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Dedicated to all who have dreams

Computer vision may count the trees, estimate the distance to the islands, but it
cannot detect the fantasies the people might have had who visited this bay



Preface

This is a textbook for a third- or fourth-year undergraduate course on Computer
vision, which is a discipline in science and engineering.

Subject Area of the Book Computer Vision aims at using cameras for analysing
or understanding scenes in the real world. This discipline studies methodological
and algorithmic problems as well as topics related to the implementation of designed
solutions.

In computer vision we may want to know how far away a building is to a cam-
era, whether a vehicle drives in the middle of its lane, how many people are in a
scene, or we even want to recognize a particular person—all to be answered based
on recorded images or videos. Areas of application have expanded recently due
to a solid progress in computer vision. There are significant advances in camera
and computing technologies, but also in theoretical foundations of computer vision
methodologies.

In recent years, computer vision became a key technology in many fields.
For modern consumer products, see, for example apps for mobile phones, driver-
assistance for cars, or user interaction with computer games. In industrial automa-
tion, computer vision is routinely used for quality or process control. There are sig-
nificant contributions for the movie industry (e.g. the use of avatars or the creation
of virtual worlds based on recorded images, the enhancement of historic video data,
or high-quality presentations of movies). This is just mentioning a few application
areas, which all come with particular image or video data, and particular needs to
process or analyse those data.

Features of the Book This text book provides a general introduction into basics of
computer vision, as potentially of use for many diverse areas of applications. Math-
ematical subjects play an important role, and the book also discusses algorithms.
The book is not addressing particular applications.

Inserts (grey boxes) in the book provide historic context information, references
or sources for presented material, and particular hints on mathematical subjects dis-
cussed first time at a given location. They are additional readings to the baseline
material provided.
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The book is not a guide on current research in computer vision, and it provides
only a very few references; the reader can locate more easily on the net by search-
ing for keywords of interest. The field of computer vision is actually so vivid, with
countless references, such that any attempt would fail to insert in the given lim-
ited space a reasonable collection of references. But here is one hint at least: visit
homepages.inf.ed.ac.uk/rbf/CVonline/ for a web-based introduction into topics in
computer vision.

Target Audiences This text book provides material for an introductory course at
third- or fourth-year level in an Engineering or Science undergraduate programme.
Having some prior knowledge in image processing, image analysis, or computer
graphics is of benefit, but the first two chapters of this text book also provide a
first-time introduction into computational imaging.

Previous Uses of the Material Parts of the presented materials have been used
in my lectures in the Mechatronics and Computer Science programmes at The Uni-
versity of Auckland, New Zealand, at CIMAT Guanajuato, Mexico, at Freiburg and
Göttingen University, Germany, at the Technical University Cordoba, Argentina, at
the Taiwan National Normal University, Taiwan, and at Wuhan University, China.

The presented material also benefits from four earlier book publications, [R. Klette

and P. Zamperoni. Handbook of Image Processing Operators. Wiley, Chichester, 1996], [R. Klette,

K. Schlüns, and A. Koschan. Computer Vision. Springer, Singapore, 1998], [R. Klette and

A. Rosenfeld. Digital Geometry. Morgan Kaufmann, San Francisco, 2004], and [F. Huang,

R. Klette, and K. Scheibe. Panoramic Imaging. Wiley, West Sussex, 2008].
The first two of those four books accompanied computer vision lectures of the

author in Germany and New Zealand in the 1990s and early 2000s, and the third one
also more recent lectures.

Notes to the Instructor and Suggested Uses The book contains more material
than what can be covered in a one-semester course. An instructor should select
according to given context such as prior knowledge of students and research focus
in subsequent courses.

Each chapter ends with some exercises, including programming exercises. The
book does not favour any particular implementation environment. Using procedures
from systems such as OpenCV will typically simplify the solution. Programming
exercises are intentionally formulated in a way to offer students a wide range of op-
tions for answering them. For example, for Exercise 2.5 in Chap. 2, you can use Java
applets to visualize the results (but the text does not ask for it), you can use small- or
large-sized images (the text does not specify it), and you can limit cursor movement
to a central part of the input image such that the 11 × 11 square around location p

is always completely contained in your image (or you can also cover special cases
when moving the cursor also closer to the image border). As a result, every stu-
dent should come up with her/his individual solution to programming exercises, and
creativity in the designed solution should also be honoured.

http://homepages.inf.ed.ac.uk/rbf/CVonline/
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Supplemental Resources The book is accompanied by supplemental material
(data, sources, examples, presentations) on a website. See www.cs.auckland.ac.nz/
~rklette/Books/K2014/.
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1Image Data

This chapter introduces basic notation and mathematical concepts for describing an
image in a regular grid in the spatial domain or in the frequency domain. It also
details ways for specifying colour and introduces colour images.

1.1 Images in the Spatial Domain

A (digital) image is defined by integrating and sampling continuous (analog) data in
a spatial domain. It consists of a rectangular array of pixels (x, y,u), each combining
a location (x, y) ∈ Z

2 and a value u, the sample at location (x, y). Z is the set of all
integers. Points (x, y) ∈ Z

2 form a regular grid. In a more formal way, an image I

is defined on a rectangular set, the carrier

Ω = {
(x, y) : 1 ≤ x ≤ Ncols ∧ 1 ≤ y ≤ Nrows

}⊂ Z
2 (1.1)

of I containing the grid points or pixel locations for Ncols ≥ 1 and Nrows ≥ 1.
We assume a left-hand coordinate system as shown in Fig. 1.1. Row y contains

grid points {(1, y), (2, y), . . . , (Ncols, y)} for 1 ≤ y ≤ Nrows, and column x contains
grid points {(x,1), (x,2), . . . , (x,Nrows)} for 1 ≤ x ≤ Ncols.

This section introduces into the subject of digital imaging by discussing ways to
represent and to describe image data in the spatial domain defined by the carrier Ω .

1.1.1 Pixels and Windows

Figure 1.2 illustrates two ways of thinking about geometric representations of pixels,
which are samples in a regularly spaced grid.

Grid Cells, Grid Points, and Adjacency Images that we see on a screen are com-
posed of homogeneously shaded square cells. Following this given representation,
we may think about a pixel as a tiny shaded square. This is the grid cell model. Al-
ternatively, we can also consider each pixel as a grid point labelled with the image
value. This grid point model was already indicated in Fig. 1.1.

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_1, © Springer-Verlag London 2014
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Fig. 1.1 A left-hand coordinate system. The thumb defines the x-axis, and the pointer the y-axis
while looking into the palm of the hand. (The image on the left also shows a view on the baroque
church at Valenciana, always present outside windows while this book was written during a stay of
the author at CIMAT Guanajuato)

Fig. 1.2 Left: When zooming into an image, we see shaded grid squares; different shades repre-
sent values in a chosen set of image values. Right: Image values can also be assumed to be labels
at grid points being the centres of grid squares

Insert 1.1 (Origin of the Term “Pixel”) The term pixel is short for picture
element. It was introduced in the late 1960s by a group at the Jet Propul-
sion Laboratory in Pasadena, California, that was processing images taken
by space vehicles. See [R.B. Leighton, N.H. Horowitz, A.G. Herriman, A.T. Young,

B.A. Smith, M.E. Davies, and C.B. Leovy. Mariner 6 television pictures: First report. Sci-

ence, 165:684–690, 1969].

Pixels are the “atomic elements” of an image. They do not define particular ad-
jacency relations between pixels per se. In the grid cell model we may assume that
pixel locations are adjacent iff they are different and their tiny shaded squares share
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Fig. 1.3 A 73 × 77 window in the image SanMiguel. The marked reference pixel location is at
p = (453,134) in the image that shows the main pyramid at Cañada de la Virgin, Mexico

an edge.1 Alternatively, we can also assume that they are adjacent iff they are differ-
ent and their tiny shaded squares share at least one point (i.e. an edge or a corner).

Image Windows A window W
m,n
p (I ) is a subimage of image I of size m × n

positioned with respect to a reference point p (i.e., a pixel location). The default is
that m = n is an odd number, and p is the centre location in the window. Figure 1.3
shows the window W

73,77
(453,134)(SanMiguel).

Usually we can simplify the notation to Wp because the image and the size of
the window are known by the given context.

1.1.2 Image Values and Basic Statistics

Image values u are taken in a discrete set of possible values. It is also common in
computer vision to consider the real interval [0,1] ⊂ R as the range of a scalar im-
age. This is in particular of value if image values are interpolated within performed
processes and the data type REAL is used for image values. In this book we use
integer image values as a default.

Scalar and Binary Images A scalar image has integer values u ∈ {0,1, . . . ,

2a − 1}. It is common to identify such scalar values with grey levels, with 0 = black
and 2a − 1 = white; all other grey levels are linearly interpolated between black and
white. We speak about grey-level images in this case. For many years, it was com-
mon to use a = 8; recently a = 16 became the new technological standard. In order
to be independent, we use Gmax = 2a − 1.

A binary image has only two values at its pixels, traditionally denoted by 0 =
white and 1 = black, meaning black objects on a white background.

1Read iff as “if and only if”; acronym proposed by the mathematician P.R. Halmos (1916–2006).
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Fig. 1.4 Original RGB colour image Fountain (upper left), showing a square in Guanajuato,
and its decomposition into the three contributing channels: Red (upper right), Green (lower left),
and Blue (lower right). For example, red is shown with high intensity in the red channel, but in
low intensity in the green and blue channel

Vector-Valued and RGB Images A vector-valued image has more than one chan-
nel or band, as it is the case for scalar images. Image values (u1, . . . , uNchannels) are
vectors of length Nchannels. For example, colour images in the common RGB colour
model have three channels, one for the red component, one for the green, and one for
the blue component. The values ui in each channel are in the set {0,1, . . . ,Gmax};
each channel is just a grey-level image. See Fig. 1.4.

Mean Assume an Ncols × Nrows scalar image I . Following basic statistics, we
define the mean (i.e., the “average grey level”) of image I as

μI = 1

Ncols · Nrows

Ncols∑

x=1

Nrows∑

y=1

I (x, y)

= 1

|Ω|
∑

(x,y)∈Ω

I (x, y) (1.2)

where |Ω| = Ncols · Nrows is the cardinality of the carrier Ω of all pixel locations.
We prefer the second way. We use I rather than u in this formula; I is a unique
mapping defined on Ω , and with u we just denote individual image values.
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Variance and Standard Deviation The variance of image I is defined as

σ 2
I = 1

|Ω|
∑

(x,y)∈Ω

[
I (x, y) − μI

]2
(1.3)

Its root σI is the standard deviation of image I .
Some well-known formulae from statistics can be applied, such as

σ 2
I =

[
1

|Ω|
∑

(x,y)∈Ω

I (x, y)2
]

− μ2
I (1.4)

Equation (1.4) provides a way that the mean and variance can be calculated by
running through a given image I only once. If only using (1.2) and (1.3), then two
runs would be required, one for calculating the mean, to be used in a second run
when calculating the variance.

Histograms A histogram represents tabulated frequencies, typically by using bars
in a graphical diagram. Histograms are used for representing value frequencies of a
scalar image, or of one channel or band of a vector-valued image.

Assume a scalar image I with pixels (i, j, u), where 0 ≤ u ≤ Gmax. We define
absolute frequencies by the count of appearances of a value u in the carrier Ω of all
pixel locations, formally defined by

HI (u) = ∣∣{(x, y) ∈ Ω : I (x, y) = u
}∣∣ (1.5)

where | · | denotes the cardinality of a set. Relative frequencies between 0 and 1,
comparable to the probability density function (PDF) of a distribution of discrete
random numbers I (p), are denoted by

hI (u) = HI (u)

|Ω| (1.6)

The values HI (0),HI (1), . . . ,HI (Gmax) define the (absolute) grey-level histogram
of a scalar image I . See Fig. 1.5 for histograms of an original image and three
altered versions of it.

We can compute the mean and variance also based on relative frequencies as
follows:

μI =
Gmax∑

u=0

u · hI (u) or σ 2
I =

Gmax∑

u=0

[u − μI ]2 · hI (u) (1.7)

This provides a speed-up if the histogram was already calculated.
Absolute and relative cumulative frequencies are defined as follows, respectively:

CI (u) =
u∑

v=0

HI (v) and cI (u) =
u∑

v=0

hI (v) (1.8)
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Fig. 1.5 Histograms for the 200 × 231 image Neuschwanstein. Upper left: Original image.
Upper right: Brighter version. Lower left: Darker version. Lower right: After histogram equaliza-
tion (will be defined later)

Those values are shown in cumulative histograms. Relative frequencies are compa-
rable to the probability function Pr[I (p) ≤ u] of discrete random numbers I (p).

Value Statistics in a Window Assume a (default) window W = W
n,n
p (I ), with

n = 2k + 1 and p = (x, y). Then we have in window coordinates

μW = 1

n2

+k∑

i=−k

+k∑

j=−k

I (x + i, y + j) (1.9)

See Fig. 1.6. Formulas for the variance, and so forth, can be adapted analogously.

Example 1.1 (Examples of Windows and Histograms) The 489 × 480 image Yan,
shown in Fig. 1.6, contains two marked 104 × 98 windows, W1 showing the face,
and W2 containing parts of the bench and of the dress. Figure 1.6 also shows the
histograms for both windows on the right.

A 3-dimensional (3D) view of grey levels (here interpreted as being elevations)
illustrates the different “degrees of homogeneity” in an image. See Fig. 1.7 for an
example. The steep slope from a lower plateau to a higher plateau in Fig. 1.7, left,
is a typical illustration of an “edge” in an image.

In image analysis we have to classify windows into categories such as “within
a homogeneous region” or “of low contrast”, or “showing an edge between two
different regions” or “of high contrast”. We define the contrast C(I) of an image I

as the mean absolute difference between pixel values and the mean value at adjacent
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Fig. 1.6 Examples of two 104×98 windows in image Yan, shown with corresponding histograms
on the right. Upper window: μW1 = 133.7 and σW1 = 55.4. Lower window: μW2 = 104.6 and
σW2 = 89.9

Fig. 1.7 Left: A “steep slope from dark to bright”. Right: An “insignificant” variation. Note the
different scales in both 3D views of the two windows in Fig. 1.6

pixels

C(I) = 1

|Ω|
∑

(x,y)∈Ω

∣∣I (x, y) − μA(x,y)

∣∣ (1.10)

where μA(x,y) is the mean value of pixel locations adjacent to pixel location (x, y).
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Fig. 1.8 Left: Two selected image rows in the intensity channel (i.e. values (R + G + B)/3) of
image SanMiguel shown in Fig. 1.3. Right: Intensity profiles for both selected rows

For another example for using low-level statistics for simple image interpreta-
tions, see Fig. 1.4. The mean values of the Red, Green, and Blue channels show that
the shown colour image has a more significant Red component (upper right, with
a mean of 154) and less defining Green (lower left, with a mean of 140) and Blue
(lower right, with a mean of 134) components. This can be verified more in detail
by looking at the histograms for these three channels, illustrating a “brighter image”
for the Red channel, especially for the region of the house in the centre of the image,
and “darker images” for the Green and Blue channels in this region.

1.1.3 Spatial and Temporal Data Measures

The provided basic statistical definitions already allow us to define functions that
describe images, such as row by row in a single image or frame by frame for a given
sequence of images.

Value Statistics in an Intensity Profile When considering image data in a new
application domain, it is also very informative to visualize intensity profiles defined
by 1D cuts through the given scalar data arrays.

Figure 1.8 illustrates two intensity profiles along the x-axis of the shown grey-
level image. Again, we can use mean, variance, and histograms of such selected
Ncols × 1 “narrow” windows for obtaining an impression about the distribution of
image values.

Spatial or Temporal Value Statistics Histograms or intensity profiles are exam-
ples for spatial value statistics. For example, intensity profiles for rows 1 to Nrows
in one image I define a sequence of discrete functions, which can be compared with
the corresponding sequence of another image J .

As another example, assume an image sequence consisting of frames It for t =
1,2, . . . , T , all defined on the same carrier Ω . For understanding value distributions,
it can be useful to define a scalar data measure D(t) that maps one frame It into
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Fig. 1.9 Top: A plot of two
data measures for a sequence
of 400 frames. Bottom: The
same two measures, but after
normalizing mean and
variance of both measures

one number and to compare then different data measures for the given discrete time
interval [1,2, . . . , T ], thus supporting temporal value statistics.

For example, the contrast as defined in (1.10) defines a data measure P(t) =
C(It ), the mean as defined in (1.2) defines a data measure M (t) = μIt , and the
variance as defined in (1.3) defines a data measure V (t) = σ 2

It
.

Figure 1.9, top, illustrates two data measures on a sequence of 400 images. (The
used image sequence and the used data measures are not of importance in the given
context.) Both measures have their individual range across the image sequence,
characterized by mean and variance. For a better comparison, we map both data
measures onto functions having identical mean and variance.

Normalization of Two Functions Let μf and σf be the mean and standard de-
viation of a function f . Given are two real-valued functions f and g with the same
discrete domain, say defined on arguments 1,2, . . . , T , and non-zero variances. Let

α = σg

σf

μf − μg and β = σf

σg

(1.11)

gnew(x) = β
(
g(x) + α

)
(1.12)

As a result, the function gnew has the same mean and variance as the function f .
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Fig. 1.10 Edges, or visual silhouettes, have been used for thousands of years for showing the
“essential information”, such as in ancient cave drawings. Left: Image Taroko showing historic
drawings of native people in Taiwan. Middle: Segment of image Aussieswith shadow silhouettes
recorded on top of building Q1, Goldcoast, Australia. Right: Shopping centre in Shanghai, image
OldStreet

Distance Between Two Functions Now we define the distance between two real-
valued functions defined on the same discrete domain, say 1,2, . . . , T :

d1(f, g) = 1

T

T∑

x=1

∣∣f (x) − g(x)
∣∣ (1.13)

d2(f, g) = 1

T

√√√
√

T∑

x=1

(
f (x) − g(x)

)2 (1.14)

Both distances are metrics thus satisfying the following axioms of a metric:
1. f = g iff d(f,g) = 0,
2. d(f,g) = d(g,f ) (symmetry), and
3. d(f,g) ≤ d(f,h) + d(h,g) for a third function h (triangular inequality).

Structural Similarity of Data Measures Assume two different spatial or tem-
poral data measures F and G on the same domain 1,2, . . . , T . We first map G
into Gnew such that both measures have now identical mean and variance and then
calculate the distance between F and Gnew using either the L1- or L2-metric.

Two measures F and G are structurally similar iff the resulting distance between
F and Gnew is close to zero. Structurally similar measures take their local maxima
or minima at about the same arguments.

1.1.4 Step-Edges

Discontinuities in images are features that are often useful for initializing an image
analysis procedure. Edges are important information for understanding an image
(e.g. for eliminating the influence of varying illumination); by removing “non-edge”
data we also simplify the data. See Fig. 1.10 for an illustration of the notion “edge”
by three examples.
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Fig. 1.11 Illustration for the step-edge model. Left: Synthetic input images. Right: Intensity pro-
files for the corresponding images on the left. Top to bottom: Ideal step-edges, linear edge, smooth
edge, noisy edge, thin line, and a discontinuity in shaded region

Discontinuities in images can occur in small windows (e.g. noisy pixels) or define
edges between image regions of different signal characteristics.

What Is an Edge? Figure 1.11 illustrates a possible diversity of edges in images
by sketches of 1D cuts through the intensity profile of an image, following the step-
edge model. The step-edge model assumes that edges are defined by changes in local
derivatives; the phase-congruency model is an alternative choice, and we discuss it
in Sect. 1.2.5.

After having noise removal performed, let us assume that image values represent
samples of a continuous function I (x, y) defined on the Euclidean plane R

2, which
allows partial derivatives of first and second order with respect to x and y. See
Fig. 1.12 for recalling properties of such derivatives.

Detecting Step-Edges by First- or Second-Order Derivatives Figure 1.12 illus-
trates a noisy smooth edge, which is first mapped into a noise-free smooth edge (of
course, that is our optimistic assumption). The first derivative maps intervals where
the function is nearly constant onto values close to 0 and represents then an increase
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Fig. 1.12 Illustration of an input signal, signal after noise removal, first derivative, and second
derivative

Fig. 1.13 Left: Synthetic input image with pixel location (x, y). Right: Illustration of tangential
plane (in green) at pixel (x, y, I (x, y)), normal n = [a, b,1], which is orthogonal to this plane,
and partial derivatives a (in x-direction) and b (in y-direction) in the left-hand Cartesian coordinate
system defined by image coordinates x and y and the image-value axis u

or decrease in slope. The second derivative just repeats the same taking the first
derivative as its input. Note that “middle” of the smooth edge is at the position of
a local maximum or local minimum of the first derivative and also at the position
where the second derivative changes its sign; this is called a zero-crossing.

Image as a Continuous Surface Intensity values in image I can be understood
as defining a surface having different elevations at pixel locations. See Fig. 1.13.
Thus, an image I represents valleys, plateaus, gentle or steep slopes, and so forth in
this interpretation. Values of partial derivatives in x- or y-direction correspond to a
decrease or increase in altitude, or staying at the same height level. We recall a few
notions used in mathematical analysis for describing surfaces based on derivatives.
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First-Order Derivatives The normal n is orthogonal to the tangential plane at
a pixel (x, y, I (x, y)); the tangential plane follows the surface defined by image
values I (x, y) on the xy-plane. The normal has an angle γ with the image-value
axis.

The gradient

∇ I = grad I =
[

∂I

∂x
,
∂I

∂y

]
(1.15)

combines both partial derivatives at a given point p = (x, y). Read ∇ I as “nabla I”.
To be precise, we should write [gradf ](p) and so forth, but we leave pixel location
p out for easier reading of the formulae.

The normal

n =
[

∂I

∂x
,
∂I

∂y
,+1

]
(1.16)

can point either into the positive or negative direction of the u-axis; we decide here
for the positive direction and thus +1 in the formal definition. The slope angle

γ = arccos
1

‖n‖2
(1.17)

is defined between the u-axis and normal n. The first-order derivatives allow us to
calculate the length (or magnitude) of gradient and normal:

‖grad I‖2 =
√(

∂I

∂x

)2

+
(

∂I

∂y

)2

and ‖n‖2 =
√(

∂I

∂x

)2

+
(

∂I

∂y

)2

+ 1

(1.18)
Following Fig. 1.12 and the related discussion, we conclude that:

Observation 1.1 It appears to be meaningful to detect edges at locations where the
magnitudes ‖grad I‖2 or ‖n‖2 define a local maximum.

Second-Order Derivatives Second-order derivatives are combined into either the
Laplacian of I , given by

� I = ∇2 I = ∂2I

∂x2
+ ∂2I

∂y2
(1.19)

or the quadratic variation of I , given by2

(
∂2I

∂x2

)2

+ 2

(
∂2I

∂x∂y

)2

+
(

∂2I

∂y2

)2

(1.20)

2To be precise, a function I satisfies the second-order differentiability condition iff ( ∂2I
∂x∂y

) =
( ∂2I

∂y∂x
). We simply assumed in (1.20) that I satisfies this condition.
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Fig. 1.14 The grey-level image WuhanU on the left is mapped into an edge image (or edge map)
in the middle, and a coloured edge map on the right; a colour key may be used for illustrating direc-
tions or strength of edges. The image shows the main administration building of Wuhan University,
China

Note that the Laplacian and quadratic variation are scalars and not vectors like the
gradient or the normal. Following Fig. 1.12 and the related discussion, we conclude
that:

Observation 1.2 It appears to be meaningful to detect edges at locations where the
Laplacian � I or the quadratic variation define a zero-crossing.

Edge Maps and Ways for Detecting Edges Operators for detecting “edges” map
images into edge images or edge maps; see Fig. 1.14 for an example. There is no
“general edge definition”, and there is no “general edge detector”.

In the spatial domain, they can be detected by following the step-edge model,
see Sects. 2.3.3 and 2.4, or by applying residuals with respect to smoothing, see
Sects. 2.3.2 and 2.3.5.

Discontinuities can also be detected in the frequency domain, such as by a high-
pass filter as discussed in Sect. 2.1.3, or by applying a phase-congruency model; see
Sect. 1.2.5 for the model and Sect. 2.4.3 for an algorithm using this model.

1.2 Images in the Frequency Domain

The Fourier transform defines a traditional way for processing signals. This section
provides a brief introduction into basics of the Fourier transform and Fourier filter-
ing, thus also explaining the meaning of “high-frequency information” or of “low-
frequency information” in an image. The 2D Fourier transform maps an image from
its spatial domain into the frequency domain, thus providing a totally different (but
mathematically equivalent) representation.

1.2.1 Discrete Fourier Transform

The 2D Discrete Fourier Transform (DFT) maps an Ncols × Nrows scalar image
I into a complex-valued Fourier transform I. This is a mapping from the spatial
domain of images into the frequency domain of Fourier transforms.
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Insert 1.2 (Fourier and Integral Transforms) J.B.J. Fourier (1768–1830) was
a French mathematician. He analysed series and integrals of functions that
are today known by his name.

The Fourier transform is a prominent example of an integral transform. It
is related to the computationally simpler cosine transform, which is used in
the baseline JPEG image encoding algorithm.

Fourier Transform and Fourier Filtering—An Outlook The analysis or changes
of data in the frequency domain provide insights into the given image I . Changes in
the frequency domain are Fourier filter operations. The inverse 2D DFT then maps
the modified Fourier transform back into the modified image.

The whole process is called Fourier filtering, and it allows us, for example, to
do contrast enhancement, noise removal, or smoothing of images. 1-dimensional
(1D) Fourier filtering is commonly used in signal theory (e.g., for audio processing
in mobile phones), and 2-dimensional (2D) Fourier filtering of images follows the
same principles, just in 2D instead of in 1D.

In the context of the Fourier transform we assume that the image coordinates run
from 0 to Ncols − 1 for x and from 0 to Nrows − 1 for y; otherwise, we would have
to use x − 1 and y − 1 in all the formulas.

2D Fourier Transform Formally, the 2D DFT is defined as follows:

I(u, v) = 1

Ncols · Nrows

Ncols−1∑

x=0

Nrows−1∑

y=0

I (x, y) · exp

[
−i2π

(
xu

Ncols
+ yv

Nrows

)]

(1.21)
for frequencies u = 0,1, . . . ,Ncols − 1 and v = 0,1, . . . ,Nrows − 1. The letter i =√−1 denotes (here in the context of Fourier transforms only) the imaginary unit of
complex numbers.3 For any real α, the Eulerian formula

exp(iα) = eiα = cosα + i · sinα (1.22)

demonstrates that the Fourier transform is actually a weighted sum of sine and co-
sine functions, but in the complex plane. If α is outside the interval [0,2π), then it
is taken modulo 2π in this formula. The Eulerian number e = 2.71828 . . . = exp(1).

3Physicists or electric engineers use j rather than i, in order to distinguish from the intensity i in
electricity.
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Insert 1.3 (Descartes, Euler, and the Complex Numbers) R. Descartes
(1596–1650), a French scientist with a great influence on modern mathe-
matics (e.g. Cartesian coordinates), still called negative solutions of quadric
equations a · x2 + b · x + c = 0 “false” and other solutions (that is, com-
plex numbers) “imaginary”. L. Euler (1707–1783), a Swiss mathematician,
realized that

eiα = cosα + i · sinα

for e = limn→∞(1 + 1
n
)n = 2.71828 . . . . This contributed to the acceptance

of complex numbers at the end of the 18th century.
Complex numbers combine real parts and imaginary parts, and those new

entities simplified mathematics. For instance, they made it possible to formu-
late (and later prove) the Fundamental Theorem of Algebra that every poly-
nomial equation has at least one root. Many problems in calculus, in physics,
engineering, and other applications can be solved most conveniently in terms
of complex numbers, even in those cases where the imaginary part of the so-
lution is not used.

1.2.2 Inverse Discrete Fourier Transform

The inverse 2D DFT transforms a Fourier transform I back into the spatial domain:

I (x, y) =
Ncols−1∑

u=0

Nrows−1∑

v=0

I(u, v) exp

[
i2π

(
xu

Ncols
+ yv

Nrows

)]
(1.23)

Note that the powers of the root of unity are here reversed compared to (1.21) (i.e.,
the minus sign has been replaced by a plus sign).

Variants of Transform Equations Definitions of DFT and inverse DFT may vary.
We can have the plus sign in the DFT and the minus sign in the inverse DFT.

We have the scaling factor 1/Ncols · Nrows in the 2D DFT and the scaling fac-
tor 1 in the inverse transform. Important is that the product of both scaling fac-
tors in the DFT and in the inverse DFT equals 1/Ncols · Nrows. We could have split
1/Ncols · Nrows into two scaling factors, say, for example, 1/

√
Ncols · Nrows in both

transforms.

Basis Functions Equation (1.23) shows that we represent the image I now as a
weighted sum of basis functions exp(iα) = cosα + i sinα being 2D combinations
of cosine and sine functions in the complex plane. Figure 1.15 illustrates five of such
basis functions sin(u + nv) for the imaginary parts b of complex values a + ib rep-
resented in the uv frequency domain; for the real part a, we have cosine functions.

The values I(u, v) of the Fourier transform of I in (1.23), called the Fourier
coefficients, are the weights in this sum with respect to the basis functions exp(iα).
For example, point noise or edges require sufficiently large coefficients for high



1.2 Images in the Frequency Domain 17

Fig. 1.15 Top, left: Waves on water. Top, middle, to bottom, right: 2D waves defined by
sin(u + nv), for n = 1, . . . ,5, having decreasing wave length (thus being of higher frequency)
for an increase in n

frequency (i.e. short wave length) components, to be properly represented in this
weighted sum.

1.2.3 The Complex Plane

We provide a brief discussion of elements, contributing to the DFT definition in
(1.21), for supporting a basic understanding of this very fundamental signal trans-
formation.

It is common practice to visualize complex numbers a + i · b as points (a, b) or
vectors [a, b] in the plane, called the complex plane. See Fig. 1.16.

Calculus of Complex Numbers Let z1 = a1 + i · b1 and z2 = a2 + i · b2 be two
complex numbers, with i = √−1, real parts a1 and a2, and imaginary parts b1 and
b2. We have that

z1 + z2 = (a1 + a2) + i · (b1 + b2) (1.24)

and

z1 · z2 = (a1a2 − b1b2) + i · (a1b2 + a2b1) (1.25)

The sum or the product of two complex numbers is again a complex number, and
both are invertible (i.e. by a difference or a multiplicative inverse; see z−1 below).



18 1 Image Data

Fig. 1.16 A unit circle in the
complex plane with all the
powers of W = i2π/24. The
figure also shows one
complex number z = a + ib

having (r,α) as polar
coordinates

The norm of a complex number z = a + i · b coincides with the L2-length of the
vector [a, b] (starting at the origin [0,0]); we have that ‖z‖2 = √

a2 + b2.
The conjugate z� of a complex number z = a + i · b is the complex number

a − i ·b. We have that (z�)� = z. We also have that (z1 · z2)
� = z�

1 · z�
2, and, assuming

that z �= 0, z−1 = ‖z‖−2
2 · z�.

Complex Numbers in Polar Coordinates A complex number z can also be writ-
ten in the form z = r · eiα , with r = ‖z‖2 and α (the complex argument of z) is
uniquely defined modulo 2π if z �= 0. This maps complex numbers into polar coor-
dinates (r,α).

A rotation of a vector [c, d] [i.e., starting at the origin [0,0]] about an angle
α is the vector [a, b], with

a + i · b = eiα · (c + i · d) (1.26)

Roots of Unity The complex number WM = exp[i2π/M] defines the M th root
of unity; we have WM

M = W 2M
M = W 3M

M = · · · = 1. Assume that M is a multiple of

4. Then we have that W 0
M = 1 + i · 0, W

M/4
M = 0 + i · 1, W

M/2
M = −1 + i · 0, and

W
3M/4
M = 0 + i · (−1).

Insert 1.4 (Fast Fourier Transform) The properties of M th roots of unity, M

a power of 2, supported the design of the original Fast Fourier Transform
(FFT), a time-efficient implementation of the DFT.
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The design of the FFT has an interesting history, see [J.M. Cooley, P.A. Lewis,

P.D. Welch. History of the fast Fourier transform. Proc. IEEE 55 (1967), pp. 1675–1677].
Origins date back to C.F. Gauss (see Insert 2.4). The algorithm became pop-
ular by the paper [J.M. Cooley, J.W. Tukey. An algorithm for the machine calculation

of complex Fourier series. Math. Comp. 19 (1965), pp. 297–301].
The FFT algorithm typically performs “in place”: the original image is

used for initializing the Ncols × Nrows matrix of the real part, and the matrix
of the imaginary part is initialized by zero at all positions. Then the 2D FFT
replaces all values in both matrices by 2D DFT results.

Figure 1.16 shows all the powers of the 24th root of unity, W24 = ei2π/24. In
this case we have, for example, that W 0

24 = e0 = 1, W 1
24 = cos π

12 + i sin π
12 , W 6

24 =
cos π

2 + i sin π
2 = i, W 12

24 = cosπ + i sinπ = −1, and W 18
24 = cos 3π

2 + i sin 3π
2 = −i.

Equation (1.21) can be simplified by using the notion of roots of unity. It follows
that

I(u, v) = 1

Ncols · Nrows

Ncols−1∑

x=0

Nrows−1∑

y=0

I (x, y) · W−xu
Ncols

· W−yv
Nrows

(1.27)

For any root of unity Wn = i2π/n, n ≥ 1, and for any power m ∈ Z, it follows that

∥∥Wm
n

∥∥
2 = ∥∥ei2πm/n

∥∥
2 =

√
cos(2πm/n)2 + sin(2πm/n)2 = 1 (1.28)

Thus, all those powers are located on the unit circle, as illustrated in Fig. 1.16.

1.2.4 Image Data in the Frequency Domain

The complex values of the 2D Fourier transform are defined in the uv frequency
domain. The values for low frequencies u or v (i.e. close to 0) represent long wave-
lengths of sine or cosine components; values for large frequencies u or v (i.e. away
from zero) represent short wavelengths. See Fig. 1.15 for examples for sine waves.

Interpretation of Matrix I Low frequencies represent long wavelengths and thus
homogeneous additive contributions to the input image I . High frequencies repre-
sent short wavelengths (and thus local discontinuities in I such as edges or intensity
outliers).

Directional patterns in I , for example lines into direction β or β + π , create
value distributions in I in the orthogonal direction (i.e., in direction β + π/2 in the
assumed line example).

In images we have the origin at the upper left corner (according to the assumed
left-hand coordinate system; see Fig. 1.1). The values in the matrix I can be re-
peated periodically in the plane, with periods Ncols and Nrows. This infinite number
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Fig. 1.17 The shaded area is
the Ncols × Nrows area of
matrix I, and it is surrounded
by eight more copies of I in
this figure. The origins are
always at the upper left
corner. Due to the periodicity,
low frequencies are in the
shown ellipses and thus in the
four corners of the matrix I;
the highest frequencies are at
the centre of the matrix I

of copies of the matrix I tessellates the plane in the form of a regular rectangular
grid; see Fig. 1.17.

If we want to have the origin (i.e. the low frequencies) in the centre locations
of the Fourier transform, then this can be achieved by a permutation of the four
quadrants of the matrix. Alternatively (as not difficult to verify mathematically),
this shift of I into a centred position can also be achieved by first multiplying all
values I (x, y) by (−1)x+y , before performing the 2D DFT.

Three Properties of the DFT We consider the 2D Fourier transform of an im-
age I . It consists of two Ncols × Nrows arrays representing the real (i.e., the as) and
the imaginary part (i.e., the bs) of the obtained complex numbers a + i · b. Thus,
the Ncols × Nrows real data of the input image I are now “doubled”. But there is an
important symmetry property:

I(Ncols − u,Nrows − v) = I(−u,−v) = I(u, v)∗ (1.29)

(recall: the number on the right is the conjugate complex number). Thus, actually
half of the data in both arrays of I can be directly obtained from the other half.
Another property is that

I(0,0) = 1

Ncols · Nrows

Ncols−1∑

x=0

Nrows−1∑

y=0

I (x, y) (1.30)

which is the mean of I . Because I has only real values, it follows that the imaginary
part of I(0,0) is always equal to zero. Originating from applications of the Fourier
transform in Electrical Engineering, the mean I(0,0) of the signal is known as the
DC component of I , meaning direct current. For any other frequency (u, v) �= (0,0),
I(u, v) is called an AC component of I , meaning alternating current.

As a third property, we mention Parseval’s theorem

1

|Ω|
∑

Ω

∣∣I (x, y)
∣∣2 =

∑

Ω

∣∣I(u, v)
∣∣2 (1.31)
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which states identities in total sums of absolute values for the input image I and
the Fourier transform I; the placement of the scaling factor 1

|Ω| corresponds to our
chosen way of having this scaling factor only in the forward transform.

Insert 1.5 (Parseval and Parseval’s Theorem) The French mathematician
M.-A. Parseval (1755–1836) is famous for his theorem that the integral of
the square of a function is equal to the integral of the square of its trans-
form, which we formulate in (1.31) in discrete form, using sums rather than
integrals.

Spectrum and Phase The L2-norm, magnitude or amplitude ‖z‖2 = r =√
a2 + b2, and the complex argument or phase α = atan2(b, a) define complex

numbers z = a + i · b in polar coordinates (r,α).4 The norm receives much atten-
tion because it provides a convenient way of representing the complex-valued matrix
I in the form of the spectrum ‖I‖. (To be precise, we use ‖I‖(u, v) = ‖I(u, v)‖2 for
all Ncols · Nrows frequencies (u, v).)

Typically, when visualizing the spectrum ‖I‖ in the form of a grey-level image,
it would be just black, just with a bright dot at the origin (representing the mean).
This is because all values in I are typically rather small. For better visibility, the
spectrum is normally log-transformed into log10(1 + ‖I(u, v)‖2). See Fig. 1.18.

Visualizations of the phase components of I are not so common; this is actually
not corresponding to the importance of phase for representing information present
in an image.

The image I in the lower example in Fig. 1.18 has a directional pattern; ac-
cordingly, it is rotated by π/2 in the spectrum. The upper example does not have a
dominant direction in I and thus also no dominant direction in the spectrum.

Figure 1.19 illustrates that uniform transforms of the input image, such as adding
a constant to each pixel value, histogram equalization, or value inversion do not
change the basic value distribution pattern in the spectrum.

Fourier Pairs An input image and its Fourier transform define a Fourier pair. We
show some examples of Fourier pairs, expressing in brief form some properties of
the Fourier transform:

Function I ⇔ its Fourier transform I

I (x, y) ⇔ I(u, v)

I ∗ G(x,y) ⇔ I ◦ G(u, v)

4The function atan2 is the arctangent function with two arguments that returns the angle in the
range [0,2π) by taking the signs of the arguments into account.
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Fig. 1.18 Left: Original images Fibers and Straw. Right: Centred and log-transformed spectra
for those images

I (x, y) · (−1)x+y ⇔ I
(

u + Ncols

2
, v + Nrows

2

)

a · I (x, y) + b · J (x, y) ⇔ a · I(u, v) + b · J(u, v)

The first line expresses just a general relationship. The second line says that the
Fourier transform of a convolution of I with a filter kernel G equals a point-by-point
product of values in the Fourier transforms of I and G; we discuss this important
property, known as the convolution theorem further below; it is the theoretical basis
for Fourier filtering.

The third line expresses the mentioned shift of the Fourier transform into a cen-
tred position if the input image is multiplied by a chessboard pattern of +1 and −1.
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Fig. 1.19 Left, top to bottom: Original low-quality jpg-image Donkey (in the public domain),
after histogram equalization (showing jpg-artefacts), and in inverted grey levels. Right: The corre-
sponding spectra do not show significant changes because the “image structure” remains constant
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Fig. 1.20 Simple geometric shapes illustrating that the main directions in an image are rotated by
90◦ in the spectrum (e.g., a vertical bar also generates a horizontal stripe in its spectrum)

The fourth line is finally the brief expression for the important property that the
Fourier transform is a linear transformation. Rotations of main directions are illus-
trated in Fig. 1.20. The additive behaviour is illustrated in the upper right example
in Fig. 1.21.

1.2.5 Phase-Congruency Model for Image Features

By phase congruency (or phase congruence) we quantify the correspondence of
phase values calculated in an image window defined by a reference point p, ex-
pressed below by a measure Pideal_phase(p).

Local Fourier Transform at Image Features Equation (1.23) describes the input
signal in the frequency domain as a sum of sine and cosine waves. Figure 1.22
illustrates this for a 1D signal: The shown step-curve is the input signal, and it is
decomposed in the frequency domain into a set of sine and cosine curves whose
addition defines (approximately) the input signal. At the position of the step, all
those curves are in the same phase.

When discussing the Fourier transform, we noticed that real-valued images are
mapped into a complex-valued Fourier transform and that each complex number z =
a + √−1b is defined in polar coordinates by the amplitude ‖z‖2 = r = √

a2 + b2
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Fig. 1.21 Top, left: The ideal wave pattern generates non-negative values only at v = 0. Bottom,
left: The diagonal wave pattern is influenced by the “finite-array effect”. Top, right: For the overlaid
diagonal wave pattern, compare with the DFT spectrum shown in Fig. 1.19. Bottom, right: We
apply the shown (very simple) mask in the frequency domain that blocks all the values along the
black diagonal; the inverse DFT produces the filtered image on the right; the diagonal pattern is
nearly removed

Fig. 1.22 1D signal
describing a step (in bold
grey) and frequency
components (in shades of
brown to orange) whose
addition defines the blue
signal, which approximates
the ideal step

and phase α = arctan(b/a). We do not use i for the imaginary unit here because we
will use it as an index in the sum below. According to (1.30), we have b = 0 at the
origin in the frequency domain, i.e. the phase α = 0 for the DC component.

Consider a local Fourier transform, centred at a pixel location p = (x, y) in
image I , using a (2k + 1) × (2k + 1) filter kernel of Fourier basis functions:

J(u, v) = 1

(2k + 1)2

k∑

i=−k

k∑

j=−k

I (x + i, y + j) · W−iu
2k+1 · W−jv

2k+1 (1.32)
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Fig. 1.23 Addition of four
complex numbers represented
by polar coordinates (rh,αh)

in the complex plane

Ignoring the DC component that has the phase zero (and is of no importance for
locating an edge), the resulting Fourier transform J is composed of n = (2k+1)2 −1
complex numbers zh, each defined by the amplitude rh = ‖zh‖2 and the phase αh,
for 1 ≤ h ≤ n.

Figure 1.23 illustrates an addition of four complex numbers represented by the
amplitudes and phases, resulting in a complex number z. The four complex numbers
(rh,αh) are roughly in phase, meaning that the phase angles αh do not differ much
(i.e. have a small variance only). Such an approximate identity defines a high phase
congruency, formally defined by the property measure

Pideal_phase(p) = ‖z‖2∑n
h=1 rh

(1.33)

with z being the sum of all n complex vectors represented by (rh,αh). We have that
Pideal_phase(p) = 1 defines perfect congruency, and Pideal_phase(p) = 0 occurs for
perfectly opposing phase angles and amplitudes.

Observation 1.3 Local phase congruency identifies features in images. Under the
phase congruency model, step-edges represent just one narrow class of an infinite
range of feature types that can occur. Phase congruency marks lines, corners, “roof
edges”, and a continuous range of hybrid feature types between lines and steps.

Insert 1.6 (Origin of the Phase-Congruency Measure) The measure of phase
congruency was proposed in [M. C. Morrone, J. R. Ross, D. C. Burr, and R. A. Owens.

Mach bands are phase dependent. Nature, vol. 324, pp. 250–253, November 1986] follow-
ing a study on relations between features in an image and Fourier coefficients.

See Fig. 1.24 for an example when applying the Kovesi algorithm (reported later
in Sect. 2.4.3), which implements the phase-congruency model.
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Fig. 1.24 Left: Original image AnnieYukiTim. Right: Edge map resulting when applying the
Kovesi algorithm

1.3 Colour and Colour Images

Perceived colour is not objectively defined. Colour perception varies for people,
and it depends on lighting. If there is no light, then there is no colour, such as, for
example, inside of a non-transparent body. Colour can be an important component
of given image data, and it is valuable for visualizing information by using false
colours (e.g., see Fig. 7.5). Human vision can only discriminate a few dozens of
grey levels on a screen, but hundreds to thousands of different colours.

This section informs about the diversity of interesting subjects related to the topic
“colour” and provides details for the RGB and HSI colour model such that you may
use those two when analyzing colour images, or when visualizing data using the
colour as an important tool.

1.3.1 Colour Definitions

An “average human” perceives colour in the visible spectrum as follows (recall that
1 nm = 1 nanometer = 10−9 m):
1. Red (about 625 to 780 nm) and Orange (about 590 to 625 nm) for the long wave-

lengths of the visible spectrum [the invisible spectrum continues with Infrared
(IR)];

2. Yellow (about 565 to 590 nm), Green (about 500 to 565 nm), and Cyan (about
485 to 500 nm) in the middle range of the visible spectrum;

3. Blue (about 440 to 485 nm) for the short wavelengths, for example visible on
the sky during the day when the sun is high up, and there is neither air pollution
nor clouds (but the light is broken into short wavelengths by the multi-layered
atmosphere); and, finally, also

4. Violet (about 380 to 440 nm) for very short wavelengths of the visible spectrum,
before it turns into the invisible spectrum with Ultraviolet (UV).
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Insert 1.7 (Retina of the Human Eye) The photoreceptors (some 120 million
rods for luminosity response and some 6 to 7 million cones) in the retina of
the human eye are concentrated towards the fovea.

Experimental evidence (from 1965 and later) suggests that there are three
different types of colour-sensitive cones corresponding roughly to Red (about
64 % of the cones), Green (about 32 %), and Blue (about 2 %). Apart from
these unbalanced values, blue sensitivity is actually comparable to the others.
Visible colour is modelled by tristimulus values for Red, Green, and Blue
components of the visible light.

Tristimulus Values The CIE (Commission Internationale de l’Eclairage = Inter-
national Commission on Illumination) has defined colour standards since the 1930s.

A light source creates an energy distribution L(λ) for the visible spectrum for
wavelengths 380 ≤ λ ≤ 780 of monochromatic light. See Fig. 1.25, left, for an ex-
ample. Such an energy distribution is mapped into three tristimulus values X, Y , and
Z by integrating a given energy distribution function L weighted by given energy
distribution functions x, y, and z as follows:

X =
∫ 700

400
L(λ)x(λ)dλ (1.34)

Y =
∫ 700

400
L(λ)y(λ)dλ (1.35)
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Fig. 1.25 Left: Sketch of an energy distribution curve L(λ) of an incandescent house lamp, for
wavelengths λ between 380 nm and 780 nm for monochromatic light. Right: The energy distri-
bution functions x(λ) (blue), y(λ) (green), and z(λ) (red) for defining tristimulus values X, Y ,
and Z

Z =
∫ 700

400
L(λ)z(λ)dλ (1.36)

The weighting functions x, y, and z have been defined by the CIE within the visible
spectrum. The cut-offs on both ends of those weighting functions do not correspond
exactly to human-eye abilities to perceive shorter (down to 380 nm) or larger (up
to 810 nm) wavelengths. The three curves have also been scaled such that their
integrals are all equal:

∫ 700

400
x(λ)dλ =

∫ 700

400
y(λ)dλ =

∫ 700

400
z(λ)dλ (1.37)

For example, the value Y models the brightness (= intensity) or, approximately,
the green component of the given distribution L. Its energy distribution curve y

was derived by modelling the luminosity response of an “average human eye”. See
Fig. 1.25, right.

The tristimulus values X, Y , and Z define the normalized xy-parameters

x = X

X + Y + Z
and y = Y

X + Y + Z
(1.38)

Assuming that Y is given, we are able to derive X and Z from x and y. Together
with z = Z/(X + Y + Z) we would have x + y + z = 1; thus, we do not need this
third value z.

The xy Colour Space of the CIE Parameters x and y define the 2D CIE Colour
Space, not representing brightness, “just” the colours. The xy colour space is
commonly represented by a chromaticity diagram as shown in Fig. 1.26. It is
0 ≤ x, y ≤ 1. This diagram only shows the gamut of human vision, that is, the
colours that are visible to the average person; the remaining white parts in the square
shown in the diagram are already in the invisible spectrum.
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Fig. 1.26 Chromaticity
diagram for the xy CIE
Colour Space

The convex outer curve in the diagram contains monochromatic colours (pure
spectral colours). The straight edge at the bottom (i.e. the purple line) contains
colours that are not monochromatic. In the interior of the human vision gamut, there
are less saturated colours, with white at the centre E = (0.33,0.33). The triangle
displayed is the gamut of the RGB primaries, as defined by the CIE by standardized
wavelengths of 700 nm for Red, 546.1 nm for Green, and 435.8 nm for Blue; the
latter two are monochromatic lines of a mercury vapour discharge.

Insert 1.8 (Different Gamuts of Media) The gamut is the available colour
range (such as “perceivable”, “printable”, or “displayable”). It depends on
the used medium. An image on a screen may look very different from a printed
copy of the same image because screen and printer have different gamuts. You
might see a warning like that in your image-editing system:

As a rule of thumb, transparent media (such as a TV, a computer screen,
or slides) have potentially a larger gamut than printed material. The (very
rough!) sketch above just indicates this. For common gamuts (also called
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Fig. 1.27 A dot pattern as
used in an Ishihara colour
test, showing a 5 for most of
the people, but for some it
shows a 2 instead

colour spaces), you may check, for example, for DCI-P3, Rec. 709, or sRGB.
Mapping images from one gamut to another is an important subject in colour
image processing.

1.3.2 Colour Perception, Visual Deficiencies, and Grey Levels

When designing figures for reports, publications, or presentations, it is worthwhile
to think about a good choice of a colour scheme, such that all of the audience can
see best what is supposed to be visualized.

Red–Green Colour Blindness Two energy distributions L1(λ) and L2(λ) for the
visible spectrum may be different curves, but a human H may perceive both as
identical colours, formally expressed by

L1
H= L2 (1.39)

Colour blindness means that some colours cannot be distinguished. In about 99 %
of cases this is red–green colour blindness. Total colour blindness is extremely rare
(i.e. seeing only shades of grey). Estimates for red–green colour blindness for people
of European origin are about 8–12 % for males and about 0.5 % for females.

Normal colour vision sees a 5 revealed in the dot pattern in Fig. 1.27, but an
individual with red–green colour blindness sees a 2.

Observation 1.4 When using red–green colours in a presentation, the above-men-
tioned percentage of your audience with European origin might not see what you
are intending to show.
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Insert 1.9 (Dalton, Ishihara, and the Ishihara Colour Test) Red–green colour
blindness was discovered by the chemist J. Dalton (1766–1844) in himself,
and it is usually called Daltonism. The Japanese ophthalmologist S. Ishihara
(1879–1963) and his assistant (who was a colour-blind physician) designed
test patterns for identifying colour blindness.

Algebra of Colour Vision Adding two colours L and C means that we are super-
imposing both light spectra L(λ) and C(λ). Experimental evidence (R.P. Feynman
in 1963) has shown that

L1 + C
H= L2 + C if L1

H= L2 (1.40)

aL1
H= aL2 if L1

H= L2 and 0 ≤ a ≤ 1 (1.41)

These equations define (for a test person H ) an algebra of colour perception, with
general linear combinations aL + bC as elements.

If you are interested in doing related experiments, then be aware that a computer
screen uses gamma correction for some γ > 0. When specifying colour channel
values u = k/2a (e.g. for R, G, and B channels), the presented values on screen
are actually equal to uγ , where γ < 1 defines the gamma compression, and γ > 1
defines the gamma expansion. The perception of changes in colour values will be
influenced by the given γ .

Insert 1.10 (Benham Disk and Colour as a Purely Visual Sensation) A typical
colour-based visual illusion is the “Benham disk” (of a nineteenth-century
toymaker):
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Fig. 1.28 The four primary
colours for colour perception

When spinning this disk (at various speeds, clockwise or counter-clockwise)
under bright incandescent light or sunlight, different “bands” of colour ap-
pear.

An explanation is given on www.exploratorium.edu/snacks/, starting with
the words: “There are three types of cones (in the eye). One is most sensitive
to red light, one to green light, and one to blue light. Each type of cone has a
different latency time, the time it takes to respond to a colour, and a different
persistence of response time, the time it keeps responding after the stimulus
has been removed.”

At the end it reads: “The explanation of the colours produced by Benham’s
disk is more complicated than the simple explanation outlined above.”

Primary Colour Perceptions Humans perceive colour differently; “colour” is a
psychological phenomenon. But there appears to be agreement that Yellow (top row
in the colour pyramid in Fig. 1.28), Red (right), Green (left), and Blue (bottom)
define the four primary colour perceptions.

For avoiding possible green-red misperceptions, there is, for example, the option
to use yellow, red, and blue as base colours in presentations.

Grey Levels Grey levels are not colours; they are described by the luminance (the
physical intensity) or the brightness (the perceived intensity). A uniform scale of
grey levels or intensities is common, such as

uk = k/2a for 0 ≤ k < 2a (1.42)

http://www.exploratorium.edu/snacks/
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where u0 = 0 represents black, and u2a−1 ≈ 1 represents white. We decided in
Chap. 1 to represent such intensities by integers 0,1, . . . ,Gmax = 2a − 1 rather than
by fractions between 0 and 1.

Both squares in Fig. 1.29, top, have the same constant intensity. Human vision
perceives the ratio of intensities. Grey value ratios are 5:6 in all the three cases
shown in Fig. 1.29, bottom, for a smaller and brighter rectangle in a larger and darker
rectangle. It is visually very difficult to discriminate between slightly different very
dark grey levels. The human eye has better abilities for noticing different very bright
grey levels.

Insert 1.11 (Visual Illusions Originating from Colour) They can originate
from motion, luminance or contrast, geometry, 3D space, cognitive effects,
specialized imaginations, and, of course, also from colour; see, for example,
www.michaelbach.de/ot/.

The strength of the illusion of the rotating snake by A. Kitaoka, shown above,
depends on contrast, background luminance, and viewing distance. Colour
enhances the illusion, but you may also try a grey-level version as well.

1.3.3 Colour Representations

Figure 1.4 shows an RGB colour image and its representation in three scalar chan-
nels, one for the Red, one for the Green, and one for the Blue component. The
used RGB colour representation model is additive: adding to a colour, which means

http://www.michaelbach.de/ot/
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Fig. 1.29 Top: Two squares of identical intensity. Bottom: Three examples for grey-level ratios
of 5 to 6

Fig. 1.30 The RGB cube
spanned by the Red, Green,
and Blue coordinate axes,
illustrating one colour q in
the cube defined by a value
triple (R,G,B)

increasing values in its scalar representation, contributes to going towards White.
This is the common way for representing colours on a screen. Colour models used
for printing are subtractive: adding to a colour means adding more ink, which con-
tributes to going towards Black.

The RGB Space Assume that 0 ≤ R,G,B ≤ Gmax and consider a multi-channel
image I with pixel values u = (R,G,B). If Gmax = 255, then we have 16,777,216
different colours, such as u = (255,0,0) for Red, u = (255,255,0) for Yellow,
and so forth. The set of all possible RGB values defines the RGB cube, a common
representation of the RGB colour space. See Fig. 1.30.

The diagonal in this cube, from White at (255,255,255) to Black at (0,0,0), is
the location of all grey levels (u,u,u), which are not colours. In general, a point
q = (R,G,B) in this RGB cube defines either a colour or a grey level, where the
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Fig. 1.31 The intensity axis points along the grey-level diagonal in the RGB cube. For the cut
with the cube, we identify one colour (here, Red) as the reference colour. Now we can describe q
by the intensity (i.e. its mean value), hue, which is the angle with respect to the reference colour
(Red here, and, say, in counter-clockwise order), and saturation corresponding to the distance to
the intensity axis

mean

M = R + G + B

3
(1.43)

defines the intensity of colour or grey level q.

The HSI Space Consider a plane that cuts the RGB cube orthogonally to its grey-
level diagonal, with q = (R,G,B) incident with this plane but not on the diagonal
(see also Fig. 1.33). In an abstract sense, we represent the resulting cut by a disk,
ignoring the fact that cuts of such a plane with the cube are actually simple polygons.
See Fig. 1.31.

For the disk, we fix one colour for reference; this is Red in Fig. 1.31. The lo-
cation of q in the disk is uniquely defined by an angle H (the hue) and a scaled
distance S (the saturation) from the intersecting grey-level diagonal of the RGB
cube. Formally, we have

H =
{

δ if B ≤ G

2π − δ if B > G
with (1.44)

δ = arccos
(R − G) + (R − B)

2
√

(R − G)2 + (R − B)(G − B)
in [0,π) (1.45)

S = 1 − 3 · min{R,G,B}
R + G + B

(1.46)

Altogether, this defines the HSI colour model. We represent intensity by M , to avoid
confusion with the use of I for images.
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Example 1.2 (RGB and HSI Examples) Grey levels (u,u,u) with u �= 0 have the
intensity M = u and the saturation S = 0, but the hue H remains undefined because
δ is undefined (due to division by zero). In the case of Black (0,0,0) we have the
intensity M = 0, and the saturation and hue remain undefined.

Besides these cases of points in the RGB cube representing non-colours, the
transformation of RGB values into HSI values is one-to-one, which means that we
can also transform HSI values uniquely back into RGB values. The hue and satura-
tion may represent RGB vectors with respect to an assumed fixed intensity.

Red (Gmax,0,0) has the intensity M = Gmax/3, the hue H = 0◦ (note: Red was
chosen to be the reference colour), and the saturation S = 1. We always have S = 1
if R = 0 or G = 0 or B = 0.

Green (0,Gmax,0) has the intensity M = Gmax/3 and the saturation S = 1; we
obtain that δ = arccos(−0.5), thus δ = 2π/3 in [0,π) and H = 2π/3 because B =
0 ≤ G = Gmax. Blue (0,0,Gmax) also leads to δ = 2π/3, but H = 4π/3 because
B = Gmax > G = 0.

Assume that we map S and H both linearly into the grey-level set {0,1, . . . ,Gmax}
and visualize the resulting images. Then, for example, the hue value of (Gmax, ε1, ε2)

can either be about black or white, just for minor changes in ε1 and ε2. Why?
Fig. 1.32 illustrates this effect at the bottom, left.

Figure 1.32, top, left, shows one of the colour checkers used for testing colour
accuracy of a camera, to be used for computer vision applications. There are three
rows of very precisely (uniform) coloured squares numbered 1 to 18 and one row of
squares showing grey levels. When taking an image of the card, the lighting at this
moment will contribute to the recorded image. Assuming monochromatic light, all
the grey-level squares should appear equally in the channels for Red (not shown),
Green, Blue, and intensity. The bottom, right, image of the saturation channel il-
lustrates that grey levels have the saturation value zero assigned in the program. Of
course, there can be no “undefined” cases in a program. Note that the hue value for
reference colour Red (Square 15) also “jumps” from white to black, as expected.

Insert 1.12 (Itten and Colour Perception) J. Itten (1888–1967, Switzerland)
wrote the influential book “The Art of Colour”, which deals with contrast,
saturation, and hue and how colour affects a person’s psychology. In brief, he
assigned the following meanings:

Red: resting matter, the colour of gravity and opacity.
Blue: eternal restless mind, relaxation, and continuous motion.
Yellow: fierce and aggressive, thinking, weightless.
Orange: brilliant luminance, cheap and brash, energy and fun, an unpop-

ular colour (well, do not say this in The Netherlands).
Purple: ancient purple dye was made out of purple sea-snails, and more

valuable than gold, only kings were allowed to wear purple; the colour of
power, belief, and force, or of death and darkness, of loneliness, but also of
devotedness and spiritual love.



38 1 Image Data

Fig. 1.32 Top: Colour checker by Macbeth™ and the channel for Green. Middle: Channels for
Blue and intensity values. Bottom: Channels visualizing hue and saturation values by means of
grey levels

Green: resting at the centre, neither active nor passive; natural, live and
spring, hope and trust, silence and relaxation, healthy, but also poisonous.
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Itten also assigned geometric shapes to colours, illustrated by a few examples
above.

We end this brief section about colour with a comment of Leonardo da Vinci
(1452–1519); see [The Notebooks of Leonardo da Vinci. Edited by J.P. Richter,
1880]:

Note 273: The effect of colours in the camera obscura.
The edges of a colour(ed) object transmitted through a small hole are more conspicuous
than the central portions.
The edges of the images, of whatever colour, which are transmitted through a small aperture
into a dark chamber, will always be stronger than the middle portion.

Leonardo da Vinci provided a large number of interesting notes on colour in those
notebooks.

1.4 Exercises

1.4.1 Programming Exercises

Exercise 1.1 (Basic Acquaintance with Programmed Imaging) Implement a pro-
gram (e.g., in Java, C++, or Matlab) that does the following:
1. Load a colour (RGB) image I in a lossless data format, such as bmp, png, or

tiff, and display it on a screen.
2. Display the histograms of all three colour channels of I .
3. Move the mouse cursor within your image. For the current pixel location p in the

image, compute and display
(a) the outer border (see grey box) of the 11 × 11 square window Wp around

pixel p in your image I (i.e., p is the reference point of this window),
(b) (above this window or in a separate command window) the location p (i.e.,

its coordinates) of the mouse cursor and the RGB values of your image I at
p,

(c) (below this window or in a separate command window) the intensity value
[R(p) + G(p) + B(p)]/3 at p, and

(d) the mean μWp and standard deviation σWp .
4. Discuss examples of image windows Wp (within your selected input images)

where you see “homogeneous distributions of image values”, and windows show-
ing “inhomogeneous areas”. Try to define your definition of “homogeneous” or
“inhomogeneous” in terms of histograms, means, or variances.
The outer border of an 11 × 11 square window is a 13 × 13 square curve (which

could be drawn, e.g., in white) having the recent cursor position at its centre. You
are expected that you dynamically update this outer border of the 11 × 11 window
when moving the cursor.



40 1 Image Data

Alternatively, you could show the 11 × 11 window also in a second frame on
a screen. Creative thinking is welcome; a modified solution might be even more
elegant than the way suggested in the text. It is also encouraged to look for solutions
that are equivalent in performance (same information to the user, similar run time,
and so forth).

Insert 1.13 (Why not jpg format?) jpg is a lossy compression scheme that
modifies image values (between compressed and uncompressed state), and
therefore it is not suitable for image analysis in general. bmp or raw or tiff
are examples of formats where pixel values will not be altered by some type
of compression mechanism. In jpg images you can often see an 8 × 8 block
structure (when zooming in) due to low-quality compression.

Exercise 1.2 (Data Measures on Image Sequences) Define three different data mea-
sures Di (t), i = 1,2,3, for analysing image sequences. Your program should do the
following:
1. Read as input an image sequence (e.g. in VGA format) of at least 50 frames.
2. Calculate your data measures Di (t), i = 1,2,3, for those frames.
3. Normalize the obtained functions such that all have the same mean and the same

variance.
4. Compare the normalized functions by using the L1-metric.
Discuss the degree of structural similarity between your measures in dependence of
the chosen input sequence of images.

Exercise 1.3 (Different Impacts of Amplitudes and Phase in Frequency Space on
Resulting Filtered Images) It is assumed that you have access to FFT programs for
the 2D DFT and inverse 2D DFT. The task is to study the problem of evaluating
information contained in amplitude and phase of the Fourier transforms:
1. Transform images of identical size into the frequency domain. Map the resulting

complex numbers into amplitudes and phases. Use the amplitudes of one image
and the phases of the other image, and transform the resulting array of complex
numbers back into the spatial domain. Who is “winning”, i.e. can you see the
image contributing the amplitude or the image contributing the phase?

2. Select scalar images showing some type of homogeneous textures; transform
these into the frequency domain and modify either the amplitude or the phase of
the Fourier transform in a uniform way (for all frequencies), before transform-
ing back into the spatial domain. Which modification causes a more significant
change in the image?

3. Do the same operations and tests for a set of images showing faces of human
beings.
Discuss your findings. How do uniform changes (of different degrees), either in

amplitude or in phase, alter the information in the given image?
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Fig. 1.33 Cuts through the RGB cube at u = 131 showing the RGB image I131 and saturation
values for the same cutting plane

Exercise 1.4 (Approximating the HSI Space by Planar Cuts) Assume that Gmax =
255. We are cutting the RGB cube by a plane Πu that is orthogonal to the grey-
level diagonal and passing through the grey level (u,u,u) for 0 ≤ u ≤ 255. Each
cut (i.e., the intersection of Πu with the RGB cube) is represented by one N × N

image Iu, where the value u = (R,G,B) at pixel location (x, y) is either defined by
the nearest integer-valued RGB triple in the RGB cube (or the mean if there is more
than one nearest RGB triple), if this distance is less than

√
2, or equals a default

value (say, black) otherwise. Do the following:
1. Implement a program which allows one to show the RGB images Iu, for u = 0,

u = 1, . . . , u = 255 (e.g., by specifying the value of u in a dialogue or by having
a continuously running animation).

2. Also show the (scalar) saturation values instead of RGB values. Figure 1.33
shows the results for u = 131.

3. You may either select a fixed value N > 30 (size of the image), or you may also
allow a user to choose N within a given range.

1.4.2 Non-programming Exercises

Exercise 1.5 Show the correctness of (1.4).

Exercise 1.6 Who was Fourier? When was the Fast Fourier Transform designed for
the first time? How is the Fourier transform related to optical lens systems?

Exercise 1.7 Assume an N × N image. Prove that a multiplication by (−1)x+y in
the spatial domain causes a shift by N/2 (both in row and column direction) in the
frequency domain.
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Exercise 1.8 In extension of Example 1.2, transform a few more (easy) RGB values
manually into corresponding HSI values.

Exercise 1.9 Let (δ, S,M) be the colour representation in the HSI space. Justify
the following steps for recovering the RGB components in the following special
cases:
• If δ ∈ [0,2π/3], then B = (1 − S)M .
• If δ ∈ [2π/3,4π/3], then R = (1 − S)M .
• If δ ∈ [4π/3,2π], then G = (1 − S)M .
How can we compute the remaining components in each of the above cases?

Exercise 1.10 In the CIE’s RGB colour space (which models human colour percep-
tion), the scalars R, G, or B may also be negative. Provide a physical interpretation
(obviously, we cannot subtract light from a given spectrum).
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This chapter introduces basic concepts for mapping an image into an image, typi-
cally used for improving image quality or for purposes defined by a more complex
context of a computer vision process.

2.1 Point, Local, and Global Operators

When recording image data outdoors (a common case for computer vision), there
are often particular challenges compared to indoor recording, such as difficulties
with lighting, motion blur, or sudden changes in scenes. Figure 2.1 shows images
recorded in a car (for vision-based driver-assistance). An unwanted data is called
noise. These are three examples of noise in this sense of “unwanted data”. In the
first case we may aim at transforming the images such that the resulting images
are “as taken at uniform illumination”. In the second case we could try to do some
sharpening for removing the blur. In the third case we may aim at removing the
noise.

This section provides time-efficient methods that you may consider for prepro-
cessing your data prior to subsequent image analysis.

2.1.1 Gradation Functions

We transform an image I into an image Inew of the same size by mapping a grey
level u at pixel location p in I by a gradation function g onto a grey level v = g(u)

at the same pixel location p in Inew. Because the change only depends on value u at
location p, we also speak about a point operator defined by a gradation function g.

If the goal is that Inew satisfies some properties defined in terms of its histogram,
then we speak about a histogram transform.

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_2, © Springer-Verlag London 2014
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Fig. 2.1 Top: A pair of images SouthLeft and SouthRight taken time-synchronized but of
different brightness; see the shown grey-level histograms. Bottom left: Blurring caused by rain in
image Wiper. Bottom right: Noise in a scene Uphill recorded at night

Histogram Equalization We transform a scalar image I such that all grey levels
appear equally often in the transformed image Inew. The goal is to achieve that

HInew(u) = const = NcolsNrows

Gmax + 1
(2.1)

for all u ∈ {0,1, . . . ,Gmax}.
Unfortunately, this is not possible in general, due to the constraint that identical

values in I can only map on the same value in Inew. For example, a binary image
I cannot be mapped onto a histogram-equalized grey-level image Inew (even in the
case if we would have a continuous binary image; but having digital images also
contributes to excluding perfect equalization). The following transform is thus just
an approximate solution towards the ideal goal.

Given is an Ncols × Nrows scalar image I with absolute frequencies HI (u) for
0 ≤ u ≤ Gmax. We transform I into an image Inew of the same size by mapping
intensities u in I by the following gradation function g onto new intensities v = g(u)

in Inew:

g(u) = cI (u) · Gmax (2.2)



2.1 Point, Local, and Global Operators 45

Fig. 2.2 Left: Input image RagingBull (in the public domain) with histogram. Right: The same
image after histogram equalization

Fig. 2.3 Graph of the
gradation function for linear
scaling, defined by being
incident with points (umin,0)

and (umax,Gmax)

where cI is the relative cumulative frequency function. Figure 2.2 illustrates such a
histogram equalization.

It is not difficult to show the equalization property for the histogram transform,
defined by (2.2), using the property that the cumulative relative frequency cI is an
increasing function. The relative histogram hI (u) corresponds to an estimate of a
density function, cI (u) to an estimate of a probability distribution function, and
hInew(u) to an estimate of the uniform density function.

Linear Scaling Assume that an image I has positive histogram values in a limited
interval only. The goal is that all values used in I are spread linearly onto the whole
scale from 0 to Gmax. Let umin = min{I (x, y) : (x, y) ∈ Ω}, umax = max{I (x, y) :
(x, y) ∈ Ω}, and

a = −umin and b = Gmax

umax − umin
(2.3)

g(u) = b(u + a) (2.4)

As a result, pixels having the value umin in the image I now have the value 0 in the
resulting image Inew, and pixels having the value umax in the image I now have the
value Gmax in Inew. This is illustrated in Fig. 2.3. This figure can also serve as an



46 2 Image Processing

illustration when discussing the correctness of the histogram transform defined by
(2.4).

Conditional Scaling As another example of a use of a gradation function, we
want to map an image J into an image Jnew, such that it has the same mean and the
same variance as an already given image I . For this conditional scaling, let

a = μJ · σI

σJ

− μI and b = σJ

σI

(2.5)

g(u) = b(u + a) (2.6)

Now we map the grey level u at pixel p in J onto the new value v = g(u) at the
same pixel p in Jnew. It is not difficult to show that μJnew = μI and σJnew = σI .
The performed normalization is the same as in (1.12), where we normalized data
measures.

2.1.2 Local Operators

For a given Ncols × Nrows image I , we consider sliding windows Wp , each of size
(2k + 1) × (2k + 1), where the reference point p is always at the centre of the
window. The reference point moves into all possible pixel locations of I and so
moves the window over the image. At these locations we perform a local operation;
the result of the operation defines the new value at p. Thus, the input image I is
transformed into a new image J .

Two Examples: Local Mean and Maximum For example, the local operation
can be the local mean, J (p) = μWp(I), with

μWp(I) = 1

(2k + 1)2
·

+k∑

i=−k

+k∑

j=−k

I (x + i, y + j) (2.7)

for p = (x, y).
As another example, the local operation can be the calculation of the local maxi-

mum

J (p) = max
{
I (x + i, y + j) : −k ≤ i ≤ k ∧ −k ≤ j ≤ k

}
(2.8)

for p = (x, y). See Fig. 2.4 for an example.
Windows centred at p and not completely contained in I , require a special

“border-pixel strategy”; there is no general proposal for such a strategy. One option
is to consider the same local operation just for a smaller window, which is possible
for the two examples of local operations given above.
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Fig. 2.4 Top, left: Original image Set1Seq1 with Ncols = 640. Top, right: Local maximum for
k = 3. Bottom, left: Local minimum for k = 5. Bottom, right: Local operator using the 3 × 3 filter
kernel shown in the middle of Fig. 2.5

Fig. 2.5 Left: General representation for a 3 × 3 filter kernel. Middle: Filter kernel illustrated in
Fig. 2.4, bottom, right, approximating a derivative in x-direction. Right: The filter kernel of a 3 × 3
box filter

Linear Operators and Convolution A linear local operator is defined by a con-
volution of an image I at p = (x, y) with a filter kernel W ,

J (p) = I ∗ W(p) = 1

S

+k∑

i=−k

+k∑

j=−k

wi,j · I (x + i, y + j) (2.9)

with weights wi,j ∈ R and a scaling factor S > 0. The arguments in (2.9) go out
of Ω if p is close to the border of this image carrier. A theorem says that then you
apply a modulo rule conceptually equivalent to a 2D periodic copying of the image
I on Ω into the grid Z

2.
The array of (2k + 1) × (2k + 1) weights and scaling factor S define the filter

kernel W . It is common to visualize filter kernels W of linear local operators as
shown in Fig. 2.5.

Equation (2.7) is an example of such a linear local operator, known as a box
filter. Here we have all weights equal to 1, and S = (2k + 1)2 is the sum of all those
weights.
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General View on Local Operators We summarize the properties of local opera-
tors:
1. Operations are limited to windows, typically of square and odd size (2k + 1) ×

(2k + 1); of course, with respect to isotropy (i.e. rotation invariance), approxi-
mately circular windows should be preferred instead, but rectangular windows
are easier to use.

2. The window moves through the given image following a selected scan order
(typically aiming at a complete scan, having any pixel at the reference position
of the window at some stage).

3. There is no general rule how to deal with pixels close to the border of the image
(where the window is not completely in the image anymore), but they should be
processed as well.

4. The operation in the window should be the same at all locations, identifying the
purpose of the local operator.

5. The results can either be used to replace values in place at the reference points in
the input image I , defining a sequential local operator where new values prop-
agate like a “wave” over the original values (windows of the local operator then
contain the original data and already-processed pixel values), or resulting values
are written into a second array, leaving the original image unaltered this way,
defining a parallel local operator, so called due to the potential of implementing
this kind of a local operator on specialized parallel hardware.

In case of k = 0 (i.e., the window is just a single pixel), we speak about a point
operator. If k grows so that the whole picture is covered by the window, then it
turns into a global operator. The 2D Fourier transform of an image is an example
for a global transform.

Insert 2.1 (Zamperoni) There is immense diversity of published proposals for
image processing operators due to the diversity of image data and particular
tasks in applications. For example, the book [R. Klette and P. Zamperoni. Handbook

of Image Processing Operators. Wiley, Chichester, 1996] details many of the usual
point, local, and global operators.

The memory of Piero Zamperoni (1939–1998), an outstanding educator in
pattern recognition, is honoured by the IAPR by issuing the Piero Zamperoni
Best Student Paper Award at their biennial ICPR conferences.

2.1.3 Fourier Filtering

The inverse 2D DFT (see (1.23)) transforms a Fourier transform I back from the
frequency domain into the spatial domain. The inverse 2D DFT will lead to a real-
valued function I as long as I satisfies the symmetry property of (1.29). Thus, any
change in the frequency domain is constrained by this.
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Fourier Filtering The inverse 2D DFT can be read as follows: the complex num-
bers I(u, v) are the Fourier coefficients of I , defined for different frequencies u

and v. Each Fourier coefficient is multiplied with a combination of sine and cosine
functions (see the Eulerian formula (1.22)), and the sum of all those combinations
forms the image I . In short, the image I is represented by basis functions being
powers of roots of unity in the complex plane, and the Fourier coefficients specify
this basis function representation.

This means that if we modify one of the Fourier coefficients (and its symmetric
coefficient due to the constraint imposed by the symmetry property) before applying
the inverse 2D DFT, then we obtain a modified function I .

For a linear transform of the image I , there are two options:
1. We modify the image data by a linear convolution

J (x, y) = (I ∗ G)(x, y) =
Ncols−1∑

i=0

Nrows−1∑

j=0

I (i, j) · G(x − i, y − j) (2.10)

in the spatial domain, where G is the filter kernel (also called the convolution
function). Function J is the filtered image.

2. We modify the 2D DFT I of I by multiplying the values in I, position by position,
with the corresponding complex numbers in G [i.e., I(u, v) ·G(u, v)]. We denote
this operation by I ◦ G (not to be confused with matrix multiplication). The re-
sulting complex array is transformed by the inverse 2D DFT into the modified
image J .
Interestingly, both options lead to identical results assuming that G is the 2D

DFT of G, due to the convolution theorem:

I ∗ G equals the inverse 2D DFT of I ◦ G (2.11)

Thus, either a convolution in the spatial domain or a position-by-position multi-
plication in the frequency domain produce identical filtered images. However, in
the convolution case we miss the opportunity to design frequency-dependent filter
functions in the frequency domain.

Steps of Fourier Filtering Given is an image I and a complex-valued filter func-
tion G (which is satisfying the symmetry property of (1.29)) in the frequency do-
main. Apply an FFT program for doing the following; if required for the applied
FFT program, first map the image I into a larger 2n × 2n array:
1. Transform the image I into the frequency domain, into the complex-valued I by

using the FFT program.
2. Multiply the complex-valued I, element by element, with the complex-valued

filter function G.
3. Transform the result back into the spatial domain by using the FFT program for

the inverse DFT.
The filter function G can be obtained as the Fourier transform of a filter kernel G

in the spatial domain. It is common procedure to design filter functions G directly
in the frequency domain.
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Fig. 2.6 1D profiles of rotation-symmetric filter functions. Top: A linear high-pass filter and an
ideal low-pass filter. Bottom: An exponential high-emphasis filter and a linear band-pass filter

Example 2.1 The box filter is a linear convolution in the spatial domain. Its filter
kernel is defined by the weights G(x,y) = 1/a for (x, y) in a (2k + 1) × (2k + 1)

window, centred at the origin (0,0), with a = (2k + 1)2. Outside of this window we
have that G(x,y) = 0.

The 2D DFT of this function G has amplitudes close to 1 for low frequencies,
with a steep decrease in amplitudes towards zero for higher frequencies.

The Fourier transform G of Example 2.1 is a typical low-pass filter: low frequen-
cies are “allowed to pass” (because multiplied with values of amplitudes close to 1),
but higher frequencies are “drastically reduced” (because multiplied with values of
amplitude close to 0).

Design of Filter Functions The frequency domain is well suited for the design
of filter functions. See Fig. 2.6. We may decide for a high-pass filter (e.g., for edge
detection, or for visualizing details and for suppressing low frequencies), a high-
emphasis filter (e.g., for enhancing contrast), a band-pass filter (for allowing only
a certain range of frequencies “to pass”), or a filter that eliminates or enhances se-
lected frequencies (under proper consideration of the symmetry constraint). The
impact of a low-pass filter is a reduction of outliers and of contrast, i.e. a smoothing
effect.

Attributes “linear”, “exponential”, or “ideal” of a filter function specify the way
how the transition is defined from large amplitudes of the filter to low amplitudes.
See Fig. 2.6 for examples of transitions. Low-pass and band-pass filtering of an
image is illustrated in Fig. 2.7.

Besides the flexibility in designing filter functions, the availability of time-
efficient 2D FFT algorithms is also an important argument for using a DFT-based
filter instead of a global convolution. Local convolutions are normally more effi-
ciently performed in the spatial domain by a local operator.

2.2 Three Procedural Components

This section introduces three procedural components that are commonly used in
image processing programs, such as for local operators, but also when implementing
particular image analysis or computer vision procedures.
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Fig. 2.7 Upper row, left: Intensity channel of image Emma, shown also in colour in Fig. 2.9.
Upper row, right: Its spectrum, centred and with log-transform. Lower row, left: An ideal low-pass
filtered Emma, showing a typical smoothing effect. Lower row, right: An exponential-band-pass
filtered Emma, already showing more higher frequencies than lower frequencies

2.2.1 Integral Images

The calculation of an integral image Iint for a given image I is a common prepro-
cessing step for speeding up operations on I which involve rectangular windows
(e.g. for feature detection). “Integration” means adding small units together. In this
case, the small units are the pixel values. For a pixel p = (x, y), the integral value

Iint(p) =
∑

1≤i≤x∧1≤j≤y

I (i, j) (2.12)

is the sum of all the values I (i, j) at pixel locations q = (i, j) that are neither below
p nor right of p. See Fig. 2.8, left.
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Fig. 2.8 Left: At Iint(x, y) we have the sum of all the shown pixel values. Right: If an algorithm
requires to use the sum of all pixel values in the shown rectangular window, then we only need
to combine the values of the integral image in the four corners p, q , r , and t ; see the text for the
formula

Insert 2.2 (The Introduction of Integral Images into Computer Vision) In-
tegral images have been introduced in the Computer Graphics literature in
[F.C. Crow. Summed-area tables for texture mapping. Computer Graphics, vol. 18, pp. 207–

212, 1984] and then popularized by [J.P. Lewis. Fast template matching. In Proc. Vision

Interface, pp. 120–123, 1995] and [P. Viola and M. Jones. Robust real-time object detec-

tion. Int. J. Computer Vision, pp. 137–154, 2001] in the Computer Vision literature.

Now consider a rectangular window W in an image defining four pixels p, q , r ,
and s, as illustrated in Fig. 2.8, right, with q , r , and s just one pixel away from W .
The sum SW of all pixel values in W is now simply defined by

SW = Iint(p) − Iint(r) − Iint(s) + Iint(q) (2.13)

We only have to perform one addition and two subtractions, independent upon the
size of the rectangular window W . This will later (in this book) prove to be very
handy for classifying objects shown in images.

Example 2.2 (Number of Operations with or Without Integral Image) Assume that
we calculate the sum in an n×m window by using (2.13). We have three arithmetic
operations, no matter what are the values of m or n.

Without an integral image, just by adding all the m · n numbers in the window,
we have m · n − 1 arithmetic operations.

If we also count the addressing arithmetic operations, for the sequential sliding
window in the integral image, they are reduced to four ++ increments if we keep the
addresses for pixels p, q , r , and s in address registers.
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Fig. 2.9 Illustrations of picture pyramids. Left: A regular pyramid is the assumed model behind
subsequent size reductions. Left, top: Sketch of pairwise disjoint arrays. Left, bottom: Example of
layers for image Emma

Observation 2.1 After one preprocessing step for generating the integral image,
any subsequent step, requiring to know the sum of pixel values in a rectangular
window, only needs constant time, no matter what is the size of the window.

2.2.2 Regular Image Pyramids

A pyramid is a common data structure used for representing one input image I at
different sizes. See Fig. 2.9. The original image is the base layer of the pyramid.
Images of reduced sizes are considered to be subsequent layers in the pyramid.

Use of Scaling Factor 2 If scaling down by factor 2, as illustrated in Fig. 2.9,
then all additional levels of the pyramid require less than one third of the space of
the original image, according to the geometric series

1 + 1

2 · 2
+ 1

22 · 22
+ 1

23 · 23
+ · · · < 4

3
(2.14)

When reducing the size from one layer to the next layer of the pyramid, bottom-
up, the mean was calculated for 2 × 2 pixels for generating the corresponding sin-
gle pixel at the next layer. For avoiding spatial aliasing, it is also recommended to
perform some Gauss smoothing (to be explained in the following section) prior to
taking those means.

By creating a new pixel r in Layer n + 1 of the pyramid, defined by (say) four
pixels p1, p2, p3, and p4 at Layer n, we create new adjacencies (p1, r), (p2, r),
(p3, r), and (p4, r), additionally to (say) 4-adjacency in Layer n, as illustrated in
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Fig. 2.9, right. For going via adjacent pixels from pixel location p to pixel location
q in image I , we now also have the option to go first up in the pyramid to some
level, then a few steps sideward in this level, and again down to q . In general, this
supports shorter connecting paths than only using 4-adjacency in the input image I .

Example 2.3 (Longest Path in a Regular Pyramid of Scaling Factor 2) Assume an
image I of size 2n × 2n and a regular pyramid on top of this image created by using
scaling factor 2.

For the longest path between two pixel locations, we consider p and q being
diagonal corners in I . Using 4-adjacency in I , their distance to each other is 2n − 1
steps towards one side, and again 2n − 1 steps towards another side, no matter in
which order we do those steps. Thus, the longest path in I , not using the pyramid,
equals

2n+1 − 2 (2.15)

This reduces to a path of length 2n when also using the adjacencies defined by the
pyramid.

Observation 2.2 Adjacencies in a pyramid reduce distances between pixels in an
image significantly; this can be used when there is a need to send a “message” from
one pixel to others.

Pyramids can also be used for starting a computer vision procedure at first at
one selected level in the data structure, and results are then refined by propagating
them down in the pyramid to layers of higher resolution. We will discuss examples
at some places in the book.

2.2.3 Scan Orders

The basic control structure of an image analysis program (not only for local opera-
tors, also, e.g. for component labelling) typically specifies a scan order for visiting
all or some of the pixels.

Standard Scan Order and Variants Figure 2.10 illustrates not only the standard
scan order, but also others that might be of interest under particular circumstances.
Spiral or meander scans offer the opportunity that prior calculations are used at the
next location of the sliding window, because only 2k + 1 pixels enter the window,
replacing 2k + 1 “leaving” pixels.

Insert 2.3 (Hilbert, Peano, and Euclid) In 1891, D. Hilbert (1862–1943),
the major German mathematician, defined a curve filling completely the unit
square, following Jordan’s initial definition of a curve. A finite number of rep-
etitions of this construction, as illustrated in Fig. 2.11, leads to a Hilbert scan



2.2 Three Procedural Components 55

Fig. 2.10 Scan orders: standard (upper left), inward spiral (upper middle), meander (upper right),
reverse standard (lower left), magic square (lower middle), and selective standard (as used in inter-
laced scanning), e.g. every second row (lower right)

in a grid of size 2n × 2n, not to be confused with the original curve defined by
Hilbert in the Euclidean space. Hilbert’s curve is a variant of a curve defined
in 1890 by the Italian mathematician G. Peano (1858–1932) for the same
purpose.

Euclid of Alexandria (about −300) was a Greek mathematician, known
for his Elements, which was the standard work in Geometry until the 19th
century.

A magic square scan (Fig. 2.10, bottom, middle, shows a simple 4 × 4 example)
generates a pseudo-random access to pixels; in a magic square, numbers add up
to the same sum in each row, in each column, and in forward and backward main
diagonals. A Hilbert scan is another option to go towards pseudo-random access (or
output, e.g. for generating a picture on a screen). See Fig. 2.11.

Hilbert Scan Fig. 2.11 specifies the Hilbert scan in a way that we enter the image
at its north–west corner, and we leave it at its north–east corner. Let us denote the
four corners of a 2n×2n picture by a, b, c, d , starting at the north–west corner and in
clock-wise order. We assume a Hilbert scan Hn(a, d, c, b), where we start at corner
a, continue then with corner d , proceed to corner c, and terminate then at corner b.

H1(a, b, c, d) is a scan of a 2×2 image, where we just visit in the order a, b, c, d

as shown.
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Fig. 2.11 Hilbert scans for 2 × 2, 4 × 4, or 8 × 8 images illustrating the recursive extension to
larger images of size 2n × 2n

Hn+1(a, d, c, b) is a scan where we start at the north–west corner; we perform
Hn(a, b, c, d), followed by one step down, then Hn(a, d, c, b), followed by one
step to the right, then (again) Hn(a, d, c, b), followed by one step up, and finally
Hn(c, d, a, b), which takes us to the north–east corner of the 2n+1 × 2n+1 image.

2.3 Classes of Local Operators

Local intensity patterns in one image can be considered to be “fairly” independent
if they are at some distance to each other within the carrier Ω . Local operators make
good use of this and are time-efficient and easy to implement on usual sequential
and parallel hardware. Thus, not surprisingly, there is a large diversity of proposed
local operators for different purposes. This section illustrates this diversity by only
providing a few “popular” examples for four classes of local operators.

2.3.1 Smoothing

Image smoothing aims at eliminating “outliers” in image values considered to be
noise in a given context.

Box Filter The (2k + 1) × (2k + 1) box filter, performing the local mean calcula-
tion as already defined in (2.7), is a simple option for image smoothing. It removes
outliers, but it also reduces significantly the contrast C(I) of an image I . Often it
is sufficient to use just a 3 × 3 or 5 × 5 filter kernel. The local mean for larger ker-
nel sizes can be conveniently calculated by using the integral image Iint of input
image I .

Median Operator The median of 2n + 1 values is the value that would ap-
pear in sorted order at position n + 1. For example, 4 is the median of the
set {4,7,3,1,8,7,4,5,2,3,8} because 4 is in position 6 in the sorted sequence
1,2,3,3, 4,4,5,7,7,8,8.
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Fig. 2.12 Left: The 2D Gauss function for expected values μx = μy = 0. Right: Four examples
of 1D Gauss functions for different expected values and different variances

The (2k+1)×(2k+1) median operator maps the median of a (2k+1)×(2k+1)

window to the reference pixel p. It achieves the removal of outliers with only an
insignificant change in image contrast C(I).

Insert 2.4 C.F. Gauss (1777–1855), a brilliant German mathematician work-
ing at Göttingen university, very well described in a novel “Measuring the
World” by D. Kehlmann (original publication in German in 2005).

Gauss Filter The Gauss filter is a local convolution with a filter kernel defined by
samples of the 2D Gauss function. This function is the product of two 1D Gauss
functions defined as follows:

Gσ,μx,μy (x, y) = 1

2πσ 2
exp

(
− (x − μx)

2 + (y − μy)
2

2σ 2

)

= 1

2πσ 2
· e− (x−μx)2

2σ 2 · e− (y−μy)2

2σ 2 (2.16)

where (μx,μy) combines the expected values for x- and y-components, σ is the
standard deviation (σ 2 is the variance), which is also called the radius of this func-
tion, and e is the Euler number.

The Gauss function is named after C.F. Gauss (see Insert 2.4). The Euler number
is named after L. Euler; see Insert 1.3 and 1.22 for the Eulerian formula. Figure 2.12
illustrates the Gauss function. The standard deviation σ is also called the scale.

Observation 2.3 The second line in (2.16) shows that a 2D Gauss filter can be
realized by two subsequent 1D Gauss filters, one in horizontal and one in vertical
direction.
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Fig. 2.13 Filter kernel for
Gaussian smoothing defined
by k = 2 and s = 2 (i.e.
σ = 1)

Centred Gauss Function By assuming a centred Gauss function (i.e. with zero
means μx = μy = 0, as in Fig. 2.12, left), (2.16) simplifies to

Gσ (x, y) = 1

2πσ 2
exp

(
−x2 + y2

2σ 2

)
= 1

πs
· e− x2

2σ 2 · e− y2

2σ 2 (2.17)

Such a centred Gauss function is now sampled at (2k + 1) × (2k + 1) locations,
with the window’s reference pixel at the origin (0,0). This defines an important
filter kernel for a local operator, parameterized by σ > 0 and k ≥ 1. We will later
use it for defining differences of Gaussians (DoGs) and the scale space.

Figure 2.13 shows a sampled filter kernel for σ = 1. Following the three-sigma
rule in statistics, Gσ is sampled by a kernel of size 6σ − 1.

For an input image I , let

L(x, y,σ ) = [I ∗ Gσ ](x, y) (2.18)

be a local convolution with function Gσ with σ > 0. For implementation, we sample
Gσ symmetrically to the origin at w ×w grid positions for defining the filter kernel,
where w is the nearest odd integer to 6σ − 1.

Gaussian Scale Space For a scaling factor a > 1, we can step from the smoothed
image L(x, y,σ ) to L(x, y, aσ ). By using repeatedly scales an · σ , for an initial
scale σ and n = 0,1, . . . ,m, we create a set of subsequent layers of a Gaussian
scale space. See Fig. 2.14 for an example.

In this book, the layers in a scale space are all of identical size Ncols ×Nrows. For
implementation efficiency, some authors suggested to reduce this size by a factor
of 2 for any doubling of the used scale σ , thus creating octaves of blurred images.
The blurred images in one octave remain at constant size until the next doubling of
σ occurs, and the size is then again reduced by factor of 2. This is an implementation
detail, and we do not use octaves in the discussion of scale spaces in this book.

Sigma Filter This filter is just an example of a simple but often useful local
operator for noise removal. For an example of a result, see Fig. 2.15. Again, we
discuss this local operator for (2k + 1) × (2k + 1) windows Wp(I) with k ≥ 1. We
use a parameter σ > 0, considered to be an approximation of the image acquisition
noise of image I (for example, σ equals about 50 if Gmax = 255). Suggesting a
parallel local operator, resulting values are forming a new picture J as follows:
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Fig. 2.14 Smoothed versions of the image Set1Seq1 (shown in Fig. 2.4, upper left) for σ = 0.5,
σ = 1, σ = 2, σ = 4, σ = 8, and σ = 16, defining six layers of the Gaussian scale space

1. Calculate the histogram of window Wp(I).
2. Calculate the mean μ of all values in the interval [I (p) − σ, I (p) + σ ].
3. Let J (p) = μ.

In some cases, camera producers specify parameters for the expected noise of
their CCD or CMOS sensor elements. The parameter σ could then be taken as 1.5
times the noise amplitude. Note that

μ = 1

S
·

I (p)+σ∑

u=I (p)−σ

u · H(u) (2.19)

where H(u) denotes the histogram value of u for window Wp(I) and scaling factor
S = H(I (p) − σ) + · · · + H(I (p) + σ).

Figure 2.15 illustrates the effects of a box filter, the median filter, and the sigma
filter on a small image.
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Fig. 2.15 Illustration of noise removal. Upper left: 128 × 128 input image with added uniform
noise (±15). Upper right: 3 × 3 box filter. Lower left: 3 × 3 sigma-filter with σ = 30. Lower right:
3 × 3 median filter

2.3.2 Sharpening

Sharpening aims at producing an enhanced image J by increasing the contrast of
the given image I along edges, without adding too much noise within homogeneous
regions in the image.

Unsharp Masking This local operator first produces a residual R(p) = I (p) −
S(p) with respect to a smoothed version S(p) of I (p). This residual is then added
to the given image I :

J (p) = I (p) + λ
[
I (p) − S(p)

]

= [1 + λ]I (p) − λS(p) (2.20)
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Fig. 2.16 Illustration of unsharp masking with k = 3 and λ = 1.5 in (2.20). Upper left: 512×512
blurred input image Altar (of the baroque altar in the church at Valenciana, Guanajuato). Upper
right: Use of a median operator. Lower left: Use of a Gauss filter with σ = 1. Lower right: Use of
a sigma filter with σ = 25

where λ > 0 is a scaling factor. Basically, any of the smoothing operators of
Sect. 2.3.1 may be tried to produce the smoothed version S(p). See Fig. 2.16 for
three examples.

The size parameter k (i.e. the “radius”) of those operators controls the spatial
distribution of the smoothing effect, and the parameter λ controls the influence of
the correction signal [I (p) − S(p)] on the final output. Thus, k and λ are the usual
interactive control parameters for unsharp masking.

According to the second equation (2.20), the process is also qualitatively de-
scribed by the equation

J (p) = I (p) − λ′S(p) (2.21)
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(for some λ′ > 0), which saves some computing time. Instead of applying unsharp
masking uniformly in the whole image I , we can also add some kind of local adap-
tivity, for example such that changes in homogeneous regions are suppressed.

2.3.3 Basic Edge Detectors

We describe simple edge detectors that follow the step-edge model, either by ap-
proximating first-order derivatives or by approximating second-order derivatives.

Discrete Derivatives The derivative of a unary function f in the continuous case
is defined by the convergence of difference quotients where a nonzero offset ε ap-
proaches 0:

df

dx
(x) = f ′(x) = lim

ε→0

f (x + ε) − f (x)

ε
(2.22)

The function f is differentiable at x if there is a limit for these difference quotients.
In the case of functions with two arguments, we have partial derivatives, such as

∂f

∂y
(x, y) = fy(x, y) = lim

ε→0

f (x, y + ε) − f (x, y)

ε
(2.23)

with respect to y, and analogously with respect to x.
However, in the discrete grid we are limited by a smallest distance ε = 1 between

pixel locations. Instead of just reducing the derivative in (2.23) to a difference quo-
tient for ε = 1, we can also go for a symmetric representation taking the difference
ε = 1 in both directions. The simplest symmetric difference quotient with respect to
y is then as follows:

Iy(x, y) = I (x, y + ε) − I (x, y − ε)

2ε

= I (x, y + 1) − I (x, y − 1)

2
(2.24)

where we decide for a symmetric difference for better balance. We cannot use any
smaller ε without doing some subpixel-kind of interpolations.

Equation (2.24) defines a very noise-sensitive approximation of the first deriva-
tive. Let Ix(x, y) be the corresponding simple approximation of ∂I

∂x
(x, y). The re-

sulting approximated magnitude of the gradient is then given by

√
Ix(x, y)2 + Iy(x, y)2 ≈ ∥∥grad I (x, y)

∥∥
2 (2.25)

This value combines results of two linear local operators, one with a filter kernel
representing Ix and one for Iy , shown in Fig. 2.17. The scaling factor 2 is in this
case not the sum of the given weights in the kernel; the sum of the weights is zero.
This corresponds to the fact that the derivative of a constant function equals zero.
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Fig. 2.17 Filter kernels for
differences as defined
in (2.24)

Fig. 2.18 Filter kernels for
the Sobel operator

The result of a convolution with one of those kernels can be negative. Thus,
Ix and Iy are not images in the sense that we also have negative values here, and
also rational numbers, not only integer values in {0,1, . . . ,Gmax}. It is common to
visualize discrete derivatives such a Ix and Iy by showing rounded integer values of
|Ix | and |Iy |.

Insert 2.5 (Origin of the Sobel Operator) The Sobel operator was published
in [I.E. Sobel. Camera models and machine perception. Stanford, Stanford Univ. Press,

1970, pp. 277–284].

Sobel Operator The Sobel operator approximates the two partial derivatives of
image I by using the filter kernels shown in Fig. 2.18. The convolution with the filter
kernel approximating a derivative in the x-direction is shown in Fig. 2.4, bottom,
right.

These two masks are discrete versions of simple Gaussian convolutions along
rows or columns followed by derivative estimates described by masks in Fig. 2.17.
For example,

⎡

⎣
−1 0 1
−2 0 2
−1 0 1

⎤

⎦=
⎡

⎣
1
2
1

⎤

⎦[−1 0 1
]

(2.26)

The two masks in Fig. 2.18 define two local convolutions that calculate approxima-
tions Sx and Sy of the partial derivatives. The value of the Sobel operator at pixel
location (x, y) equals

∣∣Sx(x, y)
∣∣+ ∣∣Sy(x, y)

∣∣≈ ∥∥grad I (x, y)
∥∥

1 (2.27)

This value is shown as grey level in the edge map defined by the Sobel operator. Of
course, this can also be followed by a detection of local maximum of the values of
the Sobel operator; this extension explains why the Sobel operator is also called an
edge detector.
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Insert 2.6 (Origin of the Canny Operator) This operator was published in
[J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Analysis Ma-

chine Intelligence, vol. 8, pp. 679–698, 1986].

Canny Operator The Canny operator maps a scalar image into a binary edge
map of “thin” (i.e. having the width of one pixel only) edge segments. The output is
not uniquely defined; it depends on two thresholds Tlow and Thigh with 0 < Tlow <

Thigh < Gmax, not counting a fixed scale used for Gaussian smoothing.
Let I be already the smoothed input image, after applying a convolution with a

Gauss function Gσ of scale σ > 0, for example 1 ≤ σ ≤ 2.
We apply now a basic gradient estimator such as the Sobel operator, which pro-

vides, for any p ∈ Ω , simple estimates for the partial derivatives Ix and Iy , allow-
ing one to have estimates g(p) for the magnitude ‖grad I (p)‖2 of the gradient and
estimates θ(p) for its direction atan2(Iy, Ix). The estimates θ(p) are rounded to
multiples of π/4 by taking (θ(p) + π/8)moduloπ/4.

In a step of non-maxima suppression it is tested whether a value g(p) is maximal
in the (now rounded) direction θ(p). For example, if θ(p) = π/2, i.e. the gradient
direction at p = (x, y) is downward, then g(p) is compared against g(x, y − 1) and
g(x, y + 1), the values above and below of p. If g(p) is not larger than the values
at both of those adjacent pixels, then g(p) becomes 0.

In a final step of edge following, the paths of pixel locations p with g(p) > Tlow
are traced, and pixels on such a path are marked as being edge pixels. Such a trace
is initialized by a location p with g(p) ≥ Thigh.

When scanning Ω , say with a standard scan, left-to-right, top-down, and arriving
at a (not yet marked) pixel p with g(p) ≥ Thigh, then
1. mark p as an edge pixel,
2. while there is a pixel location q in the 8-adjacency set of p with g(q) > Tlow,

mark this as being an edge pixel,
3. call q now p and go back to Step 2,
4. search for the next start pixel p until the end of Ω is reached.

By using two thresholds, this algorithm applies hysteresis: The following pixel q

may not be as good as having a value above Thigh, but it had at least one predecessor
on the same path with a value above Thigh; thus, this “positive” history is used to
support the decision at q , and we also accept g(q) > Tlow for continuation.

Insert 2.7 (Laplace) P.S. Marquis de Laplace (1749–1827) was a French ap-
plied mathematician and theoretical physicist.

Laplacian Following the step-edge model, edges are also identified with zero-
crossings of second-order derivatives. Common (simple) discrete approximations
of the Laplacian of an image I are defined by the filter kernels shown in Fig. 2.19.
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Fig. 2.19 Three masks for
approximate calculations of
the Laplacian

In the following example we derive the filter kernel given on the left as an example
for operator discretization.

Example 2.4 For deriving the first mask in Fig. 2.19, assume that we map I into a
matrix of first-order difference quotients

Iy(x, y) = I (x, y + 0.5) − I (x, y − 0.5)

1
= I (x, y + 0.5) − I (x, y − 0.5)

and then again into a matrix of second-order difference quotients

Iyy(x, y) = Iy(x, y + 0.5) − Iy(x, y − 0.5)

= [
I (x, y + 1) − I (x, y)

]− [
I (x, y) − I (x, y − 1)

]

= I (x, y + 1) + I (x, y − 1) − 2 · I (x, y)

We do the same for approximating Ixx and add both difference quotients. This
defines an approximation of ∇2I = �I , which coincides with the first mask in
Fig. 2.19. Figure 2.20 illustrates a row profile of an image after applying this ap-
proximate Laplacian.

2.3.4 Basic Corner Detectors

A corner in an image I is given at a pixel p where two edges of different directions
intersect; edges can be defined by the step-edge or the phase congruency model.
See Fig. 2.21 for a general meaning of “corners” in images and Fig. 2.22 for an
illustration of three corners when zooming into an image.

Insert 2.8 (Hesse and the Hessian Matrix) The Hessian matrix is named after
L.O. Hesse (1811–1874), a German mathematician.

Corner Detection Using the Hessian Matrix Following the definition of a corner
above, it is characterized by high curvature of intensity values. Accordingly, it can
be identified by the eigenvalues λ1 and λ2 (see Insert 2.9) of the Hessian matrix

H(p) =
[
Ixx(p) Ixy(p)

Ixy(p) Iyy(p)

]
(2.28)
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Fig. 2.20 Value profile of a row (close to the middle) in the resulting array when applying the
Laplacian to a smoothed version of the image Set1Seq1 (see Fig. 2.4, upper left) using scale
s = 2. The steep global minimum appears between branches of a shrub

Fig. 2.21 Detected corners
provide important
information for localizing and
understanding shapes in 3D
scenes

at pixel location p. If the magnitude of both eigenvalues is “large”, then we are at
a corner; one large and one small eigenvalue identifies a step edge, and two small
eigenvalues identify a low-contrast region.

Insert 2.9 (Trace of a Matrix, Determinant, and Eigenvalues) The trace
Tr(A) of an n×n matrix A = (aij ) is the sum

∑n
i=1 aii of its (main) diagonal

elements. The determinant of a 2 × 2 matrix A = (aij ) is given by

det(A) = a11a22 − a12a21
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Fig. 2.22 Pixels p, q , and r are at intersections of edges; directions of those edges are indicated
by the shown blue lines. The shown discrete circles (of 16 pixels) are used in the discussion of the
FAST corner detector. Small window of image Set1Seq1

The determinant of a 3 × 3 matrix A = (aij ) is given by

det(A) = a11a22a33 +a12a23a31 +a13a21a32 −a13a22a31 −a12a21a33 −a11a23a32

The eigenvalues of an n × n matrix A are the n solutions of its characteristic
polynomial det(A − λI) = 0, where I is the n × n identity matrix, and det
denotes the determinant.

Eigenvalues are real numbers for a real-valued matrix A. They can be
used for modelling stability of solutions of a linear equational system defined
by a matrix A.

The determinant of a square matrix is equal to the product of its eigenval-
ues, and the trace is equal to the sum of its eigenvalues.

Corner Detector by Harris and Stephens This corner detection method is
known as the Harris detector. Rather than considering the Hessian of the origi-
nal image I (i.e. second-order derivatives), we use the first-order derivatives of the
smoothed version L(., ., σ ), as defined in (2.18), for some σ > 0. Let

G(p,σ ) =
[

L2
x(p,σ ) Lx(p,σ )Ly(p,σ )

Lx(p,σ )Ly(p,σ ) L2
y(p,σ )

]
(2.29)
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at pixel location p. The eigenvalues λ1 and λ2 of the matrix G represent changes in
the intensities in orthogonal directions in the image I . Instead of calculating those
eigenvalues, we consider the cornerness measure

H (p,σ, a) = det(G) − a · Tr(G) (2.30)

for a small parameter a > 0 (e.g. a = 1/25). Due to the general properties of eigen-
values, we have that

H (p,σ,λ) = λ1λ2 − a · (λ1 + λ1) (2.31)

If we have one large and one small eigenvalue (such as on a step edge), then having
also the trace in (2.30) ensures that the resulting value H (p,σ, a) remains reason-
ably small.

The cornerness measure H was proposed in 1988 as a more time-efficient way
in comparison to a calculation and analysis of eigenvalues. For results, see Fig. 2.23,
left.

Insert 2.10 (Origin of the Harris Detector) This method was published in
[C. Harris and M. Stephens. A combined corner and edge detector. In Proc. Alvey Vision

Conference, pp. 147–151, 1988].

FAST Time constraints in today’s embedded vision (i.e. in “small” indepen-
dent systems such as micro-robots or cameras in mini-multi-copters), define time-
efficiency as an ongoing task. Features from an accelerated segment test FAST iden-
tify a corner by considering image values on a digital circle around the given pixel
location p; see Fig. 2.22 for 16 image values on a circle of radius ρ = 3.

Cornerness test: The value at the centre pixel needs to be darker (or brighter)
compared to more than 8 (say, 11 for really identifying a corner and not just an
irregular pixel on an otherwise straight edge) subsequent pixels on this circle and
“similar” to the values of the remaining pixels on the circle.

For results, see Fig. 2.23, right.

Time Efficiency For being time efficient, we first compare the value at the centre
pixel against the values at locations 1, 2, 3, and 4 in this order (see Fig. 2.22); only in
cases where it still appears to be possible that the centre pixel passes the cornerness
test, we continue with testing more pixels on the circle, such as between locations
1, 2, 3, and 4. The original FAST paper proposes to learn a decision tree for time
optimization. The FAST detector in OpenCV (and also the one in libCVD) applies
SIMD instructions for concurrent comparisons, which is faster then the use of the
originally proposed decision tree.

Non-maxima Suppression FAST also applies non-maxima suppression for keep-
ing numbers of detected corners reasonably small. For example, for a detected cor-
ner, we can calculate the maximum difference T between the value at the centre
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Fig. 2.23 Window of image Set1Seq1. Left: Detected corners using the Harris detector. Right:
Corners detected by FAST

pixel and values on the discrete circle being classified as “darker” or “brighter”
such that we still detect this corner. Non-maxima suppression deletes then in the
order of differences T .

Insert 2.11 (Origin of FAST) The paper [E. Rosten and T. Drummond. Machine

learning for high-speed corner detection. In Proc. European Conf. Computer Vision, vol. 1,

pp. 430–443, 2006] defined FAST as a corner detector.

2.3.5 Removal of Illumination Artefacts

Illumination artefacts such as differing exposures, shadows, reflections, or vi-
gnetting pose problems for computer vision algorithms. See Fig. 2.24 for examples.

Failure of Intensity Constancy Assumption Computer vision algorithms of-
ten rely on the intensity constancy assumption (ICA) that there is no change in
the appearance of objects according to illumination between subsequent or time-
synchronized recorded images. This assumption is actually violated when using
real-world images, due to shadows, reflections, differing exposures, sensor noise,
and so forth.

There are at least three different ways to deal with this problem. (1) We can trans-
form input images such that illumination artefacts are reduced (e.g. mapping images
into a uniform illumination model by removing shadows); there are proposals for
this way but the success is still limited. (2) We can also attempt to enhance com-
puter vision algorithms so that they do not rely on ICA, and examples for this option
are discussed later in this book. (3) We can map input images into images containing
still the “relevant” information for subsequent computer vision algorithms, without
aiming at keeping those images visually equivalent to the original data, but at re-
moving the impacts of varying illumination.
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Fig. 2.24 Example images from real-world scenes (black pixels at borders are caused by im-
age rectification, to be discussed later in the book). The pair of images NorthLeft and
NorthRight in the top row show illumination differences between time-synchronized cameras
when the exposures are bad. The bottom-left image LightAndTrees shows an example where
trees can cause bad shadow effects. The bottom-right image MainRoad shows a night scene where
head-lights cause large bright spots on the image

We discuss two methods for the third option. A first approach could be to use ei-
ther histogram equalization or conditional scaling as defined before. Those methods
map the whole image uniformly onto a normalized image, normalized with respect
to a uniform grey-level histogram or constant mean and standard deviation, respec-
tively. But those uniform transforms are not able to deal with the non-global nature
of illumination artefacts.

For example, in vision-based driver assistance systems, there can be the “danc-
ing light” from sunlight through trees, creating local illumination artefacts. See the
bottom-left image in Fig. 2.24.

Using Edge Maps Local derivatives do not change when increasing image val-
ues by an additive constant. Local derivatives, gradients, or edge maps can be
used to derive image representations that are less impacted by lighting varia-
tions.

For example, we may simply use Sobel edge maps as input for subsequent com-
puter vision algorithms rather than the original image data. See Fig. 2.25 on the
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Fig. 2.25 Original image Set2Seq1 (left) has its residual image (middle), computed using TVL2
(not discussed in this textbook) for smoothing, and the Sobel edge map (right) shown

right. The Sobel edge map is not a binary image, and also not modified due to par-
ticular heuristics (as it is the case for many other edge operators), just the “raw edge
data”.

Insert 2.12 (Video Test Data for Computer Vision on the Net) The shown
synthetic image in Fig. 2.25 is taken from Set 2 of EISATS, available online at
www.mi.auckland.ac.nz/EISATS. There are various test data available on the
net for comparing computer vision algorithms on recorded image sequences.
For current challenges, see also www.cvlibs.net/datasets/kitti/, the KITTI Vi-
sion Benchmark Suite, and the Heidelberg Robust Vision Challenge at ECCV
2012, see hci.iwr.uni-heidelberg.de/Static/challenge2012/.

Another Use of Residuals with Respect to Smoothing Let I be an original im-
age, assumed to have an additive decomposition

I (p) = S(p) + R(p) (2.32)

for all pixel positions p, S denotes the smooth component of image I (as above
when specifying sharpening), and R is again the residual image with respect to
the smoothing operation which produced image S. The decomposition expressed in
(2.32) is also referred to as the structure-texture decomposition, where the structure
refers to the smooth component, and the texture to the residual.

The residual image is the difference between an input image and a smoothed
version of itself. Values in the residual image can also be negative, and it might be
useful to rescale it into the common range of {0,1, . . . ,Gmax}, for example when
visualizing a residual image. Figure 2.25 shows an example of a residual image
R with respect to smoothing when using a TV-L2 operator (not explained in this
textbook).

http://www.mi.auckland.ac.nz/EISATS
http://www.cvlibs.net/datasets/kitti/
http://hci.iwr.uni-heidelberg.de/Static/challenge2012/
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A smoothing filter can be processed in multiple iterations, using the following
scheme:

S(0) = I

S(n) = S
(
S(n−1)

)
for n > 0

R(n) = I − S(n)

(2.33)

The iteration number n defines the applied residual filter. When a 3 × 3 box filter is
used iteratively n times, then it is approximately identical to a Gauss filter of radius
n + 1.

The appropriateness of different concepts needs to be tested for given classes of
input images. The iteration scheme (2.33) is useful for such tests.

2.4 Advanced Edge Detectors

This section discusses step-edge detectors that combine multiple approaches into
one algorithm, such as combining edge-detection with pre- or post-processing into
one optimized procedure. We also address the phase-congruency model for defining
edges by discussing the Kovesi operator.

2.4.1 LoG and DoG, and Their Scale Spaces

The Laplacian of Gaussian (LoG) and the difference of Gaussians (DoG) are very
important basic image transforms, as we will see later at several places in the book.

Insert 2.13 (Origin of the LoG Edge Detector) The origin of the Laplacian
of Gaussian (LoG) edge detector is the publication [D. Marr and E. Hildreth. The-

ory of edge detection. Proc. Royal Society London, Series B, Biological Sciences, vol. 207,

pp. 187–217, 1980]. For this reason, it is also known as the Marr–Hildreth algo-
rithm.

LoG Edge Detector Applying the Laplacian for a Gauss-filtered image can be
done in one step of convolution, based on the theorem

∇2(Gσ ∗ I ) = I ∗ ∇2Gσ (2.34)

where ∗ denotes the convolution of two functions, and I is assumed (for showing
this theorem) to be twice differentiable. The theorem follows directly when applying
twice the following general rule of convolutions:

D(F ∗ H) = D(F) ∗ H = F ∗ D(H) (2.35)
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Fig. 2.26 The 2D Gauss
function is rotationally
symmetric with respect to the
origin (0,0); it suffices that
we show cuts through the
function graph of G and its
subsequent derivatives

where D denotes a derivative, and F and H are differentiable functions. We have:

Observation 2.4 For calculating the Laplacian of a Gauss-filtered image, we only
have to perform one convolution with ∇2Gσ .

The filter kernel for ∇2Gσ is not limited to be a 3 × 3 kernel as shown in
Fig. 2.19. Because the Gauss function is given as a continuous function, we can
actually calculate the exact Laplacian of this function. For the first partial derivative
with respect to x, we obtain that

∂Gσ

∂x
(x, y) = − x

2πσ 4
e−(x2+y2)/2σ 2

(2.36)

and the corresponding result for the first partial derivative with respect to y. We
repeat the derivative for x and y and obtain the LoG as follows:

∇2Gσ (x, y) = 1

2πσ 4

(
x2 + y2 − 2σ 2

σ 2

)
e−(x2+y2)/2σ 2

(2.37)

See Fig. 2.26. The LoG is also known as the Mexican hat function. In fact, it is an
“inverted Mexican hat”. The zero-crossings define the edges.

Advice on Sampling the LoG Kernel Now we sample this Laplacian into a (2k+
1) × (2k + 1) filter kernel for an appropriate value of k. But what is an appropriate
value for k? We start with estimating the standard deviation σ for the given class of
input images, and an appropriate value of k follows from this.

The parameter w is defined by zero-crossings of ∇2Gσ (x, y); see Fig. 2.26. Con-
sider ∇2Gσ (x, y) = 0 and, for example, y = 0. We obtain that we have both zero-
crossings defined by x2 = 2σ 2, namely at x1 = −√

2σ and at x2 = +√
2σ . Thus,

we have that

w = |x1 − x2| = 2
√

2σ (2.38)
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Fig. 2.27 Laplacians of the images shown in Fig. 2.13, representing six layers in the LoG scale
space of the image Set1Seq1

For representing the Mexican hat function properly by samples, it is proposed to use
a window size of 3w × 3w = 6

√
2σ × 6

√
2σ . In conclusion we have that

2k + 1 × 2k + 1 = ceil
(
6
√

2σ
)× ceil

(
6
√

2σ
)

(2.39)

where ceil denotes the ceiling function (i.e. the smallest integer equal to or larger
than the argument).

The value of σ needs to be estimated for the given image data. Smoothing a
digital image with a very “narrow” (i.e. σ < 1) Gauss function does not make
much sense. So, let us consider σ ≥ 1. The smallest kernel (for σ = 1, thus
3w = 8.485 . . .) will be of size 9 × 9 (i.e., k = 4). For given images, it is of interest
to compare results for k = 4,5,6, . . . .

LoG Scale Space Figure 2.13 shows six layers of the Gaussian scale space for
the image Set1Seq1. We calculate the Laplacians of those six layers and show the
resulting images (i.e. the absolute values of results) in Fig. 2.27; linear scaling was
applied to all the images for making the intensity patterns visible. This is an example
of a LoG scale space. As in a Gaussian scale space, each layer is defined by the
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scale σ , the used standard deviation in the Gauss function, and we can generate
subsequent layers when starting at an initial scale σ and using subsequent scales
an · σ for a > 1 and n = 0,1, . . . ,m.

Difference of Gaussians (DoG) The difference of Gaussians (DoG) operator is a
common approximation of the LoG operator, justified by reduced run time. Equa-
tion (2.17) defined a centred (i.e. zero-mean) Gauss function Gσ .

The DoG is defined by an initial scale σ and a scaling factor a > 1 as follows:

Dσ,a(x, y) = L(x, y,σ ) − L(x, y, aσ ) (2.40)

It is the difference between a blurred copy of image I and an even more blurred
copy of I . As for LoG, edges (following the step-edge model) are detected at zero-
crossings.

Regarding a relation between LoG and DoG, we have that

∇2Gσ (x, y) ≈ Gaσ (x, y) − Gσ (x, y)

(a − 1)σ 2
(2.41)

with a = 1.6 as a recommended parameter for approximation. Due to this approxi-
mate identity, DoGs are used in general as time-efficient approximations of LoGs.

DoG Scale Space Different scales σ produce layers Dσ,a in the DoG scale space.
See Fig. 2.28 for a comparison of three layers in LoG and DoG scale space, using
scaling factor a = 1.6.

Insert 2.14 (Origins of Scale Space Studies) Multi-scale image representa-
tions are a well-developed theory in computer vision, with manifold appli-
cations. Following the LoG studies by Marr and Hildreth (see Insert 2.13),
P.J. Burt introduced Gaussian pyramids while working in A. Rosenfeld’s
group at College Park; see [P. J. Burt. Fast filter transform for image processing. Com-

puter Graphics Image Processing, vol. 16, pp. 20–51, 1981].
See also [J.L. Crowley. A representation for visual information. Carnegie-Mellon Uni-

versity, Robotics Institute, CMU-RI-TR-82-07, 1981] and [A.P. Witkin. Scale-space fil-

tering. In Proc. Int. Joint Conf. Artificial Intelligence, pp. 1019–1022, 1983] for early
publications on Gaussian pyramids, typically created in increments by factor
a = 2, and resulting blurred images of varying size were called octaves.

Arbitrary scaling factors a > 1 were later introduced into scale-space the-
ory; see, for example, [T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer

Academic Publishers, 1994] and [J.L. Crowley and A.C. Sanderson. Multiple resolution

representation and probabilistic matching of 2-D grey-scale shape. IEEE Trans. Pattern

Analysis Machine Intelligence, vol. 9, pp. 113–121, 1987].
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Fig. 2.28 LoG (left) and DoG (right) layers of image Set1Seq1 are generated for σ = 0.5 and
an = 1.6n for n = 0, . . . ,5, and the figure shows results for n = 1, n = 3, and n = 5

2.4.2 Embedded Confidence

A confidence measure is quantified information derived from calculated data, to be
used for deciding about the existence of a particular feature; if the calculated data
match the underlying model of the feature detector reasonably well, then this should
correspond to high values of the measure.

Insert 2.15 (Origin of the Meer–Georgescu Algorithm) This algorithm has
been published in [P. Meer and B. Georgescu. Edge detection with embedded confi-

dence. IEEE Trans. Pattern Analysis Machine Intelligence, vol. 23, pp. 1351–1365, 2001].

The Meer–Georgescu Algorithm The Meer–Georgescu algorithm detects edges
while applying a confidence measure based on the assumption of the validity of the
step-edge model.
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1: for every pixel p in image I do
2: estimate gradient magnitude g(p) and edge direction θ(p);
3: compute the confidence measure η(p);
4: end for
5: for every pixel p in image I do
6: determine value ρ(p) in the cumulative distribution of gradient magnitudes;
7: end for
8: generate the ρη diagram for image I ;
9: perform non-maxima suppression;

10: perform hysteresis thresholding;

Fig. 2.29 Meer–Georgescu algorithm for edge detection

Four parameters are considered in this method. For an estimated gradient vec-
tor g(p) = ∇I (x, y) at a pixel location p = (x, y), these are the estimated gradient
magnitude g(p) = ‖g(p)‖2, the estimated gradient direction θ(p), an edge confi-
dence value η(p), and the percentile ρk of the cumulative gradient magnitude distri-
bution. We specify those values below, to be used in the Meer–Georgescu algorithm
shown in Fig. 2.29.

Insert 2.16 (Transpose of a Matrix) The transpose W of a matrix W is
obtained by mirroring elements about the main diagonal, and W = W if
W is symmetric with respect to the main diagonal.

Let A be a matrix representation of the (2k + 1) × (2k + 1) window centred at
the current pixel location p in input image I . Let

W = sd (2.42)

be a (2k + 1) × (2k + 1) matrix of weights, obtained as the product of two vectors
d = [d1, . . . , d2k+1] and s = [s1, . . . , s2k+1], where
1. both are unit vectors in the L1-norm, i.e. |d1|+ · · ·+ |d2k+1| = 1 and |s1|+ · · ·+

|s2k+1| = 1,
2. d is an asymmetric vector, i.e. d1 = −d2k+1, d2 = −d2k , . . . , dk+1 = 0, which

represents differentiation of one row of matrix A, and
3. s is a symmetric vector, i.e. s1 = s2k+1 ≤ s2 = s2k ≤ · · · ≤ sk+1, which represents

smoothing in one column of a matrix A.
For example, asymmetric d = [−0.125,−0.25,0,0.25,0.125] and symmetric s =
[0.0625,0.25,0.375,0.25,0.0625] define a 5 × 5 matrix W.

Let ai be the ith row of Matrix A. By using

d1 = Tr(WA) = Tr
(
sdA

)
(2.43)

d2 = Tr
(
WA

)= sAd =
2k+1∑

i=1

si
(
dai

)
(2.44)
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Fig. 2.30 Left: Illustration of curves L and H in a ρη diagram; each separates the square into
points with positive L or H , or negative L or H signs. For a (ρ, η) point on a curve, we have
L(ρ,η) = 0 or H(ρ,η) = 0. Right: A 3 × 3 neighbourhood of pixel location p and virtual neigh-
bours q1 and q2 in estimated gradient direction

we obtain the first two parameters used in the algorithm:

g(p) =
√

d2
1 + d2

2 and θ(p) = arctan

(
d1

d2

)
(2.45)

Let Aideal be a (2k + 1) × (2k + 1) matrix representing a template of an ideal step
edge having the gradient direction θ(p). The value η(p) = |Tr(A

idealA)| specifies
the used confidence measure. The values in A and Aideal are normalized such that
0 ≤ η(p) ≤ 1, with η(p) = 1 in case of a perfect match with the ideal step edge.

Let g[1] < · · · < g[k] < · · · < g[N ] be the ordered list of distinct (rounded)
gradient-magnitudes in image I , with cumulative distribution values (i.e. probabili-
ties)

ρk = Prob[g ≤ g[k]] (2.46)

for 1 ≤ k ≤ N . For a given pixel in I , assume that g[k] is the closest real to its edge
magnitude g(p); then we have the percentile ρ(p) = ρk .

Altogether, for each pixel p, we have a percentile ρ(p) and a confidence η(p)

between 0 and 1. These values ρ(p) and η(p) for any pixel in I define a 2D ρη-
diagram for image I . See Fig. 2.30, left.

We consider curves in the ρθ space given in implicit form, such as L(ρ, θ) = 0.
For example, this can be just a vertical line passing the square, or an elliptical arc.
Figure 2.30, left, illustrates two curves L and H . Such a curve separates the square
into points having positive or negative signs with respect to the curve and into the
set of points where the curve equals zero. Now we have all the tools together for
describing the decision process.

Non-maxima Suppression For the current pixel p, determine virtual neighbours
q1 and q2 in estimated gradient direction (see Fig. 2.30, right) and their ρ and η

values by interpolation using values at adjacent pixel locations.
A pixel location p describes with respect to a curve X in ρθ space a maximum

if both virtual neighbours q1 and q2 have a negative sign for X. We suppress non-
maxima in Step 9 of the algorithm by using a selected curve X for this step; the
remaining pixels are the candidates for the edge map.
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Fig. 2.31 Resultant images when using the Meer–Georgescu algorithm for a larger (left) or
smaller (right) filter kernel defined by parameter k. Compare with Fig. 2.32, where the same input
image Set1Seq1 has been used (shown in Fig. 2.4, top, left)

Hysteresis Thresholding Hysteresis thresholding is a general technique to de-
cide in a process based on previously obtained results. In this algorithm, hysteresis
thresholding in Step 10 is based on having two curves L and H in the ρθ space,
called the two hysteresis thresholds; see Fig. 2.30, left. Those curves are also al-
lowed to intersect in general.

We pass through all pixels in I in Step 9. At pixel p we have values ρ and θ . It
stays on the edge map if (a) L(ρ,η) > 0 and H(ρ,η) ≥ 0 or (b) it is adjacent to a
pixel in the edge map and satisfies L(ρ,η) · H(ρ,η) < 0. The second condition (b)
describes the hysteresis thresholding process; it is applied recursively.

This edge detection method can be a Canny operator if the two hysteresis thresh-
olds are vertical lines, and a confidence-only detector if the two lines are horizontal.
Figure 2.31 illustrates images resulting from an application of the Meer-Georgescu
algorithm.

2.4.3 The Kovesi Algorithm

Figure 2.32 illustrates results of four different edge detectors on the same night-
vision image, recorded for vision-based driver assistance purposes. The two edge
maps on the top are derived from phase congruency; the two at the bottom by ap-
plying the step-edge model.

Differences between step-edge operators and phase-based operators are even bet-
ter visible for a simple synthetic input image as in Fig. 2.33. Following its under-
lying model, a gradient-based operator such as the Canny operator identifies edge
pixels defined by maxima of gradient magnitudes, resulting in double responses
around the sphere and a confused torus boundary in Fig. 2.34, left. We present the
algorithm used for generating the result in Fig. 2.34, right.

Gabor Wavelets For a local analysis of frequency components, it is convenient
not to use wave patterns that run uniformly through the whole (2k + 1) × (2k + 1)

window (as illustrated in Fig. 1.15) but rather wavelets, such as Gabor wavelets,
which are sine or cosine waves modulated by a Gauss function of some scale σ and
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Fig. 2.32 The phase-congruency model versus the step-edge model on the image Set1Seq1,
shown in Fig. 2.4, top, left. Upper row: Results of the Kovesi operator, which is based on the
phase-congruency model, using program phasecongmono.m (see link in Insert 2.18) on the
left and the next most recent code phasecong3.m on the right, both with default parameters.
Lower left: The Sobel operator follows the step-edge model, using OpenCV’s Sobel() with x

order 1, y order 0, and aperture 3. Lower right: The Canny operator is another implementation for
the step-edge model using Canny() with minimum threshold 150 and maximum threshold 200

Fig. 2.33 Left: Synthetic input image. Right: Intensity profiles along Section A–A (top) and Sec-
tion B–B (bottom)

thus of decreasing amplitudes around a centre point. See Fig. 2.35. The image in the
middle shows stripes that are orthogonal to a defining rotation angle θ .

There are odd and even Gabor wavelets. An odd wavelet is generated from a sine
wave, thus having the value 0 at the origin. An even wavelet is generated from a
cosine wave, thus having its maximum at the origin.
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Fig. 2.34 Left: Edges detected by the Canny operator. Right: Edges detected by the Kovesi algo-
rithm

Fig. 2.35 Left: Two 1D cuts through an odd and an even Gabor wavelet. Middle: A grey-level
representation of a square Gabor wavelet in a window of size (2k + 1)× (2k + 1) with direction θ ,
with its 3D surface plot (right)

Insert 2.17 (Gabor) The Hungarian born D. Gabor (1900–1979) was an
electrical engineer and physicist. He worked in Great Britain and received
in 1971 the Nobel Prize in Physics for inventing holography.

For a formal definition of Gabor wavelets, we first recall the definition of the
Gauss function:

Gσ (x, y) = 1

2πσ 2
exp

(
−x2 + y2

2σ 2

)
(2.47)

Furthermore, we map the coordinates x and y in the image into rotated coordinates

u = x cos θ + y sin θ (2.48)

v = −x sin θ + y cos θ (2.49)
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where θ is orthogonal to the stripes in the Gabor wavelets; see Fig. 2.35, middle.
Now consider also a phase-offset ψ ≥ 0, wavelength λ > 0 of the sinusoidal factor,
and a spatial aspect ratio γ > 0. Then, altogether,

geven(x, y) = Gσ (u,γ v) · cos

(
2π

u

λ
+ ψ

)
(2.50)

godd(x, y) = Gσ (u,γ v) · sin

(
2π

u

λ
+ ψ

)
(2.51)

define one Gabor pair where sine and cosine functions are modulated by the same
Gauss function. The pair can also be combined into one complex number using

gpair(x, y) = geven(x, y) + √−1 · godd(x, y)

= Gσ (u,γ v) · exp

(
2π

u

λ
+ ψ

)
(2.52)

Insert 2.18 (Origin of the Kovesi Algorithm) This algorithm has been pub-
lished in [P.D. Kovesi. A dimensionless measure of edge significance from phase congru-

ency calculated via wavelets. In Proc. New Zealand Conf. Image Vision Computing, pp. 87–

94, 1993]. See also sources provided on www.csse.uwa.edu.au/~pk/Research/
MatlabFns/index.html#phasecong. The program is very fast and routinely ap-
plied to images of size 2000 × 2000 or more; it applies actually log-Gabor
wavelets instead of Gabor wavelets for better operator response and for bet-
ter time efficiency.

Preparing for the Algorithm The Kovesi algorithm applies a set of n square
Gabor pairs, centred at the current pixel location p = (x, y). Figure 2.36 illustrates
such a set for n = 40 by illustrating only one function (say, the odd wavelet) for
each pair; the Kovesi algorithm uses 24 pairs as default.

The convolution with each Gabor pair defines one complex number. The obtained
n complex numbers have amplitude rh and phase αh.

Equation (1.33) defines an ideal phase congruency measure. For cases where the
sum

∑n
h=1 rh becomes very small, it is convenient to add a small positive number

ε to the denominator, such as ε = 0.01. There is also noise in the image, typically
uniform. Let T > 0 be the sum of all noise responses over all AC components (which
can be estimated for given images). Assuming constant noise, we simply subtract
the noise component and have

Pphase(p) = pos(‖z‖2 − T )
∑n

h=1 rh + ε
(2.53)

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html#phasecong
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html#phasecong
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Fig. 2.36 Illustration of a set of Gabor functions to be used for detecting phase congruency at a
pixel location

where the function pos returns the argument if positive and 0 otherwise. We have
that

0 ≤ Pphase(p) ≤ 1 (2.54)

Select m1 uniformly distributed directions θ1, . . . , θm1 and m2 scales s1, . . . , sm2

(for example, m1 = 6 and m2 = 4). For specifying the set of m1 ·m2 Gabor wavelets,
select the smallest scale (e.g. equal to 3) and a scaling factor between successive
scales (say, equal to 2.1). The convolution with those Gabor wavelets can be done
more time-efficiently in the frequency domain than in the spatial domain. If in the
spatial domain, then the size (2k + 1) × (2k + 1) of the convolution kernel should
be such that 2k + 1 is about three times the wavelength of the filter.

Processing at One Pixel Now we have all together for analysing phase congru-
ency at the given pixel location p = (x, y):
1. Apply at p the set of convolution masks of n = m1 · m2 Gabor pairs producing n

complex numbers (rh,αh).
2. Calculate the phase congruency measures Pi (p), 1 ≤ i ≤ m1, as defined in

(2.53), but by only using the m2 complex numbers (rh,αh) defined for direc-
tion θi by m2 scales.

3. Calculate the directional components Xi and Yi for 1 ≤ i ≤ m1 by

[Xi,Yi] = Pi (p) · [sin(θi), cos(θi)
] (2.55)

4. For the resulting covariance matrix of directional components,

[ ∑m1
i=1 X2

i

∑m1
i=1 XiYi

∑m1
i=1 XiYi

∑m1
i=1 Y 2

i

]

(2.56)

calculate the eigenvalues λ1 and λ2; let λ1 ≥ λ2. (This matrix corresponds to the
2 × 2 Hessian matrix of second-order derivatives; for L.O. Hesse, see Insert 2.8.)
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Fig. 2.37 Colour-coded
results when classifying
detected feature points in a
scale between “Step” and
“Line”, using the colour key
shown on the right. For the
original image, see Fig. 2.33,
left

The magnitude of λ1 indicates the significance of a local feature (an edge, corner,
or another local feature); if λ2 is also of large magnitude, then we have a corner; the
principle axis corresponds with the direction of the local feature.

Detection of Edge Pixels After applying the procedure above for all p ∈ Ω , we
have an array of λ1 values, called the raw result of the algorithm. All values below
a chosen cut-off threshold (say, 0.5) can be ignored.

We perform non-maxima suppression in this array (possibly combined with hys-
teresis thresholding, similar to the Meer–Georgescu algorithm), i.e. set to zero all
values that do not define a local maximum in their (say) 8-neighbourhood.

All the pixels having non-zero values after the non-maxima suppression are the
identified edge pixels.

Besides technical parameters which can be kept constant for all processed images
(e.g. the chosen Gabor pairs, parameter ε for eliminating instability of the denomi-
nator, or the cut-off threshold), the algorithm only depends on the parameter T used
in (2.53), and even this parameter can be estimated from the expected noise in the
processed images.

Equation (2.53) gives a measure P(p) that is proportional to the cosine of the
phase deviation angles, which gives a “soft” response.

Given that P(p) represents a weighted sum of the cosines of the phase deviation
angles, taking the arc cosine gives us a weighted sum of the phase deviation angles.
A suggested revision of the phase deviation measure is then given by

Prev(p) = pos
(
1 − arccos

(
P(p)

))
(2.57)

with function pos as defined above.

Classification into Edge or Line Pixels Having two eigenvalues as results for
each pixel, these two values can also be used for classifying a detected feature. See
Fig. 2.37 for an example.
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2.5 Exercises

2.5.1 Programming Exercises

Exercise 2.1 (Variations of Histogram Equalization) The book [R. Klette and P.
Zamperoni: Handbook of Image Processing Operators. Wiley, Chichester, 1996]
discusses variations of histogram transforms, in particular variations of histogram
equalization

g
(r)
equal(u) = Gmax

Q

u∑

w=0

hI (w)r with Q =
Gmax∑

w=0

hI (w)r

Use noisy (scalar) input pictures (of your choice) and apply the sigma filter prior to
histogram equalization. Verify by your own experiments the following statements:

A stronger or weaker equalization can be obtained by adjusting the exponent
r ≥ 0. The resultant histogram is uniformly (as good as possible) distributed for
r = 1. For r > 1, sparse grey values of the original picture will occur more often
than in the equalized picture. For r = 0, we have about (not exactly!) the identical
transform. A weaker equalization in comparison to r = 1 is obtained for r < 1.

Visualize results by using 2D histograms where one axis is defined by r and the
other axis, as usual, by grey levels; show those 2D histograms either by means of a
2D grey-level image or as a 3D surface plot.

Exercise 2.2 (Developing an Edge Detector by Combining Different Strategies)
Within an edge detector we can apply one or several of the following strategies:
1. An edge pixel should define a local maximum when applying an operator (such

as the Sobel operator) that approximates the magnitude of the gradient ∇I .
2. After applying the LoG filter, the resulting arrays of positive and negative values

need to be analysed with respect to zero-crossings (i.e. pixel locations p where
the LoG result is about zero, and there are both positive and negative LoG values
at locations adjacent to p).

3. The discussed operators are modelled with respect to derivatives in x- or y-
directions only. The consideration of directional derivatives is a further option;
for example, derivatives in directions of multiples of 45◦.

4. More heuristics can be applied for edge detection: an edge pixel should be adja-
cent to other edge pixels.

5. Finally, when having a sequences of edge pixels, then we are interested in ex-
tracting “thin arcs” rather than having “thick edges”.
The task in this programming exercise is to design your own edge detector that

combines at least two different strategies as listed above. For example, verify the
presence of edge pixels by tests using both first-order and second-order derivatives.
As a second example, apply a first-order derivative operator together with a test for
adjacent edge pixels. As a third example, extend a first-order derivative operator by
directional derivatives in more than just two directions. Go for one of those three
examples or design your own combination of strategies.
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Exercise 2.3 (Amplitudes and Phases of Local Fourier Transforms) Define two
(2k + 1) × (2k + 1) local operators, one for amplitudes and one for phases, map-
ping an input image I into the amplitude image M and phase image P defined as
follows:

Perform the 2D DFT on the current (2k + 1) × (2k + 1) input window, centred
at pixel location p. For the resulting (2k + 1)2 − 1 complex-valued AC coefficients,
calculate a value M (p) representing the percentage of amplitudes at high-frequency
locations compared to the total sum of all (2k + 1)2 − 1 amplitudes and the phase-
congruency measure P(p) as defined in (2.53).

Visualize M and P(p) as grey-level images and compare with edges in the input
image I . For doing so, select an edge operator, thresholds for edge map, amplitude
image, and phase image and quantify the numbers of pixels being in the thresholded
edge and amplitude image versus numbers of pixels being in the thresholded edge
and phase image.

Exercise 2.4 (Residual Images with Respect to Smoothing) Use a 3 × 3 box fil-
ter recursively (up to 30 iterations) for generating residual images with respect to
smoothing. Compare with residual images when smoothing with a Gauss filter of
size (2k + 1)× (2k + 1) for k = 1, . . . ,15. Discuss the general relationship between
recursively repeated box filters and a Gauss filter of the corresponding radius. Ac-
tually, what is the corresponding radius?

2.5.2 Non-programming Exercises

Exercise 2.5 Linear local operators are those that can be defined by a convolu-
tion. Classify the following whether they are linear operators or not: box, median,
histogram equalization, sigma filter, Gauss filter, and LoG.

Exercise 2.6 Equalization of colour pictures is an interesting area of research. Dis-
cuss why the following approach is expected to be imperfect: do histogram equal-
ization for all three colour (e.g. RGB) channels separately; use the resulting scalar
pictures as colour channels for the resulting image.

Exercise 2.7 Prove that conditional scaling correctly generated an image J that has
the mean and variance identical to those corresponding values of the image I used
for normalization.

Exercise 2.8 Specify exactly how the integral image can be used for minimizing
run time for a box filter of large kernel size.

Exercise 2.9 Following Example 2.4, what could be a filter kernel for the quadratic
variation (instead of the one derived for the Laplace operator)?
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Exercise 2.10 Prove that Sobel masks are of the form ds and sd for 3D vectors
s and d that satisfy the assumptions of the Meer–Georgescu algorithm for edge
detection.

Exercise 2.11 The sigma filter replaces I (p) by J (p) as defined in (2.19). The
procedure uses the histogram H(u) computed for values u in the window Wp(I)

that belong to the interval [I (p) − σ, I (p) + σ ]. Alternatively, a direct computation
can be applied:

J (p) =
∑

q∈Zp,σ
I (q)

|Zp,σ | (2.58)

where Zp,σ = {q ∈ Wp(I) : I (p) − σ ≤ I (q) ≤ I (p) + σ }. Analyse possible ad-
vantages of this approach for small windows.

Exercise 2.12 Sketch (as in Fig. 2.6) filter curves in the frequency domain that
might be called an “exponential low-emphasis filter” and “ideal band-pass filter”.



3Image Analysis

This chapter provides topologic and geometric basics for analysing image regions,
as well as two common ways for analysing distributions of image values. It also
discusses line and circle detection as examples for identifying particular patterns in
an image.

3.1 Basic Image Topology

In Sect. 1.1.1 it was stated that pixels do not define a particular adjacency relation
between them per se. It is our model that specifies a chosen adjacency relation. The
selected adjacency relation has later significant impacts on defined image regions,
to be used for deriving properties in an image analysis context. See Fig. 3.1.

This section is a brief introduction into digital topology as needed for understand-
ing basic concepts such as an “image region” or “border of an image region”, also
highlighting particular issues in a digital image that do not occur in the Euclidean
plane.

Insert 3.1 (Topology and Listing) Topology can informally be described as
being “rubber-sheet geometry”. We are interested in understanding the num-
bers of components of sets, adjacencies between such components, numbers
of holes in sets, and similar properties that do not depend on measurements
in a space equipped with coordinates.

The Descartes–Euler theorem α0 − α1 + α2 = 2 is often identified as the
origin of topology, where α2, α1, and α0 are the numbers of faces, edges,
and vertices of a convex polyhedron. (A convex polyhedron is a nonempty
bounded set that is an intersection of finitely many half-spaces.) For Euler
and Descartes, see Insert 1.3.

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_3, © Springer-Verlag London 2014
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Fig. 3.1 Left: The number of black regions does not depend on a chosen adjacency relation. Right:
In the Euclidean topology, the number of black regions depends on whether two adjacent black
squares are actually connected by the black corner point between both or not

J.B. Listing (1802–1882) was the first to use the word “topology” in his
correspondence, beginning in 1837. He defined: “Topological properties are
those which are related not to quantity or content, but to spatial order and
position.”

3.1.1 4- and 8-Adjacency for Binary Images

Assumed pixel adjacency (or pixel neighbourhood) defines connectedness in an im-
age and thus regions of pairwise connected pixels.

Pixel Adjacency Assuming 4-adjacency, each pixel location p = (x, y) is adja-
cent to pixel locations in the set

A4(p) = p + A4 = {
(x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1)

}
(3.1)

for the 4-adjacency set A4 = {(1,0), (−1,0), (0,1), (0,−1)}. The graphs in
Figs. 1.1 and 1.2 illustrate 4-adjacency. This type of adjacency corresponds to edge-
adjacency when considering each pixel as a shaded tiny square (i.e. the grid cell
model). Assuming 8-adjacency, each grid point p = (x, y) is adjacent to pixel loca-
tions in the set

A8(p) = p + A8 = {
(x + 1, y + 1), (x + 1, y − 1), (x − 1, y + 1), (x − 1, y − 1),

(x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1)
}

(3.2)

for the 8-adjacency set A8 = {(1,1), (1,−1), (−1,1), (−1,−1)} ∪ A4. This also
introduces diagonal edges that are not shown in the graphs in Figs. 1.1 and 1.2.
Figure 3.3, left, illustrates 8-adjacency for the shown black pixels. This type of
adjacency corresponds to edge- or corner-adjacency in the grid cell model.
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Fig. 3.2 Left: 4-adjacency set and 8-adjacency set of p. Right: 4-neighbourhood and 8-neighbour-
hood of p

Pixel Neighbourhoods A neighbourhood of a pixel p contains the pixel p itself
and some adjacent pixels. For example, the 4-neighbourhood of p equals A4(p) ∪
{p}, and the 8-neighbourhood of p equals A8(p) ∪ {p}. See Fig. 3.2.

Insert 3.2 (Adjacency, Connectedness, and Planarity in Graph Theory) An
(undirected) graph G = [N,E] is defined by a set N of nodes and a set E of
edges; each edge connects two nodes. The graph G is finite if N is finite.

Two nodes are adjacent if there is an edge between them. A path is a se-
quence of nodes, where each node in the sequence is adjacent to its predeces-
sor.

A set S ⊆ N of nodes is connected iff there is a path in S from any node in
S to any node in S. Maximal connected subsets of a graph are called compo-
nents.

A planar graph can be drawn on the plane in such a way that its edges
intersect only at their endpoints (i.e. nodes). Let α1 be the number of edges,
and α0 be the number of nodes of a graph. For a planar graph with α0 ≥ 3,
we have that α1 ≤ 3α0 −6; if there are no cycles of length 3 in the graph, then
it is even α1 ≤ 2α0 − 4.

Euler’s formula states that for a finite planar and connected graph, α2 −
α1 + α0 = 2, where α2 denotes the number of faces of the planar graph.

Pixel Connectedness The following transitive closure of the adjacency relation
defines connectedness. Let S ⊆ Ω :
1. A pixel is connected to itself.
2. Adjacent pixels in S are connected.
3. If pixel p ∈ S is connected to pixel q ∈ S, and pixel q ∈ S is adjacent to pixel

r ∈ S, then p is also connected to r (in S).
Depending on the chosen adjacency, we thus have either 4-connectedness or 8-
connectedness of subsets of Ω .

Regions Maximal connected sets of pixels define regions, also called components.
The black pixels in Fig. 3.3, left, define one 8-region and eight 4-regions (isolated
pixels); the figure contains two white 4-regions and only one white 8-region.

Figure 3.4, left, provides a more general example. Assume that the task is to
count “particles” in an image represented (after some image processing) by black
pixels. The chosen adjacency relation defines your result, not the input image!
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Fig. 3.3 Left: Assume 4-adjacency: The disconnected black pixels separate a connected “inner
region” from a connected “outer region”. Assume 8-adjacency: The black pixels are connected (as
illustrated by the inserted edges), but all the white pixels remain connected (see the dashed edge
as an example). Right: A simple curve in the Euclidean plane always separates interior (the shaded
region) from exterior

Fig. 3.4 Left: Assuming 4-adjacency for black pixels, we count five “particles” in this binary
image; assuming 8-adjacency, the count is three. Right: Illustration of an application where such a
count is relevant

Insert 3.3 (Jordan) C. Jordan (1838–1922), a French mathematician, con-
tributed to many areas in mathematics. For example, he showed that the centre
of a tree is either a single node or a pair of adjacent nodes. He is especially
known for his definitions and characterizations of curves in the plane.

Dual Adjacencies in Binary Images Figure 3.3 illustrates the consequences
when deciding for one particular type of adjacency by drawing a comparison with
the geometry in the Euclidean plane R

2. R is the set of all real numbers. A simple
curve, also known as a Jordan curve, always separates an inner region, called the
interior, from an outer region, called the exterior. This appears to be obvious, in
correspondence with our intuition, but a mathematical proof of this property, known



3.1 Basic Image Topology 93

as the Jordan–Brouwer theorem, is actually difficult. What is the corresponding the-
orem for images based on connectedness?

Insert 3.4 (Rosenfeld and the Origin of Dual Adjacencies) Figure 3.3, left,
was used in [A. Rosenfeld and J.L. Pfaltz. Sequential operations in digital picture process-

ing. J. ACM, 13:471–494, 1966] for showing that one uniformly applied adjacency
relation leads to topological ‘issues’. The authors wrote:

“The ‘paradox’ of (Fig. 3.3, left,) can be (expressed) as follows: If the ‘curve’ is con-
nected (‘gapless’) it does not disconnect its interior from its exterior; if it is totally
disconnected it does disconnect them. This is of course not a mathematical paradox
but it is unsatisfying intuitively; nevertheless, connectivity is still a useful concept. It
should be noted that if a digitized picture is defined as an array of hexagonal, rather
than square, elements, the paradox disappears”.

Commenting on this publication, R.O. Duda, P.E. Hart, and J.H. Munson pro-
posed (in an unpublished technical report in 1967) the dual use of 4- and
8-connectedness for black and white pixels.

A. Rosenfeld (1931–2004) is known for many pioneering contributions to
computer vision. The Azriel Rosenfeld Life-Time Achievement Award was es-
tablished at ICCV 2007 in Rio de Janeiro to honour outstanding researchers
who are recognized as making significant contributions to the field of Com-
puter Vision over longtime careers.

Figure 3.3, left, contains one 8-region forming a simple digital curve. But this
curve does not separate two white 8-regions. Assuming 4-adjacency, then we have
isolated pixels, thus no simple curve, and thus there should be no separation. But,
we do have two separated 4-regions. Thus, using the same adjacency relation for
both black and white pixels leads to a topological result that does not correspond
to the Jordan–Brouwer theorem in the Euclidean plane and thus not to our intuition
when detecting a simple curve in an image. The straightforward solution is:

Observation 3.1 The dual use of types of adjacency for white or black pixels, for
example 4-adjacency for white pixels and 8-adjacency for black pixels, ensures that
simple digital curves separate inner and outer regions. Such a dual use results in a
planar adjacency graph for the given binary image.

Insert 3.5 (Two Separation Theorems) Let φ be a parameterized continuous
path φ : [a, b] → R

2 such that a �= b, φ(a) = φ(b), and let φ(s) �= φ(t) for
all s, t (a ≤ s < t < b). Following C. Jordan (1893), a Jordan curve in the
plane is a set

γ = {
(x, y) : φ(t) = (x, y) ∧ a ≤ t ≤ b

}
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An open set M is called topologically connected if it is not the union of
two disjoint nonempty open subsets of M .

Theorem 3.1 (C. Jordan, 1887; O. Veblen, 1905) Let γ be a Jordan curve in
the Euclidean plane. The open set R2 \γ consists of two disjoint topologically
connected open sets with the common frontier γ .

This theorem was first stated by C. Jordan in 1887, but his proof was in-
correct. The first correct proof was given by O. Veblen in 1905.

Two sets S1, S2 ⊆ R
n are homeomorphic if there is a one-to-one contin-

uous mapping Φ such that Φ(S1) = S2, and Φ−1 is also continuous [with
Φ−1(S2) = S1].

L.E.J. Brouwer generalized in 1912 the definition of a Jordan curve. A Jor-
dan manifold in R

n (n ≥ 2) is the homeomorphic image of the frontier of the
n-dimensional unit ball.

Theorem 3.2 (L.E.J. Brouwer, 1911) A Jordan manifold separates R
n into

two connected subsets and coincides with the frontier of each of these subsets.

3.1.2 Topologically Sound Pixel Adjacency

The dual use of 4- or 8-adjacency avoids the described topological problems for
binary images. For multi-level images (i.e. more than two different image values),
we can either decide that we ignore topological issues as illustrated by Fig. 3.3 (and
assume just 4- or 8-adjacency for all pixels, knowing that this will cause topological
problems sometimes), or we apply a topologically sound adjacency approach, which
comes with additional computational costs.

If your imaging application requires to be topologically sound at pixel adjacency
level, or you are interested in the raised mathematical problem, then this is your
subsection. Figure 3.5 illustrates the raised mathematical problem: how to provide
a sound mathematical model for dealing with topology in multi-level images?

For the chessboard-type pattern in Fig. 3.1, right, we assume that it is defined in
the Euclidean (i.e., continuous) plane, and we have to specify whether the corners of
squares are either black or white. Topology is the mathematical theory for modelling
such decisions.

Insert 3.6 (Euclidean Topology) We briefly recall some basics of the Eu-
clidean topology. Consider the Euclidean metric d2 in the n-dimensional (nD)
Euclidean space R

n (n = 1,2,3 is sufficient for our purpose). Let ε > 0. The
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Fig. 3.5 Is the black line
crossing “on top” of the grey
line? How many grey
components? How many
black components? How
many white components?

set

Uε(p) = {
q : q ∈ R

n ∧ d2(p, q) < ε
}

is the (open) ε-neighbourhood of p ∈ R
n, also called the (open) ε-ball cen-

tred at p, or unit ball if ε = 1.
Let S ⊆ R

n. The set S is called open if, for any point p ∈ S, there is a pos-
itive ε such that Uε(p) ⊆ S. A set S ⊆ R

n is called closed if the complement
S = R

n \ S is an open set. The class of all open subsets of Rn defines the nD
Euclidean topology.

Let S ⊆ R
n. The maximum open set S◦ contained in S is called the interior

of S, and the minimum closed set S•, containing S, is called the closure of S.
It follows that a set is open iff it equals its interior; a set is closed iff it

equals its closure. The difference set δS = S• \ S◦ is the boundary or frontier
of S.

Examples: Consider n = 1. For two reals a < b, the interval [a, b] = {x : a ≤
x ≤ b} is closed, and the interval (a, b) = {x : a < x < b} is open. The frontier
of [a, b], (a, b], [a, b), or (a, b) equals {a, b}.

A straight line y = Ax + B in 2D space also contains open or closed seg-
ments. For example, {(x, y) : a < x < b ∧ y = Ax + B} is an open segment.
The singleton {p} is closed for p ∈ R

2. The frontier of a square can be parti-
tioned into four (closed) vertices and four open line segments.

A set in R
n is compact iff it is closed and bounded; it has an interior and a

frontier. After removing its frontier, it would become open. See Fig. 3.6 for an
illustration of a set in the plane.

We can consider all black squares in a chessboard-type pattern to be closed; then
we have only one connected black region. We can consider all black squares to be
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Fig. 3.6 The dashed line
illustrates the open interiors,
and the solid line illustrates
the frontier. Of course, in the
continuous plane there are no
gaps between interior and
frontier; this is just a rough
sketch

Fig. 3.7 Components for
“black > grey > white”

open; then we have only one connected white region. The important point is: Which
pixel “owns” the corner where all four pixels meet?

Observation 3.2 We have to define a preference which grey-level pixels should be
closed or open in relation to another grey level; considering closed pixels as being
“more important”, we need to define an order of importance.

Consider the example in Fig. 3.5 and assume that “black > grey > white” for
the order of importance. If four pixels meet at one corner (as shown in Fig. 3.6)
and there is any black pixel in the set of four, then the corner is also black. If there
is no black pixel in the set of four, then a grey pixel would “win” against white
pixels. Applying this order of importance, we have two black components, three
grey components, and seven white components. See Fig. 3.7.

Under the assumption of “white > grey > black”, we would have one white
component, two grey components, and five black components for Fig. 3.5.
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Fig. 3.8 Three 2-by-2 pixel
arrays defining each
“flip-flop” case

The order of importance defines the key for this way of adjacency definition; thus,
we call it K-adjacency. A simple general rule for a scalar image is that the order of
importance follows the order of grey levels, either in increasing or in decreasing
order. For a vector-valued image, it is possible to take an order by vector magni-
tudes followed by lexicographic order (in cases of identical magnitudes). Defining
K-adjacencies based on such orders of importance solves the raised mathematical
problem (due to a partition of the plane in the sense of Euclidean topology), and the
analysis in the image thus follows the expected topological rules.

We need to access those orders actually only in cases where two pixel locations,
being diagonally positioned in a 2 × 2 pixel array, have an identical value, which is
different from the two other values in this 2 × 2 pixel array. This defines a flip-flop
case. Figure 3.8 illustrates three flip-flop cases.

The number of such flip-flop cases is small in recorded images; see four examples
of grey-level images in Fig. 3.9. Despite those small numbers, the impact of those
few flip-flop cases on the shape or number of connected regions (defined by identical
image values) in an image is often significant.

Observation 3.3 K-adjacency creates a planar adjacency graph for a given image
and ensures that simple digital curves separate inner and outer regions.

Back to the case of binary images: If we assume that “white > black”, then K-
adjacency means that we have 8-adjacency for white pixels, and 4-adjacency for
black pixels, and “black > white” defines the swapped assignment.

3.1.3 Border Tracing

When arriving via a scanline at an object, we like to trace its border such that the
object region is always on the right or always on the left. See Fig. 3.10.

According to the defined pixel adjacency, at a current pixel we have to test all
the adjacent pixels in a defined order such that we keep to our strategy (i.e. object
region either always on the right or always on the left).

The adjacency used might be 4-, 8-, or K-adjacency, or any other adjacency
of your choice. At every pixel location p we have a local circular order ξ(p) =
〈q1, . . . , qn〉, which lists all adjacent pixels in A(p) exactly once. In case of K-
adjacency, the number n of adjacent pixels can vary from pixel to pixel. We trace a
border and generate the sequence of pixels p0, p1, . . . , pi on this border.

Assume that we arrive at pi+1 ∈ A(pi). Let q1 be the pixel next to pixel pi in the
local circular order of pi+1. We test whether q1 is in the object; if “yes”, then we
have pi+2 = q1 and continue at pi+2; if “not”, then we test the next pixel q2 in the
local circular order ξ(pi+1) of pi+1, and so forth.
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Fig. 3.9 These images are of size 2014 × 1426 (they contain 2,872,964 pixels) and have
Gmax = 255. For the image Tomte on the upper left, the percentage of flip-flop cases is 0.38 %
compared to the total number of pixels. In the images PobleEspanyol, Rangitoto, and Kiri
on the upper right, lower left, and lower right, respectively, the percentages of flip-flop cases are
0.22 %, 0.5 %, and 0.38 %, respectively

Fig. 3.10 Illustration of two
scanlines that arrive for the
first time (assuming a
standard scan: top–down, left
to right) at objects of interest
(lights). At this moment a
tracing procedure starts for
going around on the border of
the object

Not any local circular order of an adjacency set is applicable. Clockwise or
counter-clockwise orders of adjacent pixels are the possible options.
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Fig. 3.11 Left: Used local circular order. Right: Arrival at an object when going from q0 to p0

1: Let (q0,p0) = (q,p), i = 0, and k = 1;
2: Let q1 be the pixel which follows q0 in ξ(p0);
3: while (qk,pi) �= (q0,p0) do
4: while qk in the object do
5: Let i := i + 1 and pi := qk ;
6: Let q1 be the pixel which follows pi−1 in ξ(pi) and k = 1;
7: end while
8: Let k = k + 1 and go to pixel qk in ξ(pi);
9: end while

10: The calculated border cycle is 〈p0,p1, . . . , pi〉;
Fig. 3.12 Voss algorithm

Example 3.1 We consider tracing for 4-adjacency. See the example in Fig. 3.11.
We arrive at the object via edge (q,p); let (q0,p0) := (q,p) and assume the local

circular order for 4-adjacency as shown. We take the next pixel position in ξ(p0),
which is the pixel position right of p0: this is in the object, and it is the next pixel
p1 on the border.

We stop if we test again the initial edge; but this would be in direction (p, q),
opposite to the arrival direction (q,p). Arriving at the same pixel again is not yet a
stop.

General Border-Tracing Algorithm by Voss Given is an image with a defined
adjacency relation and an initial edge (q,p) such that we arrive at p for the first time
at an object border not yet traced so far. Note: We do not say “first time at an object”
because one object may have one outer and several inner borders. The algorithm is
provided in Fig. 3.12.

An object O may have holes, acting as objects again (possibly again with holes).
Holes generate inner border cycles for object O in this case; see the following ex-
ample. The provided tracing algorithm is also fine for calculating inner borders. The
local circular orders remain always the same, only defined by adjacent object or
non-object pixels.
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Fig. 3.13 Left: Object for “white < black”. Middle: All border cycles of the non-object pixels.
Right: All border cycles of the object

Example 3.2 We illustrate all border-tracing results for a binary image. See
Fig. 3.13. Here we apply the dual adjacency for binary images defined by the key
“white < black”. In the figure there is one object with three holes. We notice the
correct topologic duality of connectedness and separation. The set of all border cy-
cles of the non-object pixels subdivides the plane and the set of all border cycles
of the object. Both subdivisions are topologically equivalent by describing one set
with three holes in both cases.

Insert 3.7 (Voss) Klaus Voss (1937–2008) described the given general
border-tracing algorithm in his book [K. Voss. Discrete Images, Objects, and Func-

tions in Zn. Springer, Berlin, 1993]. He contributed to many areas of theoretical
foundations of image analysis and computer vision.

3.2 Geometric 2D Shape Analysis

This section discusses the measurement of three basic properties, length, area, and
curvature in 2D images. By measuring we leave topology and enter the area of
geometry. The section also presents the Euclidean distance transform.

Images are given at some geometric resolution, specified by the size Ncols ×
Nrows. An increase in geometric resolution should lead to an increase in accu-
racy for measured properties. For example, measuring the perimeter of an object
in an image of size 1,000 × 600 should provide (potentially) a more accurate value
than measuring the perimeter for the same object in an image of size 500 × 300.
Spending more on technically improved equipment should pay off with better re-
sults.
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3.2.1 Area

A triangle Π = 〈p,q, r〉, where p = (x1, y1), q = (x2, y2), and r = (x3, y3), has the
area

A (T ) = 1

2
· ∣∣D(p,q, r)

∣∣ (3.3)

where D(p,q, r) is the determinant
∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
= x1y2 + x3y1 + x2y3 − x3y2 − x2y1 − x1y3 (3.4)

The value D(p,q, r) can be positive or negative; the sign of D(p,q, r) identifies
the orientation of the ordered triple (p, q, r).

The area of a simple polygon Π = 〈p1,p2, . . . , pn〉 in the Euclidean plane, with
pi = (xi, yi) for i = 1,2, . . . , n, is equal to

A (Π) = 1

2

∣
∣∣∣∣

n∑

i=1

xi(yi+1 − yi−1)

∣
∣∣∣∣

(3.5)

for y0 = yn and yn+1 = y1. In general, the area of a compact set R in R
2 equals

A (R) =
∫

R

dx dy (3.6)

How to measure the area of a region in an image?
Figure 3.14 illustrates an experiment. We generate a simple polygon in a grid of

size 512 × 512 and subsample it in images of reduced resolution. The original poly-
gon Π has the area 102,742.5 and perimeter 4,040.7966. . . in the 512 × 512 grid.

For the perimeter of the generated polygons, we count the number of cell edges
on the frontier of the polygon times the length of an edge for the given image resolu-
tion. For the 512 × 512 image, we assume the edge length to be 1, for the 128 × 128
image, the edge length to be 4, and so forth.

For the area of the generated polygons, we count the number of pixels (i.e. grid
cells) in the polygon times the square of the edge length.

The relative deviation is the absolute difference between the property values for
the subsampled polygon and original polygon Π , divided by the property value
for Π .

Figure 3.15 summarizes the errors of those measurements by showing the rel-
ative deviations. It clearly shows that the measured perimeter for the subsampled
polygons is not converging towards the true value; the relative deviations are even
increasing!

Regarding the measurement of the area of a region in an image, since the times of
Gauss, it is known that the number of grid points in a convex set S estimates the area
of S accurately. Thus, not surprisingly, the measured area shows the convergence
towards the true area as the image size increases.
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Fig. 3.14 Different digitizations of a simple polygon Π using grids of size 8 × 8 to 128 × 128;
the original polygon was drawn on a grid of resolution 512×512. All images are shown in the grid
cell model

Fig. 3.15 Relative
deviations of the area and
perimeter of subsampled
polygons relatively to the true
value in the 512 × 512 grid

Observation 3.4 The number of grid points in a region is a reliable estimator for
the area of the shown object.

The experimental data for the method used for estimating the perimeter show that
there are “surprises” on the way.

3.2.2 Length

We start with the definition of length for the Euclidean plane. Length is measured
for arcs (e.g. line segments or segments of a circle).
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Fig. 3.16 A polygonal
approximation of an arc
defined by points φ(ti ) on the
arc

Assume that we have a parameterized one-to-one representation φ(t) of an arc γ ,
starting with φ(c) and ending at φ(d) for c < d . Values t0 = c < t1 < · · · < tn = d

define a polygonal approximation of this arc; see Fig. 3.16.
A polygonal approximation has a defined length (i.e. the sum of lengths of all line

segments on this polygonal path). The limits of lengths of such polygonal approx-
imations, as n tends to infinity (i.e. as line segments become smaller and smaller),
define the length of γ .

Insert 3.8 (Jordan Arcs) The general mathematical definition of an arc is as
follows: A Jordan arc γ is defined by a subinterval [c, d] of a Jordan curve (or
simple curve)

{
(x, y) : φ(t) = (x, y) ∧ a ≤ t ≤ b

}

with a ≤ c < d ≤ b, φ(t1) �= φ(t2) for t1 �= t2, except t1 = a and t2 = b.
A rectifiable Jordan arc γ has a bounded arc length as follows:

L (γ ) = sup
n≥1∧c=t0<···<tn=d

n∑

i=1

de

(
φ(ti), φ(ti−1)

)
< ∞

See Fig. 3.16. In 1883, Jordan proposed the following definition of a curve:

γ = {
(x, y) : x = α(t) ∧ y = β(t) ∧ a ≤ t ≤ b

}

G. Peano showed in 1890 that this allows a curve that fills the whole unit
square. The Peano curve is not differentiable at any point in [0,1]. Thus,
Jordan’s 1883 definition is used for arc length calculation:

L (γ ) =
∫ b

a

√(
dα(t)

dt

)2

+
(

dβ(t)

dt

)2

dt

(assuming differentiable functions α and β).
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Fig. 3.17 Top: Approximations of the diagonal in a square by 4-paths for different grid resolu-
tions. Bottom: Digitizations of a unit disk for different grid resolutions

The “Staircase Effect” Assume a diagonal pq in a square with sides of length a.
The length of the diagonal is equal to a

√
2. Consider a 4-path approximating the

diagonal as shown in Fig. 3.17, top (i.e. for different grid resolutions). The length of
these 4-paths is always equal to 2a, whatever grid resolution will be chosen.

As a second example, consider the frontiers of digitized disks as shown in
Fig. 3.17, bottom. Independent of grid resolution, the length of these frontiers is
always equal to 4.

Observation 3.5 The use of the length of a 4-path for estimating the length of a
digital arc can lead to errors of 41.4 % (compared to original arcs in the continuous
pre-image), without any chance to reduce these errors in some cases by using higher
grid resolution. This method is not recommended for length measurements in image
analysis.

Use of Weighted Edges Assume that we are using the length of an 8-path for
length measurements. We use the weight

√
2 for diagonal edges and just 1 as be-

fore for edges parallel to one of the coordinate axes. (A line or line segment in the
Euclidean plane is isothetic iff it is parallel to one of the two Cartesian coordinate
axes.)

We consider the line segment pq in Fig. 3.18 with slope 22.5◦ and a length of
5
√

5/2.
The length of ρ(pq) is 3 + 2

√
2 for a grid with edges of length 1 (shown on the

left) and (5 + 5
√

2)/2 for any grid with edges of length 1/2n (n ≥ 1). This shows
that the length of those 8-paths does not converge to 5

√
5/2 as the length of grid

edges goes to zero.
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Fig. 3.18 Approximation of line segment pq by 8-paths for different grid resolutions

Fig. 3.19 Clockwise (left) and counterclockwise (right) polygonal approximation of the border
of a region by calculating maximum-length DSSs in subsequent order

Observation 3.6 For 8-paths we have a situation similar as for the use of 4-paths,
but here only with errors of up to 7.9 . . . % (when digitizing arcs of known length),
without any chance to reduce these errors in some cases by using higher grid reso-
lution.

This upper bound for magnitudes of errors might be acceptable in some applica-
tions. The use of weighted edges (including diagonal edges) for length estimation is
certainly acceptable for low image resolution or relatively short digital arcs.

Polygonal Simplification of Borders What is a certified accurate way for measur-
ing length? We go back to the scheme illustrated in Fig. 3.16. If segmenting an arc
into maximum-length digital straight segments (DSSs), as illustrated in Fig. 3.19,
then the sum of lengths of those straight segments converges to the true length of a
digitized arc, provided that we have the budget to acquire equipment with finer and
finer grid resolution.
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Fig. 3.20 The Frenet frame
at p = γ (t), also showing
length l = L (t)

Insert 3.9 (Digital Geometry) Publications in digital geometry provide fur-
ther details on “How to calculate DSSs?” and other algorithmic problems
related to calculations in the image grid. For example, see the monograph
[R. Klette and A. Rosenfeld. Digital Geometry. Morgan Kaufmann, San Francisco, 2004].

3.2.3 Curvature

A Jordan curve is called smooth if it is continuously differentiable. A polygon is
not smooth at singular points (i.e. its vertices). Curvature can be defined only at
non-singular points of a curve.

Curvature as Rate of Change of Tangential Angle Assume an arc γ in the Eu-
clidean plane that is a segment of a smooth Jordan curve. Thus, we have a tangent
t(p) defined at any point p on γ . This tangent describes an angle ψ with the positive
x-axis, called the slope angle. See Fig. 3.20.

Insert 3.10 (Frenet Frame and Frenet) To define curvature it is convenient
to use the Frenet frame, which is a pair of orthogonal coordinate axes (see
Fig. 3.20) with origin at a point p = γ (t) on the curve, named after the French
mathematician J.F. Frenet (1816–1900). One axis is defined by the tangent
vector

t(t) = [
cosψ(t), sinψ(t)

]

where ψ is the slope angle between the tangent and the positive x-axis. The
other axis is defined by the normal vector

n(t) = [− sinψ(t), cosψ(t)[

While p is sliding along γ , the angle ψ will change. The rate of change in ψ

(with respect to the movement of p on γ ) is one way to define curvature κtan(p)

along γ .
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Fig. 3.21 Three tangents (dashed lines). The curvature is positive on the left, has a zero crossing
in the middle, and is negative on the right

Let l = L (t) be the arc length between the starting point γ (a) and general point
p = γ (t). A curvature definition has to be independent of the speed (or rate of
evolution)

v(t) = dL (t)

dt
(3.7)

of the parameterization of γ . Curvature is now formally defined by

κtan(t) = dψ(t)

dl
(3.8)

at a point γ (t) = (x(t), y(t)) of a smooth Jordan curve γ .
The rate of change can be positive or negative, and zero at points of inflection.

If positive at p, then p is a concave point, and if negative at p, then p is a convex
point. See Fig. 3.21.

As Fig. 3.21 shows, the situation at p can be approximated by measuring the
distances between γ and the tangent to γ at p along equidistant lines perpendicular
to the tangent. In Fig. 3.21, positive distances are represented by bold line segments
and negative distances by “hollow” line segments. The area between the curve and
the tangent line can be approximated by summing these distances; it is positive on
the left, negative on the right, and zero in the middle where the positive and negative
distances cancel.

For example, assume that γ is a straight line. Then the tangent coincides with γ

at any point p, and there is no rate of change at all, i.e. there is curvature zero for all
points on γ . Assume that γ is a circle. Then we already know that there is a constant
rate of change in slope angle; assuming uniform speed, it follows that this constant
is the inverse of the radius of this circle.

Curvature as Radius of Osculating Circle Another option for analysing curva-
ture is by means of osculating circles; see Fig. 3.22. The osculating circle at a point
p of γ is the largest circle tangent to γ at p on the concave side. Assume that the
osculating circle at p has radius r . Then γ has the curvature κosc(p) = 1/r at p. In
the case of a straight line, r is infinity, and the curvature equals zero. It holds that

κosc(p) = ∣∣κtan(p)
∣∣ (3.9)
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Fig. 3.22 Illustration of curvature defined either by rate of change (left) or radius of osculating
circle (right). Points p, q , and r illustrate curvature by rate of change in the slope angle ψ . Assume
that points move from left to right. Then p has a positive curvature, zero curvature at a point of
inflection q , and negative curvature at r . Points s and t illustrate curvature by their osculating
circles. The curvature at s equals 1/r1, and at t it is 1/r2

Fig. 3.23 Illustration for the
use of k = 3 when estimating
the curvature at pi

Curvature of a Parameterized Arc There is a third option for defining curva-
ture in the Euclidean plane. Assume a parametric representation γ (t) = (x(t), y(t)),
which is Jordan’s first proposal for defining a curve. Then it follows that

κtan(t) = ẋ(t) · ÿ(t) − ẏ(t) · ẍ(t)

[ẋ(t)2 + ẏ(t)2]1.5
(3.10)

where

ẋ(t) = dx(t)

dt
, ẏ(t) = dy(t)

dt
, ẍ(t) = d2x(t)

dt2
, ÿ(t) = d2y(t)

dt2
(3.11)

Algorithms for estimating curvature of digital curves in images are a subject of
digital geometry. Typically, they follow the rate-of-change model, rather than the
osculating circle model, and only a few attempt to digitize (3.10).
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Example 3.3 (An Option for Estimating Curvature of a Digital Curve) Actually,
(3.10) can be followed very easily. Assume that a given digital curve 〈p1, . . . , pm〉,
where pj = (xj , yj ) for 1 ≤ j ≤ m, is sampled along a parameterized curve γ (t) =
(x(t), y(t)), where t ∈ [0,m]. At point pi we assume that γ (i) = pi . The functions
x(t) and y(t) are locally interpolated by second-order polynomials

x(t) = a0 + a1t + a2t
2 (3.12)

y(t) = b0 + b1t + b2t
2 (3.13)

and curvature is calculated using (3.10). Let x(0) = xi , x(1) = xi−k , and x(2) =
xi+k with integer parameter k ≥ 1, and analogously for y(t). See Fig. 3.23. The
curvature at pi is then defined by

κi = 2(a1b2 − b1a2)

[a2
1 + b2

1]1.5
(3.14)

The use of a constant k > 1 can be replaced by locally adaptive solutions.

3.2.4 Distance Transform (by Gisela Klette)

The distance transform labels each object pixel (say, defined by I (p) > 0) with
the Euclidean distance between its location and the nearest non-object pixel loca-
tion (defined by I (p) = 0). For simplicity, we can say that the distance transform
determines for all pixel locations p ∈ Ω the distance value

D(p) = min
q∈Ω

{
d2(p, q) : I (q) = 0

}
(3.15)

where d2(p, qk) denotes the Euclidean distance. It follows that D(p) = 0 for all
non-object pixels.

Insert 3.11 (Origins of the Distance Transform) [A. Rosenfeld and J.L. Pfaltz.

Distance functions on digital pictures. Pattern Recognition, vol. 1, pp. 33–61] is the pi-
oneering paper not only for defining distance transforms in images, but also
for an efficient 2-pass algorithm; A. Rosenfeld and J. Pfaltz used grid metrics
rather than the Euclidean metric and proposed the alternative use of 4- and
8-adjacency for approximating Euclidean distances. This approximation im-
proves by chamfering as defined in [G. Borgefors: Chamfering—a fast method for

obtaining approximations of the Euclidean distance in N dimensions. In Proc. Scand. Conf.

Image Analysis, pp. 250–255, 1983].
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The papers [T. Saito and J. Toriwaki. New algorithms for Euclidean distance trans-

formation of an n-dimensional digitized picture with applications. Pattern Recognition,

vol. 27, pp. 1551–1565, 1994] and [T. Hirata. A unified linear-time algorithm for com-

puting distance maps. Information Processing Letters, vol. 58, pp. 129–133, 1996] ap-
plied the Euclidean metric and introduced a new algorithm using the lower
envelopes of families of parabolas.

Maximal Circles in the Image Grid Let S ⊂ Ω be the set of all object pixel
locations, and B = Ω \ S be the set of all non-object pixel locations. The distance
transform satisfies the following properties:
1. D(p) represents the radius of the largest disk centred at p and totally contained

in S.
2. If there is only one non-object pixel location q ∈ B with D(p) = d2(p, q), then

there are two cases:
(a) There exists a pixel location p′ ∈ S such that the disk centred at p′ totally

contains the disk centred at p, or
(b) there exist pixel locations p′ ∈ S and q ′ ∈ B such that d2(p, q) = d2(p

′, q ′)
and p is 4-adjacent to p′.

3. If there are two (or more) non-object pixel locations q, q ′ ∈ B such that D(p) =
d2(p, q) = d2(p, q

′
), then the disk centred at p is a maximal disk in S; the

point p is called symmetric in this case.
In Case 2(b), the pixel locations p and p′ are both centres of maximal discs, and

they are 4-adjacent to each other.
Figure 3.24, top, shows a rectangle with a subset of maximal disks. At least two

non-object pixel locations have the same distance to one of the centres of those
disks. The middle row shows maximal disks where two centres are 4-adjacent to
each other and there is only one non-object pixel location with distance r (radius
of the disk) for each disk. Figure 3.24, bottom, shows a disk B that has only one
non-object pixel location at distance r to its centre and is contained in the maximal
disk A.

Distance and Row–Column Component Map The distance map is a 2D array of
the same size as the original image that stores the results D(p) at locations p ∈ Ω .

Let a shortest distance D(p) be defined by the distance d2(p, q) with p =
(xp, yp) and q = (xq, yq). Then we have that

D(p) =
√

(xp − xq)2 + (yp − yq)2 (3.16)

By knowing �x = xp − xq and �y = yp − yq we also know D(p), but just the
distance value D(p) does not tell us the signed row component �x and the signed
column component �y. Thus, instead of the distance map, we might also be inter-
ested in the row–column component map: At p ∈ Ω we store the tuple (�x,�y)

that defines D(p).
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Fig. 3.24 Top: A set of maximal disks. Middle: Symmetric points as defined in Case 2(b). Bottom:
Illustration of Case 2(a)

Squared Euclidean Distance Transform (SEDT) It is common to compute
squares D(p)2 of Euclidean distances for saving time. We explain the principles
of one algorithm that delivers accurate SEDT maps in linear time, where many au-
thors have contributed to improvements over time.

The algorithm starts with integer operations to compute the SEDT to the nearest
non-object point for one dimension in two row scans. Then it operates in the contin-
uous plane R

2 by computing the lower envelope of a family of parabolas for each
column. The algorithm identifies the parabolas that contribute segments to the lower
envelope and calculates the endpoints of those segments. The squared Euclidean dis-
tance values are calculated in an additional column scan using the formulas of the
parabolas identified in the previous step.

We explain the algorithm for the 2D case in detail and also highlight that all
computations can be done independently for each dimension; thus, the approach
can be followed for arbitrary dimensions.
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Fig. 3.25 The zeros are all the non-object pixels. The numbers are squared Euclidean distances.
Left: Intermediate results after the initial row scans. Right: Final results after column scans

Distances in a Row The initial step is a calculation of the distance from a pixel in
an object to the nearest non-object pixel in the same row:

f1(x, y) = f1(x − 1, y) + 1 if I (x, y) > 0 (3.17)

f1(x, y) = 0 if I (x, y) = 0 (3.18)

f2(x, y) = min
{
f1(x, y), f2(x + 1, y) + 1

}
if f1(x, y) �= 0 (3.19)

f2(x, y) = 0 if f1(x, y) = 0 (3.20)

Here, f1(x, y) determines the distance between the pixel location p(x, y) and near-
est non-object pixel location q on the left, and f2 replaces f1 if the distance to the
nearest non-object pixel location on the right is shorter.

The result is a matrix that stores integer values (f2(x, y))2 in each pixel location.
See Fig. 3.25, left, for an example.

We express f2(x, y) for a fixed row y as follows:

f2(x, y) = min
i=1,...,Ncols

{|x − i| : I (i, y) = 0
}

(3.21)

The example in Fig. 3.25, left, shows the results for the 1D SEDT after computing
[f2(x, y)]2 row by row for 1 ≤ y ≤ Nrows.

Distances in a Column If there are only two non-object pixel locations, then,
for given p = (x, y), we need to know which of the two non-object pixel locations
(x, y1) or (x, y2) is closer. We compare

[(
f2(x, y1)

)2 + (y − y1)
2]<

[(
f2(x, y2)

)2 + (y − y2)
2] (3.22)

The function f3(x, y) determines values for the 2D SEDT, column by column,
considering x to be fixed, for all 1 ≤ y ≤ Nrows:

f3(x, y) = min
j=1,...,Nrows

{(
f2(x, j)

)2 + (y − j)2} (3.23)
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Fig. 3.26 Family of
parabolas for column
[0,4,9,16,4,0] in Fig. 3.25,
left

We discuss a geometric interpretation that illustrates the basic idea for designing a
time-efficient solution.

Lower Envelopes For a fixed column (e.g., for x = 5, let f2(5, y) = g(y)) and a
fixed row (e.g. y = 3), consider the equation

γ3(j) = (
g(3)

)2 + (3 − j)2 (3.24)

with j = 1, . . . ,Nrows. We continue to refer to Fig. 3.25; the assumed values repre-
sent the third parabola in Fig. 3.26.

For 1 ≤ y ≤ Nrows, altogether we consider a family of Nrows parabolas; see
Fig. 3.26. This is one parabola for each row and a family of Nrows parabolas per
column. The horizontal axis represents the row number y, and the vertical axis rep-
resents γy(j), with the local minima at y = j and γy(j) = (g(y)).

The lower envelope of the family of parabolas corresponds to the minimum cal-
culation in (3.23). Efficient SEDT algorithms calculate the lower envelope of the
family of parabolas and then assign the height (i.e. the vertical distance to the ab-
scissa) of the lower envelope to the point with coordinates (x, y). The computation
of the lower envelope of the family of parabolas is the main part of the SEDT algo-
rithm.

Observation 3.7 The concept of envelope calculation reduces the quadratic time
complexity of a naive EDT algorithm to linear time as envelopes can be computed
incrementally.

Example 3.4 (Calculation of Sections) The example in Fig. 3.26 shows a family of
six parabolas. The lower envelope consists of two curve segments.

The first segment starts at (1,0) and ends at the intersection of the first and last
parabolas. The second segment begins at this intersection and ends at (6,0). The
projections of the segments on the horizontal axis are called sections.



114 3 Image Analysis

Fig. 3.27 Left: Sketch for ys(γ2, γ3) > ys(γ1, γ2). Right: Sketch for ys(γ2, γ3) < ys(γ1, γ2)

In this simple example, the interval [1,6] is partitioned into two sections. Only
two of the six parabolas contribute to the lower envelope of the family. For calculat-
ing f3(y) (x is fixed), we need the start and end for each section, and the index of
the associated parabola.

This can be done in two more column scans; one scan from the top to the bot-
tom that identifies the parabola segments of the lower envelope together with their
associated sections, and a second scan that calculates the values for f3(y).

Preparing for the Calculation of the Lower Envelope The determination of the
lower envelope is done by a sequential process of computing the lower envelope of
the first k parabolas. We calculate the intersection between two parabolas. Let ys be
the abscissa of the intersection, and let y1 < y2. The equation for the intersection
ys = ys(γ1, γ2) of any two parabolas γ1 and γ2 is given by

[
g(y1)

]2 + (ys − y1)
2 = [

g(y2)
]2 + (ys − y2)

2 (3.25)

From this we obtain that

ys = y2 + [g(y2)]2 − [g(y1)]2 − (y2 − y1)
2

2(y2 − y1)
(3.26)

We apply (3.26) in the SEDT algorithm for the first column scan, where we compute
the lower envelope of parabolas per column. We store the information in a stack.

Only parabolas that contribute to the lower envelope stay in the stack, and all the
others are eliminated from the stack. This results in a straightforward algorithm; see
also the sketch in Fig. 3.27.

The Calculation of the Lower Envelope Each stack item stores a pair of real
values (b, e) for the begin and end of the section of a parabola, which contributes to
the lower envelope. (bt , et ) belongs to the top parabola of the stack, and (bf , ef ) is
the pair associated with the subsequent parabola in the sequential process.

The first item stores the start and end of the section for the first parabola. It is
initialized by (1,Nrows); the lower envelope would consist of one segment between
(1,Nrows) if all the following parabolas have no intersections with the first one.
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The parabolas are ordered according to their y-values in the image. For each
sequential step, we evaluate the intersection for the top item of the stack representing
γt , and the next following parabola γf . There are three possible cases:
1. ys(γt , γf ) > Nrows: γf does not contribute to the lower envelope, do not change

the stack, take the following parabola;
2. ys(γt , γf ) ≤ bt : Remove γt from the stack, evaluate the intersection of the new

top item with γf (see Fig. 3.27, right); if the stack is empty, then add the item for
γf to the stack;

3. ys(γt , γf ) > bt : Adjust γt with et = ys(γt , γf ), add the item for γf to the stack
with bf = et , ef = n (see Fig. 3.27, left).

The procedure continues until the last parabola has been evaluated with the top item
of the stack. At the end, only sections of the lower envelope are registered in the
stack, and they are used for calculating the values for f3(x, y) in an additional scan.

Example 3.5 (Lower Envelope) For our simple example (see Fig. 3.26), the lower
envelope consists of γ1 starting at b1 = 1 and ending at e1 = 3.5 and of γ6 starting
at b2 = 3.5 and ending at e2 = 6. Now we just compute the values for

γ1(j) = (
g(1)

)2 + (1 − j)2 for j = 1,2,3 (3.27)

and

γ6(j) = (
g(6)

)2 + (6 − j)2 for j = 4,5,6 (3.28)

Variations of this principal approach can reduce the number of computations.

Preprocessing and Time Complexity In a preprocessing step, we can eliminate
all the parabolas with g(y) > (Nrows − 1)/2 that have no segment in the lower enve-
lope. In our simple example (see Fig. 3.26), the parabolas γ3(j) with g(3) = 3 > 2.5
and γ4(j) with g(4) = 4 > 2.5 would be eliminated before starting with computa-
tions of intersections for the lower envelop.

The SEDT algorithm works in linear time. Computations for each dimension are
done independently. The resulting squared minimal distance for one dimension is
an integer value for each grid point, which will be used for the computation in the
next dimension.

Arbitrary Dimensions The 2D SEDT can be expressed as follows:

D(x,y) = min
i=1,...,Ncols∧j=1,...,Nrows

{
(x − i)2 + (y − j)2} (3.29)

Because i does not depend on j , we can reformulate into

D(x,y) = min
j=1,...,Nrows

{
min

i=1,...,Ncols

{
(x − i)2 + (y − j)2}

}
(3.30)
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The minimum calculation in (3.30), min ((x − i)2) = g(j)2, corresponds to the row
scans in the first part of the SEDT algorithm. We can rewrite the equation for fixed
x and derive the equation for the second dimension:

D(x,y) = min
j=1,...,Nrows

{
g(j)2 + (y − j)2} (3.31)

The minimum calculation in (3.31) corresponds to the column scans.
Let p be a 3D point at location (x, y, k) for k = 1, . . . ,Nlayer , and h(k)2 be the

result of the minimum computation in (3.31) for fixed pairs x, y. Then we have also
an equation for the third dimension:

D(x,y, z) = min
k=1,...,Nlayer

{
h(k)2 + (z − k)2} (3.32)

This can be continued for further dimensions.

3.3 Image Value Analysis

Besides geometric analysis of image contents, we are also interested in describing
the given signal, i.e. the distribution of image values. We continue with assuming a
scalar input image I .

This section describes co-occurrence matrices and data measures defined on
those matrices, and moments of regions or image windows.

3.3.1 Co-occurrence Matrices and Measures

Basic statistics (mean, variance, grey-level histogram) provide measures summariz-
ing individual pixel values. Co-occurrence studies the distribution of values in de-
pendence upon values at adjacent pixels. Such co-occurrence results are represented
in the co-occurrence matrix C.

Assume an input image I and an adjacency set A. For example, in case of 4-
adjacency we have the adjacency set A4 = {(0,1), (1,0), (0,−1), (−1,0)}, defining
A4(p) = A4 + p for any pixel location p. As before, we denote by Ω the set of all
Ncols ×Nrows pixel locations. We define the (Gmax +1)× (Gmax +1) co-occurrence
matrix CI for image I and image values u and v in {0,1, . . . ,Gmax} as follows:

CI (u, v) =
∑

p∈Ω

∑

q∈A∧p+q∈Ω

{
1 if I (p) = u and I (p + q) = v

0 otherwise
(3.33)

The adjacency set can also be non-symmetric, for example A = {(0,1), (1,0)}. Fig-
ure 3.28 illustrates the adjacency set A = {(0,1)}. The figure shows three exam-
ples for increasing a counter value in the co-occurrence matrix. For example, at
(x, y) = (3,2) we have the value u = 2 and v = 1 one row down. Accordingly, the
counter at (u, v) = (2,1) increases by one.
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Fig. 3.28 We have a small 5 × 5 image on the left, with Gmax = 3, and generate its 4 × 4 co-oc-
currence matrix on the right. The adjacency set A = {(0,1)} only contains one off-set, meaning
that we have to look from a pixel location one row down. At (x, y) = (5,1) we have the value
u = 0 and v = 0 one row down. Accordingly, the counter at (u, v) = (0,0) increases by one

Fig. 3.29 Top, left: Input image I ; x goes from 1 to Ncols = 5, and y goes from 1 to Nrows = 5.
Top, middle: Co-occurrence matrix C1 for adjacency set A1; u and v go from 0 to Gmax = 3. Top,
right: Co-occurrence matrix C2 for adjacency set A2. Bottom, middle: Co-occurrence matrix C3
for adjacency set A3. Bottom, right: Co-occurrence matrix C4 for adjacency set A4

Example 3.6 (Examples of four Co-Occurrence Matrices) We consider a small 5×5
image I (see Fig. 3.29, left), Gmax = 3, and four different adjacency sets: first,
A1 = {(0,1)}, then A2 = {(0,1), (1,0)}, then A3 = {(0,1), (1,0), (0,−1)}, and fi-
nally the usual adjacency set A4. These simple data should allow you to follow the
calculations easily.

Figure 3.29, middle, and Fig. 3.29, right, show the corresponding four co-
occurrence matrices.

We provide a few examples for the performed calculations. We start with A1.
At first we have (u, v) = (0,0). We have to count how often there is a case that
I (x, y) = 0 and I (x, y + 1) = 0 in I , i.e. a zero at a pixel and also a zero at the
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pixel below. This occurs three times. Accordingly, we have C1(0,0) = 3 for A1.
One more example: Consider (u, v) = (3,1). It never happens that a 3 is on top of
a 1, thus we have C1(3,1) = 0.

Now also two examples for A2. A1 is a subset of A2, thus we have that C1(u, v) ≤
C2(u, v) for any pair (u, v) of image values. In case of (u, v) = (0,0), besides the
case “I (x, y) = 0 and I (x, y + 1) = 0” we have also to count how often there is a
zero at (x, y) and also a zero at (x + 1, y). There is one case. Thus, we have that
C2(0,0) = 3 + 1 = 4. A final example: (u, v) = (2,1). For q = (0,1), we count two
cases. For q = (1,0), we also count two cases, and thus C2(2,1) = 2 + 2 = 4.

The sums of all entries in one of those co-occurrence matrices are 20 times the
number of elements in the adjacency set. The final matrix (for A4) is symmetric
because A4 is symmetric.

The example illustrates two general properties of those co-occurrence matrices:
1. Each element q in the adjacency set adds either Ncols · (Nrows −1) or (Ncols −1) ·

Nrows to the total sum of entries in the co-occurrence matrix, depending on
whether it is directed in row or column direction.

2. A symmetric adjacency set produces a symmetric co-occurrence matrix.
Those co-occurrence matrices are used to define co-occurrence-based measures

to quantify information in an image I . Note that noise in an image is still consid-
ered to be information when using these measures. We provide here two of such
measures:

Mhom(I ) =
∑

u,v∈{0,1,...,Gmax}

CI (u, v)

1 + |u − v| (Homogeneity measure) (3.34)

Muni(I ) =
∑

u,v∈{0,1,...,Gmax}
CI (u, v)2 (Uniformity measure) (3.35)

Informally speaking, a high homogeneity or uniformity indicates that the image I

has more “untextured” areas.
Measures can also be defined by comparing the sum of all entries on or close

to the main diagonal of the co-occurrence matrix to the sum of all entries in the
remaining cells of the co-occurrence matrix.

Insert 3.12 (Co-Occurrence Measures) The book [R.M. Haralick and L.G. Shapiro.

Computer and Robot Vision (vol. 1), Reading, MA, Addison-Wesley, 1992] contains fur-
ther co-occurrence measures and a detailed discussion of their meaning when
analysing images.

3.3.2 Moment-Based Region Analysis

Assume a region S ⊂ Ω of pixel locations in an image I . This region may represent
an “object”, such as illustrated in Fig. 3.30.
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Fig. 3.30 Main axes and
centroids for detected fish
regions

We assume again a scalar image I . The moments of a region S in the image I are
defined by

ma,b(S) =
∑

(x,y)∈S

xayb · I (x, y) (3.36)

for non-negative integers a and b. The sum a + b defines the order of the moment.
There is only one moment

m0,0(S) =
∑

(x,y)∈S

I (x, y) (3.37)

of order zero. If I (x, y) = 1 in S, then m0,0(S) = A (S), the area of S. The moments
of order 1,

m1,0(S) =
∑

(x,y)∈S

x · I (x, y) and m0,1(S) =
∑

(x,y)∈S

y · I (x, y) (3.38)

define the centroid (xS, yS) of S as follows:

xS = m1,0(S)

m0,0(S)
and yS = m0,1(S)

m0,0(S)
(3.39)

Note that the centroid depends on the values of I over S, not just on the shape of S.
The central moments of region S in image I are defined by

μa,b(S) =
∑

(x,y)∈S

(x − xS)a(y − yS)b · I (x, y) (3.40)

for non-negative integers a and b. The central moments provide a way to character-
ize regions S by features that are invariant with respect to any linear transform.
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We only provide two examples here for such features. Main axes as shown in
Fig. 3.30 are defined by an angle θ(S) (modulo π ) with the positive x-axis and by
being incident with the centroid. It holds that

tan
(
2 · θ(S)

)= 2μ1,1(S)

μ2,0(S) − μ0,2(S)
(3.41)

Furthermore, the eccentricity ε(S) of a region S is defined by

ε(S) = [μ2,0(S) − μ0,2(S)]2 − 4μ1,1(S)2

[μ2,0(S) + μ0,2(S)]2
(3.42)

and characterizes the ratio of the main axis to the orthogonal axis of S. The eccen-
tricity equals zero (in the ideal case) if S is a rotationally symmetric disk; then we
have that μ2,0(S) = μ0,2(S). A line segment has eccentricity one in the ideal case
(and close to one when measured in an image). Rotational symmetric sets with the
centroid at the origin also satisfy that m1,1(S) = 0.

Example 3.7 (Accuracy of Recorded Marks) In computer vision we have cases that
a special mark on a surface (e.g. a drawn cross or circle) needs to be accurately
localized in a captured image I . There is a standard two-step procedure for doing
so:
1. Detect the region S of pixels which is considered to be the image of the mark.
2. Calculate the centroid of the region S also using the values of I in S, defined

by (3.39).
In this way, the position of the mark in I is determined with subpixel accuracy.

Example 3.8 (Achieving Rotation Invariance for Analysing a Region) When deriv-
ing features for an image region, it is often desirable to have isotropic features (i.e.
invariant with respect to rotation). Moments support a four-step procedure for doing
so:
1. Detect the region S of pixels which needs to be analysed.
2. Calculate the main axis, as defined by (3.41).
3. Rotate S so that its main axis coincides with the x-axis (or any other chosen fixed

axis). In cases of μ1,1(S) = 0 or μ2,0 = μ0,2 (i.e. rotation-symmetric shapes), no
rotation is needed.

4. Calculate the isotropic features for the direction-normalized set as obtained after
rotation.

Note that rotation in the grid causes minor deviations in values in a region S, and
also its shape will vary a little due to limitations defined by the grid.

Insert 3.13 (Moments and Object Classification) The paper [M.K. Hu. Visual

pattern recognition by moment invariants. IRE Trans. Info. Theory, vol. IT-8, pp. 179–

187, 1962] was pioneering in the field of linear-transformation invariant object
characterizations by moments. Hu’s set of moment descriptors was not really
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practicable at the time of publication, due to existing limitations in computing
power at that time, but are standard features today for object classifications.
Simply check for “Hu moments” on the net, and you will find them.

3.4 Detection of Lines and Circles

Lines or circles appear in images as ‘noisy objects’, and their identification is an
example for how to identify patterns in an image.

This section provides a detailed guide for detecting line segments and an outline
for detecting circles.

3.4.1 Lines

Real-world images often show straight lines, such as edges of buildings, lane borders
(see Fig. 3.31), or power poles. An accurate localization of those lines is of help for
interpreting the real world.

An edge detector is first used to map a given image into a binary edge map. Then,
all remaining edge pixels need to be analysed whether there is any subset that forms
“reasonably” a line segment. There is noise involved, and the line detector needs to
be robust with respect to some noise.

How to describe a line, visible in an Ncols ×Nrows image? The obvious answer is
by the following equation:

y = ax + b (3.43)

This equation is illustrated for the blue line segment in Fig. 3.32, left.

Original Hough Transform The original Hough transform proposed for describ-
ing line segments in ab parameter space; see Fig. 3.32, right. Pixel positions p, q ,
and r in the image are mapped into three lines in the parameter space. Three lines,
shown in Red, Green, and Blue in the image, correspond to the three shown points
(in corresponding colours) in the parameter space.

Assuming y = a1x + b1 for the blue segment, it intersects the y-axis at b1. The
points p = (xp, yp) and q = (xq, yq) on the blue line describe the lines b = −xpa +
yp and b = −xqa + yq in the parameter space, respectively. For example, points
on b = −xpa + yp describe all lines in the image that are incident with p in any
direction (except the vertical line with a = ∞). Thus, the lines b = −xpa + yp and
b = −xqa + yq intersect in the ab parameter space at a point (a1, b1) defined by the
parameters a1 and b1 of the blue line.
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Fig. 3.31 Lane borders and their approximation by detected line segments

The figure illustrates more examples. The red, blue, and green points in the ab

space define the red, blue, and green lines in the image plane. If n points in the
image would be perfectly on one line γ , then the generated n straight lines in the
parameter space would intersect exactly at the parameter pair (aγ , bγ ) of this line γ .

In images, line patterns are not perfect; they are noisy. A set of n pixels in the
image that are all “nearly” on the same straight line γ define the set of n lines in
the ab parameter space that all intersect “nearly” at the parameter point (aγ , bγ )

of γ . The idea is to detect such clusters of intersection points of straight lines in the
parameter space for detecting the line γ in the image.

A nice idea, but it does not work. Why? Because the parameters a and b are not
bounded for an Ncols ×Nrows image. We would need to analyse an infinite parameter
space for detecting clusters.

Insert 3.14 (Origin of the Hough transform) The original Hough transform
was published in [P.V.C. Hough. Methods and means for recognizing complex patterns.

U.S. Patent 3.069.654, 1962].
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Fig. 3.32 Left: Three line segments in an image. The blue segment intersects the y-axis at b1.
The blue segment is in distance d to the origin, also defining the angle α with the positive x-axis.
Which values b, d , and α for the red and green segment? Right: ab parameter space

Parameter Space Proposed by Duda and Hart Instead of representing straight
lines in the common form of (3.43), we use a straight-line parameterization by d

and α, already illustrated in Fig. 3.32, left, for the blue line:

d = x · cosα + y · sinα (3.44)

Besides that, we follow the ideas of the original Hough transform. This allows us to
have a bounded parameter space. The angular parameter α is in the interval [0,2π),
and the distance d is in the interval [0, dmax], with

dmax =
√

N2
cols + N2

rows (3.45)

Proceeding this way is known as the standard Hough transform. A point in the
image generates now a sin/cos-curve in the dα parameter space, also known as
Houghspace.

Insert 3.15 (Radon) The straight-line representation in (3.44) was intro-
duced in [J. Radon. Über die Bestimmung von Funktionen durch ihre Integralwerte längs

gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften. Math.-

Phys. Kl., 69:262–267, 1917] when defining a transformation in a continuous
space, today known as the Radon transform. The Radon transform is an es-
sential theoretical basis for techniques used in Computer Tomography. The
(historically earlier) Radon transform is a generalization of the Hough trans-
form.
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Fig. 3.33 Top, right: Hough space for detected edge points (bottom, left) of the original input
image (top, left). An analysis of the Hough space leads to three line segments (shown bottom,
right)

Figure 3.33 illustrates an application of the standard Hough transform. The origi-
nal input image (from a sequence on EISATS) is shown top, left. The edge map (bot-
tom, left) is generated with the Canny operator (see Sect. 2.3.3). Top, right, shows a
view into the dα Hough space after inserting the sin/cos-curves for all the detected
edge pixels in the input image. There are three clusters (i.e. regions in Hough space
where many sin/cos-curves intersect). Accordingly, three lines are detected in the
input image.

Hough Space as Discrete Accumulator Array For implementing the Hough
space, it is digitized into an array, using subsequent intervals for d and α for defining
a finite number of cells in Hough space. For example, d can be digitized into subse-
quent intervals [0,1), [1,2), [2,3), . . . and α into intervals defined by increments of
one degree. This defines the accumulator array.

When starting with a new edge map, the counters in all cells of the accumulator
array are set to be zero. When inserting a new sin/cos curve into the accumulator
array, all those counters are incremented by one where the curve intersects a cell. At
the end of the process, a counter in the accumulator array is equal to the total number
of sin/cos curves that were passing through its cell. Figure 3.33 shows zero counters
as ‘white’, and ‘red’ for non-zero counters, the darker the larger is the counter.
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Fig. 3.34 Top, left: Counter values in a dα space. Top, right: Peak defined by local maximum.
Bottom, left: A 3 × 3 window of counter values with a maximal sum; the peak may be defined by
the centroid of this window. Bottom, right: The butterfly of a peak

It is expected to identify lines in the given image by peaks in the values of the
accumulator array, being defined (in some way) as centres of ‘dark regions’.

The standard Hough transform identifies peaks at selected local maxima of
counter values. As a consequence, parameters of detected lines are at an accuracy as
defined by the chosen size of intervals when digitizing the Hough space. We say that
parameters are of cell accuracy and not yet at subcell accuracy. Selecting smaller
intervals is one way for improving the cell accuracy (and increasing the computation
time), and calculating the centroid in a window of maximal total sum of contained
counter values is another option to achieve subcell accuracy. See Fig. 3.34, top,
right, and bottom, left.

Improving Accuracy and Reducing Computation Time The counter values
around a peak do resemble the shape of a butterfly; see Fig. 3.34, bottom, right. The
butterfly of a peak can be approximated by second-order curves from both sides.
This provides a way for defining the peak with subcell accuracy.

For the standard Hough transform, as illustrated by Fig. 3.32, the description
of straight lines is with respect to the origin of the xy image coordinate system.
Consider a move of this reference point into the centre of the image. See Fig. 3.35.
The straight line equations change into

d =
(

x − Ncols

2

)
· cosα +

(
y − Nrows

2

)
· sinα (3.46)

The value dmax in dα space reduces to

dmax = 1

2

√
N2

cols + N2
rows (3.47)
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Fig. 3.35 Left: Centred coordinate system for representing lines in the image. Right: The image
shows dmax for the maximum possible value for d and a sketch of a butterfly for one line

This not only halves the size of the accumulator array and thus also the computation;
it also improves the shape of the butterflies, as experimental evaluations show. The
shape of the butterflies becomes “less elongated”, thus supporting a better detection
of peaks.

The result in Fig. 3.33 was calculated using the standard Hough transform. The
results shown in Fig. 3.31 were obtained by using the centred representation of lines
and an approximation of butterflies by second-order curves for detecting peaks at
subcell accuracy.

Multiple Line Segments in One Image A butterfly is detected by using an m×n

search window in the Hough space; for example, m = n = 11. If peaks are separated,
then there is no problem. The existence of multiple lines in an image I may also lead
to overlays of multiple butterflies in the Hough space. In such a case, typically, only
one wing of a butterfly overlaps with another butterfly. This destroys the symmetry
of the butterfly.

After detecting a peak at (d,α), for not disturbing subsequent peak detection, we
select pixels in the image (close to the detected line) and do the inverse process to
the insertion of those pixels into the accumulator array: now we decrease counters
when the corresponding sin/cos curve intersects cells.

After eliminating the effects of a found peak in the Hough space, the next peak
is detected by continuing the search with the m × n search window.

Endpoints of Line Segments So far we only discussed the detection of one line,
not of a segment of a line defined also by two endpoints. A commonly used method
for detecting the endpoints was published by M. Atiquzzaman and M.W. Akhtar in
1994. In general, the endpoints can be detected by tracing the detected line in the
image and analysing potentially contributing edge pixels close to the line; alterna-
tively, the endpoints can also be detected in the Hough space.
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Fig. 3.36 Input example for detecting stop signs. Their borders form circles with diameters within
some expected interval

3.4.2 Circles

The idea of Hough transforms can be generalized: for geometric objects of interest,
consider a parameterization that supports a bounded accumulator array. Insert pixels
into this array and detect peaks. We illustrate this generalization for circles. For
example, see Fig. 3.36 for an application where circle detection is very important.
Stop signs are nearly circular.

In this case, a straightforward parameterization of circles is fine for having a
bounded accumulator array. We describe a circle by a centre point (xc, yc) and ra-
dius r . This defines a 3D Hough space.

Consider a pixel location p = (x, y) in an image I . For a start, it may be incident
with a circle of radius r = 0, being the pixel itself. This defines the point (x, y,0)

in the Hough space, the starting point of the surface of a straight circular cone. Now
assume that the pixel location p = (x, y) is incident with circles of radius r0 > 0.
The centre points of those circles define a circle of radius r0 around p = (x, y). See
Fig. 3.37, left. This circle is incident with the surface of the straight circular cone
defined by (x, y) in the Hough space. To be precise, it is the intersection of this
surface with the plane r = r0 in the xyr Hough space.

For the radius r of circular borders in an image, we have an estimate for a possible
range r0 ≤ r ≤ r1. The size of the images always defines an upper bound. Thus,
the 3D Hough space for detecting circles reduces to a “layer” of thickness r1 − r0

over Ω . Thus, we do have a bounded Hough space.
This Hough space is discretized into 3D cells, defining a 3D accumulator array.

At the beginning of a detection process, all counters in the accumulator array are
set back to zero. When inserting a pixel location (x, y) into the accumulator array,
all counters of the 3D cells that are intersected by the surface of the cone of pixel
location (x, y) increase by one.
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Fig. 3.37 Left: Pixel location (x, y) and location of all centre points of circles of radius r0 > 0
around pixel (x, y). Right: A pixel location (x, y) defines the surface of a right circular cone in the
Hough space

For example, when inserting three non-collinear pixel locations into the 3D
Hough space, we generate three surfaces of right circular cones. We know that three
non-collinear points determine uniquely a circle in the plane. Thus, all the three
surfaces will intersect in one point only, defining the parameters of the uniquely
specified circle.

As in case of line detection, now we need to detect peaks in the 3D accumulator
array. Multiple circles in a given image usually do not create much interference in
the 3D accumulator array, and there is also no “endpoint problem” as in case of line
detection.

3.5 Exercises

3.5.1 Programming Exercises

Exercise 3.1 (Identification and Analysis of Components in a Binary Image) Allow
the input of any scalar image I . Apply a defined threshold T , 1 ≤ T ≤ Gmax, for
generating a binary image by the following thresholding operation:

J (x, y) =
{

0 if I (x, y) < T

1 otherwise
(3.48)

For the resulting binary image J , allow the following two options for a user dia-
logue:
1. (Counting components) If the user selects this option, then it is possible to use

either the key “black < white” or “white < black” for counting the number of
black components in the binary image J .

2. (Geometric features of a selected component) When a user selects this option and
clicks on one black component, then the area, the perimeter, and the diameter of
the component are calculated. For this exercise, it is sufficient to calculate the
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Fig. 3.38 Removal of
artifacts with a diameter of at
most T

perimeter as the length of the 8-path describing the border of the component (i.e.
the output of border tracing when assuming 8-adjacency). The perimeter of a
component is the maximum distance between any two pixels in this component.
(Thus, the perimeter is defined by two pixels on the border of the component.)
Optional, small components with an area below a given threshold may be deleted

prior to Options 1 and 2, and the selected components (in Option 2) may be coloured
to avoid repeated selection.

Exercise 3.2 (Deletion of Components with a Diameter Below a Given Threshold,
and Histograms of Features) Generate binary images as described in Exercise 3.1.
Before further processing, delete all black components having a diameter below a
given threshold T .

Apply the following procedure, illustrated by Fig. 3.38, for doing so: Have one
T × T window inside of a (T + 2)× (T + 2) window. If the number of black pixels
in the small window equals the number of black pixels in the larger window (i.e.
there are no black pixels in the difference set), as illustrated in Fig. 3.38, then set all
pixels in the small window to zero (i.e. white).

For all the remaining components S in the generated binary image, calculate the
area A (S), the perimeter P(S), and the shape factor

F (S) = P(S)2

2π · A (S)
(3.49)

Display histograms showing the distributions of those three features for the remain-
ing components in the generated binary image.

Insert 3.16 (Shape Factor and Isoperimetric Inequality) The isoperimetric in-
equality in 2D, known since ancient times, states that for any planar set that
has a well-defined area A and perimeter P , we have that

P2

4π · A ≥ 1 (3.50)
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It follows that among all such sets that have the same perimeter, the disk has
the largest area. The expression on the left-hand side of (3.50) is also known
as the isoperimetric deficit of the set; it measures how much the set differs from
a disk. The first proof for the ancient isoperimetric problem was published in
1882.

Citation from [R. Klette and A. Rosenfeld. Digital Geometry. Morgan Kaufmann, San

Francisco, 2004].

Exercise 3.3 (Evaluation of Co-Occurrence Measures) Use as input scalar images
I of reasonable size (at least 256 × 256). Apply recursively the 3 × 3 box filter
or the 3 × 3 local median operator to an input image and produce smoothed and
residual images S(n) and R(n) with respect to these two smoothing or noise-removal
operations for n = 0, . . . ,30. See (2.33).

Calculate the co-occurrence matrices for I and images S(n) and R(n). Let T be
the total sum of all entries in the co-occurrence matrix of I .

Calculate the homogeneity and the uniformity measures for images S(n) and
R(n), and scale the obtained values by dividing by T , thus only having normalized
values in the interval [0,1].

Plot those scaled homogeneity and uniformity results as functions of n =
0, . . . ,30 for both used smoothing operators.

Discuss differences or similarities of results for input images I showing differ-
ent intensity distributions, such as uniformly illuminated indoor images or outdoor
images showing lighting artifacts.

Exercise 3.4 (Features of Components Using Moments) Generate binary images
as described in Exercise 3.1. Before further processing, delete all black artifacts, for
example by deleting all components having a diameter below a given threshold T

or all components having an area below a given threshold.
Provide a user interface that the remaining components can be selected (by click-

ing) one by one, calculate for each selected component its centroid, main axis, and
eccentricity and visualize those values in some way for the selected component. For
visualizing eccentricity, you may draw, for example, an ellipse of corresponding ec-
centricity or just show a bar at the selected component whose height corresponds
to the value of eccentricity. For centroid and main axis, do similar as illustrated in
Fig. 3.30.

Exercise 3.5 (Directional Normalization of Images) Capture freehand (i.e. no tri-
pod or other means for levelling) still images in an environment showing many
vertical and horizontal edges.

Identify such “near-vertical” and “near-horizontal” edges by lines using the
Hough transform and a criterion for rejecting slopes neither “nearly vertical” nor
“nearly horizontal”. Calculate from all the identified vertical and horizontal lines a
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Fig. 3.39 Captured (left) and normalized (right) image

rotation angle for the given image such that the mean directions of horizontal and
vertical lines become isothetic (i.e. parallel to the image’s coordinate axes). See
Fig. 3.39 for an example.

This is one (certainly not the simplest) way for normalizing images with respect
to recorded environments.

Exercise 3.6 (Generation of Noisy Line Segments and Hough Transform) Write
a program for generating noisy line segments as illustrated in Fig. 3.40. The pro-
gram needs to support different densities of generated points and different numbers,
lengths, and directions of generated noisy line segments.

Apply your line-detection program (you may decide to write it yourself) based
on the Hough transform for detecting these line segments, including their end-
points. Compare the results with the true data used when generating the line seg-
ments. Increase the noise and discuss the robustness of your line-detection pro-
gram.

Exercise 3.7 (Lane Border Detection) Have a second person in a car (besides the
driver) for recording video data while driving on a well-marked highway. De-
tect the lane borders in all frames of the recorded video of at least 200 frames
length:
1. Detect the edge pixels in each frame using your favourite edge detector.
2. Detect the straight lines in your edge maps. Simply project the detected edges

into the image, starting at the bottom row up to about two thirds into the image,
as done in Figs. 3.31 and 3.33, bottom, right. No need to identify the endpoints
of line segments.

3. Generate a video (e.g. avi or other codec) from your generated labelled lane
borders.

Optionally, you may consider using line tracking for making the detection process
more efficient.
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Fig. 3.40 Noisy line segments

3.5.2 Non-programming Exercises

Exercise 3.8 Consider the following 6-adjacency in images for a pixel location p =
(x, y): In an even row (i.e. y is even) use

Aeven
6 = A4 ∪ {(x + 1, y + 1), (x + 1, y − 1)

}

and in an odd row use

Aodd
6 = A4 ∪ {(x − 1, y + 1), (x − 1, y − 1)

}

Now consider Fig. 3.3, left, and discuss the result. Now consider a chess-board type
of binary input image. What is the result?

Exercise 3.9 K-adjacency requires a test about ownership of the central corner of
a 2 × 2 pixel configuration in some cases. Specify the condition when such a test
becomes necessary. For example, if all four pixels have identical values, no test is
needed; and if three pixels have identical values, no test is needed either.
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Fig. 3.41 Scene of the first
Tour de France in 1903
(copyright expired)

Exercise 3.10 What will happen if you use the local circular order

in the Voss algorithm, rather than the local circular order used for Fig. 3.11?

Exercise 3.11 Discuss similarities and differences for the eccentricity measure and
the shape factor. Use examples of binary shapes in your discussion.

Exercise 3.12 Explain how image gradient information can be used to enhance ac-
curacy and speed of circle detection using the concept of the Hough transform.

Exercise 3.13 Design a Hough transform method for detecting parabolas, for ex-
ample as present in an image as shown in Fig. 3.41.



4Dense Motion Analysis

This chapter discusses the optical flow, a standard representation in computer vision
for dense motion. Every pixel is labelled by a motion vector, indicating the change
in image data from time t to time t + 1. Sparse motion analysis (also known as
tracking) will be a subject in Chap. 9.

4.1 3D Motion and 2D Optical Flow

Assume a sequence of images (or video frames) with time difference δt between two
subsequent images. For example, we have δt = 1/30 s in case of image recording at
30 Hz (hertz), also abbreviated by 30 fps (frames per second). Let I (·, ·, t) denote
the recorded frame at time slot t , having values I (x, y, t) at pixel locations (x, y).

Insert 4.1 (Hertz) H. Hertz (1857–1894) was a German physicist working on
electromagnetism.

This section provides basics for motion analysis in image sequences.

4.1.1 Local Displacement Versus Optical Flow

A 3D point P = (X,Y,Z) is projected at time t · δt into a pixel location p = (x, y)

in the image I (·, ·, t); see Fig. 4.1. The camera has focal length f , a projection
centre O , and looks along the optical axis, represented as the Z-axis, into the 3D
space. This ideal camera model defines the central projection into the xy image
plane; we discuss camera models in more detail later in Chap. 6.

2D Motion Assume a linear 3D movement of P between t · δt and (t + 1) · δt

with velocity (i.e., speed and direction) v = (vX, vY , vZ), defining a 3D motion
v · δt starting at P = (X,Y,Z) and ending at (X + vX · δt, Y + vY · δt,Z + vZ · δt).
R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_4, © Springer-Verlag London 2014
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Fig. 4.1 Projection of velocity v into a displacement d in the image plane

The vector d = (ξ,ψ) is the projection of this 3D motion of point P between the
images I (·, ·, t) and I (·, ·, t + 1). This 2D motion is a geometrically defined local
displacement of the pixel originally at p assuming that we know the 3D motion.

The visible displacement in 2D is the optical flow u = (u, v); it starts at pixel
location p = (x, y) and ends at pixel location p = (x + u,y + v), and it is often not
identical to the actual local displacement. Optical flow calculation aims at estimat-
ing the 2D motion.

Figure 4.2 illustrates the difference between the 2D motion and optical flow.
A dense motion analysis algorithm should turn the upward optical flow u into the
actual 2D motion d.

As another example, a “textured” object, which is fixed (with respect to the Earth,
called static in the following), and a moving light source (e.g. the Sun) generate an
optical flow. Here we have no object motion, thus no 2D motion, but an optical flow.

Vector Fields We like to understand the motion of 3D objects by analysing pro-
jections of many their surface points P = (X,Y,Z). The results should be consistent
with object movements or with the shape of moving rigid objects.

2D motion vectors form a vector field. See Fig. 4.3 for an example, illustrating a
rotating rectangle (around a fixpoint) in a plane parallel to the image plane.

A rigid body simplifies the analysis of 2D motion vector fields, but even then
those vector fields are not easy to read. As a graphical exercise, you may generate
visualizations of 2D motion vector fields for simple 3D shapes such as a cube or
other simple polyhedra. It is difficult to infer the shape of the polyhedron when just
looking at the motion field.
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Fig. 4.2 Left: In case of a rotating barber’s pole we have 2D motion to the right. Middle: A sketch
of the 2D motion (without scaling vectors). Right: A sketch of optical flow, which is ‘somehow’
upward

Fig. 4.3 A vector field showing the rotation of a rectangle. Motion vectors start at the position at
time t and end at the position of the rotated start point at time t + 1

A computed motion vector field is dense if it contains motion vectors at (nearly)
all pixel locations; otherwise, it is sparse.

See Fig. 4.4 for a colour key for visualizing optical flow vectors. The hue of the
shown colour represents the direction of movement, and its saturation the magnitude
of the motion.
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Fig. 4.4 A colour key for
visualizing an optical flow.
The colour represents a
direction of a vector
(assumed to start at the centre
of the disk), and the
saturation corresponds to the
magnitude of the vector, with
White for “no motion” at all

Figure 4.5 shows an example (two input frames and colour-coded results). Mo-
tion colours clearly identify the bicyclist; pixels in this area move distinctively dif-
ferent to other pixels nearby. The result can be improved by adding further algorith-
mic design ideas to the basic Horn–Schunck algorithm.

4.1.2 Aperture Problem and Gradient Flow

By analysing projected images, we observe a limited area of visible motion, defined
by the aperture of the camera, or by the algorithm used for motion analysis. Such an
algorithm checks, in general, only a limited neighbourhood of a pixel for deriving a
conclusion.

The Aperture Problem Recall a situation in a train waiting for departure, looking
out of the window, and believing that your train started to move, but it was actually
the train on the next track that was moving. An aperture problem is caused by a
limited view on a dynamic scene. The aperture problem adds further uncertainties
to motion estimation.

Figure 4.6 illustrates a situation where an algorithm processes an image and
“sees” around the current pixel only the sketched circular area and nothing else.
We may conclude that there is an upward move; the diagonal motion component is
not apparent in the circular window.

For a real-world example, see Fig. 4.7. A car drives around a roundabout, to the
left and away from the camera. We only see a limited aperture. If we even only see
the inner rectangles, then we may conclude an upward shift.

However, possibly there is actually something else happening, for example, the
car may not move by itself, but is carried on a trailer, or, maybe, the images show
some kind of mobile screen driven around on a truck. Increasing the aperture will
help, but it remains that we possibly have incomplete information.
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Fig. 4.5 Top, left, and middle: Two subsequent frames of video sequence bicyclist, taken at
25 fps. Top, right: The colour-coded motion field calculated with the basic Horn–Schunck algo-
rithm. Additionally to the colour key, there are also some sparse (magnified) vectors illustrated as
redundant information, but for better visual interpretation of the flow field. Bottom, left, and mid-
dle: Two subsequent frames of video sequence tennisball. Bottom, right: The colour-coded
motion field calculated with the basic Horn–Schunck algorithm

Fig. 4.6 Seeing only both circular windows at time t (left) and time t + 1 (right), we conclude an
upward shift and miss the shift diagonally towards the upper right corner

Fig. 4.7 Three images taken at times t , t +1, and t +2. For the inner rectangles, we may conclude
an upward translation with a minor rotation, but the three images clearly indicate a motion of this
car to the left
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Fig. 4.8 Illustration of a
gradient flow. The true 2D
motion d goes diagonally up,
but the identified motion is
the projection of d onto the
gradient vector

Gradient Flow Due to the aperture problem, a local method typically detects
a gradient flow, which is the projection of the true 2D motion onto the gradient at
the given pixel. The 2D gradient with respect to coordinates x and y,

∇x,yI = [
Ix(x, y, t), Iy(x, y, t)

]
(4.1)

is orthogonal to the straight image discontinuity (an edge) as illustrated in Fig. 4.8,
assuming that the image intensities decrease from the region on the left to the region
on the right. Recall that Ix and Iy in (4.1) denote the partial derivatives of the frame
I (·, ·, t) with respect to x and y, respectively.

The result may improve (i.e. going more towards the true 2D motion) by taking
the values at adjacent pixels into account. For example, an object corner may support
the calculation of the correct 2D motion.

4.2 The Horn–Schunck Algorithm

We would like to define a relationship between the values in the frames I (·, ·, t) and
I (·, ·, t + 1). A straightforward start is to consider a first-order Taylor expansion of
the function I (·, ·, t + 1).

Insert 4.2 (Taylor and the 1D Taylor Expansion of a Function) B. Taylor
(1685–1731) was an English mathematician. A Taylor expansion is often used
in applied physics or engineering. Recall that the difference quotient

φ(x) − φ(x0)

x − x0
= φ(x0 + δx) − φ(x0)

δx

of a function φ converges (assuming that φ is continuously differentiable) into
the differential quotient

dφ(x0)

dx
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as δx → 0. For small values of δx, we have a first-order Taylor expansion

φ(x0 + δx) = φ(x0) + δx · dφ(x0)

dx
+ e

where the error e equals zero if φ is linear in [x0, x0 + δx]. See the figure
below.

In generalization of this first-order approximation step, the 1D Taylor expan-
sion is as follows:

φ(x0 + δx) =
∑

i=0,1,2,...

1

i! · δxi · diφ(x0)

dix

with 0! = 1, i! = 1 · 2 · 3 · · · · · i for i ≥ 1, di is the ith derivative, provided that
φ has continuous derivatives of all required orders.

This section describes in detail about the pioneering Horn–Schunck algorithm.
The discussed mathematical methodology in this section is still used today as a
guide for designing optical flow algorithms. The section also informs how to evalu-
ate the performance of optical flow algorithms in general.

4.2.1 Preparing for the Algorithm

In our case of a tertiary function I (·, ·, ·), we apply a first-order 3D Taylor expansion
and obtain the following:

I (x + δx, y + δy, t + δt)

= I (x, y, t) + δx · ∂I

∂x
(x, y, t) + δy · ∂I

∂y
(x, y, t) + δt · ∂I

∂t
(x, y, t) + e (4.2)
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where the term e represents all the second- and higher-order derivatives in the Taylor
expansion. As usual in physics and engineering, we assume that e = 0, meaning that
we assume that our function I (·, ·, ·) behaves nearly like a linear function for small
values of δx, δy, and δt .

As the value δt , we take the time difference between the subsequent frames
I (·, ·, t) and I (·, ·, t + 1). With δx and δy we like to model the motion of one pixel
at time slot t into another location at time slot t + 1. Using the intensity constancy
assumption (ICA)

I (x + δx, y + δy, t + δt) = I (x, y, t) (4.3)

before and after the motion, we have that

0 = δx · ∂I

∂x
(x, y, t) + δy · ∂I

∂y
(x, y, t) + δt · ∂I

∂t
(x, y, t) (4.4)

We divide by δt and obtain the following:

0 = δx

δt
· ∂I

∂x
(x, y, t) + δy

δt
· ∂I

∂y
(x, y, t) + ∂I

∂t
(x, y, t) (4.5)

The changes in x- and y-coordinates during δt represent the optical flow u(x, y, t) =
(u(x, y, t), v(x, y, t)) we are interested to calculate:

0 = u(x, y, t) · ∂I

∂x
(x, y, t) + v(x, y, t) · ∂I

∂y
(x, y, t) + ∂I

∂t
(x, y, t) (4.6)

Equation (4.6) is known as the optical flow equation or the Horn–Schunck (HS)
Constraint.

Insert 4.3 (Origin of the Horn–Schunck Algorithm) The algorithm was pub-
lished in [B.K.P. Horn and B.G. Schunck. Determining optic flow. Artificial Intelligence,

vol. 17, pp. 185–203, 1981] as a pioneering work for estimating an optical flow.

The derivation of the final algorithm comes with some lengthy formulas and
calculations. You will be surprised how simple the final result looks and how easy
the algorithm can be implemented if not trying to add any additional optimization
strategies. If you are not curious about how the algorithm was derived, then you may
go straight to its presentation in Sect. 4.2.2.

Observation 4.1 Equation (4.6) was derived by considering small steps only and
the intensity constancy assumption. Logically, these assumptions define the con-
straints for the final algorithm.
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The uv Velocity Space We express (4.6) in short form as follows by ignoring the
coordinates (x, y, t):

−It = u · Ix + v · Iy = u · ∇x,yI (4.7)

Here, notation Ix and Iy is short for the partial derivatives (as used above) with
respect to x- or y-coordinates, respectively, and It for the one with respect to t . The
scalar u ·∇x,yI is the dot product of the optical flow vector times the gradient vector
(i.e. partial derivatives only with respect to x and y, not for t).

Insert 4.4 (Inner or Dot Vector Product) Consider two vectors a = (a1, a2,

. . . , an)
 and b = (b1, b2, . . . , bn)

 in the Euclidean space Rn. The dot prod-
uct, also called the inner product, of both vectors is defined as

a · b = a1b1 + a2b2 + · · · + anbn

It satisfies the property

a · b = ‖a‖2 · ‖b‖2 · cosα

where ‖a‖2 and ‖b‖2 are the magnitudes of both vectors, for example

‖a‖2 =
√

a2
1 + a2

2 + · · · + a2
n

and α is the angle between both vectors, with 0 ≤ α ≤ π .

Ix , Iy and It play the role of parameters in (4.7). They are estimated in the given
frames by discrete approximations of derivatives (e.g., Sobel values Sx and Sy for
Ix and Iy ). Optic flow components u and v are the unknowns in (4.7). Thus, this
equation defines a straight line in the uv velocity space. See Fig. 4.9.

By (4.7) we know that the optical flow (u, v) for the considered pixel (x, y, t) is
a point on this straight line, but we do not know yet which one.

Optical Flow Calculation as a Labelling Problem Low-level computer vision
is often characterized by the task to assign to each pixel a label l out of a set of
possible labels L. For example, the set L can be a discrete set of identifiers of image
segments (see Chap. 5) or a discrete set of disparity values for stereo matching (see
Chap. 8). Here we have to deal with labels (u, v) ∈R

2 in a 2D continuous space.
Labels are assigned to all the pixels in Ω by a labelling function

f : Ω → L (4.8)

Solving a labelling problem means to identify a labelling f that approximates some-
how a given optimum.
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Fig. 4.9 The straight line
−It = u · Ix + v · Iy in the uv

velocity space. The point Q is
discussed in Example 4.1

First Constraint Let f be a labelling function that assigns a label (u, v) to each
pixel p ∈ Ω in an image I (·, ·, t). Due to (4.7), we are interested in a solution f that
minimizes the data error, also called the data energy,

Edata(f ) =
∑

Ω

[u · Ix + v · Iy + It ]2 (4.9)

with u · Ix + v · Iy + It = 0 in the ideal case for pixels p ∈ Ω in the image I (·, ·, t).
Second Constraint—Spatial Motion Constancy Additionally to (4.7), we for-
mulate a second constraint for solutions (u, v), hoping that this leads to a unique
solution on the straight line −It = u · Ix + v · Iy . There are many different options
for formulating such a second constraint.

We assume motion constancy within pixel neighbourhoods at time t , which
means that adjacent pixels in I (·, ·, t) have about the same optical flow vectors. For
a function that is nearly constant in local neighbourhoods, its first derivatives will
be close to zero. Thus, motion constancy can be formulated as a smoothness con-
straint that the sum of the squares of first-order derivatives needs to be minimized
for all pixels p ∈ Ω in I (·, ·, t). Again, we keep it short without writing arguments
(x, y, t).

Let f be the labelling function again that assigns a label (u, v) to each pixel
p ∈ Ω in I (·, ·, t). The smoothness error, also called the smoothness energy, is
defined as

Esmooth(f ) =
∑

Ω

(
∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2

(4.10)

The Optimization Problem We like to calculate a labelling function f that min-
imizes the combined error or energy

Etotal(f ) = Edata(f ) + λ · Esmooth(f ) (4.11)
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where λ > 0 is a weight. In general, we take λ < 1 for avoiding strong smoothing.
The selected parameter will depend on application and relevant image data.

We search for an optimum f in the set of all possible labellings, which defines a
total variation (TV). The used smoothing error term applies squared penalties in the
L2 sense. Altogether, this defines a TVL2 optimization problem. A value of λ > 1
would give smoothness a higher weight than the Horn–Schunck constraint (i.e., the
data term), and this is not recommended. A value such as λ = 0.1 is often a good
initial guess, allowing smoothness a relatively small impact only.

Insert 4.5 (Least-Square Error Optimization) Least-square error (LSE) opti-
mization follows the following standard scheme:
1. Define an error or energy function.
2. Calculate the derivatives of this function with respect to all unknown pa-

rameters.
3. Set the derivatives equal to zero and solve this equation system with respect

to the unknowns. The result defines a stationary point, which can only be
a local minimum, a saddle point, or a local maximum.

We perform LSE optimization. The error function has been defined in (4.11). The
only possible stationary point is a minimum of the error function.

The unknowns are all the u and v values at all Ncols × Nrows pixel positions; that
means we have to specify 2NcolsNrows partial derivatives of the LSE function.

For a formal simplification, we exclude t from the following formulas. The
frames I (·, ·, t), with adjacent frames I (·, ·, t − 1) and I (·, ·, t + 1), are fixed for
the following considerations. Instead of writing I (x, y, t), we simply use I (x, y) in
the following.

For formal simplicity, we assume that all pixels have all their four 4-adjacent
pixels also in the image. We approximate the derivatives in the smoothness-error
term by simple asymmetric differences and have

Esmooth(f ) =
∑

x,y

(ux+1,y − uxy)
2 + (ux,y+1 − uxy)

2

+ (vx+1,y − vxy)
2 + (vx,y+1 − vxy)

2 (4.12)

Asymmetric differences are actually a biased choice, and symmetric differences
should perform better (such as ux+1,y − ux−1,y and so forth), but we stay with
presenting the original Horn–Schunck algorithm.

We have the following partial derivatives of Edata(u, v):

∂Edata

∂uxy

(u, v) = 2
[
Ix(x, y)uxy + Iy(x, y)vxy + It (x, y)

]
Ix(x, y) (4.13)
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and

∂Edata

∂vxy

(u, v) = 2
[
Ix(x, y)uxy + Iy(x, y)vxy + It (x, y)

]
Iy(x, y) (4.14)

The partial derivatives of Esmooth(u, v) are equal to

∂Esmooth

∂uxy

(u, v) = −2
[
(ux+1,y − uxy) + (ux,y+1 − uxy)

]

+ 2
[
(uxy − ux−1,y) + (uxy − ux,y−1)

]

= 2
[
(uxy − ux+1,y) + (uxy − ux,y+1)

+ (uxy − ux−1,y) + (uxy − ux,y−1)
]

(4.15)

These are the only terms containing the unknown uxy . We simplify this expression
and obtain

1

4
· ∂Esmooth

∂uxy

(u, v) = 2

[
uxy −

[
1

4
(ui+1,j + ux,y+1 + ui−1,j + ux,y−1)

]]
(4.16)

Using ūxy for the mean value of 4-adjacent pixels, we have that

1

4

∂Esmooth

∂uxy

(u, v) = 2[uxy − ūxy] (4.17)

1

4

∂Esmooth

∂vxy

(u, v) = 2[vxy − v̄xy] (4.18)

Equation (4.18) follows analogously to the provided calculations.
Altogether, using λ instead of λ/4, after setting derivatives equal to zero, we

arrive at the equation system

0 = λ[uxy − ūxy]
+ [

Ix(x, y)uxy + Iy(x, y)vxy + It (x, y)
]
Ix(x, y) (4.19)

0 = λ[vxy − v̄xy]
+ [

Ix(x, y)uxy + Iy(x, y)vxy + It (x, y)
]
Iy(x, y) (4.20)

This is a discrete scheme for minimizing equation (4.11). This is a linear equational
system for 2NcolsNrows unknowns uxy and vxy . The values of Ix , Iy , and It are
estimated based on given image data.

Iterative Solution Scheme This equation system also contains the means ūxy and
v̄xy , which are calculated based on the values of those unknowns. The dependency
between the unknowns uxy and vxy and means ūxy and v̄xy within those equations
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is actually of benefit. This allows us to define an iterative scheme (an example of
a Jacobi method; for C.G.J. Jacobi, see Insert 5.9), starting with some initial val-
ues:
1. Initialization step: We initialize the values u0

xy and v0
xy .

2. Iteration Step 0: Calculate the means ū0
xy and v̄0

xy using the initial values and

calculate the values u1
xy and v1

xy .
3. Iteration Step n: Use the values un

xy and vn
xy to compute the means ūn

xy and v̄n
xy ;

use those data to calculate the values un+1
xy and vn+1

xy .
Proceed for n ≥ 1 until a stop criterion is satisfied.

We skip the details of solving the equation system defined by (4.19) and (4.20).
This is a standard linear algebra. The solution is as follows:

un+1
xy = ūn

xy − Ix(x, y) · Ix(x, y)ūn
xy + Iy(x, y)v̄n

xy + It (x, y)

λ2 + I 2
x (x, y) + I 2

y (x, y)
(4.21)

vn+1
xy = v̄n

xy − Iy(x, y) · Ix(x, y)ūn
xy + Iy(x, y)v̄n

xy + It (x, y)

λ2 + I 2
x (x, y) + I 2

y (x, y)
(4.22)

Now we are ready to discuss the algorithm.

4.2.2 The Algorithm

The given solutions and the discussed iteration scheme allows us to calculate the
values un

xy and vn
xy at iteration step n for all pixel positions (x, y) in the image

I (·, ·, t). At least one adjacent image I (·, ·, t − 1) or I (·, ·, t + 1) is needed for
estimating the It values.

Let

α(x, y,n) = Ix(x, y)ūn
xy + Iy(x, y)v̄n

xy + It (x, y)

λ2 + I 2
x (x, y) + I 2

y (x, y)
(4.23)

The algorithm is shown in Fig. 4.10. ū and v̄ denote the means of 4-adjacent pixels.
We use “odd” and “even” arrays for u- and v-values: at the beginning (iteration step
n = 0) we initialize in the even arrays. In iteration n = 1 we calculate the values in
the odd arrays, and so forth, always in alternation. The threshold T is for the stop
criterion, the maximum number of iterations.

Initialization with value 0 at all positions of uxy and vxy was suggested in the
original Horn–Schunck algorithm. This allows us to have non-zero values u1

xy and

v1
xy , as long as Ix(x, y) · It (x, y) and Iy(x, y) · It (x, y) are not equal to zero at all

pixel locations. (Of course, in such a case we would not have any optical flow; the
initialization 0 would be correct).

The original Horn–Schunck algorithm used the following asymmetric approxi-
mations for Ix , Iy , and It :
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1: for y = 1 to Nrows do
2: for x = 1 to Ncols do
3: Compute Ix(x, y), Iy(x, y), and It (x, y) ;
4: Initialize u(x, y) and v(x, y) (in even arrays);
5: end for
6: end for
7: Select weight factor λ; select T > 1; set n = 1;
8: while n ≤ T do
9: for y = 1 to Nrows do

10: for x = 1 to Ncols {in alternation for even or odd arrays} do
11: Compute α(x, y,n);
12: Compute u(x, y) = ū − α(x, y,n) · Ix(x, y, t) ;
13: Compute v(x, y) = v̄ − α(x, y,n) · Iy(x, y, t) ;
14: end for
15: end for
16: n := n + 1;
17: end while

Fig. 4.10 Horn–Schunck algorithm

Ix(x, y, t) = 1

4

[
I (x + 1, y, t) + I (x + 1, y, t + 1)

+ I (x + 1, y + 1, t) + I (x + 1, y + 1, t + 1)
]

− 1

4

[
I (x, y, t) + I (x, y, t + 1) + I (x, y + 1, t) + I (x, y + 1, t + 1)

]

(4.24)

Iy(x, y, t) = 1

4

[
I (x, y + 1, t) + I (x, y + 1, t + 1)

+ I (x + 1, y + 1, t) + I (x + 1, y + 1, t + 1)
]

− 1

4

[
I (x, y, t) + I (x, y, t + 1) + I (x + 1, y, t) + I (x + 1, y, t + 1)

]

(4.25)

It (x, y, t) = 1

4

[
I (x, y, t + 1) + I (x, y + 1, t + 1)

+ I (x + 1, y, t + 1) + I (x + 1, y + 1, t + 1)
]

− 1

4

[
I (x, y, t) + I (x, y + 1, t) + I (x + 1, y, t) + I (x + 1, y + 1, t)

]

(4.26)

Figure 4.11 illustrates these local approximations by the corresponding convolution
masks. Note that showing those masks is much more efficient for understanding the
used approximations Ix , Iy , and It .

The algorithm requires only a pair of subsequent images as input. There are many
alternatives for modifying this algorithm. Figure 4.12 shows the results for the orig-
inal Horn–Schunck algorithm.
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Fig. 4.11 Masks for approximations of partial derivatives Ix , Iy , and It (left to right) as suggested
by Horn and Schunck

Fig. 4.12 Top: Two subsequent frames of the “Hamburg taxi sequence”, published in 1983 for
testing optical flow algorithms. Bottom: Visualization of the results of the Horn–Schunck algo-
rithm. Bottom, left: Use of a colour key in 1995, Otago University, Dunedin, for representing
direction and magnitude of calculated optical flow vectors (different to the colour key shown in
Fig. 4.4: Black is here for “no motion”). Bottom, right: Illustration of flow vectors (known as a
needle map) in a sub-sampled window of the whole image

Example 4.1 (Gradient Flow) The unknown optical flow u = [u,v] at pixel
p = (x, y) in the image I (·, ·, t), relative to the image I (·, ·, t + 1), can be
any vector starting at the origin O in Fig. 4.9 and ending at a point some-
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where on that straight line. This uncertainty is obvious by the aperture prob-
lem.

For initialization, you may select a point on the straight line, which is defined
by the optical flow equation in the uv velocity space, instead of simply taking 0 for
initialization. For example, you may choose the point that is closest to the origin
as Q; see Fig. 4.9.

The straight line It = u · Ix + v · Iy intersects the u- and v-axes at the points
(−It /Ix,0) and (0,−It /Iy), respectively. Thus, the vector

[−It /Ix,0] − [0,−It /Iy] = [−It /Ix, It /Iy] (4.27)

is parallel to this straight line.
Let a be the vector from O to Q; we have the dot product (for the dot product,

see Insert 4.4 and note that cos π
2 = 0)

a · [−It /Ix, It /Iy] = 0 (4.28)

From this equation and a = [ax, ay] it follows that

ax · (−It /Ix) + ay · (It /Iy) = 0 (4.29)

and

It (ax · Iy) = It (ay · Ix) (4.30)

Assuming a change (i.e., It �= 0) at the considered pixel location p = (x, y), it fol-
lows that axIy = ayIx and

a = c · g◦ (4.31)

for some constant c �= 0, where g◦ is the unit vector of the gradient g =
[Ix, Iy]. Thus, a is a multiple of the gradient g, as indicated in Fig. 4.9.1

Insert 4.6 (Unit Vector) Consider a vector a = [a1, a2, . . . , an]. The mag-

nitude of the vector equals ‖a‖2 =
√

a2
1 + a2

2 + · · · + a2
n. The unit vector

a◦ = a
‖a‖2

is of magnitude one and specifies the direction of a vector a. The product
a◦ · a◦ equals ‖a◦‖2 · ‖a◦‖2 · cos 0 = 1.

1We could skip (4.28) to (4.30) as the vector a is orthogonal to the line by definition: it joins
the origin with its orthogonal projection on the line (the property of the nearest point). Being
orthogonal to the line, it must be parallel to the gradient vector.



4.3 Lucas–Kanade Algorithm 151

The vector a satisfies the optical flow equation u · g = −It . It follows that

c · g◦ · g = c · ‖g‖2 = −It (4.32)

Thus, we have c and altogether

a = − It

‖g‖2
g◦ (4.33)

We can use the point Q, as defined by vector a, for initializing the u and v arrays
prior to the iteration. That means we start with the gradient flow, as represented
by a. The algorithm may move away from the gradient flow in subsequent iterations
due to the influence of values in the neighbourhood of the considered pixel location.

For approximating Ix , Iy , and It , you may also try a very simple (e.g. two-pixel)
approximation. The algorithm is robust—but results are erroneous, often mainly
due to the intensity constancy assumption (ICA), but there is also a questionable
impact of the smoothness constraint (e.g. at motion discontinuities in the considered
frames) and, of course, the aperture problem. The number T of iterations can be kept
fairly small (say, T = 7) because there are typically no real improvements later on.

A pyramidal Horn–Schunck algorithm uses image pyramids as discussed in
Sect. 2.2.2. Processing starts at a selected level (of lower resolution) images. The
obtained results are used for initializing optical flow values at a lower level (of
higher resolution). This can be repeated until the full resolution level of the original
frames is reached.

4.3 Lucas–Kanade Algorithm

The optical flow equation specifies a straight line u · Ix + v · Iy + It = 0 in the
uv velocity space for each pixel p ∈ Ω . Consider all straight lines defined by all
pixels in a local neighbourhood. Assuming that they are not parallel, but defined by
about the same 2D motion, they intersect somehow close to the true 2D motion. See
Fig. 4.13.

Insert 4.7 (Origin of the Lucas–Kanade Optical Flow algorithm) The algo-
rithm was published in [B. D. Lucas and T. Kanade. An iterative image registration

technique with an application to stereo vision. Proc. Imaging Understanding Workshop,

pp. 121–130, 1981], shortly after the Horn–Schunck algorithm.

This section describes a pioneering optical flow algorithm for which the under-
lying mathematics is much easier to explain than for the Horn–Schunck algorithm.
It serves here as an illustration of an alternative way for detecting motion.
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Fig. 4.13 Taking more and more pixels in a local neighbourhood into account by analysing inter-
section points of lines defined by the optical flow equations for those pixels

4.3.1 Linear Least-Squares Solution

The Lucas–Kanade optical flow algorithm applies a linear least-squares method for
analysing the intersections of more than two straight lines.

Insert 4.8 (Method of Least Squares) This method applies in cases of overde-
termined equational systems. The task is to find a solution that minimizes the
sum of squared errors (called residuals) caused by this solution for each of
the equations.

For example, we only have n unknowns but m > n linear equations for
those; in this case we use a linear least-squares method.

We start with having only two straight lines (i.e. pixel location p1 and one ad-
jacent location p2). Assume that 2D motion at both adjacent pixels p1 and p2 is
identical and equals u. Also assume that we have two different unit gradients g◦

1 and
g◦

2 at those two pixels.
Consider the optical flow equation u · g◦ = − It‖g‖2

at both pixels (in the formu-
lation as introduced in Example 4.1). We have two equations in two unknowns u

and v for u = (u, v):

u · g◦
1(p1) = − It

‖g‖2
(p1) (4.34)
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Fig. 4.14 Simple case when
considering only two pixels

u · g◦
2(p2) = − It

‖g‖2
(p2) (4.35)

Using bi on the right-hand side, this can also be written in the form of a linear
equation system with two unknowns u and v:

ugx1 + vgy1 = b1 (4.36)

ugx2 + vgy2 = b2 (4.37)

for unit vectors g◦
1 = [gx1, gy1] and g◦

2 = [gx2, gy2]. We write these equations in
matrix form:

[
gx1 gy1
gx2 gy2

][
u

v

]
=
[
b1
b2

]
(4.38)

We can solve this system if the matrix on the left is invertible (i.e. non-singular):

[
u

v

]
=
[
gx1 gy1
gx2 gy2

]−1

·
[
b1
b2

]
(4.39)

This is the case where we do not have an overdetermined equational system. We
have the intersection of two lines defined by the optical flow equations for p1 and
p2; see Fig. 4.14.

There are errors involved when estimating Ix , Iy , and It , and image data are
noisy anyway, so it is best to solve for u in the least-squares sense by considering
a neighbourhood of k > 2 pixels, thus having an overdetermined equation system.
The neighbourhood should be not too large because we assume that all pixels in this
neighbourhood have the same 2D motion u. This leads to the overdetermined linear
equation system

⎡

⎢⎢⎢
⎣

gx1 gy1
gx2 gy2
...

...

gxk gyk

⎤

⎥⎥⎥
⎦

[
u

v

]
=

⎡

⎢⎢⎢
⎣

b1
b2
...

bk

⎤

⎥⎥⎥
⎦

(4.40)
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which we write as

G︸︷︷︸
k×2

u︸︷︷︸
2×1

= B︸︷︷︸
k×1

(4.41)

This system can be solved for k ≥ 2 in the least-square error sense as follows. First,
we make the system square:

GGu = GB (4.42)

Second, we solve it in the least-square error sense:

u = (
GG

)−1GB (4.43)

Done. GG is a 2 × 2 matrix, while GB is a 2 × 1 matrix. For example, if

GG =
[
a b

c d

]
(4.44)

then
(
GG

)−1 = 1

ad − bc

[
d −b

−c a

]
(4.45)

The rest is simple matrix multiplication.

4.3.2 Original Algorithm and Algorithm with Weights

Compared to the Horn–Schunck algorithm, the mathematics here was pretty simple.
We discuss the original algorithm and a variant of it.

Original Lucas–Kanade Optical Flow Algorithm The basic algorithm is as fol-
lows:
1. Decide for a local neighbourhood of k pixels and apply this uniformly in each

frame.
2. At frame t , estimate Ix , Iy , and It .
3. For each pixel location p in Frame t , obtain the equation system (4.40) and solve

it in the least-squares sense as defined in (4.43).
It might be of benefit to estimate the used derivatives on smoothed images, for

example with a Gaussian filter with a small standard deviation such as σ = 1.5.

Weights for Contributing Pixels We weight all the k contributing pixels by pos-
itive weights wi for i = 1, . . . , k. In general, the current pixel has the maximum
weight, and all the adjacent pixels (contributing to those k pixels) have smaller
weights. Let W = diag[w1, . . . ,wk] be the k × k diagonal matrix of those weights.
A diagonal matrix satisfies

WW = WW = W2 (4.46)
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The task is now to solve the equation

WGu = WB (4.47)

instead of (4.41) before; the right-hand sides need to be weighted in the same way
as the left-hand sides. The solution is derived in steps of matrix manipulations as
follows:

(WG)WGu = (WG)WB (4.48)

GWWGu = GWWB (4.49)

GWWGu = GWWB (4.50)

GW2Gu = GW2B (4.51)

and thus

u = [
GW2G

]−1GW2B (4.52)

The meaning of those transforms is that we again have a 2 × 2 matrix GW2G, for
which we can use the inverse for calculating u at the current pixel.

Compared to the original algorithm, we only need to change Step 3 into the
following:

3. For each pixel location p in Frame t , obtain the equation system (4.47) and
solve it in the least-squares sense as defined in (4.52).

Figure 4.15 illustrates results for the original Lucas–Kanade algorithm for a 5×5
neighbourhood. When solving by using (4.43), we only accept solutions for cases
where the eigenvalues (see Insert 2.9) of the matrix GG are greater than a chosen
threshold. By doing so we filter out “noisy” results.

The matrix GT G is a 2×2 (symmetric positive definite) matrix; it has two eigen-
values λ1 and λ2. Let 0 ≤ λ1 ≤ λ2. Assume a threshold T > 0. We “accept” the
solution provided by (4.43) if λ1 ≥ T . This leads to a sparse optical flow field as
illustrated in Fig. 4.15. Note that those few shown vectors appear to be close to the
true displacement in general.

4.4 The BBPW Algorithm

The BBPW algorithm extends the Horn–Schunck algorithm in an attempt to improve
the results, especially with regards to large displacements, and also attempts to over-
come limitations defined by ICA. Furthermore, the use of squares in optimization
allows outliers to have a significant impact; thus, an L1 optimization approach is
used (approximately) instead of the L2 optimization approach of the Horn–Schunck
algorithm.
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Fig. 4.15 We refer to the same two subsequent frames of a recorded image sequence as shown
in Fig. 4.5. The optical flow calculated with original Lucas–Kanade algorithm; k = 25 for a 5 × 5
neighbourhood

Insert 4.9 (Origin of the BBPW Algorithm) This algorithm was published in
[T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation

based on a theory for warping. In Proc. European Conf. Computer Vision, vol. 4, pp. 25–36,

2004].

This section describes the assumptions made, explains the energy function used,
and provides a brief information about the basic theory used in the algorithm; a
detailed presentation of this algorithm is beyond the scope of this textbook. The
section illustrates the progress in the field of optical flow algorithms since the year
when the Horn–Schunck and Lucas–Kanade algorithms have been published.

4.4.1 Used Assumptions and Energy Function

The intensity constancy assumption (ICA) is in the considered context formally rep-
resented by I (x, y, t) = I (x + u,y + v, t + 1), with u and v being the translations
in x- and y-directions, respectively, during a δt time interval. Linearized, this be-
came the Horn–Schunck constraint Ixu + Iyu + It = 0. Intensity constancy is not
true for outdoor scenarios; as a result, Horn–Schunck or Lucas–Kanade algorithms
often work poorly for pixel changes over, say, five to ten pixels (i.e. for 2D motion
vectors that are not “short” in the sense of the only used linear term of the Taylor
expansion).
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Gradient Constancy The assumption of constancy of intensity gradients over dis-
placements (GCA) is represented as

∇x,yI (x, y, t) = ∇x,yI (x + u,y + v, t + 1) (4.53)

where ∇x,y is limited, as before, to the derivatives in the x- and y-directions only; it
does not include the temporal derivative. As already discussed in Chap. 1, gradient
information is considered to be fairly robust against intensity changes.

Smoothness Assumption Using only ICA and GCA does not provide sufficient
information for having optical flow uniquely identified; we need to involve adjacent
pixels and also to introduce some consistency into the calculated flow vector field.

Care needs to be taken at object boundaries. Motion discontinuities should not
be fully excluded; piecewise smoothing appears as an option for avoiding the flow
vectors from outside an object affect the flow field within the object, and vice versa.

A first Draft of an Energy Formula In the following draft of the error or energy
function we still follow the ICA (but without going to the Horn–Schunck constraint,
thus also avoiding the approximation in the Taylor expansion), but combined with
the GCA. We consider pixel locations (x, y, t) in the frame I (·, ·, t), optical flow
vectors w = (u, v,1), which also contain the third component for going from an
image plane at time t to the plane at time t +1, and use the gradient ∇ = (∂x, ∂y, ∂t )

in the 3D space. Equation (4.9) turns now into

Edata(f ) =
∑

Ω

([
I (x + u,y + v, t + 1) − I (x, y, t)

]2

+ λ1 · [∇x,yI (x + u,y + v, t + 1) − ∇x,yI (x, y, t)
]2) (4.54)

where λ1 > 0 is some weight to be specified. For the smoothness term, we basically
stay with (4.10), but now for spatio-temporal gradients in the 3D space and in the
formulation

Esmooth(f ) =
∑

Ω

[‖∇u‖2
2 + ‖∇v‖2

2

]
(4.55)

Altogether, the task would be to identify a labelling function f that assigns optical
flow u and v to each pixel in I (·, ·, t) such that the sum

Etotal(f ) = Edata(f ) + λ2 · Esmooth(f ) (4.56)

is minimized for some weight λ2 > 0. As in (4.11), (4.56) still uses quadratic pe-
nalizers in the L2 sense, thus defining a TVL2 optimization problem. Outliers are
given too much weight in this scheme for estimating optic flow.

Regularized L1 Total Variation A move away from L2-optimization towards
L1-optimization is by using the function

Ψ
(
s2)=

√
s2 + ε ≈ |s| (4.57)



158 4 Dense Motion Analysis

rather than |s| itself in the energy function. This leads to a more robust energy func-
tion where we still may consider continuous derivatives at s = 0, even for a small
positive constant ε. The constant ε can be, for example, equal 10−6 (i.e., a very
small value). There are no continuous derivatives for |s| at s = 0, but we need those
for applying an error-minimization scheme.

The function Ψ (s2) = √
s2 + ε, an increasing concave function, is applied over

the error-function terms in (4.54) and (4.55) to reduce the influence of outliers. This
defines a regularized total-variation term in the L1 sense. We obtain the energy
terms

Edata(f ) =
∑

Ω

Ψ
([

I (x + u,y + v, t + 1) − I (x, y, t)
]2

+ λ1 · [∇x,yI (x + u,y + v, t + 1) − ∇x,yI (x, y, t)
]2) (4.58)

and

Esmooth(f ) =
∑

Ω

Ψ
(
(∇u)2 + (∇v)2) (4.59)

The way for obtaining the total energy remains as specified by (4.56).

4.4.2 Outline of the Algorithm

We have to find a labelling f that minimizes the error function Etotal as defined
in (4.56), using the error terms of (4.58) and (4.59).

Minimizing a nonlinear function such as Etotal is a difficult problem. When
searching for the global minimum, a minimization algorithm could become trapped
in a local minimum.

Insert 4.10 (Lagrange and the Euler–Lagrange Equations) J.-L. Lagrange
(1736–1813) was an Italian mathematician. Euler (see Insert 1.3), and La-
grange developed a general way for finding a function f that minimizes a
given energy functional E(f ). Assuming that f is not just a unary function,
the provided solution is a system of differential equations.

Euler–Lagrange Equations Let Ψ ′ be the derivative of Ψ with respect to its only
argument. The divergence div denotes the sum of derivatives, in our case below the
sum of three partial derivatives, being the components of

∇u =
[

∂u

∂x
,
∂u

∂y
,
∂u

∂t

]
(4.60)
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A minimizing labelling function f for the functional Etotal(f ) has to satisfy the fol-
lowing Euler–Lagrange equations. We do not provide details about the derivation of
those equations using total-variation calculus and just state the resulting equations:

Ψ ′(I 2
t + λ1

(
I 2
xt + I 2

yt

)) · (IxIt + λ1(IxxIxt + IxyIyt )
)

− λ2 · div
(
Ψ ′(‖∇u‖2 + ‖∇v‖2)∇u

)= 0 (4.61)

Ψ ′(I 2
t + λ1

(
I 2
xt + I 2

yt

)) · (IyIt + λ1(IyyIyt + IxyIxt )
)

− λ2 · div
(
Ψ ′(‖∇u‖2 + ‖∇v‖2)∇v

)= 0 (4.62)

As before, Ix , Iy , and It are the derivatives of I (·, ·, t) with respect to pixel coordi-
nates or time, and Ixx , Ixy , and so forth are 2nd-order derivatives. All those deriva-
tives can be considered to be constants, to be calculated based on approximations in
the sequence of frames. Thus, both equations are of the form

c1 − λ2 · div
(
Ψ ′(‖∇u‖2 + ‖∇v‖2)∇u

)= 0 (4.63)

c2 − λ2 · div
(
Ψ ′(‖∇u‖2 + ‖∇v‖2)∇v

)= 0 (4.64)

The solution of these equations for u and v at any pixel p ∈ Ω can be supported by
using a pyramidal approach.

Pyramidal Algorithm It is efficient to use down-sampled copies of the processed
frames in an image pyramid (see Sect. 2.2.2) for estimating flow vectors first and
then use the results in higher-resolution copies for further refinement. This also
supports the identification of long flow vectors. See Fig. 4.16 for an example for a
pyramidal implementation of the BBPW algorithm. We use the same colour key as
introduced by Fig. 4.4.

4.5 Performance Evaluation of Optical Flow Results

The Horn–Schunck algorithm was a pioneering proposal for calculating optical
flow; many other algorithms have been designed till today. Motion analysis is still a
very challenging subject in computer vision research.

This section informs briefly about (comparative) performance evaluation tech-
niques for optical flows.

4.5.1 Test Strategies

The Horn–Schunck algorithm is in general moving away from a gradient flow. The
following simple example (which allows even manual verification) shows that this
is not happening if pixel neighbourhoods do not allow computation of a correct
motion.
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Fig. 4.16 Visualization of calculated optical flow using a pyramidal BBPW algorithm. Top: For
frames shown in Fig. 4.5. Bottom: For a frame in the sequence queenStreet

Example 4.2 (A Simple Input Example) Assume a 16 × 16 image I1 as shown in
Fig. 4.17, with Gmax = 7. It contains a vertical linear edge; the gradient at edge
pixels points to the left.

The image I2 is generated by one of the three motions sketched on the left: (A) is
a one-pixel shift (0,1) to the right, (B) is a diagonal shift (1,1), and (C) a one-pixel
shift (−1,0) upward. For simplicity, we assume that additional values (i.e. which
are “moving in”) on the left are zero and at the bottom identical to the given column
values.

This simple example allows you to calculate manually values as produced by the
Horn–Schunck algorithm, say in the first three iterations only [(4.22) and (4.22)],
using zero as initialization, and simple two-pixel approximation schemes for Ix , Iy ,
and It .

Performance Evaluation of Optic Flow Algorithms For evaluating an optical
flow algorithm on real-world image sequences, there are different options, such as
the following:
1. Assuming that we have high-speed image sequence recording (say, with more

than 100 Hz), it might be possible to use alternating frames for prediction-error
analysis: estimate optical flow for Frames t and t +2, calculate a virtual image for
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Fig. 4.17 A simple input for a manual experience of the Horn–Schunck iteration

t + 1 by interpolating along the calculated flow vectors, and compare the virtual
image (e.g. use normalized cross-correlation; see insert) with Frame t + 1.

2. If there is ground truth available about the actual 2D motion (e.g. such as on
the website vision.middlebury.edu/ at Middlebury College for short sequences,
or in Set 2 on EISATS for sequences of 100 frames or more), the evaluation of
optical flow results may be based on error measures (see below) by comparing
true (well, modulo measurement errors when generating the ground truth) and
estimated vectors.

3. There is also the option to compare results of multiple methods, for understand-
ing which methods generate similar results and which methods differ in their
results.

4. A method can be evaluated on real-world data by introducing incrementally dif-
ferent degrees of various kinds of noise into the input data for understanding
robustness in results. Noise might be, for example, intensity variations, Gaussian
noise, or blurring.

5. Known scene geometry and approximately known camera motion can be used
to compare the results with expected flow fields. For example, the camera may
move steadily towards a wall.

Insert 4.11 (Normalized Cross-Correlation) Assume two images I and J of
identical size. The normalized cross-correlation (NCC) compares both images
and provides one scalar response:

http://vision.middlebury.edu/
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MNCC(I, J ) = 1

|Ω|
∑

(x,y)∈Ω

[I (x, y) − μI ][J (x, y) − μJ ]
σIσJ

μI and μJ denote the means, and σI and σJ the standard deviations of I

and J , respectively. The larger MNCC(I, J ), the more similar both images
are.

Due to normalizing with respect to mean and variance, the images I and J

may differ in these two values and can be still very similar. This is in particular
of interest when comparing images that do not follow the ICA, which can
happen for two subsequently recorded frames in an image sequence.

The NCC can also be used to compare a small image (the template) with
image windows of the same size of the template in a larger image. OpenCV
provides several methods for this kind of template matching, also including
variants of normalized cross-correlation.

4.5.2 Error Measures for Available Ground Truth

Ground truth for motion analysis is difficult to obtain, especially for real-world se-
quences. Synthesized sequences are an alternative option. Physics-based image ren-
dering can lead to “fairly realistic” synthetic image sequences, even with an option
to study behaviour of optical flow algorithms for varying parameters (something
that cannot be done for recorded real-world sequences).

Insert 4.12 (Ground Truth) Images recorded in an airplane are often used
to estimate distances on the ground, or even for 3D reconstruction of whole
landscapes or cities. For evaluating results, it was common practice to iden-
tify landmarks on the ground, such as corners of buildings, and to measure
distances or positions of those landmarks. This was the ground truth, to be
compared with the values calculated based on the images recorded in an air-
plane.

The term is now in general use for denoting measured data, considered to
be fairly accurate, thus useful for evaluating algorithms supposed to provide
the same data.

Figure 4.18 illustrates provided ground truth for a synthetic image sequence (of
100 frames) and results of a pyramidal Horn–Schunck algorithm. Additionally to
the used colour key, we also show sparse vectors in the ground-truth image and
result image. This is redundant information (and similar to a needle map, as shown
in Fig. 4.12) but helps a viewer to understand occurring motions. Also, the coloured
frame around the visualized flow vectors shows colour values corresponding to all
the possible directions.
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Fig. 4.18 Top: Two input images (Frame 1, Set2Seq1, and Frame 2 from the first sequence of
Set 2 of EISATS). Bottom, left: Ground truth as provided for this sequence, using a colour key for
visualizing local displacements. Bottom, right: Result of a pyramidal Horn–Schunck algorithm

Error Measures in the Presence of Ground Truth We have the calculated flow
u = (u, v) and flow u� = (u�, v�) provided as a ground truth. The L2 endpoint error

Eep2
(
u,u�

)=
√(

u − u�
)2 + (

v − v�
)2

or the L1 endpoint error

Eep1
(
u,u�

)= |u − u�| + |v − v�|

compare both vectors in 2D space.
The angular error between spatio-temporal directions of the estimated flow and

ground truth at a pixel location p (not included in the formula) is as follows:

Eang

(
u,u�

)= arccos

(
u · u�

|u| |u�|
)

(4.65)

where u = (u, v,1) is the estimated optical flow, but now extended by one coor-
dinate (the 1 corresponds to the distance between images recorded at time slots t

and t + 1) into the 3D space, and u� = (ut , vt ,1) is the flow provided as a ground
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truth, also extended into the 3D space. This error measure evaluates accuracy in both
direction and magnitude in the 3D space.

Such error measures are applied to all pixels in a frame, which allows us to cal-
culate the mean angular error, the mean L2 endpoint error, and so forth, also with
their standard deviations.

4.6 Exercises

4.6.1 Programming Exercises

Exercise 4.1 (Variations of the Horn–Schunck Algorithm) Implement the Horn–
Schunck algorithm for optical flow calculation. Of course, there are already pro-
grams available for free use, but implement your own version.

Test the algorithm on pairs of images showing a scene with only minor differ-
ences in between; motion should be limited to distances of 5–6 pixels at most.

Use both mentioned strategies for initialization of u- and v-values (i.e. just 0 or
the closest point Q to the origin O in the velocity space; see Example 4.1). Use also
two different approximation schemes for Ix , Iy , and It . Discuss the impacts of those
different options on your flow results.

After each iteration step n + 1, calculate the mean of all changes in u- and v-
values compared to the previous step n. Display those changes over the number of
iterations. Do you have monotonically decreasing values? Would it be possible to
use a threshold for those changes for defining a stop criterion for the algorithm?

Discuss how many iterations you consider as being sufficient for your input se-
quences and how this is influenced by the used initialization scheme and the selected
approximation schemes for Ix , Iy , and It .

Finally, compare with the results simply obtained by using (4.33). With this equa-
tion you calculate the gradient flow, without using any smoothness constraint for
taking adjacent values into account.

Exercise 4.2 (Variations of the Lucas–Kanade Algorithm) Implement the Lucas–
Kanade algorithm for optical flow calculation. Of course, there are already programs
available for free use, but implement your own version.

Test the algorithm on pairs of images showing a scene with only minor differ-
ences in between; motion should be limited to distances of 5–6 pixels at most.

Decide for an approximation scheme for Ix , Iy , and It and implement the fol-
lowing variants:
1. Use a 3 × 3 neighbourhood without weights.
2. Use a 5 × 5 neighbourhood without weights.
3. Use a 5 × 5 neighbourhood with weights sampled from a Gauss function.
Discuss your findings (e.g. regarding accuracy, differences in results, computation
time) for the used real-world test data.
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Exercise 4.3 (Performance Evaluation for Optical Flow Algorithms Available in
OpenCV) Use the error measures of endpoint error and angular error for evaluating
optical flow algorithms as available in OpenCV on image sequences (of at least 100
frames each) with available ground truth:
1. Use synthetic sequences as, for example, available in Set 2 on EISATS.
2. Use real-world sequences as, for example, available on the KITTI Benchmark

Suite.
For a comparison, run the algorithms on challenging input sequences (without
ground truth; thus, just for visual inspection) as, for example, made available for
the Heidelberg Robust Vision Challenge at ECCV 2012. Summarize your findings
in a report.

Exercise 4.4 (Optical Flow Algorithms on Residual Images with Respect to
Smoothing) Run optical flow algorithms as available in OpenCV on real-world im-
age sequences (of at least 100 frames each) for comparing
• the results on the original sequences with
• the results on sequences calculated as the residuals with respect to smoothing the

original sequences.
Use different iteration steps for generating the residual images. For example, apply
a 3×3 box filter for smoothing and do the recursion to up to n = 30. Which number
of iterations can you recommend for the used test sequences?

Exercise 4.5 (Tests for Known Geometry or Motion) Select your optical flow al-
gorithm of choice and test it on recorded sequences using the following recording
scenarios:
1. Slide the recording camera orthogonally to a static scene such that calculated

motion fields can be studied with respect to camera translation.
2. Move the recording camera towards a textured wall, for example in a vehicle,

or mounted on a robot, such that calculated motion fields can be studied with
respect to the expected circular 2D motion.

3. Record a metronome with a moving pendulum (you may also use sequences from
Set 8 of EISATS).

Recorded sequences need to be of length 100 frames at least.
Try to optimize the parameters of your algorithm for these two kinds of input

sequences.

4.6.2 Non-programming Exercises

Exercise 4.6 Calculate the coefficients of the Taylor expansion of the function

I (x, y, t) = 2x2 + xy2 + xyt + 5t3

up to the 3rd-order derivatives.

Exercise 4.7 Verify (4.13), (4.14), and (4.15).
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Exercise 4.8 An initialization by zero in the Horn–Schunck algorithm would not be
possible if the resulting initial u- and v-values would also be zero. Verify that this
is not happening in general (i.e. if there exists motion) at the start of the iteration of
this algorithm.

Exercise 4.9 Use the provided Example 4.2 for manual calculations of the first
three iterations of the Horn–Schunck algorithm, using zero as initialization, and
simple two-pixel approximation schemes for Ix , Iy , and It .

Exercise 4.10 Verify (4.45).

Exercise 4.11 For the Lucas–Kanade algorithm, show that the matrix inversion
in (4.43) fails if the image gradients in the selected neighbourhood are parallel to
each other. Is this possible to happen for real image data? Check a linear algebra
book about how to tackle such singularities in order to get a least-square solution.



5Image Segmentation

In this chapter we explain special approaches for image binarization and segmenta-
tion of still images or video frames, in the latter case with attention to ensuring tem-
poral consistency. We discuss mean-shift segmentation in detail. We also provide
a general view on image segmentation as (another) labelling example in computer
vision, introduce segmentation this way from an abstract point of view, and discuss
belief-propagation solutions for this labelling framework.

Image segmentation partitions an image into regions, called segments, for defined
purposes of further image analysis, improved efficiency of image compression, or
just for visualization effects. See Fig. 5.1. Mathematically, we partition the carrier
Ω into a finite number of segments Si , i = 1, . . . , n, such that
1. Si �= ∅ for all i ∈ {1, . . . , n}
2.
⋃n

i=1 Si = Ω

3. Si ∩ Sj = ∅ for all i, j ∈ {1, . . . , n} with i �= j

Image segmentation creates segments of connected pixels by analysing some
similarity criteria, possibly supported by detecting pixels that show some dissim-
ilarity with adjacent pixels. Dissimilarity creates borders between segments; see
Sect. 2.4.1. Ideally, both approaches might support each other. Unfortunately, edges
rarely describe simple curves circumscribing a segment; they are typically just arcs.
It is a challenge to map such arcs into simple curves.

Segmentation aims at identifying “meaningful” segments that can be used for
describing the contents of an image, such as a segment for “background”, segments
for “objects”, or particular object categories (e.g. “eye”, “mouth”, or “hair”, as illus-
trated by Fig. 5.2, bottom, middle, and right; zooming-in helps to see the different
degrees of segmentation in this figure).

5.1 Basic Examples of Image Segmentation

Figure 5.3 illustrates an application of image analysis where the initial step, im-
age segmentation, can be reduced to binarization, aiming at creating black image
regions defining objects (being foot prints in this application), and white image re-

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_5, © Springer-Verlag London 2014
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Fig. 5.1 Left: The image Yan partitioned into segments. Right: Six segments of this partition

Fig. 5.2 Top: The image AnnieYukiTim (left) mapped into a (nearly binary) image defined by
Winnemöller stylization. Connected dark or bright regions define segments. Bottom: Segmentation
of the image Rocio (left) by mean-shift for radii r = 12 (middle) and r = 24 (right), see text for
explanations, showing a window only

gions defining segments of the background.1 Monochrome patterns of footprints of
small animals are collected on inked tracking cards, with no need to understand in-
tensity variations within dark (inked) regions. The whole image analysis procedure
aims at automatically identifying the specie that created a given footprint pattern.

1Figure from [B.-S. Shin, J. Russell, Y. Zheng, and R. Klette. Improved segmentation for footprint
recognition of small mammals. In Proc. IVCNZ, an ACM publication, Nov. 2012].
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Fig. 5.3 The image RattusRattus collected in New Zealand for environmental surveillance,
to be segmented into object and non-object pixels. Left: An Example of footprints on a tracking
card. Right, top: The tracking tunnel for collecting footprints. Right, bottom: A foot of a ship rat
(Rattus rattus)

This section explains basic examples of image segmentation procedures, namely
one adaptive binarization method, one image stylization method where simple post-
processing also leads to binarization, and concepts for growing segments based on
selected seed pixels.

5.1.1 Image Binarization

Image binarization applies often just one global threshold T for mapping a scalar
image I into a binary image

J (x, y) =
{

0 if I (x, y) < T

1 otherwise
(5.1)

The global threshold can be identified by an optimization strategy aiming at creating
“large” connected regions and at reducing the number of small-sized regions, called
artifacts.
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1: Compute histogram HI for u = 0, . . . ,Gmax ;
2: Let T0 be the increment for potential thresholds; u = T0; T = u; and Smax = 0;
3: while u < Gmax do
4: Compute cI (u) and μi(u) for i = 1,2 ;
5: Compute σ 2

b (u) = cI (u)[1 − cI (u)][μi(u) − μ2(u)]2;
6: if σ 2

b (u) > Smax then
7: Smax = σ 2

b (u) and T = u;
8: end if
9: Set u = u + T0

10: end while

Fig. 5.4 Otsu’s algorithm. Histogram values are used for updating in Step 4. Step 5 is defined
by (5.2)

Insert 5.1 (Origin of Otsu Binarization) This binarization algorithm has
been published in [N. Otsu. A threshold selection method from grey-level histograms.

IEEE Trans. Systems Man Cybernetics, vol. 9, pp. 62–66, 1979] .

Otsu Binarization The method uses the grey-value histogram of the given image
I as input and aims at providing the best threshold in the sense that the “overlap”
between two classes, sets of object and background pixels, is minimized (i.e. by
finding the “best balance”).

Otsu’s algorithm selects a threshold that maximizes the between-class variance
σ 2

b defined as a regular variance computed for class means. In case of two classes,
the formula is especially simple:

σ 2
b = P1(μ1 − μ)2 + P2(μ2 − μ)2 = P1P2(μ1 − μ2)

2 (5.2)

where P1 and P2 denote the class probabilities.
A chosen threshold u , 0 < u < Gmax, defines “dark” object pixels with I (p) ≤ u

and “bright” background pixels with u < I (p). Let μi(u), i = 1,2, be the means of
object and background classes. Let cI be the relative cumulative histogram of an
image I as defined in (1.8). The probabilities P1 and P2 are approximated by cI (u)

and 1−cI (u), respectively; they are the total numbers of pixels in each class divided
by the cardinality |Ω|.

Otsu’s algorithm is given in Fig. 5.4; it simply tests all the selected candidates
for an optimum threshold T .

Figure 5.5 shows results when binarizing a window in an image of footprints as
shown in Fig. 5.3. Object regions have holes if thresholds are too low, and regions
merge if thresholds are too high. Otsu’s method generates the threshold T = 162.

Winnemöller Stylization Section 2.4 explained the difference of Gaussians
(DoG) edge detector. We provide here an extension of this edge detector for non-
photorealistic rendering (NPR) of taken photos. The described Winnemöller styliza-
tion defines basically image binarization.
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Fig. 5.5 Examples for different thresholds T ∈ {0, . . . ,255}

Insert 5.2 (Origin of Winnemöller Stylization) This binarization algorithm
has been published in [H. Winnemöller. XDoG: Advanced image stylization with ex-

tended difference-of-Gaussians. In Proc. ACM Symp. Non-Photorealistic Animation Ren-

dering, pp. 147–155, 2011] .

We recall (2.40) defining the DoG, but by having L(x, y,σ ) on the left-hand
side:

L(x, y,σ ) = L(x, y, aσ ) + Dσ,a(x, y) (5.3)

Here, σ is the scale, and a > 1 a scaling factor. Thus, Dσ,a(x, y) provides
those high-frequency components to be added to L(x, y, aσ ) for obtaining a less-
smoothed image L(x, y,σ ).

The DoG approach is taken one step further by considering

Dσ,a,τ (x, y) = L(x, y,σ ) − τ · L(x, y, aσ )

= (1 − τ) · L(x, y,σ ) + τ · Dσ,a(x, y) (5.4)

The parameter τ controls the sensitivity of the edge detector. Smaller values of τ

mean that edges become “less important” with the benefit that less noise is detected.
This modified DoG is then used for defining

Eε,φ
σ,a,τ (x, y) =

{
0 if Dσ,a,τ (x, y) > ε

tanh(φ · (Dσ,a,τ (x, y) − ε)) otherwise
(5.5)



172 5 Image Segmentation

Fig. 5.6 Left: The input image MissionBay. Right: The result of the Winnemöller binarization

Resulting real values are linearly mapped into the range {0,1, . . . ,Gmax}, thus defin-
ing an image E

ε,φ
σ,a,τ . This image is the result of the Winnemöller stylization algo-

rithm. The function tanh is monotonously increasing for arguments between 0 and 1,
with values in the interval [0,1).

The parameter ε defines thresholding; the use of tanh and φ contributes to a
softening of this thresholding; by increasing φ we sharpen the thresholding.

For an example of Winnemöller stylization, see Fig. 5.2, top, right. Another ex-
ample is shown in Fig. 5.6, right.

The values in the image E
ε,φ
σ,a,τ are typically either close to 0 (i.e. Black) or close

to Gmax (i.e. White), with only a relatively small number of pixels having values in-
between. Thus, a threshold T at about Gmax/2 and (3.48) produce a binary image
(with a visually nearly unnoticeable difference to stylized images as in Fig. 5.2, top,
right, or in Fig. 5.6, right), if needed for image analysis or visualization purposes.

5.1.2 Segmentation by Seed Growing

For segment generation in grey-level or colour images, we may start at one seed
pixel (x, y, I (x, y)) and add recursively adjacent pixels that satisfy a “similarity
criterion” with pixels contained in the so-far grown region around the seed pixel.
This can be repeated until all the pixels in an image are contained in one of the
generated segments.

An important question is: How to make this process independent upon the se-
lected seed pixels, such that the image data define the resulting segmentation and
not the chosen sequence of seed pixels?

Insert 5.3 (Equivalence Relation and Equivalence Classes) Let R be a binary
relation defined on a set S. The notations aRb, (a, b) ∈ R, and a ∈ R(b) are
all equivalent; they denote that an element a ∈ S is in relation R to b ∈ S.
For example, consider 4-adjacency A4 on Ω ; then p ∈ A4(q) denotes that the
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pixel location p ∈ Ω is 4-adjacent to the pixel location q ∈ Ω , and we can
also express this by pA4q or (p, q) ∈ A4.

A relation R is called an equivalence relation on S iff it satisfies the fol-
lowing three properties on S:
1. For any a ∈ S, we have that aRa (i.e. R is reflexive on S).
2. For any a, b ∈ S, if aRb, then also bRa (i.e. R is symmetric on S).
3. For any a, b, c ∈ S, if aRb and bRc, then also aRc (i.e. R is transitive

on S).
For example, A4 is not an equivalence relation on Ω ; it is symmetric but

not reflexive and also not transitive: from pA4q and qA4p it does not fol-
low that we also have pA4p. With N4 = A4(p) ∪ {p} we still do not have
an equivalence relation; here we have reflexivity pN4p and symmetry but no
transitivity.

The relation C4 of 4-connectedness in a binary image I with pC4q iff
there is a path p = p0,p1, . . . , pn = q such that pi ∈ N4(pi−1) and I (pi) =
I (pi−1) for i = 1, . . . , n is an equivalence relation; here we also have transi-
tivity.

Let R be an equivalence relation on S. Then, for any a ∈ S, R(a) defines
an equivalence class of S. If b ∈ R(a), then R(b) = R(a). The set of all equiv-
alence classes of S partitions S into pairwise-disjoint non-empty sets.

Equivalence Relation on Pixel Features For an image I , we have or calculate
feature vectors u(p) at pixel locations p. For example, for a colour image I , we
already have the RGB vector. For a grey-level image, we can calculate the gradient
vectors ∇I at p and the local mean or variance at p for forming vector u(p). The
grey-level alone at pixel location p is a 1D feature vector.

Let ≡ be an equivalence relation on the set of feature vectors u, partitioning all
the possible feature vectors into equivalence classes.

Segments Defined by an Equivalence Relation for Features Two pixel positions
p and q are I -equivalent iff u(p) ≡ u(q). This defines an equivalence relation on the
carrier Ω , in dependency of the given image I . The I -equivalence classes C ⊆ Ω

for this relation are not yet the segments of I with respect to relation ≡. Identity of
features at p and q does not yet mean that p and q are in the same segment.

Let Cu be the set of all p ∈ Ω such that I (p) ≡ u. Each I -equivalence class Cu is
a union of (say, 4-, 8-, or K-connected) regions, and these regions are the segments.

Observation 5.1 The outcome of segmentation by seed growing does not depend on
selected seed pixels as long as seed growing follows an equivalence relation defined
for image features.
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Fig. 5.7 Left: An architectural plan Monastry of the monastery at Bebenhausen (Tübingen,
Germany). How many black or white segments? Right: All black segments are labelled uniquely
by colour values, and all white segments uniquely by grey levels

Example 5.1 (Labelling of Segments) We want to label each resulting segment (i.e.
all pixels in this segment) by one unique label. The set of labels can be, for example,
a set of numbers or (for visualization) a set of colours. To keep the input image I

unaltered, we write the labels into an array of the same size as I .
Figure 5.7 shows on the left a binary image. We take the image values 0 or 1 as

our image features, and the value identity is the equivalence relation on the feature
set {0,1}.There are two I -equivalence classes.

In the given binary image Monastry it does not matter whether we use 4-, 8-, or
K-adjacency; the two I -equivalence classes C1 and C0 split in each case into the
same segments, labelled by different colours or grey levels, respectively, on the right
of Fig. 5.7.

Recursive Segment Labelling We describe an algorithm for assigning the same
label to all the pixels in one segment. Let A be the chosen adjacency relation for
pixel locations.

Assume that we are at a pixel location p in an image that has not yet been labelled
as a member of any segment. We select p as our next seed pixel for initiating a new
segment.

Let lk be a label from the set of possible labels that has not yet been used in I for
labelling a segment. A recursive labelling procedure is shown in Fig. 5.8.
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Fig. 5.8 A recursive
labelling procedure starting at
a seed pixel p having a
feature vector u = u(p), and
assigning a label lk that has
not yet been assigned before
to pixels in input image I

1: label p with lk ;
2: put p into stack;
3: while stack is not empty do
4: pop r out of stack;
5: for q ∈ A(r) and u(q) ≡ u and q not yet labelled do
6: label q with lk ;
7: put q into stack;
8: end for
9: end while

In this recursive labelling algorithm it may happen that the used stack needs to
be as large as about half of the total number of pixels in the given image. Of course,
such cases are very unlikely to happen.

After labelling the segment that contains p, we can continue with scanning the
image for unlabelled pixels until all the pixels have been labelled.

Example 5.2 (Depth-First Visit of Pixels) Assume binary images with the key
“white < black” for K-adjacency (i.e. 4-adjacency for white pixels and 8-adjacency
for black pixels). Figure 5.9, left, shows the first 21 visits in this white segment.

The order shown on the right is used for visiting adjacent pixels when the al-
gorithm is used for labelling a segment of white pixels. It would be a clockwise
or counter-clockwise order of 8-adjacent pixels when labelling a segment of black
pixels.

Example 5.3 (Dependency on Seed Point if not Using an Equivalence Relation)
Consider the following seed growing procedure, defined by a parameter τ > 0:
1. We select a seed point pseed in a grey-level or colour image having brightness

B(pseed). At the beginning, the current segment only contains pseed .
2. In an iteration process, we merge any pixel q to the current segment that is 8-

adjacent to a pixel in the current segment, not yet labelled, and has an intensity
B(q) satisfying |B(q) − B(pseed)| ≤ τ .

3. We stop if there is no further not yet labelled pixel q , 8-adjacent to the current
segment, which still can be merged.
The used merge criterion in this procedure is not defined by an equivalence rela-

tion on the set of brightness values. Accordingly, generated segments depend upon
the chosen seed pixel. See Fig. 5.10 for an example.

For explaining the effect, consider a 1 × 8 image [0,1,2,3,4,5,6,7], τ = 2,
pseed = 3, with B(3) = 2. This seed produces a region [0,1,2,3,4]. The pixel p = 4
is in this region with B(4) = 3, and it creates the region [1,2,3,4,5] if taken as a
seed.

The dependency of the seed pixel can be removed by partitioning the range
{0, . . . ,Gmax} into intervals V0 = {0, . . . , τ }, V1 = {τ + 1, . . . ,2τ }, . . . , Vm =
{mτ + 1, . . . ,Gmax}. When selecting a seed pixel p, the brightness B(p) selects
now the interval Vk if B(p) ∈ Vk . Then we only merge the pixels q that have values
B(q) in the same interval Vk . This specifies an equivalence relation on the set of
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Fig. 5.9 Left: The numbers show the order in which the pixels are labelled, assuming a standard
scan of the grid (i.e., left to right, top to bottom). Right: Which order would result if the stack in
the fill-algorithm in Fig. 5.8 is replaced by a first-in-first-out queue?

Fig. 5.10 Seed growing results for the image Aussies, shown in Fig. 1.10, based on the intensity
difference τ to a seed pixel. Left: Growing a region starting at the shown seed point with τ = 15.
Right: Also using τ = 15, but a different seed point, which is in the segment produced before

brightness values. The resulting segmentation is independent from the choice of the
seed pixel in a segment.

The proposed partition scheme (i.e. disjoint intervals) of the range of feature
values can also be adapted for multi-dimensional feature vectors u.

Segmentation by Clustering We briefly mention that, alternatively to seed grow-
ing, we can also select multiple seed pixels at the beginning and cluster all pixels in
parallel (i.e. considering all the seed pixels at the same time) in the image by assign-
ing them to the “most similar” seed pixel. Chosen seed pixels can be updated during
the process such that each new seed pixel shifts into the centroid of the segment
produced so far. Such techniques depend typically on the selected seed pixels. See
also Exercise 5.9.
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5.2 Mean-Shift Segmentation

Mean-shift is a variant of an iterative steepest-ascent method to seek stationary
points (i.e. peaks) in a density function, which is applicable in many areas of multi-
dimensional data analysis, not just in computer vision. This section presents variants
of mean-shift algorithms for image segmentation. In this case, the “density function”
is the distribution of values in the given image.

Insert 5.4 (Origin of the Mean-Shift Algorithm) Mean-shift analysis of den-
sity functions has been introduced in [K. Fukunaga and L. D. Hostetler. The esti-

mation of the gradient of a density function, with applications in pattern recognition. IEEE

Trans. Information Theory, vol. 21, pp. 32–40, 1975]. It was shown that the mean-shift
algorithm converges to local maxima in density functions (which correspond
to local maxima in values of image channels).

Mean-shift procedures became popular in computer vision due to the fol-
lowing two papers: [Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Trans.

Pattern Analysis Machine Intelligence, vol. 17, pp. 790–799, 1995] and [D. Comaniciu

and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Trans.

Pattern Analysis Machine Intelligence, vol. 24, pp. 603–619, 2002]. Following those
two papers, many variants of mean-shift algorithms have been published for
computer vision or data analysis in general.

An implementation of a mean-shift algorithm is available in OpenCV via
the meanShift method.

5.2.1 Examples and Preparation

A grey-level image defines only a 1D feature space by its scalar values. For a better
explanation of mean-shift ideas, assume that we have an n-channel image for seg-
mentation, with n ≥ 1. For example, there are n = 3 channels for a colour image I ,
n = 2 gradient channels

∇I (p) = grad I (p) =
[

∂I

∂x
(p),

∂I

∂y
(p)

]
(5.6)

in case of a scalar image I , n = 2 channels (mean, standard deviation) in case of a
scalar image I (see Fig. 5.11 for an example), or n = 4 channels for a scalar image
I if combining gradient channels with mean and standard deviation channels. In
general, we can add channels representing local properties at a pixel location p.

Means for nD Feature Spaces The formula in (3.39) for calculating the mean or
centroid (xS, yS) of a subset S generalizes for features u = (u1, . . . , un) to

ui,S = m0,...,0,1,0,...,0(S)

m00...0(S)
for i ∈ {1, . . . , n} (5.7)
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Fig. 5.11 Left: The grey-level image Odense with Gmax = 255. Right: Visualization of a 2D
feature space (i.e. a 2D histogram) for this image defined by the mean and standard deviation in
3 × 3 pixel neighbourhoods. The bar on the right is the used colour key for shown frequencies

Fig. 5.12 Distribution of 25 calculated local image properties u = (a, b) in an ab feature space,
an initial position of a window (left), and its two subsequent moves by mean-shift (left to right)

where the moments m0,...,0,1,0,...,0(S) (with the 1 in the ith position) and m00...0(S)

(with n zeros) are as defined in (3.36), with using multiplicities of feature vectors as
weights instead of image values.

Basic Ideas of Mean-Shift Assume that we have a 5 × 5 image I (not shown
here) with two channel values a and b, with 0 ≤ a, b ≤ 7. Figure 5.12 illustrates an
example of a distribution of 25 feature pairs in the ab feature space (i.e. this is not
the image plane but a 2D histogram of image values). Numbers 1, 2, or 3 are the
multiplicities of occurring feature pairs.

We select a pair (2,4) as an initial mean with multiplicity 2 (i.e. two pixels in the
assumed 5 × 5 images have (2,4) as a feature value).

We calculate the mean of a set S defined by radius (say) r = 1.6 around (2,4).
This new mean is slightly to the left and up of the previous mean.

We move the circular window defining the current set S such that its centre is
now at the new mean. At this location, a new mean uS = (u1,S, u2,S) for this set S

is now slightly up again compared to the previous mean.
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Fig. 5.13 Mean-shift moves
uphill into the direction of the
steepest gradient, here
illustrated by five starting
points all moving up to the
same peak (in general, a local
maximum, but here the global
maximum),

The iteration stops if the distance between the current and the next mean is below
a given positive threshold τ (e.g. τ = 0.1); the mean uS becomes the final mean.

As a result, all pixels in the image having the feature value (2,4) are assigned to
this final mean uS .

We repeat the procedure by starting at other feature pairs. They all define a final
mean. The final means being very close to each other can be clustered. The pixels
having feature values that are assigned to final means in the same cluster are all
value-equivalent; this equivalence class splits into a number of regions (segments).

Mean-Shift Is a Steepest-Ascent Method Consider feature space multiplicities
as being elevations. The shifting window moves up the hill (by following the mean)
and has its reference point finally (roughly) at a local peak, defining a final mean.

Figure 5.12 is too small for showing this properly; see Fig. 5.13 for a 3D visual-
ization of steepest ascent.

The method depends on two parameters r and τ defining the “region of influ-
ence” and the stop criterion, respectively.

Observation 5.2 Subsequent mean-shift operations of a window move a feature
vector towards a local peak in the data distribution of feature vectors, thus imple-
menting a steepest-ascent method by following the local gradient uphill.

Local Peak Versus Global Mode For a given set of data, its (global) mode
is the value that occurs most often in this set. For example, the mode of
the set {12,15,12,11,13,15,11,15} is 15. A set of data may have several
modes; any value that occurs most often is one mode. For example, the set
{12,15,12,11,13,10,11,14} is bimodal because there are two modes, 12 and 11.
The set {16,15,12,17,13,10,11,14} has no mode because all the values appear
equally often. For defining a mode, the data in the set do not need to be numbers;
they can be colours, names, or anything else.
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A local peak (i.e. a local maximum of density) is not a global mode in general.
Modes of the set of feature vectors define global peaks.

When considering density functions, some publications call a local peak also
“a mode”, but we will not do so for avoiding confusion with the more common
mode definition as stated above.

5.2.2 Mean-Shift Model

This subsection presents the mathematics behind the mean-shift algorithm. If you
are just interested in the algorithm, then you may skip this subsection and proceed
to Sect. 5.2.3.

nD Kernel Function and 1D Profile Figure 5.12 illustrated the use of a circular
window for a uniform inclusion of all feature vectors in this window into the calcu-
lation of the new mean. Equation (5.7) is the calculation of the mean in such a case.

For generalizing the calculation of the local mean, we consider the use of a
rotation-symmetric nD kernel function

K(u) = ck · k(‖u‖2
2

)
(5.8)

defined at feature points u in an n-dimensional feature space. It is generated by a
1D profile k and a constant ck such that

∫

Rn

K(u)du = 1 (5.9)

The constant ck normalizes the integration to 1.
The kernel K defines weights, similar to local convolutions in images (see

Sect. 2.1.2). But now we apply the kernel in feature space. Figure 5.14 illustrates
four examples of profiles k(a) for a ∈ R. The Epanechnikov function is defined as
follows:

k(a) = 3

4

(
1 − a2) for − 1 < a < 1 (5.10)

and k(a) = 0 elsewhere.

Insert 5.5 (Origin of the Epanechnikov function) This function was pub-
lished in [V.A. Epanechnikov. Nonparametric estimation of a multidimensional proba-

bility density. Theory Probab. Appl., vol. 14, pp. 153–158, 1969].

Density Estimator Let r > 0 be a parameter defining the radius of the kernel
(e.g. the standard deviation σ for the Gauss function). We have m feature vectors
ui , 1 ≤ i ≤ m, in R

n; for a given image I , it is m = Ncols · Nrows. For any feature
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Fig. 5.14 Profiles of four
different kernel functions:
triangle, Epanechnikov,
uniform, and Gaussian

vector u ∈ R
n,

fk(u) = 1

mrn

m∑

i=1

K

(
1

r
· (u − ui )

)
(5.11)

= ck

mrn

m∑

i=1

k

(
1

r2
· ‖u − ui‖2

2

)
(5.12)

defines a density estimator at vector u, using a kernel function K .

Gradient Calculation For determining the mean-shift vector, we have to calcu-
late the derivative gradfk(u) of fk(u). (See our discussion of images as continuous
surfaces and the meaning of gradients, e.g. when discussing Fig. 1.13.)

We differentiate

k

(
1

r2
· ‖u − ui‖2

2

)
(5.13)

by taking the derivative

2

r2
(u − ui ) (5.14)

of the inner function times the derivative

k′
(

1

r2
‖u − ui‖2

2

)
(5.15)

of the outer function; the function k′ is the derivative of the profile k.
Local peaks in feature space are at locations u where

0 = gradfk(u) = 2ck

mrn+2

m∑

i=1

(u − ui )k
′
(

1

r2
‖u − ui‖2

2

)
(5.16)
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= 2ck

mrn+2

m∑

i=1

(u − ui )k
′(X (r)

i

)

using

X (r)
i = 1

r2
‖u − ui‖2

2 (5.17)

for abbreviation.
We like to transform the gradient as given in (5.16) such that we can understand

the mean-shift vector when moving from any given feature vector u to the next
mean, towards a local peak.

We first introduce the function g(a) = −k′(a). The minus sign allows us to
change (u − ui ) into (ui − u). From (5.16) we obtain the following:

gradfk(u) = 2ck

mrn+2

m∑

i=1

(ui − u) · g(X (r)
i

)

= 2ck

mrn+2

(
m∑

i=1

[
ui · g(X (r)

i

)]− u ·
m∑

i=1

g
(
X (r)

i

)
)

= 2ck

r2cg

[
cg

mrn
·

m∑

i=1

g
(
X (r)

i

)
][∑m

i=1 ui · g(X (r)
i )

∑m
i=1 g(X (r)

i )
− u

]

= A · B · C (5.18)

The factor A in (5.18)2 is a constant. The factor B is the density estimate fg in
the feature space for a function g, as (5.12) defined the density estimate fk for a
function k. The constant cg normalizes the integral in the feature space to 1 if we
apply fg as weight.

Mean-Shift Vector as a Scaled Gradient Vector The factor C in (5.18) is the
mean-shift vector, which starts at vector u to a new location in the feature space. We
denote it by

mg(u) =
∑m

i=1 ui · g(X (r)
i )

∑m
i=1 g(X (r)

i )
− u (5.19)

Altogether we have that

gradfk(u) = 2ck

r2cg

· fg(u) · mg(u) (5.20)

2See Fig. 10.11 in the book [G. Bradski and A. Kaehler. Learning OpenCV. O’Reilly, Beijing,
2008] for a graphical illustration of this equation. Mean-shift is there not discussed for clustering
in feature space but for tracking in pixel domain.
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or

mg(u) = r2cg

2ck · fg(u)
· gradfk(u) (5.21)

This is a proof of Observation 5.2: Mean-shift proceeds in the direction of gradi-
ent gradfk(u). By proceeding this way we go towards a feature vector u0 with
gradfk(u0) = 0, as stated in (5.16).

5.2.3 Algorithms and Time Optimization

Mean-shift provides reasonable-quality segmentation results, but it has high compu-
tational costs if done accurately. By means of a simple example we sketch a mean-
shift algorithm, which uses linear algebra (i.e. matrix operations). This algorithm
does not apply any run-time optimizations and is here only given for illustrating a
brief and general algorithm.

Example 5.4 (Mean-Shift Using Linear Algebra) We use the 2D feature space illus-
trated in Fig. 5.12 as input. This feature space represents the data

{
(5,2), (6,2), (3,3), (3,3), (4,3),

(5,3), (1,4), (2,4), (2,4), (4,4),

(5,4), (5,4), (5,4), (6,4), (7,4),

(2,5), (3,5), (3,5), (5,6), (6,6),

(6,6), (3,7), (4,7), (6,7), (6,7)
}

assuming integer values a and b starting at 1. We present those data in a form of a
data matrix as follows:

D =
[

5 6 3 3 4 5 1 2 2 4 5 5 5 6 7 2 3 3 5 6 6 3 4 6 6
2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 6 6 6 7 7 7 7

]

A mean-shift procedure starts with selecting a feature pair as an initial mean. We
take one of the two pairs (3,5), as already illustrated in Fig. 5.12, and create a mean
matrix M which has (3,5) in all of its columns:

M =
[

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

]

We calculate squared Euclidean distances between columns in matrix M and
columns in matrix D by taking the squares of all differences D − M. We obtain
the (squared) Euclidean distance matrix

E =
[

4 9 0 0 1 4 4 1 1 1 4 4 4 9 16 1 0 0 4 9 9 0 1 9 9
9 9 4 4 4 4 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 4 4 4 4

]
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with the following corresponding sums in each column:
[

13 18 4 4 5 8 5 2 2 2 5 5 5 10 17 1 0 0 5 10 10 4 5 13 13
]

Now we are ready to apply the kernel function. For simplicity, we assume a
uniform profile defined by some radius r > 0; see Fig. 5.14 for the simple step
function defining a uniform profile.

The calculated sums need to be compared with r2. For generating Fig. 5.12,
r = 1.6 has been used; thus, r2 = 2.56. Six squared Euclidean distance values are
less than 2.56. These are the six feature points contained in the circle on the left in
Fig. 5.12, defining the active feature point set

S = {
(2,4), (2,4), (4,4), (2,5), (3,5), (3,5)

}

for this step of the mean-shift iteration.
We calculate the mean of the set S (because of the uniform profile) as uS =

(2.67,4.5). We compare (2.67,4.5) with the previous mean (3,5) and detect that
the distance is still above the threshold τ = 0.1.

We continue in the next iteration step with generating a new mean matrix M,
which has (2.67,4.5) in all of its columns, calculate again a vector of squared Eu-
clidean distances to this mean (via a matrix E), select again the set S of currently
active feature points, which are in a distance less than r to (2.67,4.5), and calculate
the new mean for this set S. We compare the new mean with (2.67,4.5) by using
the threshold τ = 0.1.

The process stops when the distance between two subsequent means is less
than τ . This defines a final mean. The initial feature u = (3,5) is assigned to this
final mean.

After having processed all feature points in the feature space, we cluster the fea-
ture points if their final means are identical or just “close” to each other. This defines
the equivalence classes of feature points.

The example used a uniform profile; we can also use the other profiles as illus-
trated in Fig. 5.14. This changes the way of approximating the local means (now by
weighted sums of contributing feature values).

The algorithm in the example can be optimized. The use of the matrix M in the
example for comparing with all the available features u is time-inefficient. Locating
repeatedly points close to the current mean can be done more efficiently, for example
by using hashing techniques. We next discuss the issue of time complexity.

Partitioning the Feature Space into Windows Consider an algorithm that starts
with a partition of the feature space into “small” windows, as uniform as possible.
See Fig. 5.15 for a segmentation result and Fig. 5.16, left, for a simple 2D feature
space example.

We perform mean-shift operations for all of those windows in successive rounds
until none of the windows moves anymore into a new position. We round the means
to nearest integers; thus, we centre windows always at feature vectors. We assign
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Fig. 5.15 Left: A sketch of a partitioned feature space for the image Odense shown in Fig. 5.11.
Right: Segmentation result for this image using a feature space partition into windows of size
39 × 39, resulting in 33 labels

Fig. 5.16 The centres of the nine initial windows, shown on the left, are the considered as initial
means. They move by subsequent mean-shifts into new locations and stop moving at blue or red
cells, which are final means. The red cell indicates the only case where two initial windows moved
into the same final mean, defining a merger of those two windows into one 2 × 6 equivalence class
shown on the right

the feature vectors of all those original windows to the same equivalence class (i.e.
a segment in the feature space) whose centres moved into the same final mean.

Example 5.5 (Pairwise-Disjoint Square Windows in Feature Space) Consider the
2D feature space represented as an 8 × 8 array on the left of Fig. 5.16, showing
multiplicities of feature vectors. We apply a uniform profile in square windows (and
not in a disc).

After the first round of mean-shifts of those nine initial windows, we notice that
four of them do not move at all, identified by four blue cells. Five windows continue
into the second round of mean-shifts. Now we notice that four of those five do
not move any further, defining four more blue cells. Only one window needs to be
considered in the third round of mean-shifts; its mean moves into the position of a
previously already labelled blue cell, thus establishing a merger with the window
defined by this cell. This merger is illustrated on the right.

In Fig. 5.17 we partition the same 8 × 8 feature space as before but now into
smaller 2 × 2 windows. In the upper right we have a case where all values add up
to 0; there is no occurrence of any feature in this window, thus, the end of the story
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Fig. 5.17 The reference points of 16 initial windows, shown on the left, move by mean-shift into
new locations. Grey: Irrelevant window. Blue: No further move. Red: Merger with a blue cell.
Black: Merger with a red cell. Yellow: The most interesting case, where we arrive at a previously
already considered location

Fig. 5.18 Left to right: The original 2 × 2 partition as in Fig. 5.17, final locations of means with
indicated 4- or 8-adjacencies, the resulting equivalence classes defined by merged windows, the
resulting equivalence classes if also merging due to 4-connectedness of final means, and resulting
equivalence classes if also merging due to 8-connectedness

here. Blue cells show again a stop of movement, and red cells a merger with a blue
cell. This time we also have a third window merging with two previously already
merged windows, shown by the black cell. At the yellow cell we also notice that this
location has been considered previously; thus, we can stop here and simply merge
into the already-initialized calculation path for this location. This appears to be the
case with the best potentials for reducing time when segmenting large-scale images.

We could also cluster final means (i.e. blue, red, or black cells in this case),
for example defined by 4- or 8-connectedness. Clusters define then the equivalence
classes. See Fig. 5.18.

Mean-Shift Algorithm when Partitioning the Feature Space into Windows
We use an n-channel representation of the given image I , defining thus an n-
dimensional feature space for n ≥ 1. We insert all the |Ω| features of a given image
into a uniformly digitized feature space at grid-point locations (similar to the coun-
ters in the accumulator space for a Hough transform), using rounding of values
where necessary. This defines an n-dimensional histogram.

We declare all initial n-dimensional windows in the feature space, defining a
partition of this space, to be active (if containing at least one feature vector). The
equivalence class of such a window contains at the moment of initialization only
this window itself. We start the iterative mean-shift procedure.

In each run of the iteration, we move any active window into a new mean (i.e.
rounded to a grid position in the feature space). We have two cases:
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Fig. 5.19 Left: The colour image HowMany. Right: The segmentation result for this image using
a 3D RGB feature space and a partitioning into 91×91×91 windows for the described mean-shift
algorithm when partitioning the feature space into windows without any clustering of final means

1. If the newly calculated mean is still the previous mean, we have a stop: the mean
is a final mean; we delete this window from the list of active windows.

2. If in the current iteration step the means of two windows are identical, we have a
merger: we merge the equivalence classes of both windows and delete the second
window from the list of active windows.

3. If a move of a mean into a feature space location already occupied in a previous
iteration step by another mean of another window, we have a follower: we merge
the equivalence classes of both windows and delete the currently moved window
from the list of active windows.

We stop the iteration if the list of active windows is empty. See Fig. 5.19 for an
example of a result; 3D windows of size 91×91×91 led here to 10 different means
(labels).

The final result can be post-processed, for example by clustering 4- or 8-
connected final means by merging the equivalence classes of windows assigned to
those means. The algorithm can be further simplified by merging Cases (2) and (3);
in both cases we move a newly calculated mean onto a previously already occupied
position, with identical consequences.

The time-efficiency of this algorithm is paid by a “blocky structure” of equiv-
alence classes of features u in the feature space and by the approximate character
of considered moves by using regular grid points as the only possible locations for
calculated means.

Mean-Shift Algorithm when Considering Individual Feature Vectors in Fea-
ture Space We consider now shifts of individual feature vectors in the feature
space but continue to use regular grid points as the only possible locations for fea-
ture vectors or calculated means.

For doing so, we select a kernel function of some radius r > 0; due to the used
discrete approximation of the feature space, we need r to be greater than 1, and
larger values of r will define more significant moves of means, but will also increase
the time complexity.
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Fig. 5.20 Left: The segmentation result (26 labels) for the image HowMany shown in Fig. 5.19
using a 3D RGB feature space, the mean-shift algorithm for individual feature vectors, and the
Gauss kernel function with r = 25. Right: All the same as before, but with merging final means,
which are at a distance of ≤ 50 to each other, reducing 26 to 18 labels this way

We declare all non-zero vectors in the feature space to be active means; their
initial equivalence class contains just their own initial location. We start the iterative
mean-shift procedure.

In each run of the iteration, we move any active mean u into a new mean by
using feature-space multiplicity values in the neighbourhood of u, weighted by the
selected kernel function. This operation corresponds to the mean-shift in (5.19). We
round the obtained mean to the nearest grid position in the feature space. We have
two cases:
1. A newly calculated mean is still the previous mean. We have a stop. The mean is

a final mean; we delete this mean from the list of active means.
2. A newly calculated mean is identical to a previously calculated mean. We have a

merger. (See Exercise 5.7.) We merge the equivalence classes of both means and
delete the newly calculated mean from the list of active means.

We stop the iteration if the list of active windows is empty. The final result can again
be post-processed by clustering final means. See Fig. 5.20 for illustrations of results.

5.3 Image Segmentation as an Optimization Problem

This section describes segmentation as a particular labelling problem and belief-
propagation as a method for solving such a problem. A labelling problem is specified
by error terms (penalties for data issues and non-smoothness), and we outline how
to go towards an optimized solution for such a problem.

5.3.1 Labels, Labelling, and Energy Minimization

When preparing for the Horn–Schunck algorithm in Sect. 4.2.1 (see (4.9) and the
following text), we used labelling functions for assigning optic flow tuples (u, v)

(i.e. the labels) to pixel locations (x, y). The definition of pairwise-disjoint seg-
ments, defining a segmentation of all pixels in Ω , is also a labelling problem. Fig-
ure 5.2 shows two examples.
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Four Labels Are Sufficient When mapping a given image into a binary image,
we assign to each pixel either label “white” or “black”. We can decide to use 4-, 8-,
or K-connectedness for defining image regions (see Sect. 3.1); the regions in the
created binary image are the established segments.

When mapping a given image into a coloured map, we assign to each pixel a
colour as its label. Again, 4-, 8-, or K-connected regions of the created colour map
define the created segments. According to the Four-Colour Theorem, it is sufficient
to use only four different colours for visualizing any image segmentation.

Insert 5.6 (Four-Colour Theorem) About the middle of the 19th century, the
hypothesis emerged that any partition of the plane into connected segments,
called a map, could be coloured by using four different colours only such that
border-adjacent (i.e. not just corner-adjacent) segments could be differently
coloured. In 1976 it was proven by the US-American mathematician K. Appel
(1932–2013) and W. Haken (born in 1928 in Germany) that this is a valid
mathematical theorem, known as the Four-Colour theorem.

The General Labelling Approach Labelling is a common way for modelling
various computer vision problems (e.g. optic flow in Chap. 4, image segmentation in
this chapter, integration of vector fields in Sect. 7.4.3, or stereo matching in Chap. 8).
The set of labels can be discrete,

L = {l1, l2, . . . , lm} with |L| = m (5.22)

or continuous,

L ⊂ R
n for n ≥ 1 (5.23)

Image segmentation or stereo matching are examples for discrete sets of labels; optic
flow uses labels in a set L ⊂ R

2 and vector field integration in a set L ⊂ R.
In this section we assume a discrete set of labels having cardinality m = |L| and

also the notation

h = fp = f (p) or l = fq = f (q) (5.24)

Labels are assigned to sites, and sites in this textbook are limited to be pixel loca-
tions. For a given image, we have |Ω| = Ncols ·Nrows sites, which is a large number;
thus, time-efficiency is of importance for identifying a labelling function

f : Ω → L (5.25)

or, just in other notation,

f = {
(p,h) : p ∈ Ω ∧ f (p) = h

}
(5.26)
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We aim at calculating a labelling f that minimizes a given (total) error or energy

E(f ) =
∑

p∈Ω

[
Edata(p,fp) +

∑

q∈A(p)

Esmooth(fp,fq)

]
(5.27)

where A is an adjacency relation between pixel locations as introduced in Sect. 3.1,
with

q ∈ A(p) iff pixel locations q and p are adjacent (5.28)

If not otherwise specified, we use 4-adjacency; see (3.1) for its definition. The error
function Edata assigns non-negative penalties to a pixel location p when assigning
a label fp ∈ L to this location. The error function Esmooth assigns non-negative
penalties by comparing the assigned labels fp and fq at adjacent pixel positions p

and q .
Equation (5.27) defines a model for an optimization problem characterized by lo-

cal interactions along edges between adjacent pixels. This is an example of a Markov
random field (MRF) model. In this section we apply belief propagation for solving
this optimization problem approximately.

Insert 5.7 (Markov, Bayes, Gibbs, and Random Fields) The Russian math-
ematician A.A. Markov (1856–1922) studied stochastic processes where the
interaction of multiple random variables can be modelled by an undirected
graph. These models are today known as Markov random fields. If the under-
lying graph is directed and acyclic, then we have a Bayesian network, named
after the English mathematician T. Bayes (1701–1761). If we only consider
strictly positive random variables, then an MRF is called a Gibbs random
field, named after the US-American scientist J.W. Gibbs (1839–1903).

The function Edata is the data term, and the function Esmooth is the smoothness,
continuity, or neighbourhood term of the total energy E.

Informally speaking, Edata(p,fp) = 0 means that the label fp is “perfect” for
pixel location p. The function Esmooth defines a prior that favours identical labels
at adjacent pixels. This is a critical design problem: there are borders between seg-
ments (i.e. places where labels need to change); we cannot penalize such necessary
changes too much for still making them possible.

A labelling problem is solved by assigning uniquely a label from a set L to each
site in Ω . In case of a discrete label set L with |L| = m, we have m|Ω| possible
labelling functions. Taking the four-colour theorem as a guide, we can limit ourself
to 4|Ω|. This is still a large number.

Selecting a labelling that minimizes (accurately) the error defined in (5.27) is a
challenge. As a compromise, we aim at obtaining an approximately minimal solu-
tion. Extreme choices of data or smoothness term can cause trivial optimum solu-
tions for (5.27). For example, if the smoothness penalty is extremely large, then a
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constant labelling is optimal. On the other hand, if we choose the smoothness term
to be close to 0, then only the pixel-wise data term defines the outcome, and this
case is also not difficult to optimize. A dominating data or smoothness error term
contribute to a simplification of the optimization task.

Observation 5.3 The computational complexity of an optimum solution for the
MRF defined by (5.27) depends on the chosen error terms.

5.3.2 Examples of Data and Smoothness Terms

Regarding optic flow calculations, we have examples of data terms in (4.9) and
(4.58) and examples of smoothness terms in (4.10) and (4.59).

Data Term Examples We first decide about the number m ≥ 2 of labels to be
used for the different segments. We may have more than just m segments because
the same label li can be used repeatedly for disconnected segments. Segments with
the same label can be defined by some data similarity, such as the mean-shift feature
vector convergence to the same peak in the feature space.

Example 5.6 (Data Term Based on Random Initial Seeds) We select m random pix-
els in the given scalar image I and calculate in their (say) 5 × 5 neighbourhood the
mean and standard deviation, defining 3D feature vectors ui = [I (xi, yi),μi, σi]
for 1 ≤ i ≤ m. We consider those m pixels as seeds for m feature classes to be
labelled by m labels l1 to lm.

Consider fp = li at pixel location p. We define that

Edata(p, li) = ‖ui − up‖2
2 =

n∑

k=1

(ui,k − up,k)
2 (5.29)

if using the L2-norm,

Edata(p, li) = ‖ui − up‖1 =
n∑

k=1

|ui,k − up,k| (5.30)

if using the L1-norm (less sensitive with respect to outliers compared to L2), or

Edata(p, li) = χ2(ui ,up) =
n∑

k=1

(ui,k − up,k)
2

ui,k + up,k

(5.31)

if using χ2 (in general even less-sensitive with respect to outliers; χ2 is not a metric
because it does not satisfy the triangle inequality), where up is the feature vector
defined by the mean and standard deviation in the 5 × 5 neighbourhood of pixel
location p.
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Initial seeds can be tested first on variance, selected several times in the image,
and then the set that maximizes the variance is chosen. The size of the neighbour-
hood or used features can also vary.

Example 5.7 (Data Term Based on Peaks in Feature Space) The image feature space
is an n-dimensional histogram, defined by nD feature values u at all Ω pixel loca-
tions. Grey levels only define the common 1D histogram, as discussed in Sect. 1.1.2.
2D features (e.g. the local mean and local standard deviation) define 2D histograms
as sketched in Fig. 5.12.

We select m local peaks in the image feature space. For detecting those, we can
start in the image feature space with m feature vectors and apply mean-shift to them,
thus detecting ≤ m peaks ui in the feature space, to be identified with label li . Then
we define the data term Edata as in Example 5.6.

Priors provided by the approach in Example 5.7 appear to be more adequate for
a meaningful segmentation than those proposed in Example 5.6 but require more
computation time. We could even run mean-shift segmentation at first completely
and then use those detected m peaks that have more pixels assigned than any re-
maining peaks. See Exercise 5.8.

Smoothness Term Examples We consider a unary symmetric smoothness error
term defined by the identity

Esmooth(l − h) = Esmooth(h − l) = Esmooth
(|l − h|) (5.32)

for labels l, h ∈ L. Binary smoothness terms Esmooth(l, h) are the more general case,
and including dependencies from locations in terms Esmooth(p, q; l, h) is even more
general.

Insert 5.8 (Origin of the Potts Model) The model was introduced by the Aus-
tralian mathematician R.B. Potts (1925–2005) in his 1951 PhD thesis on Ising
models.

Example 5.8 (Potts Model) In this model, any discontinuity between labels is pe-
nalized uniformly, by only considering equality or non-equality between labels:

Esmooth(l − h) = Esmooth(a) =
{

0 if a = 0
c otherwise

(5.33)

where c > 0 is a constant. This simple model is especially appropriate if feature
vectors do have a minor variance within image regions and only significant discon-
tinuities at region borders.

Example 5.9 (Linear Smoothness Cost) The linear cost function is as follows:

Esmooth(l − h) = Esmooth(a) = b · |l − h| = b · |a| (5.34)
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Fig. 5.21 Left: Linear
smoothness cost. Right:
Linear truncated smoothness
cost

where b > 0 defines the increase rate in costs.
For the linear truncated case, we use a truncation constant c > 0 and have that

Esmooth(l − h) = Esmooth(a) = min
{
b · |l − h|, c}= min

{
b · |a|, c} (5.35)

(i.e. there is no cost increase if the difference reaches a level c). See Fig. 5.21 for
linear and truncated linear case.

In general, truncation represents a balance between an appropriate change to
a different label (by truncation of the penalty function) and occurrence of noise or
minor variations, not yet requesting a change of a label (in the linear part). Occurring
label differences below the truncation constant c are treated as noise and penalized
(according to the given difference in labels).

Example 5.10 (Quadratic Smoothness Cost) We have the (unconstrained) quadratic
case (we skip the formula) or the truncated quadratic cost function

Esmooth(l − h) = Esmooth(a) = min
{
b · (l − h)2, c

}= min
{
b · a2, c

}
(5.36)

The positive reals b and c define the slope and truncation, respectively.

Observation 5.4 Data terms are problem-specific, especially designed for match-
ing tasks such as optic flow calculation or image segmentation, while smoothness
terms are (typically) of general use.

5.3.3 Message Passing

A belief-propagation (BP) algorithm passes messages (the belief ) around in a local
neighbourhood, defined by the underlying undirected graph of the MRF. We assume
4-adjacency in the image grid. Message updates are in iterations (you possibly al-
ready know such a message-passing strategy from the field of 2D cellular automata);
messages are passed on in parallel, from a labelled pixel to its four 4-adjacent neigh-
bours. See Fig. 5.22.

Informal Outlook The thin black arrows in Fig. 5.22 indicate directions of mes-
sage passing. For example (left), pixel p is left of pixel q , and pixel p sends a
message to pixel q in the first iteration. The message from pixel p contains already
messages received from its neighbours (right) in all the subsequent iterations. This
occurs at pixel q in parallel for all four 4-adjacent pixels. In one iteration step, each
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Fig. 5.22 The central pixel q receives messages from adjacent pixels such as p, and this occurs
for all pixels in the image array in the same way. In the next iteration step, the central pixel q

receives messages from adjacent pixels, representing all the messages those pixels (such as p)
have received in the iteration step before

labelled pixel of the adjacency graph computes its message based on the informa-
tion it had at the end of the previous iteration step and sends its (new) message to
all the adjacent pixels in parallel.

Informally speaking, the larger the penalty Edata(p, l) is, the “more difficult” it
is to reduce the cost at p for label l by messages sent from adjacent pixels. The “in-
fluence” of adjacent pixels decreases when the data cost at this pixel for a particular
label increases.

Formal Specification Each message is a function that maps the ordered discrete
set L of labels into a corresponding 1D array of length m = |L| having a non-
negative real as the message value in any of its m positions.

Let mt
p→q be such a message, with message values for l ∈ L in its m components,

sent from node p to the adjacent node q at iteration t . For l ∈ L, let

mt
p→q(l) = min

h∈L

(
Edata(p,h) + Esmooth(h − l) +

∑

s∈A(p)\q
mt−1

s→p(h)

)
(5.37)

be the message-update equation, where l denotes a possible label at q , and h runs
through L and is again just a possible label at p.

We accumulate at q all messages from adjacent pixel locations p and combine
with the data cost values for labels l at q . This defines at pixel location q an 1D
array of costs

Edata(q, l) +
∑

p∈A(q)

mt
p→q(l) (5.38)

for assigning a label l to q at time t . This cost combines the time-independent data
term Edata(q, l) with the sum of all |A| received message values for l ∈ L at time t .

Informal Interpretation Understanding (5.37) and (5.38) is the key for under-
standing belief propagation. We provide an informal interpretation of both equa-
tions.

We are at node q . Node q inquires with its adjacent nodes, such as p, about their
opinion about selecting label l at q . Node p, being asked about its opinion, scans
through all the labels h and tells q the lowest possible cost when q decides for l.
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Fig. 5.23 A sketch of m message boards, each board for one label, and of a pixel in the input
image. The cost value ci is in message board No. i for label li ; that label lj will finally define the
calculated value at the given pixel, which is identified by a minimum value of cj compared to all
ci for 1 ≤ i ≤ m

The smoothness term defines the penalty when q takes l and p takes h. Label h

also creates the cost Edata(p,h) at p. Finally, p also has the information available
provided by all of its adjacent nodes at time t − 1, excluding q , because q cannot
influence this way the opinion of p about label l.

Node q inquires at time t about all the possible labels l this way. For every label l,
it asks each of its adjacent nodes.

In (5.38) we combine now the opinions of all adjacent nodes for label l at q . At
this moment we also have to take the data cost of l at q into account. Smoothness
costs have been taken care off already in the messages generated from p to q .

Message Boards Instead of passing on 1D arrays of length m = |L|, it appears
to be more convenient to use m message boards of size Ncols × Nrows, one board
for each label. See Fig. 5.23. Message updates in these message boards follow the
previously defined pattern, illustrated in Fig. 5.22. The 1D vectors of length m at all
the pixel locations are just considered to be a stack of m scalar arrays, each for one
label l ∈ L.

5.3.4 Belief-Propagation Algorithm

We present a general belief-propagation algorithm where the set Ω of pixel locations
is the set of sites (or nodes) to be labelled. We have the following components in
an iterative process: initialization, an update process (from iteration step t − 1 to
iteration step t), and a termination criterion.
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Initialization We initialize all m message boards at all |Ω| positions by starting
with initial messages

m0
p→q(l) = min

h∈L

(
Edata(p,h) + Esmooth(h − l)

)
(5.39)

resulting in initial costs

Edata(q, l) +
∑

p∈A(q)

m0
p→q(l) (5.40)

at pixel location q ∈ Ω in message board l.

Iteration Steps of the BP Algorithm In iteration step t ≥ 1 we calculate mes-
sages mt

p→q(l), as defined in (5.37), and combine them to cost updates at all pixel
locations q ∈ Ω and for any of the m message boards l, as defined in (5.38).

For discussing these iterations, we first rewrite the message-update equa-
tion (5.37) as follows:

mt
p→q(l) = min

h∈L

{
Esmooth(h − l) + Hp,q(h)

}
(5.41)

where

Hp,q(h) = Edata(p,h) +
∑

s∈A(p)\{q}
mt−1

s→p(h) (5.42)

A straightforward computation of Hp,q (for all h ∈ L) requires O(m2) time, assum-
ing that Edata(p,h) only requires constant time for calculation.

If using the Potts model for the smoothness term, then the message-update equa-
tion (5.41) simplifies to

mt
p→q(l) = min

{
Hp,q(l), min

h∈L\{l}Hp,q(h) + c
}

(5.43)

We compute the minimum over all h and compare with Hp,q(l).
If using the linear model for the smoothness term, the non-truncated message-

update equation (5.41) turns into

mt
p→q(l) = min

h∈L

(
b · |h − l| + Hp,q(h)

)
(5.44)

where b is the parameter defining the linear cost. We consider an example.

Example 5.11 (Non-Truncated Linear Smoothness Model) Let L = {0,1,2,3} and
b = 1, with

Hp,q(0) = 2.5 Hp,q(1) = 1

Hp,q(2) = 1.5 Hp,q(3) = 0
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Fig. 5.24 Example of four
piecewise-linear functions.
Minima are taken at red
points. There is no minimum
on the green lines. The blue
lines define the lower
envelope of all the given lines

for a given combination of adjacent pixel locations p and q . These data are illus-
trated in Fig. 5.24 for the linear non-truncated case. The value Hp,q(l) defines a
vertical shift of the linear cost function (the cone) at label l.

The calculations corresponding to (5.44) are now as follows:

mt
p→q(0) = min{0 + 2.5,1 + 1,2 + 1.5,3 + 0}

= min{2.5,2,3.5,3} = 2

mt
p→q(1) = min{1 + 2.5,0 + 1,1 + 1.5,2 + 0}

= min{3.5,1,2.5,2} = 1

mt
p→q(2) = min{2 + 2.5,1 + 1,0 + 1.5,1 + 0}

= min{4.5,2,1.5,1} = 1

mt
p→q(3) = min{3 + 2.5,2 + 1,1 + 1.5,0 + 0}

= min{5.5,3,2.5,0} = 0

These calculated minima are labelled in Fig. 5.24 by red points. We note that the
green lines are not incident with any of the minima. The minima are all on the lower
envelope shown in blue.

The minimization of (5.44) (i.e. in the non-truncated linear case) can be formu-
lated as follows: Calculate the lower envelope of m upward facing cones, each with
identical slope defined by parameter b. Each cone is rooted at (h,Hp,q(h)). See
Fig. 5.25. The minimum for label h is then simply on the lower envelope, shown as
red dots.

The truncated linear model follows the same scheme. Message updates can be
computed in O(m) time; we discussed the calculation of the lower envelope for
families of parabolas before in Sect. 3.2.4, in the context of the general Euclidean
distance transform (EDT).

If using the quadratic model for the smoothness term, the non-truncated message-
update equation (5.41) turns into

mt
p→q(l) = min

h∈L

(
b(h − l)2 + Hp,q(h)

)
(5.45)
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Fig. 5.25 The general case:
m labels, some contributing
to minima (black lines), and
some not (green lines)

Fig. 5.26 The lower
envelope of m parabolas

Again, minima are on the lower envelope of the parabolas defined by the quadratic
penalty functions; see Fig. 5.26.

The parabolas are rooted at (h,Hp,q(h)), and this corresponds exactly to the
input for the EDT; the calculation of lower envelopes is part of an EDT algorithm.
The lower envelope can be calculated in time O(m); see Sect. 3.2.4.

Termination of the Iteration and Results of the Algorithm A termination cri-
terion tells the BP algorithm to stop when the program has done a pre-defined num-
ber of iterations. Other options, such as waiting that the mean of all changes in all
message boards, between iterations t − 1 and t , becomes less than a given positive
threshold τ , are rather impractical (due to no guarantee of convergence).

At the moment t0 of termination, each pixel location p has m cost values
(c

t0
1 , . . . , c

t0
m) at location p in the m message boards, with cost value c

t0
i for label

li for 1 ≤ i ≤ m. The value of the algorithm at p equals f
t0
p = lj for

j = arg min
1≤i≤m

c
t0
i (5.46)

assuming a unique minimum; if several labels have the same minimum cost, then
we decide for a label also present at a 4-adjacent pixel location of p.
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Fig. 5.27 Checkerboard
partition of Ω into red and
black pixel locations

How to Improve Time Complexity? A first option is the so-called red–black
method. Pixel locations in Ω are divided in being either black or red. At iteration t ,
messages are sent from black pixels to adjacent red pixels only; based on received
messages, red pixels sent at iteration t + 1 messages to black pixels; see Fig. 5.27
for a possible partition of Ω .

Insert 5.9 (Jacobi and Gauss–Seidel Relaxations) Consider a system of N

linear equations Ax = b,with all diagonal elements of A being nonzero. With-
out loss of generality, we can consider each equation to be scaled so that
its diagonal element is 1. Write A = I − L − U, where the square matri-
ces L and U have their nonzero elements as minus the elements of A, below
and above the diagonal respectively. Then the N equations can be written as
x = (L + U)x + b.

C.G.J. Jacobi (1804–1851) devised an iterative method for solving those
linear equations for x, starting from an arbitrary initial estimate x0 and com-
puting a sequence of vectors

xk+1 = (L + U)xk + b

Under suitable conditions, the sequence of vectors xk converges to the re-
quired solution x from any initial estimate x0. For example, if

∑
j �=i |aij | < 1

for all i = 1, . . . ,N , then Jacobi’s method converges. Jacobi’s method re-
quires storage space for two consecutive vectors in that sequence of estimates.

A modification of Jacobi’s method was described by Gauss (see Insert 2.4)
in 1823, in a private letter to his student C. L. Gerling (1788–1864), and
a proof was published in 1874 by P.L. von Seidel (1821–1896). That Gauss–
Seidel method requires storage for only one vector x—when each element gets
updated, it replaces the previous value. It can be represented as

xk+1 = Lxk+1 + Uxk + b
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The first row of L has only zeros, and so the first element of xk+1 can be
computed, followed successively by element 2, element 3, . . . , element N .

Now consider matrices A with nonzero elements such that x can be par-
titioned into a red subvector and a black subvector, with each red element
connected (by A) only to black elements and each black element connected
only to red elements (as in Fig. 5.27). The following result has been proved
(see [D.W. Young. Iterative methods for solving partial difference equations of elliptic

type. Trans. American Math. Society, vol. 76, pp. 92–111, 1954.] for such matrices
A: The Gauss–Seidel method converges iff Jacobi’s method converges, and it
converges (asymptotically) at twice the rate of Jacobi’s method.

A second way to achieve a speed-up is using coarse-to-fine BP, also called pyra-
midal BP. Coarse-to-fine BP not only helps to reduce computation time, it also
contributes to achieving more reliable results.

We refer to the regular pyramid image data structure introduced in Sect. 2.2.2.
Pixel locations in one 2 × 2 window in one layer of the pyramid are also adjacent
to one node in the next layer (i.e. the pixel generated from this 2 × 2 window). This
extends the used adjacency relation A in the BP algorithm. We only use a limited
number of layers in the pyramid, such as (say) five.

Using such a pyramidal adjacency relation, the distances between pixels at the
bottom layer are shortened, which makes message propagation more efficient.

What Needs to Be Specified for a BP Algorithm? We need to select the
smoothness term, say, one of the three options (Potts, truncated linear, or truncated
quadratic), with specification of a few parameters involved.

We need to specify the used adjacency relation, with 4-adjacency or a pyramidal
extension of 4-adjacency as common standards.

Finally, the actual application (optic flow, image segmentation, and so forth) dic-
tates possible choices for the data term.

Then we are ready to start the iterations and will decide about a way how or when
to terminate the algorithm.

5.3.5 Belief Propagation for Image Segmentation

We provided two options for data terms for image segmentation in Examples 5.6
and 5.7. Both were examples for selecting initial feature vectors ui for m segment
labels, which will then lead to the calculation of m connected regions (segments) at
least; each label can define multiple segments. There are many more possible ways
for initializing feature vectors ui .

Figure 5.28 illustrates the application of pyramidal BP (using five pyramidal lay-
ers, including the original 1296 × 866 image itself at the ground layer) and not
updating the initial seeds during the BP algorithm.
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Fig. 5.28 Upper left: The original colour image Spring, showing a Spring scene at the Univer-
sity of Minnesota, Minneapolis. Upper right: The segmentation result after five iterations using
pyramidal BP segmentation with a Potts smoothness term with c = 5 and a data term as proposed
in Example 5.6 using the L2-norm. Lower left: After 10 iterations, also for c = 5. Lower right:
Also after 10 iterations but for c = 10

If the initial seeds ui , as proposed, e.g., in Examples 5.6 and 5.7, remain constant
in the iterative process, then this is limiting the flexibility of the technique.

Observation 5.5 It appears to be beneficial to update initial seeds ui in each step
of the BP iteration.

For updating, we consider the results at the end of iteration step t of our BP
algorithm. The value of the algorithm at p equals f t

p = lj for

j = arg min
1≤i≤m

ct
i (5.47)

at this moment. Identical labels define connected regions in the image, the segments
at time t . Without specifying all the technical details, the basic idea can be to select
the m largest segments (by area, i.e. number of pixels), reassign the m labels to those
m segments, and use the centroids of those m largest segments as updated values ut

i

for the next iteration of the BP algorithm. See Fig. 5.29.
Because segment labels are just for identification, not for characterizing segment

properties, only the Potts smoothness term appears to be meaningful for this par-
ticular application of BP. As an alternative, the smoothness term could also penal-
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Fig. 5.29 The results for the image Spring shown in Fig. 5.28. Left: Segmentation result after
five iterations using pyramidal BP segmentation with a Potts smoothness term with c = 5 and a
data term as proposed in Example 5.6 but now using the χ2-norm and updated centroids ut

i . Right:
The result using the same algorithm but after 10 iterations and for c = 10

ize similarities of data represented by adjacent labels, meaning that different labels
should truly reflect dissimilarities in image data.

Observation 5.6 For replacing the Potts smoothness term by an alternative smooth-
ness term in BP segmentation, it appears to be meaningful to include data charac-
teristics into the smoothness term.

This observation is stated here as a research suggestion; see also Exercise 5.10.

5.4 Video Segmentation and Segment Tracking

Video segmentation can benefit from the similarity of subsequent frames. Similarity
can be defined by
1. image-feature consistency, meaning that corresponding segments have similar

image feature statistics,
2. shape consistency, meaning that corresponding segments have about the same

shape (to be refined by requests on scale invariance, rotation invariance, and so
forth),

3. spatial consistency, meaning that corresponding segments have about the same
location (due to the slow motion, also typically about the same size or even about
the same shape), or

4. temporal consistency, meaning that corresponding segments can be tracked due
to modelled camera and/or object movements in the scene (possibly supported
by size or shape similarity).
This section discusses image-feature and temporal consistency. We discuss a

mean-shift algorithm utilizing image-feature consistency in video data. For shape
similarity, the shape features as discussed in Sect. 3.2 might be useful. Regarding
spatial consistency, the moments and, in particular, the centroids of Sect. 3.3.2 are
of relevance.



5.4 Video Segmentation and Segment Tracking 203

Fig. 5.30 Left: A frame of the sequence tennisball. Middle and right: Segment labelling by
assigning colours as labels, showing inconsistency in labelling between Frame t and t + 1. Both
frames have been mean-shift segmented individually

5.4.1 Utilizing Image Feature Consistency

Segments should remain stable over time, and there should be no appearance and
disappearance of spurious segments over time. Mean-shift segmentation can be ex-
tended from still-image segmentation, as discussed before, to video segmentation.

When using colours for segment labelling, the colours should remain consistent
over time and not change as illustrated in Fig. 5.30.

Local Peak Matching We consider nD image feature vectors u at |Ω| pixel loca-
tions in each frame. For example, we can have n = 3 and u = (R,G,B) for colour
images.

We assume consistency between local peaks of feature vectors u between seg-
ments in subsequent frames, meaning that the same peak is approached in two
subsequent frames about at the same image coordinates. Thus, we extend the nD
feature space to an (n + 2)D feature space, also taking the local coordinates x

and y as feature components, but consider the spatial and value components as
separated components us = (x, y) and uv = u, respectively. The combined vec-
tors uc(t) = [us(t),uv(t)] are now the elements in the (n + 2)D feature space for
Frame t . For abbreviation, we again use

Xi,s = 1

r2
s

∥∥us(t + 1) − ui,s(t)
∥∥2

2 and Xi,v = 1

r2
v

∥∥uv(t + 1) − ui,v(t)
∥∥2

2 (5.48)

while assuming a kernel profile ks with radius rs > 0 for the spatial component and
a kernel profile kv with radius rv > 0 for the value component.

At the beginning, Frame 1 is just segmented by mean-shift as a still image.
Frame t + 1 needs to be segmented now, based on results for Frame t . Frame t

has been processed; we have the values ui(t),for i = 1, . . . ,m being the combined
feature vectors of Frame t .

In extension of the mean-shift for still images, as defined by (5.19), we have for
the subsequent-frame case now the following:

mg

(
uc(t + 1)

)=
∑m

i=1 ui (t) · gs(Xi,s ) · gv(Xi,v)∑m
i=1 gs(Xi,s ) · gv(Xi,v)

− uc(t + 1) (5.49)
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Fig. 5.31 Top row: Two subsequent frames of the sequence tennisball. Middle row: Black
pixels (within the ball) are those which do not have matching peaks in the previous frame. Bottom
row: Resultant segments

The mean-shift algorithm continues until uc(t + 1) converges to a local peak that
matches value features in the previous frame, and all feature subsets are pro-
cessed. A local peak for Frame (t + 1) is matched to the closest local peak for
Frame t , assuming that the distance is reasonably small. Otherwise, the local peak
for Frame (t + 1) creates a new class of segments.

Now we implement (5.49) analogously to the way how we did for still images
for (5.19). We detect a new local peak when the mean-shift procedure converges,
which means that the magnitude of the shift vector mg(uc(t + 1)) is below a thresh-
old (e.g., below 100 in case of RGB colour images). Features of a pixel are replaced
by the features of the assigned local peak. Figure 5.31 illustrates this for frames
of the tennisball sequence, where features are 3D colour values. Corresponding
local peaks can be mapped into false colours for better visibility of colour-labelled
segments; see Fig. 5.32.

5.4.2 Utilizing Temporal Consistency

This subsection describes a simpler procedure, which only uses the spatial infor-
mation and not the value distributions in segments. Figure 5.33 illustrates temporal
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Fig. 5.32 False-coloured segments, mapping corresponding local peaks onto the same colour in
four subsequent images of the recorded video sequence

Fig. 5.33 Bounding boxes of tracked segments for video sequences bicyclist and motorway

consistency (in vision-based driver assistance) where segment tracking can benefit
from the fact that corresponding segments in subsequent frames have a substantial
overlap of their pixel locations. Segments have been detected by stereo-image anal-
ysis (to be discussed later in this book), also allowing to label detected segments by
distances (in meters) to the recording camera.

We select segments in subsequent frames of a video sequence that are of rele-
vance for the given application (e.g. we ignore segments that are likely to be part of
the background). For all the selected segments in Frame t , we like to know whether
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Fig. 5.34 The symmetric
difference of sets A and B

they “continue” in Frame t + 1. We assume that there are significant overlaps be-
tween corresponding segments in subsequent frames.

Outline of the Tracking Program Let {At
0,A

t
1, . . . ,A

t
nt

} be the family of seg-

ments selected for Frame t . We aim at pairing of segments At
i and At+1

j in Frames t

and t + 1, which defines tracking when performed along the whole video sequence.

An initially selected family {At
0,A

t
1, . . . ,A

t
nt

} of segments defines our active list
of segments. We search for corresponding segments such that each At

i corresponds
to one At+1

j at most, and each At+1
j to at most one At

i . Some At
is or At+1

j s may not
have corresponding segments. Without modelling camera or object movements, we
simply assume that we select corresponding segments based on overlaps between
segments At

is or At+1
j s, also taking the motion of segment At

i into account as esti-
mated by dense motion analysis (see Chap. 4).

If we cannot find a corresponding segment (also not by using the digital footprint
method defined below), then we remove a segment from the list of active segments.
There should also be a process for adding potentially new active segments to the list
from time to time.

Dissimilarity Measure For measuring the dissimilarity of two segments A and
B , both given as sets of pixel locations in the same xy image domain Ω , we apply
a metric defined by the ratio of the cardinality of the symmetric difference of A and
B , see Fig. 5.34, to the cardinality of their union:

D(A,B) = |(A ∪ B) \ (A ∩ B)|
|A ∪ B| (5.50)

This metric equals 0 if and only if both sets are equal and equals 1 if both sets have
no pixel location (x, y) in common.

Two-Frame Correspondences Because the position of a segment A can change
from Frame t to Frame t + 1, we use the relative motion as obtained by a dense
optical flow algorithm (such as Horn–Schunck, Lucas–Kanade, BBPW, or others)
to compensate for a translational component. Let (up, vp) be the optic flow at pixel
location p. We calculate the mean flow in the region occupied by A in Frame t as
follows:

uA,t = (u, v) = 1

|A|
∑

p∈A

(up, vp) (5.51)
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We translate the pixel locations in a set A by uA,t into a new set A = uA,t [A].
For segment At

i , 1 ≤ i ≤ nt , we identify now that index j0 such that D(At
i,A

t+1
j )

is minimal, for all j = 1, . . . , nt+1:

j0 = arg min
j=1,...,nt+1

D
(
At

i,A
t+1
j

)
(5.52)

For excluding insignificant correspondences, we select a threshold T , 0 < T < 1,
such that we only accept correspondences if

D
(
At

i,A
t+1
j0

)
< T (5.53)

Altogether, we identified At+1
j0

to be the segment in Frame t + 1 that corresponds to
segment At

i in Frame t , formally denoted by

A ⇒u B (5.54)

for A = At
i , B = At+1

j0
, and u = uA,t . Because, theoretically, there may be multiple

segments A in Frame t that identify the same segment B in Frame t + 1 as being
corresponding, we transform (5.54) into a one-to-one mapping by assigning B to
the set A of selected candidates that minimizes the metric D(A,B).

History of Length τ In order to track corresponding segments over multiple
frames, we apply the two-frame correspondence procedure repeatedly and also try
to deal with cases where segments change or even disappear for a short time. We
apply a simple statistical filter.

The filter stores for each tracked segment its history of τ corresponding segments
at previous time slots. For example, if recording at 25 Hz, we may use a value such
as τ = 6, thus less than a quarter of a second.

The history of length τ of a segment B in Frame t is defined by the sequence

A1 ⇒u1 A2 ⇒u2 · · · ⇒uτ−1 Aτ ⇒uτ B (5.55)

if there is always a corresponding segment defined when going backward from
Frame (t − i) to Frame (t − [i + 1]) for i = 0, . . . , τ − 1.

Mapping of History Segments into Frame t The segment Aτ in Frame t − 1
was moved by uτ into uτ [Aτ ] when identifying the best match with B in Frame t .
Segment Aτ−1 in Frame t − 2 was moved by uτ−1 into uτ−1[Aτ−1] when identi-
fying the best match with Aτ in Frame t − 1, thus defining set uτ [uτ−1[Aτ−1]] in
Frame t when applying the next move uτ of the given history. In continuation, the
segment A1 moves into uτ [uτ−1[. . .u1[. . . [A1] . . .]]] in Frame t .

In this way we map all the previous τ segments, detected to be in correspondence
with segment B in Frame t , into their normalized locations in Frame t ; the segment
A1 is translated τ times, the segment A2 is translated τ − 1 times, and so forth.



208 5 Image Segmentation

Temporal Relevance and Temporal Footprint We assign a weight ωi uniformly
to each pixel location in the segment Ai for 1 ≤ i ≤ τ , with ω1 ≤ ω2 ≤ · · · ≤ ωτ ≤ 1.
In this way we weight the temporal relevance of the segment Ai for its appearance
in Frame t .

For example, for τ = 6, we may use the weights 0.1,0.1,0.15,0.15,0.2,0.3, in
this order, for 1 ≤ i ≤ 6.

We accumulate now all those weights (by addition) at pixel locations resulting
from the performed translations of the segments Ai into Frame t , defining the tem-
poral footprint of the set Aτ over its history of length τ being the set of all pixel
locations having an accumulated weight above the threshold 0.5.

Two-Frame Correspondence Revised Two-frame correspondence search from
Frame (t − 1) to Frame t can now use this generated temporal footprint in
Frame t . If there is no corresponding segment B in Frame t , then we use
the temporal footprint of the set Aτ as segment B , defining now the new set
Aτ by shifting all the history parameters forward for defining now a digi-
tal footprint in Frame (t + 1) using the mean optical flow uB,t . We can use
this kind of propagation (without having actually a corresponding segment in
Frame t) for a limited time, for example for τ frames, assuming that a tem-
porarily disappearing segment will show up again in a later frame, being only
temporarily partitioned into other segments, merged with other segments, or
not present due to similar operations. If a segment is not confirmed again,
then it is discarded from the list of active segments used for frame track-
ing.

5.5 Exercises

5.5.1 Programming Exercises

Exercise 5.1 (Decrease in Number of Segments After Smoothing) As input, use
grey-level images I of your choice, or generate grey-level images I with random
grey levels in the range 0 to Gmax (Hint: call the system function RANDOM for
each visited pixel). Input images should be of decent size such as 500×500 at least.
Process input images as follows:
1. Perform a 5 × 5 box filter on I for value smoothing.
2. Implement the fill-algorithm shown in Fig. 5.8 and count the number of resulting

segments.
3. Repeat these two steps a few times (on the same generated image). Generate a

diagram how the number of segments changes with the number of applications
of the box filter.

Compare results of your implementation with those of the function flood-

Fill in OpenCV.
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Fig. 5.35 Left: NPR of the image MissionBay; see Fig. 5.6 for original and stylization. Right:
NPR of the image AnnieYukiTim; see Fig. 5.2 for original and stylization

Exercise 5.2 (Winnemöller Stylization, Mean-Shift Segmentation, and Simplifica-
tion) This is a little project towards artistic rendering of taken photographs. Com-
bine the following three processes into one solution for non-photorealistic rendering
(NPR):
1. Derive binary edges for a given colour image based on Winnemöller stylization.
2. Perform mean-shift segmentation such that regions of constant colour value are

created.
3. Do alpha-blending for the results obtained in the previous two processes and sim-

plify the obtained colour image even further such that in regions circumscribed
by edges as a general trend only one colour value is shown (i.e. enhance the
posterization effect within regions defined by the obtained edges).

Figure 5.35 illustrates two results for such a combination of the briefly mentioned
subprocesses.

Exercise 5.3 (Mean-Shift Segmentation in OpenCV) The function meanShift in
OpenCV uses parameters for spatial radius (sp), colour radius (cr), and used lev-
els in the image pyramid (L).

Parameter k = sp defines the window size (2k + 1) × (2k + 1) in the spatial
domain (i.e. carrier Ω). The parameter cr defines the window size in the feature
space with “feature = colour” (i.e. consider all values (R,G,B) with

∥∥(R,G,B) − (R0,G0,B0)
∥∥

1 ≤ cr

where (R0,G0,B0) is the image value at the current pixel. The parameter
L=maxLevel is greater than or equal to 0; this means that a pyramid of L+1 levels
is used.

Figure 5.36 illustrates results for L=1 (i.e. two levels); the top row illustrates the
application of subsequent segment colouring using the function floodFill.

Discuss the meaning and impacts of the parameters cr, sp, and L with reference
to provided explanations in this chapter and by using images of your choice, also
including the image Spring as an example for a difficult segmentation.
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Fig. 5.36 Top: Segmentation results for the image Aussies, where segments are pseudo–
coloured rather than shown with the image value identified at the peak. Use of sp=12 and sr=19
(left), or use of sp=5 and sr=24 (right). Bottom: The image Xochicalco (left) and segmented
image (right) using sp=25 and sr=25

Exercise 5.4 (Belief-Propagation Segmentation) Implement belief-propagation
segmentation for the parameterization as specified in the captions for Figs. 5.28
and 5.29 (e.g. just use of the simple Potts model). Include the image Spring

in your set of test images. Compare your segmentation results with those given
in these two figures. Perform further variations in parameters of the algorithm,
for example with the goal to reduce the number of segments, or with the goal
to improve segments showing “just one person” or just a few “merged” per-
sons.

Exercise 5.5 (Background Modelling) Images (e.g. in video surveillance) are often
segmented into objects and background, i.e. a partition of Ω into only two types
of pixels. Modelling the background by a mixture of Gaussians (e.g. three to five
Gaussians) has been a standard approach in this area for some years. Figure 5.37
illustrates the application of this technique, which has been not described in this
textbook. The original reference for the method is [C. Stauffer and W.E.L. Grimson.

Adaptive background mixture models for real-time tracking. In Proc. Computer Vision Pattern

Recognition, 1998], and there are many related materials available on the net, including
sources.
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Fig. 5.37 Top: Original scenes. Middle: Background versus objects. Bottom: Post-processing with
elimination of shadows in object areas

Record your own indoor or outdoor video data, study and understand the method,
and model the background by a mixture of Gaussians, as proposed by Stauffer and
Grimson.

Exercise 5.6 (Calculation of Recovery Rate) Select “simple” images that show only
a small number of segments, such as less than 10. Provide the ground truth for those
images, for example by manually identifying borders of segments.

Select a segmentation algorithm of your choice for these images and compare the
obtained segments with the given ground truth by using the recovery rate measure
as defined in Exercise 5.9.
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5.5.2 Non-programming Exercises

Exercise 5.7 Suppose that the mean-shift algorithm for features clustering (as de-
scribed on p. 188) uses a window of K grid points in a feature space, the histogram
table includes C nonempty cells, and exactly M ≥ C different grid points are visited
as the result of all mean calculations.
1. Show that the total time of the mean-shift algorithm is of asymptotic time com-

plexity3 O(MK + M2), where power two comes from multiple visits over the
same path from a given grid point to the stable mean point.

2. In order to avoid multiple visits, apply the ideas of the UNION-FIND algorithm
(R. Tarjan 1975), i.e. when you visit the grid point v = u + mg(u) as the result
of mean shifting to grid point u, then assign to q the following segment:

SEG(v) = UNION
(
SEG(u),FIND(q)

)

where v is rounded to the nearest grid point, and FIND(q) returns the segment q

belongs to.
Show that the use of UNION-FIND data structures reduces the time complex-

ity for mean-shift clustering from O(MK + M2) to O(MK).

Exercise 5.8 If we like to use the mean-shift idea to identify local maxima in a
histogram in the feature space, then we find all grid points in the feature space for
which the shift mg(u) is sufficiently small:

M = {
u : ‖mg(u)‖2 < �u

}

where �u is a grid step in the feature space.
Show that using a window with K grid points for the feature histogram with C

nonempty cells requires O(CK) time to identify the set of grid points M approxi-
mating local maxima.

Exercise 5.9 We define the recovery rate, which is useful when comparing different
segmentation or clustering techniques.

We consider clustering of vectors x ∈ R
d for d > 0. For example, consider vec-

tors x = [x, y,R,G,B], with d = 5, for segmenting a colour image.
Our general definition is: A clustering algorithm A maps a finite set S of points

in R
d into a family of pairwise-disjoint clusters. A segmentation algorithm is an

example for this more general definition.
Assume that we have an algorithm A which maps S into m > 0 pairwise disjoint

clusters Ci (e.g. segments) for i = 1,2, . . . ,m, containing mi = |Ci | vectors xij ∈
R

d . When segmenting an image, the sum of all mis is equal to the cardinality |Ω|.
We call the Cis the old clusters.

3Consider increasing functions f and g from the set N of natural numbers into the set R+ of
positive reals. We have f (n) ∈ O(g(n)) iff there exist a constant c > 0 and an n0 > 0 such that
f (n) ≤ c · g(n) for all n ≥ n0.
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Now consider another clustering algorithm B , which maps the same set S into
n > 0 pairwise disjoint clusters Gk for k = 1,2, . . . , n. We call the Gks the new
clusters. A new cluster Gk contains vectors x that were assigned by A to old clusters.
Let

Gk =
sk⋃

j=1

Gkj

where each Gkj
is a non-empty subset of exactly one old cluster Ci for j =

1,2, . . . , sk . Indices or names i and k of old and new clusters are not related to
each other, and in general we can expect that n �= m. Let us assume that n ≤ m (i.e.
the number of new clusters is upper bounded by the number of old ones).

An ideal recovery would be if each old cluster is equal to one of the new clusters,
i.e. the two sets of clusters are just permutations by names, and n = m. Both algo-
rithms A and B , would, for example, lead to the same image segmentation result;
the segments might be just labelled by different colours.

Now we select contributing sets G1j1
,G2j2

, . . . ,Gnjn
, one for each new cluster,

which optimize the following two properties:
1. For each pair aja and bjb

of two different indices in the set {1j1,2j2, . . . , njn},
there exist two different old clusters Ca and Cb such that Gaja

⊆ Ca and
Gbjb

⊆ Cb .
2. Let Ck be the old cluster assigned to subset Gkjk

of the new cluster Gk in the
sense of the previous item such that the sum

m∑

k=1

|Gkjk
|

|Ck|

is maximized; and this maximization is achieved for all possible index sets
{1j1,2j2, . . . , njn}.

The selected contributing sets G1j1
,G2j2

, . . . ,Gnjn
are thus assigning each new

cluster Gk to exactly one old cluster Ck by maximizing the given sum. In particular,
a chosen subset Gkjk

might be not the one of maximum cardinality in the partition of
Gk ; the selected contributing sets have been selected by maximizing the total sum.
Then, the value

RA(B) =
n∑

k=1

|Gkjk
|

|Ck| × 100 %

n

is called the recovery rate for a clustering algorithm B with respect to an algo-
rithm A for input set S.

Note that we also do not need an algorithm A for comparison; just a given set of
old clusters (say, the ground truth) is fine for calculating the recovery rate.

Discuss the asymptotic time complexity of the proposed measure for a recovery
rate for clustering (and segmentation in particularly).
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Exercise 5.10 Observation 5.6 suggest to replace the simple Potts smoothness term
by an alternative smoothness term in BP segmentation. For example, if μ1 and μ2
are the intensity means in adjacent segments, then the constant c in (5.33) can be
replaced by a term where c is scaled in dependency of the difference |μ1 − μ2|.

Specify modified smoothness functions based on (5.33) that include data charac-
teristics into the smoothness term.

Exercise 5.11 Show that the dissimilarity measure D defined in (5.50) is a metric
satisfying the three properties of a metric as specified in Sect. 1.1.3 on the family of
sets of pixels. Each set of pixels has a defined cardinality (i.e. the number of pixels
in this set).
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This chapter describes three basic components of a computer vision system. The
geometry and photometry of the used cameras needs to be understood (to some de-
gree). For modelling the projective mapping of the 3D world into images and for the
steps involved in camera calibration, we have to deal with several coordinate sys-
tems. By calibration we map recorded images into normalized (e.g. geometrically
rectified) representations, thus simplifying subsequent vision procedures.

Insert 6.1 (Niépce and the First Photograph) The world’s first photograph
(image is in the public domain) was taken in 1826 in France by N. Niépce
(1765–1833). It shows a view from a workroom on his farm at Le Gras:

During eight hours of exposure time (note: buildings are illuminated by
the sun from the right and from the left), the photograph was captured on
a 20 × 25 cm oil-treated bitumen.

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_6, © Springer-Verlag London 2014
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Fig. 6.1 A drawing (in the public domain) of a camera obscura in the 17th century “Sketchbook
on military art, including geometry, fortifications, artillery, mechanics, and pyrotechnics”. Outside
objects are projected top-down through a small hole onto a wall in the dark room

6.1 Cameras

The principle of a camera obscura is illustrated in Fig. 6.1. A small hole in the wall
of a dark room projects the outside world top-down. This was known for thousands
of years (e.g. about 2500 years ago in China), but it took till the beginning of the
19th century that projected images also were recorded on a medium, thus “frozen in
time”. By inserting a lens into the hole, the brightness and clarity of camera obscuras
improved in the 16th century.

This section discusses features of cameras that may help you in the decision
process which camera(s) should be used in your research or application. It also
provides basic models for a single camera or a stereo-camera system, to be used in
the following chapters.

6.1.1 Properties of a Digital Camera

A digital camera uses one or several matrix sensors for recording a projected im-
age. See Fig. 6.2, left. A sensor matrix is an Ncols × Nrows array of sensor elements
(phototransistors), produced either in charge-coupled device (CCD) or complemen-
tary metal-oxide semiconductor (CMOS) technology. The first digital camera was
Sony’s Mavica in 1981, after which other digital cameras were manufactured.
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Fig. 6.2 Left: A sensor matrix. The individual cells are so tiny that they cannot be seen here, even
after zooming in. Right: A sketch of the Bayer pattern

Fig. 6.3 The analysis of a car crash test (here at Daimler A.G., Sindelfingen, Germany) was based
(in 2006) on high-resolution images captured at 1,000 pps

Computer Vision Cameras Computer vision benefits from the use of high-
quality cameras. Important properties are, for example, the colour accuracy, reduced
lens distortion, ideal aspect ratio, high spatial (also called high-definition) image res-
olution, large bit depth, a high dynamic range (i.e. value accuracy in dark regions of
an image as well as in bright regions of the same image), and high speed of frame
transfer. See Fig. 6.3 for an example of an application requiring high-quality cam-
eras (e.g. for answering the question: “Did the mannequin’s head hit the steering
wheel?”).

Computer vision cameras are typically permanently connected to a computer (via
a video port or a frame grabber) and require software for frame capture or camera
control (e.g., for time synchronization, panning, tilting, or zooming).
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Fig. 6.4 Half-frames defined by either odd (left) or even (right) row indices

Digital Video Digital cameras provide normally both options of recording still
images or video data. For a given camera, spatial times temporal resolution is typi-
cally a constant. For example, a camera which captures 7,680×4,320 (i.e. 33 Mpx)
at 60 fps, records 1.99 Gpx (Gigapixels) per second. The same camera may also sup-
port to record 2,560 × 1,440 (i.e. 3.7 Mpx) at 540 fps, which also means 1.99 Gpx
per second.

Interlaced digital video scans subsequent frames either at odd or even lines of
the image sensor; see Fig. 6.4. Analog video introduced this technique for reducing
transmission bandwidth. Reasons for interlaced video scans disappear with today’s
imaging technology.

Interlaced video is in particular disturbing for automated video analysis. Ways of
combining both half-frames into one full frame can be (e.g.) by linear interpolation
or simply by doubling rows in one half-frame.

Each frame contains the entire image in progressive video. This not only leads to
better visual video quality, it also provides an appropriate input for video analysis.

Image Resolution and Bit Depth Each phototransistor is an a × b rectangular
cell (e.g. a and b are about 2 µm each). Ideally, the aspect ratio a/b should be equal
to 1 (i.e. square cells).

The image resolution Ncols ×Nrows (= number of sensor elements) is commonly
specified in Megapixels (Mpx). For example, a 4-Mpx camera has ≈4,000,000 pix-
els in an image format such as 3 : 4 or 9 : 16. Without further mentioning, the
number of pixels means “colour pixels”. For example, Kodak offered in 1991 its
DCS-100, which had a 1.3-Mpx sensor array.

A large number of pixels alone does not yet ensure image quality. As a simple
example, more pixels means in general a smaller sensor area per pixel, thus less light
per sensor area and a worse signal-to-noise ratio (SNR). The point-spread function
of the optics used has to ensure that a larger number of pixels does not simply
lead to additional noise in images. For computer vision applications, it is also often
important to have more than just 8 bits per pixel value in one channel (e.g. it is of
benefit to have 16 bits per pixel in a grey-level image when doing motion or stereo
analysis).

Bayer Pattern or Beam Splitting The Bayer pattern (named after B. Bayer at
Eastman Kodak) is commonly used on consumer digital cameras. One colour pixel
is actually captured by four sensor elements, two for Green and one for Red and



6.1 Cameras 219

Fig. 6.5 A selected window in the red patch and histograms for the R, G, and B channels

Blue each. See Fig. 6.2, right. A sensor array of size Ncols × Nrows then actually
records only colour images of resolution Ncols

2 × Nrows
2 . Values R, G, and B at one

recorded pixel are recorded at locations being one sensor element apart.
Alternatively, a beam splitter (e.g. using two dichroic prisms) is used in high-

quality digital colour cameras to split light into three beams of differing wave-
lengths, one for the Red, one for the Green, and one for the Blue component. In
this case, three Ncols × Nrows sensor arrays are used, and values R, G, and B at one
pixel then actually correspond to the same pixel location.

Colour Accuracy A colour checker is a chart of squares showing different grey-
levels or colour values. For example, see the colour checker from Macbeth™ in
Figs. 1.32 and 6.5.

Example 6.1 (Colour Accuracy by Histogram Analysis) For evaluating colour ac-
curacy, take an image of such a chart, preferably under diffuse illumination (for re-
ducing the impact of lighting on colour appearance). Position a window within one
patch of the acquired image. The histogram of such a window (if a colour patch,
then three histograms for R, G, and B channels) should describe a “thin peak” for a
camera with high colour accuracy. See Fig. 6.5.

Means of windows within different patches should relate (relatively, due to il-
lumination effects) to each other as specified by the norm RGB values of those
patches, provided by the producer of the colour checker.

Lens Distortion Optic lenses contribute the radial lens distortion to the projection
process when capturing images, also known as the barrel transform or pincushion
transform; see Fig. 6.6.

If a rectangular planar region is captured such that the projection centre is or-
thogonally in front of the centre of the region, then the region should ideally appear
as a rectangle.
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Fig. 6.6 Left to right: An image grid distorted by a barrel transform, an ideal rectangular image,
an image grid distorted by a pincushion transform, and a projective and lens distortion combined
in one image

Fig. 6.7 Grey-level bar going linearly up from Black (value 0) to White (value Gmax)

Example 6.2 (Quantifying Lens Distortion) By capturing a regular grid (e.g., a
checker board), the deviation of captured lines from the ideal of straight lines can
be used to characterize the lens distortion of a camera. Effects of lens distortion
depend on the distance to the test pattern and appear often together with projective
distortions. See Fig. 6.6, right.

Linearity of a Camera Cameras are often designed in a way that they correspond
to the perceived brightness in the human eye, which in nonlinear. For image analysis
purposes, we either turn off the nonlinearity of created values, or, if not possible, it
might be desirable to know a correction function for mapping captured intensities
into linearly distributed intensities.

Patches of grey values, such as the bottom row of patches (representing grey
levels) on the Macbeth™ colour checker or the linear bar in Fig. 6.7, can be used
for testing the linearity of the measured intensity values M = (R + G + B)/3.

Assume that a black patch results in the mean intensity value umin (= 0 in the
ideal case) and a white patch results in the mean intensity value umax (= Gmax in
the ideal case). Now consider a patch which is a % white (i.e. (100 − a) % black).
Then this patch should get the corresponding linear value

umin + a

100
(umax − umin) (6.1)

between umin and umax. Deviations from this expectation define correction values.

6.1.2 Central Projection

Ignoring radial distortions caused by the used optical lens, a projection through a
small hole can be described by the theoretical model of a pinhole camera.
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Fig. 6.8 Left: A sketch of an existing pinhole camera; a point P is projected through the hole (the
projection centre) onto the image plane at distance f behind the hole; the projected image appears
top-down. Right: A model of a pinhole camera, with an image of width W and viewing angle α; in
the model we assume that the image plane is between world and projection centre

Model of a Pinhole Camera In this model, the diameter of the hole is assumed to
be “very close” to zero. Existing pinhole cameras, also known as “shoebox cameras”
(using either film or sensor matrices for image recording; see the web for photo
examples) use indeed very small pinholes and long exposure times.

See Fig. 6.8, right, for the model of a pinhole camera. The pinhole is here called
the projection centre. For avoiding top-down reversed images, the model has the
projection centre behind the image plane.

We assume a right-hand XsYsZs camera coordinate system.1 The Zs -axis points
into the world, called the optic axis. Because we exclude the consideration of radial
distortion, we have undistorted projected points in the image plane with coordinates
xu and yu. The distance f between the xuyu image plane and the projection centre
is the focal length.

In cases where the value of f is not (even in some abstract sense) defined by a
focal length of a camera, it can also be called the projection parameter.

An ideal pinhole camera has a viewing angle (see Fig. 6.8, right) of

α = 2 arctan
W

2f

The focal length f typically starts at 14 mm and can go up to multiples of 100 mm.
For example, for W = 36 mm and f = 14 mm, the horizontal viewing angle equals
about α = 104.25◦.2 This model of a pinhole camera uses notions of optics in an ab-
stract sense; it disregards the wave nature of light by assuming ideal geometric rays.
It also assumes that objects are in focus, whatever their distance is to the camera. If
projecting a visible surface point at close range, under practical circumstances we

1The subscript “s” comes from “sensor”; the camera is a particular sensor for measuring data in
the 3D world. A laser range-finder or radar are other examples of sensors.
2For readers who prefer to define a wide angle accurately: let it be any angle greater than this
particular α = 104.25◦, with 360◦ as an upper bound.
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Fig. 6.9 Left: The central projection in the XsZs plane for focal length f . Right: An illustration
of the ray theorem for xu to Xs and f to Zs

would have to focus an applied camera to this range (the parameter f of the camera
increases to some f + z this way).

Central Projection Equations The XsYsZs Cartesian camera coordinate sys-
tem can be used for representing any point in the 3D world. A visible point
P = (Xs,Ys,Zs) in the world is mapped by the central projection into a pixel loca-
tion p = (xu, yu) in the undistorted image plane; see Fig. 6.9, left. The ray theorem
of elementary geometry tells us that f to Zs (of point P ) is the same as xu (of pixel
location p) to Xs (of point P ), with analogous ratios in the YsZs plane. Thus, we
have that

xu = f Xs

Zs

and yu = f Ys

Zs

(6.2)

In the following we make use repeatedly of those two equations in (6.2).

The Principal Point Figure 6.8, right, illustrates that the optical axis intersects the
image somewhere close to its centre. In our assumed xy image coordinate system
(see Fig. 1.1) we have the coordinate origin in the upper left corner of the image,
and not somewhere close to its centre, as it occurs for the xuyu image coordinates.

Let (cx, cy) be the intersection point of the optical axis with the image plane
in xy coordinates. This point (cx, cy) is called the principal point in the xy image
plane, and it needs to be determined by camera calibration. It follows that

(x, y) = (xu + cx, yu + cy) =
(

f Xs

Zs

+ cx,
f Ys

Zs

+ cy

)
(6.3)

The pixel location (x, y) in our 2D xy image coordinate system also has the 3D
coordinates (x − cx, y − cy, f ) in the XsYsZs camera coordinate system.

6.1.3 A Two-Camera System

For understanding the 3D geometry of a scene, it is convenient to use more than just
one camera. Stereo vision requires two or more cameras.
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Fig. 6.10 Left: A stereo camera rig on a suction pad with indicated base distance b. Right: A for-
ward-looking stereo camera system integrated into a quadcopter

Fig. 6.11 The canonical (or
standard) stereo geometry

Stereo Camera System If we use two or more cameras in a computer vision appli-
cation, then they should be as identical as possible for avoiding unnecessary difficul-
ties. Calibration will then allow us to have virtually two identical copies of the same
camera. The base distance b is the translational distance between the projection
centres of two cameras. See Fig. 6.10, left. Figure 6.10, right, shows a quadcopter
where the forward-looking integrated stereo camera system has a base distance of
110 mm (a second down-looking stereo camera system in this quadcopter has a base
distance of 60 mm).

After calibrating two “nearly parallel” cameras, the base distance b is the only
remaining parameter defining the relative pose of one camera with respect to the
other.

Canonical Stereo Geometry As a result of calibration (to be described later),
assume that we have two virtually identical cameras perfectly aligned as illustrated
in Fig. 6.11. We describe each camera by using the model of a pinhole camera.
The canonical stereo geometry of two cameras (also known as the standard stereo
geometry) is characterized by having an identical copy of the camera on the left
translated by the distance b along the Xs -axis of the XsYsZs camera coordinate
system of the left camera. The projection centre of the left camera is at (0,0,0) and
the projection centre of the cloned right camera is at (b,0,0). In other words, we
have
1. two coplanar images of identical size Ncols × Nrows,
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Fig. 6.12 Omnidirectional cameras. Left: A fish-eye camera. Right: A digital camera with a hy-
perboloidal-shaped mirror

2. parallel optic axes,
3. an identical effective focal length f , and
4. collinear image rows (i.e., row y in one image is collinear with row y in the

second image).
By applying the central projection equations of (6.2) for both cameras, a 3D point
P = (Xs,Ys,Zs) in the XsYsZs coordinate system of the left camera is mapped into
undistorted image points

puL = (xuL, yuL) =
(

f · Xs

Zs

,
f · Ys

Zs

)
(6.4)

puR = (xuR, yuR) =
(

f · (Xs − b)

Zs

,
f · Ys

Zs

)
(6.5)

in the left and right image planes, respectively. Calibration has to provide accurate
values for b and f for being able to use those equations when doing stereo vision.

6.1.4 Panoramic Camera Systems

Panoramic imaging sensor technology contributes to computer vision, computer
graphics, robot vision, or arts. Panoramic camera systems can either record a wide-
angle image in one shot or are designed for recording multiple images, to be stitched
or combined into one wide-angle image.

Omnidirectional Camera System Omnidirectional camera systems observe a
360-degree field of view; see Fig. 6.12 for two examples of such cameras. Omni-
directional imaging can be classified into catadioptric or dioptric systems.3 A cata-
dioptric system is a combination of a quadric mirror and a conventional camera; a

3Catadioptric: pertaining to, or involving both the reflection and the refraction of light; dioptric:
relating to the refraction of light.
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Fig. 6.13 Upper row: Original fish-eye images (180-degree fields of view, showing Prague castle
and a group of people). Lower row: Resulting panoramic images

Fig. 6.14 An experimental
rotating sensor-line camera
configuration using a
sensor-line camera mounted
on a small turntable (for
selecting a fixed viewing
angle ω with respect to the
normal of the rotation circle
defined by the big turntable),
which is on an extension
slide, thus allowing us to
chose a fixed distance R from
the rotation centre of the big
turntable

dioptric system has a specially designed refractor, which controls the angles of rays
passing through the optical lens of the camera.

Figure 6.13 shows examples of recorded images. A mapping of a captured wide-
angle field of view into a cylindric panorama is a solution to support common sub-
sequent image analysis. Single-centre cylindric images possess perspective-like ap-
pearance and suppress circular distortion as given in catadioptric or dioptric images.
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Fig. 6.15 A panoramic image of Auckland CBD recorded in 2001 from the top of Auckland
Harbour Bridge using the sensor-line camera shown in Fig. 6.14

Rotating Sensor-Line Camera System A rotating sensor-line camera produces
cylindric panoramas when used in a configuration as illustrated in Fig. 6.14. The
configuration is basically characterized by radius R and viewing angle ω.

The sensor-line camera records in one shot 1 × Nrows pixels. It records subse-
quently (say, Ncols times) images during one rotation, thus allowing us to merge
those Ncols line-images into one Ncols × Nrows array-image.

A benefit is that the length Nrows of the sensor line can be several thousands of
pixels. The rotating sensor-line camera may record 360◦ panoramic images within
a time frame needed for taking Ncols individual shots during one full rotation. Fig-
ure 6.15 shows an example of a 56,580 × 10,200 panorama captured in 2002 by
a rotating sensor-line camera. The technology records dynamic processes in sub-
sequent single-line images, which might be disturbing or desirable, depending on
interests.

Stereo Vision with a Rotating Sensor-Line Camera System A rotating sensor-
line camera system can record a stereo panorama by rotating it once with a viewing
angle ω and then again with a viewing angle −ω, thus recording two cylindric array-
images during both rotations, which define a stereo pair of images. See Fig. 6.16. If
using a matrix-camera (i.e. of standard pinhole type), then it is sufficient to rotate
this camera once and to compose panoramic images for a symmetric pair of angles
ω and −ω just from a pair of image columns symmetric to the principle point of the
camera used.
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Fig. 6.16 Left: A top-view on a sensor-line camera with focal length f rotating at distance R to
rotation centre and with viewing angle ω to normal of the rotation circle. Right: All the same but
with viewing angle −ω

Insert 6.2 (Panoramic Vision) This is a very active field of research and ap-
plications, and we only provide two references here for further reading, the
books [K. Daniilidis and R. Klette, eds. Imaging Beyond the Pinhole Camera. Springer,

Dordrecht, 2007] and [F. Huang, R. Klette, and K. Scheibe. Panoramic Imaging. Wiley,

West Sussex, England, 2008].

6.2 Coordinates

This section discusses world coordinates, which are used as reference coordinates
for cameras or objects in the scene. We also detail homogeneous coordinates, which
provide a way to perform coordinate transforms uniformly by matrix multiplication
(after extending the 3D world coordinate system by one more coordinate axis).

6.2.1 World Coordinates

We have cameras and 3D objects in the scenes to be analysed by computer vision.
It is convenient to assume an XwYwZw world coordinate system that is not defined
by a particular camera or other sensor. A camera coordinate system XsYsZs needs
then to be described with respect to the chosen world coordinates; see Fig. 6.17.
Figure 6.18 shows the world coordinate system at a particular moment during a
camera calibration procedure.

Affine Transform An affine transform of the 3D space maps straight lines into
straight lines and does not change ratios of distances between three collinear points.
The mathematical representation of an affine transform is by a linear transform
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Fig. 6.17 Camera and world
coordinate systems

defined by a matrix multiplication and a translation. For example, we may first apply
a translation T = [t1, t2, t3]T followed by a rotation

R =
⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦= R1(α) · R2(β) · R3(γ ) (6.6)

where

R1(α) =
⎡

⎣
1 0 0
0 cosα sinα

0 − sinα cosα

⎤

⎦ (6.7)

R2(β) =
⎡

⎣
cosβ 0 − sinβ

0 1 0
sinβ 0 cosβ

⎤

⎦ (6.8)

R3(γ ) =
⎡

⎣
cosγ sinγ 0

− sinγ cosγ 0
0 0 1

⎤

⎦ (6.9)

are the individual rotations about the three coordinate axes, with Eulerian rotation
angles α, β , and γ , one for each axis. A translation preceded by rotation would lead
to a different rotation matrix and a different translation vector in general.

Observation 6.1 Rotation and translation in the 3D space are uniquely determined
by six parameters α, β , γ , t1, t2, and t3.

World and Camera Coordinates World and camera coordinates are transformed
into each other by a linear (or affine) transform. Consider the affine transform
of a point in the 3D space, given as Pw = (Xw,Yw,Zw) in world coordinates,
into a representation Ps = (Xs,Ys,Zs) in camera coordinates. Besides this coor-
dinate notation for points used so far, we also use the vector notation, such as
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Pw = [Xw,Yw,Zw]T for a point Pw . We have that

(Xs,Ys,Zs)
T = R · [(Xw,Yw,Zw)T + T

]=
⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦ ·
⎡

⎣
Xw + t1
Yw + t2
Zw + t3

⎤

⎦

(6.10)
for a rotation matrix R and a translation vector T, which need to be specified by cali-
bration. Note that Pw = (Xw,Yw,Zw) and Ps = (Xs,Ys,Zs) denote the same point
in the 3D Euclidean space, just with respect to different 3D coordinate systems.

By multiplying the matrix and the vector in (6.10) we obtain that

Xs = r11(Xw + t1) + r12(Yw + t2) + r13(Zw + t3) (6.11)

Ys = r21(Xw + t1) + r22(Yw + t2) + r23(Zw + t3) (6.12)

Zs = r31(Xw + t1) + r32(Yw + t2) + r33(Zw + t3) (6.13)

Projection from World Coordinates into an Image Assume that a point Pw =
(Xw,Yw,Zw) in the 3D scene is projected into a camera and visible at an image
point (x, y) in the xy coordinate system. The affine transform between world and
camera coordinates is as defined in (6.11) to (6.13). Using (6.3), we have in camera
coordinates that

⎡

⎣
x − cx

y − cy

f

⎤

⎦=
⎡

⎣
xu

yu

f

⎤

⎦= f

⎡

⎣
Xs/Zs

Ys/Zs

1

⎤

⎦= f

⎡

⎢⎢
⎣

r11(Xw+t1)+r12(Yw+t2)+r13(Zw+t3)
r31(Xw+t1)+r32(Yw+t2)+r33(Zw+t3)

r21(Xw+t1)+r22(Yw+t2)+r23(Zw+t3)
r31(Xw+t1)+r32(Yw+t2)+r33(Zw+t3)

1

⎤

⎥⎥
⎦

(6.14)
where we also model the shift in the image plane by (cx, cy,0) into the principal
point in undistorted image coordinates.

6.2.2 Homogeneous Coordinates

In general, it is of benefit to use homogeneous coordinates rather than just inho-
mogeneous coordinates (as so far in this text). Just to mention one benefit: in ho-
mogeneous coordinates, the subsequent steps of matrix multiplication and vector
addition in an affine transform, as, for example, in (6.10), reduce to just one matrix
multiplication.

Homogeneous Coordinates in the Plane We first introduce homogeneous coor-
dinates in the plane before moving on to the 3D space. Instead of using only co-
ordinates x and y, we add a third coordinate w. Assuming that w �= 0, (x′, y′,w)

represents now the point (x′/w,y′/w) in the usual 2D inhomogeneous coordinates;
the scale of w is unimportant, and thus we call (x′, y′,w) homogeneous coordi-
nates for a 2D point (x′/w,y′/w). Obviously, we can decide to use only w = 1 for
representing points in the 2D plane, with x = x′ and y = y′.
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Of course, you noticed that there is also the option to have w = 0. Homogeneous
coordinates (x, y,1) define existing points, and coordinates (x, y,0) define points
at infinity.

Lines in the Plane A straight line in the plane is now represented by the equation

a · x + b · y + 1 · c = [a, b, c]T · [x, y,1] = 0 (6.15)

Consider two straight lines γ1 = (a1, b1, c1) and γ2 = (a2, b2, c2) in the plane, rep-
resented in the introduced homogeneous representation. They intersect at the point

γ1 × γ2 = (b1c2 − b2c1, a2c1 − a1c2, a1b2 − a2b1) (6.16)

given in homogeneous coordinates. Formula (6.16) is also known as the cross prod-
uct of two vectors. For parallel lines, we have that a1b2 = a2b1; the parallel lines
intersect at a point at infinity. The calculus using homogeneous coordinates applies
uniformly for existing points as well as for points at infinity.

Consider two different points p1 = (x1, y1,w1) and p2 = (x2, y2,w2); they de-
fine (i.e. are incident with) the line p1 × p2. For example, assume that one of
the two points is at infinity, say p1 = (x1, y1,0). Then we have with p1 × p2 =
(y1w2, x1w2, x1y2 − x2y1) an existing straight line. The point p1 = (x1, y1,0) is at
infinity in direction [x1, y1]T .

If both points are at infinity, i.e. w1 = w2 = 0, then we have a straight line p1 ×
p2 = (0,0, x1y2 − x2y1) at infinity; note that x1y2 �= x2y1 for p1 �= p2 in this case.

Example 6.3 Consider a point p = (x, y) and a translation t = [t1, t2]T in inhomo-
geneous 2D coordinates. The multiplication

⎡

⎣
1 0 t1
0 1 t2
0 0 1

⎤

⎦ · [x, y,1]T = [x + t1, y + t2,1]T (6.17)

results in the point (x + t1, y + t2) in inhomogeneous coordinates.

Observation 6.2 Homogeneous coordinates allow us to perform uniquely defined
calculations in the plane also covering the cases that we were not able to express
before in our calculus when using only inhomogeneous xy coordinates.

Homogeneous Coordinates in 3D Space A point (X,Y,Z) ∈ R
3 is represented

by (X′, Y ′,Z′,w) in homogeneous coordinates, with (X,Y,Z) = (X′/w,Y ′/w,

Z′/w). Affine transforms can now be represented by 4 × 4 matrix multiplications.
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Example 6.4 Consider a point P = (X,Y,Z) and a translation t = [t1, t2, t3]T in
inhomogeneous 3D coordinates. The multiplication

⎡

⎢⎢
⎣

1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

⎤

⎥⎥
⎦ · [X,Y,Z,1]T = [X + t1, Y + t2,Z + t3,1]T (6.18)

results in the point (X + t1, Y + t2,Z + t3) in inhomogeneous coordinates.
Now consider an affine transform defined by rotation and translation, as given

in (6.10). The 4 × 4 matrix multiplication

⎡

⎢⎢
⎣

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

⎤

⎥⎥
⎦ · [X,Y,Z,1]T =

[
R t
0T 1

]
· [X,Y,Z,1]T = [Xs,Ys,Zs,1]T

(6.19)
results in the point (Xs,Ys,Zs) in inhomogeneous coordinates.

By means of (6.19) we also introduced a notation of 4 × 4 matrices by means of
a 3 × 3 submatrix R, a column 3-vector t, and a row 3-vector 0T . We will use such
a notation sometimes in the following.

6.3 Camera Calibration

Camera calibration specifies intrinsic (i.e. camera-specific) and extrinsic parameters
of a given one- or multi-camera configuration.

Intrinsic or internal parameters are the (effective) focal length, dimensions of
the sensor matrix, sensor cell size or aspect ratio of sensor height to width, radial
distortion parameters, coordinates of the principal point, or the scaling factor. Ex-
trinsic parameters are those of the applied affine transforms for identifying poses
(i.e. location and direction) of cameras in a world coordinate system.

This section provides an overview on calibration such that you can perform cam-
era calibration with calibration software as available on the net, with sufficient back-
ground knowledge for understanding what is happening in principle. The section is
not detailing any particular calibration method, which is outside the scope of this
textbook.

6.3.1 A User’s Perspective on Camera Calibration

A camera-producer specifies normally some internal parameters (e.g. the physical
size of sensor cells). The given data are often not accurate enough for being used in
a computer vision application.
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A Quick Guide For camera calibration, we use geometric patterns on 2D or 3D
surfaces that we are able to measure very accurately. For example, we can use a
calibration rig that is either attached to walls (i.e. permanently positioned) or dy-
namically moving in front of the camera system while taking multiple images; see
Fig. 6.18, right. The used geometric patterns are recorded, localized in the result-
ing images, and their appearance in the image grid is compared with the available
measurements about their geometry in the real world.

Calibration may be done by dealing with only one camera (e.g. of a multi-camera
system) at a time assuming that cameras are static or that we only calibrate internal
parameters.

Typically, we have a movable multi-camera system in computer vision, and we
follow a multi-camera approach for calibration, aiming at calibrating internal and
external parameters. Recording may commence after having the parameters needed
for calibration specified and the appropriate calibration rig and software at hand.
Calibration needs to be redone from time to time.

When calibrating a multi-camera system, all cameras need to be exactly time-
synchronized, especially if the calibration rig moves during the procedure.

Insert 6.3 (Calibration Software) There is calibration software available on-
line, such as the C sources provided by J.-Y. Bouget: a calibration rig is
recorded under various poses

and processed as described on www.vision.caltech.edu/bouguetj/calib_doc/
or in the OpenCV library.

http://www.vision.caltech.edu/bouguetj/calib_doc/
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Fig. 6.18 Left: A 2D checkerboard pattern as commonly used for camera calibration. Right:
A portable calibration rig; visible light reflections on the pattern would be a drawback when
analysing recorded images of a calibration rig. Where is the world coordinate system?

Every new placement of the calibration rig in the 3D scene defines a differ-
ent world coordinate system. Calibration provides internal and relative (i.e.,
one camera to other cameras) parameters. It is convenient for calibration
accuracy if the calibration rig “fills” a captured image.

Involved Transforms Each camera comes with its own camera coordinate sys-
tem, having the origin at its projection centre as shown in Fig. 6.8, right. The cali-
bration rig is commonly used for defining the world coordinates at the moment when
taking an image (see Fig. 6.18, right). We need to consider the following transforms:
1. a coordinate transform from world coordinates (Xw,Yw,Zw) into camera coor-

dinates (Xs,Ys,Zs),
2. a central projection of (Xs,Ys,Zs) into undistorted image coordinates (xu, yu),
3. the lens distortion involved, mapping (xu, yu) into the actually valid (i.e. dis-

torted) coordinates (xd, yd); see Fig. 6.17,
4. a shift of xdyd coordinates defined by the principal point (xc, yc), defining the

sensor coordinates (xs, ys), and finally,
5. the mapping of sensor coordinates (xs, ys) into image memory coordinates (x, y)

(i.e. the actual address of a pixel), as specified in Fig. 1.1.

Lens Distortion The mapping from a 3D scene into 2D image points combines a
perspective projection and a deviation from the model of a pinhole camera, caused
by radial lens distortion (see Sect. 6.1.1).

A (simplified) rule: Given a lens-distorted image point pd = (xd, yd), we can
obtain the corresponding undistorted image point pu = (xu, yu) as follows:

xu = cx + (xd − cx)
(
1 + κ1r

2
d + κ2r

4
d + ex

)
(6.20)

yu = cy + (yd − cy)
(
1 + κ1r

2
d + κ2r

4
d + ey

)
(6.21)
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for principal point (cx, cy) and rd =
√

(xd − cx)2 + (yd − cy)2.
The errors ex and ey are insignificant and can be assumed to be zero. There is

experimental evidence that approximating these series with only two lower-order
components κ1 and κ2 corrects more than 90 % of the radial distortion. Using only
the first-order radial symmetric distortion parameter κ1 allows a precision of about
0.1 pixels in the image sensor array.

Lens distortion needs to be calibrated for each of the cameras, and this process
may be separated from the remaining calibration processes. After having lens dis-
tortion corrected, the camera may be viewed as being an implementation of the
pinhole-camera model.

Designing a Calibration Method First, we need to define the set of parameters to
be calibrated and a corresponding camera model having those parameters involved.
For example, if the radial distortion parameters κ1 and κ2 need to be calibrated, then
the camera model needs to include (6.20) and (6.21).

If we already know the radial distortion parameters and have used those for
mapping recorded distorted images into undistorted images, then we can use equa-
tions such as (6.14). Points (Xw,Yw,Zw) on the calibration rig (e.g. corners of the
squares) or calibration marks (i.e. special marks in the 3D scene where calibration
takes place) are known by their physically measured world coordinates. For each
point (Xw,Yw,Zw), we need to identify the corresponding point (x, y) (if possible,
with subpixel accuracy) that is the projection of (Xw,Yw,Zw) in the image plane.
Having, for example, 100 different points (Xw,Yw,Zw), this defines 100 equations
in the form of (6.14), where only cx , cy , f , r11 to r33, t1, t2, and t3 appear as un-
knowns. We have an overdetermined equational system and need to find a “clever”
optimization procedure for solving it for those few unknowns.

We can decide to refine our camera model. For example, we like to make a dif-
ference between a focal length fx in the x-direction and a focal length fy in the
y-direction; we also like to include the edge length ex and ey of the sensor cells
in the used sensor matrix in the camera, the transition from camera coordinates in
world units to homogeneous camera coordinates in pixel units, or also a shearing
factor s for evaluating the orthogonality of the recorded image array.

All such parameters can be used to add further details into the basic equa-
tion (6.14). Accordingly, the resulting equational systems will become more com-
plex have more unknowns.

Thus, we briefly summarize the general procedure: known positions (Xw,Yw,Zw)

in the world are related to identifiable locations (x, y) in recorded images. The equa-
tions defining our camera model then contain Xw , Yw , Zw , x, and y as known values
and intrinsic or extrinsic camera parameters as unknowns. The resulting equation
system (necessarily nonlinear due to central projection or radial distortion) needs to
be solved for the specified unknowns, where over-determined situations provide for
stability of a used numeric solution scheme.

We do not discuss any further such equation systems or solution schemes in this
textbook.



6.3 Camera Calibration 235

Manufacturing a Calibration Board A rigid board wearing a black and white
checkerboard pattern is common. It should have 7×7 squares at least. The squares
need to be large enough such that their minimum size, when recorded on the image
plane during calibration, is 10×10 pixels at least (i.e. having a camera with an ef-
fective focal length f , this allows us to estimate the size of a ×a cm for each square
assuming a distance of b m between the camera and board).

A rigid and planar board can be achieved by having the calibration grid, e.g.
printed onto paper or by using equally sized black squares, those glued onto a rigid
board. This method is relatively cheap and reliable.

This grid can be created with any image-creating tool as long as the squares are
all exactly of the same size.

Localizing Corners in the Checkerboard For the checkerboard, calibration
marks are the corners of the squares, and those can be identified by approximating
intersection points of grid lines, thus defining the corners of the squares potentially
with subpixel accuracy.

For example, assume 10 vertical and 10 horizontal grid lines on a checkerboard,
as it is the case in Fig. 6.18, right. Then this should result in 10 + 10 peaks in the
dα Hough space for detecting line segments. Each peak defines a detected grid line,
and the intersection points of those define the corners of the checkerboard in the
recorded image.

Applying this method requires that lens distortion has been removed from the
recorded images prior to applying the Hough-space method. Images with lens dis-
tortion will show bended lines rather than perfectly straight grid lines.

Localizing Calibration Marks A calibration pattern can also be defined by marks
such as circular or square dots. For example, this is a popular choice if cameras are
calibrated in the same location, thus calibration marks can be permanently painted
on walls or other static surfaces.

Assume that we identify an image region S of pixels as the area that shows a
calibration mark, say, in grey levels. The position of the calibration mark can then be
identified at subpixel accuracy by calculating the centroid of this region, as already
discussed in Example 3.7.

6.3.2 Rectification of Stereo Image Pairs

Consider a two-camera recording system as discussed in Sect. 6.1.3. This is the
common input for stereo vision, a basic procedure in computer vision for obtaining
distance data by just using visual information.

The complexity of stereo vision is mainly defined by the task to identify the
corresponding points in pairs of input images, recorded by two cameras. This task
is the subject of Chap. 8. For reducing this complexity, it is convenient to warp the
recorded image pairs such that it appears that they are actually recorded in canonical
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Fig. 6.19 Top: Images recorded by two cameras with significant differences in extrinsic parame-
ters and also (insignificant) differences in intrinsic parameters. Bottom: Two geometrically rectified
images taken at different viewing locations by two cameras installed in a crash-test hall

stereo geometry (by a pair of identical cameras). We call this process short geomet-
ric rectification, without further mentioning the context of stereo vision (geometric
rectification is also of relevance in other contexts).

A Multi-camera System Often it is actually insufficient to use just two cameras
for applying computer vision to complex environments or processes. For example,
in a crash-test hall in the automotive industry there are many high-definition very
fast cameras installed for recording the few seconds of a crash test from different
viewing angles. Figure 6.19 illustrates two geometrically rectified images. How to
achieve this?

We will answer this question in this subsection. We do not restrict the discussion
to just a left camera and a right camera. We consider a general case of a Camera i or
Camera j , where the numbers i and j identify different cameras in a multi-camera
system.

The Camera Matrix As (examples of) intrinsic camera parameters of Camera i,
we consider here
1. the edge lengths ex

i and e
y
i of camera sensor cells (defining the aspect ratio),

2. a skew parameter si ,
3. the coordinates of the principal point ci = (cx

i , c
y
i ) where the optical axis of Cam-

era i and image plane intersect, and
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4. the focal length fi .
We assume that the lens distortion has been calibrated before and does not need to
be included anymore in the set of intrinsic parameters.

Instead of the simple equation (6.14), defining a camera model just based on the
intrinsic parameters f , cx and cy , we have now a refined projection equation in 4D
homogeneous coordinates, mapping a 3D point P = (Xw,Yw,Zw) into the image
coordinates pi = (xi, yi) of the ith camera (as defined by Fig. 1.1) as follows:

k

⎡

⎣
xi

yi

1

⎤

⎦ =
⎡

⎢
⎣

fi/e
x
i si cx

i 0

0 fi/e
y
i c

y
i 0

0 0 1 0

⎤

⎥
⎦

[
Ri −RT

i ti
0T 1

]
⎡

⎢⎢
⎣

Xw

Yw

Zw

1

⎤

⎥⎥
⎦

= [Ki |0] · Ai · [Xw,Yw,Zw,1]T (6.22)

where Ri and ti denote the rotation matrix and translation vector in 3D inhomoge-
neous world coordinates, and k �= 0 is a scaling factor.

By means of (6.22) we defined a 3×3 matrix Ki of intrinsic camera parameters,
and a 4×4 matrix Ai of extrinsic parameters (of the affine transform) of Camera i.
The 3×4 camera matrix

Ci = [Ki |0] · Ai (6.23)

is defined by 11 parameters if we allow for an arbitrary scaling of parameters; oth-
erwise, it is 12.

Common Viewing Direction for Rectifying Cameras i and j We identify a
common viewing direction for Cameras i and j , replacing the given viewing direc-
tions along the optical axes of those two cameras. Let Π be a plane perpendicular
to the baseline vector bij from the projection centre of Camera i to the projection
centre of Camera j . See Fig. 6.20.

We project the unit vectors z◦
i and z◦

j of both optical axes into Π , which results
in vectors ni and nj , respectively. The algebraic relations are as follows:

ni = (
bij × z◦

i

)× bij and nj = (
bij × z◦

j

)× bij (6.24)

We could also have used bji in both equations, but then uniformly four times.
Aiming at a “balanced treatment” of both cameras, we use the bisector of ni and

nj for defining the unit vector

z◦
ij = ni + nj

‖ni + nj‖2
(6.25)

of the common direction.
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Fig. 6.20 An illustration for
calculating the common
viewing direction for
Cameras i and j

Consider the unit vector x◦
ij in the same direction as bij , and the unit vector

y◦
ij is finally defined by the constraint of ensuring (say) a left-hand 3D Cartesian

coordinate system. Formally, we have that

x◦
ij = bij

‖bij‖2
and y◦

ij = zij × x◦
ij = −x◦

ij × zij (6.26)

In general, for any vectors a and b, (a,b,a × b) defines a left-hand tripod. We have
the left-hand tripod (x◦

ij , z◦
ij × x◦

ij , z◦
ij ) because

x◦
ij × (

z◦
ij × x◦

ij

)= z◦
ij

(
x◦
ij · x◦

ij

)− x◦
ij

(
x◦
ij · z◦

ij

)= z◦
ij (6.27)

and (x◦
ij ,x◦

ij × z◦
ij , z◦

ij ) would be a right-hand tripod.
The two images of Camera i and Camera j need to be modified as though both

would have been taken in the direction Rij = (xij yij zij )
T , instead of the actually

used directions Ri and Rj .

Producing the Rectified Image Pair The rotation matrices that rotate both cam-
eras into their new (virtual) viewing direction are as follows:

R∗
i = Rij RT

i and R∗
j = Rij RT

j (6.28)

In general, when rotating any camera around its projection centre about the ma-
trix R, the image is transformed by a rotation homography (i.e. a recalculated pro-
jective transformation)

H = K · R · K−1 (6.29)
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where K is the 3 × 3 matrix of intrinsic parameters of this camera. The matrix
K−1 transfers pixel coordinates into camera coordinates in world units, the matrix
R rotates them into the common plane, and the matrix K transfers them back into
pixel coordinates.

A rectified image is calculated, pixel by pixel, using

p = H−1p̂ (6.30)

such that the new value at pixel location p̂ is calculated based on the original image
values in a neighbourhood of a point p (which is in general not exactly a pixel
location), using (e.g.) bilinear interpolation.

Creating an Identical Twin Assume that we want to have the image of Camera j

after rotation homography with respect to the parameters of Camera i, i.e. we create
an identical copy of Camera i at the pose of Camera j . For ensuring this effect, we
simply apply the rotation homography

Hij = Ki · R∗
j · K−1

j (6.31)

which first transforms by K−1
j the points in the j th image plane into a “normalized”

coordinate system, then we apply R∗
j to perform the desired rotation, and, finally,

Ki for transforming the rotation result according to the parameters of Camera i.

Insert 6.4 (Fundamental and Essential Matrix of Stereo Vision) Following a
publication by H.C. Longuet-Higgins in 1981, Q.T. Luong identified in 1992
in his PhD thesis two matrices, called the fundamental matrix and essential
matrix, which describe binocular stereo geometry, either with including the
characteristics of the used cameras or without, respectively.

Fundamental and Essential Matrix We go back to having just a left and a right
camera. Let pL and pR be corresponding stereo points, i.e. the projections of a 3D
point P in the left and right image planes. Assume that pL and pR are given in
homogeneous coordinates. Then we have that

pT
R · F · pL = 0 (6.32)

for some 3×3 matrix F, defined by the configuration (i.e. intrinsic and extrinsic
parameters) of the two cameras for any pair pL and pR of corresponding stereo
points.

This matrix F is known as the fundamental matrix, sometimes also called the
epipolar matrix or the bifocal tensor. For example, F ·pL defines a line in the image
plane of the right camera, and any stereo point corresponding to pL needs to be on
that line. (This is an epipolar line, and we discuss such a line later in the book.)
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The matrix F is of rank 2 and uniquely defined (by the left and right cameras)
up to a scaling factor. In general, seven pairs of corresponding points (in general
position) are sufficient to identify the matrix F. Interestingly, there is the relation

F = K−T
R · R[t]× · K−1

L (6.33)

for camera matrices KR and KL. We go from pixel coordinates to camera coordi-
nates in world units. Here, [t]× is the cross product matrix of a vector t, defined by
[t]× · a = t × a, or

[t]× =
⎡

⎣
0 −t3 t2
t3 0 −t1

−t2 t1 0

⎤

⎦ (6.34)

The matrix

E = R[t]× (6.35)

is also known as the essential matrix; it has five degrees of freedom, and it is
uniquely defined (by the left and right cameras) up to scaling.

Insert 6.5 (Geometry of Multi-Camera Systems) This chapter provided a ba-
sic introduction into geometric issues related to single- or multiple-camera
systems. Standard references for geometric subjects in computer vision are,
for example, the books [R. Hartley and A. Zisserman. Multiple View Geometry in Com-

puter Vision, Second Edition. Cambridge University Press, Cambridge, 2004] and [K.

Kanatani. Geometric Computation for Machine Vision. Oxford University Press, Oxford,

1993].

6.4 Exercises

6.4.1 Programming Exercises

Exercise 6.1 (Evaluation of Cameras) Evaluate (at least) two different digital cam-
eras with respect to the properties of
1. colour accuracy,
2. linearity, and
3. lens distortion.
Even two cameras of the same brand might be of interest; it is expected that they
result in (slightly) different properties.

Design, calculate and print at least one test image (test pattern) for each of those
three properties. Try to provide a motivation why you decided for your test images.
Obviously, printer quality will influence your tests.

Take measurements repeatedly (say, under varying conditions, such as having
your test images, or further test objects, at different distances to the camera, or
under varying light conditions). This needs to be followed by a statistical analysis
(calculate the means and standard deviations for your measurement series).
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Fig. 6.21 Top: Registered images. Bottom: Stitched images. Results of a project in 1998 at the
University of Auckland

Note that property comparisons will typically not lead to a simple result such as
“this camera is better than the other one”, rather to a more sophisticated comparison
such as “for this criterion, this camera performs better under given circumstances.”

Exercise 6.2 (Image Stitching) Use a common (i.e. array- or pinhole-type) digital
camera on a tripod and record a series of images by rotating the camera: capture
each image such that the recorded scene overlaps to some degree with the scene
recorded in the previous image.

Write your own simple and straightforward program of stitching those images
onto the surface of one cylinder or into a rectangular panorama. The first step is
image registration, i.e. spatially aligning the recorded images and defining cuts be-
tween those. See Fig. 6.21 for an illustration of registration and stitching steps.

(Image stitching is an area where many solutions have been published already;
check the net for some inspirations.)

For comparison, use a commercial or freely available stitching software (note
that often this already comes with the camera or is available via the camera web
support) for mapping the images into a 360◦ panorama.

Compare the results with the results of your own image stitching program.

Exercise 6.3 (Stereo Panorama) Rotate a video camera on a tripod for generating
stereo panoramas as described at the end of Sect. 6.1.4. The two columns generating
your views for ω and −ω need to be chosen carefully; they need to be symmetric
with respect to the principal point of your video camera. If not, the generated two-
view panoramas do not have proper geometry for being stereo-viewable.

Regarding the chosen radius R and viewing angle ω, there are two recommended
values that maximize the number of disparity levels between the closest object of
interest at distance D1 and the furthest object of interest at distance D2. These two
(uniquely defined) values can be looked up in the second book listed in Insert 6.2.
You may also experiment with taking different values R and ω.
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The generated stereo panoramas become stereo-viewable by using anaglyphs.
Anaglyphic images are generated by combining the channel for Red from one image
with the channels for Blue and Green from the other image. The order of filters in
available anaglyphic eyeglasses decides which image contributes which the channel.
Demonstrate your recorded stereo panoramas using anaglyphic eyeglasses.

Exercise 6.4 (Detection of Calibration Marks) Record images for camera calibra-
tion using a checkerboard pattern as illustrated in Insert 6.3. Implement or use an
available program for line detection (see Sect. 3.4.1) and detect the corners in the
recorded images at subpixel accuracy. Discuss the impact of radial lens distortion
on your detected corners.

Exercise 6.5 (Building a Pinhole Camera) This is not a programming exercise, but
a practical challenge. It is a suggestion for those who like to experience the simplest
possible camera, which you can build yourself, basically just using a shoebox and
photo-sensitive paper: check out on the net for “pinhole cameras”, where there are
some practical hints, and there is also an interesting collection of photos online
recorded with those cameras.

6.4.2 Non-programming Exercises

Exercise 6.6 Check this chapter for equations given in inhomogeneous coordinates.
Express all those in homogeneous coordinates.

Exercise 6.7 Specify the point at infinity on the line 31x + 5y − 12 = 0. Determine
the homogeneous equation of this line. What is the intersection point of this line
with the line 31x + 5y − 14 = 0 at infinity?

Generalize by studying the lines ax + by + c1 = 0 and ax + by + c2 = 0 for
c1 �= c2.

Exercise 6.8 Consider a camera defined by the following 3 × 4 camera matrix:

C =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 1

⎤

⎦

Compute the projections of the following 3D points (in world coordinates) with this
camera:

P1 =

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦ , P2 =

⎡

⎢⎢
⎣

1
1

−1
1

⎤

⎥⎥
⎦ , P3 =

⎡

⎢⎢
⎣

3
2
1
1

⎤

⎥⎥
⎦ , and P4 =

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦
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Exercise 6.9 Let pR = [x, y,1] and pL = [x′, y′,1]. The equation

pT
R · F · pL = 0

is equivalently expressed by

[
xx′ xy′ x yx′ yy′ y x′ y′ 1

]

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

F11
F21
F31
F12
F22
F32
F13
F23
F33

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

= 0

where Fij are the elements of the fundamental matrix F. Now assume that we have
at least eight pairs of corresponding pixels, defining the matrix equation

⎡

⎢⎢⎢
⎣

x1x
′
1 x1y

′
1 x1 y1x

′
1 y1y

′
1 y1 x′

1 y′
1 1

x2x
′
2 x2y

′
2 x2 y2x

′
2 y2y

′
2 y2 x′

2 y′
2 1

...
...

...
...

...
...

...
...

...

xnx
′
n xny

′
n xn ynx

′
n yny

′
n yn x′

n y′
n 1

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

F11
F21
...

F33

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

0
0
...

0

⎤

⎥⎥⎥
⎦

for n ≥ 8, expressed in short as A · f = 0. Solve this equation for the unknowns Fij ,
considering noise or inaccuracies in pairs of corresponding pixels.

Exercise 6.10 Show that the following is true for any nonzero vector t ∈R
3:

1. [t]x · t = 0,
2. the rank of matrix [t]x is 2,
3. the rank of the essential matrix E = R[t]x is 2,
4. the fundamental matrix F is derived from the essential matrix E by the formula

F = K−T
R EK−1

L ,
5. the rank of the fundamental matrix F is 2.
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This chapter describes three different techniques for vision-based reconstruction of
3D shapes. The use of structured lighting is a relatively simple but accurate method.
Stereo vision might be called the 3D shape-reconstruction method in computer vi-
sion; its actual stereo-matching challenges are a subject in the following chapter;
here we only discuss how results of stereo matching are used to derive a 3D shape.
Finally, as an alternative technique, we briefly describe shading-based 3D-shape un-
derstanding.

7.1 Surfaces

Computer vision reconstructs and analyses the visible world, typically defined by
textured surfaces (e.g. not considering fully or partially transparent objects).

This section provides an introduction into the topology of surfaces, a parameter-
ized description of surface patches, and the gradient space, a model for analysing
relations between surface normals. We also define the surface curvature.

Insert 7.1 (3D City or Landscape Visualizations) Camera or laser range-
finder data have been used since about 2000 for large-scale and very detailed
3D city or landscape visualizations; see Fig. 7.1 for an example. Such 3D
visualizations go beyond 2D representations of the Earth surface (by aerial
images) or merged street-view images that do not yet represent 3D shapes of
buildings or street geometry. Related computer-vision technology is described
in the book [F. Huang, R. Klette, and K. Scheibe. Panoramic Imaging. Wiley,
West Sussex, 2008].

7.1.1 Surface Topology

The surface S (also known as the border or frontier) of an existing 3D object in the
real world can be described as

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_7, © Springer-Verlag London 2014
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Fig. 7.1 Left: Surfaces reconstructed from image data recorded in an airplane. Right: Surfaces
after texture mapping using recorded images. The scene shows the Sony Centre at Berlin, Germany

Fig. 7.2 Left: A polyhedral gap-free surface. Middle and right: Two smooth surfaces with gaps;
the surface of a sphere without a few circular areas and the surface of a torus without one circular
area

1. a smooth surface for which at every point P ∈ S, (a) continuous derivatives ex-
ist in any direction within S, and (b) there exists a neighbourhood in S that is
topologically equivalent1 to a disk, or as

2. a polyhedral surface composed of polygons (e.g. of triangles), thus with disconti-
nuities at edges of the polyhedron, but also satisfying for any P ∈ S the existence
of a neighbourhood in S that is topologically equivalent to a disk.

The existence for any P ∈ S of a neighbourhood in S that is topologically equivalent
to a disk ensures that the surface S does not have any gap, which would allow us “to
look into the interior of the given object”. See Fig. 7.2, middle and right.

In the first case we speak about a gap-free smooth surface. For example, the
surface of a sphere is a gap-free smooth surface, and so is the surface of a torus.
In the second case we speak about a gap-free polyhedral surface; see Fig. 7.2, left.
The surface shown in Fig. 7.1, left, is defined by a triangulation; by also including

1Two sets in Euclidean space are topologically equivalent if one of them can be mapped by a
homeomorphism onto the other; a homeomorphism is a one-to-one continuous mapping such that
its inverse is also continuous.
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the covered region of the ground plane as one face and the faces of all vertical sides
(see also Fig. 7.4), we can consider it to be a gap-free surface, provided that the
calculated triangulation does not have any gap.

With respect to surface topology, it does not matter wether we have polygonal or
smooth surface patches. A gap-free surface means either the first or the second case
depending on a given context. Both cases are equivalent regarding surface topol-
ogy.

Insert 7.2 (Euler Characteristics, Betti, and Jordan Surfaces) The Euclidean
topology was briefly recalled in Insert 3.6. Consider a connected compact set
S in R3. Its frontier is known as a surface. The set may have cavities, which
are not connected to the unbounded complement of the set, and it may have
handles.

The genus g(S) of the surface of S is the maximum number of cuts such
that the surface does not yet become disconnected. For example, the genus of
the surface of a sphere equals 0, and that of the surface of a torus equals 1.

For a connected compact set S in R
3 (e.g. a sphere with n handles), the

most simple and combinatorial topological invariant is the Euler characteris-
tic χ . If the surface is connected (i.e. S has no cavities), then

χ(S) = 2 − 2 · g(S)

The surface of the sphere (or any topological deformation of it, such as a
cube for example) has Euler characteristic χ = 2. The surface of the torus
has Euler characteristic χ = 0. If the surface of S is disconnected, and has
b ≥ 2 frontier components (i.e. b − 1 cavities), then

χ(S) = 2 − 2 · g(S) − (b − 1)

Now consider the surface S of a general bounded polyhedron in R
3 (i.e.

a bounded set with a frontier defined by a finite number of polygonal faces).
Then we have that

χ(S) = α2(S) − α1(S) + α0(S) − (b − 1)

where b is the number of components of S; for α0 to α2, see Insert 3.1.
Alternatively, in the case b = 1 we also have that

χ(S) = β2(S) − β1(S) + β0(S)

where β0, β1, and β2 are the Betti numbers of a set S, named after the Italian
mathematician E. Betti (1823–1892); β0 is the number of components, β1
is the number of “tunnels” (a “tunnel” is an intuitive concept; for a precise
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Fig. 7.3 Left: By selecting the orientation for the blue triangle we already specify the orientation
of any other triangle in the triangulation of a gap-free surface. Complete the missing orientations
on the top of the cube. Right: A Moebius band is a non-orientable surface. The shown blue arc can
be continued so that it forms a loop that runs through all the faces of the band

definition of β1, see, for example, Chap. 6 in the book [R. Klette and A. Rosenfeld:

Digital Geometry. Morgan Kaufmann, San Francisco, 2004]), and β2 is the number of
cavities. For example, the surface of a torus has β0 = 1 (it is connected),
β1 = 2 (one tunnel inside of the surface, one through the “hole”), and β2 = 1
(the interior of the surface).

A Jordan surface (C. Jordan, 1887) is defined by a parameterization that
establishes a topological mapping onto the surface of a unit sphere. In com-
puter vision we are usually not interested in global parameterizations of sur-
faces (just in local neighbourhoods), It is usually fine to stay globally with a
topological definition of a surface. A theorem by I. Gawehn, 1927, says that
any gap-free smooth surface is topologically equivalent to a gap-free polyhe-
dral surface.

Orientable Surfaces An oriented triangle is a triangle with a direction on its
frontier, say “clockwise” or “counter-clockwise”, which is called the orientation
of the triangle. The orientation of a triangle induces orientations of its edges. Two
triangles in a triangulation that have a common edge are coherently oriented if they
induce opposite orientations on their common edge.

A triangulation of a surface is orientable iff it is possible to orient all the triangles
in such a way that every two triangles that have a common edge are coherently
oriented; otherwise, it is called non-orientable.

A triangulation of an orientable surface can only have one of two possible orien-
tations; by selecting an orientation for one triangle we already specify the orienta-
tion for the whole surface. See Fig. 7.3. If Z1 and Z2 are triangulations of the same
surface, Z1 is orientable iff Z2 is orientable.
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Observation 7.1 The fact that orientability does not depend on the triangulation
allows us to define a surface as orientable iff it has an orientable triangulation.
Also note that the “orientation” (of a surface) and “direction” (of a vector) specify
different mathematical concepts.

The Euler Characteristic of a Surface Let α0, α1, α2 be the numbers of vertices,
edges, and triangles in a triangulation Z of a surface. The Euler characteristic of Z

is

χ(Z) = α0 − α1 + α2 (7.1)

See Inserts 3.1 and 7.2. Two triangulations of the same surface have the same Euler
characteristic. This fact allows us to speak about the Euler characteristic of a surface.
The Euler characteristic is a topological invariant: topologically equivalent surfaces
have the same Euler characteristic.

The Euler characteristic decreases with the topological complexity of a surface,
with 2 being the maximum for a single (i.e. connected) surface. What is the Euler
characteristic of the surface shown on the left in Fig. 7.3?

Example 7.1 (Euler Characteristics for Cube and Sphere Surfaces) The surfaces of
a cube and of a sphere are topologically equivalent. Each face of a cube can be
triangulated into two triangles. This results in 8 vertices, 18 edges, and 12 triangles,
so that the Euler characteristic of the triangulation is 2. The surface of a sphere can
be subdivided into four curvilinear triangles (e.g. consider a tetrahedron inscribed
into the sphere; the vertices of the tetrahedron can be used as vertices of those four
curvilinear triangles); this results in 4 vertices and 6 simple arcs, so that the Euler
characteristic is again 2.

Separations by Jordan Surfaces in 3D Space Section 3.1.1 discussed separa-
tions in the 2D Euclidean space R

2 and in the digital image. A Jordan curve is
topologically equivalent to a circle, and a Jordan surface is topologically equivalent
to the surface of a sphere. L.E.J. Brouwer showed in 1911 that any Jordan surface
separates R3 in the Euclidean topology into two connected subsets; the given Jordan
surface is the frontier (also called border) of each of those two subsets.

7.1.2 Local Surface Parameterizations

Computer vision is usually not interested in providing globally parameterized rep-
resentations of surfaces visible in the real world. Local parameterizations are useful
when discussing shape reconstruction methods.

Representation of Surface Patches A smooth or polyhedral surface can be
partitioned into (connected) surface patches. Linear surface patches (also called
facets, such as the triangles of a triangulated surface) are incident with a plane
Z = aX + bY + c.
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Fig. 7.4 The shown recovered surface can be seen as being one surface patch or as a surface
composed into many smooth or linear patches (e.g. in case of triangulation). Left: Two visible
faces V1 and V2 of vertical sides. Right: Illustration of a point p in a region S in the ground plane,
corresponding one-to-one to a point P in the recovered surface

An elevation map is a recovered surface on top of a rectangular region S within
a ground plane such that every point P = (X,Y,Z) in the recovered surface cor-
responds one-to-one to a point p = (X,Y ) ∈ S; see Fig. 7.4. A local patch of an
elevation map can be given by an explicit representation Z = Fe(X,Y ), where the
XY plane defines the ground plane, or by an implicit representation in the form
Fi(X,Y,Z) = 0. For a smooth surface patch, we assume continuously differentiable
(up to some appropriate order) explicit or implicit surface functions.

Example 7.2 (Surface of a Sphere) The visible surface of a sphere in XsYsZs cam-
era coordinates is given as follows:

Zs = Fe(Xs,Ys) = a −
√

r2 − X2
s − Y 2

s (7.2)

assuming that the sphere is in front of the image plane Zs = f , and the implicit form

Fi(Xs,Ys,Zs) = X2
s + Y 2

s + (Zs − a)2 − r2 = 0 with a − r > f (7.3)

represents the surface of the same sphere.

For a surface point P = (Xs,Ys,Zs), we have the Euclidean distance d2(P,O) =
‖P ‖2 of P to the projection centre O = (0,0,0) of the camera. The depth of P

equals Zs , the location of P with respect to the optical axis. We can also assume to
have a background plane Z = c behind (or below) the visible surfaces; the height of
P is then defined by the difference c − Zs . Accordingly, recovered surfaces can be
visualized by distance maps, depth maps, or height maps, using a selected colour
key for illustrating visualized values. See Fig. 7.5, right, for an example of a depth
map, also illustrating the geometric complexity of real-world surfaces.

Surface Normals The gradient of a surface Z = Fe(X,Y ) is the vector given by

∇Z = gradZ =
[

∂Z

∂X
,
∂Z

∂Y

]
(7.4)
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Fig. 7.5 Left: Input image Bridge for a surface recovery application (using stereo vision). Right:
Visualized depth map using the colour key as shown on the right. Being not confident with a
recovered depth value is shown at a pixel location by using a grey value rather than a value from
the colour key. The small numbers in the colour key go from 5.01 to 155 (in a non-linear scale,
with 10.4 about at the middle) and denote distances in meters

Fig. 7.6 The Gaussian
sphere is defined by radius 1

In case of a plane aX + bY + Z = c, we have the gradient [a, b]. The normal is
given by

n =
[

∂Z

∂X
,
∂Z

∂Y
,1

]
= [a, b,1] (7.5)

We decided again, as already for (1.16) when defining the normal for an image, for
a normal away from the image plane, and thus the value +1 in the third component.
The unit normal (of length 1) is given as follows:

n◦ = [n1, n2, n3] = n
‖n‖2

= [a, b,1]√
a2 + b2 + 1

(7.6)

By means of (7.5) and (7.6) we introduced also the general use of a and b for
denoting the components of a normal.

Consider a sphere of radius 1 centred at the origin O (also called Gaussian
sphere), as shown in Fig. 7.6. The angle between the vector n◦ and the Z-axis
is called the slant and denoted by σ . The angle between the vector from O to
P = (X,Y,0) and the X-axis is called the tilt and denoted by θ . The point P is
in the distance sinσ to O . The unit normal n◦ defines a point on the surface of
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Fig. 7.7 Left: Two
orthogonal surface normals in
the XYZ scene space. Right:
The ab gradient space,
illustrating the p and q values
of the two normals n1 and n2

the Gaussian sphere that is uniquely represented by (σ, θ), also called the point’s
spherical coordinates.

Gradient Space We define an ab coordinate space (see Fig. 7.7, right) where each
point (a, b) represents a gradient (a, b) in the XYZ space (e.g. world coordinates)
of the scene objects. This is the gradient space.

For example, consider the plane Z = aX + bY + c. Then, (a, b) represents in the
gradient space all planes that are parallel to the given plane (i.e. for any c ∈R).

We consider a normal n1 = [a1, b1,1] in the XYZ space that maps into point
(a1, b1) in the gradient space, and a normal n2 = [a2, b2,1] that is orthogonal
to n1. See Fig. 7.7, left. For the dot product of both vectors, it follows that

n1 · n2 = a1a2 + b1b2 + 1 = ‖n1‖2 · ‖n2‖2 · cos
π

2
= 0 (7.7)

Assume that n1 is a given vector and we like to characterize the orthogonal direc-
tion n2. For given a1 and b1, we have a straight line g in the gradient space, defined
by a1a2 + b1b2 + 1 = 0 and the unknowns a2 and b2. It can be geometrically de-
scribed as follows:
1. the line incident with origin o = (0,0) and point p is orthogonal to line γ ,

2.
√

a2
1 + b2

1 = d2((a1, b1), o) = 1/d2(p, o), and
3. p and (a1, b1) are in opposite quadrants.
The line γ is uniquely defined by these three properties. The line γ is called the
dual straight line to the normal n1 or to (a1, b1). Any direction n2 orthogonal to n1
is located on γ .

7.1.3 Surface Curvature

This subsection is for a reader with interests in mathematics. It provides a guideline
for analysing the curvature of surfaces reconstructed in computer vision. The given
curvature definitions are not used further in the book except in Exercises 7.2 and 7.6.
There are different ways for defining the curvature for a smooth surface.

Gaussian Curvature C.F. Gauss defined the surface curvature at a surface point
P by considering “small” surface patches Sε of radius ε > 0 centred at P . For Sε ,
let Rε be the set of all endpoints of unit normals at points Q ∈ Sε; the set Rε is a
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Fig. 7.8 A surface cut by a
plane Πη

region on the surface of the unit sphere. Now let

κG(P ) = lim
ε→0

A (Rε)

A (Sε)
(7.8)

where A denotes the area measure. This defines the Gaussian curvature at a surface
point P .

Normal Curvature We also define the two (often used) principal curvature val-
ues λ1 and λ2 for a point P in a smooth surface. On the way to there, we first define
the normal curvature.

Let γ1 and γ2 be two different arcs in the given surface that intersect at P , and
let t1 and t2 be the two tangent vectors to γ1 and γ2 at P . These vectors span the
tangent plane ΠP at P . We assume angular orientations 0 ≤ η < π in ΠP (a half-
circle centred at P ).

The surface normal nP at P is orthogonal to ΠP and collinear with the cross
product t1 × t2. Let Πη be a plane that contains nP and has orientation η; see
Fig. 7.8.

Πη makes a dihedral angle η with Π0 and cuts the surface in an arc γη. (Πη

may cut the surface in several arcs or curves, but we consider only the one that
contains P .) Let tη, nη , and κη be the tangent, normal, and curvature of γη at P .

κη is the normal curvature of any arc γ ⊂ Γ ∩ Πη at P that is incident with P .

Example 7.3 (Two Examples of Normal Curvatures) Let the surface be a horizontal
plane incident with P = (0,0,0) in R

3. Any γη is a straight line segment in the
plane that is incident with (0,0,0); we have κη = 0 and tη = γη.

Let the surface be a “cap” of a sphere centred at its north pole P , γη is a segment
of a great circle on the sphere, nη is incident with the straight line passing through
P and the centre of the sphere, and κη = 1/r , where r is the radius of the sphere.

Principal Curvatures Recall that the characteristic polynomial p of an n × n

matrix A is defined as p(λ) = det(A − λI) = (−λ)n + · · · + det(A), where I is the
n × n identity matrix. The eigenvalues λi of an n × n matrix A are the n roots of its
characteristic polynomial det(A − λI) = 0.
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Let v be a unit vector in ΠP . The negative derivative −Dvn of the unit normal
vector field n of a surface, regarded as a linear map from ΠP to itself, is called the
shape operator (or Weingarten map or second fundamental tensor) of the surface.

Let MP be the Weingarten map in the matrix representation at P (with respect to
any orthonormal basis in ΠP ), and let λ1 and λ2 be the eigenvalues of the 2 × 2 ma-
trix MP . Note that these eigenvalues do not depend on the choice of an orthonormal
basis in ΠP .

Then, λ1 and λ2 are called the principal curvatures or main curvatures of the
given surface at P .

Euler Formula Let w1 and w2 be any two orthogonal vectors that span the tan-
gent plane ΠP at P , i.e. they are tangent vectors that define normal curvatures in
directions η and η + π/2. Then the Euler formula

κη(p) = λ1 · cos(η)2 + λ2 · sin(η)2 (7.9)

allows us to calculate the normal curvature κη(p) in any direction η at p from the
principal curvatures λ1 and λ2 and the angle η.

Mean Curvature The mean (λ1 +λ2)/2 is called the mean curvature of the given
surface at a point P . The mean curvature is equal to (κη(P )+κη+π/2(P ))/2 for any
η ∈ [0,π).

It can also be shown that the absolute value of the product λ1λ2 equals the Gaus-
sian curvature κG(P ) as defined in (7.8).

Insert 7.3 (Meusnier) J.B.M. Meusnier (1754–1793) was a French aeronau-
tical theorist and military general.

Theorem by Meusnier We can also cut the given surface at P by a plane Πc

in some direction. The intersection of Πc with the surface defines an arc γc in the
neighbourhood of P , and we can estimate the 1D curvature κc of γc at P . However,
we cannot assume that Πc is incident with the surface normal nP at P .

Let nc be the principal normal of γc at p. A theorem of Meusnier tells us that the
normal curvature κη in any direction η is related to the curvature κc and the normals
nP and nc by

κη = κc · cos(nP ,nc) (7.10)

Thus, by estimating two normal curvatures κη and κη+π/2 we can estimate the mean
curvature.
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Similarity Curvature Let κ1 and κ2 be the two principal curvatures of a given
surface at a point P in this surface (called λ1 and λ2 above). We define the curvature
ratio κ3 as follows:

κ3 = min(|κ1|, |κ2|)
max(|κ1|, |κ2|) (7.11)

In the case where κ1 and κ2 are both equal to zero, κ3 is defined as being equal to
zero. It follows that 0 ≤ κ3 ≤ 1.

The similarity curvature S (P ) is defined as follows:

S (P ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(κ3,0) if the signs of κ1 and κ2 are both positive

(−κ3,0) if the signs of κ1 and κ2 are both negative

(0, κ3) if the signs of κ1 and κ2 differ and |κ2| ≥ |κ1|
(0,−κ3) if the signs of κ1 and κ2 differ and |κ1| > |κ2|

(7.12)

Note that S (P ) ∈R
2.

Insert 7.4 (3D Scanners) There are many products on the market for recover-
ing 3D surfaces, typically called “3D scanner” or “3D digitizer”. Structured
light scanners (e.g. the Kinect 1), stereo vision, and surface reflectance-based
systems are discussed in this chapter. For example, structured light scanners
are popular for modelling human bodies (e.g. whole body scanners in the
movie industry), and stereo vision is widely used for aerial imaging, 3D re-
constructions of buildings, or even for real-time processing requiring a 3D
understanding of the environment.

Not discussed in this book, because (so far) not yet closely integrated into
computer vision technologies, are, for example, the following:

Laser scanners are based on the “time-of-flight” principle, enhanced by
modulated wave lengths for measuring very accurate distance values (the
new Kinect 2 replaces structured light by time-of-flight, thus bringing time-
of-flight closer into computer vision).

Holography is still not yet very common for 3D measurements but popular
for 3D visualizations.

Touch probes, laser trackers, optic position trackers, or magnetic position
trackers are all basically not using imaging technologies.

7.2 Structured Lighting

Structured lighting is the projection of a light pattern (e.g. a ray, a plane of light,
a grid pattern, or encoded light in the form of subsequent binary illumination pat-
terns) under calibrated geometric conditions onto an object whose shape needs to
be recovered. Typically, we use one camera and one light source, and by calibration
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Fig. 7.9 Left: The (laser) light source projects a sweeping light plane (by fanning out a light beam
into a “sheet of light”), which projects at each time a bright line across the objects of interest.
Right: The recovered surface of a person using structured lighting

Fig. 7.10 The identified intensity profile in the row or column direction (aiming at being orthog-
onal to the tangential direction of a recorded light plane in an image). We consider pixels and their
grey levels at location sk−1 on the left and sk+1 on the right of sk for identifying an ideal location
sm (with a maximum um, which is actually not visible in the image) with subpixel accuracy

we need to determine the pose of the light source with respect to the camera. See
Fig. 7.9, left, for an illustration of a possible set-up.

This section provides the necessary mathematics for reconstructing surfaces us-
ing structured light.

7.2.1 Light Plane Projection

Locating a Projected Light Plane An illuminated line in the 3D world is visible
in an image across multiple pixels. We analyse a projected line in 1D cuts, indexed
by k = 1, . . . , kend , orthogonal to its tangential direction identified at pixel sk where
the image has a local maximum uk . See Fig. 7.10.
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Fig. 7.11 A slide projector projects one binary pattern at a time, thus either illuminating surface
points at this moment through the white columns or not (i.e. light is blocked by the black columns).
A sequence of slides generates thus at a surface point a binary code (1 = illuminated by this slide,
0 = not illuminated). The figure illustrates one light plane defined by subsequent columns in the
used binary patterns

We measure grey levels uk−1 and uk+1 at pixel locations sk−1 and sk+1, which
are at a selected distance to sk . We assume a second-order polynomial u = a ·s2 +b ·
s +c for intensities in the cut through the projected line. We calculate the parameters
a, b, and c of the polynomial by using

⎡

⎣
a

b

c

⎤

⎦=
⎡

⎣
s2
k−1 sk−1 1
s2
k sk 1

s2
k+1 sk+1 1

⎤

⎦

−1⎡

⎣
uk−1
uk

uk+1

⎤

⎦ (7.13)

(Actually, c is not needed for sm.) Then we obtain sm for the location of the projected
line in subpixel accuracy; the polynomial has its maximum at sm = − b

2a
. Why?

Generation of Light Planes by Encoded Light Instead of generating one light
plane at a time, we can also use n projected binary patterns for generating 2n light
planes, encoded in the recorded n images.

Consider a slide projector for projecting n slides, each showing a binary pattern
of resolution 2n × 2n. See Fig. 7.11. In each slide, a column is either black (i.e.
blocking the light) or white. One column in those slides thus generates over time
a particular light plane, identified by a binary sequence of “illuminated” or “not
illuminated”. By identifying such a sequence for one particular surface point we
can understand which light plane was actually mapped onto this surface point.

By using n slides at times t = 1, . . . , n, we record n images and have generated
2n light planes. (For example, we can reduce to n−1 slides based on the assumption
that light planes on the left cannot be confused with light planes on the right of the
recorded scene.)

For reasons of error reduction, it is recommended that the projected slides follow
the Gray code rather than the usual binary code.
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Insert 7.5 (Gray and the Gray Code) This binary code was proposed by
F. Gray (1887–1969), a US-American physicist. Consecutive integers are rep-
resented by binary numbers that differ in one digit only. The table below il-
lustrates by examples, encoding integers 0 to 7:

Integers 0 1 2 3 4 5 6 7

Usual code 000 001 010 011 100 101 110 111
Gray code 000 001 011 010 110 100 101 111

7.2.2 Light Plane Analysis

We recall the coordinate systems used for camera and world; see Figs. 6.17 and 7.9.
Additionally, we now also have a light source.

Camera, Light Source, and World Coordinate Systems The camera is posi-
tioned in a 3D space, with a, say, left-hand XsYsZs camera coordinate system. The
projection centre is at the origin Os . The optical axis of the camera coincides with
the Zs -axis. The image plane is parallel to the XsYs plane, at (effective) focal dis-
tance Zs = f . The image has either (looking towards Os ) a left-hand xy coordinate
system or (viewpoint at Os ) a right-hand xy coordinate system.

Due to lens distortions, a 3D point P is projected into a point pd = (xd, yd)

in the image plane, where subscript d stands for “distorted”. Assuming the model
of a pinhole camera (i.e. central projection), the position of pd is corrected into
pu = (xu, yu), where the subscript u stands for “undistorted”. By applying the ray
theorem we obtained the central projection equations

xu = f · Xs

Zs

and yu = f · Ys

Zs

(7.14)

3D points are given in an XwYwZw world coordinate system. The camera coordi-
nates can be transformed into the world coordinates by a rotation and a subsequent
translation, which is conveniently described in a 4D homogeneous world coordinate
space.

Structured lighting requires (in general) also calibration of the used light
source(s). It is necessary to have the pose (i.e. location and direction) of the light
source in the world coordinates. For example, we need to determine the length b of
the baseline defined by projection centre of the camera and the origin of the light
rays, which are emerging from the light source. See Fig. 7.9.

2D Sketch We first discuss the hypothetic case of a camera in a plane before going
to the actual case of a camera in the 3D space. Assume that the angles α and β and
the base distance b are given by calibration. We have to calculate P . See Fig. 7.12.
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Fig. 7.12 A hypothetical
simple case: The camera,
light source, and unknown
surface point P are all in one
plane; L is assumed to be on
the Xs -axis

The projection centres O and L and the unknown point P define a triangle. We
determine the location of P by triangulation, using basic formulas about triangles
such as the law of sines:

d

sinα
= b

sinγ
(7.15)

It follows that

d = b · sinα

sinγ
= b · sinα

sin(π − α − β)
= b · sinα

sin(α + β)
(7.16)

and, finally,

P = (d · cosβ,d · sinβ) (7.17)

in the XsZs coordinates. The angle β is determined by the position of the projected
(illuminated) point P in the hypothetical 1D image.

The 3D Case Now we consider the actual 3D case. Assume that b is given by light
source calibration and α by controlled light plane sweeping. See Fig. 7.13.

The ray theorem (of central projection) tells us that Xs/xu = Zs/f = Ys/yu,
and from the trigonometry of right triangles we know that tanα = Zs/(b − Xs). It
follows that

Z = X

x
· f = tanα · (b − X) and X ·

(
f

x
+ tanα

)
= tanα · b (7.18)

The solution is

X = tanα · b · x
f + x · tanα

, Y = tanα · b · y
f + x · tanα

, and Z = tanα · b · f
f + x · tanα

(7.19)

Why does γ not appear in these equations?
In general we need to consider the case that the light source L is not on the Xs

axis, and the derivation of formulas for this case is left as an exercise. See also
Exercise 7.7.
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Fig. 7.13 For simplification, we consider the light source L on the Xs -axis

Fig. 7.14 A stereo vision input pair aiming at ensuring canonical stereo geometry by using ac-
curately mounted cameras on an optical bench (1994, TU Berlin, Computer Vision lab). Today it
is more efficient to use camera calibration and subsequent image rectification for preparing input
data, as described in Sect. 6.3.2

7.3 Stereo Vision

Binocular vision works. The human visual system is a proof. The difficult part is to
determine corresponding points in the left and right views of a scene (see Fig. 7.14
for an example) being projections of the same surface point. (We devote an extra
chapter, Chap. 8, to this task.) Assuming that we already have those corresponding
points and a pair of calibrated cameras (i.e. intrinsic and extrinsic parameters), then
it is straightforward to calculate the depth or distance to the visible surface point.
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Fig. 7.15 A sketch of epipolar geometry for two cameras in general poses

This section explains the geometric model of stereo vision, having epipolar ge-
ometry and disparity as its central notions, and how to use disparities for calculating
the depth or distance.

7.3.1 Epipolar Geometry

We have two cameras in general poses, not just “left” and “right”. The cameras are
considered in the pinhole-camera model having projection centres O1 and O2. See
Fig. 7.15. We consider the Euclidean geometry in R

3, ignoring digital limitations in
the images for the time being.

A 3D point P in XwYwZw world coordinates is projected into a point p1 in Im-
age 1 (i.e. accurately, not just on a pixel location) and onto a corresponding point p2

in Image 2. The task in stereo correspondence analysis (the subject in the following
chapter) is to locate p2 starting at a point p1 in the first image.

Three non-collinear points in the 3D space define a plane. The points O1, O2

and the unknown point P define the epipolar plane. The points O1, O2 and the
projection point p1 define the same plane.

The intersection of an image plane with the epipolar plane forms an epipolar
line. The search for a corresponding point p2 can proceed along the epipolar line in
Image 2.

Observation 7.2 Knowing the projection centres O1 and O2 by camera calibration
in world coordinates, a point p1 in Image 1 already tells us the line we have to
search in the second image for finding the corresponding point p2; we do not have
to search “everywhere” in Image 2.

This restriction of the search space for stereo analysis is very useful to know.
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Canonical Epipolar Geometry Section 6.1.3 introduced canonical stereo geom-
etry, which now defines canonical epipolar geometry. See Fig. 6.11. Here we have
left and right cameras.

A 3D point P defines in this case an epipolar plane that intersects both image
planes in the same row. When starting at a point p1 = (xu, yu) in the left camera,
then the corresponding point (if P is visible in the right camera) is in the image
row yu in the right camera.

Where are the epipoles in canonical epipolar geometry? They can be described
accurately in 4D homogeneous coordinates. They are points at infinity.

7.3.2 Binocular Vision in Canonical Stereo Geometry

After geometric rectification into canonical stereo geometry, two corresponding
points in the left and right images are in the same image row. Starting, for example,
with a pixel pL = (xL, y) in the left image, the corresponding pixel pR = (xR, y)

in the right image satisfies xR ≤ xL, which means that the pixel pR is left of pixel
pL in the Ncols × Nrows array of all pixels. See Fig. 6.11 for an illustration of this
order. Actually, to be precise, the cxL and cxR coordinates of the principal points in
the left and right cameras might influence this order at places where xL and xR are
nearly identical; see (6.3). But we assume, for formal simplicity, that xR ≤ xL holds
as well as xuR ≤ xuL for the undistorted coordinates.

Disparity in the General Case Assume two rectangular images Ii and Ij of iden-
tical size Ncols × Nrows as input for stereo vision; as in Sect. 6.3.2, we use indices i

and j for the general case rather than just “left” and “right”. We consider the over-
lay of both images, one on top of the other, in the xy image coordinate system, as
illustrated in Fig. 7.16.

A 3D point P = (X,Y,Z) is projected into a point pi in the ith,\and into pj in
the j th image, defining the disparity vectors (i.e. virtual shifts)

dij = pi − pj or dji = pj − pi (7.20)

The scalar disparity value dij = dji is defined as the magnitude ‖dij‖2 = d2(pi,pj )

of dij . We have that ‖dij‖2 = ‖dji‖2.

Disparity for Canonical Stereo Geometry We have left and right images in this
case. The pixel pL = (xL, y) in the left image corresponds to the pixel pR = (xR, y)

in the right image. Because of xR ≤ xL, we have a disparity value equal to xL − xR .

Triangulation for Canonical Stereo Geometry Now we have all together for
going from stereo-image input data to results, that means recovered 3D points P =
(X,Y,Z) in camera or world coordinates.

We apply (6.4) and (6.5) and recover the unknown visible points P in the cam-
era coordinate system of the left camera, P = (Xs,Ys,Zs), using the undistorted
image coordinates (xuL, yuL) and (xuR, yuR) as input, which satisfy yuL = yuR and
xuR ≤ xuL.
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Fig. 7.16 In continuation of Fig. 6.19, two rectified images are overlaid in the same array of
Ncols × Nrows pixels. Two corresponding points define a disparity

The base distance is denoted by b > 0, and, as always, f is the unified focal
length. First, we are able to eliminate Zs from (6.4) and (6.5) using

Zs = f · Xs

xuL

= f · (Xs − b)

xuR

(7.21)

We solve (7.21) for Xs and have that

Xs = b · xuL

xuL − xuR

(7.22)

By using this value of Xs , we also obtain from (7.21) that

Zs = b · f
xuL − xuR

(7.23)

Finally, using this value of Zs in (6.4) or (6.5), we derive that

Ys = b · yu

xuL − xuR

(7.24)

with yu = yuL = yuR .

Observation 7.3 Two corresponding pixels (xL, y) = (xuL + cxL, yuL + cyL) and
(xR, y) = (xuR + cxR, yuR + cyR) identify its joint pre-image P = (X,Y,Z) in the
3D space using the triangulation formulas in (7.22), (7.23), and (7.24).
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Fig. 7.17 The figure shows crossing lines passing through pixel locations in both stereo images.
The intersections mark potential positions of points P in the 3D space located by the disparities
defined by the pixel coordinate differences. The distances δZ between subsequent depth layers
increase nonlinearly

Discussion of the Given Triangulation Formulas The disparity xuL − xuR =
0 means that the pre-image P = (X,Y,Z) is at infinity. The larger the disparity
xuL − xuR , the closer is the pre-image P = (X,Y,Z) to the cameras.

Because we deal with integer coordinates in images, the disparity values xuL −
xuR are basically limited to integers as well (ignoring the constant but possibly non-
integral shift by the principal point). Due to the nonlinearity of the triangulation
equations, a difference of 1 between xuL − xuR = 0 and xuL − xuR = 1 means to go
from infinity to a defined value, between xuL − xuR = 1 to xuL − xuR = 2 that pre-
image points move much closer to the cameras, but between xuL − xuR = 99 and
xuL −xuR = 100 only a very minor change in distance to the cameras. See Fig. 7.17.

Observation 7.4 Without further attempts of refined measurements, the number of
available disparity values between dmax and 0 defines the number of available depth
levels; those depth levels are nonlinearly distributed, from dense close to the cam-
eras to very sparse further away from the cameras.



7.3 Stereo Vision 265

Fig. 7.18 Left: Sparse matches of a stereo correspondence method are shown as coloured points
using a colour key for illustrating depth; a continuation of Fig. 7.16. Right: The input stereo pair
Andreas (top), dense depth map using grey values as a key for illustrating depth, and a triangu-
lated and texture-mapped surface representation of the obtained stereo results (Computer Vision
lab, TU Berlin 1994)

A larger base distance b and a larger focal length f support an increase in depth
levels but reduce the number of pixels that have corresponding pixels in the second
image. An increase in the image resolution is a general way to improve the accuracy
of depth levels, paid by an increase in computation costs.

Recovering Sparse or Dense Depth Data Pairs of corresponding points provide
recovered 3D points. Correspondence search techniques can lead to many estimated
matches between points in the stereo image data or only to a very few matches.
In Fig. 7.18, left, the few sparse matches were generated close to edges in the im-
age, using a local (non-hierarchical) correlation-based stereo matcher, demonstrat-
ing a stereo matching strategy as common in the early days of computer vision.
Figure 7.18, right, shows dense matches, illustrating that hierarchical correlation-
based stereo matching already supported reasonable results.

Correspondence analysis also comes with errors. Thus, even if only a few
matches are detected, the quality of those still needs to be carefully analysed.

Recovering Sparse Depth Data for Embedded Vision Sparse stereo analysis is
today still of interest for “small” embedded vision systems where time efficiency
and accuracy of sparse results are crucial. Figure 7.19 illustrates the results of
a stereo matcher using a modified FAST feature detector. The stereo images are
recorded from a quadcopter.
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Fig. 7.19 Left: Sparse matches using feature-based stereo analysis on a quadcopter (Tübingen
University, 2013). Right: Stereo cameras are mounted on this quadcopter

Fig. 7.20 Left and right
cameras are symmetric to the
Z-axis; their optical axes
intersect at a point C on the
Z-axis, which is the point of
convergence

7.3.3 Binocular Vision in Convergent Stereo Geometry

For maximizing the space of objects being visible in both cameras, it can be useful to
depart from canonical stereo geometry and to use a convergent set-up as illustrated
in Fig. 7.20.

Tilted Cameras with Corresponding Image Rows We assume a Cartesian XYZ

coordinate system; Fig. 7.20 shows the X and Z axes; the Y -axis points towards the
viewer. We have left and right cameras with optical axes intersecting at a point C on
the Z-axis. For the left camera, we have the coordinates XLYLZL, and for the right
camera, we have the coordinates XRYRZR . The projection centres are at OL and
OR . The axis X is incident with both projection centres. The line segment OLOR
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is the base line of the defined convergent binocular vision system, and b is the base
distance.

The base distance between OL and OR equals b, and the optical axes ZL and
ZR describe each the same angle θ with the Z-axis. A point P in the world is
projected into both images with coordinates xuL and xuR , having the identical y-
coordinates yu = yuL = yuR (i.e. this is the kind of rectification we ensure after
camera calibration). There is the same focal length f for left and right cameras.

Coordinate Transforms The system XYZ can be transformed into the XLYLZL

system by the rotation
⎡

⎣
cos(−θ) 0 − sin(−θ)

0 1 0
sin(−θ) 0 cos(−θ)

⎤

⎦=
⎡

⎣
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤

⎦ (7.25)

by angle −θ about the Y -axis followed by the translation

[
X − b

2 , Y,Z
]

(7.26)

by b/2 to the left. This defines the affine transform
⎡

⎣
XL

YL

ZL

⎤

⎦=
⎡

⎣
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤

⎦

⎡

⎣
X − b

2
Y

Z

⎤

⎦ (7.27)

Analogously,
⎡

⎣
XR

YR

ZR

⎤

⎦=
⎡

⎣
cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎤

⎦

⎡

⎣
X + b

2
Y

Z

⎤

⎦ (7.28)

Consider a point P = (X,Y,Z) in the XYZ-coordinate system projected into the
left xuLyu and the right xuRyu coordinate systems. According to the general central
projection equations, we know that

xuL = f · XL

ZL

, yu = f · YL

ZL

= f · YR

ZR

, and xuR = f · XR

ZR

(7.29)

In the centred XYZ-coordinate system we obtain that

xuL = f
cos(θ)(X − b

2 ) + sin(θ) · Z
− sin(θ)(X − b

2 ) + cos(θ) · Z (7.30)

yu = f
Y

− sin(θ)(X − b
2 ) + cos(θ) · Z (7.31)

xuR = f
cos(θ)(X + b

2 ) − sin(θ) · Z
sin(θ)(X + b

2 ) + cos(θ) · Z (7.32)
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This leads to the following equational system:

[−xuL · sin(θ) − f · cos(θ)
]
X + [

xuL · cos(θ) − f · sin(θ)
]
Z

= −
[
b

2
xuL · sin(θ) + b

2
f

]
(7.33)

[−yu · sin(θ)
]
X + [−f ]Y + [

yu · cos(θ)
]
Z

=
[
b

2
yu · sin(θ)

]
(7.34)

[
xuR · sin(θ) − f · cos(θ)

]
X + [

xuR · cos(θ) + f · sin(θ)
]
Z

= −
[
b

2
xuR sin(θ) − b

2
f

]
(7.35)

Solving for the Unknown Point in 3D Space This might look difficult now for
calculating one projected point P = (X,Y,Z). (Do humans “that” for all the corre-
sponding image points in the left and right eyes when converging views for under-
standing the distances to objects?)

This equation system actually allows us to calculate the XYZ-coordinates of the
projected point P accurately. (In human vision, we are not accurately measuring,
just deriving distance estimates.)

Let a1 = [−xuL · sin(θ) − f · cos(θ)], . . . , c0 = −[ b
2xuR · sin(θ) − b

2f ] be the
coefficients of the equation system above, which can all be determined assum-
ing a fixed tilt angle θ , known focal length f , and a detected pair (xuL, yu) and
(xuR, yu) of corresponding image points, being the projection of the same 3D point
P = (X,Y,Z):

a1X + a3Z = a0 (7.36)

b1X + b2Y + b3Z = b0 (7.37)

c1X + c3Z = c0 (7.38)

This can easily be solved for X, Y , and Z.

Observation 7.5 Convergent stereo geometry does not lead to a large overhead in
calculations, compared to the use of canonical stereo geometry.

Vergence If a point P is of particular interest for a human, then the human visual
system focuses on P (called vergence). Geometrically, the tilt of both eyes changes
so that the ZL and ZR axes (ideally) intersect at P . In such a case we do not have
anymore two identical tilt angles θ . Future camera technology might be able to
implement vergence. General linear algebra tools for coordinate changes would be
then more efficient (in terms of briefness, clarity, and generality) for describing
vergence.
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Fig. 7.21 Top: Three input images for PSM; the hand is not allowed to move when taking these
images. Bottom: The reconstructed surface by using the 3-light-source PSM (in 1996 at TU Berlin)

7.4 Photometric Stereo Method

In the previous section we required a light source (usually the Sun) and two (or
more) static or mobile cameras for reconstructing the 3D shape. Now we use one
static camera and multiple static light sources, which can be switched on and off
while taking images. The technology used is known as the photometric stereo
method (PSM). See Fig. 7.21 for an example where three light sources have been
used; the hand is illuminated by only one of those three at a time when taking one
of the three images.

This section first discusses Lambertian reflectance as an example how surfaces
reflect light. Then we consider the three-light-source PSM for deriving surface gra-
dients. Finally, we discuss how surface gradients can be mapped into a 3D shape.

7.4.1 Lambertian Reflectance

Point Light Source Assumption For simpler mathematical description, we as-
sume that each of the used light sources can be identified by a single point in R

3;
this light source emits light uniformly in all directions. Of course, when talking
about an existing light source, it illuminates only a limited range, it has a particular
energy distribution curve L(λ) (see Fig. 1.25, left, for an example), and it has a ge-
ometric shape. But we assume that the used light sources are “not very close” to the
objects of interest, thus making possible the point light source assumption.

Relatively to the illuminated surfaces (of our object of interest), we assume that
a light source L is in direction sL = [aL, bL,1] and emits light with intensity EL.
This constant EL can be seen as integral over the energy distribution curve of light
source L in the visible spectrum of light.
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Fig. 7.22 A light source in
the direction s, a planar
Lambertian reflector with
surface normal n, and a
camera in the viewing
direction v1. The Lambertian
reflector emits light into any
direction v1, . . . ,v4
uniformly, as long as such a
direction is in the hemisphere
of possible viewing directions
on the illuminated side of the
planar Lambertian reflector

Insert 7.6 (Lambert and his Cosine Law) The Swiss mathematician and
physicist J.H. Lambert (1728–1777) contributed to many areas, including ge-
ometric optics, colour models, and surface reflectance. He was also the first to
prove that π is an irrational number. Lambertian reflectance is characterized
by the cosine law, which he published in 1760.

Lambert’s Cosine Law The radiant intensity observed from an ideal diffusely
reflecting surface (also known as the Lambertian reflector) is directly proportional
to the cosine of the angle α between the surface normal n and direction s to the light
source. See Fig. 7.22. No matter which vector vi defines the viewing direction to
the camera, it will receive the same amount of emitted light.

Let nP = [a, b,1] be the surface normal of a visible and illuminated surface
point P . For the formal representation of Lambert’s cosine law, first note that

s · nP = ‖s‖2 · ‖nP ‖2 · cosα (7.39)

resulting in

cosα = s · nP

‖s‖2 · ‖nP ‖2
(7.40)

Second, the emitted light at the point P is scaled by

η(P ) = ρ(P ) · EL

π
(7.41)

where EL was defined as a light source energy, which is reflected at P uniformly
into all directions of a hemisphere (thus, we divide by π , which is the spatial angle
of a hemisphere), and we also have a surface reflectance constant ρ(P ) with 0 ≤
ρ(P ) ≤ 1, called the albedo.2

2“Albedo” means “whiteness” in Latin.
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Insert 7.7 (Albedo) We defined the albedo simply by one scalar denoting the
ratio of reflected radiation to incident radiation; the difference between both
is absorbed at the surface point. This corresponds to the simplified use of EL

for the incident radiation.
The general definition of albedo, introduced by J.H. Lambert for any type

of surface reflectance, is as a function depending on the wavelength λ in the
visible spectrum of light. Because we only discuss Lambertian reflectance
here, it is actually sufficient to use a scalar albedo: the reflected light here
does not depend on the incident energy distribution function.

Altogether, we observe the following emitted light at surface point P , called the
reflectance at P :

R(P ) = η(P ) · s
L · nP

‖sL‖2 · ‖nP ‖2

= η(P ) · aLa + bLb + 1
√

a2
L + b2

L + 1 · √a2 + b2 + 12
(7.42)

The reflectance R(P ) ≥ 0 is a second-order function in unknowns a and b if we
assume that the combined surface reflectance η(P ) is a constant (i.e. we continue to
illuminate and to observe the same point but consider different slopes). The direction
to a light source is considered to be constant (i.e. objects are small compared to the
distance to the light source).

Reflectance Maps A reflectance map is defined in the ab gradient space of the
normals (a, b,1); see Fig. 7.7; it assigns a reflectance value to each gradient (a, b)

assuming that the given surface reflectance is uniquely defined by the gradient value
(as it is the case for Lambertian reflectance).

Example 7.4 (Lambertian Reflectance Map) Consider a point P with albedo ρ(P )

and gradient (a, b).
If nP = sL, then α = 0 and cosα = 1; the curve in (7.42) degenerates into

R(P ) = η(P ), and this is the maximal possible value. We have the value η(P ) at
(aL, bL) in the gradient space.

If nP is orthogonal to sL, then the surface point P is “just” not illuminated any-
more; nP is on the dual straight line to sL (illustrated in Fig. 7.7, right). Because of
α = π/2 and cosα = 0; the curve in (7.42) degenerates into R(P ) = 0, and this is
the minimal possible value. Thus, we have the value 0 along the dual straight line
to (aL, bL) in the gradient space, and we continue with value 0 in the halfplane de-
fined by this straight line and not containing the point (aL, bL) (i.e. the gradients of
surface points that cannot be illuminated by the light source L).

For all values of R(P ) between 0 and η(P ), the curve in (7.42) is either parabolic
or hyperbolic. All these curves together define a Lambertian reflectance map in the
gradient space, as illustrated in Fig. 7.23.
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Fig. 7.23 Lambertian reflectance map. Left: Isolines. Right: A 3D view of values in this map

7.4.2 Recovering Surface Gradients

Assume that we have one static camera (on a tripod), but three different point light
sources at directions si for i = 1,2,3. We assume that the reflectance value R(P )

is uniformly reduced by a constant factor c > 0 (due to the distance between object
surface and camera) and mapped into a monochromatic value u in the image of the
camera.

We capture three images. We turn only one light source on at a time, and a surface
point P maps now (at the same pixel position) into three different intensity values
given by

ui = Ri(P ) = η(P )

c
· s

i · nP

‖si‖2 · ‖nP ‖2
(7.43)

defining three second-order curves in the gradient space, which (ideally) intersect at
(a, b), where nP = [a, b,1] is the normal at the point P .

An n-source photometric stereo method (nPSM) attempts to recover surface nor-
mals by some kind of practical implementation for determining this ideal intersec-
tion at (a, b) for n ≥ 3. Three light sources are needed at least for a unique nor-
mal reconstruction; n = 3 defines the default 3-source photometric stereo method
(PSM).

Albedo-Independent PSM We consider surfaces with Lambertian reflectance.
For example, human skin satisfies Lambert’s cosine law approximately, with crit-
ical issues at places of occurring specularity. There is also specularity in the (open)
eyes.

We cannot assume that the albedo ρ(P ) is constant across a Lambertian surface.
The colouring of surface points changes, and thus also the albedo. We need to con-
sider albedo-independent PSM. We repeat (7.43) but replace η(P ) by its detailed
definition:

ui = Ei · ρ(P )

cπ
· s

i · nP

‖si‖2 · ‖nP ‖2
(7.44)
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Fig. 7.24 Left: An image of a calibration sphere, ideally with uniform albedo and Lambertian
reflectance. Right: An illustration of detected isointensity “lines”, showing the noisiness involved

for light source energies Ei and i = 1,2,3. By multiplying the first equation (i.e.
i = 1) by u2 · ‖s2‖2 and the second equation (i.e. i = 2) by −u1 · ‖s1‖2 and then
adding both results, we obtain the following:

ρ(P ) · nP · (E1u2‖s2‖2 · s1 − E2u1‖s1‖2 · s2
)= 0 (7.45)

This means that the vector nP is orthogonal to the specified difference of vectors s1

and s2, assuming that ρ(P ) > 0. We divide both sides by ρ(P ) using this assump-
tion; using the first and third images, we have that

nP · (E1u3‖s3‖2 · s1 − E3u1‖s1‖2 · s3
)= 0 (7.46)

Altogether, nP is collinear with the cross product

(
E1u2‖s2‖2 · s1 − E2u1‖s1‖2 · s2

)× (
E1u3‖s3‖2 · s1 − E3u1‖s1‖2 · s3

)
(7.47)

Knowing that we are looking for a surface normal away from the camera, we
uniquely derive the desired unit normal n◦

P .
Note that we only need relative intensities of light sources for this technique and

no absolute measurements.

Direction to Light Sources by Inverse PSM For the calibration of directions si

to the three light sources, we apply inverse photometric stereo. We use a calibration
sphere that has (about) Lambertian reflectance and uniform albedo. See Fig. 7.24.
The sphere is positioned about at the same location where object normals will be
recovered later on. It is of benefit for the accuracy of the calibration process if the
sphere is as large as possible, that means, it is “filling” the image taken by the fixed
camera.
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We identify the circular border of the imaged sphere. This allows us to calculate
the surface normals (of the sphere) at all points P projected into pixel positions
within the circle. Due to the expected inaccuracy with respect to Lambertian re-
flectance (see approximate isointensity “lines” on the right of Fig. 7.24), more than
just three points P (say, about 100 uniformly distributed points with their normals
in the circular region of the sphere, in the image recorded for light source i) should
be used to identify the direction si by least-square optimization, using (7.44): We
have the values ui and normals nP ; we solve for the unknown direction si . We
also measure this way the energy ratios between the intensities Ei of the three light
sources.

Regarding the set-up of the light sources relatively to the location of the objects
(or of the calibration sphere), it has been estimated that the angle between two light
source directions (centred around the viewing direction of the camera) should be
about 56◦ for optimized PSM results.

Albedo Recovery Consider (7.44) for i = 1,2,3. We know the three values ui at a
pixel location p being the projection of surface point P . We also have (approximate)
values for the unit vectors s◦

i and n◦
P . We have measured the relative intensities of

the three light sources.
The only remaining unknown is ρ(P ). In the described albedo-independent

PSM, we combined the first and second images and the first and third images. We
still can combine the second and third images. This all supports a robust estimation
of ρ(P ).

Why Albedo Recovery? The knowledge of the albedo is of importance for light-
source-independent modelling of the surface of an object, defined by geometry and
texture (albedo). In general (if not limited to Lambertian reflectance), the albedo
depends upon the wavelength of the illuminating light. As a first approximation,
we may use light sources of different colours, such as red, green, or blue light, to
recover the related albedo values. Note that after knowing s◦ and n◦, we only have
to change the wave length of illuminations (e.g. using transparent filters), assuming
that the object is not moving in between.

It has been shown that such a technique is of reasonable accuracy for recovering
the albedo values of a human face. See Fig. 7.25 for an example.

7.4.3 Integration of Gradient Fields

A discrete field of normals (or gradients) can be transformed into a surface by in-
tegration. As known from mathematical analysis, integration is not unique (when
dealing with smooth surfaces). The result is only determined up to an additive con-
stant.

Ill-Posedness of the Surface Recovering Problems The results of PSM are ex-
pected to be discrete and erroneous surface gradient data. Considered surfaces
are often also “non-smooth”, for example polyhedral surfaces with discontinuous
changes in surface normals at edges of polygonal faces.
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Fig. 7.25 A face recovered by 3PSM (at The University of Auckland in 2000). Closed eyes avoid
the recording of specularity

Fig. 7.26 Assuming that a
surface patch is defined on a
simply connected set and its
explicit surface function
satisfies the integrability
condition, the local
integration along different
paths will lead (in the
continuous case) to identical
elevation results at a point
(x1, y1), after starting at
(x0, y0) with the same initial
elevation value

For illustrating the reconstruction difficulty by an example, assume that we look
onto a staircase, orthogonal to the front faces. All recovered normals will point
straight towards us, and there is no chance to recover the staircase from these nor-
mals, which also match the normals of a plane.

In general, the densities of recovered surface normals do not correspond uni-
formly to the local surface slopes.

Local Integration Methods In the continuous case we have that values of a depth
function Z = Z(x, y), defined on a simply connected set, can be recovered by start-
ing at one point (x0, y0) with an initial value Z(x0, y0) and then by integrating the
gradients along a path γ that is completely in the set. It then holds that different
integration paths lead to an identical value at (x1, y1). To be precise, the depth Z

also needs to satisfy the integrability condition

∂Z2

∂x∂y
= ∂Z2

∂y∂x
(7.48)

at all points (x, y) in the considered simply connected set; but this is more of theo-
retical interest only. For a sketch of two different paths, see Fig. 7.26.
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Local integration methods implement integration along selected paths (e.g. one
or multiple scans through the image as illustrated in Fig. 2.10) by using initial Z-
values and local neighbourhoods at a pixel location when updating Z-values incre-
mentally.

Two-Scan Method We present a local method for depth recovery from gradients.
We want to recover a depth function Z such that

∂Z

∂x
(x, y) = ax,y (7.49)

∂Z

∂y
(x, y) = bx,y (7.50)

for all the given gradient values ax,y and bx,y at pixel locations (x, y) ∈ Ω .
Consider grid points (x, y + 1) and (x + 1, y + 1); since the line connecting

points (x, y + 1,Z(x, y + 1)) and (x + 1, y + 1,Z(x + 1, y + 1)) are approximately
perpendicular to the average normal between these two points, the dot product of
the slope of this line and the average normal is equal to zero. This gives

Z(x + 1, y + 1) = Z(x, y + 1) + 1

2
(ax,y+1 + ax+1,y+1) (7.51)

Similarly, we obtain the following recursive relation for pixel locations (x + 1, y)

and (x + 1, y + 1):

Z(x + 1, y + 1) = Z(x + 1, y) + 1

2
(bx+1,y + bx+1,y+1) (7.52)

Adding above two recursions together and dividing the result by 2 give

Z(x + 1, y + 1) = 1

2

(
Z(x, y + 1) + Z(x + 1, y)

)

+ 1

4
(ax,y+1 + ax+1,y+1 + bx+1,y + bx+1,y+1) (7.53)

Suppose further that the total number of points on the object surface be Ncols ×
Nrows. If two arbitrary initial height values are preset at pixel locations (1,1) and
(Ncols,Nrows), then the two-scan algorithm consists of two stages; the first stage
starts at the left-most, top-most corner (1,1) of the given gradient field and deter-
mines the height values along the x-axis and y-axis by discretizing (7.49) in terms
of the forward differences:

Z(x,1) = Z(x − 1,1) + ax−1,1 (7.54)

Z(1, y) = Z(1, y − 1) + b1,y−1 (7.55)
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Fig. 7.27 The results of the two-scan method for a synthetic vase object. Left: The original image.
Middle: A 3D plot of the vase object. Right: The reconstruction result using the two-scan method

where x = 2, . . . ,Ncols and j = 2, . . . ,Nrows. Then scan the image vertically using
(7.53). The second stage starts at the right-most, bottom-most corner (Ncols,Nrows)

of the given gradient field and sets the height values by

Z(x − 1,Nrows) = Z(x,Nrows) − ax,Nrows (7.56)

Z(Ncols, y − 1) = Z(Ncols, y) − bNcols,y (7.57)

Then scan the image horizontally using the following recursive equation:

Z(x − 1, y − 1) = 1

2

(
Z(x − 1, y) + Z(x, y − 1)

)

− 1

4
(ax−1,y + ax,y + bx,y−1 + bx,y) (7.58)

Since the estimated height values may be affected by the choice of the initial height
value, we take the average of the two scan values for the final depth values.

For an illustration of the results for the two-scan method, see Fig. 7.27. The
shown synthetic vase is generated by using the following explicit surface equation:
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Z(x, y) =
√

f 2(y) − x2,

where f (y) = 0.15 − 0.1 · y(6y + 1)2(y − 1)2(3y − 2)2

for − 0.5 ≤ x ≤ 0.5 and 0.0 ≤ y ≤ 1.0 (7.59)

The image of this synthetic vase object is shown on the left of Fig. 7.27. The 3D
plot of the reconstructed surface, using the provided two-scan algorithm, is shown
on the right of Fig. 7.27.

Global Integration Assume that we have a gradient vector estimated at any pixel
location p ∈ Ω . We aim at mapping this uniform and dense gradient vector field into
a surface in a 3D space, which is likely to be the actual surface that caused the esti-
mated gradient vector field. The depth values Z(x, y) define labels at pixel locations
(x, y), and we are back to a labelling problem with error (or energy) minimization.

Similar to the total variations considered in Chap. 4, we combine again the data
term

Edata(Z) =
∑

Ω

[
(Zx − a)2 + (Zy − b)2]+ λ0

∑

Ω

[
(Zxx − ax)

2 + (Zyy − by)
2]

(7.60)
with the smoothness term

Esmooth(Z) = λ1

∑

Ω

[
Z2

x + Z2
y

]+ λ2

∑

Ω

[
Z2

xx + 2Z2
xy + Z2

yy

]
(7.61)

where Zx and Zy are the first-order partial derivatives of Z, ax and by are the first-
order partial derivatives of a and b, and Zxx , Zxy = Zyx , and Zyy are the second-
order partial derivatives. With λ0 ≥ 0 we control the consistency between the sur-
face curvature and changes in available gradient data. With λ1 ≥ 0 we control the
smoothness of the surface, with λ2 ≥ 0 we go one step further and control also the
smoothness of surface curvature. Altogether, we like to determine a surface Z (i.e.
the labelling function) such that the total error (or total energy)

Etotal(Z) = Edata(Z) + Esmooth(Z) (7.62)

is minimized, having gradients (a, b) as inputs at pixel locations (x, y).

Insert 7.8 (Fourier-Transform-Based Methods) The optimization problem,
defined by (7.62), can be solved by using the theory of projections onto con-
vex sets. The given gradient field (ax,y, bx,y) is projected onto the nearest in-
tegrable gradient field in the least-square sense, using the Fourier transform
for optimizing in the frequency domain. See [R.T. Frankot and R. Chellappa.
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A method for enforcing integrability in shape from shading algorithms. IEEE
Trans. Pattern Analysis Machine Intelligence, vol. 10, pp. 439–451, 1988] for
the case that the second part of the data constraint is not used as well as no
smoothness constraint at all.

In order to improve accuracy and robustness and to strengthen the rela-
tion between the surface function Z and the given gradient field, (7.62) also
contains additional constraints as introduced in [T. Wei and R. Klette. Depth
recovery from noisy gradient vector fields using regularization. In Proc. Com-
puter Analysis Images Patterns, pp. 116–123, LNCS 2756, Springer, 2003].

Fourier-Transform-Based Methods To solve the minimization problem (7.62),
Fourier-transform techniques can be applied. The 2D Fourier transform (see
Sect. 1.2) of the surface function Z(x, y) is defined by

Z(u, v) = 1

|Ω|
∑

Ω

Z(x, y) · exp

[
−i2π

(
xu

Ncols
+ yv

Nrows

)]
(7.63)

and the inverse Fourier transform is defined by

Z(x, y) =
∑

Ω

Z(u, v) · exp

[
i2π

(
xu

Ncols
+ yv

Nrows

)]
(7.64)

where i = √−1 is the imaginary unit, and u and v represent the frequencies in the
2D Fourier domain.

In addition to the Fourier pairs provided in Sect. 1.2, we also have the following:

Zx(x, y) ⇔ iuZ(u, v)

Zy(x, y) ⇔ ivZ(u, v)

Zxx(x, y) ⇔ −u2Z(u, v)

Zyy(x, y) ⇔ −v2Z(u, v)

Zxy(x, y) ⇔ −uvZ(u, v)

Those Fourier pairs define the appearance of the considered derivatives of the func-
tion Z in the frequency domain.

Let A(u, v) and B(u, v) be the Fourier transforms of the given gradients
A(x,y) = ax,y and B(x, y) = bx,y , respectively. We also use Parseval’s theorem;
see (1.31).
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Frankot–Chellappa Algorithm and Wei–Klette Algorithm We obtain an equiv-
alence of the optimization problem (7.62) in the spatial domain to the optimization
problem in the frequency domain that we are looking for a minimization of

∑

Ω

[
(iuZ − A)2 + (ivZ − B)2]

+ λ0

∑

Ω

[(−u2Z − iuA
)2 + (−v2Z − ivB

)2]

+ λ1

∑

Ω

[
(iuZ)2 + (ivZ)2]

+ λ2

∑

Ω

[(−u2Z
)2 + 2(−uvZ)2 + (−v2ZF

)2]
(7.65)

The above expression can be expanded into

∑

Ω

[
u2ZZ� − iuZA� + iuZ�A + AA� + v2ZZ� − ivZB� + ivZ�B + BB�

]

+ λ0

∑

Ω

[
u4ZZ� − iu3ZA� + iu3Z�A + u2AA� + v4ZZ�

− iv3ZB� + iv3Z�B + v2BB�
]

+ λ1

∑

Ω

(
u2 + v2)ZZ� + λ2

∑

Ω

(
u4 + 2u2v2 + v4)ZZ� (7.66)

using � for denoting the complex conjugate.
Differentiating the above expression with respect to Z� and setting the result to

zero, we can deduce the necessary condition for a minimum of the cost function
(7.62) as follows:

(
u2Z + iuA + v2Z + ivB

)+ λ0
(
u4Z + iu3A + v4Z + iv3B

)

+ λ1
(
u2 + v2)Z + λ2

(
u4 + 2u2v2 + v4)Z = 0 (7.67)

A rearrangement of this equation then yields

[
λ0
(
u4 + v4)+ (1 + λ1)

(
u2 + v2)+ λ2

(
u2 + v2)2]Z(u, v)

+ i
(
u + λ0u

3)A(u, v) + i
(
v + λ0v

3)B(u, v) = 0 (7.68)

Solving the above equation with (u, v) �= (0,0), we obtain that

Z(u, v) = −i(u + λ0u
3)A(u, v) − i(v + λ0v

3)B(u, v)

λ0(u4 + v4) + (1 + λ1)(u2 + v2) + λ2(u2 + v2)2
(7.69)
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1: input gradients a(x, y), b(x, y); parameters λ0, λ1, and λ2
2: for (x, y) ∈ Ω do
3: if (|a(x, y)| < cmax & |b(x, y)| < cmax) then
4: A1(x, y) = a(x, y); A2(x, y) = 0;
5: B1(x, y) = b(x, y); B2(x, y) = 0;
6: else
7: A1(x, y) = 0; A2(x, y) = 0;
8: B1(x, y) = 0; B2(x, y) = 0;
9: end if

10: end for
11: Calculate Fourier transform in place: A1(u, v), A2(u, v);
12: Calculate Fourier transform in place: B1(u, v), B2(u, v);
13: for (u, v) ∈ Ω do
14: if (u �= 0 & v �= 0) then
15: Δ = λ0(u

4 + v4) + (1 + λ1)(u
2 + v2) + λ2(u

2 + v2)2;
16: H1(u, v) = [(u + λ0u

3)A2(u, v) + (v + λ0v
3)B2(u, v)]/Δ;

17: H2(u, v) = [−(u + λ0u
3)A1(u, v) − (v + λ0v

3)B1(u, v)]/Δ;
18: else
19: H1(0,0) = average depth; H2(0,0) = 0;
20: end if
21: end for
22: Calculate inverse Fourier transform of H1(u, v) and H2(u, v) in place: H1(x, y), H2(x, y);
23: for (x, y) ∈ Ω do
24: Z(x, y) = H1(x, y);
25: end for

Fig. 7.28 The Fourier-transform-based Wei–Klette algorithm (generalizing the Frankot–Chel-
lappa algorithm, which has λ0 = λ1 = λ2 = 0, thus not using the second part of the data constraint
and no smoothness constraint at all) for calculating an optimum surface for a given dense gradient
field

This is the Fourier transform of the unknown surface function Z(x, y) expressed
as a function of the Fourier transforms of the given gradients A(x,y) = ax,y and
B(x, y) = bx,y . The resulting algorithm is shown in Fig. 7.28.

The constant cmax eliminates gradient estimates that define angles with the image
plane close to π/2, and the value cmax = 12 is an option. The real parts are stored in
arrays A1, B1, and H1, and imaginary parts in arrays A2, B2, and H2. The initial-
ization in Line 19 can be by an estimated value for the average depth of the visible
scene. The parameters λ0, λ1, and λ2 should be chosen based on experimental evi-
dence for the given scene.

Figure 7.29 shows three captured images of a Beethoven plaster statue using a
static camera and three light sources. The gradients were generated using albedo-
independent 3PSM. The figure illustrates the recovered surfaces for the same dense
gradient field as input but using either λ0 = 0 (i.e. the Frankot–Chellappa algorithm)
or λ0 = 0.5 (i.e. the Wei–Klette algorithm); positive values of λ1 and λ2 can be used
for further fine-tuning of the recovered surface.

Test on Noisy Gradients Generally speaking, local methods provide unreliable
reconstructions for noisy gradient inputs since errors propagate along the scan paths.
We illustrate global integration for the synthetic vase already used in Fig. 7.27. We
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Fig. 7.29 Top: An Image triplet of a Beethoven statue used as input for 3PSM. Bottom, left: The
recovered surface using the Frankot–Chellappa algorithm. Bottom, right: The recovered surface
using the Wei–Klette algorithm with λ0 = 0.5 and λ1 = λ2 = 0

Fig. 7.30 The results for a noisy gradient field for the synthetic vase shown in Fig. 7.27. Left: The
reconstructed surface using the Frankot–Chellappa algorithm. Right: The reconstructed surface
using the Wei–Klette algorithm with λ0 = 0, λ1 = 0.1, and λ2 = 1

generate a discrete gradient vector field for this synthetic vase and add Gaussian
noise (with mean set to zero and standard deviation set to 0.01) to this gradient
field. See Fig. 7.30 for results.
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Fig. 7.31 Left: An example of an input image of a cylindrical shape with glued-on label. Middle:
An approximate location of occluding contours of cylinder, generated by manual interaction. Right:
An extracted flat label from multiple input images

7.5 Exercises

7.5.1 Programming Exercises

Exercise 7.1 (Map Surface of Cylindrical Shape into a Plane) Provide a solution
for the following task: Given is a set of images showing one cylindrical object such
as a can or a bottle (see Fig. 7.31). The occluding contour of the cylindrical object
may be generated interactively rather than by an automated process.

Use multiple images of the cylindrical object showing an “interesting” part of the
surface (such as the label in Fig. 7.31). Your program needs to ensure the following:
1. For each image, map it onto one generic cylinder of some fixed radius.
2. Use image stitching for merging segments of mapped images on the surface of

this generic cylinder.
3. Finally, map the stitched image into the plane.
Thus, you provide a planar view on some surface parts of the given cylindrical ob-
ject, as illustrated in Fig. 7.31 for an example.

Exercise 7.2 (Visualization of Similarity Curvature) Visualize similarity curvature
for 3D surfaces. The values of similarity curvature are in R

2. Figure 7.32 illustrates
two possible colour keys for the first (horizontal axis) and the second (vertical axis)
value in tuples specifying the similarity curvature and shows also the application of
this colour scheme for a few simple shapes.

Select a few 3D shapes of your choice, each at different scales, and visualize
their similarity curvature by mapping the colour key values onto the surfaces of the
selected shapes.

Summarize your experience when visualizing the similarity curvature for the
same shape but given at different scales (sizes).

Exercise 7.3 (Building a Simple 3D Scanner) This project is about a “very basic”
way to build a 3D scanner. We assume that you have a digital camera and a planar
light source (such as an overhead slide projector or a light display similar to those
for reading X-rays; both are actually outdated technologies) at hand.
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Fig. 7.32 Left: A possible colour key for the similarity curvature. Right: Application of this colour
key for sphere, cylinder, ellipsoid, and torus

Use cardboard to build a disk such that 20 to 50 cm large objects (such as a
wooden statue) fit onto it, mark its border by degrees (say, in steps of 5 degrees),
position it onto a desk, draw a circle around it, and make a mark on the circle indi-
cating where the 0 degree mark of the disk is at the start, before doing subsequent
rotations of the disk within the circle by the marked angular increases.

Now project a fixed light plane towards the rotation axis of the disk by covering
your planar light source by two sheets of paper, leaving just a very narrow gap
between both. (An even better solution is actually to have a laser light and an optical
wedge for generating a light plane.)

Position the camera so that it “sees” the rotating disk and calibrate distances as
follows: move an object such as a book in the area of the disk in measured distance
increments and identify the image column(s) that show the projected light plane on
the object at a given distance; this way you create a look-up table for illuminated
columns in the camera and the corresponding distances.

Now you are ready to identify 3D points on the surface of an object, positioned
on your rotating disk. Report about the experiment and submit input images as well
as a reconstructed set of 3D surface points.

Exercise 7.4 (Uncertainty in Stereo Reconstruction) Figure 7.17 illustrates the un-
certainties of calculated disparity values. Intersections of lines mark potential po-
sitions in 3D space, which are specified by calculated disparities, but the actual
position of the surface point creating this disparity can be in a trapezoid around the
intersection point. The area of the trapezoids (i.e. the uncertainty) increases with
distance to the cameras.

Actually, the figure only shows one plane defined by one row in the left and right
images. The regions of uncertainties are (3D) polyhedra; the trapezoids are only 2D
cuts trough those polyhedra.

This exercise requires a geometric analysis of the volume of those polyhedra (the
area of trapezoids could be used as a simplification) and a graphical representation
of uncertainties as a function of distance to the cameras.

Assume two cameras of fixed resolution Nrows × Ncols in canonical stereo ge-
ometry, defined by the focal length f and base distance b. Provide a graphical rep-
resentation of uncertainties as a function of distance to the cameras; change only
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f and represent the changes in uncertainties; now change only b and represent the
changes in uncertainties again. A program interface allowing interactive changes of
f and b would be ideal.

Exercise 7.5 (Removal of Minor Highlights) The described PSM method only
works if surface reflectance is close to Lambertian. However, minor specularities
can be “removed” if the surface texture is “not very detailed”, by using the dichro-
matic reflectance model for coloured surfaces.

Use an object where the surface only has patches of (roughly) constant colour,
which show minor specularities. Take images of this object and map the pixel val-
ues being within one patch of constant colour into the RGB colour cube. These
values should form a T or an L in the RGB cube, defined by a base line (the diffuse
component) and higher-intensity values away from the base line (the specularity).

Approximate the base line and map the RGB values orthogonally onto the base
line. Replace in the image the mapped values by the obtained values on the baseline.

This is a way to remove minor highlights. Demonstrate this for a few images
taken from your test object under different viewing angles and lighting conditions.

7.5.2 Non-programming Exercises

Exercise 7.6 A smooth compact 3D set is compact (i.e., connected, bounded, and
topologically closed), and the curvature is defined at any point of its frontier (i.e.,
its surface is differentiable at any point).

Prove (mathematically) that the similarity curvature measure S , as defined
in (7.12), is (positive) scaling invariant for any smooth 3D set.

Exercise 7.7 Instead of applying a trigonometric approach as on p. 259, specify the
required details for implementing a linear-algebra approach for structured lighting
along the following steps:
1. From calibration we know the implicit equation for each light plane expressed in

world coordinates.
2. From calibration we also know in world coordinates the parametric equation for

each ray from the camera’s projection centre to the centre of a square pixel for
each pixel.

3. Image analysis gives us the ID of the light plane visible at a given pixel location.
4. An intersection of the ray with the light plane gives us the surface-point coordi-

nates.

Exercise 7.8 Specify the fundamental matrix F for canonical stereo geometry. Con-
sider also a pair of tilted cameras as shown in Fig. 7.20 and specify also the funda-
mental matrix F for such a pair of two cameras.
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Exercise 7.9 Describe the Lambertian reflectance map in spherical coordinates on
the Gaussian sphere (hint: isointensity curves are circles in this case). Use this model
to answer the question why two light sources are not yet sufficient for identifying a
surface normal uniquely.

Exercise 7.10 Why the statement “We also use Parseval’s theorem. . . ” on p. 279?



8Stereo Matching

This chapter discusses the search for corresponding pixels in a pair of stereo im-
ages. We consider at first correspondence search as a labelling problem, defined by
data and smoothness error functions and by the applied control structure. We de-
scribe belief-propagation stereo and semi-global matching. Finally, we also discuss
how to evaluate the accuracy of stereo-matching results on real-world input data,
particularly on stereo video data.

Figure 8.1 shows a pair of geometrically rectified input images, defining a stereo
pair. We considered two-camera systems in Sect. 6.1.3, their calibration and geo-
metric rectification in Sect. 6.3, stereo-vision geometry in Sect. 7.3.1, and the use of
detected corresponding pixels for 3D surface reconstruction in Sect. 7.3.2, assuming
a stereo pair in canonical stereo geometry. It remains to answer the question: How
to detect pairs of corresponding pixels in a stereo pair?

This chapter always assumes stereo pairs that are already geometrically rectified
and possibly also preprocessed for reducing brightness issues (e.g. see Sect. 2.3.5).
Corresponding pixels are thus expected to be in the left and right images in the
same image row, as illustrated in Fig. 6.11 for standard stereo geometry. Figure 8.2
illustrates a calculated disparity map.

8.1 Matching, Data Cost, and Confidence

Stereo matching is an example of the labelling approach as outlined in Sect. 5.3.1.
A labelling function f assigns a label fp ∈ L, a disparity, to each pixel location
p ∈ Ω , applying error functions Edata and Esmooth as specified in (5.30) for a general
case, which we recall here for better reference:

E(f ) =
∑

p∈Ω

[
Edata(p,fp) +

∑

q∈A(p)

Esmooth(fp,fq)

]
(8.1)

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_8, © Springer-Verlag London 2014
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Fig. 8.1 A stereo pair Crossing. Starting at pixel location p in the left image, we search along
the epipolar line for a corresponding pixel location q . How to detect q (e.g. in a homogeneously
textured region as shown here)? A correct q would be to the right of the shown q

Fig. 8.2 Visualization of a
calculated disparity map for
the stereo pair Crossing
shown in Fig. 8.1, using a
colour key for visualizing
different disparities. Black
illustrates a pixel where
confidence was low in the
calculated disparity

The accumulated costs of label fp at p are the combined data and adjacent smooth-
ness error values:

Adata(p,fp) = Edata(p,fp) +
∑

q∈A(p)

Esmooth(fp,fq) (8.2)

Examples for a (general) smoothness error or energy term Esmooth (also called
continuity or neighbourhood term) are provided in Sect. 5.3.2, starting with the sim-
ple Potts model and continuing with the linear (truncated) and quadratic (truncated)
cost functions.

This section describes the stereo-matching problem at an abstract level, specifies
data-cost functions Edata as applicable for solving stereo-matching problems, and
also a way for selecting an appropriate data-cost function for stereo data of interest.
The section ends with providing measures for confidence in calculated disparity
values.
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Fig. 8.3 Assume that the left image is the base image (i.e. B = L) and the right image is the match
image (i.e. M = R). We start at a pixel p in the base image, consider its neighbourhood defined by
a square window, and compare with neighbourhoods around pixels q on the epipolar line (i.e. on
the same row due to canonical stereo geometry) in the match image

8.1.1 Generic Model for Matching

We have a left and a right image, denoted by L and R, respectively. One of both is
now the base image, and the other the match image, denoted by B and M , respec-
tively. For a pixel (x, y,B(x, y)) in the base image, we search for a corresponding
pixel (x + d, y,M(x + d, y)) in the match image, being on the same epipolar line
identified by row y. The two pixels are corresponding if they are projections of the
same point P = (X,Y,Z) in the shown scene, as illustrated in Fig. 6.11. (In this
figure it is B = L and M = R, x = xuL, and x + d = xuR .)

Base and Match Images and Search Intervals Figure 8.3 illustrates the case
B = L (and thus M = R). We initiate a search by selecting p = (x, y) in B . This
defines the search interval of points q = (x + d, y) in M with max{x − dmax,1} ≤
x + d ≤ x. In other words, we have that

0 ≤ −d ≤ min{dmax, x − 1} (8.3)

(Section 7.3.2 explained that we only need to search to the left of x.) For example,
if we start at p = (1, y) in B , then we can only consider d = 0, and point P would
need to be “at infinity” for having corresponding pixels. If we start at p = (Ncols, y)

and we have that Ncols > dmax, then we have that −d ≤ dmax, and the search interval
stops on the left already at Ncols − dmax.

If we change to B = R (and thus M = L), the sign of d will swap from negative
to positive, and we have that

0 ≤ d ≤ min{dmax,Ncols − x} (8.4)

See Fig. 8.4. We initiate a search again by selecting p = (x, y) in B = R and
have the search interval of points q = (x + d, y) in M = L with x ≤ x + d ≤
min{Ncols, x + dmax}.
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Fig. 8.4 Here we take the
right image as the base image
(i.e. B = R) and the left
image as the match image
(i.e. M = L)

Label Set for Stereo Matching For not having to discriminate in the following
between positive and negative values, we assume right-to-left matching and refer to
the following label set:

L = {−1,0,1, . . . , dmax} (8.5)

where −1 denotes “no disparity assigned”, and all the non-negative numbers are
possible disparity values, with dmax > 0. In case of left-to-right matching, we have
the label set L = {+1,0,−1, . . . ,−dmax}.

Using intrinsic and extrinsic camera parameters, the value dmax can be estimated
by the closest objects in the scene that are “still of interest”. For example, when
analysing a scene in front of a driving car, everything closer than, say, 2 m is out of
interest, and the threshold 2 m would identify dmax. See Exercise 8.7.

Neighbourhoods for Correspondence Search For identifying corresponding
points, a straightforward idea is to compare neighbourhoods (rectangular windows
for simplicity) around a pixel p in the image I . We consider (2l + 1) × (2k + 1)

windows W
l,k
p (I ). The window W

0,k
p (I ) is only along one image row.1 We only

consider grey-level images with values between 0 and Gmax.
We always consider one image row y at a time. We just write Bx for B(x, y), or

W
l,k
x (B) for W

l,k
p (B), and Mx+d for M(x + d, y), or W

l,k
x+d(M) for W

l,k
q (M). We

speak about the pixel location x in B and pixel location x + d in M , not mentioning
the current row index y.

Windows are centred at the considered pixel locations. The data in both windows
around the start pixel location p = (x, y) and around the candidate pixel location
q = (x + d, y) are identical iff the data cost measure

ESSD(p, d) =
l∑

i=−l

k∑

j=−k

[
B(x + i, y + j) − M(x + d + i, y + j)

]2 (8.6)

1This notation is short for W
2l+1,2k+1
p (I), the notation used in Sect. 1.1.1.
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results in value 0, where SSD stands for the sum of squared differences. The same
would be true if we use the data cost defined by the sum of absolute differences
(SAD) as follows:

ESAD(p, d) =
l∑

i=−l

k∑

j=−k

∣∣B(x + i, y + j) − M(x + d + i, y + j)
∣∣ (8.7)

In both equations we compare every pixel in the window W
l,k
x (B) with that pixel in

the window W
l,k
x+d(M) that is relatively at the same location (i, j). In the extreme

case of l = k = 0 we just compare the pixel value with the pixel value. For example,
the absolute difference (AD)

EAD(p, d) = ∣∣B(x, y) − M(x + d, y)
∣∣ (8.8)

may be seen as the simplest possible data cost function.

Five Reasons Why Just SSD or SAD Will Not Work We list five difficulties that
prevent a simple use of the SSD or SAD data cost measure from succeeding when
looking for corresponding pixels:
1. Invalidity of ICA. Stereo pairs often do not satisfy the ICA; the intensity values

at corresponding pixels, and in their neighbourhoods, are typically impacted by
lighting variations or just by image noise.

2. Local reflectance differences. Due to different viewing angles, P and its neigh-
bourhood will also reflect light differently to cameras recording B and M (except
in the case where having Lambertian reflectance at P ).

3. Differences in cameras. Different gains or offsets in the two cameras used result
in high SAD or SSD errors.

4. Perspective distortion. The 3D point P = (X,Y,Z), projected into a pair of cor-
responding points, is on a sloped surface. The local neighbourhood around P on
this surface is differently projected into images B and M because both images
see this neighbourhood around P under (slightly) different viewing angles (i.e.
the shape of windows Wp and Wq should ideally follow to projected shape of the
local neighbourhood).

5. No unique minimum. There might be several pixel locations q defining the same
minimum, such as in the case of a larger region being uniformly shaded, or in the
case of a periodic pattern.

We will provide better data measures in the next subsection.

3D Data Cost Matrix Consider a base image B and a match image M . A data cost
measure Edata(p, l) with p ∈ Ω (i.e. the carrier of image B) and l ∈ L\{−1} defines
the 3D data cost matrix Cdata of size Ncols × Nrows × (dmax + 1) with elements
(assuming that B = R)

Cdata(x, y, d) =
{

Edata(x, y, d) if 0 ≤ d ≤ min{dmax,Ncols − x}
−1 otherwise

(8.9)
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Fig. 8.5 Left: The 3D data cost matrix for a data cost function Edata. A position contains either
the value Edata(x, y, d) or −1. Right: The top view on this matrix, assuming Ncols > dmax and
B = R, showing all those columns (in the y-direction) in dark grey, which have the value −1; the
rows in light grey indicate a constrained disparity range because there is at least one column (in the
y-direction) labelled by −1

For example, the data measures SSD and SAD define the cost matrices CSSD and
CSAD.

A 3D data-cost matrix is a comprehensive representation of all the involved data
costs, and it can be used for further optimization (e.g. by using the smoothness-cost
function) in the control structure of the stereo matcher (i.e. an algorithm for stereo
matching). Figure 8.5 illustrates data matrices. Each disparity defines one layer of
the 3D matrix. In the case of B = R, the columns indicated by dark grey do have
the value −1 in all their positions. The rows in light grey indicate the cases of x-
coordinates where the available range of disparities is constrained, not allowing to
go to a maximum of dmax.

If we consider one image row y at a time, and a fixed data-cost function, the
notation can simplify to C(x, d) by not including the current image row y or cost
function.

8.1.2 Data-Cost Functions

A stereo matcher is often defined by the used data and smoothness-cost terms and by
a control structure how those terms are applied for minimizing the total error of the
calculated labelling function f . The smoothness terms are very much generically
defined, and we present possible control structures later in this chapter. Data-cost
calculation is the “core component” of a stereo matcher. We define a few data-cost
functions with a particular focus on ensuring some invariance with respect to light-
ing artifacts in recorded images or brightness differences between left and right
images.

Zero-Mean Version Instead of calculating a data-cost function such as ESSD(x, l)

or ESAD(x, l) on the original image data, we first calculate the mean Bx of a used
window W

l,k
x (B) and the mean Mx+d of a used window W

l,k
x+d(M), subtract Bx
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from all intensity values in W
l,k
x (B) and Mx+d from all values in W

l,k
x+d(M), and

then calculate the data-cost function in its zero-mean version. This is one option for
reducing the impact of lighting artefacts (i.e. for not depending on the ICA).

We indicate this way of processing by starting the subscript of the data-cost func-
tion with a Z. For example, EZSSD or EZSAD are the zero-mean SSD or zero-mean
SAD data-cost function, respectively, formally defined by

EZSSD(x, d) =
l∑

i=−l

k∑

j=−k

[
(Bx+i,y+j − Bx) − (Mx+i+d,y+j − Mx+d)

]2 (8.10)

EZSAD(x, d) =
l∑

i=−l

k∑

j=−k

∣∣[Bx+i,y+j − Bx] − [Mx+d+i,y+j − Mi+d ]∣∣ (8.11)

NCC Data Cost The normalized cross correlation (NCC) was defined in In-
sert 4.11 for comparing two images. The NCC is already defined by zero-mean
normalization, but we add the Z to the index for uniformity in notation. The NCC
data cost is defined by

EZNCC(x, d) = 1 −
∑l

i=−l

∑k
j=−k[Bx+i,y+j − Bx][Mx+d+i,y+j − Mx+d ]

√
σ 2

B,x · σ 2
M,x+d

(8.12)
where

σ 2
B,x =

l∑

i=−l

k∑

j=−k

[Bx+i,y+j − Bx]2 (8.13)

σ 2
M,x+d =

l∑

i=−l

k∑

j=−k

[Mx+d+i,y+j − Mx+d ]2 (8.14)

ZNCC is also an option for going away from the ICA.

The Census Data-Cost Function The zero-mean normalized census cost function
is defined as follows:

EZCEN(x, d) =
l∑

i=−l

k∑

j=−k

ρ(x + i, y + j, d) (8.15)

with

ρ(u, v, d) =
{

0 Buv⊥Bx and Mu+d,v⊥Mx+d

1 otherwise
(8.16)

with ⊥ either < or > in both cases. By using Bx instead of Bx and Mx+d instead
of Mx+d , we have the census data-cost function ECEN (without zero-mean normal-
ization).
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Example 8.1 (Example for Census Data Cost) Consider the following 3 × 3 win-
dows Wx(B) and Wx+d(M):

2 1 6
1 2 4
2 1 3

5 5 9
7 6 7
5 4 6

We have that Bx ≈ 2.44 and Mx+d ≈ 6.11.
Consider i = j = −1, resulting in u = x − 1 and v = y − 1. We have that

Bx−1,y−1 = 2 < 2.44 and Mx−1+d,y−1 = 5 < 6.11, and thus ρ(x − 1, y − 1, d) = 0.
As a second example, consider i = j = +1. We have that Bx+1,y+1 = 3 > 2.44,

but Mx+1+d,y+1 = 6 < 6.11, and thus ρ(x + 1, y + 1, d) = 1.
In the case i = j = −1, the values are in the same relation with respect to the

mean, but at i = j = +1 they are in opposite relationships. For the given example,
it follows that EZCEN = 2. The spatial distribution of ρ-values is illustrated by the
matrix

0 0 0
1 0 0
0 0 1

The following vector cx,d lists these ρ-values in a left-to-right, top-to-bottom order:
[0,0,0,1,0,0,0,0,1].

Let bx be the vector listing results sgn(Bx+i,y+j − Bx) in a left-to-right, top-
to-bottom order, where sgn is the signum function. Similarly, mx+d lists the values
sgn(Mx+i+d,y+j − Mx+d). For the values in Example 8.1, we have that

bx = [−1,−1,+1,−1,−1,+1,−1,−1,+1] (8.17)

mx+d = [−1,−1,+1,+1,−1,+1,−1,−1,−1] (8.18)

cx,d = [0,0,0,1,0,0,0,0,1] (8.19)

The vector cx,d shows exactly the positions where the vectors bx and mx+d differ in
values; the number of positions where two vectors differ is known as the Hamming
distance of those two vectors.

Observation 8.1 The zero-mean normalized census data cost EZCEN(x, d) equals
the Hamming distance between the vectors bx and mx+d .

By adapting the definition of both vectors bx and mx+d to the census data-cost
function ECEN , we can also obtain those costs as the Hamming distance.
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Fig. 8.6 Left: Dependency
from 4-adjacent pixels. Right:
Dependency of 4-adjacent
pixels from their 4-adjacent
pixels

Insert 8.1 (Hamming) The US-American mathematician R.W. Hamming
(1915–1998) contributed to computer science and telecommunications. The
Hamming code, Hamming window, Hamming numbers, and the Hamming
distance are all named after him.

By replacing the values −1 by 0 in the vectors bx and mx+d , the Hamming
distance for the resulting binary vectors can be calculated very time-efficiently.2

8.1.3 From Global to Local Matching

The data-cost and smoothness-cost functions together define the minimization prob-
lem for the total error defined in (8.1). The smoothness term uses an adjacency set
A(p), typically specified by 4-adjacency or an even larger adjacency set.

Growing 4-Adjacency into the Image Carrier Assume that A is just defined by
4-adjacency. A label fp (i.e. the disparity in the stereo-matching case) at pixel p

depends via the smoothness term on labels assigned to its four 4-adjacent pixels
q ∈ A4(p); see Fig. 8.6, left.

The labels at pixels q also depend, according to the smoothness constraint, on
the labels at all the 4-adjacent pixels r of those pixels q; see Fig. 8.6, right.

The labels at pixels r depend now again on labels at all 4-adjacent pixels of
those pixels r . By continuing the process we have to conclude that the label at pixel
p depends on the labels at all the pixels in carrier Ω . If A is a larger set than 4-
adjacency, then data dependencies cover all Ω even faster.

The data term defines local value dependency from image values, but the smooth-
ness term defines global dependency from all the assigned disparity values for mak-
ing sure that the minimization problem of (8.1) is actually solved accurately.

Global Matching and Its Time Complexity Global matching (GM) is approx-
imated by less time-expensive control structures of a stereo matcher. We briefly
discuss time requirements of GM.

Consider extremely large smoothness penalties such as, say, Esmooth(fp,fq) =
Gmax · Ncols · Nrows whenever fp �= fq (or even higher penalties). This leads to
a situation where a (common) data term does not matter anymore; any constant

2See [H.S. Warren. Hacker’s Delight, pp. 65–72, Addison-Wesley Longman, New York, 2002].
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disparity map for all pixels in B would solve the optimization problem in this case,
and a solution would be possible in a time needed to write the same constant in
any pixel location in B . As another case, assume that the smoothness penalties are
insignificant; decisions can be based on the data cost only. In this case (“The Winner
Takes It All”, see more about this below) we can also have a time-efficient and
accurate solution to the minimization problem.

Observation 8.2 The data term, adjacency set, and smoothness term in (8.1) influ-
ence the time needed to solve this minimization problem accurately.

Consider images B and M of size Ncols × Nrows. For implementing GM, each
pixel in B needs to communicate with any other pixel in B , say via 4-adjacency;
a longest path is then of length Ncols + Nrows (if a pixel is in a corner of Ω), and
those communication paths have length (Ncols + Nrows)/2 as average. Each of the
Ncols · Nrows pixels needs to communicate with the other Ncols · Nrows − 1 pixels.
This leads to an asymptotic run time in

tone = O
(
(Ncols + Nrows)N

2
cols · N2

rows

)
(8.20)

for evaluating globally one labelling f (i.e. a run time in O(N5) if N = Ncols =
Nrows). The set of all possible labellings has the cardinality

call = |L||Ω| ∈ O
(
dNcols·Nrows

max

)
(8.21)

Thus, an exhaustive testing of all possible labellings would require a time of
call · tone. Of course, this is a worst-case scenario,which can be avoided; there are
constraints for possible labellings, and communication between pixels can be re-
duced by not propagating the same information repeatedly through the image B or
by using a pyramid image data structure (see Sect. 2.2.2) for reducing the lengths
of communication paths between pixel locations. No serious attempt is known to
achieve GM (e.g. on some parallel hardware).

Area of Influence When deciding about a label fp at pixel p, the control struc-
ture of the used stereo matcher consults pixels in a set p + S via the smoothness
constraint about possible feedback for the selection of fp . We call the set S the area
of influence.

Figure 8.7, left, illustrates such an area defined by the intersection of digital rays
with Ω ; in the shown case, 16 rays run towards the pixel location p. The area of
influence is now not covering the whole Ω , as in case of GM, but also is not locally
bounded; the rays run all the way to the image borders. This defines an area of
influence for (ray-based) semi-global matching (SGM).

Figure 8.7, right, illustrates an area of influence created by repeatedly expanding
into 4-adjacent pixels around the previous area of influence. The number of expan-
sions defines the radius of the created 4-disc. This defines an area of influence as
used in belief-propagation matching (BPM).
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Fig. 8.7 Left: A search space defined by 16 rays running from the image border to pixel p. Right:
A search space defined by including eight times repeated also 4-adjacent pixels into the decisions

GM is one extreme case for the area of influence, and S = {(0,0)} defines the
other extreme case where the area of influence p + S = p does not include any
other pixel in B; in this case we do not consider smoothness with labels in adjacent
pixels, and the data function also only takes the value at p into account (e.g. the data
cost function EAD).

Local Matching By defining an area of influence that is bounded by some
fixed constant, a stereo algorithm applies local matching. Of course, the use of
S = {(0,0)} defines local matching. If the number of repetitive applications of 4-
adjacency (see Fig. 8.7, right) is fixed, then we also have a local matcher. If this
number increases with the size Ncols ×Nrows of the given images B and M , then we
have a (disc-based) semi-global matcher.

See Fig. 8.8 for an example when using both a local and a semi-global stereo
matcher on the same scene.

8.1.4 Testing Data Cost Functions

For testing the accuracy of different data cost functions with respect to identifying
the correct corresponding pixel in M , we may apply a stereo matcher that is not
impacted by a designed control structure and not by a chosen smoothness term,
and we need to have stereo pairs with ground truth, telling us which is actually the
correct corresponding pixel.

The Winner Takes It All We reduce the minimization of the total error for a la-
belling function f to the minimization of

E(f ) =
∑

p∈Ω

Edata(p,fp) (8.22)
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Fig. 8.8 Top: An input image of a recorded stereo sequence at the University of Auckland. Middle:
A disparity map using a local matcher (block matching, as available in OpenCV beginning of 2013.
Bottom: A disparity map using iSGM, a semi-global stereo matcher

Because a corresponding pixel in M needs to be on the same image row (i.e. the
epipolar line), we can simply optimize by calculating, for any p = (x, y) and any
possible disparity fp [see (8.3) and (8.4)], all the values Edata(p,fp) and achieve
accurately the minimum for (8.22) by taking for each p the disparity fp that mini-
mizes Edata(p,fp). For doing so, we generate the 3D data cost matrix Cdata, select
a pixel location p = (x, y), go through all layers d = 0, d = 1, to d = dmax (see
Fig. 8.5), and compare all values Cdata(x, y, d) ≥ 0 for finding the disparity

fp = argmin
0≤d≤dmax

{
Cdata(x, y, d) ≥ 0

}
(8.23)

that defines the minimum. In other words, for any p = (x, y) ∈ Ω , we apply the
control structure shown in Fig. 8.9.
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Fig. 8.9 The winner takes it
all at p = (x, y) ∈ Ω while
applying left-to-right
matching

1: Let d = dmin = 0 and Emin = Edata(p,0);
2: while d < x do
3: Let d = d + 1;
4: Compute E = Edata(p, d);
5: if E < Emin then
6: Emin = E and dmin = d ;
7: end if
8: end while

This stereo matcher will create depth artifacts. We are not considering it as an
applicable stereo matcher; we are just curious to understand how different data-
cost functions behave in identifying correct matches. This test is not affected by a
smoothness constraint or a sophisticated control structure.

Ground Truth Data for Measuring Accuracy of Stereo Matching Insert 4.12
introduced the term “ground truth”. Assume that a measurement method provided
(fairly) accurate disparity values at pixel locations for a set or sequence of stereo
pairs B and M . The measurement method might be defined by synthetic stereo pairs
generated for a 3D world model and the use of a 3D rendering program for calcu-
lating the stereo pairs, or by the use of a laser range-finder for measuring distances
in a real-world 3D scene. See Insert 2.12 for examples of data provided online; the
website vision.middlebury.edu/ at Middlebury College is another example for online
test data.

A location p ∈ Ω defines a bad pixel in B iff the disparity calculated at p dif-
fers by (say) more than 1 from the value provided as the ground truth disparity.
The percentage of non-bad pixels defines a common accuracy measure for stereo
matching.

The experiment can then be as follows: Select the set of test data where ground
truth disparities are available. Select the cost data functions you are interested in for
comparison. Do a statistical analysis of the percentage of bad pixels when applying
the control structure described in Fig. 8.9 for your data cost functions on the selected
set of test data. Figure 8.10 shows an example for test data (long stereo sequences)
where ground truth disparities are available.

8.1.5 Confidence Measures

At the beginning of Sect. 2.4.2 we defined confidence measures. A confidence mea-
sure can be used if ground truth is not available. In the given context, a confidence
value Γ (p) at p ∈ Ω (in base image B) needs to be accumulated based on stereo-
matching models or plausible assumption about the matching process.

Left–Right Consistency The left–right consistency check is defined as follows:
Let B = R and perform right-to-left stereo matching, resulting in the disparity f

(R)
p

at p, then let B = L and perform left-to-right stereo matching, resulting in the dis-
parity f

(L)
p at p. In both cases we consider the calculated disparities as positive

http://vision.middlebury.edu/
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Fig. 8.10 Left: The original image Set2Seq1Frame1 from EISATS. Right: A disparity map
visualized with the disparity colour code used throughout the book

Fig. 8.11 Parabola fit at
disparity d0 defining the
minimum of accumulated
costs. The parabola also
defines a subpixel accurate
disparity at its minimum (see
the dashed line)

numbers. For comparing the disparity results f
(R)
p and f

(L)
p , let

Γ1(p) = 1

|f (R)
p − f

(L)
p | + 1

(8.24)

with Γ1(p) = 1 for f
(R)
p = f

(L)
p and 0 < Γ1(p) < 1 otherwise. For example, if

Γ1(p) < 0.5, then reject the calculated disparities as being inconsistent.
This confidence measure is based on an expectation that two consistent results

support each other; but daily life often tells us different stories (just think about two
newspapers telling different lies).

Fitted Parabola It appears to be more appropriate to have confidence measures
that are based on applied data cost functions, their values, or matching models.

For a pixel location p, consider a parabola fit ax2 + bx + c to accumulated costs
[see (8.2)] in a neighbourhood of the disparity d0 where the accumulated cost values
Ap(d) = Adata(p, d) take the global minimum. See Fig. 8.11. The minimum of such
a parabola identifies the disparity at subpixel accuracy; the distance unit 1 between
two subsequent disparities is defined by the distance unit 1 between two 4-adjacent
pixel locations.
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The parameter a defines the curvature of the parabola, and this value can be taken
as a confidence measure. For deriving a, consider the following equation system:

a(d0 − 1)2 + b(d0 − 1) + c = Ap(d0 − 1) (8.25)

ad2
0 + bd0 + c = Ap(d0) (8.26)

a(d0 + 1)2 + b(d0 + 1) + c = Ap(d0 + 1) (8.27)

It follows that

Γ2(p) = 2a = Ap(d0 − 1) − 2 · Ap(d0) + Ap(d0 + 1) (8.28)

is a possible confidence measure, with minimum Γ2(p) = 0 if Ap(d0 − 1) =
Ap(d0) = Ap(d0 + 1) and a > 0 otherwise.

Perturbation Perturbation quantifies a deviation from an ideal cost function,
which has a global minimum at d0 and which is “very large” elsewhere. Nonlin-
ear scaling is applied:

Γ3(p) = dmax −
∑

d �=d0

exp

(
−[Ap(d0) − Ap(d)]2

ψ2

)
(8.29)

The parameter ψ depends on the range of accumulated cost values. For Ap(d0) =
Ap(d), for all d �= d0, and ψ = 1, it follows that Γ3(p) = 0, the minimum value.

Peak Ratio Let d1 be a disparity where the accumulated costs take a local mini-
mum that is second after the local minimum at d0, which is also the global minimum.
The peak ratio confidence measure compares those two lowest local minima:

Γ4(p) = 1 − Ap(d0)

Ap(d1)
(8.30)

The value d1 is not defined by the second smallest accumulated cost value; this
might occur just adjacent to d0. Again, if all values Ap(d) are equal, then Γ4(p)

takes its minimum value 0.

Use of Confidence Measures When performing dense (i.e. at every pixel p ∈ Ω)
stereo matching, it might be appropriate to replace the resulting disparities with low
confidence by the special label −1. Subsequent processes may then aim at “filling
in reasonable” disparity values at those locations, for example by applying inter-
polation to the disparities at nearby locations having high confidence values. See
Fig. 8.12 for an illustration of labeled low-confidence pixels.

8.2 Dynamic Programming Matching

Dynamic programming is a method for efficiently solving optimization problems by
caching subproblem solutions rather than recomputing them again.
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Fig. 8.12 Left: An image of stereo pair Bridge. Right: Disparity map where disparities with low
confidence values are replaced by grey. The small numbers in the colour key, shown in a column
on the right, go from 5.01 to 155 (in a non-linear scale, with 10.4 about at the middle) and denote
distances in meter

Insert 8.2 (Dynamic Programming, Bellman, and Computer Vision) Dy-
namic programming was introduced in 1953 into algorithm design by the
US-American applied mathematician R. Bellman (1920–1984) for planning,
decision making, and optimal control theory.

Dynamic programming became popular in the 1960s for various computing-
related applications (e.g. recognition of context-free languages, optimizing
matrix multiplication).

For early examples of path optimization techniques applied for edge de-
tection, see [V.A. Kovalevsky. Sequential optimization in pattern recognition and pattern

description. In Proc. IFIP, pp. 1603–1607, 1968], [U. Montanari. On the optimal detection

of curves in noisy pictures. Comm. ACM, vol. 14, pp. 335–345, 1971], and [A. Martelli.

Edge detection using heuristic search methods. CGIP, vol. 1, pp. 169–182, 1972].

This section briefly recalls the dynamic programming methodology and applies
it then to stereo analysis, thus defining dynamic-programming matching (DPM).

8.2.1 Dynamic Programming

To solve a problem by dynamic programming, it has to satisfy the following require-
ments:
1. The problem can be divided into multiple decision stages, and each stage is solv-

able on its own.
2. Those stages may be ordered along the time scale so that all previous stages

whose results are needed at a later stage can be solved beforehand.
3. There exists a recursive relationship between the stages.
4. The solution of one stage must be independent of the decision history when solv-

ing the previous stages.
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Fig. 8.13 An example of a weighted graph. The nodes are already graphically sorted into stages

5. The solution of the final stage must be self-contained.

Shortest Path Problems in Weighted Graphs We consider the calculation of a
shortest path in a weighted graph. For graphs, see Insert 3.2. A weighted graph has
positive weights assigned to its edges. See Fig. 8.13 for an example.

A weighted graph can be understood as being a road network, and the aim is to
calculate a shortest path from one of its nodes to another node, where weights at
edges are interpreted as the lengths of road segments between nodes.

Example 8.2 (Dynamic Programming for Solving a Shortest Path Problem) Con-
sider the directed weighted graph in Fig. 8.13. The task is to find a shortest path
from node A to node J . Arrows show possible directions for a move. The network
can be divided into five stages, as illustrated in the figure, where Stage 1 contains
node A, Stage 2 contains nodes B , C, and D, Stage 3 contains E, F , and G, Stage
4 contains nodes H and I , and Stage 5 contains node J .

Let X and Y denote the nodes in stages m and m + 1 with the distance d(X,Y )

between X and Y . For calculating the shortest path distance from a node X to J ,
use the recursive function

Em(X) = min
Y in stage m+1

{
d(X,Y ) + Em+1(Y )

}
(8.31)

where E5(J ) = 0. E1(A) defines the minimum. See Table 8.1.
At stage m, the results are used as already obtained before for nodes at stage

m + 1; there is no need to go (again) all the way to J . Backtracking provides the
shortest path from node A to J . The solution does not have to be unique.
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Table 8.1 The shortest
distances Em(X) to node J

Stage Shortest distance Path

5 E5(J ) = 0 J

4 E4(H) = d(H,J ) + E5(J ) = 8 H, J

E4(I ) = d(I, J ) + E5(J ) = 6 I, J

3 E3(E) = d(E, I) + E4(I ) = 11 E, I, J

E3(F ) = d(F,H) + E4(H) = 11 F, H, J

E3(G) = d(G, I) + E4(I ) = 8 G, I, J

2 E2(B) = d(B,F ) + E3(F ) = 12 B, F, H, J

E2(C) = d(C,E) + E3(E) = 13 C, E, I, J

E2(D) = d(D,G) + E3(G) = 12 D, G, I, J

1 E1(A) = d(A,B) + E2(B) = 14 A, B, F, H, J

Fig. 8.14 The upper row
satisfies the ordering
constraint but not the lower
row

8.2.2 Ordering Constraint

We prepare now for applying dynamic programming for calculating disparities
along one image row y. We did this before by using the algorithm in Fig. 8.9 (the
winner takes it all); in this case the decision at a pixel p was only guided by the data
cost; there was no constraint defined for looking at neighbours of p for reconfirming
a decision. Thus, there is also no possibility (or need) to apply dynamic program-
ming. This need is given when we include dependencies between adjacent pixels
into the optimization problem. One option is to apply the smoothness constraint,
and we will do so in the next section. Another option is to use the ordering con-
straint, which also defines dependencies between disparities assigned to adjacent
pixels.

Ordering Constraint for Scene Geometry When using stereo vision from an
airplane with cameras far away compared to the height of visible objects on the
surface of the Earth, we can assume that the correspondences are ordered along an
epipolar line. Assume that (x + ai, y) in B corresponds to (x + bi, y) in M for
i = 1,2,3. The given stereo geometry satisfies the ordering constraint iff

0 ≤ a1 < a2 < a3 implies that x + b1 ≤ x + b2 ≤ x + b3 (8.32)

for any configuration as assumed. If B = L, then it may be that b1 < 0 but 0 < b2 <

b3. If B = R, then it may be that 0 < b1 but b3 < b2 < 0. See Fig. 8.14.
Figure 8.15 illustrates a case of a scene geometry where the ordering constraint

is not satisfied. Basically, this is always possible if there are significant differences
in depth compared to the distance between cameras and objects in the scene.
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Fig. 8.15 The left camera sees the three 3D points in the order P , R, and Q, but the right camera
in the order P , Q, and R

Epipolar Profiles An epipolar profile can be used for illustrating matching results
for an image row y in B with image row y in M ; we do not need to make reference
to y. The profile is a digital arc going “basically” from the upper left to the lower
right in a digital square of size Ncols × Ncols; the x-coordinates in B correspond
to columns, and the x-coordinates in M to rows. The disparity fp at p = (x, y)

identifies the grid point (x − fp, x) in the square; the subsequent identified grid
points are connected by straight segments forming a polygonal arc. This arc is the
epipolar profile.

The profile is a cut through the 3D scene as seen by both cameras in (rectified)
rows y from North–East (i.e. diagonally down from the upper right corner of the
square).

Example 8.3 (Two Epipolar Profiles) Let Ncols = 16, dmax = 3, and B = L. We only
consider pixels with x = 4,5, . . . ,16 in the left image for a correspondence search;
for x = 1,2,3, we cannot consider the values up to dmax. For a row y, we calculate
13 labels (disparities) f4, f5, . . . , f16. We assume two vectors as results:

d1 = [f4, f5, . . . , f16] = [0,1,2,2,3,2,3,0,1,0,0,1,1]
d2 = [f4, f5, . . . , f16] = [3,3,3,1,2,0,3,1,0,0,1,2,3]

Figure 8.16 illustrates the epipolar profiles for both vectors.

Figure 8.16 shows on the left a profile that goes monotonically down to the lower
right corner, illustrating that the recorded scene satisfies the ordering constraint for
the given row y (at least according to the calculated disparities). The epipolar pro-
file on the right illustrates that there is a kind of a “post” in the scene at the grid
point (7,10) causing that the scene does not satisfy the ordering constraint in row y

illustrated by this diagram.
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Fig. 8.16 Left: The epipolar profile for the vector d1. Right: The epipolar profile for the vector d2

Insert 8.3 (Origin of Epipolar Profiles) [Y. Ohta and T. Kanade. Stereo by intra-

and inter-scanline search using dynamic programming. IEEE Trans. Pattern Analysis Ma-

chine Intelligence, vol. 7, pp. 139–154, 1985] is the paper that introduced epipolar
profiles and also pioneered dynamic programming matching (see Sect. 8.2)
by giving for the first time a detailed description of this technique. A sketch
of dynamic-programming matching was already contained in [H.H. Baker and

T.O. Binford. Depth from edge and intensity based stereo. Stanford AI Lab Memo, 1981].

Observation 8.3 The epipolar profile for disparities calculated in one image row y

provides a simple way to test whether the calculated disparities satisfy the ordering
constraint: the epipolar profile needs to be monotonically decreasing.

8.2.3 DPM Using the Ordering Constraint

DPM stereo analysis specifies a minimization algorithm, which is global within one
scanline or row y.

Its accuracy is often (depending on application area) surpassed by many of to-
day’s top performing stereo matchers. When dealing with specific data (e.g. night
vision or relatively low image resolution) or a particular application context (e.g.
real-time, all-weather, and so forth), dynamic programming stereo might be still an
option.

Optimization Problem Given is a pair of rectified stereo images and a data cost
function Ex ; for abbreviation, let Ex(fx) = Edata(p,fx) for p = (x, y). We assume
that L = B . We like to calculate an optimal labelling function f that
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1. minimizes the error

E(f ) =
Ncols∑

x=1

Ex(fx) (8.33)

2. satisfies the ordering constraint, and
3. for any pixel in L, we can assign a corresponding pixel in R (uniqueness con-

straint).
Despite the left-to-right process, we assume the values fx in the set {0,1, . . . , dmax}.
Thus, starting at (x, y) in the left image, a corresponding pixel is of the form
(xr , y) = (x − fx, y).

Derivation of Upper and Lower Bounds A corresponding pixel (xr , y) = (x −
fx, y) needs to be visible in the right image (i.e. not occluded and 1 ≤ xr ≤ Ncols),
which is expressed by the inequalities in (8.3). We rewrite this here as

0 ≤ fx ≤ min{x − 1, dmax} (8.34)

If x ≤ dmax, then fx can only take a value in the set {0,1, . . . , x − 1}. If fx = x − 1,
then xr = x − (x − 1) = 1, which satisfies that 1 ≤ xr ≤ Ncols. If fx = dmax and
dmax ≤ x − 1, we have that xr = x − dmax ≥ x − (x − 1) = 1. For example, if
dmax = 5 and x = 3, then fx is limited to take values only in {0,1,2}. Thus, it is
very likely that we will assign incorrect points (xr , y) to pixels (x, y), which are
close to the left border of the left image.

Now we study impacts of the ordering constraint. If (x, y) in L is assigned to
(xr , y) = (x − fx, y) in R, then (xr − 1, y) can only be corresponding to some
location (x − a, y) in the left image for a ≥ 1 (if there is a corresponding pixel at
all). Thus, xr − 1 = (x − a) − fx−a .

Case 1 Assume that (x, y) in L was the first pixel in row y (from the left) assigned
to the pixel (xr , y) in R. The value a may specify the first pixel in L (in row y,
from the left) assigned to (xr − 1, y) in R, and all the pixels (x − a, y), (x − a +
1, y), . . . , (x − 1, y) in L are assigned to (xr − 1, y) in R. It follows that

xr = x − fx > xr − 1 = (x − 1) − fx−1 (8.35)

Thus,

x − fx > x − fx−1 − 1 (8.36)

which is equivalent to

fx − fx−1 < 1 (8.37)

where (x, y) is the first pixel in L, counted from the left, which is assigned to the
pixel (xr , y) in R.
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Case 2 Now assume that (x, y) in L is assigned to the same pixel (xr , y) in R as
(x −1, y) in L. Then we have that xr = x −fx = (x −1)−fx−1 and fx = fx−1 +1.
This also satisfies the inequality in (8.37).

The inequalities in (8.34) and both cases above together lead to

max{0, fx − 1} ≤ fx−1 ≤ min{x − 2, dmax} (8.38)

This specifies a dependency between the disparities fx and fx−1, to be used in the
dynamic programming algorithm.

Observation 8.4 Having labels (disparities) that satisfy the inequality in (8.38) is
a necessary and sufficient condition that the calculated solution satisfies ordering
and uniqueness constraints.

Stages So, how to define the “stages” of the problem for applying dynamic pro-
gramming? We use a partial error function Em(f ), which is only the sum of Ex(fx)

values for 1 ≤ x ≤ m:

Em(f ) =
m∑

x=1

Ex(fx) (8.39)

At stage m we need to have assignments of labels fx , for all x with 1 ≤ x ≤ m; at
stage m we have not yet assignments for x > m.

Results at Stages Towards minimizing the total energy E(f ) = EM(f ), we cal-
culate at stage m the errors as follows:

Em(f ) = min
0≤d≤dmax

{
Em(d) + Em−1(f )

}
(8.40)

where f is always a labelling for all the pixel values up to the indexed stage (e.g. for
Em−1(f ), we need to have m − 1 values in f , from left to right), and Em(d) only
addresses the error when selecting the disparity d for x = m.

We start at m = 1 in image B; we use Em−1(f ) = E0(f ) = 0 for initialization
and start with f1 = 0 and value E1(0).

For m = 2, we may already decide between d = 0 or d = 1, and so forth. We
have to satisfy the inequalities in (8.38).

When arriving at stage x = M , we have the optimum value E(f ), and we identify
the used labels that allowed us to arrive at this optimum by backtracking, step by
step, first from x = M to x = M − 1, then from x = M − 1 to x = M − 2, and so
forth.

Example 8.4 (A Simple Example) Consider corresponding rows y in the left and
right images as given in Fig. 8.17. We have dmax = 3 and Ncols = 7. We assume the
absolute differences (AD) as a data cost function; see (8.8).
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Fig. 8.17 An example of rows y in left and right images

We start with E1(f ) = E1(0) = |2 − 1| = 1 for f1 = 0. There is no other option.
Next, we calculate E2(f ). Considering E2(0) = |3 − 2| = 1 and E2(1) = |3 − 1| =
2, we may take f2 = 0 as our preferred choice with E2(f ) = E2(0) + E1(f ) =
1 + 1 = 2.

Note that f2 = f1, and this satisfies the inequalities in (8.38). These inequalities
also allow us to take f2 = 1 as an option, and this would define E2(f ) = 1 + 2 =
3. We indicate the used choices in the E-function as an initial f -sequence with
E(0,0) = 2 and E(0,1) = 3.

For E3(f ), we may consider the disparities 0, 1, or 2 (in case of E3(0,0, ·),
only 0 and 1, due to (3), with D3(0) = 2 and D3(1) = 1). Thus, we have that
E3(0,0,0) = 2 + 2 = 4 and E3(0,0,1) = 2 + 1 = 3. In case of E3(0,1, ·) we may
consider 0, 1, and 2, with E3(0,1,0) = 3 + 2 = 5, E3(0,1,1) = 3 + 1 = 4, and
E3(0,1,2) = 3 + 0 = 3.

For m = 4, we have the following:

E4(0,0,0,0) = 4 + 1 = 5, E4(0,0,0,1) = 4 + 1 = 5,

E4(0,0,1,0) = 3 + 1 = 4, E4(0,0,1,1) = 3 + 1 = 4,

E4(0,0,1,2) = 3 + 0 = 3, E4(0,1,0,0) = 5 + 1 = 6,

E4(0,1,0,0) = 5 + 1 = 6, E4(0,1,1,0) = 4 + 1 = 5,

E4(0,1,1,1) = 4 + 1 = 5, E4(0,1,1,2) = 4 + 0 = 4,

E4(0,1,2,0) = 3 + 1 = 4, E4(0,1,2,1) = 3 + 1 = 4,

E4(0,1,2,2) = 3 + 0 = 3, E4(0,1,2,3) = 3 + 1 = 4.

At this point it may appear like that we have to memorize all the partial labellings
at stage m − 1 (i.e., sequences of length m − 1) for continuing at stage m. Wrong!

The inequalities in (8.38) express that there is only a relation to be considered
between fm−1 and fm, and in (8.40) we select d based on the label fm−1 only (and
the minimization of the sum).

Thus, from all those values E4(f1, f2, f3, f4) we only have to memorize the
minimum values E4(. . . ,0) = 4, E4(. . . ,1) = 4, E4(. . . ,2) = 3, and E4(. . . ,3) =
4, and for each of these minima, we keep a note, the label of which was used at
stage 3 to arrive at this minimum:

backtrack(4,0) = 1 (see E4(0,0,1,0) = 3 + 1 = 4)

backtrack(4,1) = 1 (see E4(0,0,1,1) = 3 + 1 = 4)

backtrack(4,2) = 1 (see E4(0,0,1,2) = 3 + 0 = 3)

backtrack(4,3) = 2 (see E4(0,1,2,3) = 3 + 1 = 4)
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Fig. 8.18 A graph showing
the discussed matching
example up to stage 4

Compare with the shortest path example in Sect. 8.2.1: at stage m we have
between one and dmax + 1 nodes, each node fm is a possible label (disparity) at
stage m, and the backtrack-function connects this node with a label fm−1 (note:
this is not uniquely defined in general), which allowed us to generate a minimum
Em(. . . , fm−1, fm).

The graph in Fig. 8.18 sketches the example up to stage 4. Each node is also
labelled by the minimum cost, accumulated along paths from stage 1 to this node.

The only possible node at stage 1 comes with an initial cost of 1. Arrows between
the node fn at stage n and fn+1 at stage n + 1 are labelled by the additional cost
due to using the disparity fn+1 at stage n + 1.

At stage M we have one node defining the minimum E(f ) = EM(f ), which
means that we decide for only one possible disparity fM . The disparities fM−1,
fM−2, . . . are then identified by backtracking.

The Algorithm At stage M we have a node with minimum cost and backtrack the
arrows that lead to this minimum cost.

We return again to the more complete notation E(x,y, d) = Ex(d) for row y, and
backtrack(x, d) is an array of size Ncols × (dmax + 1). Emin is the partial energy
minimum, called Em(f ) above. We compute fM,fM−1, . . . , f1 in this order. See
the algorithm in Fig. 8.19.

The data cost function E can be any of the data cost functions discussed in
Sect. 8.1.2.

Error Propagation Dynamic programming tends to propagate errors along the
scanline (in the given algorithm with B = L from left to right), resulting in hori-
zontal streaks in the calculated disparity or depth map. See Fig. 8.20. The figure
also shows that a “better” data cost function improves results significantly. See also
Fig. 8.28.
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for y = 1,2, . . . ,Nrows do
compute E(1, y,0) {only d = 0 for x = 1}
for x = 2 to Ncols do

for d = 0 to min{x − 1, dmax} do
Emin = +∞
for d� = max{0, d − 1} to min{x − 2, dmax} do

if E(x − 1, y, d�) < Emin then
Emin = E(x − 1, y, d�);dmin = d�

end if
E(x,y, d) = Emin + E(x,y, d); backtrack(x, d) = dmin

end for
end for

end for
Emin = +∞ {preparing for backtracking at x = M}
for d = 0 to min{Ncols − 1, dmax} do

if E(Ncols, y, d) < Emin then
Emin = E(Ncols, y, d);dmin = d

end if
end for
fNcols = dmin {Emin is the energy minimum for row y}
for x = Ncols to 2 do

fx−1 = backtrack(x, fx)

end for
end for

Fig. 8.19 A DPM algorithm when using the ordering constraint and B = L

8.2.4 DPM Using a Smoothness Constraint

The ordering constraint does not apply to all scenes, as illustrated by the sketch in
Fig. 8.15. We replace the ordering constraint now by a smoothness constraint along
the scanline. In the previous subsection, the scanline was limited to be an epipolar
line (i.e. an image row) because the ordering constraint has been designed for the
epipolar line.

By using a smoothness constraint along a scanline instead of the ordering con-
straint, we are not limited anymore to the epipolar line, and this is even a better
contribution than being also applicable to scenes that do not satisfy the ordering
constraint; we can use now more than one scanline. Possible scanlines are shown in
Fig. 8.7, left.

Two-Step Potts Model for Smoothness Cost We split the smoothness function,
to be applied along one scanline, into two terms as follows:

Esmooth(fp,fq) = χ1(fp,fq) + χ2(fp,fq) (8.41)

where p and q are adjacent pixel locations on the scanline, and

χ1(fp,fq) =
{

c1 if |fp − fq | = 1
0 otherwise

(8.42)
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Fig. 8.20 Disparity maps using DPM for stereo pair Crossing shown in Fig. 8.1. Low confi-
dence values are replaced by black, using the left–right consistency check with threshold 1. Upper
left: Use of AD as a data cost function. Upper right: Use of 5 × 5 census. Lower left: Use of 5 × 5
zero-mean census. Lower right: Use of 3 × 9 zero-mean census

χ2(fp,fq) =
{

c2(p, q) if |fp − fq | > 1
0 otherwise

(8.43)

for c1 > 0 and c2(p, q) > c1. We have that χ1(fp,fq)+χ2(fp,fq) = 0 iff fp = fq .
The constant c1 defines the penalty for a small difference in disparities for adja-

cent pixels. The function c2 contributes a larger penalty than c1 for cases of larger
disparity differences.

Reduced Penalty at Step-Edges By

c2(p, q) = c

|B(p) − B(q)| (8.44)

for some constant c > 0 we define a scaling (by a very simple approximation of the
image gradient in image B between pixel locations p and q). This way a disparity
difference at a step-edge in the stereo pair causes a reduced penalty.

Error Minimization Along One Scanline Figure 8.21 illustrates calculated dis-
parity maps when performing DPM along one scanline only. For a given scan-
line, consider the segment p0,p1, . . . , pm = p, where p0 is on the image bor-
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Fig. 8.21 Resulting disparity maps for KITTI stereo data when using only one scanline for DPM
with the discussed smoothness constraint and a 3×9 ZCEN data cost function. From top to bottom:
Horizontal scanline (left to right), diagonal scanline (lower left to upper right), vertical scanline
(top to bottom), and diagonal scanline (upper left to lower right). Pink pixels are for low-confidence
locations
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der in the base image B , and p = (x, y) is the current pixel, i.e. the one for
which we are searching for a corresponding pixel p = (x + d, y) in the match im-
age M .

Analogously to (8.40), we define the dynamic programming equations (i.e. the
result at stage i in dependency of the results at stage (i − 1)) here as follows:

E(pi, d) = Edata(pi, d) + Esmooth(pi,pi−1) − min
0≤Δ≤dmax

E(pi−1,Δ) (8.45)

with

Esmooth(p, q) =min

⎧
⎨

⎩

E(q,fq) if fp = fq

E(q,fq) + c1 if |fp − fq | = 1
min0≤Δ≤dmax E(q,Δ) + c2(p, q) if |fp − fq | > 1

(8.46)

where Edata(pi, d) is the data cost at pixel pi for disparity d , and c1 and c2

are the penalties of the smoothness term as defined for (8.43). The smooth-
ness term in (8.46) specifies equation (8.41) in this way that we only consider
smoothness between a disparity at a pixel pi on the scanline and the dispar-
ity at the previous pixel pi−1. We subtract min0≤Δ≤dmax E(pi−1,Δ) in (8.45) to
restrict the range of resulting values, without affecting the minimization proce-
dure.

Data Cost Matrix into Integration Matrix We calculate the 3D data cost matrix
as specified in (8.9) and calculate an integration matrix for the specified scanline. We
start with E(p0, d) = Edata(p0, d) on the image border. We perform dynamic pro-
gramming along the scanline by applying (8.45). The obtained minimum, when ar-
riving at the opposite border, specifies (via backtracking) optimum disparities along
the scanline.

Example 8.5 (Efficiencies of Different Scanlines on Simple or Difficult Data) Con-
sider recording of stereo video data in a car (e.g. for vision-based driver assistance).
Recorded scenes can have very different levels of complexity, e.g. caused by light-
ing artifacts, night, snow, rain, density of traffic, shape of visible surfaces (e.g. when
overtaking a truck), average distance to objects, and so forth, which can be classified
into situations or scenarios. We have simple scenarios (e.g. a flat and well-marked
road, bright and homogeneous light, sparse traffic) or difficult scenarios, such as
illustrated by Fig. 8.22.

The figure shows a stereo pair taken in the rain. The wiper affects the image
on the right, and there are specularities on the road. Figure 8.23 illustrates single-
scanline (horizontal or vertical) reconstructions for this stereo pair and also for a
simple situation.
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Fig. 8.22 A stereo pair of the sequence rain from the HCI data set with embedded histograms

Fig. 8.23 Left: Challenging rain stereo data; see Fig. 8.22. Right: Simple highway data. Top:
Disparity results for horizontal scanline. Bottom: Disparity results for vertical scanline

In case of the simple situation, the vertical scan also provides a “reasonable”
estimate of disparities, while matching along the vertical scanline fails in case of
the difficult situation.

Observation 8.5 DPM with smoothness constraint supports the use of multiple
scanlines. Results along scanlines contribute differently to an overall accuracy of
disparity maps. Horizontal scanline results are particularly useful for scenes where
a ground manifold (such as a road) can be expected.



316 8 Stereo Matching

Insert 8.4 (Origin of Multi-Scanline DPM) Multi-scanline DPM, called
semi-global matching (SGM), has been introduced in the paper [H. Hirschmüller.

Accurate and efficient stereo processing by semi-global matching and mutual information.

In Proc. Conf. Computer Vision Pattern Recognition, vol. 2, pp. 807–814, 2005]. This
stereo matcher has been designed for generating 3D city maps as illustrated in
Fig. 7.1. Today it is used in many fields of applications, for example for cam-
eras installed in cars used for vision-based driver assistance or autonomous
driving.

Basic and Iterative Semi-global Matching After DPM with smoothness con-
straint along one scanline a, we do have cost values Ea(fp) at every pixel in B .
By adding the resulting cost values for multiple scanlines and selecting that dispar-
ity defining the overall minimum, we have a simple way for unifying results along
multiple scanlines into one disparity at a pixel location. We call this the basic semi-
global matching (bSGM) algorithm.

Several variants of SGM have been proposed since the original paper was pub-
lished in 2005. For example, this includes adding features such as pyramidal pro-
cessing of costs, introducing iterations into the process and different weights when
combining results from different scanlines, and the use of priors to ensure that (e.g.)
“thin vertical” shapes in the scene are detected if prioritizing the results for horizon-
tal scanlines; these listed features characterize iterative SGM (algorithm iSGM).3

Figure 8.24 shows combined results for the rain stereo pair shown in Fig. 8.22,
using either bSGM or iSGM. The prioritization of results obtained from horizontal
scanlines is adequate for those road scenes having a dominant ground-plane com-
ponent.

8.3 Belief-Propagation Matching

Section 5.3 introduced belief propagation as a general optimization framework,
which allows us to assign labels to all pixel locations based on given data and
smoothness-cost terms, and using a message-passing process which defines a search
space as illustrated in Fig. 8.7, right. This short section defines belief-propagation
matching (BPM).

3Published in [S. Hermann and R. Klette. Iterative semi-global matching for robust driver assis-
tance systems. In Proc. Asian Conf. Computer Vision 2012, LNCS 7726, pp. 465–478, 2012]; this
stereo matcher was awarded the Robust Vision Challenge at the European Conference on Computer
Vision in 2012.



8.3 Belief-Propagation Matching 317

Fig. 8.24 Disparity maps for stereo pair rain; see Fig. 8.22. Left: Applying bSGM. Right: Ap-
plying iSGM

Insert 8.5 (Origin of BPM) The paper [J Sun, N.-N. Zheng, and H.-Y. Shum. Stereo

matching using belief propagation. IEEE Trans. Pattern Analysis Machine Intelligence,

vol. 25, pp. 1–14, 2003] described how to use the general optimization strategy
of belief propagation for stereo matching. The approach became very popular
especially due to the paper [P.F. Felzenszwalb and D.P. Huttenlocher. Efficient belief

propagation for early vision. Int. J. Computer Vision, vol. 70, pp. 41–54, 2006].

BPM solves the stereo-matching problem by pixel labelling, having Ω (in
the base image B) as the set of sites that will receive a label in the set L =
{0,1, . . . , dmax} by aiming at optimizing the error function

E(f ) =
∑

p∈Ω

(
Edata(p,fp) +

∑

(p,q)∈A

Esmooth(fp − fq)

)
(8.47)

where the smoothness-cost function can be assumed to be unary, just defined by
the difference between labels at adjacent pixels. BPM applies the message-passing
mechanism as described in Sect. 5.3.

Possible options for smoothness functions are described in Sect. 5.3.2. For data
cost functions for stereo matching, see Sect. 8.1.2.

Example 8.6 (BPM Example) Figure 8.25 illustrates a simple example showing two
5 × 7 images forming a stereo pair. The image L is assumed to be the base image.
We search for a corresponding pixel for pixel (x, y).

We assume that dmax = 3. Thus, we have four message boards, all of size 5 × 7,
but we do not show the dmax columns left of x in Fig. 8.25 (for saving space in the
figure).

Each pixel in the left image has potentially dmax + 1 matching pixels in the right
image. For pixel (x, y) in the left image, potentially matching pixels are (x, y),
(x − 1, y), (x − 2, y), and (x − 3, y) in the right image.
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Fig. 8.25 A simple example
for discussing BPM

We have dmax +1 message boards. The disparity between pixels (x, y) and (x, y)

equals 0; thus, the cost for assigning the disparity 0 to pixel (x, y) is at position
(x, y) in Board 0; the disparity between pixels (x, y) and (x − 1, y) equals 1; thus,
the cost for assigning the disparity 1 to pixel (x, y) is at position (x, y) in Board 1,
and so forth.

Initially, we insert data cost values into position (x, y) for all the dmax + 1 mes-
sage boards. Thus, the data cost value differences A = Edata((x, y),0), analogously
B , C, and D, go into the four message boards at position (x, y). This defines the
initialization of the boards.

Now we start at t = 1 and send messages between adjacent pixels. Each pixel p

sends a message vector of length dmax + 1 to an adjacent pixel with message values
for d ∈ L in its dmax +1 components. Let mt

p→q be such a message vector, sent from
pixel at p to adjacent pixel at q in iteration t . For d ∈ L, we have that [see (5.40)]

mt
p→q(d) = min

h∈L

(
Edata(p,h) + Esmooth(h − d) +

∑

s∈A(p)\q
mt−1

s→p(h)

)
(8.48)
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defines the message-update. We accumulate at q all messages from adjacent pixel
locations p, combine with time-independent data cost values, and have the accumu-
lated cost

Edata(q, d) +
∑

p∈A(q)

mt
p→q(d) (8.49)

at pixel location q for assigning the disparity d to q at time t .
Back to our example, after a number of iterations, the iteration stops and defines

new cost values A′, B ′, C′, and D′ in the message boards at location (x, y).
The minimum of those cost values defines the disparity (i.e. the label) that will

be assigned to the pixel at (x, y) as the result of the BPM process. For example, if
B ′ = min{A′,B ′,C′,D′}, then we have the disparity 1 for the pixel at (x, y) in the
left image.

Pyramidal BPM By using a regular pyramidal data structure for each image (left
and right images), as defined in Sect. 2.2.2, we can shorten the distances between
pixels for message passing. We decide to use k > 1 layers in the two pyramids, with
the first (the bottom) layer being the original image.

The message boards are also transformed into the corresponding k-layer data
structure. We initialize with data cost in the first layer and also for the k − 1 layer
on top.

The adjacency set of a pixel location in one of the layers contains now also pixel
locations in adjacent layers, with connections defined by the regular generation of
the pyramids.

Now we follow exactly the message-passing process as defined in Sect. 5.3 for
the general belief-propagation case and as illustrated in particular in Example 8.6.

Two Properties of Message Passing The “strength” of message passing, from
low-contrast areas in image B to contrast areas, is less than the “strength” of mes-
sage passing from a high-contrast area to low-contrast area. We need to be aware
of this asymmetry. Accordingly, BPM is “fine” with generating consistent labels
(disparities) in textureless regions but may have difficulties when textures change.

In dependency of the chosen data and smoothness-cost functions, message pass-
ing can be “blocked” more or less by step-edges. This influence of image-discon-
tinuities has often the positive effect of preserving depth discontinuities at intensity
discontinuities.

Figure 8.26 shows an example when applying BPM for low-contrast, real-
world image sequences. This stereo pair Set1Seq1 from Sequence 1 of EISATS
causes problems for BPM if the selection of the data cost function is based on
ICA. This can be resolved by preprocessing input data (e.g. Sobel edge maps
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Fig. 8.26 Top: The stereo pair Set1Seq1. Middle: The Sobel edge images of the stereo pair.
Bottom: The BPM result for the original image data (left) and for the Sobel edge images (right);
use of the AD cost function in both cases

or residuals w.r.t. smoothing) or by taking zero-mean variants of data cost func-
tions.

8.4 Third-Eye Technique

When performing stereo-analysis for video data, it is desirable to have a control
mechanism that decides about the quality of the produced disparity data by just one
summarizing quality weight, say, in the range between 0 to 1. When discussing ac-
curacy (by comparing against ground truth) or confidence of calculated disparities,
we were interested in pixel-wise evaluations. Now we specify a method for time-
efficient and summarizing (over the whole stereo pair) performance evaluation of
stereo matchers.

This section answers two questions: How to map a reference image of a pair
of stereo cameras into the pose of a third camera? How to measure the similarity
between created virtual image and the actually recorded third image?
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Fig. 8.27 Top: Three-camera coordinate systems. Bottom: An example of three recorded images,
from left to right: third, left, and right image

8.4.1 Generation of Virtual Views for the Third Camera

Stereo matching is performed for sequences recorded by two cameras, and a third
camera is used for evaluating the obtained results. (We could also, for example, use
the second and third cameras for stereo matching and then unify the results with
disparities obtained from the first and second cameras, and so forth.)

Three Cameras We calibrate three cameras for stereo sequence recording, as il-
lustrated in Fig. 8.27.

For example, when recording traffic scenes in a car (as illustrated by the example
in Fig. 8.27, bottom), the base distance between left and right cameras can be about
30 cm, and the third camera about 40 cm left of the left camera (for better identi-
fication of matching errors; a third camera centred between left and right cameras
would make it more difficult to identify “issues”). For the shown example, all three
cameras were mounted on one bar behind the windscreen for approximating already
canonic stereo geometry. Images of the left and right cameras are geometrically rec-
tified for stereo matching.

Third-Eye Technique The basic outline of the third-eye technique is as follows:4

1. Record stereo data with two cameras and calculate disparities.

4See [S. Morales and R. Klette. A third eye for performance evaluation in stereo sequence analysis.
In Proc. Computer Analysis Images Patterns, LNCS 5702, pp. 1078–1086, 2009].
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Fig. 8.28 Left: The third image. Right: The virtual image, to be compared with the third image.
The virtual image was calculated using DPM with ordering constraint and the simple AD cost
function for L = B; it shows a streaking-effect as is common for this one-scanline-only DPM
technique. Blue pixels (on top) differ due to geometric rectification of the left image. Green pixels
are not filled-in at all due to “missing” disparities of the stereo matcher. The parabolic black arcs
are due to image warping and cannot be taken as problems related to the stereo matcher used

2. Have also a third calibrated camera looking into the same space as the other two
cameras.

3. Use the calculated disparities for mapping the recorded image of the (say) left
camera into the image plane of the third camera, thus creating a virtual image.

4. Compare the virtual image with the image recorded by the third camera.
If the virtual and third images “basically coincide”, then the stereo matcher provides
“useful” disparities.

How to Generate the Virtual View? Image warping maps windows of an input
image I into a resultant image J according to a coordinate transformation K , with
the general intention to keep image values unaltered (which is, due to the discrete
nature of the images, actually not possible without making some concessions). Ex-
amples for K are rotation, translation, or mirroring.

Because grid points will not map exactly on grid points in general, some kind
of interpolation is common for rendering (according to a backward transform K−1)
as many pixels as possible in the image J . In our case here we are not interested
in generating “nice images”, we like to see the “issues”. For example, the black
parabolic arcs, visible in the virtual image in Fig. 8.28, right, would normally be
filled with interpolated values if interested in rendering “nice images”; they are due
to gaps defined by the geometric mapping K , not due to mismatches of the used
stereo matcher.

The three cameras are calibrated, and the third image is available in the image
plane of the reference camera (which was chosen to be the left camera above). We
consider the pixels in the left camera for which the left and right cameras (using
the given stereo matcher) provided the disparity values and thus also depth values
because the cameras have been calibrated. Let d be the disparity between a pair
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(with p = (x, y) in the left image) of corresponding pixels. According to (7.22),
(7.24), and (7.23), the coordinates of the projected 3D point P = (X,Y,Z) are as
follows:

X = b · x
d

, Y = b · y
d

, and Z = f
b

d
(8.50)

Example 8.7 (Translation Only) In this example we assume that the camera coordi-
nate system of the third camera is only a translation of the camera coordinate system
of the left camera.

Step 1. We write the coordinates of a 3D point in terms of the camera coordinate
system of the third camera, having an origin with coordinates (tX, tY , tZ) in the
camera coordinate system of the left camera. This defines the translative relation

(XT ,YT ,ZT ) = (X − tX,Y − tY ,Z − tZ) (8.51)

between both coordinate systems.
Step 2. Central projection maps a point P into the third camera image plane at

(xT , yT ) = fT

(
XT

ZT

,
YT

ZT

)
(8.52)

where fT is the focal length calibrated for the third camera.
Step 3. According to Step 1 and (8.50), we can write the right term in (8.52) as

follows:

(xT , yT ) = fT

(
X − tX

Z − tZ
,
Y − tY

Z − tZ

)
= fT

(
x b

d
− tX

f b
d

− tZ
,

y b
d

− tY

f b
d

− tZ

)
(8.53)

This provides

xT = fT

bx − dtX

f b − dtZ
and yT = fT

by − dtY

f b − dtZ
(8.54)

Thus, a point P = (X,Y,Z), which was mapped into a pixel (x, y) in the left im-
age, is also mapped into a point (xT , yT ) in the third image, and (xT , yT ) is now
expressed in terms of (x, y), not in terms of (X,Y,Z), by using the calibrated trans-
lation (tX, tY , tZ), the base distance b, the focal length fT , and the disparity d pro-
vided by the given stereo matcher.

Step 4. Now we map the intensity value at pixel (x, y) in the reference (i.e.,
left) image into the plane of the third image. We just map onto the nearest grid
point. In case that multiple values (from different pixels in the reference image) are
mapped onto the same pixel in the image plane of the third image, we can apply
a confidence measure for selecting this value defined by that disparity having the
maximum confidence for the given candidates.

Example 8.8 (Rotation About one Axis) As a modification of Example 8.7, let us
assume that the camera coordinate system of the third camera is defined by (only) a
rotation by angle θ about the horizontal X-axis of the camera coordinate system of



324 8 Stereo Matching

the left camera. We have that

⎛

⎝
XT

YT

ZT

⎞

⎠=
⎛

⎝
1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞

⎠

⎛

⎝
X

Y

Z

⎞

⎠=
⎛

⎝
X

Y cos θ − Z sin θ

Y sin θ + Z cos θ

⎞

⎠ (8.55)

and obtain, as an intermediate result, that

xT = fT

X

Y sin θ + Z cos θ
and yT = fT

Y cos θ − Z sin θ

Y sin θ + Z cos θ
(8.56)

and finally

xT = fT

x b
d

y b
d

sin θ + f b
d

cos θ
= fT

x

y sin θ + f cos θ
(8.57)

yT = fT

y b
d

cos θ − f b
d

sin θ

y b
d

sin θ + f b
d

cos θ
= fT

y cos θ − f sin θ

y sin θ + f cos θ
(8.58)

This is again the projection of P in the third image plane (not necessarily a grid
point).

We leave the general case of an affine transform from the coordinate system of
the left camera to the third camera as an exercise.

8.4.2 Similarity Between Virtual and Third Image

Due to lighting artifacts or brightness variations in recorded multi-camera video, a
direct SAD or SSD comparison is out of the question.

How to Compare Virtual and Third Image We compare the virtual image V

(generated for time t) with the third image T (recorded at time t). The normalized
cross-correlation (NCC, see Insert 4.11) appears to be an option.

Let Ωt be the set of pixels that are used for the comparison for frames at time t .
We will not include pixels where values in the virtual image remain black, thus
differing from the third image due to (see Fig. 8.28)
1. geometric rectification of the left image,
2. “missing” disparities (i.e. being not in the image of mapped values), or
3. missed pixels for the applied coordinate transform K (i.e. being on the parabolic

arcs).
Thus, according to those rules, Ωt is simply the set of all pixel locations that are
rendered by a mapped image value from the left image.
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The mean and standard deviation are calculated within Ωt , using symbols μV

and σV , or μT and σT for the virtual V or third image T at time t , respectively. The
NCC has then the form

MNCC(V ,T ) = 1

|Ωt |
∑

p∈Ωt

[T (p) − μT ][V (p) − μV ]
σT σV

(8.59)

with 0 ≤ MNCC(I, J ) ≤ 1 and a perfect identity in case of MNCC(I, J ) = 1.
The rules for defining the set Ωt influence the performance evaluation. If a stereo

matcher results into a relatively small set Ωt , but with correctly rendered intensities
on those sparsely distributed values, it would rank high. Thus, including the cardi-
nality |Ωt | into the measure used might be a good idea.

A more significant issue are homogeneously textured regions in an image. If the
mapped intensity comes in the left image from such a region, is mapped incorrectly
into another location in the virtual image, but still in the same region, then NCC
for Ωt as defined above will not notice such incorrect warpings. Therefore, it is
recommended that the set Ωt be further constrained: We only include pixels into Ωt

if they are “close” to an edge in the left image. This closeness defines a mask, and
Ωt becomes a subset of this mask.

Example 8.9 Fig. 8.29 illustrates an application of the third-eye technique for com-
paring BPM on a given video sequence of 120 frames. The scale for NCC is in per-
cent. The pyramidal BPM algorithm used the simple AD data cost function, which
is based on the ICA, and this is an incorrect assumption for real-world recording as
for the illustrated sequence.

Two methods for data preprocessing are used, Sobel edge maps or residuals with
respect to smoothing. See Fig. 8.30 for examples of pre-processed images, used as
an input for stereo matching rather than the original stereo frames. Both methods
improve the results according to the NCC measure used, defined for a masked set
Ωt , using as mask pixels being in a distance of at most 10 from the closest Canny
edge pixel.

Analysis of NCC Diagrams Figure 8.29 indicates a significant drop in stereo-
matching performance about at Frame 60. This is one of the important opportunities
provided by the third-eye technique: identify the situations where recorded video
sequences cannot be processed properly by a given stereo matcher and start your
research into the question how to resolve the issue for the given situation. How to
generalize the identified situation by a geometric or photometric model? How to
adapt stereo matchers to identified situations?

The NCC values provided can also be used to compare the performance of stereo
matchers on very long sequences, for example by comparing frame by frame and
by measuring the total sum of signed differences in NCC values or just the total
number of frames where one matcher was winning against the other.
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Fig. 8.29 A test of BPM on the stereo sequence south by using the same stereo matcher on three
different input data: original data, residuals with respect to smoothing, and Sobel edge maps; see
Fig. 8.30

8.5 Exercises

8.5.1 Programming Exercises

Exercise 8.1 (Segmentation of Disparity Maps and Generation of Mean Distances)
Use as input stereo data recorded in a driving car (see, e.g., data provided on KITTI,
HCI, or EISATS). Apply a segmentation algorithm on disparity maps, calculated by
a selected stereo matcher (e.g. in OpenCV), with the goal to identify segments of ob-
jects “meaningful” for the traffic context. Consider the use of temporal consistency
for segments as discussed in Sect. 5.4.2.

Calculate mean distances to your object segments and visualize those in a gener-
ated video, which summarizes your results. See Fig. 8.31 for an example.
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Fig. 8.30 Pre-processing of data for the stereo sequence south. Top: Sobel edge maps. Bottom:
Residuals with respect to smoothing

Fig. 8.31 The mean distances to segmented objects. Left: The distances to objects within the lane
area only. Right: The distances to all the detected objects

Exercise 8.2 (Confidence Measures on Challenging Stereo Data) Select or program
two different stereo matchers and apply those on challenging HCI stereo sequences.
See Fig. 8.32 for examples.

Select three different confidence measure for calculated disparities and visualize
confidence-measure results as a graphical overlay on the input sequence for (say)
the left camera.
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Fig. 8.32 Challenging HCI stereo sequences and examples of calculated disparity maps (using
iSGM)

Discuss the “visible correlation” between low-confidence values and shown sit-
uations in input sequences.

Exercise 8.3 (DPM with Ordering Constraint and Variations in Data Cost Func-
tions) Implement DPM as specified in Fig. 8.19, using the ordering constraint and
at least three different data cost functions, including AD and ZCEN (with a window
of your choice).

Illustrate the obtained disparity maps similar to Fig. 8.20 based on a selected
colour key and the exclusion of low-confidence disparity values.

As input, use
1. simple stereo data (e.g. indoor),
2. challenging outdoor stereo data that do not satisfy the ICA, and
3. random-dot stereograms as described in the book [D. Marr. Vision: A Computational

Investigation into the Human Representation and Processing of Visual Information. The MIT

Press, Cambridge, Massachusetts, 1982].
Discuss visible differences in obtained (coloured) disparity maps.

Exercise 8.4 (Multi-Scanline DPM with Smoothness Term) Implement multi-
scanline DPM (also known as SGM) with the two-level Potts smoothness term
as discussed in Sect. 8.2.4. Use either the ZCEN or the ZSAD data cost.

Compare visually (i.e. coloured disparity maps) results when using
1. only horizontal scanlines,
2. only horizontal and vertical scanlines,
3. also diagonal scanlines.
Use a confidence measure of your choice for calculating percentages of pixels where
results are considered to be of “high confidence” for the different scanline choices.

Use input data as listed in Exercise 8.3.
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Fig. 8.33 Two epipolar profiles

Exercise 8.5 (BPM, Accuracy, and Time Complexity) Implement pyramidal BPM.
Note that there are BPM sources available on the net. Use the ZCEN data cost
function and a smoothness term of your choice.

Analyse the influence of chosen layers in the pyramid on run-time and visible
accuracy of generated depth maps (using a colour key for optimized visual presen-
tation).

Use input data as listed in Exercise 8.3.

Exercise 8.6 (Evaluation of Stereo Matchers Using the Third-Eye Technique) Im-
plement the third-eye technique for evaluating stereo matchers. For example, use
the trinocular sequences in Set 9 of EISATS as input data. Evaluate your favourite
stereo matcher on those data.

Use either the original video sequences for stereo matching or preprocess those
sequences using the Sobel operator and apply your stereo matcher on the obtained
Sobel edge maps.

Apply the proposed NCC measure either with a mask (i.e. only pixels close
to edges) or without a mask. Altogether, this defines two variants of your stereo
matcher and two variants for analysing the results.

Discuss the obtained NCC value diagrams obtained for the four variants on the
selected trinocular video sequences.

8.5.2 Non-programming Exercises

Exercise 8.7 Assume that our stereo system needs to analyse objects being in a dis-
tance of at least a metres from our binocular stereo camera system. We have intrin-
sic and extrinsic camera parameters calibrated. Determine the value dmax based on
those parameters and known value a.
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Fig. 8.34 A stereo pair

Exercise 8.8 Figure 8.33 shows two profiles. Do these epipolar profiles represent
the disparity vector d? If so, which disparity vector? In reverse: Given are the dis-
parity vectors

d1 = [f4, f5, . . . , f16] = [1,0,1,2,3,0,1,1,0,1,2,3,2]
d2 = [f4, f5, . . . , f16] = [4,3,2,1,0,1,2,4,1,2,3,2,2]

Draw the epipolar profiles defined by those two disparity vectors.
Which profiles and which vectors satisfy the ordering constraint?

Exercise 8.9 At the beginning of Sect. 8.1.3, we discussed how 4-adjacency
“grows” into the image carrier by repeated creations of dependencies between ad-
jacent pixels. At time t = 0 it is just the pixel itself (n0 = 1), at time t = 1 also the
four four-adjacent pixels (n1 = n0 + 4 = 5), at time t = 2 also eight more pixels
(n2 = n1 + 8 = 13). How many pixels are in this growing set at time t ≥ 0 in gen-
eral, assuming no limitation by image borders. At the time τ when terminating the
iteration, nτ defines the cardinality of the area of influence.

Now replace 4-adjacency by 8-adjacency and do the same calculations. As a third
option, consider 4-adjacency but also a regular image pyramid “on top” of the given
image.

Exercise 8.10 Stereo matchers have to work on any input pair? Fine, here is one—
see Fig. 8.34. Assume the simple AD data cost function and discuss (as a “Gedanken
experiment”) outcomes of “The winner takes all”, of DPM with ordering constraint,
of multi-scanline DPM with smoothness constraint, and of BPM for this stereo pair.
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This chapter describes the detection of keypoints and the definition of descriptors
for those; a keypoint and a descriptor define a feature. The given examples are SIFT,
SURF, and ORB, where we introduce BRIEF and FAST for providing ORB. We dis-
cuss the invariance of features in general and of the provided examples in particular.
The chapter also discusses three ways for tracking features: KLT, particle filter, and
Kalman filter.

9.1 Invariance, Features, and Sets of Features

Figure 9.1 illustrates on the left detected keypoints and on the right circular neigh-
bourhoods around detected keypoints, which can be used for deriving a descriptor.

This section defines invariance properties, which are of interest when character-
izing (or designing) features. For the detection of keypoints in the scale space, it
considers the related disk of influence, also for using its radius for introducing 3D
flow vectors as an extension of 2D optic flow vectors. The sets of features in subse-
quent frames of a video sequence need to be correlated to each other, and here we
introduce the random sample consensus (RANSAC) as a possible tool for achieving
this.

9.1.1 Invariance

Images are taken under varying illumination, different viewing angles, at different
times, under different weather conditions, and so forth. When taking an aerial shot
from an airplane, we do have a random rotation of shown objects, and isotropy
(rotation invariance) has been mentioned before in the book (see Sect. 2.1.2).

In outdoor scene analysis, we often request types of invariance with respect to
some operations, such as illumination changes or recording images at different dis-
tances to the object of interest.

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_9, © Springer-Verlag London 2014

331

http://dx.doi.org/10.1007/978-1-4471-6320-6_9


332 9 Feature Detection and Tracking

Fig. 9.1 An illustration of DoG scale space keypoints. Left: The detected keypoints in a traffic
scene. Right: The keypoints with their disks of influence; the radius of a disk is defined by the
scale for which the keypoint has been detected

Fig. 9.2 A recorded scene itself may support invariance (e.g. isotropy by the scene on the left)

Procedure X Assume that we have input images I of scenes S ∈ S and a camera
(i.e. an imaging process) C. For images I = C(S), a defined analysis procedure X
maps an image I into some (say) vectorial output R(I) = r, the result. For example,
this can be a list of detected features. Altogether, we have that

R(I) = R
(
C(S)

)= r (9.1)

Invariance w.r.t. Changes in the Scene Now assume that we have a change in
the recorded scene S due to object moves, lighting changes, a move of the recording
camera, and so forth. This defines a new scene Snew = N(S), with Inew = C(Snew).
A procedure X is invariant to the change N (in an ideal way) if we obtain with

R(Inew) = R
(
C
(
N(S)

))= r (9.2)

still the same result r for Inew as we had for I before.
For example, if the change N is defined by (only) a variation in lighting within

a defined range of possible changes, then X is invariant to illumination changes
in this particular range. If the change N is defined by a rotation of the scene, as
recorded from an airplane flying along a different trajectory at the same altitude
under identical weather conditions, then X is isotropic. See Fig. 9.2.
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Fig. 9.3 Four keypoint detectors in OpenCV. Upper left: The keypoints detected with FAST.
Upper right: The keypoints detected with ORB. Lower left: The keypoints detected with SIFT.
Lower right: The keypoints detected with SURF

Invariance w.r.t. Used Camera Now assume a modification M in the imaging
procedure I (e.g. the use of a different camera or just of a different lens), Cmod =
M(C), with Imod = Cmod(S). A procedure X is invariant to the modification M if
we obtain with

R(Imod) = R
(
M
(
C(I)

))= r (9.3)

still the same result r for Imod as we had for I before.

9.1.2 Keypoints and 3D Flow Vectors

A keypoint (or interest point) is defined by some particular image intensities
“around” it, such as a corner; see Sect. 2.3.4. Figure 9.3 shows the keypoints de-
tected by four different programs.

A keypoint can be used for deriving a descriptor. Not every keypoint detector
has its particular way for defining a descriptor. A descriptor is a finite vector that
summarizes properties for the keypoint. A descriptor can be used for classifying the
keypoint. A keypoint and a descriptor together define a feature in this chapter.



334 9 Feature Detection and Tracking

Fig. 9.4 The pixel location
p = (x, y) in layer n of a
scale space with its
26-adjacent locations in
layers n − 1, n, and n + 1

Keypoints Defined by Phase Congruency Phase-congruency is a possible way
for detecting features; see Sect. 1.2.5. A local maximum of measure Pideal_ phase(p),
defined in (1.33), identifies a keypoint p. A descriptor d(p) can be derived from the
properties extracted from the neighbourhood of p in the given image I ; for example,
the vector D(p) = [λ1, λ2] of eigenvalues of the matrix defined in (2.56).

Insert 9.1 (Origin of Keypoint Detection in Scale Space) The paper [T. Lin-

deberg. Feature detection with automatic scale selection. Int. J. Computer Vision, vol. 30,

pp. 79–116, 1998] was pioneering the use of a scale space for identifying key-
points.

Keypoints Defined in LoG or DoG Scale Space See Sect. 2.4.1 for those two
scale spaces. We explain the definition of keypoints in the DoG scale space notation;
in the LoG scale space it is the same approach. We recall the difference of Gaussians
(DoG) for scale σ and scaling factor a > 1 for combining two subsequent layers in
the Gaussian scale space into one layer in the DoG scale space:

Dσ,a(x, y) = L(x, y,σ ) − L(x, y, aσ ) (9.4)

We use an initial scale σ > 0 and apply the scaling factors an, n = 0,1,2, . . . , and
so forth, for generating a finite number of layers in the DoG scale space.

The layers Dσ,an , n = 0, . . . ,m, define a 3D data array; each array position
(x, y,n) in this 3D array has 17 or 26 adjacent array positions: eight in layer n

(in the way of 8-adjacency), nine in layer n − 1 if n > 1, and nine in layer n + 1
if n < m. See Fig. 9.4. The array position (x, y,n) and those 17 or 26 adjacent
positions define the 3D neighbourhood of (x, y,n).

A keypoint is detected at p = (x, y) if there is a layer n, 0 ≤ n ≤ m, such that
Dσ,an(x, y) defines a local minimum or local maximum within the 3D neighbour-
hood of (x, y,n). (Keypoints detected in layers 0 and m for 17 adjacent positions
only can be considered to be of “lower quality” and skipped.)
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Fig. 9.5 Left: An illustration of a disk in a 3D space moving towards the image plane, generating
there disks of influence of different radii. Right: The 2D projections of the detected 3D flow vectors;
the colour key used represents different directions and magnitudes of motion in the 3D space

With a detected keypoint in the original image I at a pixel location p = (x, y),
we also have the scale σ ·an, where it has been detected; this scale defines the radius
of the disk of influence for this keypoint p.

3D Flow Vectors Assume a sequence of frames I (·, ·, t) and detected keypoints
in the scale space for each frame, together with the radius of their disk of influence.
Also assume that we have a way to solve the keypoint-correspondence problem
between keypoints in frames I (·, ·, t) and I (·, ·, t + 1). (See Sect. 9.3 later in this
chapter.) Some of the keypoints may not have a corresponding keypoint in the next
frame.

Now consider a keypoint pt = (xt , yt ) in a frame I (·, ·, t) with radius rt > 0 of
its disk of influence, assumed to be moving into a keypoint pt+1 = (xt+1, yt+1) in
the frame I (·, ·, t + 1) with radius rt+1 > 0 of its disk of influence. Assume that
those both disks of influence are projections of a local “circular situation” in the
scene; see Fig. 9.5, left.

The increase in radius from rt to rt+1 (in the example shown) is inversely propor-
tional to the speed that the centre point of this local “circular situation” is moving
towards the camera (see Example 9.1). If this centre point would move away, then
the projected radius would increase. Thus, this changing radius of the disk of influ-
ence defines a 3D move of the centre point of the projected local “circular situation”.
See Fig. 9.5, right, for an illustration of derived 3D flow vectors.1

Example 9.1 (Disks in 3D Space Moving Towards a Camera) Figure 9.5 illustrates
a disk of radius ρ moving towards a camera. Let f be the focal length of the cam-
era, and let the disk move parallel to the XY -plane of the XYZ-camera coordinate

1The described generation of 3D flow vectors has been published in [J.A. Sanchez, R. Klette,
and E. Destefanis. Estimating 3D flow for driver assistance applications. Pacific-Rim Symposium
Image Video Technology, LNCS 5414, pp. 237–248, 2009].
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system. For simplicity, assume that the radius is parallel to the Y -axis, going from
Yc to Ye , from the centre point Pc to the end point Pe on the circle.

A 3D point P = (X,Y,Z) in camera coordinates projects into a point p =
(x, y, f ) in the image plane, with x = f X

Z
and y = f Y

Z
. The point Pc projects

into pc = (xc, yc, f ), and Pe projects into pe = (xe, ye, f ).
The moving disk is at time t at distance Zt and projected into an image I (·, ·, t)

as a disk of radius rt having the area

At = πr2
t = π(yc − ye)

2 = f
π

Z2
t

(Yc − Ye)
2 = πf

ρ2

Z2
t

(9.5)

The radius ρ of the disk is constant over time; the product AtZ
2
t = πfρ2 does not

change over time. It follows that

Zt+1

Zt

=
√

At

At+1
(9.6)

which provides a robust estimator for this ratio of distance values.

Keypoints at Subpixel Accuracy The keypoints as detected above in the scale
space, in the layer defined by the scale σ · an, are at pixel locations (i.e. with integer
coordinates). We interpolate a 2D second-order polynomial g(x, y) to the detected
keypoint and its four 4-adjacent neighbours, using for the function g the values in
the layer defined by the scale σ · an, take the derivatives of g(x, y) in the x- and y-
directions, and solve the resulting equation system for a subpixel-accurate minimum
or maximum.

9.1.3 Sets of Keypoints in Subsequent Frames

We compare the detected sets of keypoints in two subsequent frames of an image
sequence. The goal is to find corresponding keypoints. There will be outliers that
have no corresponding keypoints in the other image. We discuss correspondence
here as a (global) set problem, not as a point-by-point problem. (Fig. 9.24 illustrates
the point-by-point matching problem.)

Considering matching as a set problem, we assume that there is a global pattern
of keypoints, and we want to match this global pattern with another global pattern
of keypoints. See Fig. 9.6 for an example. If two images only differ in size, then the
global matching approach is appropriate.

Random Sample Consensus RANSAC, short for the random sample consen-
sus, is an iterative estimation technique of parameters of an assumed mathematical
model. Given is a set of data, called inliers, which follow this model, there is also ad-
ditional data, called outliers, which do not follow the model, considered to be noise.
For applying RANSAC, the probability of selecting inliers needs to be reasonably
high.
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Fig. 9.6 Left: Set of SIFT keypoints. Right: The set of SIFT keypoints in the demagnified image.
The coloured lines show a match between corresponding keypoints, represented by one uniform
global affine transform, identified by RANSAC

For example, the data together, inliers and outliers, might be a noisy representa-
tion of a straight line y = ax + b, and the task is to estimate a and b. In our case
here, the data are sets of keypoints in two different images, and the model is given
by a geometric transform for defining keypoint correspondence. This is an example
of a matching problem. For the given case, we consider an affine transform as being
sufficiently general; it covers rotation, translation, and scaling. See Fig. 9.6 for an
illustration of correspondences calculated by estimating one affine transform.

Insert 9.2 (Origin of RANSAC) The method was first published in the paper
[M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model fitting

with applications to image analysis and automated cartography. Comm. ACM, vol. 24,

pp. 381–395, 1981.]

RANSAC Algorithm We need to have a test for evaluating whether some data
satisfy or fit the parameterized model. In our case, a keypoint p in one image I is
mapped by the parameterized affine transform onto a point q in the other image J .
The test can be as follows: If there is a keypoint r in J at distance d2(q, r) ≤ ε,
then we say that p satisfies the given parameterized affine transform. The tolerance
threshold ε > 0 determines whether data fit the model.

For initialization of the process, select a random subset S of the given data (in
our case, keypoints in the image I ), consider all those as being inliers, and fit the
model by estimating model parameters.

Test the parameterized model for all the other data; all the data satisfying the
model go into the consensus set (i.e. the consensus set contains S).

Compare the cardinality of the consensus set against the cardinality of all data. If
the percentage is reasonably high, then stop this iterative procedure. Otherwise, es-
timate updated model parameters based on the given consensus set, called a refined
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Fig. 9.7 The definition of an affine transform by three pairs of points in images I (on the left)
and J

model. We continue with the refined model if its newly established consensus set is
of larger cardinality than the cardinality of the previously established consensus set.
If the cardinality did not increase, then we can go back to the initialization step by
selecting another random subset S.

RANSAC for Feature Matching A feature is defined by a keypoint and a de-
scriptor. For estimating the parameters of an affine transform, we utilize descriptors
for estimating matching features in the other image. The initial set S can be three
randomly selected keypoints in the image I . For those keypoints, we can search for
three keypoints with reasonably matching descriptors in the image J . For the initial
set S, we can also replace the random selection by a systematic evaluation of the
“strength” of a feature, based on defining properties for descriptors, and a measure
for those properties.

Example 9.2 (Estimating an Affine Transform) A point p = (x, y,1) in homoge-
neous coordinates in an image I is mapped into a point q = (u, v,1) in an image J

by an affine transform
⎡

⎣
u

v

1

⎤

⎦=
⎡

⎣
r11 r12 t1
r21 r22 t2
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ (9.7)

representing the linear equation system

u = r11x + r12y + t1 (9.8)

v = r21x + r22y + t2 (9.9)

We have six unknowns. When considering three non-collinear points p1, p2, and p3
in I , we can determine those six unknowns. See the sketch in Fig. 9.7.

For the calculated affine transform A(p) = q , we now apply A to all the key-
points p in I , obtaining the points A(p) in J . A point p goes into the consensus
set if there is a keypoint q in J in the Euclidean distance to A(p) less than ε > 0
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1: ML = matchFeatures(IL) {keypoints in left image};
2: MR = matchFeatures(IR) {keypoints in right image};
3: S = [] {empty list; will store the 3D points};
4: for p in ML do
5: d = findDisparity(p,MR);
6: P = (p.x,p.y, d) · P {project detected point pair into 3D by multiplying with projection

matrix};
7: append(S,P ) {add the projected 3D point P to the set of 3D points};
8: end for
9: Π1 = ransacFitPlane(S);

10: Π2 = ransacRefinePlaneModel(S,Π1);

Fig. 9.8 Fitting a plane into sparsely detected 3D points

with a “reasonable” match of descriptors, defining the expected image qp of p in J .
Obviously, the initially used points p1, p2, and p3 pass this test.

We can expect to have a consensus set of more than just three points in I . We
update the affine transform now by calculating the optimum transform for all the
established pairs p in I and qp in J , thus defining a refined affine transform. See
the linear least-squares solution technique in Sect. 4.3.1.

Note that the value ε cannot be “very small”; this would not allow one to move
away from the initial transform (for a better match between both sets of keypoints).

Example 9.3 (Estimating a plane in a 3D Cloud of Points) We assume a stereo cam-
era system in a quadcopter; see Fig. 6.10, right, for an illustration. At a time t we
record left and right images, IL and IR . In both images we apply a keypoint de-
tector (e.g. a time-efficient detector such as FAST), providing sets ML and MR of
keypoints.

For each keypoint p in ML, we detect a matching keypoint in MR (if it exists),
defined by a disparity d . Feature descriptors can help to identify a match. Having
a projection matrix P for the left camera, we can map p based on d and P into a
point P in the 3D space. Such 3D points P are collected in a set S. After having all
the keypoints processed at time t , we fit a plane into the set S using RANSAC (see
Exercise 9.8). See Fig. 9.8 for pseudocode for this procedure.

The estimated plane can be used by the quadcopter for control while landing on
a planar surface. Figure 9.9 illustrates a situation where the quadcopter is close to
landing.

9.2 Examples of Features

This section defines three popular types of features, known under the acronyms
SIFT, SURF, and ORB, and it also provides a comparative performance discussion
for those three types of features with respect to invariance properties.
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Fig. 9.9 An illustration of a fitted plane to a set of 3D points. The points have been calculated with
a sparse stereo matcher using a modified FAST feature detector (implemented in a quadcopter).
Yellow points are outliers. The fitted plane is back-projected into the non-rectified recorded image,
thus resulting in a curved manifold due to lens distortion. The 3D points have been detected with a
downward-looking stereo camera system integrated into the quadcopter shown in Fig. 6.10, right

9.2.1 Scale-Invariant Feature Transform

Assume that we have detected keypoints in the DoG or LoG scale space. For a
keypoint p ∈ Ω , we also have the scale σ · an, which defines the radius rp = σ · an

of the disk of influence for this keypoint. Taking this disk, centred at p, in all layers
of the scale space, we define a cylinder of influence for the keypoint. The intersection
of this cylinder with the input image is also a disk of radius rp centred at p.

Eliminating Low Contrast and Keypoints on Edges Typically, we are not in-
terested in keypoints in low-contrast regions or on edges. The detected keypoints
in low-contrast regions can easily be removed by following the model defined
by (1.10). For example, if the bottom layer of the DoG scale space has a small
value at p, then the given image has a low contrast at p.

For deciding whether one of the remaining keypoints p is on an edge, we can
consider the gradient �I (p) = [Ix(p), Iy(p)]. If both components differ signifi-
cantly in magnitude, then we can conclude that p is on an edge, which is (about)
perpendicular to the coordinate axis along which the component had the dominant
magnitude.

Another option is that we take only those keypoints that are at a corner in the
image; see Sect. 2.3.4. A corner can be identified by the eigenvalues λ1 and λ2 of
the Hessian matrix at a pixel location p. (See Insert 2.8). If the magnitude of both
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eigenvalues is “large”, then we are at a corner; one large and one small eigenvalue
identify a step-edge, and two small eigenvalues identify a low-contrast region.

Thus, after having already eliminated keypoints in low-contrast regions, for the
remaining, we are only interested in the ratio

λ1

λ2
=

(Ixx + Iyy)
2 + 4Ixy

√
4I 2

xy + (Ixx − Iyy)2

(Ixx + Iyy)2 − 4Ixy

√
4I 2

xy + (Ixx − Iyy)2
(9.10)

for discriminating between keypoints being on a corner or on an edge.
We now assign the descriptors d(p) to the remaining keypoints p. The scale-

invariant feature transform (SIFT) aims at implementing rotation invariance,
scale invariance (actually addressing “size invariance”, not really invariance w.r.t.
scale σ ), and invariance w.r.t. brightness variations.

Insert 9.3 (Origin of SIFT) The paper [D.G. Lowe. Object recognition from local

scale-invariant features. In Proc. Int. Conf. Computer Vision, vol. 2, pp. 1150–1157, 1999]

defined the SIFT descriptor.

Rotation-Invariant Descriptor The disk of influence with radius rp = σ · an in
the layer Dσ,an(x, y) of the used DoG scale space can be analysed for a main di-
rection along a main axis and rotated so that the main direction coincides with a
(fixed) predefined direction. For example, (3.41) can be applied as is for identifying
the main axis in the disk of influence in the layer Dσ,an(x, y).

SIFT applies a heuristic approach. For pixel locations (x, y) in the disk of in-
fluence in layer L(x, y) = Dσ,an(x, y), centred at a keypoint p, a local gradient is
approximated by using

m(x,y) =
√[

L(x, y + 1) − L(x, y − 1)
]2 + [

L(x + 1, y) − L(x − 1, y)
]2 (9.11)

θ(x, y) = atan 2
([

L(x, y + 1) − L(x, y − 1)
]
,
[
L(x + 1, y) − L(x − 1, y)

])

(9.12)

as simple approximation formulas of magnitude and direction (for function atan 2,
see footnote on p. 21). The directions are mapped onto 36 counters, each represent-
ing an interval of 10 degrees. The counters have the initial value 0. If a direction is
within the 10 degrees represented by a counter, then the corresponding magnitude
is added to the counter. Altogether, this defines a gradient histogram.

Local maxima in counter values, being at least at 80 % of the global maximum,
define the dominant directions. If there are more than one dominant direction, then
the keypoint is used in connection with each of those dominant directions.

Analogously to the processing of a main direction, the disk of influence is rotated
so that a detected dominant direction coincides with a (fixed) predefined direction.
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Fig. 9.10 Upper left:
A square containing a disk of
influence. Upper right:
A gradient map for deriving
the gradient histograms for
16 squares. Lower left:
A sketch of the detected
gradients. Lower right:
A sketch of the gradient
histograms

Brightness Invariance For defining brightness-invariant features, we are inter-
ested in describing the disk of influence in the input image (and not for the layer
defined where the keypoint has been detected). We can apply any of the transforms
discussed in Sect. 2.3.5 for removal of lighting artifacts.

SIFT calculates features for gradients in the disk of influence by subdividing this
disk into square windows; for a square window (for the size see below) in the input
image, we generate a gradient histogram as defined above for identifying dominant
directions, but this time for intervals of 45 degrees, thus only eight counters, each
being the sum of gradient magnitudes.

Scale Invariance We partition the rotated (see under “Rotation Invariance”) disk
of influence in the input image into 4 × 4 squares (geometrically “as close as pos-
sible”). For each of the 16 squares, we have a vector of length 8 representing the
counter values for the gradient histogram for this square. By concatenating all 16
vectors of length 8 each we obtain a vector of length 128. This is the SIFT descrip-
tor dSIFT(p) for the considered keypoint p. See Fig. 9.10.

9.2.2 Speeded-Up Robust Features

The detector, known as speeded-up robust features (SURF), follows similar ideas as
SIFT. It was designed for better run-time performance. It utilizes the integral images
Iint introduced in Sect. 2.2.1 and simplifying filter kernels rather than convolutions
with derivatives of the Gauss function.
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Fig. 9.11 An illustration for σ = 1.2, the lowest scale, and 9 × 9 discretized and cropped Gaus-
sian second-order partial derivatives and corresponding filter kernels in SURF. Pair on the left:
The derivative in the y-direction and SURF’s simplifying approximation. Pair on the right: The
derivative in the diagonal (lower left to upper right) direction and SURF’s corresponding filter
kernel

SURF Masks and the Use of Integral Images Two of the four used masks (or
filter kernels) are illustrated in Fig. 9.11; SURF’s masks for the x-direction and the
other diagonal direction are analogously defined. The size of the mask corresponds
to the chosen scale. After 9 × 9, SURF then uses masks of sizes 15 × 15, 21 × 21,
27 × 27, and so on (subdivided into octaves; but here, as mentioned earlier, we do
not discuss these implementation-specific issues) with corresponding increases of
rectangular sub-windows.

Values in those filter kernels are either 0, −1, +1, or −2. The values −1, +1,
and +2 are constant in rectangular subwindows W of the mask. This allows us to
use formula (2.13) for calculating time-efficiently the sum SW of all intensity values
in W . It only remains to multiply the sum SW with the corresponding coefficient
(i.e., the value −1, +1, or −2). The sum of those three or four products is then the
convolution result at the given reference pixel for one of the four masks.

Insert 9.4 (Origin of SURF) The paper [H. Bay, A. Ess, T. Tuytelaars, and L. Van

Gool. SURF: Speeded up robust features. Computer Vision Image Understanding, vol. 110,

pp. 346–359, 2008] defined SURF features.

Scales and Keypoint Detection The value σ = 1.2, as illustrated in Fig. 9.11, is
chosen for the lowest scale (i.e. the highest spatial resolution) in SURF. Convolu-
tions at a pixel location p in the input image I with four masks approximate the
four coefficients of the Hessian matrix [see (2.28) and (2.29)]. The four convolu-
tion masks produce the values Dx,x(p,σ ) and Dx,y(p,σ ), assumed to be equal to
Dy,x(p,σ ) and Dy,y(p,σ ). The value

S(p,σ ) = Dx,x(p,σ ) · Dy,y(p,σ ) − (
cσ · Dx,y(p,σ )

)2 (9.13)

is then chosen as an approximate value for the determinant of the Hessian matrix at
the scale σ , where cσ with 0 < cσ < 1 is a weighting factor that could be optimized
for each scale. However, SURF uses a constant cσ = 0.9 as weight optimization
appears to have no significant influence on results.
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A keypoint p is then detected by a local maximum of a value S(p,σ ) within a
3 × 3 × 3 array of S-values, analogously to keypoint detection in the LoG or DoG
scale space.

SURF Descriptor The SURF descriptor (a 64-vector of floating-point values)
combines local gradient information, similar to the SIFT descriptor, but uses
again weighted sums in rectangular subwindows (known as Haar-like features; see
Sect. 10.1.4 for a discussion of those in their original historic context) around the
keypoint for a simplifying and more time-efficient approximation of gradient values.

9.2.3 Oriented Robust Binary Features

Before introducing oriented robust binary features (ORB), we first have to spec-
ify binary robust independent elementary features (BRIEF) because this feature
descriptor and the keypoint detector FAST (see Sect. 2.3.4) together characterize
ORB.

Binary Patterns BRIEF reduces a keypoint descriptor from a 128-vector (such
as defined for SIFT) to just 128 bits. Given floating-point information is binarized
into a much simpler representation. This idea has been followed when designing the
census transform (see Sect. 8.1.2) by the use of local binary patterns (LBPs; see
Fig. 9.12, left, for the definition) and by proposing a simple test for training a set of
classification trees (see the next chapter for this subject).

Insert 9.5 (Origins of LBP) The paper [D.C. He and L. Wang. Texture unit, texture

spectrum, and texture analysis. IEEE Trans. Geoscience Remote Sensing, vol. 28, pp. 509–

512, 1990] introduced the basic idea of local binary patterns (LBPs), which
have been popularized by the work [T. Ojala, M. Pietikäinen, and D. Harwood. Per-

formance evaluation of texture measures with classification based on Kullback discrimina-

tion of distributions. In Proc. Int. Conf. Pattern Recognition, vol. 1, pp. 582–585, 1994]

and subsequent publications on using the Kullback–Leibler distance in pat-
tern recognition, named after the US-American mathematicians S. Kullback
(1907–1994) and R. Leibler (1914–2003).

BRIEF For BRIEF, the LBP is defined for a selection of n pixel pairs (p, q), se-
lected around the current pixel in some defined order in a (2k +1)× (2k +1) neigh-
bourhood (e.g. k = 4 to k = 7) after performing some Gaussian smoothing defined
by σ > 0 in the given image I . Thus, the order of those pairs and the parameters k

and σ define a particular version of a BRIEF descriptor. In general, smoothing can
be minor (i.e. a small σ ), and the original paper suggested a random order for pairs
of pixel locations. See Fig. 9.12, right. Thus, scale or rotation invariance was not
intended by the designers of the original BRIEF.
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Fig. 9.12 Left: The figure shows one pixel location p in an image I and 16 pixel locations
q on a discrete circle around p. Let s(p, q) = 1 if I (p) − I (q) > 0 and 0 otherwise. Then
s(p, q0) · 20 + s(p, q1) · 21 + · · · + s(p, q15) · 215 defines the LBP code at pixel location p, i.e.
a binary code of 16 bits. Right: BRIEF suggests the use of an order defined by random pairs of
pixels within the chosen square neighbourhood, illustrated here by four pairs (pi , qi), defining
s(p0, q0) · 20 + s(p1, q1) · 21 + s(p2, q2) · 22 + s(p3, q3) · 23

Insert 9.6 (Origins of BRIEF and ORB) The paper [M. Calonder, V. Lepetit,

C. Strecha, and P. Fua. BRIEF: Binary robust independent elementary features. In Proc.

European Conf. Computer Vision, pp. 778–792, 2010] defined BRIEF, and for the
proposal of ORB, see [E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An

efficient alternative to SIFT or SURF. In Proc. Int. Conf. Computer Vision, pp. 2564–2571,

2011].

ORB ORB, which can also be read as an acronym for oriented FAST and rotated
BRIEF, combines keypoints, defined by extending the corner detector FAST (see
Sect. 2.3.4), with an extension of the feature descriptor BRIEF:
1. ORB performs a multi-scale detection following FAST (for scale invariance), it

calculates a dominant direction, and
2. ORB applies the calculated direction for mapping the BRIEF descriptor into a

steered BRIEF descriptor (for rotation invariance).
The authors of ORB also suggest ways for analysing the variance and correlation
of the components of the steered BRIEF descriptor; a test data base can be used for
defining a set of BRIEF pairs (pi, qi) that de-correlate the components of the steered
BRIEF descriptor for improving the discriminative performance of the calculated
features.

Multi-scale, Harris Filter, and Direction The authors of ORB suggested to use
FAST for a defining discrete circle of radius ρ = 9; Fig. 2.22 illustrated FAST for a
discrete circle of radius ρ = 3. (Of course, the chosen radius depends on the resolu-
tion and signal structure of the given images.) A scale pyramid of the input image
is used for detecting FAST keypoints at different scales. The cornerness measure
in 2.30 (of the Harris detector) is then used to select the T “most cornerness” key-
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points at those different scales, where T > 0 is a pre-defined threshold for the num-
bers of keypoints. This is called a Harris filter.

The moments m10 and m01 [see (3.36)] of the disk S used, defined by the radius
ρ, specify the direction

θ = atan 2(m10,m01) (9.14)

By the definition of FAST it can be expected that m10 �= m01. Let Rθ be the 2D
rotation matrix about an angle θ .

Descriptor with a Direction The pairs (pi, qi) for BRIEF with 0 ≤ i ≤ 255 are
selected by a Gaussian distribution within the disk used (of radius ρ). They form a
matrix S that is rotated into

Sθ = RθS = Rθ

[
p0 · · · p255
q0 · · · q255

]
=
[
p0,θ · · · p255,θ

q0,θ · · · q255,θ

]
(9.15)

A steered BRIEF descriptor is now calculated as the sum s(p0,θ , q0,θ ) · 20 + · · · +
s(p255,θ , q255,θ ) · 2255, where s is as defined in the caption of Fig. 9.12. By going
from the original BRIEF descriptor to the steered BRIEF descriptor, the values in
the descriptor become more correlated.

For time-efficiency reasons, a used pattern of 256 BRIEF pairs (generated by
a Gaussian distribution) is rotated in increments of 2π/30, and all those patterns
are stored in a look-up table. This eliminates the need for an actual rotation; the
calculated θ is mapped on the nearest multiple of 2π/30.

9.2.4 Evaluation of Features

We evaluate the presented feature detectors with respect to invariance properties.
We change the frames in given sequences systematically, as illustrated in Fig. 9.13.
For example, we reduce the size of an image. If a feature detector is scale-invariant,
then it should detect (ideally) the same features in the demagnified image.

Feature Evaluation Test Procedure We discuss four different types of systematic
changes for frames, namely rotation, scaling (demagnification and magnification),
brightness changes, and blurring.2 For a given sequence of frames, we select one
feature detector and do the following:
1. Read next frame I , which is a grey-level image.
2. Detect the keypoints p in I and their descriptors d(p) in I .
3. Let Nk be the number of keypoints p in I .
4. For the given frame, generate four image sequences:

2See [Z. Song and R. Klette. Robustness of point feature detection. In Proc. Computer Analysis
Images Patterns, LNCS 8048, pp. 91–99, 2013].
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Fig. 9.13 Top, left: A rotated image; the original frame from the sequence bicyclist from
EISATS is 640 × 480 and recorded at 10 bit per pixel. Top, right: A demagnified image. Bottom,
left: Uniform brightness change. Bottom, left: A blurred image

(a) Rotate I around its centre in steps of 1 degree; this generates a sequence of
360 rotated images.

(b) Resize I in steps of 0.01, from 0.25 to 2 times the original size; this generates
a sequence of 175 scaled images.

(c) Change the image brightness in I globally by adding a scalar to pixel val-
ues, in increments of 1 from −127 to 127; this generates a sequence of 255
brightness-transformed images.

(d) Apply Gaussian blur to I with increments of 2 for σ from 3 to 41; this gen-
erates a sequence of 20 blurred versions of I .

5. Apply the feature detector again for each transformed image It ; calculate the
keypoints pt and descriptors d(pt ).

6. Let Nt be the number of keypoints pt for the transformed image.
7. Use the descriptors d(p) and d(pt ) to identify matches between features in I

and It .
8. Use RANSAC to remove the inconsistent matches.
9. Let Nm be the number of detected matches.

Repeatability Measure We define the repeatability R(I, It ) as the ratio of the
number of detected matches to the number of keypoints in the original image:
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Fig. 9.14 Repeatability diagrams. Top, left: For rotation. Top, right: For scaling. Bottom, left: For
brightness variation. Bottom, right: For blurring

Table 9.1 The mean values for 90 randomly selected input frames. The fourth column is the
numbers of keypoints for the frame used for generating the transformed images shown in Fig. 9.13

Feature detector Mean time per frame Mean time per keypoint Number Nk of keypoints

SIFT 254.1 0.55 726

SURF 401.3 0.40 1,313

ORB 9.6 0.02 500

R(I, It ) = Nm

Nk

(9.16)

We report means for selected frames in test sequences, using OpenCV default param-
eters for the studied feature detectors and a set of 90 randomly selected test frames.
See Fig. 9.14.

Discussion of the Experiments Invariance certainly has its limits. If scaling,
brightness variation, or blurring passes these limits that image data get totally dis-
torted, then we cannot expect repeatability anymore. Rotation is a different case;
here we could expect invariance close to the ideal case (of course, accepting that
digital images do not rotate as continuous 2D functions in R

2.
Table 9.1 reports the run-time per input image, the mean run-time per keypoint,

and the numbers of detected keypoints for the frame used for generating the trans-
formed images shown in Fig. 9.13.

The experiments illustrate that SIFT is performing well (compared to SURF and
ORB) for rotation, scaling, and brightness variation, but not for blurring. All re-
sults are far from the ideal case of invariance. If there is only a minor degree of
brightness variation or blurring, then invariance can be assumed. But rotation or
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scaling leads already to significant drops in repeatability for small angles of rota-
tion or minor scale changes. There was no significant run-time difference between
SIFT and SURF, but a very significant drop in computation time for ORB, which
appears (judging from this comparison) as a fast and reasonably competitive feature
detector.

9.3 Tracking and Updating of Features

Here is an example of an application scenario: Consider a car that is called the ego-
vehicle because it is the reference vehicle where the considered system is working
in, in distinction to “other” vehicles in a scene. This ego-vehicle is equipped with
a stereo vision system, and it drives through a street, providing reconstructed 3D
clouds of points for each stereo frame at time t . After understanding the motion of
the ego-vehicle, these 3D clouds of points can be mapped into a uniform 3D world
coordinate system supporting 3D surface modelling of the road sides. Figure 9.15
illustrates such an application of stereo vision.3

For understanding the motion of the ego-vehicle, we track the detected features
from frame t to frame t +1, being the input for a program calculating the ego-motion
of the car. Such a program is an interesting subject on its own; in this section we
only describe techniques how to track features from frame t to frame t + 1.

9.3.1 Tracking Is a Sparse Correspondence Problem

In binocular stereo, the point or feature correspondence is calculated between im-
ages taken at the same time; the correspondence search is within an epipolar line.
Thus, stereo matching is a 1D correspondence problem.

For dense motion (i.e. optic flow) analysis, the point or feature correspondence
is calculated between the images taken at subsequent time slots. Movements of pix-
els are not constrained to be along one straight line only; they may occur in any
direction. Thus, dense motion analysis is a 2D correspondence problem.

Tracking feature points in an image sequence is a sparse 2D correspondence
problem. Theoretically, its solution could also be used for solving stereo or dense
motion analysis, but there are different strategies for solving a dense or sparse cor-
respondence problem. In sparse correspondence search we cannot utilize a smooth-
ness term and first need to focus more on achieving accuracy based on the data
term only, but can then use global consistency of tracked feature point patterns for
stabilizing the result.

Tracking with Understanding 3D Changes For a pair of 3D points Pt =
(Xt , Yt ,Zt ) and Pt+1 = (Xt+1, Yt+1,Zt+1), projected at times t and t + 1 into
pt = (xt , yt , f ) and pt+1 = (xt+1, yt+1, f ), respectively, when recording a video

3See [Y. Zeng and R. Klette. Multi-run 3D streetside reconstruction from a vehicle. In Proc. Com-
puter Analysis Images Patterns, LNCS 8047, pp. 580–588, 2013].
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Fig. 9.15 Top: Tracked feature points in a frame of a stereo video sequence recorded in a car.
Middle: Tracked feature points are used for calculating the motion of the car; this allows one to
map 3D points provided by stereo vision into a uniform 3D world coordinate system. Bottom: The
stereo matcher iSGM has been used for the shown example (example of a disparity map for the
recorded sequence)

sequence, we define the Z-ratio as follows:

ψZ = Zt+1

Zt

(9.17)

Based on this Z-ratio, we can also derive the X- and Y -ratios:

ψX = Xt+1

Xt

= Zt+1

Zt

· xt+1

xt

= ψZ

xt+1

xt

(9.18)

ψY = Yt+1

Yt

= Zt+1

Zt

· yt+1

yt

= ψZ

yt+1

yt

(9.19)
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This defines the following update equation:

⎡

⎣
Xt+1
Yt+1
Zt+1

⎤

⎦=
⎡

⎣
ψX 0 0
0 ψY 0
0 0 ψZ

⎤

⎦ ·
⎡

⎣
Xt

Yt

Zt

⎤

⎦ (9.20)

In other words, knowing ψZ and the ratios xt+1
xt

and yt+1
yt

allows us to update the
position of point Pt into Pt+1. Assuming that Pt and Pt+1 are the positions of a 3D

point P , from time t to time t + 1, we only have to solve two tasks:
1. decide on a technique to track points from t to t + 1, and
2. estimate ψZ .
If an initial position P0 of a tracked point P is known, then we may identify its 3D
position at subsequent time slots. Without having an initial position, we only have a
3D direction Pt to Pt+1, but not its 3D position.

Stereo vision is the general solution for estimating the Z-values or (just) ra-
tios ψZ . Equation (9.17) specifies an alternative way for estimating ψZ in a monoc-
ular sequence from scale-space results. In the next subsections we discuss how to
track points from t to t + 1 by providing three different techniques.

Insert 9.7 (Origin of the Lucas–Kanade Tracker) The method was published
in [B.D. Lucas and T. Kanade: An iterative image registration technique with an application

to stereo vision. In Proc. Int. Joint Conf. Artificial Intelligence, pp. 674–679, 1981]. The
selection of “good features” for matching (or tracking) was later discussed by
C. Tomasi, first together with T. Kanade and then also with other co-authors;
in recognition of this the Lucas–Kanade tracker is sometimes also called the
KLT tracker.

9.3.2 Lucas–Kanade Tracker

We match a template Wp , being a (2k + 1) × (2k + 1) window around keypoint
p = (x, y) in a base image I , with windows Wp,a in a match image J , where the
method should be general enough to allow for translation, scaling, rotation, and so
forth between a base window Wp and a match window Wp,a in J . Vector a parame-
terizes the transform from p into a new centre pixel, and also the transformation of
a window W into a new shape. See Fig. 9.16.

Insert 9.8 (Newton, Raphson, and the Newton–Raphson Iteration) I. New-
ton (1642–1727 in the Julian calendar, which was then used in England) and
J. Raphson (about 1648–about 1715). The Newton–Raphson iteration calcu-
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Fig. 9.16 A template or base
window Wp in a base image
I is compared with a match
window Wp,a in a match
image J . In the shown case,
the dissimilarity vector a is
defined by a translation t and
a scaling of height h into a
smaller height. The figure
also indicates that a disk of
influence is contained in Wp .
The pixel location p in J is
the same as in I ; it defines the
start of the translation

lates the zeros of a unary function f and generalizes an ancient method used
by the Babylonians for approximating square roots.

We calculate a zero of a smooth unary function φ(x) for x ∈ [a, b], pro-
vided that we have φ(a)φ(b) < 0. Inputs are the two reals a and b. We also
have a way to calculate φ(x) and the derivative φ′(x) (e.g. approximated by
difference quotients) for any x ∈ [a, b]. We calculate a value c ∈ [a, b] as an
approximate zero of φ:

1: Let c ∈ [a, b] be an initial guess for a zero.
2: while STOP CRITERION = false do
3: Replace c by c − φ(c)

φ′(c)
4: end while

The derivative φ′(c) is assumed to be non-zero. If φ has a derivative of
constant sign in [a, b], then there is just one zero in [a, b].

An initial value of c can be specified by (say) a small number of binary-
search steps for reducing the run-time of the actual Newton–Raphson itera-
tion. A small ε > 0 is used for specifying the STOP CRITERION “|φ(c)| ≤ ε”.

The method converges in general only if c is “sufficiently close” to the
zero z. However, if φ′′(x) has a constant sign in [a, b], then we have the fol-
lowing: if φ(b) has the same sign as φ′′(x), then the initial value c = b gives
the convergence to z, otherwise chose the initial value c = a.

The figure below shows a smooth function φ(x) and an interval [a, b] with
φ(a)φ(b) < 0. Assume that we start with c = x1. The tangent at (x1, φ(x1))

intersects the x-axis at x2, which is defined by

x2 = x1 − φ(x1)

φ′(x1)

We have that φ′(x1) �= 0. Now we continue with c = x2. This defines a new
tangent and a new x-intercept x3, and so forth.
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For initial value x1, the sequence of values x2, x3, . . . converges to the
zero z. If we would have started with c = x0, then the algorithm would have
failed. Note that φ′′(x) does not have a constant sign in [a, b]. We need to
start in the “same valley” where z is located. We search for the zero in the
direction of the (steepest) decent. If we do not start in the “same valley”, then
we cannot cross the “hill” in between.

Following the Newton–Raphson Iteration The Lucas–Kanade tracker uses ap-
proximate gradients (i.e. approximate derivatives in the x- and y-directions), which
are robust against variations in intensities.4 For window matching, an error function
E is defined based on an LSE optimization criterion.

Translation In the simplest case we only calculate a translation vector t =
[t.x, t.y] such that J (x + t.x + i, y + t.y + j) ≈ I (x + i, y + j) for all i, j , with
−k ≤ i, j ≤ k, defining relative locations in template Wp .

For simplifying notation, we assume that p = (x, y) = (0,0) and use W or Wa
instead of Wp or Wp,a, respectively. Thus, in case of translation-only, the task is to
approximate a zero (i.e. a minimum) of the error function

E(t) =
k∑

i=−k

k∑

j=−k

[
J (t.x + i, t.y + j) − I

(
W(i, j)

)]2 (9.21)

where t = [t.x, t, y] and W(i, j) = (i, j).

Goal for General Warps We present the tracker not just for translations but for
general warps defined by an affine transform, with a vector a parameterizing the
transform.

Let J (Wa(q)) be the value at that point Wa(q) in J that results from a warping
pixel location q = (i, j) with −k ≤ i, j ≤ k, according to the parameter vector a.
Warping will not map a pixel location onto a pixel location; thus, we also apply
some kind of interpolation for defining J (Wa(q)).

4The presentation follows the Lucas–Kanade tracker introduction by T. Svoboda on cmp.felk.cvut.
cz/cmp/courses/Y33ROV/Y33ROV_ZS20082009/Lectures/Motion/klt.pdf.

http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20082009/Lectures/Motion/klt.pdf
http://cmp.felk.cvut.cz/cmp/courses/Y33ROV/Y33ROV_ZS20082009/Lectures/Motion/klt.pdf
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For example, for a translation with a = [t.x, t.y], it follows that Wa(q) =
(t.x, t.y) + q and J (Wa(q)) = J (t.x + i, t.y + j) for q = (i, j).

Back to the general case, the goal is to calculate a dissimilarity vector a that
minimizes the error function

E(a) =
∑

q

[
J
(
Wa(q)

)− I
(
W(q)

)]2 (9.22)

Iterative Steepest-Ascent Algorithm Assume that we are already at a parameter
vector a = [a1, . . . , an]. Similarly to the mean-shift algorithm for image segmen-
tation, we calculate here a shift ma = [m1, . . . ,mn] such that

E(a + ma) =
∑

q

[
J
(
Wa+ma(q)

)− I
(
W(q)

)]2
(9.23)

is minimized, as a partial step for going towards the minimum for (9.22). For solving
this LSE optimization problem, we consider a Taylor expansion of J (Wa(q)) with
respect to dissimilarity vector a and a minor shift ma, given as follows:

J
(
Wa+ma(q)

)= J
(
Wa(q)

)+ m
a · gradJ · ∂Wa

∂a
+ e (9.24)

Recall that we did the analog operation for deriving the Horn–Schunck constraint;
here we also assume that e = 0 and thus the linearity of values of image J in a
neighbourhood of the pixel location Wa(q).

In (9.24), the second term on the right-hand side is a product of the transpose of
the shift vector ma, the derivative gradJ of the outer function (i.e. the usual image
gradient), and the derivative of the inner function, which also results in a scalar,
as we have a scalar on the left-hand side. The window function W defines a point
with x- and y-coordinates. For its derivative with respect to locations identified by
parameter vector a, we have that

∂Wa

∂a
(q) =

⎡

⎣
∂Wa(q).x

∂x
∂Wa(q).x

∂y

∂Wa(q).y
∂x

∂Wa(q).y
∂y

⎤

⎦ (9.25)

known as the Jacobian matrix of the warp. For C.G.J. Jacobi, see Insert 5.9.
We insert the Taylor expansion of (9.24) into (9.23). The minimization problem

is now defined by

∑

q

[
J
(
Wa(q)

)+ m
a · gradJ · ∂Wa

∂a
− I

(
W(q)

)]2

(9.26)

We follow the standard LSE optimization procedure (see Insert 4.5) for calculating
an optimum shift ma.
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LSE Procedure We calculate the derivative of the sum in (9.26) with respect to
shift ma, set this equal to zero, and obtain the following equation:

2
∑

q

[
gradJ

∂Wa

∂a

][
J
(
Wa(q)

)+ m
a · gradJ · ∂Wa

∂a
− I

(
W(q)

)]= 0 (9.27)

with the 2 × 1 zero-vector 0 on the right-hand side. Here,

H =
∑

q

[
gradJ

∂Wa

∂a

][
gradJ

∂Wa

∂a

]
(9.28)

is the 2 × 2 Hessian matrix, which combines the second-order derivatives. (For
L.O. Hesse, see Insert 2.8.) The solution of (9.27),

m
a = H−1

∑

q

[
gradJ

∂Wa

∂a

][
I
(
W(q)

)− J
(
Wa(q)

)]
(9.29)

defines the optimum shift vector ma from a given parameter vector a to an updated
parameter vector a + ma.

Analogy to the Newton–Raphson Iteration Starting with an initial dissimilarity
vector a, new vectors a + ma are calculated in iterations, following the steepest
ascent. A possible stop criterion is that the error value in (9.22), or the length of
shift vector ma is below a given ε > 0, or a predefined maximum of iterations is
reached.

Example 9.4 (Translation Case) Assume that we only look for a translation vector a
with Wa(q) = [t.x + i, ty + j ] for q = (i, j). For the Jacobian matrix, we have that

∂Wa

∂a
(q,a) =

⎡

⎣
∂Wa(q).x

∂x
∂Wa(q).x

∂y

∂Wa(q).y
∂x

∂Wa(q).y
∂y

⎤

⎦=
[

1 0
0 1

]
(9.30)

The Hessian matrix equals5

H =
∑

q

[
gradJ

∂Wa

∂a

][
gradJ

∂Wa

∂a

]
=
∑

q

⎡

⎣
( ∂J

∂x
)2 ∂J 2

∂x∂y

∂J 2

∂x∂y
( ∂J

∂y
)2

⎤

⎦ (9.31)

Furthermore, the steepest ascent is simply

gradJ · ∂Wa

∂a
= gradJ (9.32)

5We use a (practically acceptable) approximation of the Hessian. Instead of mixed derivatives, we
apply the product of the first-order derivatives.
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1: Let a be an initial guess for a dissimilarity vector.
2: while STOP CRITERION = false do
3: For the given vector a, compute the optimum shift ma as defined by (9.29).

4: Let a = a + ma.
5: end while

Fig. 9.17 Lucas–Kanade algorithm

and

I
(
W(q)

)− J
(
Wa(q)

)= I
(
W(q)

)− J (q + a) (9.33)

Altogether,

m
a = H−1

∑

q

[
gradJ

∂Wa

∂a

][
I
(
W(q)

)− J
(
Wa(q)

)]

=
⎡

⎣
∑

q

⎡

⎣
( ∂J

∂x
)2 ∂J 2

∂x∂y

∂J 2

∂x∂y
( ∂J

∂y
)2

⎤

⎦

⎤

⎦

−1
∑

q

[gradJ ][I(W(q)
)− J (q + a)

]

After approximating the derivatives in image J around the current pixel locations in
window W , defining the Hessian and the gradient vector, we only have to perform a
sum of differences for identifying the shift vector ma.

Lucas–Kanade Algorithm Given is an image I , its gradient image grad I , and
a local template W (i.e. a window) containing (e.g.) the disk of influence of a key-
point. The algorithm is given in Fig. 9.17.

Line 3 in the algorithm requires calculations for all pixels q defined by the tem-
plate W and basically in the main steps:
1. Warp W in I into Wa(q) in J .
2. Calculate the Jacobian matrix and its product with gradJ .
3. Compute the Hessian matrix.
The algorithm performs magnitudes faster than an exhaustive search algorithm for
an optimized vector a. A program for the Lucas–Kanade algorithm is also available
in OpenCV.

Dents and Hills Assume that we only have a 2D vector a (e.g. for translation
only). The error value of (9.22) is then defined on the plane, and for different values
of a, it describes a “hilly terrain” with local minima, possibly a uniquely defined
global minimum, local maxima, and possibly a uniquely defined global maximum.
See Fig. 9.18. For illustration purposes, let us reverse the meaning of minima and
maxima (i.e. we are now interested to go by steepest descent to a global maximum).

The iteration scheme can only potentially lead to a uniquely defined global mini-
mum (by steepest ascent) if the initial parameter vector is such that subsequent shifts
(by steepest ascent) may lead to this global minimum.
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Fig. 9.18 The blue point
“cannot climb” by steepest
descent to a global maximum;
it is in a valley surrounded by
local maxima only. The same
is true for the red point,
which is already at a local
maximum. The yellow dot in
the “central valley” (a global
minimum) can iterate to the
global peak (in the middle of
the figure) by repeated shifts
defined by steepest descent

Fig. 9.19 Two points are
tracked from row y to
row y − 1. Both points are
integrated into one feature
specifying coordinates l and r

and further parameters,
combined into one
model-dependent
descriptor a. The next feature
on row y − 1 needs to be
selected by an optimized
match with the feature model

There is also the possibility of a drift. The individual local calculation can be
accurate, but the composition of several local moves may result in significant errors
after some time, mainly due to the discrete nature of the data.

9.3.3 Particle Filter

We consider now a different tracking scenario. Features (each defined by a keypoint
and a descriptor) need to be tracked according to a general (“vague”) model about
the movement of those features. Tracking can be from frame to frame, or just within
the same image. See Fig. 9.19.

Particles, Weighting, and Iterative Condensation Assume that features are de-
fined by a specific, application-dependent model, not by a generic model of having
(only) a disk of influence. This allows a more specific weighting of consistencies
between feature locations and model correspondence.
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Fig. 9.20 A 3D particle space, combining one spatial component x and two descriptor compo-
nents a1 and a2. Condensation maps weighted particles from iteration t to iteration t + 1. Grey
values indicate weights; the weights change in the iteration step due to the particular condensation
algorithm chosen from a set of many options

A particle filter is appropriate for such a scenario: a particle represents a feature
in a multi-dimensional space; the dimensions of this space combine locations, such
as (x, y) in the image, or just x on a specified row in the image, with descriptor
values in a parameter vector a = (a1, a2, . . . , am). See Fig. 9.20.

A particle filter can track parameter vectors over time or within a space, based
on evaluating consistency with a defined model. By evaluating the consistency of a
particle with the model, we assign a weight (a non-negative real) to the particle.

A condensation algorithm is then used to analyse a cluster of weighted particles
for identifying a “winning particle”. Many different strategies have been designed
for condensation. Typically, the weights are recalculated in iterations for the given
cluster of weighted particles. When iteration stops, some kind of mean or local max-
ima is taken as a winning particle. In the shown example in Fig. 9.20, the particles
stay at their positions, only the weights are changing. In general, condensation can
also merge particles, change positions, or create new particles.

Considered Example We present a simple case. We have a feature that combines
a left point and a right point in the same image row. It needs to be tracked in the
same image. Movement is from one image row to the next, say, bottom-up. The
translational movement of both contributing points to the feature can (slightly) dif-
fer. Figure 9.19 is for this situation.

This simple example allows us to present the core ideas of a particle filter while
using a particular application (detection of lanes of a road in video data recorded
in a driving ego-vehicle).6 Here is a brief outline of the general workflow in this
application; see Fig. 9.21 for an illustration of those steps:

6A particle filter for lane detection was suggested in [S. Sehestedt, S. Kodagoda, A. Alempijevic,
and G. Dissanayake. Efficient lane detection and tracking in urban environments. In Proc. European
Conf. Mobile Robots, pp. 126–131, 2007].
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Fig. 9.21 Top, left to right: An input frame, bird’s eye view, and the detected vertical edges.
Bottom, left to right: The row components of EDT, shown as absolute values, detected centre of
lane and lane borders, and lane borders projected back into the perspective view of the recorded
frames

1. Map recorded video frames into a bird’s-eye view being an orthogonal top-down
projection.

2. Detect dominantly vertical edges in bird’s-eye images; remove edge-artifacts.
3. Perform the Euclidean distance transform (EDT) for calculating the minimum

distances between pixel locations p = (x, y) to those edge pixels; use the signed

row components x−xedge of the calculated distances
√

(x−xedge)2+(y−yedge)2

for identifying centres of lanes at places where signs are changing and the dis-
tance values about half of the expected lane width.

4. Apply a particle filter for propagating detected lane border pixels bottom-up, row
by row, such that we have the most likely pixels as lane border pixels again in the
next row.

Step 2 can be done by assuming a step-edge and using approximations of partial
derivative Ix only. For the removal of edge artifacts, see Exercise 3.2. For the EDT
in Step 3, see Sect. 3.2.4.

Generating a Bird’s-Eye View Step 1 can be done by an inverse perspective
mapping using the calibration data for the used camera or simply by marking four
pixels in the image, supposed to be corners of a rectangle in the plane of the road
(thus appearing as a trapezoid in the perspective image), and by applying a homog-
raphy, which maps those marked four points into a rectangle, and at the same time
the perspective view into a bird’s-eye view.

Model-Based Particles A lane-border model is illustrated in Fig. 9.21. For a de-
tected centre of a lane, where positive and negative row components of the EDT
meet (with absolute values which differ by 1 at most) in the bird’s-eye view, we ap-
ply a fixed height h and have (applying the positive and negative row components)
an angle α that identifies the x-coordinates l and r . Local approximations of the tan-
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Fig. 9.22 Left: Model visualization for the perspective image. The centre point c defines, at fixed
height h, the angle α that identifies left and right lane border points at l and r , respectively. Right:
Bird’s-view image. The model parameters are defined in this view. At detected points l and r , we
have the tangent angles β and γ to the left and right borders, detected as dominantly vertical edges

gents at l and r to the detected lane borders define the angles β and γ . See Fig. 9.22
for an illustration of those parameters.

The height h and angle α are shown in the figure using the perspective view for
illustration of the model. The coordinates l and r are actually defined in the bird’s-
eye view.

Altogether, a feature combining two points (l, y) and (r, y) in row y on the
left and right lane borders (or one keypoint (c, y)) is defined by one vector a =
[c,α,β, γ ]. Thus, we have a 4D particle space.

Initialization of the Tracking Process Having a sequence of frames, the results
from the previous frame can be used for initializing a feature in a row close to the
bottom of the current frame. Let us assume that we are at the very first frame of the
sequence or at a frame after lane borders had been lost in the previous frame.

The start row y0 is close to the bottom of the first frame:
• Option (1): We search for a pixel (c, y) with a positive row-distance value, having

an adjacent pixel in the same row with a negative row-distance value; possibly,
we need to move up to the next row until we have a proper initial value c.

• Option (2): we run special detectors for points (l, y) and (r, y).
These initial values define the first feature vector

a0 = [c0, α0, β0, γ0] (9.34)

for the start row. The angles β0 and γ0 can be chosen to be 0, to be specified better
within the next particle propagation step.

Updating the Feature Vector of the Particle Filter We track the feature vector
a = [c,α,β, γ ] from the start row upward to a row that defines the upper limit for
expected lane borders.

The row parameter y is calculated incrementally by applying a fixed increment
Δ, starting at y0 in the birds-eye image. The row at step n is identified by yn =
(y0 +n ·Δ). In the update process, a particle filter applies the following two models:
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The Dynamic Model A dynamic model matrix A defines a default motion of par-
ticles in the image. Let pn be the keypoint in step n, expressed as a vector. A pre-
diction value p̂n is generated from pn−1 by using p̂n = A · pn−1. A general and
simple choice is the identity matrix A = I (i.e. in the given application it expresses
a smoothness assumption for lane boundaries).

The Observation Model The observation model determines the weight of a par-
ticle during resampling. The points (cn, yn) are assumed to have large absolute row-
distance values. Let Ln and Rn be short digital line segments, centred at (ln, yn) and
(rn, yn), representing the tangential lines at those two points in the bird’s-eye view.
It is assumed that these two line segments are formed by pixels that have absolute
row-distance values close to 0. We assume that Ln and Rn are formed by an 8-path
of length 2k + 1, with points (ln, yn) or (rn, yn) at the middle position.

Generation of Random Particles In each step, when going forward to the next
row, we generate Npart > 0 particles randomly around the predicted parameter vec-
tor (following the dynamic model) in the mD particle space. For better results, use
a larger number of generated particles (e.g. Npart = 500). Figure 9.20 illustrates
43 particles in a 3D particle space. Let

âi
n = [

ĉi
n, α̂

i
n, β̂

i
n, γ̂

i
n

] (9.35)

be the ith particle generated in step n for 1 ≤ i ≤ Npart.

Example 9.5 (Particle Generation Using a Uniform Distribution) We may apply a
uniform distribution for generated particles in the mD particle space. For the dis-
cussed example, this can be implemented as follows:

For the first component we assume an interval [c − 10, c + 10] and select uni-
formly random values for the c-component in this interval. This process is inde-
pendent from the other components of a vector âi

n. For the second component, we
assume the interval (say) of [α − 0.1, α + 0.1], for the third component, the interval
[β − 0.5, β + 0.5], and similar for γ .

Example 9.6 (Particle Generation Using a Gauss Distribution) We can also decide
for a Gauss (or normal) distribution for the generated particles in the mD particle
space. For the discussed example, this can be implemented as follows:

A zero-mean distribution produces values around the predicted value. For the
individual components, we assume a standard deviation σ > 0 such that we gen-
erate values about in the same intervals as specified for the uniform distribution in
Example 9.5. For example, we use σ = 10 for the c-component.

Particle Weights We define a weight for the ith particle âi
n. The left position

equals

lin = ĉi
n − h · tan α̂i

n (9.36)
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The sum of absolute row-distance values dr(x, y) = |x − xedge|, as provided by the
EDT in the bird’s-eye view, along the line segment L (assumed to be an 8-path of
length 2k + 1) equals

Si
L =

k∑

j=−k

∣∣dr

(
lin + j · sin β̂i

n, yn + j · cos β̂i
n

)∣∣ (9.37)

We calculate Si
R for the second line segment in an analogous way and obtain the

weight

ωi
dist = 1

2σlσrπ
exp

(
− (Si

L − μl)
2

2σl

− (Si
R − μr)

2

2σr

)
(9.38)

with respect to the distance values on L and R, where μl , μr , σl , and σr are esti-
mated constants (say, zero-mean μl = μr = 0 for the ideal case) based on experi-
ments for the given application.

For the generated centre point (ci
n, yn), the weight equals

ωi
centre = 1

σc

√
2π

exp

(
−

(| 1
dr (ci

n,yn)
| − μc)

2

2σc

)
(9.39)

where μc and σc are again estimated constants.
Finally, the total weight for the ith particle âi

n, at the beginning of the iterative
condensation process, is given by

ωi = ωi
dist · ωi

centre (9.40)

These weights decide about the “influence” of the particles during the condensation
process. A normalization of all the Npart weights is normally required before ap-
plying one of the common condensation programs. See Fig. 9.23 for an illustration
of results. By using more than just one row for defining a particle, the results can
be improved in general. But using only three rows forward appears to be more rea-
sonable than, say, eight rows forward. The number of used rows should be changed
dynamically according to the state of lane borders, such as being straight or curved.

Condensation The iterative condensation process decides now which of the ran-
domly generated particles (generated “near” the predicted particles) is taken as a re-
sult for the next image row.

One iteration of condensation is also called resampling. Such a resampling step
can possibly also merge particles, delete particles, or create new particles; the goal
is to improve the “quality” of the particles.

A particle with a high weight is very likely to “survive” the resampling process.
Resampling takes all the current weighted particles as input and outputs a set of
weighted particles. Often, particles “shift” towards the particles that had a higher
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Fig. 9.23 Top, left: Generated points (ln, yn) and (rn, yn) using the described method (in yellow)
and an extended method, where particles are defined by two rows backward and eight rows forward
(in cyan). Top, right: Generated points backprojected into the corresponding source frame. Bottom:
The cyan points are here for two rows backward and only three rows forward

weight in the input data. OpenCV provides a particle filter procedure; see CvCon-

Densation.
A small number of iterations or resamplings is appropriate (e.g. 2 to 5). At the

end of the iterations, the particle with the highest weight or the weighted mean of
all particles is taken as the result.

9.3.4 Kalman Filter

The Kalman filter is a very powerful tool for controlling noisy systems. The basic
idea is: “Noisy data in, and, hopefully, less noisy data out.”

Applications of Kalman filters are numerous, such as tracking objects (e.g., balls,
faces, heads, hands), fitting Bezier patches to point data, economics, navigation,
and also many computer vision applications (e.g. stabilizing depth measurements,
feature tracking, cluster tracking, fusing data from radar, laser scanner, and stereo-
cameras for depth and velocity measurement). In the presentation here we provide
the basics and aim at applications for feature tracking.
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Continuous Equation of a Linear Dynamic System We assume a continuous
linear dynamic system defined by

ẋ = A · x (9.41)

The nD vector x ∈ R
n specifies the state of the process, and A is a constant n × n

system matrix. The notation ẋ is short for the derivative of x with respect to time t .
The signs and magnitudes of the roots of the eigenvalues of A (i.e. the roots of the

characteristic polynomial det(A − λI) = 0) determine the stability of the dynamic
system. Observability and controllability are further properties of dynamic systems.

Example 9.7 (Moving Object with Constant Acceleration) A video camera captures
an object moving along a straight line. Its centroid (i.e. the location) is described by
the coordinate x on this line, and its motion by the speed v and constant accelera-
tion a. We do not consider the start or end of this motion.

The process state is characterized by the vector x = [x, v, a], and we have that
ẋ = [v, a,0] because of

ẋ = v, v̇ = a, ȧ = 0 (9.42)

It follows that

ẋ =
⎡

⎣
v
a
0

⎤

⎦=
⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ ·
⎡

⎣
x
v
a

⎤

⎦ (9.43)

This defines the 3 × 3 system matrix A. It follows that

det(A − λI) = −λ3 (9.44)

Thus, we have identical eigenvalues λ1,2,3 = 0, meaning that the system is “very
stable”.

Discrete Equations of a Linear Dynamic System We map the continuous linear
system, defined by the matrix A in (9.41), into a time-discrete system. Let Δt be the
actual time difference between time slots t and t + 1. We recall the power series

ex = 1 +
∞∑

i=1

xi

i! (9.45)

for the Euler number for any argument x. Accordingly, let

FΔt = eΔtA = I +
∞∑

i=1

ΔtiAi

i! (9.46)

be the state transition matrix for Δt . We assume that Δt is uniformly defined and
will not use it anymore as a subscript in the sequel.
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Note that there is typically an i0 > 0 such that Ai equals the matrix having 0 in
all its columns for all i ≥ i0. In such a case, (9.46) is a finite sum for the matrix F of
a discrete system

xt = Fxt−1 (9.47)

with x0 as initial state at time slot t = 0. Sometimes we use “time t” short for time
t0 + t · Δt .

The state transition matrix F transforms the internal system states at time slot t

(of the continuous linear system defined by a matrix A) into the internal states at
time slot t + 1.

Discrete Linear System with Control and Noise In the real world we have noise
and often also system control. Equation (9.47) is thus replaced by the following
more detailed discrete system equations:

xt = Fxt−1 + But + wt

yt = Hxt + vt

Here we also have a control matrix B, which is applied to a control vector ut of the
system, system noise vectors wt , an observation matrix H, noisy observations yt ,
and observation noise vectors vt . The system noise and observation noise vectors,
at different time slots, are all assumed to be mutually independent. Control defines
some type of system influence at time t , which is not inherent to the process itself.

Example 9.8 (Continuation: Moving Object with Constant Acceleration) We con-
tinue Example 9.7. We have system vectors xt = [xt , vt , at ] with at = a. We have
a state transition matrix F (verify for the provided A by applying (9.46)) defined by

xt+1 =
⎡

⎣
1 Δt 1

2Δt2

0 1 Δt

0 0 1

⎤

⎦ · xt =
⎡

⎣
xt + Δt · vt + 1

2Δt2a

vt + Δt · a
a

⎤

⎦ (9.48)

Consider the observation yt = [xt ,0,0]; we only observe the current location.
This defines the observation matrix H as used in the following equation:

yt =
⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ · xt (9.49)

The noise vectors wt and vt were not part of Example 9.7; they would be the zero
vectors under ideal assumptions. The control vector and control matrix are also not
used in the example.

Time-Discrete Prediction Given is a sequence y0,y1, . . . ,yt−1 of noisy observa-
tions for a linear dynamic system. The goal is to estimate xt = [x1,t , x2,t , . . . , xn,t ],
which is the internal state of the system at time slot t . The estimation error should
be minimized (i.e., we want to look “one step ahead”).
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Let x̂t1|t2 be the estimate of the state xt1 based on the knowledge as listed below,
available at time t2.

Let Pt1|t2 be the variance matrix of the prediction error xt1 − x̂t1|t2 . The goal is to
minimize Pt |t in some defined (i.e., mathematical) way.

Available Knowledge at Time of Prediction When approaching this prediction
problem at time slot t , we summarize the assumptions about the available knowledge
at this time:
1. A state transition matrix F, which is applied to the (“fairly known”) previous

state xt−1.
2. A control matrix B, which is applied to the control vector ut if at all there is a

control mechanism built into the given system.
3. An understanding about the system noise wt (e.g. modelled as a multivariate

Gaussian distribution) by specifying a variance matrix Qt and expected values
μi,t = E[wi,t ] = 0 for i = 1,2, . . . , n.

4. An observation vector yt for state xt .
5. An observation matrix H (“how to observe yt ”?).
6. An understanding about the observation noise vt (e.g. modelled as a multivariate

Gaussian distribution) by specifying a variance matrix Rt and expected values
μi,t = E[vi,t ] = 0 for i = 1,2, . . . , n.

Prediction and Filter The key idea is now that we do not simply focus on having
one after the other prediction by applying the available knowledge as outlined above.
Instead, we define a filter that aims at updating our knowledge about the system
noise, based on experienced prediction errors and observations so far, and we want
to use the improved knowledge about the system noise for reducing the prediction
error.

More basic problems in a followed approach, such as assuming an incorrect state
transition matrix or an incorrect control matrix, are not solved by the filter. Here, a
more general analysis is required to understand whether the assumed system matri-
ces are actually a correct model for the underlying process.

Predict Phase of the Filter In this first phase of the filter, we calculate the pre-
dicted state and the predicted variance matrix as follows, using the state transition
matrix F and control matrix B, as given in the model. We also apply the system
noise variance matrix Qt :

x̂t |t−1 = Fx̂t−1|t−1 + But (9.50)

Pt |t−1 = FPt−1|t−1F + Qt (9.51)

Update Phase of the Filter In the second phase of the filter, we calculate the
measurement residual vector z̃t and the residual variance matrix St as follows, using
the observation matrix H of the assumed model. We also apply the observation noise
variance matrix Rt and aim at improving these noise matrices:

z̃t = yt − Hx̂t |t−1 (9.52)
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St = HPt |t−1H + Rt (9.53)

For an updated state-estimation vector (i.e. the prediction solution at time t), we
now also consider an innovation step of the filter at time t :

x̂t |t = x̂t |t−1 + Kt z̃t (9.54)

Can we define a matrix Kt such that this innovation step makes sense? Is there even
an optimal solution for this matrix Kt ? The answer is “yes”, and it was given by
R.E. Kalman.

Insert 9.9 (Kalman, Swerling, Thiele, the Linear Kalman Filter, and Apollo 8)
R.E. Kalman (born 1930 in Hungary) defined and published in [R.E. Kalman.

A new approach to linear filtering and prediction problems. J. Basic Engineering, vol. 82,

pp. 35–45, 1960] a recursive solution to the linear filtering problem for dis-
crete signals, today known as the linear Kalman filter. Related ideas were
also studied at that time by the US-American radar theoretician P. Swerling
(1929–2000). The Danish astronomer T.N. Thiele (1838–1910) is also cited
for historic origins of involved ideas. Apollo 8 (December 1968), the first hu-
man spaceflight from Earth to an orbit around the moon, would certainly not
have been possible without the linear Kalman filter.

Optimal Kalman Gain The matrix

Kt = Pt |t−1HS−1
t (9.55)

minimizes the mean square error E[(xt − x̂t |t )2], which is equivalent to minimiz-
ing the trace (= sum of elements on the main diagonal) of Pt |t . This mathematical
theorem is due to R.E. Kalman.

The matrix Kt is known as the optimal Kalman gain, and it defines the linear
Kalman filter. The filter also requires an updated estimate of the variance matrix

Pt |t = (I − KtHt )Pt |t−1 (9.56)

of the system noise for being prepared for the prediction phase at time t + 1. The
variance matrix P0|0 needs to be initialized at the beginning of the filter process.

Example 9.9 (Moving Object with Random Acceleration) We continue Exam-
ples 9.7 and 9.8. The object (e.g. a car) is still assumed to move (e.g. in front of
a camera) along a straight line, but now with random acceleration at between time
t − 1 and time t . For modelling randomness, we assume the Gauss distribution
with zero mean and variance σ 2

a . Measurements of positions of the object are also
assumed to be noisy; again, we assume the Gaussian noise with zero mean and vari-
ance σ 2

y .
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The state vector of this process is given by xt = [xt , ẋt ], where ẋt equals the
speed vt . Again, we do not assume any process control (i.e. ut is the zero vector).

We have that (note that a random acceleration cannot be part of the state anymore;
what is the matrix A of the continuous model?)

xt =
[

1 Δt

0 1

][
xt−1
vt−1

]
+ at

[
Δt2

2
Δt

]
= Fxt−1 + wt (9.57)

with variance matrix Qt = var(wt ). Let Gt = [Δt2

2 ,Δt]. Then we have that

Qt = E
[
wtw

t

]= GtE
[
a2
t

]
G

t = σ 2
a GtG

t = σ 2
a

[
Δt4

4
Δt3

2
Δt3

2 Δt2

]

(9.58)

That means that not only F but also Qt and Gt are independent of t . Thus, we just
denote them by Q and G. (In general, the matrix Qt is often only specified in the
form of a diagonal matrix.)

In the assumed example, we measure the position of the object at time t (but not
its speed); that means that we have the following:

yt =
[

1 0
0 0

]
xt +

[
vt

0

]
= Hxt + vt (9.59)

with observation noise vt that has the variance matrix

R = E
[
vtv

t

]=
[
σ 2

y 0
0 0

]
(9.60)

The initial position equals x̂0|0 = [0,0]. If this position is accurately known, then
we have the zero variance matrix

P0|0 =
[

0 0
0 0

]
(9.61)

Otherwise, we have that

P0|0 =
[

c 0
0 c

]
(9.62)

with a suitably large real c > 0.
Now we are ready to deal with t = 1. First, we predict x̂1|0 and calculate its

variance matrix P1|0, following the prediction equations

x̂t |t−1 = Fx̂t−1|t−1 (9.63)

Pt |t−1 = FPt−1|t−1F + Q (9.64)

Then we calculate the auxiliary data z̃1 and S1, following the update equations

z̃t = yt − Hx̂t |t−1 (9.65)
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St = HPt |t−1H + R (9.66)

This allows us to calculate the optimal Kalman gain K1 and to update x̂1|1, following
the equations

Kt = Pt |t−1HS−1
t (9.67)

x̂t |t = x̂t |t−1 + Kt z̃t (9.68)

Finally, we calculate P1|1 to prepare for t = 2, following the equation

Pt |t = (I − KtH)Pt |t−1 (9.69)

Note that those calculations are basic matrix or vector algebra operations but for-
mally already rather complex. On the other hand, implementation is quite straight-
forward.

Tuning the Kalman Filter The specification of the variance matrices Qt and Rt ,
or of the constant c ≥ 0 in P0|0, influences the number of time slots (say, the “con-
vergence”) of the Kalman filter such that the predicted states converge to the true
states.

Basically, assuming a higher uncertainty (i.e. larger c ≥ 0 or larger values in Qt

and Rt ) increases the values in Pt|t−1 or St ; due to the use of the inverse S−1
t in

the definition of the optimal Kalman gain, this decreases the values in Kt and the
contribution of the measurement residual vector in the (update) equation (9.54).

For example, in the extreme case that we are totally sure about the correctness of
the initial state z0|0 (i.e. c = 0) and that we do not have to assume any noise in the
system and in the measurement processes (as in Example 9.7), the matrices Pt |t−1

and St degenerate to zero matrices; the inverse S−1
t does not exist (note: a case to be

considered in a program), and Kt remains undefined. The predicted state is equal to
the updated state; this is the fastest possible convergence of the filter.

Alternative Model for Predict Phase If we have the continuous model matrix A
for the given linear dynamic process ẋ = A · x, then it is more straightforward to use
the equations

˙̂xt |t−1 = Ax̂t−1|t−1 + Btut (9.70)

Pt |t−1 = APt−1|t−1A + Qt (9.71)

rather than those using discrete matrices F. (Of course, this also defines a modified
matrix B, now defined by the impact of control on the derivatives of state vectors.)
This modification in the prediction phase does not have any formal consequence on
the update phase.
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9.4 Exercises

9.4.1 Programming Exercises

Exercise 9.1 (RANSAC versus Hough) Detect straight lines in images as illustrated
in Fig. 3.40; write a generator for noisy line segments if not yet done before. Com-
pare the performance of Hough-transform-based line detection versus RANSAC-
based line detection using the ground truth available due to your noisy-line genera-
tor.

Design and implement the Hough transform or RANSAC for the two detection
processes if not available from other sources. However, in any case, describe how
the RANSAC-based method works in detail.

Exercise 9.2 (Box-Filter Scale Space) For n ≥ 0, apply a 3×3 box filter, as defined
in Eq. (2.7), n times repeatedly on a given image I , thus generating a blurred image
Bn(I). For n = 0, we have the original image I = B0(I ).

Generate a box-filter scale space by selecting a finite set of layers defined by
n = 0 < n1 < · · · < nm. From this we derive a residual scale space of corresponding
m + 1 layers

Rn(I) = I − Bn(I)

Let keypoints be defined by local maxima or minima as in the LoG or DoG scale
space. The radius of the disk of influence is defined by the iteration number n where
the keypoint has been detected.

Compare the performance of this keypoint detector with a DoG keypoint detector,
following the ideas presented in Sect. 9.2.4.

Exercise 9.3 (Image Retrieval—Query by Example) Search for a “similar” image
(similarity by visual content, not by textual description) in a given data base of
images. The used data base should contain at least, say, 300 images. Your program
allows one to submit any image (not necessarily already in the given database), and
the output is a subset of the data base (say, 10 images) sorted by similarity.

Define “similarity” based on the distance between the descriptors of image fea-
tures. The number of pairs of descriptors being “nearly identical”, scaled by the total
number of detected keypoints, defines a measure of similarity.

Figure 9.24 illustrates such individual best-point-by-point matches between key-
points having “nearly identical” SURF-descriptors. The figure illustrates that those
matches do not define one consistent affine (or perspective) transform, such as illus-
trated in Fig. 9.6, where we assumed similarity between global patterns of keypoints.

Include also the “typical colour” at a keypoint into the descriptor of the used
feature detector (e.g. the mean colour in a small neighbourhood). Generate these
extended descriptors for the images in your data base.

The algorithmically interesting task now is the following: for a submitted image
(“query by example”), calculate the extended descriptors for this image and aim at
detecting the “most similar” images in the data base having the similarity definition
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Fig. 9.24 Matches between SURF features in both images identified by similarity of descriptors

in mind as given above. In other words, you have to design a particular classifier for
solving this task. The use of KD-trees (not described in this book; see other sources
for their definition) can speed up the involved comparison of higher-dimensional
vectors.

If the data base can be clustered into classes of “different” images, then a first
step might be to calculate the Mahanalobis distance (not described in this book;
see other sources for its definition) between the input image and the given clusters
for identifying then the best matches in the cluster that minimizes the Mahanalobis
distance.

Exercise 9.4 (Particle Filter for Lane Detection) Implement the particle filter as de-
scribed in Sect. 9.3.3 for the single-row model. You may use the distance transform
(for EDT) and condensation procedure (for the iteration step in the particle filter)
as available in OpenCV. Regarding input sequences, Set 3 in EISATS provides, for
example, simple day-time sequences showing clearly marked lane borders.

Exercise 9.5 (Linear Kalman Filter) Implement the Kalman filter described in Ex-
ample 9.8.

Assume a random sequence of increments Δxt = xt+1 − xt between subsequent
positions, e.g. by using the system function RANDOM modelling the uniform dis-
tribution.

Modify (increase or decrease) the input parameters c ≥ 0 and the noise parame-
ters in the variance matrices Q and R.

Discuss the observed impact on the filter’s convergence (i.e. the relation between
predicted and updated states of the process).

Note that you have to apply the assumed measurement noise model on the gen-
eration of the available data yt at time t .

Exercise 9.6 (Integrating Disparity Measurements) Implement a Kalman-filter-
based solution for improving the disparities calculated when operating a stereo-
vision system in a driving vehicle in a static environment.
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1. Understanding the situation. Assume an ego-vehicle driving in a static envi-
ronment. Due to ego-motion, we experience some change in disparity. If we also
assume that every pixel is independent, then we can set up iconic Kalman filters
(i.e. one Kalman filter at each pixel of the image).

2. Model the state process. The disparity would be constant in a totally static
world (i.e. also no ego-motion; xt = dt = dt−1 and FΔt = 1).

However, we have a moving platform, so this disparity will change when the car
is moving. The (x, y) pixel position will also change. As the car moves forward, all
pixels move outward from the focus of expansion.7 This is where we can use our
control variables B and u.

The state (the disparity) at time t is defined by a disparity at time t −1 (in general
at a different pixel) and the control variables.

We assume that the ego-motion is given by inertial sensors because most modern
cars will give you velocity v and yaw ψ (amount of angle turned through) in a time
frame. This can help us derive where pixels will be moving to in the next time frame.

Mathematically, the control variables are hard to derive and result in nonlinear
equations. But we can take a more logical way of thinking. Since we know the
vehicle movement in real-world coordinates, we could also use our control variables
in the same way. This cannot be shown in a linear mathematical way (by using B
and u).

This process involves triangulating and backprojecting the pixel coordinates plus
disparity, i.e. the disparity-map pixels p = (x, y, d) and real-world coordinates P =
[X,Y,Z] (in vector format) w.r.t. the ego-vehicle.

For each measurement, we apply the following process:
1. Transform the coordinates (xt−1, yt−1) at time t − 1 into the real-world coordi-

nates Pt−1, as being a standard in stereo vision.
2. Predict the new position of Pt−1 in real-world coordinates using the prediction

from motion; for velocity v and yaw ψ , we have that

Rt =
⎡

⎣
cos(ψ) 0 −sin(ψ)

0 1 0
sin(ψ) 0 cos(ψ)

⎤

⎦ and Tt = v · Δt

ψ

⎡

⎣
1 − cos(ψ)

0
−sin(ψ)

⎤

⎦

3. Transform the new real-world coordinates Pt = RtPt−1 + Tt back to pixel coor-
dinates (xt , yt ) using backprojection.

Here, Rt is the rotation matrix in the XZ-plane, due to the change in yaw, and Tt is
the translation matrix between times t and t − 1; the angle ψ is the total yaw, and v

is the velocity of the car during Δt .
Starting at a pixel (x, y) and disparity d at time t − 1, this provides an esti-

mated disparity d ′ at a pixel (x′, y′) at time t , identified with being the value of
FΔt x̂t−1|t−1 + Btut at (x′, y′), where ut is defined by the yaw rate ψ̇(t) and veloc-
ity vt .

7This is the retinal point where lines parallel to translatory motion meet, also assuming a corre-
sponding direction of gaze.
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3. Model the measurement process. In our model, we are filtering our measure-
ments directly (i.e. calculating the disparity). Therefore, for the individual pixel,
y = y and H = 1.

4. Model the noise. Disparity measurements have a Gaussian noise distribution
in the depth direction (i.e. for sub-pixel measurements), and these can fluctuate to
either side. The main state error is in the depth direction; thus, we will assume that
P = P = σ 2

d .
For our model, both the process and measurement noise (at a single pixel) are

scalars. Therefore, Q = qd and R = rd . We could assume that these values change
between each iteration t , but we will assume that they remain to be constant.

5. Test the filter. The equations simplify at a single pixel as follows:

Predict:

x̂t |t−1 = as derived above using ut

Pt |t−1 = Pt−1|t−1 + qd

Update:

x̂t |t = x̂t |t−1 + Kt(yt − x̂t |t−1)

Kt = Pt |t−1(Pt |t−1 + r)−1

Pt |t = (1 − Kt)Pt |t−1

The matrix B in this case is defined by projection at time t −1, affine transform, and
backprojection at time t . This may be implemented pixel by pixel or for the whole
image at once.

The idea here is to choose some logical noise parameters. A logical measurement
noise is rd = 1, considering to be up to 1 pixel out in our measurement.

If we want to filter out all moving objects, then a logical process parameter is
qd = 0.0001 (i.e., some small value portraying that we assume the model to be
good).

This ends the description of the iconic Kalman filter approach. For testing, you
need stereo video data recorded in a driving car, with known ego-motion parame-
ters of the car. For example, check KITTI and EISATS for such data. Figure 9.25
illustrates the results when following the proposed method. Compare whether you
achieve similar improvements above the original data when not using the iconic
Kalman filters. Because we assumed a static world, we can expect that there will be
errors on moving objects such as the cyclist in Fig. 9.25.

Insert 9.10 (Iconic Kalman Filters) For the iconic Kalman filters in Exer-
cise 9.6, see [T. Vaudrey, H. Badino, and S. Gehrig. Integrating disparity images by in-

corporating disparity rate. In Proc. Robot Vision, pp. 29–42, 2008].
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Fig. 9.25 The left images are a stereo pair also showing a moving cyclist on the road in front of
the ego-vehicle. The right-hand grid shows the bird’s-eye view of the depth map (i.e. the disparity
projected into 3D coordinates); the left-hand grid shows the results using no Kalman integration;
the right-hand grid shows the results using the iconic filters

9.4.2 Non-programming Exercises

Exercise 9.7 At the end of Sect. 9.1.2 there is a proposal how to detect keypoints
at subpixel accuracy. Assume values aN , aE , aS , aW (for the 4-adjacent pixel loca-
tions) and ap (at the detected keypoint pixel) for function g and provide a general
solution for subpixel accuracy.

Exercise 9.8 The algorithm in Fig. 9.8 lists two procedures ransacFitPlane and
ransacRefinePlaneModel. Specify such two procedures for initial and refined
plane fitting following the general RANSAC idea.

Exercise 9.9 On p. 359 it is suggested to generate a bird’s-eye view by using a
homography, defined by four marked points being the corners of a trapezoid in the
image, but actually the corners of a rectangular region on the road. Specify this
homography.

Exercise 9.10 Explain the motivations behind the definitions of particle weights
given in (9.36) to (9.40).

Exercise 9.11 Show that FΔt = I + ΔtA + Δt2

2 A2 for the matrix A as defined in
Example 9.7.
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This final chapter provides an introduction into classification and learning with a de-
tailed description of basic AdaBoost and the use of random forests. These concepts
are illustrated by applications for face detection and pedestrian detection, respec-
tively.

10.1 Localization, Classification, and Evaluation

The title of this section lists three basic steps of an object detection system. Object
candidates are localized within a rectangular bounding box. A bounding box is a
special example for a region of interest (RoI). See Fig. 10.1.

Localized object candidates are mapped by classification either in detected ob-
jects or rejected candidates. Classification results should be evaluated within the
system or by a subsequent performance analysis of the system. Figure 10.2 illus-
trates face detection.

A true-positive, also called a hit or a detection, is a correctly detected object.
A false-positive, also called a miss or a false detection, occurs if we detect an object
where there is none. A false-negative denotes a case where we miss an object, and
a true-negative describes the cases where non-object regions are correctly identified
as non-object regions. Figure 10.2 contains one false-positive (the largest square)
and two false-negatives (a man in the middle and a girl on the right of the image).
A head seen from the side (one case in the figure) does not define a face.

10.1.1 Descriptors, Classifiers, and Learning

Classification is defined by membership in constructed pairwise-disjoint classes be-
ing subsets of R

n for a given value n > 0. In other words, classes define a par-
titioning of the space R

n. Time-efficiency is an important issue when performing
classification. This subsection only provides a few brief basic explanations for the
extensive area of classification algorithms.

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_10, © Springer-Verlag London 2014
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Fig. 10.1 Localized bounding boxes aiming at detecting vehicles and people

Fig. 10.2 Face detection with one false-positive and two false-negatives (not counting the
side-view of a face)

Descriptors A descriptor x = (x1, . . . , xn) is a point in an n-dimensional real
space Rn, called descriptor space, representing measured or calculated property val-
ues in a given order (e.g. a SIFT descriptor is of length n = 128).1 See Fig. 10.3 for

1In classification theory, a descriptor is usually also called a feature. A feature in an image that, as
commonly used in image analysis, combines a keypoint and a descriptor. Thus, we continue to use
“descriptor” rather than “feature” for avoiding confusion.



10.1 Localization, Classification, and Evaluation 377

Fig. 10.3 Left: Six regions in an image. Right: Corresponding descriptors in a 2D descriptor space
defined by the properties “perimeter” and “area” for image regions. The blue line defines a binary
classifier; it subdivides the descriptor space into two half-planes such that the descriptors in one
half-plane have the value +1 assigned and −1 in the other

an illustration for n = 2. For example, we have a descriptor x1 = (621.605,10940)

for Segment 1 in this descriptor space defined by the properties “perimeter” and
“area”.

Classifiers A classifier assigns class numbers to descriptors, typically, first, to a
given set {x1, . . . ,xm} of already-classified descriptors for training (the learning
set), and then to the descriptors generated for recorded image or video data while
being applied:
1. A (general) classifier assigns class numbers 1,2, . . . , k for k > 1 classes and 0

for ‘not classified’.
2. A binary classifier assigns class numbers −1 and +1 in the cases where we are

only interested whether a particular event (e.g. ‘driver has closed eyes’) occurs,
specified by output +1.
A classifier is weak if it does not perform up to expectations (e.g. it might be

just a bit better than random guessing); multiple weak classifiers can be mapped
into a strong classifier, aiming at a satisfactory solution of a classification problem.
A statistical combination of multiple weak classifiers into one strong classifier is dis-
cussed in Sect. 10.2. Weak or strong classifiers can be general-case (i.e. multi-class)
classifiers or just binary classifiers; just being “binary” does not define “weak”.

Example 10.1 (Binary Classifier by Linear Separation) A binary classifier may be
defined by constructing a hyperplane Π : wx + b = 0 in R

n for n ≥ 1. Vector
w ∈ R

n is the weight vector, and the real b ∈R is the bias of Π . For n = 2 or n = 3,
w is the gradient or normal orthogonal to the defined line or plane, respectively.

One side of the hyperplane (including the plane itself) defines the value “+1”,
and the other side (not including the plane itself) the value “−1”. See Fig. 10.3 for
an example for n = 2; the hyperplane is a straight line in this case, and for n = 1, it
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Fig. 10.4 Left: A linear-separable distribution of descriptors pre-classified to be either in class
“+1” (green descriptors) or “−1” (red descriptors). Right: This distribution is not linear separable;
the sum of the shown distances (black line segments) of four misclassified descriptors defines the
total error for the shown separation line Π

is just a point separating R
1. Formally, let

h(x) = wx + b (10.1)

The cases h(x) > 0 or h(x) < 0 then define the class values “+1” or “−1” for one
side of the hyperplane Π .

Such a linear classifier (i.e. defined by the weight vector w and bias b) can be cal-
culated for a distribution of (pre-classified) training descriptors in the nD descriptor
space if the given distribution is linear separable. See Fig. 10.4, left. If this is not the
case, then we define the error for a misclassified descriptor x by its perpendicular
distance2

d2(x,Π) = |wx + b|
‖w‖2

(10.2)

to the hyperplane Π , and then the task is to calculate a hyperplane Π such that
the total error for all misclassified training descriptors is minimized. See Fig. 10.4,
right.

Example 10.2 (Classification by Using a Binary Decision Tree) A classifier can also
be defined by binary decisions at split nodes in a tree (i.e. “yes” or “no”). Each
decision is formalized by a rule, and given input data can be tested whether they
satisfy the rule or not. Accordingly, we proceed with the identified successor node
in the tree. Each leaf node of the tree defines finally an assignment of data arriving
at this node into classes. For example, each leaf node can identify exactly one class
in R

n. See Fig. 10.5.

2This is the error defined in margin-based classifiers such as support vector machines. This error is
(usually) not explicitly used in AdaBoost.
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Fig. 10.5 Left: A decision tree. Right: A resulting subdivision in 2D descriptor space

The tested rules in the shown tree define straight lines in the 2D descriptor space.
Descriptors arriving at one of the leaf nodes are then in one of the shown subsets
of R2.

A single decision tree, or just one split node in such a tree, can be considered to
be an example for a weak classifier; a set of decision trees (called a forest) is needed
for being able to define a strong classifier.

Observation 10.1 A single decision tree provides a way to partition a descriptor
space in multiple regions (i.e. classes); when applying binary classifiers defined by
linear separation, we need to combine several of those to achieve a similar parti-
tioning of a descriptor space in multiple regions.

Learning Learning is the process of defining or training a classifier based on a
set of descriptors; classification is then the actual application of the classifier. Dur-
ing classification, we may also identify some mis-behaviour (e.g. “assumed” mis-
classifications), and this again can lead to another phase of learning. The set of
descriptors used for learning may be pre-classified or not.

Supervised Learning In supervised learning we assign class numbers to descrip-
tors “manually” based on expertise (e.g. “yes, the driver does have closed eyes in
this image”). As a result, we can define a classifier by locating optimized separating
manifolds in R

n for the training set of descriptors. A hyperplane Π is the simplest
case of an optimized separating manifold; see Example 10.1. An alternative use of
expert knowledge for supervised learning is the specification of rules at nodes in a
decision tree; see Example 10.2. This requires knowledge about possible sequences
of decisions.

Unsupervised Learning In unsupervised learning we do not have prior knowl-
edge about class memberships of descriptors. When aiming at separations in the de-
scriptor space (similar to Example 10.1), we may apply a clustering algorithm for a
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Fig. 10.6 Top left: Two positive samples of bounding boxes for pedestrians. Top right: Two neg-
ative samples of bounding boxes for pedestrians. Bottom left: Positive patches, which possibly
belong to a pedestrian. Bottom right: Negative patches for pedestrians

given set of descriptors for identifying a separation of Rn into classes. For example,
we may analyse the density of the distribution of given descriptors in R

n; a region
having a dense distribution defines a seed point of one class, and then we assign all
descriptors to identified seed points by applying, for example, the nearest-neighbour
rule.

When aiming at defining decision trees for partitioning the descriptor space (sim-
ilar to Example 10.2), we can learn decisions at nodes of a decision tree based on
some general data analysis rules. (This will be detailed later for random decision
forests.) The data distribution then “decides” about the generated rules.

Combined Learning Approaches There are also cases where we may combine
supervised learning with strategies known from unsupervised learning. For example,
we can decide whether a given image window, also called a bounding box, shows
a pedestrian; this defines the supervised part in learning. See Fig. 10.6. We can
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also decide for a patch, being a subwindow of a bounding box, whether it possibly
belongs to a pedestrian. For example, in Fig. 10.6, the head of the cyclist is also
considered to belong possibly to a pedestrian.

When we generate descriptors for bounding boxes or patches (e.g. measured im-
age intensities at selected pixel locations), then we cannot decide anymore manually
for each individual descriptor whether it is characteristic for a pedestrian or not.

For example, for a set of given image windows, we know that they are all parts of
pedestrians, and the algorithm designed for generating a classifier decides at some
point to use a particular feature of those windows for processing them further; but
this particular feature might not be generic in the sense that it separates any window
showing a part of a pedestrian from any window showing no part of a pedestrian.

Such an “internal” mechanism in a program that generates a classifier defines an
unsupervised part in learning. The overall task is to combine available supervision
with unsupervised data analysis when generating a classifier.

10.1.2 Performance of Object Detectors

An object detector is defined by applying a classifier for an object detection prob-
lem. We assume that any made decision can be evaluated as being either correct or
false. For example, see Fig. 10.2.

Evaluations of designed object detectors are required to compare their perfor-
mance under particular conditions. There are common measures in pattern recogni-
tion or information retrieval for performance evaluation of classifiers.

Let tp or fp denote the numbers of true-positives or false-positives, respectively.
Analogously, we define tn and fn for the negatives. In Fig. 10.2 we have tp = 12,
fp = 1, and fn = 2. Just the image in this figure does not indicate how many non-
object regions have been analysed (and correctly identified as being no faces); thus,
we cannot specify the number tn; we need to analyse the applied classifier for ob-
taining tn. Thus, tn is not a common entry for performance measures.

Precision (PR) Versus Recall (RC) The precision is the ratio of true-positives
compared to all detections. The recall (or sensitivity) is the ratio of true-positives
compared to all potentially possible detections (i.e. to the number of all visible ob-
jects). Formally,

PR = tp

tp + fp
and RC = tp

tp + fn
(10.3)

PR = 1, termed 1-precision, means that no false-positive is detected. RC = 1 means
that all the visible objects in an image are detected and that there is no false-negative.

Miss Rate (MR) Versus False-Positives per Image (FPPI) The miss rate is the
ratio of false-negatives compared to all objects in an image. False-positives per im-
age is the ratio of false-positives compared to all detected objects. Formally,

MR = fn

tp + fn
and FPPI = fp

tp + fp
(10.4)
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MR = 0 means that all the visible objects in the image are detected, which is equiva-
lent to RC = 1. FPPI = 0 means that all the detected objects are correctly classified,
which is equivalent to 1-precision.

True-Negative Rate (TNR) Versus Accuracy (AC) These measures also use the
number tn. The true-negative rate (or specificity) is the ratio of true-negatives com-
pared to all decisions in “no-object” regions. The accuracy is the ratio of correct
decisions compared to all decisions. Formally,

TNR = tn

tn + fp
and AC = tp + tn

tp + tn + fp + fn
(10.5)

As we are usually not interested in numbers of true-negatives, these two measures
have less significance in performance evaluation studies.

Detected? How to decide whether a detected object is a true-positive? Assume
that objects in images have been locally identified manually by bounding boxes,
serving as the ground truth. All detected objects are matched with these ground-
truth boxes by calculating ratios of areas of overlapping regions

ao = A (D ∩ T )

A (D ∪ T )
(10.6)

where A denotes the area of a region in an image (see Sect. 3.2.1), D is the detected
bounding box of the object, and T is the area of the bounding box of the matched
ground-truth box. If ao is larger than a threshold T , say T = 0.5, the detected object
is taken as a true-positive. But there might be more than one possible matching this
way for a detected bounding box. In this case, the one with the largest ao-value is
the one used for deciding about true-positive, while the others are considered to be
false-positive.

10.1.3 Histogram of Oriented Gradients

The histogram of oriented gradients (HoG) is a common way to derive a descriptor
for a bounding box for an object candidate. For example, a window of the size of the
expected bounding box can move through an image, and the scan stops at potential
object candidates, possibly guided by the results provided by stereo vision (e.g.
the expected size of an object at a given distance) or by a feature detector. After
a potential bounding box has been identified, a process for descriptor calculation
starts, and we explain here for the case of HoG descriptors.

Figure 10.7 illustrates a subdivision of a bounding box (of a pedestrian) into
larger blocks and smaller cells for calculating the HoG.

Algorithm for Calculating the HoG Descriptor We briefly outline an example
of a possible algorithm for calculating HoG descriptors from a selected bounding
box:
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Fig. 10.7 Blocks and cells when calculating an HoG descriptor in a bounding box (the blue rect-
angle). Yellow solid or dashed rectangles denote blocks, which are subdivided into red rectangles
(i.e. the cells). The three windows on the left show how a block moves left to right, top down,
through a bounding box, when generating the descriptor. The window on the right illustrates mag-
nitudes of estimated gradient vectors

1. Preprocessing. Apply intensity normalization (e.g. see conditional scaling in
Sect. 2.1.1) and a smoothing filter on the given image window I .

2. Calculate an edge map. Estimate directional derivatives in the x- and y-
directions, and derive the gradient magnitudes and gradient angles for each pixel,
generating a magnitude map Im (see Fig. 10.7, right) and an angle map Ia .

3. Spatial binning. Perform the following two steps:
(a) Group pixels in non-overlapping cells (e.g. 8 × 8); see Fig. 10.7, left.
(b) Use maps Im and Ia to accumulate magnitude values into direction bins (e.g.,

nine bins for intervals of 20◦ each, for covering a full 180◦ range) to obtain
a voting vector (e.g. of length 9) for each cell; see Fig. 10.8. Integral images
can be used for a time-efficient calculation of these sums.

4. Normalize voting values for generating a descriptor. Perform two steps:
(a) Group cells (e.g., 2 × 2) into one block.
(b) Normalize voting vectors over each block and combine them into one block

vector (e.g. four cell vectors into a block vector of length 36).
5. Augment all block vectors consecutively; this produces the final HoG descriptor.

For example, if a block consists of four cells and the bounding box size is 64 ×
128, the HoG descriptor has 3,780 elements; it might be convenient to rearrange
this descriptor vector into one descriptor matrix B (e.g. of size 420 × 9).
Bounding boxes used for training or applying a classifier for pedestrian detection

or classification are usually normalized to an identical size (e.g. 64 × 192, both
multiples of 32, just to give an idea about numbers). Different cell sizes (e.g. 8 × 8,
16 × 16, and 32 × 32) can be adopted to generate HoG descriptor vectors.
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Fig. 10.8 The length of vectors in nine different directions in each cell represents the accumulated
magnitude of gradient vectors into one of those nine directions

Insert 10.1 (Origin of the Use of HoG Descriptors) Histograms of oriented
gradients have been proposed in [N. Dalal and B. Triggs. Histograms of oriented

gradients for human detection. In Proc. Computer Vision Pattern Recognition, 886–893,

2005] for detecting pedestrians in static images.

10.1.4 Haar Wavelets and Haar Features

We describe a general appearance-based object-detection method, which utilizes
integral images (see Sect. 2.2.1) for time-efficient object detection.

Haar Wavelets Consider simple binary patterns as illustrated in Fig. 10.9, left and
middle. These are called Haar wavelets (see Insert 10.2 for the historic background
of this name). A white pixel in such a wavelet defines weight +1, and a black pixel
weight −1. These wavelets are used for testing “rough brightness similarity” with
such a pattern in an image.

See Fig. 10.9, right, for positioning individual Haar wavelets in an image. For
example, consider a Haar wavelet ψ = [W1,W2,B] defined by two white regions
W1 and W2 and one black region B . Assume that each Haar wavelet comes with
a reference point, for example, its lower-left corner. We translate this wavelet in
an image I and position its reference point at a pixel location p. At this moment
we have a placed Haar wavelet ψp (we consider image I as being fixed and do
not include it into the notation), where W1 occupies a rectangular image region
W1(p) ⊂ Ω , W2 covers W2(p) ⊂ Ω , and B is now a subset B(p) ⊂ Ω . Let

SW =
∑

p∈W

I (p) (10.7)

be the sum of all image values within the set W ⊂ Ω .
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Fig. 10.9 Left: A 1D profile for a Haar wavelet; this wavelet is shown right of this profile. Mid-
dle: A few samples of isothetic Haar wavelets. Right: Locations in human faces where the shown
Haar wavelets “roughly” match brightness distributions, with “Black” matches darker regions and
“White” brighter regions. See Fig. 5.2, top left, for the original image AnnieYukiTim

Value of a Haar Wavelet The value of a Haar wavelet ψ at a reference pixel p

might be defined by a sum such as

V (ψp) = SW1 + SW2 − SB (10.8)

Figure 10.9, right, illustrates that image intensities in regions at forehead, eyes,
and below eyes in a human face correspond to the (slightly rotated) pattern shown
for the face on the left, the left-to-right distribution of intensities at a human eye,
across the nose, and the intensity distribution at the corner of the mouth are illus-
trated for the face in the middle and individual eye brightness patterns for the face
on the right. In all those cases, the black regions of the placed Haar wavelets are on
top of darker regions in the image, and the white regions on top of brighter regions
in the image. Thus, we add in (10.8) high values (i.e. close to Gmax) in SW1 and SW2

and subtract only small values (i.e. close to 0) with SB .
The size of the white or black regions in a Haar wavelet ψ also needs to be

considered for “balancing” out values V (ψp) (e.g. the possible impact of values in
two large white regions or in one small black region in one Haar wavelet should
be “fairly” split by increasing the weight of the small black region). Thus, it is
appropriate to use weights ωi > 0 for adjusting those values. Instead of sums as
in (10.8), we will actually use weighted sums such as

V (ψp) = ω1 · SW1 + ω2 · SW2 − ω3 · SB (10.9)

when combining sums defined by regions in a placed Haar wavelet. The weights ωi

need to be specified when defining a Haar wavelet.

Insert 10.2 (Haar, Hadamard, Rademacher, Walsh, and the Origin of the
Viola-Jones Technique) The Hungarian mathematician A. Haar (1885–1933)
introduced in [A. Haar. Zur Theorie der orthogonalen Funktionensysteme, Mathematis-

che Annalen, 69:331–371, 1910] a very simple wavelet transform. Simplicity is de-
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fined by its base functions. Analogously to the 2D Fourier transform, the 2D
Haar transform calculates a representation of a given matrix (in our context,
of an image) with respect to a set of 2D base functions representing 2D wave
patterns of different wavelengths and directions. The Haar transform “stays
in the real domain”, it does not use or generate non-real complex numbers.

In case of 2D discrete data we can apply the discrete Haar transform where
base functions are given by recursively defined matrices with only a few dif-
ferent values, such as 0, 1, −1,

√
2, or 2. Due to having integral image values

only, the discrete Haar transform of an image can even be implemented using
integer arithmetic only. When transforming N × N images, with N = 2n, the
2D wave patterns are N × N matrices.

The Hadamard–Rademacher–Walsh transform is of similar simplicity with
respect to used base functions; it is named after the French mathemati-
cian J. Hadamard (1865–1963), the German mathematician H. Rademacher
(1892–1969), and the US-American mathematician J.L. Walsh (1895–1973).

For deriving Haar wavelets, the 2D wave patterns used by either dis-
crete Haar or discrete Hadamard–Rademacher–Walsh transform, are sim-
plified having values “+1” (represented by “White”) or “−1” (represented
by “Black”) only. Haar wavelets can be seen as rectangular subwindows of
general Haar or Hadamard–Rademacher–Walsh 2D wave patterns.

The use of Haar wavelets for object detection has been proposed in the
paper [P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple

features. In Proc. Conf. Computer Vision Pattern Recognition, 8 pp., 2001], together with
a complete proposal of an object-detection technique. This paper defines a
“landmark” for having today time-efficient and accurate face detection avail-
able.

Value Calculation by Using Integral Images As discussed in Sect. 2.2.1, the
calculation of a sum SW can be done time-efficiently by generating an integral im-
age Iint first for the given input image I . See (2.12). By providing (2.13) we only
specified sums for isothetic rectangular regions.

This can be generalized to rotated rectangular regions. For selected rotation an-
gles ϕ with respect to the x-axis, we also calculate the rotated integral images. For
example, for ϕ = π/4, the calculation of the integral image Iϕ is simply given by

Iπ/4(x, y) =
∑

|x−i|≤y−j∧1≤j≤y

I (i, j) (10.10)

Here, (x, y) can be any point in the real isothetic rectangle defined by the corner
points (1,1) and (Ncols,Nrows), and (i, j) is a pixel location in the image carrier Ω .
See Fig. 10.10, left.
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Fig. 10.10 Left: An area for point location (x, y) for taking the sum of image values for Iπ/4.
Right: A rectangular region defined by four corner points, where p and q are the defining grid
points, and the corner points r and s follow from those two grid points when using ϕ = π/4 as the
defining angle for the rectangle

For angles not equal to zero or π/4, the calculation formula is not as simple,
but follows the same ideas. For a rectangular region W , rotated by an angle ϕ with
respect to the x-axis and defined by the corner pixel locations p and q , and the
calculated corner points r and s (see Fig. 10.10, right), we obtain that

SW = Iϕ(p) − Iϕ(r) − Iϕ(s) + Iϕ(q) (10.11)

The calculation of any Nrows × Ncols integral image Iϕ only takes O(NrowsNcols)

time. A selection of a few angles φ is typically sufficient.

Haar Features The value of a placed Haar wavelet ψp is now used to decide
whether we have a Haar feature at this location in the image I . For deciding, we
use a parity ρ ∈ {−1,+1} and a threshold θ :

F (ψp) =
{+1 if V (ψp) ≤ ρ · θ

−1 otherwise
(10.12)

If F (ψp) = 1, then we have a Haar feature detected at p. If black regions in the
Haar wavelet are supposed to correspond to dark pixels (and, thus, white regions to
bright pixels), then we use parity ρ = −1.

10.1.5 Viola–Jones Technique

A mask is a window that contains a small number of Haar wavelets, such as two
or three. Figure 10.11 illustrates the positioning of three different (here non-square)
masks of the same size at the same location in an image.
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Fig. 10.11 Three non-square masks of identical size are positioned at the same location in an
image; each mask contains two or three Haar wavelets in this example. The Haar descriptor calcu-
lated for one mask defines one weak classifier; a set of such masks (i.e. a set of weak classifiers) is
used to decide whether there is a face in that window occupied by the masks. A detail in the image
Michoacan; see Fig. 10.12 for the image

Haar Descriptors Assume a mask M = [ψ1,ψ2,ψ3] that contains, for example,
three Haar-wavelets. This mask has a reference point, say, at its lower left corner. We
position the mask in image I by moving this reference point into a pixel location p,
and, for simplicity, we take p also as reference pixel for the three involved Haar
wavelets. This defines now a Haar descriptor

D(Mp) = F (ψ1,p) + F (ψ2,p) + F (ψ3,p) (10.13)

which is just an integer (thus a 1D descriptor only).

Weak Classifier A threshold τ > 0 is now finally used to assign a binary value

h(Mp) =
{+1 if D(Mp) ≥ τ

−1 otherwise
(10.14)

For example, Fig. 10.11 illustrates a case where three different placed masks M1,p ,
M2,p , and M3,p (of the same size) are used at the same reference pixel p, defining
three weak classifiers h(M1,p), h(M2,p), and h(M3,p) for the same window Wp ,
also denoted by

hj = h(Mj,p) for j = 1,2,3 (10.15)

A strong classifier is then needed to combine those values of weak classifiers into a
final object detection result.

Sliding Masks The goal of the applied sliding search is to detect an object in a
sliding window that defines the size of the applied masks. We have two options:
1. Generate an image pyramid (see Sect. 2.2.2) first and then slide masks of constant

size in different layers of the pyramid.
2. Use the input image only at the given size but vary the size of the sliding masks.
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Fig. 10.12 Variation in sizes of faces in the image Michoacan. The applied face detector detects
larger faces when using larger masks and smaller faces (see the two on the right) by using the same
masks but with reduced size. There are two false-negatives here; it appears that the used strong
classifier is trained for “visible forehead”

In contrast to scale-space techniques, let us chose the second option here. We keep
the image size constant, and masks of different sizes are used for detecting smaller
or larger objects. See Fig. 10.12. Typically, we have an estimate for the minimum
and maximum size of objects of interest.

The set of used masks is initially defined for one window size. For each window
size, we scan the input image completely, top-down, left-to-right, calculating the
Haar descriptors for each placed mask, thus a weak classifier, the weak classifiers are
mapped into a strong classifier, and this one will tell us whether we have an object
detected or not. Then we move on with the sliding window and apply again all masks
in the next window position. When arriving at the lower-left corner of the image, we
start again with a modified size of the search window (and thus the corresponding
scaling of all masks) at the upper-left corner of the image, until finished with all the
sizes of windows considered to be of relevance.

Figure 10.13 illustrates an increase of the size of a rectangular sliding window
by factor Δz = 1.1.

At least 10 % increase in width and height of the sliding window ensures time
efficiency. Larger percentages decrease the accuracy of the detection; this is a trade-
off to be considered.

Scan Orders The sliding search aims at detecting every visible object. An ex-
haustive search is the default option (as suggested above from the top-left corner
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Fig. 10.13 Subsequent increases of the size of a rectangular window by factor Δz = 1.1, using a
uniform scaling in the x- and y-directions. (Masks are usually square-shaped, not elongated.)

of the image to the bottom-right corner), with a scaling factor Δz in the x- and
y-directions such that masks, where each contains a few Haar wavelets, go from a
defined minimum size to a defined maximum size.

The Viola–Jones Object Detection Technique The technique, proposed in 2001
(see Insert 10.2), was primarily motivated by face detection, but can also be applied
to other classes of objects characterized by “typical shading patterns”. The technique
combines:
1. The generation of w weak classifiers hj , 1 ≤ j ≤ w, each defined by one of the

w given masks; each mask contains kj (e.g. 2 to 4) Haar wavelets; masks are
systematically varied in sizes and slided through the input image.

2. The use of a statistical boosting algorithm to assemble those w weak classifiers
h1, . . . , hw into one strong classifier H (the subject of the next section).

3. The application of the assembled cascade of weak classifiers for object detection.
There are several parameters involved in the process.

First, at the “micro-scale”, for each used Haar wavelet, either isothetic or rotated
by some angle ϕ, we have weights ωi > 0 that adjust the influence of the black
or white rectangles, a parity ρ ∈ {−1,+1} defining whether “black–white” should
match either “dark–bright” or “bright–dark”, and a threshold θ > 0 defining the
sensitivity of the Haar wavelet for detecting a Haar feature.

Second, at the “macro-scale”, for each mask Mj , 1 ≤ j ≤ w, we have a threshold
τj defining when the Haar descriptor D(Mj,p) defines value hj = +1; in this case
the weak classifier hj indicates that there might be an object (e.g. a face).

Face Detection and Post-Processing The w results of the weak classifiers
h1, . . . , hw at a placed window are passed on to the trained strong classifier for
detecting either a face or a no-face situation. If a face is detected, then we identify
its position with the rectangular box of the window used at this moment.

After classification, usually there are multiple overlapping object detections at
different locations and of different sizes around a visible object. Post-processing re-
turns a single detection per object. Methods applied for post-processing are usually
heuristic (e.g. taking some kind of a mean over the detected rectangular boxes). See
Fig. 10.14 for an illustration of this final post-processing step.
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Fig. 10.14 Left: Multiple detections of a face in the image Rocio. Right: The final result after
post-processing of multiple detections

10.2 AdaBoost

AdaBoost is an adaptive machine-learning meta-algorithm. Its name is short for
adaptive boosting. It is a meta-algorithm because it addresses sub-procedures,
called weak classifiers, which may be differently specified (in the previous section
we identified binary classifiers with weak classifiers). At the beginning, when start-
ing with AdaBoost, we have w > 1 weak classifiers, defined by functions hj (see
the hyperplane definition in (10.1) for an example), which map the descriptor space
R

n into {−1,+1}.
AdaBoost is adaptive by iteratively reducing mis-classifications: the weights of

mis-classified descriptors are adjusted for the benefit of generating a combined
(weighted) application of the given w weak classifiers at the end.

Insert 10.3 (Origin of AdaBoost) The paper [Y. Freud and R. Schapire. A decision-

theoretic generalization of on-line learning and an application to boosting. J. Computer

System Sciences, vol. 55, pp. 119–139, 1995] initiated extensive work on AdaBoost
algorithms. Today there are many variants available, and we only discuss the
basic AdaBoost strategy in this chapter.

10.2.1 Algorithm

We assume a case of supervised learning. We have a set of m > 1 pre-classified
descriptors x1, . . . ,xm in R

n, already classified by having assigned values yi ∈
{−1,+1} for i = 1, . . . ,m.
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Fig. 10.15 Five examples of
descriptors in 2D descriptor
space

For example, for using AdaBoost for training a strong classifier for face de-
tection, we use a large dataset of face and no-face images. Assume that we have
n > 0 measurements in an image window showing a human face, such as the values
V (ψp) for a set of placed Haar wavelets ψp . Those n values define a point in R

n.
For a shown face, we can also classify it ‘manually’ into “forward looking” (+1)
or “not forward looking” (−1) if the object detection task is more specific than just
detecting a face.

Example 10.3 (A Five-Descriptor and Two-Weak-Classifier Example) We consider
five descriptors x1 to x5 in a 2D descriptor space. See Fig. 10.15. We have m = 5.
Each point is shown by a disk labelled with weight 1/5, uniformly for all the five
points. At the beginning in AdaBoost, each descriptor xi is weighted uniformly by
ω(i) = 1/m for i = 1, . . . ,m.

Corresponding events (e.g. images showing a human face), leading to those de-
scriptors, have been classified. A bold blue circular line indicates the class number
+1 and the thin red line class number −1.

We assume two weak classifiers (i.e. w = 2), denoted by h1 and h2. The classifier
h1 assigns the class number “+1” to any of the five descriptors, and the classifier h2
only to x1 and x5, otherwise “−1”. Let

Wj =
m∑

i=1

ω(i) · [yi �= hj (xi )] (10.16)

where [R] equals 1 if R is true and 0 otherwise.
It follows that W1 = 0.4 and W2 = 0.2. The classifier h2 is more consistent with

the given classification, W2 < 0.5. In conclusion, we give h2 control about modify-
ing the weights of the data. A weight ω(i) can be interpreted as the cost of misclas-
sification of an observation. Thus, Wj is the average misclassification cost for the
classifier hj because all weights sum up to 1. To be continued in Example 10.4.

AdaBoost Iteration Calculations as in Example 10.3 define the start of an iter-
ation. Weights ω(i) are modified in iterations for i = 1, . . . ,m. This leads then to
new accumulated weights Wj for j = 1, . . . ,w. For the new accumulated weights
Wj , we look again for the classifier hj that defines the minimum. If this minimum
is greater than or equal to 0.5, then we stop.
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Iteration Index Iterations run from t = 1 to t = T defined by the case that the
minimum of the accumulated weights was greater than or equal to 0.5.

Initialization of the Iteration Let ω1(i) = ω(i) = 1/m be the initial weights for
i = 1, . . . ,m.

Iteration Step For t ≥ 1, we calculate accumulated weights Wj for j = 1, . . . ,w:

Wj =
m∑

i=1

ωt(i) · [yi �= hj (xi )] (10.17)

with notation [. . .] as defined in Example 10.3. Let a(t) = arg min{W1, . . . ,Ww}.
(We have a(1) = 2 in Example 10.3.) We update

ωt+1(i) = ct (i) · ωt(i) (10.18)

where ct (i) for i = 1, . . . ,m, so that
∑m

i=1 ωt+1(i) = 1.

Iteration End Arriving at Wa(T ) ≥ 0.5, the output of the final classifier is

H(x) = sign

(
T∑

t=1

αt · ha(t)(x)

)

(10.19)

This is the strong classifier generated by AdaBoost. It may contain a weak classifier
repeatedly at different positions t and with different weights αt .

10.2.2 Parameters

In the previous subsection we specified the AdaBoost meta-algorithm; weak clas-
sifiers are free variables. We still have to explain the parameters αt and ct (i) for
t = 1, . . . , T and i = 1, . . . ,m.

Parameters αt and ct (i) At iteration t , we have Wa(t) as the minimum total
weight; ha(t) is the classifier with the smallest average cost or error for the given
sample of m pre-classified data. Thus we “allow” ha(t) that it can contribute to the
decision, provided that Wa(t) < 0.5, which means that the classifier is better than
random guessing.

The selected weak classifier at iteration t is allowed to contribute to the total
decision by αt · ha(t). At t = 1 we select the strongest supporter of a correct classi-
fication. Thus, α1 needs to be large. At any of the subsequent iterations t = 2,3, . . .

we also select the strongest supporter of a correct classification for a modified set of
weights, aiming at a further refinement of the definition of the final classifier H .
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The value αt is the quality of (or trust into) the classifier ha(t). The values αt

tend to decrease with an increase in t (with probability 1) but are not, in general,
a decreasing sequence because we change in each step the weights and thus the
problem. It is not “bad” if αt does not decrease.

The parameter αt is used at iteration t for defining the scaling factors ct (i); those
scaling factors are a function of αt .

Those parameters need to be selected in a way to ensure a stop of the iterations
and should also contribute to the performance of the finally constructed classifier H .

Common AdaBoost Parameters We have with a(t) the “winner” at iteration t ,
having the minimum total weight Wa(t). The common choice of the parameter αt is
as follows (we explain later, why):

αt = 1

2
log

(
1 − Wa(t)

Wa(t)

)
(10.20)

where the logarithm is to the basis e = exp(1), also known as ln = loge in the en-
gineering literature. The parameter αt defines the influence of ha(t) on the final
classifier.

For example, if there is a “total consistency” between pre-defined class numbers
yi and outputs ha(t)(i) (i.e. yi = ha(t)(i) for all i = 1, . . . ,m), as it may happen at
t = 1, then we can use the classifier ha(1) already as the final classifier, no further
processing would be needed (i.e. AdaBoost stops). Otherwise, if 0 < Wa(t) < 0.5,
then αt > 0 increases with decrease of Wa(t).

The common choice for ct (i) is as follows:

ct (i) = 1

st
· exp

(−αtyiha(t)(xi )
)

(10.21)

where

st =
m∑

i=1

exp
(−αtyiha(t)(xi )

) · ωt(i) (10.22)

and thus
∑m

i=1 ωt+1(i) = 1 if ωt+1(i) = ct (i) · ωt(i) for i = 1, . . . ,m.

Those Formulas Are Simple The formulas for ct (i) and st are actually very sim-
ple. Note that yiha(t)(xi ) equals either +1 or −1.

The values yi and ha(t)(xi ) are both in the set {−1,+1}. Their product equals +1
iff yi = ha(t)(xi ), and it equals −1 otherwise. Thus, we have that

ct (i) = 1

st
· (e−αt [yi = ha(t)(xi )] + eαt [yi �= ha(t)(xi )]

)
(10.23)

and

st =
(

m∑

i=1

[yi = ha(t)(xi )] · ωt(i)

)

e−αt
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+
(

m∑

i=1

[yi �= ha(t)(xi )] · ωt(i)

)

eαt (10.24)

where
1. e−αt < 1 (i.e. a reduction of the weight) for the “already-solved” data items, and
2. eαt > 1 (i.e. an increasing weight) for the data items that still “need a closer look

in the next iteration”.

Example 10.4 (Continuation of Example 10.3) We had x1 to x5 with y1 = +1, y2 =
−1, y3 = −1, y4 = +1, and y5 = +1. The classifier h1 assigns the class number
“+1” to any of the five descriptors, and the classifier h2 only to x1 and x5, otherwise
“−1”.

At t = 1 we have ω1(i) = 1/m for i = 1, . . . ,m, W1 = 0.4 and W2 = 0.2 < 0.5,
and thus a(1) = 2. This leads to

α1 = 1

2
loge

(
1 − 0.2

0.2

)
= 1

2
loge 4 = loge 2 ≈ 0.693 (10.25)

and

s1 =
5∑

i=1

exp
(−α1yih2(xi )

) · 1

5

= 1

5

(
e−α1 + e−α1 + e−α1 + eα1 + e−α1

)

≈ 1

5
(0.500 + 0.500 + 0.500 + 2.000 + 0.500) ≈ 0.800 (10.26)

This defines c1(1) = 5/8, c1(2) = 5/8, c1(3) = 5/8, c1(4) = 5/2, and c1(5) = 5/8,
and thus ω2(1) = 0.125, ω2(2) = 0.125, ω2(3) = 0.125, ω2(4) = 0.5, and ω2(5) =
0.125. The sum equals 1, as it has to be.

Now we are ready to proceed to t = 2. The classifier h1 continues to be wrong
for i = 2 and i = 3. This gives W1 = 0.25. The classifier h2 is wrong for i = 4.
This gives W2 = 0.5. O.K., now h1 is the winner. We have that a(2) = 1. Because
of W1 < 0.5, we continue. This leads to

α2 = 1

2
log2

(
1 − 0.25

0.25

)
= 1

2
loge 3 ≈ 0.549 (10.27)

and

s2 =
5∑

i=1

exp
(−α2yih2(xi )

) · ω2(i)

= 0.125
(
e−α2 + eα2 + eα2 + e−α2

)+ 0.5 · e−α2

≈ 0.125(0.578 + 1.731 + 1.731 + 0.578) + 0.5 · 0.578 ≈ 0.866 (10.28)
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This defines c2(1) ≈ 0.667, c2(2) ≈ 1.999, c2(3) ≈ 1.999, c2(4) ≈ 0.667, and
c2(5) ≈ 0.667, and thus ω3(1) ≈ 0.083, ω3(2) ≈ 0.250, ω3(3) ≈ 0.250, ω3(4) ≈
0.334, and ω3(5) ≈ 0.083. The sum of those approximate values equals 1.

Now we are ready to proceed to t = 3. For the classifier h1 (still wrong for i = 2
and i = 3), we have that W1 ≈ 0.5. For the classifier h2, we obtain that W2 = 0.334.
The classifier h2 wins for t = 3; thus, a(3) = 2. Because of W2 < 0.5, we continue.
This leads to

α3 = 1

2
loge

(
1 − 0.334

0.334

)
≈ 1

2
loge 1.994 ≈ 0.345 (10.29)

Continue the calculation.

Independent n Weak Classifiers Consider descriptors in R
n, and for each j =

1, . . . , n, we do have a weak classifier hj (x) whose output only depends on xj , for
x = (x1, . . . , xj , . . . , xn). (Here we have n = w, where w was the number of weak
classifiers before.)

For example, we can apply a simple threshold decision:

hj (x) =
{−1 if xj < τi

+1 if xj ≥ τi
(10.30)

for n real thresholds τ1, . . . , τn. If n = 1, this simply defines a lower and an upper
part of the real numbers where “all” hj are either +1 or “at least one” is not equal
to +1. If n = 2, the location of points where both classifiers equal +1 defines a
rectangle.

What is the geometric subspace defined for n = 3 by the value +1 for all the
three weak classifiers?

For example, each of those n classifiers can be defined by one scalar measure-
ment in a digital image. That is, we may have different image functionals Φi , map-
ping images I into reals Φj(I) ∈ R. For n such functionals, the descriptor space is
then defined by n-tuples (Φ1(I ),Φ2(I ), . . . ,Φn(I )). Face detection is an example
of an application where this approach is followed.

10.2.3 Why Those Parameters?

Why the given αt ? This subsection is for the readers who are interested in mathe-
matics.

We aim at the minimum number of cases where H(xi) �= yi for i = 1, . . . ,m.
Consider the iterated updates of weights ωt(i), starting with t = 1. We have that

ω1(i) = 1/m (10.31)

ω2(i) = c1(i) · ω1(i) = c1(i)/m (10.32)

ω3(i) = c2(i) · ω2(i) = [
c1(i) · c2(i)

]
/m (10.33)
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. . .

ωT +1(i) =
[

T∏

t=1

ct (i)

]

/m

= 1

m ·∏T
t=1 st

· exp

(

−yi ·
T∑

t=1

αtha(t)(xi )

)

(10.34)

Let f (xi ) =∑T
t=1 αtha(t)(xi ). Thus, we have that

ωT +1(i) = 1

m · Πst
· exp

(−yi · f (xi )
)

(10.35)

If H(xi ) = sign(f (xi )) �= yi , then yi · f (xi ) ≤ 0. Thus, exp(−yi · f (xi )) > 1:
1. If [H(xi ) �= yi] = 1, then exp(−yi · f (xi )) > 1.
2. If [H(xi ) �= yi] = 0, then 0 < exp(−yi · f (xi )).
In both cases we have that [H(xi ) �= yi] < exp(−yi · f (xi )). We take the mean over
all data items xi for i = 1, . . . ,m and get that

1

m

m∑

i=1

[H(xi ) �= yi] ≤ 1

m

m∑

i=1

exp
(−yi · f (xi )

)

=
m∑

i=1

exp(−yi · f (xi ))

m

=
m∑

i=1

(

ωT +1(i) ·
T∏

t=1

st

)

[see (10.35)]

=
(

m∑

i=1

ωT +1(i)

)

·
T∏

t=1

st

= 1 ·
T∏

t=1

st =
T∏

t=1

st (10.36)

Observation 10.2 This result tells us that the mean of the number of mis-
classifications is upper-bounded by the product of the scaling factors. This relates
the error of the generated strong classifier to the errors of the contributing weak
classifiers.

Thus, we can reduce the number of mis-classifications by reducing this product.
One way for doing so is to attempt to minimize every scaling factor st , t = 1, . . . , T ,
as a “singular event”.
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The Final LSE Optimization Step Recall (10.22) for st . We take the first deriva-
tive with respect to αt , set it to zero, and calculate the resulting αt , which defines an
extremum in general. In this case it is actually a uniquely defined minimum:

dst

dαt

= −
m∑

i=1

yiha(t)(xi ) · exp
(−αtyiha(t)(xi )

) · ωt(i)

= −
∑

yi=ha(t)(xi )

e−αt · ωt(i) +
∑

yi �=ha(t)(xi )

eαt · ωt(i)

= −e−αt ·
∑

yi=ha(t)(xi )

ωt (i) + eαt ·
∑

yi �=ha(t)(xi )

ωt (i)

= −e−αt (1 − Wa(t)) + eαt Wa(t) [by using (10.16)]
= 0 (10.37)

It follows that

e2αt = (1 − Wa(t))

Wa(t)

(10.38)

and thus

αt = 1

2
log

(1 − Wa(t))

Wa(t)

(10.39)

This explains the common choice for the update parameter in AdaBoost.

10.3 Random Decision Forests

Example 10.2 introduced decision trees as an option for subdividing a descriptor
space, alternatively to binary classifiers. A finite set of randomly generated decision
trees forms a forest, called a random decision forest (RDF). This section describes
two possible ways how to use such forests for object detection. The general approach
is illustrated by examples from the pedestrian-detection area.

10.3.1 Entropy and Information Gain

While generating our trees, we will make use of information-theoretic arguments
for optimizing the distribution of input data along the paths in the generated trees.

Entropy Consider a finite alphabet S = {a1, . . . , am} with given symbol probabil-
ities pj = P(X = aj ), j = 1, . . . ,m, for a random variable X taking values from S.
We are interested in a lower bound for the average number of bits needed for repre-
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senting the symbols in S with respect to the modelled random process. The entropy

H(S) = −
m∑

j=1

pj · log2 pj (10.40)

defines such a lower bound; if m is a power of 2, then we have exactly the average
number of bits needed.

Insert 10.4 (Shannon and Entropy) C.E. Shannon (1916–2001), an US-
American mathematician, electronic engineer, and cryptographer, founded
information theory in 1937 with his Master’s thesis “A Symbolic Analysis
of Relay and Switching Circuits” (MS Thesis, MIT). That thesis was never
formally published, but it is widely regarded as the most influential Master’s
thesis ever written. His ideas were expounded in his famous paper [C. E. Shan-

non. A mathematical theory of communication. The Bell System Technical Journal, vol. 27,

pp. 623–656, 1948]. Entropy and conditional entropy are the central subjects in
this paper. We use both in this Section in a very specific context.

For a given set S, the maximum entropy is given if we have a uniform distribution
(i.e. pj = 1/m for j = 1, . . . ,m), defining

H(S) = log2 m − log2 1 = log2 m (10.41)

Lower entropies correspond to cases where the distribution of probabilities varies
over S.

Example 10.5 (Entropy Calculations) Let X be a random variable that takes val-
ues A, B , C, D, or E with uniform probability 1/5. The alphabet is S =
{A,B,C,D,E}. By (10.41) we have H(S) = log2 5 ≈ 2.32 in this case. A Huff-
man code (see Exercise 10.8) for this example has 2.4 bits on average per symbol.

Now consider the same alphabet S = {A,B,C,D,E} but with probabilities
P(X = A) = 1/2, P(X = B) = 1/4, P(X = C) = 1/8, P(X = D) = 1/16, and
P(X = E) = 1/16. Now we have

H(S) = −0.5(−1) − 0.25(−2) − 0.125(−3) − 2 · 0.0625(−4) = 1.875 (10.42)

A Huffman code has 1.875 bits on average for the five symbols in S for this proba-
bility distribution.

Observation 10.3 Maximum entropy is given if all the events occur equally often.

Dividing an entropy H(S), defined by some probability distribution on S, by the
maximum possible entropy given in (10.41) defines the normalized entropy

Hnorm(S) = H(S)

log2 m
(10.43)
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which is in the interval (0,1] for |S| = m.

Conditional Entropy The conditional entropy H(Y |X) is a lower bound for the
expected number of bits that is needed to transmit Y if the value of X is known as a
precondition. In other words, Y is extra information to be communicated, under the
assumption that X is already known.

The capitals X and Y are variables for classes of individual events. Small letters
x or y denote individual events, which are in sets S or T , respectively. For discrete
random variables X and Y , let

p(x, y) = P(X = x,Y = y) (10.44)

p(y|x) = P(X = x|Y = y) (10.45)

be the values of joint or conditional probabilities, respectively. By

H(Y |X) = −
∑

x∈S

∑

y∈T

p(x, y) log2 p(y|x) (10.46)

we define the conditional entropy of Y over the set T , given X over the set S.
Analogously,

H(X|Y) = −
∑

x∈S

∑

y∈T

p(x, y) log2 p(x|y) (10.47)

is the conditional entropy of X over set S, given Y over set T .3

Example 10.6 (Illustration of Conditional Entropy) We consider a hypothetical ex-
ample that we recorded stereo sequences in a vehicle and had an automated adaptive
process, which decided to use either iSGM or BPM for stereo matching on a given
sequence.

We have an input X (our manual brief characterization of the traffic scene), and
we want to predict the event Y (to prefer iSGM over BPM or not).

Let S = {c,h, r}, where c stands for recording in CBD area, h for “recording on
a highway”, and r denotes the event “the scene was recorded on rural road”.

Let T = {y,n}, where y denotes the event “run iSGM”, and n denotes the event
“run BPM”.

All observed cases are summarized in Table 10.1. Accordingly, we have that
P(X = r) = 5/14, P(X = c) = 4/14, P(X = h) = 5/14, P(Y = y) = 9/14,
P(Y = n) = 5/14, and

H(Y) = −(9/14) · log2(9/14) − (5/14) · log2(5/14) ≈ 0.940 (10.48)

This entropy H(Y) expresses that we need 0.940 bits at least to transfer the infor-
mation whether analysis is done by iSGM or BPM.

3Shannon’s entropy corresponds to minus the entropy used in thermodynamics.
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Table 10.1 Table of
adaptive decisions for using
either iSGM or BPM for
stereo matching on 14
recorded stereo sequences.
Sequences of the recorded
traffic scene are briefly
manually characterized for
understanding the adaptive
decisions

Sequence Situation Decision was for use of iSGM

1 Highway No

2 Highway No

3 CBD Yes

4 Rural road Yes

5 Rural road Yes

6 Rural road No

7 CBD Yes

8 Highway No

9 Highway Yes

10 Rural road Yes

11 Highway Yes

12 CBD Yes

13 CBD Yes

14 Rural road No

We want to predict whether the system will decide for iSGM or BPM, based on
our rough scene characterization. For example,

p(y|r) = P(Y = y|X = r) = 3/5 (10.49)

p(n|r) = P(Y = n|X = r) = 2/5 (10.50)

H(Y |r) = −(3/5) · log2(3/5) − (2/5) · log2(2/5) ≈ 0.971 (10.51)

Thus, the conditional entropy for “rural road” is H(Y |X = r) = 0.971. The condi-
tional entropy for using iSGM based on the input X as scene characterization is

H(Y = y|X) = 5

14
· 0.971 + 4

14
· 0 + 5

14
· 0.971 ≈ 0.694 (10.52)

(see Exercise 10.9). Having the characterization of the scene, we can save approx-
imately 0.940 − 0.694 = 0.246 bits on each message when communicating that
iSGM has been used.

Information Gain The information gain G(Y |X) = H(Y)−H(Y |X) is the num-
ber of bits saved on average, obtained by comparing the entropy for the uncondi-
tional case with that of the conditional case.
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10.3.2 Applying a Forest

Assume that we have a trained random forest for a given classification problem
that consists of w trees T1, . . . , Tw . In given image data, we segment a rectangular
window W (e.g. a bounding box or a patch), and we use that as input for any of the
w trees.

Passing a Window Down in a Forest We use a window W as an input for the tree
Tj . At each split node of the tree, we apply a split function hφ(I ), defined by param-
eters φ, using a defined descriptor vector x(I ) for uniformly defined functions hφ ,
for coming to a decision either “yes” or “no”. As a result, we pass the window W

either to the left or to the right child node. See Fig. 10.16.4 The shown image is from
the TUD Multiview Pedestrians database.5

Classifying the Window in One Tree Finally, the window W arrives at a leaf
node L of tree Tj . In this leaf node we have probabilities for class memberships.
In tree Tj , leaf node L specifies the class probabilities to be assigned to window
W . For example, for a particular class d , 1 ≤ d ≤ k, we assign the class probability
p(d) = a to W if a leaf L has this value a stored for the class d .

The Strong Classifier Generated by the Forest A window W ends at one leaf
node in each of the w trees of the given random forest. Thus, it collects one value ad

at each of those w leaf nodes for membership in the class d . Altogether, a window w

is assigned a sum of w values ad , one value from each tree.
The defined strong classifier compares now the accumulated sums for the dif-

ferent class numbers d = 1, . . . , k and also the sum for case 0 (i.e., no object), and
classifies W to the class d or to case 0 whenever we have a maximum sum.

Insert 10.5 (Breiman and Random Decision Forests) The work by the US-
American statistician L. Breiman (1928–2005) has been essential for estab-
lishing random decision forests as a technique for ensemble learning; see, for
example, his paper [L. Breiman. Random forests. Machine Learning, vol. 45, pp. 5–32,

2001]. The technique has its roots in tree construction methods and related
classifiers, with related pioneering publications by various authors, dating
back to about the early 1980s.

4The tree diagram has its root at the top (as is customary). For people who complain that it is
misleading to depict a tree with its root at the top, here are two examples: Inside the large Rikoriko
Cave in The Poor Knights Islands (New Zealand) some trees are growing down from the roof, and
on coastal cliffs around northern New Zealand many large Pohutukawa trees are rooted at the edge
of a cliff, with almost all of the tree sprawlings down the cliff, lower than its root.
5The TUD Multiview Pedestrians database is available at www.d2.mpi-inf.mpg.de/node/428 for
free download.

http://www.d2.mpi-inf.mpg.de/node/428
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Fig. 10.16 A selected bounding box is passed down in the shown trees, ends up at a leaf node
L5 in the tree on the left, and at a leaf node L7 in the tree on the right. Those leaf nodes assign
probabilities a and b, respectively, to the bounding box for being in class d . The shown image at
the bottom is for the particular case of a Hough forest only: Probabilities for being the centre pixel
of an object can be shown here in the image carrier visualized by grey levels

10.3.3 Training a Forest

We apply supervised learning for generating a random decision forest. We have a
set S of samples, i.e. pre-classified image data. A sample P = [I, d] or P = [I,0]
combines an image window I (e.g. a bounding box or a patch) with a class number
d , 1 ≤ d ≤ k, or value 0 for “no object”. In a binary classification scenario we have
just positive or negative bounding boxes, or positive or negative patches (i.e. of
pedestrians or of no-pedestrians); see Fig. 10.6.

Cases of More Than Just Two Classes In general we have more than two classes;
see the general case in Sect. 10.1.1 with class numbers 1,2, . . . , k, and 0 for ‘not
classified’. Figure 10.17 illustrates pedestrians in four different viewing directions
(i.e. here we have k = 4 and 0 for “no pedestrian”). Such pre-classified data are
available, for example, on the TUD Multiview Pedestrians; see also Fig. 10.16 for
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Fig. 10.17 Samples of bounding boxes for pedestrians (actually here also sorted, left to right, for
viewing the directions N, E, S, and W)

an example. Let

S = S0 ∪
k⋃

d=1

Sd (10.53)

be the set of samples, i.e. available pre-classified data, where S0 contains all the sam-
ples being “not an object”, and Sd all the samples being classified into the class d ,
1 ≤ d ≤ k. For the presented RDF approach, this set should have a large cardinality,
for example |S| = 50,000.

Randomly Trained Trees During supervised learning, we build multiple-decision
trees forming an RDF. In those trees we need to define rules for split nodes. The goal
for any created split node is to define its decision rule such that the resulting split for
the training data set S maximizes the information gain. Following Observation 10.3,
we basically aim (ignoring the actual conditional context) at transferring about half
of the data arriving at the considered node along each of the two possible ways. If
doing so, the generated trees are balanced, i.e. of minimized depth, thus supporting
time-efficiency of the classification process.

We assume that the RDF consists of a set of w randomly trained decision trees
Tj , 1 ≤ j ≤ w. Each tree is considered as being a weak classifier; and the whole
forest is used for defining a strong classifier. For example, you may think about
using w = 100 or a similar number.
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Split Functions The applied rule at a split node v is also called a split function.
A unary split function hφ decides which node (left or right) comes next:

SL(φ) = {
I ∈ Sv : hφ(I ) = 0

}
(10.54)

SR(φ) = {
I ∈ Sv : hφ(I ) = 1

}
(10.55)

where Sv is the set of samples arriving at node v. (To be precise, a sample is a
pair [I, d] or [I,0], but we identify for simplified notation “sample” with the pre-
classified window I .) We provide examples of split functions hφ and parameter sets
φ below.

Outline for Growing a Tree During training, a randomly selected subset

Sj = Sj,0 ∪
k⋃

d=1

Sj,d ⊂ S (10.56)

of all the available pre-classified samples is employed for growing a tree Tj of the
forest for 1 ≤ j ≤ w. Each tree grows randomly and independently to the others.
Randomness is important when training a tree. This ensures a variety in the forest,
or, in other words, trees are less correlated this way to each-other. For a forest, it
would be meaningless to assemble “similar” trees. For the cardinality of Sj , imagine
a number such as 5,000 or 10,000.

Sketch of the Tree-Growing Procedure We start just with a single root node, being
the only active node. Recursively, we decide for each active node whether it should
turn into a split node (with selecting a suitable split function hφ) or whether it should
become a leaf node (defined by a stop criterion). After having processed an active
node, it becomes passive, and newly created split nodes become active.

Sketch of the Leaf-Definition Procedure In a created decision tree, samples I ∈ Sj

have been passed down via split nodes to leaf nodes. In general, we not only assign
one class to one leaf node (as in the simplifying Example 10.2). For the samples
arriving at a leaf node, we need to analyse the distribution of classes represented by
those samples.

At a leaf node L we estimate the classification probability p(c = 0|L) (i.e. the
probability that arriving samples have been assigned value 0) and the class proba-
bilities

p(c �= 0, d|L) = [
1 − p(c = 0|L)

] · p(d|L) (10.57)

for d ∈ {1, . . . , k}. For example, Fig. 10.17 illustrates samples to be classified into
the classes N, E, S, W (i.e. k = 4); such bounding boxes can also be classified into
“no pedestrian” (value 0).

Compensate for Sample Bias There will be a bias in the set Sj ⊂ S defined
by different cardinalities of randomly selected samples for generating a tree Tj ,
1 ≤ j ≤ w. The classification probabilities p(c|L) and p(d|L) are estimated based
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on the numbers of samples from sets Sj,0 or Sj,d , 1 ≤ d ≤ k, arriving at the node L.
Let

SL
j = SL

j,0 ∪
k⋃

d=1

SL
j,d ⊂ Sj (10.58)

be the set of all training samples arriving at the node L. Without compensation, we
would use

p(c = 0|L) = |SL
j,0|

|SL
j | (10.59)

p(d|L) = |SL
j,d |

|⋃k
d=1 SL

j,d | (10.60)

which satisfies that p(c = 0|L) +∑k
d=1 p(c �= 0, d|L) = 1. The use of these proba-

bility estimates would assume that ratios

rj,0 = |Sj,0|
|Sj | and rj,d = |Sj,d |

|Sj | (10.61)

with 1 ≤ d ≤ k, for the randomly generated training set Sj , are about the same as
the ratios

r0 = |S0|
|S| and rd = |Sd |

|S| (10.62)

for the full training set S. To compensate for an expected bias, we can use

p(c = 0|L) = |SL
j,0|

|SL
j | · r0

rj,0
(10.63)

p(d|L) = |SL
j,d |

|⋃k
d=1 SL

j,d | · rd

rj,d
(10.64)

as probability estimates instead. For example, if rj,0 < r0, then the factor r0/rj,0 > 1
increases the probability estimate accordingly.

Features and Split Functions The definition of split functions is in general based
on image features (i.e. locations and descriptors). For time-efficiency reasons, split
functions need to be simple but should also be designed for maximizing the infor-
mation gain.

Due to having two successor nodes, the split function hφ has to produce a binary
result, such as a value in {0,1}. A common choice is to compare two feature values
that are easily calculable for any input image I (e.g. I may represent a bounding
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box or a patch). For example, a very simple option is given by

hφ(I ) =
{

0 if Iloc(p) − Iloc(q) > τ

1 otherwise
(10.65)

where Iloc(p) denotes a value of a specified local operator at pixel location p in the
image I . The parameters φ = {p,q, τ } denote two different pixel locations in I , and
τ > 0 is a threshold. More parameters increase the chance of over-fitting. An even
simpler option is

hφ(I ) =
{

0 if Iloc(p) > τ

1 otherwise
(10.66)

Parameters such as φ = {p,q, τ } or φ = {p, τ } are learned for maximizing the in-
formation gain. There might be also other targets defined for learning a “good” split
function.

Learn a Split Node Starting with the first split node (the root node), samples are
split to the left or right child node according to the value of the split function. As the
split function is supposed to split different classes, suitable parameters φ are learned
from samples.

For ensuring a variety of trees and time efficiency, the parameters φ are selected
randomly. For example, for the parameters p and τ in (10.66), the set of pixel lo-
cations in the input image I and an interval [τmin, τmax] can be used for choosing
randomly, say, 1,000 pairs [p, τ ] of a location p and a threshold τ . Then, we choose
the pair [p, τ ] of parameters that maximizes the information gain within the given
set of 1,000 pairs.

Stop Growing If a stop criterion becomes true at the current node, then this node
stops splitting. Examples for a stop criterion are the depth of the node in the tree
(i.e. the depth is limited by a maximum value) or the number of samples reaching
this node is below a threshold. A tree of large depth can lead to over-fitting, and if
there are only a few samples reaching a leaf node, then this might create a bias in
the classification.

Algorithm Algorithm 10.1 specifies training of an RDF (Fig. 10.18). By Algo-
rithm 10.1, we generate a tree of the RDF. The algorithm needs to be called repeat-
edly for generating the forest. The random selection of Sj and the random selections
of the parameter vector φs aim at ensuring independence of trees. The way how to
define a split function hφ is fixed for the whole approach.

10.3.4 Hough Forests

Instead of dealing with larger bounding boxes, we can also consider smaller rectan-
gular patches within one bounding box for training. This allows us to use also only
“small” patches when applying the classifier. Positive patches need to “collaborate
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Algorithm 10.1 (Training a tree of an RDF)
Input: Index j of the tree to be created, a randomly selected set Sj ⊂ S of thousands of samples
P = [I, d], 1 ≤ d ≤ k, or P = [I,0], with corresponding descriptors x.
Output: A trained tree Tj .

1: Let Tj = ∅, S = Sj , num = |S |, dep = 0, stop criterion thresholds (e.g.) tnum = 20 and tdep =
15.

2: if num < tnum ‖ dep > tdep then
3: Calculate p(0|L) and p(c �= 0, d|L) with S , according to (10.63), (10.64), and (10.57);
4: Add leaf L to tree Tj ;
5: return Tj ;
6: else
7: dep = dep + 1;
8: for s = 1, . . . ,1,000 {1,000 is just given as an example} do
9: Randomly select a parameter vector φs in the defined range;

10: Apply split function hφs on S ;
11: Split I into SL and SR , for example according to (10.66);
12: Select that φ∗ = φs which optimizes the split;
13: end for
14: Expand tree Tj by new split node defined by split function hφ∗;
15: Split S into SL and SR as defined hφ∗;
16: Case 1: num = |SL|, S = SL; go to line 2;
17: Case 2: num = |SR |, S = SR ; go to line 2;
18: end if

Fig. 10.18 A training algorithm for generating a tree in an RDF

somehow” to detect an object. Hough forests do not fit into the general framework
of three subsequent steps of localization, classification, and evaluation, as outlined
at the beginning of this chapter; they combine localization and classification within
one integrated process.

The basic idea of the Hough transform (see Sect. 3.4.1) is that objects are de-
scribed by parameters, and repeated occurrences (or clusters) of parameters point to
the existence of the parameterized object.

Centroid Parameterization For example, we can take the centroid of an object
(for centroid, see Sect. 3.3.2) as a parametric description of an object, and relate
centre points of patches to the object’s centroid (i.e. this defines a vector). See
Fig. 10.19.

Samples in the training set S are now triples P = [I, d,a] or pairs p = [I,0],
where I is now a “small” patch only, d the class number, with 1 ≤ d ≤ k, and a
the vector going from the centre of the patch to the centroid of the object of class d

from which the patch was sampled from. In case of “no object” (i.e. value 0), there
are no vectors.

The RDF is now trained with such patches, and there are 2D class probabilities
at leaf nodes, defined by the probability values at locations that are pointed to by the
vectors a. If training patches, arriving at the same leaf node, are sampled from the
same bounding box, then they will all point to the same centroid, thus contributing
all probabilities to the same point in the 2D probability diagram.
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Fig. 10.19 Centre points of patches (as shown in Fig. 10.6) are connected to the centroid of a
shown object (twice pedestrian, once a cyclist). The “no-object” window does not have a centroid
of an object

Insert 10.6 (Origin of Implicit Shape Models and Hough Forests) Object cat-
egorization based on segments, showing only object details, has been intro-
duced in [B. Leibe and B. Schiele. Interleaved object categorization and segmentation.

In Proc. British Machine Vision Conference, 759–768, 2003.]. This use of implicit
shape models (IMS) has been further developed in [J. Gall and V. Lempitsky.

Class-specific Hough forests for object detection. In Proc. Computer Vision Pattern Recog-

nition, 8 pp., 2009] by defining object-centroid-based Hough forests.

Hough forests combine, within one framework, a classification by RDFs with an
object localization based on object’s centroids.

10.4 Pedestrian Detection

For a localized bounding box, which possibly contains a pedestrian, we use HoG
descriptors as defined in Sect. 10.1.3. This section describes a way how to localize
such an object candidate (i.e. a rectangular RoI to be tested in the RDF), provides
specific split functions as discussed in the previous section at a general level, and
outlines a post-processing step (i.e. a step contributing to the evaluation of results
provided by the RDF).
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Table 10.2 Relationships between distances, heights in recorded images, and disparity range for
recorded stereo images where a person was assumed to be 2-m tall

Distance (metres) 10–17 15–22 20–32 30–42 40–52

Height (pixels) 260–153 173–118 130–81 87–62 65–50

Disparity 26–15 17–12 13–8 9–6 7–5

Localizing Regions of Interest For applying an RDF classifier, at first we need to
identify potential candidates for bounding boxes, to be processed by passing them
through the trees of the RDF. (A benefit of patch-based Hough forests is that we
can replace this search for bounding boxes by, say, a random selection of patches in
image regions where pedestrians are likely to appear.)

Use of Stereo Analysis Results An exhaustive search, i.e. passing windows of
expected bounding-box sizes through the image at all the relevant places, is time-
consuming. Instead, we can use disparity maps produced by a stereo matcher (as
described in Chap. 8).

For example, we can assume that a person is about 2-m tall, and we estimate
then in available disparity maps (where values depend on camera parameters such
as the length b of baseline and the focal length f used) relationships between the
distances between a camera and a person, the height in the image (in pixels), and
the corresponding disparity range. See Table 10.2 for an example. In this example,
a person, standing 10 metres away from the camera, appears to be about 260 pixels
tall in the image plane.

For selecting an ROI, a calculated disparity map is then used to produce a series
of maps showing only values for the identified depth ranges. Those partial disparity
maps (also called layers of a disparity map) are than analysed for occurrences of ob-
jects being about of the height as estimated for a person within this disparity range:
Scan through one layer of a disparity map with correspondingly sized windows and
process further only those windows that have a sufficient number of valid disparities
in their area.

Depth ranges for defining layers are defined to be overlapping; we need to ensure
that a person can appear completely in one layer, without having, say, different body
parts separated in two adjacent layers.

Split Functions Instead of using the generated (very long) vectors as a whole for
training and when applying the classifier, only a few components (possibly, even
just one randomly selected component) of descriptor vectors are used for defining a
split function. Based on the defined subdivision of bounding boxes and the derived
HoG descriptors, a possible choice for split functions is, for example, as follows:

hφ(I ) =
{

0 if B(a, i) − B(b, j) > τ

1 otherwise
(10.67)
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Fig. 10.20 Red rectangles represent combined results; cyan circles are centres where the classifier
detected a pedestrian. The few circles in the middle (at a car in a distance) are not merged

where the parameters φ = {a, b, i, j, τ } denote two block numbers a and b, bin num-
bers i and j , and a threshold τ ; B(a, i) and B(b, j) are the accumulated magnitude
values in two specified direction bins.

Non-maximum Suppression Often, classification detects more than one window
around a person in an image. For subsequent tracking or pose estimation, it is mean-
ingful to merge them into one window. See Fig. 10.20.

Each positive window has the corresponding probability assigned by the strong
classifier generated by the RDF used. The one with the highest probability in a
defined neighbourhood is chosen. Alternatively, having window centres and prob-
abilities, a mean-shift mode-seeking procedure could also be applied to specify the
final detection of an object.

The rejection of all the false-positives can be based on analysing a recorded im-
age sequence, using failure in tracking or repeated detection for rejecting a detec-
tion.

10.5 Exercises

10.5.1 Programming Exercises

Exercise 10.1 (HoG Descriptors, Pedestrian Detection, and Training of an RDF)
Implement the calculation of HoG descriptors for rectangular bounding boxes. Al-
low that parameters (i.e. the size of boxes or cells, the numbers of directional bins)
can be chosen differently.

For training and applying an RDF, you may use the sources provided by J. Tao on
the website accompanying this book (or implement your own program, for example
based on OpenCV).
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Apply your HoG descriptors for pre-classified images showing pedestrians, train
your RDF, and apply the RDF for classifying manually identified (positive and neg-
ative) bounding boxes. Discuss impacts when selecting different parameters in your
HoG descriptor program.

Characterize the quality of your pedestrian detector by measures as given in
Sect. 10.1.2.

Exercise 10.2 (Eye Detection) Write a program for detecting eyes in images that
show frontal views of human faces. You can select any of the approaches listed
below.

Eye detection can be done after having already a face detected or by analysing a
given image without any prior face detection.

In the first case, by knowing the region of the face, we can locate eyes faster and
easier. The rate of false detections decreases; however, the face detector plays a very
crucial role. If face detection fails for any reason, then eye detection fails as well.

In the second case, we search for eyes in the whole image without considering
a face location. The percentage of true-positive detections with this method can be
higher than for the first method, but it takes more time, and the false-positive rate is
expected to increase.

Regardless of the followed approach, there are also different image processing
techniques to deal with eye detection.

Similar to face detection, you can design weak classifiers using Haar wavelets
and a cascade of such classifiers for defining a strong classifier. The basic differences
to face detection are defined by the range of sizes of sliding masks and selected
training parameters.

As an example of a totally different method, eyes can also be modelled by vertical
ellipses, and a Hough-transform for ellipses could be used for eye detection (e.g.,
after histogram equalization, edge detection, or some kind of image binarization).

Characterize the quality of your eye detector by measures as given in Sect. 10.1.2.

Exercise 10.3 (Training and Applying a Hough Forest) Write a program that allows
you to collect interactively a training data set for pedestrian detection using a Hough
forest defined by centroids of bounding boxes of pedestrians. See Fig. 10.19 for a
related illustration.

For a given image, the program defines interactively bounding boxes (for pedes-
trians) and patches. If a patch is in a bounding box, then the program identifies it as
an “object” and also stores the vector from the centroid of the patch to the centroid
of the bounding box. If a patch is not in a bounding box (i.e. not part of a pedestrian),
then the program only identifies it as “no object”.

After having generated this way a few hundreds of positive and negative samples
(i.e. patches), you also write a second program for training a Hough forest. For
training an individual tree, you select randomly a subset of your generated samples
and start generating a tree with its root. You identify split nodes, leaf nodes, and
split functions as described in Sect. 10.3.3.
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Finally, you write a third program for applying the generated trees. An input
patch, sampled from an input image I , travels down in each of the generated trees
using the learned split functions. It ends at a leaf node with a given distribution of
centroid locations for object patches versus a likelihood of being no object patch.
All the leaf nodes, one for each tree, define the final distribution for the given patch.
In the input I you indicate this distribution at the location of the sampled patch.
After having many patches processed, you have the accumulated distributions as
illustrated in the lower image in Fig. 10.16. Here you may stop with this exercise.

10.5.2 Non-programming Exercises

Exercise 10.4 Continue the calculations (at least one more iteration step) as re-
quested at the end of Example 10.4.

Exercise 10.5 Do manually AdaBoost iterations for six descriptors x1 to x6 when
having three weak classifiers (i.e. w = 3), denoted by h1, h2, and h3, where h1
assigns the class number “+1” to any of the six descriptors, the classifier h2 assigns
the class number “−1” to any of the six descriptors, and the classifier h3 assigns the
class number “+1” to x1 to x3 and class number “−1” to x4 to x6.

Exercise 10.6 Let S = {1,2,3,4,5,6}, and X and Y be random variables defined
on S, with X = 1 if the number is even, and Y = 1 if the number is prime (i.e. 2, 3,
or 5). Let p(x, y) and p(y|x) be defined as in (10.44) and (10.45). Give the values
for all possible combinations, such as for p(0,0) or p(0|1).

Exercise 10.7 Consider a finite alphabet S = {a1, . . . , am} and two different ran-
dom variables X and Y taking values from S with pj = P(X = aj ) and qj = P(Y =
aj ). The relative entropy of discrete probability p with respect to discrete probabil-
ity q is then defined as

H(p|q) = −
m∑

j=1

pj · log2
pj

qj

Show that
1. H(p|q) ≥ 0
2. There are cases where H(p|q) �= H(q|p).
3. H(p|q) = 0 iff p = q (i.e. pj = qj for j = 1, . . . ,m).

Exercise 10.8 Calculate the Huffman codes (not explained in this book; check other
sources if needed) for the two probability distributions assumed in Example 10.5.

Exercise 10.9 Verify that H(Y |c) = 0 in Example 10.6.
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singular, 106
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Polyhedron, 89
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second order, 109
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Prague, 225
Prediction error, 366
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conditional, 400
Problem
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Profile
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intensity, 8
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Random decision forest, 398
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Rattus rattus, 169
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Recovery rate, 212
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geometric, 236
Red-black method, 199
Reference point, 3
Reflectance, 271

Lambertian, 269
Reflectance map, 271
Region, 91
Region of interest, 375
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equivalence, 173
reflexive, 173
symmetric, 173
transitive, 173
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non-photorealistic, 209

Repeatability, 347
Representation

explicit, 250
implicit, 250

Resampling, 362
Residual vector

measurement, 366
RGB, 4, 8, 35, 187
RGB primaries, 30
Rio de Janeiro, 93
RoI, 375
Root of unity, 18
Rotation angles

Eulerian, 228
Row, 1
Run-time

asymptotic, 212

S
SAD, 291
Sample, 1, 403
Sampling, 1, 73

Saturation, 36
Scale, 57, 64
Scale space, 58

box-filter, 370
DoG, 75
Gaussian, 58
LoG, 74, 75

Scale-invariant feature transform, 341
Scaling

conditional, 46
linear, 45, 74

Scan order, 54
Scanline, 306
Scanner

3D, 255
Scenario, 314
Search interval, 289
SEDT, 111
Seed pixel, 172
Seed point, 380
Segment, 167

corresponding, 206
Segment labelling

recursive, 174
Segmentation

mean-shift, 209
video, 203

Semi-global matching, 296
basic, 316
iterative, 316

Separability
linear, 378

Set
closed, 95
compact, 95, 285
of labels, 189
open, 95

SGM, 296
Shanghai, 10
Shape factor, 129
Sharpening, 60
SIFT, 341
Sigma filter, 58
Similarity

structural, 10
Situation, 314, 325
Slope angle, 13, 106
Smoothing, 56

Gauss, 53
Smoothness energy, 144
Smoothness error, 144
Snake

rotating, 34
Sobel operator, 63, 87
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Space
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feature, 177
gradient, 252
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velocity, 143

Spectrum, 21
visible, 27

Speeded-up robust features, 342
Split function, 405
Split node, 378
Square

magic, 55
SSD, 291
Stability, 364
Staircase effect, 104
Standard deviation, 5, 57
State, 364
State transition matrix, 364
Static, 136
Statistics

spatial value, 8
temporal value, 9

Stereo analysis
uncertainty of, 285

Stereo geometry
canonical, 223

Stereo matcher, 292
Stereo pair, 287
Stereo points

corresponding, 239
Stereo visualization, 242
Stitching, 241
Straight line

dual, 252
Structure-texture decomposition, 71
Structured light, 256
Stylization

Winnemöller, 170
Subpixel accuracy, 120, 300
Sum of absolute differences, 291
Sum of squared differences, 291
Suppression

non-maxima, 64, 69, 78, 84
SURF, 342
Surface, 245

Jordan, 248
nonorientable, 248
orientable, 248, 249
polyhedral, 246
smooth, 245

Surface patch, 249
Surveillance

environmental, 169

Symmetric difference, 206
Symmetry property, 20
System matrix, 364

T
Taiwan, 10
Taylor expansion, 140, 156, 354
Term

continuity, 190
data, 190
neighbourhood, 190
smoothness, 190

Theorem
by Meusnier, 254
convolution, 22, 49
four-colour, 189
Jordan-Brouwer, 93
Parseval’s, 279

Third-eye technique, 321
Thresholding, 128
Tilt, 251, 268
Time complexity

asymptotic, 212
Topology, 89, 94

digital, 89
Euclidean, 94

Total variation, 145
Tour de France, 133
Trace, 66, 67
Tracing

border, 97
Tracking, 206
Training, 377
Transform

affine, 227
barrel, 219
cosine, 15
distance, 109
Euclidean distance, 109, 197
Fourier, 14
histogram, 43
integral, 15
linear, 228
pincushion, 219

Transpose, 77
Triangle

oriented, 248
Triangulation, 259
Tristimulus values, 28
True-negative, 375
True-positive, 375
Truncation, 193
Tübingen, 174, 266
TUD Multiview Pedestrians, 402
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TV, 145
TVL2, 71

U
Uncertainty, 285
Uniformity, 118, 130
Uniqueness constraint, 307
Unit

imaginary, 15
Unit vector, 150
Unsharp masking, 60

V
Valenciana

baroque church, 2, 61
Variance, 5, 57

between-class, 170
Variation

quadratic, 13
Vector

magnitude, 150
tangent, 106
unit, 150
unit normal, 106

Vector field, 136
dense, 137
sparse, 137

Vector product, 143

Vectors
cross product, 230

Velocity, 135, 136
Velocity space, 143
Vergence, 268
Video

progressive, 218
Video segmentation, 203
Video surveillance, 210
Voss algorithm, 99, 133

W
Warping, 353
Wavelets, 79
Wei-Klette algorithm, 281, 282
Weighted graph, 303
Weights, 154, 180, 357, 377, 385
Wide angle, 221
Window, 3

default, 6
Winnemöller stylization, 168, 170
Wuhan, 14

Z
ZCEN, 293, 313
Zero-crossing, 12, 73
Zero-mean version, 293
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