or never. Hint: To solve the differential equation,
let A′ (x) = an−1 (x) and multiply both sides of the differential equation by eA(x) and
then argue the left side is the derivative of something.

6.4 Exercises With Answers

1. Find the following determinant by expanding along the second column.
∣∣∣∣∣∣

1 3 1
2 1 5
2 1 1

∣∣∣∣∣∣

This is

3 (−1)2+1

∣∣∣∣
2 5
2 1

∣∣∣∣ + 1 (−1)1+1

∣∣∣∣
1 1
2 1

∣∣∣∣ + 1 (−1)3+2

∣∣∣∣
1 1
2 5

∣∣∣∣ = 20.

2. Compute the determinant by cofactor expansion. Pick the easiest row or column to
use. ∣∣∣∣∣∣∣∣

2 0 0 1
2 1 1 0
0 0 0 3
2 3 3 1

∣∣∣∣∣∣∣∣
You ought to use the third row. This yields

3

∣∣∣∣∣∣

2 0 0
2 1 1
2 3 3

∣∣∣∣∣∣
= (3) (2)

∣∣∣∣
1 1
3 3

∣∣∣∣ = 0.

3. Find the determinant using row and column operations.
∣∣∣∣∣∣∣∣

5 4 3 2
3 2 4 3
−1 2 3 3
2 1 2 −2

∣∣∣∣∣∣∣∣

Replace the first row by 5 times the third added to it and then replace the second by
3 times the third added to it and then the last by 2 times the third added to it. This
yields ∣∣∣∣∣∣∣∣

0 14 18 17
0 8 13 12
−1 2 3 3
0 5 8 4

∣∣∣∣∣∣∣∣
Now lets replace the third column by −1 times the last column added to it.

∣∣∣∣∣∣∣∣

0 14 1 17
0 8 1 12
−1 2 0 3
0 5 4 4

∣∣∣∣∣∣∣∣
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Now replace the top row by −1 times the second added to it and the bottom row by
−4 times the second added to it. This yields

∣∣∣∣∣∣∣∣

0 6 0 5
0 8 1 12
−1 2 0 3
0 −27 0 −44

∣∣∣∣∣∣∣∣
. (6.4)

This looks pretty good because it has a lot of zeros. Expand along the first column
and next along the second,

(−1)

∣∣∣∣∣∣

6 0 5
8 1 12
−27 0 −44

∣∣∣∣∣∣
= (−1) (1)

∣∣∣∣
6 5
−27 −44

∣∣∣∣ = 129.

Alternatively, you could continue doing row and column operations. Switch the third
and first row in 6.4 to obtain

−

∣∣∣∣∣∣∣∣

−1 2 0 3
0 8 1 12
0 6 0 5
0 −27 0 −44

∣∣∣∣∣∣∣∣

Next take 9/2 times the third row and add to the bottom.

−

∣∣∣∣∣∣∣∣

−1 2 0 3
0 8 1 12
0 6 0 5
0 0 0 −44 + (9/2) 5

∣∣∣∣∣∣∣∣
.

Finally, take −6/8 times the second row and add to the third.

−

∣∣∣∣∣∣∣∣

−1 2 0 3
0 8 1 12
0 0 −6/8 5 + (−6/8) (12)
0 0 0 −44 + (9/2) 5

∣∣∣∣∣∣∣∣
.

Therefore, since the matrix is now upper triangular, the determinant is

− ((−1) (8) (−6/8) (−44 + (9/2) 5)) = 129.

4. An operation is done to get from the first matrix to the second. Identify what was
done and tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
a c
b d

)

This involved taking the transpose so the determinant of the new matrix is the same
as the determinant of the first matrix.

5. Show that for A a 2× 2 matrix det (aA) = a2 det (A) where a is a scalar.

a2 det (A) = a det (A1) where the first row of A is replaced by a times it to get A1.
Then a det (A1) = A2 where A2 is obtained from A by multiplying both rows by a. In
other words, A2 = aA. Thus the conclusion is established.
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6. Use Cramer’s rule to find y in

2x + 2y + z = 3
2x− y − z = 2

x + 2z = 1

From Cramer’s rule,

y =

∣∣∣∣∣∣

2 3 1
2 2 −1
1 1 2

∣∣∣∣∣∣
∣∣∣∣∣∣

2 2 1
2 −1 −1
1 0 2

∣∣∣∣∣∣

=
5
13

.

7. Here is a matrix,



et e−t cos t e−t sin t
et −e−t cos t− e−t sin t −e−t sin t + e−t cos t
et 2e−t sin t −2e−t cos t




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

det




et e−t cos t e−t sin t
et −e−t cos t− e−t sin t −e−t sin t + e−t cos t
et 2e−t sin t −2e−t cos t




= 5ete2(−t) cos2 t + 5ete2(−t) sin2 t = 5e−t which is never equal to zero for any value of
t and so there is no value of t for which the matrix has no inverse.

8. Use the formula for the inverse in terms of the cofactor matrix to find if possible the
inverse of the matrix 


1 2 3
0 6 1
4 1 1


 .

First you need to take the determinant

det




1 2 3
0 6 1
4 1 1


 = −59

and so the matrix has an inverse. Now you need to find the cofactor matrix.



∣∣∣∣
6 1
1 1

∣∣∣∣ −
∣∣∣∣

0 1
4 1

∣∣∣∣
∣∣∣∣

0 6
4 1

∣∣∣∣
−

∣∣∣∣
2 3
1 1

∣∣∣∣
∣∣∣∣

1 3
4 1

∣∣∣∣ −
∣∣∣∣

1 2
4 1

∣∣∣∣∣∣∣∣
2 3
6 1

∣∣∣∣ −
∣∣∣∣

1 3
0 1

∣∣∣∣
∣∣∣∣

1 2
0 6

∣∣∣∣




=




5 4 −24
1 −11 7
−16 −1 6


 .
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Thus the inverse is

1
−59




5 4 −24
1 −11 7
−16 −1 6




T

=
1
−59




5 1 −16
4 −11 −1
−24 7 6


 .

If you check this, it does work.

6.5 The Mathematical Theory Of Determinants∗

This material is definitely not for the faint of heart. It is only for people who want
to see everything proved. It is a fairly complete and unusually elementary treatment of
the subject. There will be some repetition between this section and the earlier section on
determinants. The main purpose is to give all the missing proofs. Two books which give
a good introduction to determinants are Apostol [1] and Rudin [11]. A recent book which
also has a good introduction is Baker [2]. Most linear algebra books do not do an honest
job presenting this topic.

It is easiest to give a different definition of the determinant which is clearly well defined
and then prove the earlier one in terms of Laplace expansion. Let (i1, · · · , in) be an ordered
list of numbers from {1, · · · , n} . This means the order is important so (1, 2, 3) and (2, 1, 3)
are different.

The following Lemma will be essential in the definition of the determinant.

Lemma 6.5.1 There exists a unique function, sgnn which maps each list of numbers from
{1, · · · , n} to one of the three numbers, 0, 1, or −1 which also has the following properties.

sgnn (1, · · · , n) = 1 (6.5)

sgnn (i1, · · · , p, · · · , q, · · · , in) = − sgnn (i1, · · · , q, · · · , p, · · · , in) (6.6)

In words, the second property states that if two of the numbers are switched, the value of the
function is multiplied by −1. Also, in the case where n > 1 and {i1, · · · , in} = {1, · · · , n} so
that every number from {1, · · · , n} appears in the ordered list, (i1, · · · , in) ,

sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) ≡

(−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) (6.7)

where n = iθ in the ordered list, (i1, · · · , in) .
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Proof: To begin with, it is necessary to show the existence of such a function. This
is clearly true if n = 1. Define sgn1 (1) ≡ 1 and observe that it works. No switching
is possible. In the case where n = 2, it is also clearly true. Let sgn2 (1, 2) = 1 and
sgn2 (2, 1) = 0 while sgn2 (2, 2) = sgn2 (1, 1) = 0 and verify it works. Assuming such a
function exists for n, sgnn+1 will be defined in terms of sgnn . If there are any repeated
numbers in (i1, · · · , in+1) , sgnn+1 (i1, · · · , in+1) ≡ 0. If there are no repeats, then n + 1
appears somewhere in the ordered list. Let θ be the position of the number n+1 in the list.
Thus, the list is of the form (i1, · · · , iθ−1, n + 1, iθ+1, · · · , in+1) . From 6.7 it must be that

sgnn+1 (i1, · · · , iθ−1, n + 1, iθ+1, · · · , in+1) ≡

(−1)n+1−θ sgnn (i1, · · · , iθ−1, iθ+1, · · · , in+1) .

It is necessary to verify this satisfies 6.5 and 6.6 with n replaced with n + 1. The first of
these is obviously true because

sgnn+1 (1, · · · , n, n + 1) ≡ (−1)n+1−(n+1) sgnn (1, · · · , n) = 1.

If there are repeated numbers in (i1, · · · , in+1) , then it is obvious 6.6 holds because both
sides would equal zero from the above definition. It remains to verify 6.6 in the case where
there are no numbers repeated in (i1, · · · , in+1) . Consider

sgnn+1

(
i1, · · · ,

r
p, · · · ,

s
q, · · · , in+1

)
,

where the r above the p indicates the number, p is in the rth position and the s above the
q indicates that the number, q is in the sth position. Suppose first that r < θ < s. Then

sgnn+1

(
i1, · · · ,

r
p, · · · ,

θ
n + 1, · · · ,

s
q, · · · , in+1

)
≡

(−1)n+1−θ sgnn

(
i1, · · · ,

r
p, · · · ,

s−1
q , · · · , in+1

)

while

sgnn+1

(
i1, · · · ,

r
q, · · · ,

θ
n + 1, · · · ,

s
p, · · · , in+1

)
=

(−1)n+1−θ sgnn

(
i1, · · · ,

r
q, · · · ,

s−1
p , · · · , in+1

)

and so, by induction, a switch of p and q introduces a minus sign in the result. Similarly, if
θ > s or if θ < r it also follows that 6.6 holds. The interesting case is when θ = r or θ = s.
Consider the case where θ = r and note the other case is entirely similar.

sgnn+1

(
i1, · · · ,

r
n + 1, · · · ,

s
q, · · · , in+1

)
=

(−1)n+1−r sgnn

(
i1, · · · ,

s−1
q , · · · , in+1

)
(6.8)

while
sgnn+1

(
i1, · · · ,

r
q, · · · ,

s
n + 1, · · · , in+1

)
=

(−1)n+1−s sgnn

(
i1, · · · ,

r
q, · · · , in+1

)
. (6.9)

By making s− 1− r switches, move the q which is in the s− 1th position in 6.8 to the rth

position in 6.9. By induction, each of these switches introduces a factor of −1 and so

sgnn

(
i1, · · · ,

s−1
q , · · · , in+1

)
= (−1)s−1−r sgnn

(
i1, · · · ,

r
q, · · · , in+1

)
.
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Therefore,

sgnn+1

(
i1, · · · ,

r
n + 1, · · · ,

s
q, · · · , in+1

)
= (−1)n+1−r sgnn

(
i1, · · · ,

s−1
q , · · · , in+1

)

= (−1)n+1−r (−1)s−1−r sgnn

(
i1, · · · ,

r
q, · · · , in+1

)

= (−1)n+s sgnn

(
i1, · · · ,

r
q, · · · , in+1

)
= (−1)2s−1 (−1)n+1−s sgnn

(
i1, · · · ,

r
q, · · · , in+1

)

= − sgnn+1

(
i1, · · · ,

r
q, · · · ,

s
n + 1, · · · , in+1

)
.

This proves the existence of the desired function.
To see this function is unique, note that you can obtain any ordered list of distinct

numbers from a sequence of switches. If there exist two functions, f and g both satisfying
6.5 and 6.6, you could start with f (1, · · · , n) = g (1, · · · , n) and applying the same sequence
of switches, eventually arrive at f (i1, · · · , in) = g (i1, · · · , in) . If any numbers are repeated,
then 6.6 gives both functions are equal to zero for that ordered list. This proves the lemma.

In what follows sgn will often be used rather than sgnn because the context supplies the
appropriate n.

Definition 6.5.2 Let f be a real valued function which has the set of ordered lists of numbers
from {1, · · · , n} as its domain. Define

∑

(k1,··· ,kn)

f (k1 · · · kn)

to be the sum of all the f (k1 · · · kn) for all possible choices of ordered lists (k1, · · · , kn) of
numbers of {1, · · · , n} . For example,

∑

(k1,k2)

f (k1, k2) = f (1, 2) + f (2, 1) + f (1, 1) + f (2, 2) .

Definition 6.5.3 Let (aij) = A denote an n × n matrix. The determinant of A, denoted
by det (A) is defined by

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1 · · · ankn

where the sum is taken over all ordered lists of numbers from {1, · · · , n}. Note it suffices to
take the sum over only those ordered lists in which there are no repeats because if there are,
sgn (k1, · · · , kn) = 0 and so that term contributes 0 to the sum.

Let A be an n × n matrix, A = (aij) and let (r1, · · · , rn) denote an ordered list of n
numbers from {1, · · · , n}. Let A (r1, · · · , rn) denote the matrix whose kth row is the rk row
of the matrix, A. Thus

det (A (r1, · · · , rn)) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1 · · · arnkn (6.10)

and
A (1, · · · , n) = A.
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Proposition 6.5.4 Let
(r1, · · · , rn)

be an ordered list of numbers from {1, · · · , n}. Then

sgn (r1, · · · , rn) det (A)

=
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1 · · · arnkn
(6.11)

= det (A (r1, · · · , rn)) . (6.12)

Proof: Let (1, · · · , n) = (1, · · · , r, · · · s, · · · , n) so r < s.

det (A (1, · · · , r, · · · , s, · · · , n)) = (6.13)

∑

(k1,··· ,kn)

sgn (k1, · · · , kr, · · · , ks, · · · , kn) a1k1 · · · arkr
· · · asks

· · · ankn
,

and renaming the variables, calling ks, kr and kr, ks, this equals

=
∑

(k1,··· ,kn)

sgn (k1, · · · , ks, · · · , kr, · · · , kn) a1k1 · · · arks · · · askr · · · ankn

=
∑

(k1,··· ,kn)

− sgn


k1, · · · ,

These got switched︷ ︸︸ ︷
kr, · · · , ks , · · · , kn


 a1k1 · · · askr · · · arks · · · ankn

= − det (A (1, · · · , s, · · · , r, · · · , n)) . (6.14)

Consequently,
det (A (1, · · · , s, · · · , r, · · · , n)) =

− det (A (1, · · · , r, · · · , s, · · · , n)) = − det (A)

Now letting A (1, · · · , s, · · · , r, · · · , n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det (A (r1, · · · , rn)) = (−1)p det (A)

where it took p switches to obtain(r1, · · · , rn) from (1, · · · , n). By Lemma 6.5.1, this implies

det (A (r1, · · · , rn)) = (−1)p det (A) = sgn (r1, · · · , rn) det (A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · · , rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 6.13 -6.14 shows that A (r1, · · · , rn) = 0 and also sgn (r1, · · · , rn) = 0 so the
formula holds in this case also.

Observation 6.5.5 There are n! ordered lists of distinct numbers from {1, · · · , n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n− 1 choices for the second. Thus there are n (n− 1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · , n} as
stated in the observation.

With the above, it is possible to give a more symmetric description of the determinant
from which it will follow that det (A) = det

(
AT

)
.
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Corollary 6.5.6 The following formula for det (A) is valid.

det (A) =
1
n!
·

∑

(r1,··· ,rn)

∑

(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1 · · · arnkn
. (6.15)

And also det
(
AT

)
= det (A) where AT is the transpose of A. (Recall that for AT =

(
aT

ij

)
,

aT
ij = aji.)

Proof: From Proposition 6.5.4, if the ri are distinct,

det (A) =
∑

(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1 · · · arnkn .

Summing over all ordered lists, (r1, · · · , rn) where the ri are distinct, (If the ri are not
distinct, sgn (r1, · · · , rn) = 0 and so there is no contribution to the sum.)

n! det (A) =
∑

(r1,··· ,rn)

∑

(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1 · · · arnkn .

This proves the corollary since the formula gives the same number for A as it does for AT .

Corollary 6.5.7 If two rows or two columns in an n × n matrix, A, are switched, the
determinant of the resulting matrix equals (−1) times the determinant of the original matrix.
If A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = xdet (A1) + y det (A2)

where the ith row of A1 is (a1, · · · , an) and the ith row of A2 is (b1, · · · , bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”.

Proof: By Proposition 6.5.4 when two rows are switched, the determinant of the re-
sulting matrix is (−1) times the determinant of the original matrix. By Corollary 6.5.6 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A1 is the matrix obtained from A by switching two columns,

det (A) = det
(
AT

)
= − det

(
AT

1

)
= − det (A1) .

If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det (A) = −det (A) and so det (A) = 0.

It remains to verify the last assertion.

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1 · · · (xaki + ybki) · · · ankn

= x
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1 · · · aki · · · ankn

+y
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1 · · · bki · · · ankn

≡ xdet (A1) + y det (A2) .

The same is true of columns because det
(
AT

)
= det (A) and the rows of AT are the columns

of A.
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Definition 6.5.8 A vector, w, is a linear combination of the vectors {v1, · · · ,vr} if there
exists scalars, c1, · · · cr such that w =

∑r
k=1 ckvk. This is the same as saying

w ∈ span {v1, · · · ,vr} .

The following corollary is also of great use.

Corollary 6.5.9 Suppose A is an n× n matrix and some column (row) is a linear combi-
nation of r other columns (rows). Then det (A) = 0.

Proof: Let A =
(

a1 · · · an

)
be the columns of A and suppose the condition that

one column is a linear combination of r of the others is satisfied. Then by using Corollary
6.5.7 you may rearrange the columns to have the nth column a linear combination of the
first r columns. Thus an =

∑r
k=1 ckak and so

det (A) = det
(

a1 · · · ar · · · an−1

∑r
k=1 ckak

)
.

By Corollary 6.5.7

det (A) =
r∑

k=1

ck det
(

a1 · · · ar · · · an−1 ak

)
= 0.

The case for rows follows from the fact that det (A) = det
(
AT

)
. This proves the corollary.

Recall the following definition of matrix multiplication.

Definition 6.5.10 If A and B are n × n matrices, A = (aij) and B = (bij), AB = (cij)
where

cij ≡
n∑

k=1

aikbkj .

One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.

Theorem 6.5.11 Let A and B be n× n matrices. Then

det (AB) = det (A) det (B) .

Proof: Let cij be the ijth entry of AB. Then by Proposition 6.5.4,

det (AB) =

∑

(k1,··· ,kn)

sgn (k1, · · · , kn) c1k1 · · · cnkn

=
∑

(k1,··· ,kn)

sgn (k1, · · · , kn)

(∑
r1

a1r1br1k1

)
· · ·

(∑
rn

anrnbrnkn

)

=
∑

(r1··· ,rn)

∑

(k1,··· ,kn)

sgn (k1, · · · , kn) br1k1 · · · brnkn (a1r1 · · · anrn)

=
∑

(r1··· ,rn)

sgn (r1 · · · rn) a1r1 · · · anrn det (B) = det (A) det (B) .

This proves the theorem.
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Lemma 6.5.12 Suppose a matrix is of the form

M =
(

A ∗
0 a

)
(6.16)

or

M =
(

A 0
∗ a

)
(6.17)

where a is a number and A is an (n− 1) × (n− 1) matrix and ∗ denotes either a column
or a row having length n − 1 and the 0 denotes either a column or a row of length n − 1
consisting entirely of zeros. Then

det (M) = adet (A) .

Proof: Denote M by (mij) . Thus in the first case, mnn = a and mni = 0 if i 6= n while
in the second case, mnn = a and min = 0 if i 6= n. From the definition of the determinant,

det (M) ≡
∑

(k1,··· ,kn)

sgnn (k1, · · · , kn) m1k1 · · ·mnkn

Letting θ denote the position of n in the ordered list, (k1, · · · , kn) then using the earlier
conventions used to prove Lemma 6.5.1, det (M) equals

∑

(k1,··· ,kn)

(−1)n−θ sgnn−1

(
k1, · · · , kθ−1,

θ

kθ+1, · · · ,
n−1

kn

)
m1k1 · · ·mnkn

Now suppose 6.17. Then if kn 6= n, the term involving mnkn
in the above expression equals

zero. Therefore, the only terms which survive are those for which θ = n or in other words,
those for which kn = n. Therefore, the above expression reduces to

a
∑

(k1,··· ,kn−1)

sgnn−1 (k1, · · · kn−1) m1k1 · · ·m(n−1)kn−1 = adet (A) .

To get the assertion in the situation of 6.16 use Corollary 6.5.6 and 6.17 to write

det (M) = det
(
MT

)
= det

((
AT 0
∗ a

))
= a det

(
AT

)
= a det (A) .

This proves the lemma.
In terms of the theory of determinants, arguably the most important idea is that of

Laplace expansion along a row or a column. This will follow from the above definition of a
determinant.

Definition 6.5.13 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor
matrix, cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the
jth column of A, take the determinant of the (n− 1)× (n− 1) matrix which results, (This
is called the ijth minor of A. ) and then multiply this number by (−1)i+j. To make the
formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outrageous
totally unjustified assertion was made that the same number would be obtained by expanding
the determinant along any row or column. The following theorem proves this assertion.
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Theorem 6.5.14 Let A be an n× n matrix where n ≥ 2. Then

det (A) =
n∑

j=1

aij cof (A)ij =
n∑

i=1

aij cof (A)ij . (6.18)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · · , ain) be the ith row of A. Let Bj be the matrix obtained from A by
leaving every row the same except the ith row which in Bj equals (0, · · · , 0, aij , 0, · · · , 0) .
Then by Corollary 6.5.7,

det (A) =
n∑

j=1

det (Bj)

Denote by Aij the (n− 1) × (n− 1) matrix obtained by deleting the ith row and the jth

column of A. Thus cof (A)ij ≡ (−1)i+j det
(
Aij

)
. At this point, recall that from Proposition

6.5.4, when two rows or two columns in a matrix, M, are switched, this results in multiplying
the determinant of the old matrix by−1 to get the determinant of the new matrix. Therefore,
by Lemma 6.5.12,

det (Bj) = (−1)n−j (−1)n−i det
((

Aij ∗
0 aij

))

= (−1)i+j det
((

Aij ∗
0 aij

))
= aij cof (A)ij .

Therefore,

det (A) =
n∑

j=1

aij cof (A)ij

which is the formula for expanding det (A) along the ith row. Also,

det (A) = det
(
AT

)
=

n∑

j=1

aT
ij cof

(
AT

)
ij

=
n∑

j=1

aji cof (A)ji

which is the formula for expanding det (A) along the ith column. This proves the theorem.
Note that this gives an easy way to write a formula for the inverse of an n× n matrix.

Theorem 6.5.15 A−1 exists if and only if det(A) 6= 0. If det(A) 6= 0, then A−1 =
(
a−1

ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Proof: By Theorem 6.5.14 and letting (air) = A, if det (A) 6= 0,

n∑

i=1

air cof (A)ir det(A)−1 = det(A) det(A)−1 = 1.
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Now consider
n∑

i=1

air cof (A)ik det(A)−1

when k 6= r. Replace the kth column with the rth column to obtain a matrix, Bk whose
determinant equals zero by Corollary 6.5.7. However, expanding this matrix along the kth

column yields

0 = det (Bk) det (A)−1 =
n∑

i=1

air cof (A)ik det (A)−1

Summarizing,
n∑

i=1

air cof (A)ik det (A)−1 = δrk.

Using the other formula in Theorem 6.5.14, and similar reasoning,

n∑

j=1

arj cof (A)kj det (A)−1 = δrk

This proves that if det (A) 6= 0, then A−1 exists with A−1 =
(
a−1

ij

)
, where

a−1
ij = cof (A)ji det (A)−1

.

Now suppose A−1 exists. Then by Theorem 6.5.11,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)

so det (A) 6= 0. This proves the theorem.
The next corollary points out that if an n × n matrix, A has a right or a left inverse,

then it has an inverse.

Corollary 6.5.16 Let A be an n × n matrix and suppose there exists an n × n matrix, B
such that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n× n matrix
such that AC = I, then A−1 exists and A−1 = C.

Proof: Since BA = I, Theorem 6.5.11 implies

detB detA = 1

and so det A 6= 0. Therefore from Theorem 6.5.15, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1

)
= BI = B.

The case where CA = I is handled similarly.
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n× n matrices.
Theorem 6.5.15 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y
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thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =
n∑

j=1

a−1
ij yj =

n∑

j=1

1
det (A)

cof (A)ji yj .

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det



∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.

Definition 6.5.17 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii as shown.




∗ ∗ · · · ∗
0 ∗ . . .

...
...

. . . . . . ∗
0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

With this definition, here is a simple corollary of Theorem 6.5.14.

Corollary 6.5.18 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

6.6 The Cayley Hamilton Theorem∗

Definition 6.6.1 Let A be an n× n matrix. The characteristic polynomial is defined as

pA (t) ≡ det (tI −A)

and the solutions to pA (t) = 0 are called eigenvalues. For A a matrix and p (t) = tn +
an−1t

n−1 + · · ·+ a1t + a0, denote by p (A) the matrix defined by

p (A) ≡ An + an−1A
n−1 + · · ·+ a1A + a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by PA (t) = 0. It is one of the most important theorems in linear
algebra1. The following lemma will help with its proof.

1A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some
time later and a proof was given by Frobenius in 1878.
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Lemma 6.6.2 Suppose for all |λ| large enough,

A0 + A1λ + · · ·+ Amλm = 0,

where the Ai are n× n matrices. Then each Ai = 0.

Proof: Multiply by λ−m to obtain

A0λ
−m + A1λ

−m+1 + · · ·+ Am−1λ
−1 + Am = 0.

Now let |λ| → ∞ to obtain Am = 0. With this, multiply by λ to obtain

A0λ
−m+1 + A1λ

−m+2 + · · ·+ Am−1 = 0.

Now let |λ| → ∞ to obtain Am−1 = 0. Continue multiplying by λ and letting λ → ∞ to
obtain that all the Ai = 0. This proves the lemma.

With the lemma, here is a simple corollary.

Corollary 6.6.3 Let Ai and Bi be n× n matrices and suppose

A0 + A1λ + · · ·+ Amλm = B0 + B1λ + · · ·+ Bmλm

for all |λ| large enough. Then Ai = Bi for all i. Consequently if λ is replaced by any n× n
matrix, the two sides will be equal. That is, for C any n× n matrix,

A0 + A1C + · · ·+ AmCm = B0 + B1C + · · ·+ BmCm.

Proof: Subtract and use the result of the lemma.
With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 6.6.4 Let A be an n×n matrix and let p (λ) ≡ det (λI −A) be the characteristic
polynomial. Then p (A) = 0.

Proof: Let C (λ) equal the transpose of the cofactor matrix of (λI −A) for |λ| large.
(If |λ| is large enough, then λ cannot be in the finite list of eigenvalues of A and so for such
λ, (λI −A)−1 exists.) Therefore, by Theorem 6.5.15

C (λ) = p (λ) (λI −A)−1
.

Note that each entry in C (λ) is a polynomial in λ having degree no more than n − 1.
Therefore, collecting the terms,

C (λ) = C0 + C1λ + · · ·+ Cn−1λ
n−1

for Cj some n× n matrix. It follows that for all |λ| large enough,

(λI −A)
(
C0 + C1λ + · · ·+ Cn−1λ

n−1
)

= p (λ) I

and so Corollary 6.6.3 may be used. It follows the matrix coefficients corresponding to equal
powers of λ are equal on both sides of this equation. Therefore, if λ is replaced with A, the
two sides will be equal. Thus

0 = (A−A)
(
C0 + C1A + · · ·+ Cn−1A

n−1
)

= p (A) I = p (A) .

This proves the Cayley Hamilton theorem.
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Rank Of A Matrix

7.0.1 Outcomes

A. Recognize and find the row reduced echelon form of a matrix.

B. Determine the rank of a matrix.

C. Describe the row space, column space and null space of a matrix.

D. Define the span of a set of vectors. Recall that a span of vectors in a vector space is
a subspace.

E. Determine whether a set of vectors is a subspace.

F. Define linear independence.

G. Determine whether a set of vectors is linearly independent or linearly dependent.

H. Determine a basis and the dimension of a vector space.

I. Characterize the solution set to a matrix equation using rank.

J. Argue that a homogeneous linear system always has a solution and find the solutions.

K. Understand and use the Fredholm alternative.

7.1 Elementary Matrices

The elementary matrices result from doing a row operation to the identity matrix.

Definition 7.1.1 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

The elementary matrices are given in the following definition.

Definition 7.1.2 The elementary matrices consist of those matrices which result by apply-
ing a row operation to an identity matrix. Those which involve switching rows of the identity
are called permutation matrices1.

1More generally, a permutation matrix is a matrix which comes by permuting the rows of the identity
matrix, not just switching two rows.

123
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As an example of why these elementary matrices are interesting, consider the following.




0 1 0
1 0 0
0 0 1







a b c d
x y z w
f g h i


 =




x y z w
a b c d
f g h i




A 3×4 matrix was multiplied on the left by an elementary matrix which was obtained from
row operation 1 applied to the identity matrix. This resulted in applying the operation 1
to the given matrix. This is what happens in general.

Now consider what these elementary matrices look like. First consider the one which
involves switching row i and row j where i < j. This matrix is of the form




1 0 · · · · · · · · · · · · · · · · · · · · · · · · 0

0
. . .

...
... 1

...
0 · · · 0 0 · · · · · · 0 1 · · · · · · 0
...

... 1 0 · · · 0
...

...
...

. . .
...

...
0 · · · · · · 0 · · · 0 1 0 · · · · · · 0
0 · · · 0 1 0 · · · · · · 0 · · · · · · 0
... 1

...
...

. . . 0
0 · · · · · · · · · · · · · · · · · · · · · · · · 0 1




The two exceptional rows are shown. The ith row was the jth and the jth row was the ith

in the identity matrix. Now consider what this does to a column vector.




1 0 · · · · · · · · · · · · · · · · · · · · · · · · 0

0
. . .

...
... 1

...
0 · · · 0 0 · · · · · · 0 1 · · · · · · 0
...

... 1 0 · · · 0
...

...
...

. . .
...

...
0 · · · · · · 0 · · · 0 1 0 · · · · · · 0
0 · · · 0 1 0 · · · · · · 0 · · · · · · 0
... 1

...
...

. . . 0
0 · · · · · · · · · · · · · · · · · · · · · · · · 0 1







v1

...

...
vi

...

...

...
vj

...

...
vn




=




v1

...

...
vj

...

...

...
vi

...

...
vn




Now denote by P ij the elementary matrix which comes from the identity from switching
rows i and j. From what was just explained consider multiplication on the left by this
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elementary matrix.

P ij




a11 a12 · · · · · · · · · · · · a1p

...
...

...
ai1 ai2 · · · · · · · · · · · · aip

...
...

...
aj1 aj2 · · · · · · · · · · · · ajp

...
...

...
an1 an2 · · · · · · · · · · · · anp




From the way you multiply matrices this is a matrix which has the indicated columns.



P ij




a11

...
ai1

...
aj1

...
an1




, P ij




a12

...
ai2

...
aj2

...
an2




, · · · , P ij




a1p

...
aip

...
ajp

...
anp







=







a11

...
aj1

...
ai1

...
an1




,




a12

...
aj2

...
ai2

...
an2




, · · · ,




a1p

...
ajp

...
aip

...
anp







=




a11 a12 · · · · · · · · · · · · a1p

...
...

...
aj1 aj2 · · · · · · · · · · · · ajp

...
...

...
ai1 ai2 · · · · · · · · · · · · aip

...
...

...
an1 an2 · · · · · · · · · · · · anp




This has established the following lemma.

Lemma 7.1.3 Let P ij denote the elementary matrix which involves switching the ith and
the jth rows. Then

P ijA = B

where B is obtained from A by switching the ith and the jth rows.

Next consider the row operation which involves multiplying the ith row by a nonzero
constant, c. The elementary matrix which results from applying this operation to the ith
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row of the identity matrix is of the form




1 0 · · · · · · · · · · · · 0

0
. . .

...
... 1

...
... c

...
... 1

...
...

. . . 0
0 · · · · · · · · · · · · 0 1




Now consider what this does to a column vector.




1 0 · · · · · · · · · · · · 0

0
. . .

...
... 1

...
... c

...
... 1

...
...

. . . 0
0 · · · · · · · · · · · · 0 1







v1

...
vi−1

vi

vi+1

...
vn




=




v1

...
vi−1

cvi

vi+1

...
vn




Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity by the
nonzero constant, c. Then from what was just discussed and the way matrices are multiplied,

E (c, i)




a11 a12 · · · · · · · · · · · · a1p

...
...

...
ai1 ai2 · · · · · · · · · · · · aip

...
...

...
aj2 aj2 · · · · · · · · · · · · ajp

...
...

...
an1 an2 · · · · · · · · · · · · anp
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equals a matrix having the columns indicated below.

=




E (c, i)




a11

...
ai1

...
aj1

...
an1




, E (c, i)




a12

...
ai2

...
aj2

...
an2




, · · · , E (c, i)




a1p

...
aip

...
ajp

...
anp







=




a11 a12 · · · · · · · · · · · · a1p

...
...

...
cai1 cai2 · · · · · · · · · · · · caip

...
...

...
aj2 aj2 · · · · · · · · · · · · ajp

...
...

...
an1 an2 · · · · · · · · · · · · anp




This proves the following lemma.

Lemma 7.1.4 Let E (c, i) denote the elementary matrix corresponding to the row opera-
tion in which the ith row is multiplied by the nonzero constant, c. Thus E (c, i) involves
multiplying the ith row of the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.

Finally consider the third of these row operations. Denote by E (c× i + j) the elementary
matrix which replaces the jth row with itself added to c times the ith row added to it. In
case i < j this will be of the form




1 0 · · · · · · · · · 0 0

0
. . .

...
... 1

...
...

...
. . .

...
... c · · · 1

...
...

. . . 0
0 · · · · · · · · · · · · 0 1
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Now consider what this does to a column vector.



1 0 · · · · · · · · · 0 0

0
. . .

...
... 1

...
...

...
. . .

...
... c · · · 1

...
...

. . . 0
0 · · · · · · · · · · · · 0 1







v1

...
vi

...
vj

...
vn




=




v1

...
vi

...
cvi + vj

...
vn




Now from this and the way matrices are multiplied,

E (c× i + j)




a11 a12 · · · · · · · · · · · · a1p

...
...

...
ai1 ai2 · · · · · · · · · · · · aip

...
...

...
aj2 aj2 · · · · · · · · · · · · ajp

...
...

...
an1 an2 · · · · · · · · · · · · anp




equals a matrix of the following form having the indicated columns.



E (c× i + j)




a11

...
ai1

...
aj2

...
an1




, E (c× i + j)




a12

...
ai2

...
aj2

...
an2




, · · ·E (c× i + j)




a1p

...
aip

...
ajp

...
anp







=




a11 a12 · · · · · · · · · · · · a1p

...
...

...
ai1 ai2 · · · · · · · · · · · · aip

...
...

...
aj2 + cai1 aj2 + cai2 · · · · · · · · · · · · ajp + caip

...
...

...
an1 an2 · · · · · · · · · · · · anp




The case where i > j is handled similarly. This proves the following lemma.

Lemma 7.1.5 Let E (c× i + j) denote the elementary matrix obtained from I by replacing
the jth row with c times the ith row added to it. Then

E (c× i + j)A = B

where B is obtained from A by replacing the jth row of A with itself added to c times the
ith row of A.
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The next theorem is the main result.

Theorem 7.1.6 To perform any of the three row operations on a matrix, A it suffices to
do the row operation on the identity matrix obtaining an elementary matrix, E and then
take the product, EA. Furthermore, each elementary matrix is invertible and its inverse is
an elementary matrix.

Proof: The first part of this theorem has been proved in Lemmas 7.1.3 - 7.1.5. It
only remains to verify the claim about the inverses. Consider first the elementary matrices
corresponding to row operation of type three.

E (−c× i + j)E (c× i + j) = I

This follows because the first matrix takes c times row i in the identity and adds it to row j.
When multiplied on the left by E (−c× i + j) it follows from the first part of this theorem
that you take the ith row of E (c× i + j) which coincides with the ith row of I since that
row was not changed, multiply it by −c and add to the jth row of E (c× i + j) which was
the jth row of I added to c times the ith row of I. Thus E (−c× i + j) multiplied on the
left, undoes the row operation which resulted in E (c× i + j). The same argument applied
to the product

E (c× i + j)E (−c× i + j)

replacing c with −c in the argument yields that this product is also equal to I. Therefore,
E (c× i + j)−1 = E (−c× i + j) .

Similar reasoning shows that for E (c, i) the elementary matrix which comes from mul-
tiplying the ith row by the nonzero constant, c,

E (c, i)−1 = E
(
c−1, i

)
.

Finally, consider P ij which involves switching the ith and the jth rows.

P ijP ij = I

because by the first part of this theorem, multiplying on the left by P ij switches the ith

and jth rows of P ij which was obtained from switching the ith and jth rows of the identity.
First you switch them to get P ij and then you multiply on the left by P ij which switches
these rows again and restores the identity matrix. Thus

(
P ij

)−1 = P ij .

7.2 The Row Reduced Echelon Form Of A Matrix

Recall that putting a matrix in row reduced echelon form involves doing row operations as
described on Page 35. In this section we review the description of the row reduced echelon
form and prove the row reduced echelon form for a given matrix is unique. That is, every
matrix can be row reduced to a unique row reduced echelon form. Of course this is not true
of the echelon form. The significance of this is that it becomes possible to use the definite
article in referring to the row reduced echelon form and hence important conclusions about
the original matrix may be logically deduced from an examination of its unique row reduced
echelon form. First we need the following definition of some terminology.

Definition 7.2.1 Let v1, · · · ,vk,u be vectors. Then u is said to be a linear combination
of the vectors {v1, · · · ,vk} if there exist scalars, c1, · · · , ck such that

u =
k∑

i=1

civi.
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The collection of all linear combinations of the vectors, {v1, · · · ,vk} is known as the span
of these vectors and is written as span (v1, · · · ,vk).

Another way to say the same thing as expressed in the earlier definition of row reduced
echelon form found on Page 34 is the following which is a more useful description when
proving the major assertions about the row reduced echelon form.

Definition 7.2.2 Let ei denote the column vector which has all zero entries except for the
ith slot which is one. An m × n matrix is said to be in row reduced echelon form if,
in viewing successive columns from left to right, the first nonzero column encountered is e1

and if you have encountered e1, e2, · · · , ek, the next column is either ek+1 or is a linear
combination of the vectors, e1, e2, · · · , ek.

Theorem 7.2.3 Let A be an m × n matrix. Then A has a row reduced echelon form
determined by a simple process.

Proof: Viewing the columns of A from left to right take the first nonzero column. Pick
a nonzero entry in this column and switch the row containing this entry with the top row
of A. Now divide this new top row by the value of this nonzero entry to get a 1 in this
position and then use row operations to make all entries below this element equal to zero.
Thus the first nonzero column is now e1. Denote the resulting matrix by A1. Consider
the sub-matrix of A1 to the right of this column and below the first row. Do exactly the
same thing for this sub-matrix that was done for A. This time the e1 will refer to Fm−1.
Use the first 1 obtained by the above process which is in the top row of this sub-matrix
and row operations to zero out every element above it in the rows of A1. Call the resulting
matrix, A2. Thus A2 satisfies the conditions of the above definition up to the column just
encountered. Continue this way till every column has been dealt with and the result must
be in row reduced echelon form.

The following diagram illustrates the above procedure. Say the matrix looked something
like the following. 



0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

0 ∗ ∗ ∗ ∗ ∗ ∗




First step would yield something like



0 1 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

0 0 ∗ ∗ ∗ ∗ ∗




For the second step you look at the lower right corner as described,


∗ ∗ ∗ ∗ ∗
...

...
...

...
...

∗ ∗ ∗ ∗ ∗




and if the first column consists of all zeros but the next one is not all zeros, you would get
something like this. 


0 1 ∗ ∗ ∗
...

...
...

...
...

0 0 ∗ ∗ ∗
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Thus, after zeroing out the term in the top row above the 1, you get the following for the
next step in the computation of the row reduced echelon form for the original matrix.




0 1 ∗ 0 ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
...

...
...

...
...

...
...

0 0 0 0 ∗ ∗ ∗


 .

Next you look at the lower right matrix below the top two rows and to the right of the first
four columns and repeat the process.

Recall the following definition which was discussed earlier.

Definition 7.2.4 The first pivot column of A is the first nonzero column of A. The next
pivot column is the first column after this which becomes e2 in the row reduced echelon form.
The third is the next column which becomes e3 in the row reduced echelon form and so forth.

There are three choices for row operations at each step in the above theorem. A natural
question is whether the same row reduced echelon matrix always results in the end from
following the above algorithm applied in any way. The next corollary says this is the case.

In rough terms, the following lemma states that linear relationships between columns
in a matrix are preserved by row operations. This simple lemma is the main result in
understanding all the major questions related to the row reduced echelon form as well as
many other topics.

Lemma 7.2.5 Let A and B be two m × n matrices and suppose B results from a row
operation applied to A. Then the kth column of B is a linear combination of the i1, · · · , ir
columns of B if and only if the kth column of A is a linear combination of the i1, · · · , ir
columns of A. Furthermore, the scalars in the linear combination are the same. (The linear
relationship between the kth column of A and the i1, · · · , ir columns of A is the same as the
linear relationship between the kth column of B and the i1, · · · , ir columns of B.)

Proof: Let A equal the following matrix in which the ak are the columns
(

a1 a2 · · · an

)

and let B equal the following matrix in which the columns are given by the bk

(
b1 b2 · · · bn

)

Then by Theorem 7.1.6 on Page 129 bk = Eak where E is an elementary matrix. Suppose
then that one of the columns of A is a linear combination of some other columns of A. Say

ak =
∑

r∈S

crar.

Then multiplying by E,

bk = Eak =
∑

r∈S

crEar =
∑

r∈S

crbr.

This proves the lemma.

Definition 7.2.6 Two matrices are said to be row equivalent if one can be obtained from
the other by a sequence of row operations.
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It has been shown above that every matrix is row equivalent to one which is in row
reduced echelon form.

Corollary 7.2.7 The row reduced echelon form is unique. That is if B, C are two matrices
in row reduced echelon form and both are row equivalent to A, then B = C.

Proof: Suppose B and C are both row reduced echelon forms for the matrix, A. Then
they clearly have the same zero columns since row operations leave zero columns unchanged.
If B has the sequence e1, e2, · · · , er occurring for the first time in the positions, i1, i2, · · · , ir,
the description of the row reduced echelon form means that each of these columns is not
a linear combination of the preceding columns. Therefore, by Lemma 7.2.5, the same is
true of the columns in positions i1, i2, · · · , ir for C. It follows from the description of the
row reduced echelon form that e1, · · · , er occur respectively for the first time in columns
i1, i2, · · · , ir for C. Therefore, both B and C have the sequence e1, e2, · · · , er occurring for
the first time in the positions, i1, i2, · · · , ir. By Lemma 7.2.5, the columns between the ik
and ik+1 position in the two matrices are linear combinations involving the same scalars
of the columns in the i1, · · · , ik position. Also the columns after the ir position are linear
combinations of the columns in the i1, · · · , ir positions involving the same scalars in both
matrices. This is equivalent to the assertion that each of these columns is identical and this
proves the corollary.

Now with the above corollary, here is a very fundamental observation. It concerns a
matrix which looks like this: (More columns than rows.)

Corollary 7.2.8 Suppose A is an m×n matrix and that m < n. That is, the number of rows
is less than the number of columns. Then one of the columns of A is a linear combination
of the preceding columns of A.

Proof: Since m < n, not all the columns of A can be pivot columns. In reading from
left to right, pick the first one which is not a pivot column. Then from the description of
the row reduced echelon form, this column is a linear combination of the preceding columns.
This proves the corollary.

Example 7.2.9 Find the row reduced echelon form of the matrix,



0 0 2 3
0 2 0 1
0 1 1 5




The first nonzero column is the second in the matrix. We switch the third and first rows
to obtain 


0 1 1 5
0 2 0 1
0 0 2 3




Now we multiply the top row by −2 and add to the second.



0 1 1 5
0 0 −2 −9
0 0 2 3
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Next, add the second row to the bottom and then divide the bottom row by −6



0 1 1 5
0 0 −2 −9
0 0 0 1




Next use the bottom row to obtain zeros in the last column above the 1 and divide the
second row by −2 


0 1 1 0
0 0 1 0
0 0 0 1




Finally, add −1 times the middle row to the top.



0 1 0 0
0 0 1 0
0 0 0 1


 .

This is in row reduced echelon form.

Example 7.2.10 Find the row reduced echelon form for the matrix,



1 2 0 2
−1 3 4 3
0 5 4 5




You should verify that the row reduced echelon form is



1 0 − 8
5 0

0 1 4
5 1

0 0 0 0


 .

7.3 The Rank Of A Matrix

7.3.1 The Definition Of Rank

To begin, here is a definition to introduce some terminology.

Definition 7.3.1 Let A be an m × n matrix. The column space of A is the span of the
columns. The row space is the span of the rows.

There are three definitions of the rank of a matrix which are useful. These are given
in the following definition. It turns out that the concept of determinant rank is the one
most useful in applications to analysis but is virtually impossible to find directly. The other
two concepts of rank are very easily determined and it is a happy fact that all three yield
the same number. This is shown later.

Definition 7.3.2 A sub-matrix of a matrix A is a rectangular array of numbers obtained
by deleting some rows and columns of A. Let A be an m × n matrix. The determinant
rank of the matrix equals r where r is the largest number such that some r × r sub-matrix
of A has a non zero determinant. The row space of a matrix is the span of the rows and
the column space of a matrix is the span of the columns. The row rank of a matrix is
the number of nonzero rows in the row reduced echelon form and the column rank is the
number columns in the row reduced echelon form which are one of the ek vectors. Thus the
column rank equals the number of pivot columns. It follows the row rank equals the column
rank. This is also called the rank of the matrix. The rank of a matrix, A is denoted by
rank (A) .
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Example 7.3.3 Consider the matrix,
(

1 2 3
2 4 6

)

What is its rank?

You could look at all the 2× 2 submatrices
(

1 2
2 4

)
,

(
1 3
2 6

)
,

(
2 3
4 6

)
.

Each has determinant equal to 0. Therefore, the rank is less than 2. Now look at the 1× 1
submatrices. There exists one of these which has nonzero determinant. For example (1) has
determinant equal to 1 and so the rank of this matrix equals 1.

Of course this example was pretty easy but what if you had a 4× 7 matrix? You would
have to consider all the 4 × 4 submatrices and then all the 3 × 3 submatrices and then all
the 2× 2 matrices and finally all the 1× 1 matrices in order to compute the rank. Clearly
this is not practical. The following theorem will remove the difficulties just indicated.

The following theorem is proved later.

Theorem 7.3.4 Let A be an m× n matrix. Then the row rank, column rank and determi-
nant rank are all the same.

Example 7.3.5 Find the rank of the matrix,



1 2 1 3 0
−4 3 2 1 2
3 2 1 6 5
4 −3 −2 1 7


 .

From the above definition, all you have to do is find the row reduced echelon form and
then count up the number of nonzero rows. But the row reduced echelon form of this
matrix is 



1 0 0 0 − 17
4

0 1 0 0 1
0 0 1 0 − 45

4
0 0 0 1 9

2




and so the rank of this matrix is 4.
Find the rank of the matrix




1 2 1 3 0
−4 3 2 1 2
3 2 1 6 5
0 7 4 10 7




The row reduced echelon form is



1 0 0 3
2

5
2

0 1 0 −4 −17
0 0 1 19

2
63
2

0 0 0 0 0




and so this time the rank is 3.
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7.3.2 Finding The Row And Column Space Of A Matrix

The row reduced echelon form also can be used to obtain an efficient description of the row
and column space of a matrix. Of course you can get the column space by simply saying
that it equals the span of all the columns but often you can get the column space as the
span of fewer columns than this. This is what we mean by an “efficient description”. This
is illustrated in the next example.

Example 7.3.6 Find the rank of the following matrix and describe the column and row
spaces efficiently. 


1 2 1 3 2
1 3 6 0 2
3 7 8 6 6


 (7.1)

The row reduced echelon form is



1 0 −9 9 2
0 1 5 −3 0
0 0 0 0 0


 .

Therefore, the rank of this matrix equals 2. All columns of this row reduced echelon form
are in

span







1
0
0


 ,




0
1
0





 .

For example, 

−9
5
0


 = −9




1
0
0


 + 5




0
1
0


 .

By Lemma 7.2.5, all columns of the original matrix, are similarly contained in the span of
the first two columns of that matrix. For example, consider the third column of the original
matrix. 


1
6
8


 = −9




1
1
3


 + 5




2
3
7


 .

How did I know to use −9 and 5 for the coefficients? This is what Lemma 7.2.5 says! It says
linear relationships are all preserved. Therefore, the column space of the original matrix
equals the span of the first two columns. This is the desired efficient description of the
column space.

What about an efficient description of the row space? When row operations are used, the
resulting vectors remain in the row space. Thus the rows in the row reduced echelon form
are in the row space of the original matrix. Furthermore, by reversing the row operations,
each row of the original matrix can be obtained as a linear combination of the rows in the
row reduced echelon form. It follows that the span of the nonzero rows in the row reduced
echelon equals the span of the original rows. In the above example, the row space equals
the span of the two vectors,

(
1 0 −9 9 2

)
and

(
0 1 5 −3 0

)
.

Example 7.3.7 Find the rank of the following matrix and describe the column and row
spaces efficiently. 



1 2 1 3 2
1 3 6 0 2
1 2 1 3 2
1 3 2 4 0


 (7.2)
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The row reduced echelon form is


1 0 0 0 13
2

0 1 0 2 − 5
2

0 0 1 −1 1
2

0 0 0 0 0


 .

and so the rank is 3, the row space is the span of the vectors,
(

0 0 1 −1 1
2

)
,
(

0 1 0 2 − 5
2

)
,(

1 0 0 0 13
2

)
,

and the column space is the span of the first three columns in the original matrix,

span







1
1
1
1


 ,




2
3
2
3


 ,




1
6
1
2





 .

Example 7.3.8 Find the rank of the following matrix and describe the column and row
spaces efficiently. 


1 2 3 0 1
2 1 3 2 4
−1 2 1 3 1


 .

The row reduced echelon form is


1 0 1 0 21
17

0 1 1 0 − 2
17

0 0 0 1 14
17


 .

It follows the rank is three and the column space is the span of the first, second and fourth
columns of the original matrix.

span







1
2
−1


 ,




2
1
2


 ,




0
2
3







while the row space is the span of the vectors
(

0 0 0 1 14
17

)
,
(

0 1 1 0 − 2
17

)
,

and
(

1 0 1 0 21
17

)
.

Procedure 7.3.9 To find the rank of a matrix, obtain the row reduced echelon form for
the matrix. Then count the number of nonzero rows or equivalently the number of pivot
columns. This is the rank. The row space is the span of the nonzero rows in the row reduced
echelon form and the column space is the span of the pivot columns of the original matrix.

7.4 Linear Independence And Bases

7.4.1 Linear Independence And Dependence

First we consider the concept of linear independence. We define what it means for vectors
in Fn to be linearly independent and then give equivalent descriptions. In the following
definition, the symbol, (

v1 v2 · · · vk

)

denotes the matrix which has the vector, v1 as the first column, v2 as the second column
and so forth until vk is the kth column.
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Definition 7.4.1 Let {v1, · · · ,vk} be vectors in Fn. Then this collection of vectors is said
to be linearly independent if each of the columns of the n×k matrix

(
v1 v2 · · · vk

)
is a pivot column. Thus the row reduced echelon form for this matrix is

(
e1 e2 · · · ek

)
.

The question whether any vector in the first k columns in a matrix is a pivot column is
independent of the presence of later columns. Thus each of {v1, · · · ,vk} is a pivot column
in (

v1 v2 · · · vk

)

if and only if these vectors are each pivot columns in
(

v1 v2 · · · vk w1 · · · wr

)

Here is what the above means in terms of linear relationships.

Corollary 7.4.2 The collection of vectors, {v1, · · · ,vk} is linearly independent if and only
if none of these vectors is a linear combination of the others.

Proof: If {v1, · · · ,vk} is linearly independent, then every column in
(

v1 v2 · · · vk

)

is a pivot column which requires that the row reduced echelon form is
(

e1 e2 · · · ek

)
.

Now none of the ei vectors is a linear combination of the others. By Lemma 7.2.5 on Page
131 none of the vi is a linear combination of the others. Recall this lemma says linear
relationships between the columns are preserved under row operations.

Next suppose none of the vectors {v1, · · · ,vk} is a linear combination of the others.
Then none of the columns in (

v1 v2 · · · vk

)

is a linear combination of the others. By Lemma 7.2.5 the same is true of the row reduced
echelon form for this matrix. From the description of the row reduced echelon form, it follows
that the ith column of the row reduced echelon form must be ei since otherwise, it would be
a linear combination of the first i− 1 vectors e1,· · · , ei−1 and by Lemma 7.2.5, it follows vi

would be the same linear combination of v1, · · · ,vi−1 contrary to the assumption that none
of the columns in

(
v1 v2 · · · vk

)
is a linear combination of the others. Therefore,

each of the k columns in
(

v1 v2 · · · vk

)
is a pivot column and so {v1, · · · ,vk} is

linearly independent.

Corollary 7.4.3 The collection of vectors, {v1, · · · ,vk} is linearly independent if and only
if whenever

n∑

i=1

civi = 0

it follows each ci = 0.

Proof: Suppose first {v1, · · · ,vk} is linearly independent. Then by Corollary 7.4.2,
none of the vectors is a linear combination of the others. Now suppose

n∑

i=1

civi = 0
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and not all the ci = 0. Then pick ci which is not zero, divide by it and solve for vi in terms
of the other vj , contradicting the fact that none of the vi equals a linear combination of the
others.

Now suppose the condition about the sum holds. If vi is a linear combination of the
other vectors in the list, then you could obtain an equation of the form

vi =
∑

j 6=i

cjvj

and so
0 =

∑

j 6=i

cjvj + (−1)vi,

contradicting the condition about the sum.
Sometimes we refer to this last condition about sums as follows: The set of vectors,

{v1, · · · ,vk} is linearly independent if and only if there is no nontrivial linear combination
which equals zero. (A nontrivial linear combination is one in which not all the scalars equal
zero.)

We give the following equivalent definition of linear independence which follows from the
above corollaries.

Definition 7.4.4 A set of vectors, {v1, · · · ,vk} is linearly independent if and only if none
of the vectors is a linear combination of the others or equivalently if there is no nontrivial
linear combination of the vectors which equals 0. It is said to be linearly dependent if at
least one of the vectors is a linear combination of the others or equivalently there exists a
nontrivial linear combination which equals zero.

Note the meaning of the words. To say a set of vectors is linearly dependent means at
least one is a linear combination of the others. In other words, it is in a sense “dependent”
on these other vectors.

The following corollary follows right away from the row reduced echelon form. It concerns
a matrix which looks like this: (More columns than rows.)

Corollary 7.4.5 Let {v1, · · · ,vk} be a set of vectors in Fn. Then if k > n, it must be
the case that {v1, · · · ,vk} is not linearly independent. In other words, if k > n, then
{v1, · · · ,vk} is dependent.

Proof: If k > n, then the columns of
(

v1 v2 · · · vk

)
cannot each be a pivot

column because there are at most n pivot columns due to the fact the matrix has only n
rows. In reading from left to right, pick the first column which is not a pivot column. Then
from the description of row reduced echelon form, this column is a linear combination of the
preceding columns and so the given vectors are dependent by Corollary 7.4.2.

Example 7.4.6 Determine whether the vectors,








1
2
3
0







2
1
0
1







0
1
1
2







3
2
2
−1








are

linearly independent. If they are linearly dependent, exhibit one of the vectors as a linear
combination of the others.
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Form the matrix mentioned above.



1 2 0 3
2 1 1 2
3 0 1 2
0 1 2 −1




Then the row reduced echelon form of this matrix is



1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0


 .

Thus not all the columns are pivot columns and so the vectors are not linear independent.
Note the fourth column is of the form

1




1
0
0
0


 + 1




0
1
0
0


 + (−1)




0
0
1
0




From Lemma 7.2.5, the same linear relationship exists between the columns of the original
matrix. Thus

1




1
2
3
0


 + 1




2
1
0
1


 + (−1)




0
1
1
2


 =




3
2
2
−1


 .

Note the usefulness of the row reduced echelon form in discovering hidden linear rela-
tionships in collections of vectors.

Example 7.4.7 Determine whether the vectors,








1
2
3
0







2
1
0
1







0
1
1
2







3
2
2
0








are lin-

early independent. If they are linearly dependent, exhibit one of the vectors as a linear
combination of the others.

The matrix used to find this is



1 2 0 3
2 1 1 2
3 0 1 2
0 1 2 0




The row reduced echelon form is



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




and so every column is a pivot column. Therefore, these vectors are linearly independent
and there is no way to obtain one of the vectors as a linear combination of the others.
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7.4.2 Subspaces

It turns out that the span of a set of vectors is something called a subspace. We will now
give a different, easier to remember description of subspaces and will then show that every
subspace is the span of a set of vectors.

Definition 7.4.8 Let V be a nonempty collection of vectors in Fn. Then V is called a
subspace if whenever α, β are scalars and u,v are vectors in V, the linear combination,
αu + βv is also in V .

Theorem 7.4.9 V is a subspace of Fn if and only if there exist vectors of V, {u1, · · · ,uk}
such that V = span (u1, · · · ,uk) .

Proof: Pick a vector of V,u1. If V = span {u1} , then stop. You have found your
list of vectors. If V 6= span (u1) , then there exists u2 a vector of V which is not a vector
in span (u1) . Consider span (u1,u2) . If V = span (u1,u2) , stop. Otherwise, pick u3 /∈
span (u1,u2) . Continue this way. Note that since V is a subspace, these spans are each
contained in V . The process must stop with uk for some k ≤ n since otherwise, the matrix

(
u1 · · · uk

)

having these vectors as columns would have n rows and k > n columns. Consequently, it
can have no more than n pivot columns and so the first column which is not a pivot column
would be a linear combination of the preceding columns contrary to the construction.

For the other half, suppose V = span (u1, · · · ,uk) and let
∑k

i=1 ciui and
∑k

i=1 diui be
two vectors in V. Now let α and β be two scalars. Then

α

k∑

i=1

ciui + β

k∑

i=1

diui =
k∑

i=1

(αci + βdi)ui

which is one of the things in span (u1, · · · ,uk) showing that span (u1, · · · ,uk) has the prop-
erties of a subspace. This proves the theorem.

The following corollary also follows easily.

Corollary 7.4.10 If V is a subspace of Fn, then there exist vectors of V, {u1, · · · ,uk} such
that V = span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.

Proof: Let V = span (u1, · · · ,uk) . Then let the vectors {u1, · · · ,uk} be the columns
of the following matrix. (

u1 · · · uk

)

Retain only the pivot columns. That is, determine the pivot columns from the row reduced
echelon form and these are a basis for span (u1, · · · ,uk) .

The message is that subspaces of Fn consist of spans of finite, linearly independent
collections of vectors of Fn.

The following fundamental lemma is very useful.

Lemma 7.4.11 Suppose V is a subspace of Fn and {x1, · · · ,xr} is a linearly independent
subset of V while V = span (y1, · · · ,ys) . Then s ≥ r. In words, spanning sets have at least
as many vectors as linearly independent sets.

Proof: Since {y1, · · · ,ys} is a spanning set, there exist scalars cij such that

xj =
s∑

i=1

cijyi
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Suppose s < r. Then the matrix C whose ijth entry is cij has fewer rows, s than columns,
r. By Corollary 7.4.5 the columns of this matrix are linearly dependent. Thus there exist
scalars bj not all zero such that for c1, · · · , cr the columns of C

r∑

j=1

djcj = 0.

In other words,
r∑

j=1

cijdj = 0, i = 1, 2, · · · , s

Therefore,

r∑

j=1

djxj =
r∑

j=1

dj

s∑

i=1

cijyi

=
s∑

i=1




r∑

j=1

cijdj


yi =

s∑

i=1

0yi = 0

which contradicts {x1, · · · ,xr} is linearly independent because not all the dj = 0. Thus
s ≥ r and this proves the lemma.

7.4.3 Basis Of A Subspace

It was just shown in Corollary 7.4.10 that every subspace of Fn is equal to the span of a
linearly independent collection of vectors of Fn. Such a collection of vectors is called a basis.

Definition 7.4.12 Let V be a subspace of Fn. Then {u1, · · · ,uk} is a basis for V if the
following two conditions hold.

1. span (u1, · · · ,uk) = V.

2. {u1, · · · ,uk} is linearly independent.

The plural of basis is bases.

The main theorem about bases is the following.

Theorem 7.4.13 Let V be a subspace of Fn and suppose {u1, · · · ,uk} and {v1, · · · ,vm}
are two bases for V . Then k = m.

Proof: This follows right away from Lemma 7.4.11. {u1, · · · ,uk} is a spanning set
while {v1, · · · ,vm} is linearly independent so k ≥ m. Also {v1, · · · ,vm} is a spanning set
while {u1, · · · ,uk} is linearly independent so m ≥ k.

Now here is another proof. Suppose k < m. Then since {u1, · · · ,uk} is a basis for V,
each vi is a linear combination of the vectors of {u1, · · · ,uk} . Consider the matrix

(
u1 · · · uk v1 · · · vm

)

in which each of the ui is a pivot column because the {u1, · · · ,uk} are linearly independent.
Therefore, the row reduced echelon form of this matrix is

(
e1 · · · ek w1 · · · wm

)
(7.3)
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where each wj has zeroes below the kth row. This is because of Lemma 7.2.5 which implies
each wi is a linear combination of the e1, · · · , ek. Discarding the bottom n−k rows of zeroes
in the above, yields the matrix,

(
e′1 · · · e′k w′

1 · · · w′
m

)

in which all vectors are in Fk. Since m > k, it follows from Corollary 7.4.5 that the vectors,
{w′

1, · · · ,w′
m} are dependent. Therefore, some w′

j is a linear combination of the other w′
i.

Therefore, wj is a linear combination of the other wi in 7.3. By Lemma 7.2.5 again, the
same linear relationship exists between the {v1, · · · ,vm} showing that {v1, · · · ,vm} is not
linearly independent and contradicting the assumption that {v1, · · · ,vm} is a basis. It
follows m ≤ k. Similarly, k ≤ m. This proves the theorem.

This is a very important theorem so here is yet another proof of it.

Theorem 7.4.14 Let V be a subspace and suppose {u1, · · · ,uk} and {v1, · · · ,vm} are two
bases for V . Then k = m.

Proof: Suppose k > m. Then since the vectors, {u1, · · · ,uk} span V, there exist scalars,
cij such that

m∑

i=1

cijvi = uj .

Therefore,
k∑

j=1

djuj = 0 if and only if
k∑

j=1

m∑

i=1

cijdjvi = 0

if and only if
m∑

i=1




k∑

j=1

cijdj


vi = 0

Now since{v1, · · · ,vn} is independent, this happens if and only if

k∑

j=1

cijdj = 0, i = 1, 2, · · · ,m.

However, this is a system of m equations in k variables, d1, · · · , dk and m < k. Therefore,
there exists a solution to this system of equations in which not all the dj are equal to zero.
Recall why this is so. The augmented matrix for the system is of the form

(
C 0

)
where

C is a matrix which has more columns than rows. Therefore, there are free variables and
hence nonzero solutions to the system of equations. However, this contradicts the linear
independence of {u1, · · · ,uk} because, as explained above,

∑k
j=1 djuj = 0. Similarly it

cannot happen that m > k. This proves the theorem.
The following definition can now be stated.

Definition 7.4.15 Let V be a subspace of Fn. Then the dimension of V is defined to be
the number of vectors in a basis.

Corollary 7.4.16 The dimension of Fn is n.

Proof: You only need to exhibit a basis for Fn which has n vectors. Such a basis is
{e1, · · · , en}.
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Corollary 7.4.17 Suppose {v1, · · · ,vn} is linearly independent and each vi is a vector in
Fn. Then {v1, · · · ,vn} is a basis for Fn. Suppose {v1, · · · ,vm} spans Fn. Then m ≥ n. If
{v1, · · · ,vn} spans Fn, then {v1, · · · ,vn} is linearly independent.

Proof: Let u be a vector of Fn and consider the matrix,
(

v1 · · · vn u
)
.

Since each vi is a pivot column, the row reduced echelon form is
(

e1 · · · en w
)

and so, since w is in span (e1, · · · , en) , it follows from Lemma 7.2.5 that u is one of the
vectors in span (v1, · · · ,vn) . Therefore, {v1, · · · ,vn} is a basis as claimed.

To establish the second claim, suppose that m < n. Then letting vi1 , · · · ,vik
be the

pivot columns of the matrix (
v1 · · · vm

)

it follows k ≤ m < n and these k pivot columns would be a basis for Fn having fewer than
n vectors, contrary to Theorem 7.4.13 which states every two bases have the same number
of vectors in them.

Finally consider the third claim. If {v1, · · · ,vn} is not linearly independent, then replace
this list with {vi1 , · · · ,vik

} where these are the pivot columns of the matrix,
(

v1 · · · vn

)

Then {vi1 , · · · ,vik
} spans Fn and is linearly independent so it is a basis having less than n

vectors contrary to Theorem 7.4.13 which states every two bases have the same number of
vectors in them. This proves the corollary.

Example 7.4.18 Find the rank of the following matrix. If the rank is r, identify r columns
in the original matrix which have the property that every other column may be written
as a linear combination of these. Also find a basis for the row and column spaces of the
matrices. 


1 2 3 2
1 5 −4 −1
−2 3 1 0




The row reduced echelon form is



1 0 0 27
70

0 1 0 1
10

0 0 1 33
70




and so the rank of the matrix is 3. A basis for the column space is the first three columns of
the original matrix. I know they span because the first three columns of the row reduced
echelon form above span the column space of that matrix. They are linearly independent
because the first three columns of the row reduced echelon form are linearly independent.
By Lemma 7.2.5 all linear relationships are preserved and so these first three vectors form
a basis for the column space. The four rows of the row reduced echelon form form a basis
for the row space of the original matrix.

Example 7.4.19 Find the rank of the following matrix. If the rank is r, identify r columns
in the original matrix which have the property that every other column may be written
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as a linear combination of these. Also find a basis for the row and column spaces of the
matrices. 


1 2 3 0 1
1 1 2 −6 2
−2 3 1 0 2




The row reduced echelon form is



1 0 1 0 − 1
7

0 1 1 0 4
7

0 0 0 1 − 11
42


 .

A basis for the column space of this row reduced echelon form is the first second and fourth
columns. Therefore, a basis for the column space in the original matrix is the first second
and fourth columns. The rank of the matrix is 3. A basis for the row space of the original
matrix is the columns of the row reduced echelon form.

7.4.4 Extending An Independent Set To Form A Basis

Suppose {v1, · · · ,vm} is a linearly independent set of vectors in Fn. It turns out there is
a larger set of vectors, {v1, · · · ,vm,vm+1, · · · ,vn} which is a basis for Fn. It is easy to do
this using the row reduced echelon form. Consider the following matrix having rank n in
which the columns are shown.

(
v1 · · · vm e1 e2 · · · en

)
.

Since the {v1, · · · ,vm} are linearly independent, the row reduced echelon form of this matrix
is of the form (

e1 · · · em u1 u2 · · · un

)

Now the pivot columns can be identified and this leads to a basis for the column space of
the original matrix which is of the form

{
v1, · · · ,vm, ei1 , · · · , ein−m

}
.

This proves the following theorem.

Theorem 7.4.20 Let {v1, · · · ,vm} be a linearly independent set of vectors in Fn. Then
there is a larger set of vectors, {v1, · · · ,vm,vm+1, · · · ,vn} which is a basis for Fn.

Example 7.4.21 The vectors,








1
1
0
0


 ,




1
0
1
0








are linearly independent. Enlarge this

set of vectors to form a basis for R4.

Using the above technique, consider the following matrix.



1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 1
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whose row reduced echelon form is



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 −1 −1 0
0 0 0 0 0 1




The pivot columns are numbers 1,2,3, and 6. Therefore, a basis is







1
1
0
0


 ,




1
0
1
0


 ,




1
0
0
0


 ,




0
0
0
1








7.4.5 Finding The Null Space Or Kernel Of A Matrix

Let A be an m× n matrix.

Definition 7.4.22 ker (A), also referred to as the null space of A is defined as follows.

ker (A) = {x : Ax = 0}

and to find ker (A) one must solve the system of equations Ax = 0.

This is not new! There is just some new terminology being used. To repeat, ker (A) is
the solution to the system Ax = 0.

Example 7.4.23 Let

A =




1 2 1
0 −1 1
2 3 3


 .

Find ker (A).

You need to solve the equation Ax = 0. To do this you write the augmented matrix and
then obtain the row reduced echelon form and the solution. The augmented matrix is




1 2 1 | 0
0 −1 1 | 0
2 3 3 | 0




Next place this matrix in row reduced echelon form,



1 0 3 | 0
0 1 −1 | 0
0 0 0 | 0




Note that x1 and x2 are basic variables while x3 is a free variable. Therefore, the solution
to this system of equations, Ax = 0 is given by




3t
t
t


 : t ∈ R.



146 RANK OF A MATRIX

Example 7.4.24 Let

A =




1 2 1 0 1
2 −1 1 3 0
3 1 2 3 1
4 −2 2 6 0




Find the null space of A.

You need to solve the equation, Ax = 0. The augmented matrix is



1 2 1 0 1 | 0
2 −1 1 3 0 | 0
3 1 2 3 1 | 0
4 −2 2 6 0 | 0




Its row reduced echelon form is



1 0 3
5

6
5

1
5 | 0

0 1 1
5 − 3

5
2
5 | 0

0 0 0 0 0 | 0
0 0 0 0 0 | 0




It follows x1 and x2 are basic variables and x3, x4, x5 are free variables. Therefore, ker (A)
is given by 



(− 3
5

)
s1 +

(−6
5

)
s2 +

(
1
5

)
s3(− 1

5

)
s1 +

(
3
5

)
s2 +

(− 2
5

)
s3

s1

s2

s3




: s1, s2, s3 ∈ R.

We write this in the form

s1




− 3
5

− 1
5

1
0
0




+ s2




−6
5
3
5
0
1
0




+ s3




1
5
− 2

5
0
0
1




: s1, s2, s3 ∈ R.

In other words, the null space of this matrix equals the span of the three vectors above.
Thus

ker (A) = span







− 3
5

− 1
5

1
0
0




,




−6
5
3
5
0
1
0




,




1
5
− 2

5
0
0
1







.

This is the same as

ker (A) = span







3
5
1
5
−1
0
0




,




6
5−3
5
0
−1
0




,




−1
5
2
5
0
0
−1







.

Notice also that the three vectors above are linearly independent and so the dimension of
ker (A) is 3. This is generally the way it works. The number of free variables equals the
dimension of the null space while the number of basic variables equals the number of pivot
columns which equals the rank. We state this in the following theorem.
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Definition 7.4.25 The dimension of the null space of a matrix is called the nullity2 and
written as null (A) .

Theorem 7.4.26 Let A be an m× n matrix. Then rank (A) + null (A) = n.

7.4.6 Rank And Existence Of Solutions To Linear Systems

Consider the linear system of equations,

Ax = b (7.4)

where A is an m× n matrix, x is a n× 1 column vector, and b is an m× 1 column vector.
Suppose

A =
(

a1 · · · an

)

where the ak denote the columns of A. Then x = (x1, · · · , xn)T is a solution of the system
7.4, if and only if

x1a1 + · · ·+ xnan = b

which says that b is a vector in span (a1, · · · ,an) . This shows that there exists a solution
to the system, 7.4 if and only if b is contained in span (a1, · · · ,an) . In words, there is a
solution to 7.4 if and only if b is in the column space of A. In terms of rank, the following
proposition describes the situation.

Proposition 7.4.27 Let A be an m×n matrix and let b be an m× 1 column vector. Then
there exists a solution to 7.4 if and only if

rank
(

A | b
)

= rank (A) . (7.5)

Proof: Place
(

A | b
)

and A in row reduced echelon form, respectively B and C. If
the above condition on rank is true, then both B and C have the same number of nonzero
rows. In particular, you cannot have a row of the form

(
0 · · · 0 ¥

)

where ¥ 6= 0 in B. Therefore, there will exist a solution to the system 7.4.
Conversely, suppose there exists a solution. This means there cannot be such a row in

B described above. Therefore, B and C must have the same number of zero rows and so
they have the same number of nonzero rows. Therefore, the rank of the two matrices in 7.5
is the same. This proves the proposition.

7.5 Fredholm Alternative

There is a very useful version of Proposition 7.4.27 known as the Fredholm alternative.
I will only present this for the case of real matrices here. Later a much more elegant and
general approach is presented which allows for the general case of complex matrices.

The following definition is used to state the Fredholm alternative.

Definition 7.5.1 Let S ⊆ Rm. Then S⊥ ≡ {z ∈ Rm : z · s = 0 for every s ∈ S} . The funny
exponent, ⊥ is called “perp”.

2Isn’t it amazing how many different words are available for use in linear algebra?



148 RANK OF A MATRIX

Now note

ker
(
AT

) ≡ {
z : AT z = 0

}
=

{
z :

m∑

k=1

zkak = 0

}

Lemma 7.5.2 Let A be a real m× n matrix, let x ∈ Rn and y ∈ Rm. Then

(Ax · y) =
(
x·AT y

)

Proof: This follows right away from the definition of the dot product and matrix mul-
tiplication.

(Ax · y) =
∑

k,l

Aklxlyk

=
∑

k,l

(
AT

)
lk

xlyk

=
(
x ·AT y

)
.

This proves the lemma.
Now it is time to state the Fredholm alternative. The first version of this is the following

theorem.

Theorem 7.5.3 Let A be a real m× n matrix and let b ∈ Rm. There exists a solution, x
to the equation Ax = b if and only if b ∈ ker

(
AT

)⊥.

Proof: First suppose b ∈ ker
(
AT

)⊥
. Then this says that if AT x = 0, it follows that

b · x = 0. In other words, taking the transpose, if

xT A = 0, then b · x = 0.

In other words, letting x =(x1, · · · , xm)T
, it follows that if

m∑

i=1

xiAij = 0 for each j,

then it follows ∑

i

bixi = 0.

In other words, if you get a row of zeros in row reduced echelon form for A then you the
same row operations produce a zero in the m× 1 matrix b.

Consequently
rank

(
A | b

)
= rank (A)

and so by Proposition 7.4.27, there exists a solution, x to the system Ax = b. It remains
to go the other direction.

Let z ∈ ker
(
AT

)
and suppose Ax = b. I need to verify b · z = 0. By Lemma 7.5.2,

b · z = Ax · z = x ·AT z = x · 0 = 0

This proves the theorem.
This implies the following corollary which is also called the Fredholm alternative. The

“alternative” becomes more clear in this corollary.
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Corollary 7.5.4 Let A be an m× n matrix. Then A maps Rn onto Rm if and only if the
only solution to AT x = 0 is x = 0.

Proof: If the only solution to AT x = 0 is x = 0, then ker
(
AT

)
= {0} and so ker

(
AT

)⊥ =
Rm because every b ∈ Rm has the property that b · 0 = 0. Therefore, Ax = b has a solu-
tion for any b ∈ Rm because the b for which there is a solution are those in ker

(
AT

)⊥ by
Theorem 7.5.3. In other words, A maps Rn onto Rm.

Conversely if A is onto, then by Theorem 7.5.3 every b ∈ Rm is in ker
(
AT

)⊥ and so if
AT x = 0, then b · x = 0 for every b. In particular, this holds for b = x. Hence if AT x = 0,
then x = 0. This proves the corollary.

Here is an amusing example.

Example 7.5.5 Let A be an m× n matrix in which m > n. Then A cannot map onto Rm.

The reason for this is that AT is an n×m where m > n and so in the augmented matrix,
(
AT |0)

there must be some free variables. Thus there exists a nonzero vector x such that AT x = 0.

7.5.1 Row, Column, And Determinant Rank

I will now present a review of earlier topics and prove Theorem 7.3.4.

Definition 7.5.6 A sub-matrix of a matrix A is the rectangular array of numbers obtained
by deleting some rows and columns of A. Let A be an m × n matrix. The determinant
rank of the matrix equals r where r is the largest number such that some r × r sub-matrix
of A has a non zero determinant. The row rank is defined to be the dimension of the span
of the rows. The column rank is defined to be the dimension of the span of the columns.

Theorem 7.5.7 If A, an m× n matrix has determinant rank, r, then there exist r rows of
the matrix such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (aij) equals r. Thus some r×r submatrix
has non zero determinant and there is no larger square submatrix which has non zero
determinant. Suppose such a submatrix is determined by the r columns whose indices are

j1 < · · · < jr

and the r rows whose indices are
i1 < · · · < ir

I want to show that every row is a linear combination of these rows. Consider the lth row
and let p be an index between 1 and n. Form the following (r + 1)× (r + 1) matrix




ai1j1 · · · ai1jr ai1p

...
...

...
airj1 · · · airjr airp

alj1 · · · aljr alp




Of course you can assume l /∈ {i1, · · · , ir} because there is nothing to prove if the lth

row is one of the chosen ones. The above matrix has determinant 0. This is because if
p /∈ {j1, · · · , jr} then the above would be a submatrix of A which is too large to have non
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zero determinant. On the other hand, if p ∈ {j1, · · · , jr} then the above matrix has two
columns which are equal so its determinant is still 0.

Expand the determinant of the above matrix along the last column. Let Ck denote the
cofactor associated with the entry aikp. This is not dependent on the choice of p. Remember,
you delete the column and the row the entry is in and take the determinant of what is left
and multiply by −1 raised to an appropriate power. Let C denote the cofactor associated
with alp. This is given to be nonzero, it being the determinant of the matrix




ai1j1 · · · ai1jr

...
...

airj1 · · · airjr




Thus

0 = alpC +
r∑

k=1

Ckaikp

which implies

alp =
r∑

k=1

−Ck

C
aikp ≡

r∑

k=1

mkaikp

Since this is true for every p and since mk does not depend on p, this has shown the lth row
is a linear combination of the i1, i2, · · · , ir rows. This proves the theorem.

Corollary 7.5.8 The determinant rank equals the row rank.

Proof: From Theorem 7.5.7, the row rank is no larger than the determinant rank. Could
the row rank be smaller than the determinant rank? If so, there exist p rows for p < r such
that the span of these p rows equals the row space. But this implies that the r×r sub-matrix
whose determinant is nonzero also has row rank no larger than p which is impossible if its
determinant is to be nonzero because at least one row is a linear combination of the others.

Corollary 7.5.9 If A has determinant rank, r, then there exist r columns of the matrix
such that every other column is a linear combination of these r columns. Also the column
rank equals the determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 7.5.8,
column rank of A = row rank of AT = determinant rank of AT = determinant rank of A.

The following theorem is of fundamental importance and ties together many of the ideas
presented above.

Theorem 7.5.10 Let A be an n× n matrix. Then the following are equivalent.

1. det (A) = 0.

2. A,AT are not one to one.

3. A is not onto.

Proof: Suppose det (A) = 0. Then the determinant rank of A = r < n. Therefore,
there exist r columns such that every other column is a linear combination of these columns
by Theorem 7.5.7. In particular, it follows that for some m, the mth column is a linear
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combination of all the others. Thus letting A =
(

a1 · · · am · · · an

)
where the

columns are denoted by ai, there exists scalars, αi such that

am =
∑

k 6=m

αkak.

Now consider the column vector, x ≡ (
α1 · · · −1 · · · αn

)T . Then

Ax = −am +
∑

k 6=m

αkak = 0.

Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one by the
same argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x 6= 0 such that

AT x = 0.

Taking the transpose of both sides yields

xT A = 0

where the 0 is a 1× n matrix or row vector. Now if Ay = x, then

|x|2 = xT (Ay) =
(
xT A

)
y = 0y = 0

contrary to x 6= 0. Consequently there can be no y such that Ay = x and so A is not onto.
This shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det (A) 6= 0 but then from Theorem 6.5.15
A−1 exists and so for every y ∈ Fn there exists a unique x ∈ Fn such that Ax = y. In fact
x = A−1y. Thus A would be onto contrary to 3.). This shows 3.) implies 1.) and proves the
theorem.

Corollary 7.5.11 Let A be an n× n matrix. Then the following are equivalent.

1. det(A) 6= 0.

2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem.

Corollary 7.5.12 Let A be an invertible n × n matrix. Then A equals a finite product of
elementary matrices.

Proof: Since A−1 is given to exist, det (A) 6= 0 and it follows A must have rank n and
so the row reduced echelon form of A is I. Therefore, by Theorem 7.1.6 there is a sequence
of elementary matrices, E1, · · · , Ep which accomplish successive row operations such that

(EpEp−1 · · ·E1)A = I.

But now multiply on the left on both sides by E−1
p then by E−1

p−1 and then by E−1
p−2 etc.

until you get
A = E−1

1 E−1
2 · · ·E−1

p−1E
−1
p

and by Theorem 7.1.6 each of these in this product is an elementary matrix.



152 RANK OF A MATRIX

7.6 Exercises

1. Let {u1, · · · ,un} be vectors in Rn. The parallelepiped determined by these vectors
P (u1, · · · ,un) is defined as

P (u1, · · · ,un) ≡
{

n∑

k=1

tkuk : tk ∈ [0, 1] for all k

}
.

Now let A be an n× n matrix. Show that

{Ax : x ∈ P (u1, · · · ,un)}
is also a parallelepiped.

2. In the context of Problem 1, draw P (e1, e2) where e1, e2 are the standard basis vectors
for R2. Thus e1 = (1, 0) , e2 = (0, 1) . Now suppose

E =
(

1 1
0 1

)

where E is the elementary matrix which takes the third row and adds to the first.
Draw

{Ex : x ∈ P (e1, e2)} .

In other words, draw the result of doing E to the vectors in P (e1, e2). Next draw the
results of doing the other elementary matrices to P (e1, e2).

3. In the context of Problem 1, either draw or describe the result of doing elementary
matrices to P (e1, e2, e3). Describe geometrically the conclusion of Corollary 7.5.12.

4. Determine which matrices are in row reduced echelon form.

(a)
(

1 2 0
0 1 7

)

(b)




1 0 0 0
0 0 1 2
0 0 0 0




(c)




1 1 0 0 0 5
0 0 1 2 0 4
0 0 0 0 1 3




5. Row reduce the following matrices to obtain the row reduced echelon form. List the
pivot columns in the original matrix.

(a)




1 2 0 3
2 1 2 2
1 1 0 3




(b)




1 2 3
2 1 −2
3 0 0
3 2 1




(c)




1 2 1 3
−3 2 1 0
3 2 1 1
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6. Find the rank of the following matrices. If the rank is r, identify r columns in the
original matrix which have the property that every other column may be written
as a linear combination of these. Also find a basis for the row and column spaces of
the matrices.

(a)




1 2 0
3 2 1
2 1 0
0 2 1




(b)




1 0 0
4 1 1
2 1 0
0 2 0




(c)




0 1 0 2 1 2 2
0 3 2 12 1 6 8
0 1 1 5 0 2 3
0 2 1 7 0 3 4




(d)




0 1 0 2 0 1 0
0 3 2 6 0 5 4
0 1 1 2 0 2 2
0 2 1 4 0 3 2




(e)




0 1 0 2 1 1 2
0 3 2 6 1 5 1
0 1 1 2 0 2 1
0 2 1 4 0 3 1




7. Suppose A is an m × n matrix. Explain why the rank of A is always no larger than
min (m,n) .

8. Let H denote span
((

1
2

)
,

(
2
4

)
,

(
1
3

))
. Find the dimension of H and determine

a basis.

9. Let H denote span







1
2
0


 ,




2
4
0


 ,




1
3
1


 ,




0
1
1





 . Find the dimension of H

and determine a basis.

10. Let H denote span







1
2
0


 ,




1
4
0


 ,




1
3
1


 ,




0
1
1





 . Find the dimension of H

and determine a basis.

11. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 = u1 = 0

}
. Is M a subspace? Explain.

12. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 ≥ u1

}
. Is M a subspace? Explain.

13. Let w ∈ R4 and let M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0

}
. Is M a subspace?

Explain.

14. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : ui ≥ 0 for each i = 1, 2, 3, 4

}
. Is M a subspace?

Explain.
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15. Let w,w1 be given vectors in R4 and define

M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0 and w1 · u = 0

}
.

Is M a subspace? Explain.

16. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

17. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1

}
. Is M a subspace? Explain.

18. Study the definition of span. Explain what is meant by the span of a set of vectors.
Include pictures.

19. Suppose {x1, · · · ,xk} is a set of vectors from Fn. Show that 0 is in span (x1, · · · ,xk) .

20. Study the definition of linear independence. Explain in your own words what is meant
by linear independence and linear dependence. Illustrate with pictures.

21. Use Corollary 7.4.17 to prove the following theorem: If A,B are n× n matrices and if
AB = I, then BA = I and B = A−1. Hint: First note that if AB = I, then it must
be the case that A is onto. Explain why this requires span (columns of A) = Fn. Now
explain why, using the corollary that this requires A to be one to one. Next explain
why A (BA− I) = 0 and why the fact that A is one to one implies BA = I.

22. Here are three vectors. Determine whether they are linearly independent or linearly
dependent. 


1
2
0


 ,




2
0
1


 ,




3
0
0




23. Here are three vectors. Determine whether they are linearly independent or linearly
dependent. 


4
2
0


 ,




2
2
1


 ,




3
0
1




24. Here are three vectors. Determine whether they are linearly independent or linearly
dependent. 


1
2
3


 ,




4
5
1


 ,




3
1
0




25. Here are four vectors. Determine whether they span R3. Are these vectors linearly
independent? 


1
2
3


 ,




4
3
3


 ,




3
1
0


 ,




2
4
6




26. Here are four vectors. Determine whether they span R3. Are these vectors linearly
independent? 


1
2
3


 ,




4
3
3


 ,




3
2
0


 ,




2
4
6
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27. Determine whether the following vectors are a basis for R3. If they are, explain why
they are and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




4
3
3


 ,




1
2
0


 ,




2
4
0




28. Determine whether the following vectors are a basis for R3. If they are, explain why
they are and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




0
1
0


 ,




1
2
0




29. Determine whether the following vectors are a basis for R3. If they are, explain why
they are and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




0
1
0


 ,




1
2
0


 ,




0
0
0




30. Determine whether the following vectors are a basis for R3. If they are, explain why
they are and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




0
1
0


 ,




1
1
3


 ,




0
0
0




31. Consider the vectors of the form







2t + 3s
s− t
t + s


 : s, t ∈ R



 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace
and find its dimension.

32. Consider the vectors of the form







2t + 3s + u
s− t
t + s

u


 : s, t, u ∈ R





.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

33. Consider the vectors of the form







2t + u
t + 3u

t + s + v
u


 : s, t, u, v ∈ R





.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.
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34. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be
concluded they span F5? Explain.

35. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.

36. Suppose A is an m×n matrix and {w1, · · · ,wk} is a linearly independent set of vectors
in A (Fn) ⊆ Fm. Now suppose A (zi) = wi. Show {z1, · · · , zk} is also independent.

37. Suppose V, W are subspaces of Fn. Show V ∩W defined to be all vectors which are in
both V and W is a subspace also.

38. Suppose V and W both have dimension equal to 7 and they are subspaces of F10.
What are the possibilities for the dimension of V ∩W? Hint: Remember that a linear
independent set can be extended to form a basis.

39. Suppose V has dimension p and W has dimension q and they are each contained in
a subspace, U which has dimension equal to n where n > max (p, q) . What are the
possibilities for the dimension of V ∩W? Hint: Remember that a linear independent
set can be extended to form a basis.

40. If b 6= 0, can the solution set of Ax = b be a plane through the origin? Explain.

41. Suppose a system of equations has fewer equations than variables and you have found
a solution to this system of equations. Is it possible that your solution is the only one?
Explain.

42. Suppose a system of linear equations has a 2×4 augmented matrix and the last column
is a pivot column. Could the system of linear equations be consistent? Explain.

43. Suppose the coefficient matrix of a system of n equations with n variables has the
property that every column is a pivot column. Does it follow that the system of
equations must have a solution? If so, must the solution be unique? Explain.

44. Suppose there is a unique solution to a system of linear equations. What must be true
of the pivot columns in the augmented matrix.

45. State whether each of the following sets of data are possible for the matrix equation
Ax = b. If possible, describe the solution set. That is, tell whether there exists a
unique solution no solution or infinitely many solutions.

(a) A is a 5 × 6 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of four of the columns. Thus the columns are not independent.

(b) A is a 3× 4 matrix, rank (A) = 3 and rank (A|b) = 2.

(c) A is a 4 × 2 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of the columns and the columns must be independent.

(d) A is a 5 × 5 matrix, rank (A) = 4 and rank (A|b) = 5. Hint: This says b is not
in the span of the columns.

(e) A is a 4× 2 matrix, rank (A) = 2 and rank (A|b) = 2.

46. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · · , em occur as columns
in the row reduced echelon form for A.
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47. Suppose A is an m×n matrix in which m ≥ n. Suppose also that the rank of A equals
n. Show that A is one to one. Hint: If not, there exists a vector, x such that Ax = 0,
and this implies at least one column of A is a linear combination of the others. Show
this would require the column rank to be less than n.

48. Explain why an n× n matrix, A is both one to one and onto if and only if its rank is
n.

49. Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk}
be such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .

Here is how you do this. Suppose ABx = 0. Then Bx ∈ ker (A) ∩ B (Fp) and so
Bx =

∑k
i=1 Bzi showing that

x−
k∑

i=1

zi ∈ ker (B) .

50. Explain why Ax = 0 always has a solution even when A−1 does not exist.

(a) What can you conclude about A if the solution is unique?

(b) What can you conclude about A if the solution is not unique?

51. Suppose det (A− λI) = 0. Show using Theorem 8.2.9 there exists x 6= 0 such that
(A− λI)x = 0.

52. Let A be an n× n matrix and let x be a nonzero vector such that Ax = λx for some
scalar, λ. When this occurs, the vector, x is called an eigenvector and the scalar, λ
is called an eigenvalue. It turns out that not every number is an eigenvalue. Only
certain ones are. Why? Hint: Show that if Ax = λx, then (A− λI)x = 0. Explain
why this shows that (A− λI) is not one to one and not onto. Now use Theorem 8.2.9
to argue det (A− λI) = 0. What sort of equation is this? How many solutions does it
have?

53. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint:
Consider the n× n matrix, A1 which is of the form

A1 ≡
(

A
0

)

where the 0 denotes an (n−m) × n matrix of zeros. Thus det A1 = 0 and so A1 is
not one to one. Now observe that A1x is the vector,

A1x =
(

Ax
0

)

which equals zero if and only if Ax = 0. Do this using the Fredholm alternative.
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54. Let A be an m× n real matrix and let b ∈ Rm. Show there exists a solution, x to the
system

AT Ax = AT b

Next show that if x,x1 are two solutions, then Ax = Ax1. Hint: First show that(
AT A

)T = AT A. Next show if x ∈ ker
(
AT A

)
, then Ax = 0. Finally apply the Fred-

holm alternative. This will give existence of a solution.

55. Show that in the context of Problem 54 that if x is the solution there, then |b−Ax| ≤
|b−Ay| for every y. Thus Ax is the point of A (Rn) which is closest to b of every
point in A (Rn).

56. Let A be an n × n matrix and consider the matrices
{

I,A, A2, · · · , An2
}

. Explain
why there exist scalars, ci not all zero such that

n2∑

i=1

ciA
i = 0.

Then argue there exists a polynomial, p (λ) of the form

λm + dm−1λ
m−1 + · · ·+ d1λ + d0

such that p (A) = 0 and if q (λ) is another polynomial such that q (A) = 0, then q (λ) is
of the form p (λ) l (λ) for some polynomial, l (λ) . This extra special polynomial, p (λ)
is called the minimal polynomial. Hint: You might consider an n× n matrix as a
vector in Fn2

.



Linear Transformations

8.0.1 Outcomes

A. Define linear transformation. Interpret a matrix as a linear transformation.

B. Find a matrix that represents a linear transformation given by a geometric description.

C. Write the solution space of a homogeneous system as the span of a set of basis vectors.
Determine the dimension of the solution space.

D. Relate the solutions of a non-homogeneous system to the solutions of a homogeneous
system.

8.1 Linear Transformations

An m× n matrix can be used to transform vectors in Fn to vectors in Fm through the use
of matrix multiplication.

Example 8.1.1 Consider the matrix,
(

1 2 0
2 1 0

)
. Think of it as a function which takes

vectors in F3 and makes them in to vectors in F2 as follows. For




x
y
z


 a vector in F3,

multiply on the left by the given matrix to obtain the vector in F2. Here are some numerical
examples.

(
1 2 0
2 1 0

) 


1
2
3


 =

(
5
4

)
,

(
1 2 0
2 1 0

) 


1
−2
3


 =

( −3
0

)
,

(
1 2 0
2 1 0

) 


10
5
−3


 =

(
20
25

)
,

(
1 2 0
2 1 0

) 


0
7
3


 =

(
14
7

)
,

More generally,
(

1 2 0
2 1 0

) 


x
y
z


 =

(
x + 2y
2x + y

)

The idea is to define a function which takes vectors in F3 and delivers new vectors in F2.

This is an example of something called a linear transformation.

159
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Definition 8.1.2 Let T : Fn → Fm be a function. Thus for each x ∈ Fn, Tx ∈ Fm. Then T
is a linear transformation if whenever α, β are scalars and x1 and x2 are vectors in Fn,

T (αx1 + βx2) = α1Tx1 + βTx2.

In words, linear transformations distribute across + and allow you to factor out scalars.
At this point, recall the properties of matrix multiplication. The pertinent property is 4.14
on Page 55. Recall it states that for a and b scalars,

A (aB + bC) = aAB + bAC

In particular, for A an m × n matrix and B and C, n × 1 matrices (column vectors) the
above formula holds which is nothing more than the statement that matrix multiplication
gives an example of a linear transformation.

Definition 8.1.3 A linear transformation is called one to one (often written as 1− 1) if
it never takes two different vectors to the same vector. Thus T is one to one if whenever
x 6= y

Tx 6= Ty.

Equivalently, if T (x) = T (y) , then x = y.

In the case that a linear transformation comes from matrix multiplication, it is common
usage to refer to the matrix as a one to one matrix when the linear transformation it
determines is one to one.

Definition 8.1.4 A linear transformation mapping Fn to Fm is called onto if whenever
y ∈ Fm there exists x ∈ Fn such that T (x) = y.

Thus T is onto if everything in Fm gets hit. In the case that a linear transformation
comes from matrix multiplication, it is common to refer to the matrix as onto when the
linear transformation it determines is onto. Also it is common usage to write TFn, T (Fn) ,or
Im (T ) as the set of vectors of Fm which are of the form Tx for some x ∈ Fn. In the case
that T is obtained from multiplication by an m×n matrix, A, it is standard to simply write
A (Fn) AFn, or Im (A) to denote those vectors in Fm which are obtained in the form Ax for
some x ∈ Fn.

8.2 Constructing The Matrix Of A Linear Transforma-
tion

It turns out that if T is any linear transformation which maps Fn to Fm, there is always an
m× n matrix, A with the property that

Ax = Tx (8.1)

for all x ∈ Fn. Here is why. Suppose T : Fn → Fm is a linear transformation and you want
to find the matrix defined by this linear transformation as described in 8.1. Then if x ∈ Fn

it follows

x =
n∑

i=1

xiei
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where ei is the vector which has zeros in every slot but the ith and a 1 in this slot. Then
since T is linear,

Tx =
n∑

i=1

xiT (ei)

=




| |
T (e1) · · · T (en)
| |







x1

...
xn




≡ A




x1

...
xn




and so you see that the matrix desired is obtained from letting the ith column equal T (ei) .
We state this as the following theorem.

Theorem 8.2.1 Let T be a linear transformation from Fn to Fm. Then the matrix, A
satisfying 8.1 is given by 


| |

T (e1) · · · T (en)
| |




where Tei is the ith column of A.

8.2.1 Rotations of R2

Sometimes you need to find a matrix which represents a given linear transformation which
is described in geometrical terms. The idea is to produce a matrix which you can multiply
a vector by to get the same thing as some geometrical description. A good example of this
is the problem of rotation of vectors.

Example 8.2.2 Determine the matrix which represents the linear transformation defined
by rotating every vector through an angle of θ.

Let e1 ≡
(

1
0

)
and e2 ≡

(
0
1

)
. These identify the geometric vectors which point

along the positive x axis and positive y axis as shown.

-

6

e1

e2
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From the above, you only need to find Te1 and Te2, the first being the first column of
the desired matrix, A and the second being the second column. From drawing a picture and
doing a little geometry, you see that

Te1 =
(

cos θ
sin θ

)
, Te2 =

( − sin θ
cos θ

)
.

Therefore, from Theorem 8.2.1,

A =
(

cos θ − sin θ
sin θ cos θ

)

Example 8.2.3 Find the matrix of the linear transformation which is obtained by first
rotating all vectors through an angle of φ and then through an angle θ. Thus you want the
linear transformation which rotates all angles through an angle of θ + φ.

Let Tθ+φ denote the linear transformation which rotates every vector through an angle
of θ + φ. Then to get Tθ+φ, you could first do Tφ and then do Tθ where Tφ is the linear
transformation which rotates through an angle of φ and Tθ is the linear transformation
which rotates through an angle of θ. Denoting the corresponding matrices by Aθ+φ, Aφ,
and Aθ, you must have for every x

Aθ+φx = Tθ+φx = TθTφx = AθAφx.

Consequently, you must have

Aθ+φ =
(

cos (θ + φ) − sin (θ + φ)
sin (θ + φ) cos (θ + φ)

)
= AθAφ

=
(

cos θ − sin θ
sin θ cos θ

)(
cos φ − sin φ
sin φ cos φ

)
.

You know how to multiply matrices. Do so to the pair on the right. This yields
(

cos (θ + φ) − sin (θ + φ)
sin (θ + φ) cos (θ + φ)

)
=

(
cos θ cosφ− sin θ sin φ − cos θ sinφ− sin θ cos φ
sin θ cosφ + cos θ sin φ cos θ cos φ− sin θ sinφ

)
.

Don’t these look familiar? They are the usual trig. identities for the sum of two angles
derived here using linear algebra concepts.

You do not have to stop with two dimensions. You can consider rotations and other
geometric concepts in any number of dimensions. This is one of the major advantages
of linear algebra. You can break down a difficult geometrical procedure into small steps,
each corresponding to multiplication by an appropriate matrix. Then by multiplying the
matrices, you can obtain a single matrix which can give you numerical information on the
results of applying the given sequence of simple procedures. That which you could never
visualize can still be understood to the extent of finding exact numerical answers. Another
example follows.

Example 8.2.4 Find the matrix of the linear transformation which is obtained by first
rotating all vectors through an angle of π/6 and then reflecting through the x axis.

As shown in Example 8.2.3, the matrix of the transformation which involves rotating
through an angle of π/6 is

(
cos (π/6) − sin (π/6)
sin (π/6) cos (π/6)

)
=

(
1
2

√
3 − 1

2
1
2

1
2

√
3

)
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The matrix for the transformation which reflects all vectors through the x axis is
(

1 0
0 −1

)
.

Therefore, the matrix of the linear transformation which first rotates through π/6 and then
reflects through the x axis is

(
1 0
0 −1

)(
1
2

√
3 − 1

2
1
2

1
2

√
3

)
=

(
1
2

√
3 − 1

2

− 1
2 − 1

2

√
3

)
.

8.2.2 Projections

In Physics it is important to consider the work done by a force field on an object. This
involves the concept of projection onto a vector. Suppose you want to find the projection
of a vector, v onto the given vector, u, denoted by proju (v) This is done using the dot
product as follows.

proju (v) =
(v · u
u · u

)
u

Because of properties of the dot product, the map v →proju (v) is linear,

proju (αv+βw) =
(

αv+βw · u
u · u

)
u = α

(v · u
u · u

)
u + β

(w · u
u · u

)
u

= α proju (v) + β proju (w) .

Example 8.2.5 Let the projection map be defined above and let u = (1, 2, 3)T
. Does this

linear transformation come from multiplication by a matrix? If so, what is the matrix?

You can find this matrix in the same way as in the previous example. Let ei denote the
vector in Rn which has a 1 in the ith position and a zero everywhere else. Thus a typical
vector, x =(x1, · · · , xn)T can be written in a unique way as

x =
n∑

j=1

xjej .

From the way you multiply a matrix by a vector, it follows that proju (ei) gives the ith

column of the desired matrix. Therefore, it is only necessary to find

proju (ei) ≡
( ei·u
u · u

)
u

For the given vector in the example, this implies the columns of the desired matrix are

1
14




1
2
3


 ,

2
14




1
2
3


 ,

3
14




1
2
3


 .

Hence the matrix is

1
14




1 2 3
2 4 6
3 6 9


 .
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8.2.3 Matrices Which Are One To One Or Onto

Lemma 8.2.6 Let A be an m×n matrix. Then A (Fn) = span (a1, · · · ,an) where a1, · · · ,an

denote the columns of A. In fact, for x = (x1, · · · , xn)T
,

Ax =
n∑

k=1

xkak.

Proof: This follows from the definition of matrix multiplication in Definition 4.1.9 on
Page 50.

The following is a theorem of major significance. First here is an interesting observation.

Observation 8.2.7 Let A be an m×n matrix. Then A is one to one if and only if Ax = 0
implies x = 0.

Here is why: A0 = A (0 + 0) = A0 + A0 and so A0 = 0.
Now suppose A is one to one and Ax = 0. Then since A0 = 0, it follows x = 0. Thus if

A is one to one and Ax = 0, then x = 0.
Next suppose the condition that Ax = 0 implies x = 0 is valid. Then if Ax = Ay, then

A (x− y) = 0 and so from the condition, x− y = 0 so that x = y. Thus A is one to one.

Theorem 8.2.8 Suppose A is an n × n matrix. Then A is one to one if and only if A is
onto. Also, if B is an n× n matrix and AB = I, then it follows BA = I.

Proof: First suppose A is one to one. Consider the vectors, {Ae1, · · · , Aen} where ek

is the column vector which is all zeros except for a 1 in the kth position. This set of vectors
is linearly independent because if

n∑

k=1

ckAek = 0,

then since A is linear,

A

(
n∑

k=1

ckek

)
= 0

and since A is one to one, it follows

n∑

k=1

ckek = 0

which implies each ck = 0. Therefore, {Ae1, · · · , Aen} must be a basis for Fn by Corollary
7.4.17 on Page 143. It follows that for y ∈ Fn there exist constants, ci such that

y =
n∑

k=1

ckAek = A

(
n∑

k=1

ckek

)

showing that, since y was arbitrary, A is onto.
Next suppose A is onto. This implies the span of the columns of A equals Fn and by

Corollary 7.4.17 this implies the columns of A are independent. If Ax = 0, then letting
x = (x1, · · · , xn)T

, it follows
n∑

i=1

xiai = 0
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and so each xi = 0. If Ax = Ay, then A (x− y) = 0 and so x = y. This shows A is one to
one.

Now suppose AB = I. Why is BA = I? Since AB = I it follows B is one to one since
otherwise, there would exist, x 6= 0 such that Bx = 0 and then ABx = A0 = 0 6= Ix.
Therefore, from what was just shown, B is also onto. In addition to this, A must be one
to one because if Ay = 0, then y = Bx for some x and then x = ABx = Ay = 0 showing
y = 0. Now from what is given to be so, it follows (AB) A = A and so using the associative
law for matrix multiplication,

A (BA)−A = A (BA− I) = 0.

But this means (BA− I)x = 0 for all x since otherwise, A would not be one to one. Hence
BA = I as claimed. This proves the theorem.

This theorem shows that if an n × n matrix, B acts like an inverse when multiplied on
one side of A it follows that B = A−1and it will act like an inverse on both sides of A.

The conclusion of this theorem pertains to square matrices only. For example, let

A =




1 0
0 1
1 0


 , B =

(
1 0 0
1 1 −1

)
(8.2)

Then

BA =
(

1 0
0 1

)

but

AB =




1 0 0
1 1 −1
1 0 0


 .

There is also an important characterization in terms of determinants. This is proved
completely in the section on the mathematical theory of the determinant.

Theorem 8.2.9 Let A be an n × n matrix and let TA denote the linear transformation
determined by A. Then the following are equivalent.

1. TA is one to one.

2. TA is onto.

3. det (A) 6= 0.

8.2.4 The General Solution Of A Linear System

Recall the following definition which was discussed above.

Definition 8.2.10 T is a linear transformation if whenever x,y are vectors and a, b
scalars,

T (ax + by) = aTx + bTy. (8.3)

Thus linear transformations distribute across addition and pass scalars to the outside. A
linear system is one which is of the form

Tx = b.

If Txp = b, then xp is called a particular solution to the linear system.
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For example, if A is an m× n matrix and TA is determined by

TA (x) = Ax,

then from the properties of matrix multiplication, TA is a linear transformation. In this
setting, we will usually write A for the linear transformation as well as the matrix. There
are many other examples of linear transformations other than this. In differential equations,
you will encounter linear transformations which act on functions to give new functions. In
this case, the functions are considered as vectors. Don’t worry too much about this at this
time. It will happen later. The fundamental idea is that something is linear if 8.3 holds and
if whenever a, b are scalars and x,y are vectors ax + by is a vector. That is you can add
vectors and multiply by scalars.

Definition 8.2.11 Let T be a linear transformation. Define

ker (T ) ≡ {x : Tx = 0} .

In words, ker (T ) is called the kernel of T . As just described, ker (T ) consists of the set of
all vectors which T sends to 0. This is also called the null space of T . It is also called the
solution space of the equation Tx = 0.

The above definition states that ker (T ) is the set of solutions to the equation,

Tx = 0.

In the case where T is really a matrix, you have been solving such equations for quite some
time. However, sometimes linear transformations act on vectors which are not in Fn. There
is more on this in Chapter 15 on Page 15 and this is discussed more carefully then. However,
consider the following familiar example.

Example 8.2.12 Let d
dx denote the linear transformation defined on X, the functions which

are defined on R and have a continuous derivative. Find ker
(

d
dx

)
.

The example asks for functions, f which the property that df
dx = 0. As you know from

calculus, these functions are the constant functions. Thus ker
(

d
dx

)
= constant functions.

When T is a linear transformation, systems of the form Tx = 0 are called homogeneous
systems. Thus the solution to the homogeneous system is known as ker (T ) .

Systems of the form Tx = b where b 6= 0 are called nonhomogeneous systems. It
turns out there is a very interesting and important relation between the solutions to the
homogeneous systems and the solutions to the nonhomogeneous systems.

Theorem 8.2.13 Suppose xp is a solution to the linear system,

Tx = b

Then if y is any other solution to the linear system, there exists x ∈ ker (T ) such that

y = xp + x.

Proof: Consider y − xp ≡ y+(−1)xp. Then T
(
y − xp

)
= Ty − Txp = b− b = 0. Let

x ≡ y − xp. This proves the theorem.
Sometimes people remember the above theorem in the following form. The solutions

to the nonhomogeneous system, Tx = b are given by xp + ker (T ) where xp is a particular
solution to Tx = b.

We have been vague about what T is and what x is on purpose. This theorem is
completely algebraic in nature and will work whenever you have linear transformations. In
particular, it will be important in differential equations. For now, here is a familiar example.
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Example 8.2.14 Let

A =




1 2 3 0
2 1 1 2
4 5 7 2




Find ker (A). Equivalently, find the solution space to the system of equations Ax = 0.

This asks you to find {x : Ax = 0} . In other words you are asked to solve the system,
Ax = 0. Let x = (x, y, z, w)T

. Then this amounts to solving




1 2 3 0
2 1 1 2
4 5 7 2







x
y
z
w


 =




0
0
0




This is the linear system
x + 2y + 3z = 0

2x + y + z + 2w = 0
4x + 5y + 7z + 2w = 0

and you know how to solve this using row operations, (Gauss Elimination). Set up the
augmented matrix, 


1 2 3 0 | 0
2 1 1 2 | 0
4 5 7 2 | 0




Then row reduce to obtain the row reduced echelon form,




1 0 − 1
3

4
3 | 0

0 1 5
3 − 2

3 | 0

0 0 0 0 | 0


 .

This yields x = 1
3z − 4

3w and y = 2
3w − 5

3z. Thus ker (A) consists of vectors of the form,




1
3z − 4

3w

2
3w − 5

3z

z
w




= z




1
3

− 5
3

1
0


 + w




− 4
3

2
3

0
1


 .

Example 8.2.15 The general solution of a linear system of equations is just the set of
all solutions. Find the general solution to the linear system,




1 2 3 0
2 1 1 2
4 5 7 2







x
y
z
w


 =




9
7
25




given that
(

1 1 2 1
)T =

(
x y z w

)T is one solution.
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Note the matrix on the left is the same as the matrix in Example 8.2.14. Therefore, from
Theorem 8.2.13, you will obtain all solutions to the above linear system in the form

z




1
3

− 5
3

1
0


 + w




− 4
3

2
3

0
1


 +




1
1
2
1




because




x
y
z
w


 =




1
1
2
1


 is a particular solution to the given system of equations.

8.3 Exercises

1. Study the definition of a linear transformation. State it from memory.

2. Show the map T : Rn → Rm defined by T (x) = Ax where A is an m× n matrix and
x is an m× 1 column vector is a linear transformation.

3. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3.

4. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4.

5. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of −π/3.

6. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3.

7. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/12. Hint: Note that π/12 = π/3− π/4.

8. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3 and then reflects across the x axis.

9. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3 and then reflects across the x axis.

10. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4 and then reflects across the x axis.

11. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/6 and then reflects across the x axis followed by a reflection across the
y axis.

12. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/4.

13. Find the matrix for the linear transformation which reflects every vector in R2 across
the y axis and then rotates every vector through an angle of π/4.

14. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/6.
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15. Find the matrix for the linear transformation which reflects every vector in R2 across
the y axis and then rotates every vector through an angle of π/6.

16. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

17. Find the matrix for proju (v) where u = (1,−2, 3)T
.

18. Find the matrix for proju (v) where u = (1, 5, 3)T
.

19. Find the matrix for proju (v) where u = (1, 0, 3)T
.

20. Show that the function Tu defined by Tu (v) ≡ v − proju (v) is also a linear transfor-
mation.

21. If u = (1, 2, 3)T , as in Example 16.5.20 and Tu is given in the above problem, find the
matrix, Au which satisfies Aux = T (x).

22. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system.




1 −1 2
1 −2 1
3 −4 5







x
y
z


 =




0
0
0


 .

23. Using Problem 22 find the general solution to the following linear system.



1 −1 2
1 −2 1
3 −4 5







x
y
z


 =




1
2
4


 .

24. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system.




0 −1 2
1 −2 1
1 −4 5







x
y
z


 =




0
0
0


 .

25. Using Problem 24 find the general solution to the following linear system.



0 −1 2
1 −2 1
1 −4 5







x
y
z


 =




1
−1
1


 .

26. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system.




1 −1 2
1 −2 0
3 −4 4







x
y
z


 =




0
0
0


 .

27. Using Problem 26 find the general solution to the following linear system.



1 −1 2
1 −2 0
3 −4 4







x
y
z


 =




1
2
4


 .



170 LINEAR TRANSFORMATIONS

28. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system.




0 −1 2
1 0 1
1 −2 5







x
y
z


 =




0
0
0


 .

29. Using Problem 28 find the general solution to the following linear system.



0 −1 2
1 0 1
1 −2 5







x
y
z


 =




1
−1
1


 .

30. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system.




1 0 1 1
1 −1 1 0
3 −1 3 2
3 3 0 3







x
y
z
w


 =




0
0
0
0


 .

31. Using Problem 30 find the general solution to the following linear system.



1 0 1 1
1 −1 1 0
3 −1 3 2
3 3 0 3







x
y
z
w


 =




1
2
4
3


 .

32. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system.




1 1 0 1
2 1 1 2
1 0 1 1
0 0 0 0







x
y
z
w


 =




0
0
0
0


 .

33. Using Problem 32 find the general solution to the following linear system.



1 1 0 1
2 1 1 2
1 0 1 1
0 −1 1 1







x
y
z
w


 =




2
−1
−3
0


 .

34. Give an example of a 3 × 2 matrix with the property that the linear transformation
determined by this matrix is one to one but not onto.

35. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system.




1 1 0 1
1 −1 1 0
3 1 1 2
3 3 0 3







x
y
z
w


 =




0
0
0
0


 .
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36. Using Problem 35 find the general solution to the following linear system.



1 1 0 1
1 −1 1 0
3 1 1 2
3 3 0 3







x
y
z
w


 =




1
2
4
3


 .

37. Write the solution set of the following system as the span of vectors and find a basis
for the solution space of the following system.




1 1 0 1
2 1 1 2
1 0 1 1
0 −1 1 1







x
y
z
w


 =




0
0
0
0


 .

38. Using Problem 37 find the general solution to the following linear system.



1 1 0 1
2 1 1 2
1 0 1 1
0 −1 1 1







x
y
z
w


 =




2
−1
−3
1


 .

39. Find ker (A) for

A =




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2


 .

Recall ker (A) is just the set of solutions to Ax = 0. It is the solution space to the
system Ax = 0.

40. Using Problem 39, find the general solution to the following linear system.




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2







x1

x2

x3

x4

x5




=




11
7
18
7




41. Using Problem 29, find the general solution to the following linear system.




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2







x1

x2

x3

x4

x5




=




6
7
13
7




42. Suppose Ax = b has a solution. Explain why the solution is unique precisely when
Ax = 0 has only the trivial (zero) solution.

43. Show that if A is an m× n matrix, then ker (A) is a subspace.

44. Verify the linear transformation determined by the matrix of 8.2 maps R3 onto R2 but
the linear transformation determined by this matrix is not one to one.
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45. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint:
Consider the n× n matrix, A1 which is of the form

A1 ≡
(

A
0

)

where the 0 denotes an (n−m) × n matrix of zeros. Thus det A1 = 0 and so A1 is
not one to one. Now observe that A1x is the vector,

A1x =
(

Ax
0

)

which equals zero if and only if Ax = 0.

46. Let A be an n×n real matrix. Use the Fredholm alternative to show that A is one to
one if and only if A is onto.



The LU Factorization

9.0.1 Outcomes

A. Determine LU factorizations when possible.

B. Solve a linear system of equations using the LU factorization.

9.1 Definition Of An LU factorization

An LU factorization of a matrix involves writing the given matrix as the product of a lower
triangular matrix which has the main diagonal consisting entirely of ones L, and an upper
triangular matrix U in the indicated order. This is the version discussed here but it is
sometimes the case that the L has numbers other than 1 down the main diagonal. It is still
a useful concept. The L goes with “lower” and the U with “upper”. It turns out many
matrices can be written in this way and when this is possible, people get excited about slick
ways of solving the system of equations, Ax = y. It is for this reason that you want to study
the LU factorization. It allows you to work only with triangular matrices. It turns out that
it takes about 2n3/3 operations to use Gauss elimination but only n3/3 to obtain an LU
factorization.

First it should be noted not all matrices have an LU factorization and so we will em-
phasize the techniques for achieving it rather than formal proofs.

Example 9.1.1 Can you write
(

0 1
1 0

)
in the form LU as just described?

To do so you would need
(

1 0
x 1

)(
a b
0 c

)
=

(
a b
xa xb + c

)
=

(
0 1
1 0

)
.

Therefore, b = 1 and a = 0. Also, from the bottom rows, xa = 1 which can’t happen and
have a = 0. Therefore, you can’t write this matrix in the form LU. It has no LU factorization.
This is what we mean above by saying the method lacks generality.

9.2 Finding An LU Factorization By Inspection

Which matrices have an LU factorization? It turns out it is those whose row reduced echelon
form can be achieved without switching rows and which only involve row operations of type
3 in which row j is replaced with a multiple of row i added to row j for i < j.
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Example 9.2.1 Find an LU factorization of A =




1 2 0 2
1 3 2 1
2 3 4 0


 .

One way to find the LU factorization is to simply look for it directly. You need



1 2 0 2
1 3 2 1
2 3 4 0


 =




1 0 0
x 1 0
y z 1







a d h j
0 b e i
0 0 c f


 .

Then multiplying these you get



a d h j
xa xd + b xh + e xj + i
ya yd + zb yh + ze + c yj + iz + f




and so you can now tell what the various quantities equal. From the first column, you
need a = 1, x = 1, y = 2. Now go to the second column. You need d = 2, xd + b = 3 so
b = 1, yd + zb = 3 so z = −1. From the third column, h = 0, e = 2, c = 6. Now from the
fourth column, j = 2, i = −1, f = −5. Therefore, an LU factorization is




1 0 0
1 1 0
2 −1 1







1 2 0 2
0 1 2 −1
0 0 6 −5


 .

You can check whether you got it right by simply multiplying these two.

9.3 Using Multipliers To Find An LU Factorization

There is also a convenient procedure for finding an LU factorization. It turns out that it
is only necessary to keep track of the multipliers which are used to row reduce to upper
triangular form. This procedure is described in the following examples.

Example 9.3.1 Find an LU factorization for A =




1 2 3
2 1 −4
1 5 2




Write the matrix next to the identity matrix as shown.



1 0 0
0 1 0
0 0 1







1 2 3
2 1 −4
1 5 2


 .

The process involves doing row operations to the matrix on the right while simultaneously
updating successive columns of the matrix on the left. First take −2 times the first row and
add to the second in the matrix on the right.




1 0 0
2 1 0
0 0 1







1 2 3
0 −3 −10
1 5 2




Note the way we updated the matrix on the left. We put a 2 in the second entry of the first
column because we used −2 times the first row added to the second row. Now replace the
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third row in the matrix on the right by −1 times the first row added to the third. Thus the
next step is 


1 0 0
2 1 0
1 0 1







1 2 3
0 −3 −10
0 3 −1




Finally, we will add the second row to the bottom row and make the following changes



1 0 0
2 1 0
1 −1 1







1 2 3
0 −3 −10
0 0 −11


 .

At this point, we stop because the matrix on the right is upper triangular. An LU factor-
ization is the above.

The justification for this gimmick will be given later.

Example 9.3.2 Find an LU factorization for A =




1 2 1 2 1
2 0 2 1 1
2 3 1 3 2
1 0 1 1 2


 .

We will use the same procedure as above. However, this time we will do everything for
one column at a time. First multiply the first row by (−1) and then add to the last row.
Next take (−2) times the first and add to the second and then (−2) times the first and add
to the third. 



1 0 0 0
2 1 0 0
2 0 1 0
1 0 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 −1 −1 −1 0
0 −2 0 −1 1


 .

This finishes the first column of L and the first column of U. Now take − (1/4) times the
second row in the matrix on the right and add to the third followed by − (1/2) times the
second added to the last.




1 0 0 0
2 1 0 0
2 1/4 1 0
1 1/2 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 0 −1 −1/4 1/4
0 0 0 1/2 3/2




This finishes the second column of L as well as the second column of U . Since the matrix
on the right is upper triangular, stop. The LU factorization has now been obtained. This
technique is called Dolittle’s method.

This process is entirely typical of the general case. The matrix U is just the first upper
triangular matrix you come to in your quest for the row reduced echelon form using only
the row operation which involves replacing a row by itself added to a multiple of another
row. The matrix, L is what you get by updating the identity matrix as illustrated above.

You should note that for a square matrix, the number of row operations necessary to
reduce to LU form is about half the number needed to place the matrix in row reduced
echelon form. This is why an LU factorization is of interest in solving systems of equations.

9.4 Solving Systems Using The LU Factorization

The reason people care about the LU factorization is it allows the quick solution of systems
of equations. Here is an example.
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Example 9.4.1 Suppose you want to find the solutions to




1 2 3 2
4 3 1 1
1 2 3 0







x
y
z
w


 =




1
2
3


 .

Of course one way is to write the augmented matrix and grind away. However, this
involves more row operations than the computation of the LU factorization and it turns out
that the LU factorization can give the solution quickly. Here is how. The following is an
LU factorization for the matrix.




1 2 3 2
4 3 1 1
1 2 3 0


 =




1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2


 .

Let Ux = y and consider Ly = b where in this case, b =(1, 2, 3)T . Thus



1 0 0
4 1 0
1 0 1







y1

y2

y3


 =




1
2
3




which yields very quickly that y =




1
−2
2


 . Now you can find x by solving Ux = y. Thus

in this case,



1 2 3 2
0 −5 −11 −7
0 0 0 −2







x
y
z
w


 =




1
−2
2




which yields

x =




− 3
5 + 7

5 t

9
5 − 11

5 t

t
−1




, t ∈ R.

9.5 Justification For The Multiplier Method

Why does the multiplier method work for finding the LU factorization? Suppose A is a
matrix which has the property that the row reduced echelon form for A may be achieved
using only the row operations which involve replacing a row with itself added to a multiple
of another row. It is not ever necessary to switch rows. Thus every row which is replaced
using this row operation in obtaining the echelon form may be modified by using a row
which is above it. Furthermore, in the multiplier method for finding the LU factorization,
we zero out the elements below the pivot element in first column and then the next and
so on when scanning from the left. In terms of elementary matrices, this means the row
operations used to reduce A to upper triangular form correspond to multiplication on the
left by lower triangular matrices having all ones down the main diagonal.and the sequence
of elementary matrices which row reduces A has the property that in scanning the list of
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elementary matrices from the right to the left, this list consists of several matrices which
involve only changes from the identity in the first column, then several which involve only
changes from the identity in the second column and so forth. More precisely, Ep · · ·E1A = U
where U is upper triangular, each Ei is a lower triangular elementary matrix having all ones
down the main diagonal, for some ri, each of Er1 · · ·E1 differs from the identity only in the
first column, each of Er2 · · ·Er1+1 differs from the identity only in the second column and

so forth. Therefore, A =

Will be L︷ ︸︸ ︷
E−1

1 · · ·E−1
p−1E

−1
p U. You multiply the inverses in the reverse order.

Now each of the E−1
i is also lower triangular with 1 down the main diagonal. Therefore

their product has this property. Recall also that if Ei equals the identity matrix except
for having an a in the jth column somewhere below the main diagonal, E−1

i is obtained by
replacing the a in Ei with −a thus explaining why we replace with −1 times the multiplier
in computing L. In the case where A is a 3×m matrix, E−1

1 · · ·E−1
p−1E

−1
p is of the form




1 0 0
a 1 0
0 0 1







1 0 0
0 1 0
b 0 1







1 0 0
0 1 0
0 c 1


 =




1 0 0
a 1 0
b c 1


 .

Note that scanning from left to right, the first two in the product involve changes in the
identity only in the first column while in the third matrix, the change is only in the second.
If we had zeroed out the elements of the first column in a different order, we would have
obtained. 


1 0 0
0 1 0
b 0 1







1 0 0
a 1 0
0 0 1







1 0 0
0 1 0
0 c 1


 =




1 0 0
a 1 0
b c 1




However, it is important to be working from the left to the right, one column at a time.
A similar observation holds in any dimension. Multiplying the elementary matrices which

involve a change only in the jth column you obtain A equal to an upper triangular, n×m
matrix, U multiplied on its left by a sequence of lower triangular matrices which is of the
following form, the aij being negatives of multipliers used in row reducing A to an upper
triangular matrix.




1 0 · · · · · · · · · 0

a11 1
...

... 0
. . .

...
...

... 0
. . .

...
...

...
...

. . . 0
a1,n−1 0 0 · · · · · · 1







1 0 · · · · · · · · · 0

0 1
...

... a21
. . .

...
...

... 0
. . .

...
...

...
...

. . . 0
0 a2,n−2 0 · · · · · · 1




· · ·

· · ·




1 0 · · · · · · · · · 0

0 1
...

... 0
. . .

...
...

... 0
. . .

...
...

...
... 1 0

0 0 0 · · · an,n−1 1
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From the way we multiply matrices, this product equals



1 0 · · · · · · · · · 0

a11 1
...

a12 a21
. . .

...
... a22 a31

. . .
...

...
...

... 1 0
a1,n−1 a2,n−2 a3,n−3 · · · an,n−1 1




Notice how the end result of the matrix multiplication made no change in the aij . It just
filled in the empty spaces with the aij which occurred in one of the matrices in the product.
This is why, in computing L, it is sufficient to begin with the left column and work column
by column toward the right, replacing entries with the negative of the multiplier used in the
row operation which produces a zero in that entry.

9.6 The PLU Factorization

As indicated above, some matrices don’t have an LU factorization. Here is an example.

M =




1 2 3 2
1 2 3 0
4 3 1 1


 (9.1)

In this case, there is another factorization which is useful called a PLU factorization. Here
P is a permutation matrix.

Example 9.6.1 Find a PLU factorization for the above matrix in 9.1.

Proceed as before trying to find the row echelon form of the matrix. First add −1 times
the first row to the second row and then add −4 times the first to the third. This yields




1 0 0
1 1 0
4 0 1







1 2 3 2
0 0 0 −2
0 −5 −11 −7




There is no way to do only row operations involving replacing a row with itself added
to a multiple of another row to the matrix on the right in such a way as to obtain an
upper triangular matrix. Therefore, consider the original matrix with the bottom two rows
switched.

M ′ =




1 2 3 2
4 3 1 1
1 2 3 0


 =




1 0 0
0 0 1
0 1 0







1 2 3 2
1 2 3 0
4 3 1 1




= PM

Now try again with this matrix. First take −1 times the first row and add to the bottom
row and then take −4 times the first row and add to the second row. This yields




1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2
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The matrix on the right is upper triangular and so the LU factorization of the matrix, M ′

has been obtained above.
Thus M ′ = PM = LU where L and U are given above. Notice that P 2 = I and

therefore, M = P 2M = PLU and so



1 2 3 2
1 2 3 0
4 3 1 1


 =




1 0 0
0 0 1
0 1 0







1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2




This process can always be followed and so there always exists a PLU factorization of a
given matrix even though there isn’t always an LU factorization.

Example 9.6.2 Use the PLU factorization of M ≡



1 2 3 2
1 2 3 0
4 3 1 1


 to solve the system

Mx = b where b = (1, 2, 3)T
.

Let Ux = y and consider PLy = b. In other words, solve,



1 0 0
0 0 1
0 1 0







1 0 0
4 1 0
1 0 1







y1

y2

y3


 =




1
2
3


 .

Multiplying both sides by P gives



1 0 0
4 1 0
1 0 1







y1

y2

y3


 =




1
3
2




and so

y =




y1

y2

y3


 =




1
−1
1


 .

Now Ux = y and so it only remains to solve




1 2 3 2
0 −5 −11 −7
0 0 0 −2







x1

x2

x3

x4


 =




1
−1
1




which yields



x1

x2

x3

x4


 =




1
5 + 7

5 t

9
10 − 11

5 t

t
− 1

2




: t ∈ R.

9.7 The QR Factorization

As pointed out above, the LU factorization is not a mathematically respectable thing be-
cause it does not always exist. There is another factorization which does always exist. Much
more can be said about it than I will say here. I will only deal with real matrices and so
the dot product will be the usual real dot product.
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Definition 9.7.1 An n× n real matrix Q is called an orthogonal matrix if

QQT = QT Q = I.

Thus an orthogonal matrix is one whose inverse is equal to its transpose.

First note that if a matrix is orthogonal this says
∑

j

QT
ijQjk =

∑

j

QjiQjk = δik

Thus

|Qx|2 =
∑

i


∑

j

Qijxj




2

=
∑

i

∑
r

∑
s

QisxsQirxr

=
∑

i

∑
r

∑
s

QisQirxsxr =
∑

r

∑
s

∑

i

QisQirxsxr

=
∑

r

∑
s

δsrxsxr =
∑

r

x2
r = |x|2

This shows that orthogonal transformations preserve distances. You can show that if you
have a matrix which does preserve distances, then it must be orthogonal also.

Example 9.7.2 One of the most important examples of an orthogonal matrix is the so
called Householder matrix. You have v a unit vector and you form the matrix,

I − 2vvT

This is an orthogonal matrix which is also symmetric. To see this, you use the rules of
matrix operations.

(
I − 2vvT

)T
= IT − (

2vvT
)T

= I − 2vvT

so it is symmetric. Now to show it is orthogonal,
(
I − 2vvT

) (
I − 2vvT

)
= I − 2vvT − 2vvT + 4vvT vvT

= I − 4vvT + 4vvT = I

because vT v = v · v = |v|2 = 1. Therefore, this is an example of an orthogonal matrix.

Consider the following problem.

Problem 9.7.3 Given two vectors x,y such that |x| = |y| 6= 0 but x 6= y and you want an
orthogonal matrix, Q such that Qx = y and Qy = x. The thing which works is the House-
holder matrix

Q ≡ I − 2
x− y

|x− y|2 (x− y)T

Here is why this works.

Q (x− y) = (x− y)− 2
x− y

|x− y|2 (x− y)T (x− y)

= (x− y)− 2
x− y

|x− y|2 |x− y|2 = y − x
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Q (x + y) = (x + y)− 2
x− y

|x− y|2 (x− y)T (x + y)

= (x + y)− 2
x− y

|x− y|2 ((x− y) · (x + y))

= (x + y)− 2
x− y

|x− y|2
(
|x|2 − |y|2

)
= x + y

Hence

Qx + Qy = x + y

Qx−Qy = y − x

Adding these equations, 2Qx = 2y and subtracting them yields 2Qy = 2x.

A picture of the geometric significance follows.

x

y

The orthogonal matrix Q reflects across the dotted line taking x to y and y to x.

Definition 9.7.4 Let A be an m×n matrix. Then a QR factorization of A consists of two
matrices, Q orthogonal and R upper triangular or in other words equal to zero below the
main diagonal such that A = QR.

With the solution to this simple problem, here is how to obtain a QR factorization for
any matrix A. Let

A = (a1,a2, · · · ,an)

where the ai are the columns. If a1 = 0, let Q1 = I. If a1 6= 0, let

b ≡




|a1|
0
...
0




and form the Householder matrix,

Q1 ≡ I − 2
(a1 − b)
|a1 − b|2 (a1 − b)T

As in the above problem Q1a1 = b and so

Q1A =
( |a1| ∗

0 A2

)

where A2 is a m−1×n−1 matrix. Now find in the same way as was just done a n−1×n−1
matrix Q̂2 such that

Q̂2A2 =
( ∗ ∗

0 A3

)
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Let

Q2 ≡
(

1 0
0 Q̂2

)
.

Then

Q2Q1A =
(

1 0
0 Q̂2

)( |a1| ∗
0 A2

)

=



|a1| ∗ ∗
... ∗ ∗
0 0 A3




Continuing this way untill the result is upper triangular, you get a sequence of orthogonal
matrices QpQp−1 · · ·Q1 such that

QpQp−1 · · ·Q1A = R (9.2)

where R is upper triangular.
Now if Q1 and Q2 are orthogonal, then from properties of matrix multiplication,

Q1Q2 (Q1Q2)
T = Q1Q2Q

T
2 QT

1 = Q1IQT
1 = I

and similarly
(Q1Q2)

T
Q1Q2 = I.

Thus the product of orthogonal matrices is orthogonal. Also the transpose of an orthogonal
matrix is orthogonal directly from the definition. Therefore, from 9.2

A = (QpQp−1 · · ·Q1)
T

R ≡ QR.

This proves the following theorem.

Theorem 9.7.5 Let A be any real m× n matrix. Then there exists an orthogonal matrix,
Q and an upper triangular matrix R such that

A = QR

and this factorization can be accomplished in a systematic manner.

9.8 Exercises

1. Find an LU factorization of




1 2 0
2 1 3
1 2 3


 .

2. Find an LU factorization of




1 2 3 2
1 3 2 1
5 0 1 3


 .

3. Find an LU factorization of the matrix,




1 −2 −5 0
−2 5 11 3
3 −6 −15 1


 .
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4. Find an LU factorization of the matrix,




1 −1 −3 −1
−1 2 4 3
2 −3 −7 −3


 .

5. Find an LU factorization of the matrix,




1 −3 −4 −3
−3 10 10 10
1 −6 2 −5


 .

6. Find an LU factorization of the matrix,




1 3 1 −1
3 10 8 −1
2 5 −3 −3


 .

7. Find an LU factorization of the matrix,




3 −2 1
9 −8 6
−6 2 2
3 2 −7


 .

8. Find an LU factorization of the matrix,




−3 −1 3
9 9 −12
3 19 −16
12 40 −26


 .

9. Find an LU factorization of the matrix,




−1 −3 −1
1 3 0
3 9 0
4 12 16


 .

10. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it
to solve the system of equations.

x + 2y = 5
2x + 3y = 6

11. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it
to solve the system of equations.

x + 2y + z = 1
2x + 3y = 6
y + 3z = 2

12. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it
to solve the system of equations.

x + 2y + 3z = 5
2x + 3y + z = 6
x− y + z = 2

13. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it
to solve the system of equations.

x + 2y + 3z = 5
2x + 3y + z = 6

3x + 5y + 4z = 11
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14. Is there only one LU factorization for a given matrix? Hint: Consider the equation
(

0 1
0 1

)
=

(
1 0
1 1

)(
0 1
0 0

)
.

15. Find a PLU factorization of




1 2 1
1 2 2
2 1 1


 .

16. Find a PLU factorization of




1 2 1 2 1
2 4 2 4 1
1 2 1 3 2


 .

17. Find a PLU factorization of




1 2 1
1 2 2
2 4 1
3 2 1


 .

18. Find a PLU factorization of




1 2 1
2 4 1
1 0 2
2 2 1


 and use it to solve the systems

(a)




1 2 1
2 4 1
1 0 2
2 2 1







x
y
z


 =




1
2
1
1




(b)




1 2 1
2 4 1
1 0 2
2 2 1







x
y
z


 =




a
b
c
d




19. Find a PLU factorization of




0 2 1 2
2 1 −2 0
2 3 −1 2


 and use it to solve the systems

(a)




0 2 1 2
2 1 −2 0
2 3 −1 2







x
y
z
w


 =




1
1
2




(b)




0 2 1 2
2 1 −2 0
2 3 −1 2







x
y
z
w


 =




2
1
3




20. Find a QR factorization for the matrix



1 2 1
3 −2 1
1 0 2






9.8. EXERCISES 185

21. Find a QR factorization for the matrix



1 2 1 0
3 0 1 1
1 0 2 1




22. If you had a QR factorization, A = QR, describe how you could use it to solve the
equation Ax = b. This is not usually the way people solve this equation. However,
the QR factorization is of great importance in certain other problems, especially in
finding eigenvalues and eigenvectors.
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Linear Programming

10.1 Simple Geometric Considerations

One of the most important uses of row operations is in solving linear program problems
which involve maximizing a linear function subject to inequality constraints determined
from linear equations. Here is an example. A certain hamburger store has 9000 hamburger
patties to use in one week and a limitless supply of special sauce, lettuce, tomatoes, onions,
and buns. They sell two types of hamburgers, the big stack and the basic burger. It has also
been determined that the employees cannot prepare more than 9000 of either type in one
week. The big stack, popular with the teen agers from the local high school, involves two
patties, lots of delicious sauce, condiments galore, and a divider between the two patties.
The basic burger, very popular with children, involves only one patty and some pickles
and ketchup. Demand for the basic burger is twice what it is for the big stack. What
is the maximum number of hamburgers which could be sold in one week given the above
limitations?

Let x be the number of basic burgers and y the number of big stacks which could be sold
in a week. Thus it is desired to maximize z = x + y subject to the above constraints. The
total number of patties is 9000 and so the number of patty used is x+2y. This number must
satisfy x+2y ≤ 9000 because there are only 9000 patty available. Because of the limitation
on the number the employees can prepare and the demand, it follows 2x + y ≤ 9000.
You never sell a negative number of hamburgers and so x, y ≥ 0. In simpler terms the
problem reduces to maximizing z = x+ y subject to the two constraints, x+2y ≤ 9000 and
2x + y ≤ 9000. This problem is pretty easy to solve geometrically. Consider the following
picture in which R labels the region described by the above inequalities and the line z = x+y
is shown for a particular value of z.

HHHHHHHHHHA
A

A
A

A
A

A
A

A
A

x + 2y = 4

2x + y = 4

R

@
@

@
@

@
@

@

x + y = z

As you make z larger this line moves away from the origin, always having the same slope

187



188 LINEAR PROGRAMMING

and the desired solution would consist of a point in the region, R which makes z as large as
possible or equivalently one for which the line is as far as possible from the origin. Clearly
this point is the point of intersection of the two lines, (3000, 3000) and so the maximum
value of the given function is 6000. Of course this type of procedure is fine for a situation in
which there are only two variables but what about a similar problem in which there are very
many variables. In reality, this hamburger store makes many more types of burgers than
those two and there are many considerations other than demand and available patty. Each
will likely give you a constraint which must be considered in order to solve a more realistic
problem and the end result will likely be a problem in many dimensions, probably many
more than three so your ability to draw a picture will get you nowhere for such a problem.
Another method is needed. This method is the topic of this section. I will illustrate with
this particular problem. Let x1 = x and y = x2. Also let x3 and x4 be nonnegative variables
such that

x1 + 2x2 + x3 = 9000, 2x1 + x2 + x4 = 9000.

To say that x3 and x4 are nonnegative is the same as saying x1 +2x2 ≤ 9000 and 2x1 +x2 ≤
9000 and these variables are called slack variables at this point. They are called this because
they “take up the slack”. I will discuss these more later. First a general situation is
considered.

10.2 The Simplex Tableau

Here is some notation.

Definition 10.2.1 Let x,y be vectors in Rq. Then x ≤ y means for each i, xi ≤ yi.

The problem is as follows:
Let A be an m × (m + n) real matrix of rank m. It is desired to find x ∈ Rn+m such

that x satisfies the constraints,
x ≥ 0, Ax = b (10.1)

and out of all such x,

z ≡
m+n∑

i=1

cixi

is as large (or small) as possible. This is usually referred to as maximizing or minimizing z
subject to the above constraints. First I will consider the constraints.

Let A =
(

a1 · · · an+m

)
. First you find a vector, x0≥ 0, Ax0= b such that n of

the components of this vector equal 0. Letting i1, · · · , in be the positions of x0 for which
x0

i = 0, suppose also that {aj1 , · · · ,ajm} is linearly independent for ji the other positions
of x0. Geometrically, this means that x0 is a corner of the feasible region, those x which
satisfy the constraints. This is called a basic feasible solution. Also define

cB ≡ (cj1 . · · · , cjm) , cF ≡ (ci1 , · · · , cin)
xB ≡ (xj1 , · · · , xjm) , xF ≡ (xi1 , · · · , xin) .

and

z0 ≡ z
(
x0

)
=

(
cB cF

) (
x0

B

x0
F

)
= cBx0

B

since x0
F = 0. The variables which are the components of the vector xB are called the basic

variables and the variables which are the entries of xF are called the free variables. You
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set xF = 0. Now
(
x0, z0

)T is a solution to
(

A 0
−c 1

)(
x
z

)
=

(
b
0

)

along with the constraints x ≥ 0. Writing the above in augmented matrix form yields
(

A 0 b
−c 1 0

)
(10.2)

Permute the columns and variables on the left if necessary to write the above in the form

(
B F 0
−cB −cF 1

) 


xB

xF

z


 =

(
b
0

)
(10.3)

or equivalently in the augmented matrix form keeping track of the variables on the bottom
as 


B F 0 b
−cB −cF 1 0
xB xF 0 0


 . (10.4)

Here B pertains to the variables xi1 , · · · , xjm
and is an m ×m matrix with linearly inde-

pendent columns, {aj1 , · · · ,ajm} , and F is an m× n matrix. Now it is assumed that

(
B F

)(
x0

B

x0
F

)
=

(
B F

) (
x0

B

0

)
= Bx0

B = b

and since B is assumed to have rank m, it follows

x0
B = B−1b ≥ 0. (10.5)

This is very important to observe. B−1b ≥ 0!
Do row operations on the top part of the matrix,

(
B F 0 b
−cB −cF 1 0

)
(10.6)

and obtain its row reduced echelon form. Then after these row operations the above becomes
(

I B−1F 0 B−1b
−cB −cF 1 0

)
. (10.7)

where B−1b ≥ 0. Next do another row operation in order to get a 0 where you see a −cB .
Thus

(
I B−1F 0 B−1b
0 cBB−1F ′ − cF 1 cBB−1b

)
(10.8)

=
(

I B−1F 0 B−1b
0 cBB−1F ′ − cF 1 cBx0

B

)

=
(

I B−1F 0 B−1b
0 cBB−1F − cF 1 z0

)
(10.9)

The reason there is a z0 on the bottom right corner is that xF = 0 and
(
x0

B ,x0
F , z0

)T is a
solution of the system of equations represented by the above augmented matrix because it is
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a solution to the system of equations corresponding to the system of equations represented
by 10.6 and row operations leave solution sets unchanged. Note how attractive this is. The
z0 is the value of z at the point x0. The augmented matrix of 10.9 is called the simplex
tableau and it is the beginning point for the simplex algorithm to be described a little
later. It is very convenient to express the simplex tableau in the above form in which the

variables are possibly permuted in order to have
(

I
0

)
on the left side. However, as far

as the simplex algorithm is concerned it is not necessary to be permuting the variables in
this manner. Starting with 10.9 you could permute the variables and columns to obtain an
augmented matrix in which the variables are in their original order. What is really required
for the simplex tableau?

It is an augmented m + 1 ×m + n + 2 matrix which represents a system of equations
which has the same set of solutions, (x,z)T as the system whose augmented matrix is

(
A 0 b
−c 1 0

)

(Possibly the variables for x are taken in another order.) There are m linearly independent
columns in the first m + n columns for which there is only one nonzero entry, a 1 in one of
the first m rows, the “simple columns”, the other first m+ n columns being the “nonsimple
columns”. As in the above, the variables corresponding to the simple columns are xB ,
the basic variables and those corresponding to the nonsimple columns are xF , the free
variables. Also, the top m entries of the last column on the right are nonnegative. This is
the description of a simplex tableau.

In a simplex tableau it is easy to spot a basic feasible solution. You can see one quickly
by setting the variables, xF corresponding to the nonsimple columns equal to zero. Then the
other variables, corresponding to the simple columns are each equal to a nonnegative entry
in the far right column. Lets call this an “obvious basic feasible solution”. If a solution is
obtained by setting the variables corresponding to the nonsimple columns equal to zero and
the variables corresponding to the simple columns equal to zero this will be referred to as
an “obvious” solution. Lets also call the first m + n entries in the bottom row the “bottom
left row”. In a simplex tableau, the entry in the bottom right corner gives the value of the
variable being maximized or minimized when the obvious basic feasible solution is chosen.

The following is a special case of the general theory presented above and shows how such
a special case can be fit into the above framework. The following example is rather typical
of the sorts of problems considered. It involves inequality constraints instead of Ax = b.
This is handled by adding in “slack variables” as explained below.

Example 10.2.2 Consider z = x1−x2 subject to the constraints, x1 +2x2 ≤ 10, x1 +2x2 ≥
2, and 2x1 +x2 ≤ 6, xi ≥ 0. Find a simplex tableau for a problem of the form x ≥ 0,Ax = b
which is equivalent to the above problem.

You add in slack variables. These are positive variables, one for each of the first three con-
straints, which change the first three inequalities into equations. Thus the first three inequal-
ities become x1+2x2+x3 = 10, x1+2x2−x4 = 2, and 2x1+x2+x5 = 6, x1, x2, x3, x4, x5 ≥ 0.
Now it is necessary to find a basic feasible solution. You mainly need to find a positive so-
lution to the equations,

x1 + 2x2 + x3 = 10
x1 + 2x2 − x4 = 2
2x1 + x2 + x5 = 6

.

the solution set for the above system is given by

x2 =
2
3
x4 − 2

3
+

1
3
x5, x1 = −1

3
x4 +

10
3
− 2

3
x5, x3 = −x4 + 8.
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An easy way to get a basic feasible solution is to let x4 = 8 and x5 = 1. Then a feasible
solution is

(x1, x2, x3, x4, x5) = (0, 5, 0, 8, 1) .

It follows z0 = −5 and the matrix 10.2,
(

A 0 b
−c 1 0

)
with the variables kept track of on

the bottom is 


1 2 1 0 0 0 10
1 2 0 −1 0 0 2
2 1 0 0 1 0 6
−1 1 0 0 0 1 0
x1 x2 x3 x4 x5 0 0




and the first thing to do is to permute the columns so that the list of variables on the bottom
will have x1 and x3 at the end.




2 0 0 1 1 0 10
2 −1 0 1 0 0 2
1 0 1 2 0 0 6
1 0 0 −1 0 1 0
x2 x4 x5 x1 x3 0 0




Next, as described above, take the row reduced echelon form of the top three lines of the
above matrix. This yields




1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1


 .

Now do row operations to



1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

1 0 0 −1 0 1 0




to finally obtain 


1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

0 0 0 − 3
2 − 1

2 1 −5




and this is a simplex tableau. The variables are x2, x4, x5, x1, x3, z.
It isn’t as hard as it may appear from the above. Lets not permute the variables and

simply find an acceptable simplex tableau as described above.

Example 10.2.3 Consider z = x1−x2 subject to the constraints, x1 +2x2 ≤ 10, x1 +2x2 ≥
2, and 2x1 + x2 ≤ 6, xi ≥ 0. Find a simplex tableau.

Adding in slack variables, an augmented matrix which is descriptive of the constraints
is 


1 2 1 0 0 10
1 2 0 −1 0 6
2 1 0 0 1 6
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The obvious solution is not feasible because of that -1 in the fourth column. Consider the
second column and select the 2 as a pivot to zero out that which is above and below the 2.
This is because that 2 satisfies the criterion for being chosen as a pivot.




0 0 1 1 0 4
1
2 1 0 − 1

2 0 3
3
2 0 0 1

2 1 3




This one is good. The obvious solution is now feasible. You can now assemble the simplex
tableau. The first step is to include a column and row for z. This yields




0 0 1 1 0 0 4
1
2 1 0 − 1

2 0 0 3
3
2 0 0 1

2 1 0 3
−1 0 1 0 0 1 0




Now you need to get zeros in the right places so the simple columns will be preserved as
simple columns. This means you need to zero out the 1 in the third column on the bottom.
A simplex tableau is now




0 0 1 1 0 0 4
1
2 1 0 − 1

2 0 0 3
3
2 0 0 1

2 1 0 3
−1 0 0 −1 0 1 −4


 .

Note it is not the same one obtained earlier. There is no reason a simplex tableau should
be unique. In fact, it follows from the above general description that you have one for each
basic feasible point of the region determined by the constraints.

10.3 The Simplex Algorithm

10.3.1 Maximums

The simplex algorithm takes you from one basic feasible solution to another while maxi-
mizing or minimizing the function you are trying to maximize or minimize. Algebraically,
it takes you from one simplex tableau to another in which the lower right corner either
increases in the case of maximization or decreases in the case of minimization.

I will continue writing the simplex tableau in such a way that the simple columns having
only one entry nonzero are on the left. As explained above, this amounts to permuting the
variables. I will do this because it is possible to describe what is going on without onerous
notation. However, in the examples, I won’t worry so much about it. Thus, from a basic
feasible solution, a simplex tableau of the following form has been obtained in which the
columns for the basic variables, xB are listed first and b ≥ 0.

(
I F 0 b
0 c 1 z0

)
(10.10)

Let x0
i = bi for i = 1, · · · ,m and x0

i = 0 for i > m. Then
(
x0, z0

)
is a solution to the above

system and since b ≥ 0, it follows
(
x0, z0

)
is a basic feasible solution.

If ci < 0 for some i, and if Fji ≤ 0 so that a whole column of
(

F
c

)
is ≤ 0 with the

bottom entry < 0, then letting xi be the variable corresponding to that column, you could
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leave all the other entries of xF equal to zero but change xi to be positive. Let the new
vector be denoted by x′F and letting x′B = b− Fx′F it follows

(x′B)k = bk −
∑

j

Fkj (xF )j

= bk − Fkixi ≥ 0

Now this shows (x′B ,x′F ) is feasible whenever xi > 0 and so you could let xi become
arbitrarily large and positive and conclude there is no maximum for z because

z = −cx′F + z0 = (−ci) xi + z0 (10.11)

If this happens in a simplex tableau, you can say there is no maximum and stop.
What if c ≥ 0? Then z = z0 − cxF and to satisfy the constraints, xF ≥ 0. Therefore,

in this case, z0 is the largest possible value of z and so the maximum has been found. You
stop when this occurs. Next I explain what to do if neither of the above stopping conditions
hold.

The only case which remains is that some ci < 0 and some Fji > 0. You pick a column

in
(

F
c

)
in which ci < 0, usually the one for which ci is the largest in absolute value.

You pick Fji > 0 as a pivot element, divide the jth row by Fji and then use to obtain
zeros above Fji and below Fji, thus obtaining a new simple column. This row operation
also makes exactly one of the other simple columns into a nonsimple column. (In terms of
variables, it is said that a free variable becomes a basic variable and a basic variable becomes
a free variable.) Now permuting the columns and variables, yields

(
I F ′ 0 b′

0 c′ 1 z0′

)

where z0′ ≥ z0 because z0′ = z0 − ci

(
bj

Fji

)
and ci < 0. If b′ ≥ 0, you are in the same

position you were at the beginning but now z0 is larger. Now here is the important thing.
You don’t pick just any Fji when you do these row operations. You pick the positive one
for which the row operation results in b′ ≥ 0. Otherwise the obvious basic feasible
solution obtained by letting x′F = 0 will fail to satisfy the constraint that x ≥ 0.

How is this done? You need

b′p ≡ bp − Fpibj

Fji
≥ 0 (10.12)

for each p = 1, · · · ,m or equivalently,

bp ≥ Fpibj

Fji
. (10.13)

Now if Fpi ≤ 0 the above holds. Therefore, you only need to check Fpi for Fpi > 0. The
pivot, Fji is the one which makes the quotients of the form

bp

Fpi

for all positive Fpi the smallest. Having gotten a new simplex tableau, you do the same
thing to it which was just done and continue. As long as b > 0, so you don’t encounter the
degenerate case, the values for z associated with setting xF = 0 keep getting strictly larger
every time the process is repeated. You keep going until you find c ≥ 0. Then you stop.
You are at a maximum. Problems can occur in the process in the so called degenerate case
when at some stage of the process some bj = 0. In this case you can cycle through different
values for x with no improvement in z. This case will not be discussed here.
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10.3.2 Minimums

How does it differ if you are finding a minimum? From a basic feasible solution, a simplex
tableau of the following form has been obtained in which the simple columns for the basic
variables, xB are listed first and b ≥ 0.

(
I F 0 b
0 c 1 z0

)
(10.14)

Let x0
i = bi for i = 1, · · · ,m and x0

i = 0 for i > m. Then
(
x0, z0

)
is a solution to the above

system and since b ≥ 0, it follows
(
x0, z0

)
is a basic feasible solution. So far, there is no

change.
Suppose first that some ci > 0 and Fji ≤ 0 for each j. Then let x′F consist of changing xi

by making it positive but leaving the other entries of xF equal to 0. Then from the bottom
row,

z = −cx′F + z0 = −cixi + z0

and you let x′B = b − Fx′F ≥ 0. Thus the constraints continue to hold when xi is made
increasingly positive and it follows from the above equation that there is no minimum for
z. You stop when this happens.

Next suppose c ≤ 0. Then in this case, z = z0 − cxF and from the constraints, xF ≥ 0
and so −cxF ≥ 0 and so z0 is the minimum value and you stop since this is what you are
looking for.

What do you do in the case where some ci > 0 and some Fji > 0? In this case, you use
the simplex algorithm as in the case of maximums to obtain a new simplex tableau in which
z0′ is smaller. You choose Fji the same way to be the positive entry of the ith column such
that bp/Fpi ≥ bj/Fji for all positive entries, Fpi and do the same row operations. Now this
time,

z0′ = z0 − ci

(
bj

Fji

)
< z0

As in the case of maximums no problem can occur and the process will converge unless
you have the degenerate case in which some bj = 0. As in the earlier case, this is most
unfortunate when it occurs. You see what happens of course. z0 does not change and the
algorithm just delivers different values of the variables forever with no improvement.

To summarize the geometrical significance of the simplex algorithm, it takes you from
one corner of the feasible region to another. You go in one direction to find the maximum
and in another to find the minimum. For the maximum you try to get rid of negative
entries of c and for minimums you try to eliminate positive entries of c where the method of
elimination involves the auspicious use of an appropriate pivot element and row operations.

Now return to Example 10.2.2. It will be modified to be a maximization problem.

Example 10.3.1 Maximize z = x1−x2 subject to the constraints, x1+2x2 ≤ 10, x1+2x2 ≥
2, and 2x1 + x2 ≤ 6, xi ≥ 0.

Recall this is the same as maximizing z = x1 − x2 subject to




1 2 1 0 0
1 2 0 −1 0
2 1 0 0 1







x1

x2

x3

x4

x5




=




10
2
6


 ,x ≥ 0,
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the variables, x3, x4, x5 being slack variables. Recall the simplex tableau was



1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

0 0 0 − 3
2 − 1

2 1 −5




with the variables ordered as x2, x4, x5, x1, x3 and so xB = (x2, x4, x5) and xF = (x1, x3).
Apply the simplex algorithm to the fourth column because − 3

2 < 0 and this is the most
negative entry in the bottom row. The pivot is 3/2 because 1/(3/2) = 2/3 < 5/ (1/2) .
Dividing this row by 3/2 and then using this to zero out the other elements in that column,
the new simplex tableau is




1 0 − 1
3 0 2

3 0 14
3

0 1 0 0 1 0 8
0 0 2

3 1 − 1
3 0 2

3
0 0 1 0 −1 1 −4


 .

Now there is still a negative number in the bottom left row. Therefore, the process should
be continued. This time the pivot is the 2/3 in the top of the column. Dividing the top row
by 2/3 and then using this to zero out the entries below it,




3
2 0 − 1

2 0 1 0 7
− 3

2 1 1
2 0 0 0 1

1
2 0 1

2 1 0 0 3
3
2 0 1

2 0 0 1 3


 .

Now all the numbers on the bottom left row are nonnegative so the process stops. Now
recall the variables and columns were ordered as x2, x4, x5, x1, x3. The solution in terms of
x1 and x2 is x2 = 0 and x1 = 3 and z = 3. Note that in the above, I did not worry about
permuting the columns to keep those which go with the basic variables on the left.

Here is a bucolic example.

Example 10.3.2 Consider the following table.

F1 F2 F3 F4

iron 1 2 1 3
protein 5 3 2 1
folic acid 1 2 2 1
copper 2 1 1 1
calcium 1 1 1 1

This information is available to a pig farmer and Fi denotes a particular feed. The numbers
in the table contain the number of units of a particular nutrient contained in one pound of
the given feed. Thus F2 has 2 units of iron in one pound. Now suppose the cost of each feed
in cents per pound is given in the following table.

F1 F2 F3 F4

2 3 2 3

A typical pig needs 5 units of iron, 8 of protein, 6 of folic acid, 7 of copper and 4 of calcium.
(The units may change from nutrient to nutrient.) How many pounds of each feed per pig
should the pig farmer use in order to minimize his cost?
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His problem is to minimize C ≡ 2x1 + 3x2 + 2x3 + 3x4 subject to the constraints

x1 + 2x2 + x3 + 3x4 ≥ 5,

5x1 + 3x2 + 2x3 + x4 ≥ 8,

x1 + 2x2 + 2x3 + x4 ≥ 6,

2x1 + x2 + x3 + x4 ≥ 7,

x1 + x2 + x3 + x4 ≥ 4.

where each xi ≥ 0. Add in the slack variables,

x1 + 2x2 + x3 + 3x4 − x5 = 5
5x1 + 3x2 + 2x3 + x4 − x6 = 8
x1 + 2x2 + 2x3 + x4 − x7 = 6
2x1 + x2 + x3 + x4 − x8 = 7
x1 + x2 + x3 + x4 − x9 = 4

The augmented matrix for this system is



1 2 1 3 −1 0 0 0 0 5
5 3 2 1 0 −1 0 0 0 8
1 2 2 1 0 0 −1 0 0 6
2 1 1 1 0 0 0 −1 0 7
1 1 1 1 0 0 0 0 −1 4




How in the world can you find a basic feasible solution? Remember the simplex algorithm
is designed to keep the entries in the right column nonnegative so you use this algorithm a
few times till the obvious solution is a basic feasible solution.

Consider the first column. The pivot is the 5. Using the row operations described in the
algorithm, you get




0 7
5

3
5

14
5 −1 1

5 0 0 0 17
5

1 3
5

2
5

1
5 0 − 1

5 0 0 0 8
5

0 7
5

8
5

4
5 0 1

5 −1 0 0 22
5

0 − 1
5

1
5

3
5 0 2

5 0 −1 0 19
5

0 2
5

3
5

4
5 0 1

5 0 0 −1 12
5




Now go to the second column. The pivot in this column is the 7/5. This is in a different
row than the pivot in the first column so I will use it to zero out everything below it. This
will get rid of the zeros in the fifth column and introduce zeros in the second. This yields




0 1 3
7 2 − 5

7
1
7 0 0 0 17

7
1 0 1

7 −1 3
7 − 2

7 0 0 0 1
7

0 0 1 −2 1 0 −1 0 0 1
0 0 2

7 1 − 1
7

3
7 0 −1 0 30

7
0 0 3

7 0 2
7

1
7 0 0 −1 10

7




Now consider another column, this time the fourth. I will pick this one because it has
some negative numbers in it so there are fewer entries to check in looking for a pivot.
Unfortunately, the pivot is the top 2 and I don’t want to pivot on this because it would
destroy the zeros in the second column. Consider the fifth column. It is also not a good
choice because the pivot is the second element from the top and this would destroy the zeros
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in the first column. Consider the sixth column. I can use either of the two bottom entries
as the pivot. The matrix is




0 1 0 2 −1 0 0 0 1 1
1 0 1 −1 1 0 0 0 −2 3
0 0 1 −2 1 0 −1 0 0 1
0 0 −1 1 −1 0 0 −1 3 0
0 0 3 0 2 1 0 0 −7 10




Next consider the third column. The pivot is the 1 in the third row. This yields



0 1 0 2 −1 0 0 0 1 1
1 0 0 1 0 0 1 0 −2 2
0 0 1 −2 1 0 −1 0 0 1
0 0 0 −1 0 0 −1 −1 3 1
0 0 0 6 −1 1 3 0 −7 7




.

There are still 5 columns which consist entirely of zeros except for one entry. Four of them
have that entry equal to 1 but one still has a -1 in it, the -1 being in the fourth column.
I need to do the row operations on a nonsimple column which has the pivot in the fourth
row. Such a column is the second to the last. The pivot is the 3. The new matrix is




0 1 0 7
3 −1 0 1

3
1
3 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 8
3

0 0 1 −2 1 0 −1 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 28

3




. (10.15)

Now the obvious basic solution is feasible. You let x4 = 0 = x5 = x7 = x8 and x1 =
8/3, x2 = 2/3, x3 = 1, and x6 = 28/3. You don’t need to worry too much about this. It is
the above matrix which is desired. Now you can assemble the simplex tableau and begin
the algorithm. Remember C ≡ 2x1 + 3x2 + 2x3 + 3x4. First add the row and column which
deal with C. This yields




0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
−2 −3 −2 −3 0 0 0 0 0 1 0




(10.16)

Now you do row operations to keep the simple columns of 10.15 simple in 10.16. Of course
you could permute the columns if you wanted but this is not necessary.

This yields the following for a simplex tableau. Now it is a matter of getting rid of the
positive entries in the bottom row because you are trying to minimize.




0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
0 0 0 2

3 −1 0 − 1
3 − 1

3 0 1 28
3
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The most positive of them is the 2/3 and so I will apply the algorithm to this one first. The
pivot is the 7/3. After doing the row operation the next tableau is




0 3
7 0 1 − 3

7 0 1
7

1
7 0 0 2

7
1 − 1

7 0 0 1
7 0 2

7 − 5
7 0 0 18

7
0 6

7 1 0 1
7 0 − 5

7
2
7 0 0 11

7
0 1

7 0 0 − 1
7 0 − 2

7 − 2
7 1 0 3

7
0 − 11

7 0 0 4
7 1 1

7 − 20
7 0 0 58

7
0 − 2

7 0 0 − 5
7 0 − 3

7 − 3
7 0 1 64

7




and you see that all the entries are negative and so the minimum is 64/7 and it occurs when
x1 = 18/7, x2 = 0, x3 = 11/7, x4 = 2/7.

There is no maximum for the above problem. However, I will pretend I don’t know this
and attempt to use the simplex algorithm. You set up the simiplex tableau the same way.
Recall it is 



0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
0 0 0 2

3 −1 0 − 1
3 − 1

3 0 1 28
3




Now to maximize, you try to get rid of the negative entries in the bottom left row. The
most negative entry is the -1 in the fifth column. The pivot is the 1 in the third row of this
column. The new tableau is




0 1 1 1
3 0 0 − 2

3
1
3 0 0 5

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 1 5
3 0 1 − 1

3 − 7
3 0 0 31

3
0 0 1 − 4

3 0 0 − 4
3 − 1

3 0 1 31
3




.

Consider the fourth column. The pivot is the top 1/3. The new tableau is



0 3 3 1 0 0 −2 1 0 0 5
1 −1 −1 0 0 0 1 −1 0 0 1
0 6 7 0 1 0 −5 2 0 0 11
0 1 1 0 0 0 −1 0 1 0 2
0 −5 −4 0 0 1 3 −4 0 0 2
0 4 5 0 0 0 −4 1 0 1 17




There is still a negative in the bottom, the -4. The pivot in that column is the 3. The
algorithm yields




0 − 1
3

1
3 1 0 2

3 0 − 5
3 0 0 19

3
1 2

3
1
3 0 0 − 1

3 0 1
3 0 0 1

3
0 − 7

3
1
3 0 1 5

3 0 − 14
3 0 0 43

3
0 − 2

3 − 1
3 0 0 1

3 0 − 4
3 1 0 8

3
0 − 5

3 − 4
3 0 0 1

3 1 − 4
3 0 0 2

3
0 − 8

3 − 1
3 0 0 4

3 0 − 13
3 0 1 59

3




Note how z keeps getting larger. Consider the column having the −13/3 in it. The pivot is
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the single positive entry, 1/3. The next tableau is



5 3 2 1 0 −1 0 0 0 0 8
3 2 1 0 0 −1 0 1 0 0 1
14 7 5 0 1 −3 0 0 0 0 19
4 2 1 0 0 −1 0 0 1 0 4
4 1 0 0 0 −1 1 0 0 0 2
13 6 4 0 0 −3 0 0 0 1 24




.

There is a column consisting of all negative entries. There is therefore, no maximum. Note
also how there is no way to pick the pivot in that column.

Example 10.3.3 Minimize z = x1 − 3x2 + x3 subject to the constraints x1 + x2 + x3 ≤
10, x1 +x2 +x3 ≥ 2, x1 +x2 +3x3 ≤ 8 and x1 +2x2 +x3 ≤ 7 with all variables nonnegative.

There exists an answer because the region defined by the constraints is closed and
bounded. Adding in slack variables you get the following augmented matrix corresponding
to the constraints. 



1 1 1 1 0 0 0 10
1 1 1 0 −1 0 0 2
1 1 3 0 0 1 0 8
1 2 1 0 0 0 1 7




Of course there is a problem with the obvious solution obtained by setting to zero all
variables corresponding to a nonsimple column because of the simple column which has the
−1 in it. Therefore, I will use the simplex algorithm to make this column non simple. The
third column has the 1 in the second row as the pivot so I will use this column. This yields




0 0 0 1 1 0 0 8
1 1 1 0 −1 0 0 2
−2 −2 0 0 3 1 0 2
0 1 0 0 1 0 1 5


 (10.17)

and the obvious solution is feasible. Now it is time to assemble the simplex tableau. First
add in the bottom row and second to last column corresponding to the equation for z. This
yields 



0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
−1 3 −1 0 0 0 0 1 0




Next you need to zero out the entries in the bottom row which are below one of the simple
columns in 10.17. This yields the simplex tableau




0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
0 4 0 0 −1 0 0 1 2




.

The desire is to minimize this so you need to get rid of the positive entries in the left bottom
row. There is only one such entry, the 4. In that column the pivot is the 1 in the second
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row of this column. Thus the next tableau is



0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
0 0 2 0 1 1 0 0 6
−1 0 −1 0 2 0 1 0 3
−4 0 −4 0 3 0 0 1 −6




There is still a positive number there, the 3. The pivot in this column is the 2. Apply the
algorithm again. This yields




1
2 0 1

2 1 0 0 − 1
2 0 13

2
1
2 1 1

2 0 0 0 1
2 0 7

2
1
2 0 5

2 0 0 1 − 1
2 0 9

2
− 1

2 0 − 1
2 0 1 0 1

2 0 3
2

− 5
2 0 − 5

2 0 0 0 − 3
2 1 − 21

2




.

Now all the entries in the left bottom row are nonpositive so the process has stopped. The
minimum is −21/2. It occurs when x1 = 0, x2 = 7/2, x3 = 0.

Now consider the same problem but change the word, minimize to the word, maximize.

Example 10.3.4 Maximize z = x1 − 3x2 + x3 subject to the constraints x1 + x2 + x3 ≤
10, x1 +x2 +x3 ≥ 2, x1 +x2 +3x3 ≤ 8 and x1 +2x2 +x3 ≤ 7 with all variables nonnegative.

The first part of it is the same. You wind up with the same simplex tableau,



0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
0 4 0 0 −1 0 0 1 2




but this time, you apply the algorithm to get rid of the negative entries in the left bottom
row. There is a −1. Use this column. The pivot is the 3. The next tableau is




2
3

2
3 0 1 0 − 1

3 0 0 22
3

1
3

1
3 1 0 0 1

3 0 0 8
3

− 2
3 − 2

3 0 0 1 1
3 0 0 2

3
2
3

5
3 0 0 0 − 1

3 1 0 13
3

− 2
3

10
3 0 0 0 1

3 0 1 8
3




There is still a negative entry, the −2/3. This will be the new pivot column. The pivot is
the 2/3 on the fourth row. This yields




0 −1 0 1 0 0 −1 0 3
0 − 1

2 1 0 0 1
2 − 1

2 0 1
2

0 1 0 0 1 0 1 0 5
1 5

2 0 0 0 − 1
2

3
2 0 13

2
0 5 0 0 0 0 1 1 7




and the process stops. The maximum for z is 7 and it occurs when x1 = 13/2, x2 = 0, x3 =
1/2.
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10.4 Finding A Basic Feasible Solution

By now it should be fairly clear that finding a basic feasible solution can create considerable
difficulty. Indeed, given a system of linear inequalities along with the requirement that each
variable be nonnegative, do there even exist points satisfying all these inequalities? If you
have many variables, you can’t answer this by drawing a picture. Is there some other way
to do this which is more systematic than what was presented above? The answer is yes. It
is called the method of artificial variables. I will illustrate this method with an example.

Example 10.4.1 Find a basic feasible solution to the system 2x1+x2−x3 ≥ 3, x1+x2+x3 ≥
2, x1 + x2 + x3 ≤ 7 and x ≥ 0.

If you write the appropriate augmented matrix with the slack variables,



2 1 −1 −1 0 0 3
1 1 1 0 −1 0 2
1 1 1 0 0 1 7


 (10.18)

The obvious solution is not feasible. This is why it would be hard to get started with
the simplex method. What is the problem? It is those −1 entries in the fourth and fifth
columns. To get around this, you add in artificial variables to get an augmented matrix of
the form 


2 1 −1 −1 0 0 1 0 3
1 1 1 0 −1 0 0 1 2
1 1 1 0 0 1 0 0 7


 (10.19)

Thus the variables are x1, x2, x3, x4, x5, x6, x7, x8. Suppose you can find a feasible solution
to the system of equations represented by the above augmented matrix. Thus all variables
are nonnegative. Suppose also that it can be done in such a way that x8 and x7 happen
to be 0. Then it will follow that x1, · · · , x6 is a feasible solution for 10.18. Conversely, if
you can find a feasible solution for 10.18, then letting x7 and x8 both equal zero, you have
obtained a feasible solution to 10.19. Since all variables are nonnegative, x7 and x8 both
equalling zero is equivalent to saying the minimum of z = x7 +x8 subject to the constraints
represented by the above augmented matrix equals zero. This has proved the following
simple observation.

Observation 10.4.2 There exists a feasible solution to the constraints represented by the
augmented matrix of 10.18 and x ≥ 0 if and only if the minimum of x7 + x8 subject to the
constraints of 10.19 and x ≥ 0 exists and equals 0.

Of course a similar observation would hold in other similar situations. Now the point of
all this is that it is trivial to see a feasible solution to 10.19, namely x6 = 7, x7 = 3, x8 = 2
and all the other variables may be set to equal zero. Therefore, it is easy to find an initial
simplex tableau for the minimization problem just described. First add the column and row
for z 



2 1 −1 −1 0 0 1 0 0 3
1 1 1 0 −1 0 0 1 0 2
1 1 1 0 0 1 0 0 0 7
0 0 0 0 0 0 −1 −1 1 0




Next it is necessary to make the last two columns on the bottom left row into simple columns.
Performing the row operation, this yields an initial simplex tableau,




2 1 −1 −1 0 0 1 0 0 3
1 1 1 0 −1 0 0 1 0 2
1 1 1 0 0 1 0 0 0 7
3 2 0 −1 −1 0 0 0 1 5
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Now the algorithm involves getting rid of the positive entries on the left bottom row. Begin
with the first column. The pivot is the 2. An application of the simplex algorithm yields
the new tableau 



1 1
2 − 1

2 − 1
2 0 0 1

2 0 0 3
2

0 1
2

3
2

1
2 −1 0 − 1

2 1 0 1
2

0 1
2

3
2

1
2 0 1 − 1

2 0 0 11
2

0 1
2

3
2

1
2 −1 0 − 3

2 0 1 1
2




Now go to the third column. The pivot is the 3/2 in the second row. An application of the
simplex algorithm yields




1 2
3 0 − 1

3 − 1
3 0 1

3
1
3 0 5

3
0 1

3 1 1
3 − 2

3 0 − 1
3

2
3 0 1

3
0 0 0 0 1 1 0 −1 0 5
0 0 0 0 0 0 −1 −1 1 0


 (10.20)

and you see there are only nonpositive numbers on the bottom left column so the process
stops and yields 0 for the minimum of z = x7+x8. As for the other variables, x1 = 5/3, x2 =
0, x3 = 1/3, x4 = 0, x5 = 0, x6 = 5. Now as explained in the above observation, this is a
basic feasible solution for the original system 10.18.

Now consider a maximization problem associated with the above constraints.

Example 10.4.3 Maximize x1 − x2 + 2x3 subject to the constraints, 2x1 + x2 − x3 ≥
3, x1 + x2 + x3 ≥ 2, x1 + x2 + x3 ≤ 7 and x ≥ 0.

From 10.20 you can immediately assemble an initial simplex tableau. You begin with
the first 6 columns and top 3 rows in 10.20. Then add in the column and row for z. This
yields 



1 2
3 0 − 1

3 − 1
3 0 0 5

3
0 1

3 1 1
3 − 2

3 0 0 1
3

0 0 0 0 1 1 0 5
−1 1 −2 0 0 0 1 0




and you first do row operations to make the first and third columns simple columns. Thus
the next simplex tableau is




1 2
3 0 − 1

3 − 1
3 0 0 5

3
0 1

3 1 1
3 − 2

3 0 0 1
3

0 0 0 0 1 1 0 5
0 7

3 0 1
3 − 5

3 0 1 7
3




You are trying to get rid of negative entries in the bottom left row. There is only one, the
−5/3. The pivot is the 1. The next simplex tableau is then




1 2
3 0 − 1

3 0 1
3 0 10

3
0 1

3 1 1
3 0 2

3 0 11
3

0 0 0 0 1 1 0 5
0 7

3 0 1
3 0 5

3 1 32
3




and so the maximum value of z is 32/3 and it occurs when x1 = 10/3, x2 = 0 and x3 = 11/3.
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10.5 Duality

You can solve minimization problems by solving maximization problems. You can also go
the other direction and solve maximization problems by minimization problems. Sometimes
this makes things much easier. To be more specific, the two problems to be considered are

A.) Minimize z = cx subject to x ≥ 0 and Ax ≥ b and
B.) Maximize w = yb such that y ≥ 0 and yA ≤ c,

(
equivalently AT yT ≥ cT and w = bT yT

)
.

In these problems it is assumed A is an m× p matrix.
I will show how a solution of the first yields a solution of the second and then show how

a solution of the second yields a solution of the first. The problems, A.) and B.) are called
dual problems.

Lemma 10.5.1 Let x be a solution of the inequalities of A.) and let y be a solution of the
inequalities of B.). Then

cx ≥ yb.

and if equality holds in the above, then x is the solution to A.) and y is a solution to B.).

Proof: This follows immediately. Since c ≥ yA,

cx ≥ yAx ≥ yb.

It follows from this lemma that if y satisfies the inequalities of B.) and x satisfies the
inequalities of A.) then if equality holds in the above lemma, it must be that x is a solution
of A.) and y is a solution of B.). This proves the lemma.

Now recall that to solve either of these problems using the simplex method, you first
add in slack variables. Denote by x′ and y′ the enlarged list of variables. Thus x′ has at
least m entries and so does y′ and the inequalities involving A were replaced by equalities
whose augmented matrices were of the form

(
A −I b

)
, and

(
AT I cT

)

Then you included the row and column for z and w to obtain
(

A −I 0 b
−c 0 1 0

)
and

(
AT I 0 cT

−bT 0 1 0

)
. (10.21)

Then the problems have basic feasible solutions if it is possible to permute the first p + m
columns in the above two matrices and obtain matrices of the form

(
B F 0 b
−cB −cF 1 0

)
and

(
B1 F1 0 cT

−bT
B1

−bT
F1

1 0

)
(10.22)

where B,B1 are invertible m×m and p× p matrices and denoting the variables associated
with these columns by xB ,yB and those variables associated with F or F1 by xF and yF ,
it follows that letting BxB = b and xF = 0, the resulting vector, x′ is a solution to x′ ≥ 0
and

(
A −I

)
x′ = b with similar constraints holding for y′. In other words, it is possible

to obtain simplex tableaus,
(

I B−1F 0 B−1b
0 cBB−1F − cF 1 cBB−1b

)
,

(
I B−1

1 F1 0 B−1
1 cT

0 bT
B1

B−1
1 F − bT

F1
1 bT

B1
B−1

1 cT

)

(10.23)
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Similar considerations apply to the second problem. Thus as just described, a basic feasible
solution is one which determines a simplex tableau like the above in which you get a feasible
solution by setting all but the first m variables equal to zero. The simplex algorithm takes
you from one basic feasible solution to another till eventually, if there is no degeneracy, you
obtain a basic feasible solution which yields the solution of the problem of interest.

Theorem 10.5.2 Suppose there exists a solution, x to A.) where x is a basic feasible so-
lution of the inequalities of A.). Then there exists a solution, y to B.) and cx = by. It is
also possible to find y from x using a simple formula.

Proof: Since the solution to A.) is basic and feasible, there exists a simplex tableau
like 10.23 such that x′ can be split into xB and xF such that xF = 0 and xB = B−1b.
Now since it is a minimizer, it follows cBB−1F − cF ≤ 0 and the minimum value for cx is
cBB−1b. Stating this again, cx = cBB−1b. Is it possible you can take y = cBB−1? From
Lemma 10.5.1 this will be so if cBB−1 solves the constraints of problem B.). Is cBB−1 ≥ 0?
Is cBB−1A ≤ c? These two conditions are satisfied if and only if cBB−1

(
A −I

) ≤(
c 0

)
. Referring to the process of permuting the columns of the first augmented matrix

of 10.21 to get 10.22 and doing the same permutations on the columns of
(

A −I
)

and(
c 0

)
, the desired inequality holds if and only if cBB−1

(
B F

) ≤ (
cB cF

)
which

is equivalent to saying
(

cB cBB−1F
) ≤ (

cB cF

)
and this is true because cBB−1F−

cF ≤ 0 due to the assumption that x is a minimizer. The simple formula is just

y = cBB−1.

This proves the theorem.
The proof of the following corollary is similar.

Corollary 10.5.3 Suppose there exists a solution, y to B.) where y is a basic feasible
solution of the inequalities of B.). Then there exists a solution, x to A.) and cx = by. It is
also possible to find x from y using a simple formula. In this case, and referring to 10.23,
the simple formula is x = B−T

1 bB1 .

As an example, consider the pig farmers problem. The main difficulty in this problem
was finding an initial simplex tableau. Now consider the following example and marvel at
how all the difficulties disappear.

Example 10.5.4 minimize C ≡ 2x1 + 3x2 + 2x3 + 3x4 subject to the constraints

x1 + 2x2 + x3 + 3x4 ≥ 5,

5x1 + 3x2 + 2x3 + x4 ≥ 8,

x1 + 2x2 + 2x3 + x4 ≥ 6,

2x1 + x2 + x3 + x4 ≥ 7,

x1 + x2 + x3 + x4 ≥ 4.

where each xi ≥ 0.

Here the dual problem is to maximize w = 5y1 + 8y2 + 6y3 + 7y4 + 4y5 subject to the
constraints 



1 5 1 2 1
2 3 2 1 1
1 2 2 1 1
3 1 1 1 1







y1

y2

y3

y4

y5



≤




2
3
2
3


 .
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Adding in slack variables, these inequalities are equivalent to the system of equations whose
augmented matrix is 



1 5 1 2 1 1 0 0 0 2
2 3 2 1 1 0 1 0 0 3
1 2 2 1 1 0 0 1 0 2
3 1 1 1 1 0 0 0 1 3




Now the obvious solution is feasible so there is no hunting for an initial obvious feasible
solution required. Now add in the row and column for w. This yields




1 5 1 2 1 1 0 0 0 0 2
2 3 2 1 1 0 1 0 0 0 3
1 2 2 1 1 0 0 1 0 0 2
3 1 1 1 1 0 0 0 1 0 3
−5 −8 −6 −7 −4 0 0 0 0 1 0




.

It is a maximization problem so you want to eliminate the negatives in the bottom left row.
Pick the column having the one which is most negative, the −8. The pivot is the top 5.
Then apply the simplex algorithm to obtain




1
5 1 1

5
2
5

1
5

1
5 0 0 0 0 2

5
7
5 0 7

5 − 1
5

2
5 − 3

5 1 0 0 0 9
5

3
5 0 8

5
1
5

3
5 − 2

5 0 1 0 0 6
5

14
5 0 4

5
3
5

4
5 − 1

5 0 0 1 0 13
5

− 17
5 0 − 22

5 − 19
5 − 12

5
8
5 0 0 0 1 16

5




.

There are still negative entries in the bottom left row. Do the simplex algorithm to the
column which has the − 22

5 . The pivot is the 8
5 . This yields




1
8 1 0 3

8
1
8

1
4 0 − 1

8 0 0 1
4

7
8 0 0 − 3

8 − 1
8 − 1

4 1 − 7
8 0 0 3

4
3
8 0 1 1

8
3
8 − 1

4 0 5
8 0 0 3

4
5
2 0 0 1

2
1
2 0 0 − 1

2 1 0 2
− 7

4 0 0 − 13
4 − 3

4
1
2 0 11

4 0 1 13
2




and there are still negative numbers. Pick the column which has the −13/4. The pivot is
the 3/8 in the top. This yields




1
3

8
3 0 1 1

3
2
3 0 − 1

3 0 0 2
3

1 1 0 0 0 0 1 −1 0 0 1
1
3 − 1

3 1 0 1
3 − 1

3 0 2
3 0 0 2

3
7
3 − 4

3 0 0 1
3 − 1

3 0 − 1
3 1 0 5

3
− 2

3
26
3 0 0 1

3
8
3 0 5

3 0 1 26
3




which has only one negative entry on the bottom left. The pivot for this first column is the
7
3 . The next tableau is




0 20
7 0 1 2

7
5
7 0 − 2

7 − 1
7 0 3

7
0 11

7 0 0 − 1
7

1
7 1 − 6

7 − 3
7 0 2

7
0 − 1

7 1 0 2
7 − 2

7 0 5
7 − 1

7 0 3
7

1 − 4
7 0 0 1

7 − 1
7 0 − 1

7
3
7 0 5

7
0 58

7 0 0 3
7

18
7 0 11

7
2
7 1 64

7
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and all the entries in the left bottom row are nonnegative so the answer is 64/7. This is
the same as obtained before. So what values for x are needed? Here the basic variables are
y1, y3, y4, y7. Consider the original augmented matrix, one step before the simplex tableau.




1 5 1 2 1 1 0 0 0 0 2
2 3 2 1 1 0 1 0 0 0 3
1 2 2 1 1 0 0 1 0 0 2
3 1 1 1 1 0 0 0 1 0 3
−5 −8 −6 −7 −4 0 0 0 0 1 0




.

Permute the columns to put the columns associated with these basic variables first. Thus



1 1 2 0 5 1 1 0 0 0 2
2 2 1 1 3 1 0 0 0 0 3
1 2 1 0 2 1 0 1 0 0 2
3 1 1 0 1 1 0 0 1 0 3
−5 −6 −7 0 −8 −4 0 0 0 1 0




The matrix, B is 


1 1 2 0
2 2 1 1
1 2 1 0
3 1 1 0




and so B−T equals 


− 1
7 − 2

7
5
7

1
7

0 0 0 1
− 1

7
5
7 − 2

7 − 6
7

3
7 − 1

7 − 1
7 − 3

7




Also bT
B =

(
5 6 7 0

)
and so from Corollary 10.5.3,

x =




− 1
7 − 2

7
5
7

1
7

0 0 0 1
− 1

7
5
7 − 2

7 − 6
7

3
7 − 1

7 − 1
7 − 3

7







5
6
7
0


 =




18
7
0
11
7
2
7




which agrees with the original way of doing the problem.
Two good books which give more discussion of linear programming are Strang [13] and

Nobel and Daniels [10]. Also listed in these books are other references which may prove
useful if you are interested in seeing more on these topics. There is a great deal more which
can be said about linear programming.

10.6 Exercises

1. Maximize and minimize z = x1 − 2x2 + x3 subject to the constraints x1 + x2 + x3 ≤
10, x1 + x2 + x3 ≥ 2, and x1 + 2x2 + x3 ≤ 7 if possible. All variables are nonnegative.

2. Maximize and minimize the following is possible. All variables are nonnegative.

(a) z = x1− 2x2 subject to the constraints x1 + x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

(b) z = x1−2x2−3x3 subject to the constraints x1 +x2 +x3 ≤ 8, x1 +x2 +3x3 ≥ 1,
and x1 + x2 + x3 ≤ 7
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(c) z = 2x1 + x2 subject to the constraints x1− x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

(d) z = x1 + 2x2 subject to the constraints x1− x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

3. Consider contradictory constraints, x1 + x2 ≥ 12 and x1 + 2x2 ≤ 5. You know these
two contradict but show they contradict using the simplex algorithm.

4. Find a solution to the following inequalities x, y ≥ 0 and if it is possible to do so. If
it is not possible, prove it is not possible.

(a)
6x + 3y ≥ 4
8x + 4y ≤ 5

(b)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 8
6x1 + 6x2 + 5x3 ≤ 11

(c)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 9
6x1 + 6x2 + 5x3 ≤ 9

(d)
x1 − x2 + x3 ≤ 2

x1 + 2x2 ≥ 4
3x1 + 2x3 ≤ 7

(e)
5x1 − 2x2 + 4x3 ≤ 1
6x1 − 3x2 + 5x3 ≥ 2
5x1 − 2x2 + 4x3 ≤ 5

5. Minimize z = x1 + x2 subject to x1 + x2 ≥ 2, x1 + 3x2 ≤ 20, x1 + x2 ≤ 18. Change
to a maximization problem and solve as follows: Let yi = M − xi. Formulate in terms
of y1, y2.
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Spectral Theory

11.0.1 Outcomes

A. Describe the eigenvalue problem geometrically and algebraically.

B. Evaluate the spectrum and eigenvectors for a square matrix.

C. Find the principle directions of a deformation matrix.

D. Model a Markov process.

(a) Find the limit state.

(b) Determine comparisons of population after a long period of time.

11.1 Eigenvalues And Eigenvectors Of A Matrix

Spectral Theory refers to the study of eigenvalues and eigenvectors of a matrix. It is of
fundamental importance in many areas. Row operations will no longer be such a useful tool
in this subject.

11.1.1 Definition Of Eigenvectors And Eigenvalues

In this section, F = C.
To illustrate the idea behind what will be discussed, consider the following example.

Example 11.1.1 Here is a matrix.



0 5 −10
0 22 16
0 −9 −2


 .

Multiply this matrix by the vector 

−5
−4
3




and see what happens. Then multiply it by



1
0
0




and see what happens. Does this matrix act this way for some other vector?

209
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First 


0 5 −10
0 22 16
0 −9 −2






−5
−4
3


 =



−50
−40
30


 = 10



−5
−4
3


 .

Next 


0 5 −10
0 22 16
0 −9 −2







1
0
0


 =




0
0
0


 = 0




1
0
0


 .

When you multiply the first vector by the given matrix, it stretched the vector, multiplying
it by 10. When you multiplied the matrix by the second vector it sent it to the zero vector.
Now consider 


0 5 −10
0 22 16
0 −9 −2







1
1
1


 =




−5
38
−11


 .

In this case, multiplication by the matrix did not result in merely multiplying the vector by
a number.

In the above example, the first two vectors were called eigenvectors and the numbers, 10
and 0 are called eigenvalues. Not every number is an eigenvalue and not every vector is an
eigenvector.

Definition 11.1.2 Let M be an n × n matrix and let x ∈ Cn be a nonzero vector for
which

Mx = λx (11.1)

for some scalar, λ. Then x is called an eigenvector and λ is called an eigenvalue (char-
acteristic value) of the matrix, M.

Note: Eigenvectors are never equal to zero!

The set of all eigenvalues of an n× n matrix, M, is denoted by σ (M) and is referred to as
the spectrum of M.

The eigenvectors of a matrix M are those vectors, x for which multiplication by M
results in a vector in the same direction or opposite direction to x. Since the zero vector, 0
has no direction this would make no sense for the zero vector. As noted above, 0 is never
allowed to be an eigenvector. How can eigenvectors be identified? Suppose x satisfies 11.1.
Then

(M − λI)x = 0

for some x 6= 0. (Equivalently, you could write (λI −M)x = 0.) Sometimes we will use

(λI −M)x = 0

and sometimes (M − λI)x = 0. It makes absolutely no difference and you should use
whichever you like better. Therefore, the matrix M − λI cannot have an inverse because if
it did, the equation could be solved,

x =
(
(M − λI)−1 (M − λI)

)
x =(M − λI)−1 ((M − λI)x) = (M − λI)−1 0 = 0,

and this would require x = 0, contrary to the requirement that x 6= 0. By Theorem 6.2.1
on Page 97,

det (M − λI) = 0. (11.2)
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(Equivalently you could write det (λI −M) = 0.) The expression, det (λI −M) or equiva-
lently, det (M − λI) is a polynomial called the characteristic polynomial and the above
equation is called the characteristic equation. For M an n × n matrix, it follows from the
theorem on expanding a matrix by its cofactor that det (M − λI) is a polynomial of de-
gree n. As such, the equation, 11.2 has a solution, λ ∈ C by the fundamental theorem of
algebra. Is it actually an eigenvalue? The answer is yes and this follows from Observation
8.2.7 on Page 164 along with Theorem 6.2.1 on Page 97. Since det (M − λI) = 0 the ma-
trix, det (M − λI) cannot be one to one and so there exists a nonzero vector, x such that
(M − λI)x = 0. This proves the following corollary.

Corollary 11.1.3 Let M be an n × n matrix and det (M − λI) = 0. Then there exists a
nonzero vector, x ∈ Cn such that (M − λI)x = 0.

11.1.2 Finding Eigenvectors And Eigenvalues

As an example, consider the following.

Example 11.1.4 Find the eigenvalues and eigenvectors for the matrix,

A =




5 −10 −5
2 14 2
−4 −8 6


 .

You first need to identify the eigenvalues. Recall this requires the solution of the equation

det (A− λI) = 0.

In this case this equation is

det







5 −10 −5
2 14 2
−4 −8 6


− λ




1 0 0
0 1 0
0 0 1





 = 0

When you expand this determinant and simplify, you find the equation you need to solve is

(λ− 5)
(
λ2 − 20λ + 100

)
= 0

and so the eigenvalues are
5, 10, 10.

We have listed 10 twice because it is a zero of multiplicity two due to

λ2 − 20λ + 100 = (λ− 10)2 .

Having found the eigenvalues, it only remains to find the eigenvectors. First find the
eigenvectors for λ = 5. As explained above, this requires you to solve the equation,







5 −10 −5
2 14 2
−4 −8 6


− 5




1 0 0
0 1 0
0 0 1










x
y
z


 =




0
0
0


 .

That is you need to find the solution to



0 −10 −5
2 9 2
−4 −8 1







x
y
z


 =




0
0
0
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By now this is an old problem. You set up the augmented matrix and row reduce to get the
solution. Thus the matrix you must row reduce is




0 −10 −5 | 0
2 9 2 | 0
−4 −8 1 | 0


 . (11.3)

The row reduced echelon form is



1 0 − 5
4 | 0

0 1 1
2 | 0

0 0 0 | 0




and so the solution is any vector of the form



5
4 t
−1
2 t

t


 = t




5
4
−1
2

1




where t ∈ F. You would obtain the same collection of vectors if you replaced t with 4t. Thus
a simpler description for the solutions to this system of equations whose augmented matrix
is in 11.3 is

t




5
−2
4


 (11.4)

where t ∈ F. Now you need to remember that you can’t take t = 0 because this would result
in the zero vector and

Eigenvectors are never equal to zero!

Other than this value, every other choice of z in 11.4 results in an eigenvector. It is a good
idea to check your work! To do so, we will take the original matrix and multiply by this
vector and see if we get 5 times this vector.




5 −10 −5
2 14 2
−4 −8 6







5
−2
4


 =




25
−10
20


 = 5




5
−2
4




so it appears this is correct. Always check your work on these problems if you care about
getting the answer right.

The parameter, t is sometimes called a free variable. The set of vectors in 11.4 is
called the eigenspace and it equals ker (A− λI) . You should observe that in this case
the eigenspace has dimension 1 because the eigenspace is the span of a single vector. In
general, you obtain the solution from the row echelon form and the number of different free
variables gives you the dimension of the eigenspace. Just remember that not every vector
in the eigenspace is an eigenvector. The vector, 0 is not an eigenvector although it is in the
eigenspace because

Eigenvectors are never equal to zero!

Next consider the eigenvectors for λ = 10. These vectors are solutions to the equation,






5 −10 −5
2 14 2
−4 −8 6


− 10




1 0 0
0 1 0
0 0 1










x
y
z


 =




0
0
0
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That is you must find the solutions to


−5 −10 −5
2 4 2
−4 −8 −4







x
y
z


 =




0
0
0




which reduces to consideration of the augmented matrix,


−5 −10 −5 | 0
2 4 2 | 0
−4 −8 −4 | 0




The row reduced echelon form for this matrix is



1 2 1 0
0 0 0 0
0 0 0 0




and so the eigenvectors are of the form


−2s− t

s
t


 = s



−2
1
0


 + t



−1
0
1


 .

You can’t pick t and s both equal to zero because this would result in the zero vector and

Eigenvectors are never equal to zero!

However, every other choice of t and s does result in an eigenvector for the eigenvalue λ = 10.
As in the case for λ = 5 you should check your work if you care about getting it right.




5 −10 −5
2 14 2
−4 −8 6






−1
0
1


 =



−10
0
10


 = 10



−1
0
1




so it worked. The other vector will also work. Check it.

11.1.3 A Warning

The above example shows how to find eigenvectors and eigenvalues algebraically. You may
have noticed it is a bit long. Sometimes students try to first row reduce the matrix be-
fore looking for eigenvalues. This is a terrible idea because row operations destroy the
eigenvalues. The eigenvalue problem is really not about row operations.

The general eigenvalue problem is the hardest problem in algebra and people still do
research on ways to find eigenvalues and their eigenvectors. If you are doing anything which
would yield a way to find eigenvalues and eigenvectors for general matrices without too
much trouble, the thing you are doing will certainly be wrong. The problems you will see
in these notes are not too hard because they are cooked up by us to be easy. Later we
will describe general methods to compute eigenvalues and eigenvectors numerically. These
methods work even when the problem is not cooked up to be easy.

If you are so fortunate as to find the eigenvalues as in the above example, then finding the
eigenvectors does reduce to row operations and this part of the problem is easy. However,
finding the eigenvalues along with the eigenvectors is anything but easy because for an
n× n matrix, it involves solving a polynomial equation of degree n. If you only find a good
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approximation to the eigenvalue, it won’t work. It either is or is not an eigenvalue and
if it is not, the only solution to the equation, (M − λI)x = 0 will be the zero solution as
explained above and

Eigenvectors are never equal to zero!

Here is another example.

Example 11.1.5 Let

A =




2 2 −2
1 3 −1
−1 1 1




First find the eigenvalues.

det







2 2 −2
1 3 −1
−1 1 1


− λ




1 0 0
0 1 0
0 0 1





 = 0

This reduces to λ3 − 6λ2 + 8λ = 0 and the solutions are 0, 2, and 4.

0 Can be an Eigenvalue!

Now find the eigenvectors. For λ = 0 the augmented matrix for finding the solutions is



2 2 −2 | 0
1 3 −1 | 0
−1 1 1 | 0




and the row reduced echelon form is



1 0 −1 0
0 1 0 0
0 0 0 0




Therefore, the eigenvectors are of the form

t




1
0
1




where t 6= 0.
Next find the eigenvectors for λ = 2. The augmented matrix for the system of equations

needed to find these eigenvectors is



0 2 −2 | 0
1 1 −1 | 0
−1 1 −1 | 0




and the row reduced echelon form is



1 0 0 0
0 1 −1 0
0 0 0 0
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and so the eigenvectors are of the form

t




0
1
1




where t 6= 0.

Finally find the eigenvectors for λ = 4. The augmented matrix for the system of equations
needed to find these eigenvectors is



−2 2 −2 | 0
1 −1 −1 | 0
−1 1 −3 | 0




and the row reduced echelon form is



1 −1 0 0
0 0 1 0
0 0 0 0


 .

Therefore, the eigenvectors are of the form

t




1
1
0




where t 6= 0.

11.1.4 Triangular Matrices

Although it is usually hard to solve the eigenvalue problem, there is a kind of matrix for
which this is not the case. These are the upper or lower triangular matrices. I will illustrate
by a examples.

Example 11.1.6 Let A =




1 2 4
0 4 7
0 0 6


 . Find its eigenvalues.

You need to solve

0 = det







1 2 4
0 4 7
0 0 6


− λ




1 0 0
0 1 0
0 0 1







= det




1− λ 2 4
0 4− λ 7
0 0 6− λ


 = (1− λ) (4− λ) (6− λ) .

Thus the eigenvalues are just the diagonal entries of the original matrix. You can see it
would work this way with any such matrix. These matrices are called upper triangular.
Stated precisely, a matrix A is upper triangular if Aij = 0 for all i > j. Similarly, it is easy
to find the eigenvalues for a lower triangular matrix, on which has all zeros above the main
diagonal.
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11.1.5 Defective And Nondefective Matrices

Definition 11.1.7 By the fundamental theorem of algebra, it is possible to write the char-
acteristic equation in the form

(λ− λ1)
r1 (λ− λ2)

r2 · · · (λ− λm)rm = 0

where ri is some integer no smaller than 1. Thus the eigenvalues are λ1, λ2, · · · , λm. The
algebraic multiplicity of λj is defined to be rj .

Example 11.1.8 Consider the matrix,

A =




1 1 0
0 1 1
0 0 1


 (11.5)

What is the algebraic multiplicity of the eigenvalue λ = 1?

In this case the characteristic equation is

det (A− λI) = (1− λ)3 = 0

or equivalently,
det (λI −A) = (λ− 1)3 = 0.

Therefore, λ is of algebraic multiplicity 3.

Definition 11.1.9 The geometric multiplicity of an eigenvalue is the dimension of the
eigenspace,

ker (A− λI) .

Example 11.1.10 Find the geometric multiplicity of λ = 1 for the matrix in 11.5.

We need to solve 


0 1 0
0 0 1
0 0 0







x
y
z


 =




0
0
0


 .

The augmented matrix which must be row reduced to get this solution is therefore,



0 1 0 | 0
0 0 1 | 0
0 0 0 | 0




This requires z = y = 0 and x is arbitrary. Thus the eigenspace is

t




1
0
0


 , t ∈ F.

It follows the geometric multiplicity of λ = 1 is 1.

Definition 11.1.11 An n×n matrix is called defective if the geometric multiplicity is not
equal to the algebraic multiplicity for some eigenvalue. Sometimes such an eigenvalue for
which the geometric multiplicity is not equal to the algebraic multiplicity is called a defective
eigenvalue. If the geometric multiplicity for an eigenvalue equals the algebraic multiplicity,
the eigenvalue is sometimes referred to as nondefective.
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Here is another more interesting example of a defective matrix.

Example 11.1.12 Let

A =




2 −2 −1
−2 −1 −2
14 25 14


 .

Find the eigenvectors and eigenvalues.

In this case the eigenvalues are 3, 6, 6 where we have listed 6 twice because it is a zero
of algebraic multiplicity two, the characteristic equation being

(λ− 3) (λ− 6)2 = 0.

It remains to find the eigenvectors for these eigenvalues. First consider the eigenvectors for
λ = 3. You must solve







2 −2 −1
−2 −1 −2
14 25 14


− 3




1 0 0
0 1 0
0 0 1










x
y
z


 =




0
0
0


 .

The augmented matrix is 

−1 −2 −1 | 0
−2 −4 −2 | 0
14 25 11 | 0




and the row reduced echelon form is



1 0 −1 0
0 1 1 0
0 0 0 0




so the eigenvectors are nonzero vectors of the form



t
−t
t


 = t




1
−1
1




Next consider the eigenvectors for λ = 6. This requires you to solve






2 −2 −1
−2 −1 −2
14 25 14


− 6




1 0 0
0 1 0
0 0 1










x
y
z


 =




0
0
0




and the augmented matrix for this system of equations is


−4 −2 −1 | 0
−2 −7 −2 | 0
14 25 8 | 0




The row reduced echelon form is



1 0 1
8 0

0 1 1
4 0

0 0 0 0
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and so the eigenvectors for λ = 6 are of the form

t



− 1

8

− 1
4

1




or written more simply,

t



−1
−2
8




where t ∈ F.
Note that in this example the eigenspace for the eigenvalue, λ = 6 is of dimension 1

because there is only one parameter. However, this eigenvalue is of multiplicity two as a
root to the characteristic equation. Thus this eigenvalue is a defective eigenvalue. However,
the eigenvalue 3 is nondefective. The matrix is defective because it has a defective eigenvalue.

The word, defective, seems to suggest there is something wrong with the matrix. This
is in fact the case. Defective matrices are a lot of trouble in applications and we may wish
they never occurred. However, they do occur as the above example shows. When you study
linear systems of differential equations, you will have to deal with the case of defective
matrices and you will see how awful they are. The reason these matrices are so horrible
to work with is that it is impossible to obtain a basis of eigenvectors. When you study
differential equations, solutions to first order systems are expressed in terms of eigenvectors
of a certain matrix times eλt where λ is an eigenvalue. In order to obtain a general solution
of this sort, you must have a basis of eigenvectors. For a defective matrix, such a basis does
not exist and so you have to go to something called generalized eigenvectors. Unfortunately,
it is never explained in beginning differential equations courses why there are enough
generalized eigenvectors and eigenvectors to represent the general solution. In fact, this
reduces to a difficult question in linear algebra equivalent to the existence of something
called the Jordan Canonical form which is much more difficult than everything discussed in
the entire differential equations course. If you become interested in this, see [9]or Appendix
A.

Ultimately, the algebraic issues which will occur in differential equations are a red herring
anyway. The real issues relative to existence of solutions to systems of ordinary differential
equations are analytical, having much more to do with calculus than with linear algebra
although this will likely not be made clear when you take a beginning differential equations
class.

In terms of algebra, this lack of a basis of eigenvectors says that it is impossible to obtain
a diagonal matrix which is similar to the given matrix.

Although there may be repeated roots to the characteristic equation, 11.2 and it is not
known whether the matrix is defective in this case, there is an important theorem which
holds when considering eigenvectors which correspond to distinct eigenvalues.

Theorem 11.1.13 Suppose Mvi = λivi, i = 1, · · · , r , vi 6= 0, and that if i 6= j, then
λi 6= λj. Then the set of eigenvectors, {v1, · · · ,vr} is linearly independent.

Proof: If the conclusion of this theorem is not true, then there exist non zero scalars,
ckj such that

m∑

j=1

ckjvkj = 0. (11.6)
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Take m to be the smallest number possible for an expression of the form 11.6 to hold. Then
solving for vk1

vk1 =
∑

kj 6=k1

dkj
vkj

(11.7)

where dkj = ckj /ck1 6= 0. Multiplying both sides by M,

λk1vk1 =
∑

kj 6=k1

dkj
λkj

vkj
,

which from 11.7 yields ∑

kj 6=k1

dkj
λk1vkj

=
∑

kj 6=k1

dkj
λkj

vkj

and therefore,
0 =

∑

kj 6=k1

dkj

(
λk1 − λkj

)
vkj ,

a sum having fewer than m terms. However, from the assumption that m is as small as
possible for 11.6 to hold with all the scalars, ckj non zero, it follows that for some j 6= 1,

dkj

(
λk1 − λkj

)
= 0

which implies λk1 = λkj
, a contradiction.

Here is another proof in case you did not follow the above.

Theorem 11.1.14 Suppose Mvi = λivi, i = 1, · · · , r , vi 6= 0, and that if i 6= j, then
λi 6= λj. Then the set of eigenvectors, {v1, · · · ,vr} is linearly independent.

Proof: If the conclusion is not true, there exists a basis for span (v1, · · · ,vr) , consisting
of some vectors from the list {v1, · · · ,vr} which has fewer than r vectors. Let {w1, · · · ,wk}
be this list of vectors. Thus {w1, · · · ,wk} are the pivot columns in the matrix

(
v1 v2 · · · vk

)
.

Then there exists v ∈{v1, · · · ,vr} which is a linear combination of the {w1, · · · ,wk}. Thus

v =
k∑

i=1

ciwi. (11.8)

Then doing M to both sides yields

λvv =
k∑

i=1

ciλwiwi (11.9)

where λv denotes the eigenvalue for v. But also you could multiply both sides of 11.8 by
λv to get

λvv =
k∑

i=1

ciλvwi.

And now subtracting this from 11.9 yields

0 =
k∑

i=1

ci (λv − λwi)wi
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and by independence of the {w1, · · · ,wk} , this requires ci (λv − λwi) = 0 for each i. Since
the eigenvalues are distinct, λv − λwi

6= 0 and so each ci = 0. But from 11.8, this requires
v = 0 which is impossible because v is an eigenvector and

Eigenvectors are never equal to zero!

This proves the theorem.

11.1.6 Complex Eigenvalues

Sometimes you have to consider eigenvalues which are complex numbers. This occurs in
differential equations for example. You do these problems exactly the same way as you do
the ones in which the eigenvalues are real. Here is an example.

Example 11.1.15 Find the eigenvalues and eigenvectors of the matrix

A =




1 0 0
0 2 −1
0 1 2


 .

You need to find the eigenvalues. Solve

det







1 0 0
0 2 −1
0 1 2


− λ




1 0 0
0 1 0
0 0 1





 = 0.

This reduces to (λ− 1)
(
λ2 − 4λ + 5

)
= 0. The solutions are λ = 1, λ = 2 + i, λ = 2− i.

There is nothing new about finding the eigenvectors for λ = 1 so consider the eigenvalue
λ = 2 + i. You need to solve


(2 + i)




1 0 0
0 1 0
0 0 1


−




1 0 0
0 2 −1
0 1 2










x
y
z


 =




0
0
0




In other words, you must consider the augmented matrix,



1 + i 0 0 | 0
0 i 1 | 0
0 −1 i | 0




for the solution. Divide the top row by (1 + i) and then take −i times the second row and
add to the bottom. This yields




1 0 0 | 0
0 i 1 | 0
0 0 0 | 0




Now multiply the second row by −i to obtain



1 0 0 | 0
0 1 −i | 0
0 0 0 | 0




Therefore, the eigenvectors are of the form

t




0
i
1


 .
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You should find the eigenvectors for λ = 2− i. These are

t




0
−i
1


 .

As usual, if you want to get it right you had better check it.



1 0 0
0 2 −1
0 1 2







0
−i
1


 =




0
−1− 2i
2− i


 = (2− i)




0
−i
1




so it worked.

11.2 Some Applications Of Eigenvalues And Eigenvec-
tors

11.2.1 Principle Directions

Recall that n× n matrices can be considered as linear transformations. If F is a 3× 3 real
matrix having positive determinant, it can be shown that F = RU where R is a rotation
matrix and U is a symmetric real matrix having positive eigenvalues. An application of
this wonderful result, known to mathematicians as the right polar factorization, is to
continuum mechanics where a chunk of material is identified with a set of points in three
dimensional space.

The linear transformation, F in this context is called the deformation gradient and
it describes the local deformation of the material. Thus it is possible to consider this
deformation in terms of two processes, one which distorts the material and the other which
just rotates it. It is the matrix, U which is responsible for stretching and compressing.
This is why in elasticity, the stress is often taken to depend on U which is known in this
context as the right Cauchy Green strain tensor. In this context, the eigenvalues will
always be positive. The symmetry of U allows the proof of a theorem which says that if
λM is the largest eigenvalue, then in every other direction other than the one corresponding
to the eigenvector for λM the material is stretched less than λM and if λm is the smallest
eigenvalue, then in every other direction other than the one corresponding to an eigenvector
of λm the material is stretched more than λm. This process of writing a matrix as a product
of two such matrices, one of which preserves distance and the other which distorts is
also important in applications to geometric measure theory an interesting field of study in
mathematics and to the study of quadratic forms which occur in many applications such as
statistics. Here we are emphasizing the application to mechanics in which the eigenvectors
of the symmetric matrix U determine the principle directions, those directions in which
the material is stretched the most or the least.

Example 11.2.1 Find the principle directions determined by the matrix,



29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44




The eigenvalues are 3, 1, and 1
2 .
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It is nice to be given the eigenvalues. The largest eigenvalue is 3 which means that in
the direction determined by the eigenvector associated with 3 the stretch is three times as
large. The smallest eigenvalue is 1/2 and so in the direction determined by the eigenvector
for 1/2 the material is stretched by a factor of 1/2, becoming locally half as long. It remains
to find these directions. First consider the eigenvector for 3. It is necessary to solve




3




1 0 0
0 1 0
0 0 1


−




29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44










x
y
z


 =




0
0
0




Thus the augmented matrix for this system of equations is



4
11 − 6

11 − 6
11 | 0

− 6
11

91
44 − 19

44 | 0

− 6
11 − 19

44
91
44 | 0




The row reduced echelon form is



1 0 −3 0
0 1 −1 0
0 0 0 0




and so the principle direction for the eigenvalue, 3 in which the material is stretched to the
maximum extent is 


3
1
1


 .

A direction vector (or unit vector) in this direction is



3/
√

11
1/
√

11
1/
√

11


 .

You should show that the direction in which the material is compressed the most is in the
direction 


0

−1/
√

2
1/
√

2




Note this is meaningful information which you would have a hard time finding without
the theory of eigenvectors and eigenvalues.

11.2.2 Migration Matrices

There are applications which are of great importance which feature only one eigenvalue.

Definition 11.2.2 Let n locations be denoted by the numbers 1, 2, · · · , n. Also suppose it is
the case that each year aij denotes the proportion of residents in location j which move to
location i. Also suppose no one escapes or emigrates from without these n locations. This last
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assumption requires
∑

i aij = 1. Such matrices in which the columns are nonnegative num-
bers which sum to one are called Markov matrices. In this context describing migration,
they are also called migration matrices.

Example 11.2.3 Here is an example of one of these matrices.
(

.4 .2

.6 .8

)

Thus if it is considered as a migration matrix, .4 is the proportion of residents in location
1 which stay in location one in a given time period while .6 is the proportion of residents in
location 1 which move to location 2 and .2 is the proportion of residents in location 2 which
move to location 1. Considered as a Markov matrix, these numbers are usually identified
with probabilities.

If v = (x1, · · · , xn)T where xi is the population of location i at a given instant, you obtain
the population of location i one year later by computing

∑
j aijxj = (Av)i . Therefore, the

population of location i after k years is
(
Akv

)
i
. An obvious application of this would be to

a situation in which you rent trailers which can go to various parts of a city and you observe
through experiments the proportion of trailers which go from point i to point j in a single
day. Then you might want to find how many trailers would be in all the locations after 8
days.

Proposition 11.2.4 Let A = (aij) be a migration matrix. Then 1 is always an eigenvalue
for A.

Proof: Remember that det
(
BT

)
= det (B) . Therefore,

det (A− λI) = det
(
(A− λI)T

)
= det

(
AT − λI

)

because IT = I. Thus the characteristic equation for A is the same as the characteristic
equation for AT and so A and AT have the same eigenvalues. We will show that 1 is an
eigenvalue for AT and then it will follow that 1 is an eigenvalue for A.

Remember that for a migration matrix,
∑

i aij = 1. Therefore, if AT = (bij) so bij = aji,
it follows that ∑

j

bij =
∑

j

aji = 1.

Therefore, from matrix multiplication,

AT




1
...
1


 =




∑
j bij

...∑
j bij


 =




1
...
1




which shows that




1
...
1


 is an eigenvector for AT corresponding to the eigenvalue, λ = 1.

As explained above, this shows that λ = 1 is an eigenvalue for A because A and AT have
the same eigenvalues.

Example 11.2.5 Consider the migration matrix,




.6 0 .1

.2 .8 0

.2 .2 .9


 for locations 1, 2, and 3.

Suppose initially there are 100 residents in location 1, 200 in location 2 and 400 in location
4. Find the population in the three locations after 10 units of time.
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From the above, it suffices to consider




.6 0 .1

.2 .8 0

.2 .2 .9




10 


100
200
400


 =




115. 085 829 22
120. 130 672 44
464. 783 498 34




Of course you would need to round these numbers off.
A related problem asks for how many there will be in the various locations after a long

time. It turns out that if some power of the migration matrix has all positive entries, then
there is a limiting vector, x = limk→∞Akx0 where x0 is the initial vector describing the
number of inhabitants in the various locations initially. This vector will be an eigenvector
for the eigenvalue 1 because

x = lim
k→∞

Akx0 = lim
k→∞

Ak+1x0 = A lim
k→∞

Akx = Ax,

and the sum of its entries will equal the sum of the entries of the initial vector, x0 because
this sum is preserved for every multiplication by A since

∑

i

∑

j

aijxj =
∑

j

xj

(∑

i

aij

)
=

∑

j

xj .

Here is an example. It is the same example as the one above but here it will involve the
long time limit.

Example 11.2.6 Consider the migration matrix,




.6 0 .1

.2 .8 0

.2 .2 .9


 for locations 1, 2, and 3.

Suppose initially there are 100 residents in location 1, 200 in location 2 and 400 in location
4. Find the population in the three locations after a long time.

You just need to find the eigenvector which goes with the eigenvalue 1 and then normalize
it so the sum of its entries equals the sum of the entries of the initial vector. Thus you need
to find a solution to







1 0 0
0 1 0
0 0 1


−




.6 0 .1

.2 .8 0

.2 .2 .9










x
y
z


 =




0
0
0




The augmented matrix is 


. 4 0 −. 1 | 0
−. 2 . 2 0 | 0
−. 2 −. 2 . 1 | 0




and its row reduced echelon form is



1 0 −. 25 0
0 1 −. 25 0
0 0 0 0




Therefore, the eigenvectors are

s




(1/4)
(1/4)

1
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and all that remains is to choose the value of s such that

1
4
s +

1
4
s + s = 100 + 200 + 400

This yields s = 1400
3 and so the long time limit would equal

1400
3




(1/4)
(1/4)

1


 =




116. 666 666 666 666 7
116. 666 666 666 666 7
466. 666 666 666 666 7


 .

You would of course need to round these numbers off. You see that you are not far off after
just 10 units of time. Therefore, you might consider this as a useful procedure because it is
probably easier to solve a simple system of equations than it is to raise a matrix to a large
power.

Example 11.2.7 Suppose a migration matrix is




1
5

1
2

1
5

1
4

1
4

1
2

11
20

1
4

3
10




. Find the comparison

between the populations in the three locations after a long time.

This amounts to nothing more than finding the eigenvector for λ = 1. Solve






1 0 0
0 1 0
0 0 1


−




1
5

1
2

1
5

1
4

1
4

1
2

11
20

1
4

3
10










x
y
z


 =




0
0
0


 .

The augmented matrix is 


4
5 − 1

2 − 1
5 | 0

− 1
4

3
4 − 1

2 | 0

− 11
20 − 1

4
7
10 | 0




The row echelon form is 


1 0 − 16
19 0

0 1 − 18
19 0

0 0 0 0




and so an eigenvector is 


16
18
19


 .

Thus there will be 18
16

th more in location 2 than in location 1. There will be 19
18

th more in

location 3 than in location 2.
You see the eigenvalue problem makes these sorts of determinations fairly simple.
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There are many other things which can be said about these sorts of migration prob-
lems. They include things like the gambler’s ruin problem which asks for the probability
that a compulsive gambler will eventually lose all his money. However those problems are
not so easy although they still involve eigenvalues and eigenvectors.

There are many other important applications of eigenvalue problems. We have just given
a few such applications here. As pointed out, this is a very hard problem but sometimes
you don’t need to find the eigenvalues exactly.

11.3 The Estimation Of Eigenvalues

There are ways to estimate the eigenvalues for matrices from just looking at the matrix.
The most famous is known as Gerschgorin’s theorem. This theorem gives a rough idea
where the eigenvalues are just from looking at the matrix.

Theorem 11.3.1 Let A be an n × n matrix. Consider the n Gerschgorin discs defined
as

Di ≡


λ ∈ C : |λ− aii| ≤

∑

j 6=i

|aij |


 .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row which are
off the main diagonal and form the disc centered at aii having this radius. The union of
these discs contains σ (A) , the spectrum of A.

Proof: Suppose Ax = λx where x 6= 0. Then for A = (aij)∑

j 6=i

aijxj = (λ− aii)xi.

Therefore, picking k such that |xk| ≥ |xj | for all xj , it follows that |xk| 6= 0 since |x| 6= 0
and

|xk|
∑

j 6=k

|akj | ≥
∑

j 6=k

|akj | |xj | ≥
∣∣∣∣∣∣
∑

j 6=k

akjxj

∣∣∣∣∣∣
= |λ− akk| |xk| .

Now dividing by |xk|, it follows λ is contained in the kth Gerschgorin disc.

Example 11.3.2 Suppose the matrix is

A =




21 −16 −6
14 60 12
7 8 38




Estimate the eigenvalues.

The exact eigenvalues are 35, 56, and 28. The Gerschgorin disks are

D1 = {λ ∈ C : |λ− 21| ≤ 22} ,

D2 = {λ ∈ C : |λ− 60| ≤ 26} ,

and
D3 = {λ ∈ C : |λ− 38| ≤ 15} .

Gerschgorin’s theorem says these three disks contain the eigenvalues. Now 35 is in D3, 56
is in D2 and 28 is in D1.

More can be said when the Gerschgorin disks are disjoint but this is an advanced topic
which requires the theory of functions of a complex variable. If you are interested and have
a background in complex variable techniques, this is in [9]
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11.4 Exercises

1. State the eigenvalue problem from an algebraic perspective.

2. State the eigenvalue problem from a geometric perspective.

3. Suppose T is a linear transformation and it satisfies T 2 = T and Tx = x for all x in a
certain subspace, V. Show that 1 is an eigenvalue for T and show that all eigenvalues
have absolute values no larger than 1.

4. Show that if Ax = λx and Ay = λy, then whenever a, b are scalars,

A (ax + by) = λ (ax + by) .

Does this imply that ax + by is an eigenvector? Explain.

5. Find the eigenvalues and eigenvectors of the matrix


−19 −14 −1
8 4 8
15 30 −3


 .

Determine whether the matrix is defective.

6. Find the eigenvalues and eigenvectors of the matrix


−3 −30 15
0 12 0
15 30 −3


 .

Determine whether the matrix is defective.

7. Find the eigenvalues and eigenvectors of the matrix



8 4 5
0 12 9
−2 2 10


 .

Determine whether the matrix is defective.

8. Find the eigenvalues and eigenvectors of the matrix



7 −2 0
8 −1 0
−2 4 6


 .

Can you find three independent eigenvectors?

9. Find the eigenvalues and eigenvectors of the matrix



3 −2 −1
0 5 1
0 2 4


 .

Can you find three independent eigenvectors in this case?
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10. Find the eigenvalues and eigenvectors of the matrix



12 −12 6
0 18 0
6 12 12




11. Find the eigenvalues and eigenvectors of the matrix



−5 −1 10
−15 9 −6
8 −8 2


 .

Determine whether the matrix is defective.

12. Find the eigenvalues and eigenvectors of the matrix


−10 −8 8
−4 −14 −4
0 0 −18


 .

Determine whether the matrix is defective.

13. Find the eigenvalues and eigenvectors of the matrix



1 26 −17
4 −4 4
−9 −18 9


 .

Determine whether the matrix is defective.

14. Find the eigenvalues and eigenvectors of the matrix



8 4 5
0 12 9
−2 2 10


 .

Determine whether the matrix is defective.

15. Find the eigenvalues and eigenvectors of the matrix



9 6 −3
0 6 0
−3 −6 9


 .

Determine whether the matrix is defective.

16. Find the eigenvalues and eigenvectors of the matrix


−10 −2 11
−18 6 −9
10 −10 −2


 .

Determine whether the matrix is defective.

17. Find the complex eigenvalues and eigenvectors of the matrix




4 −2 −2
0 2 −2
2 0 2


 . De-

termine whether the matrix is defective.
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18. Find the complex eigenvalues and eigenvectors of the matrix



−4 2 0
2 −4 0
−2 2 −2


 .

Determine whether the matrix is defective.

19. Find the complex eigenvalues and eigenvectors of the matrix




1 1 −6
7 −5 −6
−1 7 2


 .

Determine whether the matrix is defective.

20. Find the complex eigenvalues and eigenvectors of the matrix




4 2 0
−2 4 0
−2 2 6


 . Deter-

mine whether the matrix is defective.

21. Let T be the linear transformation which reflects vectors about the x axis. Find a
matrix for T and then find its eigenvalues and eigenvectors.

22. Let T be the linear transformation which rotates all vectors in R2 counterclockwise
through an angle of π/2. Find a matrix of T and then find eigenvalues and eigenvectors.

23. Let T be the linear transformation which reflects all vectors in R3 through the xy
plane. Find a matrix for T and then obtain its eigenvalues and eigenvectors.

24. Find the principle direction for stretching for the matrix,



13
9

2
15

√
5 8

45

√
5

2
15

√
5 6

5
4
15

8
45

√
5 4

15
61
45




.

The eigenvalues are 2 and 1.

25. Find the principle directions for the matrix,



5
2 − 1

2 0

− 1
2

5
2 0

0 0 1




26. Suppose the migration matrix for three locations is



.5 0 .3

.3 .8 0

.2 .2 .7


 .

Find a comparison for the populations in the three locations after a long time.

27. Suppose the migration matrix for three locations is



.1 .1 .3

.3 .7 0

.6 .2 .7


 .

Find a comparison for the populations in the three locations after a long time.
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28. You own a trailer rental company in a large city and you have four locations, one
in the South East, one in the North East, one in the North West, and one in the
South West. Denote these locations by SE,NE,NW, and SW respectively. Suppose
you observe that in a typical day, .8 of the trailers starting in SE stay in SE, .1 of the
trailers in NE go to SE, .1 of the trailers in NW end up in SE, .2 of the trailers in SW
end up in SE, .1 of the trailers in SE end up in NE,.7 of the trailers in NE end up in
NE,.2 of the trailers in NW end up in NE,.1 of the trailers in SW end up in NE, .1
of the trailers in SE end up in NW, .1 of the trailers in NE end up in NW, .6 of the
trailers in NW end up in NW, .2 of the trailers in SW end up in NW, 0 of the trailers
in SE end up in SW, .1 of the trailers in NE end up in SW, .1 of the trailers in NW
end up in SW, .5 of the trailers in SW end up in SW. You begin with 20 trailers in
each location. Approximately how many will you have in each location after a long
time? Will any location ever run out of trailers?

29. Let M be an n × n matrix and suppose x1, · · · ,xn are n eigenvectors which form a
linearly independent set. Form the matrix S by making the columns these vectors.
Show that S−1 exists and that S−1MS is a diagonal matrix (one having zeros
everywhere except on the main diagonal) having the eigenvalues of M on the main
diagonal. When this can be done the matrix is diagonalizable.

30. Show that a matrix, M is diagonalizable if and only if it has a basis of eigenvectors.
Hint: The first part is done in Problem 29. It only remains to show that if the matrix
can be diagonalized by some matrix, S giving D = S−1MS for D a diagonal matrix,
then it has a basis of eigenvectors. Try using the columns of the matrix S.

31. Suppose A is an n× n matrix which is diagonally dominant. This means

|aii| >
∑

j

|aij | .

Show that A−1 must exist.

32. Is it possible for a nonzero matrix to have only 0 as an eigenvalue?

33. Let M be an n × n matrix. Then define the adjoint of M,denoted by M∗ to be the
transpose of the conjugate of M. For example,

(
2 i

1 + i 3

)∗
=

(
2 1− i
−i 3

)
.

A matrix, M, is self adjoint if M∗ = M. Show the eigenvalues of a self adjoint matrix
are all real. If the self adjoint matrix has all real entries, it is called symmetric. Show
that the eigenvalues and eigenvectors of a symmetric matrix occur in conjugate pairs.

34. Suppose A is an n×n matrix consisting entirely of real entries but a+ ib is a complex
eigenvalue having the eigenvector, x + iy. Here x and y are real vectors. Show that
then a − ib is also an eigenvalue with the eigenvector, x − iy. Hint: You should
remember that the conjugate of a product of complex numbers equals the product of
the conjugates. Here a + ib is a complex number whose conjugate equals a− ib.

35. Recall an n×n matrix is said to be symmetric if it has all real entries and if A = AT .
Show the eigenvectors and eigenvalues of a real symmetric matrix are real.
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36. Recall an n × n matrix is said to be skew symmetric if it has all real entries and if
A = −AT . Show that any nonzero eigenvalues must be of the form ib where i2 = −1. In
words, the eigenvalues are either 0 or pure imaginary. Show also that the eigenvectors
corresponding to the pure imaginary eigenvalues are imaginary in the sense that every
entry is of the form ix for x ∈ R.

11.5 Exercises With Answers

1. Find the eigenvectors and eigenvalues of the matrix, A =




8 −3 1
−2 7 1
0 0 10


 . Deter-

mine whether the matrix is defective. If nondefective, diagonalize the matrix with an
appropriate similarity transformation.

First you need to write the characteristic equation.

det


λ




1 0 0
0 1 0
0 0 1


−




8 −3 1
−2 7 1
0 0 10





 = det




λ− 8 3 −1
2 λ− 7 −1
0 0 λ− 10




(11.10)
= λ3 − 25λ2 + 200λ− 500 = 0

Next you need to find the solutions to this equation. Of course this is a real joy. If
there are any rational zeros they are

± factor of 500
factor of 1

I hope to find a rational zero. If there are none, then I don’t know what to do at this
point. This is a really lousy method for finding eigenvalues and eigenvectors. It only
works if things work out well. Lets try 10. You can plug it in and see if it works or
you can use synthetic division.

0
10

1 −25 200 −500
10 −150 500

1 −15 50 0

Yes, it appears 10 works and you can factor the polynomial as (λ− 10)
(
λ2 − 15λ + 50

)
which factors further to (λ− 10) (λ− 5) (λ− 10) so you find the eigenvalues are 5, 10,
and 10. It remains to find the eigenvectors. First find an eigenvector for λ = 5. To do
this, you find a vector which is sent to 0 by the matrix on the right in 11.10 in which
you let λ = 5. Thus the augmented matrix of the system of equations you need to
solve to get the eigenvector is




5− 8 3 −1 | 0
2 5− 7 −1 | 0
0 0 5− 10 | 0




Now the row reduced echelon form is



1 −1 0 | 0
0 0 1 | 0
0 0 0 | 0
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and so you need x = y and z = 0. An eigenvector is (1, 1, 0)T
. Now you have the

glorious opportunity to solve for the eigenvectors associated with λ = 10. You do it
the same way. The augmented matrix for the system of equations you solve to find
the eigenvectors is 


10− 8 3 −1 | 0

2 10− 7 −1 | 0
0 0 10− 10 | 0




The row reduced echelon form is


1 3
2 − 1

2 | 0
0 0 0 | 0
0 0 0 | 0




and so you need x = − 3
2y + 1

2z. It follows the eigenvectors for λ = 10 are
(
−3

2
y +

1
2
z, y, z

)T

where x, y ∈ R, not both equal to zero. Why? Let y = 2 and z = 0. This gives the
vector,

(−3, 2, 0)T

as one of the eigenvectors. You could also let y = 0 and z = 2 to obtain another
eigenvector,

(1, 0, 2)T
.

If there exists a basis of eigenvectors, then the matrix is nondefective and as discussed
above, the matrix can be diagonalized by considering S−1AS where the columns of S
are the eigenvectors. In this case, I have found three eigenvectors and so it remains
to determine whether these form a basis. Remember how to do this. You let them be
the columns of a matrix and then find the rank of this matrix. If it is three, then they
are a basis because they are linearly independent and the vectors are in R3. This is
equivalent to the following matrix has an inverse.




1 −3 1
1 2 0
0 0 2







1 −3 1
1 2 0
0 0 2



−1

=




2
5

3
5 − 1

5
− 1

5
1
5

1
10

0 0 1
2




Then to diagonalize



2
5

3
5 − 1

5
− 1

5
1
5

1
10

0 0 1
2







8 −3 1
−2 7 1
0 0 10







1 −3 1
1 2 0
0 0 2


 =




5 0 0
0 10 0
0 0 10




Isn’t this stuff marvelous! You can know this matrix is nondefective at the point when
you find the eigenvectors for the repeated eigenvalue. This eigenvalue was repeated
with multiplicity 2 and there were two parameters, y and z in the description of
the eigenvectors. Therefore, the matrix is nondefective. Also note that there is no
uniqueness for the similarity transformation.
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2. Now consider the matrix,




2 1 0
0 1 0
−1 0 1


 . Find its eigenvectors and eigenvalues and

determine whether it is defective.

The characteristic equation is

det


λ




1 0 0
0 1 0
0 0 1


−




2 1 0
0 1 0
−1 0 1





 = 0

thus the characteristic equation is

(λ− 2) (λ− 1)2 = 0.

The zeros are 1, 1, 2. Lets find the eigenvectors for λ = 1. The augmented matrix for
the system you need to solve is



−1 −1 0 | 0
0 0 0 | 0
1 0 0 | 0




The row reduced echelon form is



1 0 0 | 0
0 1 0 | 0
0 0 0 | 0




Then you find x = y = 0 and there is no restriction on z. Thus the eigenvectors are of
the form

(0, 0, z)T
, z ∈ R.

The eigenvalue had multiplicity 2 but the eigenvectors depend on only one parameter.
Therefore, the matrix is defective and cannot be diagonalized. The other eigenvector
comes from row reducing the following

2




1 0 0 | 0
0 1 0 | 0
0 0 1 | 0


−




2 1 0 | 0
0 1 0 | 0
−1 0 1 | 0


 =




0 −1 0 | 0
0 1 0 | 0
1 0 1 | 0




The row reduced echelon form is



1 0 1 | 0
0 1 0 | 0
0 0 0 | 0




Therefore the eigenvectors are of the form (x, 0,−x)T
. One such eigenvector is

(1, 0,−1)T
.

3. Let M be an n × n matrix. Then define the adjoint of M,denoted by M∗ to be the
transpose of the conjugate of M. For example,

(
2 i

1 + i 3

)∗
=

(
2 1− i
−i 3

)
.
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A matrix, M, is self adjoint if M∗ = M. Show the eigenvalues of a self adjoint matrix
are all real. If the self adjoint matrix has all real entries, it is called symmetric. Show
that the eigenvalues and eigenvectors of a symmetric matrix occur in conjugate pairs.

First note that for x a vector, x∗x = |x|2 . This is because

x∗x =
∑

k

xkxk =
∑

k

|xk|2 ≡ |x|2 .

Also note that (AB)∗ = B∗A∗ because this holds for transposes.This implies that for
A an n×m matrix,

x∗A∗x =(Ax)∗ x

Then if Mx = λx

λx∗x = (λx)∗ x = (Mx)∗ x = x∗M∗x

= x∗Mx = x∗λx = λx∗x

and so λ = λ showing that λ must be real.

4. Suppose A is an n×n matrix consisting entirely of real entries but a+ ib is a complex
eigenvalue having the eigenvector, x + iy. Here x and y are real vectors. Show that
then a − ib is also an eigenvalue with the eigenvector, x − iy. Hint: You should
remember that the conjugate of a product of complex numbers equals the product of
the conjugates. Here a + ib is a complex number whose conjugate equals a− ib.

If A is real then the characteristic equation has all real coefficients. Therefore, letting
p (λ) be the characteristic polynomial,

0 = p (λ) = p (λ) = p
(
λ
)

showing that λ is also an eigenvalue.

5. Find the eigenvalues and eigenvectors of the matrix


−10 −2 11
−18 6 −9
10 −10 −2


 .

Determine whether the matrix is defective.

The matrix has eigenvalues −12 and 18. Of these, −12 is repeated with multiplicity
two. Therefore, you need to see whether the eigenspace has dimension two. If it does,
then the matrix is non defective. If it does not, then the matrix is defective. The row
reduced echelon form for the system you need to solve is




2 −2 11 | 0
−18 18 −9 | 0
10 −10 10 | 0




and its row reduced echelon form is



1 −1 0 | 0
0 0 1 | 0
0 0 0 | 0
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Therefore, the eigenspace is of the form



t
t
0




This is only one dimensional and so the matrix is defective.

6. Here is a matrix. A =




1 2 0
0 −1 0
0 −2 1


 . Find a formula for An where n is an integer.

First you find the eigenvectors and eigenvalues.




1 2 0
0 −1 0
0 −2 1


, eigenvectors:




1
0
0


 ,




0
0
1


 ↔ 1,



−1
1
1


 ↔ −1.

The matrix, S used to diagonalize the matrix is obtained by letting these vectors be
the columns of S. Then S−1 is given by

S−1 =




1 1 0
0 −1 1
0 1 0




Then S−1AS equals



1 1 0
0 −1 1
0 1 0







1 2 0
0 −1 0
0 −2 1







1 0 −1
0 0 1
0 1 1




=




1 0 0
0 1 0
0 0 −1


 ≡ D

Then A = SDS−1 and An = SDnS−1. Now it is easy to find Dn.

Dn =




1 0 0
0 1 0
0 0 (−1)n




Therefore,

An =




1 0 −1
0 0 1
0 1 1







1 0 0
0 1 0
0 0 (−1)n







1 1 0
0 −1 1
0 1 0




=




1 1− (−1)n 0
0 (−1)n 0
0 −1 + (−1)n 1


 .

7. Suppose the eigenvalues of A are λ1, · · · , λn and that A is nondefective. Show that

eAt = S




eλ1t · · · 0
...

. . .
...

0 · · · eλnt


S−1 where S is the matrix which satisfies S−1AS = D.
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The diagonal matrix, D has the same characteristic equation as A why? and so it has
the same eigenvalues. However the eigenvalues of D are the diagonal entries and so
the diagonal entries of D are the eigenvalues of A. Now

S−1tAS = tD

and

(tD)n =




(λ1t)
n · · · 0

...
. . .

...
0 · · · (λnt)n




Therefore,

∞∑
n=0

1
n!

(tD)n =
∞∑

n=0

(
S−1tAS

)n

n!

= S−1
∞∑

n=0

(tA)n

n!
S.

Now the left side equals

∞∑
n=0

1
n!

(tD)n =
∞∑

n=0

1
n!




(λ1t)
n · · · 0

...
. . .

...
0 · · · (λnt)n




=




∑∞
n=0

(λ1t)n

n! · · · 0
...

. . .
...

0 · · · ∑∞
n=0

(λnt)n

n!




=




eλ1t · · · 0
...

. . .
...

0 · · · eλnt


 .

Therefore,

etA ≡
∞∑

n=0

(tA)n

n!
= S




eλ1t · · · 0
...

. . .
...

0 · · · eλnt


 S−1.

Do you think you understand this? If so, think again. What exactly do you mean by
an infinite sum? Actually there is no problem here. You can do this just fine and the
sums converge in the sense that the ijth entries converge in the partial sums. Think
about this. You know what you need from calculus to see this.

8. Show that if A is similar to B then AT is similar to BT .

This is easy. A = S−1BS and so AT = ST BT
(
S−1

)T = ST BT
(
ST

)−1
.

9. Suppose Am = 0 for some m a positive integer. Show that if A is diagonalizable, then
A = 0.

Since Am = 0 suppose S−1AS = D. Then raising to the mth power, Dm = S−1AmS =
0. Therefore, D = 0. But then A = S0S−1 = 0.
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10. Find the complex eigenvalues and eigenvectors of the matrix




1 1 −6
7 −5 −6
−1 7 2


 .

Determine whether the matrix is defective.

After wading through much affliction you find the eigenvalues are −6, 2 + 6i, 2 − 6i.
Since these are distinct, the matrix cannot be defective. We must find the eigenvectors
for these eigenvalues. The augmented matrix for the system of equations which must
be solved to find the eigenvectors associated with 2− 6i is



−1 + 6i 1 −6 | 0

7 −7 + 6i −6 | 0
−1 7 6i | 0


 .

The row reduced echelon form is



1 0 i 0
0 1 i 0
0 0 0 0




and so the eigenvectors are of the form

t



−i
−i
1


 .

You can check this as follows



1 1 −6
7 −5 −6
−1 7 2






−i
−i
1


 =



−6− 2i
−6− 2i
2− 6i




and

(2− 6i)



−i
−i
1


 =



−6− 2i
−6− 2i
2− 6i


 .

It follows that the eigenvectors for λ = 2 + 6i are

t




i
i
1


 .

This is because A is real. If Av = λv, then taking the conjugate,

Av = Av = λv.

It only remains to find the eigenvector for λ = −6. The augmented matrix to row
reduce is 


7 1 −6 | 0
7 1 −6 | 0
−1 7 8 | 0




The row reduced echelon form is



1 0 −1 | 0
0 1 1 | 0
0 0 0 | 0


 .
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Then an eigenvector is 

−1
1
−1


 .



Some Special Matrices

12.0.1 Outcomes

A. Define symmetric matrix, skew-symmetric matrix, and orthogonal matrix. Prove iden-
tities involving these types of matrices.

B. Characterize and determine the eigenvalues and eigenvectors of symmetric, skew-
symmetric, and orthogonal matrices. Derive basic facts concerning these matrices.

C. Define an orthonormal set of vectors. Determine whether a set of vectors is orthonor-
mal.

D. Relate the orthogonality of a matrix to the orthonormality of its column (or row)
vectors.

E. Diagonalize a symmetric matrix. In particular, given a symmetric matrix, A, find an
orthogonal matrix, U and a diagonal matrix, D such that UT AU = D.

F. Understand and use the Gram Schmidt process.

G. Understand and use the technique of least square approximations.

12.1 Symmetric And Orthogonal Matrices

12.1.1 Orthogonal Matrices

Remember that to find the inverse of a matrix was often a long process. However, it was
very easy to take the transpose of a matrix. For some matrices, the transpose equals the
inverse and when the matrix has all real entries, and this is true, it is called an orthogonal
matrix.

Definition 12.1.1 A real n × n matrix, U is called an Orthogonal matrix if UUT =
UT U = I.

Example 12.1.2 Show the matrix,

U =




1√
2

1√
2

1√
2

− 1√
2




is orthogonal.
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UUT =




1√
2

1√
2

1√
2

− 1√
2







1√
2

1√
2

1√
2

− 1√
2


 =

(
1 0
0 1

)
.

Example 12.1.3 Let U =




1 0 0
0 0 −1
0 −1 0


 . Is U orthogonal?

The answer is yes. This is because the columns form an orthonormal set of vectors as
well as the rows. As discussed above this is equivalent to UT U = I.

UT U =




1 0 0
0 0 −1
0 −1 0




T 


1 0 0
0 0 −1
0 −1 0


 =




1 0 0
0 1 0
0 0 1




When you say that U is orthogonal, you are saying that
∑

j

UijU
T
jk =

∑

j

UijUkj = δik.

In words, the dot product of the ith row of U with the kth row gives 1 if i = k and 0 if i 6= k.
The same is true of the columns because UT U = I also. Therefore,

∑

j

UT
ijUjk =

∑

j

UjiUjk = δik

which says that the one column dotted with another column gives 1 if the two columns are
the same and 0 if the two columns are different.

More succinctly, this states that if u1, · · · ,un are the columns of U, an orthogonal matrix,
then

ui · uj = δij ≡
{

1 if i = j
0 if i 6= j

. (12.1)

Definition 12.1.4 A set of vectors, {u1, · · · ,un} is said to be an orthonormal set if 12.1.

Theorem 12.1.5 If {u1, · · · ,um} is an orthonormal set of vectors then it is linearly inde-
pendent.

Proof: Using the properties of the dot product,

0 · u =(0 + 0) · u = 0 · u + 0 · u

and so, subtracting 0 · u from both sides yields 0 · u = 0. Now suppose
∑

j cjuj = 0. Then
from the properties of the dot product,

ck =
∑

j

cjδjk =
∑

j

cj (uj · uk) =


∑

j

cjuj


 · uk = 0 · uk = 0.

Since k was arbitrary, this shows that each ck = 0 and this has shown that if
∑

j cjuj = 0,
then each cj = 0. This is what it means for the set of vectors to be linearly independent.
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Example 12.1.6 Let U =




1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −
√

6
3




. Is U an orthogonal matrix?

The answer is yes. This is because the columns (rows) form an orthonormal set of
vectors.

The importance of orthogonal matrices is that they change components of vectors rela-
tive to different Cartesian coordinate systems. Geometrically, the orthogonal matrices are
exactly those which preserve all distances in the sense that if x ∈ Rn and U is orthogonal,
then ||Ux|| = ||x|| because

||Ux||2 = (Ux)T
Ux = xT UT Ux = xT Ix = ||x||2 .

Observation 12.1.7 Suppose U is an orthogonal matrix. Then det (U) = ±1.

This is easy to see from the properties of determinants. Thus

det (U)2 = det
(
UT

)
det (U) = det

(
UT U

)
= det (I) = 1.

Orthogonal matrices are divided into two classes, proper and improper. The proper
orthogonal matrices are those whose determinant equals 1 and the improper ones are those
whose determinants equal -1. The reason for the distinction is that the improper orthog-
onal matrices are sometimes considered to have no physical significance since they cause a
change in orientation which would correspond to material passing through itself in a non
physical manner. Thus in considering which coordinate systems must be considered in
certain applications, you only need to consider those which are related by a proper orthog-
onal transformation. Geometrically, the linear transformations determined by the proper
orthogonal matrices correspond to the composition of rotations.

12.1.2 Symmetric And Skew Symmetric Matrices

Definition 12.1.8 A real n × n matrix, A, is symmetric if AT = A. If A = −AT , then
A is called skew symmetric.

Theorem 12.1.9 The eigenvalues of a real symmetric matrix are real. The eigenvalues of
a real skew symmetric matrix are 0 or pure imaginary.

Proof: The proof of this theorem is in [9]. It is best understood as a special case of
more general considerations. However, here is a proof in this special case.

Recall that for a complex number, a + ib, the complex conjugate, denoted by a + ib is
given by the formula a + ib = a− ib. The notation, x will denote the vector which has every
entry replaced by its complex conjugate.

Suppose A is a real symmetric matrix and Ax = λx. Then

λxT x =
(
Ax

)T
x = xT AT x = xT Ax = λxT x.

Dividing by xT x on both sides yields λ = λ which says λ is real. (Why?)
Next suppose A = −AT so A is skew symmetric and Ax = λx. Then

λxT x =
(
Ax

)T
x = xT AT x = −xT Ax = −λxT x

and so, dividing by xT x as before, λ = −λ. Letting λ = a + ib, this means a− ib = −a− ib
and so a = 0. Thus λ is pure imaginary.
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Example 12.1.10 Let A =
(

0 −1
1 0

)
. This is a skew symmetric matrix. Find its eigen-

values.

Its eigenvalues are obtained by solving the equation det
( −λ −1

1 −λ

)
= λ2 + 1 = 0.

You see the eigenvalues are ±i, pure imaginary.

Example 12.1.11 Let A =
(

1 2
2 3

)
. This is a symmetric matrix. Find its eigenvalues.

Its eigenvalues are obtained by solving the equation, det
(

1− λ 2
2 3− λ

)
= −1−4λ+

λ2 = 0 and the solution is λ = 2 +
√

5 and λ = 2−√5.

Definition 12.1.12 An n × n matrix, A = (aij) is called a diagonal matrix if aij = 0
whenever i 6= j. For example, a diagonal matrix is of the form indicated below where ∗
denotes a number. 



∗ 0 · · · 0

0 ∗ ...
...

. . . 0
0 · · · 0 ∗




Theorem 12.1.13 Let A be a real symmetric matrix. Then there exists an orthogonal
matrix, U such that UT AU is a diagonal matrix. Moreover, the diagonal entries are the
eigenvalues of A.

Proof: The proof may be found in [9].

Corollary 12.1.14 If A is a real n×n symmetric matrix, then there exists an orthonormal
set of eigenvectors, {u1, · · · ,un} .

Proof: Since A is symmetric, then by Theorem 12.1.13, there exists an orthogonal ma-
trix, U such that UT AU = D, a diagonal matrix whose diagonal entries are the eigenvalues
of A. Therefore, since A is symmetric and all the matrices are real,

D = DT = UT AT U = UT AT U = UT AU = D

showing D is real because each entry of D equals its complex conjugate.1

Finally, let
U =

(
u1 u2 · · · un

)

where the ui denote the columns of U and

D =




λ1 0
. . .

0 λn




The equation, UT AU = D implies

AU =
(

Au1 Au2 · · · Aun

)

= UD =
(

λ1u1 λ2u2 · · · λnun

)

1Recall that for a complex number, x+ iy, the complex conjugate, denoted by x + iy is defined as x− iy.
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where the entries denote the columns of AU and UD respectively. Therefore, Aui = λiui

and since the matrix is orthogonal, the ijth entry of UT U equals δij and so

δij = uT
i uj = ui · uj .

This proves the corollary because it shows the vectors {ui} form an orthonormal basis.
The following corollary is also important.

Example 12.1.15 Find the eigenvalues and an orthonormal basis of eigenvectors for the
matrix, 



19
9 − 8

15

√
5 2

45

√
5

− 8
15

√
5 − 1

5 − 16
15

2
45

√
5 − 16

15
94
45




given that the eigenvalues are 3, -1, and 2.

The augmented matrix which needs to be row reduced to find the eigenvectors for λ = 3
is 



19
9 − 3 − 8

15

√
5 2

45

√
5 | 0

− 8
15

√
5 − 1

5 − 3 − 16
15 | 0

2
45

√
5 − 16

15
94
45 − 3 | 0




and the row reduced echelon form for this is



1 0 − 1
2

√
5 | 0

0 1 3
4 | 0

0 0 0 | 0




Therefore, eigenvectors for λ = 3 are

z




1
2

√
5

− 3
4

1




where z 6= 0.
The augmented matrix which must be row reduced to find the eigenvectors for λ = −1

is 


19
9 + 1 − 8

15

√
5 2

45

√
5 | 0

− 8
15

√
5 − 1

5 + 1 − 16
15 | 0

2
45

√
5 − 16

15
94
45 + 1 | 0




and the row reduced echelon form is



1 0 − 1
2

√
5 | 0

0 1 −3 | 0
0 0 0 | 0


 .
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Therefore, the eigenvectors for λ = −1 are

z




1
2

√
5

3
1


 , z 6= 0

The augmented matrix which must be row reduced to find the eigenvectors for λ = 2 is



19
9 − 2 − 8

15

√
5 2

45

√
5 | 0

− 8
15

√
5 − 1

5 − 2 − 16
15 | 0

2
45

√
5 − 16

15
94
45 − 2 | 0




and its row reduced echelon form is



1 0 2
5

√
5 | 0

0 1 0 | 0
0 0 0 | 0




so the eigenvectors for λ = 2 are

z



− 2

5

√
5

0
1


 , z 6= 0.

It remains to find an orthonormal basis. You can check that the dot product of any of
these vectors with another of them gives zero and so it suffices choose z in each case such
that the resulting vector has length 1. First consider the vectors for λ = 3. It is required to
choose z such that

z




1
2

√
5

− 3
4

1




is a unit vector. In other words, you need

z




1
2

√
5

− 3
4

1


 · z




1
2

√
5

− 3
4

1


 = 1.

But the above dot product equals 45
16z2 and this equals 1 when z = 4

15

√
5. Therefore, the

eigenvector which is desired is

4
15

√
5




1
2

√
5

− 3
4

1


 =




2
3

− 1
5

√
5

4
15

√
5


 .

Next find the eigenvector for λ = −1. The same process requires that 1 = 45
4 z2 which

happens when z = 2
15

√
5. Therefore, an eigenvector for λ = −1 which has unit length is
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2
15

√
5




1
2

√
5

3
1


 =




1
3

2
5

√
5

2
15

√
5


 .

Finally, consider λ = 2. This time you need 1 = 9
5z2 which occurs when z = 1

3

√
5.

Therefore, the eigenvector is

1
3

√
5



− 2

5

√
5

0
1


 =




− 2
3

0
1
3

√
5


 .

Now recall that the vectors form an orthonormal set of vectors if the matrix having them
as columns is orthogonal. That matrix is




2
3

1
3 − 2

3

− 1
5

√
5 2

5

√
5 0

4
15

√
5 2

15

√
5 1

3

√
5




.

Is this orthogonal? To find out, multiply by its transpose. Thus



2
3 − 1

5

√
5 4

15

√
5

1
3

2
5

√
5 2

15

√
5

− 2
3 0 1

3

√
5







2
3

1
3 − 2

3

− 1
5

√
5 2

5

√
5 0

4
15

√
5 2

15

√
5 1

3

√
5




=




1 0 0
0 1 0
0 0 1


 .

Since the identity was obtained this shows the above matrix is orthogonal and that therefore,
the columns form an orthonormal set of vectors. The problem asks for you to find an
orthonormal basis. However, you will show in Problem 21 that an orthonormal set of n
vectors in Rn is always a basis. Therefore, since there are three of these vectors, they must
constitute a basis.

Example 12.1.16 Find an orthonormal set of three eigenvectors for the matrix,



13
9

2
15

√
5 8

45

√
5

2
15

√
5 6

5
4
15

8
45

√
5 4

15
61
45




given the eigenvalues are 2, and 1.

The eigenvectors which go with λ = 2 are obtained from row reducing the matrix



13
9 − 2 2

15

√
5 8

45

√
5 | 0

2
15

√
5 6

5 − 2 4
15 | 0

8
45

√
5 4

15
61
45 − 2 | 0
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and its row reduced echelon form is



1 0 − 1
2

√
5 | 0

0 1 − 3
4 | 0

0 0 0 | 0




which shows the eigenvectors for λ = 2 are

z




1
2

√
5

3
4

1




and a choice for z which will produce a unit vector is z = 4
15

√
5. Therefore, the vector we

want is 


2
3

1
5

√
5

4
15

√
5


 .

Next consider the eigenvectors for λ = 1. The matrix which must be row reduced is



13
9 − 1 2

15

√
5 8

45

√
5 | 0

2
15

√
5 6

5 − 1 4
15 | 0

8
45

√
5 4

15
61
45 − 1 | 0




and its row reduced echelon form is



1 3
10

√
5 2

5

√
5 | 0

0 0 0 | 0
0 0 0 | 0


 .

Therefore, the eigenvectors are of the form


− 3

10

√
5y − 2

5

√
5z

y
z


 .

This is a two dimensional eigenspace.
Before going further, we want to point out that no matter how we choose y and z the

resulting vector will be orthogonal to the eigenvector for λ = 2. This is a special case of a
general result which states that eigenvectors for distinct eigenvalues of a symmetric matrix
are orthogonal. This is explained in Problem 13. For this case you need to show the following
dot product equals zero.




2
3

1
5

√
5

4
15

√
5


 ·



− 3

10

√
5y − 2

5

√
5z

y
z


 (12.2)

This is left for you to do.
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Continuing with the task of finding an orthonormal basis, Let y = 0 first. This results
in eigenvectors of the form 


− 2

5

√
5z

0
z




and letting z = 1
3

√
5 you obtain a unit vector. Thus the second vector will be



− 2

5

√
5

(
1
3

√
5
)

0
1
3

√
5


 =




− 2
3

0
1
3

√
5


 .

It remains to find the third vector in the orthonormal basis. This merely involves choosing
y and z in 12.2 in such a way that the resulting vector has dot product with the two given
vectors equal to zero. Thus you need



− 3

10

√
5y − 2

5

√
5z

y
z


 ·




− 2
3

0
1
3

√
5


 =

1
5

√
5y +

3
5

√
5z = 0.

The dot product with the eigenvector for λ = 2 is automatically equal to zero and so all
that you need is the above equation. This is satisfied when z = − 1

3y. Therefore, the vector

we want is of the form


− 3

10

√
5y − 2

5

√
5

(− 1
3y

)

y(− 1
3y

)


 =



− 1

6

√
5y

y
− 1

3y




and it only remains to choose y in such a way that this vector has unit length. This occurs
when y = 2

5

√
5. Therefore, the vector we want is

2
5

√
5



− 1

6

√
5

1
− 1

3


 =




− 1
3

2
5

√
5

− 2
15

√
5


 .

The three eigenvectors which constitute an orthonormal basis are



− 1
3

2
5

√
5

− 2
15

√
5


 ,




− 2
3

0
1
3

√
5


 , and




2
3

1
5

√
5

4
15

√
5


 .

To check our work and see if this is really an orthonormal set of vectors, we make them
the columns of a matrix and see if the resulting matrix is orthogonal. The matrix is




− 1
3 − 2

3
2
3

2
5

√
5 0 1

5

√
5

− 2
15

√
5 1

3

√
5 4

15

√
5




.
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This matrix times its transpose equals



− 1
3 − 2

3
2
3

2
5

√
5 0 1

5

√
5

− 2
15

√
5 1

3

√
5 4

15

√
5







− 1
3

2
5

√
5 − 2

15

√
5

− 2
3 0 1

3

√
5

2
3

1
5

√
5 4

15

√
5




=




1 0 0
0 1 0
0 0 1




and so this is indeed an orthonormal basis.
Because of the repeated eigenvalue, there would have been many other orthonormal

bases which could have been obtained. It was pretty arbitrary for to take y = 0 in the above
argument. We could just as easily have taken z = 0 or even y = z = 1. Any such change
would have resulted in a different orthonormal basis. Geometrically, what is happening is
the eigenspace for λ = 1 was two dimensional. It can be visualized as a plane in three
dimensional space which passes through the origin. There are infinitely many different pairs
of perpendicular unit vectors in this plane.

12.1.3 Diagonalizing A Symmetric Matrix

Recall the following definition:

Definition 12.1.17 An n × n matrix, A = (aij) is called a diagonal matrix if aij = 0
whenever i 6= j. For example, a diagonal matrix is of the form indicated below where ∗
denotes a number. 



∗ 0 · · · 0

0 ∗ ...
...

. . . 0
0 · · · 0 ∗




Definition 12.1.18 An n × n matrix, A is said to be non defective or diagonalizable
if there exists an invertible matrix, S such that S−1AS = D where D is a diagonal matrix
as described above.

Some matrices are non defective and some are not. As indicated in Theorem 12.1.13 if
A is a real symmetric matrix, there exists an orthogonal matrix, U such that UT AU = D
a diagonal matrix. Therefore, every symmetric matrix is non defective because if U is an
orthogonal matrix, its inverse is UT . In the following example, this orthogonal matrix will
be found.

Example 12.1.19 Let A =




1 0 0
0 3

2
1
2

0 1
2

3
2


 . Find an orthogonal matrix, U such that UT AU

is a diagonal matrix.

In this case, a tedious computation shows the eigenvalues are 2 and 1. First we will find
an eigenvector for the eigenvalue 2. This involves row reducing the following augmented
matrix. 



1 0 0 | 0
0 2− 3

2 − 1
2 | 0

0 − 1
2 2− 3

2 | 0
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The row reduced echelon form is 


1 0 0 | 0
0 1 −1 | 0
0 0 0 | 0




and so an eigenvector is 


0
1
1


 .

However, it is desired that the eigenvectors obtained all be unit vectors and so dividing this
vector by its length gives 


0

1/
√

2
1/
√

2


 .

Next consider the case of the eigenvalue, 1. The matrix which needs to be row reduced in
this case is 



0 0 0 | 0
0 1− 3

2 − 1
2 | 0

0 − 1
2 1− 3

2 | 0




The row reduced echelon form is 


0 1 1 | 0
0 0 0 | 0
0 0 0 | 0


 .

Therefore, the eigenvectors are of the form



s
−t
t


 .

Two of these which are orthonormal are


1
0
0


 and




0
−1/

√
2

1/
√

2


 .

An orthogonal matrix which works in the process is then obtained by letting these vectors
be the columns. 


0 1 0

−1/
√

2 0 1/
√

2
1/
√

2 0 1/
√

2


 .

It remains to verify this works. UT AU is of the form



0 − 1
2

√
2 1

2

√
2

1 0 0
0 1

2

√
2 1

2

√
2







1 0 0
0 3

2
1
2

0 1
2

3
2







0 1 0
−1/

√
2 0 1/

√
2

1/
√

2 0 1/
√

2




=




1 0 0
0 1 0
0 0 2


 ,

the desired diagonal matrix.
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12.2 Fundamental Theory And Generalizations*

12.2.1 Block Multiplication Of Matrices

Consider the following problem
(

A B
C D

)(
E F
G H

)

You know how to do this. You get
(

AE + BG AF + BH
CE + DG CF + DH

)
.

Now what if instead of numbers, the entries, A,B, C,D, E, F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case? I will show below that this is true.

Suppose A is a matrix of the form

A =




A11 · · · A1m

...
. . .

...
Ar1 · · · Arm


 (12.3)

where Aij is a si × pj matrix where si is constant for j = 1, · · · , m for each i = 1, · · · , r.
Such a matrix is called a block matrix, also a partitioned matrix. How do you get the
block Aij? Here is how for A an m× n matrix:

si×m︷ ︸︸ ︷(
0 Isi×si

0
)
A

n×pj︷ ︸︸ ︷


0
Ipj×pj

0


. (12.4)

In the block column matrix on the right, you need to have cj − 1 rows of zeros above the
small pj × pj identity matrix where the columns of A involved in Aij are cj , · · · , cj + pj and
in the block row matrix on the left, you need to have ri − 1 columns of zeros to the left
of the si × si identity matrix where the rows of A involved in Aij are ri, · · · , ri + si. An
important observation to make is that the matrix on the right specifies columns to use in
the block and the one on the left specifies the rows used. Thus the block Aij in this case
is a matrix of size si × pj . There is no overlap between the blocks of A. Thus the identity
n× n identity matrix corresponding to multiplication on the right of A is of the form




Ip1×p1 0
. . .

0 Ipm×pm




these little identity matrices don’t overlap. A similar conclusion follows from consideration
of the matrices Isi×si .

Next consider the question of multiplication of two block matrices. Let B be a block
matrix of the form 


B11 · · · B1p

...
. . .

...
Br1 · · · Brp


 (12.5)
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and A is a block matrix of the form



A11 · · · A1m

...
. . .

...
Ap1 · · · Apm


 (12.6)

and that for all i, j, it makes sense to multiply BisAsj for all s ∈ {1, · · · , p}. (That is the
two matrices, Bis and Asj are conformable.) and that for fixed ij, it follows BisAsj is the
same size for each s so that it makes sense to write

∑
s BisAsj .

The following theorem says essentially that when you take the product of two matrices,
you can do it two ways. One way is to simply multiply them forming BA. The other way
is to partition both matrices, formally multiply the blocks to get another block matrix and
this one will be BA partitioned. Before presenting this theorem, here is a simple lemma
which is really a special case of the theorem.

Lemma 12.2.1 Consider the following product.



0
I
0


(

0 I 0
)

where the first is n×r and the second is r×n. The small identity matrix I is an r×r matrix
and there are l zero rows above I and l zero columns to the left of I in the right matrix.
Then the product of these matrices is a block matrix of the form




0 0 0
0 I 0
0 0 0




Proof: From the definition of the way you multiply matrices, the product is






0
I
0


0 · · ·




0
I
0


0




0
I
0


 e1 · · ·




0
I
0


 er




0
I
0


0 · · ·




0
I
0


0




which yields the claimed result. In the formula ej refers to the column vector of length r
which has a 1 in the jth position. This proves the lemma.

Theorem 12.2.2 Let B be a q×p block matrix as in 12.5 and let A be a p×n block matrix
as in 12.6 such that Bis is conformable with Asj and each product, BisAsj for s = 1, · · · , p
is of the same size so they can be added. Then BA can be obtained as a block matrix such
that the ijth block is of the form ∑

s

BisAsj . (12.7)

Proof: From 12.4

BisAsj =
(

0 Iri×ri 0
)
B




0
Ips×ps

0


 (

0 Ips×ps 0
)
A




0
Iqj×qj

0




where here it is assumed Bis is ri × ps and Asj is ps × qj . The product involves the sth

block in the ith row of blocks for B and the sth block in the jth column of A. Thus there
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are the same number of rows above the Ips×ps as there are columns to the left of Ips×ps in
those two inside matrices. Then from Lemma 12.2.1




0
Ips×ps

0


 (

0 Ips×ps
0

)
=




0 0 0
0 Ips×ps

0
0 0 0




Since the blocks of small identity matrices do not overlap,

∑
s




0 0 0
0 Ips×ps 0
0 0 0


 =




Ip1×p1 0
. . .

0 Ipp×pp


 = I

and so ∑
s

BisAsj =

∑
s

(
0 Iri×ri 0

)
B




0
Ips×ps

0


(

0 Ips×ps
0

)
A




0
Iqj×qj

0




=
(

0 Iri×ri 0
)
B

∑
s




0
Ips×ps

0


 (

0 Ips×ps
0

)
A




0
Iqj×qj

0




=
(

0 Iri×ri
0

)
BIA




0
Iqj×qj

0


 =

(
0 Iri×ri 0

)
BA




0
Iqj×qj

0




which equals the ijth block of BA. Hence the ijth block of BA equals the formal multipli-
cation according to matrix multiplication,

∑
s

BisAsj .

This proves the theorem.

Example 12.2.3 Let an n× n matrix have the form

A =
(

a b
c P

)

where P is n− 1× n− 1. Multiply it by

B =
(

p q
r Q

)

where B is also an n× n matrix and Q is n− 1× n− 1.

You use block multiplication
(

a b
c P

)(
p q
r Q

)
=

(
ap + br aq + bQ
pc + Pr cq + PQ

)

Note that this all makes sense. For example, b = 1 × n − 1 and r = n − 1 × 1 so br is a
1× 1. Similar considerations apply to the other blocks.

Here is an interesting and significant application of block multiplication. In this theorem,
pM (t) denotes the characteristic polynomial, det (tI −M) . Thus the zeros of this polynomial
are the eigenvalues of the matrix, M .
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Theorem 12.2.4 Let A be an m×n matrix and let B be an n×m matrix for m ≤ n. Then

pBA (t) = tn−mpAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except that BA has
n−m extra zero eigenvalues.

Proof: Use block multiplication to write
(

AB 0
B 0

)(
I A
0 I

)
=

(
AB ABA
B BA

)

(
I A
0 I

)(
0 0
B BA

)
=

(
AB ABA
B BA

)
.

Therefore, (
I A
0 I

)−1 (
AB 0
B 0

)(
I A
0 I

)
=

(
0 0
B BA

)

Since the two matrices above are similar it follows that
(

0 0
B BA

)
and

(
AB 0
B 0

)
have

the same characteristic polynomials. Therefore, noting that BA is an n×n matrix and AB
is an m×m matrix,

tm det (tI −BA) = tn det (tI −AB)

and so det (tI −BA) = pBA (t) = tn−m det (tI −AB) = tn−mpAB (t) . This proves the
theorem.

12.2.2 Orthonormal Bases

Not all bases for Fn are created equal. Recall F equals either C or R and the dot product
is given by

x · y =
∑

j

xjyj .

The best bases are orthonormal. Much of what follows will be for Fn in the interest of
generality.

Definition 12.2.5 Suppose {v1, · · · ,vk} is a set of vectors in Fn. It is an orthonormal set
if

vi · vj = δij =
{

1 if i = j
0 if i 6= j

Every orthonormal set of vectors is automatically linearly independent.

Proposition 12.2.6 Suppose {v1, · · · ,vk} is an orthonormal set of vectors. Then it is
linearly independent.

Proof: Suppose
∑k

i=1 civi = 0. Then taking dot products with vj ,

0 = 0 · vj =
∑

i

civi · vj =
∑

i

ciδij = cj .

Since j is arbitrary, this shows the set is linearly independent as claimed.
It turns out that if X is any subspace of Fm, then there exists an orthonormal basis for

X.
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Lemma 12.2.7 Let X be a subspace of Fm of dimension n whose basis is {x1, · · · ,xn} .
Then there exists an orthonormal basis for X, {u1, · · · ,un} which has the property that for
each k ≤ n, span(x1, · · · ,xk) = span (u1, · · · ,uk) .

Proof: Let {x1, · · · ,xn} be a basis for X. Let u1 ≡ x1/ |x1| . Thus for k = 1, span (u1) =
span (x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · · , uk have
been chosen such that (uj ,ul) = δjl and span (x1, · · · ,xk) = span (u1, · · · ,uk). Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1 · uj)uj∣∣∣xk+1 −

∑k
j=1 (xk+1 · uj)uj

∣∣∣
, (12.8)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · · ,xk) = span (u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span (u1, · · · ,uk,xk+1) = span (x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span (u1, · · · ,uk,uk+1) which is seen easily by solving 12.8 for xk+1 and it
follows

span (x1, · · · ,xk,xk+1) = span (u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1 · ul) = C


(xk+1 · ul)−

k∑

j=1

(xk+1 · uj) (uj · ul)




= C


(xk+1 · ul)−

k∑

j=1

(xk+1 · uj) δlj




= C ((xk+1 · ul)− (xk+1 · ul)) = 0.

The vectors, {uj}n
j=1 , generated in this way are therefore an orthonormal basis because

each vector has unit length.
The process by which these vectors were generated is called the Gram Schmidt process.

12.2.3 Schur’s Theorem∗

Every matrix is related to an upper triangular matrix in a particularly significant way. This
is Shur’s theorem and it is the most important theorem in the spectral theory of matrices.
The important result which makes this theorem possible is the Gram Schmidt procedure of
Lemma 12.2.7.

Definition 12.2.8 An n×n matrix, U, is unitary if UU∗ = I = U∗U where U∗ is defined
to be the transpose of the conjugate of U. Thus Uij = U∗

ji. Note that every real orthogonal
matrix is unitary. For A any matrix, A∗ just defined as the conjugate of the transpose is
called the adjoint.

Lemma 12.2.9 The following holds. (AB)∗ = B∗A∗.
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Proof: From the definition and remembering the properties of complex conjugation,
(
(AB)∗

)
ji

= (AB)ij

=
∑

k

AikBkj =
∑

k

AikBkj

=
∑

k

B∗
jkA∗ki = (B∗A∗)ji

This proves the lemma.

Theorem 12.2.10 Let A be an n× n matrix. Then there exists a unitary matrix, U such
that

U∗AU = T, (12.9)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal
listed according to multiplicity as roots of the characteristic equation.

Proof: Let v1 be a unit eigenvector for A . Then there exists λ1 such that

Av1 = λ1v1, |v1| = 1.

Extend {v1} to a basis using Theorem 7.4.20 and then use the Gram Schmidt procedure to
obtain {v1, · · · ,vn}, an orthonormal basis in Fn. Let U0 be a matrix whose ith column is
vi. Then from the above, it follows U0 is unitary. Then U∗

0 AU0 is of the form



λ1 ∗ · · · ∗
0
... A1

0




where A1 is an n− 1× n− 1 matrix. Repeat the process for the matrix, A1 above. There
exists a unitary matrix Ũ1 such that Ũ∗

1 A1 Ũ1 is of the form



λ2 ∗ · · · ∗
0
... A2

0


 .

Now let U1 be the n× n matrix of the form
(

1 0
0 Ũ1

)
.

This is also a unitary matrix because by block multiplication,
(

1 0
0 Ũ1

)∗(
1 0
0 Ũ1

)
=

(
1 0
0 Ũ∗

1

)(
1 0
0 Ũ1

)

=
(

1 0
0 Ũ∗

1 Ũ1

)
=

(
1 0
0 I

)

Then using block multiplication, U∗
1 U∗

0 AU0U1 is of the form



λ1 ∗ ∗ · · · ∗
0 λ2 ∗ · · · ∗
0 0
...

... A2

0 0
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where A2 is an n− 2× n− 2 matrix. Continuing in this way, there exists a unitary matrix,
U given as the product of the Ui in the above construction such that

U∗AU = T

where T is some upper triangular matrix similar to A which consequently has the same
eigenvalues with the same multiplicities as A. Since the matrix is upper triangular, the
characteristic equation for both A and T is

∏n
i=1 (λ− λi) where the λi are the diagonal

entries of T. Therefore, the λi are the eigenvalues.
As a simple consequence of the above theorem, here is an interesting lemma.

Lemma 12.2.11 Let A be of the form

A =




P1 · · · ∗
...

. . .
...

0 · · · Ps




where Pk is an mk ×mk matrix. Then

det (A) =
∏

k

det (Pk) .

Proof: Let Uk be an mk ×mk unitary matrix such that

U∗
k PkUk = Tk

where Tk is upper triangular. Then letting

U =




U1 · · · 0
...

. . .
...

0 · · · Us


 ,

it follows

U∗ =




U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s




and 


U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s







P1 · · · ∗
...

. . .
...

0 · · · Ps







U1 · · · 0
...

. . .
...

0 · · · Us




=




T1 · · · ∗
...

. . .
...

0 · · · Ts




and so
det (A) =

∏

k

det (Tk) =
∏

k

det (Pk) .

This proves the lemma.

Definition 12.2.12 An n × n matrix, A is called Hermitian if A = A∗. Thus a real
symmetric matrix is Hermitian.
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Theorem 12.2.13 If A is Hermitian, there exists a unitary matrix, U such that

U∗AU = D (12.10)

where D is a diagonal matrix. That is, D has nonzero entries only on the main diagonal.
Furthermore, the columns of U are an orthonormal basis for Fn.

Proof: From Schur’s theorem above, there exists U unitary such that

U∗AU = T

where T is an upper triangular matrix. Then from Lemma 12.2.9

T ∗ = (U∗AU)∗ = U∗A∗U = T.

Thus T = T ∗ and T is upper triangular. This can only happen if T is really a diagonal
matrix. (If i 6= j, one of Tij or Tji equals zero. But Tij = Tji and so they are both zero.

Finally, let
U =

(
u1 u2 · · · un

)

where the ui denote the columns of U and

D =




λ1 0
. . .

0 λn




The equation, U∗AU = D implies

AU =
(

Au1 Au2 · · · Aun

)

= UD =
(

λ1u1 λ2u2 · · · λnun

)

where the entries denote the columns of AU and UD respectively. Therefore, Aui = λiui

and since the matrix is unitary, the ijth entry of U∗U equals δij and so

δij = uT
i uj = uT

i uj = ui · uj .

This proves the corollary because it shows the vectors {ui} form an orthonormal basis. This
proves the theorem.

Corollary 12.2.14 If A is Hermitian, then all the eigenvalues of A are real.

Proof: Since A is Hermitian, there exists unitary, U such that U∗AU = D, a diagonal
matrix whose diagonal entries are the eigenvalues of A. Therefore, D∗ = U∗A∗U = U∗AU =
D showing D is real.

Corollary 12.2.15 If A is a real symmetric (A = AT )matrix, then A is Hermitian and
there exists a real unitary matrix, U such that UT AU = D where D is a diagonal matrix.

Proof: This follows from Corollary 12.2.14 which says the eigenvalues are all real. Then
if Ax = λx, the same is true of x. and so in the construction for Shur’s theorem, you
can always deal exclusively with real eigenvectors as long as your matrices are real and
symmetric. When you construct the matrix which reduces the problem to a smaller one
having A1 in the lower right corner, use the Gram Schmidt process on Rn using the real dot
product to construct vectors, v2, · · · ,vn in Rn such that {v1, · · · ,vn} is an orthonormal
basis for Rn. The matrix A1 is symmetric also. This is because for j, k ≥ 2

A1kj = vT
k Avj =

(
vT

k Avj

)T
= vT

j Avk = A1jk.

Therefore, continuing this way, the process of the proof delivers only real vectors and real
matrices.
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12.3 Least Square Approximation

A very important technique is that of the least square approximation.

Lemma 12.3.1 Let A be an m × n matrix and let A (Fn) denote the set of vectors in Fm

which are of the form Ax for some x ∈ Fn. Then A (Fn) is a subspace of Fm.

Proof: Let Ax and Ay be two points of A (Fn) . It suffices to verify that if a, b are
scalars, then aAx + bAy is also in A (Fn) . But aAx + bAy = A (ax + by) because A is
linear. This proves the lemma.

Theorem 12.3.2 Let y ∈ Fm and let A be an m × n matrix. Then there exists x ∈ Fn

minimizing the function, |y−Ax|2 . Furthermore, x minimizes this function if and only if

(y−Ax) ·Aw = 0

for all w ∈ Fn.

Proof: Let {f1, · · · , fr} be an orthonormal basis for A (Fn). Since

A (Fn) = span (f1, · · · , fr) ,

it follows that there exists y1, · · · , yr that minimize
∣∣∣∣∣y−

r∑

k=1

ykfk

∣∣∣∣∣

2

,

then letting Ax =
∑r

k=1 ykfk, it will follow that this x is the desired solution. Now here are
the details.

Let y1, · · · , yr be a list of scalars in F. Then from the definition of |·| and the properties
of the dot product,

∣∣∣∣∣y−
r∑

k=1

ykfk

∣∣∣∣∣

2

=

(
y−

r∑

k=1

ykfk

)
·
(

y−
r∑

k=1

ykfk

)

= |y|2 − 2Re
r∑

k=1

yk (y · fk) +
∑

k

∑

l

ykyl

δkl︷ ︸︸ ︷
fk · fl

= |y|2 − 2Re
r∑

k=1

yk (y · fk) +
r∑

k=1

|yk|2

= |y|2 +
r∑

k=1

|yk|2 − 2Re yk (y · fk)

Now complete the square to obtain

= |y|2 +
r∑

k=1

(
|yk|2 − 2Re yk (y · fk) + |y · fk|2

)
−

r∑

k=1

|y · fk|2

= |y|2 +
r∑

k=1

|yk − (y · fk)|2 −
r∑

k=1

(y · fk)2 .

This shows that the minimum is obtained when yk = (y · fk) . This proves the existence
part of the Theorem.
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To verify the other part, let t ∈ R and consider

|y−A (x + tw)|2 = (y−Ax− tAw) · (y−Ax− tAw)

= |y−Ax|2 − 2t Re (y−Ax) ·Aw + t2 |Aw|2 .

Then from the above equation, |y−Ax|2 ≤ |y−Az|2 for all z ∈ Fn if and only if for all
w ∈ Fn and t ∈ R

|y−Ax|2 − 2tRe (y−Ax) ·Aw + t2 |w|2 ≥ |y−Ax|2

and this happens if and only if for all t ∈ R and w ∈ Fn,

−2t Re (y−Ax) ·Aw + t2 |Aw|2 ≥ 0,

which occurs if and only if Re (y−Ax) ·Aw = 0 for all w ∈ Rn. (Why?)
This implies that (y−Ax) · Aw = 0 for every w ∈ Fn because there exists a complex

number, θ of magnitude 1 such that

|(y−Ax) ·Aw| = θ (y−Ax) ·Aw =(y−Ax) ·Aθw

= Re (y−Ax) ·Aθw = 0.

This proves the theorem.
Recall the definition of the adjoint of a matrix.

Definition 12.3.3 Let A be an m× n matrix. Then

A∗ ≡ (AT ).

This means you take the transpose of A and then replace each entry by its conjugate. This
matrix is called the adjoint. Thus in the case of real matrices having only real entries, the
adjoint is just the transpose.

Lemma 12.3.4 Let A be an m× n matrix. Then

Ax · y = x·A∗y
Proof: This follows from the definition.

Ax · y =
∑

i,j

Aijxjyi

=
∑

i,j

xjA∗jiyi

= x·A∗y.

This proves the lemma.
The next corollary gives the technique of least squares.

Corollary 12.3.5 A value of x which solves the problem of Theorem 12.3.2 is obtained by
solving the equation

A∗Ax = A∗y

and furthermore, there exists a solution to this system of equations.

Proof: For x the unique minimizer of Theorem 12.3.2, (y−Ax) ·Aw = 0 for all w ∈ Fn

and from Lemma 12.3.4, this is the same as saying

A∗ (y−Ax) ·w = 0

for all w ∈ Fn. This implies
A∗y −A∗Ax = 0.

Therefore, there is a unique solution to the equation of this corollary and it solves the
minimization problem of Theorem 12.3.2.
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12.3.1 The Least Squares Regression Line

For the situation of the least squares regression line discussed here I will specialize to the
case of Rn rather than Fn because it seems this case is by far the most interesting and
the extra details are not justified by an increase in utility. Thus, everywhere you see A∗ it
suffices to place AT .

An important application of Corollary 12.3.5 is the problem of finding the least squares
regression line in statistics. Suppose you are given points in the plane, {(xi, yi)}n

i=1 and you
would like to find constants m and b such that the line y = mx + b goes through all these
points. Of course this will be impossible in general. Therefore, try to find m, b to get as
close as possible. The desired system is




y1

...
yn


 =




x1 1
...

...
xn 1




(
m
b

)

which is of the form y = Ax and it is desired to choose m and b to make
∣∣∣∣∣∣∣
A

(
m
b

)
−




y1

...
yn




∣∣∣∣∣∣∣

2

as small as possible. According to Theorem 12.3.2 and Corollary 12.3.5, the best values for
m and b occur as the solution to

AT A

(
m
b

)
= AT




y1

...
yn




where

A =




x1 1
...

...
xn 1


 .

Thus, computing AT A,
( ∑n

i=1 x2
i

∑n
i=1 xi∑n

i=1 xi n

)(
m
b

)
=

( ∑n
i=1 xiyi∑n
i=1 yi

)

Solving this system of equations for m and b,

m =
− (

∑n
i=1 xi) (

∑n
i=1 yi) + (

∑n
i=1 xiyi) n

(
∑n

i=1 x2
i )n− (

∑n
i=1 xi)

2

and

b =
− (

∑n
i=1 xi)

∑n
i=1 xiyi + (

∑n
i=1 yi)

∑n
i=1 x2

i

(
∑n

i=1 x2
i ) n− (

∑n
i=1 xi)

2 .

One could clearly do a least squares fit for curves of the form y = ax2 + bx + c in the
same way. In this case you want to solve as well as possible for a, b, and c the system




x2
1 x1 1
...

...
...

x2
n xn 1







a
b
c


 =




y1

...
yn




and one would use the same technique as above. Many other similar problems are important,
including many in higher dimensions and they are all solved the same way.
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12.3.2 The Fredholm Alternative

The next major result is called the Fredholm alternative. It comes from Theorem 12.3.2
and Lemma 12.3.4.

Theorem 12.3.6 Let A be an m × n matrix. Then there exists x ∈ Fn such that Ax = y
if and only if whenever A∗z = 0 it follows that z · y = 0.

Proof: First suppose that for some x ∈ Fn, Ax = y. Then letting A∗z = 0 and using
Lemma 12.3.4

y · z = Ax · z = x ·A∗z = x · 0 = 0.

This proves half the theorem.
To do the other half, suppose that whenever, A∗z = 0 it follows that z · y = 0. It is

necessary to show there exists x ∈ Fn such that y = Ax. From Theorem 12.3.2 there exists
x minimizing |y −Ax|2 which therefore satisfies

(y −Ax) ·Aw = 0 (12.11)

for all w ∈ Fn. Therefore, for all w ∈ Fn,

A∗ (y −Ax) ·w = 0

which shows that A∗ (y −Ax) = 0. (Why?) Therefore, by assumption,

(y −Ax) · y = 0.

Now by 12.11 with w = x,

(y −Ax) · (y−Ax) = (y −Ax) · y− (y −Ax) ·Ax = 0

showing that y = Ax. This proves the theorem.
The following corollary is also called the Fredholm alternative.

Corollary 12.3.7 Let A be an m × n matrix. Then A is onto if and only if A∗ is one to
one.

Proof: Suppose first A is onto. Then by Theorem 12.3.6, it follows that for all y ∈ Fm,
y · z = 0 whenever A∗z = 0. Therefore, let y = z where A∗z = 0 and conclude that z · z = 0
whenever A∗z = 0. If A∗x = A∗y, then A∗ (x− y)= 0 and so x− y = 0. Thus A∗ is one to
one.

Now let y ∈ Fm be given. y · z = 0 whenever A∗z = 0 because, since A∗ is assumed to
be one to one, and 0 is a solution to this equation, it must be the only solution. Therefore,
by Theorem 12.3.6 there exists x such that Ax = y therefore, A is onto.

12.4 The Right Polar Factorization∗

The right polar factorization involves writing a matrix as a product of two other matrices,
one which preserves distances and the other which stretches and distorts. First here are
some lemmas which review and add to many of the topics discussed so far about adjoints
and orthonormal sets and such things.

Lemma 12.4.1 Let A be a Hermitian matrix such that all its eigenvalues are nonnegative.
Then there exists a Hermitian matrix, A1/2 such that A1/2 has all nonnegative eigenvalues
and

(
A1/2

)2
= A.
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Proof: Since A is Hermitian, there exists a diagonal matrix D having all real nonnegative
entries and a unitary matrix U such that A = U∗DU. Then denote by D1/2 the matrix which
is obtained by replacing each diagonal entry of D with its square root. Thus D1/2D1/2 = D.
Then define

A1/2 ≡ U∗D1/2U.

Then (
A1/2

)2

= U∗D1/2UU∗D1/2U = U∗DU = A.

Since D1/2 is real,
(
U∗D1/2U

)∗
= U∗

(
D1/2

)∗
(U∗)∗ = U∗D1/2U

so A1/2 is Hermitian. This proves the lemma.
There is also a useful observation about orthonormal sets of vectors which is stated in

the next lemma.

Lemma 12.4.2 Suppose {x1,x2, · · · ,xr} is an orthonormal set of vectors. Then if c1, · · · , cr

are scalars, ∣∣∣∣∣
r∑

k=1

ckxk

∣∣∣∣∣

2

=
r∑

k=1

|ck|2 .

Proof: This follows from the definition. From the properties of the dot product and
using the fact that the given set of vectors is orthonormal,

∣∣∣∣∣
r∑

k=1

ckxk

∣∣∣∣∣

2

=




r∑

k=1

ckxk,

r∑

j=1

cjxj




=
∑

k,j

ckcj (xk,xj) =
r∑

k=1

|ck|2 .

This proves the lemma.
Next it is helpful to recall the Gram Schmidt algorithm and observe a certain property

stated in the next lemma.

Lemma 12.4.3 Suppose {w1, · · · ,wr,vr+1, · · · ,vp} is a linearly independent set of vectors
such that {w1, · · · ,wr} is an orthonormal set of vectors. Then when the Gram Schmidt
process is applied to the vectors in the given order, it will not change any of the w1, · · · ,wr.

Proof: Let {u1, · · · ,up} be the orthonormal set delivered by the Gram Schmidt process.
Then u1 = w1 because by definition, u1 ≡ w1/ |w1| = w1. Now suppose uj = wj for all
j ≤ k ≤ r. Then if k < r, consider the definition of uk+1.

uk+1 ≡
wk+1 −

∑k+1
j=1 (wk+1,uj)uj∣∣∣wk+1 −

∑k+1
j=1 (wk+1,uj)uj

∣∣∣

By induction, uj = wj and so this reduces to wk+1/ |wk+1| = wk+1. This proves the lemma.
This lemma immediately implies the following lemma.
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Lemma 12.4.4 Let V be a subspace of dimension p and let {w1, · · · ,wr} be an orthonormal
set of vectors in V . Then this orthonormal set of vectors may be extended to an orthonormal
basis for V,

{w1, · · · ,wr,yr+1, · · · ,yp}

Proof: First extend the given linearly independent set {w1, · · · ,wr} to a basis for V
and then apply the Gram Schmidt theorem to the resulting basis. Since {w1, · · · ,wr} is
orthonormal it follows from Lemma 12.4.3 the result is of the desired form, an orthonormal
basis extending {w1, · · · ,wr}. This proves the lemma.

Here is another lemma about preserving distance.

Lemma 12.4.5 Suppose R is an m × n matrix with m > n and R preserves distances.
Then R∗R = I.

Proof: Since R preserves distances, |Rx| = |x| for every x. Therefore from the axioms
of the dot product,

|x|2 + |y|2 + (x,y) + (y,x)

= |x + y|2
= (R (x + y) , R (x + y))
= (Rx,Rx) + (Ry,Ry) + (Rx, Ry) + (Ry, Rx)

= |x|2 + |y|2 + (R∗Rx,y) + (y, R∗Rx)

and so for all x,y,

(R∗Rx− x,y) + (y,R∗Rx− x) = 0

Hence for all x,y,

Re (R∗Rx− x,y) = 0

Now for a x,y given, choose α ∈ C such that

α (R∗Rx− x,y) = |(R∗Rx− x,y)|

Then

0 = Re (R∗Rx− x,αy) = Re α (R∗Rx− x,y)
= |(R∗Rx− x,y)|

Thus |(R∗Rx− x,y)| = 0 for all x,y because the given x,y were arbitrary. Let y =
R∗Rx− x to conclude that for all x,

R∗Rx− x = 0

which says R∗R = I since x is arbitrary. This proves the lemma.
With this preparation, here is the big theorem about the right polar factorization.

Theorem 12.4.6 Let F be an m× n matrix where m ≥ n. Then there exists a Hermitian
n × n matrix, U which has all nonnegative eigenvalues and an m × n matrix, R which
preserves distances and satisfies R∗R = I such that

F = RU.
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Proof: Consider F ∗F. This is a Hermitian matrix because

(F ∗F )∗ = F ∗ (F ∗)∗ = F ∗F

Also the eigenvalues of the n×n matrix F ∗F are all nonnegative. This is because if x is an
eigenvalue,

λ (x,x) = (F ∗Fx,x) = (Fx,Fx) ≥ 0.

Therefore, by Lemma 12.4.1, there exists an n× n Hermitian matrix, U having all nonneg-
ative eigenvalues such that

U2 = F ∗F.

Consider the subspace U (Fn). Let {Ux1, · · · , Uxr} be an orthonormal basis for U (Fn) ⊆
Fn. Note that U (Fn) might not be all of Fn. Using Lemma 12.4.4, extend to an orthonormal
basis for all of Fn,

{Ux1, · · · , Uxr,yr+1, · · · ,yn} .

Next observe that {Fx1, · · · , Fxr} is also an orthonormal set of vectors in Fm. This is
because

(Fxk, Fxj) = (F ∗Fxk,xj) =
(
U2xk,xj

)

= (Uxk, U∗xj) = (Uxk, Uxj) = δjk

Therefore, from Lemma 12.4.4 again, this orthonormal set of vectors can be extended to an
orthonormal basis for Fm,

{Fx1, · · · , Fxr, zr+1, · · · , zm}
Thus there are at least as many zk as there are yj . Now for x ∈ Fn, since

{Ux1, · · · , Uxr,yr+1, · · · ,yn}
is an orthonormal basis for Fn, there exist unique scalars,

c1 · · · , cr, dr+1, · · · , dn

such that

x =
r∑

k=1

ckUxk +
n∑

k=r+1

dkyk

Define

Rx ≡
r∑

k=1

ckFxk +
n∑

k=r+1

dkzk (12.12)

Then also there exist scalars bk such that

Ux =
r∑

k=1

bkUxk

and so from 12.12,

RUx =
r∑

k=1

bkFxk = F

(
r∑

k=1

bkxk

)

Is F (
∑r

k=1 bkxk) = F (x)?
(

F

(
r∑

k=1

bkxk

)
− F (x) , F

(
r∑

k=1

bkxk

)
− F (x)

)
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=

(
(F ∗F )

(
r∑

k=1

bkxk − x

)
,

(
r∑

k=1

bkxk − x

))

=

(
U2

(
r∑

k=1

bkxk − x

)
,

(
r∑

k=1

bkxk − x

))

=

(
U

(
r∑

k=1

bkxk − x

)
, U

(
r∑

k=1

bkxk − x

))

=

(
r∑

k=1

bkUxk − Ux,

r∑

k=1

bkUxk − Ux

)
= 0

Therefore, F (
∑r

k=1 bkxk) = F (x) and this shows

RUx = Fx.

From 12.12 and Lemma 12.4.2 R preserves distances. Therefore, by Lemma 12.4.5 R∗R = I.
This proves the theorem.

12.5 The Singular Value Decomposition∗

In this section, A will be an m× n matrix. To begin with, here is a simple lemma.

Lemma 12.5.1 Let A be an m×n matrix. Then A∗A is self adjoint and all its eigenvalues
are nonnegative.

Proof: It is obvious that A∗A is self adjoint. Suppose A∗Ax = λx. Then λ |x|2 =
(λx,x) = (A∗Ax,x) = (Ax,Ax) ≥ 0.

Definition 12.5.2 Let A be an m×n matrix. The singular values of A are the square roots
of the positive eigenvalues of A∗A.

With this definition and lemma here is the main theorem on the singular value decom-
position.

Theorem 12.5.3 Let A be an m× n matrix. Then there exist unitary matrices, U and V
of the appropriate size such that

U∗AV =
(

σ 0
0 0

)

where σ is of the form

σ =




σ1 0
. . .

0 σk




for the σi the singular values of A.

Proof: By the above lemma and Theorem 12.2.13 there exists an orthonormal basis,
{vi}n

i=1 such that A∗Avi = σ2
i vi where σ2

i > 0 for i = 1, · · · , k, (σi > 0) and equals zero if
i > k. Thus for i > k, Avi = 0 because

(Avi, Avi) = (A∗Avi,vi) = (0,vi) = 0.
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For i = 1, · · · , k, define ui ∈ Fm by

ui ≡ σ−1
i Avi.

Thus Avi = σiui. Now

(ui,uj) =
(
σ−1

i Avi, σ
−1
j Avj

)
=

(
σ−1

i vi, σ
−1
j A∗Avj

)

=
(
σ−1

i vi, σ
−1
j σ2

jvj

)
=

σj

σi
(vi,vj) = δij .

Thus {ui}k
i=1 is an orthonormal set of vectors in Fm. Also,

AA∗ui = AA∗σ−1
i Avi = σ−1

i AA∗Avi = σ−1
i Aσ2

i vi = σ2
i ui.

Now extend {ui}k
i=1 to an orthonormal basis for all of Fm, {ui}m

i=1 and let U ≡ (u1 · · ·um)
while V ≡ (v1 · · ·vn) . Thus U is the matrix which has the ui as columns and V is defined
as the matrix which has the vi as columns. Then

U∗AV =




u∗1
...

u∗k
...

u∗m




A (v1 · · ·vn)

=




u∗1
...

u∗k
...

u∗m




(σ1u1 · · ·σkuk0 · · ·0)

=
(

σ 0
0 0

)

where σ is given in the statement of the theorem.
The singular value decomposition has as an immediate corollary the following interesting

result.

Corollary 12.5.4 Let A be an m×n matrix. Then the rank of A and A∗equals the number
of singular values.

Proof: Since V and U are unitary, it follows that

rank (A) = rank (U∗AV )

= rank
(

σ 0
0 0

)

= number of singular values.

Also since U, V are unitary,

rank (A∗) = rank (V ∗A∗U)
= rank

(
(U∗AV )∗

)

= rank
((

σ 0
0 0

)∗)

= number of singular values.
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This proves the corollary.
The singular value decomposition also has a very interesting connection to the problem

of least squares solutions. Recall that it was desired to find x such that |Ax− y| is as small
as possible. Lemma 12.3.2 shows that there is a solution to this problem which can be found
by solving the system A∗Ax = A∗y. Each x which solves this system solves the minimization
problem as was shown in the lemma just mentioned. Now consider this equation for the
solutions of the minimization problem in terms of the singular value decomposition.

A∗︷ ︸︸ ︷
V

(
σ 0
0 0

)
U∗

A︷ ︸︸ ︷
U

(
σ 0
0 0

)
V ∗x =

A∗︷ ︸︸ ︷
V

(
σ 0
0 0

)
U∗y.

Therefore, this yields the following upon using block multiplication and multiplying on the
left by V ∗. (

σ2 0
0 0

)
V ∗x =

(
σ 0
0 0

)
U∗y. (12.13)

One solution to this equation which is very easy to spot is

x = V

(
σ−1 0
0 0

)
U∗y. (12.14)

12.6 Exercises

1. Here are some matrices. Label according to whether they are symmetric, skew sym-
metric, or orthogonal. If the matrix is orthogonal, determine whether it is proper or
improper.

(a)




1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2




(b)




1 2 −3
2 1 4
−3 4 7




(c)




0 −2 −3
2 0 −4
3 4 0




2. Show that every real matrix may be written as the sum of a skew symmetric and a
symmetric matrix. Hint: If A is an n× n matrix, show that B ≡ 1

2

(
A−AT

)
is skew

symmetric.

3. Let x be a vector in Rn and consider the matrix, I − 2xxT

||x||2 . Show this matrix is both

symmetric and orthogonal.

4. For U an orthogonal matrix, explain why ||Ux|| = ||x|| for any vector, x. Next explain
why if U is an n × n matrix with the property that ||Ux|| = ||x|| for all vectors, x,
then U must be orthogonal. Thus the orthogonal matrices are exactly those which
preserve distance.
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5. A quadratic form in three variables is an expression of the form a1x
2 + a2y

2 + a3z
2 +

a4xy + a5xz + a6yz. Show that every such quadratic form may be written as

(
x y z

)
A




x
y
z




where A is a symmetric matrix.

6. Given a quadratic form in three variables, x, y, and z, show there exists an orthogonal
matrix, U and variables x′, y′, z′ such that




x
y
z


 = U




x′

y′

z′




with the property that in terms of the new variables, the quadratic form is

λ1 (x′)2 + λ2 (y′)2 + λ3 (z′)2

where the numbers, λ1, λ2, and λ3 are the eigenvalues of the matrix, A in Problem 5.

7. If A is a symmetric invertible matrix, is it always the case that A−1 must be symmetric
also? How about Ak for k a positive integer? Explain.

8. Here are some matrices. What can you say about the eigenvalues of these matrices
just by looking at them?

(a)




0 0 0
0 0 −1
0 1 0




(b)




1 2 −3
2 1 4
−3 4 7




(c)




0 −2 −3
2 0 −4
3 4 0




(d)




1 2 3
0 2 3
0 0 2




9. Find the eigenvalues and eigenvectors of the matrix




c 0 0
0 0 −b
0 b 0


 . Here b, c are real

numbers.

10. Find the eigenvalues and eigenvectors of the matrix




c 0 0
0 a −b
0 b a


. Here a, b, c are

real numbers.

11. Find the eigenvalues and an orthonormal basis of eigenvectors for A.

A =




11 −1 −4
−1 11 −4
−4 −4 14


 .

Hint: Two eigenvalues are 12 and 18.
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12. Find the eigenvalues and an orthonormal basis of eigenvectors for A.

A =




4 1 −2
1 4 −2
−2 −2 7


 .

Hint: One eigenvalue is 3.

13. Show that if A is a real symmetric matrix and λ and µ are two different eigenvalues,
then if x is an eigenvector for λ and y is an eigenvector for µ, then x · y = 0. Also all
eigenvalues are real. Supply reasons for each step in the following argument. First

λxT x = (Ax)T x = xT Ax = xT Ax = xT λx = λxT x

and so λ = λ. This shows that all eigenvalues are real. It follows all the eigenvectors
are real. Why? Now let x,y, µ and λ be given as above.

λ (x · y) = λx · y = Ax · y = x ·Ay = x·µy = µ (x · y) = µ (x · y)

and so
(λ− µ)x · y = 0.

Since λ 6= µ, it follows x · y = 0.

14. Suppose U is an orthogonal n× n matrix. Explain why rank (U) = n.

15. Show that if A is an Hermitian matrix and λ and µ are two different eigenvalues, then
if x is an eigenvector for λ and y is an eigenvector for µ, then x · y = 0. Also all
eigenvalues are real. Supply reasons for each step in the following argument. First

λx · x = Ax · x = x·Ax = x·λx = λx · x

and so λ = λ. This shows that all eigenvalues are real. Now let x,y, µ and λ be given
as above.

λ (x · y) = λx · y = Ax · y = x ·Ay = x·µy = µ (x · y) = µ (x · y)

and so
(λ− µ)x · y = 0.

Since λ 6= µ, it follows x · y = 0.

16. Show that the eigenvalues and eigenvectors of a real matrix occur in conjugate pairs.

17. If a real matrix, A has all real eigenvalues, does it follow that A must be symmetric.
If so, explain why and if not, give an example to the contrary.

18. Suppose A is a 3 × 3 symmetric matrix and you have found two eigenvectors which
form an orthonormal set. Explain why their cross product is also an eigenvector.

19. Study the definition of an orthonormal set of vectors. Write it from memory.

20. Determine which of the following sets of vectors are orthonormal sets. Justify your
answer.

(a) {(1, 1) , (1,−1)}
(b)

{(
1√
2
, −1√

2

)
, (1, 0)

}
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(c)
{(

1
3 , 2

3 , 2
3

)
,
(−2

3 , −1
3 , 2

3

)
,
(

2
3 , −2

3 , 1
3

)}

21. Show that if {u1, · · · ,un} is an orthonormal set of vectors in Fn, then it is a basis.
Hint: It was shown earlier that this is a linearly independent set. If you wish, replace
Fn with Rn. Do this version if you do not know the dot product for vectors in Cn.

22. Fill in the missing entries to make the matrix orthogonal.



−1√
2

−1√
6

1√
3

1√
2 √

6
3




.

23. Fill in the missing entries to make the matrix orthogonal.



2
3

√
2

2
1
6

√
2

2
3

0




24. Fill in the missing entries to make the matrix orthogonal.



1
3 − 2√

5

2
3 0

4
15

√
5




25. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix, U and a diagonal matrix D such that UT AU = D.

A =



−1 1 1
1 −1 1
1 1 −1


 .

Hint: One eigenvalue is -2.

26. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix, U and a diagonal matrix D such that UT AU = D.

A =




17 −7 −4
−7 17 −4
−4 −4 14


 .

Hint: Two eigenvalues are 18 and 24.

27. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix, U and a diagonal matrix D such that UT AU = D.

A =




13 1 4
1 13 4
4 4 10


 .

Hint: Two eigenvalues are 12 and 18.



12.6. EXERCISES 271

28. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix, U and a diagonal matrix D such that UT AU = D.

A =




− 5
3

1
15

√
6
√

5 8
15

√
5

1
15

√
6
√

5 − 14
5 − 1

15

√
6

8
15

√
5 − 1

15

√
6 7

15




Hint: The eigenvalues are −3,−2, 1.

29. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix, U and a diagonal matrix D such that UT AU = D.

A =




3 0 0
0 3

2
1
2

0 1
2

3
2


 .

30. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix, U and a diagonal matrix D such that UT AU = D.

A =




2 0 0
0 5 1
0 1 5


 .

31. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix, U and a diagonal matrix D such that UT AU = D.

A =




4
3

1
3

√
3
√

2 1
3

√
2

1
3

√
3
√

2 1 − 1
3

√
3

1
3

√
2 − 1

3

√
3 5

3




Hint: The eigenvalues are 0, 2, 2 where 2 is listed twice because it is a root of multi-
plicity 2.

32. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix, U and a diagonal matrix D such that UT AU = D.

A =




1 1
6

√
3
√

2 1
6

√
3
√

6

1
6

√
3
√

2 3
2

1
12

√
2
√

6

1
6

√
3
√

6 1
12

√
2
√

6 1
2




Hint: The eigenvalues are 2, 1, 0.
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33. Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix,




1
3

1
6

√
3
√

2 − 7
18

√
3
√

6

1
6

√
3
√

2 3
2 − 1

12

√
2
√

6

− 7
18

√
3
√

6 − 1
12

√
2
√

6 − 5
6




Hint: The eigenvalues are 1, 2,−2.

34. Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix,




− 1
2 − 1

5

√
6
√

5 1
10

√
5

− 1
5

√
6
√

5 7
5 − 1

5

√
6

1
10

√
5 − 1

5

√
6 − 9

10




Hint: The eigenvalues are −1, 2,−1 where −1 is listed twice because it has multiplicity
2 as a zero of the characteristic equation.

35. Explain why a matrix, A is symmetric if and only if there exists an orthogonal matrix,
U such that A = UT DU for D a diagonal matrix.

36. The proof of Theorem 12.3.2 concluded with the following observation. If −ta+t2b ≥ 0
for all t ∈ R and b ≥ 0, then a = 0. Why is this so?

37. Using Schur’s theorem, show that whenever A is an n× n matrix, det (A) equals the
product of the eigenvalues of A.

38. In the proof of Theorem 12.3.6 the following argument was used. If x ·w = 0 for all
w ∈ Rn, then x = 0. Why is this so?

39. Using Corollary 12.3.7 show that a real m×n matrix is onto if and only if its transpose
is one to one.

40. Suppose A is a 3× 2 matrix. Is it possible that AT is one to one? What does this say
about A being onto? Prove your answer.

41. Find the least squares solution to the following system.

x + 2y = 1
2x + 3y = 2
3x + 5y = 4

42. You are doing experiments and have obtained the ordered pairs, (0, 1) , (1, 2) , (2, 3.5) ,
and (3, 4) . Find m and b such that y = mx + b approximates these four points as well
as possible. Now do the same thing for y = ax2 + bx + c, finding a, b, and c to give
the best approximation.
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43. Suppose you have several ordered triples, (xi, yi, zi) . Describe how to find a polyno-
mial,

z = a + bx + cy + dxy + ex2 + fy2

for example giving the best fit to the given ordered triples. Is there any reason you
have to use a polynomial? Would similar approaches work for other combinations of
functions just as well?

44. Using the Gram Schmidt process, find an orthonormal basis for the span of the vectors,
(1, 2, 1) , (2,−1, 3) , and (1, 0, 0) .

45. Using the Gram Schmidt process, find an orthonormal basis for the span of the vectors,
(1, 2, 1, 0) , (2,−1, 3, 1) , and (1, 0, 0, 1) .

46. The set, V ≡ {(x, y, z) : 2x + 3y − z = 0} is a subspace of R3. Find an orthonormal
basis for this subspace.

47. The two level surfaces, 2x + 3y − z + w = 0 and 3x − y + z + 2w = 0 intersect in a
subspace of R4, find a basis for this subspace. Next find an orthonormal basis for this
subspace.

48. Let A, B be a m× n matrices. Define an inner product on the set of m× n matrices
by

(A,B)F ≡ trace (AB∗) .

Show this is an inner product satisfying all the inner product axioms. Recall for M an
n×n matrix, trace (M) ≡ ∑n

i=1 Mii. The resulting norm, ||·||F is called the Frobenius
norm and it can be used to measure the distance between two matrices.

49. Let A be an m× n matrix. Show

||A||2F ≡ (A,A)F =
∑

j

σ2
j

where the σj are the singular values of A.

50. If A is a general n × n matrix having possibly repeated eigenvalues, show there is a
sequence {Ak} of n × n matrices having distinct eigenvalues which has the property
that the ijth entry of Ak converges to the ijth entry of A for all ij. Hint: Use Schur’s
theorem.

51. Prove the Cayley Hamilton theorem as follows. First suppose A has a basis of eigen-
vectors {vk}n

k=1 , Avk = λkvk. Let p (λ) be the characteristic polynomial. Show
p (A)vk = p (λk)vk = 0. Then since {vk} is a basis, it follows p (A)x = 0 for all
x and so p (A) = 0. Next in the general case, use Problem 50 to obtain a sequence
{Ak} of matrices whose entries converge to the entries of A such that Ak has n distinct
eigenvalues and therefore by Theorem 11.1.13 Ak has a basis of eigenvectors. There-
fore, from the first part and for pk (λ) the characteristic polynomial for Ak, it follows
pk (Ak) = 0. Now explain why and the sense in which

lim
k→∞

pk (Ak) = p (A) .
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Numerical Methods For Solving
Linear Systems

13.0.1 Outcomes

A. Apply Gauss-Seidel iteration to approximate a solution to a linear system of equations.

B. Apply Jacobi iteration to approximate a solution to a linear system of equations.

13.1 Iterative Methods For Linear Systems

Consider the problem of solving the equation

Ax = b (13.1)

where A is an n × n matrix. In many applications, the matrix A is huge and composed
mainly of zeros. For such matrices, the method of Gauss elimination (row operations) is
not a good way to solve the system because the row operations can destroy the zeros and
storing all those zeros takes a lot of room in a computer. These systems are called sparse.
To solve them it is common to use an iterative technique. The idea is to obtain a sequence
of approximate solutions which get close to the true solution after a sufficient number of
iterations.

Definition 13.1.1 Let {xk}∞k=1 be a sequence of vectors in Fn. Say

xk =
(
xk

1 , · · · , xk
n

)
.

Then this sequence is said to converge to the vector, x =(x1, · · · , xn) ∈ Fn, written as

lim
k→∞

xk = x

if for each j = 1, 2, · · · , n,
lim

k→∞
xk

j = xj .

In words, the sequence converges if the entries of the vectors in the sequence converge to the
corresponding entries of x.

Example 13.1.2 Consider xk =
(
sin (1/k) , k2

1+k2 , ln
(

1+k2

k2

))
. Find limk→∞ xk.

From the above definition, this limit is the vector, (0, 1, 0) because

lim
k→∞

sin (1/k) = 0, lim
k→∞

k2

1 + k2
= 1, and lim

k→∞
ln

(
1 + k2

k2

)
= 0.

A more complete mathematical explanation is given in Linear Algebra.

275
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13.1.1 The Jacobi Method

The first technique to be discussed here is the Jacobi method which is described in the
following definition. In this technique, you have a sequence of vectors,

{
xk

}
which converge

to the solution to the linear system of equations and to get the ith component of the xk+1,
you use all the components of xk except for the ith. The precise description follows.

Definition 13.1.3 The Jacobi iterative technique, also called the method of simultaneous
corrections, is defined as follows. Let x1 be an initial vector, say the zero vector or some
other vector. The method generates a succession of vectors, x2,x3,x4, · · · and hopefully this
sequence of vectors will converge to the solution to 13.1. The vectors in this list are called
iterates and they are obtained according to the following procedure. Letting A = (aij) ,

aiix
r+1
i = −

∑

j 6=i

aijx
r
j + bi. (13.2)

In terms of matrices, letting

A =




a11 · · · a1n

...
. . .

...
an1 · · · ann




The iterates are defined as



a11 0 · · · 0

0 a22
. . .

...
...

. . . . . . 0
0 · · · 0 ann







xr+1
1

xr+1
2
...

xr+1
n




= −




0 a12 · · · a1n

a21 0
. . .

...
...

. . . . . . an−1n

an1 · · · ann−1 0







xr
1

xr
2
...

xr
n


 +




b1

b2

...
bn


 (13.3)

The matrix on the left in 13.3 is obtained by retaining the main diagonal of A and
setting every other entry equal to zero. The matrix on the right in 13.3 is obtained from A
by setting every diagonal entry equal to zero and retaining all the other entries unchanged.

Example 13.1.4 Use the Jacobi method to solve the system



3 1 0 0
1 4 1 0
0 2 5 1
0 0 2 4







x1

x2

x3

x4


 =




1
2
3
4




In terms of the matrices, the Jacobi iteration is of the form



3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







xr
1

xr
2

xr
3

xr
4


 +




1
2
3
4


 .

Now iterate this starting with
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x1 ≡




0
0
0
0


 .




3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







x2
1

x2
2

x2
3

x2
4


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







0
0
0
0


 +




1
2
3
4




=




1.0
2.0
3.0
4.0




Solving this system yields

x2 =




x2
1

x2
2

x2
3

x2
4


 =




. 333 333 33
. 5
. 6
1.0




Then you use x2 to find x3 =
(

x3
1 x3

2 x3
3 x3

4

)T




3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







x3
1

x3
2

x3
3

x3
4


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







. 333 333 33
. 5
. 6
1.0


 +




1
2
3
4




=




. 5
1. 066 666 7

1.0
2. 8




The solution is

x3 =




x3
1

x3
2

x3
3

x3
4


 =




. 166 666 67

. 266 666 68
. 2
. 7




Now use this as the new data to find x4 =
(

x4
1 x4

2 x4
3 x4

4

)T




3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







x4
1

x4
2

x4
3

x4
4


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







. 166 666 67

. 266 666 68
. 2
. 7


 +




1
2
3
4




=




. 733 333 32
1. 633 333 3
1. 766 666 6

3. 6


 .

Thus you find

x4 =




. 244 444 44

. 408 333 33

. 353 333 32
. 9






278 NUMERICAL METHODS FOR SOLVING LINEAR SYSTEMS

Then another iteration for x5 gives



3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







x5
1

x5
2

x5
3

x5
4


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







. 244 444 44

. 408 333 33

. 353 333 32
. 9


 +




1
2
3
4




=




. 591 666 67
1. 402 222 2
1. 283 333 3
3. 293 333 4




and so

x5 =




. 197 222 22

. 350 555 55

. 256 666 66

. 823 333 35


 .

The solution to the system of equations obtained by row operations is



x1

x2

x3

x4


 =




. 206

. 379

. 275

. 862




so already after only five iterations the iterates are pretty close to the true solution. How
well does it work?



3 1 0 0
1 4 1 0
0 2 5 1
0 0 2 4







. 197 222 22

. 350 555 55

. 256 666 66

. 823 333 35


 =




. 942 222 21
1. 856 111 1
2. 807 777 8
3. 806 666 7




≈




1
2
3
4




A few more iterates will yield a better solution.

13.1.2 The Gauss Seidel Method

The Gauss Seidel method differs from the Jacobi method in using xk+1
j for all j < i in going

from xk to xk+1. This is why it is called the method of successive corrections. The precise
description of this method is in the following definition.

Definition 13.1.5 The Gauss Seidel method, also called the method of successive
corrections is given as follows. For A = (aij) , the iterates for the problem Ax = b are
obtained according to the formula

i∑

j=1

aijx
r+1
j = −

n∑

j=i+1

aijx
r
j + bi. (13.4)

In terms of matrices, letting

A =




a11 · · · a1n

...
. . .

...
an1 · · · ann
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The iterates are defined as




a11 0 · · · 0

a21 a22
. . .

...
...

. . . . . . 0
an1 · · · ann−1 ann







xr+1
1

xr+1
2
...

xr+1
n




= −




0 a12 · · · a1n

0 0
. . .

...
...

. . . . . . an−1n

0 · · · 0 0







xr
1

xr
2
...

xr
n


 +




b1

b2

...
bn


 (13.5)

In words, you set every entry in the original matrix which is strictly above the main
diagonal equal to zero to obtain the matrix on the left. To get the matrix on the right,
you set every entry of A which is on or below the main diagonal equal to zero. Using the
iteration procedure of 13.4 directly, the Gauss Seidel method makes use of the very latest
information which is available at that stage of the computation.

The following example is the same as the example used to illustrate the Jacobi method.

Example 13.1.6 Use the Gauss Seidel method to solve the system




3 1 0 0
1 4 1 0
0 2 5 1
0 0 2 4







x1

x2

x3

x4


 =




1
2
3
4




In terms of matrices, this procedure is




3 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0







xr
1

xr
2

xr
3

xr
4


 +




1
2
3
4


 .

As before, let x1 be the zero vector. Thus the first iteration is to solve




3 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







x2
1

x2
2

x2
3

x2
4


 = −




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0







0
0
0
0


 +




1
2
3
4




=




1
2
3
4




Hence

x2 =




. 333 333 33

. 416 666 67

. 433 333 33

. 783 333 33
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Thus x3 =
(

x3
1 x3

2 x3
3 x3

4

)T is given by



3 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







x3
1

x3
2

x3
3

x3
4


 = −




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0







. 333 333 33

. 416 666 67

. 433 333 33

. 783 333 33


 +




1
2
3
4




=




. 583 333 33
1. 566 666 7
2. 216 666 7

4.0




And so

x3 =




. 194 444 44

. 343 055 56

. 306 111 11

. 846 944 44


 .

Another iteration for x4 involves solving



3 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







x4
1

x4
2

x4
3

x4
4


 = −




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0







. 194 444 44

. 343 055 56

. 306 111 11

. 846 944 44


 +




1
2
3
4




=




. 656 944 44
1. 693 888 9
2. 153 055 6

4.0




and so

x4 =




. 218 981 48

. 368 726 86

. 283 120 38

. 858 439 81




Recall the answer is 


. 206

. 379

. 275

. 862




so the iterates are already pretty close to the answer. You could continue doing these iterates
and it appears they converge to the solution. Now consider the following example.

Example 13.1.7 Use the Gauss Seidel method to solve the system



1 4 0 0
1 4 1 0
0 2 5 1
0 0 2 4







x1

x2

x3

x4


 =




1
2
3
4




The exact solution is given by doing row operations on the augmented matrix. When
this is done the row echelon form is



1 0 0 0 6
0 1 0 0 − 5

4

0 0 1 0 1
0 0 0 1 1

2
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and so the solution is approximately



6
− 5

4

1
1
2


 =




6.0
−1. 25

1.0
. 5




The Gauss Seidel iterations are of the form



1 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 4 0 0
0 0 1 0
0 0 0 1
0 0 0 0







xr
1

xr
2

xr
3

xr
4


 +




1
2
3
4




and so, multiplying by the inverse of the matrix on the left, the iteration reduces to the
following in terms of matrix multiplication.

xr+1 = −




0 4 0 0
0 −1 1

4 0

0 2
5 − 1

10
1
5

0 − 1
5

1
20 − 1

10




xr +




1
1
4
1
2
3
4


 .

This time, we will pick an initial vector close to the answer. Let

x1 =




6
−1
1
1
2




This is very close to the answer. Now lets see what the Gauss Seidel iteration does to it.

x2 = −




0 4 0 0
0 −1 1

4 0

0 2
5 − 1

10
1
5

0 − 1
5

1
20 − 1

10







6
−1
1
1
2


 +




1
1
4
1
2
3
4


 =




5.0
−1.0
. 9
. 55




You can’t expect to be real close after only one iteration. Lets do another.

x3 = −




0 4 0 0
0 −1 1

4 0

0 2
5 − 1

10
1
5

0 − 1
5

1
20 − 1

10







5.0
−1.0
. 9
. 55


 +




1
1
4
1
2
3
4


 =




5.0
−. 975
. 88
. 56




x4 = −




0 4 0 0
0 −1 1

4 0

0 2
5 − 1

10
1
5

0 − 1
5

1
20 − 1

10







5.0
−. 975
. 88
. 56


 +




1
1
4
1
2
3
4


 =




4. 9
−. 945
. 866
. 567
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The iterates seem to be getting farther from the actual solution. Why is the process which
worked so well in the other examples not working here? A better question might be: Why
does either process ever work at all?. A complete answer to this question is given in [9].

Both iterative procedures for solving

Ax = b (13.6)

are of the form
Bxr+1 = −Cxr + b

where A = B + C. In the Jacobi procedure, the matrix C was obtained by setting the
diagonal of A equal to zero and leaving all other entries the same while the matrix, B
was obtained by making every entry of A equal to zero other than the diagonal entries
which are left unchanged. In the Gauss Seidel procedure, the matrix B was obtained from
A by making every entry strictly above the main diagonal equal to zero and leaving the
others unchanged and C was obtained from A by making every entry on or below the main
diagonal equal to zero and leaving the others unchanged. Thus in the Jacobi procedure,
B is a diagonal matrix while in the Gauss Seidel procedure, B is lower triangular. Using
matrices to explicitly solve for the iterates, yields

xr+1 = −B−1Cxr + B−1b. (13.7)

This is what you would never have the computer do but this is what will allow the statement
of a theorem which gives the condition for convergence of these and all other similar methods.

Theorem 13.1.8 Let A = B +C and suppose all eigenvalues of B−1C have absolute value
less than 1 where A = B + C. Then the iterates in 13.7 converge to the unique solution of
13.6.

A complete explanation of this important result is found in [9]. It depends on a theorem
of Gelfand which is completely proved in this reference. Theorem 13.1.8 is very remarkable
because it gives an algebraic condition for convergence which is essentially an analytical
question.

13.2 Exercises

1. Solve the system 


4 1 1
1 5 2
0 2 6







x
y
z


 =




2
1
3




using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

2. Solve the system 


4 1 1
1 7 2
0 2 4







x
y
z


 =




1
2
3




using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.
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3. Solve the system 


5 1 1
1 7 2
0 2 4







x
y
z


 =




3
0
1




using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

4. Solve the system 


7 1 0
1 5 2
0 2 6







x
y
z


 =




1
1
−1




using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

5. Solve the system 


5 0 1
1 7 1
0 2 4







x
y
z


 =




1
7
3




using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

6. Solve the system 


5 0 1
1 7 1
0 2 9







x
y
z


 =




1
1
0




using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

7. If you are considering a system of the form Ax = b and A−1 does not exist, will either
the Gauss Seidel or Jacobi methods work? Explain. What does this indicate about
using either of these methods for finding eigenvectors for a given eigenvalue?
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Numerical Methods For Solving
The Eigenvalue Problem

14.0.1 Outcomes

A. Apply the power method with scaling to approximate the dominant eigenvector cor-
responding to a dominant eigenvalue.

B. Use the shifted inverse power method to find the eigenvector and eigenvalue close to
some number.

C. Approximate an eigenvalue of a symmetric matrix by computing the Rayleigh quo-
tient and finding the associated error bound. Illustrate why the Rayleigh quotient
approximates the dominant eigenvalue.

14.1 The Power Method For Eigenvalues

As indicated earlier, the eigenvalue eigenvector problem is extremely difficult. Consider for
example what happens if you cannot find the eigenvalues exactly. Then you can’t find an
eigenvector because there isn’t one due to the fact that A − λI is invertible whenever λ
is not exactly equal to an eigenvalue. Therefore the straightforward way of solving this
problem fails right away, even if you can approximate the eigenvalues. The power method
allows you to approximate the largest eigenvalue and also the eigenvector which goes with
it. By considering the inverse of the matrix, you can also find the smallest eigenvalue.
The method works in the situation of a nondefective matrix, A which has an eigenvalue of
algebraic multiplicity 1, λn which has the property that |λk| < |λn| for all k 6= n. Note that
for a real matrix this excludes the case that λn could be complex. Why? Such an eigenvalue
is called a dominant eigenvalue.

Let {x1, · · · ,xn} be a basis of eigenvectors for Fn such that Axn = λnxn. Now let u1 be
some nonzero vector. Since {x1, · · · ,xn} is a basis, there exists unique scalars, ci such that

u1 =
n∑

k=1

ckxk.

Assume you have not been so unlucky as to pick u1 in such a way that cn = 0. Then let
Auk = uk+1 so that

um = Amu1 =
n−1∑

k=1

ckλm
k xk + λm

n cnxn. (14.1)

285
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For large m the last term, λm
n cnxn, determines quite well the direction of the vector on the

right. This is because |λn| is larger than |λk| and so for a large, m, the sum,
∑n−1

k=1 ckλm
k xk,

on the right is fairly insignificant. Therefore, for large m, um is essentially a multiple of the
eigenvector, xn, the one which goes with λn. The only problem is that there is no control
of the size of the vectors um. You can fix this by scaling. Let S2 denote the entry of Au1

which is largest in absolute value. We call this a scaling factor. Then u2 will not be just
Au1 but Au1/S2. Next let S3 denote the entry of Au2 which has largest absolute value and
define u3 ≡ Au2/S3. Continue this way. The scaling just described does not destroy the
relative insignificance of the term involving a sum in 14.1. Indeed it amounts to nothing
more than changing the units of length. Also note that from this scaling procedure, the
absolute value of the largest element of uk is always equal to 1. Therefore, for large m,

um =
λm

n cnxn

S2S3 · · ·Sm
+ (relatively insignificant term) .

Therefore, the entry of Aum which has the largest absolute value is essentially equal to the
entry having largest absolute value of

A

(
λm

n cnxn

S2S3 · · ·Sm

)
=

λm+1
n cnxn

S2S3 · · ·Sm
≈ λnum

and so for large m, it must be the case that λn ≈ Sm+1. This suggests the following
procedure.

Finding the largest eigenvalue with its eigenvector.

1. Start with a vector, u1 which you hope has a component in the direction of xn. The
vector, (1, · · · , 1)T is usually a pretty good choice.

2. If uk is known,

uk+1 =
Auk

Sk+1

where Sk+1 is the entry of Auk which has largest absolute value.

3. When the scaling factors, Sk are not changing much, Sk+1 will be close to the eigen-
value and uk+1 will be close to an eigenvector.

4. Check your answer to see if it worked well.

Example 14.1.1 Find the largest eigenvalue of A =




5 −14 11
−4 4 −4
3 6 −3


 .

The power method will now be applied to find the largest eigenvalue for the above matrix.
Letting u1=(1, · · · , 1)T

, we will consider Au1 and scale it.



5 −14 11
−4 4 −4
3 6 −3







1
1
1


 =




2
−4
6


 .

Scaling this vector by dividing by the largest entry gives

1
6




2
−4
6


 =




1
3

− 2
3

1


 = u2
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Now lets do it again.




5 −14 11
−4 4 −4
3 6 −3







1
3

− 2
3

1


 =




22
−8
−6




Then

u3 =
1
22




22
−8
−6


 =




1
− 4

11

− 3
11


 =




1.0
−. 363 636 36
−. 272 727 27


 .

Continue doing this



5 −14 11
−4 4 −4
3 6 −3







1.0
−. 363 636 36
−. 272 727 27


 =




7. 090 909 1
−4. 363 636 4
1. 636 363 7




Then

u4 =




1. 0
−. 615 38
. 230 77




So far the scaling factors are changing fairly noticeably so continue.



5 −14 11
−4 4 −4
3 6 −3







1. 0
−. 615 38
. 230 77


 =




16. 154
−7. 384 6
−1. 384 6




u5 =




1.0
−. 457 14

−8. 571 3× 10−2







5 −14 11
−4 4 −4
3 6 −3







1.0
−. 457 14

−8. 571 3× 10−2


 =




10. 457
−5. 485 7
. 514 3




u6 =




1.0
−. 524 6

4. 918 2× 10−2







5 −14 11
−4 4 −4
3 6 −3







1.0
−. 524 6

4. 918 2× 10−2


 =




12. 885
−6. 295 1
−. 295 15




u7 =




1.0
−. 488 56

−2. 290 6× 10−2







5 −14 11
−4 4 −4
3 6 −3







1.0
−. 488 56

−2. 290 6× 10−2


 =




11. 588
−5. 862 6
. 137 36




u8 =




1.0
−. 505 92

1. 185 4× 10−2
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5 −14 11
−4 4 −4
3 6 −3







1.0
−. 505 92

1. 185 4× 10−2


 =




12. 213
−6. 071 1

−7. 108 2× 10−2




u9 =




1.0
−. 497 1

−5. 820 2× 10−3







5 −14 11
−4 4 −4
3 6 −3







1.0
−. 497 1

−5. 820 2× 10−3


 =




11. 895
−5. 965 1

3. 486 1× 10−2




u10 =




1.0
−. 501 48

2. 930 7× 10−3







5 −14 11
−4 4 −4
3 6 −3







1.0
−. 501 48

2. 930 7× 10−3


 =




12. 053
−6. 017 6

−1. 767 2× 10−2




u11 =




1.0
−. 499 26

−1. 466 2× 10−3




At this point, you could stop because the scaling factors are not changing by much.
They went from 11. 895 to 12. 053. It looks like the eigenvalue is something like 12 which is
in fact the case. The eigenvector is approximately u11. The true eigenvector for λ = 12 is




1
−.5
0




and so you see this is pretty close. If you didn’t know this, observe



5 −14 11
−4 4 −4
3 6 −3







1.0
−. 499 26

−1. 466 2× 10−3


 =




11. 974
−5. 991 2

8. 838 6× 10−3




and

12. 053




1.0
−. 499 26

−1. 466 2× 10−3


 =




12. 053
−6. 017 6

−1. 767 2× 10−2


 .

14.2 The Shifted Inverse Power Method

This method can find various eigenvalues and eigenvectors. It is a significant generalization
of the above simple procedure and yields very good results. The situation is this: You have
a number, α which is close to λ, some eigenvalue of an n × n matrix, A. You don’t know
λ but you know that α is closer to λ than to any other eigenvalue. Your problem is to find
both λ and an eigenvector which goes with λ. Another way to look at this is to start with
α and seek the eigenvalue, λ, which is closest to α along with an eigenvector associated
with λ. If α is an eigenvalue of A, then you have what you want. Therefore, we will always
assume α is not an eigenvalue of A and so (A− αI)−1 exists. The method is based on the
following lemma. When using this method it is nice to choose α fairly close to an eigenvalue.
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Otherwise, the method will converge slowly. In order to get some idea where to start, you
could use Gerschgorin’s theorem but this theorem will only give a rough idea where to look.
There isn’t a really good way to know how to choose α for general cases. As we mentioned
earlier, the eigenvalue problem is very difficult to solve in general.

Lemma 14.2.1 Let {λk}n
k=1 be the eigenvalues of A. If xk is an eigenvector of A for the

eigenvalue λk, then xk is an eigenvector for (A− αI)−1 corresponding to the eigenvalue
1

λk−α .

Proof: Let λk and xk be as described in the statement of the lemma. Then

(A− αI)xk = (λk − α)xk

and so
1

λk − α
xk = (A− αI)−1 xk.

This proves the lemma.
In explaining why the method works, we will assume A is nondefective. This is not

necessary! One can use Gelfand’s theorem on the spectral radius which is presented in
[9] and invariance of (A− αI)−1 on generalized eigenspaces to prove more general results.
It suffices to assume that the eigenspace for λk has dimension equal to the multiplicity of
the eigenvalue λk but even this is not necessary to obtain convergence of the method. This
method is better than might be supposed from the following explanation.

Pick u1, an initial vector and let Axk = λkxk, where {x1, · · · ,xn} is a basis of eigen-
vectors which exists from the assumption that A is nondefective. Assume α is closer to λn

than to any other eigenvalue. Since A is nondefective, there exist constants, ak such that

u1 =
n∑

k=1

akxk.

Possibly λn is a repeated eigenvalue. Then combining the terms in the sum which involve
eigenvectors for λn, a simpler description of u1 is

u1 =
m∑

j=1

ajxj + y

where y is an eigenvector for λn which is assumed not equal to 0. (If you are unlucky in your
choice for u1, this might not happen and things won’t work.) Now the iteration procedure
is defined as

uk+1 ≡ (A− αI)−1 uk

Sk

where Sk is the element of (A− αI)−1 uk which has largest absolute value. From Lemma
14.2.1,

uk+1 =

∑m
j=1 aj

(
1

λj−α

)k

xj +
(

1
λn−α

)k

y

S2 · · ·Sk

=

(
1

λn−α

)k

S2 · · ·Sk




m∑

j=1

aj

(
λn − α

λj − α

)k

xj + y


 .
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Now it is being assumed that λn is the eigenvalue which is closest to α and so for large k,
the term,

m∑

j=1

aj

(
λn − α

λj − α

)k

xj ≡ Ek

is very small while for every k ≥ 1, uk is a moderate sized vector because every entry has
absolute value less than or equal to 1. Thus

uk+1 =

(
1

λn−α

)k

S2 · · ·Sk
(Ek + y) ≡ Ck (Ek + y)

where Ek → 0, y is some eigenvector for λn, and Ck is of moderate size, remaining bounded
as k →∞. Therefore, for large k,

uk+1 − Cky = CkEk≈ 0

and multiplying by (A− αI)−1 yields

(A− αI)−1 uk+1 − (A− αI)−1
Cky = (A− αI)−1 uk+1 − Ck

(
1

λn − α

)
y

≈ (A− αI)−1 uk+1 −
(

1
λn − α

)
uk+1≈ 0.

Therefore, for large k, uk is approximately equal to an eigenvector of (A− αI)−1. Therefore,

(A− αI)−1 uk ≈ 1
λn − α

uk

and so you could take the dot product of both sides with uk and approximate λn by solving
the following for λn.

(A− αI)−1 uk · uk

|uk|2
=

1
λn − α

How else can you find the eigenvalue from this? Suppose uk = (w1, · · · , wn)T and from
the construction |wi| ≤ 1 and wk = 1 for some k. Then

Skuk+1 = (A− αI)−1 uk ≈ (A− αI)−1 (Ck−1y)=
1

λn − α
(Ck−1y) ≈

1
λn − α

uk.

Hence the entry of (A− αI)−1 uk which has largest absolute value is approximately 1
λn−α

and so it is likely that you can estimate λn using the formula

Sk =
1

λn − α
.

Of course this would fail if (A− αI)−1 uk had more than one entry having equal absolute
value.

Here is how you use the shifted inverse power method to find the eigenvalue
and eigenvector closest to α.

1. Find (A− αI)−1
.
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2. Pick u1. It is important that u1 =
∑m

j=1 ajxj +y where y is an eigenvector which goes
with the eigenvalue closest to α and the sum is in an “invariant subspace corresponding
to the other eigenvalues”. Of course you have no way of knowing whether this is so
but it typically is so. If things don’t work out, just start with a different u1. You were
unlucky in your choice.

3. If uk has been obtained,

uk+1 =
(A− αI)−1 uk

Sk

where Sk is the element of uk which has largest absolute value.

4. When the scaling factors, Sk are not changing much and the uk are not changing
much, find the approximation to the eigenvalue by solving

Sk =
1

λ− α

for λ. The eigenvector is approximated by uk+1.

5. Check your work by multiplying by the original matrix to see how well what you have
found works.

Example 14.2.2 Find the eigenvalue of A =




5 −14 11
−4 4 −4
3 6 −3


 which is closest to −7.

Also find an eigenvector which goes with this eigenvalue.

In this case the eigenvalues are −6, 0, and 12 so the correct answer is −6 for the eigen-
value. Then from the above procedure, we will start with an initial vector,

u1 ≡



1
1
1


 .

Then we must solve the following equation.






5 −14 11
−4 4 −4
3 6 −3


 + 7




1 0 0
0 1 0
0 0 1










x
y
z


 =




1
1
1




Simplifying the matrix on the left, we must solve



12 −14 11
−4 11 −4
3 6 4







x
y
z


 =




1
1
1




and then divide by the entry which has largest absolute value to obtain

u2 =




1.0
. 184
−. 76




Now solve 


12 −14 11
−4 11 −4
3 6 4







x
y
z


 =




1.0
. 184
−. 76
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and divide by the largest entry, 1. 051 5 to get

u3 =




1.0
.0 266

−. 970 61




Solve 


12 −14 11
−4 11 −4
3 6 4







x
y
z


 =




1.0
.0 266

−. 970 61




and divide by the largest entry, 1. 01 to get

u4 =




1.0
3. 845 4× 10−3

−. 996 04


 .

These scaling factors are pretty close after these few iterations. Therefore, the predicted
eigenvalue is obtained by solving the following for λ.

1
λ + 7

= 1.01

which gives λ = −6. 01. You see this is pretty close. In this case the eigenvalue closest to
−7 was −6.

Example 14.2.3 Consider the symmetric matrix, A =




1 2 3
2 1 4
3 4 2


 . Find the middle

eigenvalue and an eigenvector which goes with it.

Since A is symmetric, it follows it has three real eigenvalues which are solutions to

p (λ) = det


λ




1 0 0
0 1 0
0 0 1


−




1 2 3
2 1 4
3 4 2







= λ3 − 4λ2 − 24λ− 17 = 0

If you use your graphing calculator to graph this polynomial, you find there is an eigenvalue
somewhere between −.9 and −.8 and that this is the middle eigenvalue. Of course you could
zoom in and find it very accurately without much trouble but what about the eigenvector
which goes with it? If you try to solve


(−.8)




1 0 0
0 1 0
0 0 1


−




1 2 3
2 1 4
3 4 2










x
y
z


 =




0
0
0




there will be only the zero solution because the matrix on the left will be invertible and the
same will be true if you replace −.8 with a better approximation like −.86 or −.855. This is
because all these are only approximations to the eigenvalue and so the matrix in the above
is nonsingular for all of these. Therefore, you will only get the zero solution and

Eigenvectors are never equal to zero!
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However, there exists such an eigenvector and you can find it using the shifted inverse power
method. Pick α = −.855. Then you solve







1 2 3
2 1 4
3 4 2


 + .855




1 0 0
0 1 0
0 0 1










x
y
z


 =




1
1
1




or in other words,



1. 855 2.0 3.0
2.0 1. 855 4.0
3.0 4.0 2. 855







x
y
z


 =




1
1
1


 .

Divide by the largest entry, −67. 944, to obtain

u2 =




1. 0
−. 589 21
−. 230 44


 .

Now solve 


1. 855 2.0 3.0
2.0 1. 855 4.0
3.0 4.0 2. 855







x
y
z


 =




1. 0
−. 589 21
−. 230 44


 .

The solution is :



−514. 01
302. 12
116. 75


 and divide by the largest entry, −514. 01, to obtain

u3 =




1. 0
−. 587 77
−. 227 14


 . (14.2)

Clearly the uk are not changing much. This suggests an approximate eigenvector for this
eigenvalue which is close to −.855 is the above u3. And an eigenvalue is obtained by solving

1
λ + .855

= −514. 01

λ = −. 856 9. Lets check this.



1 2 3
2 1 4
3 4 2







1. 0
−. 587 77
−. 227 14


 =



−. 856 96
. 503 67
. 194 64


 .

−. 856 9




1. 0
−. 587 77
−. 227 14


 =



−. 856 9
. 503 7
. 194 6




Thus the vector of 14.2 is very close to the desired eigenvector, just as −. 856 9 is very close
to the desired eigenvalue. For practical purposes, we have found both the eigenvector and
the eigenvalue.

Example 14.2.4 Find the eigenvalues and eigenvectors of the matrix, A =




2 1 3
2 1 1
3 2 1


 .
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This is only a 3×3 matrix and so it is not hard to estimate the eigenvalues. Just get
the characteristic equation, graph it using a calculator and zoom in to find the eigenvalues.
If you do this, you find there is an eigenvalue near −1.2, one near −.4, and one near 5.5.
(The characteristic equation is 2 + 8λ + 4λ2 − λ3 = 0.) Of course we have no idea what the
eigenvectors are.

Lets first try to find the eigenvector and a better approximation for the eigenvalue near
−1.2. In this case, let α = −1.2. Then

(A− αI)−1 =



−25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0
23. 214 286 30. 357 143 −45.0


 .

Then for the first iteration, letting u1 = (1, 1, 1)T
,



−25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0
23. 214 286 30. 357 143 −45.0







1
1
1


 =



−9. 285 714

5.0
8. 571 429




To get u2, we must divide by −9. 285 714. Thus

u2 =




1.0
−. 538 461 56
−. 923 077


 .

Do another iteration.


−25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0
23. 214 286 30. 357 143 −45.0







1.0
−. 538 461 56
−. 923 077


 =



−53. 241 762
26. 153 848
48. 406 596




Then to get u3 you divide by −53. 241 762. Thus

u3 =




1.0
−. 491 228 07
−. 909 184 71


 .

Now iterate again because the scaling factors are still changing quite a bit.


−25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0
23. 214 286 30. 357 143 −45.0







1.0
−. 491 228 07
−. 909 184 71


 =



−54. 149 712
26. 633 127
49. 215 317


 .

This time the scaling factor didn’t change too much. It is −54. 149 712. Thus

u4 =




1. 0
−. 491 842 45
−. 908 874 95


 .

Lets do one more iteration.


−25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0
23. 214 286 30. 357 143 −45.0







1. 0
−. 491 842 45
−. 908 874 95


 =



−54. 113 379
26. 614 631
49. 182 727


 .

You see at this point the scaling factors have definitely settled down and so it seems our
eigenvalue would be obtained by solving

1
λ− (−1.2)

= −54. 113 379
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and this yields λ = −1. 218 479 7 as an approximation to the eigenvalue and the eigenvector
would be obtained by dividing by −54. 113 379 which gives

u5 =




1. 000 000
−. 491 830 9
−. 908 883 0


 .

How well does it work?



2 1 3
2 1 1
3 2 1







1. 000 000
−. 491 830 9
−. 908 883 0


 =



−1. 218 5
. 599 29
1. 107 5




while

−1. 218 479 7




1. 000 000
−. 491 830 9
−. 908 883 0


 =



−1. 218 5
. 599 29
1. 107 5


 .

For practical purposes, this has found the eigenvalue near −1.2 as well as an eigenvector
associated with it.

Next we shall find the eigenvector and a more precise value for the eigenvalue near −.4.
In this case,

(A− αI)−1 =




8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5


 .

As before, we have no idea what the eigenvector is so we will again try (1, 1, 1)T
. Then to

find u2,




8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5







1
1
1


 =



−2. 741 935 4
3. 709 677 7
1. 290 322 6




The scaling factor is 3. 709 677 7. Thus

u2 =



−. 739 130 36

1. 0
. 347 826 07


 .

Now lets do another iteration.



8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5






−. 739 130 36

1. 0
. 347 826 07




=



−7. 089 761 6
9. 144 460 4
2. 377 279 2


 .

The scaling factor is 9. 144 460 4. Thus

u3 =



−. 775 306 72

1. 0
. 259 969 33


 .



296 NUMERICAL METHODS FOR SOLVING THE EIGENVALUE PROBLEM

Lets do another iteration. The scaling factors are still changing quite a bit.



8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5






−. 775 306 72

1. 0
. 259 969 33




=



−7. 659 496 8
9. 796 717 5
2. 603 589 5


 .

The scaling factor is now 9. 796 717 5. Therefore,

u4 =



−. 781 843 18

1.0
. 265 761 41


 .

Lets do another iteration.



8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5






−. 781 843 18

1.0
. 265 761 41




=



−7. 622 655 6
9. 757 313 9
2. 585 072 3


 .

Now the scaling factor is 9. 757 313 9 and so

u5 =



−. 781 224 8

1. 0
. 264 936 88


 .

We notice the scaling factors are not changing by much so the approximate eigenvalue is

1
λ + .4

= 9. 757 313 9

which shows λ = −. 297 512 78 is an approximation to the eigenvalue near .4. How well does
it work? 


2 1 3
2 1 1
3 2 1






−. 781 224 8

1. 0
. 264 936 88


 =




. 232 361 04
−. 297 512 72
−.0 787 375 2


 .

−. 297 512 78



−. 781 224 8

1. 0
. 264 936 88


 =




. 232 424 36
−. 297 512 78

−7. 882 210 8× 10−2


 .

It works pretty well. For practical purposes, the eigenvalue and eigenvector have now been
found. If you want better accuracy, you could just continue iterating.

Next we will find the eigenvalue and eigenvector for the eigenvalue near 5.5. In this case,

(A− αI)−1 =




29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0


 .

As before, we have no idea what the eigenvector is but we don’t want to give the impression
that you always need to start with the vector (1, 1, 1)T . Therefore, we shall let u1 =



14.2. THE SHIFTED INVERSE POWER METHOD 297

(1, 2, 3)T
. What follows is the iteration without all the comments between steps.




29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0







1
2
3


 =




1. 324× 102

86. 4
1. 26× 102


 .

S1 = 86. 4.

u2 =




1. 532 407 4
1.0

1. 458 333 3


 .




29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0







1. 532 407 4
1.0

1. 458 333 3


 =




95. 379 629
62. 388 888
90. 990 74




S2 = 95. 379 629.

u3 =




1. 0
. 654 111 25
. 953 985 05







29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0







1. 0
. 654 111 25
. 953 985 05


 =




62. 321 522
40. 764 974
59. 453 451




S3 = 62. 321 522.

u4 =




1.0
. 654 107 48
. 953 979 45







29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0







1.0
. 654 107 48
. 953 979 45


 =




62. 321 329
40. 764 848
59. 453 268




S4 = 62. 321 329. Looks like it is time to stop because this scaling factor is not changing
much from S3.

u5 =




1.0
. 654 107 49
. 953 979 46


 .

Then the approximation of the eigenvalue is gotten by solving

62. 321 329 =
1

λ− 5.5

which gives λ = 5. 516 045 9. Lets see how well it works.



2 1 3
2 1 1
3 2 1







1.0
. 654 107 49
. 953 979 46


 =




5. 516 045 9
3. 608 087

5. 262 194 4




5. 516 045 9




1.0
. 654 107 49
. 953 979 46


 =




5. 516 045 9
3. 608 086 9
5. 262 194 5


 .
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14.2.1 Complex Eigenvalues

What about complex eigenvalues? If your matrix is real, you won’t see these by graphing
the characteristic equation on your calculator. Will the shifted inverse power method find
these eigenvalues and their associated eigenvectors? The answer is yes. However, for a real
matrix, you must pick α to be complex. This is because the eigenvalues occur in conjugate
pairs so if you don’t pick it complex, it will be the same distance between any conjugate
pair of complex numbers and so nothing in the above argument for convergence implies you
will get convergence to a complex number. Also, the process of iteration will yield only real
vectors and scalars.

Example 14.2.5 Find the complex eigenvalues and corresponding eigenvectors for the ma-
trix, 


5 −8 6
1 0 0
0 1 0


 .

Here the characteristic equation is λ3 − 5λ2 + 8λ − 6 = 0. One solution is λ = 3. The
other two are 1+i and 1−i. We will apply the process to α = i so we will find the eigenvalue
closest to i.

(A− αI)−1 =



−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i




Then let u1 = (1, 1, 1)T for lack of any insight into anything better.


−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i







1
1
1




=




. 38 + . 66i

. 66 + . 62i

. 62 + . 34i




S2 = . 66 + . 62i.

u2 =




. 804 878 05 + . 243 902 44i
1.0

. 756 097 56− . 195 121 95i






−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i


 ·




. 804 878 05 + . 243 902 44i
1.0

. 756 097 56− . 195 121 95i




=




. 646 341 46 + . 817 073 17i

. 817 073 17 + . 353 658 54i
. 548 780 49− 6. 097 560 9× 10−2i




S3 = . 646 341 46 + . 817 073 17i. After more iterations, of this sort, you find S9 = 1.
002 748 5 + 2. 137 621 7× 10−4i and

u9 =




1.0
. 501 514 17− . 499 807 33i

1. 562 088 1× 10−3 − . 499 778 55i


 .
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Then 

−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i


 ·




1.0
. 501 514 17− . 499 807 33i

1. 562 088 1× 10−3 − . 499 778 55i




=




1. 000 407 8 + 1. 269 979× 10−3i
. 501 077 31− . 498 893 66i

8. 848 928× 10−4 − . 499 515 22i




S10 = 1. 000 407 8 + 1. 269 979× 10−3i.

u10 =




1.0
. 500 239 18− . 499 325 33i

2. 506 749 2× 10−4 − . 499 311 92i




The scaling factors are not changing much at this point

1. 000 407 8 + 1. 269 979× 10−3i =
1

λ− i

The approximate eigenvalue is then λ = . 999 590 76 + . 998 731 06i. This is pretty close to
1 + i. How well does the eigenvector work?




5 −8 6
1 0 0
0 1 0







1.0
. 500 239 18− . 499 325 33i

2. 506 749 2× 10−4 − . 499 311 92i




=




. 999 590 61 + . 998 731 12i
1.0

. 500 239 18− . 499 325 33i




(. 999 590 76 + . 998 731 06i)




1.0
. 500 239 18− . 499 325 33i

2. 506 749 2× 10−4 − . 499 311 92i




=




. 999 590 76 + . 998 731 06i
. 998 726 18 + 4. 834 203 9× 10−4i

. 498 928 9− . 498 857 22i




It took more iterations than before because α was not very close to 1 + i.
This illustrates an interesting topic which leads to many related topics. If you have a

polynomial, x4 + ax3 + bx2 + cx + d, you can consider it as the characteristic polynomial of
a certain matrix, called a companion matrix. In this case,




−a −b −c −d
1 0 0 0
0 1 0 0
0 0 1 0


 .

The above example was just a companion matrix for λ3 − 5λ2 + 8λ − 6. You can see the
pattern which will enable you to obtain a companion matrix for any polynomial of the form
λn + a1λ

n−1 + · · · + an−1λ + an. This illustrates that one way to find the complex zeros
of a polynomial is to use the shifted inverse power method on a companion matrix for the
polynomial. Doubtless there are better ways but this does illustrate how impressive this
procedure is. Do you have a better way?
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14.3 The Rayleigh Quotient

There are many specialized results concerning the eigenvalues and eigenvectors for Hermitian
matrices. A matrix, A is Hermitian if A = A∗ where A∗ means to take the transpose of the
conjugate of A. In the case of a real matrix, Hermitian reduces to symmetric. Recall also
that for x ∈ Fn,

|x|2 = x∗x =
n∑

j=1

|xj |2 .

The following corollary gives the theoretical foundation for the spectral theory of Her-
mitian matrices. This is a corollary of a theorem which is proved Corollary 12.2.14 and
Theorem 12.2.13 on Page 257.

Corollary 14.3.1 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors.

Thus for {xk}n
k=1 this orthonormal basis,

x∗i xj = δij ≡
{

1 if i = j
0 if i 6= j

For x ∈ Fn, x 6= 0, the Rayleigh quotient is defined by

x∗Ax

|x|2 .

Now let the eigenvalues of A be λ1 ≤ λ2 ≤ · · · ≤ λn and Axk = λkxk where {xk}n
k=1 is

the above orthonormal basis of eigenvectors mentioned in the corollary. Then if x is an
arbitrary vector, there exist constants, ai such that

x =
n∑

i=1

aixi.

Also,

|x|2 =
n∑

i=1

aix∗i

n∑

j=1

ajxj

=
∑

ij

aiajx∗i xj =
∑

ij

aiajδij =
n∑

i=1

|ai|2 .

Therefore,

x∗Ax

|x|2 =
(
∑n

i=1 aix∗i )
(∑n

j=1 ajλjxj

)

∑n
i=1 |ai|2

=

∑
ij aiajλjx∗i xj∑n

i=1 |ai|2
=

∑
ij aiajλjδij∑n

i=1 |ai|2

=
∑n

i=1 |ai|2 λi∑n
i=1 |ai|2

∈ [λ1, λn] .

In other words, the Rayleigh quotient is always between the largest and the smallest eigenval-
ues of A. When x = xn, the Rayleigh quotient equals the largest eigenvalue and when x = x1

the Rayleigh quotient equals the smallest eigenvalue. Suppose you calculate a Rayleigh quo-
tient. How close is it to some eigenvalue?
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Theorem 14.3.2 Let x 6= 0 and form the Rayleigh quotient,

x∗Ax

|x|2 ≡ q.

Then there exists an eigenvalue of A, denoted here by λq such that

|λq − q| ≤ |Ax− qx|
|x| . (14.3)

Proof: Let x =
∑n

k=1 akxk where {xk}n
k=1 is the orthonormal basis of eigenvectors.

|Ax− qx|2 = (Ax− qx)∗ (Ax− qx)

=

(
n∑

k=1

akλkxk − qakxk

)∗(
n∑

k=1

akλkxk − qakxk

)

=




n∑

j=1

(λj − q) ajx∗j




(
n∑

k=1

(λk − q) akxk

)

=
∑

j,k

(λj − q) aj (λk − q) akx∗jxk

=
n∑

k=1

|ak|2 (λk − q)2

Now pick the eigenvalue, λq which is closest to q. Then

|Ax− qx|2 =
n∑

k=1

|ak|2 (λk − q)2 ≥ (λq − q)2
n∑

k=1

|ak|2 = (λq − q)2 |x|2

which implies 14.3.

Example 14.3.3 Consider the symmetric matrix, A =




1 2 3
2 2 1
3 1 4


 . Let x =(1, 1, 1)T

.

How close is the Rayleigh quotient to some eigenvalue of A? Find the eigenvector and eigen-
value to several decimal places.

Everything is real and so there is no need to worry about taking conjugates. Therefore,
the Rayleigh quotient is

(
1 1 1

)



1 2 3
2 2 1
3 1 4







1
1
1




3
=

19
3
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According to the above theorem, there is some eigenvalue of this matrix, λq such that

∣∣∣∣λq − 19
3

∣∣∣∣ ≤

∣∣∣∣∣∣




1 2 3
2 2 1
3 1 4







1
1
1


− 19

3




1
1
1




∣∣∣∣∣∣
√

3

=
1√
3




− 1
3

− 4
3

5
3




=

√
1
9 +

(
4
3

)2 +
(

5
3

)2

√
3

= 1. 247 2

Could you find this eigenvalue and associated eigenvector? Of course you could. This is
what the inverse shifted power method is all about.

Solve 





1 2 3
2 2 1
3 1 4


− 19

3




1 0 0
0 1 0
0 0 1










x
y
z


 =




1
1
1




In other words solve 


− 16
3 2 3

2 − 13
3 1

3 1 − 7
3







x
y
z


 =




1
1
1




and divide by the entry which is largest, 3. 870 7, to get

u2 =




. 699 25

. 493 89
1.0




Now solve 


− 16
3 2 3

2 − 13
3 1

3 1 − 7
3







x
y
z


 =




. 699 25

. 493 89
1.0




and divide by the entry with largest absolute value, 2. 997 9 to get

u3 =




. 714 73

. 522 63
1. 0




Now solve 


− 16
3 2 3

2 − 13
3 1

3 1 − 7
3







x
y
z


 =




. 714 73

. 522 63
1. 0




and divide by the entry with largest absolute value, 3. 045 4, to get

u4 =




. 713 7
. 520 56

1.0
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Solve 


− 16
3 2 3

2 − 13
3 1

3 1 − 7
3







x
y
z


 =




. 713 7
. 520 56

1.0




and divide by the largest entry, 3. 042 1 to get

u5 =




. 713 78

. 520 73
1.0




You can see these scaling factors are not changing much. The predicted eigenvalue is ob-
tained by solving

1
λ− 19

3

= 3. 042 1

to obtain λ = 6. 6621. How close is this?



1 2 3
2 2 1
3 1 4







. 713 78

. 520 73
1.0


 =




4. 755 2
3. 469

6. 662 1




while

6. 662 1




. 713 78

. 520 73
1.0


 =




4. 755 3
3. 469 2
6. 662 1


 .

You see that for practical purposes, this has found the eigenvalue and an eigenvector.

14.4 Exercises

1. In Example 14.3.3 an eigenvalue was found correct to several decimal places along
with an eigenvector. Find the other eigenvalues along with their eigenvectors.

2. Using the power method, find the eigenvalue correct to one decimal place having largest

absolute value for the matrix, A =




0 −4 −4
7 10 5
−2 0 6


 along with an eigenvector

associated with this eigenvalue.

3. Using the power method, find the eigenvalue correct to one decimal place having

largest absolute value for the matrix, A =




15 6 1
−5 2 1
1 2 7


 along with an eigenvector

associated with this eigenvalue.

4. Using the power method, find the eigenvalue correct to one decimal place having

largest absolute value for the matrix, A =




10 4 2
−3 2 −1
0 0 4


 along with an eigenvector

associated with this eigenvalue.
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5. Using the power method, find the eigenvalue correct to one decimal place having largest

absolute value for the matrix, A =




15 14 −3
−13 −18 9
5 10 −1


 along with an eigenvector

associated with this eigenvalue.

6. Find the eigenvalues and eigenvectors of the matrix, A =




3 2 1
2 1 3
1 3 2


 numerically.

In this case the exact eigenvalues are ±√3, 6. Compare with the exact answers.

7. Find the eigenvalues and eigenvectors of the matrix, A =




3 2 1
2 5 3
1 3 2


 numerically.

The exact eigenvalues are 2, 4 +
√

15, 4 −√15. Compare your numerical results with
the exact values. Is it much fun to compute the exact eigenvectors?

8. Find the eigenvalues and eigenvectors of the matrix, A =




0 2 1
2 5 3
1 3 2


 numerically.

We don’t know the exact eigenvalues in this case. Check your answers by multiplying
your numerically computed eigenvectors by the matrix.

9. Find the eigenvalues and eigenvectors of the matrix, A =




0 2 1
2 0 3
1 3 2


 numerically.

We don’t know the exact eigenvalues in this case. Check your answers by multiplying
your numerically computed eigenvectors by the matrix.

10. Consider the matrix, A =




3 2 3
2 1 4
3 4 0


 and the vector (1, 1, 1)T

. Estimate the dis-

tance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

11. Consider the matrix, A =




1 2 1
2 1 4
1 4 5


 and the vector (1, 1, 1)T

. Estimate the dis-

tance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

12. Consider the matrix, A =




3 2 3
2 6 4
3 4 −3


 and the vector (1, 1, 1)T

. Estimate the

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

13. Using Gerschgorin’s theorem, find upper and lower bounds for the eigenvalues of A =


3 2 3
2 6 4
3 4 −3


 .



Vector Spaces

It is time to consider the idea of a Vector space.

Definition 15.0.1 A vector space is an Abelian group of “vectors” satisfying the axioms of
an Abelian group,

v + w = w + v,

the commutative law of addition,

(v + w) + z = v+(w + z) ,

the associative law for addition,
v + 0 = v,

the existence of an additive identity,

v+(−v) = 0,

the existence of an additive inverse, along with a field of “scalars”, F which are allowed to
multiply the vectors according to the following rules. (The Greek letters denote scalars.)

α (v + w) = αv+αw, (15.1)

(α + β)v =αv+βv, (15.2)

α (βv) = αβ (v) , (15.3)

1v = v. (15.4)

The field of scalars is usually R or C and the vector space will be called real or complex
depending on whether the field is R or C. However, other fields are also possible. For
example, one could use the field of rational numbers or even the field of the integers mod p
for p a prime. A vector space is also called a linear space.

For example, Rn with the usual conventions is an example of a real vector space and Cn

is an example of a complex vector space. Up to now, the discussion has been for Rn or Cn

and all that is taking place is an increase in generality and abstraction.

Definition 15.0.2 If {v1, · · · ,vn} ⊆ V, a vector space, then

span (v1, · · · ,vn) ≡
{

n∑

i=1

αivi : αi ∈ F
}

.

A subset, W ⊆ V is said to be a subspace if it is also a vector space with the same field of
scalars. Thus W ⊆ V is a subspace if ax + by ∈ W whenever a, b ∈ F and x, y ∈ W. The
span of a set of vectors as just described is an example of a subspace.

305
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Definition 15.0.3 If {v1, · · · ,vn} ⊆ V, the set of vectors is linearly independent if

n∑

i=1

αivi = 0

implies
α1 = · · · = αn = 0

and {v1, · · · ,vn} is called a basis for V if

span (v1, · · · ,vn) = V

and {v1, · · · ,vn} is linearly independent. The set of vectors is linearly dependent if it is not
linearly independent.

The next theorem is called the exchange theorem. It is very important that you under-
stand this theorem. There are two kinds of people who go further in linear algebra, those
who understand this theorem and its corollary presented later and those who don’t. Those
who do understand these theorems are able to proceed and learn more linear algebra while
those who don’t are doomed to wander in the wilderness of confusion and sink into the
swamp of despair. Therefore, I am giving multiple proofs. Try to understand at least one
of them. Several amount to the same thing, just worded differently.

Theorem 15.0.4 Let {x1, · · · ,xr} be a linearly independent set of vectors such that each
xi is in the span{y1, · · · ,ys} . Then r ≤ s.

Proof 1: Let

xk =
s∑

j=1

ajkyj

If r > s, then the matrix A = (ajk) has more columns than rows. By Corollary 7.2.8
one of these columns is a linear combination of the others. This implies there exist scalars
c1, · · · , cr such that

r∑

k=1

ajkck = 0, j = 1, · · · , r

Then
r∑

k=1

ckxk =
r∑

k=1

ck

s∑

j=1

ajkyj =
s∑

j=1

(
r∑

k=1

ckajk

)
yj = 0

which contradicts the assumption that {x1, · · · ,xr} is linearly independent. Hence r ≤ s.
Proof 2: Define span{y1, · · · ,ys} ≡ V, it follows there exist scalars, c1, · · · , cs such

that

x1 =
s∑

i=1

ciyi. (15.5)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · · ,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +∑r

i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · · ,xr} which equals zero.

Say ck 6= 0. Then solve (15.5) for yk and obtain

yk ∈ span


x1,

s-1 vectors here︷ ︸︸ ︷
y1, · · · ,yk−1,yk+1, · · · ,ys


 .
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Define {z1, · · · , zs−1} by

{z1, · · · , zs−1} ≡ {y1, · · · ,yk−1,yk+1, · · · ,ys}

Therefore, span {x1, z1, · · · , zs−1} = V because if v ∈ V, there exist constants c1, · · · , cs

such that

v =
s−1∑

i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors, {x1, z1, · · · , zs−1}
to obtain v ∈ span {x1, z1, · · · , zs−1} . The vector yk, in the list {y1, · · · ,ys} , has now been
replaced with the vector x1 and the resulting modified list of vectors has the same span as
the original list of vectors, {y1, · · · ,ys} .

Now suppose that r > s and that span {x1, · · · ,xl, z1, · · · , zp} = V where the vectors,
z1, · · · , zp are each taken from the set, {y1, · · · ,ys} and l + p = s. This has now been done
for l = 1 above. Then since r > s, it follows that l ≤ s < r and so l + 1 ≤ r. Therefore, xl+1

is a vector not in the list, {x1, · · · ,xl} and since span {x1, · · · ,xl, z1, · · · , zp} = V there
exist scalars, ci and dj such that

xl+1 =
l∑

i=1

cixi +
p∑

j=1

djzj . (15.6)

Now not all the dj can equal zero because if this were so, it would follow that {x1, · · · ,xr}
would be a linearly dependent set because one of the vectors would equal a linear combination
of the others. Therefore, (15.6) can be solved for one of the zi, say zk, in terms of xl+1 and
the other zi and just as in the above argument, replace that zi with xl+1 to obtain

span


x1, · · ·xl,xl+1,

p-1 vectors here︷ ︸︸ ︷
z1, · · · zk−1, zk+1, · · · , zp


 = V.

Continue this way, eventually obtaining

span (x1, · · · ,xs) = V.

But then xr ∈ span {x1, · · · ,xs} contrary to the assumption that {x1, · · · ,xr} is linearly
independent. Therefore, r ≤ s as claimed.

Proof 3: Let V ≡ span (y1, · · · ,ys) and suppose r > s. Let Al ≡ {x1, · · · ,xl} , A0 = ∅,
and let Bs−l denote a subset of the vectors, {y1, · · · ,ys} which contains s − l vectors and
has the property that span (Al, Bs−l) = V. Note that the assumption of the theorem says
span (A0, Bs) = V.

Now an exchange operation is given for span (Al, Bs−l) = V . Since r > s, it follows
l < r. Letting

Bs−l ≡ {z1, · · · , zs−l} ⊆ {y1, · · · ,ys} ,

it follows there exist constants, ci and di such that

xl+1 =
l∑

i=1

cixi +
s−l∑

i=1

dizi,

and not all the di can equal zero. (If they were all equal to zero, it would follow that the set,
{x1, · · · ,xr} would be dependent since one of the vectors in it would be a linear combination
of the others.)
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Let dk 6= 0. Then zk can be solved for as follows.

zk =
1
dk

xl+1 −
l∑

i=1

ci

dk
xi −

∑

i 6=k

di

dk
zi.

This implies V = span (Al+1, Bs−l−1), where Bs−l−1 ≡ Bs−l \{zk} , a set obtained by delet-
ing zk from Bk−l. You see, the process exchanged a vector in Bs−l with one from {x1, · · · ,xr}
and kept the span the same. Starting with V = span (A0, Bs) , do the exchange operation
until V = span (As−1, z) where z ∈ {y1, · · · ,ys} . Then one more application of the exchange
operation yields V = span (As) . But this implies xr ∈ span (As) = span (x1, · · · ,xs) , con-
tradicting the linear independence of {x1, · · · ,xr} . It follows that r ≤ s as claimed.

Proof 4: Suppose r > s. Let zk denote a vector of {y1, · · · ,ys} . Thus there exists j as
small as possible such that

span (y1, · · · ,ys) = span (x1, · · · ,xm, z1, · · · , zj)

where m + j = s. It is given that m = 0, corresponding to no vectors of {x1, · · · ,xm} and
j = s, corresponding to all the yk results in the above equation holding. If j > 0 then m < s
and so

xm+1 =
m∑

k=1

akxk +
j∑

i=1

bizi

Not all the bi can equal 0 and so you can solve for one of them in terms of xm+1,xm, · · · ,x1,
and the other zk. Therefore, there exists

{z1, · · · , zj−1} ⊆ {y1, · · · ,ys}

such that
span (y1, · · · ,ys) = span (x1, · · · ,xm+1, z1, · · · , zj−1)

contradicting the choice of j. Hence j = 0 and

span (y1, · · · ,ys) = span (x1, · · · ,xs)

It follows that
xs+1 ∈ span (x1, · · · ,xs)

contrary to the assumption the xk are linearly independent. Therefore, r ≤ s as claimed.
This proves the theorem.

Corollary 15.0.5 If {u1, · · · ,um} and {v1, · · · ,vn} are two bases for V, then m = n.

Proof: By Theorem 15.0.4, m ≤ n and n ≤ m.
This corollary is very important so here is another proof of it given independent of the

exchange theorem above.

Theorem 15.0.6 Let V be a vector space and suppose {u1, · · · ,uk} and {v1, · · · ,vm} are
two bases for V . Then k = m.

Proof: Suppose k > m. Then since the vectors, {u1, · · · ,uk} span V, there exist scalars,
cij such that

m∑

i=1

cijvi = uj .
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Therefore,
k∑

j=1

djuj = 0 if and only if
k∑

j=1

m∑

i=1

cijdjvi = 0

if and only if
m∑

i=1




k∑

j=1

cijdj


vi = 0

Now since{v1, · · · ,vn} is independent, this happens if and only if

k∑

j=1

cijdj = 0, i = 1, 2, · · · ,m.

However, this is a system of m equations in k variables, d1, · · · , dk and m < k. Therefore,
there exists a solution to this system of equations in which not all the dj are equal to zero.
Recall why this is so. The augmented matrix for the system is of the form

(
C 0

)
where

C is a matrix which has more columns than rows. Therefore, there are free variables and
hence nonzero solutions to the system of equations. However, this contradicts the linear
independence of {u1, · · · ,uk} because, as explained above,

∑k
j=1 djuj = 0. Similarly it

cannot happen that m > k. This proves the theorem.

Definition 15.0.7 A vector space V is of dimension n if it has a basis consisting of n
vectors. This is well defined thanks to Corollary 15.0.5. It is always assumed here that
n < ∞ in this case, such a vector space is said to be finite dimensional.

Theorem 15.0.8 If V = span (u1, · · · ,un) then some subset of {u1, · · · ,un} is a basis for
V. Also, if {u1, · · · ,uk} ⊆ V is linearly independent and the vector space is finite dimen-
sional, then the set, {u1, · · · ,uk}, can be enlarged to obtain a basis of V.

Proof: Let
S = {E ⊆ {u1, · · · ,un} such that span (E) = V }.

For E ∈ S, let |E| denote the number of elements of E. Let

m ≡ min{|E| such that E ∈ S}.
Thus there exist vectors

{v1, · · · ,vm} ⊆ {u1, · · · ,un}
such that

span (v1, · · · ,vm) = V

and m is as small as possible for this to happen. If this set is linearly independent, it follows
it is a basis for V and the theorem is proved. On the other hand, if the set is not linearly
independent, then there exist scalars,

c1, · · · , cm

such that

0 =
m∑

i=1

civi

and not all the ci are equal to zero. Suppose ck 6= 0. Then the vector, vk may be solved for
in terms of the other vectors. Consequently,

V = span (v1, · · · ,vk−1,vk+1, · · · ,vm)
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contradicting the definition of m. This proves the first part of the theorem.
To obtain the second part, begin with {u1, · · · ,uk} and suppose a basis for V is

{v1, · · · ,vn} .

If
span (u1, · · · ,uk) = V,

then k = n. If not, there exists a vector,

uk+1 /∈ span (u1, · · · ,uk) .

Then {u1, · · · ,uk,uk+1} is also linearly independent. Continue adding vectors in this way
until n linearly independent vectors have been obtained. Then span (u1, · · · ,un) = V
because if it did not do so, there would exist un+1 as just described and {u1, · · · ,un+1}
would be a linearly independent set of vectors having n+1 elements even though {v1, · · · , vn}
is a basis. This would contradict Theorem 15.0.4. Therefore, this list is a basis and this
proves the theorem.

It is useful to emphasize some of the ideas used in the above proof.

Lemma 15.0.9 Suppose v /∈ span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and that
d = 0. But if d 6= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk},

v = −
k∑

i=1

(ci

d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · · ,uk} implies each ci = 0 also. This proves the lemma.

Theorem 15.0.10 Let V be a nonzero subspace of a finite dimensional vector space, W of
dimension, n. Then V has a basis with no more than n vectors.

Proof: Let v1 ∈ V where v1 6= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 15.0.9 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} 6= V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem, Theorems 15.0.4. This proves the theorem.

15.1 Exercises

1. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

2. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1

}
. Is M a subspace? Explain.

3. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be
concluded they span F5? Explain.

4. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.
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5. Show in any vector space, 0 is unique.

6. In any vector space, show that if x + y = 0, then y = −x.

7. Show that in any vector space, 0x = 0. That is, the scalar 0 times the vector x gives
the vector 0.

8. Show that in any vector space, (−1)x = −x.

9. Let X be a vector space and suppose {x1, · · · ,xk} is a set of vectors from X. Show
that 0 is in span (x1, · · · ,xk) .

10. Let X consist of the real valued functions which are defined on the unit interval, [0, 1] .
For f, g ∈ X, f+g is the name of the function which satisfies (f + g) (x) = f (x)+g (x)
and for α a real number, (αf) (x) ≡ α (f (x)). Show this is a vector space. Also explain
why it cannot possibly be finite dimensional.

11. Let the vectors be polynomials of degree no more than 3. Show that with the
usual definitions of scalar multiplication and addition wherein for p (x) a polynomial,
(αp) (x) = αp (x) and for p, q polynomials (p + q) (x) ≡ p (x) + q (x) , this is a vector
space.

12. In the previous problem show that a basis for the vector space is
{
1, x, x2, x3

}
.

13. Suppose V is a finite dimensional vector space. Based on the exchange theorem above,
it was shown that any two bases have the same number of vectors in them. Give a
different proof of this fact using the earlier material in the book. Hint: Suppose
{x1, · · · , xn} and {y1, · · · , ym} are two bases with m < n. Then define

φ : Fn → V, ψ : Fm → V

by

φ (a) ≡
n∑

k=1

akxk, ψ (b) ≡
m∑

j=1

bjyj

Consider the linear transformation, ψ−1◦φ. Argue it is a one to one and onto mapping
from Fn to Fm. Now consider a matrix of this linear transformation and its row reduced
echelon form.

14. This and the following problems will present most of a differential equations course.
To begin with, consider the scalar initial value problem

y′ = ay, y (t0) = y0

When a is real, show the unique solution to this problem is y = y0e
a(t−t0). Next

suppose
y′ = (a + ib) y, y (t0) = y0 (15.7)

where y (t) = u (t) + iv (t) . Show there exists a unique solution and it is

y (t) = y0e
a(t−t0) (cos b (t− t0) + i sin b (t− t0))

≡ e(a+ib)(t−t0)y0. (15.8)

Next show that for a real or complex there exists a unique solution to the initial value
problem

y′ = ay + f, y (t0) = y0
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and it is given by

y (t) = ea(t−t0)y0 + eat

∫ t

t0

e−asf (s) ds.

Hint: For the first part write as y′ − ay = 0 and multiply both sides by e−at. Then
expain why you get

d

dt

(
e−aty (t)

)
= 0, y (t0) = 0.

Now you finish the argument. To show uniqueness in the second part, suppose

y′ = (a + ib) y, y (0) = 0

and verify this requires y (t) = 0. To do this, note

y′ = (a− ib) y, y (0) = 0

and that

d

dt
|y (t)|2 = y′ (t) y (t) + y′ (t) y (t)

= (a + ib) y (t) y (t) + (a− ib) y (t) y (t)

= 2a |y (t)|2 , |y|2 (t0) = 0

Thus from the first part |y (t)|2 = 0e−2at = 0. Finally observe by a simple computation
that 15.7 is solved by 15.8. For the last part, write the equation as

y′ − ay = f

and multiply both sides by e−at and then integrate from t0 to t using the initial
condition.

15. Now consider A an n×n matrix. By Schur’s theorem there exists unitary Q such that

Q−1AQ = T

where T is upper triangular. Now consider the first order initial value problem

x′ = Ax, x (t0) = x0.

Show there exists a unique solution to this first order system. Hint: Let y = Q−1x
and so the system becomes

y′ = Ty, y (t0) = Q−1x0 (15.9)

Now letting y =(y1, · · · , yn)T
, the bottom equation becomes

y′n = tnnyn, yn (t0) =
(
Q−1x0

)
n

.

Then use the solution you get in this to get the solution to the initial value problem
which occurs one level up, namely

y′n−1 = t(n−1)(n−1)yn−1 + t(n−1)nyn, yn−1 (t0) =
(
Q−1x0

)
n−1

Continue doing this to obtain a unique solution to 15.9.
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16. Now suppose Φ (t) is an n× n matrix of the form

Φ (t) =
(

x1 (t) · · · xn (t)
)

(15.10)

where
x′k (t) = Axk (t) .

Explain why
Φ′ (t) = AΦ(t)

if and only if Φ (t) is given in the form of 15.10. Also explain why if c ∈ Fn,

y (t) ≡ Φ(t) c

solves the equation
y′ (t) = Ay (t) .

17. In the above problem, consider the question whether all solutions to

x′ = Ax (15.11)

are obtained in the form Φ (t) c for some choice of c ∈ Fn. In other words, is the
general solution to this equation Φ (t) c for c ∈ Fn? Prove the following theorem using
linear algebra.

Theorem 15.1.1 Suppose Φ(t) is an n× n matrix which satisfies

Φ′ (t) = AΦ (t) .

Then the general solution to 15.11 is Φ(t) c if and only if Φ (t)−1 exists for some t.

Furthermore, if Φ′ (t) = AΦ(t) , then either Φ(t)−1 exists for all t or Φ(t)−1 never
exists for any t.

(det (Φ (t)) is called the Wronskian and this theorem is sometimes called the Wronskian
alternative.)

Hint: Suppose first the general solution is of the form Φ (t) c where c is an arbitrary
constant vector in Fn. You need to verify Φ (t)−1 exists for some t. In fact, show
Φ (t)−1 exists for every t. Suppose then that Φ (t0)

−1 does not exist. Explain why
there exists c ∈ Fn such that there is no solution x to

c = Φ (t0)x

By the existence part of Problem 15 there exists a solution to

x′ = Ax, x (t0) = c

but this cannot be in the form Φ (t) c. Thus for every t, Φ (t)−1 exists. Next suppose
for some t0, Φ(t0)

−1 exists. Let z′ = Az and choose c such that

z (t0) = Φ (t0) c

Then both z (t) ,Φ(t) c solve

x′ = Ax, x (t0) = z (t0)

Apply uniqueness to conclude z = Φ (t) c. Finally, consider that Φ (t) c for c ∈ Fn

either is the general solution or it is not the general solution. If it is, then Φ (t)−1

exists for all t. If it is not, then Φ (t)−1 cannot exist for any t from what was just
shown.
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18. Let Φ′ (t) = AΦ(t) . Then Φ (t) is called a fundamental matrix if Φ (t)−1 exists for all
t. Show there exists a unique solution to the equation

x′ = Ax + f , x (t0) = x0 (15.12)

and it is given by the formula

x (t) = Φ (t)Φ (t0)
−1 x0 + Φ(t)

∫ t

t0

Φ(s)−1 f (s) ds

Now these few problems have done virtually everything of significance in an entire un-
dergraduate differential equations course, illustrating the superiority of linear algebra.
The above formula is called the variation of constants formula.

Hint: Uniquenss is easy. If x1,x2 are two solutions then let u (t) = x1 (t)−x2 (t) and
argue u′ = Au, u (t0) = 0. Then use Problem 15. To verify there exists a solution, you
could just differentiate the above formula using the fundamental theorem of calculus
and verify it works. Another way is to assume the solution in the form

x (t) = Φ (t) c (t)

and find c (t) to make it all work out. This is called the method of variation of
parameters.

19. Show there exists a special Φ such that Φ′ (t) = AΦ(t) , Φ (0) = I, and suppose
Φ (t)−1 exists for all t. Show using uniqueness that

Φ (−t) = Φ (t)−1

and that for all t, s ∈ R
Φ (t + s) = Φ (t) Φ (s)

Explain why with this special Φ, the solution to 15.12 can be written as

x (t) = Φ (t− t0)x0 +
∫ t

t0

Φ(t− s) f (s) ds.

Hint: Let Φ (t) be such that the jth column is xj (t) where

x′j = Axj , xj (0) = ej .

Use uniqueness as required.



Linear Transformations

16.1 Matrix Multiplication As A Linear Transforma-
tion

Definition 16.1.1 Let V and W be two finite dimensional vector spaces. A function, L
which maps V to W is called a linear transformation and L ∈ L (V, W ) if for all scalars α
and β, and vectors v,w,

L (αv+βw) = αL (v) + βL (w) .

An example of a linear transformation is familiar matrix multiplication. Let A = (aij)
be an m× n matrix. Then an example of a linear transformation L : Fn → Fm is given by

(Lv)i ≡
n∑

j=1

aijvj .

Here

v ≡




v1

...
vn


 ∈ Fn.

16.2 L (V, W ) As A Vector Space

Definition 16.2.1 Given L, M ∈ L (V, W ) define a new element of L (V,W ) , denoted by
L + M according to the rule

(L + M)v ≡ Lv + Mv.

For α a scalar and L ∈ L (V, W ) , define αL ∈ L (V, W ) by

αL (v) ≡ α (Lv) .

You should verify that all the axioms of a vector space hold for L (V,W ) with the
above definitions of vector addition and scalar multiplication. What about the dimension
of L (V,W )?

Theorem 16.2.2 Let V and W be finite dimensional normed linear spaces of dimension n
and m respectively Then dim (L (V, W )) = mn.

Proof: Let the two sets of bases be

{v1, · · · ,vn} and {w1, · · · ,wm}
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for X and Y respectively. Let Eik ∈ L (V, W ) be the linear transformation defined on the
basis, {v1, · · · ,vn}, by

Eikvj ≡ wiδjk

where δik = 1 if i = k and 0 if i 6= k. Then let L ∈ L (V,W ). Since {w1, · · · ,wm} is a basis,
there exist constants, djk such that

Lvr =
m∑

j=1

djrwj

Also
m∑

j=1

n∑

k=1

djkEjk (vr) =
m∑

j=1

djrwj .

It follows that

L =
m∑

j=1

n∑

k=1

djkEjk

because the two linear transformations agree on a basis. Since L is arbitrary this shows

{Eik : i = 1, · · · ,m, k = 1, · · · , n}

spans L (V,W ).
If ∑

i,k

dikEik = 0,

then

0 =
∑

i,k

dikEik (vl) =
m∑

i=1

dilwi

and so, since {w1, · · · ,wm} is a basis, dil = 0 for each i = 1, · · · ,m. Since l is arbitrary,
this shows dil = 0 for all i and l. Thus these linear transformations form a basis and this
shows the dimension of L (V,W ) is mn as claimed.

16.3 Eigenvalues And Eigenvectors Of Linear Transfor-
mations

Let V be a finite dimensional vector space. For example, it could be a subspace of Cn. Also
suppose A ∈ L (V, V ) . Does A have eigenvalues and eigenvectors just like the case where A
is a n× n matrix?

Theorem 16.3.1 Let V be a nonzero finite dimensional complex vector space of dimension
n. Suppose also the field of scalars equals C.1 Suppose A ∈ L (V, V ) . Then there exists
v 6= 0 and λ ∈ C such that

Av = λv.

1All that is really needed is that the minimal polynomial can be completely factored in the given field.
The complex numbers have this property from the fundamental theorem of algebra.



16.3. EIGENVALUES AND EIGENVECTORS OF LINEAR TRANSFORMATIONS 317

Proof: Consider the linear transformations, I,A, A2, · · · , An2
. There are n2 +1 of these

transformations and so by Theorem 16.2.2 the set is linearly dependent. Thus there exist
constants, ci ∈ C such that

c0I +
n2∑

k=1

ckAk = 0.

This implies there exists a polynomial, q (λ) which has the property that q (A) = 0. In fact,
q (λ) ≡ c0 +

∑n2

k=1 ckλk. Dividing by the leading term, it can be assumed this polynomial
is of the form λm + cm−1λ

m−1 + · · ·+ c1λ + c0, a monic polynomial. Now consider all such
monic polynomials, q such that q (A) = 0 and pick one which has the smallest degree. This
is called the minimal polynomial and will be denoted here by p (λ) . By the fundamental
theorem of algebra, p (λ) is of the form

p (λ) =
p∏

k=1

(λ− λk) .

Thus, since p has minimal degree,

p∏

k=1

(A− λkI) = 0, but
p−1∏

k=1

(A− λkI) 6= 0.

Therefore, there exists u 6= 0 such that

v ≡
(

p−1∏

k=1

(A− λkI)

)
(u) 6= 0.

But then

(A− λpI) v = (A− λpI)

(
p−1∏

k=1

(A− λkI)

)
(u) = 0.

This proves the theorem.

Corollary 16.3.2 In the above theorem, each of the scalars, λk has the property that there
exists a nonzero v such that (A− λiI) v = 0. Furthermore the λi are the only scalars with
this property.

Proof: For the first claim, just factor out (A− λiI) instead of (A− λpI) . Next suppose
(A− µI) v = 0 for some µ and v 6= 0. Then

0 =
p∏

k=1

(A− λkI) v =
p−1∏

k=1

(A− λkI) (Av − λpv)

= (µ− λp)

(
p−1∏

k=1

(A− λkI)

)
v

= (µ− λp)

(
p−2∏

k=1

(A− λkI)

)
(Av − λp−1v)

= (µ− λp) (µ− λp−1)

(
p−2∏

k=1

(A− λkI)

)
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continuing this way yields

=
p∏

k=1

(µ− λk) v,

a contradiction unless µ = λk for some k.
Therefore, these are eigenvectors and eigenvalues with the usual meaning. This leads to

the following definition.

Definition 16.3.3 For A ∈ L (V, V ) where dim (V ) = n, the scalars, λk in the minimal
polynomial,

p (λ) =
p∏

k=1

(λ− λk)

are called the eigenvalues of A. The collection of eigenvalues of A is denoted by σ (A). For
λ an eigenvalue of A ∈ L (V, V ) , the generalized eigenspace is defined as

Vλ ≡ {x ∈ V : (A− λI)m
x = 0 for some m ∈ N}

and the eigenspace is defined as

{x ∈ V : (A− λI) x = 0} ≡ ker (A− λI) .

Also, for subspaces of V, V1, V2, · · · , Vr, the symbol, V1 + V2 + · · · + Vr or the shortened
version,

∑r
i=1 Vi will denote the set of all vectors of the form

∑r
i=1 vi where vi ∈ Vi.

Lemma 16.3.4 The generalized eigenspace for λ ∈ σ (A) where A ∈ L (V, V ) for V an n
dimensional vector space is a subspace, Vλ of V satisfying

A : Vλ → Vλ,

and there exists a smallest integer, m with the property that

ker (A− λI)m =
{

x ∈ V : (A− λI)k
x = 0 for some k ∈ N

}
. (16.1)

Proof: The claim that the generalized eigenspace is a subspace is obvious. To establish
the second part, note that {

ker (A− λI)k
}

yields an increasing sequence of subspaces. Eventually

dim (ker (A− λI)m) = dim
(
ker (A− λI)m+1

)

and so ker (A− λI)m = ker (A− λI)m+1. Now if x ∈ ker (A− λI)m+2
, then

(A− λI)x ∈ ker (A− λI)m+1 = ker (A− λI)m

and so there exists y ∈ ker (A− λI)m such that (A− λI)x = y and consequently

(A− λI)m+1 x = (A− λI)m y = 0

showing that x ∈ ker (A− λI)m+1
. Therefore, continuing this way, it follows that for all

k ∈ N,
ker (A− λI)m = ker (A− λI)m+k

.

Therefore, this shows 16.1.
The following theorem is of major importance and will be the basis for the very important

theorems concerning block diagonal matrices.
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Theorem 16.3.5 Let V be a complex vector space of dimension n and suppose σ (A) =
{λ1, · · · , λk} where the λi are the distinct eigenvalues of A. Denote by Vi the generalized
eigenspace for λi and let ri be the multiplicity of λi. By this is meant that

Vi = ker (A− λiI)ri (16.2)

and ri is the smallest integer with this property. Then

V =
k∑

i=1

Vi. (16.3)

Proof: This is proved by induction on k. First suppose there is only one eigenvalue, λ1

of algebraic multiplicity m. Then by the definition of eigenvalues given in Definition 16.3.3,
A satisfies an equation of the form

(A− λ1I)r = 0

where r is as small as possible for this to take place. Thus ker (A− λ1I)r = V and the
theorem is proved in the case of one eigenvalue.

Now suppose the theorem is true for any i ≤ k − 1 where k ≥ 2 and suppose σ (A) =
{λ1, · · · , λk} .

Claim 1: Let µ 6= λi, Then (A− µI)m : Vi → Vi and is one to one and onto for every
m ∈ N.

Proof: It is clear that (A− µI)m maps Vi to Vi because if v ∈ Vi then (A− λiI)k
v = 0

for some k ∈ N. Consequently,

(A− λiI)k (A− µI)m
v = (A− µI)m (A− λiI)k

v = (A− µI)m 0 = 0

which shows that (A− µI)m
v ∈ Vi.

It remains to verify that (A− µI)m is one to one. This will be done by showing that
(A− µI) is one to one. Let w ∈ Vi and suppose (A− µI)w = 0 so that Aw = µw. Then for
some m ∈ N, (A− λiI)m

w = 0 and so by the binomial theorem,

(µ− λi)
m

w =
m∑

l=0

(
m

l

)
(−λi)

m−l
µlw

m∑

l=0

(
m

l

)
(−λi)

m−l
Alw = (A− λiI)m

w = 0.

Therefore, since µ 6= λi, it follows w = 0 and this verifies (A− µI) is one to one. Thus
(A− µI)m is also one to one on Vi Letting

{
ui

1, · · · , ui
rk

}
be a basis for Vi, it follows{

(A− µI)m
ui

1, · · · , (A− µI)m
ui

rk

}
is also a basis and so (A− µI)m is also onto.

Let p be the smallest integer such that ker (A− λkI)p = Vk and define

W ≡ (A− λkI)p (V ) .

Claim 2: A : W → W and λk is not an eigenvalue for A restricted to W.
Proof: Suppose to the contrary that

A (A− λkI)p
u = λk (A− λkI)p

u

where (A− λkI)p
u 6= 0. Then subtracting λk (A− λkI)p

u from both sides yields

(A− λkI)p+1
u = 0
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and so u ∈ ker ((A− λkI)p) from the definition of p. But this requires (A− λkI)p
u = 0

contrary to (A− λkI)p
u 6= 0. This has verified the claim.

It follows from this claim that the eigenvalues of A restricted to W are a subset of
{λ1, · · · , λk−1} . Letting

V ′
i ≡

{
w ∈ W : (A− λi)

l
w = 0 for some l ∈ N

}
,

it follows from the induction hypothesis that

W =
k−1∑

i=1

V ′
i ⊆

k−1∑

i=1

Vi.

From Claim 1, (A− λkI)p maps Vi one to one and onto Vi. From the definition of W , if
x ∈ V, then (A− λkI)p

x ∈ W. It follows there exist xi ∈ Vi such that

(A− λkI)p
x =

k−1∑

i=1

∈Vi︷ ︸︸ ︷
(A− λkI)p

xi.

Consequently

(A− λkI)p




∈Vk︷ ︸︸ ︷

x−
k−1∑

i=1

xi




= 0

and so there exists xk ∈ Vk such that

x−
k−1∑

i=1

xi = xk

and this proves the theorem.

Definition 16.3.6 Let {Vi}r
i=1 be subspaces of V which have the property that if vi ∈ Vi

and
r∑

i=1

vi = 0, (16.4)

then vi = 0 for each i. Under this condition, a special notation is used to denote
∑r

i=1 Vi.
This notation is

V1 ⊕ · · · ⊕ Vr

and it is called a direct sum of subspaces.

Theorem 16.3.7 Let {Vi}m
i=1 be subspaces of V which have the property 16.4 and let Bi ={

ui
1, · · · , ui

ri

}
be a basis for Vi. Then {B1, · · · , Bm} is a basis for V1 ⊕ · · · ⊕ Vm =

∑m
i=1 Vi.

Proof: It is clear that span (B1, · · · , Bm) = V1⊕· · ·⊕Vm. It only remains to verify that
{B1, · · · , Bm} is linearly independent. Arbitrary elements of span (B1, · · · , Bm) are of the
form

m∑

k=1

ri∑

i=1

ck
i uk

i .
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Suppose then that
m∑

k=1

ri∑

i=1

ck
i uk

i = 0.

Since
∑ri

i=1 ck
i uk

i ∈ Vk it follows
∑ri

i=1 ck
i uk

i = 0 for each k. But then ck
i = 0 for each

i = 1, · · · , ri. This proves the theorem.
The following corollary is the main result.

Corollary 16.3.8 Let V be a complex vector space of dimension, n and let A ∈ L (V, V ) .
Also suppose σ (A) = {λ1, · · · , λs} where the λi are distinct. Then letting Vλi

denote the
generalized eigenspace for λi,

V = Vλ1 ⊕ · · · ⊕ Vλs

and if Bi is a basis for Vλi , then {B1, B2, · · · , Bs} is a basis for V.

Proof: It is necessary to verify that the Vλi satisfy condition 16.4. Let

Vλi
= ker (A− λiI)ri

and suppose vi ∈ Vλi
and

∑k
i=1 vi = 0 where k ≤ s. It is desired to show this implies each

vi = 0. It is clearly true if k = 1. Suppose then that the condition holds for k − 1 and

k∑

i=1

vi = 0

and not all the vi = 0. By Claim 1 in the proof of Theorem 16.3.5, multiplying by (A− λkI)rk

yields
k−1∑

i=1

(A− λkI)rk vi =
k−1∑

i=1

v′i = 0

where v′i ∈ Vλi
. Now by induction, each v′i = 0 and so each vi = 0 for i ≤ k − 1. Therefore,

the sum,
∑k

i=1 vi reduces to vk and so vk = 0 also.
By Theorem 16.3.5,

∑s
i=1 Vλi

= Vλ1 ⊕ · · · ⊕ Vλs
= V and by Theorem 16.3.7

{B1, B2, · · · , Bs}

is a basis for V. This proves the corollary.

16.4 Block Diagonal Matrices

In this section the vector space will be Cn and the linear transformations will be n × n
matrices.

Definition 16.4.1 Let A and B be two n×n matrices. Then A is similar to B, written as
A ∼ B when there exists an invertible matrix, S such that A = S−1BS.

Theorem 16.4.2 Let A be an n×n matrix. Letting λ1, λ2, · · · , λr be the distinct eigenvalues
of A,arranged in any order, there exist square matrices, P1, · · · , Pr such that A is similar
to the block diagonal matrix,

P =




P1 · · · 0
...

. . .
...

0 · · · Pr
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in which Pk has the single eigenvalue λk. Denoting by rk the size of Pk it follows that rk

equals the dimension of the generalized eigenspace for λk,

rk = dim {x : (A− λkI)m x = 0 for some m} ≡ dim (Vλk
)

Furthermore, if S is the matrix satisfying S−1AS = P, then S is of the form
(

B1 · · · Br

)

where Bk =
(

uk
1 · · · uk

rk

)
in which the columns,

{
uk

1 , · · · ,uk
rk

}
= Dk constitute a basis

for Vλk
.

Proof: By Corollary 16.3.8 Cn = Vλ1 ⊕ · · · ⊕ Vλk
and a basis for Cn is {D1, · · · , Dr}

where Dk is a basis for Vλk
.

Let
S =

(
B1 · · · Br

)

where the Bi are the matrices described in the statement of the theorem. Then S−1 must
be of the form

S−1 =




C1

...
Cr




where CiBi = Iri×ri . Also, if i 6= j, then CiABj = 0 the last claim holding because
A : Vj → Vj so the columns of ABj are linear combinations of the columns of Bj and each
of these columns is orthogonal to the rows of Ci. Therefore,

S−1AS =




C1

...
Cr


A

(
B1 · · · Br

)

=




C1

...
Cr




(
AB1 · · · ABr

)

=




C1AB1 0 · · · 0
0 C2AB2 · · · 0
... 0

. . . 0
0 · · · 0 CrABr




and Crk
ABrk

is an rk × rk matrix.
What about the eigenvalues of Crk

ABrk
? The only eigenvalue of A restricted to Vλk

is
λk because if Ax = µx for some x ∈ Vλk

and µ 6= λk, then as in Claim 1 of Theorem 16.3.5,

(A− λkI)rk x 6= 0

contrary to the assumption that x ∈ Vλk
. Suppose then that Crk

ABrk
x = λx where x 6= 0.

Why is λ = λk? Let y = Brk
x so y ∈ Vλk

. Then

S−1Ay = S−1AS




0
...
x
...
0




=




0
...

Crk
ABrk

x
...
0




= λ




0
...
x
...
0
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and so

Ay = λS




0
...
x
...
0




= λy.

Therefore, λ = λk because, as noted above, λk is the only eigenvalue of A restricted to Vλk
.

Now letting Pk = Crk
ABrk

, this proves the theorem.
The above theorem contains a result which is of sufficient importance to state as a

corollary.

Corollary 16.4.3 Let A be an n× n matrix and let Dk denote a basis for the generalized
eigenspace for λk. Then {D1, · · · , Dr} is a basis for Cn.

More can be said. Recall Theorem 12.2.10 on Page 255. From this theorem, there exist
unitary matrices, Uk such that U∗

k PkUk = Tk where Tk is an upper triangular matrix of the
form 


λk · · · ∗
...

. . .
...

0 · · · λk


 ≡ Tk

Now let U be the block diagonal matrix defined by

U ≡




U1 · · · 0
...

. . .
...

0 · · · Ur


 .

By Theorem 16.4.2 there exists S such that

S−1AS =




P1 · · · 0
...

. . .
...

0 · · · Pr


 .

Therefore,

U∗SASU =




U∗
1 · · · 0
...

. . .
...

0 · · · U∗
r







P1 · · · 0
...

. . .
...

0 · · · Pr







U1 · · · 0
...

. . .
...

0 · · · Ur




=




U∗
1 P1U1 · · · 0

...
. . .

...
0 · · · U∗

r PrUr


 =




T1 · · · 0
...

. . .
...

0 · · · Tr


 .

This proves most of the following corollary of Theorem 16.4.2.

Corollary 16.4.4 Let A be an n × n matrix. Then A is similar to an upper triangular,
block diagonal matrix of the form

T ≡




T1 · · · 0
...

. . .
...

0 · · · Tr
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where Tk is an upper triangular matrix having only λk on the main diagonal. The diagonal
blocks can be arranged in any order desired. If Tk is an mk ×mk matrix, then

mk = dim {x : (A− λkI)m x = 0 for some m ∈ N} .

Furthermore, mk is the multiplicity of λk as a zero of the characteristic polynomial of A.

Proof: The only thing which remains is the assertion that mk equals the multiplicity
of λk as a zero of the characteristic polynomial. However, this is clear from the observation
that since T is similar to A they have the same characteristic polynomial because

det (A− λI) = det
(
S (T − λI)S−1

)

= det (S) det
(
S−1

)
det (T − λI)

= det
(
SS−1

)
det (T − λI)

= det (T − λI)

and the observation that since T is upper triangular, the characteristic polynomial of T is
of the form

r∏

k=1

(λk − λ)mk .

The above corollary has tremendous significance especially if it is pushed even further
resulting in the Jordan Canonical form. This form involves still more similarity transforma-
tions resulting in an especially revealing and simple form for each of the Tk, but the result
of the above corollary is sufficient for most applications.

It is significant because it enables one to obtain great understanding of powers of A by
using the matrix T. From Corollary 16.4.4 there exists an n× n matrix, S2 such that

A = S−1TS.

Therefore, A2 = S−1TSS−1TS = S−1T 2S and continuing this way, it follows

Ak = S−1T kS.

where T is given in the above corollary. Consider T k. By block multiplication,

T k =




T k
1 0

. . .
0 T k

r


 .

The matrix, Ts is an ms ×ms matrix which is of the form

Ts =




α · · · ∗
...

. . .
...

0 · · · α


 (16.5)

which can be written in the form
Ts = D + N

for D a multiple of the identity and N an upper triangular matrix with zeros down the main
diagonal. Therefore, by the Cayley Hamilton theorem, Nms = 0 because the characteristic

2The S here is written as S−1 in the corollary.
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equation for N is just λms = 0. Such a transformation is called nilpotent. You can see
Nms = 0 directly also, without having to use the Cayley Hamilton theorem. Now since D
is just a multiple of the identity, it follows that DN = ND. Therefore, the usual binomial
theorem may be applied and this yields the following equations for k ≥ ms.

T k
s = (D + N)k =

k∑

j=0

(
k

j

)
Dk−jN j

=
ms∑

j=0

(
k

j

)
Dk−jN j , (16.6)

the third equation holding because Nms = 0. Thus T k
s is of the form

T k
s =




αk · · · ∗
...

. . .
...

0 · · · αk


 .

Lemma 16.4.5 Suppose T is of the form Ts described above in 16.5 where the constant, α,
on the main diagonal is less than one in absolute value. Then

lim
k→∞

(
T k

)
ij

= 0.

Proof: From 16.6, it follows that for large k, and j ≤ ms,

(
k

j

)
≤ k (k − 1) · · · (k −ms + 1)

ms!
.

Therefore, letting C be the largest value of
∣∣∣
(
N j

)
pq

∣∣∣ for 0 ≤ j ≤ ms,

∣∣∣
(
T k

)
pq

∣∣∣ ≤ msC

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

which converges to zero as k → ∞. This is most easily seen by applying the ratio test to
the series ∞∑

k=ms

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

and then noting that if a series converges, then the kth term converges to zero.

16.5 The Matrix Of A Linear Transformation

If V is an n dimensional vector space and {v1, · · · ,vn} is a basis for V, there exists a linear
map

q : Fn → V

defined as

q (a) ≡
n∑

i=1

aivi

where

a =
n∑

i=1

aiei,
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for ei the standard basis vectors for Fn consisting of

ei ≡




0
...
1
...
0




where the one is in the ith slot. It is clear that q defined in this way, is one to one, onto,
and linear. For v ∈ V, q−1 (v) is a list of scalars called the components of v with respect to
the basis {v1, · · · ,vn}.
Definition 16.5.1 Given a linear transformation L, mapping V to W, where {v1, · · · ,vn}
is a basis of V and {w1, · · · ,wm} is a basis for W, an m× n matrix A = (aij)is called the
matrix of the transformation L with respect to the given choice of bases for V and W , if
whenever v ∈ V, then multiplication of the components of v by (aij) yields the components
of Lv.

The following diagram is descriptive of the definition. Here qV and qW are the maps
defined above with reference to the bases, {v1, · · · ,vn} and {w1, · · · ,wm} respectively.

L
{v1, · · · ,vn} V → W {w1, · · · ,wm}

qV ↑ ◦ ↑ qW

Fn → Fm

A

(16.7)

Letting b ∈ Fn, this requires
∑

i,j

aijbjwi = L
∑

j

bjvj =
∑

j

bjLvj .

Now
Lvj =

∑

i

cijwi (16.8)

for some choice of scalars cij because {w1, · · · ,wm} is a basis for W. Hence
∑

i,j

aijbjwi =
∑

j

bj

∑

i

cijwi =
∑

i,j

cijbjwi.

It follows from the linear independence of {w1, · · · ,wm} that
∑

j

aijbj =
∑

j

cijbj

for any choice of b ∈ Fn and consequently

aij = cij

where cij is defined by 16.8. It may help to write 16.8 in the form
(

Lv1 · · · Lvn

)
=

(
w1 · · · wm

)
C =

(
w1 · · · wm

)
A (16.9)

where C = (cij) , A = (aij) .
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Example 16.5.2 Let

V ≡ { polynomials of degree 3 or less},

W ≡ { polynomials of degree 2 or less},
and L ≡ D where D is the differentiation operator. A basis for V is {1,x, x2, x3} and a
basis for W is {1, x, x2}.

What is the matrix of this linear transformation with respect to this basis? Using 16.9,
(

0 1 2x 3x2
)

=
(

1 x x2
)
C.

It follows from this that

C =




0 1 0 0
0 0 2 0
0 0 0 3


 .

Now consider the important case where V = Fn, W = Fm, and the basis chosen is the
standard basis of vectors ei described above. Let L be a linear transformation from Fn to
Fm and let A be the matrix of the transformation with respect to these bases. In this case
the coordinate maps qV and qW are simply the identity map and the requirement that A is
the matrix of the transformation amounts to

πi (Lb) = πi (Ab)

where πi denotes the map which takes a vector in Fm and returns the ith entry in the vector,
the ith component of the vector with respect to the standard basis vectors. Thus, if the
components of the vector in Fn with respect to the standard basis are (b1, · · · , bn) ,

b =
(

b1 · · · bn

)T =
∑

i

biei,

then
πi (Lb) ≡ (Lb)i =

∑

j

aijbj .

What about the situation where different pairs of bases are chosen for V and W? How
are the two matrices with respect to these choices related? Consider the following diagram
which illustrates the situation.

Fn A2−→ Fm

q2 ↓ ◦ p2 ↓
V L−→ W

q1 ↑ ◦ p1 ↑
Fn A1−→ Fm

In this diagram qi and pi are coordinate maps as described above. From the diagram,

p−1
1 p2A2q

−1
2 q1 = A1,

where q−1
2 q1 and p−1

1 p2 are one to one, onto, and linear maps.

Definition 16.5.3 In the special case where V = W and only one basis is used for V = W,
this becomes

q−1
1 q2A2q

−1
2 q1 = A1.
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Letting S be the matrix of the linear transformation q−1
2 q1 with respect to the standard basis

vectors in Fn,
S−1A2S = A1. (16.10)

When this occurs, A1 is said to be similar to A2 and A → S−1AS is called a similarity
transformation.

Here is some terminology.

Definition 16.5.4 Let S be a set. The symbol, ∼ is called an equivalence relation on S if
it satisfies the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 16.5.5 [x] denotes the set of all elements of S which are equivalent to x and
[x] is called the equivalence class determined by x or just the equivalence class of x.

With the above definition one can prove the following simple theorem which you should
do if you have not seen it.

Theorem 16.5.6 Let ∼ be an equivalence class defined on a set, S and let H denote the
set of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either
x ∼ y and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.
Theorem 16.5.7 In the vector space of n× n matrices, define

A ∼ B

if there exists an invertible matrix S such that

A = S−1BS.

Then ∼ is an equivalence relation and A ∼ B if and only if whenever V is an n dimensional
vector space, there exists L ∈ L (V, V ) and bases {v1, · · · ,vn} and {w1, · · · ,wn} such that
A is the matrix of L with respect to {v1, · · · ,vn} and B is the matrix of L with respect to
{w1, · · · ,wn}.

Proof: A ∼ A because S = I works in the definition. If A ∼ B , then B ∼ A, because

A = S−1BS

implies
B = SAS−1.

If A ∼ B and B ∼ C, then
A = S−1BS, B = T−1CT

and so
A = S−1T−1CTS = (TS)−1

CTS

which implies A ∼ C. This verifies the first part of the conclusion.
Now let V be an n dimensional vector space, A ∼ B and pick a basis for V,

{v1, · · · ,vn}.
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Define L ∈ L (V, V ) by
Lvi ≡

∑

j

ajivj

where A = (aij) . Then if B = (bij) , and S = (sij) is the matrix which provides the similarity
transformation,

A = S−1BS,

between A and B, it follows that

Lvi =
∑

r,s,j

sirbrs

(
s−1

)
sj

vj . (16.11)

Now define
wi ≡

∑

j

(
s−1

)
ij

vj .

Then from 16.11, ∑

i

(
s−1

)
ki

Lvi =
∑

i,j,r,s

(
s−1

)
ki

sirbrs

(
s−1

)
sj

vj

and so
Lwk =

∑
s

bksws.

This proves the theorem because the if part of the conclusion was established earlier.
What if the linear transformation consists of multiplication by a matrix A and you want

to find the matrix of this linear transformation with respect to another basis? Is there an
easy way to do it? The answer is yes.

Proposition 16.5.8 Let A be an m×n matrix and let L be the linear transformation which
is defined by

L

(
n∑

k=1

xkek

)
≡

n∑

k=1

(Aek)xk ≡
m∑

i=1

n∑

k=1

Aikxkei

In simple language, to find Lx, you multiply on the left of x by A. Then the matrix M of
this linear transformation with respect to the bases {u1, · · · ,un} for Fn and {w1, · · · ,wm}
for Fm is given by

M =
(

w1 · · · wm

)−1
A

(
u1 · · · un

)

where
(

w1 · · · wm

)
is the m×m matrix which has wj as its jth column.

Proof: Consider the following diagram.

L
{u1, · · · ,un} Fn → Fm {w1, · · · ,wm}

qV ↑ ◦ ↑ qW

Fn → Fm

M

Here the coordinate maps are defined in the usual way. Thus

qV

(
x1 · · · xn

)T ≡
n∑

i=1

xiui.
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Therefore, qV can be considered the same as multiplication of a vector in Fn on the left by
the matrix (

u1 · · · un

)
.

Similar considerations apply to qW . Thus it is desired to have the following for an arbitrary
x ∈ Fn.

A
(

u1 · · · un

)
x =

(
w1 · · · wn

)
Mx

Therefore, the conclusion of the proposition follows. This proves the proposition.

Definition 16.5.9 An n× n matrix, A, is diagonalizable if there exists an invertible n× n
matrix, S such that S−1AS = D, where D is a diagonal matrix. Thus D has zero entries
everywhere except on the main diagonal. Write diag (λ1 · · · , λn) to denote the diagonal
matrix having the λi down the main diagonal.

Which matrices are diagonalizable?

Theorem 16.5.10 Let A be an n × n matrix. Then A is diagonalizable if and only if Fn

has a basis of eigenvectors of A. In this case, S of Definition 16.5.9 consists of the n × n
matrix whose columns are the eigenvectors of A and D = diag (λ1, · · · , λn) .

Proof: Suppose first that Fn has a basis of eigenvectors, {v1, · · · ,vn} where Avi = λivi.

Then let S denote the matrix (v1 · · ·vn) and let S−1 ≡




uT
1
...

uT
n


 where uT

i vj = δij ≡
{

1 if i = j
0 if i 6= j

. S−1 exists because S has rank n. Then from block multiplication,

S−1AS =




uT
1
...

uT
n


 (Av1 · · ·Avn)

=




uT
1
...

uT
n


 (λ1v1 · · ·λnvn)

=




λ1 0 · · · 0
0 λ2 0 · · ·
...

. . . . . . . . .
0 · · · 0 λn


 = D.

Next suppose A is diagonalizable so S−1AS = D ≡ diag (λ1, · · · , λn) . Then the columns
of S form a basis because S−1 is given to exist. It only remains to verify that these columns
of A are eigenvectors. But letting S = (v1 · · ·vn) , AS = SD and so (Av1 · · ·Avn) =
(λ1v1 · · ·λnvn) which shows that Avi = λivi. This proves the theorem.

It makes sense to speak of the determinant of a linear transformation as described in the
following corollary.

Corollary 16.5.11 Let L ∈ L (V, V ) where V is an n dimensional vector space and let A
be the matrix of this linear transformation with respect to a basis on V. Then it is possible
to define

det (L) ≡ det (A) .
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Proof: Each choice of basis for V determines a matrix for L with respect to the basis.
If A and B are two such matrices, it follows from Theorem 16.5.7 that

A = S−1BS

and so
det (A) = det

(
S−1

)
det (B) det (S) .

But
1 = det (I) = det

(
S−1S

)
= det (S) det

(
S−1

)

and so
det (A) = det (B)

which proves the corollary.

Definition 16.5.12 Let A ∈ L (X, Y ) where X and Y are finite dimensional vector spaces.
Define rank (A) to equal the dimension of A (X) .

The following theorem explains how the rank of A is related to the rank of the matrix
of A.

Theorem 16.5.13 Let A ∈ L (X,Y ). Then rank (A) = rank (M) where M is the matrix
of A taken with respect to a pair of bases for the vector spaces X, and Y.

Proof: Recall the diagram which describes what is meant by the matrix of A. Here the
two bases are as indicated.

{v1, · · · , vn} X A−→ Y {w1, · · · , wm}
qX ↑ ◦ ↑ qY

Fn M−→ Fm

Let {z1, · · · , zr} be a basis for A (X) . Then since the linear transformation, qY is one to one
and onto,

{
q−1
Y z1, · · · , q−1

Y zr

}
is a linearly independent set of vectors in Fm. Let Aui = zi.

Then
Mq−1

X ui = q−1
Y zi

and so the dimension of M (Fn) ≥ r. Now if M (Fn) < r then there exists

y ∈ M (Fn) \ span
{
q−1
Y z1, · · · , q−1

Y zr

}
.

But then there exists x ∈ Fn with Mx = y. Hence

y =Mx = q−1
Y AqXx ∈ span

{
q−1
Y z1, · · · , q−1

Y zr

}

a contradiction. This proves the theorem.
The following result is a summary of many concepts.

Theorem 16.5.14 Let L ∈ L (V, V ) where V is a finite dimensional vector space. Then
the following are equivalent.

1. L is one to one.

2. L maps a basis to a basis.

3. L is onto.
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4. det (L) 6= 0

5. If Lv = 0 then v = 0.

Proof: Suppose first L is one to one and let {vi}n
i=1 be a basis. Then if

∑n
i=1 ciLvi = 0

it follows L (
∑n

i=1 civi) = 0 which means that since L (0) = 0, and L is one to one, it must
be the case that

∑n
i=1 civi = 0. Since {vi} is a basis, each ci = 0 which shows {Lvi} is a

linearly independent set. Since there are n of these, it must be that this is a basis.
Now suppose 2.). Then letting {vi} be a basis, and y ∈ V, it follows from part 2.) that

there are constants, {ci} such that y =
∑n

i=1 ciLvi = L (
∑n

i=1 civi) . Thus L is onto. It has
been shown that 2.) implies 3.).

Now suppose 3.). Then the operation consisting of multiplication by the matrix of L, ML,
must be onto. However, the vectors in Fn so obtained, consist of linear combinations of the
columns of ML. Therefore, the column rank of ML is n. By Theorem 7.5.7 this equals the
determinant rank and so det (ML) ≡ det (L) 6= 0.

Now assume 4.) If Lv = 0 for some v 6= 0, it follows that MLx = 0 for some x 6= 0.
Therefore, the columns of ML are linearly dependent and so by Theorem 7.5.7, det (ML) =
det (L) = 0 contrary to 4.). Therefore, 4.) implies 5.).

Now suppose 5.) and suppose Lv = Lw. Then L (v − w) = 0 and so by 5.), v − w = 0
showing that L is one to one. This proves the theorem.

Also it is important to note that composition of linear transformation corresponds to
multiplication of the matrices. Consider the following diagram.

X A−→ Y B−→ Z

qX ↑ ◦ ↑ qY ◦ ↑ qZ

Fn MA−−→ Fm MB−−→ Fp

where A and B are two linear transformations, A ∈ L (X, Y ) and B ∈ L (Y, Z) . Then
B ◦ A ∈ L (X, Z) and so it has a matrix with respect to bases given on X and Z, the
coordinate maps for these bases being qX and qZ respectively. Then

B ◦A = qZMBqY q−1
Y MAq−1

X = qZMBMAq−1
X .

But this shows that MBMA plays the role of MB◦A, the matrix of B ◦A. Hence the matrix
of B ◦ A equals the product of the two matrices MA and MB . Of course it is interesting
to note that although MB◦A must be unique, the matrices, MB and MA are not unique,
depending on the basis chosen for Y .

Theorem 16.5.15 The matrix of the composition of linear transformations equals the prod-
uct of the matrices of these linear transformations.

16.5.1 Some Geometrically Defined Linear Transformations

If T is any linear transformation which maps Fn to Fm, there is always an m× n matrix, A
with the property that

Ax = Tx (16.12)

for all x ∈ Fn. You simply take the matrix of the linear transformation with respect to the
standard basis. What is the form of A? Suppose T : Fn → Fm is a linear transformation
and you want to find the matrix defined by this linear transformation as described in 16.12.
Then if x ∈ Fn it follows

x =
n∑

i=1

xiei
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where ei is the vector which has zeros in every slot but the ith and a 1 in this slot. Then
since T is linear,

Tx =
n∑

i=1

xiT (ei)

=




| |
T (e1) · · · T (en)
| |







x1

...
xn




≡ A




x1

...
xn




and so you see that the matrix desired is obtained from letting the ith column equal T (ei) .
This proves the following theorem.

Theorem 16.5.16 Let T be a linear transformation from Fn to Fm. Then the matrix, A
satisfying 16.12 is given by 


| |

T (e1) · · · T (en)
| |




where Tei is the ith column of A.

Example 16.5.17 Determine the matrix for the transformation mapping R2 to R2 which
consists of rotating every vector counter clockwise through an angle of θ.

Let e1 ≡
(

1
0

)
and e2 ≡

(
0
1

)
. These identify the geometric vectors which point

along the positive x axis and positive y axis as shown.

-

6

e1

e2

From Theorem 16.5.16, you only need to find Te1 and Te2, the first being the first
column of the desired matrix, A and the second being the second column. From drawing a
picture and doing a little geometry, you see that

Te1 =
(

cos θ
sin θ

)
, Te2 =

( − sin θ
cos θ

)
.

Therefore, from Theorem 16.5.16,

A =
(

cos θ − sin θ
sin θ cos θ

)
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Example 16.5.18 Find the matrix of the linear transformation which is obtained by first
rotating all vectors through an angle of φ and then through an angle θ. Thus you want the
linear transformation which rotates all angles through an angle of θ + φ.

Let Tθ+φ denote the linear transformation which rotates every vector through an angle
of θ + φ. Then to get Tθ+φ, you could first do Tφ and then do Tθ where Tφ is the linear
transformation which rotates through an angle of φ and Tθ is the linear transformation
which rotates through an angle of θ. Denoting the corresponding matrices by Aθ+φ, Aφ,
and Aθ, you must have for every x

Aθ+φx = Tθ+φx = TθTφx = AθAφx.

Consequently, you must have

Aθ+φ =
(

cos (θ + φ) − sin (θ + φ)
sin (θ + φ) cos (θ + φ)

)
= AθAφ

=
(

cos θ − sin θ
sin θ cos θ

)(
cos φ − sin φ
sin φ cos φ

)
.

Therefore,
(

cos (θ + φ) − sin (θ + φ)
sin (θ + φ) cos (θ + φ)

)
=

(
cos θ cosφ− sin θ sin φ − cos θ sinφ− sin θ cos φ
sin θ cosφ + cos θ sin φ cos θ cos φ− sin θ sinφ

)
.

Don’t these look familiar? They are the usual trig. identities for the sum of two angles
derived here using linear algebra concepts.

Example 16.5.19 Find the matrix of the linear transformation which rotates vectors in
R3counterclockwise about the positive z axis.

Let T be the name of this linear transformation. In this case, Te3 = e3, Te1 =
(cos θ, sin θ, 0)T

, and Te2 = (− sin θ, cos θ, 0)T
. Therefore, the matrix of this transformation

is just 


cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 (16.13)

In Physics it is important to consider the work done by a force field on an object. This
involves the concept of projection onto a vector. Suppose you want to find the projection
of a vector, v onto the given vector, u, denoted by proju (v) This is done using the dot
product as follows.

proju (v) =
(v · u
u · u

)
u

Because of properties of the dot product, the map v →proju (v) is linear,

proju (αv+βw) =
(

αv+βw · u
u · u

)
u = α

(v · u
u · u

)
u + β

(w · u
u · u

)
u

= α proju (v) + β proju (w) .

Example 16.5.20 Let the projection map be defined above and let u =(1, 2, 3)T
. Find the

matrix of this linear transformation with respect to the usual basis.
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You can find this matrix in the same way as in earlier examples. proju (ei) gives the ith

column of the desired matrix. Therefore, it is only necessary to find

proju (ei) ≡
( ei·u
u · u

)
u

For the given vector in the example, this implies the columns of the desired matrix are

1
14




1
2
3


 ,

2
14




1
2
3


 ,

3
14




1
2
3


 .

Hence the matrix is

1
14




1 2 3
2 4 6
3 6 9


 .

Example 16.5.21 Find the matrix of the linear transformation which reflects all vectors
in R3 through the xz plane.

As illustrated above, you just need to find Tei where T is the name of the transformation.
But Te1 = e1, Te3 = e3, and Te2 = −e2 so the matrix is




1 0 0
0 −1 0
0 0 1


 .

Example 16.5.22 Find the matrix of the linear transformation which first rotates counter
clockwise about the positive z axis and then reflects through the xz plane.

This linear transformation is just the composition of two linear transformations having
matrices 


cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 ,




1 0 0
0 −1 0
0 0 1




respectively. Thus the matrix desired is



1 0 0
0 −1 0
0 0 1







cos θ − sin θ 0
sin θ cos θ 0

0 0 1




=




cos θ − sin θ 0
− sin θ − cos θ 0

0 0 1


 .

16.5.2 Rotations About A Given Vector

As an application, I will consider the problem of rotating counter clockwise about a given
unit vector which is possibly not one of the unit vectors in coordinate directions. First
consider a pair of perpendicular unit vectors, u1 and u2 and the problem of rotating in the
counterclockwise direction about u3 where u3 = u1 × u2 so that u1,u2,u3 forms a right
handed orthogonal coordinate system. Thus the vector u3 is coming out of the page.
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Let T denote the desired rotation. Then

T (au1 + bu2 + cu3) = aTu1 + bTu2 + cTu3

= (a cos θ − b sin θ)u1 + (a sin θ + b cos θ)u2 + cu3.

Thus in terms of the basis {u1,u2,u3} , the matrix of this transformation is



cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 .

I want to write this transformation in terms of the usual basis vectors, {e1, e2, e3}. From
Proposition 16.5.8, if A is this matrix,




cos θ − sin θ 0
sin θ cos θ 0

0 0 1




=
(

u1 u2 u3

)−1
A

(
u1 u2 u3

)

and so you can solve for A if you know the ui.
Suppose the unit vector about which the counterclockwise rotation takes place is (a, b, c).

Then I obtain vectors, u1 and u2 such that {u1,u2,u3} is a right handed orthogonal system
with u3 = (a, b, c) and then use the above result. It is of course somewhat arbitrary how
this is accomplished. I will assume, however that |c| 6= 1 since otherwise you are looking at
either clockwise or counter clockwise rotation about the positive z axis and this is a problem
which has been dealt with earlier. (If c = −1, it amounts to clockwise rotation about the
positive z axis while if c = 1, it is counterclockwise rotation about the positive z axis.) Then
let u3 = (a, b, c) and u2 ≡ 1√

a2+b2
(b,−a, 0) . This one is perpendicular to u3. If {u1,u2,u3}

is to be a right hand system it is necessary to have

u1 = u2 × u3 =
1√

(a2 + b2) (a2 + b2 + c2)

(−ac,−bc, a2 + b2
)

Now recall that u3 is a unit vector and so the above equals

1√
(a2 + b2)

(−ac,−bc, a2 + b2
)

Then from the above, A is given by




−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√

a2 + b2 0 c







cos θ − sin θ 0
sin θ cos θ 0

0 0 1







−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√

a2 + b2 0 c




−1
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Of course the matrix is an orthogonal matrix so it is easy to take the inverse by simply
taking the transpose. Then doing the computation and then some simplification yields

=




a2 +
(
1− a2

)
cos θ ab (1− cos θ)− c sin θ ac (1− cos θ) + b sin θ

ab (1− cos θ) + c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ)− a sin θ

ac (1− cos θ)− b sin θ bc (1− cos θ) + a sin θ c2 +
(
1− c2

)
cos θ


 . (16.14)

With this, it is clear how to rotate clockwise about the the unit vector, (a, b, c) . Just
rotate counter clockwise through an angle of −θ. Thus the matrix for this clockwise roation
is just

=




a2 +
(
1− a2

)
cos θ ab (1− cos θ) + c sin θ ac (1− cos θ)− b sin θ

ab (1− cos θ)− c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ) + a sin θ

ac (1− cos θ) + b sin θ bc (1− cos θ)− a sin θ c2 +
(
1− c2

)
cos θ


 .

In deriving 16.14 it was assumed that c 6= ±1 but even in this case, it gives the correct
answer. Suppose for example that c = 1 so you are rotating in the counter clockwise
direction about the positive z axis. Then a, b are both equal to zero and 16.14 reduces to
16.13.

16.5.3 The Euler Angles

An important application of the above theory is to the Euler angles, important in the
mechanics of rotating bodies. Lagrange studied these things back in the 1700’s. To describe
the Euler angles consider the following picture in which x1, x2 and x3 are the usual coordinate
axes fixed in space and the axes labeled with a superscript denote other coordinate axes.
Here is the picture.
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We obtain φ by rotating counter clockwise about the fixed x3 axis. Thus this rotation
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has the matrix



cos φ − sinφ 0
sin φ cosφ 0

0 0 1


 ≡ M1 (φ)

Next rotate counter clockwise about the x1
1 axis which results from the first rotation through

an angle of θ. Thus it is desired to rotate counter clockwise through an angle θ about the
unit vector




cosφ − sin φ 0
sin φ cosφ 0

0 0 1







1
0
0


 =




cosφ
sin φ

0


 .

Therefore, in 16.14, a = cos φ, b = sin φ, and c = 0. It follows the matrix of this transforma-
tion with respect to the usual basis is




cos2 φ + sin2 φ cos θ cos φ sin φ (1− cos θ) sin φ sin θ
cos φ sin φ (1− cos θ) sin2 φ + cos2 φ cos θ − cosφ sin θ

− sin φ sin θ cosφ sin θ cos θ


 ≡ M2 (φ, θ)

Finally, we rotate counter clockwise about the positive x2
3 axis by ψ. The vector in the

positive x1
3 axis is the same as the vector in the fixed x3 axis. Thus the unit vector in the

positive direction of the x2
3 axis is




cos2 φ + sin2 φ cos θ cosφ sin φ (1− cos θ) sin φ sin θ
cosφ sinφ (1− cos θ) sin2 φ + cos2 φ cos θ − cos φ sin θ

− sin φ sin θ cosφ sin θ cos θ







1
0
0




=




cos2 φ + sin2 φ cos θ
cosφ sinφ (1− cos θ)

− sin φ sin θ


 =




cos2 φ + sin2 φ cos θ
cos φ sin φ (1− cos θ)

− sinφ sin θ




and it is desired to rotate counter clockwise through an angle of ψ about this vector. Thus,
in this case,

a = cos2 φ + sin2 φ cos θ, b = cos φ sinφ (1− cos θ) , c = − sin φ sin θ.

and you could substitute in to the formula of Theorem 16.14 and obtain a matrix which
represents the linear transformation obtained by rotating counter clockwise about the pos-
itive x2

3 axis, M3 (φ, θ, ψ) . Then what would be the matrix with respect to the usual basis
for the linear transformation which is obtained as a composition of the three just described?
By Theorem 16.5.15, this matrix equals the product of these three,

M3 (φ, θ, ψ)M2 (φ, θ)M1 (φ) .

I leave the details to you. There are procedures due to Lagrange which will allow you to
write differential equations for the Euler angles in a rotating body. To give an idea how
these angles apply, consider the following picture.
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This is as far as I will go on this topic. The point is, it is possible to give a systematic
description in terms of matrix multiplication of a very elaborate geometrical description of
a composition of linear transformations. You see from the picture it is possible to describe
the motion of the spinning top shown in terms of these Euler angles. I think you can also
see that the end result would be pretty horrendous but this is because it involves using the
basis corresponding to a fixed in space coordinate system. You wouldn’t do this for the
application to a spinning top.

Not surprisingly, this also has applications to computer graphics.

16.6 Exercises

1. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3.

2. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4.

3. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of −π/3.

4. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3.

5. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/12. Hint: Note that π/12 = π/3− π/4.

6. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3 and then reflects across the x axis.



340 LINEAR TRANSFORMATIONS

7. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3 and then reflects across the x axis.

8. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4 and then reflects across the x axis.

9. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/6 and then reflects across the x axis followed by a reflection across the
y axis.

10. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/4.

11. Find the matrix for the linear transformation which reflects every vector in R2 across
the y axis and then rotates every vector through an angle of π/4.

12. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/6.

13. Find the matrix for the linear transformation which reflects every vector in R2 across
the y axis and then rotates every vector through an angle of π/6.

14. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

15. Find the matrix for proju (v) where u = (1,−2, 3)T
.

16. Find the matrix for proju (v) where u = (1, 5, 3)T
.

17. Find the matrix for proju (v) where u = (1, 0, 3)T
.

18. Show that the function Tu defined by Tu (v) ≡ v − proju (v) is also a linear transfor-
mation.

19. If u = (1, 2, 3)T , as in Example 16.5.20 and Tu is given in the above problem, find the
matrix, Au which satisfies Aux = T (x).

20. If A,B, and C are each n× n matrices and ABC is invertible, why are each of A,B,
and C invertible.

21. Show that (ABC)−1 = C−1B−1A−1 by doing the computation ABC
(
C−1B−1A−1

)
.

22. If A is invertible, show
(
AT

)−1 =
(
A−1

)T
.

23. If A is invertible, show
(
A2

)−1 =
(
A−1

)2
.

24. If A is invertible, show
(
A−1

)−1 = A.

25. Give an example of a 3 × 2 matrix with the property that the linear transformation
determined by this matrix is one to one but not onto.

26. Explain why Ax = 0 always has a solution.

27. Review problem: Suppose det (A− λI) = 0. Show using Theorem 8.2.9 there exists
x 6= 0 such that (A− λI)x = 0.
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28. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint:
Consider the n× n matrix, A1 which is of the form

A1 ≡
(

A
0

)

where the 0 denotes an (n−m) × n matrix of zeros. Thus det A1 = 0 and so A1 is
not one to one. Now observe that A1x is the vector,

A1x =
(

Ax
0

)

which equals zero if and only if Ax = 0.

29. Find ker (A) for

A =




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2


 .

Recall ker (A) is just the set of solutions to Ax = 0.

30. Suppose Ax = b has a solution. Explain why the solution is unique precisely when
Ax = 0 has only the trivial (zero) solution.

31. Using Problem 29, find the general solution to the following linear system.




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2







x1

x2

x3

x4

x5




=




11
7
18
7




32. Using Problem 29, find the general solution to the following linear system.




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2







x1

x2

x3

x4

x5




=




6
7
13
7




33. Show that if A is an m× n matrix, then ker (A) is a subspace.

34. Verify the linear transformation determined by the matrix of 8.2 on Page 165 maps
R3 onto R2 but the linear transformation determined by this matrix is not one to one.
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The Jordan Canonical Form*

Recall Corollary 16.4.4. For convenience, this corollary is stated below.

Corollary A.0.1 Let A be an n × n matrix. Then A is similar to an upper triangular,
block diagonal matrix of the form

T ≡




T1 · · · 0
...

. . .
...

0 · · · Tr




where Tk is an upper triangular matrix having only λk on the main diagonal. The diagonal
blocks can be arranged in any order desired. If Tk is an mk ×mk matrix, then

mk = dim {x : (A− λkI)m x = 0 for some m ∈ N} .

The Jordan Canonical form involves a further reduction in which the upper triangular
matrices, Tk assume a particularly revealing and simple form.

Definition A.0.2 Jk (α) is a Jordan block if it is a k × k matrix of the form

Jk (α) =




α 1 0

0
. . . . . .

...
. . . . . . 1

0 · · · 0 α




In words, there is an unbroken string of ones down the super diagonal and the number, α
filling every space on the main diagonal with zeros everywhere else. A matrix is strictly
upper triangular if it is of the form




0 ∗ ∗
...

. . . ∗
0 · · · 0


 ,
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where there are zeroes on the main diagonal and below the main diagonal.

The Jordan canonical form involves each of the upper triangular matrices in the conclu-
sion of Corollary 16.4.4 being a block diagonal matrix with the blocks being Jordan blocks
in which the size of the blocks decreases from the upper left to the lower right. The idea
is to show that every square matrix is similar to a unique such matrix which is in Jordan
canonical form.

Note that in the conclusion of Corollary 16.4.4 each of the triangular matrices is of the
form αI + N where N is a strictly upper triangular matrix. The existence of the Jordan
canonical form follows quickly from the following lemma.

Lemma A.0.3 Let N be an n × n matrix which is strictly upper triangular. Then there
exists an invertible matrix, S such that

S−1NS =




Jr1 (0) 0
Jr2 (0)

. . .
0 Jrs (0)




where r1 ≥ r2 ≥ · · · ≥ rs ≥ 1 and
∑s

i=1 ri = n.

Proof: First note the only eigenvalue of N is 0. Let v1 be an eigenvector. Then
{v1,v2, · · · ,vr} is called a chain if Nvk+1 = vk for all k = 1, 2, · · · , r and v1 is an eigenvec-
tor. It will be called a maximal chain if there is no solution, v, to the equation, Nv = vr.

Claim 1: The vectors in any chain are linearly independent and for {v1,v2, · · · ,vr} a
chain based on v1,

N : span (v1,v2, · · · ,vr) → span (v1,v2, · · · ,vr) . (1.1)

Also if {v1,v2, · · · ,vr} is a chain, then r ≤ n.
Proof: First note that 1.1 is obvious because

N

r∑

i=1

civi =
r∑

i=2

civi−1.

It only remains to verify the vectors of a chain are independent. Suppose then

r∑

k=1

ckvk = 0.

Do Nr−1 to it to conclude cr = 0. Next do Nr−2 to it to conclude cr−1 = 0 and continue
this way. Now it is obvious r ≤ n because the chain is independent. This proves the claim.

Consider the set of all chains based on eigenvectors. Since all have total length no
larger than n it follows there exists one which has maximal length,

{
v1

1, · · · ,v1
r1

} ≡ B1. If
span (B1) contains all eigenvectors of N, then stop. Otherwise, consider all chains based on
eigenvectors not in span (B1) and pick one, B2 ≡

{
v2

1, · · · ,v2
r2

}
which is as long as possible.

Thus r2 ≤ r1. If span (B1, B2) contains all eigenvectors of N, stop. Otherwise, consider all
chains based on eigenvectors not in span (B1, B2) and pick one, B3 ≡

{
v3

1, · · · ,v3
r3

}
such

that r3 is as large as possible. Continue this way. Thus rk ≥ rk+1.
Claim 2: The above process terminates with a finite list of chains, {B1, · · · , Bs} because

for any k, {B1, · · · , Bk} is linearly independent.
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Proof of Claim 2: The claim is true if k = 1. This follows from Claim 1. Suppose it
is true for k − 1, k ≥ 2. Then {B1, · · · , Bk−1} is linearly independent. Suppose

p∑
q=1

cqwq = 0, cq 6= 0

where the wq come from {B1, · · · , Bk−1, Bk} . By induction, some of these wq must come
from Bk. Let vk

i be the one for which i is as large as possible. Then do N i−1 to both sides
to obtain vk

1 , the eigenvector upon which the chain Bk is based, is a linear combination of
{B1, · · · , Bk−1} contrary to the construction. Since {B1, · · · , Bk} is linearly independent,
the process terminates. This proves the claim.

Claim 3: Suppose Nw = 0. (w is an eigenvector) Then there exists scalars, ci such
that

w =
s∑

i=1

civi
1.

Recall that vi
1 is the eigenvector in the ith chain on which this chain is based.

Proof of Claim 3: From the construction, w ∈ span (B1, · · · , Bs) since otherwise, it
could serve as a base for another chain. Therefore,

w =
s∑

i=1

ri∑

k=1

ck
i v

i
k.

Now apply N to both sides.

0 =
s∑

i=1

ri∑

k=2

ck
i v

i
k−1

and so by Claim 2, ck
i = 0 if k ≥ 2. Therefore,

w =
s∑

i=1

c1
i v

i
1

and this proves the claim.
It remains to verify that span (B1, · · · , Bs) = Fn. Suppose w /∈ span (B1, · · · , Bs) . By

Claim 3 this implies w is not an eigenvector since all the eigenvectors are in span (B1, · · · , Bs) .
Since Nn = 0, there exists a smallest integer, k ≥ 2 such that Nkw = 0 but Nk−1w 6= 0.
Then k ≤ min (r1, · · · , rs) because there exists a chain of length k based on the eigenvector,
Nk−1w, namely

Nk−1w,Nk−2w,Nk−3w, · · · ,w

and this chain must be no longer than the preceding chains because of the construction in
which a longest possible chain was chosen at each step. Since Nk−1w is an eigenvector, it
follows from Claim 3 that

Nk−1w =
s∑

i=1

civi
1 =

s∑

i=1

ciN
k−1vi

k.

Therefore,

Nk−1

(
w−

s∑

i=1

civi
k

)
= 0



346 THE JORDAN CANONICAL FORM*

and so,

NNk−2

(
w−

s∑

i=1

civi
k

)
= 0

which implies Nk−2
(
w−∑s

i=1 civi
k

)
is an eigenvector and so by Claim 3 there exist di

such that

Nk−2

(
w−

s∑

i=1

civi
k

)
=

s∑

i=1

divi
1 =

s∑

i=1

diN
k−2vi

k−1

and so

Nk−2

(
w−

s∑

i=1

civi
k −

s∑

i=1

divi
k−1

)
= 0.

Continuing this way it follows that for each j < k, there exists a vector, zj ∈ span (B1, · · · , Bs)
such that

Nk−j (w − zj) = 0.

In particular, taking j = (k − 1) yields

N (w − zk−1) = 0

and now using Claim 3 again yields w ∈ span (B1, · · · , Bs), a contradiction. Therefore,
span (B1, · · · , Bs) = Fn after all and so {B1, · · · , Bs} is a basis for Fn.

Now consider the block matrix,

S =
(

B1 · · · Bs

)

where
Bk =

(
vk

1 · · · vk
rk

)
.

Thus

S−1 =




C1

...
Cs




where CiBi = Iri×ri
and CiNBj = 0 if i 6= j. Let

Ck =




uT
1
...

uT
rk


 .

Then

CkNBk =




uT
1
...

uT
rk




(
Nvk

1 · · · Nvk
rk

)

=




uT
1
...

uT
rk




(
0 vk

1 · · · vk
rk−1

)
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which equals an rk × rk matrix of the form

Jrk
(0) =




0 1 · · · 0
...

. . . . . .
...

...
. . . 1

0 · · · · · · 0




That is, it has ones down the super diagonal and zeros everywhere else. It follows

S−1NS =




C1

...
Cs


 N

(
B1 · · · Bs

)

=




Jr1 (0) 0
Jr2 (0)

. . .
0 Jrs

(0)




as claimed. This proves the lemma.
Now let the upper triangular matrices, Tk be given in the conclusion of Corollary 16.4.4.

Thus, as noted earlier,
Tk = λkIrk×rk

+ Nk

where Nk is a strictly upper triangular matrix of the sort just discussed in Lemma A.0.3.
Therefore, there exists Sk such that S−1

k NkSk is of the form given in Lemma A.0.3. Now
S−1

k λkIrk×rk
Sk = λkIrk×rk

and so S−1
k TkSk is of the form




Ji1 (λk) 0
Ji2 (λk)

. . .
0 Jis

(λk)




where i1 ≥ i2 ≥ · · · ≥ is and
∑s

j=1 ij = rk. This proves the following corollary.

Corollary A.0.4 Suppose A is an upper triangular n×n matrix having α in every position
on the main diagonal. Then there exists an invertible matrix, S such that

S−1AS =




Jk1 (α) 0
Jk2 (α)

. . .
0 Jkr (α)




where k1 ≥ k2 ≥ · · · ≥ kr ≥ 1 and
∑r

i=1 ki = n.

The next theorem is gives the existence of the Jordan canonical form.

Theorem A.0.5 Let A be an n × n matrix having eigenvalues λ1, · · · , λr where the mul-
tiplicity of λi as a zero of the characteristic polynomial equals mi. Then there exists an
invertible matrix, S such that

S−1AS =




J (λ1) 0
. . .

0 J (λr)


 (1.2)
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where J (λk) is an mk ×mk matrix of the form




Jk1 (λk) 0
Jk2 (λk)

. . .
0 Jkr

(λk)


 (1.3)

where k1 ≥ k2 ≥ · · · ≥ kr ≥ 1 and
∑r

i=1 ki = mk.

Proof: From Corollary 16.4.4, there exists S such that S−1AS is of the form

T ≡




T1 · · · 0
...

. . .
...

0 · · · Tr




where Tk is an upper triangular mk × mk matrix having only λk on the main diagonal.
By Corollary A.0.4 There exist matrices, Sk such that S−1

k TkSk = J (λk) where J (λk) is
described in 1.3. Now let M be the block diagonal matrix given by

M =




S1 0
. . .

0 Sr


 .

It follows that M−1S−1ASM = M−1TM and this is of the desired form. This proves the
theorem.

What about the uniqueness of the Jordan canonical form? Obviously if you change the
order of the eigenvalues, you get a different Jordan canonical form but it turns out that if
the order of the eigenvalues is the same, then the Jordan canonical form is unique. In fact,
it is the same for any two similar matrices.

Theorem A.0.6 Let A and B be two similar matrices. Let JA and JB be Jordan forms of
A and B respectively, made up of the blocks JA (λi) and JB (λi) respectively. Then JA and
JB are identical except possibly for the order of the J (λi) where the λi are defined above.

Proof: First note that for λi an eigenvalue, the matrices JA (λi) and JB (λi) are both
of size mi × mi because the two matrices A and B, being similar, have exactly the same
characteristic equation and the size of a block equals the algebraic multiplicity of the eigen-
value as a zero of the characteristic equation. It is only necessary to worry about the
number and size of the Jordan blocks making up JA (λi) and JB (λi) . Let the eigenvalues
of A and B be {λ1, · · · , λr} . Consider the two sequences of numbers {rank (A− λI)m} and
{rank (B − λI)m}. Since A and B are similar, these two sequences coincide. (Why?) Also,
for the same reason, {rank (JA − λI)m} coincides with {rank (JB − λI)m} . Now pick λk an
eigenvalue and consider {rank (JA − λkI)m} and {rank (JB − λkI)m} . Then

JA − λkI =




JA (λ1 − λk) 0
. . .

JA (0)
. . .

0 JA (λr − λk)
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and a similar formula holds for JB − λkI. Here

JA (0) =




Jk1 (0) 0
Jk2 (0)

. . .
0 Jkr

(0)




and

JB (0) =




Jl1 (0) 0
Jl2 (0)

. . .
0 Jlp (0)




and it suffices to verify that li = ki for all i. As noted above,
∑

ki =
∑

li. Now from the
above formulas,

rank (JA − λkI)m =
∑

i 6=k

mi + rank (JA (0)m)

=
∑

i 6=k

mi + rank (JB (0)m)

= rank (JB − λkI)m
,

which shows rank (JA (0)m) = rank (JB (0)m) for all m. However,

JB (0)m =




Jl1 (0)m 0
Jl2 (0)m

. . .
0 Jlp (0)m




with a similar formula holding for JA (0)mand rank (JB (0)m) =
∑p

i=1 rank (Jli (0)m) , sim-
ilar for rank (JA (0)m) . In going from m to m + 1,

rank (Jli (0)m)− 1 = rank
(
Jli (0)m+1

)

untill m = li at which time there is no further change. Therefore, p = r since otherwise,
there would exist a discrepancy right away in going from m = 1 to m = 2. Now suppose the
sequence {li} is not equal to the sequence, {ki}. Then lr−b 6= kr−b for some b a nonnegative
integer taken to be a small as possible. Say lr−b > kr−b. Then, letting m = kr−b,

r∑

i=1

rank (Jli (0)m) =
r∑

i=1

rank (Jki (0)m)

and in going to m+1 a discrepancy must occur because the sum on the right will contribute
less to the decrease in rank than the sum on the left. This proves the theorem.
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An Assortment Of Worked
Exercises And Examples

B.1 Worked Exercises Page 41

1. Here is an augmented matrix in which ∗ denotes an arbitrary number and ¥ denotes
a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?




¥ ∗ ∗ ∗ ∗ | ∗
0 ¥ ∗ ∗ 0 | ∗
0 0 ¥ ∗ ∗ | ¥
0 0 0 0 ¥ | ∗




In this case the system is consistent and there is an infinite set of solutions. To see
it is consistent, the bottom equation would yield a unique solution for x5. Then
letting x4 = t, and substituting in to the other equations, beginning with the equation
determined by the third row and then proceeding up to the next row followed by the
first row, you get a solution for each value of t. There is a free variable which comes
from the fourth column which is why you can say x4 = t. Therefore, the solution is
infinite.

2. Here is an augmented matrix in which ∗ denotes an arbitrary number and ¥ denotes
a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?




¥ ∗ ∗ | ∗
0 0 ¥ | ¥
0 0 ∗ | 0




In this case there is no solution because you could use a row operation to place a 0 in
the third row and third column position, like this:




¥ ∗ ∗ | ∗
0 0 ¥ | ¥
0 0 0 | ¥




This would give a row of zeros equal to something nonzero.

3. Find h such that (
1 h | 4
3 7 | 7

)
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is the augmented matrix of an inconsistent matrix.

Doing a row operation by taking −3 times the top row and adding to the bottom, this
gives (

1 h | 4
0 7− 3h | 7− 12

)
.

The system will be inconsistent if 7− 3h = 0 or in other words, h = 7/3.

4. Determine if the system is consistent.

x + 2y + 3z − w = 2
x− y + 2z + w = 1

2x + 3y − z = 1
4x + 2y + z = 5

The augmented matrix is



1 2 3 −1 | 2
1 −1 2 1 | 1
2 3 −1 0 | 1
4 2 1 0 | 5




A reduced echelon form for this is


9 0 0 0 | 14
0 9 0 0 | −6
0 0 9 0 | 1
0 0 0 9 | −13


 .

Therefore, there is a unique solution. In particular the system is consistent.

5. Find the point, (x1, y1) which lies on both lines, 5x + 3y = 1 and 4x− y = 3.

You solve the system of equations whose augmented matrix is
(

5 3 | 1
4 −1 | 3

)

A reduced echelon form is (
17 0 10
0 17 −11

)

and so the solution is x = 17/10 and y = −11/17.

6. Do the three lines, 3x + 2y = 1, 2x− y = 1, and 4x + 3y = 3 have a common point of
intersection? If so, find the point and if not, tell why they don’t have such a common
point of intersection.

This is asking for the solution to the three equations shown. The augmented matrix
is 


3 2 | 1
2 −1 | 1
4 3 | 3




A reduced echelon form is 


1 0 | 0
0 1 | 0
0 0 | 1




and this would require 0x + 0y = 1 which is impossible so there is no solution to this
system of equations and hence no point on each of the three lines.
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7. Find the general solution of the system whose augmented matrix is



1 2 0 | 2
1 1 4 | 2
2 3 4 | 4


 .

A reduced echelon form for the matrix is



1 0 8 2
0 1 −4 0
0 0 0 0


 .

Therefore, y = 4z and x = 2 − 8z. Apparently z can equal anything so we let z = t
and then the solution is

x = 2− 8t, y = 4t, z = t.

8. Find the point, (x1, y1) which lies on both lines, x + 2y = 1 and 3x− y = 3.

The solution is y = 0 and x = 1.

9. Find the point of intersection of the two lines x + y = 3 and x + 2y = 1.

The solution is (5,−2) .

10. Do the three lines, x + 2y = 1, 2x − y = 1, and 4x + 3y = 3 have a common point of
intersection? If so, find the point and if not, tell why they don’t have such a common
point of intersection.

To solve this set up the augmented matrix and go to work on it. The augmented
matrix is 


1 2 | 1
2 −1 | 1
4 3 | 3




A reduced echelon matrix for this is



1 0 | 3
5

0 1 | 1
5

0 0 | 0




Therefore, there is a point in the intersection of these and it is y = 1/5 and x = 3/5.
Thus the point is (3/5, 1/5) .

11. Do the three planes, x + 2y − 3z = 2, x + y + z = 1, and 3x + 2y + 2z = 0 have
a common point of intersection? If so, find one and if not, tell why there is no such
point.

You need to find (x, y, z) which solves each equation. The augmented matrix is



1 2 −3 | 2
1 1 1 | 1
3 2 2 | 0




A reduced echelon form for the matrix is



1 0 0 | −2
0 1 0 | 13

5
0 0 1 | 2

5




and so you should let (x, y, z) = (−2, 13/5, 2/5) .
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12. Here is an augmented matrix in which ∗ denotes an arbitrary number and ¥ denotes
a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?




¥ ∗ ∗ ∗ ∗ | ∗
0 ¥ ∗ ∗ 0 | ∗
0 0 ¥ ∗ ∗ | ∗
0 0 0 0 ¥ | ∗




You could do another set of row operations and reduce the matrix to one of the form



¥ ∗ ∗ ∗ 0 | ∗
0 ¥ ∗ ∗ 0 | ∗
0 0 ¥ ∗ 0 | ∗
0 0 0 0 ¥ | ∗




It follows there exists a solution but the solution is not unique because x4 is a free
variable. You can pick it to be anything you like and the system will yield values for
the other variables.

13. Here is an augmented matrix in which ∗ denotes an arbitrary number and ¥ denotes
a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?




¥ ∗ ∗ | ∗
0 ¥ ∗ | ∗
0 0 ¥ | ∗




In this case there is a unique solution to the system. To see this, you could do more
row operations and reduce this to something of the form




¥ 0 0 | ∗
0 ¥ 0 | ∗
0 0 ¥ | ∗


 .

14. Here is an augmented matrix in which ∗ denotes an arbitrary number and ¥ denotes
a nonzero number. Determine whether the given augmented matrix is consistent. If
consistent, is the solution unique?




¥ ∗ ∗ ∗ ∗ | ∗
0 ¥ 0 ∗ 0 | ∗
0 0 0 ¥ ∗ | ∗
0 0 0 0 ¥ | ∗




In this case, you could do more row operations and get something of the form



¥ 0 ∗ 0 0 | ∗
0 ¥ 0 0 0 | ∗
0 0 0 ¥ 0 | ∗
0 0 0 0 ¥ | ∗




Now you can determine the answer.
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15. Find h such that (
2 h | 4
3 6 | 7

)

is the augmented matrix of an inconsistent matrix.

Take −3 times the top row and add to 2 times the bottom. This yields
(

2 h | 4
0 12− 3h | 2

)

Now if h = 4 the system is inconsistent because it would have the bottom row equal
to

(
0 0 | 2

)
.

16. Choose h and k such that the augmented matrix shown has one solution. Then choose
h and k such that the system has no solutions. Finally, choose h and k such that the
system has infinitely many solutions.

(
1 h | 2
2 4 | k

)
.

If h 6= 2 then k can be anything and the system represented by the augmented matrix
will have a unique solution. Suppose then that h = 2. Then taking −2 times the top
row and adding to the bottom row gives

(
1 2 | 2
0 0 | k − 4

)

If k 6= 4 there is no solution. However, if k = 4 you are left with the single equation,
x+2y = 2 and there are infinitely many solutions to this. In fact anything of the form
(2− 2y, y) will work just fine.

17. Determine if the system is consistent.

x + 2y + z − w = 2
x− y + z + w = 1

2x + y − z = 1
4x + 2y + z = 5

This system is inconsistent. To see this, write the augmented matrix and do row
operations. The augmented matrix is




1 2 1 −1 | 2
1 −1 1 1 | 1
2 1 −1 0 | 1
4 2 1 0 | 5




A reduced echelon form for this matrix is



1 0 0 1
3 | 0

0 1 0 − 2
3 | 0

0 0 1 0 | 0
0 0 0 0 | 1




and the bottom row shows there is no solution.
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18. Find the general solution of the system whose augmented matrix is



1 2 0 | 2
1 3 4 | 2
1 0 2 | 1




A reduced echelon form for this matrix is



1 0 0 | 6
5

0 1 0 | 2
5

0 0 1 | − 1
10




and so the solution is unique and is z = −1/10, y = 2/5, and x = 6/5.

19. Find the general solution of the system whose augmented matrix is
(

1 1 0 | 5
1 0 3 | 2

)
.

A reduced echelon form for this matrix is
(

1 0 3 | 2
0 1 −3 | 3

)

and so the general solution is of the form y = 3 + 3z, x = 2− 3z with z arbitrary.

20. Find the general solution of the system whose augmented matrix is



1 0 2 1 1 | 3
0 1 0 4 2 | 1
2 2 0 0 1 | 3
1 0 1 0 2 | 2


 .

You do the usual thing, row operations on the matrix to obtain a reduced echelon
form. A reduced echelon form is




1 0 0 0 9
2 | 7

6
0 1 0 0 −4 | 1

3
0 0 1 0 − 5

2 | 5
6

0 0 0 1 3
2 | 1

6




Therefore, the general solution is x4 = 1/6− 3/2x5, x3 = 5/6+5/2x5, x2 = 1/3+4x5,
and x1 = 7/6− 9/2x5 with x5 arbitrary.

B.2 Worked Exercises Page 63

1. Here are some matrices:

A =




1 2 3
2 3 7
1 0 1


 , B =

(
3 −1 2
−3 2 1

)
,

C =




1 2
3 1
1 1


 , D =

( −1 2
2 −3

)
, E =

(
2
3

)
.



B.2. WORKED EXERCISES PAGE 63 357

Find if possible −3A, 3B −A,AC,CB, EA, DCT If it is not possible explain why.

−3A = −3




1 2 3
2 3 7
1 0 1


 =



−3 −6 −9
−6 −9 −21
−3 0 −3




3B −A is nonsense because the matrices B and A are not of the same size.

AC =




1 2 3
2 3 7
1 0 1







1 2
3 1
1 1


 =




10 7
18 14
2 3




There is no problem here because you are doing (3× 3) (3× 2) .

CB =




1 2
3 1
1 1




(
3 −1 2
−3 2 1

)
=



−3 3 4
6 −1 7
0 1 3




There is no problem here because you are doing (3× 2) (2× 3) and the inside numbers
match. EA is nonsense because it is of the form (2× 1) (3× 3) so since the inside
numbers do not match the matrices are not conformable.

DCT =
( −1 2

2 −3

)(
1 3 1
2 1 1

)
=

(
3 −1 1
−4 3 −1

)
.

2. Let A =
(

0 2
3 4

)
, B =

(
1 2
1 k

)
. Is it possible to choose k such that AB = BA?

If so, what should k equal?

We just multiply and see if it can happen.

AB =
(

0 2
3 4

)(
1 2
1 k

)
=

(
2 2k
7 6 + 4k

)
.

On the other hand,

BA =
(

1 2
1 k

) (
0 2
3 4

)
=

(
6 10
3k 2 + 4k

)
.

If these were equal you would need to have 6 = 2 which is not the case. Therefore,
there is no way to choose k such that these two matrices will commute.

3. Let x =(−1, 0, 3) and y =(3, 1, 2) . Find xT y.

xT y =



−1
0
3


 (

3 1 2
)

=



−3 −1 −2
0 0 0
9 3 6


 .

4. Write




4x1 − x2 + 2x3

2x3 + 7x1

2x3

3x3 + 3x2 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.




4 −1 2 0
7 0 2 0
0 0 2 0
1 3 3 0







x1

x2

x3

x4


 .
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5. Let

A =




1 2 5
2 1 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.



1 2 5
2 1 4
1 0 2



−1

=



− 2

3
4
3 −1

0 1 −2
1
3 − 2

3 1


 .

6. Let

A =




1 2 0 2
1 5 2 0
2 1 −3 2
1 2 1 2




Find A−1 if possible. If A−1 does not exist, determine why.



1 2 0 2
1 5 2 0
2 1 −3 2
1 2 1 2




−1

=




−3 1
6

5
6

13
6

1 1
6 − 1

6 − 5
6

−1 0 0 1
1 − 1

4 − 1
4 − 1

4


 .

7. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and
AB = I, then B = A−1.

From AB = I, multiply both sides by A−1. Thus A−1 (AB) = A−1. Then from the
associative property of matrix multiplication, A−1 = A−1 (AB) =

(
A−1A

)
B = IB =

B.

B.3 Worked Exercises Page 102

1. Find the following determinant by expanding along the second column.
∣∣∣∣∣∣

1 3 1
2 1 5
2 1 1

∣∣∣∣∣∣

This is

3 (−1)2+1

∣∣∣∣
2 5
2 1

∣∣∣∣ + 1 (−1)1+1

∣∣∣∣
1 1
2 1

∣∣∣∣ + 1 (−1)3+2

∣∣∣∣
1 1
2 5

∣∣∣∣ = 20.

2. Compute the determinant by cofactor expansion. Pick the easiest row or column to
use. ∣∣∣∣∣∣∣∣

2 0 0 1
2 1 1 0
0 0 0 3
2 3 3 1

∣∣∣∣∣∣∣∣
You ought to use the third row. This yields the above equals

3

∣∣∣∣∣∣

2 0 0
2 1 1
2 3 3

∣∣∣∣∣∣
= (3) (2)

∣∣∣∣
1 1
3 3

∣∣∣∣ = 0.
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3. Find the determinant using row and column operations.
∣∣∣∣∣∣∣∣

5 4 3 2
3 2 4 3
−1 2 3 3
2 1 2 −2

∣∣∣∣∣∣∣∣
Replace the first row by 5 times the third added to it and then replace the second by
3 times the third added to it and then the last by 2 times the third added to it. This
yields ∣∣∣∣∣∣∣∣

0 14 18 17
0 8 13 12
−1 2 3 3
0 5 8 4

∣∣∣∣∣∣∣∣
Now lets replace the third column by −1 times the last column added to it.

∣∣∣∣∣∣∣∣

0 14 1 17
0 8 1 12
−1 2 0 3
0 5 4 4

∣∣∣∣∣∣∣∣
Now replace the top row by −1 times the second added to it and the bottom row by
−4 times the second added to it. This yields

∣∣∣∣∣∣∣∣

0 6 0 5
0 8 1 12
−1 2 0 3
0 −27 0 −44

∣∣∣∣∣∣∣∣
. (2.1)

This looks pretty good because it has a lot of zeros. Expand along the first column
and next along the second,

(−1)

∣∣∣∣∣∣

6 0 5
8 1 12
−27 0 −44

∣∣∣∣∣∣
= (−1) (1)

∣∣∣∣
6 5
−27 −44

∣∣∣∣ = 129.

Alternatively, you could continue doing row and column operations. Switch the third
and first row in 2.1 to obtain

−

∣∣∣∣∣∣∣∣

−1 2 0 3
0 8 1 12
0 6 0 5
0 −27 0 −44

∣∣∣∣∣∣∣∣

Next take 9/2 times the third row and add to the bottom.

−

∣∣∣∣∣∣∣∣

−1 2 0 3
0 8 1 12
0 6 0 5
0 0 0 −44 + (9/2) 5

∣∣∣∣∣∣∣∣
.

Finally, take −6/8 times the second row and add to the third.

−

∣∣∣∣∣∣∣∣

−1 2 0 3
0 8 1 12
0 0 −6/8 5 + (−6/8) (12)
0 0 0 −44 + (9/2) 5

∣∣∣∣∣∣∣∣
.
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Therefore, since the matrix is now upper triangular, the determinant is

− ((−1) (8) (−6/8) (−44 + (9/2) 5)) = 129.

4. An operation is done to get from the first matrix to the second. Identify what was
done and tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
a c
b d

)

This involved taking the transpose so the determinant of the new matrix is the same
as the determinant of the first matrix.

5. Show that for A a 2× 2 matrix det (aA) = a2 det (A) where a is a scalar.

a2 det (A) = a det (A1) where the first row of A is replaced by a times it to get A1.
Then a det (A1) = A2 where A2 is obtained from A by multiplying both rows by a. In
other words, A2 = aA. Thus the conclusion is established.

6. Use Cramer’s rule to find y in

2x + 2y + z = 3
2x− y − z = 2

x + 2z = 1

From Cramer’s rule,

y =

∣∣∣∣∣∣

2 3 1
2 2 −1
1 1 2

∣∣∣∣∣∣
∣∣∣∣∣∣

2 2 1
2 −1 −1
1 0 2

∣∣∣∣∣∣

=
5
13

.

7. Here is a matrix,



et e−t cos t e−t sin t
et −e−t cos t− e−t sin t −e−t sin t + e−t cos t
et 2e−t sin t −2e−t cos t




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

det




et e−t cos t e−t sin t
et −e−t cos t− e−t sin t −e−t sin t + e−t cos t
et 2e−t sin t −2e−t cos t




= 5ete2(−t) cos2 t + 5ete2(−t) sin2 t = 5e−t which is never equal to zero for any value of
t and so there is no value of t for which the matrix has no inverse.

8. Use the formula for the inverse in terms of the cofactor matrix to find if possible the
inverse of the matrix 


1 2 3
0 6 1
4 1 1


 .

First you need to take the determinant

det




1 2 3
0 6 1
4 1 1


 = −59
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and so the matrix has an inverse. Now you need to find the cofactor matrix.



∣∣∣∣
6 1
1 1

∣∣∣∣ −
∣∣∣∣

0 1
4 1

∣∣∣∣
∣∣∣∣

0 6
4 1

∣∣∣∣
−

∣∣∣∣
2 3
1 1

∣∣∣∣
∣∣∣∣

1 3
4 1

∣∣∣∣ −
∣∣∣∣

1 2
4 1

∣∣∣∣∣∣∣∣
2 3
6 1

∣∣∣∣ −
∣∣∣∣

1 3
0 1

∣∣∣∣
∣∣∣∣

1 2
0 6

∣∣∣∣




=




5 4 −24
1 −11 7
−16 −1 6


 .

Thus the inverse is

1
−59




5 4 −24
1 −11 7
−16 −1 6




T

=
1
−59




5 1 −16
4 −11 −1
−24 7 6


 .

If you check this, it does work.

B.4 Worked Exercises Page 152

1. Find the rank of the following matrices. If the rank is r, identify r columns in the
original matrix which have the property that every other column may be written
as a linear combination of these. Also find a basis for the row and column spaces of
the matrices.

(a)




9 2 0
3 7 1
6 1 0
0 2 1




From using row operations we obtain the row reduced echelon form which is



1 0 0
0 1 0
0 0 1
0 0 0




Therefore, a basis for the column space of the original matrix is the first three
columns of the original matrix. A basis for the row space is just

(
1 0 0

)
,
(

0 1 0
)
, and

(
0 0 1

)
.

(b)




3 0 3
10 9 1
1 1 0
2 2 0
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In this case the row reduced echelon form is



1 0 1
0 1 −1
0 0 0
0 0 0




and so a basis for the column space of the original matrix consists of the first two
columns of the original matrix and a basis for the row space is

(
1 0 1

)
and(

0 1 −1
)
.

(c)




0 1 7 8 1 9 2
0 3 2 5 1 6 8
0 1 1 2 0 2 3
0 2 1 3 0 3 4




The row reduced echelon form of this matrix is



0 1 0 1 0 1 0
0 0 1 1 0 1 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1




and so a basis for the column space of the original matrix consists of the second,
third, fifth, and seventh columns of the original matrix. A basis for the row space
consists of the rows of this last matrix in row reduced echelon form.

2. Let H denote span







1
1
0


 ,




1
4
5


 ,




1
3
1


 ,




1
1
1





 . Find the dimension of H

and determine a basis.

Make these the columns of a matrix and ask for the rank of this matrix.



1 1 1 1
1 4 3 1
0 5 1 1




The row reduced echelon form is



1 0 0 8
7

0 1 0 2
7

0 0 1 − 3
7




A basis for H is 






1
1
0


 ,




1
4
5


 ,




1
3
1








and so H has dimension 3.

3. Here are three vectors. Determine whether they are linearly independent or linearly
dependent. 


1
0
1


 ,




2
0
1


 ,




3
0
0
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You need to consider the solutions to the equation

c1




1
0
1


 + c2




2
0
1


 + c3




3
0
0


 =




0
0
0




and determine whether there is a solution other than the obvious one, c1 = c2 = c3 = 0.
The augmented matrix for the system of equations is




1 2 3 | 0
0 0 0 | 0
1 1 0 | 0




Taking −1 times the top row and adding to the bottom and then switching the two
bottom rows yields 


1 2 3 | 0
0 −1 −3 | 0
0 0 0 | 0




Next take 2 times the second row and add to the top. This yields



1 0 −3 | 0
0 −1 −3 | 0
0 0 0 | 0




There are solutions other than the zero solution because c3 is a free variable. Therefore,
these vectors are not linearly independent.

4. Here are four vectors. Determine whether they span R3. Are these vectors linearly
independent? 


1
2
3


 ,




4
0
3


 ,




3
2
0


 ,




2
1
6




The vectors can’t possibly be linearly independent. If they were, they would constitute
a linearly independent set consisting of four vectors even though there exists a spanning
set of only three, 


1
0
0


 ,




0
1
0


 ,




0
0
1




However, the four given vectors might still span R3 even though they are not a basis.
What does it take to span R3? Given a vector (x, y, z)T ∈ R3, do there exist scalars
c1, c2, c3, and c4 such that

c1




1
2
3


 + c2




4
0
3


 + c3




3
2
0


 + c4




2
1
6


 =




x
y
z


?

Consider the augmented matrix of the above,



1 4 3 2 | x
2 0 2 1 | y
3 3 0 6 | z
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Doing row operations till an echelon form is obtained leads to



1 0 0 5
4 | 1

4y + 2
9z − 1

6x
0 1 0 3

4 | − 1
4y + 1

6x + 1
9z

0 0 1 − 3
4 | − 2

9z + 1
6x + 1

4y




and you see there is a solution to the desired system of equations. In fact there are
infinitely many because c4 is a free variable. Therefore, the four vectors do span R3.

5. Consider the vectors of the form







2t + 6s
s− 2t
3t + s


 : s, t ∈ R



 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace
and find its dimension.

This is indeed a subspace. You only need to verify the set of vectors is closed with

respect to the vector space operations. Let




2t1 + 6s1

s1 − 2t1
3t1 + s1


 and




2t + 6s
s− 2t
3t + s


 be two

vectors in the given set of vectors.

α




2t + 6s
s− 2t
3t + s


 + β




2t1 + 6s1

s1 − 2t1
3t1 + s1




=




2αt + 6αs + 2βt1 + 6βs1

αs− 2αt + βs1 − 2βt1
3αt + αs + 3βt1 + βs1




=




2 (αt + βt1) + 6 (αs + βs1)
αs + βs1 − 2 (αt + βt1)
3 (αt + βt1) + αs + βs1




If we let T ≡ αt + βt1 and S ≡ αs + βs1, this is seen to be of the form



2T + 6S
S − 2T
3T + S




which is the way the vectors in the given set are described. Another way to see this is
to notice that the vectors in the given set are of the form

t




2
−2
3


 + s




6
1
1




so it consists of the span of the two vectors,



2
−2
3


 ,




6
1
1


 . (2.2)

Recall that the span of a set of vectors is always a subspace. You can also verify these
vectors in 2.2 form a linearly independent set and so they are a basis.
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6. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 ≥ u2

}
. Is M a subspace? Explain.

This is not a subspace because if u ∈ M, is such that u3 > u2, then consider (−1)u.
If this were in M you would need to have −u3 > −u2 and so u3 < u2 which cannot
be true if u3 > u2. Thus M is not closed under scalar multiplication so it is not a
subspace.

7. Let w,w1 be given vectors in R2 and define

M =
{
u = (u1, u2) ∈ R2 : w · u = 0 and w1 · u = 0

}
.

Is M a subspace? Explain.

Suppose u′ and u are both in M. What about αu′ + βu?

w· (αu′ + βu) = αw · u′ + βw · u = α0 + β0 = 0

Similarly,
w1· (αu′ + βu) = αw1·u′ + βw1·u = α0 + β0 = 0

and so αu′ + βu ∈ M. This has verified that M is a subspace.

B.5 Worked Exercises Page 168

1. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 5π/12.

You note that 5π/12 = 2π/3 − π/4. Therefore, you can first rotate through −π/4
and then rotate through 2π/3 to get the rotation through 5π/12. The matrix of the
transformation with respect to the usual coordinates which rotates through −π/4 is

( √
2/2

√
2/2

−√2/2
√

2/2

)

and the matrix of the transformation which rotates through 2π/3 is

( −1/2 −√3/2√
3/2 −1/2

)
.

Multiplying these gives
( −1/2 −√3/2√

3/2 −1/2

) ( √
2/2

√
2/2

−√2/2
√

2/2

)

=
( − 1

4

√
2 + 1

4

√
3
√

2 − 1
4

√
2− 1

4

√
3
√

2
1
4

√
3
√

2 + 1
4

√
2 − 1

4

√
2 + 1

4

√
3
√

2

)

and this is the matrix of the desired transformation. Note this shows that

cos (5π/12) = −1
4

√
2 +

1
4

√
3
√

2 ≈ . 258 819 05

sin (5π/12) =
1
4

√
3
√

2 +
1
4

√
2 ≈ . 965 925 83.
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2. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3 and then reflects across the x axis.

What does it do to e1? First you rotate e1 through the given angle to obtain
( −1/2√

3/2

)

and then this becomes ( −1/2
−√3/2

)
.

This is the first column of the desired matrix. Next e2 first is rotated through the
given angle to give ( −√3/2

−1/2

)

and then it is reflected across the x axis to give
( −√3/2

1/2

)

and this gives the second column of the desired matrix. Thus the matrix is
( −1/2 −√3/2
−√3/2 1/2

)
.

3. Find the matrix for proju (v) where u = (1,−2, 3)T
.

Recall
proju (v) =

v · u
||u||2 u

Therefore,

proju (e1) =
1
14




1
−2
3


 , proju (e2) =

−2
14




1
−2
3


 ,

proju (e2) =
3
14




1
−2
3


 .

Hence the desired matrix is

1
14




1 −2 3
−2 4 −6
3 −6 9


 .

4. Show that the function Tu defined by Tu (v) ≡ v − proju (v) is also a linear transfor-
mation.

Tu (αv + βw) = αv + βw− proju (αv + βw)

which from 3 equals

α (v − proju (v)) + β (w − proju (w)) = αTuv + βTuw.

This is what it takes to be a linear transformation.
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5. If A,B, and C are each n× n matrices and ABC is invertible, why are each of A,B,
and C invertible.

0 6= det (ABC) = det (A) det (B) det (C) and so none of det (A) , det (B) , or det (C)
can equal zero. Therefore, each is invertible. You should do this another way, showing
that each of A,B, and C is one to one and then using a theorem presented earlier.

6. Give an example of a 3 × 1 matrix with the property that the linear transformation
determined by this matrix is one to one but not onto.

Here is one.




1
0
0


 . If




1
0
0


x =




0
0
0


 , then x = 0 but this is certainly not onto

as a map from R1 to R3 because it does not ever yield




1
1
0


 .

7. Find the matrix of the linear transformation from R3 to R3 which first rotates every
vector through an angle of π/4 about the z axis when viewed from the positive z axis
and then rotates every vector through an angle of π/6 about the x axis when viewed
from the positive x axis.

The matrix of the linear transformation which accomplishes the first rotation is


√

2/2 −√2/2 0√
2/2

√
2/2 0

0 0 1




and the matrix which accomplishes the second rotation is



1 0 0
0

√
3/2 −1/2

0 1/2
√

3/2




Therefore, the matrix of the desired linear transformation is



1 0 0
0

√
3/2 −1/2

0 1/2
√

3/2






√

2/2 −√2/2 0√
2/2

√
2/2 0

0 0 1




=




1
2

√
2 − 1

2

√
2 0

1
4

√
3
√

2 1
4

√
3
√

2 − 1
2

1
4

√
2 1

4

√
2 1

2

√
3




This might not be the first thing you would think of.

B.6 Worked Exercises Page 182

1. Find an LU factorization of




1 2 7
3 1 3
1 2 3


 .

To find this we write 


1 0 0
0 1 0
0 0 1







1 2 7
3 1 3
1 2 3
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and put the one on the right into echelon form and keep track of the multipliers.
Updating the first column,




1 0 0
3 1 0
1 0 1







1 2 7
0 −5 −18
0 0 −4




We now stop because the matrix on the right is upper triangular.

2. Find an LU factorization of




1 7 3 2
1 3 8 1
5 1 1 3


 .

To find it we write 


1 0 0
0 1 0
0 0 1







1 7 3 2
1 3 8 1
5 1 1 3




and update keeping track of the multipliers. First we update the first column.



1 0 0
1 1 0
5 0 1







1 7 3 2
0 −4 5 −1
0 −34 −14 −7




Next we update the second column.



1 0 0
1 1 0
5 34/4 1







1 7 3 2
0 −4 5 −1
0 0 −14− 34/4× 5 −7 + 34/4




=




1 0 0
1 1 0
5 34/4 1







1 7 3 2
0 −4 5 −1
0 0 −113/2 3/2




At this point we stop because the matrix on the right is in upper triangular form.

3. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it
to solve the system of equations.

x + 2y + 3z = 5
2x + 3y + 3z = 6
3x + 5y + 4z = 11

The coefficient matrix is



1 2 3
2 3 3
3 5 4


 =




1 0 0
2 1 0
3 1 1







1 2 3
0 −1 −3
0 0 −2


 .

Then we first solve 


1 0 0
2 1 0
3 1 1







u
v
w


 =




5
6
11




which yields 


u
v
w


 =




5
−4
0
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Next we solve
=(u,v,w)T

︷ ︸︸ ︷


1 2 3
0 −1 −3
0 0 −2







x
y
z


 =




5
−4
0




which yields 


x
y
z


 =



−3
4
0




B.7 Worked Exercises Page 227

1. Let M be an n × n matrix. Then define the adjoint of M,denoted by M∗ to be the
transpose of the conjugate of M. For example,

(
2 i

1 + i 3

)∗
=

(
2 1− i
−i 3

)
.

A matrix, M, is self adjoint if M∗ = M. Show the eigenvalues of a self adjoint matrix
are all real. If the self adjoint matrix has all real entries, it is called symmetric. Show
that the eigenvalues and eigenvectors of a symmetric matrix occur in conjugate pairs.

First note that for x a vector, x∗x = |x|2 . This is because

x∗x =
∑

k

xkxk =
∑

k

|xk|2 ≡ |x|2 .

Also note that (AB)∗ = B∗A∗ because this holds for transposes.This implies that for
A an n×m matrix,

x∗A∗x =(Ax)∗ x

Then if Mx = λx

λx∗x = (λx)∗ x = (Mx)∗ x = x∗M∗x

= x∗Mx = x∗λx = λx∗x

and so λ = λ showing that λ must be real.

2. Suppose A is an n×n matrix consisting entirely of real entries but a+ ib is a complex
eigenvalue having the eigenvector, x + iy. Here x and y are real vectors. Show that
then a − ib is also an eigenvalue with the eigenvector, x − iy. Hint: You should
remember that the conjugate of a product of complex numbers equals the product of
the conjugates. Here a + ib is a complex number whose conjugate equals a− ib.

If A is real then the characteristic equation has all real coefficients. Therefore, letting
p (λ) be the characteristic polynomial,

0 = p (λ) = p (λ) = p
(
λ
)

showing that λ is also an eigenvalue.

3. Find the eigenvalues and eigenvectors of the matrix


−10 −2 11
−18 6 −9
10 −10 −2


 .
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Determine whether the matrix is defective.

The matrix has eigenvalues −12 and 18. Of these, −12 is repeated with multiplicity
two. Therefore, you need to see whether the eigenspace has dimension two. If it does,
then the matrix is non defective. If it does not, then the matrix is defective. The row
reduced echelon form for the system you need to solve is




2 −2 11 | 0
−18 18 −9 | 0
10 −10 10 | 0




and its row reduced echelon form is



1 −1 0 | 0
0 0 1 | 0
0 0 0 | 0




Therefore, the eigenspace is of the form



t
t
0




This is only one dimensional and so the matrix is defective.

4. Find the complex eigenvalues and eigenvectors of the matrix




1 1 −6
7 −5 −6
−1 7 2


 .

Determine whether the matrix is defective.

After wading through much affliction you find the eigenvalues are −6, 2 + 6i, 2 − 6i.
Since these are distinct, the matrix cannot be defective. We must find the eigenvectors
for these eigenvalues. The augmented matrix for the system of equations which must
be solved to find the eigenvectors associated with 2− 6i is



−1 + 6i 1 −6 | 0

7 −7 + 6i −6 | 0
−1 7 6i | 0


 .

The row reduced echelon form is



1 0 i 0
0 1 i 0
0 0 0 0




and so the eigenvectors are of the form

t



−i
−i
1


 .

You can check this as follows



1 1 −6
7 −5 −6
−1 7 2






−i
−i
1


 =



−6− 2i
−6− 2i
2− 6i
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and

(2− 6i)



−i
−i
1


 =



−6− 2i
−6− 2i
2− 6i


 .

It follows that the eigenvectors for λ = 2 + 6i are

t




i
i
1


 .

This is because A is real. If Av = λv, then taking the conjugate,

Av = Av = λv.

It only remains to find the eigenvector for λ = −6. The augmented matrix to row
reduce is 


7 1 −6 | 0
7 1 −6 | 0
−1 7 8 | 0




The row reduced echelon form is



1 0 −1 | 0
0 1 1 | 0
0 0 0 | 0


 .

Then an eigenvector is 

−1
1
−1


 .

5. You own a trailer rental company in a large city and you have four locations, one
in the South East, one in the North East, one in the North West, and one in the
South West. Denote these locations by SE,NE,NW, and SW respectively. Suppose
you observe that in a typical day, .7 of the trailers starting in SE stay in SE, .1 of the
trailers in NE go to SE, .1 of the trailers in NW end up in SE, .2 of the trailers in SW
end up in SE, .1 of the trailers in SE end up in NE,.7 of the trailers in NE end up in
NE,.2 of the trailers in NW end up in NE,.1 of the trailers in SW end up in NE, .2
of the trailers in SE end up in NW, .1 of the trailers in NE end up in NW, .6 of the
trailers in NW end up in NW, .2 of the trailers in SW end up in NW, 0 of the trailers
in SE end up in SW, .1 of the trailers in NE end up in SW, .1 of the trailers in NW
end up in SW, .5 of the trailers in SW end up in SW. You begin with 20 trailers in
each location. Approximately how many will you have in each location after a long
time? Will any location ever run out of trailers?

It sometimes helps to write down a table summarizing the given information.

SE NE NW SW
SE .7 .1 .1 .2
NE .1 .7 .2 .1
NW .2 .1 .6 .2
SW 0 .1 .1 .5
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Then the migration matrix is



7/10 1/10 1/10 1/5
1/10 7/10 1/5 1/10
1/5 1/10 3/5 1/5
0 1/10 1/10 1/2




All we have to do is find the eigenvector (In this case the eigenspace will be one
dimensional because some power of the matrix has all positive entries.) corresponding
to λ = 1 which has all the entries add to 20. This will be the long time population.
Remember, these processes conserve the sum of the entries. We must row reduce




−3/10 1/10 1/10 1/5 | 0
1/10 −3/10 1/5 1/10 | 0
1/5 1/10 −2/5 1/5 | 0
0 1/10 1/10 −1/2 | 0




The row reduced echelon form is



1 0 0 − 7
3 | 0

0 1 0 − 8
3 | 0

0 0 1 − 7
3 | 0

0 0 0 0 | 0




Therefore, the eigenvectors are of the form

t




7
8
7
3




and we simply need to choose t in such a way that the entries add to 20. Thus

7t + 8t + 7t + 3t = 20

so t = 4/5. Then the long time limit equals

4/5




7
8
7
3


 =




5. 6
6. 4
5. 6
2. 4




Thus there will be about 5.6 trailers in SE, 6.4 in NE, 5.6 in NW, and 2.4 in SW. In
particular, it appears no location will run out of trailers.



The Fundamental Theorem Of
Algebra

The fundamental theorem of algebra states that every non constant polynomial having
coefficients in C has a zero in C. If C is replaced by R, this is not true because of the
example, x2 +1 = 0. This theorem is a very remarkable result and notwithstanding its title,
all the best proofs of it depend on either analysis or topology. It was first proved by Gauss
in 1797. The proof given here follows Rudin [11]. See also Hardy [6] for a similar proof,
more discussion and references. The best proof is found in the theory of complex analysis.
Recall De Moivre’s theorem from trigonometry which is listed here for convenience.

Theorem C.0.1 Let r > 0 be given. Then if n is a positive integer,

[r (cos t + i sin t)]n = rn (cos nt + i sin nt) .

Recall that this theorem is the basis for proving the following corollary from trigonom-
etry, also listed here for convenience.

Corollary C.0.2 Let z be a non zero complex number and let k be a positive integer. Then
there are always exactly k kth roots of z in C.

Lemma C.0.3 Let ak ∈ C for k = 1, · · · , n and let p (z) ≡ ∑n
k=1 akzk. Then p is continu-

ous.

Proof:
|azn − awn| ≤ |a| |z − w|

∣∣zn−1 + zn−2w + · · ·+ wn−1
∣∣ .

Then for |z − w| < 1, the triangle inequality implies |w| < 1 + |z| and so if |z − w| < 1,

|azn − awn| ≤ |a| |z − w|n (1 + |z|)n
.

If ε > 0 is given, let

δ < min
(

1,
ε

|a|n (1 + |z|)n

)
.

It follows from the above inequality that for |z − w| < δ, |azn − awn| < ε. The function of
the lemma is just the sum of functions of this sort and so it follows that it is also continuous.

Theorem C.0.4 (Fundamental theorem of Algebra) Let p (z) be a nonconstant polynomial.
Then there exists z ∈ C such that p (z) = 0.

373
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Proof: Suppose not. Then

p (z) =
n∑

k=0

akzk

where an 6= 0, n > 0. Then

|p (z)| ≥ |an| |z|n −
n−1∑

k=0

|ak| |z|k

and so
lim
|z|→∞

|p (z)| = ∞. (3.1)

Now let
λ ≡ inf {|p (z)| : z ∈ C} .

By 3.1, there exists an R > 0 such that if |z| > R, it follows that |p (z)| > λ + 1. Therefore,

λ ≡ inf {|p (z)| : z ∈ C} = inf {|p (z)| : |z| ≤ R} .

The set {z : |z| ≤ R} is a closed and bounded set and so this infimum is achieved at some
point w with |w| ≤ R. A contradiction is obtained if |p (w)| = 0 so assume |p (w)| > 0. Then
consider

q (z) ≡ p (z + w)
p (w)

.

It follows q (z) is of the form

q (z) = 1 + ckzk + · · ·+ cnzn

where ck 6= 0, because q (0) = 1. It is also true that |q (z)| ≥ 1 by the assumption that
|p (w)| is the smallest value of |p (z)| . Now let θ ∈ C be a complex number with |θ| = 1 and

θckwk = − |w|k |ck| .

If

w 6= 0, θ =
−

∣∣wk
∣∣ |ck|

wkck

and if w = 0, θ = 1 will work. Now let ηk = θ and let t be a small positive number.

q (tηw) ≡ 1− tk |w|k |ck|+ · · ·+ cntn (ηw)n

which is of the form
1− tk |w|k |ck|+ tk (g (t, w))

where limt→0 g (t, w) = 0. Letting t be small enough,

|g (t, w)| < |w|k |ck| /2

and so for such t,
|q (tηw)| < 1− tk |w|k |ck|+ tk |w|k |ck| /2 < 1,

a contradiction to |q (z)| ≥ 1. This proves the theorem.
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σ(A), 318

Abel’s formula, 108
adjoint, 254, 259
adjugate, 97, 119
algebraic multiplicity, 216
angle between vectors, 71
area of a parallelogram, 81
augmented matrix, 32

back substitution, 32
barallelepiped

volume, 86
bases, 141
basic feasible solution, 188
basic variables, 39, 188
basis, 141, 306
block matrix, 250
block multiplication, 250
box product, 86

Cartesian coordinates, 10
Cauchy Schwarz inequality, 70, 76
Cayley Hamilton theorem, 120, 273
characteristic equation, 211
characteristic polynomial, 120
characteristic value, 210
classical adjoint, 97
cofactor, 92, 117
cofactor matrix, 92
companion matrix, 299
complex eigenvalues, 220

shifted inverse power method, 298
component, 21, 78, 79
component of a force, 74
components of a matrix, 48
composition of linear transformations, 332
conformable, 52
consistent, 41
Coordinates, 9
Cramer’s rule, 100, 120
cross product, 81

area of parallelogram, 81

coordinate description, 82
distributive law, 84
geometric description, 81

defective, 216
defective eigenvalue, 216
determinant, 113

product, 116
transpose, 115

diagonal matrix, 230
diagonalizable, 230, 248, 330
differential equations

first order systems, 312
dimension of vector space, 309
direct sum, 320
distance formula, 14
Dolittle’s method, 175
dominant eigenvalue, 285
dot product, 69

echelon form, 34
eigenspace, 212, 318
eigenvalue, 210, 318
eigenvalues, 120
eigenvector, 210
elementary matrices, 123
entries of a matrix, 48
equivalence class, 328
equivalence relation, 328

force, 19
Fredholm alternative, 148, 261
free variables, 39
Frobinius norm, 273
fundamental theorem of algebra, 373

Gauss Elimination, 41
Gauss elimination, 33
Gauss Jordan method for inverses, 60
Gauss Seidel, 278
Gauss Seidel method, 278
general solution, 167
generalized eigenspace, 318
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geometric multiplicity, 216
Gerschgorin’s theorem, 226
Gram Schmidt process, 254

Hermitian, 256

inconsistent, 38, 41
inner product, 69
inverses and determinants, 99, 118
invertible, 58

Jacobi, 276
Jacobi method, 276
Jordan block, 343
joule, 75

ker, 166
kernel, 166

Laplace expansion, 92, 117
leading entry, 33
linear combination, 116, 129
linear transformation, 160, 315
linearly independent, 137, 306

main diagonal, 93
matrix, 47

inverse, 58
left inverse, 119
lower triangular, 93, 120
right inverse, 119
self adjoint, 230, 234, 269, 369
symmetric, 230, 234, 369
upper triangular, 93, 120

matrix of linear transformation, 326
migration matrix, 223
minimal polynomial, 158, 317
minor, 92, 117
monic polynomial, 317

Newton, 22
nilpotent, 104, 325
nondefective, 248
nondefective eigenvalue, 216
null space, 166
nullity, 147

one to one, 160
onto, 160
orthogonal matrix, 104, 239
orthonormal, 240, 253

parallelepiped, 86

permutation matrices, 123
perp, 147
perpendicular, 72
pivot, 39
pivot column, 34, 131
pivot position, 34
position vector, 12, 13, 20
power method, 285
principle directions, 221
projection of a vector, 74

QR factorization, 181

rank of a matrix, 133, 149
Rayleigh quotient, 300
regression line, 260
resultant, 21
right handed system, 80
right polar factorization, 261
row equivalent, 131
row operations, 94, 123
row reduced echelon form, 130

scalar product, 69
scalars, 11, 47
scaling factor, 286
shifted inverse power method, 288

complex eigenvalues, 298
similar matrices, 328
similarity transformation, 328
simplex tableau, 190
simultaneous corrections, 276
singular value decomposition, 265
singular values, 265
skew lines, 29
skew symmetric, 57
slack variables, 188, 190
solution space, 166
span, 116, 130
spectrum, 210
speed, 23
standard position, 20
strictly upper triangular, 343
subspace, 305
symmetric, 57
symmetric matrix, 241

triangle inequality, 16, 70

unitary, 254

variation of constants formula, 314
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vector space, 305
vectors, 9, 19
velocity, 23

Wronskian, 107
Wronskian alternative, 313


