
Shelve in
Graphics/General

User level:
Beginning–Advanced

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

Computer Vision Metrics
Computer Vision Metrics: Survey, Taxonomy, and Analysis provides a technical tour
through computer vision, with a survey of nearly 100 types of local, regional, and
global feature descriptors, blending history of the field with state-of-the-art analysis
of contemporary methods, rather than just another how-to book with source code
shortcuts and performance analysis. Observations are provided to develop intuition
behind the methods and mathematics, interesting questions are raised for future
research rather than providing all the answers, and a Vision Taxonomy is suggested to
draw a conceptual map of the field. Extensive illustrations are included, with over 540
references to the literature in the comprehensive bibliography to dig deeper.

Computer Vision Metrics explores the key questions behind the design and mathematics
of computer vision metrics and feature descriptors, providing a comprehensive survey
and taxonomy of what methods are used, with analysis and observations about why the
methods work. Several 3D depth sensing methods are surveyed including MVS, stereo, and
structured light.

This work focuses on a slice through the field from the view of feature description
metrics, or how to describe, compute, and design the macro-features and micro-features
that make up larger objects in images. The focus is on the pixel-side of the vision pipeline,
with a light introduction to the back-end training, classification, machine learning, and
matching stages.

Computer Vision Metrics is written for engineers, scientists, and academic
researchers in areas including video analytics, scene understanding, machine vision,
face recognition, gesture recognition, pattern recognition, general object analysis, media
processing, and computational photography.

What You’ll Learn:

• Current status, brief history, and future directions for computer vision metrics
• Taxonomy of local binary, gradient & other spectra, shape features,

and basis spaces
• Overview of 2D image sensing, 3D depth sensing, and image preprocessing
• Vision pipeline optimization methods for computer vision applications
• Characterization of ten OpenCV detectors using synthetic feature alphabets

9 781430 259299

53999
ISBN 978-1-4302-5929-9

Krig

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author���xxvii

Acknowledgments��xxix

Introduction��xxxi

Chapter 1: Image Capture and Representation■■ �������������������������������� 1

Chapter 2: Image Pre-Processing■■ �� 39

Chapter 3: Global and Regional Features■■ �������������������������������������� 85

�Chapter 4: Local Feature Design Concepts, Classification, ■■
and Learning�� 131

Chapter 5: Taxonomy of Feature Description Attributes■■ �������������� 191

�Chapter 6: Interest Point Detector and Feature ■■
Descriptor Survey�� 217

Chapter 7: Ground Truth Data, Content, Metrics, and Analysis■■ ���� 283

Chapter 8: Vision Pipelines and Optimizations■■ ���������������������������� 313

Appendix A: Synthetic Feature Analysis■■ �������������������������������������� 365

Appendix B: Survey of Ground Truth Datasets■■ ����������������������������� 401

Appendix C: Imaging and Computer Vision Resources■■ ���������������� 411

Appendix D: Extended SDM Metrics■■ �� 419

Bibliography■■ �� 437

Index��� 465

xxxi

Introduction

Dirt. This is a jar of dirt.

Yes.

. . . Is the jar of dirt going to help?

If you don’t want it, give it back.

—Pirates Of The Carribean, Jack Sparrow and Tia Dalma

This work focuses on a slice through the field - Computer Vision Metrics – from the view of
feature description metrics, or how to describe, compute and design the macro-features
and micro-features that make up larger objects in images. The focus is on the pixel-side
of the vision pipeline, rather than the back-end training, classification, machine learning
and matching stages. This book is suitable for reference, higher-level courses, and
self-directed study in computer vision. The book is aimed at someone already familiar
with computer vision and image processing; however, even those new to the field will
find good introductions to the key concepts at a high level, via the ample illustrations and
summary tables.

I view computer vision as a mathematical artform and its researchers and
practitioners as artists. So, this book is more like a tour through an art gallery rather than a
technical or scientific treatise. Observations are provided, interesting questions are raised,
a vision taxonomy is suggested to draw a conceptual map of the field, and references are
provided to dig deeper. This book is like an attempt to draw a map of the world centered
around feature metrics, inaccurate and fuzzy as the map may be, with the hope that others
will be inspired to expand the level of detail in their own way, better than what I, or even
a few people, can accomplish alone. If I could have found a similar book covering this
particular slice of subject matter, I would not have taken on the project to write this book.

What is not in the Book
Readers looking for computer vision “‘how-to”’ source code examples, tutorial
discussions, performance analysis, and short-cuts will not find them here, and instead
should consult the well-regarded http://opencv.org library resources, including many
fine books, online resources, source code examples, and several blogs. There is nothing
better than OpenCV for the hands-on practitioner. For this reason, this book steers a
clear path around duplication of the “how-to” materials already provided by the OpenCV
community and elsewhere, and instead provides a counterpoint discussion, including
a comprehensive survey, analysis and taxonomy of methods. Also, do not expect all
computer vision topics to be covered deeply with proofs and performance analysis,

http://opencv.org

■ Introduction

xxxii

since the bibliography references cover these matters quite well: for example, machine
learning, training and classification methods are only lightly introduced, since the focus
here is on the feature metrics.

In summary, this book is about the feature metrics, showing “‘what”’ methods
practitioners are using, with detailed observations and analysis of “‘why”’ those methods
work, with a bias towards raising questions via observations rather than providing too
many answers. I like the questions best because good questions lead to many good
answers, and each answer is often pregnant with more good questions...

This book is aimed at a survey level, with a taxonomy and analysis, so no detailed
examples of individual use-cases or horse races between methods are included. However,
much detail is provided in over 540+ bibliographic references to dig deeper into practical
matters. Additionally, some “‘how-to”’ and “‘hands-on”’ resources are provided in
Appendix C. And a little ‘perfunctory’ source code accompanying parts of this book is
available online, for Appendix A covering the interest point detector evaluations for
the synthetic interest point alphabets introduced in Chapter 7; and in Appendix D for
extended SDM metrics covered in Chapter 3.

What is in the Book
Specifically, Chapter 1 provides preamble on 2d image formation and 3d depth imaging,
and Chapter 2 promotes intelligent image pre-processing to enhance feature description.
Chapters 3 through 6 form the core discussion on feature description, with an emphasis
on local features. Global and regional metrics are covered in Chapter 3, feature descriptor
concepts in Chapter 4, a vision taxonomy is suggested in Chapter 5, and local feature
description is covered in Chapter 6. Ground truth data is covered in Chapter 7, and
Chapter 8 discusses hypothetical vision pipelines and hypothetical optimizations from
an engineering perspective, as a set of exercises to tie vision concepts together into
real systems (coursework assignments can be designed to implement and improve
the hypothetical examples in Chapter 8). A set of synthetic interest point alphabets is
developed in Chapter 7, and ten common detectors are run against those alphabets, with
the results provided in Appendix A. It is difficult to cleanly partition all topics in image
processing and computer vision, so there is some overlap in the chapters. Also, there
are many hybrids used in practice, so there’s inevitable overlap in the Chapter 5 vision
taxonomy, and creativity always arrives on the horizon to find new and unexpected ways
of using old methods. However, the taxonomy is a starting point and helped to guide the
organization of the book.

Therefore, the main goal has been to survey and understand the range of methods
used to describe features, without passing judgment on which methods are better.
Some history is presented to describe why certain methods were developed, and what
properties of invariance or performance were the goals, and we leave the claims to be
proven by others, since “how” each method is implemented determines performance
and accuracy, and “what” each method is tested against in terms of ground truth data
really tells the rest of the story. If we can glean good ideas from the work of others, that is
a measure of the success of their work.

■ Introduction

xxxiii

Scope
For brevity’s sake, I exclude a deep treatment of selected topics not directly related to
the computer vision metrics themselves; this is an unusual approach, since computer
vision discussions typically include a wider range of topics. Specifically, the topics not
covered deeply here include statistical and machine learning, classification and training,
feature database construction and optimization, and searching and sorting. Bibliography
references are provided instead. Distance functions are discussed, since they are directly
linked to the feature metric. (A future edition of this book may contain a deep dive into
the statistical and machine learning side of computer vision, but not now.)

Terminology Caveat
Sometimes terminology in the literature does not agree when describing similar
concepts. So in some cases, terminology is adopted in this work that is not standardized
across independent research communities. In fact, some new and nonstandard
terminology may be introduced here, possibly because the author is unaware of better
existing terminology (perhaps some of the terminology introduced in this work will
become standardized). Terminology divergence is most pronounced with regard to
mathematical topics like clustering, regression, group distance, and error minimization,
as well as for computer vision topics like keypoints, interest points, anchor points, and
the like. The author recognizes that one is reluctant to change terminology, since so many
concepts are learned based on the terminology. I recall a friend of mine, Homer Mead,
chief engineer for the lunar rover and AWACS radar at Boeing, who sub-consciously
refused to convert from using the older term condenser to use the newer term capacitor.

Inspiration comes from several sources, mostly the opportunity of pioneering:
there is always some lack of clarity, structure and organization in any new field as the
boundaries expand, so in this vast field the opportunity to explore is compelling: to map
out structure and pathways of knowledge that others may follow to find new fields of
study, create better markers along the way, and extend the pathways farther.

The inspiration for this book has come from conversations with a wide range of
people over the years. Where did it all start? It began at Boeing in the early 1980s, while I
was still in college. I was introduced to computer graphics in the Advanced Development
Research labs where I worked, when the first computer-shaded 3D renderings of the
space shuttle were made in raster form. At that time, mainly vector graphics machines
were being used, like Evans & Sutherland Picture Systems, and eventually a BARCO
frame buffer was added to the lab, and advanced raster computer renderings of shaded
images from graphics models were pioneered by Jeff Lane and his group, as well as
Loren Carpenter. Fractals, NURBS, and A-buffer techniques were a few of the methods
developed in the labs, and the math of computer graphics, such as bi-cubic patches and
bi-quintic patches, scared me away from graphics initially. But I was attracted to single
pixels in the BARCO frame buffer, one pixel and line and frame at a time, since they
seemed so intuitive and obvious. I initially pursued imaging and computer vision rather
than all the computer graphics and associated math. However, it turned out that the
computer vision and image processing math was far more diverse and equally complex
anyway. Since then I have also spent considerable time in computer graphics. Back in
the mid-1980s, Don Snow, my boss, who was co-founder and VP of research at Pacific

■ Introduction

xxxiv

Western Systems and later at Applied Precision, asked me to analyze the View-PRB
fixed-function hardware unit for pattern recognition to use for automatic wafer probing
(in case we needed to build something like it ourselves) to locate patterns on wafers
and align the machine for probing. Correlation was used for pattern matching, with a
scale-space search method we termed “super-pixels.” The matching rate was four 32x32
patches per second over NTSC with sub-pixel accuracy, and I computed position,
rotation, and offsets to align the wafer prober stage to prepare for wafer probing; we
called this auto-align. I designed a pattern recognition servo system to locate the patterns
with rotational accuracy of a few micro-radians, and positional accuracy of a fraction
of a micron. In the later 1980s, I went to work for Mentor Graphics, and after several
years I left the corporate R&D group reporting to the president Gerry Langeler to start a
company, Krig Research, to focus on computer vision and imaging for high-end military
and research customers based on expensive and now extinct workstations (SGI, Apollo,
Sun… gone, all gone now…), and I have stayed interested ever since. Many things have
changed in our industry; the software seems to all be free, and the hardware or SOC is
almost free as well, so I am not sure how anyone can make any money at this anymore.

More recently, others have also provided inspiration. Thanks to Paul Rosin for synthetic
images and organizational ideas. Thanks to Yann LeCun for providing key references into
deep learning and convolutional networks, and thanks to Shree Nayar for permission to use
a few images, and continuing to provide the computer vision community with inspiration
via the Cave Research projects. And thanks to Luciano Oviedo for vast coverage of industry
activity and strategy about where it is all going, and lively discussions.

Others, too many to list, have also added to my journey. And even though the
conversations have sometimes been brief, or even virtual via email or SKYPE in many cases,
the influence of their work and thinking has remained, so special thanks are due to several
people who have provided comments to the manuscript or book outline, contributed
images, or just plain inspiration they may not realize. Thank you to Rahul Suthankar,
Alexandre Alahi for use of images and discussions; Steve Seitz, Bryan Russel, Liefeng Bo,
and Xiaofeng Ren for deep-dive discussions about RGB-D computer vision and other
research topics; Gutemberg Guerra-filho, Harsha Viswana, Dale Hitt, Joshua Gleason, Noah
Snavely, Daniel Scharstein, Thomas Salmon, Richard Baraniuk, Carl Vodrick, Hervé Jégou,
and Andrew Richardson; and also thanks for many interesting discussions on computer
vision topics with several folks at Intel including Ofri Weschler, Hong Jiang, Andy Kuzma,
Michael Jeronimo, Eli Turiel, and many others whom I have failed to mention.

Summary
In summary, my goal is to survey the methods people are using for feature description—
the key metrics generated—and make it easier for anyone to understand the methods
in practice, and how to evaluate the methods using the vision taxonomy and robustness
criteria to get the results they are looking for, and find areas for extending the state of the
art. And after hearing all the feedback from the first version of this work, I hope to create a
second version that is even better.

Scott Krig
Anno Domini 2014

1

Chapter 1

Image Capture
and Representation

“The changing of bodies into light, and light into bodies, is very
conformable to the course of Nature, which seems delighted with
transmutations.”

—Isaac Newton

Computer vision starts with images. This chapter surveys a range of topics dealing with
capturing, processing, and representing images, including computational imaging,
2D imaging, and 3D depth imaging methods, sensor processing, depth-field processing
for stereo and monocular multi-view stereo, and surface reconstruction. A high-level
overview of selected topics is provided, with references for the interested reader to dig
deeper. Readers with a strong background in the area of 2D and 3D imaging may benefit
from a light reading of this chapter.

Image Sensor Technology
This section provides a basic overview of image sensor technology as a basis for
understanding how images are formed and for developing effective strategies for image
sensor processing to optimize the image quality for computer vision.

Typical image sensors are created from either CCD cells (charge-coupled device) or
standard CMOS cells (complementary metal-oxide semiconductor). The CCD and CMOS
sensors share similar characteristics and both are widely used in commercial cameras.
The majority of sensors today use CMOS cells, though, mostly due to manufacturing
considerations. Sensors and optics are often integrated to create wafer-scale cameras for
applications like biology or microscopy, as shown in Figure 1-1.

Chapter 1 ■ Image Capture and Representation

2

Image sensors are designed to reach specific design goals with different
applications in mind, providing varying levels of sensitivity and quality. Consult the
manufacturer’s information to get familiar with each sensor. For example, the size and
material composition of each photo-diode sensor cell element is optimized for a given
semiconductor manufacturing process so as to achieve the best tradeoff between silicon
die area and dynamic response for light intensity and color detection.

For computer vision, the effects of sampling theory are relevant—for example, the
Nyquist frequency applied to pixel coverage of the target scene. The sensor resolution
and optics together must provide adequate resolution for each pixel to image the features
of interest, so it follows that a feature of interest should be imaged or sampled at two
times the minimum size of the smallest pixels of importance to the feature. Of course,
2x oversampling is just a minimum target for accuracy; in practice, single pixel wide
features are not easily resolved.

For best results, the camera system should be calibrated for a given application to
determine the sensor noise and dynamic range for pixel bit depth under different lighting
and distance situations. Appropriate sensor processing methods should be developed to
deal with the noise and nonlinear response of the sensor for any color channel, to detect
and correct dead pixels, and to handle modeling of geometric distortion. If you devise
a simple calibration method using a test pattern with fine and coarse gradations of gray
scale, color, and pixel size of features, you can look at the results. In Chapter 2, we survey
a range of image processing methods applicable to sensor processing. But let’s begin by
surveying the sensor materials.

Sensor Materials
Silicon-based image sensors are most common, although other materials such as gallium
(Ga) are used in industrial and military applications to cover longer IR wavelengths than
silicon can reach. Image sensors range in resolution, depending upon the camera used,
from a single pixel phototransistor camera, through 1D line scan arrays for industrial
applications, to 2D rectangular arrays for common cameras, all the way to spherical
arrays for high-resolution imaging. (Sensor configurations and camera configurations are
covered later in this chapter.)

Common imaging sensors are made using silicon as CCD, CMOS, BSI, and Foveon
methods, as discussed a bit later in this chapter. Silicon image sensors have a nonlinear
spectral response curve; the near infrared part of the spectrum is sensed well, while
blue, violet, and near UV are sensed less well, as shown in Figure 1-2. Note that the
silicon spectral response must be accounted for when reading the raw sensor data and
quantizing the data into a digital pixel. Sensor manufacturers make design compensations
in this area; however, sensor color response should also be considered when calibrating
your camera system and devising the sensor processing methods for your application.

Micro-lenses
RGB Color Filters
CMOS imager

Figure 1-1.  Common integrated image sensor arrangement with optics and color filters

Chapter 1 ■ Image Capture and Representation

3

Sensor Photo-Diode Cells
One key consideration in image sensoring is the photo-diode size or cell size. A sensor
cell using small photo-diodes will not be able to capture as many photons as a large
photo-diode. If the cell size is below the wavelength of the visible light to be captured,
such as blue light at 400nm, then additional problems must be overcome in the sensor
design to correct the image color. Sensor manufacturers take great care to design cells
at the optimal size to image all colors equally well (Figure 1-3). In the extreme, small
sensors may be more sensitive to noise, owing to a lack of accumulated photons and
sensor readout noise. If the photo-diode sensor cells are too large, there is no benefit
either, and the die size and cost for silicon go up, providing no advantage. Common
commercial sensor devices may have sensor cell sizes of around 1 square micron
and larger; each manufacturer is different, however, and tradeoffs are made to reach
specific requirements.

Figure 1-2.  Typical spectral response of a few types of silicon photo-diodes. Note the
highest sensitivity in the near-infrared range around 900nm and nonlinear sensitivity
across the visible spectrum of 400–700nm. Removing the IR filter from a camera increases
the near-infrared sensitivity due to the normal silicon response. (Spectral data image © OSI
Optoelectronics Inc. and used by permission)

Chapter 1 ■ Image Capture and Representation

4

Sensor Configurations: Mosaic, Foveon, BSI
There are various on-chip configurations for multi-spectral sensor design, including
mosaics and stacked methods, as shown in Figure 1-4. In a mosaic method, the color
filters are arranged in a mosaic pattern above each cell. The Foveon1 sensor stacking
method relies on the physics of depth penetration of the color wavelengths into the
semiconductor material, where each color penetrates the silicon to a different depth,
thereby imaging the separate colors. The overall cell size accommodates all colors, and so
separate cells are not needed for each color.

1.00

0.80

0.60

0.40

0.20

0.00
390 440 540

Wavelength (nm)

Se
ns

iti
vi

ty

RGB color spectral overlap

640 740490 590 690

Figure 1-3.  Primary color assignment to wavelengths. Note that the primary color regions
overlap, with green being a good monochrome proxy for all colors

1Foveon is a registered trademark of Foveon Inc.

Chapter 1 ■ Image Capture and Representation

5

Back-side-illuminated (BSI) sensor configurations rearrange the sensor wiring on
the die to allow for a larger cell area and more photons to be accumulated in each cell.
See the Aptina [410] white paper for a comparison of front-side and back-side die circuit
arrangement.

The arrangement of sensor cells also affects the color response. For example, Figure 1-5
shows various arrangements of primary color (R, G, B) sensors as well as white (W) sensors
together, where W sensors have a clear or neutral color filter. The sensor cell arrangements
allow for a range of pixel processing options—for example, combining selected pixels in
various configurations of neighboring cells during sensor processing for a pixel formation
that optimizes color response or spatial color resolution. In fact, some applications just use
the raw sensor data and perform custom processing to increase the resolution or develop
alternative color mixes.

Stacked
Photo-diodes

R

B

G

R filterB filter G filter

Photo-diode Photo-diode Photo-diode

Figure 1-4.  (Left) The Foveon method of stacking RGB cells to absorb different wavelengths
at different depths, with all RGB colors at each cell location. (Right) A standard mosaic cell
placement with RGB filters above each photo-diode, with filters only allowing the specific
wavelengths to pass into each photo-diode

Figure 1-5.  Several different mosaic configurations of cell colors, including white, primary
RGB colors, and secondary CYM cells. Each configuration provides different options for
sensor processing to optimize for color or spatial resolution. (Image used by permission,
© Intel Press, from Building Intelligent Systems)

Chapter 1 ■ Image Capture and Representation

6

The overall sensor size and format determines the lens size as well. In general,
a larger lens lets in more light, so larger sensors are typically better suited to digital
cameras for photography applications. In addition, the cell placement aspect ratio on
the die determines pixel geometry—for example, a 4:3 aspect ratio is common for digital
cameras while 3:2 is standard for 35mm film. The sensor configuration details are worth
understanding so you can devise the best sensor processing and image pre-processing
pipelines.

Dynamic Range and Noise
Current state-of-the-art sensors provide at least 8 bits per color cell, and usually are
12 to 14 bits. Sensor cells require area and time to accumulate photons, so smaller cells
must be designed carefully to avoid problems. Noise may come from optics, color filters,
sensor cells, gain and A/D converters, post-processing, or the compression methods,
if used. Sensor readout noise also affects effective resolution, as each pixel cell is read
out of the sensor, sent to an A/D converter, and formed into digital lines and columns
for conversion into pixels. Better sensors will provide less noise and higher effective bit
resolution. A good survey of de-noising is found in the work by Ibenthal [409].

In addition, sensor photon absorption is different for each color, and may be
problematic for blue, which can be the hardest color for smaller sensors to image. In
some cases, the manufacturer may attempt to provide a simple gamma-curve correction
method built into the sensor for each color, which is not recommended. For demanding
color applications, consider colorimetric device models and color management (as will be
discussed in Chapter 2), or even by characterizing the nonlinearity for each color channel
of the sensor and developing a set of simple corrective LUT transforms. (Noise-filtering
methods applicable to depth sensing are also covered in Chapter 2.)

Sensor Processing
Sensor processing is required to de-mosaic and assemble the pixels from the sensor
array, and also to correct sensing defects. We discuss the basics of sensor processing in
this section.

Typically, a dedicated sensor processor is provided in each imaging system, including
a fast HW sensor interface, optimized VLIW and SIMD instructions, and dedicated
fixed-function hardware blocks to deal with the massively parallel pixel-processing
workloads for sensor processing. Usually, sensor processing is transparent, automatic,
and set up by the manufacturer of the imaging system, and all images from the sensor are
processed the same way. A bypass may exist to provide the raw data that can allow custom
sensor processing for applications like digital photography.

De-Mosaicking
Depending on the sensor cell configuration, as shown in Figure 1-5, various
de-mosaicking algorithms are employed to create a final RGB pixel from the raw sensor
data. A good survey by Losson and Yang [406] and another by Li et al. [407] provide some
background on the challenges involved and the various methods employed.

Chapter 1 ■ Image Capture and Representation

7

One of the central challenges of de-mosaicking is pixel interpolation to combine the
color channels from nearby cells into a single pixel. Given the geometry of sensor cell
placement and the aspect ratio of the cell layout, this is not a trivial problem. A related
issue is color cell weighting—for example, how much of each color should be integrated
into each RGB pixel. Since the spatial cell resolution in a mosaicked sensor is greater
than the final combined RGB pixel resolution, some applications require the raw sensor
data to take advantage of all the accuracy and resolution possible, or to perform special
processing to either increase the effective pixel resolution or do a better job of spatially
accurate color processing and de-mosaicking.

Dead Pixel Correction
A sensor, like an LCD display, may have dead pixels. A vendor may calibrate the sensor at
the factory and provide a sensor defect map for the known defects, providing coordinates
of those dead pixels for use in corrections in the camera module or driver software. In
some cases, adaptive defect correction methods [408] are used on the sensor to monitor
the adjacent pixels to actively look for defects and then to correct a range of defect
types, such as single pixel defects, column or line defects, and defects such as 2x2 or 3x3
clusters. A camera driver can also provide adaptive defect analysis to look for flaws in real
time, and perhaps provide special compensation controls in a camera setup menu.

Color and Lighting Corrections
Color corrections are required to balance the overall color accuracy as well as the white
balance. As shown in Figure 1-2, color sensitivity is usually very good in silicon sensors
for red and green, but less good for blue, so the opportunity for providing the most
accurate color starts with understanding and calibrating the sensor.

Most image sensor processors contain a geometric processor for vignette correction,
which manifests as darker illumination at the edges of the image, as shown in Chapter 7
(Figure 7-6). The corrections are based on a geometric warp function, which is calibrated
at the factory to match the optics vignette pattern, allowing for a programmable
illumination function to increase illumination toward the edges. For a discussion of
image warping methods applicable to vignetting, see reference [490].

Geometric Corrections
A lens may have geometric aberrations or may warp toward the edges, producing images
with radial distortion, a problem that is related to the vignetting discussed above and
shown in Chapter 7 (Figure 7-6). To deal with lens distortion, most imaging systems have
a dedicated sensor processor with a hardware-accelerated digital warp unit similar to the
texture sampler in a GPU. The geometric corrections are calibrated and programmed in
the factory for the optics. See reference [490] for a discussion of image warping methods.

Chapter 1 ■ Image Capture and Representation

8

Cameras and Computational Imaging
Many novel camera configurations are making their way into commercial applications
using computational imaging methods to synthesize new images from raw sensor data—
for example, depth cameras and high dynamic range cameras. As shown in Figure 1-6,
a conventional camera system uses a single sensor, lens, and illuminator to create 2D
images. However, a computational imaging camera may provide multiple optics, multiple
programmable illumination patterns, and multiple sensors, enabling novel applications
such as 3D depth sensing and image relighting, taking advantage of the depth
information, mapping the image as a texture onto the depth map, and introducing new
light sources and then re-rendering the image in a graphics pipeline. Since computational
cameras are beginning to emerge in consumer devices and will become the front end of
computer vision pipelines, we survey some of the methods used.

Single Lens Single Flash

Programmable Flash
- Pattern Projectors
- Multi-Flash

Computational Imaging
- High Dynamic Range HDR
- High Frame Rates
- 3D Depth Maps
- Focal Plane Refocusing
- Focal Sweep
- Rolling Shutter
- Panorama Stitching
- Image Relighting

2D
Sensor

2D
Sensor
Array

Image Enhancements
- Color Enhancements
- Filtering, Contrast

Multi-lens Optics Arrays
- Plenoptic Lens Arrays
- Sphere/Ball Lenses

Figure 1-6.  Comparison of computational imaging systems with conventional cameras.
(Top) Simple camera model with flash, lens, and imaging device followed by image
enhancements like sharpening and color corrections. (Bottom) Computational imaging
using programmable flash, optics arrays, and sensor arrays, followed by computational
imaging applications

Overview of Computational Imaging
Computational imaging [447,414] provides options for synthesizing new images from
the raw image data. A computational camera may control a programmable flash pattern
projector, a lens array, and multiple image sensors, as well as synthesize new images from
the raw data, as illustrated in Figure 1-6. To dig deeper into computational imaging and
explore the current research, see the CAVE Computer Vision Laboratory at Columbia
University and the Rochester Institute of Technology Imaging Research. Here are some of
the methods and applications in use.

Chapter 1 ■ Image Capture and Representation

9

Single-Pixel Computational Cameras
Single-pixel computational cameras can reconstruct images from a sequence of single
photo detector pixel images of the same scene. The field of single-pixel cameras [103, 104]
falls into the domain of compressed sensing research, which also has applications outside
image processing extending into areas such as analog-to-digital conversion.

As shown in Figure 1-7, a single-pixel camera may use a micro-mirror array or a
digital mirror device (DMD), similar to a diffraction grating. The gratings are arranged in
a rectangular micro-mirror grid array, allowing the grid regions to be switched on or off
to produce binary grid patterns. The binary patterns are designed as a pseudo-random
binary basis set. The resolution of the grid patterns is adjusted by combining patterns
from adjacent regions—for example, a grid of 2x2 or 3x3 micro-mirror regions.

Figure 1-7.  A single-pixel imaging system where incoming light is reflected through a DMD
array of micro-mirrors onto a single photo-diode. The grid locations within the micro-mirror
array can be opened or closed to light, as shown here, to create binary patterns, where the
white grid squares are reflective and open, and the black grid squares are closed. (Image
used by permission, © R. G. Baraniuk, Compressive Sensing Lecture Notes)

A sequence of single-pixel images is taken through a set of pseudo-random micro
lens array patterns, then an image is reconstructed from the set. In fact, the number of
pattern samples required to reconstruct the image is lower than the Nyquist frequency,
since a sparse random sampling approach is used and the random sampling approach
has been proven in the research to be mathematically sufficient [103, 104]. The grid
basis-set sampling method is directly amenable to image compression, since only a
relatively sparse set of patterns and samples are taken. Since the micro-mirror array us
es rectangular shapes, the patterns are analogous to a set of HAAR basis functions.
(For more information, see Figures 2-20 and 6-22.)

The DMD method is remarkable, in that an image can be reconstructed from a
fairly small set of images taken from a single photo detector, rather than a 2D array of
photo detectors as in a CMOS or CCD image sensor. Since only a single sensor is used,
the method is promising for applications with wavelengths outside the near IR and
visible spectrum imaged by CMOS and CCD sensors. The DMD method can be used,
for example, to detect emissions from concealed weapons or substances at invisible
wavelengths using non-silicon sensors sensitive to nonvisible wavelengths.

Chapter 1 ■ Image Capture and Representation

10

2D Computational Cameras
Novel configurations of programmable 2D sensor arrays, lenses, and illuminators are
being developed into camera systems as computational cameras [424,425,426], with
applications ranging from digital photography to military and industrial uses, employing
computational imaging methods to enhance the images after the fact. Computational
cameras borrow many computational imaging methods from confocal imaging [419]
and confocal microscopy [421, 420]—for example, using multiple illumination patterns
and multiple focal plane images. They also draw on research from synthetic aperture
radar systems [422] developed after World War II to create high-resolution images
and 3D depth maps using wide baseline data from a single moving-camera platform.
Synthetic apertures using multiple image sensors and optics for overlapping fields of
view using wafer-scale integration are also topics of research [419]. We survey here a few
computational 2D sensor methods, including high resolution (HR), high dynamic range
(HDR), and high frame rate (HF) cameras.

The current wave of commercial digital megapixel cameras, ranging from around
10 megapixels on up, provide resolution matching or exceeding high-end film used in a
35mm camera [412], so a pixel from an image sensor is comparable in size to a grain of
silver on the best resolution film. On the surface, there appears to be little incentive to
go for higher resolution for commercial use, since current digital methods have replaced
most film applications and film printers already exceed the resolution of the human eye.

However, very high resolution gigapixel imaging devices are being devised
and constructed as an array of image sensors and lenses, providing advantages for
computational imaging after the image is taken. One configuration is the 2D array
camera, composed of an orthogonal 2D array of image sensors and corresponding
optics; another configuration is the spherical camera as shown in Figure 1-8 [411, 415],
developed as a DARPA research project at Columbia University CAVE.

Chapter 1 ■ Image Capture and Representation

11

High dynamic range (HDR) cameras [416,417,418] can produce deeper pixels with
higher bit resolution and better color channel resolution by taking multiple images of
the scene bracketed with different exposure settings and then combining the images.
This combination uses a suitable weighting scheme to produce a new image with deeper
pixels of a higher bit depth, such as 32 pixels per color channel, providing images that go
beyond the capabilities of common commercial CMOS and CCD sensors. HDR methods
allow faint light and strong light to be imaged equally well, and can combine faint light
and bright light using adaptive local methods to eliminate glare and create more uniform
and pleasing image contrast.

Figure 1-8.  (Top) Components of a very high resolution gigapixel camera, using a novel
spherical lens and sensor arrangement.(Bottom) The resulting high-resolution images
shown at 82,000 x 22,000 = 1.7 gigapixels. (All figures and images used by permission
© Shree Nayar Columbia University CAVE research projects)

Chapter 1 ■ Image Capture and Representation

12

Table 1-1.  Selected Methods for Capturing Depth Information

Depth Sensing
Technique

of Sensors Illumination Method Characteristics

Parallax and
Hybrid Parallax

2/1/array Passive – Normal
lighting

Positional shift
measurement in FOV
between two camera
positions, such as stereo,
multi-view stereo, or array
cameras

Size Mapping 1 Passive – Normal
lighting

Utilizes color tags of
specific size to determine
range and position

Depth of Focus 1 Passive – Normal
lighting

Multi-frame with scanned
focus

Differential
Magnification

1 Passive – Normal
lighting

Two-frame image
capture at different
magnifications, creating a
distance-based offset

(continued)

High frame rate (HF) cameras [425] are capable of capturing a rapid succession
of images of the scene into a set and combining the set of images using bracketing
techniques to change the exposure, flash, focus, white balance, and depth of field.

3D Depth Camera Systems
Using a 3D depth field for computer vision provides an understated advantage for many
applications, since computer vision has been concerned in large part with extracting
3D information from 2D images, resulting in a wide range of accuracy and invariance
problems. Novel 3D descriptors are being devised for 3D depth field computer vision, and
are discussed in Chapter 6.

With depth maps, the scene can easily be segmented into foreground and background
to identify and track simple objects. Digital photography applications are incorporating
various computer vision methods in 3-space and thereby becoming richer. Using selected
regions of a 3D depth map as a mask enables localized image enhancements such as
depth-based contrast, sharpening, or other pre-processing methods.

As shown in Table 1-1, there are many ways to extract depth from images. In some
cases, only a single camera lens and sensor are required, and software does the rest. Note
that the illumination method is a key component of many depth-sensing methods, such
as structured light methods. Combinations of sensors, lenses, and illumination are used
for depth imaging and computational imaging, as shown in Figure 1-9. We survey a few
selected depth-sensing methods in this section.

Chapter 1 ■ Image Capture and Representation

13

Depth Sensing
Technique

of Sensors Illumination Method Characteristics

Structured light 1 Active – Projected
lighting

Multi-frame pattern
projection

Time of Flight 1 Active – Pulsed
lighting

High-speed light pulse
with special pixels
measuring return time of
reflected light

Shading shift 1 Active – Alternating
lighting

Two-frame shadow
differential measurement
between two light sources
as different positions

Pattern spreading 1 Active – Multi-beam
lighting

Projected 2D spot pattern
expanding at different rate
from camera lens field
spread

Beam tracking 1 Active – Lighting on
object(s)

Two-point light sources
mounted on objects in
FOV to be tracked

Spectral Focal
Sweep

1 Passive – Normal
Lighting

Focal length varies for
each color wavelength,
with focal sweep to
focus on each color and
compute depth [418]

Diffraction
Gratings

1 Passive – Normal
Lighting

Light passing through
sets of gratings or light
guides provides depth
information [420]

Conical Radial
Mirror

1 Passive – Normal
Lighting

Light from a conical
mirror is imaged at
different depths as a toroid
shape, depth is extracted
from the toroid [413]

Source: Courtesy of Ken Salsmann Aptina [427], with a few other methods added by the
author.

Table 1-1.  (continued)

Chapter 1 ■ Image Capture and Representation

14

Depth sensing is not a new field, and is covered very well in several related
disciplines with huge industrial applications and financial resources, such as satellite
imaging, remote sensing, photogrammetry, and medical imaging. However, the topics
involving depth sensing are of growing interest in computer vision with the advent of
commercial depth-sensing cameras such as Kinect, enabling graduate students on a
budget to experiment with 3D depth maps and point clouds using a mobile phone or PC.

Multi-view stereo (MVS) depth sensing has been used for decades to compute digital
elevation maps or DEMs, and digital terrain maps or DTMs, from satellite images using
RADAR and LIDAR imaging, and from regional aerial surveys using specially equipped
airplanes with high-resolution cameras and stable camera platforms, including digital
terrain maps overlaid with photos of adjacent regions stitched together. Photo mosaicking
is a related topic in computer vision that’s gaining attention. The literature on digital
terrain mapping is rich with information on proper geometry models and disparity
computation methods. In addition, 3D medical imaging via CAT and MRI modalities is
backed by a rich research community, uses excellent depth-sensing methods, and offers
depth-based rendering and visualization. However, it is always interesting to observe the
“reinvention” in one field, such as computer vision, of well-known methods used in other
fields. As Solomon said, “There is nothing new under the sun.” In this section we approach
depth sensing in the context of computer vision, citing relevant research, and leave the
interesting journey into other related disciplines to the interested reader.

Binocular Stereo
Stereo [432, 433, 437] may be the most basic and familiar approach for capturing 3D
depth maps, as many methods and algorithms are in use, so we provide a high-level
overview here with selected standard references. The first step in stereo algorithms is
to parameterize the projective transformation from world coordinate points to their
corresponding image coordinates by determining the stereo calibration parameters of
the camera system. Open-source software is available for stereo calibration.2 Note that
the L/R image pair is rectified prior to searching for features for disparity computation.
Stereo depth r is computed, as shown in Figure 1-10.

RGB TOF
1 2 3

4 5 6

7 8 9

L
RGB

R
RGB

Ball Lens

Lens Array

Sensor Array

RGB

a. b.

c.

d.

e.

f.

Figure 1-9.  A variety of lens and sensor configurations for common cameras:
a. conventional, b. time-of-flight, c. stereo, d. array, e. plenoptic, f. spherical with ball lens

2http://opencv.org, Camera Calibration and 3D Reconstruction

http://opencv.org/

Chapter 1 ■ Image Capture and Representation

15

Pxyz

b = Baseline

L/R Rectified Co-Planar Image Pair, with pattern search windows

L/R Image PairPl Pr

L sensor R sensor

Principal
Ray

f = Focal Length

r = bf / d
d = dl-dr

r

dl dr

Figure 1-10.  Simplified schematic of basic binocular stereo principles

An excellent survey of stereo algorithms and methods is found in the work
of Scharstein and Szeliski [440] and also Lazaros [441]. The stereo geometry is a
combination of projective and Euclidean [437]; we discuss some of the geometric
problems affecting their accuracy later in this section. The standard online resource
for comparing stereo algorithms is provided by Middlebury College,3 where many new
algorithms are benchmarked and comparative results provided, including the extensive
ground truth datasets discussed in Appendix B.

3http://vision.middlebury.edu/~schar/stereo/web/results.php

http://vision.middlebury.edu/~schar/stereo/web/results.php

Chapter 1 ■ Image Capture and Representation

16

The fundamental geometric calibration information needed for stereo depth
includes the following basics.

•	 Camera Calibration Parameters. Camera calibration is outside
the scope of this work, however the parameters are defined as
11 free parameters [435, 432]—3 for rotation, 3 for translation,
and 5 intrinsic—plus one or more lens distortion parameters to
reconstruct 3D points in world coordinates from the pixels in 2D
camera space. The camera calibration may be performed using
several methods, including a known calibration image pattern or
one of many self-calibration methods [436]. Extrinsic parameters
define the location of the camera in world coordinates, and
intrinsic parameters define the relationships between pixel
coordinates in camera image coordinates. Key variables include
the calibrated baseline distance between two cameras at the
principal point or center point of the image under the optics; the
focal length of the optics; their pixel size and aspect ratio, which is
computed from the sensor size divided by pixel resolution in each
axis; and the position and orientation of the cameras.

•	 Fundamental Matrix or Essential Matrix. These two matrices
are related, defining the popular geometry of the stereo camera
system for projective reconstruction [438, 436, 437]. Their
derivation is beyond the scope of this work. Either matrix may
be used, depending on the algorithms employed. The essential
matrix uses only the extrinsic camera parameters and camera
coordinates, and the fundamental matrix depends on both the
extrinsic and intrinsic parameters, and reveals pixel relationships
between the stereo image pairs on epipolar lines.

In either case, we end up with projective transformations to reconstruct the 3D
points from the 2D camera points in the stereo image pair.

Stereo processing steps are typically as follows:

1.	 Capture: Photograph the left/right image pair simultaneously.

2.	 Rectification: Rectify left/right image pair onto the same plane,
so that pixel rows x coordinates and lines are aligned. Several
projective warping methods may be used for rectification [437].
Rectification reduces the pattern match problem to a 1D search
along the x-axis between images by aligning the images along the
x-axis. Rectification may also include radial distortion corrections
for the optics as a separate step; however, many cameras include
a built-in factory-calibrated radial distortion correction.

3.	 Feature Description: For each pixel in the image pairs, isolate a
small region surrounding each pixel as a target feature descriptor.
Various methods are used for stereo feature description [215, 120].

Chapter 1 ■ Image Capture and Representation

17

4.	 Correspondence: Search for each target feature in the opposite
image pair. The search operation is typically done twice, first
searching for left-pair target features in the right image and then
right-pair target features in the left image. Subpixel accuracy is
required for correspondence to increase depth field accuracy.

5.	 Triangulation: Compute the disparity or distance between
matched points using triangulation [439]. Sort all L/R target
feature matches to find the best quality matches, using one of
many methods [440].

6.	 Hole Filling: For pixels and associated target features with no
corresponding good match, there is a hole in the depth map at
that location. Holes may be caused by occlusion of the feature in
either of the L/R image pairs, or simply by poor features to begin
with. Holes are filled using local region nearest-neighbor pixel
interpolation methods.

Stereo depth-range resolution is an exponential function of distance from the
viewpoint: in general, the wider the baseline, the better the long-range depth resolution.
A shorter baseline is better for close-range depth (see Figures 1-10 and 1-20). Human-eye
baseline or inter-pupillary distance has been measured as between 50 and75mm, averaging
about 70mm for males and 65mm for females.

Multi-view stereo (MVS) is a related method to compute depth from several views
using different baselines of the same subject, such as from a single or monocular camera,
or an array of cameras. Monocular, MVS, and array camera depth sensing are covered
later in this section.

Structured and Coded Light
Structured or coded light uses specific patterns projected into the scene and imaged back,
then measured to determine depth; see Figure 1-11. We define the following approaches
for using structured light for this discussion [445]:

•	 Spatial single-pattern methods, requiring only a single
illumination pattern in a single image.

•	 Timed multiplexing multi-pattern methods, requiring a
sequence of pattern illuminations and images, typically using
binary or n-array codes, sometimes involving phase shifting
or dithering the patterns in subsequent frames to increase
resolution. Common pattern sequences include gray codes,
binary codes, sinusoidal codes, and other unique codes.

Chapter 1 ■ Image Capture and Representation

18

For example, in the original Microsoft Kinect 3D depth camera, structured light
consisting of several slightly different micro-grid patterns or pseudo-random points
of infrared light are projected into the scene, then a single image is taken to capture
the spots as they appear in the scene. Based on analysis of actual systems and patent
applications, the original Kinect computes the depth using several methods, including
(1) the size of the infrared spot—larger dots and low blurring mean the location is nearer,
while smaller dots and more blurring mean the location is farther away; (2) the shape of
the spot—a circle indicates a parallel surface, an ellipse indicates an oblique surface; and
(3) by using small regions or a micro pattern of spots together so that the resolution is
not very fine—however, noise sensitivity is good. Depth is computed from a single image
using this method, rather than requiring several sequential patterns and images.

Multi-image methods are used for structured light, including projecting sets of
time-sequential structured and coded patterns, as shown in Figure 1-11. In multi-image
methods, each pattern is sent sequentially into the scene and imaged, then the combination
of depth measurements from all the patterns is used to create the final depth map.

Industrial, scientific, and medical applications of depth measurements from
structured light can reach high accuracy, imaging objects up to a few meters in size with
precision that extends to micrometer range. Pattern projection methods are used, as well
as laser-stripe pattern methods using multiple illumination beams to create wavelength
interference; the interference is the measured to compute the distance. For example,
common dental equipment uses small, hand-held laser range finders inserted into the
mouth to create highly accurate depth images of tooth regions with missing pieces, and
the images are then used to create new, practically perfectly fitting crowns or fillings using
CAD/CAM micro-milling machines.

Of course, infrared light patterns do not work well outdoors in daylight; they become
washed out by natural light. Also, the strength of the infrared emitters that can be used
is limited by practicality and safety. The distance for effectively using structured light
indoors is restricted by the amount of power that can be used for the IR emitters; perhaps

a.

b.

c. d.
e.

f.

Figure 1-11.  Selected structured light patterns and methods: a. gray codes, b. binary codes,
c. regular spot grid, d. randomized spot grid (as used in original Kinect), e. sinusoidal
phase shift patters, f. randomized pattern for compressive structured light [446]

Chapter 1 ■ Image Capture and Representation

19

5 meters is a realistic limit for indoor infrared light. Kinect claims a range of about
4 meters for the current TOF (time of flight) method using uniform constant infrared
illumination, while the first-generation Kinect sensor had similar depth range using
structured light.

In addition to creating depth maps, structured or coded light is used for
measurements employing optical encoders, as in robotics and process control systems.
The encoders measure radial or linear position. They provide IR illumination patterns
and measure the response on a scale or reticle, which is useful for single-axis positioning
devices like linear motors and rotary lead screws. For example, patterns such as the
binary position code and the reflected binary gray code [444] can be converted easily
into binary numbers (see Figure 1-11). The gray code set elements each have a Hamming
distance of 1 between successive elements.

Structured light methods suffer problems when handling high-specular reflections
and shadows; however, these problems can be mitigated by using an optical diffuser
between the pattern projector and the scene using the diffuse structured light methods
[443] designed to preserve illumination coding. In addition, multiple-pattern structured
light methods cannot deal with fast-moving scenes; however, the single-pattern methods
can deal well with frame motion, since only one frame is required.

Optical Coding: Diffraction Gratings
Diffraction gratings are one of many methods of optical coding [447] to create a set of
patterns for depth-field imaging, where a light structuring element, such as a mirror,
grating, light guide, or special lens, is placed close to the detector or the lens. The original
Kinect system is reported to use a diffraction grating method to create the randomized
infrared spot illumination pattern. Diffraction gratings [430,431] above the sensor, as
shown in Figure 1-12, can provide angle-sensitive pixel sensing. In this case, the light is
refracted into surrounding cells at various angles, as determined by the placement of the
diffraction gratings or other beam-forming elements, such as light guides. This allows the
same sensor data to be processed in different ways with respect to a given angle of view,
yielding different images.

Photo-diodes

Gratings

Figure 1-12.  Diffraction gratings above silicon used to create the Talbot Effect (first
observed around 1836) for depth imaging. (For more information, see reference [430].)
Diffraction gratings are a type of light-structuring element

Chapter 1 ■ Image Capture and Representation

20

This method allows the detector size to be reduced while providing higher resolution
images using a combined series of low-resolution images captured in parallel from
narrow aperture diffraction gratings. Diffraction gratings make it possible to produce
a wide range of information from the same sensor data, including depth information,
increased pixel resolution, perspective displacements, and focus on multiple focal planes
after the image is taken. A diffraction grating is a type of illumination coding device.

As shown in Figure 1-13, the light-structuring or coding element may be placed in
several configurations, including [447]:

Object side coding: close to the subjects•	

Pupil plane coding: close to the lens on the object side•	

Focal plane coding: close to the detector•	

Illumination coding: close to the illuminator•	

DetectorDetector DetectorDetector

Optical
Encoder +
Illuminator

Optical
Encoder Optical

Encoder

Optical
Encoder

Lens
LensLensLens

Figure 1-13.  Various methods for optical structuring and coding of patterns [447]: (Left to
right): Object side coding, pupil plane coding, focal plane coding, illumination coding or
structured light. The illumination patterns are determined in the optical encoder

Note that illumination coding is shown as structured light patterns in Figure 1-11,
while a variant of illumination coding is shown in Figure 1-7, using a set of mirrors that
are opened or closed to create patterns.

Time-of-Flight Sensors
By measuring the amount of time taken for infrared light to travel and reflect, a time-of-flight
(TOF) sensor is created [450]. A TOF sensor is a type of range finder or laser radar [449].
Several single-chip TOF sensor arrays and depth camera solutions are available, such as
the second version of the Kinect depth camera. The basic concept involves broadcasting
infrared light at a known time into the scene, such as by a pulsed IR laser, and then
measuring the time taken for the light to return at each pixel. Sub-millimeter accuracy at
ranges up to several hundred meters is reported for high-end systems [449], depending
on the conditions under which the TOF sensor is used, the particular methods employed
in the design, and the amount of power given to the IR laser.

Each pixel in the TOF sensor has several active components, as shown in
Figure 1-14, including the IR sensor well, timing logic to measure the round-trip time
from illumination to detection of IR light, and optical gates for synchronization of the
electronic shutter and the pulsed IR laser. TOF sensors provide laser range-finding

Chapter 1 ■ Image Capture and Representation

21

capabilities. For example, by gating the electronic shutter to eliminate short round-trip
responses, environmental conditions such as fog or smoke reflections can be reduced.
In addition, specific depth ranges, such as long ranges, can be measured by opening and
closing the shutter at desired time intervals.

IR Sensor

Sensor Gate / Shutter

Pulsed IR Laser

Pulsed Light Gate

Timing controls

IR Illuminated
scene

Figure 1-14.  A hypothetical TOF sensor configuration. Note that the light pulse length and
sensor can be gated together to target specific distance ranges

Illumination methods for TOF sensors may use very short IR laser pulses for a
first image, acquire a second image with no laser pulse, and then take the difference
between the images to eliminate ambient IR light contributions. By modulating the IR
beam with an RF carrier signal using a photonic mixer device (PMD), the phase shift
of the returning IR signal can be measured to increase accuracy—which is common
among many laser range-finding methods [450]. Rapid optical gating combined with
intensified CCD sensors can be used to increase accuracy to the sub-millimeter range
in limited conditions, even at ranges above 100 meters. However, multiple IR reflections
can contribute errors to the range image, since a single IR pulse is sent out over the entire
scene and may reflect off of several surfaces before being imaged.

Since the depth-sensing method of a TOF sensor is integrated with the sensor
electronics, there is very low processing overhead required compared to stereo and other
methods. However, the limitations of IR light for outdoor situations still remain [448],
which can affect the depth accuracy.

Chapter 1 ■ Image Capture and Representation

22

Array Cameras
As shown earlier in Figure 1-9, an array camera contains several cameras, typically
arranged in a 2D array, such as a 3x3 array, providing several key options for computational
imaging. Commercial array cameras for portable devices are beginning to appear. They may
use the multi-view stereo method to compute disparity, utilizing a combination of sensors
in the array, as discussed earlier. Some of the key advantages of an array camera include
a wide baseline image set to compute a 3D depth map that can see through and around
occlusions, higher-resolution images interpolated from the lower-resolution images of each
sensor, all-in-focus images, and specific image refocusing at one or more locations. The
maximum aperture of an array camera is equal to the widest baseline between the sensors.

Radial Cameras
A conical, or radial, mirror surrounding the lens and a 2D image sensor create a radial
camera [413], which combines both 2D and 3D imaging. As shown in Figure 1-15, the
radial mirror allows a 2D image to form in the center of the sensor and a radial toroidal
image containing reflected 3D information forms around the sensor perimeter. By
processing the toroidal information into a point cloud based on the geometry of the
conical mirror, the depth is extracted and the 2D information in the center of the image
can be overlaid as a texture map for full 3D reconstruction.

Figure 1-15.  (Left) Radial camera system with conical mirror to capture 3D reflections.
(Center) Captured 3D reflections around the edges and 2D information of the face in the
center. (Right) 3D image reconstructed from the radial image 3D information and the
2D face as a texture map. (Images used by permission © Shree Nayar Columbia University
CAVE)

Chapter 1 ■ Image Capture and Representation

23

Plenoptics: Light Field Cameras
Plenoptic methods create a 3D space defined as a light field, created by multiple optics.
Plenoptic systems use a set of micro-optics and main optics to image a 4D light field
and extract images from the light field during post-processing [451, 452, 423]. Plenoptic
cameras require only a single image sensor, as shown in Figure 1-16. The 4D light field
contains information on each point in the space, and can be represented as a volume
dataset, treating each point as a voxel, or 3D pixel with a 3D oriented surface, with color
and opacity. Volume data can be processed to yield different views and perspective
displacements, allowing focus at multiple focal planes after the image is taken. Slices of
the volume can be taken to isolate perspectives and render 2D images. Rendering a light
field can be done by using ray tracing and volume rendering methods [453, 454].

Subjects Main Lens SensorMicro-Lens Array

Figure 1-16.  A plenoptic camera illustration. Multiple independent subjects in the scene
can be processed from the same sensor image. Depth of field and focus can be computed for
each subject independently after the image is taken, yielding perspective and focal plane
adjustments within the 3D light field

In addition to volume and surface renderings of the light field, a 2D slice from the
3D field or volume can be processed in the frequency domain by way of the Fourier
Projection Slice Theorem [455], as illustrated in Figure 1-17. This is the basis for medical
imaging methods in processing 3D MRI and CAT scan data. Applications of the Fourier
Projection Slice method to volumetric and 3D range data are described by Levoy [455, 452]
and Krig [137]. The basic algorithm is described as follows:

1.	 The volume data is forward transformed, using a 3D FFT into
magnitude and phase data.

2.	 To visualize, the resulting 3D FFT results in the frequency volume
are rearranged by octant shifting each cube to align the frequency
0 data around the center of a 3D Cartesian coordinate system
in the center of the volume, similar to the way 2D frequency
spectrums are quadrant shifted for frequency spectrum display
around the center of a 2D Cartesian coordinate system.

Chapter 1 ■ Image Capture and Representation

24

3.	 A planar 2D slice is extracted from the volume parallel to the FOV
plane where the slice passes through the origin (center) of the
volume. The angle of the slice taken from the frequency domain
volume data determines the angle of the desired 2D view and the
depth of field.

4.	 The 2D slice from the frequency domain is run through an inverse
2D FFT to yield a 2D spatial image corresponding to the chosen
angle and depth of field.

Figure 1-17.  Graphic representation of the algorithm for the Fourier Projection Slice
Theorem, which is one method of light field processing. The 3D Fourier space is used to filter
the data to create 2D views and renderings [455, 452, 137]. (Image used by permission,
© Intel Press, from Building Intelligent Systems)

3D Depth Processing
For historical reasons, several terms with their acronyms are used in discussions of depth
sensing and related methods, so we cover some overlapping topics in this section. Table 1-1
earlier provided a summary at a high level of the underlying physical means for depth sensing.
Regardless of the depth-sensing method, there are many similarities and common problems.
Post-processing the depth information is critical, considering the calibration accuracy of the
camera system, the geometric model of the depth field, the measured accuracy of the depth
data, any noise present in the depth data, and the intended application.

We survey several interrelated depth-sensing topics here, including:

Sparse depth-sensing methods•	

Dense depth-sensing methods•	

Optical flow•	

Chapter 1 ■ Image Capture and Representation

25

Simultaneous localization and mapping (SLAM)•	

Structure from motion (SFM)•	

3D surface reconstruction, 3D surface fusion•	

Monocular depth sensing•	

Stereo and multi-view stereo (MVS)•	

Common problems in depth sensing•	

Human depth perception relies on a set of innate and learned visual cues, which
are outside the scope of this work and overlap into several fields, including optics,
ophthalmology, and psychology [464]; however, we provide an overview of the above
selected topics in the context of depth processing.

Overview of Methods
For this discussion of depth-processing methods, depth sensing falls into two major
categories based on the methods shown in Table 1-1:

•	 Sparse depth methods, using computer vision methods to
extract local interest points and features. Only selected points are
assembled into a sparse depth map or point cloud. The features
are tracked from frame to frame as the camera or scene moves,
and the sparse point cloud is updated. Usually only a single
camera is needed.

•	 Dense depth methods, computing depth at every pixel. This
creates a dense depth map, using methods such as stereo, TOF, or
MVS. It may involve one or more cameras.

Many sparse depth methods use standard monocular cameras and computer vision
feature tracking, such as optical flow and SLAM (which are covered later in this section),
and the feature descriptors are tracked from frame to frame to compute disparity and
sparse depth. Dense depth methods are usually based more on a specific depth camera
technology, such as stereo or structured light. There are exceptions, as covered next.

Problems in Depth Sensing and Processing
The depth-sensing methods each have specific problems; however, there are some
common problems we can address here. To begin, one common problem is geometric
modeling of the depth field, which is complex, including perspective and projections. Most
depth-sensing methods treat the entire field as a Cartesian coordinate system, and this
introduces slight problems into the depth solutions. A camera sensor is a 2D Euclidean
model, and discrete voxels are imaged in 3D Euclidean space; however, mapping between
the camera and the real world using simple Cartesian models introduces geometric
distortion. Other problems include those of correspondence, or failure to match features in
separate frames, and noise and occlusion. We look at such problems in this next section.

Chapter 1 ■ Image Capture and Representation

26

The Geometric Field and Distortions
Field geometry is a complex area affecting both depth sensing and 2D imaging. For
commercial applications, geometric field problems may not be significant, since locating
faces, tracking simple objects, and augmenting reality are not demanding in terms of 3D
accuracy. However, military and industrial applications often require high precision and
accuracy, so careful geometry treatment is in order. To understand the geometric field
problems common to depth-sensing methods, let’s break down the major areas:

Projective geometry problems, dealing with perspective•	

Polar and spherical geometry problems, dealing with perspective •	
as the viewing frustum spreads with distance from the viewer

Radial distortion, due to lens aberrations•	

Coordinate space problems, due to the Cartesian coordinates •	
of the sensor and the voxels, and the polar coordinate nature of
casting rays from the scene into the sensor

The goal of this discussion is to enumerate the problems in depth sensing, not to
solve them, and to provide references where applicable. Since the topic of geometry is
vast, we can only provide a few examples here of better methods for modeling the depth
field. It is hoped that, by identifying the geometric problems involved in depth sensing,
additional attention will be given to this important topic. The complete geometric
model, including corrections, for any depth system is very complex. Usually, the topic
of advanced geometry is ignored in popular commercial applications; however, we can
be sure that advanced military applications such as particle beam weapons and missile
systems do not ignore those complexities, given the precision required.

Several researchers have investigated more robust nonlinear methods of dealing with
projective geometry problems [465,466] specifically by modeling epipolar geometry–related
distortion as 3D cylindrical distortion, rather than as planar distortion, and by providing
reasonable compute methods for correction. In addition, the work of Lovegrove and
Davison [484] deals with the geometric field using a spherical mosaicking method to align
whole images for depth fusion, increasing the accuracy due to the spherical modeling.

The Horopter Region, Panum’s Area, and Depth Fusion

As shown in Figure 1-18, the Horopter region, first investigated by Ptolemy and others
in the context of astronomy, is a curved surface containing 3D points that are the same
distance from the observer and at the same focal plane. Panum’s area is the region
surrounding the Horopter where the human visual system fuses points in the retina into
a single object at the same distance and focal plane. It is a small miracle that the human
vision system can reconcile the distances between 3D points and synthesize a common
depth field! The challenge with the Horopter region and Panum’s area lies in the fact
that a post-processing step to any depth algorithm must be in place to correctly fuse the
points the way the human visual system does. The margin of error depends on the usual
variables, including baseline and pixel resolution, and the error is most pronounced

Chapter 1 ■ Image Capture and Representation

27

toward the boundaries of the depth field and less pronounced in the center. Some of
the spherical distortion is due to lens aberrations toward the edges, and can be partially
corrected as discussed earlier in this chapter regarding geometric corrections during
early sensor processing.

Panum’s Area

Horopter

Fused depth points

Figure 1-18.  Problems with stereo and multi-view stereo methods, showing the Horopter
region and Panum’s area, and three points in space that appear to be the same point from the
left eye’s perspective but different from the right eye’s perspective. The three points surround
the Horopter in Panum’s area and are fused by humans to synthesize apparent depth

Cartesian vs. Polar Coordinates: Spherical Projective
Geometry

As illustrated in Figure 1-19, a 2D sensor as used in a TOF or monocular depth-sensing
method has specific geometric problems as well; the problems increase toward the edges
of the field of view. Note that the depth from a point in space to a pixel in the sensor is
actually measured in a spherical coordinate system using polar coordinates, but the
geometry of the sensor is purely Cartesian, so that geometry errors are baked into the cake.

Chapter 1 ■ Image Capture and Representation

28

Because stereo and MVS methods also use single 2D sensors, the same problems
as affect single sensor depth-sensing methods also affect multi-camera methods,
compounding the difficulties in developing a geometry model that is accurate and
computationally reasonable.

Depth Granularity

As shown in Figure 1-20, simple Cartesian depth computations cannot resolve the
depth field into a linear uniform grain size; in fact, the depth field granularity increases
exponentially with the distance from the sensor, while the ability to resolve depth at long
ranges is much less accurate.

Sensor

P1 P2

P3

Figure 1-19.  A 2D depth sensor and lens with exaggerated imaging geometry problems
dealing with distance, where depth is different depending on the angle of incidence on
the lens and sensor. Note that P

1
 and P

2
 are equidistant from the focal plane; however, the

distance of each point to the sensor via the optics is not equal, so computed depth will not
be accurate depending on the geometric model used

Chapter 1 ■ Image Capture and Representation

29

For example, in a hypothetical stereo vision system with a baseline of 70mm using
480p video resolution, as shown in Figure 1-20, depth resolution at 10 meters drops off
to about ½ meter; in other words, at 10 meters away, objects may not appear to move
in Z unless they move at least plus or minus ½ meter in Z. The depth resolution can
be doubled simply by doubling the sensor resolution. As distance increases, humans
increasingly use monocular depth cues to determine depth, such as for size of objects,
rate of an object’s motion, color intensity, and surface texture details.

Correspondence
Correspondence, or feature matching, is common to most depth-sensing methods.
For a taxonomy of stereo feature matching algorithms, see Scharstein and Szeliski [440].
Here, we discuss correspondence along the lines of feature descriptor methods and
triangulation as applied to stereo, multi-view stereo, and structured light.

Subpixel accuracy is a goal in most depth-sensing methods, so several algorithms
exist [468]. It’s popular to correlate two patches or intensity templates by fitting the
surfaces to find the highest match; however, Fourier methods are also used to correlate
phase [467, 469], similar to the intensity correlation methods.

Y Pixel size: 480 / 10 meter = 20.8mm
Zy granularity = 465mm

Y Pixel size: 480 / 5 meter = 10.4mm
Zy granularity = 116mm

Y Pixel size: 480 / 3 meter = 6.25mm
Zy granularity = 41mm

Y Pixel size: 480 / 2 meter = 2.4mm
Zy granularity = 19mm

Y Pixel size: 480 / 1 meter = 2mm
Zy granularity = 4mm

480p Sensor 480p Sensor

Stereo system, 480p sensors, 70mm baseline, 4.3mm focal length
Sensor Y die size = .672mm
Sensor Y Pixel size: .0014mm
Zy Granularity = (.0014mm * Z2mm) / (4.3mm * 70mm)

Distance From Sensor in meters

De
pt

h
gr

an
ul

ar
ity

 o
r r

es
ol

ut
io

n
in

 m
m

De
pt

h
gr

an
ul

ar
ity

 o
r r

es
ol

ut
io

n
in

 m
m

Figure 1-20.  Z depth granularity nonlinearity problems for a typical stereo camera system.
Note that practical depth sensing using stereo and MVS methods has limitations in the
depth field, mainly affected by pixel resolution, baseline, and focal length. At 10 meters,
depth granularity is almost ½ meter, so an object must move at least + or- ½ meter in order
for a change in measured stereo depth to be computed

Chapter 1 ■ Image Capture and Representation

30

For stereo systems, the image pairs are rectified prior to feature matching so that the
features are expected to be found along the same line at about the same scale, as shown
in Figure 1-11; descriptors with little or no rotational invariance are suitable [215, 120].
A feature descriptor such as a correlation template is fine, while a powerful method such
as the SIFT feature description method [161] is overkill. The feature descriptor region may
be a rectangle favoring disparity in the x-axis and expecting little variance in the y-axis,
such as a rectangular 3x9 descriptor shape. The disparity is expected in the x-axis, not the
y-axis. Several window sizing methods for the descriptor shape are used, including fixed
size and adaptive size [440].

Multi-view stereo systems are similar to stereo; however, the rectification stage
may not be as accurate, since motion between frames can include scaling, translation,
and rotation. Since scale and rotation may have significant correspondence problems
between frames, other approaches to feature description have been applied to MVS, with
better results. A few notable feature descriptor methods applied to multi-view and wide
baseline stereo include the MSER [194] method (also discussed in Chapter 6), which uses
a blob-like patch, and the SUSAN [164, 165] method (also discussed in Chapter 6), which
defines the feature based on an object region or segmentation with a known centroid or
nucleus around which the feature exists.

For structured light systems, the type of light pattern will determine the feature, and
correlation of the phase is a popular method [469]. For example, structured light methods
that rely on phase-shift patterns using phase correlation [467] template matching claim
to be accurate to 1/100th of a pixel. Other methods are also used for structured light
correspondence to achieve subpixel accuracy [467].

Holes and Occlusion

When a pattern cannot be matched between frames, a hole exists in the depth map. Holes
can also be caused by occlusion. In either case, the depth map must be repaired, and
several methods exist for doing that. A hole map should be provided, showing where the
problems are. A simple approach, then, is to fill the hole uses use bi-linear interpolation
within local depth map patches. Another simple approach is to use the last known-good
depth value in the depth map from the current scan line.

More robust methods for handling occlusion exist [472, 471] using more
computationally expensive but slightly more accurate methods, such as adaptive local
windows to optimize the interpolation region. Yet another method of dealing with holes
is surface fusion into a depth volume [473] (covered next), whereby multiple sequential
depth maps are integrated into a depth volume as a cumulative surface, and then a depth
map can be extracted from the depth volume.

Surface Reconstruction and Fusion

A general method of creating surfaces from depth map information is surface
reconstruction. Computer graphics methods can be used for rendering and displaying
the surfaces. The basic idea is to combine several depth maps to construct a better
surface model, including the RGB 2D image of the surface rendered as a texture map.
By creating an iterative model of the 3D surface that integrates several depth maps from

Chapter 1 ■ Image Capture and Representation

31

different viewpoints, the depth accuracy can be increased, occlusion can be reduced or
eliminated, and a wider 3D scene viewpoint is created.

The work of Curless and Levoy [473] presents a method of fusing multiple range
images or depth maps into a 3D volume structure. The algorithm renders all range
images as iso-surfaces into the volume by integrating several range images. Using a
signed distance function and weighting factors stored in the volume data structure for
the existing surfaces, the new surfaces are integrated into the volume for a cumulative
best-guess at where the actual surfaces exist. Of course, the resulting surface has several
desirable properties, including reduced noise, reduced holes, reduced occlusion,
multiple viewpoints, and better accuracy (see Figure 1-21).

b. TSDF or truncated signed
distance function used to
compute the zero-crossing at the
estimated surface [473].

Raw Z depth map

Raw
YYZ vertex map &
Surface normal map

6DOF pose via ICP

Volume surface
integration 3D surface rendering

Volume
YYZ vertex map &
Surface normal map

a. Method of volume integration,
6DOF camera pose, and surface
rendering used in KinectFusion
[474][475].

Figure 1-21.  (Right) The Curless and Levoy [473] method for surface construction
from range images, or depth maps. Shown here are three different weighted surface
measurements projected into the volume using ray casting. (Left) Processing flow of Kinect
Fusion method

A derivative of the Curless and Levoy method applied to SLAM is the Kinect
Fusion approach [474], as shown in Figure 1-22, using compute-intensive SIMD parallel
real-time methods to provide not only surface reconstruction but also camera tracking
and the 6DOF or 6-degrees-of-freedom camera pose. Raytracing and texture mapping are
used for surface renderings. There are yet other methods for surface reconstruction from
multiple images [480, 551].

Chapter 1 ■ Image Capture and Representation

32

Noise
Noise is another problem with depth sensors [409], and various causes include low
illumination and, in some cases, motion noise, as well as inferior depth sensing algorithms
or systems. Also, the depth maps are often very fuzzy, so image pre-processing may be
required, as discussed in Chapter 2, to reduce apparent noise. Many prefer the bi-lateral
filter for depth map processing [302], since it respects local structure and preserves the
edge transitions. In addition, other noise filters have been developed to remedy the
weaknesses of the bi-lateral filter, which are well suited to removing depth noise, including
the Guided Filter [486], which can perform edge-preserving noise filtering like the bi-lateral
filter, the Edge-Avoiding Wavelet method [488], and the Domain Transform filter [489].

Monocular Depth Processing
Monocular, or single sensor depth sensing, creates a depth map from pairs of image
frames using the motion from frame to frame to create the stereo disparity. The
assumptions for stereo processing with a calibrated fixed geometry between stereo pairs
do not hold for monocular methods, since each time the camera moves the camera pose
must be recomputed. Camera pose is a 6 degrees-of-freedom (6DOF) equation, including
x, y, and z linear motion along each axis and roll, pitch, and yaw rotational motion about
each axis. In monocular depth-sensing methods, the camera pose must be computed for
each frame as the basis for comparing two frames and computing disparity.

Note that computation of the 6DOF matrix can be enhanced using inertial sensors, such
as the accelerometer and MEMS gyroscope [483], as the coarse alignment step, followed by
visual feature-based surface alignment methods discussed later in regard to optical flow.
Since commodity inertial sensors are standard with mobile phones and tablets, inertial pose
estimation will become more effective and commonplace as the sensors mature. While the
accuracy of commodity accelerometers is not very good, monocular depth-sensing systems
can save compute time by taking advantage of the inertial sensors for pose estimation.

Multi-View Stereo
The geometry model for most monocular multi-view stereo (MVS) depth algorithms is
based on projective geometry and epipolar geometry; a good overview of both are found
in the classic text by Hartley and Zisserman [437]. A taxonomy and accuracy comparison
of six MVS algorithms is provided by Seitz et al. [478]. We look at a few representative
approaches in this section.

Iterative surface alignment
solution over Image Pyramid

Figure 1-22.  Graphic representaion of the dense whole-image alignment solution to obtain
the 6DOF camera pose using ESM [485]

Chapter 1 ■ Image Capture and Representation

33

Sparse Methods: PTAM
Sparse MVS methods create a sparse 3D point cloud, not a complete depth map. The
basic goals for sparse depth are simple: track the features from frame to frame, compute
feature disparity to create depth, and perform 6DOF alignment to localize the new frames
and get the camera pose. Depending on the application, sparse depth may be ideal to use
as part of a feature descriptor to add invariance to perspective viewpoint or to provide
sufficient information for navigating that’s based on a few key landmarks in the scene.
Several sparse depth-sensing methods have been developed in the robotics community
under the terms SLAM, SFM, and optical flow (discussed below).

However, we first illustrate sparse depth sensing in more detail by discussing a
specific approach: Parallel Tracking and Mapping (PTAM)[456, 457], which can both
track the 6DOF camera pose and generate a sparse depth map suitable for light-duty
augmented reality applications, allowing avatars to be placed at known locations and
orientations in the scene from frame to frame. The basic algorithm consists of two
parts, which run in parallel threads: a tracking thread for updating the pose, and a
mapping thread for updating the sparse 3D point cloud. We provide a quick overview
of each next.

The mapping thread deals with a history buffer of the last N keyframes and an
N-level image pyramid for each frame in a history buffer, from which the sparse 3D
point cloud is continually refined using the latest incoming depth features via a bundle
adjustment process (which simply means fitting new 3D coordinates against existing 3D
coordinates by a chosen minimization method, such as the Levenberg-Marquardt [437]).
The bundle adjustment process can perform either a local adjustment over a limited
set of recent frames or global adjustment over all the frames during times of low scene
motion when time permits.

The tracking thread scans the incoming image frames for expected features, based
on projecting where known-good features last appeared, to guide the feature search,
using the 6DOF camera pose as a basis for the projection. A FAST9 [138] corner detector
is used to locate the corners, followed by a Shi-Tomasi [157] non-maximal suppression
step to remove weak corner candidates (discussed in Chapter 6 in more detail). The
feature matching stage follows a coarse-to-fine progression over the image pyramid to
compute the 6DOF pose.

Target features are computed in new frames using an 8x8 patch surrounding each
selected corner. Reference features are computed also as 8x8 patches from the original
patch taken from the first-known image where they were found. To align the reference
and target patches prior to feature matching, the surface normal of each reference patch
is used for pre-warping the patch against the last-known 6DOF camera pose, and the
aligned feature matching is performed using zero-mean SSD distance.

One weakness of monocular depth sensing shows up when there is a failure to
localize; that is, if there is too much motion, or illumination changes too much, the
system may fail to localize and the tracking stops. Another weakness is that the algorithm
must be initialized entirely for a specific localized scene or workspace, such as a desktop.
For initialization, PTAM follows a five-point stereo calibration method that takes a few
seconds to perform with user cooperation. Yet another weakness is that the size of the 3D
volume containing the point cloud is intended for a small, localized scene or workspace.
However, on the positive side, the accuracy of the 3D point cloud is very good, close to the
pixel size; the pose is accurate enough for AR or gaming applications; and it is possible to

Chapter 1 ■ Image Capture and Representation

34

create a 360-degree perspective point cloud by walking around the scene. PTAM has been
implemented on a mobile phone [456] using modest compute and memory resources,
with tradeoffs for accuracy and frame rate.

Dense Methods: DTAM
Dense monocular depth sensing is quite compute-intensive compared to sparse
methods, so the research and development are much more limited. The goals are about
the same as for sparse monocular depth—namely, compute the 6DOF camera pose for
image alignment, but create a dense every-pixel depth map instead of a sparse point
cloud. For illustration, we highlight key concepts from a method for Dense Tracking and
Mapping (DTAM), developed by Newcombe, Lovegrove and Davison [482].

While the DTAM goal is to compute dense depth at each pixel rather than sparse
depth, DTAM shares some of the same requirements with PTAM [457], since both are
monocular methods. Both DTAM and PTAM are required to compute the 6DOF pose
for each new frame in order to align the new frames to compute disparity. DTAM also
requires a user-assisted monocular calibration method for the scene, and it uses the
PTAM calibration method. And DTAM is also intended for small, localized scenes
or workspaces. DTAM shares several background concepts taken from the Spherical
Mosaicking method of Lovegrove and Davison [484], including the concept of whole
image alignment, based on the Efficient Second Order Minimization (ESM) method
[485], which is reported to find a stable surface alignment using fewer iterations than LK
methods [458] as part of the process to generate the 6DOF pose.

Apparently, both DTAM and Spherical Mosaicking use a spherical coordinate
geometry model to mosaic the new frames into the dense 3D surface proceeding from
coarse to fine alignment over the image pyramid to iterate toward the solution of the
6DOF camera pose. The idea of whole-image surface alignment is shown in Figure 1-22.
The new and existing depth surfaces are integrated using a localized guided-filter method
[486] into the cost volume. That is, the guided filter uses a guidance image to merge the
incoming depth information into the cost volume.

DTAM also takes great advantage of SIMD instructions and highly thread-parallel
SIMT GPGPU programming to gain the required performance necessary for real-time
operation on commodity GPU hardware.

Optical Flow, SLAM, and SFM
Optical flow measures the motion of features and patterns from frame to frame in the
form of a displacement vector. Optical flow is similar to sparse monocular depth-sensing
methods, and it can be applied to wide baseline stereo matching problems [463]. Since
the field of optical flow research and its applications is vast [459, 460, 461], we provide
only an introduction here with an eye toward describing the methods used and features
obtained.

Optical flow can be considered a sparse feature-tracking problem, where a feature
can be considered a particle [462], so optical flow and particle flow analysis are similar.
Particle flow analysis is applied to diverse particle field flow-analysis problems, including

Chapter 1 ■ Image Capture and Representation

35

weather prediction, simulating combustion and explosives, hydro-flow dynamics, and
robot navigation. Methods exist for both 2D and 3D optical flow. The various optical
flow algorithms are concerned with tracking-feature descriptors or matrices, rather than
with individual scalars or pixels, within consecutive fields of discrete scalar values. For
computer vision, the input to the optical flow algorithms is a set of sequential 2D images
and pixels, or 3D volumes and voxels, and the output is a set of vectors showing direction
of movement of the tracked features.

Many derivations and alternatives to the early Lucas Kanade (LK) method [458, 459,
460, 461] are used for optical flow; however, this remains the most popular reference
point, as it uses local features in the form of correlation templates (as discussed in
Chapter 6). Good coverage of the state-of-the-art methods based on LK is found in
Lucas Kanade 20 years on, by Baker and Matthews [480]. The Efficient Second Order
Minimization (ESM) method [485] is related to the LK method. ESM is reported to be a
stable solution using fewer iterations than LK. LK does not track individual pixels; rather,
it relies on the pixel neighborhood, such as a 3x3 matrix or template region, and tries to
guess which direction the features have moved, iteratively searching the local region and
averaging the search results using a least-squares solution to find the best guess.

While there are many variations on the LK method [459, 460, 461], key assumptions
of most LK-derived optical flow methods include small displacements of features from
frame to frame, rigid features, and sufficient texture information in the form of localized
gradients in order to identify features. Various methods are used to find the local
gradients, such as Sobel and Laplacian (discussed in Chapter 2). Fields with large feature
displacements from frame to frame and little texture information are not well suited
to the LK method. That’s because the LK algorithm ignores regions with little gradient
information by examining the eigenvalues of each local matrix to optimize the iterative
solution. However, more recent and robust research methods are moving beyond the
limitations of LK [459,460], and include Deepflow [344], which is designed for deformable
features and large displacement optical flow [394], using multi-layer feature scale
hierarchies [404] similar to convolutional networks [339].

Applications of surface reconstruction to localization and mapping are used in
simultaneous localization and mapping (SLAM) and instructure from motion (SFM)
methods—for example, in robotics navigation. One goal of SLAM is to localize, or find the
current position and the 6DOF camera pose. Another goal is to create a local region map,
which includes depth. To dig deeper into SLAM and SFM methods, see the historical
survey by Bailey and Hugh Durrant-Whyte [476, 477].

3D Representations: Voxels, Depth Maps,
Meshes, and Point Clouds
Depth information is represented and stored in a variety of convertible formats,
depending on the intended use. We summarize here some common formats; see also
Figure 1-23.

Chapter 1 ■ Image Capture and Representation

36

The ability to convert between depth formats is desirable for different algorithms and
easy to do. Common 3D depth formats include:

•	 2D Pixel Array, 3D Depth Map: A 2D pixel array is the default
format for 2D images in memory, and it is the natural storage
format for many processing operations, such as convolution and
neighborhood filtering. For depth map images, the pixel value
is the Z, or depth value. Each point in the array may contain
{color, depth}.

•	 3D Voxel Volume: A 3D volumetric data structure composed of a
3D array of voxels is ideal for several algorithms, including depth
map integration for 3D surface reconstruction and raytracing of
surfaces for graphical renderings. A voxel is a volume element,
like a pixel is a picture element. Each voxel may contain {color,
normal}; the depth coordinates are implicit from the volume
structure.

•	 3D Polygon Mesh: Storing 3D points in a standard 3D polygon
mesh provides a set of connected points or vertices, each having a
surface normal, 3D coordinates, color, and texture. Mesh formats
are ideal for rendering surfaces in a GPU pipeline, such as OpenGL
or DirectX. Each point in the mesh may contain {x, y, z, color,
normal}, and is associated with neighboring points in a standard
pattern such as a quad or triangle describing the surface.

•	 3D Point Cloud: This is a sparse structure that is directly
convertible to a standard 3D polygon mesh. The point cloud
format is ideal for sparse monocular depth-sensing methods.
Each point in the cloud may contain {x, y, z, color, normal}.

Figure 1-23.  Various 3D depth formats. Renderings of a Zernike polynomial. (Left to
right): A depth map, a polygon mesh rendering using 3D quads, a point cloud rendering
equivalent of voxels

Chapter 1 ■ Image Capture and Representation

37

Summary
In this chapter, we surveyed image sensing methods and sensor image processing methods
as the first step in the vision pipeline. We covered the image sensor technologies available,
with an eye toward image pre-processing that may be useful for getting the most from
the image data, since image sensoring methods often dictate the image pre-processing
required. (More discussion on image pre-processing is provided in Chapter 2.) Sensor
configurations used for both 2D and 3D imaging were discussed, as well as a wide range
of camera configurations used for computational imaging to create new images after the
data is captured, such as HDR images and image refocusing. Depth imaging approaches
were covered here as well, and included stereo and time of flight, since mobile devices are
increasingly offering 3D depth camera technology for consumer applications. Depth maps
can be used in computer vision to solve many problems, such as 3D feature description
and 3D image segmentation of foreground and background objects. The topic of 3D depth
processing and 3D features is followed throughout this book; chapter 6 covers 3D feature
descriptors, and chapter 7 and Appendix B cover 3D ground truth data.

39

Chapter 2

Image Pre-Processing

“I entered, and found Captain Nemo deep in algebraical calculations of
x and other quantities.”

—Jules Verne, 20,000 Leagues Under The Sea

This chapter describes the methods used to prepare images for further analysis, including
interest point and feature extraction. Some of these methods are also useful for global
and local feature description, particularly the metrics derived from transforms and basis
spaces. The focus is on image pre-processing for computer vision, so we do not cover
the entire range of image processing topics applied to areas such as computational
photography and photo enhancements, so we refer the interested reader to various
other standard resources in Digital Image Processing and Signal Processing as we go
along [4,9,325,326], and we also point out interesting research papers that will enhance
understanding of the topics.

Note■■   Readers with a strong background in image processing may benefit from a light
reading of this chapter.

Perspectives on Image Processing
Image processing is a vast field that cannot be covered in a single chapter. So why do we
discuss image pre-processing in a book about computer vision? The reason is to advance
the science of local and global feature description, as image pre-processing is typically
ignored in discussions of feature description. Some general image processing topics are
covered here in light of feature description, intended to illustrate rather than to proscribe,
as applications and image data will guide the image pre-processing stage.

Some will argue that image pre-processing is not a good idea, since it distorts or
changes the true nature of the raw data. However, intelligent use of image pre-processing
can provide benefits and solve problems that ultimately lead to better local and global
feature detection. We survey common methods for image enhancements and corrections
that will affect feature analysis downstream in the vision pipeline in both favorable and
unfavorable ways, depending on how the methods are employed.

Chapter 2 ■ Image Pre-Processing

40

Image pre-processing may have dramatic positive effects on the quality of feature
extraction and the results of image analysis. Image pre-processing is analogous to the
mathematical normalization of a data set, which is a common step in many feature
descriptor methods. Or to make a musical analogy, think of image pre-processing as
a sound system with a range of controls, such as raw sound with no volume controls;
volume control with a simple tone knob; volume control plus treble, bass, and mid; or
volume control plus a full graphics equalizer, effects processing, and great speakers in an
acoustically superior room. In that way, this chapter promotes image pre-processing by
describing a combination of corrections and enhancements that are an essential part of a
computer vision pipeline.

Problems to Solve During Image Pre-Processing
In this section we suggest opportunities for image pre-processing that are guided
according to the feature descriptor method you’ve chosen. Raw image data direct from
a camera may have a variety of problems, as discussed in Chapter 1, and therefore it is
not likely to produce the best computer vision results. This is why careful consideration
of image pre-processing is fundamental. For example, a local binary descriptor using
gray scale data will require different pre-processing than will a color SIFT algorithm;
additionally, some exploratory work is required to fine-tune the image pre-processing
stage for best results. We explore image pre-processing by following the vision pipelines
of four fundamental families of feature description methods, with some examples, as
follows:

1.	 Local Binary Descriptors (LBP, ORB, FREAK, others)

2.	 Spectra Descriptors (SIFT, SURF, others)

3.	 Basis Space Descriptors (FFT, wavelets, others)

4.	 Polygon Shape Descriptors (blob object area, perimeter, centroid)

These families of feature description metrics are developed into a taxonomy in
Chapter 5. Before that, though, Chapter 4 discusses the feature descriptor building
concepts, while Chapter 3 covers global feature description and then Chapter 6 surveys
local feature description. The image pre-processing methods and applications introduced
here are samples, but a more developed set of examples, following various vision
pipelines, is developed in Chapter 8, including application-specific discussions of the
pre-processing stage.

Vision Pipelines and Image Pre-Processing
Table 2-1 lists common image pre-processing operations, with examples from each of
the four descriptor families, illustrating both differences and commonality among these
image pre-processing steps, which can be applied prior to feature description. Our intent
here is to illustrate rather than proscribe or limit the methods chosen.

Chapter 2 ■ Image Pre-Processing

41

Local binary features deal with the pixel intensity comparisons of point-pairs. This
makes the comparisons relatively insensitive to illumination, brightness, and contrast, so
there may not be much need for image pre-processing to achieve good results. Current
local binary pattern methods as described in the literature do not typically call for much
image pre-processing; they rely on a simple comparison threshold that can be adjusted to
account for illumination or contrast.

Spectra descriptors, such as SIFT (which acts on local region gradients) and SURF
(which uses HAAR-like features with integrated pixel values over local regions), offer
diverse pre-processing opportunities. Methods that use image pyramids often perform
some image pre-processing on the image pyramid to create a scale space representation
of the data using Gaussian filtering to smooth the higher levels of the pyramid. Basic
illumination corrections and filtering may be useful to enhance the image prior to
computing gradients—for example, to enhance the contrast within a band of intensities
that likely contain gradient-edge information for the features. But in general, the literature
does not report good or bad results for any specific methods used to pre-process the
image data prior to feature extraction, and therein resides the opportunity.

Table 2-1.  Possible Image Pre-Processing Enhancements and Corrections as Applied to
Different Vision Pipelines

Image
Pre-Processing

Local Binary
(LBP, ORB)

Spectra
(SIFT, SURF)

Basis Space
(FFT, Code books)

Polygon Shape
(Blob Metrics)

Illumination
corrections

x x x x

Blur and focus
corrections

x x x x

Filtering and noise
removal

x x x x

Thresholding x

Edge enhancements x x

Morphology x

Segmentation x

Region processing
and filters

x x x

Point processing x x

Math and statistical
processing

x x

Color space
conversions

x x x

Chapter 2 ■ Image Pre-Processing

42

Basis space features are usually global or regional, spanning a regular shaped
polygon—for example, a Fourier transform computed over the entire image or block.
However, basis space features may be part of the local features, such as the Fourier spectrum
of the LBP histogram, which can be computed over histogram bin values of a local descriptor
to provide rotational invariance. Another example is the Fourier descriptor used to compute
polygon factors for radial line segment lengths showing the roundness of a feature to provide
rotational invariance. See Chapter 3, especially Figure 3-19.

The most complex descriptor family is the polygon shape based descriptors, which
potentially require several image pre-processing steps to isolate the polygon structure and
shapes in the image for measurement. Polygon shape description pipelines may involve
everything from image enhancements to structural morphology and segmentation
techniques. Setting up the pre-processing for polygon feature shape extraction typically
involves more work than any other method, since thresholds and segmentation require
fine-tuning to achieve good results. Also note that polygon shape descriptors are not local
patterns but, rather, larger regional structures with features spanning many tens and even
hundreds of pixels, so the processing can be more intensive as well.

In some cases, image pre-processing is required to correct problems that would
otherwise adversely affect feature description; we look at this next.

Corrections
During image pre-processing, there may be artifacts in the images that should be
corrected prior to feature measurement and analysis. Here are various candidates for
correction.

•	 Sensor corrections. Discussed in Chapter 1, these include dead
pixel correction, geometric lens distortion, and vignetting.

•	 Lighting corrections. Lighting can introduce deep shadows that
obscure local texture and structure; also, uneven lighting across
the scene might skew results. Candidate correction methods
include rank filtering, histogram equalization, and LUT remap.

•	 Noise. This comes in many forms, and may need special image
pre-processing. There are many methods to choose from, some of
which are surveyed in this chapter.

•	 Geometric corrections. If the entire scene is rotated or taken
from the wrong perspective, it may be valuable to correct the
geometry prior to feature description. Some features are more
robust to geometric variation than others, as discussed in
Chapters 4, 5, and 6.

•	 Color corrections. It can be helpful to redistribute color
saturation or correct for illumination artifacts in the intensity
channel. Typically color hue is one of the more difficult attributes
to correct, and it may not be possible to correct using simple
gamma curves and the sRGB color space. We cover more accurate
colorimetry methods later in this chapter.

Chapter 2 ■ Image Pre-Processing

43

Enhancements
Enhancements are used to optimize for specific feature measurement methods, rather
than fix problems. Familiar image processing enhancements include sharpening and
color balancing. Here are some general examples of image enhancement with their
potential benefits to feature description.

•	 Scale-space pyramids. When a pyramid is constructed using an
octave scale and pixel decimation to sub-sample images to create
the pyramid, sub-sampling artifacts and jagged pixel transitions
are introduced. Part of the scale-space pyramid building process
involves applying a Gaussian blur filter to the sub-sampled
images, which removes the jagged artifacts.

•	 Illumination. In general, illumination can always be
enhanced. Global illumination can be enhanced using simple
LUT remapping and pixel point operations and histogram
equalizations, and pixel remapping. Local illumination can be
enhanced using gradient filters, local histogram equalization, and
rank filters.

•	 Blur and focus enhancements. Many well-known filtering
methods for sharpening and blurring may be employed at the
pre-processing stage. For example, to compensate for pixel
aliasing artifacts introduced by rotation that may manifest as
blurred pixels which obscure fine detail, sharpen filters can be
used to enhance the edge features prior to gradient computations.
Or, conversely, the rotation artifacts may be too strong and can be
removed by blurring.

In any case, the pre-processing enhancements or corrections are dependent on the
descriptor using the images, and the application.

Preparing Images for Feature Extraction
Each family of feature description methods has different goals for the pre-processing
stage of the pipeline. Let’s look at a few examples from each family here, and examine
possible image pre-processing methods for each.

Local Binary Family Pre-Processing
The local binary descriptor family is primarily concerned with point-pair intensity value
comparisons, and several point-pair patterns are illustrated in Chapter 4 for common
methods such as FREAK, BRISK, BRIEF, and ORB. As illustrated in Figure 2-4, the

Chapter 2 ■ Image Pre-Processing

44

comparative difference (<, >, =) between points is all that matters, so hardly any image
pre-processing seems needed. Based on this discussion, here are two approaches for
image pre-processing:

1.	 Preserve pixels as is. Do nothing except use a pixel value-
difference compare threshold, such as done in the Census
transform and other methods, since the threshold takes care
of filtering noise and other artifacts.

 
if(|point1–point2|>threshold)

 
2.	 Use filtering. In addition to using the compare threshold,

apply a suitable filter to remove local noise, such as a
smoothing or rank filter. Or, take the opposite approach and
use a sharpen filter to amplify small differences, perhaps
followed by a smoothing filter. Either method may prove to
work, depending on the data and application.

Figure 2-1 uses center-neighbor point-pair comparisons in a 3x3 local region to
illustrate the difference between local threshold and a pre-processing operation for the
local binary pattern LBP, as follows:

Left image: Original unprocessed local 3x3 region data; compare •	
threshold = 5, dark pixels > 5 from center pixel.

Left center image: Compare threshold = 10; note pattern shape is •	
different simply by changing the threshold.

Right center image: After a Laplacian sharpening filter is applied •	
to 3x3 region, note that the center pixel value is changed from 52
to 49, so with the compare threshold set to 5 the pattern is now
different from original on the left.

Right image: Threshold on Laplacian filtered data set to 10; note •	
different resulting binary pattern.

Figure 2-1.  How the LBP can be affected by pre-processing, showing the compare threshold
value effects. (Left) Compare threshold = 5. (Center left) Compare threshold = 10. (Center
right) Original data after Laplacian fitler applied. (Right) Compare threshold = 5 on
Laplacian filtered data

Chapter 2 ■ Image Pre-Processing

45

Spectra Family Pre-Processing
Due to the wide range of methods in the spectra category, it is difficult to generalize the
potential pre-processing methods that may be useful. For example, SIFT is concerned
with gradient information computed at each pixel. SURF is concerned with combinations
of HAAR wavelets or local rectangular regions of integrated pixel values, which reduces
the significance of individual pixel values.

For the integral image-based methods using HAAR-like features such as SURF and
Viola Jones, here are a few hypothetical pre-processing options.

1.	 Do nothing. HAAR features are computed from integral
images simply by summing local region pixel values; no fine
structure in the local pixels is preserved in the sum, so one
option is to do nothing for image pre-processing.

2.	 Noise removal. This does not seem to be needed in the HAAR
pre-processing stage, since the integral image summing in
local regions has a tendency to filter out noise.

3.	 Illumination problems. This may require pre-processing;for
example, contrast enhancement may be a good idea if the
illumination of the training data is different from the current
frame. One pre-processing approach in this situation is to
compute a global contrast metric for the images in the training
set, and then compute the same global contrast metric in each
frame and adjust the image contrast if the contrast diverges
beyond a threshold to get closer to the desired global contrast
metric. Methods for contrast enhancement include LUT
remapping, global histogram equalization, and local adaptive
histogram equalization.

4.	 Blur. If blur is a problem in the current frame, it may
manifest similar to a local contrast problem, so local contrast
enhancement may be needed, such as a sharpen filter.
Computing a global statistical metric such as an SDM as part
of the ground truth data to measure local or global contrast
may be useful; if the current image diverges too much in
contrast, a suitable contrast enhancement may be applied as a
pre-processing step.

Note in Figure 2-2 that increasing the local-region contrast results in larger gradients
and more apparent edges. A feature descriptor that relies on local gradient information is
affected by the local contrast.

Chapter 2 ■ Image Pre-Processing

46

For the SIFT-type descriptors that use local area gradients, pre-processing may
be helpful to enhance the local gradients prior to computation, so as to affect certain
features:

1.	 Blur. This will inhibit gradient magnitude computation and
may make it difficult to determine gradient direction, so
perhaps a local rank filter, high-pass filter, or sharpen filter
should be employed.

2.	 Noise. This will exacerbate local gradient computations and
make them unreliable, so perhaps applying one of several
existing noise-removal algorithms can help.

3.	 Contrast. If local contrast is not high enough, gradient
computations are difficult and unreliable. Perhaps a local
histogram equalization, LUT remap, rank filter, or even a
sharpen filter can be applied to improve results.

Basis Space Family Pre-Processing
It is not possible to generalize image pre-processing for basis space methods, since
they are quite diverse, according to the taxonomy we are following in this work. As
discussed in Chapters 4, 5, and 6, basis space methods include Fourier, wavelets, visual
vocabularies, KTL, and others. However, here we provide a few general observations on
pre-processing.

1.	 Fourier Methods, wavelets, Slant transform, Walsh
Hadamard, KLT. These methods transform the data into
another domain for analysis, and it is hard to suggest any
pre-processing without knowing the intended application.
For example, computing the Fourier spectrum produces
magnitude and phase, and phase is shown to be useful in
feature description to provide invariance to blur, as reported
in the LPQ linear phase quantization method described in
Chapter 6, so a blurry image may not be a problem in this case.

Figure 2-2.  The effects of local contrast on gradients and edge detection: (Left) Original
image and Sobel edges. (Right) Contrasted adjusted image to amplify local region details
and resulting Sobel edges

Chapter 2 ■ Image Pre-Processing

47

2.	 Sparse coding and visual vocabularies. These methods rely
on local feature descriptors, which could be SURF, SIFT, LBP,
or any other desired feature, derived from pixels in the spatial
domain. Therefore, the method for feature description will
determine the best approach for pre-processing. For example,
methods that use correlation and raw pixel patches as sparse
codes may not require any pre-processing. Or perhaps some
minimal pre-processing can be used, such as illumination
normalization to balance contrast, local histogram
equalization or a LUT contrast remap.

In Figure 2-3, the contrast adjustment does not have much affect on Fourier methods,
since there is no dominant structure in the image. Fourier spectrums typically reveal that
the dominant structure and power is limited to lower frequencies that are in the center of
the quadrant-shifted 2D plot. For images with dominant structures, such as lines and other
shapes, the Fourier power spectrum will show the structure and perhaps pre-processing
may be more valuable. Also, the Fourier power spectrum display is scaled to a logarithmic
value and does not show all the details linearly, so a linear spectrum rendering might show
the lower frequencies scaled and magnified better for erase of viewing.

Figure 2-3.  In this example, no benefit is gained from pre-processing as shown in the Fourier
spectrum; (Left) Before. (Right) After contrast adjusting the input image

Polygon Shape Family Pre-Processing
Polygon shapes are potentially the most demanding features when considering image
pre-processing steps, since as shown in Table 2-1, the range of potential pre-processing
methods is quite large and the choice of methods to employ is very data-dependent.
Possibly because of the challenges and intended use-cases for polygon shape
measurements, they are used only in various niche applications, such as cell biology.

One of the most common methods employed for image preparation prior to
polygon shape measurements is to physically correct the lighting and select the subject
background. For example, in automated microscopy applications, slides containing cells
are prepared with florescent dye to highlight features in the cells, then the illumination
angle and position are carefully adjusted under magnification to provide a uniform
background under each cell feature to be measured; the resulting images are then much
easier to segment.

Chapter 2 ■ Image Pre-Processing

48

As illustrated in Figures 2-4 and 2-5, if the pre-processing is wrong, the resulting
shape feature descriptors are not very useful. Here are some of the more salient options
for pre-processing prior to shape based feature extraction, then we’ll survey a range of
other methods later in this chapter.

Figure 2-4.  Use of thresholding to solve problems during image pre-processing to prepare
images for polygon shape measurement: (Left) Original image. (Center) Thresholded red
channel image. (Right) Perimeter tracing above a threshold

Figure 2-5.  Another sequence of morphological pre-processing steps preceding polygon
shape measurement: (Left) Original image. (Center) Range thresholded and dilated red
color channel. (Right) Morphological perimeter shapes taken above a threshold

1.	 Illumination corrections. Typically critical for defining
the shape and outline of binary features. For example, if
perimeter tracking or boundary segmentation is based on
edges or thresholds, uneven illumination will cause problems,
since the boundary definition becomes indistinct. If the
illumination cannot be corrected, then other segmentation
methods not based on thresholds are available, such as
texture-based segmentation.

2.	 Blur and focus corrections. Perhaps not as critical as
illumination for polygon shape detection, since the segmentation
of object boundary and shape is less sensitive to blur.

3.	 Filtering and noise removal. Shape detection is somewhat
tolerant of noise, depending on the type of noise. Shot
noise or spot noise may not present a problem, and is easily
removed using various noise-cleaning methods.

Chapter 2 ■ Image Pre-Processing

49

4.	 Thresholding. This is critical for polygon shape detection
methods. Many thresholding methods are employed,
ranging from the simple binary thresholding to local adaptive
thresholding methods discussed later in this chapter.
Thresholding is a problematic operation and requires
algorithm parameter fine-tuning in addition to careful control
of the light source position and direction to deal with shadows.

5.	 Edge enhancements. May be useful for perimeter contour
definition.

6.	 Morphology. One of the most common methods employed
to prepare polygon shapes for measurement, covered later in
this chapter in some detail. Morphology is used to alter the
shapes, presumably for the better, mostly by combinations
or pipelines of erosion and dilation operations, as shown
in Figure 2-5. Morphological examples include object area
boundary cleanup, spur removal, and general line and
perimeter cleanup and smoothing.

7.	 Segmentation. These methods use structure or texture in
the image, rather than threshold, as a basis for dividing an
image into connected regions or polygons. A few common
segmentation methods are surveyed later in this chapter.

8.	 Area/Region processing. Convolution filter masks such as
sharpen or blur, as well as statistical filters such as rank filters
or media filters, are potentially useful prior to segmentation.

9.	 Point processing. Arithmetic scaling of image data point by
point, such as multiplying each pixel by a given value followed
by a clipping operation, as well as LUT processing, often is
useful prior to segmentation.

10.	 Color space conversions. Critical for dealing accurately with
color features, covered later in this chapter.

As shown In Figure 2-4, a range thresholding method uses the red color channel,
since the table background has a lot of red color and can be thresholded easily in red to
remove the table top. The image is thresholded by clipping values outside an intensity
band; note that the bottom right USB stick is gone after thresholding, since it is red and
below the threshold. Also note that the bottom center white USB stick is also mostly
gone, since it is white (max RGB values) and above the threshold. The right image shows
an attempt to trace a perimeter above a threshold; it’s still not very good, as more pre-
processing steps are needed.

Chapter 2 ■ Image Pre-Processing

50

The Taxonomy of Image Processing Methods
Before we survey image pre-processing methods, it is useful to have a simple taxonomy
to frame the discussion. The taxonomy suggested is a set of operations, including point,
line, area, algorithmic, and data conversions, as illustrated in Figure 2-6. The basic
categories of image pre-processing operations introduced in Figure 2-1 fit into this simple
taxonomy. Note that each stage of the vision pipeline, depending on intended use, may
have predominant tasks and corresponding pre-processing operations.

Sensor Processing

Image Pre-Processing

Global Metrics

Local Feature Metrics

Matching, Classification

Augment, Render, Control

Vision Pipeline Stage Operation

Point

Line

Area

Algorithmic

Data conversion

Figure 2-6.  Simplified, typical image processing taxonomy, as applied across the
vision pipeline

We provide a brief introduction to the taxonomy here, followed by a more detailed
discussion in Chapter 5. Note that the taxonomy follows memory layout and memory access
patterns for the image data. Memory layout particularly affects performance and power.

Point
Point operations deal with one pixel at a time, with no consideration of neighboring
pixels. For example, point processing operations can be divided into math, Boolean,
and pixel value compare substitution sections, as shown in Table 2-2 in the section later
on “Point Filtering.” Other point processing examples include color conversions and
numeric data conversions.

Line
Line operations deal with discrete lines of pixels or data, with no regard to prior or
subsequent lines. Examples include the FFT, which is a separable transform, where
pixel lines and columns can be independently processed in parallel as 1D FFT line
operations. If an algorithm requires lines of data, then optimizations for image
pre-processing memory layout, pipelined read/write, and parallel processing can be
made. Optimizations are covered in Chapter 8.

Chapter 2 ■ Image Pre-Processing

51

Area
Area operations typically require local blocks of pixels—for example, spatial filtering via
kernel masks, convolution, morphology, and many other operations. Area operations
generate specific types of memory traffic, and can be parallelized using fine-grained
methods such as common shaders in graphics processors and coarse-grained thread
methods.

Algorithmic
Some image pre-processing methods are purely serial or algorithmic code. It is difficult
or even impossible to parallelize these blocks of code. In some cases, algorithmic blocks
can be split into a few separate threads for coarse-grained parallelism or else pipelined,
as discussed in Chapter 8.

Data Conversions
While the tasks are mundane and obvious, significant time can be spent doing simple
data conversions. For example, integer sensor data may be converted to floating point for
geometric computations or color space conversions. Data conversions are a significant
part of image pre-processing in many cases. Example conversions include:

Integer bit-depth conversions (8/16/32/64)•	

Floating point conversions (single precision to double precision)•	

Fixed point to integer or float•	

Any combination of float to integer and vice versa•	

Color conversions to and from various color spaces•	

Conversion for basis space compute, such as integer to and from •	
float for FFT

Design attention to data conversions and performance are in order and can provide
a good return on investment, as discussed in Chapter 8.

Colorimetry
In this section, we provide a brief overview of color science to guide feature description,
with attention to color accuracy, color spaces, and color conversions. If a feature
descriptor is using color, then the color representation and processing should be carefully
designed, accurate, and suited to the application. For example, in some applications it
is possible to recognize an object using color alone, perhaps recognizing an automobile
using its paint color, assuming that the vendor has chosen a unique paint color each
year for each model. By combining color with another simple feature, such as shape, an
effective descriptor can be devised.

Chapter 2 ■ Image Pre-Processing

52

Color Science is a well-understood field defined by international standards and
amply described in the literature [249,250,251]. We list only a few resources here.

The Rochester Institute of Technology’s Munsel Color Science •	
Laboratory is among the leading research institutions in the
area or color science and imaging. It provides a wide range of
resources and has strong ties to industry imaging giants such as
Kodak, Xerox, and others.

The International Commission on Illumination (CIE) provides •	
standard illuminant data for a range of light sources as it pertains
to color science, as well as standards for the well-known color
spaces CIE XYZ, CIE Lab, and CIE Luv.

The ICC International Color Consortium provides the ICC •	
standard color profiles for imaging devices, as well as many other
industry standards, including the sRGB color space for color
displays.

Proprietary color management systems, developed by industry •	
leaders, include the Adobe CMM and Adobe RGB, Apple
ColorSync, and HP ColorSmart; perhaps the most advanced is
Microsoft’s Windows Color System, which is based on Canon’s
earlier Kyuanos system using on CIECAM02.

Overview of Color Management Systems
A full-blown color management system may not be needed for a computer vision
application, but the methods of color management are critical to understand when you
are dealing with color. As illustrated in Figure 2-7, a color management system converts
colors between the device color spaces, such as RGB or sRGB, to and from a colorimetric
color space, such as CIE Luv, Lab, Jch, or Jab, so as to perform color gamut mapping.
Since each device can reproduce color only within a specific gamut or color range,
gamut mapping is required to convert the colors to the closest possible match, using the
mathematical models of each color device.

Chapter 2 ■ Image Pre-Processing

53

Illuminants, White Point, Black Point, and Neutral Axis
An illuminant is a light source such as natural light or a fluorescent light, defined as the
white point color by its spectral components and spectral power or color temperature.
The white point color value in real systems is never perfectly white and is a measured
quantity. The white point value and the oppositinal black point value together define
the endpoints of the neutral axis (gray scale intensity) of the color space, which is not a
perfectly straight color vector.

Color management relies on accurate information and measurements of the light
source, or the illuminant. Color cannot be represented without accurate information
about the light source under which the color is measured, since color appears different
under florescent light versus natural light, and so on. The CIE standards define several
values for standard illuminants, such as D65, shown in Figure 2-8.

Figure 2-7.  Color management system with an RGB camera device model, sRGB display
device model, CMYK printer device model, gamut mapping module, and an illuminant model

Chapter 2 ■ Image Pre-Processing

54

Device Color Models
Real devices like printers, displays, and cameras conventionally reproduce colors as
compared against standard color patches that have been measured using calibrated
light sources and spectrographic equipment—for example, the widely used Munsel
color patches that define color in terms hue, value, and chroma (HVC) against standard
illuminants. In order to effectively manage colors for a given device, a mathematical
model or device color model must be created for each device, defining the anomalies in
the device color gamut and its color gamut range.

For the color management system to be accurate, each real device must be spectrally
characterized and modeled in a laboratory to create a mathematical device model,
mapping the color gamut of each device against standard illumination models. The
device model is used in the gamut transforms between color spaces.

Devices typically represent color using the primary and secondary colors RGB
and CYMK. RGB is a primary, additive color space; starting with black, the RGB
color primaries red, green, and blue are added to create colors. CYMK is a secondary
color space, since the color components cyan, yellow, and magenta, are secondary
combinations of the RGB primary colors; cyan = green plus blue, magenta = red plus blue,
and yellow = red plus green. CYMK is also a subtractive color space, since the colors are
subtracted from a white background to create specific colors.

Figure 2-8.  (Left) Representation of a color space in three dimensions, neutral axis for
the amount of white, hue angle for the primary color, and saturation for amount of color
present. (Right) CIE XYZ chromaticity diagram showing values of the standard illuminant
D65 OE as the white point, and the color primaries for R,G and B

Chapter 2 ■ Image Pre-Processing

55

Color Spaces and Color Perception
Colorimetric spaces represent color in abstract terms such as lightness, hue or color,
and color saturation. Each color space is designed for a different reason, and each color
space is useful for different types of analysis and processing. Example simple color spaces
include HSV (hue, saturation, value) and HVC (hue, value, chroma). In the case of the CIE
color spaces, the RGB color components are replaced by the standardized value CIE XYZ
components as a basis for defining the CIE Luv and CIE Lab color spaces.

At the very high end of color science, we have the more recent CIECAM02
color models and color spaces such as Jch and Jab. CIECAM02 goes beyond just
the colorimetry of the light source and the color patch itself to offer advanced color
appearance modeling considerations that include the surroundings under which colors
are measured [254,249].

While CIECAM02 may be overkill for most applications, it is worth some study. Color
perception varies widely based on the surrounding against which the colors are viewed,
the spectrum and angles of combined direct and ambient lighting, and the human visual
system itself, since people do not all perceive color in the same way.

Gamut Mapping and Rendering Intent
Gamut mapping is the art and science of converting color between two color spaces and
getting the best fit. Since the color gamuts of each device are different, gamut mapping
is a challenge, and there are many different algorithms in use, with no clear winner.
Depending on the intent of the rendering, different methods are useful—for example,
gamut mapping from camera color space to a printer color space is different from
mapping to an LCD display for viewing.

The CAM02 system provides a detailed model for guidance. For example, a color
imaging device may capture the color blue very weakly, while a display may be able
to display blue very well. Should the color gamut fitting method use color clipping or
stretching? How should the difference between color gamuts be computed? Which
color space? For an excellent survey of over 90 gamut mapping methods, see the work of
Morovic [252].

In Figure 2-9 (left image), the sRGB color space is shown as fitting inside the Adobe
RGB color space, illustrating that sRGB does not cover a gamut as wide as Adobe RGB.
Each color gamut reproduces color differently, and each color space may be linear or
warped internally. The right image in Figure 2-9 illustrates one gamut mapping method
to determine the nearest color common to both color gamuts, using Euclidean distance
and clipping; however, there are many other gamut mapping distance methods as well.
Depending on the surrounding light and environment, color perception changes further
complicating gamut mapping.

Chapter 2 ■ Image Pre-Processing

56

In gamut mapping there is a source gamut and a destination gamut. For example, the
source could be a camera and the destination could be an LCD display. Depending on
the rendering intent of the gamut conversion, different algorithms have been developed
to convert color from source to destination gamuts. Using the perceptual intent, color
saturation is mapped and kept within the boundaries of the destination gamut in an
effort to preserve relative color strength; and out-of-gamut colors from the source are
compressed into the destination gamut, which allows for a more reversible gamut map
translation. Using the colorimetric intent, colors may be mapped straight across from
source to destination gamut, and colors outside the destination gamut are simply clipped.

A common method of color correction is to rely on a simple gamma curve applied
to the intensity channel to help the human eye better visualize the data, since the gamma
curve brightens up the dark regions and compresses the light regions of the image, similar
to the way the human visual system deals with light and dark regions. However, gamut
correction bears no relationship to the true sensor data, so a calibrated, colorimetrically
sound approach is recommended instead.

Practical Considerations for Color Enhancements
For image pre-processing, the color intensity is usually the only color information that
should be enhanced, since the color intensity alone carries a lot of information and is
commonly used. In addition, color processing cannot be easily done in RGB space while
preserving relative color. For example, enhancing the RGB channels independently with
a sharpen filter will lead to Moiré fringe artifacts when the RGB channels are recombined
into a single rendering. So to sharpen the image, first forward-convert RGB to a color

Figure 2-9.  The central problem of gamut mapping: (Left) Color sRGB and Adobe RGB
color gamuts created using Gamutvision software. (Right) Gamut mapping details

Chapter 2 ■ Image Pre-Processing

57

space such as HSV or YIQ, then sharpen the V or Y component, and then inverse-convert
back to RGB. For example, to correct illumination in color, standard image processing
methods such as LUT remap or histogram equalization will work, provided they are
performed in the intensity space.

As a practical matter, for quick color conversions to gray scale from RGB, here are a
few methods. (1) The G color channel is a good proxy for gray scale information, since as
shown in the sensor discussion in Chapter 1, the RB wavelengths in the spectrum overlap
heavily into the G wavelengths. (2) Simple conversion from RGB into gray scale intensity I
can be done by taking I = R+G+B / 3. (3) The YIQ color space, used in the NTSC television
broadcast standards, provides a simple forward/backward method of color conversion
between RGB and a gray scale component Y, as follows:

R

G

B

é

ë

ê
ê
ê

ù

û

ú
ú
ú
= - -

-

é

ë

1

1

1

0 9663 0 6210

0 2721 0 6474

1 1070 1 7046

. .

. .

. .

êê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Y

I

Q

Y

I

Q

é

ë

ê
ê
ê

ù

û

ú
ú
ú
= - -

0 299 0 587 0 114

0 595716 0 274453 0 321263

0 2

. . .

. . .

. 111456 0 522591 0 311135-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú. .

R

G

B

Color Accuracy and Precision
If color accuracy is important, 8 bits per RGB color channel may not be enough. It is
necessary to study the image sensor vendor’s data sheets to understand how good the
sensor really is. At the time of this writing, common image sensors are producing 10 to
14 bits of color information per RGB channel. Each color channel may have a different
spectral response, as discussed in Chapter 1.

Typically, green is a good and fairly accurate color channel on most devices; red is
usually good as well and may also have near infrared sensitivity if the IR filter is removed
from the sensor; and blue is always a challenge since the blue wavelength can be hardest
to capture in smaller silicon wells, which are close to the size of the blue wavelength, so
the sensor vendor needs to pay special attention to blue ssnsing details.

Spatial Filtering
Filtering on discrete pixel arrays is considered spatial filtering, or time domain filtering,
in contrast to filtering in the frequency domain using Fourier methods. Spatial filters are
alternatives to frequency domain methods, and versatile processing methods are possible
in the spatial domain.

Chapter 2 ■ Image Pre-Processing

58

Convolutional Filtering and Detection
Convolution is a fundamental signal processing operation easily computed as a discrete
spatial processing operation, which is practical for 1D, 2D, and 3D processing. The basic
idea is to combine, or convolve, two signals together, changing the source signal to be
more like the filter signal. The source signal is the array of pixels in the image; the filter
signal is a weighted kernel mask, such as a gradient peak shape and oriented edge shape
or an otherwise weighted shape. For several examples of filter kernel mask shapes, see
the section later in the chapter that discusses Sobel, Scharr, Prewitt, Roberts, Kirsch,
Robinson, and Frei-Chen filter masks.

Convolution is typically used for filtering operations such as low-pass, band pass,
and high-pass filters, but many filter shapes are possible to detect features, such as edge
detection kernels tuned sensitive to edge orientation, or even point, corner, and contour
detectors. Convolution is used as a detector in the method of convolution networks [85],
as discussed in Chapter 4.

The sharpen kernel mask in Figure 2-10 (center image) is intended to amplify the
center pixel in relation to the neighboring pixels. Each pixel is multiplied by its kernel
position, and the result (right image) shows the center pixel as the sum of the convolution,
which has been increased or amplified in relation to the neighboring pixels.

-(35 + 43 + 49 + 47 + 51 + 44 + 42 + 38) + (52*8) = 67

38 52

4335

47

49

42 44 51

8

-1

-1 -1-1

-1

-1 -1

-1 38 67

4335

47

49

42 44 51

* =

Figure 2-10.  Convolution, in this case a sharpen filter: (Left to right) Image data, sharpen
filter, and resulting image data

A convolution operation is typically followed up with a set of postprocessing point
operations to clean up the data. Following are some useful postprocessing steps; many
more are suggested in the “Point Filters” section that follows later in the chapter.
 
switch (post_processor)
{
case RESULT_ASIS:
 break;
case RESULT_PLUS_VALUE:
 sum += value;
 break;

Chapter 2 ■ Image Pre-Processing

59

case RESULT_MINUS_VALUE:
 sum -= value;
 break;
case RESULT_PLUS_ORIGINAL_TIMES_VALUE:
 sum = sum + (result * value);
 break;
case RESULT_MINUS_ORIGINAL_TIMES_VALUE:
 sum = sum - (result * value);
 break;
case ORIGINAL_PLUS_RESULT_TIMES_VALUE:
 sum = result + (sum * value);
 break;
case ORIGINAL_MINUS_RESULT_TIMES_VALUE:
 sum = result - (sum * value);
 break;
case ORIGINAL_LOW_CLIP:
 sum = (result < value ? value : result);
 break;
case ORIGINAL_HIGH_CLIP:
 sum = (result > value ? value : result);
 break;
}
 
switch (post_processing_sign)
{
case ABSOLUTE_VALUE:
 if (sum < 0) sum = -sum;
 if (sum > limit) sum = limit;
 break;
case POSITIVE_ONLY:
 if (sum < 0) sum = 0;
 if (sum > limit) sum = limit;
 break;
case NEGATIVE_ONLY:
 if (sum > 0) sum = 0;
 if (-sum > limit) sum = -limit;
 break;
case SIGNED:
 if (sum > limit) sum = limit;
 if (-sum > limit) sum = -limit;
 break;
}
 

Chapter 2 ■ Image Pre-Processing

60

Convolution is used to implement a variety of common filters including:

•	 Gradient or sharpen filters, which amplify and detect maxima
and minima pixels. Examples include Laplacian.

•	 Edge or line detectors, where lines are connected gradients
that reveal line segments or contours. Edge or line detectors
can be steerable to a specific orientation, like vertical, diagonal,
horizontal, or omni-directional; steerable filters as basis sets are
discussed in Chapter 3.

•	 Smoothing and blur filters, which take neighborhood pixels.

Kernel Filtering and Shape Selection
Besides convolutional methods, kernels can be devised to capture regions of pixels
generically for statistical filtering operations, where the pixels in the region are sorted into
a list from low to high value. For example, assuming a 3x3 kernel region, we can devise
the following statistical filters:
 
sort(&kernel, &image, &coordinates, &sorted_list);
  
switch (filter_type)
case RANK_FILTER:
 // Pick highest pixel in the list, rank = 8 for a 3x3 kernel 0..8
 // Could also pick the lowest, middle, or other rank
 image[center_pixel] = sorted_list[rank];
 break;
case MEDIAN_FILTER:
 // Median value is kernel size / 2, (3x3=9)/2=4 in this case
 image[center_pixel] = sorted_list[median];
 break;
case MAJORITY_FILTER:
 // Find the pixel value that occurs most often, count sorted pixel values
 count(&sorted_list, &counted_list);
 image[center_pixel] = counted_list[0];
 break;
}
 

The rank filter is a simple and powerful method that sorts each pixel in the region
and substitutes a pixel of desired rank for the center pixel, such as substitution of the
highest pixel in the region for the center pixel, or the median value or the majority value.

Chapter 2 ■ Image Pre-Processing

61

Shape Selection or Forming Kernels
Any regional operation can benefit from shape selection kernels to select pixels from
the region and exclude others. Shape selection, or forming, can be applied as a pre-
processing step to any image pre-processing algorithm or to any feature extraction
method. Shape selection kernels can be binary truth kernels to select which pixels from
the source image are used as a group, or to mark pixels that should receive individual
processing. Shape selection kernels, as shown in Figure 2-11, can be applied to local
feature descriptors and detectors also; similar but sometimes more complex local region
pixel selection methods are often used with local binary descriptor methods, as discussed
in Chapter 4.

F T

FT

F

T

T F T

Figure 2-11.  Truth and shape kernels: (Left) A shape kernel gray kernel position indicating
a pixel to process or use—for example, a pixel to convolve prior to a local binary pattern
point-pair comparison detector.(Right) A truth shape kernel specifying pixels to use for
region average, favoring diagonals—T means use this pixel, F means do not use

Point Filtering
Individual pixel processing is typically overlooked when experimenting with image
pre-processing. Point processing is amenable to many optimization methods, as will
be discussed in Chapter 8. Convolution, as discussed above, is typically followed by
point postprocessing steps. Table 2-2 illustrates several common pixel point processing
methods in the areas of math operations, Boolean operations, and compare and
substitution operations, which seem obvious but can be quite valuable for exploring
image enhancement methods to enhance feature extraction.

Chapter 2 ■ Image Pre-Processing

62

Table 2-2.  Possible Point Operations

// Math ops // Compare & Substitution ops

NAMES math_ops[] = {

"src + value -> dst",

"src - value -> dst",

"src * value -> dst",

"src / value -> dst",

"(src + dst) * value -> dst",

"(src - dst) * value -> dst",

"(src * dst) * value -> dst",

"(src / dst) * value -> dst",

"sqroot(src) + value -> dst",

"src * src + value -> dst",

"exp(src) + value -> dst",

"log(src) + value -> dst",

"log10(src) + value -> dst",

"pow(src ^ value) -> dst",

"sin(src) + value -> dst",

"cos(src) + value -> dst",

"tan(src) + value -> dst",

"(value / max(all_src)) * src -> dst",

"src - mean(all_src) -> dst",

"absval(src) + value -> dst",

};

// Boolean ops
NAMES bool_ops[] = {

"src AND value -> dst",

"src OR value -> dst",

"src XOR value -> dst",

"src AND dst -> dst",

"src OR dst -> dst",

"src XOR dst -> dst",

"NOT(src) -> dst",

"LO_CLIP(src, value) -> dst",

"LO_CLIP(src, dst) -> dst",

"HI_CLIP(src, value) -> dst",

"HI_CLIP(src, dst) -> dst",

};

NAMES change_ops[] = {

"if (src = thresh) value -> dst",

"if (src = dst) value -> dst",

"if (src != thresh) value -> dst",

"if (src != thresh) src -> dst",

"if (src != dst) value -> dst",

"if (src != dst) src -> dst",

"if (src >=thresh) value -> dst",

"if (src >=thresh) src -> dst",

"if (src >=dst) value -> dst",

"if (src >=dst) src -> dst",

"if (src <= thresh) value -> dst",

"if (src <= thresh) src -> dst",

"if (src <= dst) value -> dst",

"if (src <= dst) src -> dst",

"if (lo <= src <= hi) value -> dst",

"if (lo <= src <= hi) src -> dst",

};

Chapter 2 ■ Image Pre-Processing

63

Noise and Artifact Filtering
Noise is usually an artifact of the image sensor, but not always. There are several
additional artifacts that may be present in an image as well. The goal of noise removal is
to remove the noise without distorting the underlying image, and the goal of removing
artifacts is similar. Depending on the type of noise or artifact, different methods may be
employed for pre-processing. The first step is to classify the noise or artifact, and then to
devise the right image pre-processing strategy.

•	 Speckle, random noise. This type of noise is apparently random,
and can be removed using a rank filter or median filter.

•	 Transient frequency spike. This can be determined using a
Fourier spectrum and can be removed using a notch filter over
the spike; the frequency spike will likely be in an outlier region of
the spectrum, and may manifest as a bright spot in the image.

•	 Jitter and judder line noise. This is an artifact particular to video
streams, usually due to telecine artifacts, motion of the camera
or the image scene, and is complex to correct. It is primarily line
oriented rather than just single-pixel oriented.

•	 Motion blur. This can be caused by uniform or nonuniform
motion and is a complex problem; several methods exist for
removal; see reference[305].

Standard approaches to noise removal are discussed by Gonzalez[4]. The most basic
approach is to remove outliers, and various approaches are taken, including thresholding
and local region based statistical filters such as the rank filter and median filter. Weighted
image averaging is also sometime used for removing noise from video streams; assuming
the camera and subjects are not moving, it can work well. Although deblurring or
Gaussian smoothing convolution kernels are sometimes used to remove noise, such
methods may cause smearing and may not be the best approach.

A survey of noise-removal methods and a performance comparison model are
provided by Buades et al.[511]. This source includes a description of the author’s
NL-means method, which uses nonlocal pixel value statistics in addition to Euclidean
distance metrics between similar weighted pixel values over larger image regions to
identify and remove noise.

Integral Images and Box Filters
Integral images are used to quickly find the average value of a rectangular group of
pixels. An integral image is also known as a summed area table, where each pixel in the
integral image is the integral sum of all pixels to the left and above the current pixel. The
integral image can be calculated quickly in a single pass over the image. Each value in
the summed area table is calculated using the current pixel value from the image i(n,m)
combined with previous entries s(n,m) made into the summed area table, as follows:

s(x,y) = i(x,y) + s(x-1,y) + s(x,y-1) - s(x-1,y-1)

Chapter 2 ■ Image Pre-Processing

64

As shown in Figure 2-12, to find a HAAR rectangle feature value from the integral
image, only four points in the integral image table A,B,C,D are used, rather than tens or
hundreds of points from the image. The integral image sum of a rectangle region can
then be divided by the size of the rectangle region to yield the average value, which is also
known as a box filter.

Figure 2-12.  (Left) Pixels in an image. (Center) Integral image. (Right) Region where a box
filter value is computed from four points in the integral image: sum = s(A) + s(D) – s(B) – s(C)

Integral images and box filters are used in many computer vision methods, such as
HAAR filters and feature descriptors. Integral images are also used as a fast alternative to
a Gaussian filter of a small region, as a way to lower compute costs. In fact, descriptors
with a lot of overlapping region processing, such as BRISK [131], make effective use
of integral images for descriptor building and use integral images as a proxy for a fast
Gaussian blur or convolution.

Edge Detectors
The goal of an edge detector is to enhance the connected gradients in an image, which
may take the form of an edge, contour, line, or some connected set of edges. Many edge
detectors are simply implemented as kernel operations, or convolutions, and we survey
the common methods here.

Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch,
Robinson, and Frei-Chen
The Sobel operator detects gradient magnitude and direction for edge detection.
The basic method is shown here.

Chapter 2 ■ Image Pre-Processing

65

1.	 Perform two directional Sobel filters (x and y axis) using basic
derivative kernel approximations such as 3x3 kernels, using
values as follows:

2.	

Sy =
- - -é

ë

ê
ê
ê

ù

û

ú
ú
ú

.

1 2 1

0 0 0

1 2 1

	

Sx =
-
-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

.

1 0 1

2 0 2

1 0 1

3.	 Calculate the total gradient as G
v
= |S

x
| + |S

y
|

4.	 Calculate the gradient direction as theta = ATAN (S
y
/S

x
)

5.	 Calculate gradient magnitude Gm = +Sy Sx2 2

Variations exist in the area size and shape of the kernels used for Sobel edge
detection. In addition to the Sobel kernels shown above, other similar kernel sets are used
in practice, so long as the kernel values cancel and add up to zero, such as those kernels
proposed by Scharr, Prewitt, Roberts, Robinson, and Frei-Chen, as well as Laplacian
approximation kernels. The Frei-Chen kernels are designed to be used together at a set,
so the edge is the weighted sum of all the kernels. See reference[4] for more information
on edge detection masks. Some kernels have compass orientations, such as those
developed by Kirsch, Robinson, and others. See Figure 2-13.

Chapter 2 ■ Image Pre-Processing

66

Canny Detector
The Canny method [154] is similar to the Sobel-style gradient magnitude and direction
method, but it adds postprocessing to clean up the edges.

1.	 Perform a Gaussian blur over the image using a selected
convolution kernel (7x7, 5,5, etc.), depending on the level of
low-pass filtering desired.

2.	 Perform two directional Sobel filters (x & y axis).

Figure 2-13.  Several edge detection kernel masks

Chapter 2 ■ Image Pre-Processing

67

3.	 Perform nonmaximal value suppression in the direction of
the gradient to set to zero (0) pixels not on an edge (minima
values).

4.	 Perform hysteresis thresholding within a band (high,low) of
values along the gradient direction to eliminate edge aliasing
and outlier artifacts and to create better connected edges.

Transform Filtering, Fourier, and Others
This section deals with basis spaces and image transforms in the context of image
filtering, the most common and widely used being the Fourier transform. A more
comprehensive treatment of basis spaces and transforms in the context of feature
description is provided in Chapter 3. A good reference for transform filtering in the
context of image processing is provided by Pratt [9].

Why use transforms to switch domains? To make image pre-processing easier
or more effective, or to perform feature description and matching more efficiently. In
some cases, there is no better way to enhance an image or describe a feature than by
transforming it to another domain—for example, for removing noise and other structural
artifacts as outlier frequency components of a Fourier spectrum, or to compact describe
and encode image features using HAAR basis features.

Fourier Transform Family
The Fourier transform is very well known and covered in the standard reference by
Bracewell [227], and it forms the basis for a family of related transforms. Several methods
for performing fast Fourier transform (FFT) are common in image and signal processing
libraries. Fourier analysis has touched nearly every area of world affairs, through
science, finance, medicine, and industry, and has been hailed as “the most important
numerical algorithm of our lifetime” [290]. Here, we discuss the fundamentals of Fourier
analysis, and a few branches of the Fourier transform family with image pre-processing
applications.

The Fourier transform can be computed using optics, at the speed of light [516].
However, we are interested in methods applicable to digital computers.

Fundamentals
The basic idea of Fourier analysis [227,4,9] is concerned with decomposing periodic
functions into a series of sine and cosine waves (Figure 2-14). The Fourier transform is
bi-directional, between a periodic wave and a corresponding series of harmonic basis
functions in the frequency domain, where each basis function is a sine or cosine function,
spaced at whole harmonic multiples from the base frequency. The result of the forward
FFT is a complex number composed of magnitude and phase data for each sine and
cosine component in the series, also referred to as real data and imaginary data.

Chapter 2 ■ Image Pre-Processing

68

Figure 2-14.  (Left) Harmonic series of sine waves. (Right) Fourier harmonic series of sine
and cosine waves

Arbitrary periodic functions can be synthesized by summing the desired set of
Fourier basis functions, and periodic functions can be decomposed using the Fourier
transform into the basic functions as a Fourier series. The Fourier transform is invertible
between the time domain of discrete pixels and the frequency domain, where both
magnitude and phase of each basis function are available for filtering and analysis,
magnitude being the most commonly used component.

How is the FFT implemented for 2D images or 3D volumes? The Fourier transform
is a separable transform and so can be implemented as a set of parallel 1D FFT line
transforms (Figure 2-15). So, for 2D images and 3D volumes, each dimension, such as
the x, y, z dimension, can be computed in place, in parallel as independent x lines, then
the next dimension or y columns can be computed in place as parallel lines, then the z
dimension can be computed as parallel lines in place, and the final results are scaled
according to the transform. Any good 1D FFT algorithm can be set up to process 2D
images or 3D volumes using parallelization.

Figure 2-15.  Fourier series and Fourier transform concepts showing a square wave
approximated from a series of Fourier harmonics

Chapter 2 ■ Image Pre-Processing

69

For accuracy of the inverse transform to go from frequency space back to pixels,
the FFT computations will require two double precision 64-bit floating point buffers to
hold the magnitude and phase data, since transcendental functions such as sine and
cosine require high floating point precision for accuracy; using 64-bit double precision
floating point numbers for the image data allows a forward transform of an image to be
computed, followed by an inverse transform, with no loss of precision compared to the
original image—of course, very large images will need more than double precision.

Since 64-bit floating point is typically slower and of higher power, owing to the
increased compute requirements and silicon real estate in the ALU, as well as the heavier
memory bandwidth load, methods for FFT optimization have been developed using integer
transforms, and in some cases fixed point, and these are good choices for many applications.

Note in Figure 2-16 that the low-pass filter (center right) is applied to preserve
primarily low-frequency information toward the center of the plot and it reduces
high-frequency components toward the edges, resulting in the filtered image at the far right.

Figure 2-16.  Basic Fourier filtering: (Left) Original. (Center left) Fourier spectrum. (Center
right) Low-pass filter shape used to multiply against Fourier magnitude. (Right) Inverse
transformed image with low-pass filter

A key Fourier application is filtering, where the original image is forward-
transformed into magnitude and phase; the magnitude component is shown as a Fourier
power spectrum of the magnitude data, which reveals structure in the image as straight
lines and blocks, or outlier structures or spots that are typically noise. The magnitude can
be filtered by various filter shapes, such as high-pass, low-pass, band pass, and spot filters
to remove spot noise, to affect any part of the spectrum.

In Figure 2-16, a circular symmetric low-pass filter shape is shown with a smooth
distribution of filter coefficients from 1 to 0, with high multiplicands in the center at the
low frequencies, ramping down to zero toward the high frequencies at the edge. The
filter shape is multiplied in the frequency domain against the magnitude data to filter
out the higher frequency components, which are toward the outside of the spectrum
plot, followed by an inverse FFT to provide the filtered image. The low-frequency
components are toward the center; typically these are most interesting and so most of
the image power is contained in the low-frequency components. Any other filter shape
can be used, such as a spot filter, to remove noise or any of the structure at a specific
location of the spectrum.

Chapter 2 ■ Image Pre-Processing

70

Fourier Family of Transforms
The Fourier transform is the basis for a family of transforms [4], some of which are:

1.	 DFT, FFT. The discrete version of the Fourier transform, often
implemented as a fast version, or FFT, commonly used for
image processing. There are many methods of implementing
the FFT [227].

2.	 Sine transform. Fourier formulation composed of only sine
terms.

3.	 Cosine transform. Fourier formulation composed of only
cosine terms.

4.	 DCT, DST, MDCT. The discrete Fourier transform is
implemented in several formulations: discrete sine transform
(DST), discrete cosine transform (DCT), and the modified
discrete cosine transform (MDCT). These related methods
operate on a macroblock, such as 16x16 or 8x8 pixel region,
and can therefore be highly optimized for compute use
with integers rather than floating point. Typically the DCT
is implemented in hardware for video encode and decode
applications for motion estimation of the macro blocks
from frame to frame. The MDCT operates on overlapping
macroblock regions for compute efficiency.

5.	 Fast Hartley transform, DHT. This was developed as an
alternative formulation of the Fourier transform for telephone
transmission analysis about 1925, forgotten for many years,
then rediscovered and promoted again by Bracewell[227] as an
alternative to the Fourier transform. The Hartley transform is a
symmetrical formulation of the Fourier transform, decomposing
a signal into two sets of sinusoidal functions taken together
as a cosine-and-sine or cas( ) function, where cas(vx) ∫ cos(vx)
+ sin(vx). This includes positive and negative frequency
components and operates entirely on real numbers for input
and output. The Hartley formulation avoids complex numbers as
used in the Fourier complex exponential exp (j w x). The Hartley
tansform has been developed into optimized versions called the
DHT, shown to be about equal in speed to an optimized FFT.

Other Transforms
Several other transforms may be used for image filtering, including wavelets, steerable filter
banks, and others that will be described in Chapter 3, in the context of feature description.
Note that transforms often have many common uses and applications that overlap, such as
image description, image coding, image compression, and feature description.

Chapter 2 ■ Image Pre-Processing

71

Morphology and Segmentation
For simplicity, we define the goal of morphology as shape and boundary definition, and
the goal of segmentation is to define regions with internal similarity, such as textural or
statistical similarity. Morphology is used to identify features as polygon shaped regions that
can be described with shape metrics, as will be discussed in Chapters 3 and 6, distinct from
local interest point and feature descriptors using other methods. An image is segmented
into regions to allow independent processing and analysis of each region according to
some policy or processing goal. Regions cover an area smaller than the global image but
usually larger than local interest point features, so an application might make use of global,
regional, and small local interest point metrics together as an object signature.

An excellent review of several segmentation methods can be found in work by
Haralick and Shapiro[321]. In practice, segmentation and morphology are not easy:
results are often less useful than expected, trial and error is required, too many methods
are available to provide any strict guidance, and each image is different. So here we only
survey the various methods to introduce the topic and illustrate the complexity. An
overview of region segmentation methods is shown in Table 2-3.

Table 2-3.  Segmentation Methods

Method Description

Morphological segmentation The region is defined based on thresholding and
morphology operators.

Texture-based segmentation The texture of a region is used to group like textures
into connected regions.

Transform-based
segmentation

Basis space features are used to segment the image.

Edge boundary segmentation Gradients or edges alone are used to define the
boundaries of the region with edge linking in some
cases to form boundaries.

Color segmentation Color information is used to define regions.

Super-Pixel Segmentation Kernels and distance transforms are used to group
pixels and change their values to a common value.

Gray scale / luminance
segmentation

Gray scale thresholds or bands are used to define the
regions.

Depth segmentation Depth maps and distance from viewer is used to
segment the image into foreground, background, or
other gradations of inter-scene features.

Chapter 2 ■ Image Pre-Processing

72

Binary Morphology
Binary morphology operates on binary images, which are created from other scalar
intensity channel images. Morphology [9] is used to morph a feature shape into a
new shape for analysis by removing shape noise or outliers, and by strengthening
predominant feature characteristics. For example, isolated pixels may be removed using
morphology, thin features can be fattened, and the predominant shape is still preserved.
Note that morphology all by itself is quite a large field of study, with applications to
general object recognition, cell biology, medicine, particle analysis, and automated
microscopy. We introduce the fundamental concepts of morphology here for binary
images, and then follow this section with applications to gray scale and color data.

Binary morphology starts with binarizing images, so typically thresholding is first
done to create images with binary-valued pixels composed of 8-bit black and white
values, 0-value = black and 255-value = white. Thresholding methods are surveyed later in
this chapter, and thresholding is critical prior to morphology.

Binary morphology is a neighborhood operation, and can use a forming kernel with
truth values, as shown in Figure 2-17. The forming kernel guides the morphology process
by defining which surrounding pixels contribute to the morphology. Figure 2-17 shows
two forming kernels: kernel a, where all pixels touching the current pixel are considered,
and kernel b, where only orthogonally adjacent pixels are considered.

Figure 2-17.  3x3 forming kernels and binary erosion and dilation using the kernels;
other kernel sizes and data values may be useful in a given application. (Image used by
permission, © Intel Press, from Building Intelligent Systems)

Chapter 2 ■ Image Pre-Processing

73

The basic operations of morphology include Boolean AND, OR, NOT. The notation
used for the fundamental morphological operations is for dilation and for erosion. In
binary morphology, dilation is a Boolean OR operator, while erosion is a Boolean AND
operator. In the example provided in Figure 2-17, only kernel elements with a “1” are used
in the morphology calculation, allowing for neighborhood contribution variations. For
erosion, the pixels under all true forming kernel elements are AND’d together; the result is 1
if all are true and the pixel feature remains, otherwise the pixel feature is eroded or set to 0.

All pixels under the forming true kernel must be true for erosion of the center pixel.
Erosion attempts to reduce sparse features until only strong features are left. Dilation
attempts to inflate sparse features to make them fatter, only 1 pixel under the forming
kernel elements must be true for dilation of the center pixel, corresponding to Boolean OR.

Based on simple erosion and dilation, a range of morphological operations are
derived as shown here, where = dilation and = erosion.

 
Erode G(f) = f b
Dilate G(f) = f b

Opening G(f) = (f b) b

Closing G(f) = (f b) b

Morphological Gradient G(f) = f b or G(f) = f b – f b

Morphological Internal gradient G i(f) = f - f b

Morphological External gradient G e(f) = f b - f  

Gray Scale and Color Morphology
Gray scale morphology is useful to synthesize and combine pixels into homogeneous
intensity bands or regions with similar intensity values. Gray scale morphology can
be used on individual color components to provide color morphology affecting hue,
saturation, and color intensity in various color spaces.

For gray scale morphology or color morphology, the basic operations are MIN, MAX,
and MINMAX, where pixels above the MIN are changed to the same value and pixels below
the MAX are changed to the same value, while pixels within the MINMAX range are changed
to the same value. MIN and MAX are a form of thresholding, while MINMAX allows bands of
pixel values to be coalesced into equal values forming a homogenous region.

Morphology Optimizations and Refinements
Besides simple morphology [9], there are other methods of morphological segmentation
using adaptive methods [254,255,256]. The simple morphology methods rely on using
a fixed kernel across the entire image at each pixel and assume the threshold is already
applied to the image; while the adaptive methods combine the morphology operations
with variable kernels and variable thresholds based on the local pixel intensity statistics.
This allows the morphology to adapt to the local region intensity and, in some cases,
produce better results. Auto-thresholding and adaptive thresholding methods are
discussed later in this chapter and are illustrated in Figures 2-24 and 2-26.

Chapter 2 ■ Image Pre-Processing

74

Super-Pixel Segmentation
A super-pixel segmentation method [257,258,259,260,261] attempts to collapse similar
pixels in a local region into a larger super-pixel region of equal pixel value, so similar values
are subsumed into the larger super-pixel. Super-pixel methods are commonly used for
digital photography applications to create a scaled or watercolor special effect. Super-pixel
methods treat each pixel as a node in a graph, and edges between regions are determined
based on the similarity of neighboring pixels and graph distance. See Figure 2-19.

Euclidean Distance Maps
The distance map, or Euclidean distance map (EDM), converts each pixel in a binary
image into the distance from each pixel to the nearest background pixel, so the EDM
requires a binary image for input. The EDM is useful for segmentation, as shown in
Figure 2-18, where the EDM image is thresholded based on the EDM values—in this case,
similar to the ERODE operator.

Figure 2-18.  Pre-processing sequence: (Left) Image after thresholding and erosion.
(Center) EDM showing gray levels corresponding to distance of pixel to black background.
(Right) Simple binary thresholded EDM image

Figure 2-19.  Comparison of various super-pixel segmentation methods
(Image © Dr. Radhakrishna Achanta, used by permission)

Feature descriptors may be devised based on super-pixels, including super-pixel value
histograms, shape factors of each polygon shaped super-pixel, and spatial relationships of
neighboring super-pixel values. Apparently little work has been done on super-pixel based
descriptors; however, the potential for several degrees of robustness and invariance seems
good. We survey a range of super-pixel segmentation methods next.

Chapter 2 ■ Image Pre-Processing

75

Graph-based Super-Pixel Methods
Graph-based methods structure pixels into trees based on the distance of the pixel
from a centroid feature or edge feature for a region of like-valued pixels. The compute
complexity varies depending on the method.

•	 SLIC Method [258] Simple Linear Iterative Clusting (SLIC) creates
super-pixels based on a 5D space, including the CIE Lab color
primaries and the XY pixel coordinates. The SLIC algorithm takes
as input the desired number of super-pixels to generate and adapt
well to both gray scale and RGB color images. The clustering
distance function is related to the size of the desired number of
super-pixels and uses a Euclidean distance function for grouping
pixels into super-pixels.

•	 Normalized Cuts [262,263] Uses a recursive region partitioning
method based on local texture and region contours to create
super-pixel regions.

•	 GS-FH Method [264] The graph-based Felzenszwalb and
Huttenlocher method attempts to segment image regions using
edges based on perceptual or psychological cues. This method
uses the minimum length between pixels in the graph tree
structure to create the super-pixel regions. The computational
complexity is O(n Log n), which is relatively fast.

•	 SL Method [265] The Super-Pixel Lattice (SL) method finds
region boundaries within tiled image regions or strips of pixels
using the graph cut method.

Gradient-Ascent-Based Super-Pixel Methods
Gradient ascent methods iteratively refine the super-pixel clusters to optimize the
segmentation until convergence criteria are reached. These methods use a tree graph
structure to associate pixels together according to some criteria, which in this case may
be the RGB values or Cartesian coordinates of the pixels, and then a distance function
or other function is applied to create regions. Since these are iterative methods, the
performance can be slow.

•	 Mean-Shift [266] Works by registering off of the region centroid
based on a kernel-based mean smoothing approach to create
regions of like pixels.

•	 Quick-Shift [267] Similar to the mean-shift method but does
not use a mean blur kernel and instead uses a distance function
calculated from the graph structure based on RGB values and XY
pixel coordinates.

Chapter 2 ■ Image Pre-Processing

76

•	 Watershed [268] Starts from local region pixel value minima
points to find pixel value-based contour lines defining
watersheds, or basin contours inside which similar pixel values
can be substituted to create a homogeneous pixel value region.

•	 Turbopixels [269] Uses small circular seed points placed in
a uniform grid across the image around which super-pixels
are collected into assigned regions, and then the super-pixel
boundaries are gradually expanded into the unassigned region,
using a geometric flow method to expand the boundaries using
controlled boundary value expansion criteria, so as to gather
more pixels together into regions with fairly smooth and uniform
geometric shape and size.

Depth Segmentation
Depth information, such as a depth map as shown in Figure 2-20, is ideal for segmenting
objects based on distance. Depth maps can be computed from a wide variety of depth
sensors and methods, including a single camera, as discussed in Chapter 1. Depth
cameras, such as the Microsoft Kinect camera, are becoming more common. A depth
map is a 2D image or array, where each pixel value is the distance or Z value.

Figure 2-20.  Depth images from Middlebury Data set: (Left) Original image. (Right)
Corresponding depth image. Data courtesy of Daniel Scharstein and used by permission

Many uncertainties in computer vision arise out of the problems in locating three-
dimensional objects in a two-dimensional image array, so adding a depth map to the
vision pipeline is a great asset. Using depth maps, images can be easily segmented
into the foreground and background, as well as be able to segment specific features or
objects—for example, segmenting by simple depth thresholding.

Depth maps are often very fuzzy and noisy, depending on the depth sensing method,
so image pre-processing may be required. However, there is no perfect filtering method
for depth map cleanup. Many practitioners prefer the bi-lateral filter [302] and variants,
since it preserves local structure and does a better job of handling the edge transitions.

Chapter 2 ■ Image Pre-Processing

77

Color Segmentation
Sometime color alone can be used to segment and threshold. Using the right color
component can easily filter out features from an image. For example, in Figure 2-6, we
started from a red channel image from an RGB set, and the goal was to segment out the
USB sticks from the table background. Since the table is brown and contains a lot of red,
the red channel provides useful contrast with the USB sticks allowing segmentation via
red. It may be necessary to color-correct the image to get the best results, such as gamut
corrections or boosting the hue or saturation of each color to accentuate difference.

Thresholding
The goal of thresholding is to segment the image at certain intensity levels to reveal
features such as foreground, background, and specific objects. A variety of methods
exist for thresholding, ranging from global to locally adaptive. In practice, thresholding
is very difficult and often not satisfactory by itself, and must be tuned for the dataset and
combined with other pre-processing methods in the vision pipeline.

One of the key problems in thresholding is nonuniform illumination, so applications
that require thresholding, like cell biology and microscopy, pay special attention to cell
preparation, specimen spacing, and light placement. Since many images do not respond
well to global thresholding involving simple methods, local methods are often required,
which use the local pixel structure and statistical relationships to create effective
thresholds. Both global and local adaptive methods for thresholding are discussed here.
A threshold can take several forms:

•	 Floor Lowest pixel intensity allowed

•	 Ceiling Highest pixel intensity allowed

•	 Ramp Shape of the pixel ramp between floor and ceiling, such as
linear or log

•	 Point May be a binary threshold point with no floor, ceiling, or ramp

Global Thresholding
Thresholding entire images at a globally determined thresholding level is sometimes a
good place to start to explore the image data, but typically local features will suffer and
be unintelligible as a result. Thresholding can be improved using statistical methods to
determine the best threshold levels. Lookup tables (LUT) can be constructed, guided by
statistical moments to create the floor, ceiling, and ramps and the functions to perform
rapid LUT processing on images, or false-color the images for visualization.

Chapter 2 ■ Image Pre-Processing

78

Histogram Peaks and Valleys, and Hysteresis Thresholds
Again we turn to the old stand-by, the image histogram. Peaks and valleys in the
histogram may indicate thresholds useful for segmentation and thresholding [319].
A hysteresis region marks pixels with similar values, and is easy to spot in the histogram,
as shown in Figure 2-21. Also, many image processing programs have interactive sliders
to allow the threshold point and even regions to be set with the pointer device.1 Take
some time and get to know the image data via the histogram and become familiar with
using interactive thresholding methods.

Figure 2-21.  Histogram annotated with arrows showing peaks and valleys, and dotted
lines showing regions of similar intensities defined using hysteresis thresholds

If there are no clear valleys between the histogram peaks, then establishing two
thresholds, one on each side of the valley, is a way to define a region of hysteresis. Pixel
values within the hysteresis region are considered inside the object. Further, the pixels
can be classified together as a region using the hysteresis range and morphology to
ensure region connectivity.

LUT Transforms, Contrast Remapping
Simple lookup tables (LUTs) are very effective for contrast remapping and global
thresholding, and interactive tools can be used to create the LUTs. Once the interactive
experimentation has been used to find the best floor, ceiling, and ramp function, the LUTs
can be generated into table data structures and used to set the thresholds in fast code.
False-coloring the image using pseudo-color LUTs is common and quite valuable for
understanding the thresholds in the data. Various LUT shapes and ramps can be devised.
See Figure 2-22 for an example using a linear ramp function.

1See the open-source package ImageJ2, and menu item Image ➤ Adjust-Brightness/Contrast for
interactive thresholding.

Chapter 2 ■ Image Pre-Processing

79

Figure 2-22.  Contrast corrections: (Left) Original image shows palm frond detail
compressed into a narrow intensity range obscuring details. (Center) Global histogram
equalization restores some detail. (Right) LUT remap function spreads the intensity values
to a narrower range to reveal details of the palm fronds. The section of the histogram
under the diagonal line is stretched to cover the full intensity range in the right image;
other intensity regions are clipped. The contrast corrected image will yield more gradient
information when processed with a gradient operator such as Sobel

Histogram Equalization and Specification
Histogram equalization spreads pixel values between a floor and ceiling using a contrast
remapping function, with the goal of creating a histogram with approximately equal bin
counts approaching a straight-line distribution. See Figure 2-23. While this method works
well for gray scale images, color images should be equalized in the intensity channel of
a chosen color space, such as HSV V. Equalizing each RGB component separately and
rerendering will produce color moiré artifacts. Histogram equalization uses a fixed region
and a fixed remapping for all pixels in the region; however, adaptive local histogram
equalization methods are available [314].

Figure 2-23.  (Left) Original image and histogram. (Right) Histogram equalized image
and histogram

Chapter 2 ■ Image Pre-Processing

80

It is possible to create a desired histogram shape or value distribution, referred to
as histogram specification, and then remap all pixel values from the source image to
conform to the specified histogram shape. The shape may be created directly, or else the
histogram shape from a second image may be used to remap the source image to match
the second image. With some image processing packages, the histogram specification
may be interactive, and points on a curve may be placed and adjusted to create the
desired histogram shape.

Global Auto Thresholding
Various methods have been devised to automatically find global thresholds based
on statistical properties of the image histogram [320,513,514,515] and in most cases
the results are not very good unless some image pre-processing precedes the auto
thresholding. Table 2-4 provides a brief survey of auto thresholding methods, while
Figure 2-24 displays renderings of each method.

Table 2-4.  Selected Few Global Auto-Thresholding Methods Derived from Basic Histogram
Features [303]

Method Description

Default A variation of the IsoData method, also knowm as iterative intermeans.

Huang Huang’s method of using fuzzy thresholding.

Intermodes Iterative histogram smoothing.

IsoData Iterative pixel averaging of values above and below a threshold to derive
a new threshold above the composite average.

Li Iterative cross-entropy thresholding.

MaxEntropy Kapur-Sahoo-Wong (Maximum Entropy) algorithm.

Mean Uses mean gray level as the threshold.

MinError Iterative method from Kittler and Illingworth to converge on a
minimum error threshold.

Minimum Iterative histogram smoothing, assuming a bimodal histogram.

Moments Tsai’s thresholding algorithm intending to threshold and preserve the
original image moments.

Otsu Otsu clustering algorithms to set local thresholds by minimizing
variance.

Percentile Adapts the threshold based on pre-set allocations for foreground and
background pixels.

RenyiEntropy Another entropy-based method.

Shanbhag Uses fuzzy set metrics to set the threshold.

Triangle Uses image histogram peak, assumes peak is not centered, sets
threshold in largest region on either side of peak.

Chapter 2 ■ Image Pre-Processing

81

Figure 2-24.  Renderings of selected auto-thresholding methods (Images generated using
ImageJ auto threshold plug-ins [303])

Local Thresholding
Local thresholding methods take input from the local pixel region and threshold each
pixel separately. Here are some common and useful methods.

Local Histogram Equalization
Local histogram equalization divides the image into small blocks, such as 32x32 pixels,
and computes a histogram for each block, then rerenders each block using histogram
equalization. However, the contrast results may contain block artifacts corresponding
to the chosen histogram block size. There are several variations for local histogram
equalization, including Contrast Limited Adaptive Local Histogram Equalization
(CLAHE) [304].

Integral Image Contrast Filters
A histogram-related method uses integral images to compute local region statistics
without the need to compute a histogram, then pixels are remapped accordingly, which is
faster and achieves a similar effect (Figure 2-25).

Chapter 2 ■ Image Pre-Processing

82

2See the open-source package Imagej2, menu item Image ➤ Adjust ➤ Auto Local Threshold | Auto
Threshold.

Figure 2-25.  Integral image filter from ImageJ to remap contrast in local regions, similar to
histogram equalization: (Left) Original. (Center) 20x20 regions. (Right) 40x40 regions

Local Auto Threshold Methods
Local thresholding adapts the threshold based on the immediate area surrounding each
target pixel in the image, so local thresholding is more like a standard area operation or
filter [513,514,515]. Local auto thresholding methods are available in standard software
packages.2 Figure 2-26 provides some example adaptive local thresholding methods,
summarized in Table 2-5.

Figure 2-26.  Renderings of a selected few local auto and local thresholding methods using
ImageJ plug-ins [303]

Chapter 2 ■ Image Pre-Processing

83

Summary
In this chapter, we surveyed image processing as a pre-processing step that can improve
image analysis and feature extraction. We developed a taxonomy of image processing
methods to frame the discussion, and applied the taxonomy to examples in the four
fundamental vision pipelines, as will be developed in the taxonomy of Chapter 5,
including (1) local binary descriptors such as LBP, ORB, FREAK; (2) spectra descriptors
such as SIFT, SURF; (3) basis space descriptors such as FFT, wavelets; and (4) polygon
shape descriptors such as blob object area, perimeter, and centroid. Common problems
and opportunities for image pre-processing were discussed. Starting with illumination,
noise, and artifact removal, we covered a range of topics including segmentation
variations such as depth segmentation and super-pixel methods, binary, gray scale and
color morphology, spatial filtering for convolutions and statistical area filters, and basis
space filtering.

Table 2-5.  Selected Few Local Auto-thresholding Methods [303]

Method Description

Bernsen Bernsen’s algorithm using circular windows instead of rectangles and
local midgray values

Mean Uses the local gray level mean as the threshold

Median Uses the local gray level mean as the threshold

MidGrey Uses the local area gray level mean - C (where C is a constant)

Niblack Niblack’s algorithm is:
p = (p > mean + k * standard_deviation - c) ? object : background

Sauvola Sauvola’s variation of Niblack:
p = (p > mean * (1 + k *(standard_deviation / r - 1))) ? object : background

85

Chapter 3

Global and Regional
Features

Measure twice, cut once.

—Carpenter’s saying

This chapter covers the metrics of general feature description, often used for whole
images and image regions, including textural, statistical, model based, and basis space
methods. Texture, a key metric, is a well-known topic within image processing, and it is
commonly divided into structural and statistical methods. Structural methods look for
features such as edges and shapes, while statistical methods are concerned with pixel
value relationships and statistical moments. Methods for modeling image texture also
exist, primarily useful for image synthesis rather than for description. Basis spaces, such
as the Fourier space, are also use for feature description.

It is difficult to develop clean partitions between the related topics in image
processing and computer vision that pertain to global vs. regional vs. local feature
metrics; there is considerable overlap in the applications of most metrics. However, for
this chapter, we divide these topics along reasonable boundaries, though those borders
may appear to be arbitrary. Similarly, there is some overlap between discussions here
on global and regional features and topics that were covered in Chapter 2 on image
processing and that will be discussed in Chapter 6 on local features. In short, many
methods are used for local, regional, and global feature description, as well as image
processing, such as the Fourier transform and the LBP.

But we begin with a brief survey of some key ideas in the field of texture analysis and
general vision metrics.

Historical Survey of Features
To compare and contrast global, regional, and local feature metrics, it is useful to survey
and trace the development of the key ideas, approaches, and methods used to describe
features for machine vision. This survey includes image processing (textures and statistics)
and machine vision (local, regional, and global features). Historically, the choice of feature
metrics was limited to those that were computable at the time, given the limitations in
compute performance, memory, and sensor technology. As time passed and technology

Chapter 3 ■ Global and Regional Features

86

developed, the metrics have become more complex to compute, consuming larger
memory footprints. The images are becoming multi-modal, combining intensity, color,
multiple spectrums, depth sensor information, multiple-exposure settings, high dynamic
range imagery, faster frame rates, and more precision and accuracy in x, y and Z depth.
Increases in memory bandwidth and compute performance, therefore, have given rise to
new ways to describe feature metrics and perform analysis.

Many approaches to texture analysis have been tried; these fall into the following
categories:

•	 Structural, describing texture via a set of micro-texture patterns
known as texels. Examples include the numerical description
of natural textures such as fabric, grass, and water. Edges, lines,
and corners are also structural patterns, and the characteristics
of edges within a region, such as edge direction, edge count,
and edge gradient magnitude, are useful as texture metrics.
Histograms of edge features can be made to define texture, similar
to the methods used in local feature descriptors such as SIFT
(described in Chapter 6).

•	 Statistical, based on gray level statistical moments describing
point pixel area properties, and includes methods such as the
co-occurrence matrix or SDM. For example, regions of an image
with color intensity within a close range could be considered as
having the same texture. Regions with the same histogram could
be considered as having the same texture.

•	 Model based, including fractal models, stochastic models,
and various semi-random fields. Typically, the models can be
used to generate synthetic textures, but may not be effective in
recognizing texture, and we do not cover texture generation.

•	 Transform or basis based, including methods such as Fourier,
wavelets, Gabor filters, Zernike, and other basis spaces, which are
treated here as a sub-class of the statistical methods (statistical
moments); however, basis spaces are used in transforms for
image processing and filtering as well.

Key Ideas: Global, Regional, and Local
Let’s take a brief look at a few major trends and milestones in feature metrics research.
While this brief outline is not intended to be a precise, inclusive look at all key events
and research, it describes some general trends in mainstream industry thinking and
academic activity.

Chapter 3 ■ Global and Regional Features

87

1960s, 1970s, 1980s—Whole-Object Approaches
During this period, metrics describe mostly whole objects, larger regions, or images;
pattern matching was performed on large targets via FFT spectral methods and
correlation; recognition methods included object, shape, and texture metrics; and simple
geometric primitives were used for object composition. Low-resolution images such
as NTSC, PAL, and SECAM were common—primarily gray scale with some color when
adequate memory was available. Some satellite images were available to the military with
higher resolution, such as LANDSAT images from NASA and SPOT images from France.

Some early work on pattern recognition began to use local interest points and
features: notably, Moravic[520] developed a local interest point detector in 1981, and
in 1988 Harris & Stephens[156] developed local interest point detectors. Commercial
systems began to appear, particularly the View PRB in the early 1980s, which used digital
correlation and scale space super-pixels for coarse to fine matching, and real-time image
processing and pattern recognition systems were introduced byImaging Technology.
Rack-mounted imaging and machine vision systems began to be replaced by workstations
and high-end PCs with add-on imaging hardware, array processors, and software libraries
and applications by companies such as Krig Research.

Early 1990s—Partial-Object Approaches
Compute power and memory were increasing, enabling more attention to local feature
methods, such as developments from Shi and Tomasi[157] improving the Harris detector
methods, Kitchen and Rosenfeld[208] developing gray level corner detection methods,
and methods by Wang and Brady[213]. Image moments over polygon shapes were
computed using Zernike polynomials in 1990 by Khotanzad and Hong[276]. Scale space
theory was applied to computer vision by Lindberg[520], and many other researchers
followed this line of thinking into the future, such as Lowe [161] in 2004.

Metrics described smaller pieces of objects or object components and parts of
images; there was increasing use of local features and interest points. Large sets of
sub-patterns or basis vectors were used and corresponding metrics were developed.
There was increased use of color information; more methods appeared to improve
invariance for scale, rotational, or affine variations; and recognition methods were
developed based on finding parts of an object with appropriate metrics. Higher image
resolution, increased pixel depths, and color information were increasingly used in the
public sector (especially in medical applications), along with of new affordable image
sensors, such as the KODAK MEGA-PLUS, which provided a 1024x1024 image.

Mid-1990s—Local Feature Approaches
More focus was put on metrics that identify small local features surrounding interest
points in images. Feature descriptors added more details from a window or patch
surrounding each feature, and recognition was based on searching for sets of features
and matching descriptors with more complex classifiers. Descriptor spectra included
gradients, edges, and colors.

Chapter 3 ■ Global and Regional Features

88

Late 1990s—Classified Invariant Local Feature Approaches
New feature descriptors were developed and refined to be invariant to changes in scale,
lightness, rotation, and affine transformations. Work by Schmidt and Mohr[348] advanced
and generalized the local feature description methods. Features acted as an alphabet for
spelling out complex feature descriptors or vectors whereby the vectors were used for
matching. The feature matching and classification stages were refined to increase speed
and effectiveness using neural nets and other machine learning methods [142].

Early 2000s—Scene and Object Modeling Approaches
Scenes and objects were modeled as sets of feature components or patterns with well-formed
descriptors; spatial relationships between features were measured and used for matching;
and new complex classification and matching methods used boosting and related methods
to combine strong and weak features for more effective recognition. The SIFT [161] algorithm
from Lowe was published; SURF was also published by Bay et al.[160], taking a different
approach using HAAR features rather than just gradients. The Viola-Jones method [504]
was published, using HAAR features and a boosted learning approach to classification,
accelerating matching. The OpenCV library for computer vision was developed by Bradski
at INTEL™, and released as open source.

Mid-2000s—Finer-Grain Feature and Metric Composition
Approaches
The number of researchers in this field began to mushroom; various combinations of
features and metrics (bags of features) were developed by Czurka et al.[234] to describe
scenes and objects using key points as described by Sivic [521]; new local feature
descriptors were created and old ones refined; and there was increased interest in
real-time feature extraction and matching methods for commercial applications. Better
local metrics and feature descriptors were analyzed, measured, and used together for
increased pattern match accuracy. Also, feature learning and sparse feature codebooks
were developed to decrease pattern space, speed up search time, and increase accuracy.

Post-2010—Multi-Modal Feature Metrics Fusion
There has been increasing use of depth sensor information and depth maps to segment
images and describe features and create VOXEL metrics by Rusu and Bradski et al.[398]; 2D
texture metrics are expressed in 3-space; 3D depth sensing methods proliferate, increasing
use of high-resolution images and high dynamic range (HDR) images to enhance feature
accuracy; greater bit depth and accuracy of color images allows for valuable color-based
metrics and computational imaging. Increased processing power and cheap, plentiful
memory handle larger images on low-cost compute platforms. Faster and better feature
descriptors using binary patterns have been developed and matched rapidly using
Hamming distance, such as FREAK by Alahi et al.[131] and ORB by Rublee et al.[131].
Multi-modal and multivariate descriptors are composed of image features with other
sensor information, such as accelerometers and positional sensors.

Chapter 3 ■ Global and Regional Features

89

Future computing research may even come full circle, when sufficient compute and
memory capacity exist to perform the older methods, like correlation across multiple
scales and geometric perspectives in real-time using parallel and fixed-function hardware
methods. This would obviate some of the current focus on small invariant sets of local
features and allow several methods to be used together, synergistically. Therefore, the
history of development in this field is worth knowing, since it might repeat itself in a
different technological embodiment.

Since there is no single solution for obtaining the right set of feature metrics, all the
methods developed over time have applications today and are still in use.

Textural Analysis
One of the most basic metrics is texture, which is the description of the surface of an
image channel, such as color intensity, like an elevation map or terrain map. Texture
can be expressed globally or within local regions. Texture can be expressed locally by
statistical relationships among neighboring pixels in a region, and it can be expressed
globally by summary relationships of pixel values within an image or region. For a
sampling of the literature covering a wide range of texture methods, see references
[13,59,60,310,16–20,312,313].

According to Gonzalez [4], there are three fundamental classes of texture in image
analysis: statistical, structural, and spectral. Statistical measures include histograms,
scatter plots, and SDMs. Structural techniques are more concerned with locating patterns
or structural primitives in an image, such as parallel lines, regular patterns, and so on.
These techniques are described in [11,1,5,8]. Spectral texture is derived from analysis
of the frequency domain representation of the data. That is, a fast Fourier transform is
used to create a frequency domain image of the data, which can then be analyzed using
Fourier techniques.

Histograms reveal overall pixel value distributions but say nothing about spatial
relationships. Scatter plots are essentially two-dimensional histograms, and do not reveal
any spatial relationships. A good survey is found in reference[315].

Texture has been used to achieve several goals:

1.	 Texture-based segmentation (covered in Chapter 2).

2.	 Texture analysis of image regions (covered in this chapter).

3.	 Texture synthesis, creating images using synthetic textures
(not covered in this book).

In computer vision, texture metrics are devised to describe the perceptual
attributes of texture by using discrete methods. For instance, texture has been described
perceptually with several properties, including:

Contrast•	

Color•	

Coarseness•	

Directionality•	

Chapter 3 ■ Global and Regional Features

90

Line-likeness•	

Roughness•	

Constancy•	

Grouping•	

Segmentation•	

If textures can be recognized, then image regions can be segmented based on texture
and the corresponding regions can be measured using shape metrics such as area,
perimeter, and centroid (as will be discussed in Chapter 6). Chapter 2 included a survey of
segmentation methods, some of which are based on texture. Segmented texture regions can
be recognized and compared for computer vision applications. Micro-textures of a local
region, such as the LBP discussed in detail in Chapter 6, can be useful as a feature descriptor,
and macro-textures can be used to describe a homogenous texture of a region such as a lake
or field of grass, and therefore have natural applications to image segmentation. In summary,
texture can be used to describe global image content, image region content, and local
descriptor region content. The distinction between a feature descriptor and a texture metric
may be small.

Sensor limitations combined with compute and memory capabilities of the past have
limited the development of texture metrics to mainly 2D gray scale metrics. However,
with the advances toward pervasive computational photography in every camera
providing higher resolution images, higher frame rates, deeper pixels, depth imaging,
more memory, and faster compute, we can expect that corresponding new advances in
texture metrics will be made.

Here is a brief historical survey of texture metrics.

1950s thru 1970s—Global Uniform Texture Metrics
Auto-correlation or cross-correlation was developed by Kaiser[34] in 1955 as a method
of looking for randomness and repeating pattern features in aerial photography, where
auto-correlation is a statistical method of correlating a signal or image with a time-shifted
version of itself, yielding a computationally simple method to analyze ground cover and
structures.

Bajcsy[33] developed Fourier spectrum methods in 1973 using various types of filters
in the frequency domain to isolate various types of repeating features as texture.

Gray level spatial dependency matrices, GLCMs, SDMs or co-occurrence matrices [6]
were developed and used by Haralick in 1973, along with a set of summary statistical
metrics from the SDMs to assist in numerical classification of texture. Some, but not all,
of the summary metrics have proved useful; however, analysis of SDMs and development
of new SDM metrics have continued, involving methods such as 2D visualization and
filtering of the SDM data within spatial regions [26], as well as adding new SDM statistical
metrics, some of which are discussed in this chapter.

Chapter 3 ■ Global and Regional Features

91

1980s—Structural and Model-Based Approaches
for Texture Classification
While early work focused on micro-textures describing statistical measures between
small kernels of adjacent pixels, macro-textures developed to address the structure of
textures within a larger region. K. Laws developed texture energy-detection methods
in 1979 and 1980 [35–37], as well as texture classifiers, which may be considered the
forerunners of some of the modern classifier concepts. The Laws method could be
implemented as a texture classifier in a parallel pipeline with stages for taking gradients
via of a set of convolution masks over Gaussian filtered images to isolate texture micro
features, followed by a Gaussian smoothing stage to deal with noise, followed by the
energy calculation from the combined gradients, followed by a classifier which matched
texture descriptors.

Eigenfilters were developed by Ade[38] in 1983 as an alternative to the Laws gradient
or energy methods and SDMs; eigenfilters are implemented using a covariance matrix
representation of local 3x3 pixel region intensities, which allows texture analysis and
aggregation into structure based on the variance within eigenvectors in the covariance
matrix.

Structural approaches were developed by Davis[39] in 1979 to focus on gross
structure of texture rather than primitives or micro-texture features. Hough transforms
were invented in 1972 by Duda and Hart[228] as a method of finding lines and curves,
and it was used by Eichmann and Kasparis[40] in 1988 to provide invariant texture
description.

Fractal methods and Markov random field methods were developed into texture
descriptors, and while these methods may be good for texture synthesis, they do not map
well to texture classification, since both Fractal and Markov random field methods use
random fields, thus there are limitations when applied to real-world textures that are not
random.

1990s—Optimizations and Refinements to Texture Metrics
In 1993, Lam and Ip[41,47] used pyramid segmentation methods to achieve spatial
invariance, where an image is segmented into homogenous regions using Voronoi
polygon tessellation and irregular pyramid segmentation techniques around Q points
taken from a binary thresholded image; five shape descriptors are calculated for each
polygon: area, perimeter, roundness, orientation, and major/minor axis ratio, combined
into texture descriptors.

Local binary patterns (LBP) were developed in 1994 by Ojala et al.[173] as a novel
method of encoding both pattern and contrast to define texture [43,44,15,16]; since
then, hundreds of researchers have added to the LBP literature in the areas of theoretical
foundations, generalization into 2D and 3D, domain-specific interest point descriptors used
in face detection, and spatio-temporal applications to motion analysis [42]. LBP research
remains quite active at this time. LBPs are covered in detail in Chapter 6. There are many
applications for the powerful LBP method as texture metric, a feature descriptor, and an
image processing operator, the latter which was discussed in Chapter 2.

Chapter 3 ■ Global and Regional Features

92

2000 toToday—More Robust Invariant Texture Metrics
and 3D Texture
Feature metrics research is investigating texture metrics that are invariant to scale,
rotation, lighting, perspective, and so on to approach the capabilities of human texture
discrimination. In fact, texture is used interchangeably as a feature descriptor in some
circles. The work by Pun and Lee[45] is an example of development of rotational invariant
texture metrics, as well as scale invariance. Invariance attributes are discussed in the
general taxonomy in Chapter 5.

The next wave of metrics being developed increasingly will take advantage of 3D
depth information. One example is the surface shape metrics developed by Spence [46] in
2003, which provide a bump-map type metric for affine invariant texture recognition and
texture description with scale and perspective invariance. Chapter 6 also discusses some
related 3D feature descriptors.

Statistical Methods
The topic of statistical methods is vast, and we can only refer the reader to selected
literature as we go along. One useful and comprehensive resource is the online NIST
National Institute of Science and Technology Engineering Statistics Handbook,1 including
examples and links to additional resources and tools.

Statistical methods may be drawn upon at any time to generate novel feature metrics.
Any feature, such as pixel values or local region gradients, can be expressed statistically by
any number of methods. Simple methods, such as the histogram shown in Figure 3-1, are
invaluable. Basic statistics such as minimum, maximum, and average values can be seen
easily in the histogram shown in Chapter 2 (Figure 2-22). We survey several applications
of statistical methods to computer vision here.

Figure 3-1.  Histogram with linear scale values (black) and log scale values (gray),
illustrating how the same data is interpreted differently based on the chart scale

1See the NIST online resource for engineering statistics: http://www.itl.nist.gov/div898/handbook/

http://www.itl.nist.gov/div898/handbook/

Chapter 3 ■ Global and Regional Features

93

Texture Region Metrics
Now we look in detail at the specific metrics for feature description based on texture.
Texture is one of the most-studied classes of metrics. It can be thought of in terms of the
surface—for example, a burlap bag compared to silk fabric. There are many possible
textural relationships and signatures that can be devised in a range of domains, with new
ones being developed all the time. In this section we survey some of the most common
methods for calculating texture metrics:

Edge metrics•	

Cross-correlation•	

Fourier spectrum signatures•	

Co-occurrence matrix, Haralick features, extended SDM features•	

Laws texture metrics•	

Tessellation•	

Local binary patterns (LBP)•	

Dynamic textures•	

Within an image, each image region has a texture signature, where texture is defined
as a common structure and pattern within that region. Texture signatures may be a
function of position and intensity relationships, as in the spatial domain, or be based on
comparisons in some other function basis and feature domain, such as frequency space
using Fourier methods.

Texture metrics can be used to both segment and describe regions. Regions are
differentiated based on texture homogeneousness, and as a result, texture works well as
a method for region segmentation. Texture is also a good metric for feature description,
and as a result it is useful for feature detection, matching, and tracking.

Appendix B contains several ground truth datasets with example images for
computing texture metrics, including the CUReT reflectance and texture database from
Columbia University. Several key papers describe the metrics used against the CUReT
dataset [21,48–50] including the appearance of a surface as a bi-directional reflectance
distribution function (BRDF) and a bi-directional texture function (BTF).

These metrics are intended to measure texture as a function of direction and
illumination, to capture coarse details and fine details of each surface. If the surface
texture contains significant subpixel detail not apparent in single pixels or groups of
pixels, the BRDF reflectance metrics can capture the coarse reflectance details. If the
surface contains pixel-by-pixel difference details, the BTF captures the fine texture details.

Edge Metrics
Edges, lines, contours, or ridges are basic textural features [316,317]. A variety of simple
metrics can be devised just by analyzing the edge structure of regions in an image. There
are many edge metrics in the literature, and a few are illustrated here.

Chapter 3 ■ Global and Regional Features

94

Computing edges can be considered on a continuum of methods from interest point
to edges, where the interest point may be a single pixel at a gradient maxima or minima,
with several connected gradient maxima pixels composed into corners, ridges line
segments, or a contours. In summary, a gradient point is a degenerate edge, and an edge
is a collection of connected gradient points.

The edge metrics can be computed locally or globally on image regions as follows:

Compute the gradient •	 g(d) at each pixel, selecting an appropriate
gradient operator g() and select the appropriate kernel size or
distance d to target either micro or macro edge features.

The distance •	 d or kernel size can be varied to achieve different
metrics; many researchers have used 3x3 kernels.

Compute edge orientation by binning gradient directions •	
for each edge into a histogram; for example, use 45 degree
angle increment bins for a total of 8 bins at degrees
0,45,90,135,180,225,270.

Several other methods can be used to compute edge statistics. The representative
methods are shown here; see also Shapiro and Stockton [517] for a standard reference.

Edge Density
Edge density can be expressed as the average value of the gradient magnitudes g

m
 in a region.

E
g d

pixels in regiond
m=

()

Edge Contrast
Edge contrast can be expressed as the ratio of the average value of gradient magnitudes to
the maximum possible pixel value in the region.

E
E

max pixel valuec
d=

Edge Entropy
Edge randomness can be expressed as a measure of the Shannon entropy of the gradient
magnitudes.

E g x log g xe
i

n

m i b m i=
=
å

0

() ()

Chapter 3 ■ Global and Regional Features

95

Edge Directivity
Edge directivity can be expressed as a measure of the Shannon entropy of the gradient
directions.

E g x log g xe
i

n

d i b d i=
=
å

0

() ()

Edge Linearity
Edge linearity measures the co-occurrence of collinear edge pairs using gradient
direction, as shown by edges a – b in Figure 3-2.

E cooccurrence of colinear edge pairsl =

Figure 3-2.  Gradient direction of edges a,b,c,d used to illustrate relationships for edge metrics

Edge Periodicity
Edge periodicity measures the co-occurrence of identically oriented edge pairs using
gradient direction, as shown by edges a – c in Figure 3-2.

E cooccurrence of identically oriented edge pairsp =

Edge Size
Edge size measures the co-occurrence of opposite oriented edge pairs using gradient
direction, as shown by edges a – d in Figure 3-2.

E cooccurrence of opposite oriented edge pairss =

Chapter 3 ■ Global and Regional Features

96

Edge Primitive Length Total
Edge primitive length measures the total length of all gradient magnitudes along the
same direction.

E total length of gradeitn magnitudes with same directiont =

Cross-Correlation and Auto-Correlation
Cross-correlation [34] is a metric showing similarity between two signals with a time
displacement between them. Auto-correlation is the cross-correlation of a signal with a
time-displaced version of itself. In the literature on signal processing, cross-correlation is
also referred to as a sliding inner product or sliding dot product. Typically, this method is
used to search a large signal for a smaller pattern.

f g t g tf* = -()*
-

()

Using the Wiener-Khinchin theorem as a special case of the general cross-correlation
theorem, cross-correlation can be written as simply the Fourier transform of the absolute
square of the function f

v
, as follows:

c t f tv v() = éë ùû | | ()2

In computer vision, the feature used for correlation may be a 1D line of pixels or
gradient magnitudes, a 2D pixel region, or a 3D voxel volume region. By comparing the
features from the current image frame and the previous image frame using cross-correlation
derivatives, we obtain a useful texture change correlation metric.

By comparing displaced versions of an image with itself, we obtain a set of either local
or global auto-correlation texture metrics. Auto-correlation can be used to detect repeating
patterns or textures in an image, and also to describe the texture in terms of fine or coarse,
where coarse textures show the auto-correlation function dropping of more slowly than fine
textures. See also the discussion of correlation in Chapter 6 and Figure 6-20.

Fourier Spectrum, Wavelets, and Basis Signatures
Basis transforms, such as the FFT, decompose a signal into a set of basis vectors from
which the signal can be synthesized or reconstructed. Viewing the set of basis vectors
as a spectrum is a valuable method for understanding image texture and for creating a
signature. Several basis spaces are discussed in this chapter, including Fourier, HAAR,
wavelets, and Zernike.

Although computationally expensive and memory intensive, the Fast Fourier Transform
(FFT) is often used to produce a frequency spectrum signature. The FFT spectrum is useful
for a wide range of problems. The computations typically are limited to rectangular regions
of fixed sizes, depending on the radix of the transform (see Bracewell[227]).

Chapter 3 ■ Global and Regional Features

97

As shown in Figure 3-3, Fourier spectrum plots reveal definite image features useful
for texture and statistical analysis of images. For example, Figure 3-10 shows an FFT
spectrum of LBP pattern metrics. Note that the Fourier spectrum has many valuable
attributes, such as rotational invariance, as shown in Figure 3-3, where a texture image
is rotated 90 degrees and the corresponding FFT spectrums exhibit the same attributes,
only rotated 90 degrees.

Figure 3-3.  (Top row) Example images with texture. (Bottom row) Texture and shape
information revealed in the corresponding FFT power spectrums

Wavelets [227] are similar to Fourier methods, and have become increasingly
popular for texture analysis [311], discussed later in the section on basis spaces.

Note that the FFT spectrum as a texture metric or descriptor is rotational invariant,
as shown in the bottom left image of Figure 3-3. FFT spectra can be taken over
rectangular 2D regions. Also, 1D arrays such as annuli or Cartesian coordinates of the
shape taken around the perimeter of an object shape can be used as input to an FFT and
as an FFT descriptor shape metric.

Co-Occurrence Matrix, Haralick Features
Haralick[6] proposed a set of 2D texture metrics calculated from directional differences
between adjacent pixels, referred to as co-occurrence matrices, or spatial dependency
matrices (SDM), or gray level co-occurrence matrices (GLCM). A complete set of four (4)
matrices are calculated by evaluating the difference between adjacent pixels in the x, y,
diagonal x and diagonal y directions, as shown in Figure 3-4, and further illustrated with
a 4x4 image and corresponding co-occurence tables shown in Figure 3-5.

Chapter 3 ■ Global and Regional Features

98

X Y Diagonal X Diagonal Y

Figure 3-4.  Four different vectors used for the Haralick texture features, where the difference
of each pixel in the image is plotted to reveal the texture of the image

Figure 3-5.  (a) 4x4 pixel image, with gray values in the range 0-3. (b) Nearest neighbor
angles corresponding to SDM tables. (c)(d)(e)(f) With neighborhood counts for each angle

One benefit of the SDM as a texture metric is that it is easy to calculate in a single
pass over the image. The SDM is also fairly invariant to rotation, which is often a difficult
robustness attribute to attain. Within a segmented region or around an interest point,
the SDM plot can be a valuable texture metric all by itself, therefore useful for texture
analysis, feature description, noise detection, and pattern matching.

For example, if a camera has digital-circuit readout noise, it will show up in the
SDM for the x direction only if the lines are scanned out of the sensor one at a time in the
x direction, so using the SDM information will enable intelligent sensor processing to
remove the readout noise. However, it should be noted that SDM metrics are not always
useful alone, and should be qualified with additional feature information. The SDM is
primarily concerned with spatial relationships, with regard to spatial orientation and
frequency of occurrence. So, it is primarily a statistical measure.

The SDM is calculated in four orientations, as shown in Figure 3-4. Since the SDM
is only concerned with adjacent pairs of pixels, these four calculations cover all possible
spatial orientations. SDMs could be extended beyond 2x2 regions by using forming
kernels extending into 5x5, 7x7, 9x9, and other dimensions.

A spatial dependency matrix is basically a count of how many times a given pixel
value occurs next to another pixel value. Figure 3-5 illustrates the concept. For example,

Chapter 3 ■ Global and Regional Features

99

assume we have an 8-bit image (0. 255). If an SDM shows that pixel value x frequently
occurs adjacent to pixels within the range x+1 to x-1, then we would say that there is a
“smooth” texture at that intensity. However, if pixel value x frequently occurs adjacent to
pixels within the range x+70 to x-70, we would say that there is quite a bit of contrast at
that intensity, if not noise.

A critical point in using SDMs is to be sensitive to the varied results achieved when
sampling over small vs. large image areas. By sampling the SDM over a smaller area
(say 64x64 pixels), details will be revealed in the SDMs that would otherwise be obscured.
The larger the size of the sample image area, the more the SDM will be populated. And
the more samples taken, the more likely that detail will be obscured in the SDM image
plots. Actually, smaller areas (i.e., 64x64 pixels) are a good place to start when using
SDMs, since smaller areas are faster to compute and will reveal a lot about local texture.

The Haralick metrics are shown in Figure 3-6.

Figure 3-6.  Haralick texture metrics. (Image used by permission, © Intel Press, from Building
Intelligent Systems)

Chapter 3 ■ Global and Regional Features

100

The statistical characteristics of the SDM have been extended by several researchers
to add more useful metrics [26], and SDMs have been applied to 3D volumetric data by a
number of researchers with good results [25].

Extended SDM Metrics
Extensions to the Haralick metrics have been developed by the author [26], primarily
motivated by a visual study of SDM plots as shown in Figure 3-7. Applications for
the extended SDM metrics include texture analysis, data visualization, and image
recognition. The visual plots of the SDMs alone are valuable indicators of pixel intensity
relationships, and are worth using along with histograms to get to know the data.

The extended SDM metrics include centroid, total coverage, low-frequency coverage,
total power, relative Power, locus length, locus mean density, bin mean density,
containment, linearity, and linearity strength. The extended SDM metrics capture
key information that is best observed by looking at the SDM plots. In many cases the
extended SDM metric are be computed four times, once for each SDM direction of 0, 45,
90, and 135 degrees, as shown in Figure 3-5.

The SDMs are interesting and useful all by themselves when viewed as an image. Many
of the texture metrics suggested are obvious after viewing and understanding the SDMs;
others are neither obvious nor apparently useful until developing a basic familiarity with
the visual interpretation of SDM image plots. Next, we survey the following:

•	 Example SDMs showing four directional SDM maps: A
complete set of SDMs would contain four different plots, one
for each orientation. Interpreting the SDM plots visually reveals
useful information. For example, an image with a smooth texture
will yield a narrow diagonal band of co-occurrence values; an
image with wide texture variation will yield a larger spread of
values; a noisy image will yield a co-occurrence matrix with
outlier values at the extrema. In some cases, noise may only be
distributed along one axis of the image—perhaps, across rows or
the x axis, which could indicated sensor readout noise as each
line is read out of the sensor, suggesting a row- or line-oriented
image preparation stage in the vision pipeline to compensate for
the camera.

•	 Extended SDM texture metrics: The addition of 12 other useful
statistical measures to those proposed by Haralick.

•	 Some code snippets: These illustrate the extended SDM
computations, full source code is shown in Appendix D.

In Figure 3-7, several of the extended SDM metrics can be easily seen, including
containment and locus mean density. Note that the right image does not have a lot of
outliner intensity points or noise (good containment); most of the energy is centered
along the diagonal (tight locus), showing a rather smooth set of image pixel transitions
and texture, while the left image shows a wider range of intensity values. For some
images, wider range may be noise spread across the spectrum (poor containment),
revealing a wider band of energy and contrast between adjacent pixels.

Chapter 3 ■ Global and Regional Features

101

Metric 1: Centroid
To compute the centroid, for each SDM bin p(i,j), the count of the bin is multiplied by the
bin coordinate for x,y and also the total bin count is summed. The centroid calculation
is weighted to compute the centroid based on the actual bin counts, rather than an
unweighted “binary” approach of determining the center of the binning region based on
only bin data presence. The result is the weighted center of mass over the SDM bins.

centroid

x jp i j

y ip i j

z p i ji

n

j

m

=
=
=
=

æ

è

ç
ç
ç

ö

ø

÷
÷
÷= =

åå
(,)

(,)

(,)0 0

centroid
y

zy =

centroid
x

zx =

Metric 2: Total Coverage
This is a measure of the spread, or range of distribution, of the binning. A small coverage
percentage would be indicative of an image with few gray levels, which corresponds in
some cases to image smoothness. For example, a random image would have a very large
coverage number, since all or most of the SDM bins would be hit. The coverage feature

Figure 3-7.  Pair of image co-occurrence matrix plots (x-axis plots) computed over 64 bins in
the bottom row corresponding to the images in the top row

Chapter 3 ■ Global and Regional Features

102

metrics (2,3,4), taken together with the linearity features suggested below (11,12), can
give an indication of image smoothness.

coverage
if p i j

otherwisec
i

n

j

m

=
< ()æ

è
ç

ö

ø
÷

= =
åå

, ,

0 0

1 0

0

coverage
coverage

n mt
c=

*()

Metric 3: Low-Frequency Coverage
For many images, any bins in the SDM with bin counts less than a threshold value, such
as 3, may be considered as noise. The low-frequency coverage metric, or noise metric,
provides an idea how much of the binning is in this range. This may be especially true
as the sample area of the image area increases. For whole images, a threshold of 3 has
proved to be useful for determining if a bin contains noise for a data range of 0-255,
and using the SDM over smaller local kernel regions may use all the values with no
thresholding needed.

coverage if p i j
i

n

j

m

c else 0
= < () < æ

è
ç

ö

ø
÷

= =
åå ,

,

0 0

0 3
1

coverage
coverage

n ml
c=

*()

Metric 4: Corrected Coverage
Corrected coverage is the total coverage with noise removed.

coverage coverage coveragen t l= -

Metric 5: Total Power
The power metric provides a measure of the swing in value between adjacent pixels in an
image, and is computed in four directions. A smooth image will have a low power number
because the differences between pixels are smaller. Total power and relative power are
inter-related, and relative power is computed using the total populated bins (z) and total
difference power (t).

power if p i j
z

t i jc
i

n

j

m

= ()¹
+ =

+ = -
æ

è
ç

ö

ø
÷

= =
åå ,

,

| |0 0

0
1

power tt =

Chapter 3 ■ Global and Regional Features

103

Metric 6: Relative Power
The relative power is calculated based on the scaled total power using nonempty SDM
bins t, while the total power uses all bins.

power
t

zr =

Metric 7: Locus Mean Density
For many images, there is a “locus” area of high-intensity binning surrounding the bin
axis (locus axis is where adjacent pixels are of the same value x=y) corresponding to a
diagonal line drawn from the upper left corner of the SDM plot. The degree of clustering
around the locus area indicates the amount of smoothness in the image. Binning from a
noisy image will be scattered with little relation to the locus area, while a cleaner image
will show a pattern centered about the locus.

locus if i j
i

n

j

m

c

z

d p i j
= < - <

+ =
+ =

æ

è
ç

ö

ø
÷

= =
åå | |

,

(,)0 0

0 7
1

locus
d

zd =

The locus mean density is an average of the bin values within the locus area. The
locus is the area around the center diagonal line, within a band of 7 pixels on either side
of the identity line (x=y) that passes down the center of each SDM. However, the number
7 is not particularly special, but based upon experience, it just gives a good indication of
the desired feature over whole images. This feature is good for indicating smoothness.

Metric 8: Locus Length
The locus length measures the range of the locus concentration about the diagonal.
The algorithm for locus length is a simple count of bins populated in the locus area;
a threshold band of 7 pixels about the locus has been found useful.
 
y=length=0;
while (y < 256) {
 x=count=0;
 while (x < 256) {
 n = |y-x|;
 if (p[i,j] == 0) && (n < 7) count++;
 x++;
 }
 if (!count) length++;
 y++;
}
 

Chapter 3 ■ Global and Regional Features

104

Metric 9: Bin Mean Density
This is simply the average bin count from nonempty bins.

density if p i j z
i

n

j

m

c v p i j= () ¹ = () + =
= =
åå , (, ,)

0 0

0 1

density
v

zb =

Metric 10: Containment
Containment is a measure of how well the binning in the SDM is contained within the
boundaries or edges of the SDM, and there are four edges or boundaries, for example
assuming a data range [0..255], there are containment boundaries along rows 0 and
255, and along columns 0 and 255. Typically, the bin count m is 256 bins, or possibly
less such as 64. To measure containment, basically the perimeters of the SDM bins are
checked to see if any binning has occurred, where the perimeter region bins of the SDM
represent extrema values next to some other value. The left image in Figure 3-7 has lower
containment than the right image, especially for the low values.

containment if p i c
i

m

1
0

10 0 1= () ¹ + =
=
å , ()

containment if p i m c
i

m

2
0

20 1= () ¹ + =
=
å , ()

containment if p i c
i

m

3
0

30 0 1= () ¹ + =
=
å , ()

containment if p m i c
i

m

4
0

40 1= () ¹ + =
=
å , ()

containment
c c c c

mt = -
+ + +

1 0
4

1 2 3 4.
()

If extrema are hit frequently, this probably indicates some sort of overflow
condition such as numerical overflow, sensor saturation, or noise. The binning is treated
unweighted. A high containment number indicates that all the binning took place within
the boundaries of the SDM. A lower number indicates some bleeding. This feature
appears visually very well in the SDM plots.

Metric 11. Linearity
The linearity characteristic may only be visible in a single orientation of the SDM, or by
comparing SDMs. For example, the image in Figure 3-8 reveals some linearity variations
across the set of SDMs. This is consistent with the image sensor used (older tube camera).

Chapter 3 ■ Global and Regional Features

105

linearity if p jm j
z

l p j jc
j

m

= () >
+ =

+ =
æ

è
ç

ö

ø
÷

=
å ,

,

(,)0

1
1

256

linearity
z

mnormalized =

linearity
l

z
mstrength = * -1

Figure 3-8.  SDMs from old tube camera showing linearity variations in the sensor, includes
full set of 0, 45, 90, and 135 degree SDM’s. (Public domain image from National Archives)

Chapter 3 ■ Global and Regional Features

106

Metric 12: Linearity Strength
The algorithm for linearity strength is shown in Metric 11. If there is any linearity present
in a given angle of SDM, both linearity strength and linearity will be comparatively higher
at this angle than the other SDM angles (Table 3-1).

Table 3-1.  Extended SDM Metrics from Figure 3-8

METRIC 0 Deg. 45 Deg. 90 Deg. 135 Deg. Ave.

xcentroid 115 115 115 115 115
ycentroid 115 115 115 115 115
low_frequency_coverage 0.075 0.092 0.103 0.108 0.095
total_coverage 0.831 0.818 0.781 0.780 0.803
corrected_coverage 0.755 0.726 0.678 0.672 0.708
total_power 2.000 3.000 5.000 5.000 3.750
relative_power 17.000 19.000 23.000 23.000 20.500
locus_length 71 72 71 70 71
locus_mean_density 79 80 74 76 77
bin_mean_density 21 19 16 16 18
containment 0.961 0.932 0.926 0.912 0.933
linearity 0.867 0.848 0.848 0.848 0.853
linearity_strength 1.526 1.557 0.973 1.046 1.276

Laws Texture Metrics
The Laws metrics [52] provide a structural approach to texture analysis, using a set of
masking kernels to measure texture energy or variation within fixed sized local regions,
similar to the 2x2 region SDM approach but using larger pixel areas to achieve different
metrics.

The basic Laws algorithm involves classifying each pixel in the image into texture
based on local energy, using a few basic steps:

1.	 The mean average intensity from each kernel neighborhood
is subtracted from each pixel to compensate for illumination
variations.

2.	 The image is convolved at each pixel using a set of kernels,
each of which sums to zero, followed by summing the results
to obtain the absolute average value over each kernel window.

3.	 The difference between the convolved image and the original
image is measured, revealing the Laws energy metrics.

Chapter 3 ■ Global and Regional Features

107

Laws defines a set of nine separable kernels to produce a set of texture region
energy metrics, and some of the kernels work better than others in practice. The kernels
are composed via matrix multiplication from a set of four vector masks L5, E5, S5,
and R5, described below. The kernels were originally defined as 5x5 masks, but 3x3
approximations have been used also, as shown below.
 
5x5 form
L5 Level Detector [1 4 6 4 1]
E5 Edge Detector [-1 -2 0 2 1]
S5 Spot Detector [-1 0 2 0 1]
R5 Ripple Detector [1 -4 6 -4 1]
 
3x3 approximations of 5x5 form
L3 Level Detector [1 2 1]
E3 Edge Detector [-1 0 1]
S3 Spot Detector [-1 2 -1]
R3 Ripple Detector [*NOTE: cannot be reproduced in 3x3 form]
 

To create 2D masks, vectors Ln, En, Sn, and Rn (as shown above) are convolved
together as separable pairs into kernels; a few examples are shown in Figure 3-9.

Figure 3-9.  L3E3 kernel composition example

Note that Laws texture metrics have been extended into 3D for volumetric texture
analysis.[51][52]

Chapter 3 ■ Global and Regional Features

108

Figure 3-10.  (Left) texture images. (Center) LBP histograms. (Right) FFT spectrum plots of
the histograms which reveal the rotational invariance property of the LBP histograms. Note
that while the histogram binning looks different for the rotated images, the FFT spectrums
look almost identical. (Image © Springer-Verlag London Limited from Computer Vision
Using Local Binary Patterns)

LBP Local Binary Patterns
In contrast to the various structural and statistical methods of texture analysis, the LBP
operator [18,58] computes the local texture around each region as an LBP binary code,
or micro-texture, allowing simple micro-texture comparisons to segment regions based
on like micro-texture. (See the very detailed discussion on LBP in Chapter 6 for details
and references to the literature, and especially Figure 6-6.) The LBP operator [173] is
quite versatile, easy to compute, consumes a low amount of memory, and can be used for
texture analysis, interest points, and feature description. As a result, the LBP operator is
discussed is several places in this book.

As shown in Figure 3-10, the uniform set of LBP operators, composed of a subset
of the possible LBPs that are by themselves rotation invariant, can be binned into a
histogram, and the corresponding bin values are run through an FFT as a 1D array to
create an FFT spectrum, which yields a robust metric with strong rotational invariance.

Dynamic Textures
Dynamic textures are a concept used to describe and track textured regions as they change
and morph dynamically from frame to frame [53,13,15,14] For example, dynamic textures
may be textures in motion, like sea waves, smoke, foliage blowing in the wind, fire, facial
expressions, gestures, and poses. The changes are typically tracked in spatio-temporal sets

Chapter 3 ■ Global and Regional Features

109

of image frames, where the consecutive frames are stacked into volumes for analysis as a
group. The three dimensions are the XY frame sizes, and the Z dimension is derived from
the stack of consecutive frames n-2, n-1, n.

A close cousin to dynamic texture research is the field of activity recognition
(discussed in Chapter 6), where features are parts of moving objects that compose an
activity—for example, features on arms and legs that are tracked frame to frame to
determine the type of motion or activity, such as walking or running. One similarity
between activity recognition and dynamic textures is that the features or textures change
from frame to frame over time, so for both activity recognition and dynamic texture
analysis, tracking features and textures often requires a spatio-temporal approach
involving a data structure with a history buffer of past and current frames, which provides
a volumetric representation to the data.

For example, VLBP and LBP-TOP (discussed in Chapter 6) provide methods for
dynamic texture analysis by using the LBP constructed to operate over three dimensions
in a volumetric structure, where the volume contains image frames n-2, n-1, and n
stacked into the volume.

Statistical Region Metrics
Describing texture in terms of statistical metrics of the pixels is a common and intuitive
method. Often a simple histogram of a region will be sufficient to describe the texture
well enough for many applications. There are also many variations of the histogram,
which lend themselves to a wide range of texture analysis. So this is a good point at which
to examine histogram methods. Since statistical mathematics is a vast field, we can only
introduce the topic here, dividing the discussion into image moment features and point
metric features.

Image Moment Features
Image moments [518,4] are scalar quantities, analogous to the familiar statistical measures
such as mean, variance, skew, and kurtosis. Moments are well suited to describe polygon
shape features and general feature metric information such as gradient distributions.
Image moments can be based on either scalar point values or basis functions such as
Fourier or Zernike methods discussed later in the section on basis space.

Moments can describe the projection of a function onto a basis space—for example,
the Fourier transform projects a function onto a basis of harmonic functions. Note that
there is a conceptual relationship between 1D and 2D moments in the context of shape
description. For example, the 1D mean corresponds to the 2D centroid, and the 1D
minimum and maximum correspond to the 2D major and minor axis. The 1D minimum
and maximum also correspond to the 2D bounding box around the 2D polygon shape
(also see Figure 6-29).

In this work, we classify image moments under the term polygon shape descriptors
in the taxonomy (see Chapter 5). Details on several image moments used for 2D shape
description will be covered in Chapter 6, under “Object Shape Metrics for Blobs and
Objects.”

Chapter 3 ■ Global and Regional Features

110

Common properties of moments in the context of 1D distributions and 2D
images include:

0•	 th order moment is the mean or 2D centroid.

Central moments describe variation around the mean or •	
2D centroid.

1•	 st order central moments contain information about 2D area,
centroid, and size.

2•	 nd order central moments are related to variance and measure
2D elliptical shape.

3•	 rd order central moments provide symmetry information about
the 2D shape, or skewness.

4•	 th order central moments measure 2D distribution as tall, short,
thin, short, or fat.

Higher-level moments may be devised and composed of moment •	
ratios, such as co-variance.

Moments can be used to create feature descriptors that are invariant to several
robustness criteria, such as scale, rotation, and affine variations. The taxonomy of
robustness and invariance criteria is provided in Chapter 5. For 2D shape description,
in 1961 Hu developed a theoretical set of seven 2D planar moments for character
recognition work, derived using invariant algebra, that are invariant under scale,
translation, and rotation [7]. Several researchers have extended Hu’s work. An excellent
resource for this topic is Moments and Moment Invariants in Pattern Recognition, by Jan
Flusser et al.[518].

Point Metric Features
Point metrics can be used for the following: (1) feature description, (2) analysis
and visualization, (3) thresholding and segmentation, and (4) image processing
via programmable LUT functions (discussed in Chapter 2). Point metrics are often
overlooked. Using point metrics to understand the structure of the image data is one of the
first necessary steps toward devising the image pre-processing pipeline to prepare images
for feature analysis. Again, the place to start is by analysis of the histogram, as shown in
Figures 3-1 and 3-11. The basic point metrics can be determined visually, such as minima,
maxima, peaks, and valleys. False coloring of the histogram regions for data visualization is
simple using color lookup tables to color the histogram regions in the images.

Chapter 3 ■ Global and Regional Features

111

Figure 3-11.  Two image histograms side by side, for analysis

Here is a summary of statistical point metrics:

•	 Quantiles, median, rescale: By sorting the pixel values into an
ordered list, as during the histogram process, the various quartiles
can be found, including the median value. Also, the pixels can be
rescaled from the list and used for pixel remap functions
(as described in Chapter 2).

•	 Mix, max, mode: The minimum and maximum values, together
with histogram analysis, can be used to guide image pre-processing
to devise a threshold method to remove outliers from the data. The
mode is the most common pixel value in the sorted list of pixels.

•	 Mean, harmonic mean, and geometric mean: Various
formulations of the mean are useful to learn the predominant
illumination levels, dark or light, to guide image pre-processing to
enhance the image for further analysis.

•	 Standard deviation, skewness, and kurtosis: These moments
can be visualized by looking at the SDM plots.

Chapter 3 ■ Global and Regional Features

112

•	 Correlation: Topic was covered earlier in this chapter under
cross-correlation and auto-correlation.

•	 Variance, covariance: The variance metric provides information
on pixel distribution, and covariance can be used to compare
variance between two images. Variance can be visualized to a
degree in the SDM, also as shown in this chapter.

•	 Ratios and multivariate metrics: Point metrics by themselves
may be useful, but multivariate combinations or ratios using
simple point metrics can be very useful as well. Depending on the
application, the ratios themselves form key attributes of feature
descriptors (as described in Chapter 6). For example, mean : min,
mean : max, median : mean, area : perimeter.

Global Histograms
Global histograms treat the entire image. In many cases, image matching via global
histograms is simple and effective, using a distance function such as SSD. As shown
in Figure 3-12, histograms reveal quantitative information on pixel intensity, but not
structural information. All the pixels in the region contribute to the histogram, with no
respect to the distance from any specific point or feature. As discussed in Chapter 2, the
histogram itself is the basis of histogram modification methods, allowing the shape of the
histogram to be stretched, compressed, or clipped as needed, and then used as an inverse
lookup table to rearrange the image pixel intensity levels.

Figure 3-12.  2D histogram shapes for different images

Chapter 3 ■ Global and Regional Features

113

Local Region Histograms
Histograms can also be computed over local regions of pixels, such as rectangles or
polygons, as well as over sets of feature attributes, such as gradient direction and
magnitude or other spectra. To create a polygon region histogram feature descriptor, first
a region may be segmented using morphology to create a mask shape around a region of
interest, and then only the masked pixels are used for the histogram.

Local histograms of pixel intensity values can be used as attributes of a feature
descriptor, and also used as the basis for remapping pixel values from one histogram
shape to another, as discussed in Chapter 2, by reshaping the histogram and reprocessing
the image accordingly. Chapter 6 discusses a range of feature descriptors such as SIFT,
SURF, and LBP which make use of feature histograms to bin attributes such as gradient
magnitude and direction.

Scatter Diagrams, 3D Histograms
The scatter diagram can be used to visualize the relationship or similarity between
two image datasets for image analysis, pattern recognition, and feature description.
Pixel intensity from two images or image regions can be compared in the scatter plot to
visualize how well the values correspond. Scatter diagrams can be used for feature and
pattern matching under limited translation invariance, but they are less useful for affine,
scale, or rotation invariance. Figure 3-13 shows an example using a scatter diagram to
look for a pattern in an image, the target pattern is compared at different offsets, the
smaller the offset, the better the correspondence. In general, tighter sets of peak features
indicate a strong structural or pattern correspondence; more spreading of the data
indicates weaker correspondence. The farther away the pattern offset moves, the lower
the correspondence.

Chapter 3 ■ Global and Regional Features

114

Note that by analyzing the peak features compared to the low-frequency features,
correspondence can be visualized. Figure 3-14 shows scatter diagrams from two separate
images. The lack of peaks along the axis and the presence of spreading in the data show
low structural or pattern correspondence.

Figure 3-13.  Scatter diagrams, rendered as 3D histograms, of an image and a target
pattern at various displacements. Top row: (left) image, (center) target pattern from image,
(right) SDM of pattern with itself. Center row: (left) target and image offset 1,1 (right)
target and image offset 8,8, Bottom row: (left) target and image offset 16,16, (right) target
and image offset 32,32

Chapter 3 ■ Global and Regional Features

115

Figure 3-14.  Scatter diagram from two different images showing low correspondence
along diagonal

The scatter plot can be made, pixel by pixel, from two images, where pixel pairs form
the Cartesian coordinate for scatter plotting using the pixel intensity of image 1 is used as
the x coordinate, and the pixel intensities of image 2 as the y coordinate, then the count of
pixel pair correspondence is binned in the scatter plot. The bin count for each coordinate
can be false colored for visualization. Figure 3-15 provides some code for illustration
purposes.

Chapter 3 ■ Global and Regional Features

116

Figure 3-15.  Code to illustrate binning 8-bit data for a scatter diagram comparing two
images pixel by pixel and binning the results for plotting

For feature detection, as shown in Figure 3-12, the scatter plot may reveal enough
correspondence at coarse translation steps to reduce the need for image pyramids in
some feature detection and pattern matching applications. For example, the step size
of the pattern search and compare could be optimized by striding or skipping pixels,
searching the image at 8 or 16 pixel intervals, rather than at every pixel, reducing feature
detection time. In addition, the scatter plot data could first be thresholded to a binary
image, masked to show just the peak values, converted into a bit vector, and measured for
correspondence using HAMMING distance for increased performance.

Chapter 3 ■ Global and Regional Features

117

Multi-Resolution, Multi-Scale Histograms
Multi-resolution histograms [10] have been used for texture analysis [54], and also for
feature recognition [55]. The PHOG descriptor described in Chapter 6 makes use of multi-
scale histograms of feature spectra—in this case, gradient information. Note that the
multi-resolution histogram provides scale invariance for feature description. For texture
analysis [54], multi-resolution histograms are constructed using an image pyramid, and
then a histogram is created for each pyramid level and concatenated together [10], which
is referred to as a multi-resolution histogram. This histogram has the desirable properties
of algorithm simplicity, fast computation, low memory requirements, noise tolerance,
and high reliability across spatial and rotational variations. See Figure 3-16. A variation
on the pyramid is used in the method of Zhao and Pietikainen [15], employing a multi-
dimensional pyramid image set from a volume.

Figure 3-16.  Multi-resolution histogram image sequence. Note that the multiple
histograms are taken at various Gaussian blur levels in an attempt to create more invariant
feature descriptors

Steps involved in creating and using multi-resolution histograms are as follows:

1.	 Apply Gaussian filter to image.

2.	 Create an image pyramid.

3.	 Create histograms at each level.

4.	 Normalize the histograms using L1 norm.

5.	 Create cumulative histograms.

Chapter 3 ■ Global and Regional Features

118

6.	 Create difference histograms or DOG images (differences
between pyramid levels).

7.	 Renormalize histograms using the difference histograms.

8.	 Create a feature vector from the set of difference histograms.

9.	 Use L1 norm as distance function for comparisons between
histograms.

Radial Histograms
For some applications, computing the histogram using radial samples originating at the
shape centroid can be valuable [136][137]. To do this, a line is cast from the centroid to
the perimeter of the shape, and pixel values are recorded along each line and then binned
into histograms. See Figure 3-17.

Figure 3-17.  Radial histogram illustrations [136][137]

Contour or Edge Histograms
The perimeter or shape of an object can be the basis of a shape histogram, which
includes the pixel values of each point on the perimeter of the object binned into the
histogram. Besides recording the actual pixel values along the perimeter, the chain code
histogram (CCH) that will be discussed in Chapter 6 shows the direction of the perimeter
at connected edge point coordinates. Taken together, the CCH and contour histograms
provide useful shape information.

Basis Space Metrics
Features can be described in a basis space, which involves transforming pixels into an
alternative basis and describing features in the chosen basis, such as the frequency
domain. What is a basis space and what is a transform? Consider the decimal system,
which is base 10, and the binary system which is base 2. We can change numbers
between the two number systems by using a transform. A Fourier transform uses sine

Chapter 3 ■ Global and Regional Features

119

and cosine as basis functions in frequency space, so that the Fourier transform can
move pixels between the time-domain pixel space and the frequency space. Basis space
moments describe the projection of a function onto a basis space [518]—for example, the
Fourier transform projects a function onto a basis of harmonic functions.

Basis spaces and transforms are useful for a wide range of applications, including
image coding and reconstruction, image processing, feature description, and feature
matching. As shown in Figure 3-18, image representation and image coding are closely
related to feature description. Images can be described using coding methods or feature
descriptors, and images also can be reconstructed from the encodings or from the feature
descriptors. Many methods exist to reconstruct images from alternative basis space
encodings, ranging from lossless RLE methods to lossy JPEG methods; in Chapter 4,
we provide illustrations of images that have been reconstructed from only local feature
descriptors (see Figures 4-16 and 4-17).

Infinity

Le
ve

l O
f R

ec
on

st
ru

ct
io

n
De

ta
il

Basis Feature Set Size

Continuous
scene

Discreet
pixels

JPEG
pixels

Basis
Features

Local
Feature

Descriptors

Infinity

Figure 3-18.  An oversimplfiied spectrum of basis space options, showing feature set size
and complexity of description and reconstruction

As illustrated in Figure 3-18, a spectrum of basis spaces can be imagined,
ranging from a continuous real function or live scene with infinite complexity, to a
complete raster image, a JPEG compressed image, a frequency domain, or other basis
representations, down to local feature descriptor sets. Note that the more detail that is
provided and used from the basis space representation, the better the real scene can
be recognized or reconstructed. So the tradeoff is to find the best representation or
description, in the optimal basis space, to reach the invariance and accuracy goals using
the least amount of compute and memory.

Chapter 3 ■ Global and Regional Features

120

Transforms and basis spaces are a vast field within mathematics and signal
processing, covered quite well in other works, so here we only introduce common
transforms useful for image coding and feature description. We describe their key
advantages and applications, and refer the reader to the literature as we go.
See Figure 3-19.

Transform

Rectangular Basis Statistical Basis Directional Basis Sinusoidal Basis

Fourier
1807

Hough
1972

Karhunen-Louve,
Hotelling, PCA

1933

Walsh-Hadamard
1969

Radon
1917

Zernike
1934

DCT
1974,1977

Wavelets
1909,1974

Hartley
1925

Gabor
1948

Sine/Cosine

Slant
1973

Haar
1909

SVD
FFT

1965

Figure 3-19.  Various basis transforms used in image processing and computer vision

Chapter 3 ■ Global and Regional Features

121

Since we are dealing with discrete pixels in computer vision, we are primarily
interested in discrete transforms, especially those which can be accelerated with
optimized software or fixed-function hardware. However, we also cover a few integral
transform methods that may be slower to compute and less used. Here’s an overview:

•	 Global or local feature description. It is possible to use
transforms and basis space representations of images as a global
feature descriptor, allowing scenes and larger objects to be
recognized and compared. The 2D FFT spectrum is only one
example, and it is simple to compare FFT spectrum features using
SAD or SSD distance measures.

•	 Image coding and compression. Many of the transforms have
proved valuable for image coding and image compression.
The basic method involves transforming the image, or block
regions of the image, into another basis space. For example,
transforming blocks of an image into the Fourier domain allows
the image regions to be represented as sine and cosine waves.
Then, based on the amount of energy in the region, a reduced
amount of frequency space components can be stored or coded
to represent the image. The energy is mostly contained in the
lower-frequency components, which can be observed in the
Fourier power spectrum such as shown in Figure 2-16; the high-
frequency components can be discarded and the significant
lower-frequency components can be encoded, thus some image
compression is achieved with a small loss of detail. Many novel
image coding methods exist, such as that using a basis of scaled
Laplacian features over an image pyramid.[318]

Fourier Description
The Fourier family of transforms was covered in detail in Chapter 2, in the context of
image pre-processing and filtering. However, the Fourier frequency components can
also be used for feature description. Using the forward Fourier transform, an image is
transformed into frequency components, which can be selectively used to describe the
transformed pixel region, commonly done for image coding and compression, and for
feature description.

The Fourier descriptor provides several invariance attributes, such as rotation and
scale. Any array of values can be fed to an FFT to generate a descriptor—for example, a
histogram. A common application is illustrated in Figure 3-20, describing the circularity
of a shape and finding the major and minor axis as the extrema frequency deviation from
the sine wave. A related application is finding the endpoints of a flat line segment on the
perimeter by fitting FFT magnitude’s of the harmonic series as polar coordinates against a
straight line in Cartesian space.

Chapter 3 ■ Global and Regional Features

122

In Figure 3-20, a complex wave is plotted as a dark gray circle unrolled around a
sine wave function or a perfect circle. Note that the Fourier transform of the lengths of
each point around the complex function yields an approximation of a periodic wave,
and the Fourier descriptor of the shape of the complex wave is visible. Another example
illustrating Fourier descriptors is shown in Figure 6-29.

Walsh–Hadamard Transform
The Hadamard transform [4,9] uses a series of square waves with the value of +1 or -1,
which is ideal for digital signal processing. It is amenable to optimizations, since only
signed addition is needed to sum the basis vectors, making this transform much faster
than sinusoidal basis transforms. The basis vectors for the harmonic Hadamard series
and corresponding transform can be generated by sampling Walsh functions, which
make up an orthonormal basis set; thus, the combined method is commonly referred to
as the Walsh-Hadamaard transform; see Figure 3-21.

Figure 3-20.  Fourier descriptor of the odd shaped polygon surrounding the circle on the left

Chapter 3 ■ Global and Regional Features

123

HAAR Transform
The HAAR transform [4,9] is similar to the Fourier transform, except that the basis
vectors are HAAR features resembling square waves, and similar to wavelets. HAAR
features, owing to their orthogonal rectangular shapes, are suitable for detecting vertical
and horizontal images features that have near- constant gray level. Any structural
discontinuities in the data, such as edges and local texture, cannot be resolved very well
by the HAAR features; see Figures 3-21 and 6-22.

Slant Transform
The Slant transform [284], as illustrated in Figure 3-21, was originally developed for
television signal encoding, and was later applied to general image coding [283,4]. The
Slant transform is analogous to the Fourier transform, except that the basis functions
are a series of slant, sawtooth, or triangle waves. The slant basis vector is suitable for
applications where image brightness changes linearly over the length of the function.
The slant transform is amenable to discrete optimizations in digital systems. Although
the primary applications have been image coding and image compression, the slant
transform is amenable to feature description. It is closely related to the Karhunen-Loeve
transform and the Slant-Hadamaard transform [512].

Figure 3-21.  (Left) Walsh Haramaard basis set. (Center) HAAR basis set. (Right) Slant basis set

Chapter 3 ■ Global and Regional Features

124

Zernike polynomials are analogous to steerable filters [388], which also contain
oriented basis sets of filter shapes used to identify oriented features and take moments to
create descriptors. The Zernike model uses radial coordinates and circular regions, rather
than rectangular patches as used in many other feature description methods.

Zernike methods are widely used in optometry to model human eye aberrations.
Zernike moments are also used for image watermarking[278] and image coding and
reconstruction [279,281]. The Zernike features provide scale and rotational invariance,
in part due to the radial coordinate symmetry and increasing level of detail possible
within the higher-order polynomials. Zernike moments are used in computer vision
applications by comparing the Zernike basis features against circular patches in target
images [276,277].

Fast methods to compute the Zernike polynomials and moments exist [275,280,282],
which exploit the symmetry of the basis functions around the x and y axes to reduce
computations, and also to exploit recursion.

Steerable Filters
Steerable filters are loosely considered as basis functions here, and can be used for both
filtering or feature description. Conceptually similar to Zernike polynomials, steerable
filters [388,400] are composed by synthesizing steered or oriented linearly combinations
of chosen basis functions, such as quadrature pairs of Gaussian filters and oriented
versions of each function, in a simple transform.

Many types of filter functions can be used as the basis for steerable filters [389,390].
The filter transform is created by combining together the basis functions in a filter bank,
as shown in Figure 3-23. Gain is selected for each function, and all filters in the bank are
summed, then adaptively applied to the image. Pyramid sets of basis functions can be

Zernike Polynomials
Fritz Zernike, 1953 Nobel Prize winner, devised Zernike polynomials during his quest to
develop the phase contrast microscope, while studying the optical properties and spectra
of diffraction gratings. The Zernike polynomials [272–274] have been widely used for
optical analysis and modeling of the human visual system, and for assistance in medical
procedures such as laser surgery. They provide an accurate model of optical wave
aberrations expressed as a set of basis polynomials, illustrated in Figure 3-22.

Figure 3-22.  The first 18 Zernike modes. Note various aberrations from a perfect filter;
top left image is the perfect filter. (Images © Dr. Thomas Salmon at Northeastern State
University and used by permission)

Chapter 3 ■ Global and Regional Features

125

created to operate over scale. Applications include convolving oriented steerable filters
with target image regions to determine filter response strength, orientation and phase.
Other applications include filtering images based on orientation of features, contour
detection, and feature description.

Figure 3-23.  (Left) Steerable filters basis set showing eight orientations of the first-order
Gaussian filter. (Right) How steerable filters can be combined for directional filtering. Filter
images generated using ImageJ Fiji SteerableJ plugin from Design of Steerable Filters for
Feature Detection Using Canny-Like Criteria, M. Jacob, M. Unser, PAMI 2004

For feature description, there are several methods that could work—for example,
convolving each steerable basis function with an image patch. The highest one or two
filter responses or moments from all the steerable filters can then be chosen as the
set-ordinal feature descriptor, or all the filter responses can be used as a feature
descriptor. As an optimization, an interest point can first be determined in the patch, and
the orientation of the interest point can be used to select the one or two steerable filters
closest to the orientation of the interest point; then the closest steerable filers are used as
the basis to compute the descriptor.

Karhunen-Loeve Transform and Hotelling Transform
The Karhunen-Loeve transform (KLT)[4,9] was devised to describe a continuous
random process as a series expansion, as opposed to the Fourier method of describing
periodic signals. Hotelling later devised a discrete equivalent of the KLT using principal
components. “KLT” is the most common name referring to both methods.

The basis functions are dependent on the eigenvectors of the underlying image,
and computing eigenvectors is a compute-intensive process with no established fast
transform known. The KLT is not separable to optimize over image blocks, so the KLT
is typically used for PCA on small datasets such as feature vectors used in pattern
classification, clustering, and matching.

Wavelet Transform and Gabor Filters
Wavelets, as the name suggests, are short waves or wave-lets [334]. Think of a wavelet as
a short-duration pulse such as a seismic tremor, starting and ending at zero, rather than
a continuous or resonating wave. Wavelets are convolved with a given signal, such as an
image, to find similarity and statistical moments. Wavelets can therefore be implemented
like convolution kernels in the spatial domain. See Figure 3-24.

Chapter 3 ■ Global and Regional Features

126

Figure 3-24.  Wavelet concepts using a “Mexican top hat” wavelet basis. (Top) A few scaled
Mexican top hats derived from the mother wavelet. (Bottom) A few translated wavelets

Wavelet analysis is a vast field [291,292] with many applications and useful resources
available, including libraries of wavelet families and analysis software packages [289].
Fast wavelet transforms (FWTs) exist in common signal and image processing libraries.
Several variants of the wavelet transform include:

Discrete wavelet transform (DWT)•	

Stationary wavelet transform (SWT)•	

Continuous wavelet transform (CWT)•	

Lifting wavelet transform (LWT)•	

Stationary wavelet packet transform (SWPT)•	

Discrete wavelet packet transform (DWPT)•	

Fractional Fourier transform (FRFT)•	

Fractional wavelet transform (FRWT)•	

Wavelets are designed to meet various goals, and are crafted for specific applications;
there is no single wavelet function or basis. For example, a set of wavelets can be designed
to represent the musical scale, where each note (such as middle C) is defined as having
a duration of an eighth note wavelet pulse, and then each wavelet in the set is convolved
across a signal to locate the corresponding notes in the musical scale.

When designing wavelets, the mother wavelet is the basis of the wavelet family,
and then daughter wavelets are derived using translation, scaling, or compression of the
mother wavelet. Ideally, a set of wavelets are overlapping and complementary so as to
decompose data with no gaps and be mathematically reversible.

Wavelets are used in transforms as a set of nonlinear basis functions, where each
basis function can be designed as needed to optimally match a desired feature in the
input function. So, unlike transforms which use a uniform set of basis functions—as the
Fourier transform uses sine and cosine functions—wavelets use a dynamic set of basis
functions that are complex and nonuniform in nature. See Figure 3-25.

Chapter 3 ■ Global and Regional Features

127

Wavelets have been used as the basis for scale and rotation invariant feature
description [288], image segmentation [285,286], shape description [287], and obviously
image and signal filtering of all the expected varieties, denoising, image compression,
and image coding. A set of application-specific wavelets could be devised for feature
description.

Gabor Functions
Wavelets can be considered an extension of the earlier concept of Gabor functions
[333,293], which can be derived for imaging applications as a set of 2D oriented bandpass
filters. Gabor’s work was centered on the physical transmission of sound and problems
with Fourier methods involving time-varying signals like sirens that could not be perfectly
represented as periodic frequency information. Gabor proposed a more compact
representation than Fourier analysis could provide, using a concept called atoms that
recorded coefficients of the sound that could be transmitted more compactly.

Hough Transform and Radon Transform
The Hough transform [228–230] and the Radon transform [299] are related, and the
results are equivalent, in the opinion of many;[295][300] see Figure 3-26. The Radon
transform is an integral transform, while the Hough transform is a discrete method,
therefore much faster. The Hough method is widely used in image processing, and can be
accelerated using a GPU [298] with data parallel methods. The Radon algorithm is slightly
more accurate and perhaps more mathematically sound, and is often associated with
x-ray tomography applied to reconstruction from x-ray projections. We focus primarily on
the Hough transform, since it is widely available in image processing libraries.

Figure 3-25.  Various 2D wavelet shapes: (left to right) Top hat, Shannon, Dabechies,
Smylet, Coiflett

Chapter 3 ■ Global and Regional Features

128

Key applications for the Hough and Radon transforms are shape detection and shape
description of lines, circles, and parametric curves. The main advantages include:

Robust to noise and partial occlusion•	

Fill gaps in apparent lines, edges, and curves•	

Can be parameterized to handle various edge and curve shapes•	

The disadvantages include:

Look for one type or parameterization of a feature at a time, •	
such as a line

Co-linear segments are not distinguished and lumped together•	

May incorrectly fill in gaps and link edges that are not connected•	

Length and position of lines are not determined, but this can be •	
done in image space

The Hough transform is primarily a global or regional descriptor and operates
over larger areas. It was originally devised to detect lines, and has been subsequently
generalized to detect parametric shapes [301], such as curves and circles. However,
adding more parameterization to the feature requires more memory and compute.
Hough features can be used to mark region boundaries described by regular parametric
curves and lines. The Hough transform is attractive for some applications, since it can
tolerate gaps in the lines or curves and is not strongly affected by noise or some occlusion,
but morphology and edge detection via other methods is often sufficient, so the Hough
transform has limited applications.

The input to the Hough transform is a gradient magnitude image, which has been
thresholded, leaving the dominant gradient information. The gradient magnitude is
used to build a map revealing all the parameterized features in the image—for example,
lines at a given orientation or circles with a given diameter. For example, to detect
lines, we map each gradient point in the pixel space into the Hough parameter space,
parameterized as a single point (d,q) corresponding to all lines with orientation angle q at

Figure 3-26.  Line detection: (Left) Original image. (Center) Radon Transform. (Right)
Hough Transform. The brightness of the transform images reveals the relative strength of the
accumulators, and the sinusoidal line intersections indicate the angular orientation of features

Chapter 3 ■ Global and Regional Features

129

distance d from the origin. Curve and circle parameterization uses different variables [301].
The parameter space is quantized into cells or accumulator bins, and each accumulator
is updated by summing the number of gradient lines passing through the same Hough
points. The accumulator method is modified for detecting parametric curves and circles.
Thresholding the accumulator space and re-projecting only the highest accumulator
values as overlays back onto the image is useful to highlight features.

Summary
This chapter has provided a selected history of global and regional metrics, with the
treatment of local feature metrics deferred until Chapters 4 and 6. Some historical context
is provided on the development of structural and statistical texture metrics, as well as
basis spaces useful for feature description, and several common regional and global
metrics. A wide range of topics in texture analysis and statistical analysis have been
surveyed with applications to computer vision.

Since it is difficult to cleanly partition all the related topics in image processing and
computer vision, there is some overlap of topics in here and in Chapters 2, 4,5, and 6.

131

Chapter 4

Local Feature Design
Concepts, Classification,
and Learning

“Science, my boy, is made up of mistakes, but they are mistakes which it
is useful to make, because they lead little by little to the truth.”

— Jules Verne, Journey to The Center of The Earth

In this chapter we examine several concepts related to local feature descriptor design—
namely local patterns, shapes, spectra, distance functions, classification, matching,
and object recognition. The main focus is local feature metrics, as shown in Figure 4-1.
This discussion follows the general vision taxonomy that will be presented in Chapter 5,
and includes key fundamentals for understanding interest point detectors and feature
descriptors, as will be surveyed in Chapter 6, including selected concepts common to
both detector and descriptor methods. Note that the opportunity always exists to modify
as well as mix and match detectors and descriptors to achieve the best results.

Sensor Processing

Image Pre-Processing

Global Metrics

Local Feature Metrics

Classification, Learning

Augment, Render, Control

Vision Pipeline Stages

Figure 4-1.  Various stages in the vision pipeline; this chapter will focus on local feature
metrics and classification and learning

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

132

Local Features
We focus on the design of local feature descriptors and how they are used in training,
classification, and machine learning. The discussion follows the feature taxonomy as is
presented in Chapter 5 and as is illustrated in Figure 5-1. The main elements are:
(1) shape (for example, rectangle or circle); (2) pattern (either dense sampling or sparse
sampling); and (3) spectra (binary values, scalars, sparse codes, or other values). A dense
patterned feature will use each pixel in the local region, such as each pixel in a rectangle,
while a sparse feature will use only selected pixels from the region.

In addition to the many approaches to shape and pattern, there are numerous
approaches taken for the spectra, ranging from gradient-based patch methods to sparse
local binary pattern methods. The main topics covered here include:

•	 Detectors, used to locate interesting features in the image.

•	 Descriptors, used to describe the regions surrounding interesting
features.

•	 Descriptor attributes, such as feature robustness and invariance.

•	 Classification, used to create databases of features and optimal
feature matching.

•	 Recognition, used to match detected features in target images
against trained features.

•	 Feature learning, or machine learning methods.

Based on the concepts presented this chapter, the vision taxonomy offered in
Chapter 5 provides a way to summarize and analyze the feature descriptors and their
attributes, thereby enabling limited comparison between the different approaches.

Detectors, Interest Points, Keypoints, Anchor Points,
Landmarks
A detector finds interesting features in the image. The terminology in the literature for
discussing an “interesting feature” includes several interchangeable terms, such as
keypoint, landmark, interest point, or anchor point, all of which refer to features such
as corners, edges, or patterns that can be found repeatedly with high likelihood. In
Chapter 6, we will survey many detector methods, along with various design approaches.
In some cases, the keypoint detector is used to determine the orientation vector of
the surrounding feature descriptor—for example, by computing the overall gradient
orientation of the corner. The uncertain or low-quality keypoints are commonly filtered
out prior to feature description. Note that many keypoint methods operate on smaller
pixel regions, such as 3x3 for the LBP and 7x7 for FAST.

The keypoint location itself may not be enough for feature matching; however, some
methods discussed here rely on keypoints only, without a feature descriptor. Feature
description provides more information around each keypoint, and may be computed
over larger regions and multiple scales, such as SIFT and ORB.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

133

Descriptors, Feature Description, Feature Extraction
A feature descriptor can be computed at each key point to provide more information
about the pixel region surrounding the keypoint. However, in methods that compute
features across a fixed-size pixel grid such as the Viola Jones method [146], no interest
point is necessary, since the grid defines the descriptor region. Feature description
typically uses some combination of color or gray scale intensity channels, as well as local
information such as gradients and colors. Feature description takes place over a shape,
such as a square or circle. In some cases, pixel point-pair sample patterns are used to
compute or compare selected pixel values to yield a descriptor vector—for example, as
shown later, in Figure 4-8.

Typically, an interest point provides some amount of invariance and robustness—for
example, in scale and rotation. In many cases, the orientation of the descriptor is determined
from the interest point, and the descriptor provides other invariance attributes. Combining the
interest point with the descriptor provides a larger set of invariance attributes. And if several
descriptors are associated together from the same object, object recognition is possible.

For example, a descriptor may contain multivariate, multidimensional, and
multigeometric quantities calculated over several intensity channels, multiple geometric
scales, and multiple perspectives. A multivariate descriptor may contain RGBD data
(red, green, blue, and Z depth data); a multidimensional descriptor may contain feature
descriptions at various levels of zoom across an image pyramid; and a multigeometry
descriptor may contain a set of feature descriptions computed across affine transforms of
the local image patch or region.

There is no right or wrong method for designing features; many approaches
are taken. For example, a set of metrics including region shape, region texture, and
region color of an object may be helpful in an application to locate fruit, while another
application may not need color or shape and can rely instead on sets of interest points,
feature descriptors, and their spatial relationships. In fact, combining several weaker
descriptor methods into a multivariate descriptor is often the best approach.

Computing feature descriptors from an image is commonly referred to as
feature extraction.

Sparse Local Pattern Methods
While some methods describe features densely within regular sampling grids across
an image, such as the PHOG [191] method discussed in Chapter 6, other methods such
as FREAK [130] use sparse local patterns to sample pixels anchored at interest points to
create the descriptor. Depending on the method, the shapes may be trained, learned, or
chosen by design, and many topologies of shapes and patterns are in current use.

To frame the discussion on sparse local pattern and descriptor methods, notice that
there is a contrast with global and regional descriptor methods, which typically do not
rely on sparse local patterns. Instead, global and regional methods typically use dense
sampling of larger shapes such as rectangles or other polygons. For example, polygon
shape descriptors, as will be discussed in Chapter 6, may delineate or segment the feature
region using dense methods such as mathematical morphology and region segmentation.
Global and regional descriptor metrics, such as texture metrics, histograms, or SDMs
discussed in Chapter 3, are typically computed across cohesive, dense regions rather than
sparse regions.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

134

Local Feature Attributes
This section discusses how features are chosen to provide the desired attributes of feature
goodness, such as invariance and robustness.

Choosing Feature Descriptors and Interest Points
Both the interest point detector and the feature description method must be chosen to
work well together, and to work well for the type of images being processed. Robustness
attributes such as contrast, scale, and rotation must be considered for both the detector
and the descriptor pair. As shown in Appendix A, each interest point detector is best
designed to find specific types of features, and therefore no single method is good for all
types of images.

For example, FAST and Harris methods typically find many small mono-scale interest
points, while other methods, such as that used in SIFT find fewer, larger and finely
tuned multi-scale interest points. Some tuning of the interest point detector parameters
is expected, so as to make them work at all, or else some pre-processing of the images
maybe needed to help the detector find the interest points in the first place. (Chapter 6
provides a survey of interest point methods and background mathematical concepts.)

Feature Descriptors and Feature Matching
Feature description is foundational to feature matching, leading to image understanding,
scene analysis, and object tracking. The central problems in feature matching include
how to determine if a feature is differentiated from other similar features, and if the
feature is part of a larger object.

The method of determining a feature match is critical, for many reasons; these
reasons include compute cost, memory size, repeatability, accuracy, and robustness.
While a perfect match is ideal, in practice a relative match is determined by a distance
function, where the incoming set of feature descriptors is compared with known feature
descriptors. But we’ll discuss several distance functions later in this chapter.

Criteria for Goodness
Measuring the goodness of features can be done one attribute at a time. A general list of
goodness attributes for feature landmarks is provided later, in Table 4-2. Note that this list is
primarily about invariance and robustness: these are the key concepts, since performance
can be tuned using various optimization methods, as will be discussed in Chapter 8. Of
course, in a given application some attributes of goodness are more important than others;
this is discussed in Chapter 7, in connection with ground truth data.

How do we know a feature is good for an application? We may divide the discussion
between the interest point methods and the descriptor method, and the combined
robustness and invariance attributes provided by both (see Table 4-1). The interest point
at which the feature is anchored is critical, since if the anchor is not good and cannot be
easily and repeatedly found, the resulting descriptor is calculated at a suboptimal location.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

135

Table 4-1.  Some Attributes for Good Feature Descriptors and Interest Points. (See also
Figure 5-2 for the general robustness criteria)

Good Feature Metric Attributes Details

Scale invariance Should be able to find the feature at different scales

Perspective invariance Should be able to find the feature from different
perspectives in the field of view

Rotational invariance The feature should be recognized in various rotations
within the image plane

Translation invariance The feature should be recognized in various positions
in the FOV

Reflection invariance The feature should be recognized as a mirror image
of itself

Affine invariance The feature should be recognized under affine
transforms

Noise invariance The feature should be detectable in the presence of
noise

Illumination invariance The feature should be recognizable in various lighting
conditions including changes in brightness and
contrast

Compute efficiency The feature descriptor should be efficient to compute
and match

Distinctiveness The feature should be distinct and detectable, with a
low probability of mis-match, amenable to matching
from a database of features

Compact to describe The feature should not require large amounts of
memory to hold details

Occlusion robustness The feature or set of features can be described and
detected when parts of the feature or feature set are
occluded

Focus or blur robustness The feature or set of features can be detected at
varying degrees of focus (i.e, image pyramids can
provide some of this capability)

Clutter and outlier robustness The feature or set of features can be detected in the
presence of outlier features and clutter

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

136

Note that in many cases, image pre-processing is key to creating a good feature
(Figure 4-1). If the image data has problems that can be corrected or improved, the
feature description should be done after the image pre-processing. Note that many
feature description methods rely on local image enhancements during descriptor
creation, such as Gaussian blur of regions around keypoints for noise removal, so image
pre-processing should complement the descriptor method. Each pre-processing method
has drawbacks and advantages; see Table 2-1 and Chapter 2 for information on image
pre-preprocessing.

Figure 4-2.  (Left) SURF feature descriptors calculated over original image. (Right) Image
has been pre-processed using histogram equalization prior to feature extraction and
therefore a different but overlapping set of features is found

Repeatability, Easy vs. Hard to Find
Ideally the feature will be easy to find in an image, meaning that the feature description
contains sufficient information to be robust under various conditions (as shown in
Table 4-1), such as contrast and brightness variations, scale, and rotation. Repeatability
applies particularly to interest point detection, so the choice of interest point detector
method is critical. (Appendix A contains example images showing interesting
nonrepeatability anomalies for several common interest point detectors.)

Some descriptors, such as SIFT [161,178], are known to be robust under many
imaging conditions. This is not too surprising, since SIFT is designed to be discriminating
over multiple dimensions, such as scale and rotation, using carefully composed sets
of local region gradients with a weighting factor applied to increase the importance of
gradients closer to the center of the feature. But the robustness and repeatability come at
a compute cost. SIFT [161,178] is one of the most computationally expensive methods;
however, Chapter 6 surveys various SIFT optimizations and variations.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

137

Distinctive vs. Indistinctive
A descriptor is distinctive if:

The feature can be differentiated from other, similar feature •	
regions of the image.

Different feature vectors are unique in the feature set.•	

The feature can be matched effectively using a suitable distance •	
function.

A feature is indistinct if similar features cannot be distinguished; this may be caused
by a lack of suitable image pre-processing, insufficient information in the descriptor,
or an unsuitable distance function chosen for the matching stage. Of course, adding
information into a simpler descriptor to make the descriptor a hybrid multivariate or
multi-scale descriptor may be all that is needed to improve distinctiveness. For example,
color information can be added to distinguish between skin tones.

Relative and Absolute Position
Positional information, such as coordinates, can be critical for feature goodness. For
example, to associate features together using constraints on the corner position of human
eyes, interest point coordinates are needed. These enable more accurate identification
and location of the eyes by using, as part of an intelligent matching process, the distance
and angles between the eye corner locations.

With the increasing use of depth sensors, simply providing the Z or depth location
of the feature in the descriptor itself may be enough to easily distinguish a feature from
the background. Position in the depth field is a powerful bit of information, and since
computer vision is often concerned with finding 3D information in a 2D image field,
the Z depth information can be an invaluable attribute for feature goodness.

Matching Cost and Correspondence
Feature matching is a measurement of the correspondence between two or more features
using a distance function (discussed next in this section). Note here that feature matching
has a cost in terms of memory and compute time. For example, if a feature descriptor is
composed of an array of 8-bit bytes, such as an 18x18 pixel correlation template, then
the feature matching cost is the compute time and memory required to compare two
18x18 (324) pixel regions against each other, where the matching method or distance
function used may be SAD, SSD, or similar difference metric. Another example involves
local binary descriptors such as the LBP (linear binary patterns), which are stored as bit
vectors, where the matching cost is the time to perform the Hamming distance function,
which operates by comparing two binary vectors via Boolean XOR followed by a bit count
to provide the match metric.

In general, distance functions are well-known mathematical functions that are
applied to computer vision; however, some are better suited than others in terms of
computability and application to a specific vision task. For example, SSD, SAD, cosine

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

138

distance, and Hamming distance metrics have been implemented in silicon as computer
machine language instructions in some architectures, owing to their wide applicability.
So choosing a distance function that is accelerated in silicon can be an advantage.

The feature database is another component of the matching cost, so the organization
of the database and feature search contribute to the cost. We briefly touch on this topic
later in this chapter.

Distance Functions
This section provides a general discussion of distance functions used for clustering,
classification, and feature matching. Note that distance functions can be taken over
several dimensions—for example, 2D image arrays for feature descriptor matching,
3D voxel volumes for point cloud matching, and multidimensional spaces for multivariate
descriptors. Since this is a brief overview, a deeper treatment is available by Pele[548].

Note that kernel machines [361,362], discussed later in this chapter, provide an automated
framework to classify a feature space and substitute chosen distance function kernels.

Early Work on Distance Functions
In 1968, Rosenfeld and Pfaltz[121] developed novel methods for determining the distance
between image features, which they referred to as “a given subset of the picture,” where
the feature shapes used in their work included diamonds, squares, and triangles. The
distance metrics they studied include some methods that are no longer in common use
today:

Hexagonal distance from a single point (Cartesian array)•	

Hexagonal distance from a single point (staggered array)•	

Octagonal distance from a single point•	

City block distance from blank areas•	

Square distances from blank areas•	

Hexagonal distance from blank areas•	

Octagonal distance from blank areas•	

Nearest integer to Euclidean distance from a single point•	

This early work by Rosenfeld and Pfaltz is fascinating, since the output device used
to render the images was ASCII characters printed on a CRT terminal or line printer, as
shown in Figure 4-3.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

139

Figure 4-3.  An early Rosenfeld and Pfaltz rendering that illustrates a distance function
(square distance in this case) using a line printer as the output device. (Image © reprinted
from Rosenfeld and Pfaltz, Pattern Recognition (Oxford: Pergamon Press, 1968), 1:33-61.
Used with permission from Elsevier)

Euclidean or Cartesian Distance Metrics
The Euclidean distance metrics include basic Euclidean geometry identities in Cartesian
coordinate spaces; in general, these are simple and obvious to use.

Euclidean Distance
This is the simple distance between two points.

EuclideanDistance a b x y a x b y, , , (){ } { }éë ùû = -() + -2 2

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

140

Squared Euclidean Distance
This is faster to compute, and omits the square root.

SquaredEuclideanDistance a b x y a x b y, , , (){ } { }éë ùû = -() + -2 2

Cosine Distance or Similarity
This is angular distance, or the normalized dot product between two vectors to yield
similarity of vector angle; also useful for 3D surface normal and viewpoint matching.

cos
A B

A B
q() = .

|| || || ||

CosineDistance a b x y
ax by

a b x y
, , ,{ } { }éë ùû = -

+

+ +
1

2 2 2 2

Sum of Absolute Differences (SAD) or L1 Norm
The difference between vector elements is summed and taken as the total distance
between the vectors. Note that SAD is equivalent to Manhattan distance.

SAD d d d i j d i j(,) [,] [,]1 2
0

1

0

2

1 2= -()
= =
åå
i

n

j

n

Sum of Squared Differences (SSD) or L2 Norm
The difference between vector elements is summed and squared and taken as the total
distance between the vectors; commonly used in video decoding for motion estimation.

SSD d d d i j d i j(,) [,] [,]1 2
0

1

0

2

1 2

2= -()
= =
åå
i

n

j

n

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

141

Correlation Distance
This is the correlation difference coefficient between two vectors, similar to cosine distance.

C u v
u Mean u v Mean v

[,]
([]).([])

[] []
=

- - -
- -

1

u Mean u v Mean v

Hellinger Distance
An effective alternative to Euclidean distance, yielding better performance and accuracy
for histogram-type distance metrics, as reported in the ROOTSIFT [178] optimization of
SIFT. Hellinger distance is defined for L1 normalized histogram vectors as:

a b x y
a a b x x y a b

, , ,{ } { }éë ùû =
+ - -()æ

è
ç

ö
ø
÷ + - -()æ
è
ç

ö
ø
÷+ - -()+1

2

1

2

1

2
bb x y y

Abs a a b Abs a b

æ
è
ç

ö
ø
÷ - -()+æ
è
ç

ö
ø
÷

+ - -()é
ëê

ù
ûú
+ - -

1

2

1
2

1
2

2

(()+é
ëê

ù
ûú

+ - -()é
ëê

ù
ûú

- -()+é
ëê

ù
ûú

b Abs x x y Abs x y y
2 2 2

1

2

1

2

H x y x y
i

n

i i,() =
=
å

1

Grid Distance Metrics
These metrics calculate distance analogous to paths on grids. Therefore the distance is
measured as grid steps.

Manhattan Distance
Also known as city block difference or rectilinear distance, this measures distance via the
route along a grid; there may be more than one path along a grid with equal distance.

ManhattanDistance a b x y Abs a x Abs b y, , ,{ } { }éë ùû = -() + -()

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

142

Chebyshev Distance
Also known as chessboard difference, this measures the greatest difference along a grid
between two vectors. Note in the illustration below that each side of the triangle would
have a Chebyshev distance, or length of 5, but in Euclidean space, one of the lines, the
hypotenuse, is longer than the others.

5

5

5

Statistical Difference Metrics
These metrics are based on statistical features of the vectors, and therefore the distance
metrics need not map into a Euclidean space.

Earth Movers Distance (EMD) or Wasserstein Metric
Earth movers distance measures the cost to transform a multidimensional vector, such
as a histogram, into another vector. The analogy is an earth mover (bulldozer) moving
dirt between two groups of piles to make the piles of dirt in each group the same size. The
EMD assumes there is a ground distance between the features in the vector—for example,
the distance between bins in a histogram. The EMD is computed to be the minimal cost
for the transform, which integrates the distance moved d * the amount moved f, subject to
a few constraints [130].

ChebyshevDistance a b x y Max Abs a x Abs b y, , , [,]{ } { }éë ùû = -() -()

COST P Q F d f
i

m

j

n

ij ij, ,() =
= =
åå

1 1

Once the cost is computed, the result is normalized.

EMD P Q d f f
i

m

j

n

ij ij
i

m

j

n

ij,() =
= = = =
åå åå

1 1 1 1

The EMD has a high compute cost and can be useful for image analysis, but EMD is
not an efficient metric for feature matching.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

143

Mahalanobis Distance
Also known as quadratic distance, this computes distance using mean and covariance; it
is scale invariant.

d x x S x xij i j

T

i j= -() -()()-1

1

2

where xi = mean of feature vector 1, and x j= mean of feature vector 2.

 Bray Curtis Distance
This is equivalent to a ratio of the sums of absolute differences and sums, such as a
ratio of norms of Manhattan distances. Bray Curtis dissimilarity is sometimes used for
clustering data.

SSD d d x i y j g x i d y dj(,) , (,)1 2
1

1

2

2

1 2

2
= + +() - + - -()

=- =-
å å

i n

n

j n

n

f

BrayCurtisDistance a b c x y z
Abs a x Abs b y Ab

, , , , ,{ } { }éë ùû =
-() + -() + ss c z

Abs a x Abs b y Abs c z

()

()

-
+() + +() + +

Canberra Distance
This measures the distance between two vectors of equal length:

CanberraDistance a b x y
Abs a x

Abs a Abs x

Abs b
, , ,{ } { }éë ùû =

-()
() + ()

+
--()

() + ()
y

Abs b Abs y

Binary or Boolean Distance Metrics
These metrics rely on set comparisons and Boolean algebra concepts, which makes this
family of metrics attractive for optimization on digital computers.

L0 Norm
The L0 norm is a count of non-zero elements in a vector and is used in the Hamming
Distance metric and other binary or Boolean metrics.

|| || #(|)x i xi0 0= ¹

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

144

Hamming Distance
This measures the binary difference or agreement between vectors of equal length—for
example, string or binary vectors. Hamming distance for binary bit vectors can be
efficiently implemented in digital computers with either complete machine language
instructions or as as an XOR operation followed by a bit count operation. Hamming
distance is a favorite for matching local binary descriptors, such as LBP, FREAK, CENSUS,
BRISK, BRIEF, and ORB.

String distance:	 5 = 0001100111 = compare “HelloThere” and
“HelpsThing”

Binary distance:	 3 = 10100010 = (01001110) XOR (11001100)

Bit count of (u XOR v)

Jaccard Similarity and Dissimilarity
The ratio of pairwise similarity of a binary set (0,1 or true, false) over the number of set
elements. Set 1 below contains two bits with the same pairwise value as Set 2, so the
similarity is 2/5 and the dissimilarity is 3/5. Jaccard similarity can be combined with
Hamming distance.

Set 1:			 {1,0,1,1,0}

Set 2:			 {1,1,0,1,1}

Jaccard Similarity:	 2 / 5 = .4

Jaccard Dissimilarity:	 3 / 5 = .6

Descriptor Representation
This section discusses how information is represented in the descriptors, including
coordinates spaces useful for feature description and matching, with some discussion of
multimodal data and feature pyramids.

Coordinate Spaces, Complex Spaces
There are many coordinate systems used in computer vision, so being able to transform
data between coordinate systems is valuable. Coordinate spaces are analogous to basis
spaces. Often, choosing the right coordinate system provides advantages for feature
representation, computation, or matching. Complex spaces may include multivariate
collections of scalar and vector variables, such as gradients, color, binary patterns, and
statistical moments of pixel regions. See Figure 4-4.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

145

c

p

t
g

r

Figure 4-4.  Coordinate spaces, Cartesian, polar, radial, and spherical

Cartesian Coordinates
Images are typically captured in the time domain in a Cartesian space, and for many
applications translating to other coordinate spaces is needed. The human visual system
views the world as a complex 3D spherical coordinate space, and humans can, through
a small miracle, map the 3D space into approximate or relative Cartesian coordinates.
Computer imaging systems capture data and convert it to Cartesian coordinates, but
depth perception and geometric accuracy are lost in the conversion. (Chapter 1 provided
a discussion of depth-sensing methods and 3D imaging systems, including geometric
considerations.)

Polar and Log Polar Coordinates
Many descriptors mentioned later in Chapter 6 use a circular descriptor region to match
the human visual system. Therefore, polar coordinates are logical candidates to bin the
feature vectors. For example, the GLOH [144] method uses polar coordinates for histogram
gradient binning, rather than Cartesian coordinates as used in the original SIFT [161]
method. GLOH can be used as a retrofit for SIFT and has proved to increase accuracy
[144]. Since the circular sampling patterns tend to provide better rotational invariance,
polar coordinates and circular sampling are a good match for descriptor design.

Radial Coordinates
The RIFF descriptor (described later in Chapter 6) uses a local radial coordinate
system to describe rotationally invariant gradient-based feature descriptors. The radial
coordinate system is based on a radial gradient transform (RGT) that normalizes vectors
for invariant binning.

As shown in Figures 4-4 and 6-27, the RGT creates a local coordinate system within a
patch region c, and establishes two orthogonal basis vectors (r,t) relative to any point p in
the patch, r for the radial vector, and t for the tangential vector. The measured gradients
g at all points p are projected onto the radial coordinate system (r,t), so that the gradients
are represented in a locally invariant fashion relative to the interest point c at the center of
the patch. When the patch is rotated about c, the gradients rotate also, and the invariant
representation holds.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

146

Spherical Coordinates
Spherical coordinates, also referred to as 3D polar coordinates, can be applied to the field
of 3D imaging and depth sensing to increase the accuracy for description and analysis.
For example, depth cameras today typically only provide (x,y), and Z depth information
for each sample. However, this is woefully inadequate to describe the complex geometry
of space, including warping, radial distortion and nonlinear distance between samples.
Chapter 1 discussed the complexities of 3D space, depth measurements, and coordinate
systems.

Gauge Coordinates
The G-SURF methods [188] use a differential geometry concept [190] of a local region
Gauge coordinate system to compute the features. Gauge coordinates are local to the
image feature, and they carry advantages for geometrical accuracy. Gauge derivatives are
rotation and translation invariant.

Multivariate Spaces, Multimodal Data
Multivariate spaces combine several quantities, such as Tensor spaces which combine
scalar and vector values, and are commonly used in computer vision. While raw image
data may be scalar values only, many feature descriptors compute local gradients at
each pixel, so the combination of pixel scalar value and gradient vector forms a tensor or
multivariate space. For example, color spaces (see Chapter 2) may represent color as a set
of scalar and vector quantities, such as the hue, saturation, and value (HSV) color space
illustrated in Figure 2-9, where the vectors include HS with H hue as the vector angle
and S saturation as the vector magnitude.V is another vector with two purposes, first as
the axis origin for the HS vector and second as the color intensity or gray scale vector V.
It is often useful to convert raw RGB data into such color spaces for ease of analysis—for
example, to be able to uniformly change the color intensity of all colors together so as to
affect brightness or contrast.

In general, by increasing the dimensions of the feature space, more discrimination
and robustness can be added. For example, the LBP pattern as described later in
Chapter 6 can be extended into multiple variables by adding features such as a rotational
invariant representation (RILBP); or by replicating the LBP across RGB color cannels as
demonstrated in the color LBP descriptor; or by extending the LBP pattern into spatio-
temporal 3-space, like the LBP-TOP to add geometric distortion invariance.

Multimodal sensor data is becoming widespread with the proliferation of mobile
devices that have built-in GPS, compass, temperature, altimeter, inertial and other
sensors. An example of a multimodal, multivariate descriptor is the SIFT-GAFD [245]
method, as illustrated in Figure 4-5, which adds accelerometer information in the
form of a gravity vector to the SIFT descriptor. The gravity vector is referred to as global
orientation, and the SIFT local pixel region gradient is referred to as the local orientation.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

147

Figure 4-5.  Multimodal descriptor using accelerometer data in the form of a gravity vector,
in a feature descriptor as used in the SIFT-GAFD method [245]. The gravity vector of global
orientation can be used for feature orientation with respect to the environment

Feature Pyramids
Many feature descriptors are computed in a mono-scale fashion using pixel values at a
given scale only, and then for feature detection and matching the feature is searched for
in a scale space image pyramid. However, by computing the descriptor at multiple scales
and storing multiple scaled descriptors together in a feature pyramid, the feature can be
detected on mono-scale images with scale variance without using a scale space pyramid.

For interest point and feature descriptor methods, scale invariance can be addressed
either by: (1) scaling the images prior to searching, as in the scale space pyramid methods
discussed later in this chapter; or (2) scaling and pyramiding multiple scales of the
feature in the descriptor. Shape-based methods are by nature more scale invariant than
interest point and feature descriptor methods, since shape-based methods depend on
larger polygon structures and shape metrics.

Descriptor Density
Depending on the image data, there will be a different number of good interest points
and features, since some images have more pronounced texture. And depending on the
detector method used, images with high texture structure, or wider pixel intensity range
differences, will likely generate more interest points than images with low contrast and
smooth texture.

A good rule of thumb is that between .1 and 1 percent of the pixels in an image can
yield raw, unfiltered interest points. The more sensitive detectors such as FAST and the
Harris detector family are at the upper end of this range (see Appendix A). Of course,
detector parameters are tuned to reduce unwanted detection for each application.

Interest Point and Descriptor Culling
In fact, even though the interest point looks good, the corresponding descriptor
computed at the interest point may not be worth using and will be discarded in some
cases. Both interest points and descriptors are culled. So tuning the detector and

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

148

Depending on the approach, the detector may be run only at mono-scale or across a
set of scaled images in an image pyramid scale space. For scale space search methods, the
interest point detector is run at each pixel in each image in the pyramid. What methods can
be used to cull interest points to reduce the interest point density to a manageable number?

One method to select the best interest points is to use an adaptive detector tuning
method (as discussed in Chapter 6 under “Interest Point Tuning”). Other approaches
include only choosing interest points at a given threshold distance apart—for example,
an interest point that cannot be adjacent to another interest point within a five-pixel
window, with the best candidate point selected within the threshold.

Another method is to vary the search strategy as discussed in this chapter—for
example, search for features at a lower resolution of the image pyramid, identify the best
features, and record their positions, and perhaps search at higher levels of the pyramid
to confirm the feature location, then compute the descriptors. This last method has the
drawback of missing fine-grain features by default, since features may only be present at
full image resolution.

Yet another method is to look for interest points every other pixel or within grid-sized
regions. All of the above methods are used in practice, and other methods exist besides.

Dense vs. Sparse Feature Description
A dense descriptor makes use of all the pixels in the region or patch. By “dense” we mean
that the kernel sampling pattern includes all the pixels, since a sparse kernel may select
specific pixels to use or ignore. SIFT and SURF are classic examples of dense descriptors,
since all pixels in rectangular regions contribute to the descriptor computation.

Many feature description methods, especially local binary descriptor methods, are
making use of sparse patterns, where selected pixels are used from a region rather than
all the pixels. The FREAK descriptor demonstrates one of the most ingenious methods
of sparse sampling by modeling the human visual system, using a circular search region,
and leveraging the finer resolution sampling closer to the center of the region, as well as
tuning a hierarchy of local sampling patterns of increasing resolution for optimal results.
Not only can sparse features potentially use less memory and reduce computations,
but the sparse descriptor can be spread over a wider area to compensate for feature
anomalies that occur in smaller regions.

descriptor together are critical trial-and-error processes. Using our base assumption of .
1 to 1 percent of the pixels yielding valid raw interest points, we can estimate the possible
detected interest points based on video resolution, as shown in Table 4-2.

Table 4-2.  Possible Range of Detected Interest Points per Image

480p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD

Resolution 640 x 480 1920 x 1080 3840 × 2160 7680 x 4320

Pixels 307200 2073600 8294400 33177600

Interest points 300 – 3k 2k – 21k 8k – 83k 33k – 331k

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

149

Descriptor Shape Topologies
For this discussion, we view descriptor shape topology with an eye toward surveying the
various shapes of the pixel regions used for descriptor computations. Part of the topology
is the shape or boundary, and part of the topology is the choice of dense vs. sparse
sampling patterns, discussed later in this chapter. Sampling and pattering methods
range from the simple rectangular regions up to the more complex sparse local binary
descriptor patterns. As will be discussed in Chapter 6, both 2D and 3D descriptors are
being designed to use a wide range of topologies. Let’s look at a few topological design
considerations, such as patch shape, sub-patches, strips, and deformable patches.

Which shape is better? The answer is subjective and we do not attempt to provide
absolute answers, just offer a survey.

Correlation Templates
An obvious shape is the simple rectangular regions commonly used by correlation
template matching methods. The descriptor is thus the mugshot, or actual image in the
template region. To select sub-spaces within the rectangle, a mask can be used—for
example, it could be a circular mask inside the bounding rectangle to mask off peripheral
pixels from consideration.

Patches and Shape
The literature commonly refers to the feature shape as a patch, and usually a
rectangular shape is assumed. Patch shapes are commonly rectangular owing to the
ease of coding 2D array memory access. Circular patches are widely used in the local
binary descriptor methods.

However, many descriptors also compute features over multiple patches or regions,
not just a single patch. Here are some common variations on patch topology.

Single Patches, Sub-Patches
Many descriptors limit the patch count to a single 2D patch. This is true of most common
descriptors that are surveyed in Chapter 6. However, some of the local binary descriptors
use a set of integral image sub-patches at specific points within the larger patch—for
example, BRIEF uses a 5x5 integral image sub-patch at each sample point in the local
binary pattern, within the larger 31x31 pixel patch region, so the value of each sub-patch
becomes the value used for the point-pair comparison. The goal is to filter the values at
each point to remove noise.

Deformable Patches
Rather than use a rigid shape, such as a fixed-size rectangle or a circle, feature descriptors
can be designed with deformation in mind, such as scale deformations [345,346], and
affine or homographic deformation [220], to enable more robust matching. Examples

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

150

include the DeepFlow [344,394] deep matching method, and RFM2.3, as will be discussed
in Chapter 6. Also, the D-NETS [135] method, using the fully connected or sparse
connected topology, can be considered to be deformable in terms of invariance of the
placement of the strip patterns; see Figure 4-7 and the discussion of D-nets in Chapter 6.
Many feature learning methods discussed later in this chapter also use deformed features
for training.

Fixed descriptor shapes, such as rigid rectangles and circles, can detect motion
under a rigid motion hypothesis, where the entire descriptor is expected to move with
some amount of variance, such as in scale or affine transformation. However, for activity
recognition and motion, a more deformable descriptor model is needed, and DeepFlow
[344,394] bridges the gap between descriptor matching methods and optical flow
matching methods, using deformable patches and deep matching along the lines of deep
learning networks.

Multi-Patch Sets
The SIFT descriptor uses multi-patch sets of three patches from adjacent DoG images taken
from the scale space pyramid structure, as shown in Figure 6-15. Several other methods, such
as the LBP-TOP and VLBP shown in Figure 6-12, use sets of patches spread across a volume
structure. LBP-TOP uses patches from adjacent planes, and the VLBP uses intersecting
patches in 3-space. Dynamic texture methods use sets of three adjacent patches from
spatio-temporal image frame sets, as frame n-2, frame n-1, and frame-0 (current frame).

TPLBP, FPLBP

The three-patch LBP TPLBP and four-patch LBP FPLBP [244] utilize novel multi-patch
sampling patterns to add sparse local structure into a composite LBP descriptor. As
shown in Figure 4-6, the three-patch LBP uses a radial set of LBP patterns composed
using alternating sets of three patches, and the four-patch LBP uses a more distributed
pairing of patches over a wider range.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

151

Figure 4-6.  Novel multi-patch sets developed by Wolf et. al [244]. (Left) The TPLBP
compares the values from three-patch sets around the ring to compute the LBP code, eight
sets total, so there is one set for each LBP bit. (Right) The four-patch LBP uses four patches
to computed bits using two symmetrically distributed patches from each ring, to produce
each bit in the LBP code. The radius of each ring is a variable, the patch pairing is a variable,
and the number of patches per ring is a variable; here, there are eight patches per ring

Strip and Radial Fan Shapes
Radial fans or spokes originating at the feature interest point location or shape centroid
can be used as the descriptor sampling topology—for example, with Fourier shape
descriptors (as discussed in Chapter 6; see especially Figure 6-29).

D-NETS Strip Patterns

The D-NETS method developed by Hundelshausen and Sukthankar[135] uses a
connected graph-shaped descriptor pattern with variations in the sampling pattern
possible. The authors suggest that the method is effective using three different patterns,
as shown in Figure 4-7:

1.	 Fully connected graph at interest points

2.	 Sparse or iterative connected graph at interest points

3.	 Densely sampled graph over a chosen grid

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

152

The descriptor itself is composed of a set of d-tokens, which are strips of raw pixel
values rather than a value from a patch region: the strip is the region, and various
orientations of lines are the pattern. The sampling along the strip is between 80 and
20 percent of the strip length rather than the entire length, omitting the endpoints, which
is claimed to reduce the contribution of noisy interest points. The sampled points are
combined into a set s of uniform chunks of pixels and normalized and stored into a
discrete d-token descriptor.

Object Polygon Shapes
The object and polygon shape methods scan globally and regionally to find the shapes in
the entire image frame or region. The goal is to find an object or region that is cohesive.
A discussion of the fundamental methods for segmentation polygon shapes for feature
descriptors is provided here, including:

Morphological object boundary methods•	

Texture or regional structural methods•	

Superpixel or pixel similarity methods•	

Depth map segmentation•	

Chapter 6 provides details on a range of object shape factors and metrics used to
statistically describe the features of polygon shape. Note that this topic is often discussed
in the literature as “image moments”; a good source of information is Flusser et.al.[518].

Morphological Boundary Shapes
One method for defining polygon shapes is to use morphology. Morphological
segmentation is a common method for region delineation, either as a binary object or
as a gray scale object. Morphological shapes are sometimes referred to as blobs. In both
binary and gray scale cases, thresholding is often used as a first step toward defining the

Figure 4-7.  Reduced resolution examples of the D-NETS [135] sampling patterns. (Left)
Full dense connectivity at interest points. (Center) Sparse connectivity at interest points.
(Right) Dense connectivity over a regular sampling grid. The D-NETS authors note that a
dense sampling grid with 10 pixel spacing is preferred over sampling at interest points

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

153

object boundary, and morphological reshaping operations such as ERODE and DILATE
are used to grow, shrink, and clean up the shape boundary. Morphological segmentation
is threshold- and edge-feature driven. (Chapter 3 provided a discussion of the methods
used for morphology and thresholding.)

Texture Structure Shapes
Region texture is also used to segment polygon shapes. Texture segmentation is a
familiar image-processing method for image analysis and classification, and is an ideal
method for segmentation in a nonbinary fashion. Texture reveals structure that simple
thresholding ignores. As shown in Figure 6-6, the LBP operator can detect local texture,
and the texture can be used to segment regions such as sky, water, and land. Texture
segmentation is based on local image pixel relationships. (Several texture segmentation
methods were surveyed in Chapter 3.)

Super-Pixel Similarity Shapes
Segmenting a region using super-pixel methods is based on the idea of collapsing similar
pixels together—for example, collapsing pixels together with similar colors into a larger shape.
The goal is to segment the entire image region into super-pixels. Super-pixel methods are
based on similarity. (Several super-pixel processing methods were discussed in Chapter 3.)

Local Binary Descriptor Point-Pair Patterns
Local binary descriptor shapes and sampling patterns, such as those employed in
FREAK, BRISK, ORB, and BRIEF, are good examples to study in order to understand the
various tradeoffs and design approaches. We will examine local binary shape and pattern
concepts here. (Chapter 6 provides a more detailed survey of each descriptor.)

Local binary descriptors use a point-pair sampling method, where pairs of pixels
are assigned to each other for a binary comparison. Note that a drawback of local binary
descriptors and point-pair comparisons is that small changes in the image pixel values in
the local region may manifest as binary artifacts. Seemingly insignificant changes in a set
of pixel values may cause problems during matching that are pronounced for: (1) noisy
images, and (2) images with constant gray level. However, each local binary descriptor
method attempts to mitigate the binary artifact problems. For example, BRISK (see
Figure 4-10 later) and ORB (see Figure 4-11 later) compute a filtered region surrounding
each interest point to reduce the noise component prior to the binary comparison.

Another method to mitigate the binary artifact problem of constant gray level is used
in a modification of the LBP method called the local trinary pattern operator, or LTP [522]
(see also reference[173], Section 2.9.3), which uses trinary values of {-1, 0,1} to describe
regions. A threshold band is established for the LTP to describe near-constant gray
values as 0, values above the threshold band as 1, and values below the threshold band
as -1. The LTP can be used to describe both smooth regions of constant gray level and
contrasted regions in the standard LBP. In addition, the compare threshold for point-pairs
can be tuned to compensate for noise, illumination, and contrast, as employed in nearly
all local binary descriptor methods.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

154

Figure 4-8 (left image) illustrates a hypothetical descriptor pattern to include
selected pixels as the black values, while the center left image shows a strip-oriented
shape and pattern where the descriptor calculates the descriptor over pixels along a set of
line segments with no particular symmetry like the DNETS [135] method.

Figure 4-8.  illustrating various descriptor patterns and shapes. (Left) Sparse.
(Center left) Nets or strips. (Center right) Kernels. (Right) Radial spokes

In Figure 4-8 also, the center right image illustrates a convolution kernel where
the filter shape and filter goal are specified, while the right image is a blob shape using
radial pixel sampling lines originating at the shape centroid and terminating on the blob
perimeter. Note that a 1D Fourier descriptor can be computed from an array containing
the length of each radial line segment from the centroid to the perimeter to describe
shape, or just an array of raw pixel values can be kept, or else D-nets can be computed.

A feature descriptor may be designed by using one or more shapes and patterns
together. For example, the hypothetical descriptor pattern in Figure 4-8 (left image) uses
one pattern for pixels close to the interest point, another pattern uses pixels farther away
from the center to capture circular pattern information, and another pattern covers a few
extrema points. An excellent example of tuned sampling patterns is the FREAK descriptor,
discussed next.

FREAK Retinal Patterns
The FREAK [130] descriptor shape, also discussed in some detail in Chapter 6, uses
local binary patterns based on the human retinal system, as shown in Figure 4-9, where
the density of the receptor cells in the human visual system is greater in the center and
decreases with distance from center. FREAK follows a similar pattern when building the
local binary descriptors, referred to as a coarse-to-fine descriptor pattern, with fine detail
in the center of the patch and coarse detail moving outward. The coarse-to-fine method
also allows for the descriptor to be matched in coarse-to-fine segments. The coarse
part is matched first, and if the match is good enough, the fine feature components are
matched as well.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

155

FREAK descriptors can be built with several patterns within this framework. For
FREAK, the actual pattern shape and point-pairing are designed during a training phase
where the best point-pair patterns are learned using a method similar to ORB [134] to find
point-pairs with high variance. The pattern is only constrained by the training data; only
45 point-pairs are used from the 32x31 image patch region.

As illustrated in Figure 4-9, the pairs of points at the end of each line segment are
compared, the set of compare values are composed into a binary descriptor vector using
16 bytes, and a cascade of four separate 16-byte coarse-to-fine patterns are included in
the descriptor set. Typically, the coarse pattern alone effectively rejects bad matches, and
the finer patterns are used to qualify only the closest matches.

Brisk Patterns
The BRISK descriptor [131] point-pair sampling shape is symmetric and circular,
composed of 60 total points arranged in four concentric rings, as shown in Figure 4-10.
Surrounding each of the 60 points is a sampling region shown in blue, the sampling
regions increase in size with distance from the center, and also proportional to the
distance between sample points. Within the sampling regions, Gaussian smoothing is
applied to the pixels and a local gradient is calculated over the smoothed region.

Figure 4-9.  (Left) The human visual system concentration of receptors in the center Fovea
region with less receptor density moving outward to periphery vision regions of Para and
Peri. (Center) FREAK [130] local binary pattern sampling regions, six regions in each of six
overlapping distance rings from the center, size of ring denotes compare point averaging
area. (Right) Hypothetical example of a FREAK-style point-pair pattern

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

156

Like other local binary descriptors, BRISK compares pairs of points to form the
descriptor. The point- pairs are specified in two groups: (1) long segments, which are used
together with the region gradients to determine angle and direction of the descriptor,
the angle is used to rotate the descriptor area, and then the pair–wise sampling pattern is
applied;(2) short segments, which can be pair-wise compared and composed into the
512-bit binary descriptor vector.

ORB and BRIEF Patterns
ORB [134] is based in part on the BRIEF descriptor [132,133], thus the name Oriented
Brief, since ORB adds orientation to the BRIEF method and provides other improvements
as well. For example, ORB also improves the interest point method by qualifying FAST
corners using Harris corner methods, and improves corner orientation using Rosin’s
method [61] in order to steer the BRIEF descriptor to improve rotational invariance
(BRIEF is known to be sensitive to rotation).

ORB also provides a very good point-pair training method, which is an improvement
over BRIEF. In BRIEF, as shown in Figure 4-11, the sample points are specified in a
random distribution pattern based on a Gaussian distribution about the center point
within the 31x31 patch region; the chosen number of sample points is 256. Selected
sample point-pairs are compared to each other to form the binary descriptor vector. The
value of each point is calculated via an integral image method to smooth a 5x5 region into
the point value.

Figure 4-10.  (Left) BRISK concentric sampling grid pattern. (Center) Short segment pairs.
(Right) Long distance pairs. Note that the size of the region (left image) for each selected
point increases in diamter with distance from the center, and the binary comparison is
computed from the center point of each Gaussian-sampled circular region, rather than
from each solitary center point. (Center and right images used by permission © Josh
Gleason[143])

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

157

To learn the descriptor point-pair sample and compare pattern, ORB uses a training
algorithm to find uncorrelated points in the training set with high variance, and selects
the best 256 points to define the pairwise sampling patterns used to create the binary
feature vector. So the shape and pattern are nonsymmetric, as shown in Figure 4-11,
similar to some DNETS patterns. The ORB point-pair patterns are dependent on the
training data.

Note in Figure 4-11 that a BRIEF style pattern (right image) uses random point-pairs.
Several methods for randomizing point-pairs are suggested by the developers [132].
The ORB pattern shown in Figure 4-11 is based on choosing point-pairs that have high
statistical variance within a bounding 31x31 image patch, where the smaller 5x5 gray
image patch regions are centered at the chosen interest points. Then each 5x5 region is
smoothed using an integral image method to yield a single value for the point.

Descriptor Discrimination
How discriminating is a descriptor? By discrimination we mean how well the descriptor
can uniquely describe and differentiate between other features. Depending on the
application, more or less discrimination is needed, thus it is possible to over-describe a
feature by providing more information and invariance than is useful, or to under-describe
the feature by limiting the robustness and invariance attributes. Feature descriptor
discrimination for a given set of robustness criteria may be important and interesting,
but discrimination is not always the right problem to solve in some cases.

The need for increased discrimination in the descriptor can be balanced in
favor of using a cascade of simple descriptors like correlation templates under the
following assumptions.

Figure 4-11.  (Left) An ORB style pattern at greatly reduced point pair count resolution,
using < 32 points instead of the full 256 points. (Right) A BRIEF style pattern using
randimized point-pairs

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

158

1.	 Assuming cheap massively parallel compute, deformable
descriptors such as Taylor and Rosin’s RFM2.3 [220]
become a more attractive option, allowing simple weakly
discriminating correlation templates or pixel patches to be
used and deformed in real-time in silicon using the GPU
texture sampler for scale, affine and homographic transforms.
Matching and correspondence under various pose variations
and lighting variations can be easily achieved using parallel
GPU SIMT/SIMD compute and convolution kernels. So, the
GPU can effectively allow a simple correlation patch to be
warped and contrast enhanced to be used as a deformable
descriptor and compared against target features.

2.	 Assuming lots of fast and cheap memory, such as large
memory cache systems, many nondiscriminating descriptors
or training patterns can be stored in the database in the
memory cache. Various weighting schemes such as those
used in neural networks and convolutional networks can be
effectively employed to achieve desired correspondence and
quality. Also, other boosting schemes can be employed in the
classifier, such as the Adaboost method, to developed strong
classifiers from weakly discriminating data.

In summary, both highly discriminating feature descriptors and cascades of simple
weakly discriminating feature descriptors may be the right choice for a given application,
depending on the target system.

Spectra Discrimination
One dimension of feature discrimination is the chosen descriptor spectra or values
used to represent the feature. We refer to spectra simply as values within a spectrum
or over a continuum. A feature descriptor that only uses a single spectra, such as a
histogram of intensity values, will have discrimination to intensity distributions, with
no discrimination for other attributes such as shape or affine transforms. For example, a
feature descriptor may increase the level of discrimination by combining a multivariate
set of spectra such as RGB color, depth, and local area gradients of color intensity.

It is well known [248] that the human visual system discriminates and responds
to gradient information in a scale and rotationally invariant manner across the retina,
as demonstrated in SIFT and many other feature description methods. Thus the use of
gradients is a common and preferred spectra for computer vision.

Spectra may be taken over a range of variables, where simple scalar ranges of values
are only one type of spectra:

1.	 Gray scale intensity

2.	 Color channel intensity

3.	 Basis function domains (frequency domain, HAAR, etc.)

4.	 2D or 3D gradients

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

159

5.	 3D surface normals

6.	 Shape factors and morphological measures

7.	 Texture metrics

8.	 Area integrals

9.	 Statistical moments of regions

10.	 Hamming codes from local binary patterns

Each of the above spectra types, along with many others that could be enumerated,
can be included in a multivariate feature descriptor to increase discrimination. Of
course, discrimination requirements for a chosen application will guide the design of the
descriptor. For example, an application that identifies fruit will be more effective using
color channel spectra for fruit color, shape factors to identify fruit shapes, and texture
metrics for skin texture.

One way to answer the question of discrimination is to look at the information
contained in the descriptor. Does the descriptor contain multivariate collections of
spectra, and how many invariance attributes are covered, such as orientation or scale?

Region, Shapes, and Pattern Discrimination
Shape and pattern of the feature descriptor are important dimensions affecting
discrimination. Each feature shape has advantages and disadvantages depending on the
application. Surprisingly, even a single pixel can be used as a feature descriptor shape
(see Figure 1-7). Let’s look at other dimensions of discrimination.

Shapes and patterns may be classified as follows:

1.	 A single pixel (discussion of single pixel description methods
to follow)

2.	 A line of pixels

3.	 A rectangular region of pixels

4.	 A polygon shape or region of pixels

5.	 A pattern or set of unconnected pixels, such as foveal patterns

The shape of the descriptor determines attributes of discrimination. For example,
a rectangular descriptor will be limited in the rotational invariance attribute compared to
a circular shaped descriptor. Also, a smaller shape for the descriptor limits the range to a
smaller area, and also limits scale invariance. A larger size descriptor area carries more
pixels which can increase discrimination.

Descriptor shape, pixel sampling pattern, sampling region size, and pixel metrics
have been surveyed by several other researchers [128–130]. In this section, we dig deeper
and wider into specific methods used for feature descriptor tuning, paying special
attention to local binary feature descriptors, which hold promise for low power and high
performance.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

160

Geometric Discrimination Factors
The shape largely determines the amount of rotational invariance possible. For example,
a rectangular shape typically begins to fall off in rotational discrimination at around
15 degrees, while a circular pattern typically performs much better under rotational
variations. Note that any poorly discriminating shape or pattern descriptor can be
enhanced and made more discriminating by incorporating more than one shape or
pattern into the descriptor vector.

A shape and pattern such as a HAAR wavelet, as used in the Viola Jones method,
integrates all pixels in a rectangular region, yielding the composite value of all the
pixels in the region. Thus there is no local fine-detail pattern information contained
in the descriptor, leading to very limited local area discrimination and poor rotational
invariance or discrimination.

Another example of poor rotational discrimination is the rectangular correlation
template method, which compares two rectangular regions pixel by pixel. However,
several effective descriptor methods use a rectangular-shaped region.

In general, rectangles are a limitation to rotational invariance. However, SURF uses
a method of determining the dominant orientation of the rectangular HAAR wavelet
features within a circular neighborhood to achieve better rotational invariance. And
SIFT uses a method to improve rotational invariance and accuracy by applying a circular
weighting function to the rectangular regions during the binning stage.

It should also be noted that descriptors with low discrimination are being used very
effectively in targeted applications, such as correlation methods for motion estimation in
video encoding. In this case, the rectangle shape is a great match to the encoding problem
and lends itself to highly optimized fixed function hardware implementations, since frame-
to-frame motion can be captured very well in rectangular regions, and there is typically little
rotation or scale change from frame to frame for at 30 Hz frame rates, just translation.

With this discussion in mind, descriptor discrimination should be fitted appropriately
to the application, since adding discrimination comes at a cost of compute and memory.

Feature Visualization to Evaluate Discrimination
Another way to understand discrimination is to use the feature descriptor itself to
reconstruct images from the descriptor information alone, where we may consider the
collection of descriptors to be a compressed or encoded version of the actual image. Image
compression, encoding, and feature description are related; see Figure 3-18. Next, we
examine a few examples of image reconstruction from the descriptor information alone.

Discrimination via Image Reconstruction from HOG
Figure 4-12 visualizes a reconstruction using the HOG descriptor [106]. The level of detail
is coarse and follows line and edge structure that matches the intended use of HOG. One
key aspect of the discrimination provided by HOG is that no image smoothing is used on
the image prior to calculating the descriptor. The HOG research shows that smoothing
the image results in a loss of discrimination. Dalal and Triggs[106] highlight their
deliberate intention to avoid image smoothing to preserve image detail.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

161

However, some researchers argue that noise causes problems when calculating
values such as local area gradients and edges, and further recommend that noise be
eliminated from the image by smoothing prior to descriptor calculations; this is the
conventional wisdom in many circles. Note that there are many methods to filter noise
without resorting to extreme Gaussian-style smoothing, convolution blur, and integral
images, which distort the image field.

Some of the better noise-filtering methods include speckle removal filters, rank
filtering, bilateral filters, and many other methods that were discussed in Chapter 2. If the
input image is left as is, or at least the best noise filtering methods are used, the feature
descriptor will likely retain more discrimination power for fine-grained features.

Discrimination via Image Reconstruction from Local
Binary Patterns
As shown in Figure 4-13, d’Angelo and Alahi[127] provide visualizations of images
reconstructed from the FREAK and BRIEF local binary descriptors. The reconstruction
is rendered entirely from the descriptor information alone, across the entire image.
BRIEF uses a more random pattern to compare points across a region, while FREAK uses
a trained and more foveal and symmetrical pattern with increased detail closer to the
center of the region. And d’Angelo and Alahi[127] note that the reconstruction results are
similar to Laplacian filtered versions of the original image, which helps us understand
that the discrimination of these features appears to be structurally related to detailed
edge and gradient information.

Figure 4-12.  Discrimination via a visualization of the HOG description. (Image (c)
Carl Vodrick, used by permission.) See also “HOGgles: Visualizing Object Detection
Features, Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, Antonio Torralba,
Massachusetts Institute of Technology, Oral presentation at ICCV 2013”

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

162

The d’Angelo and Alahi reconstruction method [127] creates an image from a set of
overlapping descriptor patches calculated across the original image. To reconstruct the
image, the descriptors are first reconstructed using a novel method to render patches,
and then the patches are merged by averaging the overlapping regions to form an image,
where the patch merge size may vary as desired. For example, note that Figure 4-13 uses
32x32 patches for the Barbara images in the left column, and a 64x64 patch size for the
cameraman in the center column. Also note that Barbara is not reconstructed with the
same discrimination as the cameraman, whose image contains finer details.

Discrimination via Image Reconstruction from SIFT Features
Another method of approximate image reconstruction [105] proves the discrimination
capabilities of SIFT descriptors; see Figure 4-14. The reconstruction method for this
research starts by taking an unknown image containing a scene such as a famous
building, finding the set of Hessian-affine region detectors in the image, extracting
associated SIFT feature descriptors, and then saving a set of elliptical image patch regions
around the SIFT descriptors.

Figure 4-13.  Images reconstructed using local binary descriptors using 512 point-pairs.
(Top row) BRIEF. (Middle row) Randomized FREAK (more similar to BRIEF). (Bottom row)
Binary FREAK using the foveal pattern Images (c) Alexandre Alahi, used by permission

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

163

Next, an image database containing similar and, it is hoped, matching images of the
same scene are searched to find the closest matching SIFT descriptors at Hessian-affine
interest points. Then a set of elliptical patch regions around each SIFT descriptor is taken.
The elliptical patches found in the database are warped into a synthesized image based
on a priori interest region geometric parameters of the scenes.

The patches are stitched together via stacking and blending overlapping patches and
also via smooth interpolation. Any remaining holes are filled by smooth interpolation.
One remarkable result of this method is the demonstration that an image can be
reconstructed from a set of patches from different images at different orientations,
since the feature descriptors are similar; and in this case, the discrimination of the SIFT
descriptor is demonstrated well.

Accuracy, Trackability
Accuracy can be measured in terms of specific feature attributes or robustness criteria;
see Tables 4-1 and 7-4. A given descriptor may outperform another descriptor in one area
and in not another. In the research literature, the accuracy and performance of each new
feature descriptor is usually benchmarked against the standby methods SIFT and SURF.
The feature descriptor accuracy is measured using commonly accepted ground truth
datasets designed to measure robustness and invariance attributes. (See Appendix B for
a survey of standard ground truth datasets, and Chapter 7 for a discussion about ground
truth dataset design.)

A few useful accuracy studies are highlighted here, illustrating some of the ways
descriptor and interest point accuracy can be measured. For instance, one of the most
comprehensive surveys of earlier feature detector and descriptor accuracy and invariance
is provided by Mikolajczyk and Schmid[144], covering a range of descriptors including
GLOH, SIFT, PCA-SIFT, Shape Context, spin images, Hessian Laplacian GLOH, cross
correlation, gradient moments, complex filters, differential invariants, and steerable filters.

In Gauglitz et al.[145], there are invariance metrics for zoom, pan, rotation,
perspective distortion, motion blur, static lighting, and dynamic lighting for several
feature metrics, including Harris, Shi-Tomasi, DoG, Fast Hessian, FAST, and CenSurE,
which are discussed in Chapter 6. There are also metrics for a few classifiers, including

Figure 4-14.  Image reconstruction of common scenes using combined SIFT descriptors
taken from several views of the same object, images (c) Herve Jegou, used by permission

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

164

Turning to the more recent local binary descriptors, Alahi et. al. [130] provide a set of
comparisons where FREAK is shown to be superior in accuracy to BRISK, SURF, and SIFT
on a particular dataset and set of criteria developed by Mikolajczyk and Schmid [144] for
feature accuracy over attributes such as viewpoint, blur, JPEG compression, brightness,
rotation, and scale. In Rublee et. al. [120], ORB is shown to have better rotational
invariance than SIFT, SURF, and BRIEF. In summary, local binary descriptors are proving
to be attractive in terms of robustness, accuracy, and compute efficiency.

randomized trees and FERNS, which are discussed later in this chapter. Figure 4-15
provides some visual comparisons of feature detector and interest point accuracy from
Gauglitz [145].

Figure 4-15.  Accuracy of feature descriptors over various invariance criteria. (From
Gauglitz et al.[145], images © Springer Science +Business Media, LLC, used by permission)

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

165

Accuracy Optimizations, Sub-Region Overlap,
Gaussian Weighting, and Pooling
Various methods are employed to optimize feature descriptor accuracy, and a few
methods are discussed here. For example, descriptors often use overlapping sampling
pattern sub-regions, as shown in the FREAK descriptor pattern in Figure 4-9. By
overlapping sampling regions and treating boundaries carefully, accuracy seems to be
better in most all cases [161,178]. Overlapping regions makes sense intuitively, since
each point in a region is related to surrounding points. The value of pattern sub-region
overlapping in feature description seems obvious for local binary pattern type descriptors
and spectra descriptor variants such as SURF and others [181,144]. When the sampling
regions used in the descriptor do not overlap, recognition rates are not as accurate [130].

Gaussian weighting is another effective method for increasing accuracy to reduce
noise and uncertainty in measurements. For example, the SIFT [161,178] descriptor
applies a Gaussian-based weighting factor to each local area gradient in the descriptor
region to favor gradients nearer the center and reduce the weighting of gradients farther
away. In addition, the SIFT weighting is applied in a circularly symmetric pattern, which
adds some rotational invariance; see Figure 6-17.

Note that Gaussian weighting is different from Gaussian filtering; a Gaussian filter
both reduces noise and eliminates critical fine details in the image, but such filtering has
been found to be counterproductive in the HOG method [106]. A Gaussian weighting
factor, such as used by SIFT on the gradient bins, can simply be used to qualify data rather
than change the data. In general, a weighting factor can be used to scale the results and
fine-tune the detector or descriptor. The sub-region overlap in the sampling pattern and
Gaussian weighting schemes are complementary.

Accuracy can be improved by relying on groups of nearby features together rather
than just a single feature. For example, in convolutional networks, several nearby
features may be pooled for a joint decision to increase accuracy via chosen robustness or
invariance criteria [347]. The pooling concept may also be referred to as neighborhood
consensus or semi-local constraints in the literature, and it can involve joint constraints,
such as the angle and distance among a combined set of local features [348–350].

Sub-Pixel Accuracy
Some descriptor and recognition methods can provide sub-pixel accuracy in matching
the feature location [147–151]. Common methods to compute sub-pixel accuracy include
cross-correlation, sum-absolute difference, Gaussian fitting, Fourier methods, and
rigid body transforms and ICP. In general, sub-pixel accuracy is not a common feature
in popular, commercial applications and is needed only in high-end applications like
industrial inspection, aerospace, and military systems.

For example, SIFT provides sub-pixel accuracy for the location of keypoints. Digital
correlation methods and template matching are well known and used in industrial
applications for object tracking, and can be extended to compute correlations over a
range of one-pixel offset areas to yield a set of correlations that can be fit into a curve and
interpolated to find the highest match to yield sub-pixel accuracy.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

166

Sub-pixel accuracy is typically limited to translation. Rotation and scale are much
more difficult to quantify in terms of sub-pixel accuracy. Typical sub-pixel accuracy
results for translation only achieve better than ¼ pixel resolution, but resolution accuracy
can be finer grained, and in some methods translation accuracy is claimed to be as high
as 1/20th of a pixel using FFT registration methods [151].

Also, stereo disparity methods benefit from improved sub-pixel accuracy, especially
at long ranges, since the granularity of Z distance measurements increases exponentially
with distance. Thus the calculated depth field contains coarser information as the depth
field increases, and the computed depth field is actually nonlinear in Z. Therefore, sub-
pixel accuracy in stereo and multi-view stereo disparity calculations is quite desirable and
necessary for best accuracy.

Search Strategies and Optimizations
As shown in Figure 5-1, a feature may be sparse, covering a local area, or it may cover a
regional or global area. The search strategy used to isolate each of these feature types is
different. For a global feature, there is no search strategy: the entire frame is used as the
feature. For a regional descriptor, a region needs to be chosen or segmented (discussed
in Chapter 2). For sparse local features, the search strategy becomes important. Search
strategies for sparse local regions fall into a few major categories, as follows (also included
in the taxonomy in Chapter 5).

Dense Search
In a dense search, each pixel in the image is checked. For example, an interest point is
calculated at each pixel, the interest points are then qualified and sorted into a candidate
list, and a feature descriptor is calculated for each candidate. Dense search is used by
local binary descriptors and common descriptors such as SIFT.

In stereo matching and depth sensing, each pixel is searched in a dense manner
for calculating disparity and closest points. For example, stereo algorithms use a
dense search for correspondence to compute disparity, line by line and pixel by pixel;
monocular depth-sensing methods such as PTAM [327] use a dense search for interest
points, followed by a sparse search for known features at predicted locations.

Dense methods may also be applied across an image pyramid, where the lower
resolution pyramids are usually searched first and finer-grain pyramids are searched
later. Dense methods in general are preferred for accuracy and robustness when feature
locations are not known and cannot be predicted.

Grid Search
In grid search methods, the image is divided into a regular grid or tiles, and features are
located based on the tiles. A novel grid search method is provided in the OpenCV library,
using a grid search adapter (discussed in Chapter 6 and Appendix A). This allows for
repeated trial searches within a grid region for the best features, and has the capability
of adjusting detector parameters before each trial run. One possible disadvantage of a

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

167

grid search from the perspective of accuracy is that features do not line up into grids, so
features can be missed or truncated along the grid boundary, decreasing accuracy and
robustness overall.

Grid search can be used in many ways. For example, a regular grid is used as anchor
points with the grid topology of D-NETS, as illustrated in Figure 4-7. Or, a grid is used to
form image tile patches and a descriptor is computed for each tile, such as in the HOG
method, as shown in Figure 4-12. Also the Viola Jones method [146] computes HAAR
features on a grid.

Multi-Scale Pyramid Search
The idea behind the multi-scale image pyramid search is either to accelerate searching by
starting at a lower resolution or to truly provide multi-scale images to allow for features to
be found at appropriate scale. Methods to reduce image scale include pixel decimation,
bilinear interpolation, and other multi-sampling methods. Scale space is a popular
method for creating image pyramids, and many variations are discussed in the next
section; see Figure 4-16.

Figure 4-16.  A five-octave scale pyramid. The image is from Albrecht Durer’s Apocalypse
woodcuts, 1498. Note that many methods use non-octave pyramid scales [120]

However, the number of detected features falls off rapidly as the pyramid levels
increase, especially for scale space pyramids, which have been Gaussian filtered, since
Gaussian filters reduce image texture detail. Also, fewer pixels are present to begin with
at higher pyramid levels, so a pyramid scale interval smaller than octaves is sometimes
used. See reference[160] for a good discussion of image pyramids.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

168

Scale Space and Image Pyramids
Often, instead of using simple pixel decimation and pixel interpolation to reduce image
scale, a scale space [524,523] pyramid representation, originally proposed by Lindberg[547],
is built up using Gaussian filtering methods to decrease the scaling artifacts and preserve
blob-like features. Scale space is a more formal method of defining a multi-scale set of
images, typically using a Gaussian kernel g() convolved with the image f(x,y), as follows:

g x y t
t

e x y t, : ()/() = - +1

2

2 2 2

p

or by an equivalent method:

L t g t f.,.; .,. : * .,. ,() = () ()

¶ = Ñt L L,
1

2
2

, ; (,),withthe initial state L x y f x y0() =

A good example of Gaussian filter design for scale space is described in the SURF
method [160]. Gaussian filters implemented as kernels with increasing size are applied
to the original image at octave-spaced subsampling intervals to create the scale space
images—for example, starting with a 9x9 Gaussian filter and increasing to 15x15, 21x21,
27x27, 33x33, and 39x39; see Figure 4-17.

Figure 4-17.  Scale space Gaussian images at scales of 0, 2, 4, 16, 32, 64. Image is from
Albrecht Durer’s Apocalypse woodcuts, 1498

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

169

One drawback of scale space is the loss of localization and lack of accuracy in higher
levels of the image pyramid. In fact, some features are simply missing from higher levels
of the image pyramid, owing to a lack of resolution and to the Gaussian filtering. The best
example of effective scale space feature matching may be SIFT, which provides for the
1st pyramid image in the scale to be double the original resolution to mitigate scale space
problems, and also provides a good multi-scale descriptor framework. See also Figure 4-18.

Figure 4-18.  Scale and space

Image pyramids are analogous to texture mip-maps used in computer graphics.
Variations on the image pyramid are common. Octave and non-octave pyramid spacings
are used, with variations on the filtering method also. For example, the SIFT method
[161,178] uses a five-level octave scale n/2 image pyramid with Gaussians filtered images
in a scale space. Then, the Difference of Gaussians (DoG) method is used to capture
the interest point extrema maxima and minima in the adjacent images in the pyramid.
SIFT uses a double-scale first pyramid level with linear interpolated pixels at 2x original
magnification to help preserve fine details. This technique increases the number of stable
keypoints by about four times, which is quite significant. In the ORB [120] method, a
non-octave scale space is built around a scale over a five-level pyramid, which has closer
resolution gradations between pyramid levels than an octave scale of two times.

Feature Pyramids
An alternative to scale space pyramids and pyramid searching is to use feature-space
pyramiding, and build a set of multi-scale feature descriptors stored together in the
database. In this approach, the descriptor itself contains the pyramid, and no scale
space or image pyramid is needed. Instead, feature searching occurs directly from the
mono-scale target image to the multi-scale features. The RFM method [220] discussed in
Chapter 6 goes even further and includes multi-perspective transformed versions of each
patch for each descriptor. In Table 4-3, note that the multi-scale features can be used to
match directly on the target images, while the mono-scale features are better to use on an
image pyramid.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

170

Table 4-3.  Some Tradeoffs in Using a Mono-Scale Feature and a Multi-Scale Feature

Feature
Scale

Feature
Size

Feature Description
Compute Time

Image Pyramid
Used for Matching

Mono-Scale Images
Used for Matching

Mono-scale
feature

Smaller
memory
footprint

Faster to compute Yes No

Multi-scale
feature

Larger
memory
footprint

Slower to compute No Yes

Figure 3-16 shows the related concept of a multi-resolution histogram [152], created
from image regions from a scale space pyramid and with the histograms concatenated
in the descriptor that is used to determine texture metrics for feature matching. So in the
multi-scale histogram method, no pyramid image set is required at run time; rather, the
pyramid search uses histogram features from the descriptor itself to find correspondence
with the mono-scale target image.

A wide range of scalar and other metrics can be composed into a multi-scale feature
pyramid, such as image intensity patches, color channel intensity patches, gradient
magnitude, and gradient orientations. Histograms of textural features have been found
useful as affine-invariant metrics as a part of a wider feature descriptor [152].

Sparse Predictive Search and Tracking
In a sparse predictive search pipeline, specific features at known locations, found
in previous frames, are searched for in the next frame at the expected positions. For
example, in the PTAM [327] algorithm for monocular depth sensing, a sparse 3D point
cloud and camera pose are created from sequential video frames from a single camera by
locating a set of interest points and feature descriptors. For each new frame, a prediction
is made of the coordinates where the same interest points and feature detectors might be
in the new image, using the prior camera pose matrix. Then, for the new frame, a search
or tracking loop is started to locate a small number of the predicted interest points using
a pyramid coarse to fine search strategy. The predicted interest points and features are
searched for within a range around where each is predicted to be, and the camera pose
matrix is updated based on the new coordinates where the features are found. Then, a
larger number of points are predicted using the updated camera pose and a search and
tracking loop is entered over a finer scale pyramid image in the set. This process iterates
to find points and refine the pose matrix.

Tracking Region-Limited Search
One example of a region-limited search is a video conferencing system that tracks
the location of the speaker using stereo microphones to calculate the coarse location
via triangulation. Once the coarse speaker position is known, the camera is moved

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

171

to view the speaker, and only the face region is of interest for further fine positional
location adjustments, auto-zoom, auto-focus, and auto-contrast enhancements. In this
application, the entire image does not need to be searched or processed for face features.
Instead, the center of the FOV is the region where the search is limited to locate the face.
For example, if the image is taken from an HD camera with 1920x1080 resolution, only a
limited region in the center of the image, perhaps 512x512 pixels, needs to be processed
to locate the face features.

Segmentation Limited Search
A segmented region can define the search area, such as a region with specific texture,
or pixels of a specific color intensity. In a morphological vision pipeline, regions may
be segmented in a variety of ways, such as thresholding and binary erosion + dilation
to create binary shapes. Then the binary shapes can be used as masks to segment the
corresponding gray scale image regions under the masks for feature searching. Image
segmentation methods were covered in Chapter 2.

Depth or Z Limited Search
With the advent of low-cost commercial depth sensors appearing on mobile consumer
devices, the Z dimension is available for limiting search ranges. See Figure 4-19. For
example, by segmenting out the background of an image using depth, the foreground
features are more easily segmented and identified, and search can be limited by depth
segments. Considering how much time is spent in computer vision to extract 3D image
information from 2D images, we can expect depth cameras to be used in novel ways to
simplify computer vision algorithms.

Figure 4-19.  Segmentation of image regions based on a depth map. Depth image from
Middlebury Data set: (Source: D. Scharstein and C. Pal “Learning conditional random
fields for stereo” CVPR Conference, 2007. Courtesy of authors)

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

172

Computer Vision, Models, Organization
This section contains a high- level overview of selected examples to illustrate how feature
metrics are used within computer vision systems. Here, we explore how features are
selected, learned, associated together to describe real objects, classified for efficient
searching and matching, and used in computer vision pipelines. This section introduces
machine learning, but only at a high level using selected examples. A good reference
on machine learning is found in [546] by Prince. A good reference for computer vision
models, organization, applications, and algorithms is found in Szelinski [324].

Several terms are chosen and defined in this section for the discussion of computer
vision models, namely feature space, object models, and constraints. The main topics for
this section include:

Feature spaces and selection of optimal features•	

Object recognition via object models containing features and •	
constraints

Classification and clustering methods to optimize pattern •	
matching

Training and learning•	

Note■■   Many of the methods discussed in computer vision research journals and courses are
borrowed from other tangent fields and applied, for example, machine learning and statistical
analysis. In some cases computer vision is driving the research in such tangent fields. Since
these fields are well established and considered beyond the scope of this work, we provide only
a brief topical introduction here, with references for completeness [546,324].

Feature Space
The collection and organization of all features, attributes, and other information
necessary to describe objects may be called the feature space. Features are typically
organized and classified into a feature space during a training or learning phase using
ground truth data as a training set. The selected features are organized and structured in
a database or a set of data structures, such as trees and lists, to allow for rapid search and
feature matching at run time.

The feature space may contain one or more types of descriptors using spectra such as
histograms, binary pattern vectors, as multivariate composite descriptors. In addition, the
feature space contains constraints used to associate sets of features together to identify
objects and classes of objects. A feature space is unique to any given application, and
is built according to the types of features used and the requirements of the application;
there is no standard method.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

173

The feature space may contain several parameters for describing objects; for example:

•	 Several types of feature descriptors, such as SIFT and simple
color histograms.

•	 Cartesian coordinates for each descriptor relative to training
images.

•	 Orientations of each descriptor.

•	 Name of training image associated with each descriptor.

•	 Multimodal information, such as GPS, temperatures, elevation,
acceleration.

•	 Feature sets or lists of associated descriptors.

•	 Constraints between the descriptors in a set, such as the relative
distance from each other, relative distance thresholds, angular
relationships between descriptors, or relative to a reference point.

•	 Object models to collect and associate parameters for each
object.

•	 Classes or associations of objects of the same type, such as
automobiles.

•	 Labels for objects or constraints.

Object Models
An object model describes real objects or classes of objects using parameters from the
feature space. For example, an object may contain all parameters required to describe
a specific automobile, such as feature descriptor sets, labels, and constraints. A class of
objects may associate and label all objects of the same class, such as an automobile of
any type. There is no standard or canonical object model to follow, so in this section we
describe the overall attributes of computer vision objects and how to model them.

Object models may be composed of sets of individual features; constraints on the
related features, such as position or orientation of features within an object model;
and perhaps other multimodal information for the objects or descriptors, such as GPS
information or time stamps, as shown in Figure 4-20. The object model can be created
using a combination of supervised and unsupervised learning methods [403]; we survey
several methods later in this chapter.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

174

Labeled Object Model

Labeled Object Model

Labeled Object Model

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Feature Space

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Feature Descriptor
(Angular Orientation,
Position Coordinates)

Constraint
(Relative Distance,
Orientation, Thresholds)

Multimodal Data
(GPS, Temperature, Time)

Constraint
(Relative Distance,
Orientation, Thresholds)

Constraint
(Relative Distance,
Orientation, Thresholds)

Feature Descriptor
(Angular Orientation,
Position Coordinates)Multimodal Data

(Accelerometer, Elevation)

Figure 4-20.  Simplified hypothetical feature space showing organization and association
of features, constraints, and objects

One early attempt to formulate object models is known as parts-based models,
suggested in 1973 by Fischler and Elschlager[530]. These describe and recognize larger
objects by first recognizing their parts—for example, a face being composed of parts
such as eyes, nose, and mouth. There are several variations on parts-based models; see
references[531–533], for example. Machine learning methods are also used to create the
object models [546], and are discussed later in this section.

A simple object model may be composed of only image histograms of whole
images, the name or label of each associated image, and possibly a few classification
parameters such as the subject matter of the image, GPS location, and date. To identify
unknown target images, a histogram of the target image is taken and compared against
image histograms from the database. Correspondence is measured using a suitable
distance metric such as SAD. In this simple example, brute-force searching or a hash
table index may be used to check each histogram in the database against target image
histograms, and perhaps other parameters from the object model may be matched
along with the histograms, such as the GPS coordinates. No complex machine learning
classification, clustering, data reductions, or organization of the database need be done,
since the search method is brute-force. However, finding correspondence will become
progressively slower as more images are added to the database. And the histogram all by
itself is not very discriminative and offers little invariance.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

175

Constraints
Key to object recognition, constraints are used to associate and qualify features and
related attributes as objects. Features alone are probably insufficient to recognize an
object without additional qualification, including neighborhood consensus or semi-local
constraints involving joint constraints, such as the angle and distance among a combined
set of local features [348–350]. Constraints associate object model elements together to
describe and recognize a larger object [365,366,379], such as by minimum feature count
thresholds required to ensure that a proper subset of object features are found together,
or by using multimodal data constraints such as GPS position, or by voting.

Since there are many approaches for creating constraints, we can only illustrate
the concept. For example, Lowe[161] shows recognition examples illustrating how SIFT
features can be used to recognize objects containing many tens of distinct features, in
some cases using as few as two or three good features. This allows for perspective and
occlusion invariance if some of the features describing the object cannot be found, taking
into consideration feature orientation and scale as constraints. Another example is wide
baseline stereo matching, which requires position and distance constraints on feature
pairs in L/R image assuming that the scale and orientation of L/R feature pairs is about
equal; in this case, translation would be constrained to be within a range based on depth.

Selection of Detectors and Features
Feature detectors are selected based on a combination of variables, such as the feature
detector design method and the types of invariance and performance desired. Several
approaches or design methods are discussed next.

Manually Designed Feature Detectors
Some feature detectors, such as polygon shape descriptors and sparse local features
like SURF, are manually designed and chosen using the intuition, experience, and test
results of the practitioner to address the desired invariance attributes for an application.
This involves selecting the right spectra to describe the features, determining the shape
and pattern of the feature, and choosing the types of regions to search. However, some
detectors are statistically and empirically designed, which we cover next.

Statistically Designed Feature Detectors
Statistical methods are used to design and create feature detectors. For example, the
binary sampling patterns used in methods such as ORB and FREAK are created from
the training dataset based on the statistical characteristics of the possible interest
point comparison pairs. Typically, ORB ranks each detected interest point feature pair
combination to find terms that are uncorrelated with high variance. This is a statistical
sorting or training process to design the feature patterns and tune them for a specific
ground truth dataset. See Figure 4-11 for more details on ORB, and see the discussions of
FREAK and ORB earlier in this chapter as well.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

176

SIFT also uses statistical methods to determine, from a training set, the best interest
points, dominant orientation of each interest point, and scale of each interest point.

Learned Features
Many systems learn a unique codebook of features, using sparse coding methods to
identify a unique set of basis features during a training phase against selected ground
truth data. The learned basis features are specific to the application domain or training
data, and the chosen detectors and descriptors may simply be pixel regions used as
correlation templates. However, any descriptor may be used, such as SIFT. Neural
network and convolutional network approaches are popularly used for feature learning,
as well as sparse coding methods, which are discussed later in this chapter.

Overview of Training
A machine vision system is trained to recognize desired features, objects, and activities.
However, training can be quite complex and is covered very well in the field of machine
learning and statistical analysis (which we do not cover in any detail). Training may be
supervised and assisted by an expert, or unsupervised as in the deep learning methods
discussed later in this section. Here, we provide an overview of common steps and
provide references for more detail. One of the simplest examples of training would be
to take image histograms associated with each type of image—for example, a set of
histograms that describe a face, animal, or automobile taken from different images.

Training involves collecting a training set of images appropriate for the application
domain, and then determining which detectors and descriptors can be tuned to yield the best
results. In some cases, the feature descriptor itself may be trainable and designed to match the
training data, such as the local binary pattern descriptors ORB, BRIEF, and FREAK, which can
use variable pixel sampling patterns optimized and learned from the training data.

In feature learning systems, the entire feature set is learned from the training
set. Feature learning methods employ a range of descriptor methods such as simple
correlation temples containing pixel regions, or SIFT descriptors. The learned feature
set is reduced by keeping only the features that are significantly different from features
already in the set. Feature learning methods are covered later in this chapter.

To form larger objects during training, sets of features are associated together using
constraints, such as geometric relationships like angles or distances between features,
or the count of features of a given value within a specific region. Objects are determined
during training, which involves running detectors and descriptors against chosen ground
truth data to find the features, and then determining the constraints to represent objects
as a composite set of features. Activities can be recognized by tracking features and their
positions within adjacent frames, so activity can be considered a type of meta-object and
stored in a database as well.

In any case, the features obtained through the training phase are classified into a
searchable feature space using a wide range of statistical and machine learning methods.
Training, classification, and learning are discussed at a high level later in this chapter.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

177

Classification of Features and Objects
Classification is another term for recognition, and it includes feature space organization
and training. A classifier is a term describing a method or system for learning structure
from data and recognizing objects. Several approaches are taken for automatically
building classifiers, including support vector machines (SVMs), kernel machines, and
neural networks.

In general, the size of the training set or ground truth dataset is key to classifier
accuracy [336–338]. During system training, first a training set with ground truth data is
used to build up the classifier. The machine learning community provides a wealth of
guidance on training, so we defer to established sources. Key journals to dig deeper into
machine learning and testing against ground truth data include NIPS and IEEE PAMI,
the latter which goes back to 1979. Machine learning and statistical methods are used
to guide the selection, classification, and organization of features during training. If no
classification of the feature space is made, the feature match process follows a slow
brute-force linear search of new features against known features.

Key classification problems discussed in this section include:

•	 Group Distance and Clustering of similar features using a range
of nearest–neighbor methods to assist in organization, fitting,
error minimization, searching and matching, and enabling
similarity constraints such as geometric proximity, angular
relationships, and multimodal cues.

•	 Dimensionality Reductions to avoid over-fitting, cleaning the
data to remove outliers and spurious data, and reducing the size
of the database.

•	 Boosting and Weighting to increase the accuracy of feature
matching.

•	 Constraints describing relationships between descriptors
composing an object, such as pose estimators and threshold
accept/reject filters.

•	 Structuring the Database for rapid matching vs. brute-force
methods.

Group Distance: Clustering, Training, and Statistical Learning
We refer to group distance and clustering in this discussion, sometimes interchangeably,
as methods to describe similarities and differences between groups of data atoms,
such as feature descriptors. Applications of group distance and clustering include error
minimization, regression, outlier removal, classification, training, and feature matching.

According to Estivill-Castro[351], clustering is impossible to define in a mathematical
sense, since there are so many diverse methods and approaches to describe a cluster.
See Table 4-3 for a summary of related methods. However, we will discuss clustering
here in the context of computer vision to address data organization, pattern matching,
and describing object model constraints (while attempting to not ruffle the feathers of
mathematical purists who use different terminology).

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

178

To identify similar features in a group, a wide range of clustering algorithms or group
distance algorithms are used [353], which may also be referred to as error minimization
and regression methods in some literature. Features are clustered together for computer
vision to help solve fundamental problems, including object modeling, finding similar
patterns during matching, organizing and classifying similar data, and dimensionality
reductions.

One way to describe a cluster is by similarity—for example, describing a cluster
of related features under some distance metric or regression method. In this sense,
clustering overlaps with distance functions: Euclidean distance for position, cosine
distance for orientation, and Hamming distance for binary feature vector comparisons
are examples. However, distance functions between two points are differentiated in this
discussion from group distance functions, clusters, and group distributions.

Efficiently organizing similar data in feature space for searching and classification is
a form of clustering. It can be based on similarity or distance measures of feature vectors
or on object constraint similarity, and it is required to speed up feature searching and
matching. However, commercial databases “and brute-force search” may be used as-is
for feature descriptors, with no attempt made to optimize. Custom data structures can be
built for optimizations via trees, pyramids, lists, and hash tables. (We refer the reader to
standard references in computer science covering data organization and searching; see
the classic texts The Art of Computer Programming by Donald Knuth or Data structure
and Algorithms by Aho, Ullman, and Hopcroft.)

Another aspect of clustering is the feature space dimension and topology. Since
some feature spaces are multivariate and multidimensional, containing scalars and
tensors, any strict definition of clustering, error minimization, regression, or distance is
difficult; it really depends on the space in which similarity is to be measured.

Group Distance: Clustering Methods Survey, KNN, RANSAC,
K-Means, GMM, SVM, Others
A spectrum of alternatives may be chosen for clustering and learning similarities between
groups of data atoms, starting at the low end with basic C library searching and sorting
functions, and reaching the high end with statistical and machine learning methods such
as kernel machines and support vector machines (SVMs) to build complete classifiers.
Kernel machines allow various similarity functions to be substituted into a common
framework to enable simplified comparison of similarity methods and classification.

Table 4-4 is a summary of selected clustering methods, with a few key references for
the interested reader.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

179

Table 4-4.  Clustering, Classification, and Machine Learning Methods

Group Distance Criteria Methods & References Description

Distance K-Nearest Neighbor
[364]

Uses a chosen distance function,
cluster based on simple distance to k
-nearest neighbors in the training set.

Consensus Models RANSAC [380]

PROSAC [363]

Levenberg-Marquardt
[401]

Use random sample consensus to
estimate model parameters from
contaminated data sets.

Centroid Models K-Means [354],

Voroni Tesselation,

Delauney
Triangulation

Hierarchical K-Means,
Nister trees [387]

Use a centroid of distribution as the
base of the cluster, which can be
very slow for large datsasets; can
be formulated in a hierarchical tree
structure using vocabulary words
(Nister method) for much better
performance.

Connectivity of Clusters Hierarchical Clustering
[355]

Builds connectivity between other
clusters.

Density Models DBSCAN [395][352]

OPTICS [396]

Locate distributions with maxima
and minima density compared to
surrounding data.

Distribution Models Gaussian Mixture
Models [356]

Iterative methods of finding
maximum likelihood of model
parameters.

Neural Methods Neural Networks [360] Neural methods defy a single
definition, but typically use one or
more inputs; adaptive weight factors
for each input that can be learned
and trained, a neural function to
act on the inputs and weights, a
bias factor for the neural function;
produce one or more outputs.

Bayesian Naïve Bayesian [383]

Randomize Trees [384]

FERNS [307]

Learning model recording
probabilistic relationships between
variables.

(continued)

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

180

Table 4-4.  (continued)

Group Distance Criteria Methods & References Description

Probabilistic, Semantic [232]

Latent Semantic
Analysis (pLSA) Latent
Dirichlet Allocation
(LDA)

Hidden Markov
Models,

HMM [385][386]

Learning model based on
probabilistic relationships between
variables.

Kernel Methods, Kernel
Machines

Kernel Machines [361]1

Various Kernels [362]

PCA [357][358]

*SVM is a well-known
instance of a kernel
machine.

Reduce a distribution to a set of
uncorrelated, ranked principal
components in a Euclidean space for
ease of matching and clustering.

Support Vector
Machines

SVM [377,359] An SVM may produce structured or
multivariate output to classify input.

1 http://www.kernel-machines.org/

Classification Frameworks, REIN, MOPED
Training and classification fall into the following general categories:

•	 Supervised. A human will assist during the training process to
make sure the results are correct.

•	 Unsupervised. The classifier can be trained automatically from
feature data and parameters [403].

Putting all the pieces together, we see that training the classifiers may be manual or
automated, simple or complex, depending on the complexity of the objects and the range
of feature metrics used.

An SVM or kernel machine may be the ideal solution, or the problem may be
simpler. For example, a machine vision system to identify fruit may contain a classifier
for each type of fruit, with features including simple color histograms, shape factors
such as area and perimeter and Fourier descriptors, and surface texture metrics, with
constraints to associate and quantify all the features for each type of fruit. The training
process would involve imaging several pieces of fruit of each type; developing canonical
descriptors for color, shape, and surface texture; and devising a top-level classifier
perhaps discriminating first on color, next surface texture, and finally shape. A simpler
fruit classifier may contain just a set of image histograms of accurate color measurements
for each fruit object, and may work well enough if each piece of fruit is imaged with a
high-precision color camera against a black conveyor belt background in a factory.

http://www.kernel-machines.org/

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

181

While most published research is based on a wide range of nonstandard
classification methods designed for specific applications or to demonstrate research
results, some work is being done toward more standardized classification frameworks.

One noteworthy example of a potentially standard classifier framework developed
for robot navigation and object recognition is the REIN method [397], which allows the
mixing and matching of detectors, descriptors, and classifiers for determining constraints.
REIN provides a plug-in architecture and interfaces to allow for any algorithms, such as
OpenCV detectors and descriptors, to be combined in parallel or serial pipelines. Two
classification methods are available in REIN as plug-in modules for concurrent use:
Binarized Gradient Grid Pyramids are introduced as a new method [397], and View Point
Feature Histograms [398] are also used.

The REIN pipeline provides interfaces for (1) attention operators to identify interesting
3D points and reduce the search space; (2) detectors for creating feature descriptors; and
(3) pose estimators to determine geometric constraints for applications like robot motion
such as grasping. REIN is available for research as open source; see reference[397].

Another research project, MOPED [399], provides a regular architecture for robotic
navigation, including object and pose recognition. MOPED includes optimizations to
use all available CPU and GPU compute resources in parallel. Moped provides optimized
versions of SIFT and SURF for GPGPU, and makes heavy use of SSE instructions for pose
estimation.

Kernel Machines
In machine learning, a kernel machine [362] is a framework allowing a set of methods
for statistically clustering, ranking, correlating, and classifying patterns or features to be
automated. One common example of a kernel machine is the support vector machine
(SVM) [341].

The framework for a kernel machine maps descriptor data into a feature space,
where each coordinate in the feature space corresponds to a descriptor. Within the feature
space, feature matching and feature space reductions can be efficiently carried out using
kernel functions. Various kernel functions are used within the kernel machine framework,
including RBF kernels, Fisher kernels, various polynomial kernels, and graph kernels.

Once the feature descriptors are transformed into the feature space, comparisons,
reductions, and clustering may be employed. The key advantage of a kernel machine is
that the kernel methods are interchangeable, allowing for many different kernels to be
evaluated against the same feature data. There is an active kernel machine community
(see kernel-machines.org).

Boosting, Weighting
Boosting [381] is a machine learning concept that allows a set of classifiers to be used
together, organized into combinatorial networks, pipelines, or cascades, and with learned
weights applied to each classifier. This results in a higher, synergistic prediction and
recognition capability using the combined weighted classifiers. Boosting is analogous
to the weighting factors used for neural network inputs; however, boosting methods go
further to combine networks of classifiers to create a single, strong classifier.

kernel-machines.org

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

182

We will illustrate boosting from the Viola Jones method [146,186] also discussed in
Chapter 6, which uses the ADA-BOOST training method to create a cascaded pattern
matching and classification network by generating strong classifiers from many weak
learners. This is done through dynamic weighting factors determined in a training phase,
and the method of using weighting factors is called boosting.

The idea of boosting is to first start out by equally weighting the detected features—
in this case, HAAR wavelets—and then matching the detected features against the set
of expected features; for example, those features detected for a specific face. Each set of
weighted features is a classifier. Classifiers that fail to match correctly are called weak
learners. For each weak learner during the training phase, new weighting factors are
applied to each feature to make the classifier match correctly. Finally, all weak learners
are combined linearly into a cascaded classifier, which is like a pipeline or funnel of weak
classifiers designed to reject bad features early in the pipeline.

The training can take many hours, days or weeks and requires some supervision.
While ADA-BOOST solved binary classification problems, the method can be extended
into multiclass classification [382].

Selected Examples of Classification
We call out a few noteworthy and popular classification approaches here, which are also
listed in Table 4-5.

Table 4-5.  Comparison of Various Interest Point, Descriptor, and Classifier Concepts

Technique FERNS SIFT FREAK Convolutional Network Polygon Shape Factors

Sparse Keypoints x x x x

Feature Descriptor x x x x

Multi-Scale
Representation

x x x

Coarse to Fine
Descriptor

x

Deep Learning
Network

x

Sparse Codebook x

Note: The FERNS method does not rely on a local feature descriptor, and instead relies on a
classifier using constraints between interest points.

Randomized trees is a method using hierarchical patch classifiers [384] based on
Bayesian probability methods, taking a set of simple patch features deformed by random
homography parameters. Ozuysal et al.[307] further develop the randomized tree method
with optimizations using non-hierarchical organization in the form of FERNS, using
binary probability tests for patch classifier membership. Matches are evaluated using a
naïve Bayesian approach.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

183

FERNS training [307] involves combining training data from multiple viewpoints
of each patch to add scale and perspective invariance, using trees with 11 levels and
11 versions of each patch, warped using randomized affine deformation parameters;
some Gaussian noise and smoothing are also applied to the deformed patches. Keypoints
are then located in each deformed patch, and the keypoints found in the most deformed
patches are selected for the training set. The FERNS keypoints use maxima of Laplacian
filters at three scales and retain only the strongest 400 keypoints. The Laplacian keypoints
do not include orientation or fine-scale estimation. FERNS does not use descriptors, just
the strongest Laplacian keypoints computed over the 11 deformed images in each set.

While K-means [354] methods can be very slow, an optimization using hierarchical
Nister Trees [387] is a highly scalable alternative for indexing massive numbers of
quantized or clustered local descriptors in a hierarchical vocabulary tree. The method is
reported to be very discriminative and has been tested on large datasets.

Binary Histogram Intersection Minimization (BHIM) [322] uses pairs of multi-
scale local binary patterns (MSLBP) [322] to form pairwise-coupled classifiers based on
strong divergence between pairs of MSLBP features. Histogram intersection on pairs of
MSLBP features use a distance function such as SAD to find the largest divergence of
histogram distance. The BHIM classifier is then composed of a list of “pairs” of MSLBP
histograms with large divergence, and MSLBPs are matched into the classifier. BHIM uses
features created across multiple scales of training data. It is reported by the authors to
be at least as accurate as ADA-BOOST, and the MSLBP features are reported to be more
discriminant than LBPs.

Alahi et al.[391] develop a method for classification and matching using a cascaded
set of coarse to fine grids of region descriptors called object descriptors (ODs). The
target application is tracking objects across a set of cameras, such as traffic cameras in a
metropolitan area. Each OD is a collection of multi-scale descriptors computed in equal-size
regions over multi-scale grids; the grids range over six scales with a 25 percent scaling
factor difference. Any existing descriptor method can be used in the OD method, such as
SIFT, SURF, or correlation templates. The authors [391] claim improved performance by
cascading descriptors in an OD compared with using existing descriptors.

Feature Learning, Sparse Coding, Convolutional
Networks
Feature learning methods create a set of basis features (we use the term basis features
loosely here) derived from the ground truth data during a training phase. The basis
features are collected into a set. There are several related approaches taken to create the
set, discussed in this section.

Terminology: Codebooks, Visual Vocabulary, Bag of Words,
Bag of Features
Several related approaches and terminologies are used in the feature learning literature,
including variations such as sparse coding, codebooks, bag of words, and visual
vocabularies. However, for the novice, there is some conceptual overlap in the various

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

184

approaches and the terminology is subtle, describing minor variations in methods used
to learn the features and build the classification networks; see references[114–119]. The
sparse codes are analogous to basis features. Many researchers in the areas of activity
recognition [69,75] are using sparse codebooks and extending the field of research.

We describe some of the terminology and concepts, including:

Dictionaries, codebooks, visual vocabularies, bags of words, bags •	
of features, and feature alphabet, containing sets of features.

Sparse codes, sparse coding, and minimal sets of features or •	
codes.

Multi-layered sparse coding and deep belief networks, containing •	
multi-layered classification networks for hierarchical matching;
these are composed of small, medium, and large scale features—
perhaps ten or more layers of scale.

Single-layer sparse coding, with no hierarchy of features, which •	
may be built on top of a multi-scale descriptor such as SIFT.

Unsupervised feature learning, including various methods of •	
learning the best features for a given application from the ground
truth dataset; feature learning has received much attention
recently in the Neural Information Processing Systems (NIPS)
community, especially as applied to convolutional networks.

Sparse Coding
Some early work in the area of sparse coding for natural images can be found in the
work of Olshausen and Field [126], which forms the conceptual basis. To create a sparse
codebook, first an image feature domain is chosen, such as face recognition or automobile
recognition. Then a set of basis items (patches, vectors, or functions) are selected and
put into a codebook based on a chosen uniqueness function. The sparse coding goal is
to contain the smallest set of unique basis items required to achieve the accuracy and
performance goals for the system.

When adding a new feature to the codebook during the training stage, candidate
features are compared against the features already in the codebook to determine feature
uniqueness, using a suitable distance function and empirical threshold. If the feature
is sufficiently unique, as measured by the distance function and a threshold, the new
feature is added to the codebook.

In work by Bo, Ren, and Fox[124], the training phase involves using objects such as a
cup, which is positioned on a small rotating table. Multiple images are taken of the object
from a number of viewpoints and distances to achieve perspective invariance, which
then yields a set of patches taken from a variety of poses, from which the unique sparse
codewords are created and added to the codebook. See also references[124,237,225,226].
Related work includes a histogram of sparse codes descriptor or HSC [125], as described
in Chapter 7, used to retrofit a HOG descriptor.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

185

Visual Vocabularies
Visual vocabularies are analogous to word vocabularies and they share common research
[231]. In the area of document analysis, content is analyzed and described based on
the histogram of unique word counts in the document. Of course, the histogram can be
trimmed and remapped to reduce the quantization and binning. Visual vocabularies
follow the same method as word vocabulary methods, representing images globally by
the frequency of visual words, as illustrated in Figure 4-21, where visual word methods
use feature descriptors of many types.

Figure 4-21.  Hypothetical, simplified illustration representing a set of visual words,
and a histogram showing frequency of use of each visual word in a given image

To build the visual vocabularies, unique features descriptors are extracted and
collected from ground truth images. To be included in the vocabulary, the new feature
must have significant statistical differences from the existing features in the vocabulary,
so features are added to the vocabulary only if they exceed a difference threshold function.

To quantize the visual vocabulary features for determining their uniqueness,
clustering and classification methods are performed on the feature set, and candidate
features are selected that are unique so as to reduce the feature space and assist in
matching speed. Various statistical methods may be employed to reduce the feature
space, such as K-means, KNN, SVM, Bayes, and others.

To collect the visual features, practitioners are using all possible methods of feature
description and image search, including sampling the image at regular grids and at
interest points, as well as scale space searches. The features used in the vocabularies
range from simple rectangular pixel regions, to SIFT features, and everything in between.
Applications for the visual vocabularies range from analyzing spatio-temporal images for
activity recognition [232,235] to image classification [233,234,118,116,235].

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

186

Learned Detectors via Convolutional Filter Masks
As illustrated in Figure 4-22, Richardson and Olson[122] developed a method of learning
optimal convolutional filters as an interest point detector with applications to stereo
visual odometry. This method uses combinations of DCT and HAAR basis features
composed together, using random weights to form a set of candidate 8x8 pixel basis
functions, each of which is tested against a target feature set resembling 2D barcodes
known as AprilTags [527]. Each 8x8 pixel candidate is measure against the AprilTags to
find the best convolution masks for each tag to form the basis set. Of course, other target
features such as corners could be used for ground truth data instead of AprilTags.

Figure 4-22.  (Left) The optimal learned convolution filters for an image of an Office,
a conference room, cubicle, and lobby; gray scale values represent filter coefficient
magnitudes. (Right) Comparable corner detectors in the top row, difference of Gaussian
in the bottom left, and a custom filter which is preferred by the author. (Images © Andrew
Richardson and Edwin Olson, used by permission)

Using the learned convolution masks, the steps in feature detection are as follows:
(1) convolve each masks at chosen pixels to get a response; (2) compare convolution
response against a threshold; (3) suppress non-extrema response values using a 3x3 spatial
filter window. The authors report good accuracy and high performance on the order of
a FAST detector, but with the benefit of higher performance for the combined detection
and non-maximal suppression stage as feature counts increase.

Convolutional Neural Networks, Neural Networks
Convolutional neural networks, pioneered by Lecun [339] and others, are one method
of implementing machine learning algorithms based on neural network theory [360].
Convolutional networks are showing great success in academia and industry [340] for
image classification and feature matching.

Convolutional neural networks are one method of modeling a neural network.
The main compute elements in the convolutional network are many optimized
convolutions in parallel, as well as fast local memory between the compute units. The
run-time classification performance can be quite fast, especially for hardware-optimized
implementations [528].

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

187

As shown in Figure 4-23 at a high level, one method of modeling each neuron and
a network of neurons includes a set of inputs, a set of weighting factors applied to each
input, a combinatorial function, and an output. Many neural models exist that map
into convolutional networks, we refer the reader to the experts, see Lecun [339]. Neural
networks have been devised using several models, but this topic is outside the scope of
this work [360]; see the NIPS community research for more.

Figure 4-23.  (Left) Neurons from a human brain. (Right) One of many possible models
of an artificial neural network [360]. Note that each neuron may have several inputs,
several outputs, a bias factor, and input/output weight factors (not shown). Human
neuron Image on left @ Gerry Shaw, used by permission

Neural networks are multi-level, containing several layers and interconnections.
As shown in the hypothetical neural network in Figure 4-23, a bias input is provided
to each neural function as a weighting factor. Some neural network configurations use
individual weights applied to each individual input, so the weighting factors act as
convolution kernel coefficients. In terms of convolutional networks, the neural network
paradigm can be mapped into localized patches of raw pixels as feature inputs at the
lowest level. For example, the patch size may be 1 pixel or a 5x5 patch of pixels, each input
having a convolutional weighting factor.

Learned weighting factors [85,339] are determined in the networks to use as
convolution kernel values applied to each pixel in the patch. The output of a layer is
referred to as a feature map. The weighting factors are learned in the network, and may
be back-propagated to tune the system during training.

A standard introduction to convolutional networks is provided by Lecun [339].
During the learning process, a key goal is to preserve only the unique features and reduce
the feature space; for this reason, sparse coding is used. Learned features are composed
into a multi-layer structure of scaled high-level, mid-level, and low-level features in a
deep learning approach [339,340] containing 10 or more scale layers. Networks and pixel
input areas may overlap into adjacent convolutional kernels.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

188

Deep Learning, Pooling, Trainable Feature Hierarchies
Local feature descriptors are often concerned with matching at a specific scale or perhaps
even a few scales. However, trainable feature hierarchy methods [402,339] are being
developed that classify features using a hierarchy, or deep set, of features containing
low-level features at fine scales, intermediate, or medium scale features, and high-
level features at coarse scales—perhaps eight or more layers in the feature detection
hierarchy—producing deeper representations, which is the goal of deep learning AI
methods [525].

A deep learning approach may include several layers of neural networks, including
hidden layers. To reduce the feature space at each level of the hierarchy, feature learning
is used at each level to pool [404] similar local features, preserving only the unique
features. Various methods of feature pre-processing are used for pooling, such as feature
whitening [405], to normalize features to be similar under contrast or variance. The
low-level features may include local region pixel details, and the high-level features may
be similar to regional shape metrics. Such trainable feature classification networks are
discussed in the literature under many names, such as deep belief networks [526] and
feature learning.

Many researchers are building deep belief networks relying on rectangular pixel
patches for the feature, and are using convolution or correlation for the feature matching
method. Convolutional networks using deep learning are deployed in many successful
commercial applications, such as speech recognition, or face, person, and gender
recognition. They have also been used to win several competitions [340]. Convolutional
networks using deep learning are reported to increase in accuracy as the resolution
of features decreases toward a finer scale, which increases the depth of the network.
Training is reported to take several days [340], using a bank of dedicated GPUs.

One interesting example is the work of Bo, Ren and Fox [242], where a hierarchical
matching pursuit HMP method (deep method) is employed to learn features in an
unsupervised framework and add to a sparse codebook with two levels. RGB-D data
channels are used to compute the descriptors, including separate descriptors for gray
scale or intensity, RBG color, Z or depth from a depth camera, and the 3D surface
normal from the depth data. A few different descriptor sizes are used, including
16x16 patches sampled with 4-pixel overlap for higher-level matching, and a set of
nonoverlapping 5x5 patches for lower levels. The features are pooled as a part of the
feature learning process.

Summary
In this chapter, we surveyed background concepts and ideas used to create local feature
descriptors and interest point detectors. The key concepts and ideas were also developed
into the vision taxonomy suggested in Chapter 5. Distance functions were covered
here, as well as useful coordinate systems. We examined the shape and pattern of local
descriptors, with an emphasis on local binary descriptors such as ORB, FREAK, and
BRISK to illustrate the concepts.

Chapter 4 ■ Local Feature Design Concepts, Classification, and Learning

189

Feature descriptor discrimination was illustrated using image reconstructions from
feature descriptor data alone. Search strategies were discussed, such as scale space
pyramids and multi-level search, as well as other methods such as grid limited search.
Computer vision system models were covered, including concepts such as feature
space, object models, feature constraints, statistically designed features, and feature
learning. Classification and training were illustrated using several methods, including
kernel machines, convolutional networks, and deep learning. Several references to the
literature were provided for the interested reader to dig deeper. Practical observations
and considerations for designing vision systems were also provided.

In summary, this chapter provided useful background concepts to keep in mind
when reading the local feature descriptor survey in Chapter 6, since the concepts
discussed here were taken mainly from the current local descriptor methods in use;
however, some additional observations and directions for future research were suggested
in this chapter as well.

191

Chapter 5

Taxonomy of Feature
Description Attributes

“for the Entwives desired order, and plenty, and peace (by which they
meant that things should remain where they had set them).”

—J. R. R. Tolkien, Lord of the Rings

This chapter develops a general Vision Metrics Taxonomy for feature description, so as
to collect summary descriptor attributes for high-level analysis. The taxonomy includes
a set of general robustness criteria for feature description and ground truth datasets. The
material presented and discussed in this book follows and reflects this taxonomy. By
developing a standard vocabulary in the taxonomy, terms and techniques are intended
to be consistently communicated and better understood. The taxonomy is used in the
survey of feature descriptor methods in Chapter 6 to record ‘what’ practitioners are doing.

As shown in Figure 5-1, the Vision Metrics Taxonomy is based on feature descriptor
dimensions using three axes—shape and pattern, spectra, and density—intended to
create a simple framework for analysis and discussion. A few new terms and concepts
have been introduced where there had been no standard, such as for the the term
feature descriptor families. These have been broken down into categories of local binary
descriptors, spectra descriptors, basis space descriptors, and polygon shape descriptors;
these descriptor families are also discussed in detail in Chapter 4. Additionally, the
taxonomy borrows some useful terminology from the literature when it exists there,
including several terms for the robustness and invariance attributes.

Chapter 5 ■ Taxonomy of Feature Description Attributes

192

Why create a taxonomy that is guaranteed to be fuzzy, includes several variables,
and will not perfectly express the attributes of any feature descriptor? The intent is to
provide a framework to describe various design approaches used for feature description.
However, the taxonomy is not intended to be used for comparing descriptors in terms of
their goodness, performance, or accuracy.

The three axes of the Vision Metrics Taxonomy are:

1.	 Shape and pattern: How the pixels are taken from the target
image.

2.	 Density: The extent of the image required for the descriptor,
differentiating among local, regional, and global descriptors.

3.	 Spectra: The scalar and vector quantities used for the
metrics, and a summary breakdown of the algorithms and
computations.

Feature Descriptor Families
Feature descriptors and metrics have developed along several lines of thinking into
separate families. In many cases, the research communities for the various families are
working on different problems, and there is little cross-pollination or mutual interest.

Figure 5-1.  Taxonomy for feature descriptor dimensions, including (1) feature density
as global, regional, and sparse local; (2) shape and pattern of pixels used to compute the
descriptor, which includes rectangles, circles, and sparse sampling patterns; (3) spectra,
which includes the spectrum of information contained in the feature itself

sparse global
Density

Spectra

Shape & pattern

regional
block

polygon

pattern

intensity scalar

color scalar

gradient scalar

multivariate space

basis or set

Chapter 5 ■ Taxonomy of Feature Description Attributes

193

For example, cell biology and medical applications are typically interested in polygon shape
descriptors, also referred to in the literature as image moments. Those involved with trendy
augmented reality applications for mobile phones, as discussed in the computer vision
literature, may be more interested in local binary descriptors. In some cases, there are
common concepts shared by feature detectors and feature descriptors, as will be discussed
in detail in Chapter 6; these include the use of gradients and local binary patterns.

Based on the taxonomy shown in Figure 5-1, we divide features into the following
families:

•	 Local Binary Descriptors. These sample point-pairs in a local
region and create a binary coded bit vector, 1 bit per compare,
amenable to Hamming distance feature matching. Examples
include LBP, FREAK, ORB, BRISK, Census.

•	 Spectra Descriptors. These use a wide range of spectra values,
such as gradients and region averages. There is no practical limit
to the spectra that could be used with these features. One of
the most common spectra used in detectors is the local region
gradient, such as in SIFT. Gradients are also used in several
interest point and edge detectors, such as Harris, Sobel.

•	 Basis Space Descriptors. These methods encode the feature
vector into a set of basis functions, such as the familiar Fourier
series of sine and cosine magnitude and phase. In addition,
existing and novel basis features are being devised in the form of
sparse codebooks and visual vocabularies (we use the term basis
space loosely).

•	 Polygon Shape Descriptors. These take the shape of objects
as measured by statistical metrics, such as area, perimeter,
and centroid. Typically, the shapes are extracted using a
morphological vision pipeline and regional algorithms, which can
be more complex than localized algorithms for feature detectors
and feature descriptors (as will be discussed in Chapter 8). Image
moments [518] is a term often used in the literature to describe
shape features.

Prior Work on Computer Vision Taxonomies
Several research papers compare and contrast various aspects of sparse local features,
and the field is rich with examples of comparisons of keypoint detectors [306,93] and
feature descriptors [145,107]. New feature descriptor methods and improvements are
usually compared to existing methods, utilizing several robustness and invariance
criteria. However, there is a lack of formal taxonomy work to highlight the subtle details
affecting design and comparison. For a good survey covering state-of-the-art computer
vision methods, see Szelinski [324].

Chapter 5 ■ Taxonomy of Feature Description Attributes

194

It should be noted that computer vision is a huge field. Several thousand research
papers are published every year, and several thousand equally interesting research papers
are rejected by conference publishers. Here are a few noteworthy works that survey and
organize the field of feature metrics and computer vision.

•	 Affine Covariant Interest Point Detectors. A good taxonomy is
provided by Mikolajczyk et al. [153] for affine covariant interest
point detectors. Also, Lindberg [150] has studied the area of scale
independent interest point methods extensively. We seek a much
richer taxonomy, however, to cover design principles for feature
descriptors, and we have developed our taxonomy around families
of descriptor methods with common design characteristics.

•	 Annotated Computer Vision Bibliography. From USC and
maintained by Keith Price, this resource provides a detailed
breakdown of computer vision into several branches, as well as links
to some key research in the field and computer vision resources.1

•	 CVonline: The Evolving, Distributed, Non-Proprietary,
On-Line Compendium of Computer Vision. This provides a
comprehensive and detailed list of topics in computer vision.
The website is maintained by Robert Fisher, and indexes the key
Wikipedia articles. This may be one of the best online resources
currently available.2

•	 Local Invariant Feature Detectors: A Survey. Prepared by Tinne
Tuytelaars and Krystian Mikolajczyk [107], this reference provides
a good overview of several feature description methods, as well as a
discussion of literature on local features, performance and accuracy
evaluations of several methods, types of methods (corner detectors,
blob detectors, feature detectors), and implementation details.

Robustness and Accuracy
A key goal for computer vision is robustness, or the ability of a feature to be recognized
under various conditions. Robustness can be broken down into several attributes. For
example, detecting a feature should be robust over various criteria that are critical to a
given application, such as scale, rotation, or illumination. We might also use the terms
invariant or invariance to describe robustness. The end goal is accurate localization,
correspondence, and robustness under invariance criteria.

However, some robustness attributes are dependent on the feature descriptor
combined with other variables. For example, many local feature descriptor methods
compute position and orientation based on a chosen interest point method, so the
descriptor accuracy is interrelated with the interest point method. The distance function
and classification method are interrelated as well, to determine final accuracy.

1http://iris.usc.edu/Vision-Notes/bibliography/contents.html.
2http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm.

http://iris.usc.edu/Vision-Notes/bibliography/contents.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm

Chapter 5 ■ Taxonomy of Feature Description Attributes

195

Note■■  S ince it is not possible to define robustness or accuracy of a feature descriptor
in isolation from the interest point method, the classifier, and the distance function, the
opportunity exists to mix and match well-known detectors and descriptors, combined with
various classifiers, to yield the desired robustness and accuracy.

Robustness and accuracy are a combination of the following factors:

1.	 Interest point accuracy, since many descriptors depend on
the keypoint location and orientation.

2.	 Descriptor accuracy, as each descriptor method varies, and
can be tuned.

3.	 Classifier and distance function accuracy, as a poor
classifier and matching stage can lead to the wrong results.

Part of the challenge for an application, thus, is to define the robustness criteria, attribute
by attribute, and then to define the limits and bounds of invariance sought. For example,
scale invariance from 1x to 100x magnification may not be needed and hardly possible, but
scale invariance from 1x to 4x may be all that is needed and much simpler to reach.

Several attributes of robustness are developed here into a robustness taxonomy.
To determine actual robustness, ground truth data is needed as a basis to check the
algorithms and measure results. Chapter 7 provides a background in ground truth data
selection and design.

General Robustness Taxonomy
Robustness criteria can be expressed in terms of attributes and measured as invariance or
robustness to those attributes. (See Chapter 7, Table 7-1, for more information on each of
the robustness criteria attributes, with considerations for creating ground truth datasets.)
Robustness criteria and attributes are grouped under the following group headings:

Illumination•	

Color•	

Incompleteness•	

Resolution and distance•	

Geometric distortion•	

Discrimination and uniqueness•	

Each robustness criterions group contains several finer-grain attributes, as illustrated
in Figure 5-2.

Chapter 5 ■ Taxonomy of Feature Description Attributes

196

• Uneven illumination
• Brightness
• Contrast
• Vignette

• Color Space
Accuracy

• Color Channels
• Color Bit Depth

• Clutter
• Occlusion
• Outliers, proximity
• Noise
• Motion blur
• Jitter, Judder

• Location accuracy or
position

• Shape & thickness
distortion

• Focal plane or depth
• Pixel Depth

Resolution

• Scale
• Rotattion
• Geometric warp
• Reflection
• Radial distortion
• Polar distortion

• Quality

ColorIllumination Incompleteness Geometric accuracy
Resolution,

uniqueness
Discrimination,

Figure 5-2.  General robustness criteria and their attributes

Let’s take a look at these robustness attributes, along with some practical
considerations for design and implementation of feature descriptors and the
corresponding ground truth data to address the attributes.

Illumination
Light is the source of all imaging, and it should be the no.1 priority area for analysis
and consideration when setting requirements for a given application. Illumination has
several facets and is considered separately from color and color spaces. In some cases,
the illumination can be corrected by changing the light source, or by adding or relocating
light sources. In other cases, image pre-processing is needed to correct the illumination
to prepare the image for further analysis and feature extraction.

Attention to illumination cannot be stressed enough; for example, see Figure 4-3
showing the effects of pre-processing to change the illumination in terms of increasing
the contrast for feature extraction. Key illumination attributes are:

•	 Uneven illumination: image contains dark and bright regions,
sometimes obscuring a feature that is dependent on a certain
range of pixel intensities.

•	 Brightness: there’s too much or too little total light, affecting
feature detection and matching.

•	 Contrast: intensity bands are too narrow, too wide, or contained
in several bands.

•	 Vignette: light is distributed unevenly, such as dark around
the edges.

Color Criteria
When color is used, accuracy of color is critical. Color management and color spaces are
discussed in Chapter 2, but some major considerations are:

•	 Color space accuracy: which color space should be used—
RGB, YIQ, HSV, or a perceptually accurate color sapce such as
CIECAM02 Jch or Jab? Each color space has accuracy and utility
considerations, such as the ease of transforming colors to and
from color spaces.

Chapter 5 ■ Taxonomy of Feature Description Attributes

197

•	 Color channels: since cameras typically provide RGB data,
extracting the gray scale intensity from the RGB data is often
important. There are many methods for converting RGB color to
gray scale intensity, and many color spaces to choose from.

•	 Color bit depth: color information, when used, must be accurate
enough for the application. For example, 8-bit color may be
suitable for most applications, unless color discrimination is
necessary, so higher precision color using 10,12,14, or 16 bits per
channel may be needed.

Also, depending on the camera sensor used, there will be signal characteristics,
such as color sensitivity and dynamic range, which differ for each color channel. For
demanding color-critical applications, the camera sensor should be well understood
and have a known method of calibration. Individual colors may need to be compensated
during image pro-processing. (See Chapter 1 for a discussion of camera sensors.)

Incompleteness
Features are not always presented in the image from frame to frame the way they are
expected, or in the way they were learned. The features may appear to be incomplete.
Key attributes of incompleteness include:

•	 Clutter: the feature is obscured by surrounding image features,
and the feature aliases and blends into the surrounding pixels.

•	 Occlusion: the feature is partially hidden; in many cases the
application will encounter occluded features or sets of features.

•	 Outliers, proximity: sometimes only features in certain regions
are used, and outlying features must be detected and ignored.

•	 Noise: can come from rain, bad image sensors, and many
other sources. A constant problem, noise can be compensated
for, if it is understood, using a wide range of filter methods during
pre-processing.

•	 Motion blur: if it is measured and understood, motion blur can
be compensated for using filtering during pre-processing.

•	 Jitter, judder: a motion artifact, jitter or judder can be corrected,
but not always; this can be a difficult robustness criteria to meet.

Resolution and Accuracy
Robustness regarding resolution, scale, and distance is often a challenge for computer
vision. This is especially true when using feature metrics that rely on discrete pixel sizes
over which the pixel area varies with distance. For example, feature metrics that rely
on pixel neighborhood structure alone do not scale well or easily, such as correlation
templates and most local region kernel methods. Other descriptors, such as those based

Chapter 5 ■ Taxonomy of Feature Description Attributes

198

on shape factors, may provide robustness that pixel region structures cannot achieve.
Depending on the application, more than one descriptor method may be required to
handle resolution and scale.

To meet the challenge of resolution and distance robustness, various methods are
employed in practice, such as scale-space image pyramid collections and feature-space
pyramids, which contain multi-scale representations of the feature. Key criteria for
resolution and distance robustness include:

•	 Location accuracy or position: how close does the metric need
to provide coordinate location under scale, rotation, noise and
other criteria? Is pixel acuracy or sub-pixel accuracy needed?
Regional accuracy methods of feature description cannot
determine positional accuracy as well; for example, methods that
use HAAR-like features and integral images can suffer the most,
since in computing the HAAR rectangle, all pixels in the rectangle
are summed together, throwing away discrimination of individual
pixel locations. Pixel-accurate feature accuracy can also be
challenging, since as features move and rotate they distort, and
the pixel sampling artifacts create uncertainty.

•	 Shape and thickness distortion: distance, resolution, and
rotation combine to distort the pixel sample shapes, so a feature
may appear to be thicker than it really is or thinner. Distortion is a
type of sampling artifact.

•	 Focal plane or depth: depending on distance, the pixel area
covered by each pixel changes size. In this case, depth sensors can
provide some help when used along with RGB or other sensors.

•	 Pixel depth resolution: for example, processing color chanels
to preserve the bit accuracy using float or unsigned short int as a
minimum can be required.

Geometric Distortion
Perhaps the most common distortion of image features is geometric, since geometric
distortions take many forms as the camera moves and as objects move. Geometric
attributes for robustness include the following:

•	 Scale: distance from viewpoint, a commonly addressed
robustness criteria.

•	 Rotation: important in many applications, such as industrial
inspection.

•	 Geometric warp: key area of research in the fields of activity
recognition and dynamic texture analysis, as discussed in
Chapters 4 and 6.

•	 Reflection: flipping the image by 180 degrees.

Chapter 5 ■ Taxonomy of Feature Description Attributes

199

•	 Radial distortion: a key problem in depth sensing and also for
2D camera geometry in general, since depth fields are not
uniform or simple; see Chapter 1.

•	 Polar distortion: a key problem in depth sensing geometry;
see Chapter 1.

Efficiency Variables, Costs and Benefits
We consider efficiency to be related to compute, memory, and total invariance attributes
provided. How efficient is a feature descriptor or feature metric? How much compute
is needed to create the metric? How much memory is needed to store the metric? How
accurate is the metric? How much robustness and invariance are provided vs. the cost of
compute and memory? To answer the above questions is very difficult and depends on
how the entire vision pipeline is implemented for an application, as well as the compute
resources available. The Vision Metrics Taxonomy provides information to pursue such
questions, but as always pursuing the wrong questions may lead to the wrong answers.

Discrimination and Uniqueness
The selection of optimal, discriminating features is achieved using a variety of methods.
For example, local feature detector methods filter out only the most discriminating
or unique candidates based on criteria such as corner strength; then descriptors
are computed at the selected interest points as patches or other shapes; and finally
the resulting descriptor is either accepted or rejected based on uniqueness criteria.
Uniqueness is also the key criterion for creating sparse codebooks discussed in Chapter 4.

Discrimination can be measured by the ability to recreate an image from only the
descriptor information, as discussed in Chapter 4. A descriptor with too little information
to adequately recreate an image may be considered weak or non discriminating.

General Vision Metrics Taxonomy
To understand feature metrics, we develop a Vision Metrics Taxonomy composed of
summary criteria. Each criterion is selected with a practical, engineering perspective in
mind to provide information for evaluation and implementation in specific terms, such as
algorithm, spectra, memory size, and other attributes. The basic categories of the Vision
Metrics Taxonomy are shown in Table 5-1, and also summarized here as a list, and each
list item is discussed in separate sections in this chapter:

Feature Descriptor Family•	

Spectra Dimension•	

Spectra Value•	

Interest Point•	

Storage Format•	

Data Types•	

Chapter 5 ■ Taxonomy of Feature Description Attributes

200

Descriptor Memory•	

Feature Shape•	

Feature Pattern•	

Feature Density•	

Feature Search Method•	

Pattern Pair Sampling•	

Pattern Region Size•	

Distance Function•	

Run-Time Compute•	

Table 5-1.  Vision Metrics Taxonomy

Chapter 5 ■ Taxonomy of Feature Description Attributes

201

Many of the background concepts used in the taxonomy are discussed in Chapter 4,
where attributes about the internal structure and goals of common features are analyzed.
In addition, this taxonomy is illustrated in the Feature Metric Evaluation (FME)
information tables later in this chapter. A small subset of the taxonomy is used in the
Chapter 6 survey of feature descriptors to record summary information. The taxonomy
in Table 5-1 is a guideline for collecting and summarizing information. No judgment on
goodness or performance is recorded or implied.

Feature Descriptor Family
As described at the beginning of this chapter, feature descriptors are classified in this
taxonomy as follows:

Local Binary Descriptors•	

Spectra Descriptors•	

Basis Space Descriptors•	

Polygon Shape Descriptors•	

Spectra Dimensions
The spectra or values recorded in the feature descriptor vary, and may include one or
more types of information or spectra. We divide the categories as follows:

•	 Single variate: stores a single value such as an integral image or
region average, or just a simple set of pixel gradients.

•	 Multivariate: multiple spectra are stored; for example, a
combination of spectra such as color information, gradient
magnitude and direction, and other values.

Spectra Type
The spectral type of feature descriptor is a major axis in this taxonomy, as shown in
Figure 5-1. Here are common spectra, which have been discussed in Chapter 3 and will
be discussed in Chapter 6 as well.

•	 Gradient magnitude: a measure of local region texture or
difference, used by a wide range of patch-based feature descriptor
methods. It is well known [248] that the human visual system
responds to gradient information in a scale and rotationally
invariant manner across the retina, as demonstrated in SIFT and
many other feature description methods, thus the use of gradients
is a preferred method for computer vision.

Chapter 5 ■ Taxonomy of Feature Description Attributes

202

•	 Gradient direction: some descriptor methods compute a
gradient direction and others do not. A simple region gradient
direction method is used by several feature descriptors and
edge detection methods, including Sobel and SIFT, to provide
rotational invariance.

•	 Orientation vector: some descriptors are oriented and others
are not. Orientation can be computed by methods other than a
simple gradient—for example, SURF uses a method of sampling
many gradient directions to compute the dominant gradient
orientation of the entire patch region as the orientation vector. In
the RIFF method, a radial relative orientation is computed.
In the SIFT method, any orientations detected within 80 percent
of the dominant orientation will result in an additional interest
point being generated, so the same descriptor may allow multiple
interest points differing only in orientation.

•	 Sensor data: data such as accelerometer or GPS information is
added to the descriptor. In the GAFD method, a gravity vector
computed from an accelerometer is used for orientation.

•	 Multigeometry: multiple geometric transforms of the descriptor
data that are stored together in the descriptor, such as several
different perspective transforms of the same data as used in the
RFM2.3 descriptor; the latter contains the same patch computed
over various geometric transforms to increase the scale, rotation,
and geometric robustness.

•	 Multiscale: instead of relying on a scale-space pyramid, the
descriptor stores a copy of several scaled representations. The
multi-resolution histogram method described in Chapter 4 is one
such method of approximating feature description over a range
of scales, where scale is approximated using a range of Gaussian
blur functions, and their resulting histograms are stored as the
multi-scale descriptor.

•	 Fourier magnitude: both the sine and cosine basis functions from
the Fourier series can be used in the descriptor—for example, in the
polygon shape family of descriptors as illustrated in Figure 6-29.
The magnitude of the sine or cosine alone is a revealing shape
factor, without the phase, as illustrated in Figure 6-6, which shows
the histogram of LBPs run through a Fourier series to produce
the power spectrum. This illustrates how the LBP histogram
power spectrum provides rotational invariance. Other methods
related to Fourier series may use alternative arrangements of
the computation, such as the discrete cosine transform (DCT),
which uses only the cosine component and is amenable to integer
computations and hardware acceleration as commonly done for
media applications.

Chapter 5 ■ Taxonomy of Feature Description Attributes

203

•	 Fourier phase: phase information has been shown to be valuable
for creating a blur-invariant feature descriptor, as demonstrated
in the LPQ method discussed in Chapter 6.

•	 Other basis functions: can be used for feature description.
Wavelets are commonly used in place of Fourier methods owing
to greater control over the function window and tuning of the
basis functions derived from the mother wavelet into the family
of related wavelets. See Chapter 2 for a discussion of wavelets
compared to other basis functions.

•	 Morphological shape metrics: predominantly used in the
polygon shape descriptor family, composed of shape factors,
and referred to as image moments in some literature. They are
computed over the gross features of a polygon image region such
as area, perimeter, centroid, and many others. The vision pipeline
and image pre-processing used for polygon shape description
may include morphological and texture operators, rather than
local interest point and descriptor computations.

•	 Learned binary descriptors: created by running ground truth
data through a training step, such as developed in ORB and
FREAK, to create a set of statistically optimized binary sampling
point-pair patterns.

•	 Dictionary, codebook, vocabulary from feature learning
methods: build up a visual vocabulary, dictionary, or sparse
codebook as a sparse set of unique features using a wide range of
descriptor methods, such as simple images correlation patches
or SIFT descriptors. When combined as a sparse set, these are
representative of the features found in a set of ground truth data
for an application domain, such as automobile recognition or face
recognition.

•	 Region histogram 2D: used for several types of information, such
as binning gradient direction, as in CARD, RFM2.3, and SURF;
or for binning linear binary patterns, such as the LBP. The SIFT
method of histogramming gradient information uses a fairly
large histogram bin region, which provides for some translation
invariance, similar to the human visual system treatment of the
3D position of gradients across the retina [248].

•	 3D histogram: used in methods such as used in SIFT, which
represents gradient magnitude and orientation together as a 3D
histogram.

•	 Cartesian bins: a common method of binning local region
information into the descriptor simply based on the Cartesian
position of pixels in a patch—for example, histogramming the
pixel intensity magnitude of each point in the region.

Chapter 5 ■ Taxonomy of Feature Description Attributes

204

•	 Log polar bins: instead of binning local region feature
information in Cartesian rectangular arrangements, some
descriptors such as GLOH use a log polar coordinate system to
prepare values for histogram binning, with the goal of adding
better rotational invariance to the descriptor.

•	 Region sum: such as an integral image, a method used to quickly
sum the local region pixel values, or HAAR feature. The region
sum is stored into the feature representing the total value of all the
pixels in the region. Note that region summation may be good for
coarse-feature description of an area, but the summation process
eliminates fine local texture detail.

•	 Region average: average value of the pixels in a region area,
also referred to as a box filter, which may be computed from a
convolution operation, scaled integral image, or by simply adding
up the pixel values in the array.

•	 Region statistical: such as region moments, like standard
deviation, variance, or max or min values.

•	 Binary pattern: such as a vector of binary values, or bits—for
example, stored as a result of local pixel pair compare
computations of local neighborhood pixel values as used in the
local binary descriptor family, such as LBP, Census, and ORB.

•	 DoG (1-bit quantized): as used in the FREAK descriptor, a set
of DoG or bandpass filter features of different sizes, taken over
a local binary region in a retinal sampling pattern similar to the
human visual system, compared in pairs, and quantized to a
single bit in a histogram vector.

•	 DoG (multi-bit): a type of bandpass filter that is implemented
using many variations, where a Gaussian blur filter is applied to the
image, then the image is subtracted from (a) a shifted copy of itself,
(b) a copy of itself at another Gaussian blur level, or (3) a copy of
itself at another image scale as in the SIFT descriptor method.

•	 Bit vector of values: a bit string containing a sequence of values
quantized to a single bit, such as a threshold.

•	 3D surface normals: the analog to 2D gradients except in 3D,
used in the HON4D method [198] to describe the surface of a 3D
object location in the feature descriptor.

•	 Line segment metric: as in the CCH method, used to describe
the line segments composing an object perimeter. Or, as used
as a shape factor for objects where the length of a set of radial
line segments originating at the centroid and extending to the
perimeter are recorded in the descriptor, which can be fed into a
Fourier transform to yield a power spectrum signature, as shown
in Figure 6-29.

Chapter 5 ■ Taxonomy of Feature Description Attributes

205

•	 Color space info: some descriptors do not take advantage of
color information, which in many cases can provide added
discrimination and accuracy. Both the use of simple RGB
channels, such as in the RGB-D methods [75,118], or using color
space conversions into more accurate spaces are invaluable. For
example, face recognition has problems distinguishing faces from
different cultures, and since the skin tone varies across regions,
the color value can be measured and added to the descriptor.
However, several descriptors make use of color information,
such as S-LBP, which operates in a colorimetric, accurate color
space such as CIE-Lab, or the F-LBP, which computes a Fourier
spectrum of color distance from the center pixel to adjacent
pixels, as well as color variants of SIFT and many others.

•	 Gray scale info: the gray scale or color intensity value is
the default spectra in almost all descriptors. However, the
method used to create the gray scale from color, and the
image pre-processing used to prepare intensity for analysis
and measurement, are critical for the vision pipeline and were
discussed in Chapter 2.

Interest Point
The use of interest points is optional with feature description. Some methods do not
use interest points, and sample the image on a fixed grid rather than at every pixel,
such as the Viola Jones method using HAAR-like features. It is also possible to simply
create a feature descriptor for every pixel rather than just at interest points, but since the
performance impact is considerable, interest points are typically used to find the best
location for a feature first.

Several methods for finding interest points are surveyed and discussed in Chapter 6.
Categories of interest points for the taxonomy include:

•	 Point, edge, or corner: these methods typically start with
locating the local region maxima and minima; methods used
include gradients, local curvature, Harris methods, blob
detectors, and edge detectors.

•	 Contour based, perimeter: some methods do not start feature
description at maxima and minima, and instead look for structure
in the image, such as a contour or perimeter, and this is true
mainly for the morphological shape based methods.

•	 Other: there are other possibilities for determining interest point
location, such as prediction of likely interest point or feature
positions, or using grid or tile regions.

•	 No interest point: some methods do not use any interest
points at all.

Chapter 5 ■ Taxonomy of Feature Description Attributes

206

Storage Formats
Storage formats are a practical matter for memory efficiency and engineering real systems
and designing data structures. Knowing the storage format can guide efforts during
engineering and optimization toward various programming constructs, instruction sets,
and memory architecture.

For example, both CPU and GPGPU graphics processors often provide dedicated
silicon to support various storage format organizations, such as scatter and gather
operations, and sparse and dense data structure support. Understanding the GPGPU
capabilities can provide guidelines for designing the storage format, as discussed in
Chapter 8. Storage format summary:

•	 Spectra vector: may be a set of histograms, a set of color values, a
set of basis vectors.

•	 Bit vector: local binary patterns use bit vector data types, some
programming languages include bit vector constructs, and some
instruction sets include bit vector handling instructions.

•	 Multivariate collection: a set of values such as statistical
moments or shape factors.

Data Types
The data types used for feature description are critical for accuracy, memory use, and
compute. However, it is worth noting that data types can be changed as a tradeoff for
accuracy in some cases. For example, converting floating point to fixed point or integer
computations may be more memory efficient, as well as power efficient, since a floating
point silicon ALU complex occupies almost four times more die space, thus consuming
more power than an integer ALU. The data type summary includes:

•	 Float: many applications require floating point for accuracy. For
example, a Fourier transform of images requires at least 64 bits
double precision (larger images require more precision); other
applications like target tracking may require 32-bit floating point
for precision trajectory computations.

•	 Integer: pixel values are commonly represented with 8 bit values,
with 16 bits per pixel common as image sensors provide better
data. At least 32-bit integers are needed for many data structures
and numerical results, such as integral images.

•	 Fixed point: this is an alternative representation to floating point,
which saves data space and can be implemented more efficiently
in silicon. Most modern GPUs support several fixed-point
formats, and some CPUs as well. Fixed-point formats include
8-,16-, and 24-bit representations. Accuracy may be close enough
using fixed point, depending on the application. In addition to
fixed-point data types, GPUs and some processors also provide
various normalized data types (see manufacturer information).

Chapter 5 ■ Taxonomy of Feature Description Attributes

207

Descriptor Memory
The total descriptor memory size is part of the efficiency of the descriptor, and compute
performance is another component. A descriptor with a large memory footprint, few
invariance attributes and heavy compute is inefficient. We are interested in memory size
as a practical matter. Key memory-related attributes include:

•	 Fixed length or variable length: some descriptors allows for
alternative representations.

•	 Byte count: the length of all data in the descriptor.

Feature Shapes
A range of shapes are used for the pixel sampling pattern; shapes are surveyed in Chapter
4 including the following methods:

•	 Rectangle block patch: simple x, y, dx, dy range.

•	 Symmetric polygon region: may be an octagon, as in the
CenSurE method, or a circular region, like FREAK or DAISY.

•	 Irregular segmented region: such as computed using
morphological methods following segmented regions or
thresholded perimeter.

•	 Volumetric region: some features make use of stacks of images
resembling a volume structure. As shown in Figure 6-12, the VLBP
or Volume LBP and the LBP-TOP make use of volumetric data
structures. The dynamic texture methods and activity recognition
methods often use sets of three adjacent patches from the current
frame plus 2 past frames, organized in a spatio-temporal image
frame history, similar to a volume.

•	 Deformable: most features use a rigid shape, such as a fixed-size
rectangle or a circle; however, some descriptors are designed with
deformation in mind, such as scale deformations [345,346], and
affine or homographic deformation [220], to enable more robust
matching.

Feature Pattern
Feature pattern is a major axis in this taxonomy, as shown in Figure 5-3, since it affects
memory architecture and compute efficiency.

Chapter 5 ■ Taxonomy of Feature Description Attributes

208

Feature shape and pattern are related. Shape refers to the boundary, and pattern
refers to the sampling method. Patterns include:

•	 Rectangular kernel: some methods use a kernel to define which
elements in the region are included in the sample; see Figure 5-3
(left image) showing a kernel that does not use the corner pixels
in the region; see also Figure 4-10.

•	 Binary compare pattern: such as FREAK, ORB, and BRISK,
where specific pixels in a region are paired to form a complex
sampling pattern.

•	 DNET line sample strip set: where points along a line segment
are sampled densely; see Figure 4-8.

•	 Radial line sampling pattern: where points on radial line
segments originating at a center point are sampled densely; for
example, used to compute Fourier descriptors for polygon region
shape; see Figure 6-29.

•	 Perimeter or contour edge: where points around the edge of a
shape or region are sampled densely.

•	 Sample weighting pattern: as shown in Figure 6-17, SIFT uses a
circular weighting pattern in the histogram bins to decrease the
contribution of points farther away from the center of the patch.
The D-NETS method uses binary weighting of samples along the
line strips, favoring points away from the endpoints and ignoring
points close to the end points. Weighting patterns can provide
invariance to noise and occlusion.

See Chapter 4 for more illustrations in the section on patches and shapes.

Feature Density
As shown in Figure 5-1, feature density is a major axis in this taxonomy. The amount of
the image used for the descriptor is referred to in this taxonomy as feature density. For
example, some descriptors are intended to use smaller regions of local pixels, anchored at

1 -4

10

1

0

0 1 0

Figure 5-3.  Feature shapes. (Left to right) Rectangular patch, symmetric polygon region,
irregular segmented region, and volumetric region

Chapter 5 ■ Taxonomy of Feature Description Attributes

209

interest points, and to ignore the larger image. Other methods use larger regions. Density
categories include:

•	 Global: covers the entire image, each pixel in the image.

•	 Regional: covers fairly large regions of the image, typically on a
grid, or around a segmented structure or region, not anchored at
interest points.

•	 Sparse: may be taken at interest points, or in small regions at
selected points such as random points in the BRIEF descriptor,
trained points such as FREAK and ORB, or a sparse sampling grid
as in the RFM2.3 descriptor.

Feature Search Methods
The method used for searching for features in the image is a significant for feature
descriptor design. The search method determines a lot about the design of the descriptor,
and the compute time required in the vision pipeline. We list several search variations
here, and more detailed descriptions and illustrations are provided in Chapter 4. Note
that a feature descriptor can make use of multiple search criteria. Feature search related
information is summarized as follows:

•	 Coarse-to-fine image pyramid: or multi-scale search, using a
pyramid of coarser resolution copies of the original.

•	 Scale space pyramid: the scale space pyramid is a variation of
the regular coarse-to-fine image pyramid, where a Gaussian blur
function is computed over each pyramid scale image [547] to
create a more uniform search space; see Figure 4-17.

•	 Pyramid scale factor: captures pyramid scale intervals, such as
octaves or other scales—for example, ORB uses a ~1.41x scale.

•	 Dense sliding window: where the search is made over each pixel
in the image, often within a sliding rectangular region centered at
each pixel.

•	 Grid block search: where the image is divided into a fixed grid
or tiles, so the search can be faster but does not discriminate as
well as dense methods. For example, see Figure 6-17 describing
the PHOG method, which computes descriptors at different grid
resolutions across the entire image.

•	 Window search: limited dense search to particular regions,
such as in stereo matching between two L/R frames where the
correspondence search range is limited to expected locations.

•	 Sparse at interest points: where a corner detector or other
detector is used to determine where valid features may be found.

Chapter 5 ■ Taxonomy of Feature Description Attributes

210

•	 Sparse at predicted points: such as in tracking and mapping
algorithms like PTAM, where the location of interest points is
predicted based on motion or trajectory, and then a feature
search begins at the predicted points.

•	 Sparse in segmented regions: for example, when morphological
shape segmentation methods or thresholding segmentation
methods define a region, and a second pass is made through the
region looking for features.

•	 Depth segmented regions (Z): when depth camera information
is used to threshold the image into foreground and background,
and only the foreground regions are searched for features.

•	 Super-pixel search: similar to the image pyramid method, but a
multi-scale representation of the image is created by combining
pixel values together using super-pixel integration methods, as
discussed in Chapter 2.

•	 Sub-pixel search: where sub-pixel accuracy is needed—for
example, with region correlation, so several searches are made
around a single pixel, with sub-pixel offsets computed for each
compare, and in some cases geometric transforms of the pattern
are made prior to feature matching.

•	 Double-scale first pyramid level: In the SIFT scale-space
pyramid method, the lowest level of the pyramid is computed
from a doubled 2x linear interpolated version of the full-scale
image, which has the effect of preserving high-frequency
information in the lowest level of the image pyramid, and
increasing the number of stable keypoints by about four times,
which is quite significant. Otherwise, computing the Gaussian
blur across the original image would have the effect of throwing
away most of the high-frequency details.

Pattern Pair Sampling
For local binary patterns, pattern pair sampling design is one of the key areas of
innovation. Pairs of points are compared using a function such as (center pixel < kernel
pixel) using a compare region threshold, and then the result of the comparison forms the
binary descriptor vector. Note that many local binary descriptor method were discussed
and illustrated in Chapter 4, to illustrate variations in point-pair sampling configuration
and compare functions. The vision taxonomy for point-pair sampling includes:

•	 Center – boundary pair: such as in the LBP family and Census
transform.

•	 Random pair points: such as in BRIEF, and semi-random in ORB.

Chapter 5 ■ Taxonomy of Feature Description Attributes

211

•	 Foveal centered trained pairs: such as in FREAK and Daisy.

•	 Trained pairs: many methods train the point-pairs using ground
truth data to meet objective criteria, such as FREAK and ORB.

•	 Symmetric pairs: such as BRISK, which provides short and long
line segments spaced symmetrically for point-pair comparisons.

Pattern Region Size
The size of the local pattern region is a critical performance factor, even though memory
access is likely from fast-register files and cache. For example, if we are performing a
convolution of a 3x3 pattern region, there are nine multiplies per kernel, and possibly
one summary multiply to scale the results, for a total of 10 multiplies per pixel. For each
multiply we have two memory reads, one for the pixel and one for the kernel value;
and we have ten memory writes, one for each multiply. A 640x480 image has 307200
pixels, and assuming 8 bits per pixel gray scale only, per frame we end up with 3,072,000
multiplies, 60,720,000 memory reads, and 307200 writes for the result. Larger kernel sizes
and larger image sizes of course add more compute.

There are many ways to optimize the performance, which we will cover in Chapter 8
on vision pipeline engineering. For this attribute, we are interested in the following:

•	 Bounding box (x size, y size): for example, the bounding box around
a rectangular region, circular region, or polygon shape region.

Distance Function
Computing the pattern matching or correspondence is one of the key performance criteria
for a good descriptor. Feature matching is a tradeoff between accuracy and performance,
with the key variables being the numeric type and size of the feature descriptor vectors,
the distance function, and the number of patterns and search optimizations in the feature
database. Choosing a feature descriptor amenable to fast matching is a good goal.

In general, the fastest distance functions are the binary family and Hamming
distance, which is used in the local binary descriptor family. Distance functions are
enumerated here; see Chapter 4 for details.

Euclidean or Cartesian Distance Family
Euclidean distance•	

Squared Euclidean distance•	

Cosine similarity•	

SAD L1 Norm•	

SSD L2 Norm•	

Chapter 5 ■ Taxonomy of Feature Description Attributes

212

Correlation distance•	

Hellinger distance•	

Grid Distance Family
Manhattan distance•	

Chessboard or Chebychev distance•	

Statistical Distance Family
Earth movers distance•	

Mahalanobis distance•	

Bray Curtis difference•	

Canberra distance•	

Binary or Boolean Distance Family
L0 Norm•	

Hamming distance•	

Jaccard similarity•	

Feature Metric Evaluation
This section addresses the question of how to summarize feature descriptor information
at a high level from the Vision Metrics Taxonomy into a practical Feature Metric
Evaluation Framework (FME) from an engineering and design perspective.

Note■■  T he FME is intended as a template to capture high-level information for basic
analysis.

Chapter 5 ■ Taxonomy of Feature Description Attributes

213

Efficiency Variables, Costs and Benefits
Efficiency can be measured for a feature descriptor in simple terms, such as the benefit
of the compute cost and memory used vs. what is provided in the way of accuracy,
discrimination, robustness, and invariance. How much value does the method provide
for the time, space, and power cost? Efficiency metrics include:

•	 Costs: compute, memory, time, power

•	 Benefits: accuracy, robustness, and invariance attributes
provided

•	 Efficiency: benefits vs. costs

The effectiveness of the data contained in the descriptor varies—for example, a large
memory footprint to contain a descriptor with little invariance is not efficient, and a high
compute cost for small amounts of invariance and accuracy also reveals low efficiency.
We could say that an efficient feature representation contains the least number of bytes
and lowest compute cost providing the greatest amount of discrimination, robustness,
and accuracy. Local binary descriptors have demonstrated the best efficiency for many
robustness attributes.

Image Reconstruction Efficiency Metric
For a visual comparison of feature descriptor efficiency, we can also reconstruct an image
from the feature descriptors, and then visually and statistically analyze the quality of
the reconstruction vs. the compute and memory cost. Detailed feature descriptors can
provide good visualization and reconstruction of the original image from the descriptor
data only. For example, Figure 4-15 shows how the HOG descriptor captures oriented
gradients using 32780 bytes per 64x128 region, Figure 4-16 shows image reconstruction
illustrating how BRIEF and FREAK capture edge information similar to Laplacian or
other edge filters using 64 bytes per descriptor, and Figure 4-17 shows SIFT image
reconstruction using 128 bytes per descriptor.

Although we do not include image reconstruction efficiency in the FME, this topic
was covered in Chapter 4, under the discussion of discrimination.

Example Feature Metric Evaluations
Here area few examples showing how the Vision Metrics Taxonomy and the FME can be
used to collect summary descriptor information.

SIFT Example
We use SIFT as an example baseline, since SIFT is widely recognized and carefully
designed.

Chapter 5 ■ Taxonomy of Feature Description Attributes

214

VISION METRIC TAXONOMY FME

Name:			 SIFT
Feature Family:		 Spectra
Spectra dimensions:	 Multivariate
Spectra: 		� Gradient magnitude and direction,

DoG Scale Space Maxima
Storage format: 		 Orientation and position, gradient 	
			 orientation histograms
Data type:		 Float, integer
Descriptor Memory: 	 128 bytes for descriptor histogram
Feature shape:		 Rectangular region
Search method:		 Dense sliding window in 2D & 3D 	
			 3x3x3 image pyramid
Feature density:		 Local
Feature pattern: 		 Rectangular and pyramid-cubic
Pattern pair sampling:	 -
Pattern region size:	 16x16
Distance function: 	 Euclidean distance

GENERAL ROBUSTNESS ATTRIBUTES

Total:			� 5 (scale, illumination, rotation, affine
transforms, noise)

LBP Example
The LBP is a very simple feature detector with many variations, used for texture analysis
and feature description. We use the most basic form of 3x3 LBP here as an example.

VISION METRIC TAXONOMY FME

Name:			 LBP
Feature Family:		 Local Binary
Spectra dimensions:	 Single-variate
Spectra: 		 Pixel pair compares with center pixel
Storage format: 		 Binary Bit Vector
Data type:		 Integer
Descriptor Memory: 	 1 byte
Feature shape:		 Square centered at center pixel
Search method:		 Dense sliding window
Feature density:		 Local
Feature pattern: 		 Rectangular kernel
Pattern pair sampling:	 Center - boundary pairs
Pattern region size: 	 3x3 or more
Distance function: 	 Hamming distance

Chapter 5 ■ Taxonomy of Feature Description Attributes

215

GENERAL ROBUSTNESS ATTRIBUTES

Total:			� 3 (brightness, contrast, rotation using
RILBP)

Shape Factors Example
This example uses binary thresholded polygon regions. For this hypothetical example, the
pre-processing steps begin with adaptive binary thresholding and morphological shape
definition operations, and the measurement steps begin with pixel neighborhood based
perimeter following to defined the perimeter edge, followed by centroid computation
from perimeter points, followed by determination of 36 radial line segments originating
at the centroid reaching to the perimeter. Then each line segment is analyzed to find the
shape factors including major/minor axis the Fourier descriptor. The measurements
assume a single binary object is being measured, and real-world images may contain at
many objects.

We also assume the memory footprint as follows: angular samples taken around
360 degrees, starting at centroid, at 10 degree increments for 36 angular samples, 36 floats
for FFT spectrum magnitude, 36 integers for line segment length array, 4 integers for
major/minor axis orientation and length, 4 integers for bounding box (x, y, dx, dy),
1 integer for perimeter length, 2 integers for centroid coordinates, TOTAL 36*4 + 36*2 +
4*2 + 4*2 + 1*2 * 2*2 = 238, assuming 2 byte short integers and 4-byte floats are used.

VISION METRIC TAXONOMY FME

Name:			 Shape Factors
Feature Family:		 Polygon Shape
Spectra dimensions:	 Multivariate
Spectra: 		� Perimeter following, area, perimeter,

centroid, other image moments
Storage format: 		 complex data structure
Data type:		 Float, integer
Descriptor Memory: 	� Variable, several hundred bytes

possible
Feature shape:		� Polygon shapes, rectangular

bounding box region
Search method:		 Dense, recursive
Feature density:		 Regional
Feature pattern: 		 Perimeter contour or edge
Pattern pair sampling:	 -
Pattern region size:	 Entire image
Distance function: 	� Multiple methods, multiple

comparisons

Chapter 5 ■ Taxonomy of Feature Description Attributes

216

GENERAL ROBUSTNESS ATTRIBUTES

Total:			� 8 or more (scale, rotation, occlusion,
shape, affine, reflection, noise,
illumination)

Summary
In this chapter, a taxonomy is proposed as shown in Figure 5-1 to describe feature
description dimensions as shape, pattern, and spectra. This taxonomy is used to divide
the families of feature description methods into polygon shape descriptors, local binary
descriptors, and basis space descriptors. The taxonomy is used throughout the book. Also,
a general vision metrics taxonomy is proposed for the purpose of summarizing high-level
feature descriptor design attributes, such as type of spectra, descriptor pixel region size,
distance function, and search method. In addition, a general robustness taxonomy is
developed to quantify feature descriptor goodness, one attribute at a time, based on
invariance and robustness criteria attributes, including illumination, scale, rotation, and
perspective. Since feature descriptor methods are designed to address only some of the
invariance and robustness attributes, each attribute should be considered separately
when evaluating a feature descriptor for a given application. In addition, the robustness
attributes can be applied to the design of ground truth datasets, as discussed in Chapter 7.
Finally, the vision metrics taxonomy and the robustness taxonomy are combined to
form a feature metric evaluation (FME) table to record feature descriptor attributes in
summary form. A simple subset of the FME is used to review the attributes of several
feature descriptor methods surveyed in Chapter 6.

217

Chapter 6

Interest Point Detector and
Feature Descriptor Survey

“Who makes all these?”

—Jack Sparrow, Pirates of the Caribbean

Many algorithms for computer vision rely on locating interest points, or keypoints in
each image, and calculating a feature description from the pixel region surrounding
the interest point. This is in contrast to methods such as correlation, where a larger
rectangular pattern is stepped over the image at pixel intervals and the correlation is
measured at each location. The interest point is the anchor point, and often provides
the scale, rotational, and illumination invariance attributes for the descriptor; the
descriptor adds more detail and more invariance attributes. Groups of interest points and
descriptors together describe the actual objects.

However, there are many methods and variations in feature description. Some
methods use features that are not anchored at interest points, such as polygon shape
descriptors, computed over larger segmented polygon-shaped structures or regions in an
image. Other methods use interest points only, without using feature descriptors at all.
And some methods use feature descriptors only, computed across a regular grid on the
image, with no interest points at all.

Terminology varies across the literature. In some discussions, interest points may be
referred to as keypoints. The algorithms used to find the interest points maybe referred to
as detectors, and the algorithms used to describe the features may be called descriptors.
We use the terminology interchangeably in this work. Keypoints may be considered a set
composed of (1) interest points, (2) corners, (3) edges or contours, and (4) larger features
or regions such as blobs; see Figure 6-1. This chapter surveys the various methods for
designing local interest point detectors and feature descriptors.

Figure 6-1.  Types of keypoints, including corners and interest points. (Left to right) Step,
roof, corner, line or edge, ridge or contour, maxima region

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

218

Interest Point Tuning
What is a good keypoint for a given application? Which ones are most useful? Which
ones should be ignored? Tuning the detectors is not simple. Each detector has different
parameters to tune for best results on a given image, and each image presents different
challenges regarding lighting, contrast, and image pre-processing. Additionally, each
detector is designed to be useful for a different class of interest points, and must be tuned
accordingly to filter the results down to a useful set of good candidates for a specific feature
descriptor. Each feature detector will work best with certain descriptors, see appendix A.

So, the keypoints are further filtered to be useful for the chosen feature descriptor.
In some cases, a keypoint is not suitable for producing a useful feature descriptor, even
if the keypoint has a high score and high response. If the feature descriptor computed
at the keypoint produces a descriptor score that is too weak, for example, the keypoint
and corresponding descriptor should both be rejected. OpenCV provides several novel
methods for working with detectors, enabling the user to try different detectors and
descriptors in a common framework, and automatically adjust the parameters for tuning
and culling as follows:

•	 DynamicAdaptedFeatureDetector. This class will tune
supported detectors using an adjusterAdapter() to only keep a
limited number of features, and iterate the detector parameters
several times and redetect features in an attempt to find the best
parameters, keeping only the requested number of best features.
Several OpenCV detectors have an adjusterAdapter() provided,
some do not; the API allows for adjusters to be created.

•	 AdjusterAdapter. This class implements the criteria for culling
and keeping interest points. Criteria may include KNN nearest
neighbor matching, detector response or strength, radius distance
to nearest other detected points, number of keypoints within a
local region, and other measures that can be included for culling
keypoints for which a good descriptor cannot be computed.

•	 PyramidAdaptedFeatureDetector. This class can be used to
adapt detectors that do not use a scale-space pyramid, and the
adapter will create a Gaussian pyramid and detect features over
the pyramid.

•	 GridAdaptedFeatureDetector. This class divides an image into
grids and adapts the detector to find the best features within each
grid cell.

Interest Point Concepts
An interest point may be composed of various types of corner, edge, and maxima shapes,
as shown in Figure 6-1. In general, a good interest point must be easy to find and ideally
fast to compute; it is hoped that the interest point is at a good location to compute a
feature descriptor. The interest point is thus the qualifier or keypoint around which a
feature may be described.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

219

There are various concepts behind the interest point methods currently in use, as
this is an active area of research. One of the best analyses of interest point detectors is
found in Mikolajczyk et al.[153], with a comparison framework and taxonomy for affine
covariant interest point detectors, where covariant refers to the elliptical shape of the
interest region, which is an affine deformable representation. Scale invariant detectors
are represented well in a circular region. Maxima region and blob detectors can take
irregular shapes. See the response of several detectors against synthetic interest point and
corner alphabets in Appendix A.

Commonly, detectors use maxima and minima points, such as gradient peaks and
corners; however, edges, ridges, and contours are also used as keypoints, as shown in
Figure 6-2. There is no superior method for interest point detection for all applications.
A simple taxonomy provided by Tuytelaars and Van Gool [529] lists edge-based region
methods (EBR), maxima or intensity-based region methods (IBR), and segmentation
methods to find shape-based regions (SBR) that may be blobs or features with high entropy.

Figure 6-2.  Candidate edge interest point filters. (Left to right) Laplacian, derivative filter,
and gradient filter

Corners are often preferred over edges or isolated maxima points, since the corner
is a structure and can be used to compute an angular orientation for the feature. Interest
points are computed over color components as well as gray scale luminance. Many of the
interest point methods will first apply some sort of Gaussian filter across the image and
then perform a gradient operator. The idea of using the Gaussian filter first is to reduce
noise in the image, which is otherwise amplified by gradient operators.

Each detector locates features with different degrees of invariance to attributes such
as rotation, scale, perspective, occlusion, and illumination. For evaluations of the quality
and performance of interest point detection methods measured against various robustness
and invariance criteria on standardized datasets, see Mikolajczyk and Schmidt [144] and
Gauglitz et al.[145]. One of the key challenges for interest point detection is scale invariance,
since interest points change dramatically in some cases over scale. Lindberg [212] has
extensively studied the area of scale independent interest point methods.

Affine invariant interest points have been studied in detail by Mikolajcyk and
Schmid [107,141,144,153,306,311]. In addition, Mikolajcyk and Schmid [519] developed
an affine-invariant version of the Harris detector. As shown in [541], it is often useful to
combine several interest point detection methods to form a hybrid, for example, using
the Harris or Hessian to locate suitable maxima regions, and then using the Laplacian to
select the best scale attributes. Variations are common, Harris-based and Hessian-based
detectors may use scale-space methods, while local binary detector methods do not use
scale space.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

220

A few fundamental concepts behind many interest point methods come from the
field of linear algebra, where the local region of pixels is treated as a matrix. Additional
concepts come from other areas of mathematical analysis. Some of the key math useful
for locating interest points includes:

•	 Gradient Magnitude. This is the first derivative of the pixels in the
local interest region, and assumes a direction. This is an unsigned
positive number.

((,)/)) ((,)/))¶ ¶ + ¶ ¶f x y x f x y y2 2

•	 Gradient Direction. This is the angle or direction of the largest
gradient angle from pixels in the local region in the range +p to -p.

tan ((,)/)/ (,)/))- ¶ ¶ ¶ ¶1 f x y y f x y x

•	 Laplacian. This is the second derivative and can be computed
directionally using any of three terms:

((,)/¶ ¶2 2f x y x

((,)/¶ ¶2 2f x y y

((,)/¶ ¶ ¶2 f x y x y

However, the Laplacian operator ignores the third term and computes a
signed value of average orientation.

((,)/)) ((,)/))¶ ¶ + ¶ ¶f x y x f x y y2 2

•	 Hessian Matrix or Hessian. A square matrix containing
second-order partial derivatives describing surface curvature.
The Hessian has several interesting properties useful for interest
point detection methods discussed in this section.

•	 Largest Hessian. This is based on the second derivative, as is
the Laplacian, but the Hessian uses all three terms of the second
derivative to compute the direction along which the second
derivative is maximum as a signed value.

•	 Smallest Hessian. This is based on the second derivative, is
computed as a signed number, and may be a useful metric as a
ratio between largest and smallest Hessian.

•	 Hessian Orientation, largest and smallest values. This is the
orientation of the largest second derivative in the range +p to -p,
which is a signed value, and it corresponds to an orientation
without direction. The smallest orientation can be computed by
adding or subtracting p/2 from the largest value.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

221

•	 Determinant of Hessian, Trace of Hessian, Laplacian of Gaussian.
All three names are used to describe the trace characteristic of a
matrix, which can reveal geometric scale information by the absolute
value, and orientation by the sign of the value. The eigenvalues of a
matrix can be found using determinants.

•	 Eigenvalues, Eigenvectors, Eigenspaces. Eigen properties are
important to understanding vector direction in local pixel region
matrices. When a matrix acts on a vector, and the vector orientation
is preserved, and when the sign or direction is simply reversed,
the vector is considered to be an eigenvector, and the matrix factor
is considered to be the eigenvalue. An eigenspace is therefore all
eigenvectors within the space with the same eigenvalue. Eigen
properties are valuable for interest point detection, orientation,
and feature detection. For example, Turk and Petland [158] use
eigenvectors reduced into a smaller set of vectors via PCA for face
recognition, in a method they call Eigenfaces.

Interest Point Method Survey
We will now look briefly at algorithms and computational methods for some common
interest point detector methods including:

Laplacian of Gaussian (LOG)•	

Moravac corner detector•	

Harris and Stephens corner detection•	

Shi and Tomasi corner detector (improvement on Harris method)•	

Difference of Gaussians (DoG; an approximation of LOG)•	

Harris methods, Harris–/Hessian–Laplace, •	
Harris–/Hessian–Affine

Determinant of Hessian (DoH)•	

Salient regions•	

SUSAN•	

FAST, FASTER, AGAST•	

Local curvature•	

Morphological interest points•	

MSER (discussed in the section on polygon shape descriptors)•	

*NOTE: many feature descriptors, such as SIFT, SURF, BRISK •	
and others, provide their own detector method along with the
descriptor method, see Appendix A.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

222

Laplacian and Laplacian of Gaussian
The Lapacian operator, as used in image processing, is a method of finding the derivative
or maximum rate of change in a pixel area. Commonly, the Laplacian is approximated
using standard convolution kernels that add up to zero, such as:

The Laplacian of Gaussian (LOG) is simply the Laplacian performed over a region
that has been processed using a Gaussian smoothing kernel to focus edge energy;
see Gun [155].

Moravac Corner Detector
The Moravic corner detection algorithm is an early method of corner detection whereby
each pixel in the image is tested by correlating overlapping patches surrounding each
neighboring pixel. The strength of the correlation in any direction reveals information
about the point: a corner is found when there is change in all directions, and an edge is
found when there is no change along the edge direction. A flat region yields no change
in any direction. The correlation difference is calculated using the SSD between the two
overlapping patches. Similarity is measured by the near-zero difference in the SSD. This
method is compute intensive; see Moravac [330].

Harris Methods, Harris-Stephens, Shi-Tomasi, and
Hessian-Type Detectors
The Harris or Harris-Stephens corner detector family [156,365] provides improvements
over the Moravic method. The goal of the Harris method is to find the direction of fastest
and lowest change for feature orientation, using a covariance matrix of local directional
derivatives. The directional derivative values are compared with a scoring factor to identify
which features are corners, which are edges, and which are likely noise. Depending on the
formulation of the algorithm, the Harris method can provide high rotational invariance,
limited intensity invariance, and in some of the formulations of the algorithm, scale
invariance is provided such as the Harris-Laplace method using scale space [519] [212].
Many Harris family algorithms can be implemented in a compute-efficient manner.

Note that corners have an ill-defined gradient, since two edges converge at the
corner, but near the corner the gradient can be detected with two different values with
respect to x and y—this is a basic idea behind the Harris corner detector.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

223

Variations on the Harris method include:

The Shi, Tomasi and Kanade corner detector [157] is an •	
optimization on the Harris method, using only the minimum
eigenvalues for discrimination, thus streamlining the
computation considerably.

The Hessian (Hessian-Affine) corner detector [153] is designed to •	
be affine invariant, and it uses the basic Harris corner detection
method but combines interest points from several scales in a
pyramid, with some iterative selection criteria and a Hessian matrix.

Many other variations on the basic Harris operator exist, such as •	
the Harris–Hessian–Laplace [331], which provides improved scale
invariance using a scale selection method, and the
Harris–/Hessian–Affine method [306,153].

Hessian Matrix Detector and Hessian-Laplace
The Hessian Matrix method, also referred to as Determinant of Hessian (DoH) method,
is used in the popular SURF algorithm [160]. It detects interest objects from a multi-scale
image set where the determinant of the Hessian matrix is at a maxima and the Hessian
matrix operator is calculated using the convolution of the second-order partial derivative
of the Gaussian to yield a gradient maxima.

The DoH method uses integral images to calculate the Gaussian partial derivatives
very quickly. Performance for calculating the Hessian Matrix is therefore very good, and
accuracy is better than many methods. The related Hessian-Laplace method [331,306]
also operates on local extrema, using the determinant of the Hessian at multiple scales for
spatial localization, and the Laplacian at multiple scales for scale localization.

Difference of Gaussians
The Difference of Gaussians (DoG) is an approximation of the Laplacian of Gaussians,
but computed in a simpler and faster manner using the difference of two smoothed
or Gaussian filtered images to detect local extrema features. The idea with Gaussian
smoothing is to remove noise artifacts that are not relevant at the given scale, which
would otherwise be amplified and result in false DoG features. The DoG features are used
in the popular SIFT method [161], and as shown later in Figure 6-15, the simple difference
of Gaussian filtered images is taken to identify maxima regions.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

224

Salient Regions
Salient regions [162,163] are based on the notion that interest points over a range of
scales should exhibit local attributes or entropy that are “unpredictable” or “surprising”
compared to the surrounding region. The method proceeds as follows:

1.	 The Shannon entropy E of pixel attributes such as intensity
or color are computed over a scale space, where Shannon
entropy is used the measure of unpredictability.

2.	 The entropy values are located over the scale space with
maxima or peak values M. At this stage, the optimal scales are
determined as well.

3.	 The probability density function (PDF) is computed for
magnitude deltas at each peak within each scale, where the
PDF is computed using a histogram of pixel values taken from
a circular window of desired radius from the peak.

4.	 Saliency is the product of E and M at each peak, and is
also related to scale. So the final detector is salient and robust
to scale.

SUSAN, and Trajkovic and Hedly
The SUSAN method [164,165] is dependent on segmenting image features based on local
areas of similar brightness, which yields a bimodal valued feature. No noise filtering
and no gradients are used. As shown in Figure 6-3, the method works by using a center
nucleus pixel value as a comparison reference against which neighbor pixels within a
given radius region are compared, yielding a set of pixels with similar brightness, called a
Univalue Segment Assimilating Nucleus (USAN).

A B

C

Figure 6-3.  SUSAN method of computing interest points. The dark region of the image is a
rectangle intersecting USAN’s A, B, and C. USAN A will be labeled as an edge, USAN B will
be labeled as a corner, and USAN C will be labeled as neither an edge nor a corner

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

225

Each USAN contains structural information about the image in the local region,
and the size, centroid, and second-order moments of each USAN can be computed. The
SUSAN method can be used for both edge and corner detection. Corners are determined
by the ratio of pixels similar to the center pixel in the circular region: a low ratio around
25 percent indicates a corner, and a higher ratio around 50 percent indicates an edge.
SUSAN is very robust to noise.

The Trajkovic and Hedly method [214] is similar to SUSAN, and discriminates among
points in USAN regions, edge points, and corner points.

SUSAN is also useful for noise suppression, and the bilateral filter [302], discussed in
Chapter 2, is closely related to SUSAN. SUSAN uses fairly large circular windows; several
implementations use 37 pixel radius windows. The FAST [138] detector is also similar to
SUSAN, but uses a smaller 7x7 or 9x9 window and only some of the pixels in the region
instead of all of them; FAST yields a local binary descriptor.

Fast, Faster, AGHAST
The FAST methods [138] are derived from SUSAN with respect to a bimodal segmentation
goal. However, FAST relies on a connected set of pixels in a circular pattern to determine
a corner. The connected region size is commonly 9 or 10 out of a possible 16; either
number may be chosen, referred to as FAST9 and FAST10. FAST is known to be efficient to
compute and fast to match; accuracy is also quite good. FAST can be considered a relative
of the local binary pattern LBP.

FAST is not a scale-space detector, and therefore it may produce many more edge
detections at the given scale than a scale-space method such as used in SIFT.

As shown in Figure 6-4, FAST uses binary comparison with each pixel in a circular
pattern against the center pixel using a threshold to determine if a pixel is less than or
greater than the center pixel The resulting descriptor is stored as a contiguous bit vector
in order from 0 to 15. Also, due to the circular nature of the pixel compare pattern, it is
possible to retrofit FAST and store the bit vector in a rotational-invariant representation,
as demonstrated by the RILBP descriptor discussed later in this chapter; see Figure 6-11.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

226

Local Curvature Methods
Local curvature methods [208–212] are among the early means of detecting corners, and
some local curvature methods are the first known to be reliable and accurate in tracking
corners over scale variations [210]. Local curvature detects points where the gradient
magnitude and the local surface curvature are both high. One approach taken is a
differential method, computing the product of the gradient magnitude and the level curve
curvature together over scale space, and then selecting the maxima and minima absolute
values in scale and space. One formulation of the method is shown here.

a , ;
~~

(}x y t L L L L L L Lx yy y xx x y xy= + -2 2 2

Various formulations of the basic algorithm can be taken depending on the curvature
equation used. To improve scale invariance and noise sensitivity, the method can be
modified using a normalized formulation of the equation over scale space, as follows:

a
~~

gg
norm x yy y xx x y xyx y t t L L L L L L L, ; ()(} = + -2 2 2 2

where

g = .875

At larger scales, corners can be detected with less sharp and more rounded features,
while at lower scales or at unity scale sharper corners over smaller areas are detected. The
Wang and Brady method [213] also computes interest points using local curvature on the
2D surface, looking for inflexion points where the surface curvature changes rapidly.

Figure 6-4.  The FAST detector with a 16-element circular sampling pattern grid. Note that
each pixel in the grid is compared against the center pixel to yield a binary value, and each
binary value is stored in a bit vector

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

227

Morphological Interest Regions
Interest points can be determined from a pipeline of morphological operations, such as
thresholding followed by combinations or erosion and dilation to smooth, thin, grown, and
shrink pixel groups. If done correctly for a given application, such morphological features
can be scale and rotation invariant. Note that the simple morphological operations alone
are not enough; for example, erode left unconstrained will shrink regions until they
disappear. So intelligence must be added to the morphology pipeline to control the final
region size and shape. For polygon shape descriptors, morphological interest points define
the feature, and various image moments are computed over the feature, as described in
Chapter 3 and also in the section on polygon shape descriptors later in this chapter.

Morphological operations can be used to create interest regions on binary, gray
scale, or color channel images. To prepare gray scale or color channel images for
morphology, typically some sort of pre-processing is used, such as pixel remapping, LUT
transforms, or histogram equalization. (These methods were discussed in Chapter 2.)
For binary images and binary morphology approaches, binary thresholding is a key
pre-processing step. Many binary thresholding methods have been devised, ranging from
simple global thresholds to statistical and structural kernel-based local methods.

Note that the morphological interest region approach is similar to the maximally
stable extrema region (MSER) feature descriptor method discussed later in the section
on polygon shape descriptors, since both methods look for connected groups of pixels at
maxima or minima. However, MSER does not use morphology operators.

A few examples of morphological and related operation sequences for interest region
detection are shown in Figure 6-5, and many more can be devised.

Figure 6-5.  Morphological methods to find interest regions. (Left to right) Original image,
binary thresholded and segmented image using Chan Vese method, skeleton transform,
pruned skeleton transform, and distance transform image. Note that binary thresholding
requires quite a bit of work to set parameters correctly for a given application

Feature Descriptor Survey
This section provides a survey and observations about a few representative feature
descriptor methods, with no intention to directly compare descriptors to each other. In
practice, the feature descriptor methods are often modified and customized. The goal
of this survey is to examine a range of feature descriptor approaches from each feature
descriptor family from the taxonomy that was presented in Chapter 5:

Local binary descriptors•	

Spectra descriptors•	

Basis space descriptors•	

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

228

Polygon shape descriptors•	

3D, 4D, and volumetric descriptors•	

For key feature descriptor methods, we provide here a summary analysis:

•	 General Vision Taxonomy and FME: covering feature attributes
including spectra, shape, and pattern, single or multivariate,
compute complexity criteria, data types, memory criteria,
matching method, robustness attributes, and accuracy.

•	 General Robustness Attributes: covering invariance attributes
such as illumination, scale, perspective, and many others.

No direct comparisons are made between feature descriptors here, but ample
references are provided to the literature for detailed comparisons and performance
information on each method.

Local Binary Descriptors
This family of descriptors represents features as binary bit vectors. To compute the
features, image pixel point-pairs are compared and the results are stored as binary values
in a vector. Local binary descriptors are efficient to compute, efficient to store, and
efficient to match using Hamming distance. In general, local binary pattern methods
achieve very good accuracy and robustness compared to other methods.

A variety of local sampling patterns are used with local binary descriptors to set the
pairwise point comparisons; see the section in Chapter 4 on local binary descriptor point-
pair patterns for a discussion on local binary sampling patterns. We start this section
on local binary descriptors by analyzing the local binary pattern (LBP) and some LBP
variants, since the LBP is a powerful metric all by itself and is well known.

Local Binary Patterns
Local binary patterns (LBP) were developed in 1994 by Ojala et al. [173] as a novel
method of encoding both pattern and contrast to define texture [169,170–173]. LBP’s can
be used as an image processing operator. The LBP creates a descriptor or texture model
using a set of histograms of the local texture neighborhood surrounding each pixel. In this
case, local texture is the feature descriptor.

The LBP metric is simple yet powerful; see Figure 6-6. We cover some level of detail
on LBPs, since there are so many applications for this powerful texture metric as a feature
descriptor as well. Also, hundreds of researchers have added to the LBP literature [173]
in the areas of theoretical foundations, generalizations into 2D and 3D, applied as a
descriptor for face detection, and also applied to spatio-temporal applications such as
motion analysis. LBP research remains quite active at this time. In addition, the LBP is
used as an image processing operator, and has been used as a feature descriptor retrofit
in SIFT with excellent results, described in this chapter.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

229

In its simplest embodiment, LBP has the goal of creating a binary coded
neighborhood descriptor for a pixel. It does this by comparing each pixel against its
neighbors using the > operator and encoding the compare results (1,0) into a binary
number, as shown later in Figure 6-8. LPB histograms from larger image regions can even
be used as signals and passed into a 1D FFT to create a feature descriptor. The Fourier
spectrum of the LBP histogram is rotational invariant; see Figure 6-6. The FFT spectrum
can then be concatenated onto the LBP histogram to form a multivariate descriptor.

As shown in Figure 6-6, the LBP is used as an image processing operator, region
segmentation method, and histogram feature descriptor. The LBP has many applications.
An LBP may be calculated over various sizes and shapes using various sizes of forming
kernels. A simple 3x3 neighborhood provides basic coverage for local features, while
wider areas and kernel shapes are used as well.

Assuming a 3x3 LBP kernel pattern is chosen, this means that there will be 8 pixel
compares and up to 28 combinations of results for a 256-bin histogram possible. However, it
has been shown [18] that reducing the 8-bit 256-bin histogram to use only 56 LBP bins based
on uniform patterns is the optimal number. The 56 bins or uniform patterns are chosen
to represent only two contiguous LBP patterns around the circle, which consists of two
connected contiguous segments rather than all 256 possible pattern combinations [173,15].
The same uniform pattern logic applies to LBPs of dimension larger than 8 bits. So, uniform
patterns provide both histogram space savings and feature compare-space optimization,
since fewer features need be matched (56 instead of all 256).

Figure 6-6.  (Above) A local binary pattern representation of an image where the LBP is
used as an image processing operator, and the corresponding histogram of cumulative LBP
features. (Bottom) Segmentation results using LBP texture metrics. (Images courtesy and
© Springer Press, from Computer Vision Using Local Binary Patterns, by Matti Pietikäinen
and Janne Heikkilä [173])

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

230

LPB feature recognition may follow the steps shown in Figure 6-7.

Figure 6-8.  Assigned LBP weighting values. (Image used by permission, © Intel Press, from
Building Intelligent Systems)

Figure 6-7.  LBP feature flow for feature detection. (Image used by permission, © Intel Press,
from Building Intelligent Systems)

The LBP is calculated by assigning a binary weighting value to each pixel in the local
neighborhood and summing up the pixel compare results as binary values to create a
composite LBP value. The LBP contains region information encoded in a compact binary
pattern, as shown in Figure 6-8, so the LBP is thus a binary coded neighborhood texture
descriptor.

Assuming a 3x3 neighborhood is used to describe the LBP patterns, one may
compare the 3x3 rectangular region to a circular region, suggesting 360 degree
directionality at 45 degree increments, as shown in Figure 6-9.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

231

The steps involved in calculating a 3x3 LBP are illustrated in Figure 6-10.

Figure 6-9.  The concept of LBP directionality. (Image used by permission, © Intel Press,
from Building Intelligent Systems)

Figure 6-10.  LBP neighborhood comparison. (Image used by permission, © Intel Press,
from Building Intelligent Systems)

Neighborhood Comparison

Each pixel is compared to its neighbors according to a forming kernel that allows selection
of neighbors for the comparison. In Figure 6-10, all pixels are used in the forming kernel
(all 1s). If the neighbor is > than the center pixel, the binary pattern is 1, otherwise it is 0.

Histogram Composition

Each LBP descriptor over an image region is recorded in a histogram to describe the
cumulative texture feature. Uniform LBP histograms would have 56 bins, since only
single-connected regions are histogrammed.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

232

Optionally Normalization

The final histogram can be reduced to a smaller number of bins using binary decimation for
powers of two or some similar algorithm, such as 256 ➤ 32. In addition, the histograms can
be reduced in size by thresholding the range of contiguous bins used for the histogram—for
example, by ignoring bins 1 to 64 if little or no information is binned in them.

Descriptor Concatenation

Multiple LBPs taken over overlapping regions may be concatenated together into a larger
histogram feature descriptor to provide better discrimination.

LBP Summary Taxonomy

Spectra: Local binary
Feature shape: Square
Feature pattern: Pixel region compares with center pixel
Feature density: Local 3x3 at each pixel
Search method: Sliding window
Distance function: Hamming distance
Robustness: 3 (brightness, contrast, *rotation for RILBP)

Rotation Invariant LBP (RILBP)
To achieve rotational invariance, the rotation invariant LBP (RILBP) [173] is calculated
by circular bitwise rotation of the local LBP to find the minimum binary value. The
minimum value LBP is used as a rotation invariant signature and is recorded in the
histogram bins. The RILBP is computationally very efficient.

To illustrate the method, Figure 6-11 shows a pattern of three consecutive LBP
bits; in order to make this descriptor rotation invariant, the value is left-shifted until a
minimum value is reached.

Figure 6-11.  Method of calculating the minimum LBP by using circular bit shifting of the
binary value to find the minimum value. The LBP descriptor is then rotation invariant.
(Image used by permission, © Intel Press, from Building Intelligent Systems)

Note that many researchers [171, 172] are extending the methods used for LBP
calculation to use refinements such as local derivatives, local median or mean values,
trinary or quinary compare functions, and many other methods, rather than the simple
binary compare function, as originally proposed.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

233

Dynamic Texture Metric Using 3D LBPs
Dynamic textures are visual features that morph and change as they move from frame to
frame; examples include waves, clouds, wind, smoke, foliage, and ripples. Two extensions of
the basic LBP used for tracking such dynamic textures are discussed here: VLBP and LBP-TOP.

Volume LBP (VLBP)

To create the VLBP [175] descriptor, first an image volume is created by stacking together
at least three consecutive video frames into a volume 3D dataset. Next, three LBPs are
taken centered on the selected interest point, one LBP from each parallel plane in the
volume, into a summary volume LBP or VLBP, and the histogram of each orthogonal LBP
is concatenated into a single dynamic descriptor vector, the VLBP. The VLPB can then
be tracked from frame to frame and recalculated to account for dynamic changes in the
texture from frame to frame. See Figure 6-12.

Figure 6-12.  (Top) VLBP method [175] of calculating LBPs from parallel planes. (Bottom)
LBP-TOP method [176] of calculating LBPs from orthogonal planes. (Image used by
permission, © Intel Press, from Building Intelligent Systems)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

234

LPB-TOP

The LBP-TOP [176] is created like the VLBP, except that instead of calculating the three
individual LBPs from parallel planes, they are calculated from orthogonal planes in the
volume (x,y,z) intersecting the interest point, as shown in Figure 6-12. The 3D composite
descriptor is the same size as the VLBP and contains three planes’ worth of data. The
histograms for each LBP plane are also concatenated for the LBP-TOP like the VLBP.

Other LBP Variants
As shown in Table 6-1, there are many variants of the LBP [173]. Note that the LBP has
been successfully used as a replacement for SIFT, SURF, and also as a texture metric.

Table 6-1.  LBP Variants (from reference [173])

ULBP (Uniform LBP) Uses only 56 uniform bins instead of the full 256 bins possible
with 8-bit pixels to create the histogram. The uniform patterns consist of contiguous
segments of connected TRUE values.

RLBP (ROBUST LBP) Adds + scale factor to eliminate transitions due to noise
(p1 - p2 + SCALE)

CS-LBP Circle-symmetric, half as many vectors an LBP, comparison of opposite pixel
pairs vs. w/center pixel, useful to reduce LBP bin counts

LBP-HF Fourier spectrum descriptor + LBP

MLBP Median LBP Uses area median value instead of center pixel value for comparison

M-LBP Multiscale LBP combining multiple radii LBPs concatenated

MB-LBP Multiscale Block LBP; compare average pixel values in small blocks

SEMB-LBP: Statistically Effective MB-LBP (SEMB-LBP) uses the percentage in
distributions, instead of the number of 0-1 and 1-0 transitions in the LBP and redefines
the uniform patterns in the standard LBP. Used effectively in face recognition using
GENTLE ADA-BOOSTing [549]

VLBP Volume LBP over adjacent video frames OR within a volume - concatenate
histograms together to form a longer vector

LGBP (Local Gabor Binary Pattern) 40 or so Gabor filters are computed over a feature,
LBPs are extracted and concatenated to form a long feature vector that is invariant over
more scales and orientations

LEP Local Edge Patterns: Edge enhancement (Sobel) prior to standard LBP

EBP Elliptic Binary Pattern Standard LBP but over elliptical area instead of circular

EQP Elliptical Quinary Patterns - LBP extended from binary (2) level resolution to
quinary (5) level resolution (-2,-1, 0,-1,2)

(continued)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

235

LTP - LBP extended over Ternary range to deal with near constant areas (-1, 0, 1)

LLBP Local line Binary Pattern - calculates LBP over line patterns (cross shape) and
then calculates a magnitude metrics using SQRT of SQUARES of each X/Y dimension

TPLBP- [x5]three LBPs are calculated together: the basic LBP for the center pixel, plus
two others around adjacent pixels so the total descriptor is a set of overlapping LBP’s,

FPLBP- [x5]four LBPs are calculated together: the basic LBP for the center pixel,
plus two others around adjacent pixels so the total descriptor is a set of overlapping
LBP’s, XPLBP –

*NOTE: The TPLBP and FPLBP method can be extended to 3,4,n dimensions in feature
space. LARGE VECTORS.

TBP - Ternary (3) Binary pattern, like LBP, but uses three levels of encoding (1,0,-1) to
effectively deal with areas of equal or near equal intensity, uses two binary patterns
(one for + and one for -) concatenated together

ETLP - Elongated Ternary Local Patterns (elliptical + ternary [5] levels

FLBP - Fuzzy LBP where each pixel contributes to more than one bin

PLBP - Probabilistic LBP computes magnitude of difference between each pixel &
center pixel (more compute, more storage)

SILTP - Scale invariant LBP using a 3 part piece-wise comparison function to
compensate and support intensity scale invariance to deal with image noise

tLBP - Transition Coded LBP, where the encoding is clockwise between adjacent pixels
in the LBP

dLBP - Direction Coded LBP - similar to CSLBP, but stores both maxima and
comparison info (is this pixel greater, less than, or maxima)

CBP - Centralized Binary pattern - center pixel compared to average of all nine kernel
neighbors

S-LBP Semantic LBP done in a colorimetric-accurate space (like CIE LAB etc.) over
uniform connected LBP circular patterns to find principal direction + arc length used to
form a 2D histogram as the descriptor.

F-LBP - Fourier Spectrum of color distance from center pixel to adjacent pixels

LDP - Local Derivate Patterns (higher order derivatives) - basic

LBP is the first order directional derivative, which is combined with additional nth order
directional derivatives concatenated into a histogram, more sensitive to noise of course

BLBP - Baysian LBP - combination of LBP and LTP together using Baysian methods to
optimize towards a more robust pattern

(continued)

Table 6-1.  (continued)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

236

FLS - Filtering, Labeling and Statistical Framework for LBP comparison, translates LBP’s
or any type of histogram descriptor into vector space allowing efficient comparison
“A Bayesian Local Binary Pattern Texture Descriptor”

MB-LBP Multiscale Block LBP - compare average pixel values in small blocks instead of
individual pixels, thus a 3x3 pixel PBL will become a 9x9 block LBP where each block is
a 3x3 region. The histogram is calculated by scaling the image and creating a rendering
at each scale and creating a histogram of each scaled image and concatenating the
histograms together.

PM-LBP Pyramid Based MultiStructured LBP - used 5 templates to extract different
structural info at varying levels 1) Gaussian filters, 4 anisotrophic filters to detect
gradient directions

MSLBF - Multiscale Selected Local Binary Features

RILBP - Rotation Invariant LBP rotates the bins (binary LBP value) until maximum
value is achieved, the max value is considered rotational invariant. This is the most
widely used method for LBP rotational invariance.

ALBP - Adaptive LBP for rotational invariance, instead of shifting to a maximal value as
in the standard LBP method, find the dominant vector orientation and shift the vector
to the dominant vector orientation

LBPV - Local binary pattern variance - uses local area variance to weight pixel
contribution to the LBP, align features to principal orientations, determine
non-dominant patterns and reduce their contribution.

OCLBP - Opponent Color LBP - describes color and texture together - each color
channel LBP is converted, then opposing color channel LBP’s are converted by
using one color as the center pixel and another color as the neighborhood, so 9 total
histograms are computed but only size are used R G B RG RG RB

SDMCLBP - SDM (co -LBP images for each color are used as the basis for generating
occurrence matrices, and then Haralick features are extracted from the images to form a
multi dimensional feature space.

MSCLBP - Multi Scale Color Local Binary Patterns (concatenate 6 histograms together)-
USES COLOR SPACE COMPONENTS

HUE-LBP OPPONENT-LBP (ALL 3 CHANNELS) nOPPONENT-LBP (COMPUTED
OVER 2 CHANNELS), light intensity change, intensity shift, intensity change+shift,
color-change color-shift, DEFINE SIX NEW OPERATORS: transformed color LBP (RGB)
[subtract mean, divide by STD DEV], opponent LBP, nOpponent LBP, Hue LBP, RGB-LBP,
nRGB-LBP [x8] “Multi-scale Color Local Binary Patterns for Visual Object Classes
Recognition”, Chao ZHU, Charles-Edmond BICHOT, Liming CHEN

3D histograms - 3DRGBLBP [best performance, high memory footprint] - 3D histogram
computed over RGB-LBP color image space using uniform pattern minimization to yield
10 levels or patterns per color yielding a large descriptor: 10 x 10 x 10 = 1000 descriptors.

Table 6-1.  (continued)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

237

Census
The Census transform [177] is basically an LBP, and like a population census, it uses
simple greater-than and less-than queries to count and compare results. Census records
pixel comparison results made between the center pixel in the kernel and the other
pixels in the kernel region. It employs comparisons and possibly a threshold, and stores
the results in a binary vector. The Census transform also uses a feature called the rank
value scalar, which is the number of pixel values less than the center pixel. The Census
descriptor thus uses both a bit vector and a rank scalar.

CENSUS Summary Vision Taxonomy

Spectra: Local binary + scalar ranking
Feature shape: Square
Feature pattern: Pixel region compares with center pixel
Feature density: Local 3x3 at each pixel
Search method: Sliding window
Distance function: Hamming distance
Robustness: 2 (brightness, contrast)

Modified Census Transform
The Modified Census trasform (MCT) [205] seeks to improve the local binary pattern
robustness of the original Census transform. The method uses an ordered comparison of
each pixel in the 3x3 neighborhood against the mean intensity of all the pixels of the 3x3
neighborhood, generating a binary descriptor bit vector with bit values set to an intensity
lower than the mean intensity of all the pixels. The bit vector can be used to create an
MCT image using the MCT value for each pixel. See Figure 6-13.

Figure 6-13.  Abbreviated set of 15 out of a possible 511 possible binary patterns for a 3x3
MCT. The structure kernels in the pattern set are the basis set of the MCT feature space
comparison. The structure kernels form a pattern basis set which can represent lines, edges,
corners, saddle points, semi-circles, and other patterns

As shown in Figure 6-13, the MCT relies on the full set of possible 3x3 binary patterns
(29 − 1 or 511 variations) and uses these as a kernel index into the binary patterns as
the MCT output, since each binary pattern is a unique signature by itself and highly
discriminative. The end result of the MCT is analogous to a nonlinear filter that assigns
the output to any of the 29 − 1 patterns in the kernel index. Results show that the MCT
results are better than the basic CT for some types of object recognition [205].

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

238

BRIEF
As described in Chapter 4, in the section on local binary descriptor point-pair patterns,
and illustrated in Figure 4-11, the BRIEF [132,133] descriptor uses a random distribution
pattern of 256 point-pairs in a local 31x31 region for the binary comparison to create the
descriptor. One key idea with BRIEF is to select random pairs of points within the local
region for comparison.

BRIEF is a local binary descriptor and has achieved very good accuracy and
performance in robotics applications [203]. BRIEF and ORB are closely related; ORB
is an oriented version of BRIEF, and the ORB descriptor point-pair pattern is also built
differently than BRIEF. BRIEF is known to be not very tolerant of rotation.

BRIEF Summary Taxonomy

Spectra: Local binary
Feature shape: Square centered at interest point
Feature pattern: Random local pixel point-pair compares
Feature density: Local 31x31 at interest points
Search method: Sliding window
Distance function: Hamming distance
Robustness: 2 (brightness, contrast)

ORB
ORB [134] is an acronymn for Oriented BRIEF, and as the name suggests, ORB is based on
BRIEF and adds rotational invariance to BRIEF by determining corner orientation using
FAST9, followed by a Harris corner metric to sort the keypoints; the corner orientation
is refined by intensity centroids using Rosin’s method [61]. The FAST, Harris, and Rosin
processing are done at each level of an image pyramid scaled with a factor of 1.4, rather than
the common octave pyramid scale methods. ORB is discussed in some detail in Chapter 4,
in the section on local binary descriptor point-pair patterns, and is illustrated in Figure 4-11.

It should be noted that ORB is a highly optimized and very well engineered
descriptor, since the ORB authors were keenly interested in compute speed, memory
footprint, and accuracy. Many of the descriptors surveyed in this section are primarily
research projects, with less priority given to practical issues, but ORB focuses on
optimizing and practical issues.

Compared to BRIEF, ORB provides an improved training method for creating the
local binary patterns for pairwise pixel point sampling. While BRIEF uses random point
pairs in a 31x31 window, ORB goes through a training step to find uncorrelated point
pairs in the window with high variance and means ~ .5, which is demonstrated to work
better. For details on visualizing the ORB patterns, see Figure 4-11.

For correspondence search, ORB uses multi-probe locally sensitive hashing (MP-LSH),
which searches for matches in neighboring buckets when a match fails, rather than
renavigating the hash tree. The authors report that MP-LSH requires fewer hash tables,
resulting in a lower memory footprint. MP-LSH also produces more uniform hash bucket
sizes than BRIEF. Since ORB is a binary descriptor based on point-pair comparisons,
Hamming distance is used for correspondence.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

239

ORB is reported to be an order of magnitude faster than SURF, and two orders of
magnitude faster than SIFT, with comparable accuracy. The authors provide impressive
performance results in a test of over 24 NTSC resolution images on the Pascal dataset [134].

ORB* SURF SIFT

15.3ms 217.3ms 5228.7ms

*Results reported as measured in reference [134].

ORB Summary Taxonomy

Spectra: Local binary + orientation vector
Feature shape: Square
Feature pattern: Trained local pixel point-pair compares
Feature density: Local 31x31 at interest points
Search method: Sliding window
Distance function: Hamming distance
Robustness: 3 (brightness, contrast, rotation, *limited scale)

BRISK
BRISK [131,143] is a local binary method using a circular-symmetric pattern region shape
and a total of 60 point-pairs as line segments arranged in four concentric rings, as shown
in Figure 4-10 and described in detail in Chapter 4. The method uses point-pairs of both
short segments and long segments, and this provides a measure of scale invariance, since
short segments may map better for fine resolution and long segments may map better at
coarse resolution.

The brisk algorithm is unique, using a novel FAST detector adapted to use scale
space, reportedly achieving an order of magnitude performance increase over SURF with
comparable accuracy. Here are the main computational steps in the algorithm:

Detects keypoints using FAST or AGHAST based selection in •	
scale space.

Performs Gaussian smoothing at each pixel sample point to get •	
the point value.

Makes three sets of pairs: long pairs, short pairs, and unused pairs •	
(the unused pairs are not in the long pair or the short pair set;
see Figure 4-12).

Computes gradient between long pairs, sums gradients to •	
determine orientation.

Uses gradient orientation to adjust and rotate short pairs.•	

Creates binary descriptor from short pair point-wise •	
comparisons.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

240

BRISK Summary Taxonomy

Spectra: Local binary + orientation vector
Feature shape: Square
Feature pattern: Trained local pixel point-pair compares
Feature density: Local 31x31 at FAST interest points
Search method: Sliding window
Distance function: Hamming distance
Robustness: 4 (brightness, contrast, rotation, scale)

FREAK
FREAK [130] uses a novel foveal-inspired multiresolution pixel pair sampling shape with
trained pixel pairs to mimic the design of the human eye as a coarse-to-fine descriptor,
with resolution highest in the center and decreasing further into the periphery, as
shown in Figure 4-9. In the opinion of this author, FREAK demonstrates many of the
better design approaches to feature description; it combines performance, accuracy,
and robustness. Note that FREAK is fast to compute, has good discrimination compared
to other local binary descriptors such as LBP, Census, BRISK, BRIEF, and ORB, and
compares favorably with SIFT.

The FREAK feature training process involves determining the point-pairs for the
binary comparisons based on the training data, as shown in Figure 4-9. The training
method allows for a range of descriptor sampling patterns and shapes to be built by
weighting and choosing sample points with high variance and low correlation. Each
sampling point is first smoothed from the local region using variable-sized radius
approximations to create Gaussian kernels over circular regions. The circular regions are
designed with some overlap to adjacent regions, which improves accuracy.

The feature descriptor is thus designed in a coarse-to-fine cascade of four groups of
16 byte coarse-to-fine descriptors containing pixel-pair binary comparisons stored in a
vector. The first 16 bytes, the coarse of highest resolution set in the cascade, is normally
sufficient to find 90 percent of the matching features and to discard nonmatching features.
FREAK uses 45 point pairs for the descriptor from a 31x31 pixel patch sampling region.

By storing the point-pair comparisons in four cascades of decreasing resolution
pattern vectors, the matching process proceeds from coarse to fine, mimicking the
human visual system’s saccadic search mechanism, allowing for accelerated matching
performance when there is early success or rejection in the matching phase. In summary,
the FREAK approach works very well.

FREAK Summary Taxonomy

Spectra: Local binary coarse-to-fine + orientation vector
Feature shape: Square
Feature pattern: 31x31 region pixel point-pair compares
Feature density: Sparse local at AGAST interest points
Search method: Sliding window over scale space
Distance function: Hamming distance
Robustness: 6 (brightness, contrast, rotation, scale,
viewpoint, blur)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

241

Spectra Descriptors
Compared to the local binary descriptor group, the spectra group of descriptors typically
involves more intense computations and algorithms, often requiring floating point
calculations, and may consume considerable memory. In this taxonomy and discussion,
spectra is simply a quantity that can be measured or computed, such as light intensity,
color, local area gradients, local area statistical features and moments, surface normals,
and sorted data such 2D or 3D histograms of any spectral type, such as histograms of
local gradient direction. Many of the methods discussed in this section use local gradient
information.

Local binary descriptors, as discussed in the previous section, are an attempt
to move away from more costly spectral methods to reduce power and increase
performance. Local binary descriptors in many cases offer similar accuracy and
robustness to the more compute-intensive spectra methods.

SIFT
The Scale Invariant Feature Transform (SIFT) developed by Lowe [161,178] is the
most well-known method for finding interest points and feature descriptors, providing
invariance to scale, rotation, illumination, affine distortion, perspective and similarity
transforms, and noise. Lowe demonstrates that by using several SIFT descriptors together
to describe an object, there is additional invariance to occlusion and clutter, since if a few
descriptors are occluded, others will be found [161]. We provide some detail here on SIFT
since it is well designed and well known.

SIFT is commonly used as a benchmark against which other vision methods are
compared. The original SIFT research paper by author David Lowe was initially rejected
several times for publication by the major computer vision journals, and as a result Lowe
filed for a patent and took a different direction. According to Lowe, “By then I had decided
the computer vision community was not interested, so I applied for a patent and intended
to promote it just for industrial applications.”1 Eventually, the SIFT paper was published
and went on to become the most widely cited article in computer vision history!

SIFT is a complete algorithm and processing pipeline, including both an interest point
and a feature descriptor method. SIFT includes stages for selecting center-surrounding
circular weighted Difference of Gaussian (DoG) maxima interest points in scale space
to create scale-invariant keypoints (a major innovation), as illustrated in Figure 6-14.
Feature descriptors are computed surrounding the scale-invariant keypoints. The feature
extraction step involves calculating a binned Histogram Of Gradients (HOG) structure
from local gradient magnitudes into Cartesian rectangular bins, or into log polar bins using
the GLOH variation, at selected locations centered around the maximal response interest
points derived over several scales.

1http://yann.lecun.com/ex/pamphlets/publishing-models.html

http://yann.lecun.com/ex/pamphlets/publishing-models.html

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

242

The descriptors are fed into a matching pipeline to find the nearest distance ratio
metric between closest match and second closest match, which considers a primary
match and a secondary match together and rejects both matches if they are too similar,
assuming that one or the other may be a false match. The local gradient magnitudes are
weighted by a strength value proportional to the pyramid scale level, and then binned
into the local histograms. In summary, SIFT is a very well thought out and carefully
designed multi-scale localized feature descriptor.

A variation of SIFT for color images is known as CSIFT [179].
Here is the basic SIFT descriptor processing flow (note: the matching stage is omitted

since this chapter is concerned with feature descriptors and related metrics):

Create a Scale Space Pyramid
An octave scale n/2 image pyramid is used with Gaussian filtered images in a scale
space. The amount of Gaussian blur is proportional to the scale, and then the Difference
of Gaussians (DoG) method is used to capture the interest point extrema maxima and
minima in adjacent images in the pyramid. The image pyramid contains five levels.
SIFT also uses a double-scale first pyramid level using pixels at two times the original

Figure 6-14.  (Top) Set of Gaussian Images obtained by convolution with a Gaussian
kernel and the corresponding set of DoG images. (Bottom) In octave sets. The DOG function
approximates a LOG gradient, or tunable bypass filter. Matching features against the
various images in the scaled octave sets yields scale invariant features

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

243

magnification to help preserve fine details. This technique increases the number of stable
keypoints by about four times, which is quite significant. Otherwise, computing the
Gaussian blur across the original image would have the effect of throwing away the
high-frequency details. See Figure 6-15 and 6-16.

Figure 6-15.  SIFT DoG as the simple arithmetic difference between the Gaussian filtered
images in the pyramid scale

Figure 6-16.  SIFT interest point or keypoint detection using scale invariant extrema
detection, where the dark pixel in the middle octave is compared within a 3x3x3 area
against its 26 neighbors in adjacent DOG octaves, which includes the eight neighbors at the
local scale plus the nine neighbors at adjacent octave scales (up or down)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

244

Identify Scale-Invariant Interest Points
As shown in Figure 6-16, the candidate interest points are chosen from local maxima or
minima as compared between the 26 adjacent pixels in the DOG images from the three
adjacent octaves in the pyramid. In other words, the interest points are scale invariant.

The selected interest points are further qualified to achieve invariance by
analyzing local contrast, local noise, and local edge presence within the local 26 pixel
neighborhood. Various methods may be used beyond those in the original method, and
several techniques are used together to select the best interest points, including local
curvature interpolation over small regions, and balancing edge responses to include
primary and secondary edges. The keypoints are localized to sub-pixel precision over
scale and space. The complete interest points are thus invariant to scale.

Create Feature Descriptors
A local region or patch of size 16x16 pixels surrounding the chosen interest points is the
basis of the feature vector. The magnitude of the local gradients in the 16x16 patch and
the gradient orientations are calculated and stored in a HOG (Histogram of Gradients)
feature vector, which is weighted in a circularly symmetric fashion to downweight points
farther away from the center interest point around which the HOG is calculated using a
Gaussian weighting function.

As shown in Figure 6-17, the 4x4 gradient binning method allows for gradients to
move around in the descriptor and be combined together, thus contributing invariance to
various geometric distortions that may change the position of local gradients, similar to
the human visual system treatment of the 3D position of gradients across the retina [248].
The SIFT HOG is reasonably invariant to scale, contrast, and rotation. The histogram bins
are populated with gradient information using trilinear interpolation, and normalized to
provide illumination and contrast invariance.

Figure 6-17.  (Left and center) Gradient magnitude and direction binned into histograms
for the SIFT HOG. (Right) GLOH descriptors

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

245

SIFT can also be performed using a variant of the HOG descriptor called the
Gradient Location and Orientation Histogram (GLOH), which uses a log polar histogram
format instead of the Cartesian HOG format; see Figure 6-17. The calculations for the
GLOH log polar histogram are straightforward, as shown below from the Cartesian
coordinates used for the Cartesian HOG histogram, where the vector magnitude is the
hypotenuse and the angle is the arctangent.

As shown in Figure 6-17, SIFT HOG and GLOH are essentially 3D histograms,
and in this case the histogram bin values are gradient magnitude and direction. The
descriptor vector size is thus 4x4x8=128 bytes. The 4x4 descriptor (center image) is a set
of histograms of the combined eight-way gradient direction and magnitude of each 4x4
group in the left image, in Cartesian coordinates, while the GLOH gradient magnitude
and direction are binned in polar coordinate spaced into 17 bins over a greater binning
region. SIFT-HOG (left image) also uses a weighting factor to smoothly reduce the
contribution of gradient information in a circularly symmetric fashion with increasing
distance from the center.

Overall compute complexity for SIFT is high [180], as shown in Table 6-2. Note
that feature description is most compute-intensive owing to all the local area gradient
calculations for orientation assignment and descriptor generation including histogram
binning with trilinear interpolation. The gradient orientation histogram developed in
SIFT is a key innovation that provides substantial robustness.

Table 6-2.  SIFT Compute Complexity ( from Vinukonda [180])

SIFT Pipeline Step Complexity Number of Operations

Gaussian blurring pyramid ⊝N2U2s 4N2W2s

Difference of Gaussian pyramid ⊝sN2 4N2s

Scale-space extrema detection ⊝sN2 104sN2

Keypoint detection ⊝asN2 100saN2

Orientation assignment ⊝sN2 (1 - ab) 48sN2

Descriptor generation ⊝(x2N2 (ab + g)) ⊝1520x2 (ab + g)N2

The resulting feature vector for SIFT is 128 bytes. However, methods exist to reduce
the dimensionality and vary the descriptor, which are discussed next.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

246

SIFT Summary Taxonomy

Spectra: Local gradient magnitude + orientation
Feature shape: Square, with circular weighting
Feature pattern: Square with circular-symmetric weighting
Feature density: Sparse at local 16x16 DoG interest points
Search method: Sliding window over scale space
Distance function: Euclidean distance (*or Hellinger distance
with RootSIFT retrofit)
Robustness: 6 (brightness, contrast, rotation, scale, affine
transforms, noise)

SIFT-PCA
The SIFT-PCA method developed by Ke and Suthankar [183] uses an alternative feature
vector derived using principal component analysis (PCA), based on the normalized
gradient patches rather than the weighted and smoothed histograms of gradients, as used
in SIFT. In addition, SIFT-PCA reduces the dimensionality of the SIFT descriptor to a
smaller set of elements. SIFT originally was reported using 128 vectors, but using
SIFT-PCA the vector is reduced to a smaller number such as 20 or 36.

The basic steps for SIFT-PCA are as follows:

1.	 Construct an eigenspace based on the gradients from the local
41x41 image patches resulting in a 3042 element vector; this
vector is the result of the normal SIFT pipeline.

2.	 Compute local image gradients for the patches.

3.	 Create the reduced-size feature vector from the eigenspace
using PCA on the covariance matrix of each feature vector.

SIFT-PCA is shown to provide some improvements over SIFT in the area of
robustness to image warping, and the smaller size of the feature vector results in faster
matching speed. The authors note that while PCA in general is not optimal as applied to
image patch features, the method works well for the SIFT style gradient patches that are
oriented and localized in scale space [183].

SIFT-GLOH
The Gradient Location and Orientation Histogram (GLOH) [144] method uses polar
coordinates and radially distributed bins rather than the Cartesian coordinate style
histogram binning method used by SIFT. It is reported to provide greater accuracy and
robustness over SIFT and other descriptors for some ground truth datasets [144]. As shown in
Figure 6-17, GLOH uses a set of 17 radially distributed bins to sum the gradient information
in polar coordinates, yielding a 272-bin histogram. The center bin is not direction oriented.
The size of the descriptor is reduced using PCA. GLOH has been used to retrofit SIFT.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

247

SIFT-SIFER Retrofit
The Scale Invariant Feature Detector with Error Resilience (SIFER) [224] method provides
alternatives to the standard SIFT pipeline, yielding measurable accuracy improvements
reported to be as high as 20 percent for some criteria. However, the accuracy comes at
a cost, since the performance is about twice as slow as SIFT. The major contributions of
SIFER include improved scale-space treatment using a higher granularity image pyramid
representation, and better scale-tuned filtering using a cosine modulated Gaussian filter.

The major steps in the method are shown in Table 6-3. The scale-space pyramid is
blurred using a cosine modulated Gaussian (CMG) filter, which allows each scale of the
octave to be subdivided into six scales, so the result is better scale accuracy.

Table 6-3.  Comparison of SIFT, SURF, and SIFER Pipelines (adapted from [224])

SIFT SURF SIFER

Scale Space
Filtering

Gaussian 2nd
derivative

Gaussian 2nd
derivative

Cosine Modulated
Gaussian

Detector LoG Hessian Wavelet Modulus Maxima

Filter
approximation level

OK accuracy OK accuracy Good accuracy

Optimizations DoG for gradient Integral images,
constant time

Convolution, constant
time

Image up-sampling 2x 2x Not used

Sub-sampling Yes Yes Not used

Since the performance of the CMG is not good, SIFER provides a fast approximation
method that provides reasonable accuracy. Special care is given to the image scale and
the filter scale to increase accuracy of detection, thus the cosine is used as a bandpass
filter for the Gaussian filter to match the scale as well as possible, tuning the filter in a filter
bank over scale space with well-matched filters for each of the six scales per octave. The
CMG provides more error resilience than the SIFT Gaussian second derivative method.

SIFT CS-LBP Retrofit
The SIFT-CSLBP retrofit method [202,173] combines the best attributes of SIFT and
the center symmetric LBP (CS-LBP) by replacing the SIFT gradient calculations with
much more compute-efficient LBP operators, and by creating similar histogram-binned
orientation feature vectors. LBP is computationally simpler both to create and to match
than the SIFT descriptor.

The CS-LBP descriptor begins by applying an adaptive noise-removal filter (a Weiner
filter is the variety used in this work) to the local patch for adaptive noise removal, which
preserves local contrast. Rather than computing all 256 possible 8-bit local binary patterns,
the CS-LBP only computes 16 center symmetric patterns for reduced dimensionality, as
shown in Figure 6-18.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

248

p8
c

p2p1

p4

p3

p7 p6 p5

LPB=

s(p1 – c)0+ s(p1 – p5)0+

s(p2 – p6)1+

s(p3 – p7)2+

s(p4 – p8)3

s(p2 – c)1+

s(p3 – c)2+

s(p4 – c)3+

s(p5 – c)4+

s(p6 – c)5+

s(p7 – c)6+

s(p8 – c)7

CS-LPB=

Figure 6-18.  CS-LBP sampling pattern for reduced dimensionality

Table 6-4.  SIFT and CSLBP Retrofit Performance (as per reference [202])

Feature
extraction

Descriptor
construction

Descriptor
normalization

Total
ms time

CS-LBP 256 0.1609 0.0961 0.007 0.264

CS-LBP 128 0.1148 0.0749 0.0022 0.1919

SIFT 128 0.4387 0.1654 0.0025 0.6066

Instead of weighting the histogram bins using the SIFT circular weighting function,
no weighting is used, which reduces compute. Like SIFT, the CS-LBP binning method
uses a 4x4 region Cartesian grid; simpler bilinear interpolation for binning is used, rather
than trilinear, as in SIFT. Overall, the CS-LCP retrofit method simplifies the SIFT compute
pipeline and increases performance with comparable accuracy; greater accuracy is
reported for some datasets. See Table 6-4.

RootSIFT Retrofit
The RootSift method [174] provides a set of simple, key enhancements to the SIFT
pipeline, resulting in better compute performance and slight improvements in accuracy,
as follows:

•	 Hellinger distance: RootSIFT uses a simple performance
optimization of the SIFT object retrieval pipeline using Hellinger
distance instead of Euclidean distance for correspondence. All
other portions of the SIFT pipeline remain the same; k-means
is still employed to build the feature vector set, and other
approximate nearest neighbor methods may still be used as
well for larger feature vector sets. The authors claim a simple
modification to SIFT code to perform the Hellinger distance
optimization instead of Euclidean distance can be a simple set of
one-line changes to the code. Other enhancements in RootSIFT
are optional, discussed next.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

249

•	 Feature augmentation: This method increases total recall.
Developed by Turcot and Lowe [332], it is applied to the features.
Feature vectors or visual words from similar views of the same
object in the database are associated into a graph used for finding
correspondence among similar features, instead of just relying on
a single feature.

•	 Discriminative query expansion (DQE): This method increases
query expansion during training. Feature vectors within a region
of proximity are associated by averaging into a new feature vector
useful for requeries into the database, using both positive and
negative training data in a linear SVM; better correspondence is
reported in reference [174].

By combining the three innovations described above into the SIFT pipeline,
performance, accuracy, and robustness are shown to be significantly improved.

CenSurE and STAR
The Center Surround Extrema or CenSurE [185,184,145] method provides a true
multi-scale descriptor, creating a feature vector using full spatial resolution at all scales
in the pyramid, in contrast to SIFT and SURF, which find extrema at subsampled pixels
that compromises accuracy at larger scales. CenSurE is similar to SIFT and SURF, but
some key differences are summarized in Table 6-5. Modifications have been made to the
original CenSurE algorithm in OpenCV, which goes by the name of STAR descriptor.

Table 6-5.  Major Differences between CenSurE and SIFT and SURF (adapted from
reference [185])

CenSurE SIFT SURF

Resolution Every pixel Pyramid
sub-sampled

Pyramid
sub-sampled

Edge filter method Harris Hessian Hessian

Scale space extrema method Laplace, Center
Surround

Laplace, DOG Hessian, DOB

Rotational invariance Approximate yes no

Spatial resolution in scale Full subsampled Subsampled

The authors have paid careful attention to creating methods which are computationally
efficient, memory efficient, with high performance and accuracy [185]. CenSurE defines an
optimized approach to find extrema by first using the Laplacian at all scales, followed by a
filtering step using the Harris method to discard corners with weak responses.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

250

The major innovations of CenSurE over SIFT and SURF are as follows:

1.	 Use of bilevel center-surround filters, as shown in Figure 6-19,
including Difference of Boxes (DoB), Difference of Octagons
(DoO) and Difference of Hexagons (DoH) filters, octagons
and hexagons are more rotationally invariant than boxes. DoB
is computationally simple and may be computed with integral
images vs. the Gaussian scale space method of SIFT. The DoO
and DoH filters are also computed quickly using a modified
integral image method. Circle is the desired shape, but more
computationally expensive.

Figure 6-19.  CenSurE bilevel center surround filter shape approximations to the Laplacian
using binary kernel values of 1 and -1, which can be efficiently implemented using signed
addition rather than multiplication. Note that the circular shape is the desired shape, but
the other shapes are easier to compute using integral images, especially the rectangular
method

2.	 To find the extrema, the DoB filter is computed using a
seven-level scale space of filters at each pixel, using a 3x3x3
neighborhood. The scale space search is composed using
center-surround Haar-like features on non-octave boundaries
with filter block sizes [1,2,3,4,5,6,7] covering 2.5 octaves
between [1 and 7] yielding five filters. This scale arrangement
provides more discrimination than an octave scale. A threshold
is applied to eliminate weak filter responses at each level, since
the weak responses are likely not to be repeated at other scales.

3.	 Nonrectangular filter shapes, such as octagons and hexagons,
are computed quickly using combinations of overlapping
integral image regions; note that octagons and hexagons
avoid artifacts caused by rectangular regions and increase
rotational invariance; see Figure 6-19.

4.	 CenSurE filters are applied using a fast, modified version of
the SURF method called Modified Upright SURF (MU-SURF)
[188,189], discussed later with other SURF variants, which
pays special attention to boundary effects of boxes in the
descriptor by using an expanded set of overlapping
sub-regions for the HAAR responses.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

251

CenSurE Summary Taxonomy

Spectra: Center-surround shaped bi-level filters
Feature shape: Octagons, circles, boxes, hexagons
Feature pattern: Filter shape masks, 24x24 largest region
Feature density: Sparse at Local interest points
Search method: Dense sliding window over scale space
Distance function: Euclidean distance
Robustness: 5 (brightness, contrast, rotation, scale,
affine transforms)

Correlation Templates
One of the most well known and obvious methods for feature description and detection
is simply to take an image of the complete feature and search for it by direct pixel
comparison—this is known as correlation. Correlation involves stepping a sliding window
containing a first pixel region template across a second image region template and
performing a simple pixel-by-pixel region comparison using a method such as sum of
differences (SAD); the resulting score is the correlation.

Since image illumination may vary, typically the correlation template and the target
image are first intensity normalized, typically by subtracting the mean and dividing by
the standard deviation; however, contrast leveling and LUT transform may also be used.
Correlation is commonly implemented in the spatial domain on rectangular windows,
but can be used with frequency domain methods as well [4,9].

Correlation is used in video-based target tracking applications where translation as
orthogonal motion from frame-to-frame over small adjacent regions predominates. For
example, video motion encoders find the displacement of regions or blocks within the
image using correlation, since usually small block motion in video is orthogonal to the
Cartesian axis and maps well to simple displacements found using correlation. Correlation
can provide sub-pixel accuracy between 1/4 to 1/20 of a pixel, depending on the images
and methods used; see reference [151]. For video encoding applications, correlation allows
for the motion vector displacements of corresponding blocks to be efficiently encoded and
accurately computed. Correlation is amenable to fixed function hardware acceleration.

Variations on correlation include cross-correlation (sliding dot product) normalized
cross-correlation (NCC), zero-mean normalized cross-correlation (ZNCC), and texture
auto correlation (TAC).

In general, correlation is a good detector for orthogonal motion of a constant-sized
mono-space pattern region. It provides sub-pixel accuracy, has limited robustness and
accuracy over illumination, but little to no robustness over rotation or scale. However, to
overcome these robustness problems, it is possible to accelerate correlation over a scale
space, as well as various geometric translations, using multiple texture samplers in a
graphics processor in parallel to rapidly scale and rotate the correlation templates. Then,
the correlation matching can be done either via SIMD SAD instructions or else using the
fast fixed function correlators in the video encoding engines.

Correlation is illustrated in Figure 6-20.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

252

Correlation Summary Taxonomy

Spectra: Correlation
Feature shape: Square, rectangle
Feature pattern: Dense
Feature density: Variable sized kernels
Search method: Dense sliding window
Distance function: SSD typical, others possible
Robustness: 1 (illumination, sub-pixel accuracy)

HAAR Features
HAAR-like features [4,9] were popularized in the field of computer vision by the Viola
Jones [186] algorithm. HAAR features are based on specific sets of rectangle patterns, as
shown in Figure 6-21, which approximate the basic HAAR wavelets, where each HAAR
feature is composed of the average pixel value of pixels within the rectangle. This is
efficiently computed using integral images.

Figure 6-20.  Simplified model of digital correlation using a triangular template region
swept past a rectangular region. The best correlation is shown at the location of the highest
point

Figure 6-21.  Example HAAR-like features

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

253

By using the average pixel value in the rectangular feature, the intent is to find a set of
small patterns in adjacent areas where brighter or darker region adjacency may reveal a
feature—for example, a bright cheek next to a darker eye socket. However, HAAR features
have drawbacks, since rectangles by nature are not rotation invariant much beyond
15 degrees. Also, the integration of pixel values within the rectangle destroys fine detail.

Depending on the type of feature to be detected, such as eyes, a specific set of HAAR
feature is chosen to reveal eye/cheek details and eye/nose details. For example, HAAR
patterns with two rectangles are useful for detecting edges, while patterns with three
rectangles can be used for lines, and patterns with an inset rectangle or four rectangles
can be used for single-object features. Note that HAAR features may be a rotated set.

Of course, the scale of the HAAR patterns is an issue, and since a given HAAR feature
only works with an image of appropriate scale. Image pyramids are used for HAAR feature
detection, along with other techniques for stepping the search window across the image
in optimal grid sizes for a given application. Another method to address feature scale
is to use a wider set of scaled HAAR features to perform the pyramiding in the feature
space rather than the image space. One method to address HAAR feature granularity
and rectangular shape is to use overlapping HAAR features to approximate octagons and
hexagons; see the CenSurE and STAR methods in Figure 6-19.

HAAR features are closely related to wavelets [227,334]. Wavelets can be considered
as an extension of the earlier concept of Gabor functions [333,187]. We provide only a
short discussion of wavelets and Gabor functions here; more discussion was provided
in Chapter 2. Wavelets are an orthonormal set of small duration functions. Each set of
wavelets is designed to meet various goals to locate short-term signal phenomenon.
There is no single wavelet function; rather, when designing wavelets, a mother wavelet is
first designed as the basis of the wavelet family, and then daughter wavelets are derived
using translation and compression of the mother wavelet into a basis set. Wavelets are
used as a set of nonlinear basis functions, where each basis function can be designed as
needed to optimally match a desired feature in the input function. So, unlike transforms
which use a uniform set of basis functions like the Fourier transform, composed of
SIN and COS functions, wavelets use a dynamic set of basis functions that are complex
and nonuniform in nature. Wavelets can be used to describe very complex short-term
features, and this may be an advantage in some feature detection applications.

However, compared to integral images and HAAR features, wavelets are computationally
expensive, since they represent complex functions in a complex domain. HAAR 2D basis
functions are commonly used owing to the simple rectangular shape and computational
simplicity, especially when HAAR features are derived from integral images.

HAAR Summary Taxonomy

Spectra: Integral box filter
Feature shape: Square, rectangle
Feature pattern: Dense
Feature density: Variable-sized kernels
Search method: Grid search typical
Distance function: Simple difference
Robustness: 1 (illumination)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

254

Viola Jones with HAAR-Like Features
The Viola Jones method [186] is a feature detection pipeline framework based on
HAAR-like features using a perceptron learning algorithm to train a detector matching
network that consists of three major parts:

1.	 Integral images used to rapidly compute HAAR-like features.

2.	 The ADA-BOOST learning algorithm to create a strong
pattern matching and classifier network by combining strong
classifiers with good matching performance with weak
classifiers that have been “boosted” by adjusting weighting
factors during the training process.

3.	 Combining classifiers into a detector cascade or funnel to
quickly discard unwanted features at early stages in the
cascade.

Since thousands of HAAR pattern matches may be found in a single image, the
feature calculations must be done quickly. To make the HAAR pattern match calculation
rapidly, the entire image is first processed into an integral image. Each region of the
image is searched for known HAAR features using a sliding window method stepped
at some chosen interval, such as every n pixels, and the detected features are fed into a
classification funnel known as a HAAR Cascade Classifier. The top of the funnel consists
of feature sets which yield low false positives and false negatives, so the first-order results
of the cascade contain high-probability regions of the image for further analysis. The
HAAR features become more complex progressing deeper into the funnel of the cascade.
With this arrangement, images regions are rejected as soon as possible if the desired
HAAR features are not found, minimizing processing overhead.

A complete HAAR feature detector may combine hundreds or thousands of HAAR
features together into a final classifier, where not only the feature itself may be important
but also the spatial arrangements of features—for example, the distance and angular
relationships between features could be used in the classifier.

SURF
The Speeded-up Robust Features Method (SURF) [160] operates in a scale space and uses
a fast Hessian detector based on the determinant maxima points of the Hessian matrix.
SURF uses a scale space over a 3x3x3 neighborhood to localize bloblike interest point
features. To find feature orientation, a set of HAAR-like feature responses are computed in
the local region surrounding each interest point within a circular radius, computed at the
matching pyramid scale for the interest point.

The dominant orientation assignment for the local set of HAAR features is found, as
shown in Figure 6-22, using a sliding sector window of size p / 3. This sliding sector
window is rotated around the interest point at intervals. Within the sliding sector region,
all HAAR features are summed. This includes both the horizontal and vertical responses,
which yield a set of orientation vectors; the largest vector is chosen to represent dominant
feature orientation. By way of comparison, SURF integrates gradients to find the dominant
direction, while SIFT uses a histogram of gradient directions to record orientation.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

255

Figure 6-22.  (Left) The sliding sector window used in SURF to compute the dominant
orientation of the HAAR features to add rotational invariance to the SURF features. (Right)
The feature vector construction process, showing a grid containing a 4x4 region subdivided
into 4x4 sub-regions and 2x2 subdivisions

To create the SURF descriptor vector, a rectangular grid of 4x4 regions is established
surrounding the interest point, similar to SIFT, and each region of this grid is split into 4x4
sub-regions. Within each sub-region, the HAAR wavelet response is computed over 5x5
sample points. Each HAAR response is weighted using a circularly symmetric Gaussian
weighting factor, where the weighting factor decreases with distance from the center
interest point, which is similar to SIFT. Each feature vector contains four parts:

v d d d dx y x y= ()å å å å, , | |, | |

The wavelet responses d
x
 and d

y
 for each sub-region are summed, and the absolute

value of the responses |d
x
| and |d

y
| provide polarity of the change in intensity. The final

descriptor vector is 4x4x4: 4x4 regions with four parts per region, for a total vector length
of 64. Of course, other vector lengths can be devised by modifying the basic method.

As shown in Figure 6-22, the SURF gradient grid is rotated according to the dominant
orientation, computed during the sliding sector window process, and then the wavelet
response is computed in each square region relative to orientation for binning into the
feature vector. Each of the wavelet directional sums d

x
, d

y
, |d

x
| , |d

y
| is recorded in the

feature vector.
The SURF and SIFT pipeline methods are generally comparable in implementation

steps and final accuracy, but SURF is one order of magnitude faster to compute than SIFT,
as compared in an ORB benchmarking test [134]. However, the local binary descriptors,
such as ORB, are another order of magnitude faster than SURF, with comparable accuracy
for many applications [134]. For more information, see the section earlier in this chapter
on local binary descriptors.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

256

SURF Summary Taxonomy

Spectra: Integral box filter + orientation vector
Feature shape: HAAR rectangles
Feature pattern: Dense
Feature density: Sparse at Hessian interest points
Search method: Dense sliding window over scale space
Distance function: Mahalanobis or Euclidean
Robustness: 4 (scale, rotation, illumination, noise)

Variations on SURF
A few variations on the SURF descriptor [188,189] are worth discussing, as shown in
Table 6-6. Of particular interest are the G-SURF methods [188], which use a differential
geometry concept [190] of a local region gauge coordinate system to compute the
features. Since gauge coordinates are not global but, rather, local to the image feature,
gauge space features carry advantages for geometrical accuracy.

Table 6-6.  SURF Variants (as discussed in Alcantarilla et. Al [188])

SURF Circular Symmetric Gaussian Weighting Scheme, 20x20 grid

U-SURF
[189]

Faster version of SURF, only upright features are used; no orientation.
Like M-SURF except calculated upright “U” with no rotation of the grid,
uses a 20x20 grid, no overlapping HAAR features, modified Gaussian
weighting scheme, bilinear interpolation between histogram bins.

M-SURF
MU-SURF
[189]

Circular symmetric Gaussian weighting scheme computed in two steps
instead of one as for normal SURF, 24x24 grid using overlapping HAAR
features, rotation orientation left out in MU-SURF version.

G-SURF,
GU-SURF
[188]

Instead of HAAR features, substitutes 2nd order gauge derivatives in
Gauge coordinate space, no Gaussian weighting, 20x20 grid. Gauge
derivatives are rotation and translation invariant, while the HAAR
features are simple rectangles, and rectangles have poor rotational
invariance, maybe +/-15 degrees at best.

MG-SURF
[188]

Same as M-SURF, but uses gauge derivatives.

NG-SURF
[188]

N = No Gaussian weighting as in SURF; same as SURF but no Gaussian
weighting applied, allows for comparison between gauge derivate
features and HAAR features.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

257

Histogram of Gradients (HOG) and Variants
The Histogram of Gradients (HOG) method [106] is intended for image classification,
and relies on computing local region gradients over a dense grid of overlapping blocks,
rather than at interest points. HOG is appropriate for some applications, such as person
detection, where the feature in the image is quite large.

HOG operates on raw data; while many methods rely on Gaussian smoothing and
other filtering methods to prepare the data, HOG is designed specifically to use all the
raw data without introducing filtering artifacts that remove fine details. The authors show
clear benefits using this approach. It’s a tradeoff: filtering artifacts such as smoothing vs.
image artifacts such as fine details. The HOG method shows preferential results for the
raw data. See Figure 4-12, showing a visualization of a HOG descriptor.

Major aspects in the HOG method are as follows:

Raw RGB image is used with no color correction or noise filtering, •	
using other color spaces and color gamma adjustment provided
little advantage for the added cost.

Prefers a 64x128 sliding detector window; 56x120 and 48x112 •	
sized windows were also tested. Within this detector window, a
total of 8x16 8x8 pixel block regions are defined for computation
of gradients. Block sizes are tunable.

For each 8x8 pixel block, a total of 64 local gradient magnitudes •	
are computed. The preferred method is simple line and column
derivatives [-1,0,1] in x/y; other gradient filter methods are tried,
but larger filters with or without Gaussian filtering degrade
accuracy and performance. Separate gradients are calculated for
each color channel.

Local gradient magnitudes are binned into a 9-bin histogram of •	
edge orientations, quantizing dimensionality from 64 to 9, using
bilinear interpolation; <9 bins produce poorer accuracy, >9 bins
does not seem to matter. Note that either rectangular R-HOG or
circular log polar C-HOG binning regions can be used.

Normalization of gradient magnitude histogram values to •	
unit length to provide illumination invariance. Normalization
is performed in groups, rather than on single histograms.
Overlapping 2x2 blocks of histograms are used within the detector
window; the block overlapping method reduces sharp artifacts,
and the 2x2 region size seems to work best.

For the 64x128 pixel detector window method, a total of 128 •	
8x8 pixel blocks are defined. Each 8x8 block has four cells for
computing separate 9-bin histograms. The total descriptor size is
then 8x16x4x9=4608.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

258

Note that various formulations of the sliding window and block sizes are used for
dealing with specific application domains. See Figure 4-12, showing a visualization of
HOG descriptor computed using 7x15 8x8 pixel cells. Key findings from the HOG [106]
design approach include:

The abrupt edges at fine scales in the raw data are required for •	
accuracy in the gradient calculations, and post-processing and
normalizing the gradient bins later works well.

L2 style block normalization of local contrast is preferred and •	
provides better accuracy over global normalization; note that the
local region blocks are overlapped to assist in the normalization.

Dropping the L2 block normalization stage during histogram •	
binning reduces accuracy by 27 percent.

HOG features perform much better than HAAR-style detectors, •	
and this makes sense when we consider that a HAAR wavelet is
an integrated directionless value, while gradient magnitude and
direction over the local HOG region provides a richer spectra.

HOG Summary Taxonomy

Spectra: Local region gradient histograms
Feature shape: Rectangle or circle
Feature pattern: Dense 64x128 typical rectangle
Feature density: Dense overlapping blocks
Search method: Grid over scale space
Distance function: Euclidean
Robustness: 4 (illumination, viewpoint, scale, noise)

PHOG and Related Methods
The Pyramid Histogram of Oriented Gradients (PHOG) [191] method is designed
for global or regional image classification, rather than local feature detection. PHOG
combines regional HOG features with whole image area features using spatial
relationships between features spread across the entire image in an octave grid region
subdivision; see Figure 6-23.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

259

PHOG is similar to related work using a coarse-to-fine grid of region histograms
called Spatial Pyramid Matching by Lazebni, Schmid, and Ponce [534], using histograms
of oriented edges and SIFT features to provide multi-class classification. It is also similar
to earlier work on pyramids of concatenated histogram features taken over a progressively
finer grid, called Pyramid Match Kernel and developed by Grauman and Darrell
[535], which computes correspondence using weighted, multi-resolution histogram
intersection. Other related earlier work using multi-resolution histograms for texture
classification are described in reference [55].

The PHOG descriptor captures several feature variables, including:

•	 Shape features, derived from local distribution of edges based on
gradient features inspired by the HOG method [106].

•	 Spatial relationships, across the entire image by computing
histogram features over a set of octave grid cells with blocks of
increasingly finer size over the image.

•	 Appearance features, using a dense set of SIFT descriptors
calculated across a regularly spaced dense grid. PHOG is
demonstrated to compute SIFT vectors for color images; results
are provided in [191] for the HSV color space.

A set of training images is used to generate a set of PHOG descriptor variables for
a class of images, such as cars or people. This training set of PHOG features is reduced
using K-means clustering to a set of several hundred visual words to use for feature
matching and image classification.

Some key concepts of the PHOG are illustrated in Figure 6-23. For the feature
shape, the edges are computed using the Canny edge detector, and the gradient
orientation is computed using the Sobel operator. The gradient orientation binning is
linearly interpolated across adjacent histogram bins by gradient orientation (HOG),
each bin represents the angle of the edge. A HOG vector is computed for each size of
grid cell across the entire image. The final PHOG descriptor is composed of a weighted
concatenation of all the individual HOG histograms from each grid level. There is no
scale-space smoothing between the octave grid cell regions to reduce fine detail.

Figure 6-23.  Set of PHOG descriptors computed over the whole image, using octave grid
cells to bound the edge information. (Center Left) A single histogram. (Center right) Four
histograms shown concatenated together. (Right) Sixteen histograms shown concatenated

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

260

As shown in Figure 6-23, the final PHOG contains all the HOGs concatenated. Note
that for the center left image, the full grid size cell produces 1 HOG, for the center right,
the half octave grid produces 4 HOGs, and for the right image, the fine grid produces
16 HOG vectors. The final PHOG is normalized to unity to reduce biasing due to
concentration of edges or texture.

PHOG Summary Taxonomy

Spectra: Global and regional gradient orientation histograms
Feature shape: Rectangle
Feature pattern: Dense grid of tiles
Feature density: Dense tiles
Search method: Grid regions, no searching
Distance function: l2 norm
Robustness: 3 (image classification under some invariance to
illumination, viewpoint, noise)

Daisy and O-Daisy
The Daisy Descriptor [214.309] is inspired by SIFT and GLOH-like descriptors, and is
devised for dense-matching applications such as stereo mapping and tracking, reported
to be about 40 percent faster than SIFT. See Figure 6-24. Daisy relies on a set of radially
distributed and increasing size Gaussian convolution kernels that overlap and resemble a
flower-like shape (Daisy).

Figure 6-24.  (Left) Daisy pattern region, which is composed of four sets of eight
overlapping concentric circles, with increasing Gaussian blur in the outer circles, where the
radius of each circle is proportional to the Gaussian kernel region standard deviation. The
overlapping circular regions provide a degree of filtering against adjacent region transition
artifacts. (Right) A hypothetical binary occlusion mask; darker regions indicate points that
may be occluded and “turned off” in the descriptor during matching

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

261

Daisy does not need local interest points, and instead computes a descriptor densely
at each pixel, since the intended application is stereo mapping and tracking. Rather
than using gradient magnitude and direction calculations like SIFT and GLOH, Daisy
computes a set of convolved orientation maps based on a set of oriented derivatives of
Gaussian filters to create eight orientation maps spaced at equal angles.

As shown in Figure 6-24, the size of each filter region and the amount of blur in
each Gaussian filter increase with distance away from the center, mimicking the human
visual system by maintaining a sharpness and focus in the center of the field of view and
decreasing focus and resolution farther away from the center. Like SIFT, Daisy also uses
histogram binning of the local orientation to form the descriptor.

Daisy is designed with optimizations in mind. The convolution orientation map
approach consumes fewer compute cycles than the gradient magnitude and direction
approach of SIFT and GLOH, yet yields similar results. The Daisy method also includes
optimizations for computing larger Gaussian kernels by using a sequential set of
smaller kernels, and also by computing certain convolution kernels recursively. Another
optimization is gained using a circular grid pattern instead of the rectangular grid used
in SIFT, which allows Daisy to vary the rotation by rotating the sampling grid rather than
re-computing the convolution maps.

As shown in Figure 6-24 (right image), Daisy also uses binary occlusion masks
to identify portions of the descriptor pattern to use or ignore in the feature matching
distance functions. This is a novel feature and provides for invariance to occlusion.

An FPGA optimized version of Daisy, called O-Daisy [217], provides enhancements
for increased rotational invariance.

Daisy Summary Taxonomy

Spectra: Gaussian convolution values
Feature shape: Circular
Feature pattern: Overlapping concentric circular
Feature density: Dense at each pixel
Search method: Dense sliding window
Distance function: Euclidean
Robustness: 3 (illumination, occlusion, noise)

CARD
The Compact and Realtime Descriptor (CARD) method [218] is designed with
performance optimizations in mind, using learning-based sparse hashing to convert
descriptors into binary codes supporting fast Hamming distance matching. A novel
concept from CARD is the lookup-table descriptor extraction of histograms of oriented
gradients from local pixel patches, as well as the lookup-table binning into Cartesian
or log polar bins. CARD is reported to achieve significantly better rotation and scale
robustness compared to SIFT and SURF, with performance at least ten times better than
SIFT and slightly better than SURF.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

262

CARD follows the method of RIFF [222][219] for feature detection, using FAST
features located over octave levels in the image pyramid. The complete CARD pyramid
includes intermediate levels between octaves for increased resolution. The pyramid
levels are computed at intervals of 1 2/ , with level 0 being the full image. Keypoints are
found using a Shi-Tomasi [157] optimized Harris corner detector.

Like SIFT, CARD computes the gradient at each pixel, and can use either Cartesian
coordinate binning, or log polar coordinate binning like GLOH; see Figure 6-17. To avoid
the costly biliner interpolation of gradient information into the histogram bins, CARD
instead optimizes this step by rotating the binning pattern before binning, as shown in
Figure 6-25. Note that the binning is further optimized using lookup tables, which contain
function values based on principal orientations of the gradients in the patch.

v

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

v

u

1

23

4

5

6 7

8

9

1011

12

13

14 15

16

0 u

Figure 6-25.  CARD patch pattern containing 17 log polar coordinate bins, with image on
left rotated to optimize binning

As shown in Figure 6-25, to speed up binning, instead of rotating the patch based on
the estimated gradient direction to extract and bin a rotationally invariant descriptor, as
done in SIFT and other methods, CARD rotates the binning pattern over the patch based
on the gradient direction and then performs binning, which is much faster. Figure 6-25
shows the binning pattern unrotated on the right, and rotated by p / 8 on the left. All
binned values are concatenated and normalized to form the descriptor, which is 128 bits
long in the most accurate form reported [218].

CARD Summary Taxonomy

Spectra: Gradient magnitude and direction
Feature shape: Circular, variable sized based on pyramid scale
and principal orientation
Feature pattern: Dense
Feature density: Sparse at FAST interest points over image
pyramid

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

263

Search method: Sliding window
Distance function: Hamming
Robustness: 3 (illumination, scale, rotation)

Robust Fast Feature Matching
Robust Feature Matching in 2.3us developed by Taylor, Rosten and Drummond [220]
(RFM2.3) (this acronym is coined here by the author) is a novel, fast method of feature
description and matching, optimized for both compute speed and memory footprint.
RFM2.3 stands alone among the feature descriptors surveyed here with regard to
the combination of methods and optimizations employed, including sparse region
histograms and binary feature codes. One of the key ideas developed in RFM2.3 is to
compute a descriptor for multiple views of the same patch by creating a set of scaled,
rotated, and affine warped views of the original feature, which provides invariance under
affine transforms such as rotation and scaling, as well as perspective.

In addition to warping, some noise and blurring is added to the warped patch set
to provide robustness to the descriptor. RFM2.3 is one of few methods in the class of
deformable descriptors [344–346]. FAST keypoints in a scale space pyramid are used to
locate candidate features, and the warped patch set is computed for each keypoint. After
the warped patch set has been computed, FAST corners are again generated over each
new patch in the set to determine which patches are most distinct and detectable, and the
best patches are selected and quantized into binary feature descriptors and saved in the
pattern database.

As shown in Figure 6-26, RFM2.3 uses a sparse 8x8 sampling pattern within a 16x16
region to capture the patch. A sparse set of 13 pixels in the 8x8 sampling pattern is chosen
to form the index into the pattern database for the sparse pattern. The index is formed as a
13-bit integer, where each bit is set to 1 if the pixel value is greater than the patch mean value,
limiting the index to 2^13 or 8192 entries, so several features in the database may share the
same index. However, feature differences can be computed very quickly using Hamming
distance, so the index serves mostly as a database key for organizing like-patches. A training
phase determines the optimal set of index values to include in the feature database, and the
optimal patterns to save, since some patterns are more distinct than others. Initially, features
are captured at full resolution, but if few good features are found at full resolution, additional
features are extracted at the next level of the image pyramid.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

264

The descriptor is modeled during training as a 64-value normalized intensity
distribution function, which is reduced in size to compute the final descriptor vector
in two passes: first, the 64 values are reduced to a five-bin histogram of pixel intensity
distribution; second, when training is complete, each histogram bin is binary encoded
with a 1 bit if the bin is used, and a 0 bit if the bin is rarely used. The resulting descriptor is
a compressed, binary encoded bit vector suitable for Hamming distance.

RFM2.3 Summary Taxonomy

Spectra: Normalized histogram patch intensity encoded into
binary patch index code
Feature shape: Rectangular, multiple viewpoints
Feature pattern: Sparse patterns in 15x15 pixel patch
Feature density: Sparse at FAST9 interest points
Search method: Sliding window over image pyramid
Distance function: Hamming
Robustness: 4 (illumination, scale, rotation, viewpoint)

RIFF, CHOG
The Rotation Invariant Fast Features (RIFF) [222][219] method is motivated by tracking
and mapping applications in mobile augmented reality. The basis of the RIFF method
includes the development of a radial gradient transform (RGT), which expresses gradient
orientation and magnitude in a compute-efficient and rotationally invariant fashion.
Another contribution of RIFF is a tracking method, which is reported to be more accurate
than KLT with 26x better performance. RIFF is reported to be 15x faster than SURF.

RIFF uses a HOG descriptor computed at FAST interest points located in scale
space, and generally follows the method of the author’s previous work in CHOG [223]
(compressed HOG) for reduced dimensionality, low bitrate binning. Prior to binning the
HOG gradients, a radial gradient transform (RGT) is used to create a rotationally invariant
gradient format. As shown in Figure 6-27 (left image), the RGT uses two orthogonal basis

Figure 6-26.  RFM2.3 (Left) Descriptor sparse sampling pattern. (Right) Sparse descriptor
using 13 samples used to build the feature index into the database

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

265

vectors (r,t) to form the radial coordinate system that surrounds the patch center point
c, and the HOG gradient g is projected onto (r,t) to express as the rotationally invariant
vector (gT r, gT t). A vector quantizer and a scalar quantizer are both suggested and used
for binning, illustrated in Figure 6-27.

p

t

g

r

p

t

g’

r’

SQ-25 quantizer VQ-17 quantizer ARGTAnnuliRadial gradients

c

Figure 6-27.  Concepts behind the RIFF descriptor [222][219], based partially on CHOG [223]

As shown in Figure 6-27 (right image) the basis vectors can be optimized by using
gradient direction approximations in the approximated radial gradient transform (ARGT),
which is optimized to be easily computed using a simple differences between adjacent,
normalized pixels along the same gradient line, and simple 45 degree quantization. Also
note in Figure 6-27 (center left image), that the histogramming is optimized by sampling
every other pixel within the annuli regions, and four annuli regions are used for practical
reasons as a tradeoff between discrimination and performance. To meet real-time system
performance goals for quantizing the gradient histogram bins, RIFF uses a 5x5 scalar
quantizer rather than a vector quantizer.

In Figure 6-27 (left image), the gradient projection of g at point c onto a radial
coordinate system (r,t) is used for a rotationally invariant gradient expression, and the
descriptor patch is centered at c. The center left image (Annuli) illustrates the method of
binning, using four annuli rings, which reduces dimensionality, and sampling only the
gray pixels provides a 2x speedup. The center and center right images illustrate the bin
centering mechanism for histogram quantization: (1) the more flexible scalar quantizer
SQ-25 and (2) the faster vector quantizer VQ-17. And the right image illustrates the
radial coordinate system basis vectors for gradient orientation radiating from the center
outwards, showing the more compute efficient ARGT, or approximated radial gradient
transform (RGT), which does not use floating point math (RGT not shown, see [222]).

RIFF Summary Taxonomy

Spectra: Local region histogram of approximated radial
gradients
Feature shape: Circular
Feature pattern: Sparse every other pixel
Feature density: Sparse at FAST interest points over image
pyramid
Search method: Sliding window
Distance function: Symmetric KL-divergence
Robustness: 4 (illumination, scale, rotation, viewpoint)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

266

Chain Code Histograms
A Chain Code Histogram (CCH) [206] descriptor records the shape of the perimeter as a
histogram by binning the direction of the connected components—connected perimeter
pixels in this case. As the perimeter is traversed pixel by pixel, the direction of the
traversal is recorded as a number, as shown in Figure 6-28, and recorded in a histogram
feature. To match the CCH features, SSD or SAD distance metrics can be used.

8 *

21

4

3

7 6 5

Chain code starting
at top center pixel,
moving clockwise:
5,4,6,7,7,1,1,1,2,4

Figure 6-28.  Chain code process for making a histogram. (Left to right) 1. The 8 possible
directions that the connected perimeter may change. 2. Chain code values for each
connected perimeter direction change; direction for determining the chain code value is
starting from the center pixel. 3. An object with a connected perimeter highlighted by black
pixels. 4. Chain code for the object following the connected perimeter starting at the top
pixel. 5. Histogram of all the chain code values

Chain code histograms are covered by U.S. Patent US4783828. CCH was invented
in 1961 [206] and is also known as the Freeman chain code. A variant of the CCH is the
Vertex chain code [207], which allows for descriptor size reduction and is reported to have
better accuracy.

D-NETS
The D-NETS (Descriptor-NETS) [135] approach developed by Hundelshausen and
Sukthankar abandons patch or rectangular descriptor regions in favor of a set of strips
connected at endpoints. D-NETS allows for a family of strip patterns composed of
directed graphs between a set of endpoints; it does not specifically limit the types of
endpoints or strip patterns that may be used. The D-NETS paper provides a discussion of
results from three types of patterns:

•	 Clique D-NETS: A fully connected network of strips linking all
the interest points. While the type of interest point used may vary
within the method, the initial work reports results using SIFT
keypoints.

•	 Iterative D-NETS: Dynamically creates the network using a
sub-set of the interest points, increasing the connectivity using
a stopping criterion to optimize the connection density for
obtaining desired matching performance and accuracy.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

267

•	 Densely sampled D-NETS: This variant does not use interest
points, and instead densely samples the nets over a regularly
spaced grid, a 10-pixel grid being empirically chosen and
preferred, with some hysteresis or noise added to the grid
positions to reduce pathological sampling artifacts. The dense
method is suitable for highly parallel implementations for
increased performance.

For an illustration of the three D-NETS patterns and some discussion, see Figure 4-9.
Each strip is an array of raw pixel values sampled between two points. The descriptor

itself is referred to as a d-token, and various methods for computing the d-token are
suggested, such as binary comparisons among pixel values in the strip similar to FERNS
or ORB, as well as comparing the 1D Fourier transforms of strip arrays, or using wavelets.
The best results reported are a type of empirically engineered d-token, created as follows:

•	 Strip vector sampling, where each pixel strip vector is sampled
at equally spaced locations between 10 and 80 percent of the
length of the pixel strip vector; this sampling arrangement was
determined empirically to ignore pixels near the endpoints.

•	 Quantize the pixel strip vector by integrating the values into a set
of uniform chunks, s, to reduce noise.

•	 Normalize the strip vector for scaling and translation.

•	 Discretize the vector values into a limited bit range, b.

•	 Concatenate all uniform chunks into the d-token, which is a bit
string of length s*b.

Descriptor matching makes use of an efficient and novel hashing and hypothesis
correspondence voting method. D-NETS results are reported to be higher in precision
and recall than ORB or SIFT.

D-NETS Summary Taxonomy

Spectra: Normalized, averaged linear pixel intensity chunks
Feature shape: Line segment connected networks
Feature pattern: Sparse line segments between chosen points
Feature density: Sparse along lines
Search method: Sliding window
Distance function: Hashing and voting
Robustness: 5 (illumination, scale, rotation, viewpoint,
occlusion)

Local Gradient Pattern
A variation of the LBP approach, the local gradient pattern (LGP) [204] uses local
region gradients instead of local image intensity pair comparison to form the binary
descriptor. The 3x3 gradient of each pixel in the local region is computed, then each

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

268

gradient magnitude is compared to the mean value of all the local region gradients, and
the binary bit value of 1 is assigned if the value is greater, and 0 otherwise. The authors
claim accuracy and discrimination improvements over the basic LBP in face-recognition
algorithms, including a reduction in false positives. However, the compute requirements
are greatly increased due to the local region gradient computations.

LGP Summary Taxonomy

Spectra: Local region gradient comparisons between center
pixel and local region gradients
Feature shape: Square
Feature pattern: Every pixel 3x3 kernel region
Feature density: Dense in 3x3 region
Search method: Sliding window
Distance function: Hamming
Robustness: 3 (illumination, scale, rotation)

Local Phase Quantization
The local phase quantization (LPQ) descriptor [166–168] was designed to be robust to
image blur, and it leverages the blur insensitive property of Fourier phase information.
Since the Fourier transform is required to compute phase, there is some compute
overhead; however, integer DFT methods can be used for acceleration. LPQ is reported
to provide robustness for uniform blur, as well as uniform illumination changes. LPQ is
reported to provide equal or slightly better accuracy on nonblurred images than LBP and
Gabor filter bank methods. While mainly used for texture description, LPQ can also be
used for local feature description to add blur invariance by combining LPQ with another
descriptor method such as SIFT.

To compute, first a DFT is computed at each pixel over small regions of the image,
such as 8x8 blocks. The low four frequency components from the phase spectrum are
used in the descriptor. The authors note that the kernel size affects the blur invariance,
so a larger kernel block may provide more invariance at the price of increased compute
overhead.

Before quantization, the coefficients are de-correlated using a whitening transform,
resulting in a uniform phase shift and 8-degree rotation, which preserves blur invariance.
De-correlating the coefficients helps to create samples that are statistically independent
for better quantization.

For each pixel, the resulting vectors are quantized into an 8-dimensional space,
using an 8-bit binary encoded bit vector like the LBP and a simple scalar quantizer to
yield 1 and 0 values. Binning into the feature vector is performed using 256 hypercubes
derived from the 8-dimensional space. The resulting feature vector is a 256-dimensional
8-bit code.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

269

LPQ Summary Taxonomy

Spectra: Local region whitened phase using DFT -> an 8-bit
binary code
Feature shape: Square
Feature pattern: 8x8 kernel region
Feature density: Dense every pixel
Search method: Sliding window
Distance function: Hamming
Robustness: 3 (contrast, brightness, blur)

Basis Space Descriptors
This section covers the use of basis spaces to describe image features for computer vision
applications. A basis space is composed of a set of functions, the basis functions, which are
composed together as a set, such as a series like the Fourier series (discussed in Chapter 3).
A complex signal can be decomposed into a chosen basis space as a descriptor.

Basis functions can be designed and used to describe, reconstruct, or synthesize
a signal. They require a forward transform to project values into the basis set, and
an inverse transform to move data back to the original values. A simple example is
transforming numbers between the base 2 number system and the base 10 number
system; each basis had advantages.

Sometimes it is useful to transform a dataset from one basis space to another to gain
insight into the data, or to process and filter the data. For example, images captured in
the time domain as sets of pixels in a Cartesian coordinate system can be transformed
into other basis spaces, such as the Fourier basis space in the frequency domain, for
processing and statistical analysis. A good basis space for computer vision applications
will provide forward and inverse transforms. Again, the Fourier transform meets these
criteria, as well as several other basis spaces.

Basis spaces are similar to coordinate systems, since both have invertible transforms to
related spaces. In some cases, simply transforming a feature spectra into another coordinate
system makes analysis and representation simpler and more efficient. (Chapter 4
discusses coordinates systems used for feature representation.) Several of the descriptors
surveyed in this chapter use non-Cartesian coordinate systems, including GLOH, which
uses polar coordinate binning, and RIFF, which uses radial coordinate descriptors.

Fourier Descriptors
Fourier descriptors [227] represent feature data as sine and cosine terms, which can be
observed in a Fourier Power Spectrum. The Fourier series, Fourier transform, and Fast
Fourier transform are used for a wide range of signal analysis, including 1D, 2D, and 3D
problems. No discussion of image processing or computer vision is complete without
Fourier methods, so we will explore Fourier methods here with applications to feature
description.

Instead of developing the mathematics and theory behind the Fourier series and
Fourier transform, which has been done very well in the standard text by Bracewell [227],

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

270

we discuss applications of the Fourier Power Spectrum to feature description and provide
minimal treatment of the fundamentals here to frame the discussion; see also Chapter 3.
The basic idea behind the Fourier series is to define a series of sine and cosine basis
functions in terms of magnitude and phase, which can be summed to approximate any
complex periodic signal. Conversely, the Fourier transform is used to decompose a
complex periodic signal into the Fourier series set of sine and cosine basis terms. The
Fourier series components of a signal, such as a line or 2D image area, are used as a
Fourier descriptor of the region.

For this discussion, a Fourier descriptor is the selected components from a Fourier
Power Spectrum—typically, we select the lower-frequency components, which carry
most of the power. Here are a few examples using Fourier descriptors; note that either or
both the Fourier magnitude and phase may be used.

•	 Fourier Spectrum of LBP Histograms. As shown in Figure 3-10,
an LBP histogram set can be represented as a Fourier Spectrum
magnitude, which makes the histogram descriptor invariant to
rotation.

•	 Fourier Descriptor of Shape Perimeter. As shown in Figure 6-29,
the shape of a polygon object can be described by Fourier methods
using an array of perimeter to centroid line segments taken at
intervals, such as 10 degrees. The array is fed into an FFT to
produce a shape descriptor, which is scale and rotation invariant.

Figure 6-29.  (Left) Polygon shape major and minor axis and bounding box. (Center)
Object with radial sample length taken from the centroid to the perimeter, each sample
length saved in an array, normalized. (Right) Image fed into the Fourier Spectrum to yield
a Fourier descriptor

•	 Fourier Descriptor of Gradient Histograms. Many descriptors
use gradients to represent features, and use gradient magnitude
or direction histograms to bin the results. Fourier Spectrum
magnitudes may be used to create a descriptor from gradient
information to add invariance.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

271

•	 Fourier Spectrum of Radial Line Samples. As used in the RFAN
descriptor [136], radial line samples of pixel values from local
regions can be represented as a Fourier descriptor of Fourier
magnitudes.

•	 Fourier Spectrum Phase. The LPQ descriptor, described in this
chapter, makes use of the Fourier Spectrum phase information in
the descriptor, and the LPQ is reported to be insensitive to blur
owing to the phase information.

Other Basis Functions for Descriptor Building
Besides the Fourier basis series, other function series and basis sets are used for descriptor
building, pattern recognition, and image coding. However, such methods are usually
applied over a global or regional area. See Chapter 3 for details on several other methods.

Sparse Coding Methods
In this discussion on basis space descriptors, we briefly discuss sparse coding methods,
since they are analogous to a basis space. Many approaches are taken to sparse coding
[530–533], using subtle differences in terminology, including visual vocabularies and bag
of words methods [537]. However, sparse coding methods use a reduced set of learned
feature descriptors or codes instead of basis functions. The key idea is to build a sparse
codebook of basis features from the training images, and match against the sparse
codebook. The sparse codes may be simple image patches or other descriptors.

A range of machine learning methods (outside the scope of this book, see [546] by
Prince for more on machine learning) are used for finding the optimal sparse feature set.
In addition, each sparse coding method may prefer a particular style of classification and
matching. Sparse codes are associated as subsets or signatures to identify objects. Any of
the local feature descriptor methods discussed in this chapter may be used as the basis
for a sparse codebook. Sparse coding and related methods are discussed in more detail in
Chapter 4. See the work by Aharon, Alad, and Bruckstein [536] for more details on sparse
coding, as well as Fei-Fei, Fergus, and Torralba [537].

Examples of Sparse Coding Methods
As an example of the use of sparse codes for object recognition, Ren and Ramaan [125]
retrofit the HOG method by replacing the HOG histogram of gradients feature with a new
feature descriptor called Histograms of Sparse Codes (HSC); see Figure 6-30. Related work
using sparse code books includes the Hierarchical Matching Pursuit method (HMP) [140],
which builds a layered feature hierarchy of patch-level sparse codes derived from image
patches to produce local features. The patch-level sparse codes from across the whole image
are combined to produce image-level features. A close variation on HMP is the multipath
sparse coding method [124], which effectively combines multiple sizes of smaller and
medium-size patches and multiple layers of sparse coding into a single system.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

272

. . .
Learned sparse patch codebook

Patch

Histogram of sparse codes

Sliding
Window Detection

Figure 6-30.  One method of feature learning using sparse coding, showing how Histograms
of Sparse Codes (HSC) are constructed from a set of learned sparse codes. The HSC method
[125] is reported to outperform HOG in many cases

Polygon Shape Descriptors
Polygon shape descriptors compute a set of shape features for an arbitrary polygon or blob,
and the shape is described using statistical moments or image moments (as discussed in
Chapter 3). These shape features are based on the perimeter of the polygon shape. The
methods used to delineate image perimeters to highlight shapes prior to measurement
and description are often complex, empirically tuned pipelines of image pre-processing
operations, like thresholding, segmentation, and morphology (as discussed in Chapter
2). Once the polygon shapes are delineated, the shape descriptors are computed; see
Figure 6-31. Typically, polygon shape methods are applicable to larger region-size
features. In the literature, this topic may also be discussed as image moments. For a deep
dive into the topic of image moments, see Flusser et. al. [518].

Figure 6-31.  Polygon shape descriptors. (Left) Malachite pieces. (Right) Polygon shapes
defined and labeled after binary thresholding, perimeter tracing, and feature labeling.
(Image processing and particle analysis performed using ImageJ Fiji)

Polygon shape methods are commonly used in medical and industrial applications,
such as automated microscopy for cell biology, and also for industrial inspection; see
Figure 6-31. Commercial software libraries are available for polygon shape description,
commonly referred to as particle analysis or blob analysis. See Appendix C.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

273

MSER Method
The Maximally Stable Extremal Regions (MSER) method [194] is usually discussed in the
literature as an interest region detector, and in fact it is. However we include MSER in the
shape descriptor section because MSER regions can be much larger than other interest
point methods, such as HARRIS or FAST.

The MSER detector was developed for solving disparity correspondence in a wide
baseline stereo system. Stereo systems create a warped and complex geometric depth
field, and depending on the baseline between cameras and the distance of the subject to
the camera, various geometric effects must be compensated for. In a wide baseline stereo
system, features nearer the camera are more distorted under affine transforms, making
it harder to find exact matches between the left/right image pair. The MSER approach
attempts to overcome this problem by matching on blob-like features. MSER regions are
similar to morphological blobs and are fairly robust to skewing and lighting. MSER is
essentially an efficient variant of the watershed algorithm, except that the goal of MSER is
to find a range of thresholds that leave the watershed basin unchanged in size.

The MSER method involves sorting pixels into a set of regions based on binary
intensity thresholding; regions with similar pixel value over a range of threshold values in
a connected component pattern are considered maximally stable. To compute a MSER,
pixels are sorted in a binary intensity thresholding loop, which sweeps the intensity value
from min to max. First, the binary threshold is set to a low value such as zero on a single
image channel— luminance, for example. Pixels < the threshold value are black, pixels
>=are white. At each threshold level, a list of connected components or pixels is kept. The
intensity threshold value is incremented from 0 to the max pixel value. Regions that do
not grow or shrink or change as the intensity varies are considered maximally stable, and
the MSER descriptor records the position of the maximal regions and the corresponding
thresholds.

In stereo applications, smaller MSER regions are preferred and correlation is used for
the final correspondence, and similarity is measured inside a set of circular MSER regions
at chosen rotation intervals. Some interesting advantages of the MSER include:

Multi-scale features and multi-scale detection. Since the MSER •	
features do not require any image smoothing or scale space, both
coarse features and fine-edge features can be detected.

Variable-size features computed globally across an entire region, •	
not limited to patch size or search window size.

Affine transform invariance, which is a specific goal.•	

General invariance to shape change, and stability of detection, •	
since the extremal regions tend to be detected across a wide range
of image transformations.

The MSER can also be considered as the basis for a shape descriptor, and as an
alternative to morphological methods of segmentation. Each MSER region can be
analyzed and described using shape metrics, as discussed later in this chapter.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

274

Object Shape Metrics for Blobs and Polygons
Object shape metrics are powerful and yield many degrees of freedom with respect to
invariance and robustness. Object shape metrics are not like local feature metrics, since
object shape metrics can describe much larger features. This is advantageous for tracking
from frame to frame. For example, a large object described by just a few simple object
shape metrics such as area, perimeter, and centroid can be tracked from frame to frame
under a wide range of conditions and invariance. For more information, see references
[128,129] for a survey of 2D shape description methods.

Shape can be described by several methods, including:

•	 Object shape moments and metrics: the focus of this section.

•	 Image moments: see Chapter 3 under “Image Moments.”

•	 Fourier descriptors: discussed in this chapter and Chapter 3.

•	 Shape Context feature descriptor: discussed in this section.

•	 Chain code descriptor for perimeter description: discussed in
this section.

Object shape is closely related to the field of morphology, and computer methods
for morphological processing are discussed in detail in Chapter 2. Also see the discussion
about morphological interest points earlier in this chapter.

In many areas of computer vision research, local features seem to be favored over
object shape-based features. The lack of popularity of shape analysis methods may
be a reaction to the effort involved in creating pre-processing pipelines of filtering,
morphology, and segmentation to prepare the image for shape analysis. If the image is
not pre-processed and prepared correctly, shape analysis is not possible. (See Chapter 8
for a discussion of a hypothetical shape analysis pre-processing pipeline.)

Polygon shape metrics can be used for virtually any scene analysis application to
find common objects and take accurate measurements of their size and shape; typical
applications include biology and manufacturing. In general, most of the polygon shape
metrics are rotational and scale invariant. Table 6-7 provides a sampling of some of the
common metrics that can be derived from region shapes, both binary shapes and gray
scale shapes.

Table 6-7.  Various Common Object Shape and Blob Object Metrics

Object Binary Shape Metrics Description

Perimeter Length of all points around the edge of the object,
including the sum of diagonal lengths ~=1.4 and
adjacent lengths = 1

Area Total area of object in pixels

Convex hull Polygon shape or set of line segments enclosing all
perimeter points

(continued)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

275

Object Binary Shape Metrics Description

Centroid Center of object mass, average value of all pixel
coordinates or average value of all perimeter coordinates

Fourier descriptor Fourier spectrum result from an array containing the
length of a set of radial line segments passing from
centroid to perimeter at regular angles used to model a
1D signal function, the 1D signal function is fed into a
1D FFT and the set of FFT magnitude data is used as a
metric for a chosen set of octave frequencies

Major/minor axis Longest and shortest line segments passing through
centroid contained within and touching the perimeter

Feret Largest caliper diameter of object

Breadth Shortest caliper diameter

Aspect ratio Feret / Breadth

Circularity 4 X Pi X Area / Perimeter2

Roundness 4 X Area / (Pi X Feret2)
(Can also be calculated from the Fourier descriptors)

Area equivalent diameter sqrt((4 / Pi) X Area)

Perimeter equivalent
diameter

Area/Pi

Equivalent ellipse (Pi X Feret X Breadth) / 4

Compactness sqrt((4 / Pi) X Area) / Feret

Solidity Area / Convex_Area

Concavity Convex_Area - Area

Convexity Convex_Hull / Perimeter

Shape Perimeter2 / Area

Modification ratio (2 X MinR) / Feret

Shape matrix A 2D matrix representation or plot of a polygon shape
(may use Cartesian or polar coordinates; see Figure 6-32)

(continued)

Table 6-7.  (continued)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

276

Object Binary Shape Metrics Description

Grayscale Object
Shape Metrics

SDM plots *See Chapter 3, “Texture Metrics” section.

Scatter plots *See Chapter 3, “Texture Metrics” section.

Statistical moments of gray
scale pixel values

Minimum
Maximum
Median
Average
Average deviation
Standard deviation
Variance
Skewness
Kurtosis
Entropy

*Note: some of binary object metrics also apply to gray scale objects.

Table 6-7.  (continued)

Shape is considered to be binary; however, shape can be computed around intensity
channel objects as well, using gray scale morphology. Perimeter is considered as a set of
connected components. The shape is defined by a single pixel wide perimeter at a binary
threshold or within an intensity band, and pixels are either on, inside, or outside of the
perimeter. The perimeter edge may be computed by scanning the image, pixel by pixel,
and examining the adjacent touching pixel neighbors for connectivity. Or, the perimeter
may be computed from the shape matrix [335] or chain code discussed earlier in this
chapter. Perimeter length is computed for each segment (pixel), where segment length = 1
for horizontal and vertical neighbors, and 2 otherwise for diagonal neighbors.

Figure 6-32.  A shape matrix descriptor [335] for the perimeter of an object. (Left two
images) Cartesian coordinate shape matrix. (Right two images) polar coordinate shape
matrix using three rows of eight numbered bin regions, gray boxes represent pixels to be
binned. Note that multiple shape matrices can be used together. Values in matrix are set if
the pixel fills at least half of the bin region, no interpolation is used

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

277

The perimeter may be used as a mask, and gray scale or color channel statistical
metrics may be computed within the region. The object area is the count of all the pixels
inside the perimeter. The centroid may be computed either from the average of all (x,y)
coordinates of all points contained within the perimeter area, or from the average of all
perimeter (x,y) coordinates.

Shape metrics are powerful. For example, shape metrics may be used to remove
or excluding objects from a scene prior to measurement. For example, objects can be
removed from the scene when the area is smaller than a given size, or if the centroid
coordinates are outside a given range.

As shown in Figure 6-29 and Figure 2-18, the Fourier descriptor provides a rotation
and scale invariant shape metric, with some occlusion invariance also. The method
for determining the Fourier descriptor is to take a set of equally angular-spaced radius
measurements, such as every 10 degrees, from the centroid out to points on the
perimeter, and then to assemble the radius measurements into a 1D array that is run
through a 1D FFT to yield the Fourier moments of the object. Or radial pixel spokes can
be used as a descriptor.

Other examples of useful shape metrics, shown in Figure 6-29, include the bounding
box with major and minor axis, which has longest and shortest diameter segments
passing through the centroid to the perimeter; this can be used to determine rotational
orientation of an object.

The SNAKES method [540] uses a spline model to fit a collection of interest points,
such as selected perimeter points, into a region contour. The interest points are the
spline points. The SNAKE can be used to track contoured features from frame to frame,
deforming around the interest point locations.

In general, the 2D object shape methods can be extended to 3D data; however, we do
not explore 3D object shape metrics here, see reference [200,201] for a survey of 3D shape
descriptors.

Shape Context
The shape context method developed by Belongie, Malik, and Puzicha [239–241],
describes local feature shape using a reference point on the perimeter as the Cartesian
axis origin, and binning selected perimeter point coordinates relative to the reference
point origin. The relative coordinates of each point are binned into a log polar histogram.
Shape context is related to the earlier shape matrix descriptor [335] developed in 1985
as shown in Figure 6-32, which describes the perimeter of an object using log polar
coordinates also. The shape context method provides for variations, described in several
papers by the authors [239–241]. Here, we look at a few key concepts.

To begin, the perimeter edge of the object is sparsely sampled at uniform intervals,
typically keeping about 100 edge sample points for coarse binning. Sparse perimeter
edge points are typically distinct from interest points, and found using perimeter
tracing. Next, a reference point is chosen on the perimeter of the object as the origin of
a Cartesian space, and the vector angle and magnitude (,)r q from the origin point to
each other perimeter point are computed. The magnitude or distance is normalized to fit
the histogram. Each sparse perimeter edge point is used to compute a tangent with the
origin. Finally, each normalized vector is binned using (,)r q into a log polar histogram,
which is called the shape context.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

278

An alignment transform is generated between descriptor pairs during matching,
which yields the difference between targets and chosen patterns, and could be used for
reconstruction. The alignment transform can be chosen as desired from affine, Euclidean,
spline-based, and other methods. Correspondence uses the Hungarian method, which
includes histogram similarity, and is weighted by the alignment transform strength using
the tangent angle dissimilarity. Matching may also employ a local appearance similarity
measure, such as normalized correlation between patches or color histograms.

The shape context method provides a measure of invariance over scale, translation,
rotation, occlusion, and noise. See Figure 6-33.

Figure 6-33.  Shape context method. (Left) Perimeter points are measured as a shape vector,
both angle and distance, with respect to a chosen perimeter point as the reference Cartesian
origin. (Right) Shape vectors are binned into a log polar histogram featrure descriptor

3D, 4D, Volumetric, and Multimodal Descriptors
With the advent of more and more 3D sensors, such as stereo cameras and other
depth-sensing methods, as well as the ubiquitous accelerometers and other sensors built
into inexpensive mobile devices, the realm of 3D feature description and multimodal
feature description is beginning to blossom.

Many 3D descriptors are associated with robotics research and 3D localization. Since
the field of 3D feature description is early in the development cycle, it is not yet clear which
methods will be widely adopted, so we present only a small sampling of 3D descriptor
methods here. These include 3D HOG [196], 3D SIFT [195], and HON 4D [198], which are
based on familiar 2D methods. We refer the interested reader to references [200,201,216]
for a survey of 3D shape descriptors. Several interesting 3D descriptor metrics are available
as open source in the Point Cloud Library,2 including Radius-Based Surface Descriptors
(RSD) [539], Principal Curvature Descriptors (PCD), Signatures of Histogram Orientations
(SHOT) [541], Viewpoint Feature Histogram (VFH) [398], and Spin Images [538].

2http://pointclouds.org

http://pointclouds.org/

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

279

Key applications driving the research into 3D descriptors include robotics and
activity recognition, where features are tracked frame to frame as they morph and
deform. The goals are to localize position and recognize human actions, such as walking,
waving a hand, turning around, or jumping. See also the LBP variants for 3D: V-LBP and
LBP-TOP, which are surveyed earlier in this chapter as illustrated in Figure 6-12, which
are also used for activity recognition. Since the 2D features are moving during activity
recognition, time is the third dimension incorporated into the descriptors. We survey
some notable 3D activity-recognition research here.

One of the key concepts in the action-recognition work is to extend familiar 2D
features into a 3D space that is spatio-temporal, where the 3D space is composed of 2D
x,y video image sequences over time t into a volumetric representation with the form
v(x,y,t). In addition, the 3D surface normal, 3D gradient magnitude, and 3D gradient
direction are used in many of the action-recognition descriptor methods.

3D HOG
The 3D HOG [196] is partially based on some earlier work in volumetric features [199].
The general idea is to employ the familiar HOG descriptor [106] in a 3D HOG descriptor
formulation, using a stack of sequential 2D video frames or slices as a 3D volume, and
to compute spatio-temporal gradient orientation on adjacent frames within the volume.
For efficiency, a novel integral video approach is developed as an alternative to image
pyramids based on the same line of thinking as the integral image approach use in the
Viola Jones method.

A similar approach using the integral video concept was also developed in [199]
using a sub-sampled space of 64x64 over 4 to 40 video frames in the volume, using pixel
intensity instead of the gradient direction. The integral video method, which can also
be considered an integral volume method, allows for arbitrary cuboid regions from
stacked sequential video frames to be integrated together to compute the local gradient
orientation over arbitrary scales. This is space efficient and time efficient compared to
using pre-computed image pyramids. In fact, this integral video integration method is
a novel contribution of the work, and may be applied to other spectra such as intensity,
color, and gradient magnitude in either 2D or 3D to eliminate the need for image
pyramids—providing more choices in terms of image scale besides just octaves.

The 3D HOG descriptor computations are illustrated in Figure 6-34. To find feature
keypoints to anchor the descriptors, a space-time extension of the Harris operator [197]
is used, then a histogram descriptor is computed from the mean of the oriented gradients
in a cubic region at the keypoint. Since gradient magnitude is sensitive to illumination
changes, gradient orientation is used instead to provide invariance to illumination, and
it is computed over 3D cuboid regions using simple x,y,z derivatives. The mean gradient
orientation of any 3D cuboid is computed quickly using the integral video method.
Gradient orientations are quantized into histogram bins via projection of each vector
onto the faces of a regular icosahedron 20-sided shape to combine all vectors, as shown
in Figure 6-34. The 20 icosahedron faces act as the histogram bins. The sparse set of
spatio-temporal features is combined into a bag of features or bag of words in a visual
vocabulary.

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

280

HON 4D
A similar approach to the 3D HOG is called HON 4D [198], which computes descriptors
as Histogram of Oriented 4D Normals, where the 3D surface normal + time add up to four
dimensions (4D). HON 4D uses sequences of depth images or 3D depth maps as the basis
for computing the descriptor, rather than 2D image frames, as in the 3D HOG method.
So a depth camera is needed. In this respect, HON 4D is similar to some volume
rendering methods which compute 3D surface normals, and may be accelerated using
similar methods [452,453,454].

In the HON 4D method, the surface normals capture the surface shape cues of each
object, and changes in normal orientation over time can be used to determine motion
and pose. Only the orientation of the surface normal is significant in this method, so the
normal lengths are all normalized to unity length. As a result, the binning into histograms
acts differently from the HOG style binning, so that the fourth dimension of time encodes
differences in the gradient from frame to frame. The HON 4D descriptor is binned and
quantized using 4D projector functions, which quantize local surface normal orientation
into a 600-cell polychron, which is a geometric extension of a 2D polygon into 4-space.

Consider the discrimination of the HON 4D method using gradient orientation vs.
the HOG method using gradient magnitude. If two surfaces are the same or similar with
respect to gradient magnitude, the HOG style descriptor cannot differentiate; however,
the HON 4D style descriptor can differentiate owing to the orientation of the surface
normal used in the descriptor. Of course, computing 3D normals is compute-intensive
without special optimizations considering the noncontiguous memory access patterns
required to access each component of the volume.

3D SIFT
The 3D SIFT method [195] starts with the 2D SIFT feature method and reformulates the
feature binning to use a volumetric spatio-temporal area v(x,y,t), as shown in Figure 6-35.

Figure 6-34.  HOG 3D descriptor computation. (Left) 2x2x2 descriptor cell block. (Left
center) Gradient orientation histogram computed over 2x2x2 cell sub-blocks. (Right center)
Gradient orientations quantized by projecting the vector intersection to the faces of a
20-faceted icosahedron. (Right) Mean gradient orientation computed over integral video
blocks (volume vector integral)

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

281

The 3D orientation of the gradient pair orientation is computed as follows:

m D x y t L L Lx y t3 2 2 2, ,() = + +

q x y t
L

L
y

x

, , tan() = æ

è
ç

ö

ø
÷

-1

f x y t
L

L L

yt

x y

, , tan �() =
+

æ

è

ç
ç

ö

ø

÷
÷

-1

2 2

This method provides a unique two-valued (f, q) representation for each angle of the
gradient orientation in 3-space at each keypoint. The binning stage is handled differently
from SIFT, and instead uses orthogonal bins defined by meridians and parallels in a
spherical coordinate space. This is simpler to compute, but requires normalization of
each value to account for the spherical difference in the apparent size ranging from the
poles to the equator.

To compute the SIFT descriptor, the 3D gradient orientation of each sub-histogram
is used to guide rotation of the 3D region at the descriptor keypoint to point to 0,
which provides a measure of rotational invariance to the descriptor. Each point will be
represented as a single gradient magnitude and two orientation vectors (f, q) instead
of one, as in 2D SIFT. The descriptor binning is computed over three dimensions into
adjacent cubes instead of over two dimensions in the 2D SIFT descriptor.

Figure 6-35.  Computation of the 3D SIFT [195] vector histogram bins as a combination
of the combined gradient orientation of the sub-volumes in a volume space or 3D
spatio-temporal region of three consecutive 2D image frames

Chapter 6 ■ Interest Point Detector and Feature Descriptor Survey

282

Once the feature vectors are binned, the feature vector set is clustered into groups of
like features, or words, using hierarchical K-means clustering into a spatio-temporal word
vocabulary. Another step beyond the clustering could be to reduce the feature set using
sparse coding methods [115–117], but the sparse coding step is not attempted.

Results using 3D SIFT for action recognition are reported to be quite good compared
to other similar methods; see reference [195].

Summary
In this chapter we surveyed a wide range of local interest point detectors and feature
descriptor methods to learn ‘what’ practitioners are doing, including both 2D and 3D
methods. The vision taxonomy from Chapter 5 was used to divide the feature descriptor
survey along the lines of descriptor families, such as local binary methods, spectra
methods, and polygon shape methods. There is some overlap between local and regional
descriptors, however this chapter tries to focus on local descriptor methods, leaving
regional methods to Chapter 3. Local interest point detectors are discussed in a simple
taxonomy including intensity-based regions methods, edge-based region methods, and
shape-based region methods, including background on key concepts and mathematics
used by many interest point detector methods. Some of the difficulties in choosing an
appropriate interest point detector were discussed and several detector methods were
surveyed.

This chapter also highlighted retrofits to common descriptor methods. For example,
many descriptors are retrofitted by changing the descriptor spectra used, such as LBP vs.
gradient methods, or by swapping out the interest point detector for a different method.
Summary information was provided for feature descriptors following the taxonomy
attributes developed in Chapter 5 to enable limited comparisons, using concepts from the
analysis of local feature description design concepts presented in Chapter 4.

283

Chapter 7

Ground Truth Data, Content,
Metrics, and Analysis

Buy the truth and do not sell it.

—Proverbs 23:23

This chapter discusses several topics pertaining to ground truth data, the basis for
computer vision metric analysis. We look at examples to illustrate the importance of
ground truth data design and use, including manual and automated methods. We then
propose a method and corresponding ground truth dataset for measuring interest
point detector response as compared to human visual system response and human
expectations. Also included here are example applications of the general robustness
criteria and the general vision taxonomy developed in Chapter 5 as applied to the
preparation of hypothetical ground truth data. Lastly, we look at the current state of the
art, its best practices, and a survey of available ground truth datasets.

Key topics include:

Creating and collecting ground truth data: manual vs. synthetic •	
methods

Labeling and describing ground truth data: automated vs. human •	
annotated

Selected ground truth datasets•	

Metrics paired with ground truth data•	

Over-fitting, under-fitting, and measuring quality•	

Publically available datasets•	

An example scenario that compares the human visual system to •	
machine vision detectors, using a synthetic ground truth dataset

Ground truth data may not be a cutting-edge research area, however it is as
important as the algorithms for machine vision. Let’s explore some of the best-known
methods and consider some open questions.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

284

What Is Ground Truth Data?
In the context of computer vision, ground truth data includes a set of images, and a set of
labels on the images, and defining a modelfor object recognition as discussed in Chapter 4,
including the count, location, and relationships of key features. The labels are added
either by a human or automatically by image analysis, depending on the complexity of
the problem. The collection of labels, such as interest points, corners, feature descriptors,
shapes, and histograms, form a model.

A model may be trained using a variety of machine learning methods. At run-time,
the detected features are fed into a classifier to measure the correspondence between
detected features and modeled features. Modeling, classification, and training are
statistical and machine learning problems, however, that are outside the scope of this
book. Instead, we are concerned here with the content and design of the ground truth
images.

Creating a ground truth dataset, then, may include condieration of the following
major tasks:

•	 Model design. The model defines the composition of the
objects—for example, the count, strength, and location
relationship of a set of SIFT features. The model should be
correctly fitted to the problem and image data so as to yield
meaningful results.

•	 Training set. This set is collected and labeled to work with the
model, and it contains both positive and negative images and
features. Negatives contain images and features intended to
generate false matches; see Figure 7-1.

Figure 7-1.  Set of all ground truth data, composed of both positive and negative training
examples

•	 Test set. A set of images is collected for testing against the training
set to verify the accuracy of the model to predict the correct
matches.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

285

•	 Classifier design. This is constructed to meet the application
goals for speed and accuracy, including data organization and
searching optimizations for the model.

•	 Training and testing. This work is done using several sets of
images to check against ground truth.

Unless the ground truth data contains carefully selected and prepared image
content, the algorithms cannot be measured effectively. Thus, ground-truthing is closely
related to root-causing: there is no way to improve what we cannot measure and do not
understand. Being able to root-cause algorithm problems and understand performance
and accuracy are primary purposes for establishing ground truth data. Better ground
truth data will enable better analysis.

Ground truth data varies by task. For example, in 3D image reconstruction or face
recognition, different attributes of the ground truth data must be recognized for each
task. Some tasks, such as face recognition, require segmentation and labeling to define
the known objects, such as face locations, position and orientation of faces, size of faces,
and attributes of the face, such as emotion, gender, and age. Other tasks, such as 3D
reconstruction, need the raw pixels in the images and a reference 3D mesh or point cloud
as their ground truth.

Ground truth datasets fall into several categories:

•	 Synthetic produced: images are generated from computer
models or renderings.

•	 Real produced: a video or image sequence is designed and
produced.

•	 Real Selected: real images are selected from existing sources.

•	 Machine-automated annotation: feature analysis and learning
method are used to extract features from the data.

•	 Human annotated: an expert defines the location of features and
objects.

•	 Combined: any mixture of the above.

Many practitioners are firmly against using synthetic datasets and insist on using
real datasets. In some cases, random ground truth images are required; in other cases,
carefully scripted and designed ground truth images need to be produced, similar to
creating a movie with scenes and actors.

Random and natural ground truth data with unpredictable artifacts, such as poor
lighting, motion blur, and geometric transformation, is often preferred. Many computer
problems demand real images for ground truth, and random variations in the images
are important. Real images are often easy to obtain and/or easy to generate using a video
camera or even a cell phone camera. But creating synthetic datasets is not as clear; it
requires knowledge of appropriate computer graphics rendering systems and tools, so the
time investment to learn and use those tools may outweigh their benefits.

However, synthetic computer-generated datasets can be a way to avoid legal and
privacy issues concerning the use of real images.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

286

Previous Work on Ground Truth Data:
Art vs. Science
In this section, we survey some literature on ground truth data. We also highlight several
examples of automatic ground truth data labeling, as well as other research on metrics
for establishing if, in fact, the ground truth data is effective. Other research surveyed
here includes how closely ground truth features agree with human perception and
expectations, for example, whether or not the edges that humans detect in the ground
truth data are, in fact, found by the chosen detector algorithms.

General Measures of Quality Performance
Compared to other topics in computer vision, little formal or analytic work has been
published to guide the creation of ground truth data. However, the machine learning
community provides a wealth of guidance for measuring the quality of visual recognition
between ground truth data used for training and test datasets. In general, the size of the
training set or ground truth data is key to its accuracy [336–338] and the larger the better,
assuming the right data is used.

Key journals to dig deeper into machine learning and testing against ground truth
data include the journal IEEE PAMI for Pattern Analysis and Machine Intelligence,
whose articles on the subject go back to 1979. While the majority of ground truth datasets
contain real images and video sequences, some practitioners have chosen to create
synthetic ground truth datasets for various application domains, such as the standard
Middlebury dataset with synthetic 3D images. See Appendix B for available real ground
truth datasets, along with a few synthetic datasets.

One noteworthy example framework for ground truth data, detector, and descriptor
evaluation is the Mikolajczyk and Schmidt methodology (M&S), discussed later in this
chapter. Many computer vision research projects follow the M&S methodology using a
variety of datasets.

Measures of Algorithm Performance
Ericsson and Karlsson[102] developed a ground truth correspondence measure (GCM)
for benchmarking and ranking algorithm performance across seven real datasets and
one synthetic dataset. Their work focused on statistical shape models and boundaries,
referred to as polygon shape descriptors in the vision taxonomy in Chapter 5. The goal was
to automate the correspondence between shape models in the database and detected
shapes from the ground truth data using their GCM. Since shape models can be fairly
complex, the goal of automating model comparisons and generating quality metrics
specific to shape description is novel.

Dutagaci et al.[91] developed a framework and method, including ground truth
data, to measure the perceptual agreement between humans and 3D interest point
detectors—in other words, do the 3D interest point detectors find the same interest points
as the humans expect? The ground truth data includes a known set of human-labeled
interest points within a set of images, which were collected automatically by an Internet

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

287

scraper application. The human-labeled interest points were sorted toward a consensus
set, and outliers were rejected. The consensus criterion was a radius region counting
the number of humans who labeled interest points within the radius. A set of 3D interest
point detectors was ran against the data and compared using simple metrics such as false
positives, false negatives, and a weighted miss error. The ground truth data was used to
test the agreement between humans and machine vision algorithms for 3D interest point
detectors. The conclusions included observations that humans are indecisive and widely
divergent about choosing interest points, and also that interest point detection algorithms
are a fuzzy problem in computer vision.

Hamameh et al.[88] develop a method of automatically generating ground truth
data for medical applications from a reference dataset with known landmarks, such as
segmentation boundaries and interest points. The lack of experts trained to annotate the
medical images and generate the ground truth data motivated the research. In this work,
the data was created by generating synthetic images simulating object motion, vibrations,
and other considerations, such as noise. Prestawa et al.[89] developed a similar approach
for medical ground truth generation. Haltakov et al.[510] developed synthetic ground
truth data from an automobile-driving simulator for testing driver assistance algorithms,
which provided situation awareness using computer vision methods.

Vedaldi et al.[90] devised a framework for characterizing affine co-variant detectors,
using synthetically generated ground truth as 3D scenes employing raytracing,
including simulated natural and man-made environments; a depth map was provided
with each scene. The goal was to characterize co-variant detector performance under
affine deformations, and to design better covariant detectors as a result. A set of
parameterized features were defined for modeling the detectors, including points,
disks and oriented disks, and various ellipses and oriented ellipses. A large number of
3D scenes were generated, with up to 1,000 perspective views, including depth maps
and camera calibration information. In this work, the metrics and ground truth data
were designed together to focus on the analysis of geometric variations. Feature region
shapes were analyzed with emphasis on disks and warped elliptical disks to discover
any correspondence and robustness over different orientations, occlusion, folding,
translation, and scaling. (The source code developed for this work is available.1)

Rosin’s Work on Corners
Research by Rosin[61,92] involved the development of an analytical taxonomy for gray
scale corner properties, as illustrated in Figure 7-2. Rosin developed a methodology and
case study to generate both the ground truth dataset and the metric basis for evaluating
the performance and accuracy of a few well-known corner detectors. The metric is based
on the receiver operating characteristic (ROC) to measure the accuracy of detectors to
assess corners vs. noncorners. The work was carried out over 13,000 synthetic corner
images with variations on the synthetic corners to span different orientations, subtended
angles, noise, and scale. The synthetic ground truth dataset was specifically designed
to enable the detection and analysis of a set of chosen corner properties, including
bluntness or shape of apex, boundary shape of cusps, contrast, orientation, and
subtended angle of the corner.

1See the “VLFeat” open-source project online (http://www.vlfeat.org”).

http://www.vlfeat.org/

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

288

A novel aspect of Rosin’s work was the generation of explicit types of synthetic
interest points such as corners, nonobvious corners, and noncorners into the dataset,
with the goal of creating a statistically interesting set of features for evaluation that
diverged from idealized features. The synthetic corners were created and generated in a
simulated optical system for realistic rendering to produce corners with parameterized
variations including affine transformations, diffraction, sub-sampling, and in some
cases, adding noise. Rosin’s ground truth dataset is available for research use, and has
been used for corner detector evaluation of methods from Kitchen and Rosenfeld,
Paler, Foglein, and Illingworth, as well as the Kittler Detector and the Harris & Stephens
Detector.

Similar to Rosin, a set of synthetic interest point alphabets are developed later in
this chapter snf tested in Appendix A, including edge and corner alphabets, with the
goal of comparing human perception of interest points against machine vision methods.
The synthetic interest points and corners are designed to test pixel thickness, edge
intersections, shape, and complexity. The set diverges significantly from those of Rosin
and others, and attempts to fill a void in the analysis of interest point detectors. The
alphabets are placed on a regular grid, allowing for detmining position detection count.

Figure 7-2.  Images illustrating the Rosin corner metrics: (Top left) Corner orientation and
subtended angle. (Top right) Bluntness. (Bottom left) Contrast. (Bottom right) Black/white
corner color. (Images © Paul Rosin and used by permission[61])

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

289

Key Questions For Constructing Ground
Truth Data
In this section we identify some key questions to answer for creating ground truth data,
rather than provideing much specific guidance or answers. The type of work undertaken
will dictates the type of guidance, for example, published research usually requires widely
accepted ground truth data to allow for peer review and duplication of results. In medical
or automobile industries,there may be government regulations, and also legal issues
if competitors publish measurement or performance data. For example, if a company
publishes any type of benchmark results against a ground truth data set comparing the
results with those of competitor systems, all such data and claims should be reviewed by
an attorney to avoid the complexities and penalties of commerce regulations, which can
be daunting and severe.

For real products and real systems, perhaps the best guidance comes from the
requirements, expectations and goals for performance and accuracy.Once a clear set of
requirements are in place, then the ground truth selection process can begin.

Content: Adopt, Modify, or Create
It is useful to become familiar with existing ground truth datasets prior to creating a new
one. The choices are obvious:

Adopt an existing dataset.•	

Adopt-And-Modify an existing data set.•	

Create a new dataset.•	

Survey Of Available Ground Truth Data
Appendix B has information on several existing ground truth datasets. Take some time
to get to know what is already available, and study the research papers coming out of
SIGGRAPH, CVPR, IJCV, NIPS in Appendix C, and other research conferences to learn
more about new datasets and how they are being used. The available datasets come from
a variety of sources, including:

Academic research organizations, usually available free of charge •	
for academic research.

Government datasets, sometimes with restricted use.•	

Industry datasets, available from major corporations like •	
Microsoft, sometimes can be licensed for commercial use.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

290

Fitting Data to Algorithms	
Perhaps the biggest challenge is to determine whether a dataset is a correct fit for the
problem at hand. Is the detail in the ground truth data sufficient to find the boundaries
and limits of the chosen algorithms and systems? “Fitting” applies to key variables
such as the ground truth data, the algorithms used, the object models, classifier, and
the intended use-cases. See Figure 7-3, which shows how ground truth data, image
pre-processing, detector and descriptor algorithms, and model metrics should be
fitted together.

Figure 7-3.  (Top left) Image pre-processing for edges shown using Shen-Castan edge
detection against ground truth data. (Top right) Over-fitting detection parameters
yield too many small edges. (Bottom left) Under fitting parameters yield too few edges.
(Bottom right) Relaxed parameters yield reasonable edges

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

291

Here are a few examples to illustrate the variables.

•	 Data fitting: If the dataset does not provide enough pixel
resolution or bit depth, or there are insufficient unique samples
in the training set, the model will be incomplete, the matching
may suffer, and the data is under-fitted to the problem. Or, if the
ground truth contains too many different types of features that
will never be encoutered in the test set or in real applications.
If the model resolution is 16 bits per RGB channel when only
8 bits per color channel are provided in real data, the data and
model are over-fitted to the problem.

•	 Algorithm fitting: If scale invariance is included in the ground
truth data, and the LBP operator being tested is not claimed to be
scale invariant, then the algorithm is under-fitted to the data. If the
SIFT method is used on data with no scale or rotation variations,
then the SIFT algithm is over-fitted to the data.

•	 Use-case fitting: If the use-cases are not represented in the data
and model, the data and model are under-fitted to the problem.

Scene Composition and Labeling
Ground truth data is composed of labeled features such as foreground, background, and
objects or features to recognize. The labels define exactly what features are present in
the images, and these labels may be a combination of on-screen labels, associated label
files, or databases. Sometimes a randomly composed scene from the wild is preferred as
ground truth data, and then only the required items in the scene are labeled. Other times,
ground truth data is scripted and composed the way a scene for a movie would be.

In any case, the appropriate objects and actors in the scene must be labeled, and
perhaps the positions of each must be known and recorded as well. A database or file
containing the labels must therefore be created and associated with each ground truth
image to allow for testing. See Figure 7-4, which shows annotated or labeled ground
truth dataset images for a scene analysis of cuboids [62]. See also the Labelme database
described in Appendix B, which allows contributors to provide labeled databases.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

292

Composition
Establishing the right set of ground truth data is like asssembling a composition; several
variables are involved, including:

•	 Scene Content: Designing the visual content, including fixed
objects (those that do not move), dynamic objects (those that
enter and leave the scene), and dynamic variables (such as
position and movement of objects in the scene).

•	 Lighting: Casting appropriate lighting onto the scene.

•	 Distance: Setting and labeling the correct distance for each
object to get the pixel resolution needed—too far away means not
enough pixels.

•	 Motion Scripting: Determining the appropriate motion of objects
in the scene for each frame; for example, how many people are
in the scene, what are their positions and distances, number of
frames where each person appears, and where each person enters
and exits. Also, scripting scenes to enable invariance testing for
changes in perspective, scale, affine geometry, occlusion.

•	 Labeling: Creating a formatted file, database, or spreadsheet to
describe each labeled ground truth object in the scene for each
frame.

•	 Intended Algorithms: Deciding which algorithms for interest
point and feature detection will be used, what metrics are to be
produced, and which invariance attributes are expected from
each algorithm; for example, an LBP by itself does not provide
scale invariance, but SIFT does.

Figure 7-4.  Annotated or labeled ground-truth dataset images for scene analysis of cuboids
(left and center). The labels are annotated manually into the ground- truth dataset, in yellow
(light gray in B&W version) marking the cuboid edges and corners. (right) Ground-truth
data contains pre-computed 3D corner HOG descriptor sets, which are matched against live
detected cuboid HOG feature sets. Successful matches shown in green (dark gray in B&W
version). (Images used by permission © Bryan Russel, Jianxiong Xiao, and Antonio Torralba)

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

293

•	 Intended Use-Cases: Determining the problem domain or
application. Does the ground truth data represent enough real
use-cases?

•	 Image Channel Bit Depth, Resolution: Setting these to match
requirements.

•	 Metrics: Defining the group of metrics to measure—for example,
false positives and false negatives. Creating a test fixture to run
the algorithms against the dataset, measuring and recording all
necessary results.

•	 Analysis: Interpreting the metrics by understanding the
limitations of both the ground truth data and the algorithms,
defining the success criteria.

•	 Open Rating Systems: Exploring whether there is an open rating
system that can be used to report the results. For example, the
Middlebury Dataset provides an open rating system for 3D stereo
algorithms, and is described in Appendix B; other rating systems
are published as a part of grand challenge contests held by
computer vision organizations and governments, and some are
reviewed in Appendix B. Open rating systems allow existing and
new algorithms to be compared on a uniform scale.

Labeling
Ground truth data may simply be images returned from a search engine, and the
label may just be the search engine word or phrase. Figure 7-5 shows a graph of photo
connectivity for photo tourism [63–65] that is created from pseudo-random images of a
well-known location, the Trevi Fountain in Rome. It is likely that in five to ten years, photo
tourism applications will provide high-quality image reconstruction including textures,
3D surfaces, and rerenderings of the same location, rivaling real photographs.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

294

For some applications, labels and markers are inserted into the ground truth
datasets to enable analysis of results, as shown in the 3D scene understanding database
for cuboids in Figure 7-4. Another example later in this chapter composes scenes using
synthetic alphabets of interest points and corners that are superimposed on the images
of a regularly spaced grid to enable position verification (see also Appendix A). In some
visual tracking applications, markers are attached to physical objects (a wrist band, for
example) to establish ground truth features.

Another example is ground truth data composed to measure gaze detection, using
a video sequence containing labels for two human male subjects entering and leaving
the scene at a known location and time, walking from left to right at a known speed and
depth in the scene. The object they are gazing at would be at a known location and be
labeled as well.

Defining the Goals and Expectations
To establish goals for the ground truth data, questions must be asked. For instance, what
is the intended use of the application requiring the ground truth data? What decisions
must be made from the ground truth data in terms of accuracy and performance? How is
quality and success measured? The goals of academic research and commercial systems
are quite different.

Figure 7-5.  Graph of photo connectivity (center) created from analyzing multiple public
images from a search engine of the Trevi Fountain (a). Edges show photos matched and
connected to features in the 3D scene, including daytime and nighttime lighting (b)(c)(d).
(Images © Noah Snavely and used by permission)

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

295

Mikolajczyk and Schmid Methodology
A set of well-regarded papers by Mikolajczyk, Schmid and others [45,79,82,91,306]
provides a good methodology to start with for measuring local interest points and feature
detector quality. Of particular interest is the methodology used to measure scale and
affine invariant interest point detectors [306] which uses natural images to start, then
applies a set of known affine transformations to those images, such as homography,
rotation, and scale. Interest point detectors are run against the images, followed by
feature extractors, and then the matching recall and precision are measured across the
transformed images to yield quality metrics.

Open Rating Systems
The computer vision community is, little by little, developing various open rating
systems, which encourage algorithm comparisons and improvements to increase quality.
In areas where such open databases exist, there is rapid growth in quality for specific
algorithms. Appendix B lists open rating systems such as the Pascal VOC Challenge for
object detection. Pascal VOC uses an open ground truth database with associated grand
challenge competition problems for measuring the accuracy of the latest algorithms
against the dataset.

Another example is the Middlebury Dataset, which provides ground truth datasets
covering the 3D stereo algorithm domain, allowing for open comparison of key metrics
between new and old algorithms, with the results published online.

Corner Cases and Limits
Finding out where the algorithms fail is valuable. Academic research is often not
interested in the rigor required by industry in defining failure modes. One way to find
the corner cases and limits is to run the same tests on a wide range of ground truth data,
perhaps even data that is outside the scope of the problem at hand. Given the availability
of publicly available ground truth databases, using several databases is realistic.

However, once the key ground truth data is gathered, it can also be useful to devise
a range of corner cases—for example, by providing noisy data, intensity filtered data, or
blurry data to test the limits of performance and accuracy.

Interest Points and Features
Interest points and features are not always detected as expected or predicted. Machine
vision algorithms detect a different set of interst points than those humans expect. For
example, Figure 7-6 shows obvious interest points missed by the SURF algorithm with
a given set of parameters, which uses a method based on determinant of Hessian blob
detection. Note that some interest points obvious to humans are not detected at all, some
false positives occur, and some identical interest points are not detected consistently.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

296

Also, real interest points change over time—for example, as objects move and
rotate—which is a strong agrument for using real ground truth data vs. synthetic data to
test a wide range of potential interest points for false positives and false negatives.

Robustness Criteria for Ground Truth Data
In Chapter 5, a robustness criteria was developed listing various invariance attributes,
such as rotation and scale. Here, we apply the robustness criteria to the development of
ground truth data.

Illustrated Robustness Criteria
Table 7-1 discusses various robustness criteria attributes, not all attributes are needed
for a given application. For example, if radial distortion might be present in an optical
system, then the best algorithms and corresponding metrics will be devised that are
robust to radial distortion, or as mitigation, the vision pipeline must be designed with
a pre-processing section to remove or compensate for the radial distortion prior to
determining the metrics.

Figure 7-6.  Interest points detected on the same image using different methods: (Left)
Shi-Tomasi corners marked with crosses. (Right) SURF interest points marked with circles.
Results are not consistent or deterministic

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

297

Table 7-1.  Robustness Criteria for Ground Truth Data

Attribute Discussion

Uneven
illumination

Define range of acceptable illumination for the application;
uneven illumination may degrade certain algorithms, some
algorithms are more tolerant.

Brightness Define expected brightness range of key features, and prepare
ground-truth data accordingly.

Contrast Define range of acceptable contrast for the application; some
algorithms are more tolerant.

Vignette Optical systems may degrade light and manifest as dim
illumination at the edges. Smaller the features are localized better
and may be able to overcome this situation; large features that
span areas of uneven light are affected more.

Color accuracy Inaccurate color space treatment may result in poor color
performance. Colorimetry is important; consider choosing the
right color space (RGB, YIQ, Lab, Jab, etc.) and use the right level
of bit precision for each color, whether 8/16 bits is best.

Clutter Some algorithms are not tolerant of clutter in images and rely on
the scene to be constructed with a minimal number of subjects.
Descriptor pixel size may be an issue for block search methods—
too much extraneous detail in a region may be a problem for the
algorithm.

Occlusion and
clipping

Objects may be occluded or hidden or clipped. Algorithms may or
may not tolerate such occlusion. Some occlusion artifacts can be
eliminated or compensated for using image pre-processing and
segmentation methods.

Outliers and
proximity

Sometimes groups of objects within a region are the subject, and
outliers are to be ignored. Also, proximity of objects or features
may guide classification, so varying the arrangement of features
or objects in the scene may be critical.

Noise Noise may take on regular or random patterns, such as snow, rain,
single-pixel spot nose, line noise, random electrical noise affecting
pixel bit resolution, etc.

Motion blur Motion blur is an important problem for almost all real-time
applications. This can be overcome by using faster frame rates
and employing image pre-processing to remove the motion blur,
if possible.

Jitter and judder Common problem in video images taken from moving cameras,
where each scan line may be offset from the regular 2D grid.

(continued)

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

298

Table 7-1.  (continued)

Attribute Discussion

Focal plane or
depth

If the application or use-case for the algorithm assumes all depths
of the image to be in focus, then using ground truth data with out-
of-focus depth planes may be a good way to test the limits.

Pixel depth
Resolution

If features are matched based on the value of pixels, such as gray
scale intensity or color intensity, pixel resolution is an issue. For
example, if a feature descriptor uses 16 bits of effective gray scale
intensity but the actual use-case and ground truth data provide
only 8 bits of resolution, the descriptor may be over-fitted to the
data, or the data may be unrealistic for the application.

Geometric
distortion

Complex warping may occur due to combinations of geometric
errors from optics or distance to subject. On deformable surfaces
such as the human face, surface and feature shape may change in
ways difficult to geometrically describe.

Scale, projection Near and far objects will be represented by more or less pixels,
thus a multi-scale dataset may be required for a given application,
as well as multi-scale feature descriptors. Algorithm sensitivity to
feature scale and intended use case also dictate ground truth data
scale.

Affine transforms
and rotation

In some applications like panoramic image stitching, very little
rotation is expected between adjacent frames—perhaps up to
15 degrees may be tolerated. However, in other applications like
object analysis and tracking of parts on an industrial conveyor belt,
rotation between 0 and 360 degrees is expected.

Feature mirroring,
translation

In stereo correspondence, L/R pair matching is done using the
assumption that features can be matched within a limited range
of translation difference between L/R pairs. If the translation is
extreme between points, the stereo algorithm may fail, resulting in
holes in the depth map, which must be filled.

Reflection Some applications, like recognizing automobiles in traffic, require a
feature model, which incorporates a reflective representation and a
corresponding ground truth dataset. Automobiles may come and go
from different directions, and have a reflected right/left feature pair.

Radial distortion Optics may introduce radial distortion around the fringes; usually
this is corrected by a camera system using digital signal processors
or fixed-function hardware prior to delivering the image.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

299

Using Robustness Criteria for Real Applications
Each application requires a different set of robustness criteria to be developed into the
ground truth data. Table 7-2 illustrates how the robustness criteria may be applied to a
few real and diverse applications.

Table 7-2.  Robustness Criteria Applied to Sample Applications (each application with
different requirements for robustness)

General Objective
Criteria Attributes

Industrial inspection
of apples on a
conveyor belt, fixed
distance, fixed speed,
fixed illumination

Automobile
identification on
roadway, day and
night, all road
conditions

Multi-view
stereo
reconstruction
bundle
adjustment

Uneven illumination - Important Useful

Brightness Useful Important Useful

Contrast Useful Important Useful

Vignette Important Useful Useful

Color accuracy Important Important Useful

Clutter - Important Important

Occlusion - Important Important

Outliers - Important Important

Noise - Important Useful

Motion blur Useful Important Useful

Focal plane or depth - Important Useful

Pixel depth resolution Useful Important important

Subpixel resolution - - important

Geometric distortion
(warp)

- Useful Important

Affine transforms - Important Important

Scale - Important Important

Skew - - -

Rotation Important Useful Useful

Translation Important Useful Useful

(continued)

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

300

As illustrated in Table 7-2, a multi-view stereo (MVS) application will hold certain
geometric criteria as very important, since accurate depth maps require accurate
geometry assumptions as a basis for disparity calculations. For algorithm accuracy
tuning, corresponding ground truth data should be created using a well-calibrated
camera system for positional accuracy of the 3D scene to allow for effective comparisons.

Another example in Table 7-2 with many variables in an uncontrolled environment
is that of automobile identification on roadways—which may be concerned with distance,
shape, color, and noise. For example, identifying automobiles may require ground truth
images of several vehicles from a wide range of natural conditions, such as dawn, dusk,
cloudy day, and full sun, and including conditions such as rainfall and snowfall, motion
blur, occlusion, and perspective views. An example automobile recognition pipeline is
developed in Chapter 8.

Also shown Table 7-2 is an example with a controlled environment: industrial
inspection. In industrial settings, the environment can be carefully controlled using
known lighting, controlling the speed of a conveyor belt, and limiting the set of objects in
the scenes. Accurate models and metrics for each object can be devised, perhaps taking
color samples and so forth—all of which can be done a priori. Ground truth data could be
easily created from the actual factory location.

Pairing Metrics with Ground Truth
Metrics and ground truth data should go together. Each application will have design
goals for robustness and accuracy, and each algorithm will also have different intended
uses and capabilities. For example, the SUSAN detector discussed in Chapter 6 is often
applied to wide baseline stereo applications, and stereo applications typically are not

Table 7-2.  (continued)

General Objective
Criteria Attributes

Industrial inspection
of apples on a
conveyor belt, fixed
distance, fixed speed,
fixed illumination

Automobile
identification on
roadway, day and
night, all road
conditions

Multi-view
stereo
reconstruction
bundle
adjustment

Projective
transformations

Important Important -

Reflection Important Important -

Radial distortion - - Important

Polar distortion - - Important

Discrimination or
uniqueness

- Useful -

Location accuracy - Useful -

Shape and thickness
distortion

- Useful -

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

301

concerned much with rotational invariance because the image features are computed
on corresponding stereo pair frames that have been affine rectified to align line by line.
Feature correspondence between image pairs is expected within a small window, with
some minor translation on the x axis.

Pairing and Tuning Interest Points, Features,
and Ground Truth
Pairing the right interest point detectors and feature descriptors can enhance results,
and many interest point methods are available and were discussed in Chapter 6. When
preparing ground truth data, the method used for interest point detection should be
considered for guidance.

For example, interest point methods using derivatives, such as the Laplace and Hessian
style detectors, will not do very well without sufficient contrast in the local pixel regions of
the images, since contrast accentuates maxima, minima and local region changes. However,
a method such as FAST9 is much more suited to low-contrast images, uses local binary
patterns, and is simple to tune the compare threshold and region size to detect corners and
edges; but the tradeoff in using FAST9 is that scale invariance is sacrificed.

A method using edge gradients and direction, such as eigen methods, would require
ground truth containing sufficient oriented edges at the right contrast levels. A method
using morphological interest points would likewise require image data that can be
properly thresholded and processed to yield the desired shapes.

Interest point methods also must be tuned for various parameters like strength of
thresholds for accepting and rejecting candidate interest points, as well as and region
size. Choosing the right interest point detector, tuning, and pairing with appropriate
ground truth data are critical. The effect of tuning interest point detector parameters is
illustrated in Figures 7-6 and 7-7.

Figure 7-7.  Machine corner detection using the Shi-Tomasi method marked with crosses;
results are shown using different parameter settings and thresholds for the strength and
pixel size of the corners

Examples Using The General Vision Taxonomy
As a guideline for pairing metrics and ground truth data, we use the vision taxonomy
developed in Chapter 5 to illustrate how feature metrics and ground truth data can be
considered together.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

302

Table 7-3 presents a sample taxonomy and classification for SIFT and FREAK
descriptors, which can be used to guide selection of ground truth data and also show
several similarities in algorithm capabilities. In this example, the invariance attributes
built into the data can be about the same— namely scale and rotation invariance. Note
that the compute performance claimed by FREAK is orders of magnitude faster than SIFT,
so perhaps the ground truth data should contain a sufficient minimum and maximum
number of features per frame for good performance measurements.

Table 7-3.  General Vision Taxonomy for Describing FREAK and SIFT

Visual Metric Taxonomy Comparison

Attribute SIFT FREAK

Feature Category Family Spectra Descriptor Local Binary Descriptor

Spectra Dimensions Multivariate Single Variate

Spectra Value Orientation Vector

Gradient Magnitude

Gradient Direction

HOG, Cartesian Bins

Orientation Vector

Bit Vector Of values

Cascade of 4 Saccadic
Descriptors

Interest Point SIFT DOG over 3D Scale Pyramid Multi-scale AGAST

Storage Format Spectra Vector Bit Vector
Orientation Vector

Data Types Float Integer

Descriptor Memory 512 bytes, 128 floats 64 Bytes, 4 16-byte
Cascades

Feature Shape Rectangle Circular

Feature Search Method Coarse to Fine Image Pyramid

Scale Space Image Pyramid

Double-scale First Pyramid Level

Sparse at Interest Points

Sparse at interest points

Pattern Pair Sampling n.a. Foveal Centered
Trained Pairs

Pattern Region Size 41x41 Bounding Box 31x31 Bounding Box
(may vary)

Distance Function Euclidean Distance Hamming Distance

Run-Time Compute 100% (SIFT is the baseline) .1% of SIFT

(continued)

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

303

Synthetic Feature Alphabets
In this section, we create synthetic ground truth datasets for interest point algorithm
analysis. We create alphabets of synthetic interest points and synthetic corner points. The
alphabets are synthetic, meaning that each element is designed to perfectly represent
chosen binary patterns, including points, lines, contours, and edges.

Various pixel widths or thickness are used for the alphabet characters to measure
fine and coarse feature detection. Each pattern is registered at known pixel coordinates
on a grid in the images to allow for detection accuracy to be measured. The datasets are
designed to enable comparison between human interest point perception and machine
vision interest point detectors.

Here is a high-level description of each synthetic alphabet dataset:

•	 Synthetic Interest Point Alphabet. Contains points such as
boxes, triangles, circle, half boxes, half triangles, half circles,
edges, and contours.

•	 Synthetic Corner Point Alphabet. Contains several types of
corners and multi-corners at different pixel thickness.

•	 Natural images overlaid with synthetic alphabets. Contains
both black and white versions of the interest points and corners
overlaid on natural images.

Note■■  T he complete set of ground truth data is available in Appendix A.

Table 7-3.  (continued)

Visual Metric Taxonomy Comparison

Attribute SIFT FREAK

Feature Density Sparse Sparse

Feature Pattern Rectangular kernel

Sample Weighting Pattern

Binary compare pattern

Claimed Robustness

*Final robustness is a
combination of interest
point method, descriptor
method, and classifier

Scale

Rotation

Noise

Affine Distortion

Illumination

Scale

Rotation

Noise

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

304

Analysis is provided in Appendix A, which includes running ten detectors against the
datasets. The detectors are implemented in OpenCV, including SIFT, SURF, ORB, BRISK,
HARRIS, GFFT, FAST9, SIMPLE BLOB, MSER, and STAR. Note that the methods such
as SIFT, SURF, and ORB provide both an interest point detector and a feature descriptor
implementation. We are only concerned with the interest point detector portion of each
method for the analysis, not the feature descriptor.

The idea of using synthetic image alphabets is not new. As shown in Figure 7-2,
Rosin[61] devised a synthetic set of gray corner points and corresponding measurement
methods for the purpose of quantifying corner properties via attributes such as bluntness
or shape of apex, boundary shape of cusps, contrast, orientation, and subtended angle
of the corner. However, the synthetic interest point and corner alphabets in this work are
developed to address a different set of goals, discussed next.

Goals for the Synthetic Dataset
The goals and expectations for this synthetic dataset are listed in Table 7-4. They center
on enabling analysis to determine which synthetic interest points and corners are found,
so the exact count and position of each interest point is a key requirement.

Table 7-4.  Goals and Expectations for the Ground Truth Data Examples: Comparison
of Human Expectations with Machine Vision Results

Goals Approach

Interest point and corner
detectors, stress testing

Provide synthetic features easily recognized by a
human; measure how well various detectors perform.

Human recognizable synthetic
interest point sets

Synthetic features recognized by humans are developed
spanning shapes and sizes of edges and line segments,
contours and curved lines, and corners and multi-corners.

Grid positioning of interest
points

Each interest point will be placed on a regular grid at a
known position for detection accuracy checking.

Scale invariance Synthetic interest points to be created with the same
general shape but using different pixel thickness for scale.

Rotation invariance Interest points will be created, then rotated in
subsequent frames.

Noise invariance Noise will be added to some interest point sets.

Duplicate interest points,
known count

Interest points will be created and duplicated in each
frame for determining detection and performance.

Hybrid synthetic interest
points overlaid on real images

Synthetic interest points on a grid are overlaid onto real
images to allow for hybrid testing.

Interest point
detectors,determinism and
repeatability

Detectors will include SIFT, SURF, ORB, BRISK,
HARRIS, GFFT, FAST9, SIMPLE BLOB, MSER, and
STAR. By locating synthetic interest points on a grid,
we can compute detection counts.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

305

The human visual system does not work like an interest point detector, since
detectors can accept features which humans may not recognize. The human visual
system discriminates and responds to gradient information [248] in a scale and
rotationally invariant manner across the retina, and tends to look for learned features
relationships among gradients and color.

Humans learn about features by observations and experience, so learned
expectations play a key role interpreting visual features. People see what they believe and
what they are looking for, and may not believe what they see if they are not looking for it.
For example, Figure 7-7 shows examples of machine corner detection; a human would
likely not choose all the same corner features. Note that the results are not what a human
might expect, and also the algorithm parameters must be tuned to the ground truth data
to get the best results.

Accuracy of Feature Detection via Location Grid
The goal of detector accuracy for this synthetic ground truth is addressed by placing
synthetic features at a known position on a regular spaced grid, then after detection,
the count and position are analyzed. Some of the detectors will find multiple features for
a single synthetic interest point or corner. The feature grid size chosen is 14x14 pixels,
and the grid extends across the entire image. See Figures 7-9 and 7-10.

Rotational Invariance via Rotated Image Set
For each ground truth set, rotated versions of each image are created in the range 0 to
90 degrees at 10 degree increments.Since the synthetic features are placed on a regularly
spaced grid at known positions, the new positions under rotation are easily computed.
The detected synthetic features can be counted and analyzed. See Appendix A for results.

Scale Invariance via Thickness and Bounding Box Size
The synthetic corner point features are rendered into the ground truth data with feature
edge thickness ranging from 1 to 3 pixels for simulated scale variation. Some of the
interest point features, such as boxes, triangles, and circles, are scaled in a bounding box
ranging from 1x1 pixels to 10x10 pixels to allow for scale invariance testing.

Noise and Blur Invariance
A set of synthetic alphabets is rendered using Gaussian noise, and another set using salt-
and-pepper noise to add distortion and uncertainty to the images. In addirion, by rotating
the interest point alphabet at varying angles between 0 and 90 degrees, digital blur is
introduced to the synthetic patterns as they are rendered, owing to the anti-aliasing
interpolations introduced in the affine transform algorithms.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

306

Repeatabilty
Each ground truth set contains a known count of synthetic features to enable detection
rates to be analyzed. To enable measurement of the repeatability of each detector, there
are multiple duplicate copies of each interest point feature in each image. A human
would expect identical features to be detected in an identical manner; however, results
in Appendix A show that some interest point detectors do not behave in a predictable
manner, and some are more predictable than others.

As shown in Figure 7-6, detectors do not always find the same identical features. For
example, the synthetic alphabets are provided in three versions— black on white, white
on black, and light gray on dark gray—for the purpose of testing each detector on the
same pattern with different gray levels and polarity. See Appendix A showing the how the
detectors provide different results based on the polarity and gray level factors.

Real Image Overlays of Synthetic Features
A set of images composed of synthetic interest points and corners overlayed on top of
real images is provided, sort of like markers. Why overlay interest point markers, since
the state of the art has moved beyond markers to markerless tracking? The goal is to
understand the limitations and behavior of the detectors themselves, so that analyzing
their performance in the presence of natural and synthetic features will provide some
insight.

Synthetic Interest Point Alphabet
As shown in Figures 7-8 and 7-9, an alphabet of synthetic interest points is defined across
a range of pixel resolutions or thicknesses to include the following features:

POINT / SQUARE, 1–10 PIXELS SIZE•	

POINT / TRIANGLE HALF-SQUARE, 3–1 PIXELS SIZE•	

CIRCLE, 3–10 PIXELS SIZE•	

CIRCLE / HALF-CIRCLE, 3–10 PIXELS SIZE•	

CONTOUR, 3–10 PIXELS SIZE•	

CONTOUR / HALF-CONTOUR, 3–10 PIXELS SIZE•	

CONNECTED EDGES•	

DOUBLE CORNER, 3–10 PIXELS SIZE•	

CORNER, 3–10 PIXELS SIZE•	

EDGE, 3–10 PIXELS SIZE•	

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

307

Figure 7-8.  Portion of the synthetic interest point alphabet: points, edges, edges, and contours.
(Top to bottom) White on black, black on white, light gray on dark gray, added salt and
pepper noise, added Gaussian noise

Figure 7-9.  Scaled and rotated examples of the synthetic interest point alphabet. Notice the
artifacts introduced by the affine rotation, which distorts the synthetic binary patterns via
anti-aliasing and sub-sampling artifacts

The synthetic interest point alphabet contains 83 unique elements composed on
a 14x14 grid, as shown in Figure 7-9. A total of seven rows and seven columns of the
complete alphabet can fit inside a 1024x1024 image, yielding a total of 7x7x83=4067 total
interest points.

Synthetic Corner Alphabet
The synthetic corner alphabet is shown in Figure 7-10. The alphabet contains the
following types of corners and attributes:

2-SEGMENT CORNERS, 1,2,3 PIXELS WIDE•	

3-SEGMENT CORNERS, 1,2,3 PIXELS WIDE•	

4-SEGMENT CORNERS, 1,2,3 PIXELS WIDE•	

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

308

As shown in Figure 7-11, the corner alphabet contains patterns with multiple types
of corners composed of two-line segments, three-line segments, and four-line segments,
with pixel widths of 1,2, and 3. The synthetic corner alphabet contains 54 unique
elements composed on a 14x14 pixel grid.

Figure 7-10.  Portion of the synthetic corner alphabet, features include 2-,3-, and 4-segment
corners. (Top to bottom) White on black, black on white, light gray on dark gray, added
salt and pepper noise, added Gaussian noise

Figure 7-11.  Synthetic corner points image portions

Each 1024x1024 pixel image contains 8x12 complete alphabets composed of 6x9
unique elements each, yielding 6x9x12x8=5184 total corner points per image. The
full dataset includes rotated versions of each image from 0 to 90 degrees at 10 degree
intervals.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

309

Hybrid Synthetic Overlays on Real Images
We combine the synthetic interest points and corners as overlays with real images to
develop a hybrid ground truth dataset as a more complex case.

The merging of synthetic interest points over real data will provide new challenges
for the interest point algorithms and corner detectors, as well as illustrate how each
detector works. Using hybrid synthetic feature overlays on real images is a new approach
for ground truth data (as far as the author is aware), and the benefits are not obvious
outside of curiosity. One reason the synthetic overlay approach was chosen here is to fill
the gap in the literature and research, since synthetic features overlays are not normally
used. See Figure 7-12.

Figure 7-12.  Synthetic interest points combined with real images, used for stress testing
interest point and corner detectors with unusual pixel patterns

The hybrid synthetic and real ground truth datasets are designed with the following
goals:

Separate ground truth sets for interest points and corners, using •	
the full synthetic alphabets overlaid on real images, to provide a
range of pixel detail surrounding each interest point and corner.

Display known positions and counts of interest points on a •	
14x14 grid.

Provide color and gray scale images of the same data.•	

Provide rotated versions of the same data 0 to 90 degrees at •	
10 degree intervals.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

310

Method for Creating the Overlays
The alphabet can be used as a binary mask of 8-bit pixel values of black 0x00 and white
0xff for composing the image overlays. The following Boolean masking example is
performed using Mathematica code ImageMultiply and ImageAdd operators.

ImageMultiply []

ImageMultiply is used to get the negatives, and then followed by ImageAdd to get
the positives. Note that in other image processing tool systems, a Boolean ImageAND,
ImageOR, and ImageNOT may be provided as alternatives.

ImageAdd []

Summary
We have surveyed manual and automated approaches to creating ground truth data, have
identified some best practices and guidelines, have applied the robustness criteria and
vision taxonomy developed in Chapter 5, and have worked through examples to create a
ground truth dataset for evaluation of human perceptions compared to machine vision
methods for keypoint detectors.

Here are some final thoughts and key questions for perparing ground truth data:

•	 Appropriateness: How appropriate is the ground truth dataset
for the analysis and intended application? Are the use-cases and
application goals built into the ground truth data and model? Is the
dataset under-fitted or over-fitted to the algorithms and use-cases?

•	 Public vs. proprietary: Proprietary ground truth data is a barrier
to independent evaluation of metrics and algorithms. It must be
possible for interested parties to duplicate the metrics produced
by various types of algorithms so they can be compared against the
ground truth data. Open rating systems may be preferred, if they
exist for the problem domain. But there are credibility and legal
hurdles for open-sourcing any proprietary ground truth data.

Chapter 7 ■ Ground Truth Data, Content, Metrics, and Analysis

311

•	 Privacy and legal concerns: There are privacy concerns for
individuals in any images chosen to be used; images of people
should not be used without their permission, and prohibitions
against the taking of pictures at restricted locations should be
observed. Legal concerns are very real.

•	 Real data vs. synthetic data: In some cases it is possible to use
computer graphics and animations to create synthetic ground
datasets. Synthetic datasets should be considered especially when
privacy and legal concerns are involved, as well as be viewed as a
way of gaining more control over the data itself.

313

Chapter 8

Vision Pipelines
and Optimizations

“More speed, less haste . . . ”

—Treebeard, Lord of the Rings

This chapter explores some hypothetical computer vision pipeline designs to understand
HW/SW design alternatives and optimizations. Instead of looking at isolated computer
vision algorithms, this chapter ties together many concepts into complete vision
pipelines. Vision pipelines are sketched out for a few example applications to illustrate
the use of different methods. Example applications include object recognition using
shape and color for automobiles, face detection and emotion detection using local
features, image classification using global features, and augmented reality. The examples
have been chosen to illustrate the use of different families of feature description metrics
within the Vision Metrics Taxonomy presented in Chapter 5. Alternative optimizations
at each stage of the vision pipeline are explored. For example, we consider which vision
algorithms run better on a CPU versus a GPU, and discuss how data transfer time
between compute units and memory affects performance.

Note■■   The hypothetical examples in this chapter are sometimes sketchy, not intended
to be complete. Rather, the intention is to explore design alternatives. Design choices are
made in the examples for illustration only; other, equally valid design choices could be
made to build working systems. The reader is encouraged to analyze the examples to find
weaknesses and alternatives. If the reader can improve the examples, we have succeeded.

This chapter addresses the following major topics, in this order:

1.	 General design concepts for optimization across the SOC
(CPU, GPU, memory).

2.	 Four hypothetical vision pipeline designs using different
descriptor methods.

3.	 Overview of SW optimization resources and specific
optimization techniques.

Chapter 8 ■ Vision Pipelines and Optimizations

314

Stages, Operations, and Resources
A computer vision solution can be implemented into a pipeline of stages, as shown
in Figure 8-1. In a pipeline, both parallel and sequential operations take place
simultaneously. By using all available compute resources in the optimal manner,
performance can be maximized for speed, power, and memory efficiency.

Sensor Processing

Image Pre-Processing

Global Metrics

Local Feature Metrics

Classification, Learning

Augment, Render, Control

Vision Pipeline Stages Operations

Point

Line

Area

Algorithmic

Data conversion

DSP Sensor

GPU SIMT/SIMD

CPU Threads

CPU SIMD

CPU General

Memory System

Resources

Math

Figure 8-1.  Hypothetical assignment of vision pipeline stages to operations and to compute
resources. Depending on the actual resource capabilities and optimization targets for
power and performance, the assignments will vary

Optimization approaches vary by system. For example, a low-power system for a
mobile phone may not have a rich CPU SIMD instruction set, and the GPU may have a
very limited thread count and low memory bandwidth, unsuitable to generic GPGPU
processing for vision pipelines. However, a larger compute device, such as a rack-
mounted compute server, may have several CPUs and GPUs, and each CPU and GPU will
have powerful SIMD instructions and high memory bandwidth.

Table 8-1 provides more details on possible assignment of operations to resources
based on data types and processor capabilities. For example, in the sensor processing
stage, point line and area operations dominate the workload, as sensor data is assembled
into pixels and corrections are applied. Most sensor processors are based on a digital
signal processor (DSP) with wide SIMD instruction words, and the DSP may also contain
a fixed-function geometric correction unit or warp unit for correcting optics problems
like lens distortion. The Sensor DSP and the GPU listed in Table 8-1 typically contain a
dedicated texture sampler unit, which is capable of rapid pixel interpolation, geometric
warps, and affine and perspective transforms. If code is straight line with lots of branching
and not much parallel operations, the CPU is the best choice.

Chapter 8 ■ Vision Pipelines and Optimizations

315

As illustrated in Table 8-1, the data type and data layout normally guides
the selection of the best compute resource for a given task, along with the type of
parallelism in the algorithm and data. Also, the programing language is chosen based
on the parallelism, such as using OpenCL vs. C++. For example, a CPU may support
float and double data types, but if the underlying code is SIMT and SIMD parallel
oriented, calling for many concurrent thread-parallel kernel operations, then a GPU
with a high thread count may be a better choice than a single CPU. However, running a
language like OpenCL on multiple CPUs may provide performance as good as a smaller
GPU; for performance information, see reference[544] and vendor information on
OpenCL compilers. See also the section later in this chapter, “SIMD, SIMT, and SPMD
Fundamentals.”

For an excellent discussion of how to optimize fundamental image processing
operations across different compute units and memory, see the PfeLib work by Zinner
et al.[495], which provides a deep dive into the types of optimizations that can be made
based on data types and intelligent memory usage.

To make the assignments from vision processing stages to operations and compute
resources concrete, we look at specific vision pipelines examples later in this chapter.

Compute Resource Budgets
Prior to implementing a vision pipeline, a reasonable attempt should be made to count
the cost in terms of the compute platform resources available, and determine if the
application is matched to the resources. For example, a system intended for a military
battlefield may place a priority on compute speed and accuracy, while an application
for a mobile device will prioritize power in terms of battery life and make tradeoffs with
performance and accuracy.

Since most computer vision research is concerned with breaking ground in handling
relatively narrow and well-defined problems, there is limited research available to guide
a general engineering discussion on vision pipeline analysis and optimizations. Instead,

Table 8-1.  Hypothetical Assignment of Basic Operations to Compute Resources Guided by
Data Type and Parallelism (see also Zinner [495])

Chapter 8 ■ Vision Pipelines and Optimizations

316

we follow a line of thinking that starts with the hardware resources themselves, and we
discuss performance, power, memory, and I/O requirements, with some references to
the literature for parallel programming and other code-optimization methods. Future
research into automated tools to measure algorithm intensity, such as the number of
integer and float operations, the bit precision of data types, and the number of memory
transfers for each algorithm in terms of read/write, would be welcomed by engineers for
vision pipeline analysis and optimizations.

As shown in Figure 8-2, the main elements of a computer system are composed of
I/O, compute, and memory.

DSP memory

GPU memory

System memory

L1 L2

L1 L2

L1 L2

L1 L2

L1 L2
CPU 1
controller

CPU 2
SIMD

CPU 3
SIMD

CPU 4
SIMD

GPU 1
256 SIMT
4 texture
samplers

DSP 2

DSP 1

Camera 1
1080p depth

Camera 2
1080p RGB | depth

MIPI

MIPI
L1 L2

DMA

RF

RF

RF

RF

RF

RF

RF

Figure 8-2.  Hypothetical computer system, highlighting compute elements in the form of
a DSP, GPU, four CPU cores, DMA, and memory architecture using L1 and L2 cache and
register files RF within each compute unit

We assume suitable high bandwidth I/O busses and cache lines interconnecting the
various compute units to memory; in this case, we call out the MIPI camera interface in
particular, which connects directly to the DSP in our hypothetical SOC. In the case of
a simple computer vision system of the near future, we assume that the price, performance,
and power curves continue in the right direction to enable a system-on-a-chip (SOC)
sufficient for most computer vision applications to be built at a low price point, approaching
throw-away computing cost—similar in price to any small portable electronic gadget. This
would thereby enable low-power and high-performance ubiquitous vision applications
without resorting to special-purpose hardware accelerators built for any specific computer
vision algorithms.

Chapter 8 ■ Vision Pipelines and Optimizations

317

Here is a summary description of the SOC components shown in Figure 8-2:

•	 Two 1080p cameras, one for RGB and the other for a
self-contained depth camera, such as a TOF sensor (as discussed
in Chapter 1).

•	 One small low-power controller CPU with a reduced instruction
set and no floating point, used for handling simple things like the
keyboard, accelerometer updates, servicing interrupts from the
DSP, and other periodic tasks, such as network interrupt handlers.

•	 Three full SIMD capable CPUs with floating point, used for heavy
compute, typically thread parallel algorithms such as tiling, but
also for SIMD parallel algorithms.

•	 A GPU capable of running ➤ 256 threads with full integer and
floating point, and four texture samplers. A wide range of area
algorithms map well to the GPU, but the programming model is
SIMT kernels such as compute shaders for DirectX and OpenGL,
or OpenCL.

•	 A DSP with a limited instruction set and VLIW processing
capabilities well suited to pixel processing and sensor processing
in general.

•	 A DMA unit for fast memory transfers; although obvious, DMA
is a simple and effective method to increase memory bandwidth
and reduce power.

Compute Units, ALUs, and Accelerators
There are several types of compute units in a typical system, including CPUs, GPUs, DSPs,
and special-purpose hardware accelerators such as cryptography units, texture samplers,
and DMA engines. Each ALU has a different instruction set tuned to the intended use, so
understanding each compute unit’s ALU instruction set is very helpful.

Generally speaking, computer architecture has not advanced to the point of
providing any standard vision pipeline methods or hardware accelerators. That’s because
there are so many algorithm refinements for computer vision emerging; choosing to
implement any vision accelerators in silicon is an obsolescence risk. Also, creating
computer vision hardware accelerators is difficult, since applications must be portable.
So developers typically choose high-level language implementations that are good
enough and portable, with minimal dependencies on special purpose hardware or API’s.

Instead, reliance on general-purpose languages like C++ and optimizing the software
is a good path to follow to start, as is leveraging existing pixel-processing acceleration
methods in a GPU as needed, such as pixel shaders and texture samplers. The standard
C++ language path offers flexibility to change and portability across platforms, without
relying on any vendor-specific hardware acceleration features.

In the example vision pipelines developed in this section, we make two basic
assumptions. First, the DSP is dedicated to sensor processing and light image pre-
processing to load-balance the system. Second, the CPUs and the GPUs are used

Chapter 8 ■ Vision Pipelines and Optimizations

318

downstream for subsequent sections of the vision pipeline, so the choice of CPU vs. GPU
depends on the algorithm used.

Since the compute units with programmable ALUs are typically where all the tools
and attention for developers are focused, we dedicate some attention to programming
acceleration alternatives later in this chapter in the “Vision Algorithm Optimizations and
Tuning” section; there is also a survey of selected optimization resources and software
building blocks.

In the hypothetical system shown in Figure 8-2, the compute units include general-
purpose CPUs, a GPU intended primarily for graphics and media acceleration and
some GPGPU acceleration, and a DSP for sensor processing. Each compute unit is
programmable and contains a general-purpose ALU with a tuned instruction set. For
example, a CPU contains all necessary instructions for general programming, and
may also contain SIMD instructions (discussed later in this chapter). A GPU contains
transcendental instructions such as square root, arctangent, and related instructions to
accelerate graphics processing. The DSP likewise has an instruction set tuned for sensor
processing, likely a VLIW instruction set.

Hardware accelerators are usually built for operations that are common, such as a
geometric correction unit for sensor processing in the DSP and texture samplers for warping
surface patches in the GPU. There are no standards yet for computer vision, and new
algorithm refinements are being developed constantly, so there is little incentive to add any
dedicated silicon for computer vision accelerators, except for embedded and special-purpose
systems. Instead, finding creative methods of using existing accelerators may prove beneficial.

Later in this chapter we discuss methods for optimizing software on various compute
units, taking advantage of the strengths and intended use of each ALU and instruction set.

Power Use
It is difficult to quantify the amount of power used for a particular algorithm on an SOC or
a single compute device without very detailed power analysis; likely simulation is the best
method. Typically, systems engineers developing vision pipelines for an SOC do not have
accurate methods of measuring power, except crude means such as running the actual
finished application and measuring wall power or battery drain.

The question of power is sometimes related to which compute device is used, such
as CPU vs. GPU, since each device has a different gate count and clock rate, therefore is
burning power at a different rate. Since silicon architects for both GPU and CPU designs
are striving to deliver the most performance per watt per square millimeter, (and we
assume that each set of silicon architects is equally efficient), there is no clear winner in
the CPU vs. GPU power/performance race. The search to save power by using the GPU vs.
the CPU might not even be worth the effort compared to other places to look, such as data
organization and memory architecture.

One approach for making the power and performance tradeoff in the case of SIMD
and SIMT parallel code is to use a language such as OpenCL, which supports running the
same code on either a CPU or a GPU. The performance and power would then need to be
measured on each compute device to quantify actual power and performance; there’s more
discussion on this topic later, in the “Vision Algorithm Optimizations and Tuning” section.

Chapter 8 ■ Vision Pipelines and Optimizations

319

For detailed performance analysis using the same OpenCL code running on a specific
CPU vs. a GPU, as well as clusters, see the excellent research by the National Center
for Super Computing Applications[544]. Also, see the technical computing resources
provided by major OpenCL vendors, such as INTEL, NVIDIA, and AMD, for details on
their OpenCL compilers running the same code across the CPU vs. GPU. Sometimes the
results are surprising, especially for multi-core CPU systems vs. smaller GPUs.

In general, the compute portion of the vision pipeline is not where the power is burned
anyway; most power is burned in the memory subsystem and the I/O fabric, where high
data bandwidth is required to keep the compute pipeline elements full and moving along.
In fact, all the register files, caches, I/O busses, and main memory consume the lion’s share
of power and lots of silicon real estate. So memory use and bandwidth are high-value
targets to attack in any attempt to reduce power. The fewer the memory copies, the higher
the cache hit rates; the more reuse of the same data in local register files, the better.

Memory Use
Memory is the most important resource to manage as far as power and performance are
concerned. Most of the attention on developing a vision pipeline is with the algorithms
and processing flow, which is challenging enough. However, vision applications are
highly demanding of the memory system. The size of the images alone is not so great, but
when we consider the frame rates and number of times a pixel is read or written for kernel
operations through the vision pipeline, the memory transfer bandwidth activity becomes
clearer. The memory system is complex, consisting of local register files next to each
compute unit, caches, I/O fabric interconnects, and system memory. We look at several
memory issues in this section, including:

Pixel resolution, bit precision, and total image size•	

Memory transfer bandwidth in the vision pipeline•	

Image formats, including gray scale and color spaces•	

Feature descriptor size and type•	

Accuracy required for matching and localization•	

Feature descriptor database size•	

To explore memory usage, we go into some detail on a local interest point and
feature extraction scenario, assuming that we locate interest points first, filter the interest
points against some criteria to select a smaller set, calculate descriptors around the
chosen interest points, and then match features against a database.

A reasonable first estimate is that between a lower bound and upper bound of 0.05%
to 1 percent of the pixels in an image can generate decent interest points. Of course, this
depends entirely on: (1) the complexity of the image texture, and (2) the interest point
method used. For example, an image with rich texture and high contrast will generate
more interest points than an image of a far away mountain surrounded by clouds
with little texture and contrast. Also, interest point detector methods yield different
results—for example, the FAST corner method may detect more corners than a SIFT scale
invariant DoG feature, see Appendix A.

Chapter 8 ■ Vision Pipelines and Optimizations

320

Descriptor size may be an important variable, see Table 8-2. A 640x480 image will
contain 307,200 pixels. We estimate that the upper bound of 1 percent, or 3,072 pixels,
may have decent interests points; and we assume that the lower bound of 0.05 percent is
153. We provide a second estimate that interest points may be further filtered to sort out
the best ones for a given application. So if we assume perhaps only as few as 33 percent of
the interest points are actually kept, then we can say that between 153*.33 and 3,072*.33
interest points are good candidates for feature description. This estimate varies widely
out of bounds, depending of course on the image texture, interest point method used, and
interest point filtering criteria. Assuming a feature descriptor size is 256 bytes, the total
descriptor size per frame is 3072x256x.33 = 259,523 bytes maximum—that’s not extreme.
However, when we consider the feature match stage, the feature descriptor count and
memory size will be an issue, since each extracted feature must be matched against each
trained feature set in the database.

Table 8-2.  Descriptor Bytes per Frame (1% Interest Points), adapted from [141]

Descriptor Size in bytes 480p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD

Resolution 640 x 480 1920 x 1080 3840 × 2160 7680 x 4320

Pixels 307200 2073600 8294400 33177600

BRIEF 32 98304 663552 2654208 10616832

ORB 32 98304 663552 2654208 10616832

BRISK 64 196608 1327104 5308416 21233664

FREAK
(4 cascades)

64 196608 1327104 5308416 21233664

SURF 64 196608 1327104 5308416 21233664

SIFT 128 393216 2654208 10616832 42467328

LIOP 144 442368 2985984 11943936 47775744

MROGH 192 589824 3981312 15925248 63700992

MRRID 256 786432 5308416 21233664 84934656

HOG
(64x128
block)

3780 n.a. n.a. n.a. n.a.

In general, local binary descriptors offer the advantage of a low memory footprint.
For example, Table 8-2 provides the byte count of several descriptors for comparison,
as described in Miksik and Mikolajczyk [141]. The data is annotated here to add the
descriptor working memory size in bytes per frame for various resolutions.

In Table 8-2, image frame resolutions are in row 1, pixel count per frame is in row 2,
and typical descriptor sizes in bytes are in subsequent rows. Total bytes for selected
descriptors are in column 1, and the remaining columns show total descriptor size per

Chapter 8 ■ Vision Pipelines and Optimizations

321

frame assuming an estimated 1 percent of the pixels in each frame are used to calculate
an interest point and descriptor. In practice, we estimate that 1 percent is an upper-bound
estimate for a descriptor count per frame and 0.05 percent is a lower-bound estimate.
Note that descriptor sizes in bytes do vary from those in the table, based on design
optimizations.

Memory bandwidth is often a hidden cost, and often ignored until the very end of
the optimization cycle, since developing the algorithms is usually challenging enough
without also worrying about the memory access patterns and memory traffic. Table 8-2
includes a summary of several memory variables for various image frame sizes and
feature descriptor sizes. For example, using the 1080p image pixel count in row 2 as a
base, we see that an RGB image with 16 bits per color channel will consume: 

2,073,600
pixels

 *3
channels/RGB

 *2
bytes/pixel

 = 12,441,600 bytes / frame 

And if we include the need to keep a gray scale channel I around, computed from the
RGB, the total size for RGBI increases to: 

2,073,600
pixels

 *4
channels/RGBI

 *2
bytes/pixel

 = 16,588,800 bytes / frame 

If we then assume 30 frames per second and two RGB cameras for depth processing
+ the I channel, the memory bandwidth required to move the complete 4-channel RGBI
image pair out of the DSP is nearly 1GB / second: 

12,441,600
pixels

 *4
channels/RGBI

 *
bytes/pixel

 *30
fps

 *2
stereo

 = 995,328,000
mb/s

 

So we assume in this example a baseline memory bandwidth of about ~1GB/second
just to move the image pair downstream from the ISP. We are ignoring the ISP memory
read/write requirements for sensor processing for now, assuming that clever DSP memory
caching, register file design, and loop-unrolling methods in assembler can reduce the
memory bandwidth.

Typically, memory coming from a register file in a compute unit transfers in a single
clock cycle; memory coming from various cache layers can take maybe tens of clock cycles;
and memory coming from system memory can take hundreds of clock cycles. During
memory transfers, the ALU in the CPU or GPU may be sitting idle, waiting on memory.

Memory bandwidth is spread across the fast register files next to the ALU processors,
and through the memory caches and even system memory, so actual memory bandwidth
is quite complex to analyze. Even though some memory bandwidth numbers are
provided here, it is only to illustrate the activity.

And the memory bandwidth only increases downstream from the DSP, since
each image frame will be read, and possibly rewritten, several times during image
pre-processing, then also read again during interest point generation and feature
extraction. For example, if we assume only one image pre-processing operation using
5x5 kernels on the I channel, each I pixel is read another 25 times, hopefully from
memory cache lines and fast registers.

This memory traffic is not all coming from slow-system memory, and it is mostly
occurring inside the faster-memory cache system and faster register files until there is
a cache miss or reload of the fast-register files. Then, performance drops by an order of

Chapter 8 ■ Vision Pipelines and Optimizations

322

magnitude waiting for the buffer fetch and register reloading. If we add a FAST9 interest
point detector on the I channel, each pixel is read another 81 times (9x9), maybe from
memory cache lines or registers. And if we add a FREAK feature descriptor over maybe
0.05 percent of the detected interest points, we add 41x41 pixel reads per descriptor to get
the region (plus 45*2 reads for point-pair comparisons within the 41x41 region), hopefully
from memory cache lines or registers.

Often the image will be processed in a variety of formats, such as image pre-processing
the RGB colors to enhance the image, and conversion to gray scale intensity I for computing
interest points and feature descriptors. The color conversions to and from RGB are a
hidden memory cost that requires data copy operations and temporary storage for the color
conversion, which is often done in floating point for best accuracy. So, several more GB/
second of memory bandwidth can be consumed for color conversions. With all the memory
activity, there may be cache evictions of all or part of the required images into a slower
system memory, degrading into nonlinear performance.

Memory size of the descriptor, therefore, is a consideration throughout the vision
pipeline. First, we consider when the features are extracted; and second, we look at when
the features are matched and retrieved from the feature database. In many cases, the size
of the feature database is by far the critical issue in the area of memory, since the total
size of all the descriptors to match against affects the static memory storage size, memory
bandwidth, and pattern match rate. Reducing the feature space into a quickly searchable
format during classification and training is often of paramount importance. Besides the
optimized classification methods discussed in Chapter 4, the data organization problems
may be primarily in the areas of standard computer science searching, sorting, and data
structures; some discussion and references were provided in Chapter 4.

When we look at the feature database or training set, memory size can be the
dominant issue to contend with. Should the entire feature database be kept on a cloud
server for matching? Or should the entire feature database be kept on the local device?
Should a method of caching portions of the feature database on the local device from the
server be used? All of the above methods are currently employed in real systems.

In summary, memory, caches, and register files exceed the silicon area of the ALU
processors in the compute units by a large margin. Memory bandwidth across the SOC
fabric through the vision pipeline is key to power and performance, demanding fast
memory architecture and memory cache arrangement, and careful software design.
Memory storage size alone is not the entire picture, though, since each byte needs to be
moved around between compute units. So, careful consideration of memory footprint
and memory bandwidth is critical for anything but small applications.

Often, performance and power can be dramatically improved by careful attention
to memory issues alone. Later in the chapter we cover several design methods to help
reduce memory bandwidth and increase memory performance, such as locking pages
in memory, pipelining code, loop unrolling, and SIMD methods. Future research into
minimizing memory traffic in a vision pipeline is a worthwhile field.

I/O Performance
We lump I/O topics together here as a general performance issue, including data
bandwidth on the SOC I/O fabric between compute units, image input from the camera,
and feature descriptor matching database traffic to a storage device. We touched

Chapter 8 ■ Vision Pipelines and Optimizations

323

on I/O issues above the discussion on memory, since pixel data is moved between
various compute devices along the vision pipeline on I/O busses. One of the major I/O
considerations is feature descriptor data moving out of the database at feature match
time, so using smaller descriptors and optimizing the feature space using effective
machine learning and classification methods is valuable.

Another type of I/O to consider is the camera input itself, which is typically
accomplished via the standard MIPI interface. However, any bus or I/O fabric can be used,
such as USB. If the vision pipeline design includes a complete HW/SW system design
rather than software only on a standard SOC, special attention to HW I/O subsystem design
for the camera and possibly special fast busses for image memory transfers to and from a
HW-assisted database may be worthwhile. When considering power, I/O fabric silicon area
and power exceed the area and power for the ALU processors by a large margin.

The Vision Pipeline Examples
In this section we look at four hypothetical examples of vision pipelines. Each is chosen
to illustrate separate descriptor families from the Vision Metrics Taxonomy presented in
Chapter 5, including global methods such as histograms and color matching, local feature
methods such as FAST interest points combined with FREAK descriptors, basis space
methods such as Fourier descriptors, and shape-based methods using morphology and
whole object shape metrics. The examples are broken down into stages, operations, and
resources, as shown in Figure 8-1, for the following applications:

•	 Automobile recognition, using shape and color

•	 Face recognition, using sparse local features

•	 Image classification, using global features

•	 Augmented reality, using depth information and tracking

None of these examples includes classification, training, and machine learning
details, which are outside the scope of this book (machine learning references are
provided in Chapter 4). A simple database storing the feature descriptors is assumed to
be adequate for this discussion, since the focus here is on the image pre-processing and
feature description stages. After working through the examples and exploring alternative
types of compute resource assignments, such as GPU vs. CPU, this chapter finishes with a
discussion on optimization resources and techniques for each type of compute resource.

Automobile Recognition
Here we devised a vision pipeline to recognize objects such as automobiles or machine
parts by using polygon shape descriptors and accurate color matching. For example,
polygon shape metrics can be used to measure the length and width of a car, while color
matching can be used to measure paint color. In some cases, such as custom car paint
jobs, color alone is not sufficient for identification.

For this automobile example, the main design challenges include segmentation of
automobiles from the roadway, matching of paint color, and measurement of automobile
size and shape. The overall system includes an RGB-D camera system, accurate color

Chapter 8 ■ Vision Pipelines and Optimizations

324

and illumination models, and several feature descriptors used in concert. See Figure 8-3.
We work through this example in some detail as a way of exploring the challenges and
possible solutions for a complete vision pipeline design of this type.

60 feet

RGB-D
Camera

Lamp

FOV

44 feet, 11 feet per lane

Figure 8-3.  Setting for an automobile identification application using a shape-based
and color-based vision pipeline. The RGB and D cameras are mounted above the road
surface, looking directly down

We define the system with the following requirements:

1080p RGB color video (1920x1080 pixels) at 120 fps, horizontally •	
mounted to provide highest resolution in length, 12 bits per color,
65 degree FOV.

1080p stereo depth camera with 8 bits Z resolution at 120 fps, •	
65 degree FOV.

Image FOV covering 44 feet in width and 60 feet in length over •	
four traffic lanes of oncoming traffic, enough for about three
normal car lengths in each lane when traffic is stopped.

Speed limit of 25 mph, which equals ~37 feet per second.•	

Camera mounted next to overhead stoplight, with a street lamp •	
for night illumination.

Chapter 8 ■ Vision Pipelines and Optimizations

325

Embedded PC with 4 CPU cores having SIMD instruction sets, •	
one GPU, 8GB memory, 80GB disk; assumes high-end PC
equivalent performance (not specified for brevity).

Identification of automobiles in real time to determine make and •	
model; also count of occurrences of each, with time stamp and
confidence score.

Automobile ground truth training dataset provided by major •	
manufacturers to include geometry, and accurate color samples
of all body colors used for stock models; custom colors and
after-market colors not possible to identify.

Average car sizes ranging from 5 to 6 feet wide and 12 to 16 feet long.•	

Accuracy of 99 percent or better.•	

Simplified robustness criteria to include noise, illumination, and •	
motion blur.

Segmenting the Automobiles
To segment the automobiles from the roadway surface, a stereo depth camera operating
at 1080p 120fps (frames per second) is used, which makes isolating each automobile from
the roadway simple using depth. To make this work, a method for calibrating the depth
camera to the baseline road surface is developed, allowing automobiles to be identified
as being higher than the roadway surface. We sketch out the depth calibration method
here for illustration.

Spherical depth differences are observed across the depth map, mostly affecting the
edges of the FOV. To correct for the spherical field distortion, each image is rectified using
a suitable calibrated depth function (to be determined on-site and analytically), then
each horizontal line is processed, taking into consideration the curvilinear true depth
distance, which is greater at the edges, to set the depth equal across each line.

Since the speed limit is 25 mph, or 37 feet per second, imaging at 120 FPS yields
maximum motion blur of about 0.3 feet, or 4 inches per frame. Since the length of a pixel
is determined to be 0.37 inches, as shown in Figure 8-4, the ability to compute car length
from pixels is accurate within about 4 inches/0.37 inches = 11 pixels, or about 3 percent of
a 12-foot-long car at 25 mph including motion blur. However, motion blur compensation
can be applied during image pre-processing to each RGB and depth image to effectively
reduce the motion blur further; several methods exist based on using convolution or
compensating over multiple sequential images [305,492].

Chapter 8 ■ Vision Pipelines and Optimizations

326

Matching the Paint Color
We assume that it is possible to identify a vehicle using paint color alone in many cases,
since each manufacturer uses proprietary colors, therefore accurate colorimetry can be
employed. For matching paint color, 12 bits per color channel should provide adequate
resolution, which is determined in the color match stage using the CIECAM02 model and
the Jch color space [253]. This requires development of several calibrated device models
of the camera with the scene under different illumination conditions, such as full sunlight
at different times of day, cloud cover, low light conditions in early morning and at dusk,
and nighttime using the illuminator lamp mounted above traffic along with the camera
and stop light.

The key to colorimetric accuracy is the device models’ accounting for various
lighting conditions. A light sensor to measure color temperature, along with the
knowledge of time of day and season of the year, is used to select the correct device
models for proper illumination for times of day and seasons of the year. However, dirty
cars present problems for color matching; for now we ignore this detail (also custom paint
jobs are a problem). In some cases, the color descriptor may not be useful or reliable; in
other cases, color alone may be sufficient to identify the automobile. See the discussion of
color management in Chapter 2.

Measuring the Automobile Size and Shape
For automobile size and shape, the best measurements are taken looking directly down
on the car to reduce perspective distortion. As shown in Figure 8-4, the car is segmented
into C (cargo), T (top), and H (hood) regions using depth information from the stereo
camera, in combination with a polygon shape segmentation of the auto shape. To
compute shape, some weighted combination of RGB and D images into a single image
will be used, based on best results during testing. We assume the camera is mounted in
the best possible location centered above all lanes, but that some perspective distortion
will exist at the far ends of the FOV. We also assume that a geometric correction is
applied to rectify the images into Cartesian alignment. Assuming errors introduced by

Mirror

Length

Width
C T H

Figure 8-4.  Features used for automobile identification

Chapter 8 ■ Vision Pipelines and Optimizations

327

the geometric corrections to rectify the FOV are negligible, the following approximate
dimensional precision is expected for length and width, using the minimum car size of 5’
x 12’ as an example: 

FOV Pixel Width:      1080
pixels

 / (44’ * 12”)
inches

 = each pixel is ~0.49 inches wide
FOV Pixel Length:    1920

pixels
 / (60’ * 12”)

inches
 = each pixel is ~0.37 inches long

Automobile Width:    (5’ * 12”) / .49 = ~122 pixels
Automobile Length:  (12’ * 12”) / .37 = ~389 pixels  

This example uses the following shape features:

Bounding box containing all features; width and length are used•	

Centroid computed in the middle of the automobile region•	

Separate width computed from the shortest diameter passing •	
through the centroid to the perimeter

Mirror feature measured as the distance from the front of the car; •	
mirror locations are the smallest and largest perimeter width
points within the bounding box

Shape segmented into three regions using depth; color is measured •	
in each region: cargo compartment (C), top (T), and hood (H)

Fourier descriptor of the perimeter shape computed by •	
measuring the line segments from centroid to perimeter points at
intervals of 5 degrees

Feature Descriptors
Several feature descriptors are used together for identification, and the confidence of
the automobile identification is based on a combined score from all descriptors. The key
feature descriptors to be extracted are as follows:

•	 Automobile shape factors: Depth-based segmentation of each
automobile above the roadway is used for the coarse shape outline.
Some morphological processing follows to clean up the edges
and remove noise. For each segmented automobile, object shape
factors are computed for area, perimeter, centroid, bounding
box, and Fourier descriptors of perimeter shape. The bounding
box measures overall width and height, the Fourier descriptor
measures the roundness and shape factors; some automobiles are
more boxy, some are more curvy. (See Figure 6-32, Figure 2-18,
and Chapter 6 for more information on shape descriptors. See
Chapter 1 for more information on depth sensors.) In addition,
the distance of the mirrors from the front of the automobile is
computed; mirrors are located at width extrema around the object
perimeter, corresponding to the width of the bounding box.

Chapter 8 ■ Vision Pipelines and Optimizations

328

•	 Automobile region segmentation: Further segmentation uses a
few individual regions of the automobile based on depth, namely
the hood, roof, and trunk. A simple histogram is created to gather
the depth statistical moments, a clustering algorithm such as
K-means is performed to form three major clusters of depth: the
roof will be highest, hood and trunk will be next highest, windows
will be in between (top region is missing for convertibles, not
covered here). The pixel areas of the hood, top, trunk, and
windows are used as a descriptor.

•	 Automobile color: The predominant colors of the segmented
hood, roof, and trunk regions are used as a color descriptor. The
colors are processed in the Jch color space, which is part of the
CIECAM system yielding high accuracy. The dominant color
information is extracted from the color samples and normalized
against the illumination model. In the event of multiple paint
colors, separate color normalization occurs for each.
(See Chapter 3 for more information on colorimetry.)

Calibration, Set-up, and Ground Truth Data
Several key assumptions are made regarding scene set-up, camera calibration, and other
corrections; we summarize them here:

•	 Roadway depth surface: Depth camera is calibrated to the road
surface as a reference to segment autos above the road surface; a
baseline depth map with only the road is calibrated as a reference
and used for real-time segmentation.

•	 Device models: Models for each car are created from
manufacturer’s information, with accurate body shape geometry
and color for each make and model. Cars with custom paint
confuse this approach; however, the shape descriptor and the car
region depth segmentation provide a failsafe option that may be
enough to give a good match—only testing will tell for sure.

•	 Illumination models: Models are created for various conditions,
such as morning light, daylight, and evening light, for sunny and
cloudy days; illumination models are selected based on time of
day and year and weather conditions for best matching.

•	 Geometric model for correction: Models of the entire FOV for
both the RGB and depth camera are devised, to be applied at each
new frame to rectify the image.

Chapter 8 ■ Vision Pipelines and Optimizations

329

Pipeline Stages and Operations
Assuming the system is fully calibrated in advance, the basic real-time processing flow
for the complete pipeline is shown in Figure 8-5, divided into three primary stages of
operations. Note that the complete pipeline includes an image pre-processing stage to
align the image in the FOV and segment features, a feature description stage to compute
shape and color descriptors, and a correspondence stage for feature matching to develop
the final automobile label composed of a weighted combination of shape and color
features. We assume that a separate database table for each feature in some standard
database is fine.

No attempt is made to create an optimized classifier or matching stage here; instead,
we assume, without proving or testing, that a brute-force search using a standard
database through a few thousand makes and models of automobile objects works fine for
the ALPHA version.

Note in Figure 8-5 (bottom right) that each auto is tracked from frame to frame, we
do not define the tracking method here.

Capture RGB and D
images

Rectify FOV using 4-point
warp, merge RGB and D

Remove motion blur via
spatio-temporal merging

Segment shape regions
(T,H,C) w/depth+color

Morphological processing
to clean up shape

Segment roadway from
automobile using depth

Compute perimeter, area,
centroid, bounding box

Compute radius lines,
centroid to perimeter

Compute radius length
histogram, normalized

Compute Fourier
Descriptor from radial

Compute mirror distance
from front of automobile

Compute dominant color
of each automobile shape

Classify features

Bounding
Box

Dominant
Color

Mirror
Distance

Radius
Histogram

Fourier
Descriptor

Object classification
score + tracking

Image pre-processing Feature Description Correspondence

Figure 8-5.  Operations in hypothetical vision pipeline for automobile identification using
polygon shape features and color

Chapter 8 ■ Vision Pipelines and Optimizations

330

Operations and Compute Resources
For each operation in the pipeline stages, we now explore possible mappings to the
available compute resources. First, we review the major resources available in our
example system, which contains 8GB of fast memory, we assume sufficient free space to
map and lock the entire database in memory to avoid paging. Our system contains four
CPU cores, each with SIMD instruction sets, and a GPU capable of running 128 SIMT
threads simultaneously with 128GB/s memory bandwidth to shared memory for the
GPU and CPU, considered powerful enough. Let’s assume that, overall, the compute and
memory resources are fine for our application and no special memory optimizations
need to be considered. Next, we look at the coarse-grain optimizations to assign
operations to compute resources. Table 8-3 provides an evaluation of possible resource
assignments.

Table 8-3.  Assignment of Operations to Compute Resources

Criteria for Resource Assignments
In our simple example, as shown in Table 8-3, the main criteria for assigning algorithms to
compute units are processor suitability and load balancing among the processors; power
is not an issue for this application. The operation to resource assignments provided in
Figure 8-5 are a starting point in this hypothetical design exercise; actual optimizations
would be different, adjusted based on performance profiling. However, assuming what
is obvious about the memory access patterns used for each algorithm, we can make a
good guess at resource assignments based on memory access patterns. In a second-order
analysis, we could also look at load balancing across the pipeline to maximize parallel
uses of compute units; however, this requires actual performance measurements.

Chapter 8 ■ Vision Pipelines and Optimizations

331

Here we will tentatively assign the tasks from Table 8-3 to resources. If we look at
memory access patterns, using the GPU for the sequential tasks 2 and 3 makes sense,
since we can map the images into GPU memory space first and then follow with the
three sequential operations using the GPU. The GPU has a texture sampler to which we
assign task 2, the geometric corrections using the four-point warp. Some DSPs or camera
sensor processors also have a texture sampler capable of geometric corrections, but not
in our example. In addition to geometric corrections, motion blur is a good candidate
for the GPU as well, which can be implemented as an area operation efficiently in a
shader. For higher-end GPUs, there may even be hardware acceleration for motion blur
compensation in the media section.

Later in the pipeline, after the image has been segmented in tasks 4 and 5, the
morphology stage in task 6 can be performed rapidly using a GPU shader; however, the
cost of moving the image to and from the GPU for the morphology may actually be slower
than performing the morphology on the CPU, so performance analysis is required for
making the final design decision regarding CPU vs. GPU implementation.

In the case of stages 7 to 11, shown in Table 8-3, the algorithm for area, perimeter,
centroid, and other measurements span a nonlocalized data access pattern. For example,
perimeter tracing follows the edge of the car. So we will make one pass using a single CPU
through the image to track the perimeter and compute the area, centroid, and bounding
box for each automobile. Then, we assign each bounding box as an image tile to a separate
CPU thread for computation of the remaining measurements: radial line segment length,
Fourier descriptor, and mirror distance. Each bounding box is then assigned to a separate
CPU thread for computation of the colorimetry of each region, including cargo, roof, and
hood, as shown in Table 8-3. Each CPU thread uses C++ for the color conversions and
attempts to use compiler flags to force SIMD instruction optimizations.

Tracking the automobile from frame to frame is possible using shape and color
features; however, we do not develop the tracking algorithm here. For correspondence
and matching, we rely on a generic database from a third party, running in a separate
thread on a CPU that is executing in parallel with the earlier stages of the pipeline.
We assume that the database can split its own work into parallel threads. However, an
optimization phase later could rewrite and create a better database and classifier, using
parallel threads to match feature descriptors.

Face, Emotion, and Age Recognition
In this example, we design a face, emotion, and age recognition pipeline that uses local
feature descriptors and interest points. Face recognition is concerned with identifying the
unique face of a unique person, while face detection is concerned with determining only
where a face is located and interesting characteristics such as emotion, age, and gender.
Our example is for face detection, and finding the emotions and age of the subject.

For simplicity, this example uses mugshots of single faces taken with a stationary
camera for biometric identification to access a secure area. Using mugshots simplifies
the example considerably, since there is no requirement to pick out faces in a crowd from
many angles and distances. Key design challenges include finding a reliable interest point
and feature descriptor method to identify the key facial landmarks, determining emotion
and age, and modeling the landmarks in a normalized, relative coordinate system to
allow for distance ratios and angles to be computed.

Chapter 8 ■ Vision Pipelines and Optimizations

332

Excellent facial recognition systems for biometric identification have been deployed
for several decades that use a wide range of methods, achieving accuracies of close to
100 percent. In this exercise, no attempt is made to prove performance or accuracy. We
define the system with the following requirements:

1080p RGB color video (1920x1080 pixels) at 30 fps, horizontally •	
mounted to provide highest resolution in length, 12 bits per color,
65 degree FOV, 30 FPS

Image FOV covers 2 feet in height and 1.5 feet in width, enough •	
for a complete head and top of the shoulder

Background is a white drop screen for ease of segmentation•	

Illumination is positioned in front of and slightly above the •	
subject, to cast faint shadows across the entire face that highlight
corners around eyes, lips, and nose

For each face, the system identifies the following landmarks:•	

Eyes: two eye corners and one center of eye•	

Dominant eye color: in CIECAM02 JCH color coordinates•	

Dominant face color: in CIECAM02 JCH color coordinates•	

Eyebrows: two eyebrow endpoints and one center of •	
eyebrow arc, used for determining emotions

Nose: one point on nose tip and two widest points by •	
nostrils, used for determining emotions and gender

Lips: two endpoints of lips, two center ridges on upper lip•	

Cheeks: one point for each cheek center•	

Chin: one point, bottom point of chin, may be unreliable due •	
to facial hair

Top of head: one point; may be unreliable due to hairstyle•	

Unique facial markings: these could include birthmarks, •	
moles, or scars, and must fall within a bounding box
computed around the face region

A FREAK feature is computed at each detected landmark on the •	
original image

Accuracy is 99 percent or better•	

Simplified robustness criteria to include scale only•	

Note that emotion, age, and gender can all be estimated from selected relative distances
and proportional ratios of facial features, and we assume that an expert in human face
anatomy provides the correct positions and ratios to use for a real system. See Figure 8-6.

Chapter 8 ■ Vision Pipelines and Optimizations

333

The set of features computed for this example system includes:

1.	 Relative positions of facial landmarks such as eyes, eyebrows,
nose, and mouth

2.	 Relative proportions and ratios between landmarks to
determine age, sex, and emotion

3.	 FREAK descriptor at each landmark

4.	 Eye color

Calibration and Ground Truth Data
The calibration is simple: a white backdrop is used in back of the subject, who stands
about 4 feet away from the camera, enabling a shot of the head and upper shoulders. (We
discuss the operations used to segment the head from the background region later in this
section.) Given that we have a 1080p image, we allocate the 1920 pixels to the vertical
direction and the 1080 pixels to the horizontal.

Assuming the cameraman is good enough to center the head in the image so that
the head occupies about 50 percent of the horizontal pixels, and about 50 percent of the
vertical pixels, we have pixel resolution for the head of ~540 pixels horizontal and ~960
pixels vertical, which is good enough for our application and corresponds to the ratio of
head height to width. Since we assume that average head height is about 9 inches and
width as 6 inches across for male and female adults, using our assumptions for a four-foot
distance from the camera, we have plenty of pixel accuracy and resolution: 

9” / (1920
pixels

 * .5) = 0.009” vertical pixel size

6” / (1080
pixels

 * .5) = 0.01” horizontal pixel size 

The ground truth data consists of: (1) mugshots of known people, and (2) a set of
canonical eye landmark features in the form of correlation templates used to assist in

Figure 8-6.  (Left) Proportional ratios based on a bounding box of the head and face regions
as guidelines to predict the location of facial landmarks. (Right) Annotated image with
detected facial landmark positions and relative angles and distances measured between
landmarks. The relative measurements are used to determine emotion, age, and gender

Chapter 8 ■ Vision Pipelines and Optimizations

334

locating face landmarks (a sparse codebook of correlation temlpates). There are two sets
of correlation templates: one for fine features based on a position found using a Hessian
detector, and one for coarse features based on a position found using a steerable filter based
detector (the fine and coarse detectors are described in more detail later in this example).

Since facial features like eyes and lips are very similar among people, the canonical
landmark feature correlation templates provide only rough identification of landmarks
and their location. Several templates are provided covering a range of ages and genders
for all landmarks, such as eye corners, eyebrow corners, eyebrow peaks, nose corners,
nose bottom, lip corners, and lip center region shapes. For sake of brevity, we do not
develop the ground truth dataset for correlation templates here, but we assume the
process is accomplished using synthetic features created by warping or changing real
features and testing them against several real human faces to arrive at the best canonical
feature set. The correlation templates are used in the face landmark identification stage,
discussed later.

Interest Point Position Prediction
To find the facial landmarks, such as eyes, nose, and mouth, this example application
is simplified by using mugshots, making the position of facial features predictable and
enabling intelligent search for each feature at the predicted locations. Rather than resort
to scientific studies of head sizes and shapes, for this example we use basic proportional
assumptions from human anatomy (used for centuries by artists) to predict facial feature
locations and enable search for facial features at predicted locations. Facial feature ratios
differ primarily by age, gender, and race; for example, typical adult male ratios are shown
in Table 8-4.

Table 8-4.  Basic Approximate Face and Head Feature Proportions

Head height head width X 1.25

Head width head height X .75

Face height head height X .8

Face width head height X .8

Eye position eye center located 30% in from left/right edges, 50% from top

Eye length head width X 1.25

Eye spacing head width X .5

Nose position 25% higher than lip corners

Nose length head height X .25

Lip corners about eye center x, about 15% higher than chin y

Mouth/lip width head width X .07

Chapter 8 ■ Vision Pipelines and Optimizations

335

Note■■   The information in Table 8-4 is synthesized for illustration purposes from
elementary artists’ materials and is not guaranteed to be accurate.

The most basic coordinates to establish are the bounding box for the head. From the
bounding box, other landmark facial feature positions can be predicted.

Segmenting the Head and Face Using the Bounding Box
As stated earlier, the mugshots are taken from a distance of about 4 feet against a white
drop background, allowing simple segmentation of the head. We use thresholding on
simple color intensity as RGBI-I, where I = (R=G + B) / 3 and the white drop background
is identified as the highest intensity.

The segmented head and shoulder region is used to create a bounding box of
the head and face, discussed next. (Note: wild hairstyles will require another method,
perhaps based on relative sizes and positions of facial features compared to head shape
and proportions.) After segmenting the bounding box for the head, we proceed to
segment the facial region and then find each landmark. The rough size of the bounding
box for head is computed in two steps:

1.	 Find the top and left, right sides of the head— Top
xy

, Left
xy

,
Right

xy—
which we assume can be directly found by making a

pass through the image line by line and recording the rows
and columns where the background is segmented to meet the
foreground of head, to establish the coordinates. All leftmost
and rightmost coordinates for each line can be saved in a
vector, and sorted to find the median values to use as
Right

x
 / Left

x
 coordinates. We compute head width as: 

H
w

 = Right
x
 - Left

x
 

2.	 Find the chin to assist in computing the head height H
h
. The

chin is found by first predicting the location of the chin, then
performing edge detection and some filtering around the
predicted location to establish the chin feature, which we
assume is simple to find based on gradient magnitude of the
chin perimeter. The chin location prediction is made by using
the head top coordinates Top

xy
 and the normal anatomical

ratio of the head height H
h
 to head width H

w
, which is known

to be about 0.75. Since we know both Top
xy

 and H
w

 from
step 1, we can predict the x and y coordinates of the chin as
follows: 

Chin
y
 = (.25 * H

w
) + Top

y

Chin
x
 = Top

x
 

Chapter 8 ■ Vision Pipelines and Optimizations

336

Actually, hair style makes the segmentation of the head difficult in some cases,
since the hair may be piled high on top or extend widely on the sides and cover the ears.
However, we can either iterate the chin detection method a few times to find the best
chin, or else assume that our segmentation method will solve this problem somehow via
a hair filter module, so we move on with this example for the sake of brevity.

To locate the chin position, a horizontal edge detection mask is used around the
predicted location, since the chin is predominantly a horizontal edge. The coordinates
of the connected horizontal edge maxima are filtered to find the lowest y coordinates of
the horizontal edge set, and the median of the lowest x/y coordinates is used as the initial
guess at the chin center location. Later, when the eye positions are known, the chin x
position can be sanity-checked with the position of the midpoint between the eyes and
recomputed, if needed. See Figure 8-7.

Figure 8-7.  Location of facial landmarks. (Left) Facial landmarks enhanced using largest
eigenvalues of Hessian tensor [493] in FeatureJ1; note the fine edges that provide extra
detail. (Center) Template-based feature detector using steerable filters with additional
filtering along the lines of the Canny detector [400] to provide coarse detail. (Right)
Steerable filter pattern used to compute center image. Both images are enhanced using
contrast window remapping to highlight the edges

1FeatureJ plug-in for ImageJ used to generate eigenvalues of Hessian (FeatureJ developed by Erik
Meijering).

The head bounding box, containing the face, is assumed to be:

BoundingBoxTopLeftx = Leftx

BoundingBoxTopLefty = Topy

BoundingBoxBottomRightx = Rightx

BoundingBoxBottomRighty = Chiny

Face Landmark Identification and Compute Features
Now that the head bounding box is computed, the locations of the face landmark feature
set can be predicted using the basic proportional estimates from Table 8-4. A search is
made around each predicted location to find the features; see Figure 8-6. For example,
the eye center locations are ~30 percent in from the sides and about 50 percent down
from the top of the head.

Chapter 8 ■ Vision Pipelines and Optimizations

337

In our system we use an image pyramid with two levels for feature searching,
a coarse-level search down-sampled by four times, and a fine-level search at full
resolution to relocate the interest points, compute the feature descriptors, and take the
measurements. The coarse-to-fine approach allows for wide variation in the relative size
of the head to account for mild scale invariance owing to distance from the camera
and/or differences in head size owing to age.

We do not add a step here to rotate the head orthogonal to the Cartesian coordinates
in case the head is tilted; however, this could be done easily. For example, an iterative
procedure can be used to minimize the width of the orthogonal bounding box, using
several rotations of the image taken every 2 degrees from -10 to +10 degrees. The
bounding box is computed for each rotation, and the smallest bounding box width is
taken to find the angle used to correct the image for head tilt.

In addition, we do not add a step here to compute the surface texture of the skin,
useful for age detection to find wrinkles, which is easily accomplished by segmenting
several skin regions, such as forehead, eye corners, and the region around mouth, and
computing the surface texture (wrinkles) using an edge or texture metric.

The landmark detection steps include feature detection, feature description, and
computing relative measurements of the positions and angles between landmarks, as follows:

1.	 Compute interest points: Prior to searching for the facial
features, interest point detectors are used to compute likely
candidate positions around predicted locations. Here we use a
combination of two detectors: (1) the largest eigenvalue of the
Hessian tensor [493], and (2) steerable filters [388] processed
with an edge detection filter criteria similar to the Canny
method [400], as illustrated in Figure 8-7. Both the Hessian and
the Canny-like edge detectors images are followed by contrast
windowing to enhance the edge detail. The Hessian style and
Canny-style images are used together to vote on the actual
location of best interest points during the correlation stage next.

2.	 Compute landmark positions using correlation: The final
position of each facial landmark feature is determined using
a canonical set of correlation templates, described earlier,
including eye corners, eyebrow corners, eyebrow peaks,
nose corners, nose bottom, lip corners, and lip center region
shapes. The predicted location to start the correlation search
is the average position of both detectors from step 1: (1) The
Hessian approach provides fine-feature details, (2) while
the steerable filter approach provides coarse-feature details.
Testing will determine if correlation alone is sufficient without
needing interest points from step 1.

3.	 Describe landmarks using FREAK descriptors: For each
landmark location found in step 2, we compute a FREAK
descriptor. SIFT may work just as well.

Chapter 8 ■ Vision Pipelines and Optimizations

338

4.	 Measure dominant eye color using CIECAM02 JCH: We use
a super-pixel method [257,258] to segment out the regions
of color around the center of the eye, and make a histogram
of the colors of the super-pixel cells. The black pupil and the
white of the eye should cluster as peaks in the histogram, and
the dominant color of the eye should cluster in the histogram
also. Even multi-colored eyes will be recognized using our
approach using histogram correspondence.

5.	 Compute relative positions and angles between landmarks: In
step 2 above, correlation was used to find the location of each
feature (to sub-pixel accuracy if desired [468]). As illustrated
in Figure 8-6, we use the landmark positions as the basis for
measuring the relative distances of several features, such as:

a.	 Eye distance, center to center, useful for age and gender

b.	 Eye size, corner to corner

c.	 Eyebrow angle, end to center, useful for emotion

d.	 Eyebrow to eye angle, ends to center positions, useful for
emotion

e.	 Eyebrow distance to eye center, useful for emotion

f.	 Lip or mouth width

g.	 Center lip ridges angle with lip corners, useful for emotion

Pipeline Stages and Operations
The pipeline stages and operations are shown in Figure 8-8. For correspondence, we
assume a separate database table for each feature. We are not interested in creating an
optimized classifier to speed up pattern matching; brute-force searching is fine.

Chapter 8 ■ Vision Pipelines and Optimizations

339

Capture RGB and D
images

Segment out background
from head

Bounding box:
Compute head width, head

Predict face landmark
positions relative to

Compute Hessian and
Canny detector image set

Bounding box:
Predict chin position

Correlation templates at
each feature landmark to

Compute relative angles
and distances between

Compute super -pixel
segmentation of eye

Create histogram of
super-pixel region JCH

Compute SIFT descriptor
at each landmark location

Classify features

Head
width/height

Eye Color

Face
landmarks

SIFT features

Object classification score

Image pre-processing Feature Description Correspondence

Figure 8-8.  Operations in hypothetical vision pipeline for face, emotion, and age detection
using local features

Operations and Compute Resources
For this example, there is mostly straight-line code best suited for the CPU. Following
the data access patterns as a guide, the bounding box, relative distances and ratios,
FREAK descriptors and correspondence are good candidates for the CPU. In some cases,
separate CPU threads can be used, such as computing the FREAK descriptors at each
landmark in separate threads (threads are likely overkill for this simple application). We
assume feature matching using a standard database. Our application is assumed to have
plenty of time to wait for correspondence.

Some operations are suited for a GPU; for example the area operations, including
the Hessian and Canny-like interest point detectors. These methods could be combined
and optimized into a single shader program using a single common data read loop and
combined processing loop, which produce output into two images, one for each detector.
In addition, we assume that the GPU provides an API to a fast, HW accelerated correlation
block matcher in the media section, so we take advantage of the HW accelerated correlation.

Criteria for Resource Assignments
In this example, performance is not a problem, so the criteria for using computer resources
are relaxed. In fact, all the code could be written to run in a single thread on a single CPU,
and the performance would likely be fast enough with our target system assumptions.

Chapter 8 ■ Vision Pipelines and Optimizations

340

However, the resource assignments shown in Table 8-5 are intended to illustrate
reasonable use of the resources for each operation to spread the workload around the SOC.

Table 8-5.  Assignments of Operations to Compute Resources

Image Classification
For our next example, we design a simple image classification system intended for mobile
phone use, with the goal of identifying the main objects in the camera’s field of view,
such as buildings, automobiles, and people. For image classification applications, the
entire image is of interest, rather than specific local features. The user will have a simple
app which allows them to point the camera at an object, and wave the camera from side
to side to establish the stereo baseline for MVS depth sensing, discussed later. A wide
range of global metrics can be applied (as discussed in Chapter 3), computed over the
entire image, such as texture, histograms of color or intensity, and methods for connected
component labeling. Also, local features (as discussed in Chapter 6) can be applied to
describe key parts of the images. This hypothetical application uses both global and local
features.

We define the system with the following requirements:

1080p RGB color video (1920x1080 pixels) at 30 fps, 12 bits per •	
color, 65 degree FOV, 30 FPS

Image FOV covers infinite focus view from a mobile phone •	
camera

Unlimited lighting conditions (bad and good)•	

Accuracy of 90 percent or better•	

Simplified robustness criteria, including scale, perspective, •	
occlusion

Chapter 8 ■ Vision Pipelines and Optimizations

341

•	 For each image, the system computes the following features:

•	 Global RGBI histogram, in RGB-I color space

•	 GPS coordinates, since the phone has a GPS

•	 Camera pose via MVS depth sensing, using the accelerometer
data for geometric rectification to an orthogonal FOV plane
(the user is asked to wave the camera while pointed at
the subject, the camera pose vector is computed from the
accelerometer data and relative to the main objects in the
FOV using ICP)

•	 SIFT features, ideally between 20 and 30 features stored for
each image

•	 Depth map via monocular dense depth sensing, used to
segment out objects in the FOV, depth range target 0.3
meters to 30 meters, accuracy within 1 percent at 1 meter,
and within 10 percent at 30 meters

•	 Scene labeling and pixel labeling, based on attributes of
segmented regions, including RGB-I color and LBP texture

Scene recognition is a well-researched field, and several grand challenge
competitions are held annually to find methods for increased accuracy using established
ground truth datasets, as shown in Appendix B. The best accuracy achieved for various
categories of images in the challenges ranges from 50 to over 90 percent. In this exercise,
no attempt is made to prove performance or accuracy.

Segmenting Images and Feature Descriptors
For this hypothetical vision pipeline, several methods for segmenting the scene into
objects will be used together, instead of relying on a single method, as follows:

1.	 Dense segmentation, scene parsing, and object labeling:
A depth map generated using monocular MVS is used to
segment common items in the scene, including the ground
or floor, sky or ceiling, left and right walls, background, and
subjects in the scene. To compute monocular depth from the
mobile phone device, the user is prompted by the application
to move the camera from left to right over a range of arm’s
length covering 3 feet or so, to create a series of wide baseline
stereo images for computing depth using MVS methods (as
discussed in Chapter 1). MVS provides a dense depth map.
Even though MVS computation is compute-intensive, this
is not a problem, since our application does not require
continuous real-time depth map generation – just a single
depth map; 3 to 4 seconds to acquire the baseline images
and generate the depth map is assumed possible for our
hypothetical mobile device.

Chapter 8 ■ Vision Pipelines and Optimizations

342

2.	 Color segmentation and component labeling using super-
pixels: The color segmentation using super-pixels should
correspond roughly with portions of the depth segmentation.

3.	 LBP region segmentation: This method is fairly fast to
compute and compact to represent, as discussed in Chapter 6.

4.	 Fused segmentation: The depth, color, and LBP
segmentation regions are combined using Boolean masks
and morphology and some logic into a fused segmentation.
The method uses an iterative loop to minimize the differences
between color, depth, and LBP segmentation methods into a
new fused segmentation map. The fused segmentation map is
one of the global image descriptors.

5.	 Shape features for each segmented region: basic shape
features, such as area and centroid, are computed for each
fused segmentation region. Relative distance and angle
between region centroids is also computed into a composite
descriptor.

In this hypothetical example, we use several feature descriptor methods together for
additional robustness and invariance, and some pre-processing, summarized as follows:

1.	 SIFT interest points across the entire image are used as
additional clues. We follow the SIFT method exactly, since
SIFT is known to recognize larger objects using as few as three
or four SIFT features [161]. However, we expect to limit the
SIFT feature count to 20 or 30 strong candidate features per
scene, based on training results.

2.	 In addition, since we have an accelerometer and GPS sensor
data on the mobile phone, we can use sensor data as hints
for identifying objects based on location and camera pose
alone, for example assuming a server exists to look up the GPS
coordinates of landmarks in an area.

3.	 Since illumination invariance is required, we perform RGBI
contrast remapping in an attempt to normalize contrast
and color prior to the SIFT feature computations, color
histograms, and LBP computations. We assume a statistical
method for computing the best intensity remapping limits is
used to spread out the total range of color to mitigate dark and
oversaturated images, based on ground truth data testing, but
we do not take time to develop the algorithm here; however,
some discussion on candidate algorithms is provided in
Chapter 2. For example, computing SIFT descriptors on dark
images may not provide sufficient edge gradient information
to compute a good SIFT descriptor, since SIFT requires
gradients. Oversaturated images will have washed-out color,
preventing good color histograms.

Chapter 8 ■ Vision Pipelines and Optimizations

343

4.	 The fused segmentation combines the best of all the color,
LBP, and depth segmentation methods, minimizing the
segmentation differences by fusing all segmentations into
a fused segmentation map. LBP is used also, which is less
sensitive to both low light and oversaturated conditions,
providing some balance.

Again, in the spirit of a hypothetical exercise, we do not take time here to develop the
algorithm beyond the basic descriptions given above.

Pipeline Stages and Operations
The pipeline stages are shown in Figure 8-9. They include an image pre-processing stage
primarily to correct image contrast, compute depth maps and segmentation maps. The
feature description stage computes the RGBI color histograms, SIFT features, a fused
segmentation map combining the best of depth, color, and LBP methods, and then
labels the pixels as connected components. For correspondence, we assume a separate
database table for each feature, using brute-force search; no optimization attempted.

Capture wide baseline
images

RGBI contrast remapping

Compute MVS depth map

Color segmentation map

LBP texture segmentation
map

Compute RGBI color
histograms

Compute SIFT features

Compute fused -
segmentation

Labeling segmented
objects

Classify features

Histograms

GPS, camera
pose

Segmented
Objects

SIFT features

Object classification score

Image pre-processing Feature Description Correspondence

Figure 8-9.  Operations in hypothetical image classification pipeline using global features

Mapping Operations to Resources
We assume that the DSP provides an API for contrast remapping, and since the DSP is
already processing all the pixels from the sensor anyway and the pixel data is already
there, contrast remapping is a good match for the DSP.

The MVS depth map computations follow a data pattern of line and area operations.
We use the GPU for the heavy-lifting portions of the MVS algorithm, like left/right image

Chapter 8 ■ Vision Pipelines and Optimizations

344

pair pattern matching. Our algorithm follows the basic stereo algorithms, as discussed in
Chapter 1. The stereo baseline is estimated initially from the accelerometer, then some
bundle adjustment iterations over the baseline image set are used to improve the baseline
estimates. We assume that the MVS stereo workload is the heaviest in this pipeline and
consumes most of the GPU for a second or two. A dense depth map is produced in the
end to use for depth segmentation.

The color segmentation is performed on RGBI components using a super-pixel
method [257,258]. A histogram of the color components is also computed in RGBI for
each superpixel cell. The LBP texture computation is a good match for the GPU since it
is an area operation amenable to shader programming style. So, it is possible to combine
the color segmentation and the LBP texture segmentation into the same shader to
leverage data sharing in register files and avoid data swapping and data copies.

The SIFT feature description can be assigned to CPU threads, and the data can be tiled
and divided among the CPU threads for parallel feature description. Likewise, the fused
segmentation can be assigned to CPU threads and the data tiled also. Note that tiled data
can include overlapping boundary regions or buffers, see later Figure 8-12 for an illustration
of overlapped data tiling. Labeling can also be assigned to parallel CPU threads in a similar
manner, using tiled data regions. Finally, we assume a brute-force matching stage using
database tables for each descriptor to develop the final score, and we weight some features
more than others in the final scoring, based on training against ground truth data.

Criteria for Resource Assignments
The basic criterion for the resource assignments is to perform the early point processing
on the DSP, since the data is already resident, and then to use the GPU SIMT SIMD model
to compute the area operations as shaders to create the depth maps, color segmentation
maps, and LBP texture maps. The last stages of the pipeline map nicely to thread parallel
methods and data tiling. Given the chosen operation to resource assignments shown
in Table 8-6, this application seems cleanly amenable to workload balancing and
parallelization across the CPU cores in threads and the GPU.

Table 8-6.  Assignments of Operations to Compute Resources

Chapter 8 ■ Vision Pipelines and Optimizations

345

Augmented Reality
In this fourth example, we design an augmented reality application for equipment
maintenance using a wearable display device such as glasses or goggles and wearable
cameras. The complete system consists of a portable, wearable device with camera and
display connected to a server via wireless. Processing is distributed between the wearable
device and the server. (Note: this example is especially high level and leaves out a lot of
detail, since the actual system would be complex to design, train and test.)

The server system contains all the CAD models of the machine and provides
on-demand graphics models or renderings of any machine part from any viewpoint.
The wearable cameras track the eye gaze and the position of the machine. The wearable
display allows a service technician to look at a machine and view augmented reality
overlays on the display, illustrating how to service the machine. As the user looks at a
given machine, the augmented reality features identify the machine parts and provide
overlays and animations for assisting in troubleshooting and repair. The system uses a
combination of RGB images as textures on 3D depth surfaces and a database of 3D CAD
models of the machine and all the component machine parts.

The system will have the following requirements:

1080p RGB color video camera (1920x1080 pixels) at 30 fps, 12 bits •	
per color, 65 degree FOV, 30 FPS

1080p stereo depth camera with 8 bits Z resolution at 60 fps, •	
65 degree FOV; all stereo processing performed in silicon in the
camera ASIC with a depth map as output

480p near infra-red camera pointed at eyes of technician, used for •	
gaze detection; the near-infrared camera images better in the
low-light environment around the head-mounted display

1080p wearable RGB display•	

A wearable PC to drive the cameras and display, descriptor •	
generation, and wireless communications with the server; the
system is battery powered for mobile use with an 8-hour battery life

A server to contain the CAD models of the machines and parts; •	
each part will have associated descriptors pre-computed into
the data base; the server can provide either graphics models or
complete renderings to the wearable device via wireless

Server to contain ground truth data consisting of feature •	
descriptors computed on CAD model renderings of each part +
normalized 3D coordinates for each descriptor for machine parts

Simplified robustness criteria include perspective, scale, and •	
rotation

Chapter 8 ■ Vision Pipelines and Optimizations

346

Calibration and Ground Truth Data
We assume that the RGB camera and the stereo camera system are calibrated with
correct optics to precisely image the same FOV, since the RGB camera and 3D depth map
must correspond at each pixel location to enable 2D features to be accurately associated
with the corresponding 3D depth location. However, the eye gaze camera will require
some independent calibration, and we assume a simple calibration application is
developed to learn the technician’s eye positions by using the stereo and RGB cameras to
locate a feature in the FOV, and then overlay an eye gaze vector on a monitor to confirm
the eye gaze vector accuracy. We do not develop the calibration process here.

However, the ground truth data takes some time to develop and train, and requires
experts in repair and design of the machine to work together during training. The ground
truth data includes feature sets for each part, consisting of 2D SIFT features along
corners, edges, and other locations such as knobs. To create the SIFT features, first a set of
graphics renderings of each CAD part model is made from representative viewpoints the
technician is likely to see, and then the 2D SIFT features are computed on the graphics
renderings, and the geometry of the model is used to create relative 3D coordinates for
each SIFT feature for correspondence.

The 2D SIFT feature locations are recorded in the database along with relative 3D
coordinates, and associated into objects using suitable constraints such as angles and
relative distances, see Figure 8-10. An expert selects a minimum set of features for each
part during training—primarily strongest features from corners and edges of surfaces.
The relative angles and distances in three dimensions between the 2D SIFT features are
recorded in the database to provide for perspective, scale, and rotation invariance. The
3D coordinates for all the parts are normalized to the size of the machine. In addition,
the dominant color and texture of each part surface is computed from the renderings
and stored as texture and color features. This system would require considerable training
and testing.

Feature and Object Description
In actual use in the field, the RGB camera is used to find the 2D SIFT, LBP and color
features, and the stereo camera is used to create the depth map. Since the RGB image and
depth map are pixel-aligned, each feature has 3D coordinates taken from the depth map,
which means that a 3D coordinate can be assigned to a 2D SIFT feature location. The 3D
angles and 3D distances between 2D SIFT feature locations are computed as constraints,
and the combined LBP, color and 2D SIFT features with 3D location constraints are stored
as SIFT vertex features and sent to the server for correspondence. See Figure 8-10 for an
illustration of the layout of the SIFT vertex descriptors and parts objects. Note that the
3D coordinate is associated with several descriptors, including SIFT, LBP texture, ands
RGB color, similar to the way a 3D vertex is represented in computer graphics by 3D
location, color, and texture. During training, several SIFT vertex descriptors are created
from various views of the parts, each view associated by 3D coordinates in the database,
allowing for simplified searching and matching based on 3D coordinates along with the
features.

Chapter 8 ■ Vision Pipelines and Optimizations

347

Overlays and Tracking
In the server, SIFT vertex descriptors in the scene are compared against the database to
find parts object. The 3D coordinates, angles, and distances of each feature are normalized
relative to the size of the machine prior to searching. As shown in Figure 8-10, the SIFT
features are composed at a 3D coordinate into a SIFT vertex descriptor, with an associated
2D SIFT feature, LBP texture, and color. The SIFT vertex descriptors are associated into
part objects, which contain the list of vertex coordinates describing each part, along with
the relative angles and distances between SIFT vertex features.

Assuming that the machine part objects can be defined using a small set of SIFT
vertex features, sizes and distance can be determined in real time, and the relative
3D information such as size and position of each part and the whole machine can
be continually computed. Using 3D coordinates of recognized parts and features,
augmented reality renderings can be displayed in the head-mounted display, highlighting
part locations and using overlaying animations illustrating the parts to remove, as well as
the path for the hand to follow in the repair process.

The near infrared camera tracks the eyes of the technician to create a 3D gaze vector
onto the scene. The gaze vector can be used for augmented reality “help” overlays in
the head-mounted display, allowing for gaze-directed zoom or information, with more
detailed renderings and overlay information displayed for the parts the technician is
looking at.

Multivariate Descriptor Layout

SIFT vertex descriptor
*3D coordinate
*2D SIFT
*LBP texture
*RGB color

Part object
*Name of part
*SIFT vertex list
*Angles between SIFT vertex list items
*Distance between SIFT vertex list items
*Service & technical information

Figure 8-10.  SIFT vertex descriptor is similar to a computer graphics vertex using 3D
location, color, and texture. The SIFT vertex descriptor contains the 2D SIFT descriptor
from the RGB camera, the 3D coordinate of the 2D SIFT descriptor generated from the
depth camera, the RGB color at the SIFT vertex, and the LBP texture at the SIFT vertex.
The Part object contains a list of SIFT vertex descriptors, along with relative angles and
distances between each 3D coordinate in the SIFT vertex list

Chapter 8 ■ Vision Pipelines and Optimizations

348

Pipeline Stages and Operations
The pipeline stages are shown in Figure 8-11. Note that the processing is divided between
the wearable device (primarily for image capture, feature description, and display), and
a server for heavy workloads, such as correspondence and augmented reality renderings.
In this example, the wearable device is used in combination with the server, relying on
a wireless network to transfer images and data. We assume that data bandwidth and
data compression methods are adequate on the wireless network for all necessary data
communications.

Align RGB + stereo images

Compute 2D SIFT
descriptors

3D info: Add 3D coordinate
to 2D SIFT

Compute LBP texture + RGB
color

Send 2DSIFT, 3D info,
texture & color to server

3D info: Compute 3D angles
& distances

Convert 3D info to relative
coordinates

Match 2D SIFT descriptors

Match 3D info with SIFT 3D
coordinates

Match RGB-I texture + RGB
color

Classify features

Object classification score

Feature Description
(device)

Correspondence
(server)

Augment & Track
(server)

Update gaze pose vector

Determine augmented
rendering coordinates

Render overlay & animation
images

Send graphics geometry to
device

Render augmentation to
head-mounted display

Figure 8-11.  Operations in hypothetical augmented reailty pipeline

Mapping Operations to Resources
We make minimal use of the GPU for GPGPU processing and assume the server has many
CPUs available, and we use the GPU for graphics rendering at the end of the pipeline.
Most of the operations map well into separate CPU threads using data tiling. Note that a
server commonly has many high-power and fast CPUs, so using CPU threads is a good
match. See Table 8-7.

Chapter 8 ■ Vision Pipelines and Optimizations

349

Criteria for Resource Assignments
On the mobile device, the depth map is computed in silicon on the depth camera. We use
the GPU to perform the RGB and depth map alignment using the texture sampler, then
perform SIFT computations on the CPU, since the SIFT computations must be done first
to have the vertex to anchor and compute the multivariate descriptor information. We
continue and follow data locality and perform the LBP and color computations for each
2D SIFT point in separate CPU threads using data tiling and overlapped regions. See later
Figure 8-12 for an illustration of overlapped data tiling.

Table 8-7.  Assignments of Operations to Compute Resources

Chapter 8 ■ Vision Pipelines and Optimizations

350

On the server, we have assigned the CAD database and most of the heavy portions
of the workload, including feature matching and database access, since the server is
expected to have large storage and memory capacity and many CPUs available. In
addition, we wish to preserve battery life and minimize heat on the mobile device, so the
server is preferred for the majority of this workload.

Acceleration Alternatives
There are a variety of common acceleration methods that can be applied to the vision
pipeline, including attention to memory management, coarse-grained parallelism using
threads, data-level parallelism using SIMD and SIMT methods, multi-core parallelism,
advanced CPU and GPU assembler language instructions, and hardware accelerators.

There are two fundamental approaches for acceleration:

1.	 Follow the data

2.	 Follow the algorithm

Optimizing algorithms for compute devices, such as SIMD instruction sets or SIMT
GPGPU methods, also referred to as stream processing, is oftentimes the obvious choice
designers consider. However, optimizing for data flow and data residency can yield

Tile 1

Tile 2

Tile 3

Tile 4

16

16

16 16

Figure 8-12.  Data tiling into four overlapping tiles. The tiles overlap a specific amount,
16 pixels in this case, allowing for area operations such as convolutions to read, not write,
into the overlapped region for assembling convolution kernel data from adjacent regions.
However, each thread only writes into the nonoverlapped region within its tile. Each tile
can be assigned to a separate thread or CPU core for processing

Chapter 8 ■ Vision Pipelines and Optimizations

351

better results. For example, bouncing data back and forth between compute resources
and data formats is not a good idea; it eats up time and power consumed by the copy
and format conversion operations. Data copying in slow-system memory is much
slower than data access in fast-register files within the compute units. Considering the
memory architecture hierarchy of memory speeds, as was illustrated in Figure 8-2, and
considering the image-intensive character of computer vision, it is better to find ways to
follow the data and keep the data resident in fast registers and cache memory as long as
possible, local to the compute unit.

Memory Optimizations
Attention to memory footprint and memory transfer bandwidth are the most often
overlooked areas when optimizing an imaging or vision application. As shown in Table 8-2
and the memory discussion following, a vision pipeline moves several GB/S of data through
the system between compute units and system memory. In addition, area processes like
interest point detection and image pre-processing move even more data in complex routes
through the register files of each compute unit, caches, and system memory.

Why optimize for memory? By optimizing memory use, data transfers are reduced,
performance is improved, power costs are reduced, and battery life is increased. Power
is costly; in fact, a large Internet search company has built server farms very close to the
Columbia River’s hydroelectric systems to guarantee clean power and reduce power
transmission costs.

For mobile devices, battery life is a top concern. Governments are also beginning
to issue carbon taxes and credits to encourage power reductions. Memory use, thus,
is a cost that’s often overlooked. Memory optimization APIs and approaches will be
different for each compute platform and operating system. A good discussion on memory
optimization methods for Linux is found in reference[494].

Minimizing Memory Transfers Between Compute Units
Data transfers between compute units should be avoided, if possible. Workload
consolidation should be considered during the optimization and tuning stage in order to
perform as much processing as possible on the same data while it is resident in register
files and the local cache of a given compute unit. That is, follow the data.

For example, using a GPGPU shader for a single-area operation, then processing the
same data on the CPU will likely be slower than performing all the processing on the CPU.
That’s because GPGPU kernels require device driver intervention to set up the memory
for each kernel and launch each kernel, while a CPU program accesses code and data
directly, with no driver set-up required other than initial program loading. One method
to reduce the back-and-forth between compute units is to use loop coalescing and task
chaining, discussed later in this section.

Chapter 8 ■ Vision Pipelines and Optimizations

352

Memory Tiling
When dividing workloads for coarse-grained parallelism into several threads, the image
can be broken into tiled regions and each tile assigned to a thread. Tiling works well
for point, line, and area processing, where each thread performs the same operation
on the tiled region. By allowing for an overlapped read regions between tiles, the hard
boundaries are eliminated and area operations like convolution can read into adjacent
tiles for kernel processing, as well as write finished results into their tile.

DMA, Data Copy, and Conversions
Often, multiple copies of an image are needed in the vision pipeline, and in some cases,
the data must be converted from one type to another. Converting 12-bit unsigned
color channel data stored in a 16-bit integer to a 32-bit integer allowing for more
accurate numerical precision downstream in computations is one example. Also, the
color channels might be converted into a chosen color space, such as RGBI, for color
processing in the I component space (R*G*B)/3 = I; then, the new I value is mixed
and copied back into the RGB components. Careful attention to data layout and data
residency will allow more efficient forward and backward color conversions.

When copying data, it is good to try using the direct memory access (DMA) unit for
the fastest possible data copies. The DMA unit is implemented in hardware to directly
optimize and control the I/O interconnect traffic in and out of memory. Operating
systems provide APIs to access the DMA unit [494]. There are variations for optimizing
the DMA methods, and some interesting reading comparing cache performance against
DMA in vision applications are found in references[497,495].

Register Files, Memory Caching, and Pinning
The memory system is a hierarchy of virtual and physical memories for each processor,
composed of slow fixed storage such as file systems, page files, and swap files for
managing virtual memory, system memory, caches, and fast-register files inside compute
units, and with memory interconnects in between. If the data to process is resident in the
register files, it is processed by the ALU at processor clock rates. Best-case memory access
is via the register files close to each ALU, so keeping the data in registers and performing
all possible processing before copying the data is optimal, but this may require some code
changes (discussed later in this section).

If the cache must be accessed to get the data, more clock cycles are burned (power
is burned, performance is lost) compared to accessing the register files. And if there is a
cache miss and much slower system memory must be accessed, typically many hundreds
of clock cycles are required to move the memory to register files through the caches for
ALU processing.

Operating systems provide APIs to lock or pin the data in memory, which usually
increases the amount of data in cache, decreasing paging and swapping. (Swapping is a
hidden copy operation carried out by the operating system automatically to make more
room in system memory). When data is accessed often, the data will be resident in the
faster cache memories, as was illustrated in Figure 8-2.

Chapter 8 ■ Vision Pipelines and Optimizations

353

Data Structures, Packing, and Vector vs. Scatter-Gather
Data Organization
The data structures used contribute to memory traffic. Data organization should allow serial
access in contiguous blocks as much as possible to provide best performance. From the
programming perspective, data structures are often designed with convenience in mind, and
no attention is given to how the compiler will arrange the data or the resulting performance.

For example, consider a data structure with several fields composed of bytes,
integers, and floating point data items; compilers may attempt to rearrange the positions
of data items in the data structures, and even pack the data in a different order for various
optimizations. Compilers usually provide a set of compiler directives, such as in-line pragmas
and compiler switches, to control the data packing behavior; these are worth looking into.

For point processing, vectors of data are the natural structure, and the memory
system will operate at peak performance in accessing and processing contiguous vectors.
For area operations, rectangles spanning several lines are used, and the rectangles cause
memory access patterns that can generate cache misses. Using scatter-gather operations
for gathering convolution kernel data allows a large data structure to be split apart into
vectors of data, increasing performance. Often, CPU and GPU memory architectures pay
special attention to data-access patterns and provide hidden methods for optimizations.

Scatter-gather operations, also referred to as vectored I/O or strided memory access,
can be implemented in the GPU or CPU silicon to allow for rapid read/write access to
noncontiguous data structure patterns. Typically, a scatter operation writes multiple
input buffers into a contiguous pattern in a single output buffer, and a gather operation
analogously reads multiple input buffers into a contiguous pattern in the output buffer.

Operating systems and compute languages provide APIs for scatter-gather
operations. For Linux-style operating systems, see the readv and writev function specified
in the POSIX 1003.1-2001 specification. The async_work_group_strided_copy function
is provided by OpenCL for scatter-gather.

Coarse-Grain Parallelism
A vision pipeline can be implemented using coarse-grain parallelism by breaking up the
work into threads, and also by assigning work to multiple processor cores. Coarse-grained
parallelism can be achieved by breaking up the compute workload into pipelines of
threads, or by breaking up the memory into tiles assigned to multiple threads.

Compute-Centric vs. Data-Centric
Coarse-grain parallelism can be employed via compute-centric and data-centric
approaches. For example, in a compute-centric approach, vision pipeline stages can be
split among independent execution threads and compute units along the lines of pipeline
stages, and data is fed into the next stage a little at a time via queues and FIFOs. In a data-
centric approach, an image can be split into tiles, as was shown in Figure 8-12, and each
thread processes an independent tile region.

Chapter 8 ■ Vision Pipelines and Optimizations

354

Threads and Multiple Cores
Several methods exist to spread threads across multiple CPU cores, including reliance on
the operating system scheduler to make optimum use of each CPU core and perform load
balancing. Another is by assigning specific tasks to specific CPU cores. Each operating
system has different controls available to tune the process scheduler for each thread,
and also may provide the capability to assign specific threads to specific processors.
(We discuss programming resources, languages and tools for coarse-grained threading
later in this chapter.) Each operating system will provide an API for threading, such as
pthreads. See Figure 8-13.

0

5

10

15

20

25

30

35

40

Gaussian
Pyramid

n30%

DoG 7% Scale Space
Extrema

14%

Feature
Orientation

7%

Compute
Descriptor

36%

0

1000

2000

3000

4000

5000

6000

ORB
(15.3ms)

SURF
(217.3ms)

SIFT
(5228.7ms)

Figure 8-13.  (Left) Typical SIFT descriptor pipeline compute allocation [180]. (Right)
Reported compute times [120] for ORB, SURF, and SIFT, averaged over twenty-four 640x480
images containing about 1,000 features per image. Retrofitting ORB for SIFT may be a good
choice in some applications

Fine-Grain Data Parallelism
Fine-grain parallelism refers to the data organization and the corresponding processor
architectures exploiting parallelism, traditionally referred to as array processors or vector processors.
Not all applications are data parallel. Deploying non-data-parallel code to run on a data-parallel
machine is counterproductive; it’s better to use the CPU and straight-line code to start.

A data-parallel operation should exhibit common memory patterns, such as large
arrays of regular data like lines of pixels or tiles of pixels, which are processed in the same
way. Referring back to Figure 8-1, note that some algorithms operate on vectors of points,
lines, and pixel regions. These data patterns and corresponding processing operations are
inherently data-parallel. Examples of point operations are color corrections and data-
type conversions, and examples of area operations are convolution and morphology.
Some algorithms are straight-line code, with lots of branching and little parallelism.
Fine-grained data parallelism is supported directly via SIMD and SIMT methods.

Chapter 8 ■ Vision Pipelines and Optimizations

355

SIMD, SIMT, and SPMD Fundamentals
The supercomputers of yesterday are now equivalent to the GPUs and multi-core CPUs of
today. The performance of SIMD, SIMT, and SPMD machines, and their parallel programming
languages, is of great interest to the scientific community. It has been developed over decades,
and many good resources are available that can be applied to inexpensive SOCs today; see the
National Center for Supercomputing Applications[544] for a starting point.

SIMD instructions and multiple threads can be applied when fine-grained
parallelism exists in the data layout in memory and the algorithm itself, such as with
point, line, and area operations on vectors. Single Instruction Multiple Data (SIMD)
instructions process several data items in a vector simultaneously. To exploit fine-grained
parallelism at the SIMD level, both the computer language and the corresponding ALUs
should provide direct support for a rich set of vector data types and vector instructions.
Vector-oriented programming languages are required to exploit data-parallelism, as
shown in Table 8-8; however, sometimes compiler switches are available to exploit
SIMD. Note that languages like C++ do not directly support vector data types and vector
instructions, while data-parallel languages do, as shown in Table 8-8.

Table 8-8.  Common Data-Parallel Language Choices

Language Name Standard or Proprietary OS Platform Support

Pixel Shader GLSL Standard OpenGL Several OS platforms

Pixel Shader HLSL Direct3D Microsoft OS

Compute Shader Direct3D Microsoft OS

Compute Shader Standard OpenGL Several OS platforms

RenderScript Android Google OS

OpenCL Standard Several OS platforms

C++ AMP Microsoft Microsoft OS platforms

CUDA Only for NVIDIA GPUs Several OS platforms

OpenMP Standard Several OS platforms

In some cases, the cost of SIMT outweighs its benefit, especially considering run-
time overhead for data set-up and tear-down, thread management, code portability
problems, and scalability across large and small CPUs and GPUs.

In addition to SIMD instructions, a method for launching and managing large
groups of threads running the same identical code must be provided to exploit data-
parallelism, referred to as Single Instruction Multiple Threading (SIMT), also known as
Single Program Multiple Data (SPMD). The SIMT programs are referred to as shaders,
since historically the pixel shaders and vertex shaders used in computer graphics were
the first programs widely used to exploit fine-grained data parallelism. Shaders are also
referred to as kernels.

Chapter 8 ■ Vision Pipelines and Optimizations

356

Both CPUs and GPUs support SIMD instructions and SIMT methods—for example,
using languages like OpenCL. The CPU uses the operating system scheduler for managing
threads; however, GPUs use hardware schedulers, dispatchers, and scoreboarding logic to
track thread execution and blocking status, allowing several threads running an identical
kernel on different data to share the same ALU. For the GPU, each shader runs on the ALU
until it is blocked on a memory transfer, a function call, or is swapped out by the GPU
shader scheduler when its time slice expires.

Note that both C++ AMP and CUDA seem to provide language environments closest
to C++. The programming model and language for SIMT programming contains a run-
time execution component to marshal data for each thread, launch threads, and manage
communications and completion status for groups of threads. Common SIMT languages
are shown in Table 8-8.

Note that CPU and GPU execution environments differ significantly at the hardware
and software level. The GPU relies on device drivers for set-up and tear-down, and
fixed-function hardware scheduling, while CPUs rely on the operating system scheduler
and perhaps micro-schedulers. A CPU is typically programmed in C or C++, and the
program executes directly from memory and is scheduled by the operating system,
while a GPU requires a shader or kernel program to be written in a SIMT SIMD-friendly
language such as a compute shader or pixel shader in DirectX or OpenGL, or a GPGPU
language such as CUDA or OpenCL.

Furthermore, a shader kernel must be launched via a run-time system through a
device driver to the GPU, and an execution context is created within the GPU prior to
execution. A GPU may also use a dedicated system memory partition where the data
must reside, and in some cases the GPU will also provide a dedicated fast-memory unit.

GPGPU programming has both memory data set-up and program set-up overhead
through the run-time system, and unless several kernels are executed sequentially in
the GPU to hide the overhead, the set-up and tear-down overhead for a single kernel can
exceed any benefit gained via the GPU SIMD/SIMT processing.

The decision to use a data parallelism SIMT programming model affects program
design and portability. The use of SIMT is not necessary, and in any case a standard
programming language like C++ must be used to control the SIMT run-time environment,
as well as the entire vision pipeline. However, the performance advantages of a
data-parallel SIMT model are in some cases dramatically compelling and the best choice.
Note, however, that GPGPU SIMT programming may actually be slower than using
multiple CPU cores with SIMD instructions, coarse-grained threading, and data tiling,
especially in cases where the GPU does not support enough parallel threads in hardware,
which is the case for smaller GPUs.

Shader Kernel Languages and GPGPU
As shown in Table 8-8, there are several alternatives for creating SIMD SIMT data-parallel
code, sometimes referred to as GPGPU or stream processing. As mentioned above, the
actual GPGPU programs are known as shaders or kernels. Historically, pixel shaders and
vertex shaders were developed as data-parallel languages for graphics standards like
OpenGL and DirectX. However, with the advent of CUDA built exclusively for NVIDIA
GPUs, the idea of a standard, general-purpose compute capability within the GPU

Chapter 8 ■ Vision Pipelines and Optimizations

357

emerged. The concept was received in the industry, although no killer apps existed
and pixel shaders could also be used to get equivalent results. In the end, each GPGPU
programming language translates into machine language anyway, so the choice of high-
level GPGPU language may not be significant in many cases.

However, the choice of GPGPU language is sometimes limited for a vendor operating
system. For example, major vendors such as Google, Microsoft, and Apple do not agree
on the same approach for GPGPU and they provide different languages, which means
that industry-wide standardization is still a work in progress and portability of shader
code is elusive. Perhaps the closest to a portable standard solution is OpenCL, but
compute shaders for DirectX and OpenGL are viable alternatives.

Advanced Instruction Sets and Accelerators
Each processor has a set of advanced instructions for accelerating specific operations.
The vendor processor and compiler documentation should be consulted for the latest
information. A summary of advanced instructions is shown in Table 8-9.

Table 8-9.  Advanced Instruction Set Items

Instruction Type Description

Trancendentals GPU’s have special assembler instructions to compute common
transcendental math functions for graphics rendering math
operations, such as dot product, square root, cosine, and logarithms.
In some cases, CPUs also have transcendental functions.

Fused
instructions

Common operations such as multiply and add are often
implemented in single fused MADD instruction, where both
multiply and add are performed in a single clock cycle; the
instruction may have three or more operands.

SIMD
instructions

CPUs have SIMD instruction sets, such as the Intel SSE and Intel
AVX instructions, similar SIMD for AMD processors, and NEON for
ARM processors.

Advanced data
types

Some instruction sets, such as for GPU’s, provide odd data types
not supported by common language compilers, such as half-byte
integers, 8-bit floating point numbers, and fixed-point numbers.
Special data types may be supported by portions of the instruction
set, but not all.

Memory access
modifiers

Some processors provide strided memory access capability to
support scatter-gather operations, bit-swizzling operations to allow
for register contents to be moved and copied in programmable
bit patterns, and permuted memory access patterns to support
cross-lane patterns. Intel processors also provide MPX memory
protection instructions for pointer checking.

(continued)

Chapter 8 ■ Vision Pipelines and Optimizations

358

Instruction Type Description

Security Cryptographic accelerators and special instructions may be
provided for common ciphers such as SHA or AES ciphers; for
example, INTEL AES-NI. In addition, Intel offers the INTEL SGX
extensions to provide curtained memory regions to execute secure
software; the curtained regions cannot be accessed by malware.

Hardware
accelerators

Common accelerators include GPU texture samplers for image
warping and sub-sampling, and DMA units for fast memory copies.
Operating systems provide APIs to access the DMA unit [494].
Graphics programming languages such as OpenGL and DirectX
provide access to the texture sampler, and GPGPU languages such
as OpenCL and CUDA also provide texture sampler APIs.

APIs provided by operating system vendors may or may not use the special
instructions. Compilers from each processor vendor will optimize all code to take
best advantage of the advanced instructions; other compilers may or may not
provide optimizations. However, each compiler will provide different flags to control
optimizations, so code tuning and profiling are required. Using assembler language is the
best way to get all the performance available from the advanced instruction sets.

Vision Algorithm Optimizations and Tuning
Optimizations can be based on intuition or on performance profiling, usually a
combination of both. Assuming that the hot spots are identified, a variety of optimization
methods can be applied as discussed in this section. Performance hotspots can be
addressed from the data perspective, the algorithm perspective, or both. Most of the time
memory access is a hidden cost, and not understood by the developer (the algorithms
are hard enough). However memory optimizations alone can be the key to increasing
performance. Table 8-11 summarizes various approaches for optimizations, which are
discussed next.

Data access patterns for each algorithm can be described using the Zinner, Kubinger,
and Isaac taxonomy [494] shown in Table 8-10. Note that usually the preferred data access
pattern is in-place (IP) computations, which involve reading the data once into fast
registers, processing and storing the results in the registers, and writing the final results
back on top of the original image. This approach takes maximal advantage of the cache
lines and the registers, avoiding slower memory until the data is processed.

Table 8-9.  (continued)

Chapter 8 ■ Vision Pipelines and Optimizations

359

Compiler And Manual Optimizations
Usually a good compiler can automatically perform many of the optimizations listed
in Table 8-11; however, check the compiler flags to understand the options. The goal of
the optimizations is to keep the CPU instruction execution pipelines full, or to reduce
memory traffic. However, many of the optimizations in Table 8-11 require hand coding to
boil down the algorithm into tighter loops with more data sharing in fast registers and less
data copying.

Table 8-10.  Image Processing Data Access Pattern Taxonomy (from Zinner et al.[494])

Type Description Source Images Destination Images READ WRITE

(1S) 1 source, 0
destination

1 0 Source
image

no

(2S) 2 source, 0
destination

2 0 Source
images

no

(IP) In-place* 1 0 Source
image

Source
image

(1S1D) 1 source, 1
destination

1 1 Source
image

Destination
image

(2S1D) 2 source, 1
destination

2 1 Source
images

Destination
image

*IP processing is usually the simplest way to reduce memory read/write bandwidth and
memory footprint.

Table 8-11.  Common Optimization Techniques, Manual And Compiler Methods

Name Description

Sub-function inlining Eliminating function calls by copying the function code in-line

Task chaining Feeding the output of a function into a waiting function piece
by piece

Branch elimination Re-coding to eliminate conditional branches, or reduce
branches by combining multiple branch conditions together

Loop coalescing Combining inner and outer loops into fewer loops using more
straight line code

Packing data Rearranging data alignment within structures and adding
padding to certain data items for better data alignment to
larger data word or page boundaries to allow for more efficient
memory read and write

(continued)

Chapter 8 ■ Vision Pipelines and Optimizations

360

Tuning
After optimizing, tuning a working vision pipeline can be accomplished from several
perspectives. The goal is to provide run-time controls. Table 8-12 provides some examples
of tuning controls that may be implemented to allow for run-time or compile-time tuning.

Name Description

Loop unrolling Reducing the loop iteration count by replicating code inside
the loop; may be accomplished using straight line code
replication or by packing multiple iterations into a VLIW

Function coalescing* Rewriting serial functions into a single function, with a single
outer loop to read and write data to system memory; passing
small data items in fast registers between coalesced functions
instead of passing large images buffers

ROS-DMA* Double-buffering DMA overlapped with processing; DMA
and processing occur in parallel, DMA the new data in during
processing, DMA the results out

* Function coalescing and ROS-DMA are not compiler methods, and may be performed at
the source code level.

Note: See references[498,499] for more information on compiler optimizations, and see each
vendor’s compiler documentation for information on available optimization controls.

Table 8-11.  (continued)

Table 8-12.  Run-Time Tuning Controls for a Vision Pipeline

Image Resolution Allowing variable resolution over an octave scale or other scale
to reduce workload

Frames per second Skipping frames to reduce the workload

Feature database size
and accuracy

Finding ways to reduce the size of the database, for example
have one data base with higher accuracy, and another database
with lower accuracy, each built using a different classier

Feature database
organization and
speed

Improving performance through better organization and
searching, perhaps have more than one database, each using a
different organization strategy and classifier

Feature Descriptor Retrofit, Detectors, Distance Functions
As discussed in Chapter 6, many feature descriptor methods such as SIFT can be retro-fitted
to use other representations and feature descriptions. For example, the LBP-SIFT retrofit
discussed in Chapter 6 uses a local binary pattern in place of the gradient methods used
by SIFT for impressive speedup, while preserving the other aspects of the SIFT pipeline.

Chapter 8 ■ Vision Pipelines and Optimizations

361

The ROOT-SIFT method is another SIFT acceleration alternative discussed in Chapter 6.
Detectors and descriptors can be mixed and matched to achieve different combinations
of invariance and performance, see the REIN framework [397].

In addition to the descriptor extractor itself, the distance functions often consume
considerable time in the feature matching stage. For example, local binary descriptors
such as FREAK and ORB use fast Hamming distance, while SIFT uses the Euclidean
distance, which is slower. Retro-fitting the vision pipeline to use a local binary descriptor
is an example of how the distance function can have a significant performance impact.

It should be pointed out that the descriptors reviewed in Chapter 6 are often based
on academic research, not on extensive engineering field trials and optimizations. Each
method is just a starting point for further development and customization. We can be
sure that military weapon systems have been using similar, but far more optimal feature
description methods for decades within vision pipelines in deployed systems. See
Figure 8-13.

Boxlets and Convolution Acceleration
Convolution is one of the most common operations in feature description and image
pre-processing, so convolution is a key target for optimizations and hardware
acceleration. The boxlet method [392] approximates convolution and provides a speed
vs. accuracy tradeoff. Boxlets can be used to optimize any system that relies heavily on
convolutions, such as the convolutional network approach used by LeCun and others
[85,336,339]. The basic approach is to approximate a pair of 2D signals, the kernel and the
image, as low-degree polynomials, which quantizes each signal and reduces the data size;
and then differentiating the two signals to obtain the impulse functions and convolution
approximation. The full convolution can be recovered by integrating the result of the
differentiation.

Another convolution and general area processing acceleration method is to reuse
as much overlapping data as possible while it exists in fast registers, instead of reading
the entire region of data items for each operation. When performing area operations, it
is possible to program to use sliding windows and pointers in an attempt to reuse data
items from adjacent rectangles that are already in the register files, rather than copying
complete new rectangles into registers for each area operation. This is another area suited
for silicon acceleration.

Also, scatter-gather instructions can be used to gather the convolution data into
memory for accelerated processing in some cases, and GPUs often optimize the memory
architecture for fast area operations.

Data-Type Optimizations, Integer vs. Float
Software engineers usually use integers as the default data type, with little thought about
memory and performance. Often, there is low-hanging fruit in most code in the area of
data types. For example, conversion of data from int32 to int16, and conversion from
double to float, are obvious space-savings items to consider when the extra bit precision
is not needed.

Chapter 8 ■ Vision Pipelines and Optimizations

362

In some cases, floating-point data types are used when an integer will do equally
well. Floating-point computations in general require nearly four times more silicon
area, which consumes correspondingly more power. The data types consume more
memory and may require more clock cycles to compute. As an alternative to floating
point, some processors provide fixed-point data types and instructions, which can be
very efficient.

Optimization Resources
Several resources in the form of software libraries and tools are available for computer
vision and image processing optimizations. Some are listed in Table 8-13.

Table 8-13.  Vision Optimization Resources

Method Acceleration Strategy Examples

Threading libraries Coarse-grained parallelism Intel TBB, pthreads

Pipeline building
tools

Connect functions into pipelines PfeLib Vision Pipeline
Library [495]

Halide [543]*

Primitive
acceleration libraries

Functions are pre-optimized Intel IPP, NVIDIA NPP,
Qualcomm FastCV

GPGPU languages Develop SIMT SIMD code CUDA, OpenCL, C++ AMP,
INTEL CILK++, GLSL,
HLSL, Compute Shaders
for OpenGL and Direct3D,
RenderScript

Compiler flags Compiler optimizes for each
processor; see Table 8-10

Vendor-specific

SIMD instructions Directly code in assembler, or
use compiler flags for standard
languages, or use GPGPU
languages.

Vendor-specific

Hardware
accelerators

Silicon accelerators for complex
functions

Texture Samplers; others
provided selectively by
vendors

Advanced
instruction sets

Accelerate complex low-level
operations, or fuse multiple
instructions; see Table 8-9

INTEL AVX, ARM NEON,
GPU instruction sets

*Open source available.

Chapter 8 ■ Vision Pipelines and Optimizations

363

Summary
This chapter ties together the discussions from previous chapters into complete vision
systems by developing four purely hypothetical high-level application designs. Design
details such as compute resource assignments and optimization alternatives are
discussed for each pipeline, intended to generate a discussion about how to design
efficient systems (the examples are sketchy at times). The applications explored include
automobile recognition using shape and color features, face and emotion detection using
sparse local features, whole image classification using global features, and augmented
reality. Each example illustrates the use of different feature descriptor families from the
Vision Metrics Taxonomy presented in Chapter 5, such as polygon shape methods, color
descriptors, sparse local features, global features, and depth information. A wide range of
feature description methods were used in the examples to illustrate the challenges in the
pre-processing stage.

In addition, a general discussion of design concepts for optimizations and load
balancing across the compute resources in the SOC fabric (CPU, GPU, and memory)
was provided to explore HW/SW system challenges, such as power reductions. Finally,
an overview of SW optimization resources and specific optimization techniques was
presented.

365

APPENDIX A

Synthetic Feature Analysis

This appendix provides analysis of several common detectors against the synthetic
feature alphabets described in Chapter 7. The complete source code, shell scripts, and
the alphabet image sets are available from Springer Apress at:
http://www.apress.com/source-code/ComputerVisionMetrics

Figure A-1.  Example analysis results from Test #4 below, (left) annotated image showing
detector locations, (center) count of each alphabet feature detected, shown as a 2D shaded
histogram, (right) set of 2D shaded histograms for rotated image sets showing all 10 detectors

This appendix contains:

Background on the analysis, methodology, goals, and expectations.•	

Synthetic alphabet ground truth image summary.•	

List of detector parameters used for standard OpenCV methods: •	
SIFT, SURF, BRISK, FAST, HARRIS, GFFT, MSER, ORB, STAR,
SIMPLEBLOB. Note: No feature descriptors are computed or
used, only the detector portions of BRISK, SURF, SIFT, ORB, and
STAR are used in the analysis.

http://www.apress.com/source-code/ComputerVisionMetrics

APPENDIX A ■ Synthetic Feature Analysis

366

Test 1: Interest point alphabets.•	

Test 2: Corner point alphabets.•	

Test 3: Synthetic alphabet overlays onto real images.•	

Test 4: Rotational invariance of detectors against synthetic •	
alphabets.

Background Goals and Expectations
The main goals for the analysis are:

To develop some simple intuition about human vs. machine •	
detection of interest point and corner detectors, to observe
detector behavior on the synthetic alphabets, and to develop
some understanding of the problems involved in designing and
tuning feature detectors.

To measure detector anomalies among white, black, and gray •	
versions of the alphabets. A human would recognize the same
pattern easily whether or not the background and foreground
are changed; however, detector design and parameter settings
influence detector invariance to background and foreground
polarity.

To measure detector sensitivity to slight pixel interpolation •	
artifacts under rotation.

Note■■   Experienced practitioners with well-developed intuition regarding capabilities of
interest point and corner detector methods may not find any surprises in this analysis.

The analysis uses several well-known detector methods as implemented in the
OpenCV library; see Table A-1. The analysis provides detector information only, with
no intention to compare detector goodness against any criteria. Details on which
features from the synthetic alphabets are recognized by the various detectors is shown in
summary tables, counting the number of times a feature is detected with each grid cell.
For some applications, the synthetic interest point alphabet approach could be useful,
assuming that an application-specific alphabet is designed, and detectors are designed
and tuned for the application, such as a factory inspection application to identify
manufactured objects or parts.

APPENDIX A ■ Synthetic Feature Analysis

367

Table A-1.  Tuning Parameters for Detectors

Detector Tuning Parameters

BRISK octaves = 3
threshold = 30

FAST threshold = 10
nonMaximalSuppression = TRUE

HARRIS maxCorners = 60000 (to capture all detections)
qualityLevel = 1.0
minDistance = 1
blockSize = 3
useHarrisDetecror = TRUE
k = .04

GFFT maxCorners = 60000 (to capture all detections)
qualityLevel = .01
minDistance = 1.0
blockSize = 3
useHarrisDetector = FALSE
k = .04

MSER Delta = 5
minArea = 60
maxArea 14400
maxvariation = .25
minDiversity = .2
maxEvolution = 200
areaThreshold = 1.01
minMargin = .003
edgeBlurSize = 5

ORB WTA_K = 2
edgeThreshold = 31
firstLevel = 0
nFeatures = 60000 (to capture all detections)
nLevels = 8
patchSize = 31
scaleFactor = 1.2
scoreType = 0

SIFT contrastThreshold = 4.0
edgeThreshhold = 10.0
nFeatures = 0
nOctaveLayers = 3
sigma = 1.0

(continued)

APPENDIX A ■ Synthetic Feature Analysis

368

Detector Tuning Parameters

STAR maxSize = 45
responseThreshold = 30
lineThresholdProjected = 10
lineThresholdBinarized = 8

SURF Extended = 0
hessianThreshold = 100.0
nOctaveLayers = 3
nOctaves = 4
upright = 0

SIMPLEBLOB thresholdStep = 10
minThreshold = 50
maxThreshold = 220
minRepeatability = 2
minDistBetweenBlobs = 10
filterByColor = true
blobColor = 0
filterByArea = true
minArea = 25
maxArea = 5000
filterByCircularity = false
minCircularity = 0.8f
maxCircularity = std::numeric_limits<float>::max()
filterByInertia = true
minInertiaRatio = 0.1f
maxInertiaRatio = std::numeric_limits<float>::max()
filterByConvexity = true
minConvexity = 0.95f
maxConvexity = std::numeric_limits<float>::max()

Table A-1.  (continued)

Test Methodology and Results
The images in the ground truth data set are used as input for a few modified OpenCV tests:

opencv_test_features2d•	

(BRISK, FAST, HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB)

opencv_test_nonfree•	

(SURF, SIFT)

The tuning parameters used for each detector are shown in Table A-1; see the
OpenCV documentation for more information. Note: no attempt is made to tune the
detector parameters for the synthetic alphabets. Parameter settings are reasonable
defaults; however, the maximum keypoint feature count is bumped up in some cases to
allow all the detected features to be recorded.

APPENDIX A ■ Synthetic Feature Analysis

369

Each test produces a variety of results, including:

1.	 Annotated images showing location and orientation
(if provided) for detected features.

2.	 Summary count of each detected synthetic feature across the
grid in text files, including interest point coordinates, detector
response strength, orientation if provided by the detector, and
the number of total detected synthetic features found.

3.	 2D histograms showing bin count for each feature in the
alphabet.

Detector Parameters Are Not Tuned for the
Synthetic Alphabets
No feature detector tuning is attempted here. Why? In summary, feature detector
tuning has very limited value in the absence of (1) a specific feature descriptor to use
the keypoints, and (2) an intended application and use-cases. Some objections may be
raised to this approach, since detectors are designed to be tuned and must be tuned to
get best results for real applications. However, the test results herein are only a starting
point, intended to allow for simple observations of detector behavior compared to human
expectations.

In some cases, a keypoint is not suitable for producing a useful feature descriptor,
even if the keypoint has a high score and high response. If the feature descriptor
computed at the keypoint produces a descriptor that is too weak, the keypoint and
corresponding descriptor should both be rejected. Each detector is designed to be useful
for a different class of interest points, and tuned accordingly to filter the results down to a
useful set of good candidates for a specific feature extractor.

Since we are not dealing with any specific feature descriptor methods here, tuning
the keypoint detectors has limited value, since detector parameter tuning in the absence
of a specific feature description is ambiguous. Furthermore, detector tuning will be
different for each detector-descriptor pair, different for each application, and potentially
different for each image.

Tuning detectors is not simple. Each detector has different parameters to tune for
best results on a given image, and each image presents different challenges for lighting,
contrast, and image pre-processing. For typical applications, detected keypoints are
culled and discarded based on some filtering criteria. OpenCV provides several novel
methods for tuning detectors, however none are used here. The OpenCV tuning
methods include:

•	 DynamicAdaptedFeatureDetector class will tune supported
detectors using an adjusterAdapter() to only keep a limited
number of features, and to iterate the detector parameters several
times and re-detect features in order to try and find the best
parameters, keeping only the requested number of best features.
Several OpenCV detectors have an adjusterAdapter() provided
while some do not, and the API allows for adjusters to be created.

APPENDIX A ■ Synthetic Feature Analysis

370

•	 AdjusterAdapter class implements the criteria for culling and
keeping interest points. Criteria may include KNN nearest
matching, detector response or strength, radius distance to
nearest other detected points, removing keypoints for which a
descriptor cannot be computed, or other.

•	 PyramidAdaptedFeatureDetector class is can be used to adapt
detectors that do not use a scale-space pyramid, and this adapter
will create a Gaussian pyramid and detect features over the pyramid.

•	 GridAdaptedFeatureDetector class divides an image into grids, and
adapts the detector to find the best features within each grid cell.

Expectations for Test Results
The reader should treat these tests as information only to develop intuition about feature
detection. The test results do not prove the merits of any detector. Interpretation of the
test results should be done with the following information in mind:

1.	 One set of detector tuning parameters is used for all images,
and detector results will vary widely based on tuning parameters.
In fact, the parameters are deliberately set to over-sensitive
values for ORB, SURF, and other detectors to generate the
maximum number of possible keypoints that can be found.

2.	 Sometimes an alphabet feature generates multiple detections;
for example, a single corner alphabet feature may actually
contain several corner features.

3.	 The detection results may not be repeatable over the
distribution of replicated features in the image feature grid. In
other words, identical patterns, which look about the same to
a human, are sometimes not recognized at different locations.
Without looking in detail at each algorithm, it is hard to say
what is happening.

4.	 Detectors that use an image pyramid such as SIFT, SURF, ORB,
STAR, and BRISK may identify keypoints in a scale space that are
offset or in between the actual alphabet features. This is expected,
since the detector is using features from multiple scales.

Summary of Synthetic Alphabet Ground
Truth Images
The ground truth dataset is summarized here. Note that rotated versions of each image
file in the set are provided from 0 to 90 degrees at 10-degree intervals. The 0-degree image
in each set is 1024x1024 pixels, and the rotated images in each set are slightly larger to
contain the entire rotated 1024x1024 pixel grid.

APPENDIX A ■ Synthetic Feature Analysis

371

Synthetic Corner Point Alphabet
The synthetic corner point alphabet contains multiples of the 63 unique patterns, as
shown in Figure A-3. A total of 8 x 12 sets of the 63 features fit within the 1024x1024 image.
Total unique feature count is 8 x 12 x 63 = 6048, with 8 x 12 = 96 instances of each feature.
Each feature is arranged on a grid of 14 x 14 pixel rectangles, including 9 rows and
6 columns of features. Gray image pixel values are 0x40 and 0xc0, black and white pixel
values are 0x0 and 0xff.

Synthetic Interest Point Alphabet
The synthetic interest point alphabet contains multiples of the 83 unique patterns, as
shown in Figure A-2. A total of 7 x 7 sets of the 83 features fit within the 1024 x 1024 image.
Total unique feature count for the image is 7 x 7 x 83 = 4116, with 7 x 7 = 49 instances of
each feature. The features are laid out on a 14x14 pixel grid composed of 10 rows and
10 columns, including several empty grid locations. Gray image pixel values are 0x40 and
0xc0, black and white pixel values are 0x0 and 0xff.

Figure A-2.  Synthetic interest points

Figure A-3.  Synthetic corner point

Synthetic Alphabet Overlays
A set of images with the synthetic alphabets overlaid is provided, including rotated versions
of each image, as shown in Figure A-4.

APPENDIX A ■ Synthetic Feature Analysis

372

Figure A-4.  Synthetic alphabets overlaid on real images

Table A-2.  Summary Count of Detected Features Found in the Synthetic Interest Point
Alphabet, 0 degree Rotation

Test 1: Synthetic Interest Point Alphabet Detection
Table A-2 provides the total detected synthetic interest points. Note: total detector counts
include features computed at each scale of an image pyramid. For detectors, which report
feature detections at each level of an image pyramid, individual pyramid level detections
are shown in Table A-3.

APPENDIX A ■ Synthetic Feature Analysis

373

Table A-3.  Octave Count of Detected Features Found in the Synthetic Interest Point
Alphabet, 0 degree Rotation

The total number of features detected in each alphabet cell is provided in summary
tables from the annotated images. Note that several features may be detected within each
14x14 cell, and the detectors often provide non-repeatable results, which are discussed at
the end of this appendix. The counts show the total number of alphabet features detected
across the entire image, as shown in Figure A-5.

APPENDIX A ■ Synthetic Feature Analysis

374

Figure A-5.  Annotated BRISK detector results. NOTE: there are several non-repeatability
anomalies

Annotated Synthetic Interest Point Detector Results
For ORB and SURF detectors, the annotated renderings using the drawkeypoints() function
are too dense to be useful for visualization, but are included in the online test results.

The diameter of the circle drawn at each detected keypoint corresponds to the
“diameter of the meaningful keypoint neighborhood,” according to the OpenCV KeyPoint
class definition, which varies in size according to the image pyramid level where the
feature was detected. Some detectors do not use a pyramid, so the diameter is always the
same. The position of the detected features is normalized to the full resolution image, and
all detected keypoints are drawn.

APPENDIX A ■ Synthetic Feature Analysis

375

Entire Images Available Online
To better understand the detector results for each test, the entire image should be
viewed to see the anomalies, such as where detectors fail to recognize identical patterns.
Figure A-5 is an entire image showing BRISK detector results, while others are available
online. Test results shown in Figures A-6 through A-15 only show a portion of the images.

Figure A-6.  SIMPLEBLOB detector, with results shown for a single alphabet grid set.
(Top row) Gaussian and salt/pepper response. (Middle row) Black, white, and gray response.
(Bottom row) Summary count of individual alphabet feature detections across all the
alphabets in the grid, across each 1024x1024 image, black, white and gray images,
color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

376

Figure A-7.  STAR detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid across each 1024x1024 image, black, white and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

377

Figure A-8.  GFFT detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

378

Figure A-9.  MSER detector (black on white, white on black, and light gray on dark gray
have no detected features)

Figure A-10.  ORB detector (annotations using default parameters not useful, images
provided online), with results showing summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024x1024 image, black, white,
and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

379

Figure A-11.  BRISK detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

380

Figure A-12.  FAST detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

381

Figure A-13.  HARRIS detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

382

Figure A-14.  SIFT detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

383

Figure A-15.  SURF detector (annotations using default parameters not useful, images
provided online), with results showing summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024x1024 image, black, white,
and gray images, color-coded tables

Test 2: Synthetic Corner Point Alphabet Detection
Table A-4 provides the total detected synthetic corner points at all pyramid levels; some
detectors do not use pyramids. Note: for detectors that report features separately over
image pyramid levels, individual pyramid-level detections are shown in Table A-5.

Table A-4.  Summary Count of Detected Features Found in the Synthetic Interest Point
Alphabet, 0 degree Rotation

APPENDIX A ■ Synthetic Feature Analysis

384

Table A-5.  Octave Count of Detected Features Found in the Synthetic Corner Point
Alphabet, 0 degree Rotation

Each feature exists within a 14x14 pixel region, and the total number of features
detected in each cell is provided in summary tables with the annotated images. Note that
several features may be detected within each 14 x 14 cell, and the detectors often provide
non-repeatable results, which are discussed at the end of this appendix.

Annotated Synthetic Corner Point Detector Results
Test 2 is exactly like the interest point detector results in Test 1. As such, for ORB and
SURF detectors, the annotated renderings using the drawkeypoints( ) function are too
dense to be useful, but are included in the online test results.

The diameter of the circle drawn at each detected keypoint corresponds to the
“diameter of the meaningful keypoint neighborhood,” according to the OpenCV KeyPoint
class definition, which varies in size according to the image pyramid level where the
feature was detected. Some detectors do not use a pyramid, so the diameter is always the
same. The position of the detected features is normalized to the full resolution image, and
all detected keypoints are drawn.

Entire Images Available Online
To better understand the detector results for each test, the entire image should be viewed
to see the anomalies, such as where detectors fail to recognize identical patterns. Test
results shown in Figures A-16 through A-25 only show a portion of the images.

APPENDIX A ■ Synthetic Feature Analysis

385

Figure A-16.  SIMPLE BLOB detector (black on white is the only image with detected
features), with results showing summary count of individual alphabet feature detections
across all the alphabets in the grid, across each 1024x1024 image, black, white, and gray
images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

386

Figure A-17.  STAR detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

387

Figure A-18.  GFFT detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

388

Figure A-19.  BRISK detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

389

Figure A-20.  FAST detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

390

Figure A-21.  HARRIS detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

391

Figure A-22.  SIFT detector, with results shown for a single alphabet grid set. (Top row)
Gaussian and salt/pepper response. (Middle row) Black, white, and gray response. (Bottom
row) Summary count of individual alphabet feature detections across all the alphabets in
the grid, across each 1024x1024 image, black, white, and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

392

Figure A-23.  SURF detector (annotations using default parameters not useful, images
provided online), with results showing summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024x1024 image, black, white,
and gray images, color-coded tables

Figure A-24.  ORB detector (annotations using default parameters not useful, images
provided online), with results showing summary count of individual alphabet feature
detections across all the alphabets in the grid, across each 1024x1024 image, black, white,
and gray images, color-coded tables

APPENDIX A ■ Synthetic Feature Analysis

393

Test 3: Synthetic Alphabets Overlaid on Real Images
Table A-6 provides the total detected synthetic features found in the test images of little
girls, shown in Figure A-3. Note that only the 0-degree version is used (no rotations), and
both the black versions and the white versions of each alphabet are overlaid. In general,
the white feature overlays produce more interest points and corner-point detections.

Figure A-25.  MSER detector (black on white, white on black, and light gray on dark gray
have no detected features)

Table A-6.  Summary Count of Detected Features Found in the Synthetic Overlay Images of
Little Girls

Annotated Detector Results on Overlay Images
Annotated images are available online.

APPENDIX A ■ Synthetic Feature Analysis

394

Test 4: Rotational Invariance for Each Alphabet
This section provides results showing detector response as rotational invariance
across the full 0 to 90 degree rotated image sets of black, white, and gray alphabets. Key
observations:

•	 Black on white, white on black: Rotational invariance is
generally less using black and white images with the current set
of detectors and parameters, mainly owing to (1) the maxima
and minima values of 0x0 and 0xff used for pixel values, and
(2) un-optimized detector tuning parameters. The detectors each
seem to operate in a similar manner on images at orientations
of 0 degrees and 90 degrees that contain no rotational anti-
aliasing artifacts on each alphabet pattern; however, for the other
rotations of 10 to 80 degrees, pixel artifacts combine to reduce
rotational invariance for these alphabet patterns—each detector
behaves differently.

•	 Light gray on dark gray: Rotational invariance is generally
better for the detectors using the reduced-range gray scale image
alphabet sets using pixel values of 0x40 and 0xc0, rather than the
full maxima and minima range used in the black and white image
sets. The gray alphabet detector results generally show the most
well-recognized alphabet characters under rotation. This may be
due to the less pronounced local curvature of closer range gray
values in the local region at the interest point or corner. 

Methodology for Determining Rotational Invariance
The methodology for determining rotational invariance is illustrated in Figures A-26
through A-30, and illustrated via pseudo-code as follows:
 
For (degree = 0; degree < 100; degree += 10)
 
 Rotate image (degree)
 For each detector (SURF, SIFT, BRISK, ...):
 Compute interest point locations
 Annotate rotated image showing interest point locations
 Compute bin count (# of times) each alphabet feature is detected
 Create bin count image: pixel value = bin count for each
alphabet character
    

APPENDIX A ■ Synthetic Feature Analysis

395

Figure A-26.  Method of computing and binning detected alphabet features across rotated
image sets, mocked-up SIFT data for illustration. (Left) Original image. (Center left)
Rotated image annotated with detected points. (Center) Count of all detected points across
entire image superimposed on alphabet cell regions. (Center right) Summary bin counts
of detected alphabet features in grid cells. (Right) 2D histogram rendering of bin counts as
an image; each pixel value is the bin count. Brighter pixels in the image have a higher bin
count, meaning that the alphabet cell has a higher detection count

Figure A-27.  Group of 10 SIFT gray scale corner alphabet feature detection results
displayed as a 2D histogram image, sephia LUT applied, with pixel values set to the
histogram bin values. The histogram for each rotated image is shown here: left image = 0
degree rotation; left-to-right sequence: 0,10,20,30,40,50,60,70,80,90 degree rotations. Note
that the histogram bin counts are computed across the entire image, summing all detections
of each alphabet feature

APPENDIX A ■ Synthetic Feature Analysis

396

Figure A-28.  (Left) Gray corner points 2D histogram bin images. Left to right: 0 – 90 degree
rotations, gray scale LUT applied, and light gray on dark gray interest points alphabet 2D
histogram binning image, contrast enhanced, sephia LUT applied

APPENDIX A ■ Synthetic Feature Analysis

397

Figures A-26 and A-30 show the summary bin counts of synthetic corner point
detections across 0 to 90 degree rotations. The ten columns in each image show, left to
right, the 0 to 90 degree rotated image final bin counts displayed as images.

Figure A-30.  Summary bin counts of detected interest point alphabet features displayed
as a set of 10x10 pixel images, where each pixel value is the bin count. (Left 10 x 10 image
group) Black on white corners. (Center 10 x 10 image group) Light gray on dark gray
corners. (Right 10 x 10 image group) White on black corners. Note that the gray alphabets
are detected with the best rotational invariance. The columns are left to right 0-90 degree
rotations, and rows are top to bottom, SURF, SIFT, BRISK, FAST, HARRIS, GFFT, MSER,
ORB, STAR, SIMPLEBLOB. Sephia LUT applied

Figure A-29.  Summary bin counts of detected corner alphabet features displayed as a set of
6x9 pixel images, where each pixel value is the bin count. (Left 10 x 10 image group) Black
on white corners. (Center 10 x 10 image group) Light gray on dark gray corners. (Right 10 x
10 image group) White on black corners. Note that the gray alphabets are detected with the
best rotational invariance. The columns are left to right 0-90 degree rotations, and rows are
top to bottom, SURF, SIFT, BRISK, FAST, HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB.
Sephia LUT applied

APPENDIX A ■ Synthetic Feature Analysis

398

Analysis of Results and Non-Repeatability
Anomalies
Complete analysis results are online, including annotated images showing detected keypoint
locations and text files containing summary information on each detected keypoint.

Caveats
There are deliberate reasons why each interest point detector is designed differently;
no detector may be considered superior in all cases by any absolute measure. A few
arguments against loosely interpreting these tests results are as follows:

1.	 Unpredictability: Interest point detectors find features
that are often unpredictable from the human visual system
standpoint, and they are not restricted by design into the
narrow boundaries of synthetic interest points and corners
points shown here. Often, the interest point detectors find
features that a human would not choose.

2.	 Pixel aliasing artifacts: The aliasing artifacts affect detection
and are most pronounced for the rotated images using
maxima and minima alphabets, such as black on white or
white on black, and are less pronounced for light gray on dark
gray alphabets.

3.	 Scale Space: Not all the detectors use scale space, and this
is a critical point. For example, SIFT, SURF, and ORB use a
scale-space pyramid in the detection process. The scale-space
approach filters out synthetic alphabet features that are not
visible in some levels of a scale-space pyramid.

4.	 Binary vs. scalar values: FAST uses a binary value
comparison to build up the descriptor, while other methods
use scalar values such as gradients. Binary value methods,
such as FAST, will detect the same feature regardless of
polarity or gray value range; however, scalar detectors based
on gradients are more sensitive to pixel value polarity and
pixel value ranges.

5.	 Pixel region size: FAST uses a 7x7 patch to look for connected
circle perimeter regions, while other features like SIFT, SURF,
and ORB use larger pixel regions that bleed across alphabet
grid cells, resulting in interest points being centered between
alphabet features, rather than on them.

APPENDIX A ■ Synthetic Feature Analysis

399

6.	 Region shape: Features such as MSER and SIMPLEBLOB are
designed to detect larger connected regions with no specific
shape, rather than smaller local features such as the interest
point alphabets. An affine-invariant detector, such as SIFT,
may detect features in an oval or oblong region corresponding
to affine scale and rotation transformations, while a non-
affine detector, such as FAST, may only detect the same
feature as a template in a circular or square region with some
rotational invariance at scale.

7.	 Offset regions from image boundary: Some detectors,
such as ORB, SURF, and SIFT, begin detector computations
at an offset from the image boundaries, so features are not
computed across the entire image.

8.	 Proven value: Each detector method used here has proved
useful and valuable for real applications.

With these caveats in mind, the test results can be allowed to speak for themselves.

Non-Repeatability in Tests 1 and 2
One interesting anomaly visible in Tests 1 and 2 appears in the annotated images,
illustrating that detector results are not repeatable on the synthetic interest point and
corner alphabets. In some cases, the nonlinearity is striking; see the annotated images
for Tests 1 and 2. The expectation of a human is that identical interest points should be
equally well recognized. Here are some observations:

1.	 A human would recognize the same pattern easily whether
or not the background and foreground are changed; however,
some detectors do not have much invariance to extreme
background and foreground polarity. The anomalies between
detector behavior across white, black, and gray versions of
the alphabets are less expected and harder to explain without
looking deeper into each algorithm.

2.	 Some detectors compute over larger region boundaries than
the 14x14 alphabet grid, so detectors virtually ignore the
alphabet feature grid and use adjacent pieces of alphabet
features.

3.	 Some detectors use scale space, so individual alphabet
features are missed in some cases at higher scale levels, and
detectors such as SIFT DoG use multiple scales together.

In summary, interest point detection and parameter tuning are analogous to image
processing operators and their parameters: there are endless variations available to
achieve the same goals. It is hoped that, by studying the test results here, intuition will be
increased and new approaches can be devised.

APPENDIX A ■ Synthetic Feature Analysis

400

Other Non-Repeatability in Test 3
We note non-repeatability anomalies with Test 3 using little girl images with synthetic
overlays, but there is less expectation of repeatability in this test. Some analysis of the
differences between the positive (white) and negative (black) feature overlays can be
observed in the annotated synthetic overlay images online.

Test Summary
Take-away analysis for all tests includes the following:

1.	 Non-repeatability: some non-repeatability anomalies
detecting nearly identical features, differeing only under
rotation by local pixel interpolation artifacts. Some detectors
also detect the black, white and gray alphabets differently.

2.	 Gray level alphabets (lt. gray on dk.gray) are detected
generally most similar to human expectations. The results
show that detectors, with the current tuning parameters,
respond more uniformly across rotation with gray level
patterns, rather than maxima black and white patterns.

3.	 Real images overlaid with synthetic images tests provide
interesting information to develop intuition about detector
behavior—for illustration purposes only.

Future Work
Additional analysis should include devising and using alternative alphabets suited for
a given type of application, including a larger range of pixel sizes and scales, especially
alphabets with closer gray level value polarity, rather than extreme maxima and minima
pixel values. Detector tuning should also be explored across the alphabets.

401

APPENDIX B

Survey of Ground Truth
Datasets

Table B-1 is a brief survey of public domain datasets in various categories, in no particular
order. Note that many of the public domain datasets are freely available from universities
and government agencies.

Table B-1.  Public domain datasets

Name Labelme

Description Annotated scenes and objects

Categories Over 30,000 images; comprehensive; hundreds of categories,
including car, person, building, road, sidewalk, sky, tree

Contributions Open to contributions

Tools and apps Labelme app for iPhone to contribute to database

Key papers [67][68]

Owner MTI CSAIL

Link http://new-labelme.csail.mit.edu/Release3.0/

http://new-labelme.csail.mit.edu/Release3.0/

APPENDIX B ■ Survey of Ground Truth Datasets

402

Name SUN

Description Annotated scenes and objects

Categories 908 scene categories, 3,819 object categories,13,1072 objects,
and growing

Contributions Open to contributions

Tools and apps Image classifier source code + API, iOS app, Android app

Key papers [70]

Owner MTI CSAIL

Link http://groups.csail.mit.edu/vision/SUN/

Name UC Irvine Machine Learning Repository

Description Very useful; huge repository of many categories of images

Categories Too many to list; very wide range of categories, many attributes of
the data are specifically searchable and designed into the ground
truth datasets

Contributions Ongoing

Tools and apps Online assistant to search for specific ground truth datasets

Key papers [550]

Link http://archive.ics.uci.edu/ml/datasets.html

Name Stanford 3D Scanning Repository

Description High-resolution 3D scanned images with sub-millimeter
accuracy, including XYZ and RGB datasets

Categories Several scanned 3D objects with 3D point clouds, resolution
ranging from 3,400,000 scanned point to 750,000 triangles and
upwards

Link http://graphics.stanford.edu/data/3Dscanrep/

http://groups.csail.mit.edu/vision/SUN/
http://archive.ics.uci.edu/ml/datasets.html
http://graphics.stanford.edu/data/3Dscanrep/

APPENDIX B ■ Survey of Ground Truth Datasets

403

Name KITTI Benchmark Suite, Karlsruhe Institute of Technology

Description Stereo datasets for various city driving scenes

Categories KITTI benchmark suite covers optical flow, odometry, object
detection, object orientation estimation; Karlsruhe sequences
cover gray scale stereo sequences taken from a moving platform
driving through a city; Karlsruhe objects cover gray scale stereo
sequences taken from a moving platform driving through a city

Link http://www.cvlibs.net/datasets/index.html

Name Caltech Object Recognition Datasets

Description Old but still useful; objects in hundreds of categories, some
annotated with outlines

Categories Over 256 categories, animals,plants, people, common objects,
common food items, tools, furniture, more.

Key papers [71]

Link http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://authors.library.caltech.edu/7694/ (latest versions of
101 and 256)

Name Imagenet + Wordnet

Description Labeled, annotated, bounding-boxed, and feature-descriptor
marked images; over 14,197,122 images indexed into 21,841 sets
of similar images, or synsets, created using sister app Wordnet

Categories Categories include almost anything

Contributions Images taken from Internet searches

Tools and apps Online controls: http://www.image-net.org/download-API
Source Code: ImageNet Large Scale Visual Recognition Challenge
(ILSVRC2010) http://www.image-net.org/challenges/
LSVRC/2010/index

Key papers [72]; several see http://www.image-net.org/about-publication

Owner Images have individual owners; website is © Stanford and Princeton

Link http://www.image-net.org/
http://www.image-net.org/challenges/LSVRC/2012/

http://www.cvlibs.net/datasets/index.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://authors.library.caltech.edu/7694/
http://www.image-net.org/download-API
http://www.image-net.org/challenges/LSVRC/2010/index
http://www.image-net.org/challenges/LSVRC/2010/index
http://www.image-net.org/about-publication
http://www.image-net.org/
http://www.image-net.org/challenges/LSVRC/2012/

APPENDIX B ■ Survey of Ground Truth Datasets

404

Name Middlebury Computer Vision Datasets

Description Scholarly and comprehensive datasets, and algorithm
comparisons over most of the datasets

Categories Stereo vision (excellent), multi-view stereo (excellent), MRF,
Optical Flow (excellent), Color processing

Contributions Algorithm benchmarks over the datasets can be submitted

Key papers Several; see website

Owner Middlebury College

Link http://vision.middlebury.edu/

Name ADL Activity Recognition Dataset

Description Annotated scenes for activity recognition of common living scenes

Categories Daily life

Tools and apps Activity recognition code available (see link below)

Key papers [73]

Link http://deepthought.ics.uci.edu/ADLdataset/adl.html

Name MIT Indoor Scenes 67, Scene Classification

Description Annotated dataset specifically containing diverse indoor scenes

Categories 15,620 images organized into 67 indoor categories, some
annotations in Labelme format

Key papers [74]

Link http://web.mit.edu/torralba/www/indoor.html

Name RGB-D Object Recognition Dataset, U of W

Description Dataset contains RGB and corresponding depth images

Categories 300 common household objects, 51 categories using Wordnet
similar to Imagenet style (Imagenet dataset reviewed above), each
object recorded in RGB and Kinect depth at various rotational
angles and viewpoints

Key papers [75]

Link http://www.cs.washington.edu/rgbd-dataset/

http://vision.middlebury.edu/
http://deepthought.ics.uci.edu/ADLdataset/adl.html
http://web.mit.edu/torralba/www/indoor.html
http://www.cs.washington.edu/rgbd-dataset/

APPENDIX B ■ Survey of Ground Truth Datasets

405

Name NYU Depth Datasets

Description Annotated dataset of indoor scenes using RGB-D datasets +
accelerometer data

Categories Over 500,000 frames, many different indoor scenes and scene
types, thousands of classes, accelerometer data, inpainted and raw
depth information

Tools and apps Matlab toolbox + g++ code

Key papers [76]

Link http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

Name Intel Labs Seattle - Egocentric Recognition of Handled Objects

Description Annotated dataset for egocentric handled objects using a wearable
camera

Categories Over 42 everyday objects under varied lighting, occlusion,
perspectives; over 6GB total video sequence data

Key papers [77] [78]

Link http://seattle.intel-research.net/~xren/egovision09/

Name Georgia Tech GTEA Egocentric Activities - Gaze(+)

Description Annotated dataset for egocentric handled objects using a wearable
camera

Categories Many everyday objects under varied lighting, occlusion,
perspectives

Tools and apps Code library of vision functions and mathematical functions

Key papers [79]

Link http://www.cc.gatech.edu/~afathi3/GTEA_Gaze_Website/

Name CUReT: Columbia-Utrecht Reflectance and Texture Database

Description Extensive texture sample and illumination datasets directions

Categories Over 60 different samples with over 200 viewing and illumination
combinations, BRDF measurement database, more

Key papers [80]

Link http://www.cs.columbia.edu/CAVE/software/curet/

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://seattle.intel-research.net/~xren/egovision09/
http://www.cc.gatech.edu/~afathi3/GTEA_Gaze_Website/
http://www.cs.columbia.edu/CAVE/software/curet/

APPENDIX B ■ Survey of Ground Truth Datasets

406

Name MIT Flickr Material Surface Category Dataset

Description Dataset for identifying material categories including fabric, glass,
metal, plastic, water, foliage, leather, paper, stone, wood

Categories Contains images of materials for surface property analysis, in
contrast to object or texture analysis; 10 categories of materials +
100 images in each category

Key papers [81]

Link http://people.csail.mit.edu/celiu/CVPR2010/index.html

Name Faces in the Wilds

Description Collection of over 13,000 images of faces annotated with names of
people

Categories Faces

Key papers [82]

Link http://vis-www.cs.umass.edu/lfw/

Name The CMU Multi-PIE Face Database

Description Annotated face and emotion database with multiple pose angles

Categories 750,000 face images are taken over a period of several months
for each of 337 subjects over 15 viewpoints and 19 illuminations,
annotated facial expressions

Key papers [83]

Link http://www.multipie.org/

Name Stanford 40 Actions

Description People actions image database

Categories People performing 40 actions, bounding-box annotations,
9,532 images, 180-300 images per action class

Key papers [84]

Link http://vision.stanford.edu/Datasets/40actions.html

http://people.csail.mit.edu/celiu/CVPR2010/index.html
http://vis-www.cs.umass.edu/lfw/
http://www.multipie.org/
http://vision.stanford.edu/Datasets/40actions.html

APPENDIX B ■ Survey of Ground Truth Datasets

407

Name NORB 3D Object Recognition from Shape

Description NYU object recognition benchmark

Categories Stereo image pairs; 194,400 total images of 50 toys under
36 azimuths, 9 elevations, and 6 lighting conditions

Tools and apps EBLEARN C++ learning and vision library, LUSH programming
language, VisionGRader object detection tool
http://www.cs.nyu.edu/~yann/software/index.html

Key papers [85]

Link http://www.cs.nyu.edu/~yann/research/norb/

Name Optical Flow Algorithm Evaluation

Description Tools and data for optical flow evaluation purposes

Categories Many optical flow sequence ground truth datasets

Tools and apps Tool for generating optical flow data, some optical flow code
algorithms

Key papers [86]

Link http://of-eval.sourceforge.net/

Name PETS Crowd Sensing Dataset Challenge

Description Multi-sensor camera views composed into a dataset containing
sequences of crowd activities

Categories Challenge goals include crowd estimation, density, tracking of
specific people, flow of crowd

Key papers [94]

Link http://www.cvg.rdg.ac.uk/PETS2009/a.html

http://www.cs.nyu.edu/~yann/software/index.html
http://www.cs.nyu.edu/~yann/research/norb/
http://of-eval.sourceforge.net/
http://www.cvg.rdg.ac.uk/PETS2009/a.html

APPENDIX B ■ Survey of Ground Truth Datasets

408

Name I-LIDS

Description Security-oriented challenge ground truth dataset to enable
competitive benchmarking including scenes for locating parked
vehicles, abandoned baggage, secure perimeters, and doorway
surveillance

Categories Various categories in the security domain

Contributions No, funded by UK government

Tools and apps n.a.

Key papers n.a.

Link http://computervision.wikia.com/wiki/I-LIDS

Name TRECVID, NIST, US Government

Description NIST-sponsored public project spanning 2001-2013 for research
in automatic segmentation, indexing, and content-based video
retrieval

Categories 1. Semantic indexing (SIN) 2. Known-item search (KIS) 3. Instance
search (INS) 4. Multimedia event detection (MED) 5. Multimedia
event recounting (MER) 6. Surveillance event detection (SER),
natural scenes, humans, vegetation, pets, office objects, more

Contributions Annually by U.S. Government

Tools and apps The Framework For Detection Evaluations (F4DE) tool, story
evaluation tool, and others

Key papers [95]

Link http://www-nlpir.nist.gov/projects/trecvid/

Name Microsoft Research Cambridge

Description Pixel-wise labeled or segmented objects

Categories Several hundred objects

Link http://research.microsoft.com/en-us/projects/
objectclassrecognition/

http://computervision.wikia.com/wiki/I-LIDS
http://www-nlpir.nist.gov/projects/trecvid/
http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://research.microsoft.com/en-us/projects/objectclassrecognition/

APPENDIX B ■ Survey of Ground Truth Datasets

409

Name Optical Flow Algorithm Evaluation

Description Volume-rendered video scenes for optical flow algorithm
benchmarking

Categories Various scenes for optical flow; mainly synthetic sequences
generated via ray tracing

Contributions n.a.

Tools and apps Yes, Tcl/Tk

Key papers [96]

Link http://of-eval.sourceforge.net/

Name Pascal Object Recognition VOC Challenge Dataset

Description Standardized ground truth data for a research challenge spanning
2005-2013 in the area of object recognition; competitions include
classification, detection, segmentation, and actions over each of
20 classes of data

Categories Consists of over 20 classes of objects in scenes including persons,
animals, vehicles, indoor objects

Contributions Via the Pascal conference

Tools and apps Includes a developer kit and other useful software for labeling data
and database access, and tools for reporting benchmarks results

Key papers [97]

Link http://pascallin.ecs.soton.ac.uk/challenges/VOC/

Name CRCV

Description Very extensive; University of Central Florida’s Center for Research
in Computer Vision hosts a large collection of research data
covering several domains

Categories Comprehensive set of categories (aerial views, ground views)
including dynamic textures, multi-modal iPhone sensor ground truth
data (video, accelerometer, gyro), several categories of human actions,
crowd segmentation, parking lots, human actions, much more

Contributions n.a.

Tools and apps n.a.

Key papers [98]

Link http://vision.eecs.ucf.edu/datasetsActions.html

http://of-eval.sourceforge.net/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://vision.eecs.ucf.edu/datasetsActions.html

APPENDIX B ■ Survey of Ground Truth Datasets

410

Name UCB Contour Detection and Image Segmentation

Description U.C. Berkeley Computer Vision group provides a complete set of ground
truth data, algorithms, and performance evaluations for contour
detection, image segmentation, and some interest point methods

Categories 500 ground truth images on natural scenes containing a wide range of
subjects and labeled ground truth data

Contributions n.a.

Tools and apps Benchmarking code (globalPB for CPU and GPU)

Key papers [99]

Link http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/resources.html#bench

Name CAVIAR Ground Truth Videos for Context-Aware Vision

Description Project site containing labeled and annotated ground truth data of
humans in cities and shopping centers, including 52 videos with 90K
frames total including people in indoor office scenes and shopping
centers

Categories Both scripted and real-life activities in shopping centers and offices,
including walking, browsing, meeting, fighting, window shopping,
entering/exiting stores

Contributions n.a.

Tools and apps n.a.

Key papers [100]

Link http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm

Name Boston University Computer Science Department

Description Image and video database covering a wide range of subject categories

Categories Video sequences for head tracking and sign language; some datasets
are labeled; still images for hand tracking, multi-face tracking, vehicle
tracking, more

Contributions Anonymous FTP

Tools and apps n.a.

Key papers [101]

Link http://www.cs.bu.edu/groups/ivc/data.php

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html#bench
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html#bench
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm
http://www.cs.bu.edu/groups/ivc/data.php

411

APPENDIX C

Imaging and Computer
Vision Resources

This appendix contains a list of some resources for computer vision and imaging, including
commercial products, open-source projects, organizations, and standards bodies.

 Commercial Products
Name Matlab

Description Industry standard math package with many scientific package
options for various fields including imaging and computer
vision. Includes a decent software development environment,
providing add-on libraries for computer vision, image processing,
visualization, more. Suited well for code development.

Library API Extensive API libraries Internal to the SDE.

SDE Includes software development environment for coding.

Open Source Not for the product, but possibly for some code developed by users.

Link http://www.mathworks.com/products/matlab/

Name Mathematica

Description Industry standard math package with many scientific package
options for various fields, including image processing and computer
vision. Excellent for creation of publication-ready visualizations
and math notebooks. Add-on libraries for computer vision, image
processing, visualization, more.

Library API Extensive API libraries Internal to the SDE.

SDE Includes a default function-based script development environment,
and some code development add-ons.

Open Source Not for the product, but possibly for code developed by users.

Link http://www.wolfram.com/mathematica/

http://www.mathworks.com/products/matlab/
http://www.wolfram.com/mathematica/

APPENDIX C ■ Imaging and Computer Vision Resources

412

Name Intel TBB, Intel IPP, Intel CILK++

Description Intel provides libraries, languages, and compilers optimized for
the IA instruction set. Intel TBB is a multi-threading library for
single and multi-core processors, Intel IPP provides imaging and
computer vision performance primitives optimized for IA and
SIMD instructions and in some cases GPGPU, and Intel CILK++ is a
language for writing SIMD/SIMT parallel code.

Library API Extensive API libraries.

SDE No, but Intel CILK++ is a programming language.

Open Source No.

Link http://software.intel.com/en-us/intel-tbb

http://software.intel.com/en-us/intel-ipp

Open Source
Name OpenCV

Description Industry standard computer vision and image processing library,
used worldwide by major corporations and others.

Library API Extensive API library.

SDE No.

Open Source BSD license.

Link http://opencv.org/

Name ImageJ - FIJI

Description Application for image processing, visualization, and computer
vision. Developed by the USG National Institutes of Health[502],
available for public use. Extensive. FIJI is a distribution of ImageJ
with many plug-ins submitted by the user community.

Library API No.

SDE No.

Open Source Public domain use.

Link http://rsbweb.nih.gov/ij/index.html

http://rsb.info.nih.gov/ij/plugins/

http://fiji.sc/Fiji

http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-ipp
http://opencv.org/
http://rsbweb.nih.gov/ij/index.html
http://rsb.info.nih.gov/ij/plugins/
http://fiji.sc/Fiji

APPENDIX C ■ Imaging and Computer Vision Resources

413

Name VLFEAT

Description C library containing a range of common computer vision algorithms
for feature description, pattern matching, and image processing.

Library API Extensive API library.

SDE No.

Open Source BSD license.

Link http://vlfeat.org

Name VTK

Description C++ library containing a range of common image processing,
graphics, and data visualization functions. Includes GUI widgets.
VTL also provides consulting.

Library API Extensive API library.

SDE No.

Open Source BSD license.

Link http://vtk.org/

Name Meshlab

Description Application for visualizing, rendering, annotating, and converting
3D data meshes such as point clouds and CAD designs. Extensive.
Uses the VCG library from ISTI – CNR.

Library API No.

SDE No.

Open Source BSD license.

Link http://meshlab.sourceforge.net/

Name PfeLIb

Description Library for image processing and computer vision acceleration.

Library API Yes.

SDE No.

Open Source No.

Link See reference[495].

http://vlfeat.org/
http://vtk.org/
http://meshlab.sourceforge.net/
http://rsbweb.nih.gov/ij/index.html

APPENDIX C ■ Imaging and Computer Vision Resources

414

Name Point Cloud Library (PCL)

Description Extensive open-source library for dealing primarily with 3D point
clouds, including implementations of many cutting-edge 3D descriptors
from the latest academic research and visualization methods.

Library API Yes.

SDE No.

Open Source Yes.

Link http://pointclouds.org/downloads/

http://pointclouds.org/documentation/

http://docs.pointclouds.org/trunk/a02944.html

Name Shogun Machine Learning Toolbox

Description Library for machine learning and pattern matching. Extensive.

Library API Yes.

SDE No.

Open Source GPL.

Link http://shogun-toolbox.org/page/features/

Name Halide High-Performance Image Processing Language

Description C++ language classes optimized for SIMD, SIMT, and GPGPU.

Library API Yes.

SDE No.

Open Source Open-source MIT license.

Link http://halide-lang.org/

Name REIN (Recognition INfrastructure) Vision Algorithm Framework

Description Framework for computer vision in robotics; uses ROS operating system.

See references[397,503].

Library API Yes.

SDE No.

Open Source Open-source MIT license.

Link http://wiki.ros.org/rein

http://pointclouds.org/downloads/
http://pointclouds.org/documentation/
http://docs.pointclouds.org/trunk/a02944.html
http://shogun-toolbox.org/page/features/
http://halide-lang.org/
http://wiki.ros.org/rein

APPENDIX C ■ Imaging and Computer Vision Resources

415

Name ECTO –Graph Network Construction for Computer Vision

Description Library for creating directed acyclic graphs of functions for computer
vision pipelines, supports threading. Written in a C++/Python
framework. Can integrate with OpenCV, PCL and ROS.

Library API Yes.

SDE No.

Open Source Apparently.

Link http://plasmodic.github.io/ecto/

Organizations, Institutions, and Standards
Microsoft Research

http://academic.research.microsoft.com/

Microsoft Research has one of the largest
staff of computer vision experts in the
world, and actively promotes conferences
and research. Provides several good
resources online.

CIE

http://www.cie.co.at/

International Commission on
Illumination, abbreviated CIE after
the French name, provides standard
illuminant data for a range of light sources
as it pertains to color science, as well as
standards for the well-known color spaces
CIE XYZ, CIE Lab and CIE Luv.

ICC

http://www.color.org/index.xalter

International Color Consortium provides
the ICC standard color profiles for imaging
devices, as well as many other industry
standards, including the sRGB color space
for color displays.

CAVE Computer Vision Laboratory

http://www.cs.columbia.edu/CAVE/

Computer Vision Laboratory at Columbia
University, directed by Dr. Shree Nayar,
provides world-class imaging and vision
research.

RIT Munsel Color Science Laboratory

http://www.rit.edu/cos/colorscience/

Rochester Institute of Technology Munsel
Color Science Laboratory is among the
leading research institutions in the area
or color science and imaging, provides
a wide range of resources, and has with
strong ties to industry imaging giants such
as Kodak, Xerox, and others.

(continued)

http://plasmodic.github.io/ecto/
http://academic.research.microsoft.com/
http://www.cie.co.at/
http://www.color.org/index.xalter
http://www.cs.columbia.edu/CAVE/
http://www.rit.edu/cos/colorscience/

APPENDIX C ■ Imaging and Computer Vision Resources

416

OPENVX KHRONOS

http://www.khronos.org/openvx

OPENVX is a proposed standard for low-
level vision primitive acceleration, operated
with the KHRONOS standards group.

SPIE

Society for Optics and Photonics

Journal of Medical Imaging

Journal of Electronic Imaging

Journal of Applied Remote Sensing

http://spie.org/

Interdisciplinary approach to the science
of light, including photonics, sensors, and
imaging; promotes conferences, publishes
journals.

IEEE

CVPR, Computer Vision and Pattern
Recognition

PAMI, Pattern Analysis and Machine
Intelligence

ICCV, International Conference on
Computer Vision

IP, Trans. Image Processing

http://ieee.org

Society for publication of journals and
conferences, including various computer
vision and imaging topics.

CVF

Computer Vision Foundation

http://www.cv-foundation.org/

Promotes computer vision, provides
dissemination of papers.

NIST – Image Group (USG)

National Institute Of Standards

http://www.nist.gov/itl/iad/ig/

Promotes computer vision and imaging
grand challenges; covers biometrics
standards, fingerprint testing, face, iris,
multimodal testing, next generation
test bed.

I20 - Darpa information innovation
office (USG)

http://www.darpa.mil/
Our_Work/I2O/Programs/

http://www.darpa.mil/
OpenCatalog/index.html

Extensive array of computer vision and
related program research for military
applications.

Some work is released to the public via the
OpenCatalog.

http://www.khronos.org/openvx
http://spie.org/
http://ieee.org/
http://www.cv-foundation.org/
http://www.nist.gov/itl/iad/ig/
http://www.darpa.mil/Our_Work/I2O/Programs/
http://www.darpa.mil/Our_Work/I2O/Programs/
http://www.darpa.mil/OpenCatalog/index.html
http://www.darpa.mil/OpenCatalog/index.html

APPENDIX C ■ Imaging and Computer Vision Resources

417

Journals and Their Abbreviations
CVGIP Graphical Models /graphical Models and Image
Processing /computer Vision, Graphics, and Image Processing

CVIU Computer Vision and Image Understanding

IJCV International Journal of Computer Vision

IVC Image and Vision Computing

JMIV Journal of Mathematical Imaging and Vision

MVA Machine Vision and Applications

TMI - IEEE Transactions on Medical Imaging

Conferences and Their Abbreviations
3DIM International Conference on 3-D Imaging and Modeling

3DPVT 3D Data Processing Visualization and Transmission

ACCV Asian Conference on Computer Vision

AMFG Analysis and Modeling of Faces and Gestures

BMCV Biologically Motivated Computer Vision

BMVC British Machine Vision Conference

CRV Canadian Conference on Computer and Robot Vision

CVPR Computer Vision and Pattern Recognition

CVRMed Computer Vision, Virtual Reality and Robotics in
Medicine

DGCI Discrete Geometry for Computer Imagery

ECCV European Conference on Computer Vision

EMMCVPR Energy Minimization Methods in Computer Vision
and Pattern Recognition

FGR IEEE International Conference on Automatic Face and
Gesture Recognition

ICARCV International Conference on Control, Automation,
Robotics and Vision

ICCV International Conference on Computer Vision

ICCV Workshops

ICVS International Conference on Computer Vision Systems

APPENDIX C ■ Imaging and Computer Vision Resources

418

ICWSM International Conference on Weblogs and Social Media

ISVC International Symposium on Visual Computing

NIPS Neural Information Processing Systems

Scale-Space Scale-Space Theories in Computer Vision

VLSM Variational, Geometric, and Level Set Methods in
Computer Vision

WACV Workshop on Applications of Computer Vision

Online Resources
Name CVONLINE

Description Huge list of computer vision software and projects, indexed
to Wikipedia

Link http://homepages.inf.ed.ac.uk/rbf/CVonline/environ.htm

Name Annotated Computer Vision Bibliography

Description Huge index of links to computer vision topics, references,
software, more

Link http://www.visionbib.com/bibliography/contents.html

Name NIST Online Engineering Statistics Handbook (USG)

Description Handbook for statistics, includes examples and software

Link http://www.itl.nist.gov/div898/handbook/

Name The Computer Industry (David Lowe)

Description Includes links to major computer vision and imaging product
companies

Link http://www.cs.ubc.ca/~lowe/vision.html

http://homepages.inf.ed.ac.uk/rbf/CVonline/environ.htm
http://www.visionbib.com/bibliography/contents.html
http://www.itl.nist.gov/div898/handbook/
http://www.cs.ubc.ca/~lowe/vision.html

419

APPENDIX D

Extended SDM Metrics

Figure D-1 provides a visualization of image texture using SDM’s.

Figure D-1.  SDM extended metrics

APPENDIX D ■ Extended SDM Metrics

420

Listing D-1 illustrates the extended SDM metrics from Chapter 3. The code is
available online at

http://www.apress.com/source-code/ComputerVisionMetrics

Listing D-1.  Extended SDM Metrics from Chapter 3 

/*
** CREATED 1991 (C) KRIG RESEARCH, SCOTT KRIG - UNPUBLISHED SOFTWARE
** PORTED TO MAC 2014
**
** ALL RIGHTS RESERVED
**
** THIS SOFTWARE MAY BE USED FREELY FOR ACADEMIC AND RESEARCH PURPOSES.
** REFERENCE THIS BOOK AND PROVIDE THIS NOTICE WHEN USING THE SOFTWARE.
*/
 
using namespace std;
 
#include <math.h>
#include <stdio.h>
#include <opencv2/opencv.hpp>
#include "/usr/local/include/opencv/cv.h"
#include "/usr/local/include/opencv2/core/core.hpp"
#include "/usr/local/include/opencv2/highgui/highgui.hpp"
#include <iostream>
 
using namespace cv;
 
#define TINY 0.0000000001
#define F6U "%6f.3"
#define F6F "%.6f"
#define F3F "%.3f"
#define FXF "%.0f"
#define FALSE 0
#define TRUE 1
 
typedef struct area {
 int x;
 int y;
 int dx;
 int dy;
} area_t;
 
typedef struct {
 double t0;
 double t90;
 double t135;
 double t45;

http://www.apress.com/source-code/ComputerVisionMetrics

APPENDIX D ■ Extended SDM Metrics

421

 double tave;
 } ctab;
 
typedef struct {
 double median;
 double ave;
 double adev;
 double sdev;
 double svar;
 double skew;
 double curt;
 int min;
 int max;
 ctab xcentroid;
 ctab ycentroid;
 ctab _asm;
 ctab low_frequency_coverage;
 ctab total_coverage;
 ctab corrected_coverage;
 ctab total_power;
 ctab relative_power;
 ctab locus_length;
 ctab locus_mean_density;
 ctab bin_mean_density;
 ctab containment;
 ctab linearity;
 ctab linearity_strength;
 ctab autocorrelation;
 ctab covariance;
 ctab inertia; /* haralick contrast */
 ctab absolute_value;
 ctab inverse_difference; /* haralick */
 ctab entropy; /* haralick */
 ctab correlation; /* haralick */
 } glob_t;
 
glob_t gt;
 
/* FUNCTIONS */
 
int i_sort(
int *x,
int n,
int parm)
{
 int k,i,ii;
 int y,found;

APPENDIX D ■ Extended SDM Metrics

422

 int xi;
 int n2, n2p;
  
 x--;
 for (k=1; k<n+1; k++) {
 y = x[k];
 for (i=k-1, found = FALSE; i>=0 && !found;) {
 xi = x[i];
 ii = i+1;
 if (y < xi) {
 x[ii] = xi;
 i--;
 } else {
 found = TRUE;
 }
 }
 x[ii] = y;
 }
 if (parm == 0) return 0;
 n2p = (n2=(n>>1))+1;
 return (n % 2 ? x[n2p] : (x[n2] + x[n2p]) >>1);
}
 
int lmoment(
int *data,
int n,
double *median,
double *ave,
double *adev,
double *sdev,
double *svar,
double *skew,
double *curt)
{
 int j;
 double s,p,ep=0.0;
  
 if (n <= 1) return 0;
  
 s=0.0;
 for (j=1; j<=n;j++) s += (double)data[j];
 *ave=s/n;
 *adev=(*svar)=(*skew)=(*curt)=0.0;
 for (j=1;j<=n;j++) {
 *adev += abs(s=(double)data[j]-(*ave));
 *svar += (p=s*s);
 *skew += (p *= s);
 *curt += (p *= s);
 }
 

APPENDIX D ■ Extended SDM Metrics

423

 *adev /=n;
 *svar = (*svar - ep*ep / n) / (n-1);
 *sdev=sqrt(*svar);
 if (*svar) {
 s = (n*(*svar)*(*sdev));
 if (s != 0) *skew /=s;
 else *skew = 0;
 s = (n*(*svar)*(*svar))-3.0;
 if (s != 0) *curt = (*curt) / s;
 else *curt = 0;
 } else {
 *skew = *curt = 0.0;
 }
 *median = 0;
 if (n > 20000) return 0;
 
 *median = (double)i_sort(data, n, 1);
 
 return 0;
 
}
 
int mean_sdev(
int xp,
int yp,
int *xdata,
double *xmean,
double *xsdev,
double *ymean,
double *ysdev)
{
 double u_x1, a_x1;
 int mx, my,v,t,x,y,z, offset;
 int dif[256];
  
 /* first calculate mean */
 offset = 256 * yp;
 x = y = 0;
 for (z=0; z < 256; x += xdata[offset+z], z++);
 for (z=0; z < 256; y += xdata[xp + (z*256)], z++);
 
 mx = x / 256.;
 *xmean = (double)mx;
 my = y / 256.;
 *ymean = (double)my;
 

APPENDIX D ■ Extended SDM Metrics

424

 /* now calculate standard deviation */
 x = y = 0;
 z=0;
 while (z < 256) {
 v = mx - xdata[offset+z];
 x += v*v;
 v = my - xdata[xp + (z*256)];
 y += v*v;
 z++;
 }
 *xsdev = x / 256;
 *ysdev = y / 256;
 
 return 0;
}
 
int lohi(
int n,
int *cv,
int *lo,
int *hi)
{
 int x;
 int lv, hv;
  
 lv = 0x1fffff;
 hv =0;
 x=0;
 while (x < n) {
 if (cv[x] < lv) lv = cv[x];
 if (cv[x] > hv) hv = cv[x];
 x++;
 }
 
 *lo = lv;
 *hi = hv;
 
 return 0;
}
 
int savegt(
ctab *ctp,
double dv1,
double dv2,

APPENDIX D ■ Extended SDM Metrics

425

double dv3,
double dv4)
{
 
 ctp->t0 = dv1;
 ctp->t90 = dv2;
 ctp->t135 = dv3;
 ctp->t45 = dv4;
 ctp->tave = (dv1 + dv2 + dv3 + dv4) / 4;
 
 return 0;
}
  
int gtput(
char *prompt,
char *fs,
ctab *ctp,
FILE *fstream)
{
 char str[256];
 char form[256];
 
 fputs(prompt, fstream);
 sprintf(form, "%s %s %s %s %s \n", fs, fs, fs, fs, fs);
 sprintf(str, form, ctp->t0, ctp->t90, ctp->t135, ctp->t45, ctp->tave);
 fputs(str, fstream);
 
 return 0;
 
}
  
int put_txfile(
FILE *fstream)
{
 char str[256];
 
 sprintf(�str, "gray value moments: min:%u max:%u mean:%u\n",

gt.min,gt.max, (int)gt.ave);
 fputs(str, fstream);
 sprintf(�str, "moments: adev:%.4f sdev:%.4f svar:%.4f skew:%.6f

curt:%.6f \n",gt.adev, gt.sdev, gt.svar, gt.skew, gt.curt);
 fputs(str, fstream);
 

APPENDIX D ■ Extended SDM Metrics

426

 fputs("\n", fstream);
 fputs(" --------------------------------------\n", fstream);
 fputs(" 0deg 90deg 135deg 45deg ave\n", fstream);
 fputs(" --------------------------------------\n", fstream);
 gtput("xcentroid ", FXF, >.xcentroid, fstream);
 gtput("ycentroid ", FXF, >.ycentroid, fstream);
 gtput("low_frequency_coverage ", �F3F, >.low_frequency_coverage,

fstream);
 gtput("total_coverage ", F3F, >.total_coverage, fstream);
 gtput("corrected_coverage ", F3F, >.corrected_coverage, fstream);
 gtput("total_power ", F3F, >.total_power, fstream);
 gtput("relative_power ", F3F, >.relative_power, fstream);
 gtput("locus_length ", FXF, >.locus_length, fstream);
 gtput("locus_mean_density ", FXF, >.locus_mean_density, fstream);
 gtput("bin_mean_density ", FXF, >.bin_mean_density, fstream);
 gtput("containment ", F3F, >.containment, fstream);
 gtput("linearity ", F3F, >.linearity, fstream);
 gtput("linearity_strength ", F3F, >.linearity_strength, fstream);
 
 return 0;
 
}
 
int texture(
char *filename)
{
 char str[256];
 int pmx[256], pmy[256];
 int x,y,z,dx,dy,dz,sz,bpp;
 int accum, tmin, tmax;
 int tmin2, tmax2, yc;
 int *data;
 int mval0, mval90, mval135, mval45;
 double median, ave, adev, sdev, svar, skew, curt;
 double median2, ave2, adev2, sdev2, svar2, skew2, curt2;
 int *dm0, *dm90, *dm135, *dm45;
 FILE *fstream;
 int i0, i90, i135, i45, iave, n;
 int c0, c90, c135, c45, cave;
 int p0, p90, p135, p45, pave;
 double d0, d90, d135, d45, dave;
 double f0, f90, f135, f45;
  

APPENDIX D ■ Extended SDM Metrics

427

 /**/
 /* READ THE INPUT IMAGE, EXPECT IT TO BE 8-bit UNSIGNED INT */
 /* Mat type conversion is simple in openCV, try it later */
 
 Mat imageIn = cv::imread(filename);
 dx = imageIn.rows;
 dy = imageIn.cols;
 unsigned char *pixels = imageIn.data;
 
 cout << �"dx " << dx << " dy " << dy << " elemSize() " <<

imageIn.elemSize() << endl;
 data = (int *)malloc(dx * dy * 4);
 if (data == 0)
 {
 cout << "malloc error in texture()" << endl;
 }
 for (y=0; y < dy; y++) {
 for (x=0; x < dx; x++) {
 int pixel = (int)*(imageIn.ptr(x,y));
 if (pixel > 255) { pixel = 255; }
 data[(y * dx) + x] = pixel;
 }
 }
 
 /**/
 /* PART 1 - get normal types of statistics from pixel data */
 
 lmoment(data, sz, &median, &ave, &adev, &sdev, &svar, &skew, &curt);
 lohi(sz, data, &tmin, &tmax);
 
 gt.median = median;
 gt.ave = ave;
 gt.adev = adev;
 gt.sdev = sdev;
 gt.svar = svar;
 gt.skew = skew;
 gt.curt = curt;
 gt.min = tmin;
 gt.max = tmax;
 
 fstream = fopen("SDMExtended.txt", "w");
 if (fstream <= 0) {
 cout << "#cannot create file" << endl;
 return 0;
 }
 

APPENDIX D ■ Extended SDM Metrics

428

 sprintf(str, "texture for object: %s\n", filename);
 fputs(str, fstream);
 sprintf(str, "area: %u, %u \n", dx, dy);
 fputs(str, fstream);
 
 /**/
 /* PART 2 - calculate the 4 spatial dependency matricies */
 
 dm0 = (int *)malloc(256*256*4);
 dm90 = (int *)malloc(256*256*4);
 dm135 = (int *)malloc(256*256*4);
 dm45 = (int *)malloc(256*256*4);
 if ((dm0==0) || (dm90==0) || (dm135==0) || (dm45==0)) {
 cout << "malloc error in texture2" << endl;
 return 0;
 }
  
 x=0;
 while (x < 256*256) {
 dm0[x] = dm90[x] = dm135[x] = dm45[x] = 0;
 x++;
 }
 
 y=0;
 while (y < dy-1) {
 yc = dx * y;
 
 x=0;
 while (x < dx-1) {
 
 dm0[(�data[yc + x]&0xff) + (((data[yc + x + 1])<<

8)&0xff00)]++;
 dm0[(�data[yc + x + 1]&0xff) + (((data[yc + x])<<

8)&0xff00)]++;
 dm90[(�data[yc + x]&0xff) + (((data[yc + x + dx])<<

8)&0xff00)]++;
 dm90[(�data[yc + x + dx]&0xff) + (((data[yc + x])<<

8)&0xff00)]++;
 dm135[(�data[yc + x]&0xff) + (((data[yc + x + dx + 1]

)<< 8)&0xff00)]++;
 dm135[(�data[yc + x + dx + 1]&0xff) + (((data[yc + x]

)<< 8)&0xff00)]++;
 dm45[(�data[yc + x + 1]&0xff) + (((data[yc + x + dx])<<

8)&0xff00)]++;
 dm45[(�data[yc + x + dx]&0xff) + (((data[yc + x + 1])<<

8)&0xff00)]++;
 

APPENDIX D ■ Extended SDM Metrics

429

 x++;
 }
 y++;
 }
  
 /***************** CALCULATE TEXTURE METRICS ******************/
 
 /* centroid */
 pmx[0] = pmx[1] = pmx[2] = pmx[3] = 0;
 pmy[0] = pmy[1] = pmy[2] = pmy[3] = 0;
 i0 = i90 = i135 = i45 = 0;
 y=0;
 while (y < 256) {
 x=0;
 while (x < 256) {
 z = x + (256 * y);
 pmx[0] += (x * dm0[z]);
 pmy[0] += (y * dm0[z]); i0 += dm0[z];
 pmx[1] += (x * dm90[z]);
 pmy[1] += (y * dm90[z]); i90 += dm90[z];
 pmx[2] += (x * dm135[z]);
 pmy[2] += (y * dm135[z]); i135 += dm135[z];
 pmx[3] += (x * dm45[z]);
 pmy[3] += (y * dm45[z]); i45 += dm45[z];
 x++;
 }
 y++;
 }
 pmx[0] = pmx[0] / i0;
 pmy[0] = pmy[0] / i0;
 pmx[1] = pmx[1] / i90;
 pmy[1] = pmy[1] / i90;
 pmx[2] = pmx[2] / i135;
 pmy[2] = pmy[2] / i135;
 pmx[3] = pmx[3] / i45;
 pmy[3] = pmy[3] / i45;
 x = (pmx[0] + pmx[1] + pmx[2] + pmx[3]) / 4;
 y = (pmy[0] + pmy[1] + pmy[2] + pmy[3]) / 4;
 
 gt.xcentroid.t0 = pmx[0];
 gt.ycentroid.t0 = pmy[0];
 gt.xcentroid.t90 = pmx[1];
 gt.ycentroid.t90 = pmy[1];
 gt.xcentroid.t135 = pmx[2];
 gt.ycentroid.t135 = pmy[2];
 gt.xcentroid.t45 = pmx[3];

APPENDIX D ■ Extended SDM Metrics

430

 gt.ycentroid.t45 = pmy[3];
 gt.xcentroid.tave = x;
 gt.ycentroid.tave = y;
  
 /* low frequency coverage */
 i0 = i90 = i135 = i45 = 0;
 c0 = c90 = c135 = c45 = 0;
 x=0;
 while (x < 256*256) {
 if ((dm0[x] != 0) && (dm0[x] < 3)) i0++;
 if ((dm90[x] != 0) && (dm90[x] < 3)) i90++;
 if ((dm135[x] != 0) && (dm135[x] < 3)) i135++;
 if ((dm45[x] != 0) && (dm45[x] < 3)) i45++;
 if (!dm0[x]) c0++;
 if (!dm90[x]) c90++;
 if (!dm135[x]) c135++;
 if (!dm45[x]) c45++;
 x++;
 }
 d0 = (double)i0 / 0x10000;
 d90 = (double)i90 / 0x10000;
 d135 = (double)i135 / 0x10000;
 d45 = (double)i45 / 0x10000;
 
 savegt(>.low_frequency_coverage, d0, d90, d135, d45);
 
 d0 = (double)c0 / 0x10000;
 d90 = (double)c90 / 0x10000;
 d135 = (double)c135 / 0x10000;
 d45 = (double)c45 / 0x10000;
 
 savegt(>.total_coverage, d0, d90, d135, d45);
 
 d0 = (c0-i0) / (double)0x10000;
 d90 = (c90-i90) / (double)0x10000;
 d135 = (c135-i135) / (double)0x10000;
 d45 = (c45-i45) / (double)0x10000;
 
 savegt(>.corrected_coverage, d0, d90, d135, d45);
 
 /* power */
 i0 = i90 = i135 = i45 = 0;
 c0 = c90 = c135 = c45 = 0;
 p0 = p90 = p135 = p45 = 0;
 y=0;

APPENDIX D ■ Extended SDM Metrics

431

 while (y < 256) {
 z = y * 256;
 x=0;
 while (x < 256) {
 n = x-y;
 if (n < 0) n = -n;
 if (dm0[x+z] != 0) { i0 += n; c0++; }
 if (dm90[x+z] != 0) { i90 += n; c90++; }
 if (dm135[x+z] != 0) { i135 += n; c135++; }
 if (dm45[x+z] != 0) { i45 += n; c45++; }
 x++;
 }
 y++;
 }
 d0 = (i0 / 0x10000);
 d90 = (i90 / 0x10000);
 d135 = (i135 / 0x10000);
 d45 = (i45 / 0x10000);
 
 savegt(>.total_power, d0, d90, d135, d45);
 
 d0 = (i0 / c0);
 d90 = (i90 / c90);
 d135 = (i135 / c135);
 d45 = (i45 / c45);
 
 savegt(>.relative_power, d0, d90, d135, d45);
 
 /* locus density */
 d0 = d90 = d135 = d45 = 0.0;
 c0 = c90 = c135 = c45 = 0;
 p0 = p90 = p135 = p45 = 0;
 y=0;
 while (y < 256) {
 z = y * 256;
 i0 = i90 = i135 = i45 = 0;
 x=0;
 while (x < 256) {
 n = x-y;
 if (n < 0) n = -n;
 if ((dm0[x+z] != 0) && (n < 7)) { c0++; p0 += dm0[x+z]; }
 if ((dm90[x+z] != 0) && (n < 7)) { c90++; p90 += dm90[x+z]; }
 if ((�dm135[x+z] != 0) && (n < 7)) { c135++; p135 +=

dm135[x+z]; }
 if ((dm45[x+z] != 0) && (n < 7)) { c45++; p45 += dm45[x+z]; }
 

APPENDIX D ■ Extended SDM Metrics

432

 if ((dm0[x+z] == 0) && (n < 7)) { i0++; }
 if ((dm90[x+z] == 0) && (n < 7)) { i90++; }
 if ((dm135[x+z] == 0) && (n < 7)) { i135++; }
 if ((dm45[x+z] == 0) && (n < 7)) { i45++; }
 
 x++;
 }
 if (!i0) d0 += 1;
 if (!i90) d90 += 1;
 if (!i135) d135 += 1;
 if (!i45) d45 += 1;
 y++;
 }
 
 savegt(>.locus_length, d0, d90, d135, d45);
 
 d0 = (p0/c0);
 d90 = (p90/c90);
 d135 = (p135/c135);
 d45 = (p45/c45);
 
 savegt(>.locus_mean_density, d0, d90, d135, d45);
 
 /* density */
 c0 = c90 = c135 = c45 = 0;
 p0 = p90 = p135 = p45 = 0;
 x=0;
 while (x < 256*256) {
 if (dm0[x] != 0) { c0 += dm0[x]; p0++; }
 if (dm90[x] != 0) { c90 += dm90[x]; p90++; }
 if (dm135[x] != 0) { c135 += dm135[x]; p135++; }
 if (dm45[x] != 0) { c45 += dm45[x]; p45++; }
 x++;
 }
 d0 = c0 / p0;
 d90 = c90 / p90;
 d135 = c135 / p135;
 d45 = c45 / p45;
 
 savegt(>.bin_mean_density, d0, d90, d135, d45);
 
 /* containment */
 i0 = i90 = i135 = i45 = 0;
 x=0;
 while (x < 256) {
 if (dm0[x]) i0++; if (dm0[256*256 - x - 1]) i0++;
 if (dm90[x]) i90++; if (dm90[256*256 - x - 1]) i90++;

APPENDIX D ■ Extended SDM Metrics

433

 if (dm135[x]) i135++; if (dm135[256*256 - x - 1]) i135++;
 if (dm45[x]) i45++; if (dm45[256*256 - x - 1]) i45++;
 
 if (dm0[x*256]) i0++; if (dm0[(x*256)+255]) i0++;
 if (dm90[x*256]) i90++; if (dm90[(x*256)+255]) i90++;
 if (dm135[x*256]) i135++; if (dm135[(x*256)+255]) i135++;
 if (dm45[x*256]) i45++; if (dm45[(x*256)+255]) i45++;
 
 x++;
 }
 
 d0 = 1.0 - ((double)i0 / 1024.0);
 d90 = 1.0 - ((double)i90 / 1024.0);
 d135 = 1.0 - ((double)i135 / 1024.0);
 d45 = 1.0 - ((double)i45 / 1024.0);
 
 savegt(>.containment, d0, d90, d135, d45);
 
 /* linearity */
 i0 = i90 = i135 = i45 = 0;
 c0 = c90 = c135 = c45 = 0;
 y=0;
 while (y < 256) {
 z = y * 256;
 if (dm0[z + y] > 1) { i0++; c0 += dm0[z+y]; }
 if (dm90[z + y] > 1) { i90++; c90 += dm90[z+y]; }
 if (dm135[z + y] > 1) { i135++; c135 += dm135[z+y]; }
 if (dm45[z + y] > 1) { i45++; c45 += dm45[z+y]; }
 y++;
 }
 d0 = (double)i0 / 256.;
 d90 = (double)i90 / 256.;
 d135 = (double)i135 / 256.;
 d45 = (double)i45 / 256.;
 
 savegt(>.linearity, d0, d90, d135, d45);
 
 /* linearity strength */
 d0 = (c0/(i0+.00001)) / 256.;
 d90 = (c90/(i90+.00001)) / 256.;
 d135 = (c135/(i135+.00001)) / 256.;
 d45 = (c45/(i45+.00001)) / 256.;
 
 savegt(>.linearity_strength, d0, d90, d135, d45);
 
 /* WRITE ALL STATISTICS IN gt. STRUCTURE TO OUTPUT FILE */
 put_txfile(fstream);
 

APPENDIX D ■ Extended SDM Metrics

434

 /* clip to max value 255 */
 mval0 = mval90 = mval135 = mval45 = 0;
 x=0;
 while (x < 256*256) {
 if (dm0[x] > 255) dm0[x] = 255;
 if (dm90[x] > 255) dm90[x] = 255;
 if (dm135[x] > 255) dm135[x] = 255;
 if (dm45[x] > 255) dm45[x] = 255;
 x++;
 }
 
 /**/
 /* Convert data to unsigned char to write into png */
 
 unsigned char *dm0b = (unsigned char *)malloc(256*256);
 unsigned char *dm90b = (unsigned char *)malloc(256*256);
 unsigned char *dm135b = (unsigned char *)malloc(256*256);
 unsigned char *dm45b = (unsigned char *)malloc(256*256);
 if ((dm0b==0) || (dm90b==0) || (dm135b==0) || (dm45b==0)) {
 cout << "malloc error in texture3" << endl;
 return 0;
 }
 
 x=0;
 while (x < 256*256) {
 dm0b[x] = (unsigned char) (dm0[x] & 0xff);
 dm90b[x] = (unsigned char) (dm90[x] & 0xff);
 dm135b[x] = (unsigned char) (dm135[x] & 0xff);
 dm45b[x] = (unsigned char) (dm45[x] & 0xff);
 x++;
 }
 
 /*
 * write output to 4 quadrants: 0=0, 1=90, 2=135, 3=145
 */
 
 char outfile[256];
 
 sprintf(outfile, "%s_SDMQUadrant_0deg_8UC1.png", filename);
 Mat SDMQuadrant0(256, 256, CV_8UC1, dm0b);
 imwrite(outfile, SDMQuadrant0);
 sprintf(outfile, "%s_SDMQUadrant_90deg_8UC1.png", filename);
 Mat SDMQuadrant90(256, 256, CV_8UC1, dm90b);
 imwrite(outfile, SDMQuadrant90);
 sprintf(outfile, "%s_SDMQUadrant_135deg_8UC1.png", filename);
 Mat SDMQuadrant135(256, 256, CV_8UC1, dm135b);
 imwrite(outfile, SDMQuadrant135);

APPENDIX D ■ Extended SDM Metrics

435

 sprintf(outfile, "%s_SDMQUadrant_45deg_8UC1.png", filename);
 Mat SDMQuadrant45(256, 256, CV_8UC1, dm45b);
 imwrite(outfile, SDMQuadrant45);
 
 free(dm0);
 free(dm90);
 free(dm135);
 free(dm45);
 free(data);
 free(dm0b);
 free(dm90b);
 free(dm135b);
 free(dm45b);
 fclose(fstream);
 
 return 0;
 
}
 
int main (int argc, char **argv)
{
 cout << "8-bit unsigned image expected as input" << endl;
 texture (argv[1]);
 return 0;
}
 

437

Bibliography

Note■■   Entries do not appear in alphabetical order.

1.  Bajcsy, R. “Computer Description of Textured Surfaces.” International Conference
on Artificial Intelligence, 1973.

2.  Bajcsy, R., and L. Lieberman. “Texture Gradient as a Depth Cue.” Computer Graphics
and Image Processing 5, no. 1 (1976).

3.  Cross, G. R., and A. K. Jain. “Markov Random Field Texture Models.” PAMI 54,
no. 1 (1983).

4.  Gonzalez R., and R. Woods. Digital Image Processing, 3rd ed. Englewood Cliffs,
NJ: Prentice-Hall, 2007.

5.  Haralick, R. M. “Statistical and Structural Approaches to Texture.” Proceedings of the
International Joint Conference on Pattern Recognition, 1979.

6.  Haralick, R. M., R. Shanmugan, and I. Dinstein. “Textural Features for Image
Classification.” IEEE Transactions on. Systems, Man Cybernetics. SMC-3, no. 6 (1973).

7.  Hu, M. K. “Visual Pattern Recognition by Moment Invariants.” IRE Transactions on
Information Theory, Volume: 8, Issue: 2, (1962)

8.  Lu, H. E., and K. S. Fu. “A Syntactic Approach to Texture Analysis.” Computer
Graphics Image Processing 7, no. 3 (1978).

9.  Pratt, W. K. Digital Image Processing, 3rd ed. Hoboken, NJ: John Wiley, 2002.
10.  Rosenfeld A., and A. C. Kak. Digital Picture Processing, 2nd ed. New York: Academic

Press, 1982.
11.  Tomita, F., Y. Shirai, and S. Tsuji. “Description of Texture by a Structural Analysis.”

Pattern Analysis and Machine Intelligence 4, no. 2 (1982).
12.  Wong, R. Y., and E. L. Hall. “Scene Matching with Invariant Moments.” Computer

Graphics Image Processing 8 (1978).
13.  Guoying Zhao and Matti Pietikainen. “Dynamic Texture Recognition Using Local

Binary Patterns with an Application to Facial Expressions.” Transactions of Pattern
Analysis and Machine Intelligence (2007).

14.  Kellokumpu, Vili, Guoying Zhao, and Matti Pietikäinen. “Human Activity
Recognition Using a Dynamic Texture Based Method.”

﻿■ Bibliography

438

15.  Guoying Zhao and Matti Pietikäinen. Dynamic Texture Recognition Using Local
Binary Patterns with an Application to Facial Expressions.” Pattern Analysis and
Machine Intelligence 2007.

16.  Eichmann, G., and T. Kasparis. “Topologically Invariant Texture Descriptors.”
Computer Vision, Graphics and Image Processing 41, no. 3 (March 1988).

17.  Lam, S. W. C., and H. H. S. Ip. “Structural Texture Segmentation Using Irregular
Pyramid.” Pattern Recognition Letters 15, no. 7 (July 1994).

18.  Pietikäinen, Matti, Guoying Zhao, and Ahonen Hadid. Computer Vision Using Local
Binary Patterns. New York: Springer, 2011.

19.  Ojala, T., M. Pietikäinen, and D. Hardwood. “Performance Evaluation of Texture
Measures with Classification Based on Kullback Discrimination of Distributions.”
Proceedings of the International Conference on Pattern Recognition, 1994.

20.  Ojala T., M. Pietikäinen, and D. Hardwood. “A Comparative Study of Texture
Measures with Classification Based on Feature Distributions.” Pattern Recognition
29 (1996).

21.  Van Ginneken, Bram, and Jan J. Koenderink. “Texture Histograms as a Function
of Irradiation and Viewing Direction,” International Journal of Computer Vision
31(2/3), 169–184 (1999).

25.  Aioanei, Stelu, Arati Kurani, and Dong-Hui Xu. Texture Analysis for Computed
Tomography Studies. Visual Computing Workshop DePaul University (2004).

26.  Krig, Scott A. “Image Texture Analysis Using Spatial Dependency Matrices.”
Krig Research White Paper Series, October 1994.

27-31.  Not used.
32.  Laws, K. I. “Rapid Texture Identification.” SPIE 238 (1980).
33.  Bajcsy, R. K. “Computer Identification of Visual Surfaces.” Computer Graphics and

Image Processing Volume 2, Issue 2, Pages 118–130 (October 1973).
34.  Kaizer, H. A Quantification of Textures on Aerial Photographs. MS thesis, Boston

University, 1955.
35.  Laws, K. I. “Texture Energy Measures.” Proceedings of the Image Understanding

Workshop, November 1979.
36.  Laws, K. I. “Rapid Texture Identification.” SPIE 238 (1980).
37.  Laws, K. I. Textured Image Segmentation. PhD thesis, University of Southern

California, 1980.
38.  Ade, F. “Characterization of Textures by ‘Eigenfilters.’” Signal Processing 5 (1983).
39.  Davis, L. S. “Computing the Spatial Structures of Cellular Texture.” Computer

Graphics and Image Processing 11, no. 2 (October 1979).
40.  Eichmann, G., and T. Kasparis. “Topologically Invariant Texture Descriptors.”

Computer Vision Graphics and Image Processing 41, no. 3 (March 1988).
41.  Lam, S. W. C., and H. H. S. Ip. “Structural Texture Segmentation Using Irregular

Pyramid.” Pattern Recognition Letters 15, no. 7 (July 1994).
42.  Pietikäinen, Matti, Guoying Zhao, and Hadid, Ahonen, Computer Vision Using Local

Binary Patterns. New York: Springer, 2011.
43.  Ojala, T., M. Pietikäinen, and D. Hardwood. “Performance Evaluation of Texture

Measures with Classification Based on Kullback Discrimination of Distributions.”
Proceedings of the International Conference on Pattern Recognition, 1994.

﻿■ Bibliography

439

44.  Ojala T., M. Pietikäinen, and D. Hardwood. “A Comparative Study of Texture
Measures with Classification Based on Feature Distributions.” Pattern Recognition
29 (1996).

45.  Pun, C. M., and M. C. Lee. “Log-polar Wavelet Energy Signatures for Rotation and
Scale Invariant Texture Classification.” Transactions of.Pattern Analysis and Machine
Intelligence 25, no. 5 (May 2003).

46.  Spence, A., M. Robb, M. Timmins, and M. Chantler. “Real-time per-pixel Rendering
of Textiles for Virtual Textile Catalogues.” Proceedings of INTEDEC, Edinburgh,
September, 2003.

47.  Lam, Steven W. C., and Horace H. S. Ip. Adaptive Pyramid Approach to Texture
Segmentation, Computer Analysis of Images and Patterns Lecture Notes in
Computer Science Volume 719, 1993, pp. 267–274.

48.  Dana, K. J., B. van Ginneken, S. K. Nayar, and J. J. Koenderink. “Reflectance
and Texture of Real World Surfaces.” Technical report CUCS-048-96, Columbia
University, 1996.

49.  Dana, K. J., B. van Ginneken, S. K. Nayar, and J. J. Koenderink. “Reflectance and
Texture of Real World Surfaces.” Conference on Computer Vision and Pattern
Recognition, 1997.

50.  Dana, K. J., B. van Ginneken, S. K. Nayar, and J. J. Koenderink. “Reflectance and
Texture of Real World Surfaces.” ACM Transactions on Graphics (1999).

51.  Suzuki, M. T., and Yoshitomo Yaginuma. “A Solid Texture Analysis Based on Three
Dimensional Convolution Kernels.” Proceedings of the SPIE, Volume 6491, (2007).

52.  Suzuki, M. T., Yoshitomo Yaginuma, Tsuneo Yamada, and Yasutaka Shimizu. “A
Shape Feature Extraction Method Based on 3D Convolution Masks. Eighth IEEE
International Symposium on Multimedia, ISM’06. (2006)

53.  Guoying Zhao and Matti Pietikainen. “Dynamic Texture Recognition Using Local
Binary Patterns with an Application to Facial Expressions.” Transations on Pattern
Analysis and Machine Intelligence Volume 29 (2007).

54.  Hadjidemetriou, E., M. D. Grossberg, and S. K. Nayar. “Multiresolution Histograms
and Their Use for Texture Classification.” IEEE PAMI Volume 26.

55.  Hadjidemetriou, E., M. D. Grossberg, and S. K. Nayar. “Multiresolution Histograms
and Their Use for Recognition.” IEEE PAMI (vol. 26 no. 7) (2004).

56.  Lee and Chen, “A New Method for Coarse Classification of Textures and Class
Weight Estimation for Texture Retrieval, Pattern Recognition and Image Analysis.
Vol. 12, no. 4 (2002).

57.  Van Ginneken, Bram, and Jan J. Koenderink. “Texture Histograms as a Function
of Irradiation and Viewing Direction.” International Journal of Computer Vision
31(2/3), 169–184 (1999).

58.  Shu Liao and Albert C. S. Chung. Texture Classification by Using Advanced Local
Binary Patterns and Spatial Distribution of Dominant Patterns. ICASSP 2007. IEEE
International Conference on Acoustics, Speech and Signal Processing, 2007.

59.  Aioanei, Stelu, Arati Kurani, and Dong-Hui Xu. Texture Analysis for Computed
Tomography Studies,. Visual Computing Workshop DePaul University (2004).

60.  Ade, F. “Characterization of Textures by ‘Eigenfilters.’” Signal Processing 5 (1983).
61.  Rosin, Paul L. “Measuring Corner Properties.” Computer Vision & Image

Understanding, Vol.73, No. 2.
62.  Russel, Bryan, Jianxiong Xiao, and Antonio Torralba. “Localizing 3D Cuboids in

Single-view Images.” Conference on Neural Information Processing Systems, 2012.

﻿■ Bibliography

440

63.  Snavely, Noah, Steven M. Seitz, and Richard Szeliski. “Photo Tourism: Exploring
Photo Collections in 3D.” ACM Transactions on Graphics (SIGGRAPH Proceedings)
(2006).

64.  Snavely, Noah, Steven M. Seitz, and Richard Szeliski. “Modeling the World from
Internet Photo Collections.” International Journal of Computer Vision (TBP).

65.  Furukawa, Yasutaka, Brian Curless, Steven M. Seitz, and Richard Szeliski. “Towards
Internet-Scale Multi-View Stereo.” Conference on Computer Vision and Pattern
Recognition, 2010.

66.  Yunpeng Li, Noah Snavely, Dan Huttenlocher, and Pascal Fua. “Worldwide Pose
Estimation using 3D Point Clouds.” European Conference on Computer Vision,
2012.

67.  Russell, B., A. Torralba, K. Murphy, and W. T. Freeman. “LabelMe: A Database and
Web-based Tool for Image Annotation.” International Journal of Computer Vision
Volume 77 (2007).

68.  Oliva, A., and A. Torralba. “Modeling the Shape of the Scene: A Holistic
Representation of the Spatial Envelope.” International Journal of Computer Vision
Volume 42 (2001).

69.  Lai, Kevin, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “A Large-Scale Hierarchical
Multi-View RGB-D Object Dataset.” International Conference on Robotics and
Automation, 2011.

70.  Xiao, J., J. Hays, K. Ehinger, A. Oliva, and A. Torralba. “SUN Database: Large-scale
Scene Recognition from Abbey to Zoo.” Conference on Computer Vision and Pattern
Recognition, 2010.

71.  Fei-Fei, L., R. Fergus, and P. Perona. “Learning Generative Visual Models from
Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object
Categories.” Conference on Computer Vision and Pattern Recognition, 2004.

72.  Fei-Fei, L. “ImageNet: Crowdsourcing, Benchmarking & Other Cool Things.” CMU
VASC Seminar, March 2010.

73.  Pirsiavash, Hamed, and Deva Ramanan. “Detecting Activities of Daily Living
in First-person Camera Views.” Conference on Computer Vision and Pattern
Recognition, 2012.

74.  Quattoni, A., and A. Torralba. “Recognizing Indoor Scenes.” Conference on
Computer Vision and Pattern Recognition, 2009.

75.  Lai, Kevin, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “A Large-Scale Hierarchical
Multi-View RGB-D Object Dataset.” International Conference on Robotics and
Automation, May 2011.

76.  Silberman, Nathan, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. “Indoor
Segmentation and Support Inference from RGBD Images.” European Conference on
Compuper Vision, 2012.

77.  Xiaofeng Ren and Matthai Philipose. “Egocentric Recognition of Handled Objects:
Benchmark and Analysis.” CVPR Workshops 2009.

78.  Xiaofeng Ren and Chunhui Gu. “Figure-Ground Segmentation Improves Handled
Object Recognition in Egocentric Video.” Conference on Computer Vision and
Pattern Recognition, 2009.

79.  Fathi, Alireza, Yin Li, and James M. Rehg, “Learning to Recognize Daily Actions
Using Gaze.” European Conference on Computer Vision, 2012.

﻿■ Bibliography

441

80.  Dana, K. J., B. van Ginneken, S. K. Nayar, and J. J. Koenderink. “Reflectance and
Texture of Real World Surfaces.” Transactions on Graphics (TOG)18, no.1 (January
1999).

81.  Ce Liu, Lavanya Sharan, Edward H. Adelson, and Ruth Rosenholtz. “Exploring
Features in a Bayesian Framework for Material Recognition.” Conference on
Computer Vision and Pattern Recognition, 2010.

82.  Huang, Gary B., Manu Ramesh, Tamara Berg, and Erik Learned-Miller. “Labeled
Faces in the Wild: A Database for Studying Face Recognition in Unconstrained
Environments.” Technical report 07-49, University of Massachusetts, Amherst,
October 2007.

83.  Gross, R., I. Matthews, J. F. Cohn, T. Kanade, and S. Baker. “Multi-PIE.” Proceedings
of the Eighth IEEE International Conference on Automatic Face and Gesture
Recognition, 2008.

84.  Yao, B., X. Jiang, A. Khosla, A. L. Lin, L. J. Guibas, and L. Fei-Fei. “Human Action
Recognition by Learning Bases of Action Attributes and Parts.” International
Conference on Computer Vision, 2011.

85.  Y LeCun, F J Huang, L Bottou, “Learning Methods for Generic Object Recognition
with Invariance to Pose and Lighting.” Proceedings of the Conference on Computer
Vision and Pattern Recognition, 2004.

86.  McCane, B., K. Novins, D. Crannitch, and B. Galvin. “On Benchmarking Optical
Flow.” Computer Vision and Image Understanding 84, no. 1 2001.

87.  Pirsiavash, Hamed, and Deva Ramanan. “Detecting Activities of Daily Living
in First-person Camera Views.” Conference on Computer Vision and Pattern
Recognition, Providence, Rhode Island, June 2012.

88.  Hamarneh, Ghassan, Preet Jassi, and Lisa Tang. “Simulation of Ground-Truth
Validation Data via Physically- and Statistically-Based Warps.” MICCAI 2008, the
11th International Conference on Medical Image Computing and Computer Assisted
Intervention.

89.  Prastawa, Marcel, Elizabeth Bullitt, and Guido Gerig. “Synthetic Ground Truth for
Validation of Brain Tumor MRI Segmentation.” MICCAI 2005, the 8th International
Conference on Medical Image Computing and Computer Assisted Intervention.

90.  Vedaldi, Andrea, Haibin Ling, and Stefano Soatto. “Knowing a Good Feature
When You See It: Ground Truth and Methodology to Evaluate Local Features for
Recognition.” Computer Vision Studies in Computational Intelligence Volume 285,
2010, pp. 27–49.

91.  Dutagaci, Helin, Chun Pan Cheung, and Afzal Godil. “Evaluation of 3D Interest
Point Detection Techniques via Human-generated Ground Truth.” The Visual
Computer September 2012, Volume 28 (2012).

92.  Rosin, Paul L. “Augmenting Corner Descriptors.” Graphical Models and Image
Processing, Volume 58, Issue 3, May 1996.

93.  Rockett, P. I. “Performance Assessment of Feature Detection Algorithms:
A Methodology and Case Study on Corner Detectors.” Transaction on Image
Processing 12, no. 12 (2003).

94.  Shahrokni, A., A. Ellis, and J. Ferryman. “Overall Evaluation of the PETS2009 Results.
IEEE PETS (2009).

﻿■ Bibliography

442

95.  Over, P, Awad, G, Sanders G, Shaw B, Martial M, Fiscus, J, Kraaij, W, Smeaton, AF
“TRECVID 2013: An Overview of the Goals, Tasks, Data, Evaluation Mechanisms,
and Metrics, NIST USA, March 7, 2013.

96.  Horn, B. K. P., and B. G. Schunck. “Determining Optical Flow.” AI memo 572,
Massachusetts Institute of Technology, 1980.

97.  Everingham, M., L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
“The PASCAL Visual Object Classes (VOC) Challenge.” International Journal of
Computer Vision 88, no. 2 (2010).

98.  Liu, Jingen, Jiebo Luo, and Mubarak Shah. “Recognizing Realistic Actions from
Videos ‘in the Wild.’” Conference on Computer Vision and Pattern Recognition,
2009.

99.  Arbelaez, P., M. Maire, C. Fowlkes, and J. Malik. “Contour Detection and
Hierarchical Image Segmentation”. Transactions on Pattern Analysis and Machine
Intelligence, (Volume: 33, Issue: 5) May 2011.

100.  Fisher, R. B. “PETS04 Surveillance Ground Truth Data Set.” Proceedings of IEEE
PETS, 2004.

101.  Quan Yuan, Ashwin Thangali, Vitaly Ablavsky, and Stan Sclaroff. “Learning a Family
of Detectors via Multiplicative Kernels.” Pattern Analysis and Machine Intelligence
(Volume: 33, Issue: 3) (2011).

102.  Ericsson, Anders, and Johan Karlsson. “Measures for Benchmarking of Automatic
Correspondence Algorithms.” JMIV (2007).

103.  Takhar, Dharmpal, et al. “A New Compressive Imaging Camera Architecture using
Optical-Domain Compression. In Proc. IS&T/SPIE Symposium on Electronic
Imaging (2006).

104.  Marco F. Duarte, Richard G. Baraniuk, Kronecker Compressive Sensing, IEEE
Transactions on Image Processing (Volume: 21, Issue: 2) 2012.

105.  Weinzaepfel, Philippe, Herv’e Jegou, and Patrick Perez. “Reconstructing an
Image from Its Local Descriptors.” Conference on Computor Vision and Pattern
Recognition, 2011.

106.  Dalal, Navneet, and Bill Triggs. “Histograms of Oriented Gradients for Human
Detection.” Conference on Computer Vision and Pattern Recognition, 2005.

107.  Tuytelaars1, Tinne, and Krystian Mikolajczyk. Local Invariant Feature Detectors:
A Survey. Foundations and Trends in Computer Graphics and Vision
(Vol 3, Issue 3, 2007, pp. 177–280).

108.  Hartigan, J. A. Clustering Algorithms. New York: John Wiley, 1975.
109.  Fischler, Martin A., and Robert C. Bolles. “Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated Cartography.”
Communications of the ACM Volume 24, no. 6 (June 1981).

110.  Sunglok Choi, Taemin Kim, and Wonpil Yu. “Performance Evaluation of RANSAC
Family.” British Machine Vision Association, (2009).

111.  Hartigan, J. A., and M. A. Wong. “Algorithm AS 136: A K-Means Clustering
Algorithm.” Journal of the Royal Statistical Society, Series C (Applied Statistics)
Vol. 28, No. 1 (1979, pp. 100–108).

112.  Voronoi, Georgy. “Nouvelles applications des paramètres continus à la théorie
des formes quadratiques.” Journal für die Reine und Angewandte Mathematik 133
(1908).

113.  Capel, David. “Random Forests and Ferns.” Penn. State University Compter Vision
Labatory, seminar lecture notes online:. ForestsAndFernsTalk.pdf.

﻿■ Bibliography

443

114.  Xiaofeng Ren and Jitendra Malik. “Learning a Classification Model for
Segmentation.”

115.  Lai, Kevin, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “Sparse Distance Learning for
Object Recognition Combining RGB and Depth Information.”

116.  Xiaofeng Ren and Deva Ramanan. “Histograms of Sparse Codes for Object
Detection.” Conference on Computer Vision and Pattern Recognition, 2013.

117.  Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “Multipath Sparse Coding Using
Hierarchical Matching Pursuit.” Conference on Computer Vision and Pattern
Recognition, 2013.

118.  Herbst, Evan, Xiaofeng Ren, and Dieter Fox. “RGB-D Flow: Dense 3-D Motion
Estimation Using Color and Depth.” IEEE International Conference on Robotics and
Automation (ICRA) 2013.

119.  Xiaofeng Ren and Liefeng Bo. “Discriminatively Trained Sparse Code Gradients for
Contour Detection.” Conference on Neural Information processing Systems, 2012.

120.  Rublee, Ethan, Vincent Rabaud, Kurt Konolige, and Gary Bradski. “ORB: An
Efficient Alternative to SIFT or SURF.” ICCV ’11 Proceedings of the 2011 International
Conference on Computer Vision.

121.  Rosenfeld, A., and J. L Pfaltz. “Distance Functions on Digital Images.” Pattern
Recognition, Pergamon Press 1968 Vol. 1 pp. 33–61.

122.  Richardson, Andrew, and Edwin Olson. “Learning Convolutional Filters For Interest
Point Detection.” IEEE International Conference on Robotics and Automation
ICRA’13, pages 631–637. IEEE, (2013).

123.  Moon, Todd K., and Wynn C. Stirling. Mathematical Methods and Algorithms for
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1999.

124.  Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “Multipath Sparse Coding Using
Hierarchical Matching Pursuit.” Conference on Computer Vision and Pattern
Recognition, 2013.

125.  Xiaofeng Ren and Deva Ramanan. “Histograms of Sparse Codes for Object
Detection.” Conference on Computer Vision and Pattern Recognition, 2013.

126.  Olshausen, B., and D. Field. “Emergence of Simple-cell Receptive Field Properties by
Learning a Sparse Code for Natural Images.” Nature. 1996 Jun 13; 381(6583): 607-9.

127.  d’Angelo, Emmanuel, Alexandre Alahi, and Pierre Vandergheynst. “Beyond Bits:
Reconstructing Images from Local Binary Descriptors.” Swiss Federal Institute of
Technology, 21st International Conference on Pattern Recognition (ICPR), 2012.

128.  Dengsheng Zhang and Guojun Lu. “Review of Shape Representation and
Description Techniques.” Journal ofthe Pattern Recognition SOciety,
No. 37 (2004) 1–19.

129.  Yang Mingqiang, Kpalma Kidiyo, and Ronsin Joseph. “A Survey of Shape Feature
Extraction Techniques.” Pattern Recognition (November 2008), pp. 43–90.

130.  Alahi, Alexandre, Raphael Ortiz, and Pierre Vandergheynst. “Freak: Fast Retina
Keypoint.” Conference on Computer Vision and Pattern Recognition, 2012.

131.  Leutenegger, Stefan, Margarita Chli, and Roland Y. Siegwart. “BRISK: Binary Robust
Invariant Scalable Keypoints.” International Conference on Computer Vision, 2011.

132.  Calonder, Michael, Vincent Lepetit, Christoph Strecha, and Pascal Fua. “BRIEF:
Binary Robust Independent Elementary Features.” ECCV’10 Proceedings of the 11th
European conference on Computer vision: Part IV 2010.

﻿■ Bibliography

444

133.  Calonder, Michael et al. “BRIEF: Computing a Local Binary Descriptor Very Fast.”
Pattern Analysis and Machine Intelligence, Vol. 34 (2012).

134.  Rublee, Ethan, Vincent Rabaud, Kurt Konolige, and Gary Bradski. “ORB: An
Efficient Alternative to SIFT or SURF.” ICCV ’11 Proceedings of the 2011 International
Conference on Computer Vision 2011.

135.  von Hundelshausen, Felix, and Rahul Sukthankar. “D-Nets: Beyond Patch-Based
Image Descriptors.” Conference on Computer Vision and Pattern Recognition, 2012.

136.  Krig, Scott. “RFAN Radial Fan Descriptors.” Picture Center Imaging and
Visualization System, White Paper Series, 1992.

137.  Krig, Scott. “Picture Center Imaging and Visualization System.” Krig Research White
Paper Series, 1994.

138.  Rosten, Edward, and Tom Drummond. “FAST Machine learning for High-speed
Corner Detection.” European Conference on Computer Vision, 2006.

139.  Rosten, Edward, and Tom Drummond, “Fusing Points and Lines for High
Performance Tracking.” International Conference on Ccomputer Vision, 2005.

140.  Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “Hierarchical Matching Pursuit for Image
Classification: Architecture and Fast Algorithms.” Conference on Neural Information
Processing Systems, 2011.

141.  Miksik, Ondrej, and Krystian Mikolajczyk. “Evaluation of Local Detectors and
Descriptors for Fast Feature Matching.” International Conference on Pattern
Recognition, 2012.

142.  Yoav Freund, Robert E Schapire, “A Decision-theoretic Generalization of On-line
Learning and an Application to Boosting.” Journal of Computer and System Sciences
Volume 55, Issue 1, August 1997, Pages 119–139.

143.  Gleason, Josh, BRISK (Presentation by Josh Gleason) at International Conference on
Computer Vision, 2011.

144.  Mikolajczyk, K., and C. Schmid. “A Performance Evaluation of Local Descriptors.”
Pattern Analysis and Machine Intelligence, IEEE Transactions on (Volume: 27,
Issue: 10) (2005).

145.  Gauglitz, Steffen, Tobias Höllerer, and Matthew Turk. “Evaluation of Interest Point
Detectors and Feature Descriptors for Visual Tracking.” International Journal of
Computer Vision Volume 94 Issue 3, September 2011.

146.  Viola and Jones. “Robust Real Time Face Detection.” International Journal of
Computer Vision Volume 57 Issue 2, May 2004.

147.  Thevenaz, P., Urs E. Ruttimann, and M. Unser. “A Pyramid Approach to
Subpixel Registration Based on Intensity.” IEEE Transactions on Image Processing
Volume 7 Issue 1 (1998).

148.  Qi Tian and Michael N. Huhns. “Algorithms for Subpixel Registration.” Computer
Vision, Graphics, and Image Processing Vol. 35 (August 1986).

149.  Jie Zhu and Lei Yang. “Subpixel Eye Gaze Tracking.” Automatic Face and Gesture
Recognition Conference, 2002.

150.  Cheezum, Michael K., William F. Walker, and William H. Guilford. “Quantitative
Comparison of Algorithms for Tracking Single Fluorescent Particles.” Biophysical
Journal Oct 2001; 81(4): 2378–2388.

151.  Guizar-Sicairos, Manuel, Samuel T. Thurman, and James R. Fienup. “Efficient
Subpixel Image Registration Algorithms.” Optics Letters, Vol. 33, Issue 2, pp. 156–158
(2008).

﻿■ Bibliography

445

152.  Hadjidemetriou, E., M. D. Grossberg, and S. K. Nayar. “Multiresolution Histograms
and their Use for Texture Classification.” International Workshop on Texture Analysis
and Synthesis, Volume 26 Issue 7 2003.

153.  Mikolajczyk, K., et al. “A Comparison of Affine Region Detectors.” Conference on
Computer Vision and Pattern Recognition, 2006.

154.  Canny, A. “Computational Approach to Edge Detection. Transactions on Pattern
Analysis and Machine Intelligence 8, no. 6 (November 1986).

155.  Gunn, Steve R. “Edge Detection Error in the Discrete Laplacian of Gaussian.”
International Conference on Image Processing, ICIP 98. Proceedings. 1998 (Volume: 2).

156.  Harris, C., and M. Stephens. “A Combined Corner and Edge Detector.” Proceedings of
the 4th Alvey Vision Conference, 1988.

157.  Shi, J., and C. Tomasi. “Good Features to Track.” Conference on Computer Vision
and Pattern Recognition, 1994.

158.  Turk, Matthew, and Alex Pentland. “Eigenfaces for Recognition.” Journal of
Cognitive Neuroscience, Vol. 3 No. 1, 1991 © MIT Media Lab, 1991.

159.  “Haja, Andreas, Bernd Jahne, and Steffen Abraham. “Localization Accuracy of
Region Detectors.” IEEE CVPR 2008.

160.  Bay, Herbert, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. “Speeded-Up
Robust Features (SURF).” Computer Vision and Image Understanding Volume 110,
Issue 3, June 2008, Pages 346–359.

161.  Lowe, David G. “SIFT Distinctive Image Features from Scale-Invariant Keypoints.”
International Journal of Computer Vision, Volume 60 Issue 2, November 2004 Pages
91–110 (2004).

162.  Kadir, Timor, Andrew Zisserman, and Michael Brady. “An Affine Invariant Salient
Region Detector.” European Conference on Computer Vision, 2004.

163.  Kadir, T., and J. M. Brady. “Scale, Saliency and Image Description.” International
Journal of Computer Vision, Volume 45 Issue 2, November 2001 Pages 83–105.

164.  Smith, Stephen M. and J. Michael Brady. “SUSAN—A New Approach to Low Level
Image Processing”, Technical report TR95SMS1c (patended), Crown Copyright
(1995), 1995, Defence Research Agency, UK.

165.  Smith, Stephen M. and J. Michael Brady. “SUSAN—A New Approach to Low Level
Image Processing, International Journal of Computer Vision archive Volume 23
Issue 1, May 1997 Pages 45–78.

166.  Baohua Yuan, Honggen Cao, and Jiuliang Chu, “Combining Local Binary Pattern
and Local Phase Quantization for Face Recognition.” International Symposium on
Biometrics and Security Technologies, 2012.

167.  Ojansivu, Ville, and Janne Heikkil. “Blur Insensitive Texture Classification Using
Local Phase Quantization.” Proceedings of Image and Signal Processing, 2008.

168.  Chan, C. H, M. A. Tahir, J. Kittler, and M. Pietikäinen. “Multiscale Local Phase
Quantization for Robust Component-based Face Recognition Using Kernel Fusion
of Multiple Descriptors. PAMI (2012).

169.  Ojala, T., M. Pietikäinen, and D. Hardwood. “Performance Evaluation of Texture
Measures with Classification Based on Kullback Discrimination of Distributions.”
Proceedings of the International Conference on Pattern Recognition, 1994.

﻿■ Bibliography

446

170.  Ojala, T., M. Pietikäinen, and D. Hardwood. “A Comparative Study of Texture
Measures with Classification Based on Feature Distributions.” Pattern Recognition
29 (1996).

171.  Pietikäinen, Matti, and Janne Heikkilä. “Tutorial on Image and Video Description
with Local Binary Pattern Variants.” Conference on Computer Vision and Pattern
Recognition, 2011.

172.  Shu Liao and Albert C. S. Chung. Texture Classification by Using Advanced Local
Binary Patterns and Spacial Distribution of Dominant Patterns, IEEE International
Conference on Acoustics, Speech and Signal Processing, 2007. ICASSP.

173.  Pietikäinen, M., A. Hadid, G. Zhao, and T. Ahonen. Computer Vision Using Binary
Patterns, Computational Imaging and Vision Series, vol. 40. New York: Springer, 2011.

174.  Arandjelovi, Arandjelovié, and Andrew Zisserman. “Three Things Everyone Should
Know to Improve Object Retrieval.” Conference on Computer Vision and Pattern
Recognition, 2011.

175.  Guoying Zhao, and Matti Pietikainen. “Dynamic Texture Recognition Using Local
Binary Patterns with an Application to Facial Expressions.” Pattern Analysis and
Machine Intelligence, IEEE Transactions on (Volume: 29, Issue: 6) (2007).

176.  Kellokumpu, Vili, Guoying Zhao, and Matti Pietikäinen. “Human Activity
Recognition Using a Dynamic Texture Based Method.” British machine Vision
Conference 2008.

177.  Zabih, Ramin, and John Woodfill. “Nonparametric Local Transforms for Computing
Visual Correspondence.” European Conference on Computer Vision, 1994.

178.  Lowe, David G. “Object Recognition from Local Scale-Invariant Features.” The
Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999.

179.  Abdel-Hakim, Alaa E., and Aly A. Farag. “CSIFT: A SIFT Descriptor with Color Invariant
Characteristics.” Conference on Computer Vision and Pattern Recognition, 2006.

180.  Vinukonda, Phaneendra. A Study of the Scale-Invariant Feature Transform on a
Parallel Pipeline. Thesis project.

181.  Alcantarilla, Pablo F., Luis M. Bergasa, and Andrew Davison. Gauge-SURF
Descriptors: Elsevier, 2011.

182.  Christopher Evans, “Notes on the OpenSURF Library”, University of Bristol Technical
Paper, January 18, 2009.”

183.  Yan Ke and Rahul Sukthankar. “PCA-SIFT: A More Distinctive Representation for
Local Image Descriptors.” Conference on Computer Vision and Pattern Recognition,
2004.

184.  Gauglitz, Steffen, Tobias Höllerer, and Matthew Turka. “Evaluation of Interest Point
Detectors and Feature Descriptors for Visual Tracking.” International Journal of
Computer Vision, Volume 94 2011.

185.  Agrawal, Motilal, Kurt Konolige, and Morten Rufus Blas. “CenSurE: Center Surround
Extremas for Realtime Feature Detection and Matching.” European Conference on
Computer Vision, 2008.

186.  Viola, Paul, and Michael Jones. “Robust Real-time Object Detection.” International
Journal of Computer Vision 57(2):137–154 (2002).

187.  Grigorescu, S. E., N. Petkov, and P. Kruizinga. “Comparison of Texture Features
Based on Gabor Filters.” IEEE Transactions on Image Processing, (Volume: 11,
Issue: 10) 2002.

188.  Alcantarilla, Pablo, Luis M. Bergasa, and Andrew Davison. Gauge-SURF Descriptors.
IVC(31), No. 1, January 2013, pp. 103–116. Elsevier via DOI 1302.

﻿■ Bibliography

447

189.  Agrawal, M., K. Konolige, and M. R. Blas. “CenSurE: Center Surround Ex-tremas for
Realtime Feature Detection and Matching.” European Conference on Computer
Vision, 2008.

190.  Morse, Bryan S. Lecture 11: Differential Geometry. Brigham Young University,
1998–2000. http://morse.cs.byu.edu/650/lectures/lect10/diffgeom.pdf.

191.  Bosch, Anna, Andrew Zisserman, and Xavier Munoz. “Representing Shape with
a Spatial Pyramid Kernel.”, CIVR ’07 Proceedings of the 6th ACM international
conference on Image and video retrieval.

192.  Rubner, Yossi, Carlo Tomasi, and Leonidas J. Guibas. “The Earth Mover’s Distance
as a Metric for Image Retrieval.” International Journal of Computer Vision Volume 40
Issue 2, Nov. 2000 Pages 99–121.

193.  Oliva, Aude, and Antonio Torralba. “Modeling the Shape of the Scene: A Holistic
Representation of the Spatial Envelope.” International Journal of Computer Vision
(2001).

194.  Matas, J., O. Chum, M. Urba, and T. Pajdla. “Robust Wide Baseline Stereo from
Maximally Stable Extremal Regions.” Proceedings of British Machine Vision
Conference, 2002.

195.  Scovanner, P., S. Ali, and M. Shah. “A 3-dimensional SIFT Descriptor and its
Application to Action Recognition.” ACM Proceedings of the 15th International
Conference on Multimedia, pages 357–360. (2007).

196.  Klaser, A., M. Marszalek, and C. Schmid. “A Spatio-temporal Descriptor Based on
3d-gradients.” British Machine Vision Conference, 2008.

197.  Laptev, I. “On Space-time Interest Points.: Intenational Journal of Computer Vision
64 (2005).

198.  Oreifej, Omar, and Zicheng Liu. “HON4D: Histogram of Oriented 4D Normals for
Activity Recognition from Depth Sequences.” Conference on Computer Vision and
Pattern Recognition, 2013.

199.  Ke, Y., et al. “Efficient Visual Event Detection using Volumetric Features.”
International Conference on Computer Vision, 2005.

200.  Zhang, Lisha, Manuel João da Fonseca, and Alfredo Ferreira. “Survey on 3D Shape
Descriptors.” União Europeia - Fundos Estruturais Governo da República Portuguesa
Referência: POSC/EIA/59938/2004.

201.  Tangelder, Johan W. H., and Remco C. Veltkamp. A Survey of Contrent-based 3D
Shape Retrieval Methods. New York: Springer, 2007.

202.  Heikkila, Marko, Matti Pietikäinen, and Cordelia Schmid. Description of Interest
Regions with Center-Symmetric Local Binary Patterns. Computer Vision, Graphics
and Image Processing Lecture Notes in Computer Science Volume 4338, 2006, pp. 58–69.

203.  Schmidt, Adam, Marek Kraft, Michał Fularz, and Zuzanna Domagała. “The
Comparison of Point Feature Detectors and Descriptors in the Context of Robot
Navigation.” Workshop on Perception for Mobile Robots Autonomy, 2012.

204.  Bongjin Jun and Daijin Kim. “Robust Face Detection Using Local Gradient Patterns
and Evidence Accumulation.” Pattern Recognition Volume 45, Issue 9, September
2012, Pages 3304–3316.

205.  Froba, Bernhard, and Andreas Ernst. “Face Detection with the Modified Census
Transform.” International Conference on Automatic Face and Gesture Recognition,
2004.

206.  Freeman, H. “On the Encoding of Arbitrary Geometric Configurations.” IRE
Transactions on Electronic Computers (1961).

http://morse.cs.byu.edu/650/lectures/lect10/diffgeom.pdf

﻿■ Bibliography

448

207.  Salem, Abdel-Badeeh M., Adel A. Sewisy, and Usama A. Elyan. “A Vertex Chain Code
Approach for Image Recognition.” International Journal on Graphics, Vision and
Image Processing ICGST-GVIP, 2005.

208.  Kitchen, L., and A. Rosenfeld. “Gray-level Corner Detection.” Pattern Recognition
Letters Volume 1 (1992).

209.  Koenderink, J., and W. Richards. “Two-dimensional Curvature Operators.” Journal of
the Optical Society of America JOSA A, Vol. 5, Issue 7, pp. 1136–1141 (1988).

210.  Bretzner, L., and T. Lindeberg. “Feature Tracking with Automatic Selection of Spatial
Scales.” Computer Vision and Image Understanding Volume 71, Issue 3,
September 1998, Pages 385–392.

211.  Lindeberg, T. “Junction Detection with Automatic Selection of Detection Scales
and Localization Scales.” Proceedings of First International Conference on Image
Processing, 1994.

212.  Lindeberg, Tony. “Feature Detection with Automatic Scale Selection.” International
Journal of Computer Vision November 1998, Volume 30, Issue 2, pp. 79–116.

213.  Wang, H., and M. Brady. “Real-time Corner Detection Algorithm for Motion
Estimation.” Image and Vision Computing Volume 13, Issue 9, November 1995,
pp. 695–703.

214.  Trajkovic, M., and M. Hedley. “Fast Corner Detection.” Image and Vision Computing
Volume 16, Issue 2, 20 February 1998, Pages 75–87.

215.  Tola, E., V. Lepetit, and P. Fua. “DAISY: An Efficient Dense Descriptor Applied to
Wide Baseline Stereo.” PAMI (Volume: 32, Issue: 5) 2010.

216.  Arbeiter, Georg, et al. “Evaluation of 3D Feature Descriptors for Classification of
Surface Geometries in Point Clouds.” International Conference on Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ.

217.  Rupell, A., F. Weisshardt, and A. Verl. “A Rotation Invariant Feature Descriptor
O-DAISY and its FPGA Implementation.” IROS, 2011.

218.  Ambai, Mitsuru, and Yuichi Yoshida. “CARD: Compact and Real-time Descriptors.”
International Conference on Computer Vision, 2011.

219.  Takacs, Gabriel, et al. “Unified Real-Time Tracking and Recognition with
Rotation-Invariant Fast Features. Conference on Computer Vision and Pattern
Recognition, 2010.

220.  Taylor, Simon, Edward Rosten, and Tom Drummond. “Robust Feature Matching in
2.3ms.” Conference on Computer Vision and Pattern Recognition, 2009.

221.  Grauman, Kristen, and Trevor Darrell. “The Pyramid Match Kernel: Discriminative
Classification with Sets of Image Features.” IEEE International Conference on
Computer Vision, 2005. ICCV 2005. Tenth (Volume: 2).

222.  Takacs, Gabriel, et al. “Unified Real-Time Tracking and Recognition with
Rotation-Invariant Fast Features. Conference on Computer Vision and Pattern
Recognition, 2010.

223.  Chandrasekhar, Vijay, et al. “CHoG: Com- pressed Histogram of Gradients, a Low
Bitrate Descriptor. Conference on Computer Vision and Pattern Recognition, 2009.

224.  Mainali, Gauthier Lafruit, et al. “SIFER: Scale-Invariant Feature Detector with Error
Resilience.” International Journal on Computer Vision (2013).

225.  Fowers, Spencer G., D. J. Lee, Dan Ventura, and Doran K. Wilde. “A Novel, Efficient,
Tree-Based Descriptor and Matching Algorithm (BASIS).” Conference on Computer
Vision and Pattern Recognition, 2012.

﻿■ Bibliography

449

226.  Fowers, S. G., D. J. Lee, D.A. Ventura, and J. K. Archibald. “Nature Inspired BASIS
Feature Descriptor and its Hardware Implementation.” IEEE Transactions on
Circuits and Systems for Video Technology, 2012.

227.  Bracewell, Ronald. The Fourier Transform & Its Applications, McGraw-Hill Science/
Engineering/Math; 3 edition (June 8, 1999).

228.  Duda, R. O., and P. E. Hart. “Use of the Hough Transformation to Detect Lines and
Curves in Pictures.” Communicaations of the. ACM January 1972.

229.  Ballard, D. H. “Generalizing the Hough Transform to Detect Arbitrary Shapes.”
Pattern Recognition 13, no. 2 (1981).

230.  Illingsworth, J., and K. Kitter. “A Survey of the Hough Transform.” Computer Vision,
Graphics and Image Processing (1988).

231.  Slaton, Gerard, and Michael J. MacGill. Introduction to Modern Information
Retrieval. New York: McGraw-Hill, 1983.

232.  Niebles, Juan Carlos, Hongcheng Wang, and Li Fei-Fei. “Unsupervised Learning of
Human Action Categories Using Spatial-Temporal Words.” International Journal of
Computer Vision (2008).

233.  Bosch, Anna, Andrew Zisserman, and Xavier Muñoz. “Scene Classification via
pLSA.” European Conference on Computer Vision, 2006.

234.  Csurka, G., C. Bray, C. Dance, and L. Fan. “Visual Categorization with Bags of
Key-points.” SLCV workshop, European Conference on Computer Vision, 2004.

235.  Dean, Thomas, Rich Washington, and Greg Corrado, “Sparse Spatiotemporal
Coding for Activity Recognition.” Brown University Tech. Report, 2010.

236.  Quoc V. Le, Will Y. Zou, Serena Y. Yeung, and Andrew Y. Ng, “Learning Hierarchical
Invariant Spatio-temporal Features for Action Recognition with Independent
Subspace Analysis.” Conference on Computer Vision and Pattern Recognition, 2011.

237.  Olshausen, B., and D. Field. “Emergence of Simple-cell Receptive Field Properties
by Learning a Sparse Code for Natural Images.” Nature 381, 607–609 (13 June 1996).

238.  Belongie, Serge, Jitendra Malik, and Jan Puzicha. “Matching with Shape Context.”
CBAIVL ’00 Proceedings of the IEEE Workshop on Content-based Access of Image and
Video Libraries.

239.  Belongie, Serge, Jitendra Malik, and Jan Puzicha. “Shape Context: A New Descriptor
for Shape Matching and Object Recognition.” Conference on Neural Information
processing Systems, 2000.

240.  Belongie, Serge, Jitendra Malik, and Jan Puzicha. “Shape Matching and Object
Recognition Using Shape Contexts.” PAMI (Volume: 24, Issue: 4) (2002).

241.  Belongie, Serge, Jitendra Malik, and Jan Puzich. “Matching Shapes with Shape
Context.” CBAIVL ’00 Proceedings of the IEEE Workshop on Content-based Access of
Image and Video Libraries.

242.  Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “Unsupervised Feature Learning for
RGB-D Based Object Recognition.” ISER, volume 88 of Springer Tracts in Advanced
Robotics, pages 387–402. Springer, (2012).

243.  Loy, Gareth, and Alexander Zelinsky. “A Fast Radial Symmetry Transform for
Detecting Points of Interest.” European Conference on Computer Vision, 2002.

244.  Wolf, Lior, Tal Hassner, and Yaniv Taigman. “Descriptor Based Methods in the Wild.”
European Conference on Computer Vision, 2008.

245.  Kurz, Daniel, and Selim Ben Himane. “Inertial Sensor-aligned Visual Feature
Descriptors.” Conference on Computer Vision and Pattern Recognition, 2011.

﻿■ Bibliography

450

246.  Kingsbury, Nick. “Rotation-Invariant Local Feature Matching with Complex
Wavelets.” Proc. European Conf. Signal Processing (EUSIPCO), 2006.

247.  Dinggang Shen, and Horace H. S. Ip. “Discriminative Wavelet Shape Descriptors for
Recognition of 2-D Patterns.” Pattern Recognition Volume 32, Issue 2, February 1999,
Pages 151–165.

248.  Edelman, S., N. Intrator, and T. Poggio. “Complex Cells and Object Recognition.”
Conference on Neural Information Processing Systems, 1997.

249.  Hunt, R. W. G., and M. R. Pointer. Measuring Colour. Hoboken, NJ: John Wiley, 2011.
250.  Hunt, R. W. G. The Reproduction of Color, Wiley; 6 edition (October 29, 2004).
251.  Berns, Roy S. Billmeyer and Saltzman’s Principles of Color Technology. Hoboken,

NJ: John Wiley, 2000.
252.  Morovic, Jan. Color Gamut Mapping. Hoboken, NJ: John Wiley, 2008.
253.  Fairchild, Mark. Color Appearance Models. Addison Wesley Longman; 1st edition

(January 1998).
254.  Ito, Masayasu, Masayoshi Tsubai, and Akira Nomura. “Morphological Operations

by Locally Variable Structuring Elements and Their Applications to Region
Extraction in Ultrasound Images.” Systems and Computers in Japan Volume 34,
Issue 3, pages 33–43, March 2003.

255.  Tsubai, Masayoshi, and Masayasu Ito. “Control of Variable Structure Elements in
Adaptive Mathematical Morphology for Boundary Enhancement of Ultrasound
Images.” ELECTRONICS AND COMMUNICATIONS IN JAPAN PART 3
FUNDAMENTAL ELECTRONIC SCIENCE; 87, 11; 20–33.

256.  Mazille, J. E. “Mathematical Morphology and Convolutions.” Journal of Microscopy
Vol. 156, (1989).

257.  Achanta, Radhakrishna, et al. “SLIC Superpixels Compared to State-of-the-art
Superpixel Methods.” PAMI (vol. 34 no. 11) (2012).

258.  Achanta, Radhakrishna, et al. “SLIC Superpixels.” EPFL technical report no. 149300,
June 2010.

259.  Felzenszwalb, P., and D. Huttenlocher. “Efficient Graph-based Image Segmentation.”
International Journal of Computer Vision (2004).

260.  Levinshtein, A., et al. “Turbopixels: Fast Superpixels Using Geometric Flows.” PAMI
(2009).

261.  Lucchi, A., et al. “A Fully Automated Approach to Segmentation of Irregularly
Shaped Cellular Structures in EM Images.” MICCAI, 2010.

262.  Shi, J., and J. Malik. “Normalized Cuts and Image Segmentation.” PAMI (2000).
263.  Vedaldi, A., and S. Soatto. “Quick Shift and Kernel Methods for Mode Seeking.”

European Conference on Computer Vision, 2008.
264.  Felzenszwalb, Pedro F., and Daniel P. Huttenlocher. “Efficient Graph-Based

Image Segmentation.” International Journal of Computer Vision September 2004,
Volume 59, Issue 2, pp. 167–181.

265.  Felzenszwalb, P., and D. Huttenlocher. “Efficient Graph-based Image Segmentation.”
International Journal of Computer Vision Volume 59 (2004).

266.  Comaniciu, D., and P. Meer. “Mean Shift: A Robust Approach Toward Feature Space
Analysis.” PAMI (Volume: 24, Issue: 5) (2002).

267.  Vedaldi, A., and S. Soatto. “Quick Shift and Kernel Methods for Mode Seeking.”
European Conference on Computer Vision, 2008.

268.  Vincent, L., and P. Soille. “Watersheds in Digital Spaces: An Efficient Algorithm
Based on Immersion Simulations.” PAMI Volume 13 Issue 6, June 1991.

﻿■ Bibliography

451

269.  Levinshtein, A., et al. “Turbopixels: Fast Superpixels Using Geometric Flows.” PAMI
December 2009 (vol. 31 no. 12).

270.  Scharstein, D., and C. Pal. “Learning Conditional Random Fields for Stereo.”
Conference on Computer Vision and Pattern Recognition, 2007.

271.  Hirschmüller, H., and D. Scharstein. “Evaluation of Cost Functions for Stereo
Matching.” Conference on Computer Vision and Pattern Recognition, 2007.

272.  Goodman, J. W. Introduction to Fourier Optics. new York: McGraw-Hill, 1968.
273.  Gaskill, J. D. Linear Systems, Fourier Transforms, Optics. Hoboken, NJ: John Wiley,

1978.
274.  Thibos, L., R. A. Applegate, J. T. Schweigerling, and R. Webb. “Standards for

Reporting the Optical Aberrations of Eyes.” In OSA Trends in Optics and Photonics,
Vision Science and its Applications, ed. V. Lakshminarayanan. Washington, DC:
Optical Society of America, 2000.

275.  Sun-Kyoo Hwang and Whoi-Yul Kim. “A Novel Approach to the Fast Computation of
Zernike Moments.” Pattern Recognition Vol. 39 (2006).

276.  Khotanzad, Alireza and Yaw Hua Hong. “Invariant Image Recognition by Zernike
Moments.” PAMI Vol. 12 (1990).

277.  Chao Kan, Mandyam, and D. Srinath. “Invariant Character Recognition with Zernike
and Orthogonal Fourier-Mellin Moments.” Pattern Recognition Volume 35,
January 2002,

278.  Hyung Shin Kim, and Heung-Kyu Lee. “Invariant Image Watermark Using Zernike
Moments.” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO
TECHNOLOGY, VOL. 13, NO. 8, AUGUST 200 (2003).

279.  Papakostas, G. A, D. A. Karras, and B. G. Mertzios. “Image Coding Using a Wavelet
Based Zernike Moments Compression Technique.” In proceeding of: Digital Signal
Processing, 2002. Volume: 2 DSP (2002).

280.  Mukundan, R. and K. R. Ramakrishnan. “Fast Computation of Legendre and Zernike
Moments.” Volume 28, Issue 9, September 1995, Pages 1433–1442

281.  Yongqing Xin, Miroslaw Pawlak, and Simon Liao. “Image Reconstruction with Polar
Zernike Moments.” ICAPR’05 Proceedings of the Third international conference on
Pattern Recognition and Image Analysis - Volume Part II 2005.

282.  Singh, Chandan, and Rahul Upneja. “Fast and Accurate Method for High Order
Zernike Moments Computation.” Applied Mathematics and Computation
Volume 218, Issue 15, 1 April 2012, Pages 7759–7773.

283.  Pratt, W., Wen-Hsiung Chen, and L. Welch. “Slant Transform Image Coding.” IEEE
Transactions On Communications (Volume: 22, Issue: 8) 1974.

284.  Enomoto, H., and K. Shibata. “Orthogonal Transform Coding System for Television
Signals.” IEEE Trans. on Electromagnetic Compatibility, (Volume: EMC-13,
Issue: 3) 1974.

285.  Dutra da Silva, Ricardo, William Robson, and Helio Pedrini Schwartz. “Image
Segmentation Based on Wavelet Feature Descriptor and Dimensionality Reduction
Applied to Remote Sensing.” Chilean Journal of Statistics Vol. 2 (2011).

286.  Arun, Nerella, Mani Kumar, and P. S. Sathidevi. “Wavelet SIFT Feature Descriptors
for Robust Face Recognition.” Springer Advances in Intelligent Systems and
Computing Vol. 177 (2013).

287.  Dinggang Shen, and Horace H. S. Ip, “Discriminative Wavelet Shape Descriptors for
Recognition of 2-D Patterns.” Pattern Recognition Vol. 32 (1999).

﻿■ Bibliography

452

288.  Kingsbury, Nick. “Rotation-Invariant Local Feature Matching with Complex
Wavelets.” Proc. European Conf. Signal Processing EUSIPCO, 2006.

289.  Wolfram Research Mathematica Wavelet Analysis Libraries.
290.  Strang, Gilbert. “Wavelets.” American Scientist 82, no. 3 (May-June 1994).
291.  Mallat, Stephane. A Wavelet Tour of Signal Processing: The Sparse Way,

3rd ed.: Elsevier, 2008.
292.  Percival, Donald B., and Andrew T. Walden. Wavelet Methods for Time Series

Analysis. Cambridge: Cambridge University Press, 2006.
293.  Gabor, D.”Theory of Communication.” Journal of the IEE 93 (1946).
294.  Minor, L. G., and J. Sklansky. “Detection and segmentation of Blobs in Infrared

Images.” IEEE Tranactions on Systems Man and Cyberneteics (Vol. 11 Issue 3) (1981).
295.  van Ginkel, M., C. K. Luengo Hendriks, and L. J. van Vliet. “A Short Introduction to

the Radon and Hough Transforms and How They Relate to Each Other.” Number
QI-2004-01 in the Quantitative Imageing Group Technical Report Series 2004.

296.  Toft, P. A. “Using the Generalized Radon Transform for Detection of Curves in
Noisy Images.” 1996 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1996. ICASSP-96. Conference Proceedings., (Volume: 4).

297.  J. Radon. “Über die Bestimmung von Funktionen durch ihre Integralwerte längs
gewisser Mannigfaltigkeiten.” Berichte Sächsische Akademie der Wissenschaften,
Leipzig, Mathematisch-Physikalische Klasse 69 (1917).

298.  Fung, James, Steve Mann, and Chris Aimone. “OpenVIDIA: Parallel GPU Computer
Vision.” Proceedings of the ACM Multimedia, 2005.

299.  Bazin, M. J., and J. W. Benoit. “Off-line Global Approach to Pattern Recognition for
Bubble Chamber Pictures.” Transactions on Nuclear Science 12 (August 1965).

300.  Deans, S. R. “Hough Transform from the Radon Transform.” Transactions on Pattern
Analysis and Machine Intelligence 3, no. 2 (March 1981).

301.  Rosenfeld, A. Digial Picture Processing by Computer. New York: Academic
Press, 1982.

302.  Tomasi, C., and R. Manduchi. “Bilateral Filtering for Gray and Color Images.” ICCV
’98 Proceedings of the Sixth International Conference on Computer Vision (1998).

303.  See the documentation for the Imagej, Imagej2 or Fiji software package for complete
references to each method, [global] Auto Threshold command and Auto Local
Threshold command. http://fiji.sc/ImageJ2.

304.  Garg, Rajesh, Bhawna Mittal, and Sheetal Garg. “Histogram Equalization
Techniques for Image Enhancement.” IJECT, International Journal of Electronics And
Communications Technology Vol. 2 (2011).

305.  Sung, A. Pearce, and C. Wang. “Spatial-temporal Antialiasing.” Transactions on
Visualization and Computer Graphics Vol. 8 (2002).

306.  Mikolajczyk, Krystian, and Cordelia Schmid. “Scale & Affine Invariant Interest Point
Detectors.” International Journal of Computer Vision Vol. 60 (2004).

307.  Ozuysal, Mustafa, Michael Calonder, Vincent Lepetit, and Pascal Fua. “Fast Keypoint
Recognition Using Random Ferns.” PAMI Volume 32 (2010).

308.  Schaffalitzky, F., and A. Zisserman. “Automated Scene Matching in Movies.”
CIVR 2004, In Proceedings of the Challenge of Image and Video Retrieval, London,
LNCS 2383.

http://fiji.sc/ImageJ2

﻿■ Bibliography

453

309.  Tola, E., V. Lepetit, and P. Fua. “A Fast Local Descriptor for Dense Matching.”
Conference on Computer Vision and Pattern Recognition, 2008.

310.  Davis, L. S. “Computing the Spatial Structures of Cellular Texture.” Computer
Graphics and Image Processing 11, no. 2 (October 1979).

311.  Pun, C. M., and M. C. Lee. “Log-polar Wavelet Energy Signatures for Rotation and
Scale Invariant Texture Classification.” Transactions of Pattern Analysis and Machine
Intelligence 25, no. 5 (May 2003).

312.  Spence, A., M. Robb, M. Timmins, and M. Chantler. “Real-time Per-Pixel Rendering
of Textiles for Virtual Textile Catalogues.” Proceedings of INTEDEC, 2003.

313.  Lam, Stephen W. C., and Horace H. S. Ip. Adaptive Pyramid Approach to Texture
Segmentation. Computer Analysis of Images and Patterns Lecture Notes in
Computer Science Volume 719, 1993, pp. 267–274.

314.  Yinpeng Jin, Laura Fayad, and Andrew Laine. “Contrast Enhancement by
Multi-scale Adaptive Histogram Equalization.” Proceedings of SPIE, vol. 4478 2001.

315.  Jianguo Zhang and Tieniu Tan. “Brief Review of Invariant Texture Analysis Methods.”
Pattern Recognition Vol. 35 (2002).

316.  Tomita, Fumiaki, Yoshiaki Shirai, and Saburo Tsuji. “Description of Textures
by a Structural Analysis.” IEEE Transactions on Pattern Analysis and Machine
Intelligence archive Volume 4 PAMI (1982).

317.  Tomita, Fumiaki, and Saburo Tsuji. Computer Analysis of Visual Textures. New York:
Springer, 1990.

318.  Burt, Peter J., and Edward H. Adelson. “The Laplacian Pyramid as a Compact Image
Code.” IEEE Transactions on Communications (1983).

319.  Otsu, Nobuyukk. “A Threshold Selection Method from Gray-level Histograms.” IEEE
Transactions on Systems, Man and Cybernetics 9(1):62–66 TSMC (1979).

320.  Sezgin, M., and B. Sankur. “Survey over Image Thresholding Techniques and
Quantitative Performance Evaluation.” SPIE Journal of Electronic Imaging (2004).

321.  Haralick, Robert M., and Linda G. Shapiro. “Image Segmentation Techniques.”
Computer Vision, Graphics, and Image Processing Volume 29, 1985, Pages 100–132.

322.  Raja, Yogesh, and Shaogang Gong. “Sparse Multiscale Local Binary Patterns”, British
Machine Vision Conference 2006

323.  Fleuret, F. “Fast Binary Feature Selection with Conditional Mutual Information.”
Journal of Machine Learning Research Volume 5, 12/1/2004 (2004).

324.  Szelinski, Richard. Computer Vision, Algorithms and Applications. New York:
Springer, 2011.

325.  Pratt, William K. Digital Image Processing: PIKS Scientific Inside., Wiley-Interscience;
4 edition (February 9, 2007).

326.  Russ, John C. The Image Processing Handbook, CRC Press; 5 edition
(December 19, 2006).

327.  Klein, Georg, and David Murray. “Parallel Tracking and Mapping for Small AR
Workspaces.” IMAR, 2007.

328.  Newcombe, Richard A., et al. “KinectFusion: Real-Time Dense Surface Mapping and
Tracking.” ISMAR ’11 Proceedings of the 2011 10th IEEE International Symposium on
Mixed and Augmented Reality (October 2011).

329.  Izadi, Shahram, et al. “KinectFusion: Real-time 3D Reconstruction and Interaction
Using a Moving Depth Camera.” ACM Symposium on User Interface Software and
Technology, October 2011.

﻿■ Bibliography

454

330.  Moravec, H. “Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover.” Tech Report CMU-RI-TR-3, Robotics Institute, Carnegie-Mellon
University, 1980.

331.  Mikolajczyk, K., and C. Schmid. “Indexing Based on Scale Invariant Interest Points.
International Conference on Computer Vision, 2001.

332.  Turcot, Panu, and David G. Lowe. “Better Matching with Fewer Features: The
Selection of Useful Features in Large Database Recognition Problems.” International
Conference on Computer Vision, 2009.

333.  Feichtinger, Hans G., and Thomas Strohmer. Gabor Analysis and Algorithms.
Birkhäuser; 1997 edition (December 18, 1997).

334.  Ricker, Norman. “Wavelet Contraction, Wavelet Expansion, and the Control of
Seismic Resolution.” Geophysics, v. 18, pp. 769–792, (1953).

335.  Goshtasby, Ardesby. “Description and Discrimination of Planar Shapes Using Shape
Matrices.” PAMI Volume 7 Issue 6, June 1985.

336.  Vapnik, V. N., E. Levin, and Y. LeCun, “Measuring the Dimension of a Learning
Machine.” Neural Computation September 1994, Vol. 6, No. 5, Pages 851–876.

337.  Cowan, J. D., G. Tesauro, and J. Alspector. “Learning Curves: Asymptotic Values and
Rate of Convergence.” Advances in Neural Information Processing Vol. 6 (1994).

338.  Vapnik, V. N. The Nature of Statistical Learning Theory. New York: Springer, 1995.
339.  LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied

to Document Recognition: Intelligent Signal Processing, Proceedings of the
IEEE, 86(11): 2278-2324, November 1998.

340.  Krizhevsky, Alex, Ilya Sutskever, and E. Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks.” Conference on Neural Information Processing
Systems, 2012.

341.  Boser, Bernhard E. Isabelle M. Guyon, and Vladimir N. Vapnik. “A Training
Algorithm for Optimal Margin Classifiers.” COLT ’92 Proceedings of the fifth annual
workshop on Computational learning theory, 1992.

342.  Cortes, Corinna, and Vladimir N. Vapnik. “Support-Vector Networks.” Machine
Learning 20 (1995).

343.  Burges, Christopher J. C. “A Tutorial on Support Vector Machines for Pattern
Recognition.” Kluwer Data Mining and Discovery Vol. 2 (1998).

344.  Weinzaepfel, P., J. Revaud, Z. Harchaoui, and C. Schmid. “DeepFlow: Large
Displacement Optical Flow with Deep Matching.” International Conference on
Computer Vision, 2013.

345.  Keysers, T., C. Deselaers, Gollan, and H. Ney. “Deformation Models for Image
Recognition.” Transactions of PAMI Vol. 20 (2007).

346.  Kim, J., C. Liu, F. Sha, and K. Grauman. “Deformable Spatial Pyramid Matching
for Fast Dense Correspondences.” Conference on Computer Vision and Pattern
Recognition, 2013.

347.  Boureau, Y-Lan, Jean Ponce, and Yann LeCu. “A Theoretical Analysis of Feature
Pooling in Visual Recognition.” IML, 2010. 27TH INTERNATIONAL CONFERENCE
ON MACHINE LEARNING, HAIFA, ISRAEL.

348.  Schmid, Cordelia, and Roger Mohr. “Object Recognition Using Local
Characterization and Semi-local Constraints.” PAMI Volume 19, Number 3 1997.

349.  Ferrari, Vittorio, Tinne Tuytelaars, and Luc Van Gool. “Simultaneous Object
Recognition and Segmentation from Single or Multiple Model Views.” International
Journal of Computer Vision Vol. 67 (2005).

﻿■ Bibliography

455

350.  Schaffalitzky, Frederik, and Andrew Zisserman. “Automated Scene Matching in
Movies.” CIVR, 2002.

351.  Estivill-Castro, Vladimir. “Why So Many Clustering Algorithms—A Position Paper.”
ACM SIGKDD Explorations Newsletter Vol. 4 Issue 1, June 2002.

352.  Kriegel, Hans-Peter, Peer Kröger, Jörg Sander, and Arthur Zimek. “Density-based
Clustering.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
Volume 1, Issue 3, pages 231–240, May/June 2011.

353.  Hartigan, J. A. Clustering Algorithms. Hoboken, NJ: John Wiley, 1975.
354.  Hartigan, J. A., and M. A.Wong. “Algorithm AS 136: A K-Means Clustering

Algorithm.” Journal of the Royal Statistical Society Vol. 28, No. 1 (1979).
355.  Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. Hierarchical Clustering:

The Elements of Statistical Learning, 2nd ed. New York: Springer, 2009.
356.  Dempster, A.P., N. M. Laird, and D. B. Rubin. “Maximum Likelihood from

Incomplete Data via the EM Algorithm.” Journal of the Royal Statistical Society
Series B 39(1): 1–38 (1977).

357.  Pearson, K. “On Lines and Planes of Closest Fit to Systems of Points in Space.”
Philosophical Magazine (1901).

358.  Hotelling, H. “Relations between Two Sets of Variates.” Biometrika
(1936) 28 (3–4): 321–377.

359.  Cortes, Corinna, and Vladimir N. Vapnik. “Support-Vector Networks.” Machine
Learning September 1995, Volume 20, Issue 3, pp. 273–297.

360.  Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed. Englewood Cliffs,
NJ: Prentice-Hall, 1999.

361.  Vapnik, V. Statistical Learning Theory. Hoboken, NJ: John Wiley, 1998.
362.  Hofmann, Thomas, Bernhard Scholkopf, and Alexander J. Smola. “Kernel Methods

in Machine Learning.” The Annals of Statisics Volume 36, Number 3 (2008), 1031 (2008).
363.  Raguram, Rahul, Jan-Michael Frahm, and Marc Pollefeys. “A Comparative

Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample
Consensus.” European Conference on Computer Vision, 2008.

364.  Weinberger, Kilian Q., John Blitzer, and Lawrence K. Saul. “Distance Metric
Learning for Large Margin Nearest Neighbor Classification.” Conference on Neural
Information Processing Systems, 2004.

365.  Schmid, Cordelia, and Roger Mohr. “Local Gray Value Invariants for Image
Retrieval.” PAMI Vol. 19, No. 5. (1997).

366.  Dork, Gyuri, and Cordelia Schmid. “Object Class Recognition Using Discriminative
Local Features.” Technical Report RR-5497, INRIA - Rhone-Alpes - February 2005.

367-376.	 Not used.
377.  Schlkopf, Bernhard, and Alexander J. Smola. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2001.
378.  Ferrari, Vittorio, Tinne Tuytelaars, and Luc Van Gool. “Simultaneous Object

Recognition and Segmentation from Single or Multiple Model Views.” International
Journal of Computer Vision Vol. 67, No. 2 (2006).

379.  Cinbis, Ramaqzan Gokberk, Jakob Verbeek, and Cordelia Schmid. “Segmentation
Driven Object Detection with Fisher Vectors.” International Conference on
Ccomputer Vision, 2013.

380.  Fischler, M., and R. Bolles. “Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.”
Communications of the ACM Volume 24 Issue 6, June 1981 (1981).

﻿■ Bibliography

456

381.  Freund, Yoav, and Robert E. Schapire. “A Short Introduction to Boosting.” Japanese
Society for Artificial Intelligence, Vol. 14, No. 5. (1999).

382.  Freund, Yoav, and and Robert E. Schapire. “A Decision-theoretic Generalization of
On-line Learning and an Application to Boosting.” Journal of Computer and System
Sciences Volume 55, Issue 1, August 1997, Pages 119–139.

383.  Heckerman, David. “A Tutorial on Learning with Bayesian Networks.” Microsoft
Research technical report, 1996.

384.  Amit, Y., and D. Geman. “Shape Quantization and Recognition with Randomized
Trees.” Neural Computation Volume 9 Issue 7, Oct. 1, (1997).

385.  Rabiner, L. R., and B. H. Juang. “An Introduction to Hidden Markov Models.” IEEE
Acoustics, Speech, and Signal Processing magazine (ASSP 1986).

386.  Krogh A, B. Larsson, G. von Heijne, and E. L. Sonnhammer. “Predicting
Transmembrane Protein Topology with a Hidden Markov Model: Application to
Complete Genomes.” Journal of Molecular Biology (2001).

387.  Nister, David, and Henrik Stewenius. “Scalable Recognition with a Vocabulary Tree.”
Conference on Computer Vision and Pattern Recognition, 2006.

388.  Freeman, William T., and Edward H. Adelson. “The Design and Use of Steerable
Filters.” PAMI Volume 13 Issue 9 (1991).

389.  Leung, T., and J. Malik. “Representing and Recognizing the Visual Appearance of
Materials Using Three-dimensional Textons.” International Journal of Computer
Vision Volume 43 Issue 1 (2001).

390.  Schmid, C. “Constructing Models for Content-based Image Retrieval.” Conference
on Computer Vision and Pattern Recognition, 2001.

391.  Alahi, Alexandre, Pierre Vandergheynst, Michel Bierlaire, and Murat Kunt. “Cascade
of Descriptors to Detect and Track Objects Across Any Network of Cameras.”
Computer Vision and Image Understanding Volume 114, Issue 6, June 2010,
Pages 624–640 (2010).

392.  Simard, Patrice, Léon Bottou, Patrick Haffner, and Yann LeCun. “Boxlets: A Fast
Convolution Algorithm for Signal Processing and Neural Networks.” Conference on
Neural Information Processing Systems, 1999.

393.  Vedaldi, Andrea, and Andrew Zisseman. “Efficient Additive Kernels via Explicit
Feature Maps.” PAMI Volume 34 Issue 3 (2012).

394.  Brox, Thomas, and Jitendra Malik. “Large Displacement Optical Flow: Descriptor
Matching in Variational Motion Estimation.” PAMI (Vol. 33 No. 3) (2010).

395.  Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu. “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise.” In Second
International Conference on Knowledge Discovery and Data Mining (1996), pp. 226–231.

396.  Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jorg Sander “OPTICS:
Ordering Points to Identify the Clustering Structure.” SIGMOD ’99 Proceedings of
the 1999 ACM SIGMOD international conference on Management of data.

397.  Muja, Marius, Radu Bogdan Rusu, Gary Bradski, and David G. Lowe. “REIN - A Fast,
Robust, Scalable Recognition Infrastructure.” International Conference on Robotics
and Automation, 2011.

398.  Rusu, R. B., G. Bradski, R. Thibaux, and J. Hsu. “Fast 3D Recognition and Pose Using
the Viewpoint Feature Histogram.” Intelligent Robots and Systems (IROS), 2010.

﻿■ Bibliography

457

399.  Alvaro Collet, Manuel Martinez, and Siddhartha S. Srinivasa. “MOPED: A Scalable
and Low Latency Object Recognition and Pose Estimation System.” International
Conference on Robotics and Automation, 2010.

400.  Jacob, M., and M. Unser. “Design of Steerable Filters for Feature Detection Using
Canny-Like Criteria.” PAMI vol. 26, no. 8 (2004).

401.  Moré, Jorge J. “The Levenberg-Marquardt Algorithm Implementation and Theory.”
Numerical Analysis Lecture Notes in Mathematics Volume 630, 1978, pp. 105–116.

402.  Lecun, Yann. “Learning Invariant Feature Hierarchies.” European Conference on
Computer Vision, 2012.

403.  Ranzato, Marc’Aurelio, Fu-Jie Huang, Y-Lan Boreau, and Yann Le Cun.
“Unsupervised Learning of Invariant Feature Hierarchies with Applications to
Object Recognition.” Conference on Computer Vision and Pattern Recognition, 2007.

404.  Boureau, Y-Lan, Jean Ponce, and Yann LeCun. “A Theoretical Analysis of Feature
Pooling in Vision Algorithms.” International Confeence on Machine Learning, 2010.

405.  Kingma, Diederik, and Yann LeCun. “Regularized Estimation of Image Statistics by
Score Matching.” Conference on Neural Information Processing systems, 2010.

406.  Losson, O., L. Macaire, and Y. Yang. “Comparison of Color Demosaicing Methods.”
Advances in Imaging and Electron Physics Volume 162, 2010, Pages 173–265.

407.  Xin Li, Bahadir Gunturk, and Lei Zhang. “Image Demosaicing: A Systematic Survey.”
Proc. SPIE 6822, Visual Communications and Image Processing 2008, 68221J (2008).

408.  Tanbakuchi, Anthony A. et al. “Adaptive Pixel Defect Correction.” Proc. SPIE 5017,
Sensors and Camera Systems for Scientific, Industrial, and Digital Photography
Applications IV, (16 May 2003).

409.  Ibenthal, Achim. “Image Sensor Noise Estimation and Reduction.”
ITG Fachausschuss 3.2 “Digitale Bildcodierung” (2007).

410.  An Objective Look at FSI and BSI, Aptina White Paper.
411.  Cossairt, O., D. Miau, and S. K. Nayar. “Gigapixel Computational Imaging.” ICCP,

IEEE International Conference on Computational Photography (2011).
412.  Eastman Kodak Company, “E-58 Technical Data / Color Negative Film.” Kodak

160NC Technical Data Manual July 2000.
413.  Kuthirummal, S., and S. K. Nayar. “Multiview Radial Catadioptric Imaging for Scene

Capture.” ACM Trans. on Graphics (also Proc. of ACM SIGGRAPH), Jul, 2006.
414.  Zhou, C., and S. K. Nayar. “Computational Cameras: Convergence of Optics and

Processing.” IEEE Transactions on Image Processing, Vol. 20, No. 12, Dec, 2011.
415.  Krishnan, G., and S. K. Nayar. “Towards A True Spherical Camera.” Proc. SPIE 7240,

Human Vision and Electronic Imaging XIV, 724002 (28 January 2009).
416.  Reinhard, Heidrich, Pattanaik Debevec, Myszkowski Ward, and Morgan Kaufmann.

“High Dynamic Range Imaging, 2nd Edition Acquisition, Display, and Image-Based
Lighting.” Morgan Kaufmann; 2 edition (June 8, 2010).

417.  Gallo, Orazio, et al. “Artifact-free High Dynamic Range Imaging.” IEEE International
Conference on Computational Photography (ICCP) 2009.

418.  Grossberg, M. D., and S. K. Nayar. “High Dynamic Range from Multiple Images:
Which Exposures to Combine?” International Conference on Computer Vision, 2003.

419.  Nayar, S. K., G. Krishnan, M. D. Grossberg, and R. Raskar. “Fast Separation of
Direct and Global Components of a Scene using High Frequency Illumination.”
Proceedings of SIGGRAPH, 2006.

420.  Wilson, T., R. Juskaitis, M. Neil, and M. Kozubek. “Confocal Microscopy by Aperture
Correlation.” Optics Letters, Vol. 21, Issue 23, pp. 1879–1881 (1996).

﻿■ Bibliography

458

421.  Corle, T. R., and G. S. Kino. Confocal Scanning Optical Microscopy and Related
Imaging Systems. New York: Academic Press, 1996.

422.  Fitch, J. Patrick. Synthetic Aperture Radar. New York: Springer-Verlag, 1988.
423.  Ng, Ren, et al. “Light Field Photography with a Hand-held Plenoptic Camera.”

Stanford Tech Report CTSR 2005-02.
424.  Ragan-Kelley, Jonathan, et al. “Decoupling Algorithms from Schedules for

Easy Optimization of Image Processing Pipelines.” ACM Transactions on Graphics
Vol. 31(4) (2012).

425.  Levoy, Marc. “Experimental Platforms for Computational Photography.” Computer
Graphics and Applications Vol. 30 (2010).

426.  Adams, Andrew, et al. “The Frankencamera: An Experimental Platform for
Computational Photography.” Proceedings of SIGGRAPH, 2010.

427.  Salsman, Kenneth. “3D Vision for Computer Based Applications.” Technical Report,
Aptina, Inc., October 2010.

428.  Cossairt, Oliver, and Shree Nayar. “Spectral Focal Sweep: Extended Depth of Field
from Chromatic Aberrations. IEEE International Conference on Computational
Photography (ICCP), Mar, 2010. (see also US Patent EP2664153A1).

429.  Fife, Keith, Abbas El Gamal, and H.-S. Philip Wong. “A 3D Multi-Aperture Image
Sensor Architecture.” Proceedings of the IEEE Custom Integrated Circuits Conference,
pp. 281–284, September 2006.

430.  Wang, Albert, Patrick Gill, and Alyosha Molnar. “Light Field Image Sensors Based on
the Talbot Effect.” Applied Optics, Vol. 48, Issue 31, pp. 5897–5905 (2009).

431.  Shankar, Mohan, et al. “Thin Infrared Imaging Systems Through Multichannel
Sampling.” Applied Optics, Vol. 47, Issue 10, pp. B1-B10 (2008).

432.  Barbara Zitová Jan Flusser, “Image registration methods: a survey”, Image and Vision
Computing Volume 21, Issue 11, October 2003, Pages 977–1000.

433.  Hirschmûller, H. “Accurate and Efficient Stereo Processing by Semi-Global
Matching and Mutual Information.” Conference on Computer Vision and Pattern
Recognition, 2005.

434.  Tuytelaars, Tinne, and Luc Van Gool. “Wide Baseline Stereo Matching based on
Local, Affinely Invariant Regions.” British Machine Vision Conference, 2000.

435.  Faugeras, Olivier. Three Dimensional Computer Vision. Cambridge, MA: MIT
Press, 1993.

436.  Stephen J. Maybank, Olivier D. Faugeras “A Theory of Self-calibration of a Moving
Camera.” International Journal of Computer Vision Volume 8, Issue 2 (1992).

437.  Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge: Cambridge University Press, 2004.

438.  Luong, Q.-T., and O. D. Faugeras. “The Fundamental Matrix: Theory, Algorithms,
and Stability Analysis.” International Journal of Computer Vision Vol. 17 (1995).

439.  Hartley, R. I. “Theory and Practice of Projective Rectification.” International Journal
of Computer Vision Vol. 35 (1999).

440.  Scharstein, Daniel, and Richard Szeliski. “A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms.” International Journal of Computer
Vision Vol. 47 (2002).

441.  Lazaros, Nalpantides, Georgios Christou Sirakoulis, and Antonios Gasteratos.
Review of Stereo Vision Algorithms: From Software to Hardware.” IVO International
Journal of Optomechatronics, Vol. 2, No. 4, 01.01.2008, pp. 435–462, 2008.

﻿■ Bibliography

459

442.  Clark, Daniel E., and Spela Ivekovic. “The Cramer-Rao Lower Bound for 3-D State
Estimation from Rectified Stereo Cameras.” IEEE Fusion (2010).

443.  Nayar, S. K., and M. Gupta. “Diffuse Structured Light.” International Conference on
Computational Photography, 2012.

444.  Cattermole, F. Principles of Pulse Code Modulation. American Elsevier Pub. Co;
1st edition (1969).

445.  Pagès, J., and J. Salvi. “Coded Light Projection Techniques for 3D Reconstruction.”
J3eA, Journal sur l’enseignement des sciences et technologies de l’information et des
systèmes, Volume 4, Hors-Série 3, 1 (2005).

446.  Gu, J., et al. “Compressive Structured Light for Recovering Inhomogeneous
Participating Media.” European Conference on Computer Vision, 2008.

447.  Nayar, Shree K. “Computational Cameras: Approaches, Benefits and Limits.”
Technical Report, Computer Science Department, Columbia University, 2011.

448.  Lehmann, M., et al. “CCD/CMOS Lock-in Pixel for Range Imaging: Challenges,
Limitations and State-of-the-art.” CSEM, Swiss Center for Electronics and
Microtechnology, 2004.

449.  Andersen, J. F., J Busck, and H Heiselberg. “Submillimeter 3-D Laser Radar for Space
Shuttle Tile Inspection.” Danisch Defense Reasearch Establishment, Copenhagen,
Denmark 2013.

450.  Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (Eds.), Time-of-Flight and Depth
Imaging. Sensors, Algorithms, and Applications Lecture Notes in Computer Science,
Springer 2013.

451.  Levoy, Marc, and Pat Hanrahan. “Light Field Rendering.” SIGGRAPH ’96 Proceedings
of the 23rd annual conference on Computer graphics and interactive techniques
(1996).

452.  Curless, Brian, and Marc Levoy. “A Volumetric Method for Building Complex Models
from Range Images.” SIGGRAPH ’96 Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (1996).

453.  Drebin, Robert A., Loren Carpenter, and Pat Hanrahan, “Volume Rendering.”
SIGGRAPH (1988).

454.  Levoy, Marc. “Display of Surfaces from Volume Data.” CG&A (1988).
455.  Levoy, Marc. “Volume Rendering using the Fourier Projection Slice Theorum.”

Technical report CSL-TR-92–521, Stanford University, April 1992.
456.  Klein, Georg, and David Murray. “Parallel Tracking and Mapping on a Camera

Phone.” ISMAR ’09 Proceedings of the 2009 8th IEEE International Symposium on
Mixed and Augmented Reality (2009).

457.  Klein, Georg and David Murray. “Parallel Tracking and Mapping for Small AR
Workspaces.” In Proc. International Symposium on Mixed and Augmented Reality
(ISMAR’07, Nara).

458.  Lucas, B. D., and T. Kanade. “An Image Registration Technique with an Application
to Stereo Vision.” Proceedings of Image Understanding Workshop, 1981.

459.  Beauchemin, S., and J. D. Barron. “The Computation of Optical Flow.” ACM
Computing Surveys Volume 27 Issue 3, Sept. 1995 (1995).

460.  Barron, J., D. Fleet, and S. Beauchemin. “Performance of Optical Flow Techniques.
International Journal of Computer Vision February 1994, Volume 12, Issue 1, pp. 43–77.

461.  Baker, Simon, et al. “A Database and Evaluation Methodology for Optical Flow.”
International Journal of Computer Vision Volume 92, Issue 1, pp. 1–31, (2009).

﻿■ Bibliography

460

462.  Quénot, G. M., J. Pakleza, and T. A. Kowalewski. “Particle Image Velocimetry with
Optical Flow.” In Experiments in Fluids August 1998, Volume 25, Issue 3, pp. 177–189.

463.  Trulls, Eduard, Alberto Sanfeliu, and Francesc Moreno-Noguer, “Spatiotemporal
Descriptor for Wide-Baseline Stereo Reconstruction of Non-Rigid and Ambiguous
Scenes.” European Conference on Computer Vision, 2012.

464.  Steinman, Scott B., Barbara A. Steinman, and Ralph Philip Garzia. Foundations of
Binocular Vision: A Clinical Perspective. New York: McGraw-Hill, 2000.

465.  Roy, S., J. Meunier, and I. J. Cox. “Cylindrical Rectification to Minimize Epipolar
Distortion.” Conference on Computer Vision and Pattern Recognition, 1997.

466.  Oram, Daniel. “Rectification for Any Epipolar Geometry.” British Machine Vision
Conference 2001, BMVC 2001.

467.  Takita, Kenji, et al. “High-Accuracy Subpixel Image Registration Based on Phase-
Only Correlation.” Institute of Electronics, Information and Communication
Engineers(IEICE), 2003.

468.  Huhns, Tian. “Algorithms for Sub Pixel Registration.” CGIP Computer Graphics and
Image Processing, 1986.

469.  Foroosh (Shekarforoush), Hassan, Josiane B. Zerubia, and Marc Berthod. “Extension
of Phase Correlation to Subpixel Registration.” IEEE Transactions on Image
Processing 2002.

470.  Zitnick, Lawrence, and Takeo Kanade. “A Cooperative Algorithm for Stereo Matching
and Occlusion Detection.” Carnegie Mellon University, Technical report
CMU-RI-TR-99-35.

471.  Jian Sun, Yin Li, Sing Bing Kang, and Heung-Yeung Shum. “Symmetric Stereo
Matching for Occlusion Handling.” CVPR ’05 Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Volume 2.

472.  Sing Bing Kang, Richard Szeliski, Jinxiang Chai “Handling Occlusions in Dense
Multi-view Stereo.” Conference on Computer Vision and Pattern Recognition, 2001.

473.  Curless, Brian, and Marc Levoy. “A Volumetric Method for Building Complex Models
from Range Images.” SIGGRAPH Proceedings (1996).

474.  Izadi, Shahram, et al. “KinectFusion: Real-time 3D Reconstruction and Interaction
Using a Moving Depth Camera.” UIST ’11 Proceedings of the 24th annual ACM
symposium on User interface software and technology 2011.

475.  Newcombe, Richard A., et al. “KinectFusion: Real-Time Dense Surface Mapping and
Tracking.” ISMAR ’11 Proceedings of the 2011 10th IEEE International Symposium on
Mixed and Augmented Reality.

476.  Durrant-Whyte, Hugh, and Tim Bailey. “Simultaneous Localisation and Mapping
(SLAM): Part I The Essential Algorithms.” IEEE ROBOTICS AND AUTOMATION
MAGAZINE 2006.

477.  Bailey, Tim, and Hugh Durrant-Whyte. “Simultaneous Localisation and Mapping
(SLAM): Part II State of the Art.” IEEE ROBOTICS AND AUTOMATION MAGAZINE
2006.

478.  Seitz, Steven, et al. “A Comparison and Evaluation of Multi-View Stereo
Reconstruction Algorithms.”, CVPR 2006, vol. 1, pages 519–526.

479.  Scharstein, D., and R. Szeliski. “A Taxonomy and Evaluation of Dense Two-Frame
Stereo Correspondence Algorithms.” International Journal of Computer Vision
Vol. 47 (2002).

480.  Baker, Simon, and Ian Matthews. “Lucas-Kanade 20 Years On: A Unifying
Framework.” International Journal of Computer Vision Vol. 56 (2004).

﻿■ Bibliography

461

481.  Gallup, D., M. Pollefeys, and J. M. Frahm. “3D Reconstruction Using an n-layer
Heightmap.” Pattern Recognition Lecture Notes in Computer Science Volume 6376,
2010.

482.  Newcombe, Richard A., Steven J. Lovegrove, and Andrew J. Davison. “DTAM: Dense
Tracking and Mapping in Real-Time.” International Conference On Computer
Vision (ICCV), pages 2320–2327. IEEE, (2011).

483.  Hwangbo, Myung, Jun-Sik Kim, and Takeo Kanade. “Inertial-aided KLT Feature
Tracking for a Moving Camera.” Intelligent Robots and Systems (IROS) - IEEE 2009.

484.  Lovegrove, S. J., and A. J. Davison. “Real-time Spherical Mosaicing Using Whole
Image Alignment. European Conference on Computer Vision, 2010.

485.  Malis, E. “Improving Vision-based Control Using Efficient Second-order
Minimization Techniques.” International Conference on Robotics and Automation,
2004.

486.  Kaiming He, J. Sun, and X. Tang. “Guided Image Filtering.” European Conference on
Computer Vision, 2010.

487.  Rhemann, Christoph, et al. “Fast Cost-Volume Filtering for Visual Correspondence
and Beyond.” CVPR, pages 3017–3024. IEEE, (2011).

488.  Fattal, R.“Edge-Avoiding Wavelets and Their Applications.” SIGGRAPH (2009).
489.  Gastal, E. S. L., and M. M. Oliveira. “Domain Transform for Edge- Aware Image and

Video Processing.” ACM SIGGRAPH 2011 papers Article No. 69.
490.  Wolberg, George. Digital Image Warping. Hoboken, NJ: John Wiley, 1990.
491.  Baxes, Gregory. Digital Image Processing: Principles and Applications. Hoboken,

NJ: John Wiley, 1994.
492.  Fergus, Rob, et al. “Removing Camera Shake from a Single Photograph.” ACM

Transactions on Graphics (TOG) - Volume 25 Issue 3, July 2006.
493.  Rohr, K. Landmark-Based Image Analysis using Geometric and Intensity Models.

Dordrecht: Kluwer Academic Publishers, 2001.
494.  Corbet Jonathan, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device

Drivers, 3rd ed. O’Reilly Media; 3 edition (February 14, 2005).
495.  Zinner, Christian, Wilfried Kubinger, and Richard Isaacs. “PfeLib—A Performance

Primitives Library for Embedded Vision.” EURASIP, 2007.
496.  Houston, Mike. “OpenCL Overview.” SIGGRAPH OpenCL BOF (2011), also on

KHRONOS website.
497.  Zinner, C., and W. Kubinger. “ROS-DMA: A DMA Double Buffering Method for

Embedded Image Processing with Resource Optimized Slicing.” IEEE RTAS 2006,
Real-Time and Embedded Technology and Applications Symposium (2006).

498.  Kreahling, William C., et al. “Branch Elimination by Condition Merging.”
Euro-Par 2003 Parallel Processing Lecture Notes in Computer Science Volume 2790,
2003.

499.  Ullman, Jeffrey D., and Alfred V. Aho. Principles of Compiler Design Addison-Wesley
(August 1977).

500.  Ragan-Kelley, Jonathan, et al. “Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines.” ACM Transactions on Graphics
(TOG) - SIGGRAPH Volume 31 Issue 4, July 2012.

501.  Alcantarilla, Pablo F., Adrien Bartoli, and Andrew J. Davison. “KAZE Features.”
European Conference on Computer Vision, 2012.

502.  Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. “NIH Image to ImageJ: 25 Years
of Image Analysis.” Nature Methods 9 (2012).

﻿■ Bibliography

462

503.  Muja, Marius. “Recognition Pipeline and Object Detection Scalability.” Summer
2010 Internship Presentation, University of British Columbia.

504.  Viola, Paul A., and Michael J. Jones. “Rapid Object Detection Using a Boosted
Cascade of Simple Features.” Conference on Computer Vision and Pattern
Recognition, 2001.

505.  Swain, Michael, and Dana H. Ballard. “Color Indexing.” International Journal of
Computer Vision Volume 7 (1991).

506.  Zhengyou Zhang. “A Flexible New Technique for Camera Calibration.” EEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11): 1330–1334, 2000

507.  Viola, Paul A., and Michael J. Jones. “Robust Real Time Object Detection.”
International Journal of Computer Vision (2001).

508.  Murase, Hiroshi, and Shree K. Nayar. “Visual Learning and Recognition of 3-D Objects
from Appearance.” Intenational Journal of Computer Vision Volume 14 (1995).

509.  Grosse, R., et al. “Ground-truth Dataset and Baseline Evaluations for Intrinsic Image
Algorithms.” International Conference on Computer Vision, 2009.

510.  Haltakov, Vladimir, Christian Unger, and Slobodan Ilic. “Framework for Generation
of Synthetic Ground Truth Data for Driver Assistance Applications.” Pattern
Recognition Lecture Notes in Computer Science Volume 8142 (2013).

511.  Buades, A., B. Coll, and J.-M. Morel. “A Non-local Algorithm for Image Denoising.”
Computer Vision and Pattern Recognition Vol. 2 (2005).

512.  Agaian, Sos S., Khaled Tourshan, and Joseph P. Noonan. “Parametric Slant-Hadamard
Transforms.” Proceedings of SPIE, 2003.

513.  Sauvola, J., and M. Pietaksinen. “Adaptive Document Image Binarization.” Pattern
Recognition Volume 33, Issue 2, February 2000.

514.  Yen, J. C., F. J. Chang, and S. Chang. “A New Criterion for Automatic Multilevel
Thresholding.” Transactions on Image Processing Volume 4 Issue 3 (1995).

515.  Sezgin, M., and B. Sankur. “Survey over Image Thresholding Techniques and
Quantitative Performance Evaluation.” Journal of Electronic Imaging Volume 13,
Issue 1, January 2004.

516.  Gaskill, Jack D. Linear Systems, Fourier Transforms, and Optics. Hoboken,
NJ: John Wiley, 1978.

517.  Shapiro, L. G., and G. C. Stockman. Computer Vision. Upper Saddle River,
NJ: Prentice-Hall, 2001.

518.  Flusser, Jan, Tomas Suk, and Barbara Zitova. Moments and Moment Invariants in
Pattern Recognition. Hoboken, NJ: John Wiley, 2009.

519.  Mikolajcyk, K., and C. Schmid. “An Affine Invariant Interest Point Detector.”
International Conference on Computer Vision, 2002.

520.  Moravec, Hans P. “Obstacle Avoidance and Navigatio n in the Real World by a Seeing
Robot Rover.” Tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon
University & doctoral dissertation, Stanford University, September, 1980.

521.  Sivic, Josef. “Efficient Visual Search of Videos Cast as Text Retrieval.” PAMI Vol. 31
(2009).

522.  X Tan and B. Triggs. “Enhanced Local Texture Feature Sets for Face Recognition
Under Difficult Lighting Conditions.” AMFG’07 Proceedings of the 3rd international
conference on Analysis and modeling of faces and gestures (2010).

523.  “Scale-space.” Encyclopedia of Computer Science and Engineering, Hoboken,
NJ: John Wiley, 2008.

﻿■ Bibliography

463

524.  Lindeberg, Tony. “Scale-space Theory: A Basic Tool for Analysing Structures at
Different Scales.” Journal of Applied Statistics Vol. 21(2), pp. 224–270, (1994).

525.  Bengio, Yoshua. Learning Deep Architectures for AI, Foundations and Trends in
Machine Learning. Now Publishers Inc USA (October 28, 2009).

526.  Hinton, Geoffrey E., and Simon Osindero. “A Fast Learning Algorithm for Deep
Belief Nets.” Neural Computation July 2006, Vol. 18, No. 7, (2006).

527.  Olson, Ed. “AprilTag: A Robust and Flexible Visual Fiducial System.” Internatinal
Conference on Robotics and Automation, 2011.

528.  Farabet, Clement, et al. “Hardware Accelerated Convolutional Neural Networks for
Synthetic Vision Systems.” ISCAS, pages 257–260. IEEE, (2010).

529.  Tuytelaars, T., and L. Van Gool. “Matching Widely Separated Views Based on Affine
Invariant Regions.” International Journal on Computer Vision Volume 59 (2004).

530.  Fischler, M. A., and R. A. Elschlager. “The Representation and Matching of Pictorial
Structures.” IEE Transactions on Computers (1973).

531.  Felzenszwalb, Pedro F., Ross B. Girshick, David McAllester, and Deva Ramanan.
“Object Detection with Discriminatively Trained Part-Based Models.” PAMI
(vol. 32 no. 9) (2010).

532.  Yi Yang, Deva Ramanan. “Articulated Pose Estimation with Flexible
Mixtures-of-parts.” Conference on Computer Vision and Pattern Recognition, 2011.

533.  Amit, Y., and A. Trouve. “POP: Patchwork of Parts Models for Object Recognition.”
International Journal of Computer Vision Volume 75 (2007).

534.  Lazebnik, S., C. Schmid, and J. Ponce. “Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories.” Conference on Computer
Vision and Pattern Recognition, 2006.

535.  Grauman, K., and T. Darrell, “The Pyramid Match Kernel: Discriminative
Classification with Sets of Image Features.” International Conference on Computer
Vision, 2005.

536.  Michal Aharon, Michael Elad, Alfred Bruckstein “KSVD: An Algorithm for Designing
Overcomplete Dictionaries for Sparse Representation”. IEEE Transaction on Signal
Processing Vol. 64 (2006).

537.  Fei-Fei, L., R. Fergus, and A. Torralba. “Recognizing and Learning Object
Categories.” Conference on Computer Vision and Pattern Recognition, 2007.

538.  Johnson, Andrew. Spin-Images: A Representation for 3-D Surface Matching Ph.D.
dissertation, technical report CMU-RI-TR-97-47, Robotics Institute, Carnegie Mellon
University, 1997.

539.  Zoltan-Csaba Marton, Dejan Pangercic, Nico Blodow, Michael Beetz “Combined
2D-3D Categorization and Classification for Multimodal Perception Systems.”
International Journal of Robotics Research archive Volume 30 Issue 11, September 2011.

540.  Kass, Michael, Andrew Witkin, and Demetri Terzopoulos. “Snakes: Active Contour
Models.” International Journal on Computer Vision (1988).

541.  Tombari, F., S. Salti, and L. Di Stefano. “A Combined Texture-Shape Descriptor for
Enhanced 3D Feature Matching.” International Conference on Image Processing, 2011.

542.  Mikolajczyk, K., and C. Schmid. “Indexing Based on Scale Invariant Interest Points.”
International Conference on Computer Vision, 2001.

543.  Ragan-Kelley, Jonathan, et al. “Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines.” PLDI ’13
Proceedings of the 34th ACM SIGPLAN conference on Programming language design
and implementation 2013.

﻿■ Bibliography

464

544.  Kindratenko, Volodymyr V., et al. “GPU Clusters for High- Performance Computing.”
In Proc. Workshop on Parallel Programming on Accelerator Clusters - PPAC’09, 2009.

545.  Munshi, Aaftab, et al. OpenCL Programming Guide. Addison-Wesley Professional;
1 edition (July 23, 2011).

546.  Prince, Simon. Computer Vision: Models, Learning, and Inference. Cambridge:
Cambridge University Press, 2012.

547.  Lindeberg, Tony. Scale Space Theory in Computer Vision Springer, 2010.
548.  Pele, Ofir. Distance Functions: Theory, Algorithms and Applications. Ph.D. Thesis,

Hebrew University, 2011.
549.  Robert E. Schapire, Yoram Singer, Improved Boosting Algorithms Using Confidence-rated

Predictions, Machine Learning 1999.
550.  Bache, K. & Lichman, M. UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School
of Information and Computer Science, 2013.

551.	 Zach, Christopher. “Fast and High Quality Fusion of Depth Maps.” 3DPVT Joint
3DIM/3DPVT Conference 3D Imaging, Modeling, Processing, Visualization,
Transmission 2008.

http://archive.ics.uci.edu/ml

A�       �
Abbreviations, 417
Acceleration methods, 350–358, 361
Accuracy and trackability, 163
Accuracy optimizations, 165
Adaptive detector tuning method, 148
AdjusterAdapter class, 370
ADL activity recognition dataset, 404
Adopt-And-Modify dataset, 289
Adopt data set, 289
Advanced instruction set items, 357
Affine invariant, 219
Algorithm fitting, 291
Algorithm performance, 286
ALU, 317
Anchor point, 217
Approximated radial gradient

transform (ARGT), 265
Arbitrary periodic functions, 68
Area operations, 51
Array camera, 22
Artifact filtering, 63
Art vs. science ground truth data, 286–287
Attributes, 296
Augmented reality, 345–350
Augmented reality calibration, 346
Auto-correlation, 96
Automobile color, 328
Automobile identification application, 324
Automobile recognition, 323–331
Automobile segmentation, 325
Automobile size and shape, 326–327
Automobile system requirements, 324

B�       �
Back-side-illuminated (BSI) sensor, 5
Bag of words methods, 271

Basis space descriptors, 40, 46, 269–272
Basis space metrics, 118–127
Benefits, 213
Binary/Boolean distance, 143–144, 212
Binary histogram intersection

minimization (BHIM), 183
Binary mask, 310
Binary morphology, 72
Bin mean density, 104
Binning method, 244
Binocular stereo, 14–17
Black point value, 53
Blur invariance, 305
Boosting, 181
Boston University Computer

Science Department, 410
Bounding box, 335
Boxlet method, 361
Bray Curtis distance, 143
BRIEF, 161, 238
BRISK detector, 374–375, 379, 388
BRISK method, 239
BRISK patterns, 155
BSI sensor, 5

C�       �
Cache, 352
Caltech object recognition datasets, 403
Camera calibration, 328, 333
Canberra distance, 143
Candidate edge interest point filters, 219
Canny method, 66
Capturing depth information, 12
Cartesian coordinates, 145
Cartesian models, 25
Cartesian vs. polar coordinates, 27
CAVIAR ground truth videos for

context-aware vision, 410

Index

465

Cell placement aspect ratio, 6
CenSurE and STAR, 249
Census transform, 237
Center Surround Extrema

(CenSurE) method, 249
Center symmetric LBP (CS-LBP), 247
Centroid, 101
Chain code histogram (CCH), 266
Charge-coupled device (CCD) cells, 1
Chebyshev distance, 142
Classified invariant local

feature approach, 88
Clustering methods, 177–178
CMU multi-PIE face database, 406
Coarse-grain parallelism, 353–354
Coding methods/feature descriptors, 119
Color accuracy and precision, 57
Color corrections, 7
Color criteria, 196
Color enhancements, 56
Colorimetry, 51–57
Color management systems, 52
Color morphology, 73
Color segmentation, 77
Color spaces and perception, 55
Columbia-Utrecht Reflectance and

Texture Database, 405
Commercial products, 411
Common data-parallel language, 355
Compact and Realtime Descriptor

(CARD) method, 261
Compressed HOG (CHOG) method, 264
Computational imaging methods, 8–24
Compute-centric vs. data-centric

approaches, 353
Compute complexity, SIFT, 245
Computer system elements, 316
Computer vision, 172–188, 193–194
Conferences, 417
Constraints, 175
Containment measure, 104
Contour/edge histograms, 118
Conventional camera system, 8
Convolutional filtering and detection, 58
Convolutional neural networks, 186
Co-occurrence matrices. See Extended

SDM metrics
Coordinate and complex spaces, 144
Corner, 217, 219, 295
Corrected coverage, 102
Correlation, 217

Correlation distance, 141
Correlation templates, 149, 251
Correspondence process, 17
Cosine distance/similarity, 140
Cosine modulated Gaussian (CMG), 247
Costs, 213
Covariant, 219
CPUs, 317
CPU threads, 344
CRCV, 409
Create dataset, 289
Criteria resource assignments, 349
Cross-correlation, 96
CSIFT, 242
CS-LBP retrofit, 247
Curless and Levoy method, 31

D�       �
Daisy, 260–261
Data access pattern taxonomy, 359
Data composition, 292
Data construction, 289–292
Data conversions, 51
Data fitting, 291
Data labeling, 293
Dataset creation, 284
Data structures, 353
Data tiling, 350
Data transfers, 351
Data types, 206, 315, 361
Dead pixel correction, 7
Deep learning approach, 188
Deformable patches, 149
De-mosaicking, 6
Dense depth methods, 25
Dense depth-sensing methods, 24
Dense search, 166
Dense Tracking and

Mapping (DTAM), 34
Depth fusion, 26–27
Depth granularity, 28
Depth segmentation, 76
Depth/Z limited search, 171
Descriptor concatenation, 232
Descriptor density, 147
Descriptor memory, 207
Descriptor-NETS (D-NETS), 266
Descriptor representation, 144–147
Descriptor shape topology, 149–153
Detector, 132, 365

■ index

466

Determinant of Hessian (DoH) method, 223
Device color models, 54
Difference of Gaussian (DoG)

method, 169, 223, 241
Difference of Hexagons (DoH), 250
Diffraction gratings, 19
Digital mirror device (DMD), 9
Digital signal processor (DSP), 314, 317
Digital terrain mapping, 14
Directionality, 231
Direct memory access (DMA), 352
Discrete cosine transform (DCT), 70
Discrete sine transform (DST), 70
Discrimination and uniqueness, 199
Discriminative query expansion

(DQE) method, 249
Distinctive vs. indistinctive feature, 137
DMA unit, 352
D-NETS. See Descriptor-NETS (D-NETS)
DoG, 223, 241
drawkeypoints () function, 374, 384
d-token, 267
DynamicAdaptedFeatureDetector

class, 369
Dynamic range and noise, 6
Dynamic textures, 233–234

E�       �
Earth movers distance (EMD), 142
Edge-based region methods (EBR), 219
Edge contrast, 94
Edge density, 94
Edge detectors, 64–67
Edge directivity, 95
Edge entropy, 94
Edge linearity, 95
Edge metrics, 93
Edge periodicity, 95
Edge primitive length measures, 96
Edge size, 95
Efficiency variables, 199, 213
Efficient Second Order Minimization

(ESM) method, 35
Eigen property, 221
EMD/Wasserstein metrics, 142
Euclidean/Cartesian

distance, 140–141, 211
Euclidean distance maps (EDM), 74
Expectations, 370
Extended SDM metrics, 100–106

F�       �
Face, emotion, and age

recognition, 331–340
Faces in the wilds, 406
Facial feature ratios, 334
Facial landmarks location, 336
FAST detector, 380, 389
Fast Fourier transform (FFT), 96
Fast Hartley transform, 70
FAST method, 225
Fast wavelet transform (FWT), 125
Feature density, 208
Feature description, 16, 134
Feature descriptors, 134, 192, 201, 217,

244, 327–328, 342, 360
Feature detection, 230, 305
Feature learning terminology, 183
Feature metric evaluation (FME), 213–215
Feature pattern, 207
Feature pyramids, 147, 169
Feature search methods, 209
Feature shapes, 207
Feature space, 172
FERNS training, 183
FFT spectrum, 96
Fine-grain data parallelism, 354–356
Finer-grain and metric composition

approaches, 88
FME. See Feature metric evaluation (FME)
Fourier description, 121
Fourier descriptors, 269
Fourier methods, 29
Fourier transforms, 68–70
Foveon method, 5
Fractal methods, 91
FREAK, 154–155, 161, 240
FREAK retinal pattern, 154

G�       �
Gabor functions, 127
Gamma-curve correction method, 6
Gamut mapping, 55–56
Gauge coordinates, 146
Gaussian filter, 219
Gaussian weighting method, 165
General vision taxonomy, 301
Geometric calibration, 16
Geometric corrections, 7
Geometric discrimination factors, 160

■ Index

467

Geometric distortion, 198
Geometric modeling, 25
Georgia Tech GTEA, 405
GFFT detector, 377, 387
Global auto thresholding, 80
Global histograms, 112
Global thresholding, 77–81
Global uniform texture metrics, 90
GLOH. See Gradient Location and

Orientation Histogram (GLOH)
Good feature descriptors, 135
GPGPU, 356
GPUs, 317
Gradient-ascent-based super-pixel

methods, 75
Gradient direction, 220
Gradient Location and Orientation

Histogram (GLOH), 244–246
Gradient magnitude, 220
Graph-based super-pixel methods, 75
Gray level co-occurrence matrices

(GLCM). See Extended
SDM metrics

Gray scale morphology, 73
GridAdaptedFeatureDetector class, 370
Grid distance family, 212
Grid distance metrics, 141–142
Grid search method, 166
Ground truth correspondence

measure (GCM), 286
Ground truth data, 284–311, 333, 346

H�       �
HAAR-like features, 252–254
HAAR transforms, 123
Hamming distance, 144
Haralick texture metrics, 99
HARRIS detector, 381, 390
Harris–Hessian-affine method, 223
Harris–Hessian–Laplace method, 223
Harris–Laplace method, 222
Harris–Stephens corner detector, 222
Hellinger distance, 141
Hessian-affine corner detector, 379
Hessian–Laplace method, 223
Hessian matrix method, 220, 223
Hierarchical Matching Pursuit

method (HMP), 271
High dynamic range (HDR) cameras, 11
High frame rate (HF) cameras, 12

Histogram equalization, 79, 136
Histogram of Gradients

(HOG), 241, 244, 257
Histograms of Sparse Codes (HSC), 271
Histogram specification, 80
Historical survey of features, 86–89
HOG. See Histogram of Gradients (HOG)
HOG descriptor, 160
Hole filling, 17
Holes and occlusion, 30
HON 4D, 280
Horopter region, 26
Hotelling transforms, 125
Hough and Radon transforms, 127
Human expectations vs.

machine vision, 304
Hybrid synthetic interest points, 309
Hypothetical assignment, 314
Hysteresis thresholds, 78

I�       �
I-LIDS, 408
Illuminants, 53
Illumination attributes, 196
Image classification, 340–344
Image coding, 271
Image moments, 109, 272
ImageMultiply, 310
Imagenet + Wordnet, 403
Image processing and

computer vision, 120
Image processing operator, 228
Image pyramids, 253
Image reconstruction, 213
Image sensor technology, 1–7
Incompleteness attributes, 197
Integral image contrast filters, 81
Integral images and box filters, 63
Integral volume method, 279
Intel Labs Seattle, 405
Intensity-based region methods (IBR), 219
Interest point detector, 134, 217–227
Interest points, 135, 205, 295
Invariant texture metrics, 92
I/O performance, 322

J�       �
Jaccard similarity and dissimilarity, 144
Journals, 417

■ index

468

K�       �
Karhunen–Loeve transform (KLT), 125
Kernel filtering and shape selection, 60
Kernel machines, 181
Kernel sets, 64
Keypoints, 217, 369
Kinect Fusion approach, 31
KITTI benchmark suite, 403
K-means method, 183

L�       �
Landmark detection steps, 337
Laplacian derivative, 220, 222
Laplacian of Gaussian (LOG), 222
Laser-stripe pattern methods, 18
Laws metrics, 106
LBP. See Local binary pattern (LBP)
LBP histogram, 229, 231
LBP kernels, 229
LBP variants, 234
Learned convolution masks, 186
Learned features, 176
Lens and sensor configurations, 14
Levenberg–Marquardt method, 33
Linearity strength, 106
Linearity variation, 104
Linear ramp function, 78
Line operations, 50
L0 norm, 143
Local auto threshold methods, 82
Local binary descriptors, 40, 43, 228–241
Local binary pattern

(LBP), 91, 108, 214–215, 228–241
Local curvature methods, 226
Local feature approaches, 87
Local gradient pattern (LGP), 267
Local histogram equalization, 81
Localized guided-filter method, 34
Local phase quantization (LPQ), 268
Local region histograms, 113
Local texture, 228
Local thresholding, 81–83
Locus length measures, 103
Locus mean density, 103
Lookup tables (LUTs), 78
Low-frequency coverage, 102
Low-pass filter shape, 69
LPB-TOP, 234
Lucas Kanade (LK) method, 35

M�       �
Mahalanobis distance, 143
Manhattan distance, 141
Manual and compiler methods, 359
Manually designed feature detectors, 175
Markov random field methods, 91
Matching cost and correspondence, 137
Maximally stable extremal region

(MSER) method, 30, 227, 273
Memory bandwidth, 321
Memory issues, 319
Memory optimizations, 351
Memory size, 322
Memory system, 352
Microsoft Research Cambridge, 408
Middlebury computer vision

datasets, 404
Mikolajczyk and Schmidt methodology

(M&S), 286, 295
MIT Flickr material surface category

dataset, 406
MIT indoor scenes scene

classification, 67, 404
Modified census transform (MCT), 237
Modified discrete cosine

transform (MDCT), 70
Modified upright SURF (MU-SURF), 250
Monocular depth processing, 32
Monocular depth sensing, 25
MOPED, 181
Moravac corner detector, 222
Morphological method, 227
Morphology optimizations and

refinements, 73
Mosaic method, 4–5
MSER detector, 378, 393
MSER method, 273
Multidimensional descriptor, 133
Multigeometry descriptor, 133
Multi-modal feature metrics fusion, 88
Multimodal sensor data, 146
Multi-patch sets, 150
Multi-probe locally sensitive

hashing (MP-LSH), 238
Multi-resolution histograms, 117
Multi-scale pyramid search, 167
Multivariate descriptor, 133
Multivariate spaces, 146
Multi-view stereo (MVS), 14, 17, 25, 32
MVS depth map, 343

■ Index

469

N�       �
Neighborhood comparison, 231
Neutral axis, 53
Noise, 32, 63, 305
Noise-filtering methods, 6
NORB 3D object recognition

from shape, 407
Normalized cross-correlation (NCC), 251
Nyquist frequency, 2
NYU depth datasets, 405

O�       �
Object models, 173
Object polygon shapes, 152
Object shape metrics, 274
Octave count, 373, 384
O-Daisy, 261
Online resources, 411
OpenCV test methodology, 368–370
Open rating systems, 295
Open source project, 412
Operations and compute

resources, 340, 344, 349
Optical flow, 24, 34, 407, 409
Optionally normalization, 232
ORB detector, 378, 392
Organizations, institutions,

and standards bodies, 415–416
Oriented BRIEF (ORB), 156, 238
Overlays and tracking, 347

P�       �
Paint color, 326
Pairing and tuning, 301
Pairing metrics, 300–303
Panum’s area, 26
Parallel 1D FFT line transforms, 68
Parallelization, 68
Parallel Tracking and

Mapping (PTAM), 33
Partial-object approaches, 87
Pascal object recognition VOC

challenge dataset, 409
Pattern pair sampling, 210
Pattern recognition, 271
Pattern region size, 211
Peaks and valleys histogram, 78
PETS crowd sensing dataset challenge, 407

Photo-diode cells, 2–3, 3
Photo mosaicking, 14
Photonic mixer device (PMD), 21
Pipeline operations and compute

resources, 330
Pipeline stages and

operations, 329, 338, 348
Plenoptic methods, 23
Point filtering, 61
Point metrics, 110
Point operation, 50
Point-pair patterns, 228
Point-pair sampling method, 153
Polar and log polar coordinates, 145
Polygon shape descriptors, 40, 47, 272–278
Pooling, 165
Positive and negative training, 284
Power usage, 318
Principal Curvature Descriptors (PCD), 278
Probability density function (PDF), 224
PyramidAdaptedFeatureDetector

class, 218, 370
Pyramid Histogram of Oriented

Gradients (PHOG), 258

Q�       �
Quality performance, 286

R�       �
Radial cameras, 22
Radial coordinates system, 145
Radial gradient transform (RGT), 264
Radial histograms, 118
Radius-based surface

descriptors (RSD), 278
Randomized trees method, 182
Real applications, robustness criteria, 299
Real image overlays, 306
Receiver operating characteristic

(ROC), 287
Rectangle patterns, 252
Rectification process, 16
Region-limited search, 170
Region segmentation, 328
REIN method, 181
Relative and absolute position, 137
Relative power, 103
Repeatability, 136, 306
Resolution and accuracy, 197

■ index

470

Resource assignments, 330, 339
RGB-D object recognition dataset,

U of W, 404
Robust fast feature matching method, 263
Robustness criteria, 194–199
RootSift method, 248
Rosin corner metrics, 287
Rosin’s method, 238
Rotational invariance, 232, 305
Rotation invariant fast features

(RIFF) method, 264

S�       �
Salient regions, 224
Scale invariance, 305
Scale invariant detectors, 219
Scale invariant feature detector with error

resilience (SIFER) method, 247
Scale invariant feature transform

(SIFT), 213–214, 241–249
Scale-invariant interest points, 244
Scale selection method, 223
Scale space and image pyramids, 168
Scale space pyramid creation, 242
Scatter diagram, 113
Scene and object modeling

approaches, 88
SDM extended metrics, 419
Segmentation limited search, 171
Segmentation method, 229
Sensor materials, 2
Sensor processing, 6
Sensor stacking method, 4
Serial/algorithmic code, 51
SFM. See Structure from motion (SFM)
Shader kernel languages and GPGPU, 356
Shape-based regions (SBR), 219
Shape context method, 277
Shape factors, 215, 327
Shape features, 327
Shapes and patterns discrimination, 159
Shape selection/forming Kernels, 61
Shi, Tomasi and Kanade

corner detector, 223
Shi–Tomasi method, 301
SIFT. See Scale invariant feature

transform (SIFT)
SIFT descriptor, 354
SIFT detector, 382, 391
SIFT features, 30, 162

SIFT-PCA method, 246
SIFT vertex descriptor, 347
Signatures of Histogram Orientations

(SHOT), 278
Silicon-based image sensors, 2
SIMPLE BLOB detector, 375, 385
Simultaneous localization and mapping

(SLAM), 25, 35
Sine and cosine transform, 70
Sine and cosine waves, 67
Single and sub-patches, 149
Single instruction multiple

data (SIMD), 355
Single instruction multiple

threading (SIMT), 355
Single-pixel cameras, 9
Single program multiple data (SPMD), 355
6 degrees-of-freedom (6DOF), 31–32
64-bit double precision floating

point numbers, 69
SLAM. See Simultaneous localization

and mapping (SLAM)
Slant transform, 123
SNAKES method, 277
SOC components, 317
Sparse coding, 184, 271
Sparse depth methods, 25
Sparse depth-sensing methods, 24
Sparse local pattern methods, 133
Sparse predictive search pipeline, 170
Spatial filtering method, 57–64
Spatial single-pattern methods, 17
Spatio-temporal applications, 228
Spectra descriptor family, 40, 45
Spectra dimensions, 201
Spectra discrimination, 158
Spectral type, 201
Speeded-up robust features

method (SURF), 254–256
Spherical camera, 11–13
Spherical coordinates system, 146
Spherical mosaicking method, 26
Squared Euclidean distance, 140
SSD/L2 norm, 140
Stacking method, 4
Stages, operation, and resources, 314
Stanford 40 actions, 406
Stanford 3D scanning repository, 402
STAR detector, 376, 386
Statistical difference metrics, 142–143
Statistical distance family, 212

■ Index

471

Statistical methods, 92, 175
Statistical region metrics, 109–118
Steerable filters, 124
Stereo calibration, 14
Storage formats, 206
Strip and radial fan shapes, 151
Structural and model-based

approaches, 91
Structured light method, 17, 30
Structure from motion (SFM), 25, 35, 41
Sub-pixel accuracy, 29, 165
Sub-region overlapping, 165
Summary bin counts, 397
Summary count, 372, 383
Sum of absolute differences

(SAD), 140, 251
Sum of squared differences (SSD), 140
SUN, 402
SURF. See Speeded-up Robust

Features Method (SURF)
Surface reconstruction and fusion, 30
SURF detector, 383, 392
Survey data, 289
SUSAN method, 30, 224, 224–225
Synthetic alphabets overlays, 371
Synthetic apertures, 10
Synthetic corner alphabet, 307–308
Synthetic corner point alphabet, 371
Synthetic feature alphabets, 303–360
Synthetic interest point

alphabet, 306–307, 371
Synthetic overlay images, 393
System-on-a-chip (SOC), 316
System requirements, 345

T�       �
Texture analysis, 90–92
Texture region metrics, 93–109
Threads and multiple cores, 354
3D cylindrical distortion, 26
3D HOG, 279
3D medical imaging, 14
3D representations, 35
3D SIFT, 280
3D surface fusion, 25
3D surface reconstruction, 25
3D texture, 92
Timed multiplexing multi-pattern

methods, 17

Time-of-flight (TOF) sensor, 20
Total coverage, 101
Total power, 102
Training, and statistical learning, 177
Training system, 176
Trajkovic and Hedly method, 225
TRECVID, NIST, US government, 408
Triangulation, 17
Tuning controls, 360
Tuning parameters, 368
2D array camera, 10
2D Euclidean model, 25
2x oversampling, 2

U�       �
UCB contour detection and image

segmentation, 410
UC Irvine machine learning

repository, 402
Univalue Segment Assimilating

Nucleus (USAN), 224
Use-case fitting, 291

V�       �
Viewpoint Feature Histogram (VFH), 278
Vignette correction, 7
Viola Jones method, 254
Vision optimization resources, 362
Vision pipelines, 40, 131, 313–363
Visual metric taxonomy, 302
Visual vocabulary, 185, 271
Volume LBP (VLBP), 233

W, X, Y�       �
Wafer-scale cameras, 1
Walsh–Hadamard transform, 122
Wang and Brady method, 226
Wavelets, 97, 253
Weighting values, 230
White point color value, 53
Whole object approaches, 87

Z�       �
Zernike polynomials, 124
Zero-mean normalized cross-correlation

(ZNCC), 251

■ index

472

Computer Vision
Metrics

Survey, Taxonomy, and Analysis

Scott Krig

Computer Vision Metrics: Survey, Taxonomy, and Analysis

Scott Krig

Copyright © 2014 by Apress Media, LLC, all rights reserved

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, electronically
without modification, for non-commercial purposes only. However, you have the additional right to use
or alter any source code in this Work for any commercial or non-commercial purpose which must be
accompanied by the licenses in (2) and (3) below to distribute the source code for instances of greater than
5 lines of code. Licenses (1), (2) and (3) below and the intervening text must be provided in any use of the
text of the Work and fully describes the license granted herein to the Work.

(1) License for Distribution of the Work: This Work is copyrighted by Apress Media, LLC, all rights
reserved. Use of this Work other than as provided for in this license is prohibited. By exercising any of the
rights herein, you are accepting the terms of this license. You have the non-exclusive right to copy, use and
distribute this English language Work in its entirety, electronically without modification except for those
modifications necessary for formatting on specific devices, for all non-commercial purposes, in all media
and formats known now or hereafter. While the advice and information in this Work are believed to be true
and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express
or implied, with respect to the material contained herein.

If your distribution is solely Apress source code or uses Apress source code intact, the following licenses
(2) and (3) must accompany the source code. If your use is an adaptation of the source code provided by
Apress in this Work, then you must use only license (3).

(2) License for Direct Reproduction of Apress Source Code: This source code, from Computer Vision
Metrics: Survey, Taxonomy, and Analysis, ISBN 978-1-4302-5929-9 is copyrighted by Apress Media,
LLC, all rights reserved. Any direct reproduction of this Apress source code is permitted but must contain
this license. The following license must be provided for any use of the source code from this product of
greater than 5 lines wherein the code is adapted or altered from its original Apress form. This Apress code is
presented AS IS and Apress makes no claims to, representations or warrantees as to the function, usability,
accuracy or usefulness of this code.

(3) License for Distribution of Adaptation of Apress Source Code: Portions of the source code provided are
used or adapted from Computer Vision Metrics: Survey, Taxonomy, and Analysis, ISBN 978-1-4302-5929-9
copyright Apress Media LLC. Any use or reuse of this Apress source code must contain this License. This Apress
code is made available at Apress.com/978143026136-0 as is and Apress makes no claims to, representations or
warrantees as to the function, usability, accuracy or usefulness of this code.

ISBN-13 (pbk): 978-1-4302-5929-9

ISBN-13 (electronic): 978-1-4302-5930-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

President and Publisher: Paul Manning
Lead Editors: Steve Weiss (Apress); Stuart Douglas (Intel)
Technical Reviewers: Sanjay Addicam and Shahzad Malik
Coordinating Editor: Melissa Maldonado
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

http://Apress.com/978143026136-0
http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com

iii

About ApressOpen

What Is ApressOpen?
ApressOpen is an open-access book program that publishes •	
high-quality technical and business information.

ApressOpen eBooks are available for global, free, •	
noncommercial use.

ApressOpen eBooks are available in PDF, ePub, and Mobi formats.•	

The user friendly ApressOpen free eBook license is presented on •	
the copyright page of this book.

Thanks to my wife Janie, family, and parents for being part of my life.

vii

Contents

About the Author���xxvii

Acknowledgments��xxix

Introduction��xxxi

Chapter 1: Image Capture and Representation■■ �������������������������������� 1

Image Sensor Technology�� 1

Sensor Materials�� 2

Sensor Photo-Diode Cells��� 3

Sensor Configurations: Mosaic, Foveon, BSI�� 4

Dynamic Range and Noise��� 6

Sensor Processing�� 6

De-Mosaicking��� 6

Dead Pixel Correction��� 7

Color and Lighting Corrections��� 7

Geometric Corrections�� 7

Cameras and Computational Imaging�� 8

Overview of Computational Imaging�� 8

Single-Pixel Computational Cameras��� 9

2D Computational Cameras�� 10

3D Depth Camera Systems��� 12

Binocular Stereo�� 14

Structured and Coded Light��� 17

Optical Coding: Diffraction Gratings��� 19

■ Contents

viii

Time-of-Flight Sensors�� 20

Array Cameras�� 22

Radial Cameras��� 22

Plenoptics: Light Field Cameras��� 23

3D Depth Processing�� 24

Overview of Methods�� 25

Problems in Depth Sensing and Processing��� 25

The Geometric Field and Distortions�� 26

The Horopter Region, Panum’s Area, and Depth Fusion���26

Cartesian vs. Polar Coordinates: Spherical Projective Geometry���27

Depth Granularity��28

Correspondence�� 29

Holes and Occlusion��30

Surface Reconstruction and Fusion���30

Noise��� 32

Monocular Depth Processing��� 32

Multi-View Stereo�� 32

Sparse Methods: PTAM�� 33

Dense Methods: DTAM�� 34

Optical Flow, SLAM, and SFM�� 34

3D Representations: Voxels, Depth Maps, Meshes, and Point Clouds���� 35

Summary�� 37

Chapter 2: Image Pre-Processing■■ �� 39

Perspectives on Image Processing�� 39

Problems to Solve During Image Pre-Processing���������������������������������� 40

Vision Pipelines and Image Pre-Processing��� 40

Corrections��� 42

Enhancements�� 43

■ Contents

ix

Preparing Images for Feature Extraction�� 43

Local Binary Family Pre-Processing��� 43

Spectra Family Pre-Processing�� 45

Basis Space Family Pre-Processing��� 46

Polygon Shape Family Pre-Processing��� 47

The Taxonomy of Image Processing Methods�� 50

Point��� 50

Line��� 50

Area�� 51

Algorithmic��� 51

Data Conversions��� 51

Colorimetry��� 51

Overview of Color Management Systems�� 52

Illuminants, White Point, Black Point, and Neutral Axis�� 53

Device Color Models��� 54

Color Spaces and Color Perception�� 55

Gamut Mapping and Rendering Intent�� 55

Practical Considerations for Color Enhancements��� 56

Color Accuracy and Precision��� 57

Spatial Filtering�� 57

Convolutional Filtering and Detection�� 58

Kernel Filtering and Shape Selection��� 60

Shape Selection or Forming Kernels�� 61

Point Filtering��� 61

Noise and Artifact Filtering��� 63

Integral Images and Box Filters�� 63

Edge Detectors��� 64

Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch, Robinson, and Frei-Chen�������� 64

Canny Detector��� 66

■ Contents

x

Transform Filtering, Fourier, and Others��� 67

Fourier Transform Family��� 67

Fundamentals��� 67

Fourier Family of Transforms��� 70

Other Transforms��� 70

Morphology and Segmentation�� 71

Binary Morphology��� 72

Gray Scale and Color Morphology�� 73

Morphology Optimizations and Refinements�� 73

Euclidean Distance Maps��� 74

Super-Pixel Segmentation�� 74

Graph-based Super-Pixel Methods�� 75

Gradient-Ascent-Based Super-Pixel Methods��� 75

Depth Segmentation��� 76

Color Segmentation�� 77

Thresholding�� 77

Global Thresholding�� 77

Histogram Peaks and Valleys, and Hysteresis Thresholds��������������������������������������� 78

LUT Transforms, Contrast Remapping�� 78

Histogram Equalization and Specification�� 79

Global Auto Thresholding��� 80

Local Thresholding��� 81

Local Histogram Equalization��� 81

Integral Image Contrast Filters��� 81

Local Auto Threshold Methods��� 82

Summary�� 83

■ Contents

xi

Chapter 3: Global and Regional Features■■ �������������������������������������� 85

Historical Survey of Features��� 85

Key Ideas: Global, Regional, and Local��� 86

1960s, 1970s, 1980s—Whole-Object Approaches�� 87

Early 1990s—Partial-Object Approaches��� 87

Mid-1990s—Local Feature Approaches�� 87

Late 1990s—Classified Invariant Local Feature Approaches���������������������������������� 88

Early 2000s—Scene and Object Modeling Approaches�� 88

Mid-2000s—Finer-Grain Feature and Metric Composition Approaches������������������ 88

Post-2010—Multi-Modal Feature Metrics Fusion�� 88

Textural Analysis��� 89

1950s thru 1970s—Global Uniform Texture Metrics�� 90

1980s—Structural and Model-Based Approaches for Texture Classification����������� 91

1990s—Optimizations and Refinements to Texture Metrics����������������������������������� 91

2000 toToday—More Robust Invariant Texture Metrics and 3D Texture������������������ 92

Statistical Methods��� 92

Texture Region Metrics�� 93

Edge Metrics�� 93

Edge Density��� 94

Edge Contrast�� 94

Edge Entropy��� 94

Edge Directivity��� 95

Edge Linearity��� 95

Edge Periodicity��� 95

Edge Size�� 95

Edge Primitive Length Total��� 96

Cross-Correlation and Auto-Correlation��� 96

Fourier Spectrum, Wavelets, and Basis Signatures�� 96

■ Contents

xii

Co-Occurrence Matrix, Haralick Features�� 97

Extended SDM Metrics�� 100

Metric 1: Centroid�� 101

Metric 2: Total Coverage�� 101

Metric 3: Low-Frequency Coverage��� 102

Metric 4: Corrected Coverage�� 102

Metric 5: Total Power��� 102

Metric 6: Relative Power�� 103

Metric 7: Locus Mean Density�� 103

Metric 8: Locus Length�� 103

Metric 9: Bin Mean Density�� 104

Metric 10: Containment��� 104

Metric 11. Linearity��� 104

Metric 12: Linearity Strength��� 106

Laws Texture Metrics��� 106

LBP Local Binary Patterns�� 108

Dynamic Textures��� 108

Statistical Region Metrics�� 109

Image Moment Features�� 109

Point Metric Features��� 110

Global Histograms�� 112

Local Region Histograms�� 113

Scatter Diagrams, 3D Histograms�� 113

Multi-Resolution, Multi-Scale Histograms�� 117

Radial Histograms�� 118

Contour or Edge Histograms�� 118

Basis Space Metrics��� 118

Fourier Description��� 121

Walsh–Hadamard Transform�� 122

■ Contents

xiii

HAAR Transform��� 123

Slant Transform�� 123

Zernike Polynomials��� 124

Steerable Filters��� 124

Karhunen-Loeve Transform and Hotelling Transform��� 125

Wavelet Transform and Gabor Filters��� 125

Gabor Functions�� 127

Hough Transform and Radon Transform��� 127

Summary�� 129

�Chapter 4: Local Feature Design Concepts, Classification, ■■
and Learning�� 131

Local Features�� 132

Detectors, Interest Points, Keypoints, Anchor Points, Landmarks�������������������������� 132

Descriptors, Feature Description, Feature Extraction��� 133

Sparse Local Pattern Methods��� 133

Local Feature Attributes��� 134

Choosing Feature Descriptors and Interest Points��� 134

Feature Descriptors and Feature Matching�� 134

Criteria for Goodness�� 134

Repeatability, Easy vs. Hard to Find��� 136

Distinctive vs. Indistinctive��� 137

Relative and Absolute Position��� 137

Matching Cost and Correspondence�� 137

Distance Functions��� 138

Early Work on Distance Functions�� 138

Euclidean or Cartesian Distance Metrics�� 139

Euclidean Distance�� 139

Squared Euclidean Distance�� 140

■ Contents

xiv

Cosine Distance or Similarity��� 140

Sum of Absolute Differences (SAD) or L1 Norm�� 140

Sum of Squared Differences (SSD) or L2 Norm�� 140

Correlation Distance�� 141

Hellinger Distance��� 141

Grid Distance Metrics��� 141

Manhattan Distance�� 141

Chebyshev Distance�� 142

Statistical Difference Metrics��� 142

Earth Movers Distance (EMD) or Wasserstein Metric�� 142

Mahalanobis Distance��� 143

 Bray Curtis Distance��� 143

Canberra Distance��� 143

Binary or Boolean Distance Metrics��� 143

L0 Norm�� 143

Hamming Distance�� 144

Jaccard Similarity and Dissimilarity��� 144

Descriptor Representation��� 144

Coordinate Spaces, Complex Spaces��� 144

Cartesian Coordinates�� 145

Polar and Log Polar Coordinates�� 145

Radial Coordinates��� 145

Spherical Coordinates�� 146

Gauge Coordinates��� 146

Multivariate Spaces, Multimodal Data�� 146

Feature Pyramids��� 147

Descriptor Density�� 147

Interest Point and Descriptor Culling�� 147

Dense vs. Sparse Feature Description��� 148

■ Contents

xv

Descriptor Shape Topologies�� 149

Correlation Templates��� 149

Patches and Shape��� 149

Single Patches, Sub-Patches��� 149

Deformable Patches�� 149

Multi-Patch Sets�� 150

TPLBP, FPLBP���150

Strip and Radial Fan Shapes�� 151

D-NETS Strip Patterns���151

Object Polygon Shapes��� 152

Morphological Boundary Shapes��� 152

Texture Structure Shapes�� 153

Super-Pixel Similarity Shapes�� 153

Local Binary Descriptor Point-Pair Patterns��� 153

FREAK Retinal Patterns�� 154

Brisk Patterns��� 155

ORB and BRIEF Patterns��� 156

Descriptor Discrimination�� 157

Spectra Discrimination��� 158

Region, Shapes, and Pattern Discrimination�� 159

Geometric Discrimination Factors�� 160

Feature Visualization to Evaluate Discrimination��� 160

Discrimination via Image Reconstruction from HOG��� 160

Discrimination via Image Reconstruction from Local Binary Patterns������������������� 161

Discrimination via Image Reconstruction from SIFT Features������������������������������� 162

Accuracy, Trackability��� 163

Accuracy Optimizations, Sub-Region Overlap, Gaussian Weighting, and Pooling������ 165

Sub-Pixel Accuracy��� 165

■ Contents

xvi

Search Strategies and Optimizations��� 166

Dense Search��� 166

Grid Search��� 166

Multi-Scale Pyramid Search��� 167

Scale Space and Image Pyramids�� 168

Feature Pyramids��� 169

Sparse Predictive Search and Tracking�� 170

Tracking Region-Limited Search�� 170

Segmentation Limited Search�� 171

Depth or Z Limited Search�� 171

Computer Vision, Models, Organization�� 172

Feature Space�� 172

Object Models��� 173

Constraints��� 175

Selection of Detectors and Features�� 175

Manually Designed Feature Detectors�� 175

Statistically Designed Feature Detectors�� 175

Learned Features�� 176

Overview of Training��� 176

Classification of Features and Objects��� 177

Group Distance: Clustering, Training, and Statistical Learning������������������������������ 177

Group Distance: Clustering Methods Survey, KNN, RANSAC,
K-Means, GMM, SVM, Others��� 178

Classification Frameworks, REIN, MOPED�� 180

Kernel Machines�� 181

Boosting, Weighting��� 181

Selected Examples of Classification��� 182

■ Contents

xvii

Feature Learning, Sparse Coding, Convolutional Networks������������������������������������ 183

Terminology: Codebooks, Visual Vocabulary, Bag of Words, Bag of Features��������� 183

Sparse Coding��� 184

Visual Vocabularies�� 185

Learned Detectors via Convolutional Filter Masks�� 186

Convolutional Neural Networks, Neural Networks�� 186

Deep Learning, Pooling, Trainable Feature Hierarchies��� 188

Summary�� 188

Chapter 5: Taxonomy of Feature Description Attributes■■ �������������� 191
Feature Descriptor Families��� 192

Prior Work on Computer Vision Taxonomies��� 193

Robustness and Accuracy�� 194

General Robustness Taxonomy�� 195

Illumination��� 196

Color Criteria�� 196

Incompleteness�� 197

Resolution and Accuracy�� 197

Geometric Distortion��� 198

Efficiency Variables, Costs and Benefits��� 199

Discrimination and Uniqueness�� 199

General Vision Metrics Taxonomy��� 199

Feature Descriptor Family�� 201

Spectra Dimensions��� 201

Spectra Type��� 201

Interest Point�� 205

Storage Formats��� 206

Data Types�� 206

■ Contents

xviii

Descriptor Memory��� 207

Feature Shapes�� 207

Feature Pattern��� 207

Feature Density�� 208

Feature Search Methods�� 209

Pattern Pair Sampling�� 210

Pattern Region Size�� 211

Distance Function��� 211

Euclidean or Cartesian Distance Family��� 211

Grid Distance Family�� 212

Statistical Distance Family��� 212

Binary or Boolean Distance Family��� 212

Feature Metric Evaluation�� 212

Efficiency Variables, Costs and Benefits��� 213

Image Reconstruction Efficiency Metric��� 213

Example Feature Metric Evaluations�� 213

SIFT Example�� 213

VISION METRIC TAXONOMY FME���214

GENERAL ROBUSTNESS ATTRIBUTES��214

LBP Example��� 214

VISION METRIC TAXONOMY FME���214

GENERAL ROBUSTNESS ATTRIBUTES��215

Shape Factors Example��� 215

VISION METRIC TAXONOMY FME���215

GENERAL ROBUSTNESS ATTRIBUTES��216

Summary�� 216

■ Contents

xix

�Chapter 6: Interest Point Detector and Feature ■■
Descriptor Survey�� 217

Interest Point Tuning�� 218

Interest Point Concepts�� 218

Interest Point Method Survey��� 221

Laplacian and Laplacian of Gaussian��� 222

Moravac Corner Detector��� 222

Harris Methods, Harris-Stephens, Shi-Tomasi, and Hessian-Type Detectors��������� 222

Hessian Matrix Detector and Hessian-Laplace��� 223

Difference of Gaussians��� 223

Salient Regions�� 224

SUSAN, and Trajkovic and Hedly��� 224

Fast, Faster, AGHAST�� 225

Local Curvature Methods��� 226

Morphological Interest Regions�� 227

Feature Descriptor Survey��� 227

Local Binary Descriptors�� 228

Local Binary Patterns��� 228

Neighborhood Comparison��231

Histogram Composition���231

Optionally Normalization���232

Descriptor Concatenation��232

Rotation Invariant LBP (RILBP)��� 232

Dynamic Texture Metric Using 3D LBPs��� 233

Volume LBP (VLBP)���233

LPB-TOP���234

Other LBP Variants��� 234

■ Contents

xx

Census�� 237

Modified Census Transform�� 237

BRIEF�� 238

ORB��� 238

BRISK�� 239

FREAK��� 240

Spectra Descriptors��� 241

SIFT�� 241

Create a Scale Space Pyramid��� 242

Identify Scale-Invariant Interest Points��� 244

Create Feature Descriptors�� 244

SIFT-PCA��� 246

SIFT-GLOH��� 246

SIFT-SIFER Retrofit��� 247

SIFT CS-LBP Retrofit��� 247

RootSIFT Retrofit�� 248

CenSurE and STAR�� 249

Correlation Templates��� 251

HAAR Features�� 252

Viola Jones with HAAR-Like Features�� 254

SURF��� 254

Variations on SURF��� 256

Histogram of Gradients (HOG) and Variants�� 257

PHOG and Related Methods�� 258

Daisy and O-Daisy�� 260

CARD�� 261

Robust Fast Feature Matching��� 263

RIFF, CHOG�� 264

Chain Code Histograms�� 266

■ Contents

xxi

D-NETS��� 266

Local Gradient Pattern�� 267

Local Phase Quantization��� 268

Basis Space Descriptors�� 269

Fourier Descriptors��� 269

Other Basis Functions for Descriptor Building��� 271

Sparse Coding Methods��� 271

Examples of Sparse Coding Methods��� 271

Polygon Shape Descriptors�� 272

MSER Method��� 273

Object Shape Metrics for Blobs and Polygons�� 274

Shape Context�� 277

3D, 4D, Volumetric, and Multimodal Descriptors���������������������������������� 278

3D HOG��� 279

HON 4D��� 280

3D SIFT��� 280

Summary�� 282

Chapter 7: Ground Truth Data, Content, Metrics, and Analysis■■ ���� 283

What Is Ground Truth Data?��� 284

Previous Work on Ground Truth Data: Art vs. Science�������������������������� 286

General Measures of Quality Performance��� 286

Measures of Algorithm Performance�� 286

Rosin’s Work on Corners�� 287

Key Questions For Constructing Ground Truth Data����������������������������� 289

Content: Adopt, Modify, or Create��� 289

Survey Of Available Ground Truth Data��� 289

Fitting Data to Algorithms��� 290

■ Contents

xxii

Scene Composition and Labeling��� 291

Composition�� 292

Labeling�� 293

Defining the Goals and Expectations��� 294

Mikolajczyk and Schmid Methodology��� 295

Open Rating Systems��� 295

Corner Cases and Limits�� 295

Interest Points and Features�� 295

Robustness Criteria for Ground Truth Data��� 296

Illustrated Robustness Criteria��� 296

Using Robustness Criteria for Real Applications�� 299

Pairing Metrics with Ground Truth�� 300

Pairing and Tuning Interest Points, Features, and Ground Truth����������������������������� 301

Examples Using The General Vision Taxonomy��� 301

Synthetic Feature Alphabets�� 303

Goals for the Synthetic Dataset�� 304

Accuracy of Feature Detection via Location Grid�� 305

Rotational Invariance via Rotated Image Set�� 305

Scale Invariance via Thickness and Bounding Box Size�� 305

Noise and Blur Invariance�� 305

Repeatabilty�� 306

Real Image Overlays of Synthetic Features�� 306

Synthetic Interest Point Alphabet��� 306

Synthetic Corner Alphabet��� 307

Hybrid Synthetic Overlays on Real Images��� 309

Method for Creating the Overlays�� 310

Summary�� 310

■ Contents

xxiii

Chapter 8: Vision Pipelines and Optimizations■■ ���������������������������� 313

Stages, Operations, and Resources��� 314

Compute Resource Budgets��� 315

Compute Units, ALUs, and Accelerators�� 317

Power Use�� 318

Memory Use��� 319

I/O Performance��� 322

The Vision Pipeline Examples��� 323

Automobile Recognition��� 323

Segmenting the Automobiles��� 325

Matching the Paint Color��� 326

Measuring the Automobile Size and Shape�� 326

Feature Descriptors��� 327

Calibration, Set-up, and Ground Truth Data�� 328

Pipeline Stages and Operations��� 329

Operations and Compute Resources�� 330

Criteria for Resource Assignments��� 330

Face, Emotion, and Age Recognition�� 331

Calibration and Ground Truth Data��� 333

Interest Point Position Prediction�� 334

Segmenting the Head and Face Using the Bounding Box������������������������������������� 335

Face Landmark Identification and Compute Features��� 336

Pipeline Stages and Operations��� 338

Operations and Compute Resources�� 339

Criteria for Resource Assignments��� 339

Image Classification��� 340

Segmenting Images and Feature Descriptors��� 341

Pipeline Stages and Operations��� 343

■ Contents

xxiv

Mapping Operations to Resources��� 343

Criteria for Resource Assignments��� 344

Augmented Reality��� 345

Calibration and Ground Truth Data��� 346

Feature and Object Description�� 346

Overlays and Tracking��� 347

Pipeline Stages and Operations��� 348

Mapping Operations to Resources��� 348

Criteria for Resource Assignments��� 349

Acceleration Alternatives��� 350

Memory Optimizations��� 351

Minimizing Memory Transfers Between Compute Units�� 351

Memory Tiling��� 352

DMA, Data Copy, and Conversions��� 352

Register Files, Memory Caching, and Pinning��� 352

Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization���������� 353

Coarse-Grain Parallelism�� 353

Compute-Centric vs. Data-Centric��� 353

Threads and Multiple Cores��� 354

Fine-Grain Data Parallelism�� 354

SIMD, SIMT, and SPMD Fundamentals��� 355

Shader Kernel Languages and GPGPU��� 356

Advanced Instruction Sets and Accelerators�� 357

Vision Algorithm Optimizations and Tuning�� 358

Compiler And Manual Optimizations�� 359

Tuning��� 360

Feature Descriptor Retrofit, Detectors, Distance Functions����������������������������������� 360

■ Contents

xxv

Boxlets and Convolution Acceleration�� 361

Data-Type Optimizations, Integer vs. Float��� 361

Optimization Resources��� 362

Summary�� 363

Appendix A: Synthetic Feature Analysis■■ �������������������������������������� 365

Background Goals and Expectations�� 366

Test Methodology and Results��� 368

Detector Parameters Are Not Tuned for the Synthetic Alphabets��������������������������� 369

Expectations for Test Results��� 370

Summary of Synthetic Alphabet Ground Truth Images������������������������� 370

Synthetic Interest Point Alphabet��� 371

Synthetic Corner Point Alphabet��� 371

Synthetic Alphabet Overlays��� 371

Test 1: Synthetic Interest Point Alphabet Detection����������������������������� 372

Annotated Synthetic Interest Point Detector Results��� 374

Entire Images Available Online��� 375

Test 2: Synthetic Corner Point Alphabet Detection������������������������������� 383

Annotated Synthetic Corner Point Detector Results��� 384

Entire Images Available Online��� 384

Test 3: Synthetic Alphabets Overlaid on Real Images�������������������������� 393

Annotated Detector Results on Overlay Images��� 393

Test 4: Rotational Invariance for Each Alphabet����������������������������������� 394

Methodology for Determining Rotational Invariance�� 394

Analysis of Results and Non-Repeatability Anomalies������������������������� 398

Caveats��� 398

Non-Repeatability in Tests 1 and 2��� 399

Other Non-Repeatability in Test 3��� 400

■ Contents

xxvi

Test Summary�� 400

Future Work�� 400

Appendix B: Survey of Ground Truth Datasets■■ ����������������������������� 401

Appendix C: Imaging and Computer Vision Resources■■ ���������������� 411

 Commercial Products�� 411

Open Source��� 412

Organizations, Institutions, and Standards��� 415

Journals and Their Abbreviations��� 417

Conferences and Their Abbreviations��� 417

Online Resources��� 418

Appendix D: Extended SDM Metrics■■ �� 419

Bibliography■■ �� 437

Index��� 465

xxvii

About the Author

Scott Krig is a pioneer in computer imaging, computer
vision, and graphics visualization. He founded Krig
Research in 1988 (krigresearch.com), providing the
world’s first imaging and vision systems based on
high-performance engineering workstations,
super-computers, and dedicated imaging hardware,
serving customers worldwide in 25 countries. Scott has
provided imaging and vision solutions around the globe,
and has worked closely with many industries, including
aerospace, military, intelligence, law enforcement,
government research, and academic organizations.

More recently, Scott has worked for major corporations and startups serving
commercial markets, solving problems in the areas of computer vision, imaging, graphics,
visualization, robotics, process control, industrial automation, computer security,
cryptography, and consumer applications of imaging and machine vision to PCs, laptops,
mobile phones, and tablets. Most recently, Scott provided direction for Intel Corporation
in the area of depth-sensing and computer vision methods for embedded systems and
mobile platforms.

Scott is the author of many patent applications worldwide in the areas of embedded
systems, imaging, computer vision, DRM, and computer security, and studied at Stanford.

Scott also enjoys acoustic guitar design and lutherie work, particularly 12-string
acoustic guitars, as well as acoustic guitar composition and performance.

http://krigresearch.com

xxix

Acknowledgments

This book would not be as well thought out without the early technical feedback,
conversations, and observations on very rough materials by Vadim Pizarevsky of ITSEEZ,
who also is a major force behind the OpenCV foundation. Vadim brings vast and
quantitative expertise in computer vision across a wide range of application domains.
Thanks, Vadim.

Special thanks also go to Stuart Douglas at Intel Press for the commission to write
this book, and for introductions to people at Apress. Also, special thanks to the key editors
at Apress, including Melissa Maldonado, Mark Powers, Jeffrey Pepper, Steve Weiss, Robert
Hutchinson, James Markham, and Carole Berglie for making this book a reality, and for
adding value through the editorial process.

	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Image Capture and Representation
	Image Sensor Technology
	Sensor Materials
	Sensor Photo-Diode Cells
	Sensor Configurations: Mosaic, Foveon, BSI
	Dynamic Range and Noise
	Sensor Processing
	De-Mosaicking
	Dead Pixel Correction
	Color and Lighting Corrections
	Geometric Corrections

	Cameras and Computational Imaging
	Overview of Computational Imaging
	Single-Pixel Computational Cameras
	2D Computational Cameras
	3D Depth Camera Systems
	Binocular Stereo
	Structured and Coded Light
	Optical Coding: Diffraction Gratings
	Time-of-Flight Sensors
	Array Cameras
	Radial Cameras
	Plenoptics: Light Field Cameras

	3D Depth Processing
	Overview of Methods
	Problems in Depth Sensing and Processing
	The Geometric Field and Distortions
	The Horopter Region, Panum’s Area, and Depth Fusion
	Cartesian vs. Polar Coordinates: Spherical Projective Geometry
	Depth Granularity

	Correspondence
	Holes and Occlusion
	Surface Reconstruction and Fusion

	Noise

	Monocular Depth Processing
	Multi-View Stereo
	Sparse Methods: PTAM
	Dense Methods: DTAM
	Optical Flow, SLAM, and SFM

	3D Representations: Voxels, Depth Maps, Meshes, and Point Clouds
	Summary

	Chapter 2: Image Pre-Processing
	Perspectives on Image Processing
	Problems to Solve During Image Pre-Processing
	Vision Pipelines and Image Pre-Processing
	Corrections
	Enhancements
	Preparing Images for Feature Extraction
	Local Binary Family Pre-Processing
	Spectra Family Pre-Processing
	Basis Space Family Pre-Processing
	Polygon Shape Family Pre-Processing

	The Taxonomy of Image Processing Methods
	Point
	Line
	Area
	Algorithmic
	Data Conversions

	Colorimetry
	Overview of Color Management Systems
	Illuminants, White Point, Black Point, and Neutral Axis
	Device Color Models
	Color Spaces and Color Perception
	Gamut Mapping and Rendering Intent
	Practical Considerations for Color Enhancements
	Color Accuracy and Precision

	Spatial Filtering
	Convolutional Filtering and Detection
	Kernel Filtering and Shape Selection
	Shape Selection or Forming Kernels

	Point Filtering
	Noise and Artifact Filtering
	Integral Images and Box Filters

	Edge Detectors
	Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch, Robinson, and Frei-Chen
	Canny Detector

	Transform Filtering, Fourier, and Others
	Fourier Transform Family
	Fundamentals
	Fourier Family of Transforms
	Other Transforms

	Morphology and Segmentation
	Binary Morphology
	Gray Scale and Color Morphology
	Morphology Optimizations and Refinements
	Euclidean Distance Maps
	Super-Pixel Segmentation
	Graph-based Super-Pixel Methods
	Gradient-Ascent-Based Super-Pixel Methods

	Depth Segmentation
	Color Segmentation

	Thresholding
	Global Thresholding
	Histogram Peaks and Valleys, and Hysteresis Thresholds
	LUT Transforms, Contrast Remapping
	Histogram Equalization and Specification
	Global Auto Thresholding

	Local Thresholding
	Local Histogram Equalization
	Integral Image Contrast Filters
	Local Auto Threshold Methods

	Chapter 3: Global and Regional Features
	Historical Survey of Features
	Key Ideas: Global, Regional, and Local
	1960s, 1970s, 1980s—Whole-Object Approaches
	Early 1990s—Partial-Object Approaches
	Mid-1990s—Local Feature Approaches
	Late 1990s—Classified Invariant Local Feature Approaches
	Early 2000s—Scene and Object Modeling Approaches
	Mid-2000s—Finer-Grain Feature and Metric Composition Approaches
	Post-2010—Multi-Modal Feature Metrics Fusion

	Textural Analysis
	1950s thru 1970s—Global Uniform Texture Metrics
	1980s—Structural and Model-Based Approaches for Texture Classification
	1990s—Optimizations and Refinements to Texture Metrics
	2000 toToday—More Robust Invariant Texture Metrics and 3D Texture

	Statistical Methods

	Texture Region Metrics
	Edge Metrics
	Edge Density
	Edge Contrast
	Edge Entropy
	Edge Directivity
	Edge Linearity
	Edge Periodicity
	Edge Size
	Edge Primitive Length Total

	Cross-Correlation and Auto-Correlation
	Fourier Spectrum, Wavelets, and Basis Signatures
	Co-Occurrence Matrix, Haralick Features
	Extended SDM Metrics
	Metric 1: Centroid
	Metric 2: Total Coverage
	Metric 3: Low-Frequency Coverage
	Metric 4: Corrected Coverage
	Metric 5: Total Power
	Metric 6: Relative Power
	Metric 7: Locus Mean Density
	Metric 8: Locus Length
	Metric 9: Bin Mean Density
	Metric 10: Containment
	Metric 11. Linearity
	Metric 12: Linearity Strength

	Laws Texture Metrics
	LBP Local Binary Patterns
	Dynamic Textures

	Statistical Region Metrics
	Image Moment Features
	Point Metric Features
	Global Histograms
	Local Region Histograms
	Scatter Diagrams, 3D Histograms
	Multi-Resolution, Multi-Scale Histograms
	Radial Histograms
	Contour or Edge Histograms

	Basis Space Metrics
	Fourier Description
	Walsh–Hadamard Transform
	HAAR Transform
	Slant Transform
	Zernike Polynomials
	Steerable Filters
	Karhunen-Loeve Transform and Hotelling Transform
	Wavelet Transform and Gabor Filters
	Gabor Functions

	Hough Transform and Radon Transform

	Summary

	Chapter 4: Local Feature Design Concepts, Classification, and Learning
	Local Features
	Detectors, Interest Points, Keypoints, Anchor Points, Landmarks
	Descriptors, Feature Description, Feature Extraction
	Sparse Local Pattern Methods

	Local Feature Attributes
	Choosing Feature Descriptors and Interest Points
	Feature Descriptors and Feature Matching
	Criteria for Goodness
	Repeatability, Easy vs. Hard to Find
	Distinctive vs. Indistinctive
	Relative and Absolute Position
	Matching Cost and Correspondence

	Distance Functions
	Early Work on Distance Functions
	Euclidean or Cartesian Distance Metrics
	Euclidean Distance
	Squared Euclidean Distance
	Cosine Distance or Similarity
	Sum of Absolute Differences (SAD) or L1 Norm
	Sum of Squared Differences (SSD) or L2 Norm
	Correlation Distance
	Hellinger Distance

	Grid Distance Metrics
	Manhattan Distance
	Chebyshev Distance

	Statistical Difference Metrics
	Earth Movers Distance (EMD) or Wasserstein Metric
	Mahalanobis Distance
	Bray Curtis Distance
	Canberra Distance

	Binary or Boolean Distance Metrics
	L0 Norm
	Hamming Distance
	Jaccard Similarity and Dissimilarity

	Descriptor Representation
	Coordinate Spaces, Complex Spaces
	Cartesian Coordinates
	Polar and Log Polar Coordinates
	Radial Coordinates
	Spherical Coordinates
	Gauge Coordinates
	Multivariate Spaces, Multimodal Data
	Feature Pyramids

	Descriptor Density
	Interest Point and Descriptor Culling
	Dense vs. Sparse Feature Description

	Descriptor Shape Topologies
	Correlation Templates
	Patches and Shape
	Single Patches, Sub-Patches
	Deformable Patches
	Multi-Patch Sets
	TPLBP, FPLBP

	Strip and Radial Fan Shapes
	D-NETS Strip Patterns

	Object Polygon Shapes
	Morphological Boundary Shapes
	Texture Structure Shapes
	Super-Pixel Similarity Shapes

	Local Binary Descriptor Point-Pair Patterns
	FREAK Retinal Patterns
	Brisk Patterns
	ORB and BRIEF Patterns

	Descriptor Discrimination
	Spectra Discrimination
	Region, Shapes, and Pattern Discrimination
	Geometric Discrimination Factors
	Feature Visualization to Evaluate Discrimination
	Discrimination via Image Reconstruction from HOG
	Discrimination via Image Reconstruction from Local Binary Patterns
	Discrimination via Image Reconstruction from SIFT Features

	Accuracy, Trackability
	Accuracy Optimizations, Sub-Region Overlap, Gaussian Weighting, and Pooling
	Sub-Pixel Accuracy

	Search Strategies and Optimizations
	Dense Search
	Grid Search
	Multi-Scale Pyramid Search
	Scale Space and Image Pyramids
	Feature Pyramids
	Sparse Predictive Search and Tracking
	Tracking Region-Limited Search
	Segmentation Limited Search
	Depth or Z Limited Search

	Computer Vision, Models, Organization
	Feature Space
	Object Models
	Constraints
	Selection of Detectors and Features
	Manually Designed Feature Detectors
	Statistically Designed Feature Detectors
	Learned Features

	Overview of Training
	Classification of Features and Objects
	Group Distance: Clustering, Training, and Statistical Learning
	Group Distance: Clustering Methods Survey, KNN, RANSAC, K-Means, GMM, SVM, Others
	Classification Frameworks, REIN, MOPED
	Kernel Machines
	Boosting, Weighting
	Selected Examples of Classification

	Feature Learning, Sparse Coding, Convolutional Networks
	Terminology: Codebooks, Visual Vocabulary, Bag of Words, Bag of Features
	Sparse Coding
	Visual Vocabularies
	Learned Detectors via Convolutional Filter Masks
	Convolutional Neural Networks, Neural Networks
	Deep Learning, Pooling, Trainable Feature Hierarchies

	Summary

	Chapter 5: Taxonomy of Feature Description Attributes
	Feature Descriptor Families
	Prior Work on Computer Vision Taxonomies
	Robustness and Accuracy
	General Robustness Taxonomy
	Illumination
	Color Criteria
	Incompleteness
	Resolution and Accuracy
	Geometric Distortion
	Efficiency Variables, Costs and Benefits
	Discrimination and Uniqueness

	General Vision Metrics Taxonomy
	Feature Descriptor Family
	Spectra Dimensions
	Spectra Type
	Interest Point
	Storage Formats
	Data Types
	Descriptor Memory
	Feature Shapes
	Feature Pattern
	Feature Density
	Feature Search Methods
	Pattern Pair Sampling
	Pattern Region Size
	Distance Function
	Euclidean or Cartesian Distance Family
	Grid Distance Family
	Statistical Distance Family
	Binary or Boolean Distance Family

	Feature Metric Evaluation
	Efficiency Variables, Costs and Benefits
	Image Reconstruction Efficiency Metric
	Example Feature Metric Evaluations
	SIFT Example
	VISION METRIC TAXONOMY FME
	GENERAL ROBUSTNESS ATTRIBUTES

	LBP Example
	VISION METRIC TAXONOMY FME
	GENERAL ROBUSTNESS ATTRIBUTES

	Shape Factors Example
	VISION METRIC TAXONOMY FME
	GENERAL ROBUSTNESS ATTRIBUTES

	Summary

	Chapter 6: Interest Point Detector and Feature Descriptor Survey
	Interest Point Tuning
	Interest Point Concepts
	Interest Point Method Survey
	Laplacian and Laplacian of Gaussian
	Moravac Corner Detector
	Harris Methods, Harris-Stephens, Shi-Tomasi, and Hessian-Type Detectors
	Hessian Matrix Detector and Hessian-Laplace
	Difference of Gaussians
	Salient Regions
	SUSAN, and Trajkovic and Hedly
	Fast, Faster, AGHAST
	Local Curvature Methods
	Morphological Interest Regions

	Feature Descriptor Survey
	Local Binary Descriptors
	Local Binary Patterns
	Neighborhood Comparison
	Histogram Composition
	Optionally Normalization
	Descriptor Concatenation

	Rotation Invariant LBP (RILBP)
	Dynamic Texture Metric Using 3D LBPs
	Volume LBP (VLBP)
	LPB-TOP

	Other LBP Variants

	Census
	Modified Census Transform
	BRIEF
	ORB
	BRISK
	FREAK

	Spectra Descriptors
	SIFT
	Create a Scale Space Pyramid
	Identify Scale-Invariant Interest Points
	Create Feature Descriptors

	SIFT-PCA
	SIFT-GLOH
	SIFT-SIFER Retrofit
	SIFT CS-LBP Retrofit
	RootSIFT Retrofit
	CenSurE and STAR
	Correlation Templates
	HAAR Features
	Viola Jones with HAAR-Like Features
	SURF
	Variations on SURF
	Histogram of Gradients (HOG) and Variants
	PHOG and Related Methods
	Daisy and O-Daisy
	CARD
	Robust Fast Feature Matching
	RIFF, CHOG
	Chain Code Histograms
	D-NETS
	Local Gradient Pattern
	Local Phase Quantization

	Basis Space Descriptors
	Fourier Descriptors
	Other Basis Functions for Descriptor Building
	Sparse Coding Methods
	Examples of Sparse Coding Methods

	Polygon Shape Descriptors
	MSER Method
	Object Shape Metrics for Blobs and Polygons
	Shape Context

	3D, 4D, Volumetric, and Multimodal Descriptors
	3D HOG
	HON 4D
	3D SIFT

	Summary

	Chapter 7: Ground Truth Data, Content, Metrics, and Analysis
	What Is Ground Truth Data?
	Previous Work on Ground Truth Data: Art vs. Science
	General Measures of Quality Performance
	Measures of Algorithm Performance
	Rosin’s Work on Corners

	Key Questions For Constructing Ground Truth Data
	Content: Adopt, Modify, or Create
	Survey Of Available Ground Truth Data
	Fitting Data to Algorithms
	Scene Composition and Labeling
	Composition
	Labeling

	Defining the Goals and Expectations
	Mikolajczyk and Schmid Methodology
	Open Rating Systems
	Corner Cases and Limits
	Interest Points and Features

	Robustness Criteria for Ground Truth Data
	Illustrated Robustness Criteria
	Using Robustness Criteria for Real Applications

	Pairing Metrics with Ground Truth
	Pairing and Tuning Interest Points, Features, and Ground Truth
	Examples Using The General Vision Taxonomy

	Synthetic Feature Alphabets
	Goals for the Synthetic Dataset
	Accuracy of Feature Detection via Location Grid
	Rotational Invariance via Rotated Image Set
	Scale Invariance via Thickness and Bounding Box Size
	Noise and Blur Invariance
	Repeatabilty
	Real Image Overlays of Synthetic Features

	Synthetic Interest Point Alphabet
	Synthetic Corner Alphabet

	Hybrid Synthetic Overlays on Real Images
	Method for Creating the Overlays

	Summary

	Chapter 8: Vision Pipelines and Optimizations
	Stages, Operations, and Resources
	Compute Resource Budgets
	Compute Units, ALUs, and Accelerators
	Power Use
	Memory Use
	I/O Performance

	The Vision Pipeline Examples
	Automobile Recognition
	Segmenting the Automobiles
	Matching the Paint Color
	Measuring the Automobile Size and Shape
	Feature Descriptors
	Calibration, Set-up, and Ground Truth Data
	Pipeline Stages and Operations
	Operations and Compute Resources
	Criteria for Resource Assignments

	Face, Emotion, and Age Recognition
	Calibration and Ground Truth Data
	Interest Point Position Prediction
	Segmenting the Head and Face Using the Bounding Box
	Face Landmark Identification and Compute Features
	Pipeline Stages and Operations

	Operations and Compute Resources
	Criteria for Resource Assignments

	Image Classification
	Segmenting Images and Feature Descriptors
	Pipeline Stages and Operations
	Mapping Operations to Resources
	Criteria for Resource Assignments

	Augmented Reality
	Calibration and Ground Truth Data
	Feature and Object Description
	Overlays and Tracking
	Pipeline Stages and Operations
	Mapping Operations to Resources
	Criteria for Resource Assignments

	Acceleration Alternatives
	Memory Optimizations
	Minimizing Memory Transfers Between Compute Units
	Memory Tiling
	DMA, Data Copy, and Conversions
	Register Files, Memory Caching, and Pinning
	Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization

	Coarse-Grain Parallelism
	Compute-Centric vs. Data-Centric
	Threads and Multiple Cores

	Fine-Grain Data Parallelism
	SIMD, SIMT, and SPMD Fundamentals
	Shader Kernel Languages and GPGPU

	Advanced Instruction Sets and Accelerators

	Vision Algorithm Optimizations and Tuning
	Compiler And Manual Optimizations
	Tuning
	Feature Descriptor Retrofit, Detectors, Distance Functions
	Boxlets and Convolution Acceleration
	Data-Type Optimizations, Integer vs. Float

	Optimization Resources
	Summary

	APPENDIX A: Synthetic Feature Analysis
	Background Goals and Expectations
	Test Methodology and Results
	Detector Parameters Are Not Tuned for the Synthetic Alphabets
	Expectations for Test Results

	Summary of Synthetic Alphabet Ground Truth Images
	Synthetic Interest Point Alphabet
	Synthetic Corner Point Alphabet
	Synthetic Alphabet Overlays

	Test 1: Synthetic Interest Point Alphabet Detection
	Annotated Synthetic Interest Point Detector Results
	Entire Images Available Online

	Test 2: Synthetic Corner Point Alphabet Detection
	Annotated Synthetic Corner Point Detector Results
	Entire Images Available Online

	Test 3: Synthetic Alphabets Overlaid on Real Images
	Annotated Detector Results on Overlay Images

	Test 4: Rotational Invariance for Each Alphabet
	Methodology for Determining Rotational Invariance

	Analysis of Results and Non-Repeatability Anomalies
	Caveats
	Non-Repeatability in Tests 1 and 2
	Other Non-Repeatability in Test 3
	Test Summary
	Future Work

	APPENDIX B: Survey of Ground Truth Datasets
	APPENDIX C: Imaging and Computer Vision Resources
	Commercial Products
	Open Source
	Organizations, Institutions, and Standards
	Journals and Their Abbreviations
	Conferences and Their Abbreviations
	Online Resources

	APPENDIX D: Extended SDM Metrics
	Bibliography
	Index

