I Undergraduate Topics in Computer Science
3

Reinhard Klette

Concise
Computer
Vision

i %)\ Springer

UTicCS

Undergraduate Topics in Computer
Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for un-
dergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and mod-
ern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored
by established experts in their fields, reviewed by an international advisory board, and contain numer-
ous examples and problems. Many include fully worked solutions.

For further volumes:
www.springer.com/series/7592

http://www.springer.com/series/7592

Reinhard Klette

Concise Computer Vision

An Introduction
into Theory and Algorithms

@ Springer

Reinhard Klette

Computer Science Department
University of Auckland
Auckland, New Zealand

Series Editor
Ian Mackie

Advisory Board

Samson Abramsky, University of Oxford, Oxford, UK

Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK

Dexter Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA

Iain Stewart, University of Durham, Durham, UK

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-1-4471-6319-0 ISBN 978-1-4471-6320-6 (eBook)

DOI 10.1007/978-1-4471-6320-6
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013958392

© Springer-Verlag London 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Dedicated to all who have dreams

Computer vision may count the trees, estimate the distance to the islands, but it
cannot detect the fantasies the people might have had who visited this bay

Preface

This is a textbook for a third- or fourth-year undergraduate course on Computer
vision, which is a discipline in science and engineering.

Subject Area of the Book Computer Vision aims at using cameras for analysing
or understanding scenes in the real world. This discipline studies methodological
and algorithmic problems as well as topics related to the implementation of designed
solutions.

In computer vision we may want to know how far away a building is to a cam-
era, whether a vehicle drives in the middle of its lane, how many people are in a
scene, or we even want to recognize a particular person—all to be answered based
on recorded images or videos. Areas of application have expanded recently due
to a solid progress in computer vision. There are significant advances in camera
and computing technologies, but also in theoretical foundations of computer vision
methodologies.

In recent years, computer vision became a key technology in many fields.
For modern consumer products, see, for example apps for mobile phones, driver-
assistance for cars, or user interaction with computer games. In industrial automa-
tion, computer vision is routinely used for quality or process control. There are sig-
nificant contributions for the movie industry (e.g. the use of avatars or the creation
of virtual worlds based on recorded images, the enhancement of historic video data,
or high-quality presentations of movies). This is just mentioning a few application
areas, which all come with particular image or video data, and particular needs to
process or analyse those data.

Features of the Book This text book provides a general introduction into basics of
computer vision, as potentially of use for many diverse areas of applications. Math-
ematical subjects play an important role, and the book also discusses algorithms.
The book is not addressing particular applications.

Inserts (grey boxes) in the book provide historic context information, references
or sources for presented material, and particular hints on mathematical subjects dis-
cussed first time at a given location. They are additional readings to the baseline
material provided.

vii

viii Preface

The book is not a guide on current research in computer vision, and it provides
only a very few references; the reader can locate more easily on the net by search-
ing for keywords of interest. The field of computer vision is actually so vivid, with
countless references, such that any attempt would fail to insert in the given lim-
ited space a reasonable collection of references. But here is one hint at least: visit
homepages.inf.ed.ac.uk/rbf/CVonline/ for a web-based introduction into topics in
computer vision.

Target Audiences This text book provides material for an introductory course at
third- or fourth-year level in an Engineering or Science undergraduate programme.
Having some prior knowledge in image processing, image analysis, or computer
graphics is of benefit, but the first two chapters of this text book also provide a
first-time introduction into computational imaging.

Previous Uses of the Material Parts of the presented materials have been used
in my lectures in the Mechatronics and Computer Science programmes at The Uni-
versity of Auckland, New Zealand, at CIMAT Guanajuato, Mexico, at Freiburg and
Gottingen University, Germany, at the Technical University Cordoba, Argentina, at
the Taiwan National Normal University, Taiwan, and at Wuhan University, China.

The presented material also benefits from four earlier book publications, [R. Klette
and P. Zamperoni. Handbook of Image Processing Operators. Wiley, Chichester, 1996], [R. Klette,
K. Schliins, and A. Koschan. Computer Vision. Springer, Singapore, 1998], [R. Klette and
A. Rosenfeld. Digital Geometry. Morgan Kaufmann, San Francisco, 2004], and [F. Huang,
R. Klette, and K. Scheibe. Panoramic Imaging. Wiley, West Sussex, 2008].

The first two of those four books accompanied computer vision lectures of the
author in Germany and New Zealand in the 1990s and early 2000s, and the third one
also more recent lectures.

Notes to the Instructor and Suggested Uses The book contains more material
than what can be covered in a one-semester course. An instructor should select
according to given context such as prior knowledge of students and research focus
in subsequent courses.

Each chapter ends with some exercises, including programming exercises. The
book does not favour any particular implementation environment. Using procedures
from systems such as opencv will typically simplify the solution. Programming
exercises are intentionally formulated in a way to offer students a wide range of op-
tions for answering them. For example, for Exercise 2.5 in Chap. 2, you can use Java
applets to visualize the results (but the text does not ask for it), you can use small- or
large-sized images (the text does not specify it), and you can limit cursor movement
to a central part of the input image such that the 11 x 11 square around location p
is always completely contained in your image (or you can also cover special cases
when moving the cursor also closer to the image border). As a result, every stu-
dent should come up with her/his individual solution to programming exercises, and
creativity in the designed solution should also be honoured.

http://homepages.inf.ed.ac.uk/rbf/CVonline/

Preface ix

Supplemental Resources The book is accompanied by supplemental material
(data, sources, examples, presentations) on a website. See www.cs.auckland.ac.nz/
~rklette/Books/K2014/.

Acknowledgements In alphabetical order of surnames, I am thanking the follow-
ing colleagues, former or current students, and friends (if I am just mentioning a
figure, then I am actually thanking for joint work or contacts about a subject related
to that figure):

A-Kn Ali Al-Sarraf (Fig. 2.32), Hernan Badino (Fig. 9.25), Anko Borner (various
comments on drafts of the book, and also contributions to Sect. 5.4.2), Hugo Carlos
(support while writing the book at CIMAT), Diego Caudillo (Figs. 1.9, 5.28, and
5.29), Gilberto Chdvez (Figs. 3.39 and 5.36, top row), Chia-Yen Chen (Figs. 6.21
and 7.25), Kaihua Chen (Fig. 3.33), Ting-Yen Chen (Fig. 5.35, contributions to
Sect. 2.4, to Chap. 5, and provision of sources), Eduardo Destefanis (contribution
to Example 9.1 and Fig. 9.5), Uwe Franke (Figs. 3.36, 6.3, and bottom, right, in
9.23), Stefan Gehrig (comments on stereo analysis parts and Fig. 9.25), Roberto
Guzmadn (Fig. 5.36, bottom row), Wang Han (having his students involved in check-
ing a draft of the book), Ralf Haeusler (contributions to Sect. 8.1.5), Gabriel Hart-
mann (Fig. 9.24), Simon Hermann (contributions to Sects. 5.4.2 and 8.1.2, Figs. 4.16
and 7.5), Vdclav Hlavdc¢ (suggestions for improving the contents of Chaps. 1 and 2),
Heiko Hirschmiiller (Fig. 7.1), Wolfgang Huber (Fig. 4.12, bottom, right), Fay
Huang (contributions to Chap. 6, in particular to Sect. 6.1.4), Ruyi Jiang (contribu-
tions to Sect. 9.3.3), Wagar Khan (Fig. 7.17), Ron Kimmel (presentation suggestions
on local operators and optic flow—which I need to keep mainly as a project for a
future revision of the text), Karsten Knoeppel (contributions to Sect. 9.3.4),

Ko-Sc¢ Andreas Koschan (comments on various parts of the book and Fig. 7.18,
right), Viadimir Kovalevsky (Fig. 2.15), Peter Kovesi (contributions to Chaps. 1
and 2 regarding phase congruency, including the permission to reproduce figures),
Walter Kropatsch (suggestions to Chaps. 2 and 3), Richard Lewis-Shell (Fig. 4.12,
bottom, left), Fajie Li (Exercise 5.9), Juan Lin (contributions to Sect. 10.3), Yizhe Lin
(Fig. 6.19), Dongwei Liu (Fig. 2.16), Yan Liu (permission to publish Fig. 1.6), Rocio
Lizdrraga (permission to publish Fig. 5.2, bottom row), Peter Meer (comments on
Sect. 2.4.2), James Milburn (contributions to Sect. 4.4). Pedro Real (comments on
geometric and topologic subjects), Mahdi Rezaei (contributions to face detection in
Chap. 10, including text and figures, and Exercise 10.2), Bodo Rosenhahn (Fig. 7.9,
right), John Rugis (definition of similarity curvature and Exercises 7.2 and 7.6),
James Russell (contributions to Sect. 5.1.1), Jorge Sanchez (contribution to Exam-
ple 9.1, Figs. 9.1, right, and 9.5), Konstantin Schauwecker (comments on feature de-
tectors and RANSAC plane detection, Figs. 6.10, right, 7.19, 9.9, and 2.23), Karsten
Scheibe (contributions to Chap. 6, in particular to Sect. 6.1.4), and Fig. 7.1), Karsten
Schliins (contributions to Sect. 7.4),

Sh-Z Bok-Suk Shin (Latex editing suggestions, comments on various parts of the
book, contributions to Sects. 3.4.1 and 5.1.1, and Fig. 9.23 with related comments),

http://www.cs.auckland.ac.nz/~rklette/Books/K2014/
http://www.cs.auckland.ac.nz/~rklette/Books/K2014/

X Preface

Eric Song (Fig. 5.6, left), Zijiang Song (contributions to Chap. 9, in particular to
Sect. 9.2.4), Kathrin Spiller (contribution to 3D case in Sect. 7.2.2), Junli Tao (con-
tributions to pedestrian detection in Chap. 10, including text and figures and Exer-
cise 10.1, and comments about the structure of this chapter), Akihiko Torii (contri-
butions to Sect. 6.1.4), Johan VanHorebeek (comments on Chap. 10), Tobi Vaudrey
(contributions to Sect. 2.3.2 and Fig. 4.18, contributions to Sect. 9.3.4, and Exer-
cise 9.6), Mou Wei (comments on Chap. 4), Shou-Kang Wei (joint work on subjects
related to Sect. 6.1.4), Tiangong Wei (contributions to Sect. 7.4.3), Jiirgen Wiest
(Fig. 9.1, left), Yihui Zheng (contributions to Sect. 5.1.1), Zezhong Xu (contributions
to Sect. 3.4.1 and Fig. 3.40), Shenghai Yuan (comments on Sects. 3.3.1 and 3.3.2),
Qi Zang (Exercise 5.5, and Figs. 2.21, 5.37, and 10.1), Yi Zeng (Fig. 9.15), and
Jovisa Zuni¢ (contributions to Sect. 3.3.2).

The author is, in particular, indebted to Sandino Morales (D.F., Mexico) for
implementing and testing algorithms, providing many figures, contributions to
Chaps. 4 and 8, and for numerous comments about various parts of the book,
to Wiadystaw Skarbek (Warsaw, Poland) for manifold suggestions for improving
the contents, and for contributing Exercises 1.9, 2.10, 2.11, 3.12, 4.11, 5.7, 5.8,
and 6.10, and to Garry Tee (Auckland, New Zealand) for careful reading, comment-
ing, for parts of Insert 5.9, the footnote on p. 402, and many more valuable hints.

I thank my wife, Gisela Klette, for authoring Sect. 3.2.4 about the Euclidean dis-
tance transform and critical views on structure and details of the book while the
book was written at CIMAT Guanajuato between mid July to beginning of Novem-
ber 2013 during a sabbatical leave from The University of Auckland, New Zealand.

Guanajuato, Mexico Reinhard Klette
3 November 2013

Contents

1 Image Data

1.1

1.2

1.3

1.4

2.1

2.2

23

Images in the Spatial Domain
Pixelsand Windows
1.1.2 Image Values and Basic Statistics
1.1.3 Spatial and Temporal Data Measures

1.1.1

1.1.4 Step-Edges

Images in the Frequency Domain
Discrete Fourier Transform
Inverse Discrete Fourier Transform
The ComplexPlane
Image Data in the Frequency Domain
Phase-Congruency Model for Image Features
Colour and Colour Images
Colour Definitions
1.3.2 Colour Perception, Visual Deficiencies, and Grey Levels .
1.3.3 Colour Representations

1.2.1
1.2.2
123
1.2.4
1.2.5

1.3.1

Exercises

1.4.1

Programming Exercises
1.4.2 Non-programming Exercises

Image Processing . . .

Point, Local, and Global Operators
Gradation Functions
2.1.2 Local Operators
2.1.3 Fourier Filtering
Three Procedural Components
Integral Images
2.2.2 Regular Image Pyramids

2.1.1

2.2.1

2.2.3 Scan Orders

Classes of Local Operators

231

Smoothing

('S T T

14
14
16
17
19
24
27
27
31
34
39
39
41

43
43
43
46
48
50
51
53
54
56
56

Xi

xii Contents
232 Sharpening 60

2.3.3 Basic Edge Detectors 62

2.34 Basic Corner Detectors 65

2.3.5 Removal of Illumination Artefacts 69

2.4 Advanced Edge Detectors 72
2.4.1 LoG and DoG, and Their Scale Spaces 72

24.2 Embedded Confidence 76

243 The Kovesi Algorithm 79

25 EXErciseso e e e 85
2.5.1 Programming Exercises 85

2.5.2 Non-programming Exercises 86

3 ImageAnmalysis 89
3.1 BasicImage Topology 89
3.1.1 4-and 8-Adjacency for Binary Images 90

3.1.2 Topologically Sound Pixel Adjacency 94

3.1.3 BorderTracing 97

3.2 Geometric 2D Shape Analysis 100
321 Area 101

322 Length 102

323 Curvature 106

3.2.4 Distance Transform (by Gisela Klette) 109

3.3 Image Value Analysis 116
3.3.1 Co-occurrence Matrices and Measures 116

3.3.2 Moment-Based Region Analysis 118

3.4 Detectionof LinesandCircles. 121
341 Lines 121

342 Circles e 127

35 EXercises 128
3.5.1 Programming Exercises 128

3.5.2 Non-programming Exercises 132

4 Dense Motion Analysis 135
4.1 3D Motion and 2D Optical Flow 135
4.1.1 Local Displacement Versus Optical Flow 135
4.1.2 Aperture Problem and Gradient Flow 138

4.2 The Horn-Schunck Algorithm 140
4.2.1 Preparing for the Algorithm 141
422 The Algorithm 147

4.3 Lucas—Kanade Algorithm 151
4.3.1 Linear Least-Squares Solution. 152
4.3.2 Original Algorithm and Algorithm with Weights 154

44 The BBPW Algorithm 155
4.4.1 Used Assumptions and Energy Function 156
4.4.2 Outline of the Algorithm 158

4.5 Performance Evaluation of Optical Flow Results 159

Contents xiii
4.5.1 TestStrategies 159
4.5.2 Error Measures for Available Ground Truth 162

4.6 Exercises 164
4.6.1 Programming Exercises 164

4.6.2 Non-programming Exercises 165

5 Image Segmentation 167
5.1 Basic Examples of Image Segmentation. 167
5.1.1 Image Binarization. 169

5.1.2 Segmentation by Seed Growing 172

5.2 Mean-Shift Segmentation 177
5.2.1 Examples and Preparation 177

5.2.2 Mean-ShiftModel 180

5.2.3 Algorithms and Time Optimization 183

5.3 Image Segmentation as an Optimization Problem 188
5.3.1 Labels, Labelling, and Energy Minimization 188

5.3.2 Examples of Data and Smoothness Terms 191

533 MessagePassing 193

5.34 Belief-Propagation Algorithm 195

5.3.5 Belief Propagation for Image Segmentation. 200

5.4 Video Segmentation and Segment Tracking 202
5.4.1 Utilizing Image Feature Consistency 203

5.4.2 Utilizing Temporal Consistency 204

55 EXerciseso 208
5.5.1 Programming Exercises 208

5.5.2 Non-programming Exercises 212

6 Cameras, Coordinates, and Calibration 215
6.1 Cameras 216
6.1.1 Properties of a Digital Camera 216

6.1.2 Central Projection 220

6.1.3 A Two-Camera System 222

6.1.4 Panoramic Camera Systems 224

6.2 Coordinates 227
6.2.1 World Coordinates 227

6.2.2 Homogeneous Coordinates 229

6.3 Camera Calibration 231
6.3.1 A User’s Perspective on Camera Calibration 231

6.3.2 Rectification of Stereo Image Pairs 235

6.4 EXercises 240
6.4.1 Programming Exercises 240

6.4.2 Non-programming Exercises 242

7 3D Shape Reconstruction 245
7.1 Surfaces 245
7.1.1 Surface Topology 245

7.1.2 Local Surface Parameterizations 249

xiv Contents
7.1.3 Surface Curvature 252

7.2 Structured Lighting 255
7.2.1 Light Plane Projection 256

7.2.2 LightPlane Analysis 258

73 StereoVision. o oo 260
7.3.1 Epipolar Geometry 261

7.3.2 Binocular Vision in Canonical Stereo Geometry 262

7.3.3 Binocular Vision in Convergent Stereo Geometry 266

7.4 Photometric StereoMethod o L 269
7.4.1 Lambertian Reflectance 269

7.4.2 Recovering Surface Gradients 272

7.4.3 Integration of Gradient Fields 274

7.5 EXErciseso 283
7.5.1 Programming Exercises 283

7.5.2 Non-programming Exercises 285

8 Stereo Matching L. 287
8.1 Matching, Data Cost, and Confidence 287
8.1.1 Generic Model for Matching 289

8.1.2 Data-CostFunctions 292

8.1.3 From Global to Local Matching 295

8.1.4 Testing Data Cost Functions 297

8.1.5 Confidence Measures 299

8.2 Dynamic Programming Matching 301
8.2.1 Dynamic Programming 302

8.2.2 Ordering Constraint 304

8.2.3 DPM Using the Ordering Constraint 306

8.2.4 DPM Using a Smoothness Constraint 311

8.3 Belief-Propagation Matching 316
8.4 Third-Eye Technique 320
8.4.1 Generation of Virtual Views for the Third Camera 321

8.4.2 Similarity Between Virtual and Third Image 324

85 EXercises 326
8.5.1 Programming Exercises 326

8.5.2 Non-programming Exercises 329

9 Feature Detection and Tracking 331
9.1 Invariance, Features, and Sets of Features 331
9.1.1 Invariance 331

9.1.2 Keypoints and 3D Flow Vectors 333

9.1.3 Sets of Keypoints in Subsequent Frames 336

9.2 Examplesof Features 339
9.2.1 Scale-Invariant Feature Transform 340

9.2.2 Speeded-Up Robust Features 342

9.2.3 Oriented Robust Binary Features 344

9.2.4 Evaluationof Features 346

Contents XV
9.3 Tracking and Updating of Features 349
9.3.1 Tracking Is a Sparse Correspondence Problem 349

9.3.2 Lucas—Kanade Tracker 351

9.33 ParticleFilter 357

934 KalmanFilter 363

94 EXercises 370
9.4.1 Programming Exercises 370

9.4.2 Non-programming Exercises 374

10 Object Detection 375
10.1 Localization, Classification, and Evaluation. 375
10.1.1 Descriptors, Classifiers, and Learning 375

10.1.2 Performance of Object Detectors 381

10.1.3 Histogram of Oriented Gradients 382

10.1.4 Haar Wavelets and Haar Features 384

10.1.5 Viola—-Jones Technique 387

10.2 AdaBoost 391
10.2.1 Algorithm, ... 391

10.2.2 Parameterso 393

10.2.3 Why Those Parameters? 396

10.3 Random Decision Forests 398
10.3.1 Entropy and Information Gain 398

10.3.2 ApplyingaForest 402

10.3.3 TrainingaForest 403

10.3.4 Hough Forests 407

10.4 Pedestrian Detection 409

10.5 EXercises v v v v v it 411
10.5.1 Programming Exercises 411

10.5.2 Non-programming Exercises 413
NamelIndex 415
Index 419

Symbols

|S| Cardinality of a set S

llall: L1 norm

llall2 L> norm

A Logical ‘and’

\ Logical ‘or’

N Intersection of sets

U Union of sets

O End of proof

a,b,c Real numbers

A Adjacency set

2 (+) Area of a measurable set (as a function)

a,b,c Vectors

A B, C Matrices

o, B,y Angles

b Base distance of a stereo camera system

C Set of complex numbers a +i - b, withi =+/—1 and a,b e R

d Disparity

d; L1 metric

d>r L, metric, also known as the Euclidean metric

e Real constant e = exp(1) &~ 2.7182818284

€ Real number greater than zero

f Focal length

g h Functions

G max Maximum grey level in an image

y Curve in a Euclidean space (e.g. a straight line, polyline, or
smooth curve)

H Hessian matrix

i,j,k,I,m,n Natural numbers; pixel coordinates (i, j) in a window

1,I(.,..1) Image, frame of a sequence, frame at time ¢

L Length (as a real number)

Xvii

xviii

Symbols

Z@)

A

n

N

Ncolx, Nrows

02

o
(Q’Q
=

NST T ueD ™E Y A

<
<«

x =
=

N <
o3
N

Length of a rectifiable curve (as a function)

Real number; default: between 0 and 1

Natural number

Neighbourhood (in the image grid)

Number of columns, number of rows

Set {0, 1,2, ...} of natural numbers

Asymptotic upper bound

Image carrier, set of all Nyis X Nyoys pixel locations
Points in R2, with coordinates x and y

Points in R3, with coordinates X, Y, and Z

Real constant 7 =4 x arctan(1) &~ 3.14159265358979
Polyhedron

Radius of a disk or sphere; point in R? or R3

Set of real numbers

Rotation matrix

Path with finite number of vertices

Point in R? or R3

Set

Time; point in R2 or R3

Translation vector

Threshold (real number)

Components of optical flow; vertices or nodes; points in R? or R3
Optical flow vector with u = (u, v)

Window in an image, window with reference pixel p
Real variables; pixel coordinates (x, y) in an image
Coordinates in R3

Set of integers

Image Data

This chapter introduces basic notation and mathematical concepts for describing an
image in a regular grid in the spatial domain or in the frequency domain. It also
details ways for specifying colour and introduces colour images.

1.1 Images in the Spatial Domain

A (digital) image is defined by integrating and sampling continuous (analog) data in
a spatial domain. It consists of a rectangular array of pixels (x, y, u), each combining
a location (x, y) € Z? and a value u, the sample at location (x, y). Z is the set of all
integers. Points (x, y) € Z? form a regular grid. In a more formal way, an image /
is defined on a rectangular set, the carrier

R2={(,y): 1 <x < Nepis AL =y < Nypus} € Z2 (1.1)

of I containing the grid points or pixel locations for Neeis > 1 and Nygys > 1.

We assume a left-hand coordinate system as shown in Fig. 1.1. Row y contains
grid points {(1, ¥), (2, ¥), ..., (Neois, y)} for 1 <y < Nyus, and column x contains
grid points {(x, 1), (x,2), ..., (x, Npws)} for 1 < x < Nggis.

This section introduces into the subject of digital imaging by discussing ways to
represent and to describe image data in the spatial domain defined by the carrier 2.

1.1.1 Pixels and Windows

Figure 1.2 illustrates two ways of thinking about geometric representations of pixels,
which are samples in a regularly spaced grid.

Grid Cells, Grid Points, and Adjacency Images that we see on a screen are com-
posed of homogeneously shaded square cells. Following this given representation,
we may think about a pixel as a tiny shaded square. This is the grid cell model. Al-
ternatively, we can also consider each pixel as a grid point labelled with the image
value. This grid point model was already indicated in Fig. 1.1.

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science, 1
DOI 10.1007/978-1-4471-6320-6_1, © Springer-Verlag London 2014

http://dx.doi.org/10.1007/978-1-4471-6320-6_1

2 1 Image Data

N rows

Fig. 1.1 A left-hand coordinate system. The thumb defines the x-axis, and the pointer the y-axis
while looking into the palm of the hand. (The image on the left also shows a view on the baroque
church at Valenciana, always present outside windows while this book was written during a stay of
the author at CIMAT Guanajuato)

e & 6 6 0 0 0 0 0 O
e & 6 06 0 06 0 0 0 O
e 6 0 06 00 0 0 0 0
e 6 0 06 06 06 0 0 0 o
e 0 0 060 0 0 0 0 o
e & 6 6 © 0 0 0 0 o
© 0 06 0600 0 0 0 o
0 0 0 0 O o0 o0 00
@ 0 0 0 0 O O 0 0O
@ @ ®© O O O O 0 0 o0
e @ © 6 6 6 ® 0 0 O

Fig. 1.2 Left: When zooming into an image, we see shaded grid squares; different shades repre-
sent values in a chosen set of image values. Right: Image values can also be assumed to be labels
at grid points being the centres of grid squares

Insert 1.1 (Origin of the Term “Pixel”) The term pixel is short for picture
element. It was introduced in the late 1960s by a group at the Jet Propul-
sion Laboratory in Pasadena, California, that was processing images taken
by space vehicles. See [R.B. Leighton, N.H. Horowitz, A.G. Herriman, A.T. Young,
B.A. Smith, M.E. Davies, and C.B. Leovy. Mariner 6 television pictures: First report. Sci-
ence, 165:684-690, 1969].

Pixels are the “atomic elements” of an image. They do not define particular ad-
jacency relations between pixels per se. In the grid cell model we may assume that
pixel locations are adjacent iff they are different and their tiny shaded squares share

1.1 Images in the Spatial Domain 3

1 100 200 300 400 500 600 700 800
! ! ! ! ! ! ! !

Reference point

100
200 |
300+

400

500
y

Fig. 1.3 A 73 x 77 window in the image SanMiguel. The marked reference pixel location is at
p = (453, 134) in the image that shows the main pyramid at Cafiada de la Virgin, Mexico

an edge.! Alternatively, we can also assume that they are adjacent iff they are differ-
ent and their tiny shaded squares share at least one point (i.e. an edge or a corner).

Image Windows A window W,""(I) is a subimage of image I of size m x n
positioned with respect to a reference point p (i.e., a pixel location). The default is
that m = n is an odd number, and p is the centre location in the window. Figure 1.3
shows the window W(?53771 3 4)(SanMiguel).

Usually we can simplify the notation to W, because the image and the size of
the window are known by the given context.

1.1.2 Image Values and Basic Statistics

Image values u are taken in a discrete set of possible values. It is also common in
computer vision to consider the real interval [0, 1] C R as the range of a scalar im-
age. This is in particular of value if image values are interpolated within performed
processes and the data type REAL is used for image values. In this book we use
integer image values as a default.

Scalar and Binary Images A scalar image has integer values u € {0, 1,...,
2% — 1}. It is common to identify such scalar values with grey levels, with 0 = black
and 29 — 1 = white; all other grey levels are linearly interpolated between black and
white. We speak about grey-level images in this case. For many years, it was com-
mon to use a = §; recently a = 16 became the new technological standard. In order
to be independent, we use Gpax =2 — 1.

A binary image has only two values at its pixels, traditionally denoted by 0 =
white and 1 = black, meaning black objects on a white background.

IRead iff as “if and only if”’; acronym proposed by the mathematician P.R. Halmos (1916-2006).

4 1 Image Data

Fig. 1.4 Original RGB colour image Fountain (upper left), showing a square in Guanajuato,
and its decomposition into the three contributing channels: Red (upper right), Green (lower left),
and Blue (lower right). For example, red is shown with high intensity in the red channel, but in
low intensity in the green and blue channel

Vector-Valued and RGB Images A vector-valued image has more than one chan-
nel or band, as it is the case for scalar images. Image values (i1, ..., UN ;) AT€
vectors of length N pgnners- For example, colour images in the common RGB colour
model have three channels, one for the red component, one for the green, and one for
the blue component. The values u; in each channel are in the set {0, 1, ..., Gnax};
each channel is just a grey-level image. See Fig. 1.4.

Mean Assume an Ny X Ny scalar image I. Following basic statistics, we
define the mean (i.e., the “average grey level”) of image I as

1 Neols Nrows

w=—1 S Sty
Neois + Nyows =1 y=1

1
==) 1y (1.2)

21,
VIER

where [£2| = N¢ois - Nrows 18 the cardinality of the carrier £2 of all pixel locations.
We prefer the second way. We use [rather than u in this formula; / is a unique
mapping defined on §2, and with u we just denote individual image values.

1.1 Images in the Spatial Domain 5

Variance and Standard Deviation The variance of image [is defined as

2
= — I(x,y)— 1.3
o m'(x%gg[(x,y) — 1] (1.3)

Its root oy is the standard deviation of image 1.
Some well-known formulae from statistics can be applied, such as

1
of = [@ > I, y)ﬂ -1 (1.4)

(x,y)es

Equation (1.4) provides a way that the mean and variance can be calculated by
running through a given image I only once. If only using (1.2) and (1.3), then two
runs would be required, one for calculating the mean, to be used in a second run
when calculating the variance.

Histograms A histogram represents tabulated frequencies, typically by using bars
in a graphical diagram. Histograms are used for representing value frequencies of a
scalar image, or of one channel or band of a vector-valued image.

Assume a scalar image I with pixels (i, j, u), where 0 < u < Gnyax. We define
absolute frequencies by the count of appearances of a value u in the carrier §2 of all
pixel locations, formally defined by

Hiw) =|{(x,y) e 2: I(x,y)=ul}| (1.5)

where | - | denotes the cardinality of a set. Relative frequencies between 0 and 1,
comparable to the probability density function (PDF) of a distribution of discrete
random numbers / (p), are denoted by

Hj(u)

hy(u) = 2

(1.6)

The values Hy(0), H;(1), ..., Hi(Gmax) define the (absolute) grey-level histogram
of a scalar image I. See Fig. 1.5 for histograms of an original image and three
altered versions of it.

We can compute the mean and variance also based on relative frequencies as
follows:

Gmax Gmax
pr= u-hi) or of = [u—usl hi) (17)
u=0 u=0

This provides a speed-up if the histogram was already calculated.
Absolute and relative cumulative frequencies are defined as follows, respectively:

Crw)=) Hi() and c;) =) hi@) (1.8)

v=0 v=0

6 1 Image Data

Mavigator | Info | Mistogram Mavigator | Info | Mistogram >

Leve Leve

Cowen Comsrn

Percencie Percencie

Poxtls: 46200 Cache Level: 1 Cache Level: 1

Navigator | Info | Histogram ™ Navigator | info | Mistogram g

| 4‘ ‘M\Hu\numﬂ\”“Bnmgmnﬂ”“"”l\

Mean: 12749 Leve
S Dew: 7364 Coura,

Fig. 1.5 Histograms for the 200 x 231 image Neuschwanstein. Upper left: Original image.
Upper right: Brighter version. Lower left: Darker version. Lower right: After histogram equaliza-
tion (will be defined later)

Those values are shown in cumulative histograms. Relative frequencies are compa-
rable to the probability function Pr[I (p) < u] of discrete random numbers 7 (p).

Value Statistics in a Window Assume a (default) window W = W,’,”’ (1), with
n=2k+ 1 and p = (x, y). Then we have in window coordinates

| Fko K
pw=— 3 Y I +iy+)) (1.9)
i=—k j=—k

See Fig. 1.6. Formulas for the variance, and so forth, can be adapted analogously.

Example 1.1 (Examples of Windows and Histograms) The 489 x 480 image van,
shown in Fig. 1.6, contains two marked 104 x 98 windows, W; showing the face,
and W, containing parts of the bench and of the dress. Figure 1.6 also shows the
histograms for both windows on the right.

A 3-dimensional (3D) view of grey levels (here interpreted as being elevations)
illustrates the different “degrees of homogeneity” in an image. See Fig. 1.7 for an
example. The steep slope from a lower plateau to a higher plateau in Fig. 1.7, left,
is a typical illustration of an “edge” in an image.

In image analysis we have to classify windows into categories such as “within
a homogeneous region” or “of low contrast”, or “showing an edge between two
different regions” or “of high contrast”. We define the contrast C(I) of an image 1
as the mean absolute difference between pixel values and the mean value at adjacent

1.1 Images in the Spatial Domain 7

Count: 10192 Min: 9
Mean: 133.711 Max: 255
StdDev: 55.391 Mode: 178 (180)

o 256

Count: 10192 Min: 11
Mean: 104.637 Max: 254
StdDev: 89.862 Mode: 23 (440)

Fig.1.6 Examples of two 104 x 98 windows in image Yan, shown with corresponding histograms
on the right. Upper window: pw, = 133.7 and ow, = 55.4. Lower window: pw, = 104.6 and
ow, =89.9

255r 255

Fig. 1.7 Left: A “steep slope from dark to bright”. Right: An “insignificant” variation. Note the
different scales in both 3D views of the two windows in Fig. 1.6

pixels

1
Ch =1 16 = ey (1.10)

(x,y)e

where [14(x,y) is the mean value of pixel locations adjacent to pixel location (x, y).

8 1 Image Data

800

800

Fig. 1.8 Left: Two selected image rows in the intensity channel (i.e. values (R + G + B)/3) of
image SanMiguel shown in Fig. 1.3. Right: Intensity profiles for both selected rows

For another example for using low-level statistics for simple image interpreta-
tions, see Fig. 1.4. The mean values of the Red, Green, and Blue channels show that
the shown colour image has a more significant Red component (upper right, with
a mean of 154) and less defining Green (lower left, with a mean of 140) and Blue
(lower right, with a mean of 134) components. This can be verified more in detail
by looking at the histograms for these three channels, illustrating a “brighter image”
for the Red channel, especially for the region of the house in the centre of the image,
and “darker images” for the Green and Blue channels in this region.

1.1.3 Spatial and Temporal Data Measures

The provided basic statistical definitions already allow us to define functions that
describe images, such as row by row in a single image or frame by frame for a given
sequence of images.

Value Statistics in an Intensity Profile When considering image data in a new
application domain, it is also very informative to visualize intensity profiles defined
by 1D cuts through the given scalar data arrays.

Figure 1.8 illustrates two intensity profiles along the x-axis of the shown grey-
level image. Again, we can use mean, variance, and histograms of such selected
Neois X 1 “narrow” windows for obtaining an impression about the distribution of
image values.

Spatial or Temporal Value Statistics Histograms or intensity profiles are exam-
ples for spatial value statistics. For example, intensity profiles for rows 1 to Ny
in one image I define a sequence of discrete functions, which can be compared with
the corresponding sequence of another image J.

As another example, assume an image sequence consisting of frames I, for t =
1,2,..., T,all defined on the same carrier §2. For understanding value distributions,
it can be useful to define a scalar data measure 2(t) that maps one frame /; into

1.1 Images in the Spatial Domain 9

Fig. 1.9 Top: A plot of two 100

data measures for a sequence 90
of 400 frames. Bottom: The 80
same two measures, but after 70
normalizing mean and 60
variance of both measures 50

81

97
113
129
145
161
177
193
209
225
241
257
273
289
305
321
337
353
369
385

81

97
113
129
145
161
177
193
209
225
241
257
273
289
305
321
337
353
369
385

one number and to compare then different data measures for the given discrete time
interval [1, 2, ..., T], thus supporting temporal value statistics.

For example, the contrast as defined in (1.10) defines a data measure A (t) =
C(I;), the mean as defined in (1.2) defines a data measure .# (t) = j,, and the
variance as defined in (1.3) defines a data measure ¥ (¢) = 012,.

Figure 1.9, top, illustrates two data measures on a sequence of 400 images. (The
used image sequence and the used data measures are not of importance in the given
context.) Both measures have their individual range across the image sequence,
characterized by mean and variance. For a better comparison, we map both data
measures onto functions having identical mean and variance.

Normalization of Two Functions Let 1 and oy be the mean and standard de-
viation of a function f. Given are two real-valued functions f and g with the same

discrete domain, say defined on arguments 1, 2, ..., T, and non-zero variances. Let
o o
o="Spu;—p, and B=-L (1.11)
O'f Ug
Gnew(x) = B(g(x) +) (1.12)

As a result, the function g, has the same mean and variance as the function f.

10 1 Image Data

Fig. 1.10 Edges, or visual silhouettes, have been used for thousands of years for showing the
“essential information”, such as in ancient cave drawings. Left: Image Taroko showing historic
drawings of native people in Taiwan. Middle: Segment of image Aussies with shadow silhouettes
recorded on top of building Q1, Goldcoast, Australia. Right: Shopping centre in Shanghai, image
OldStreet

Distance Between Two Functions Now we define the distance between two real-

valued functions defined on the same discrete domain, say 1,2,...,7:
1 7
di(f.9) == |F () —gw) (1.13)
x=1
1| <)
d(f,8) =~ ;(f(x) —g(x)) (1.14)

Both distances are metrics thus satisfying the following axioms of a metric:
1. f=giffd(f,g) =0,

2. d(f., g) =d(g, f) (symmetry), and

3. d(f,g) <d(f,h)+d(h,g) for a third function & (triangular inequality).

Structural Similarity of Data Measures Assume two different spatial or tem-
poral data measures % and ¢ on the same domain 1,2,...,7. We first map ¥
into %,.,, such that both measures have now identical mean and variance and then
calculate the distance between .% and %,.,, using either the L;- or L;-metric.

Two measures % and ¥ are structurally similar iff the resulting distance between
F and 9, is close to zero. Structurally similar measures take their local maxima
or minima at about the same arguments.

1.1.4 Step-Edges

Discontinuities in images are features that are often useful for initializing an image
analysis procedure. Edges are important information for understanding an image
(e.g. for eliminating the influence of varying illumination); by removing “non-edge”
data we also simplify the data. See Fig. 1.10 for an illustration of the notion “edge”
by three examples.

1.1 Images in the Spatial Domain 1

Fig. 1.11 Illustration for the step-edge model. Left: Synthetic input images. Right: Intensity pro-
files for the corresponding images on the left. Top to bottom: 1deal step-edges, linear edge, smooth
edge, noisy edge, thin line, and a discontinuity in shaded region

Discontinuities in images can occur in small windows (e.g. noisy pixels) or define
edges between image regions of different signal characteristics.

What Is an Edge? Figure 1.11 illustrates a possible diversity of edges in images
by sketches of 1D cuts through the intensity profile of an image, following the step-
edge model. The step-edge model assumes that edges are defined by changes in local
derivatives; the phase-congruency model is an alternative choice, and we discuss it
in Sect. 1.2.5.

After having noise removal performed, let us assume that image values represent
samples of a continuous function / (x, y) defined on the Euclidean plane R2, which
allows partial derivatives of first and second order with respect to x and y. See
Fig. 1.12 for recalling properties of such derivatives.

Detecting Step-Edges by First- or Second-Order Derivatives Figure 1.12 illus-
trates a noisy smooth edge, which is first mapped into a noise-free smooth edge (of
course, that is our optimistic assumption). The first derivative maps intervals where
the function is nearly constant onto values close to 0 and represents then an increase

12 1 Image Data

Intensity profile of an input image After noise removal

First-order derivative V Second-order derivative ,

Fig. 1.12 Tllustration of an input signal, signal after noise removal, first derivative, and second
derivative

y

y

Fig. 1.13 Left: Synthetic input image with pixel location (x, y). Right: Illustration of tangential
plane (in green) at pixel (x, y, I(x,y)), normal n = [a, b, 117, which is orthogonal to this plane,
and partial derivatives a (in x-direction) and b (in y-direction) in the left-hand Cartesian coordinate
system defined by image coordinates x and y and the image-value axis u

or decrease in slope. The second derivative just repeats the same taking the first
derivative as its input. Note that “middle” of the smooth edge is at the position of
a local maximum or local minimum of the first derivative and also at the position
where the second derivative changes its sign; this is called a zero-crossing.

Image as a Continuous Surface Intensity values in image / can be understood
as defining a surface having different elevations at pixel locations. See Fig. 1.13.
Thus, an image I represents valleys, plateaus, gentle or steep slopes, and so forth in
this interpretation. Values of partial derivatives in x- or y-direction correspond to a
decrease or increase in altitude, or staying at the same height level. We recall a few
notions used in mathematical analysis for describing surfaces based on derivatives.

1.1 Images in the Spatial Domain 13

First-Order Derivatives The normal n is orthogonal to the tangential plane at
a pixel (x,y, I(x,y)); the tangential plane follows the surface defined by image
values I (x, y) on the xy-plane. The normal has an angle y with the image-value
axis.

The gradient

(1.15)

a1 817"
VIi=gradl =

ax’ oy
combines both partial derivatives at a given point p = (x, y). Read V I as “nabla I”.

To be precise, we should write [grad f](p) and so forth, but we leave pixel location
p out for easier reading of the formulae.

The normal
al ol T
=|—, —,+1 1.16
n [ax . +] (1.16)

can point either into the positive or negative direction of the u-axis; we decide here
for the positive direction and thus +1 in the formal definition. The slope angle

1
y = arccos—— (1.17)
Inl2

is defined between the u-axis and normal n. The first-order derivatives allow us to
calculate the length (or magnitude) of gradient and normal:

AN EIAN aIN> (oI
lgrad o=,/ —) + (=) and |nf= /(=) +(—) +1
ox ay ox ay

(1.18)

Following Fig. 1.12 and the related discussion, we conclude that:

Observation 1.1 It appears to be meaningful to detect edges at locations where the
magnitudes |grad I|» or ||n|2 define a local maximum.

Second-Order Derivatives Second-order derivatives are combined into either the
Laplacian of I, given by

AI—V21—821+821 (1.19)
- T ax2 9y ’
or the quadratic variation of I, given by?
921\? 1 * [921\?
— 2 — 1.20
() ~(5;) +(5%) (20
2To be precise, a function I satisfies the second-order differentiability condition iff (i) =

dxdy

(Ba;alx). We simply assumed in (1.20) that / satisfies this condition.

14 1 Image Data

Fig. 1.14 The grey-level image WuhanU on the left is mapped into an edge image (or edge map)
in the middle, and a coloured edge map on the right; a colour key may be used for illustrating direc-
tions or strength of edges. The image shows the main administration building of Wuhan University,
China

Note that the Laplacian and quadratic variation are scalars and not vectors like the
gradient or the normal. Following Fig. 1.12 and the related discussion, we conclude
that:

Observation 1.2 It appears to be meaningful to detect edges at locations where the
Laplacian A 1 or the quadratic variation define a zero-crossing.

Edge Maps and Ways for Detecting Edges Operators for detecting “edges” map
images into edge images or edge maps; see Fig. 1.14 for an example. There is no
“general edge definition”, and there is no “general edge detector”.

In the spatial domain, they can be detected by following the step-edge model,
see Sects. 2.3.3 and 2.4, or by applying residuals with respect to smoothing, see
Sects. 2.3.2 and 2.3.5.

Discontinuities can also be detected in the frequency domain, such as by a high-
pass filter as discussed in Sect. 2.1.3, or by applying a phase-congruency model; see
Sect. 1.2.5 for the model and Sect. 2.4.3 for an algorithm using this model.

1.2 Images in the Frequency Domain

The Fourier transform defines a traditional way for processing signals. This section
provides a brief introduction into basics of the Fourier transform and Fourier filter-
ing, thus also explaining the meaning of “high-frequency information” or of “low-
frequency information” in an image. The 2D Fourier transform maps an image from
its spatial domain into the frequency domain, thus providing a totally different (but
mathematically equivalent) representation.

1.2.1 Discrete Fourier Transform
The 2D Discrete Fourier Transform (DFT) maps an Ny;s X Nyoys scalar image

I into a complex-valued Fourier transform I. This is a mapping from the spatial
domain of images into the frequency domain of Fourier transforms.

1.2 Images in the Frequency Domain 15

Insert 1.2 (Fourier and Integral Transforms) J.B.J. Fourier (1768—1830) was
a French mathematician. He analysed series and integrals of functions that
are today known by his name.

The Fourier transform is a prominent example of an integral transform. It
is related to the computationally simpler cosine transform, which is used in
the baseline JPEG image encoding algorithm.

Fourier Transform and Fourier Filtering—An Outlook The analysis or changes
of data in the frequency domain provide insights into the given image /. Changes in
the frequency domain are Fourier filter operations. The inverse 2D DFT then maps
the modified Fourier transform back into the modified image.

The whole process is called Fourier filtering, and it allows us, for example, to
do contrast enhancement, noise removal, or smoothing of images. 1-dimensional
(1D) Fourier filtering is commonly used in signal theory (e.g., for audio processing
in mobile phones), and 2-dimensional (2D) Fourier filtering of images follows the
same principles, just in 2D instead of in 1D.

In the context of the Fourier transform we assume that the image coordinates run
from O to N¢ois — 1 for x and from O to N5 — 1 for y; otherwise, we would have
touse x — 1 and y — 1 in all the formulas.

2D Fourier Transform Formally, the 2D DFT is defined as follows:

1 Ncolx7] Nyows—1 Xu yv
Iu,v) = ——— I(x,y)~exp[—i2n< +)}
Ncols ' was Z Z Ncols was

x=0 y=0
(1.21)
for frequencies u =0,1, ..., Neois — 1 and v =0, 1, ..., Nyyps — 1. The letter i =
/=1 denotes (here in the context of Fourier transforms only) the imaginary unit of
complex numbers.? For any real «, the Eulerian formula

exp(ia) = €' =cosa +i - sina (1.22)

demonstrates that the Fourier transform is actually a weighted sum of sine and co-
sine functions, but in the complex plane. If « is outside the interval [0, 27), then it
is taken modulo 27 in this formula. The Eulerian number e = 2.71828 ... = exp(1).

3Physicists or electric engineers use j rather than i, in order to distinguish from the intensity i in
electricity.

16 1 Image Data

Insert 1.3 (Descartes, Euler, and the Complex Numbers) R. Descartes
(1596-1650), a French scientist with a great influence on modern mathe-
matics (e.g. Cartesian coordinates), still called negative solutions of quadric
equations a - x> +b - x + ¢ =0 “false” and other solutions (that is, com-
plex numbers) “imaginary”. L. Euler (1707-1783), a Swiss mathematician,
realized that

“—cosa+i-sina

for e =1lim,_ (1 + %)" = 2.71828. ... This contributed to the acceptance
of complex numbers at the end of the 18th century.

Complex numbers combine real parts and imaginary parts, and those new
entities simplified mathematics. For instance, they made it possible to formu-
late (and later prove) the Fundamental Theorem of Algebra that every poly-
nomial equation has at least one root. Many problems in calculus, in physics,
engineering, and other applications can be solved most conveniently in terms
of complex numbers, even in those cases where the imaginary part of the so-
lution is not used.

1.2.2 Inverse Discrete Fourier Transform

The inverse 2D DFT transforms a Fourier transform I back into the spatial domain:

L‘olv_l wacfl
yv
I(x,y)= Z Z I(u, v)exp|:l2rr<N was>] (1.23)

cols

Note that the powers of the root of unity are here reversed compared to (1.21) (i.e.,
the minus sign has been replaced by a plus sign).

Variants of Transform Equations Definitions of DFT and inverse DFT may vary.
We can have the plus sign in the DFT and the minus sign in the inverse DFT.

We have the scaling factor 1/N,ois - Nyows in the 2D DFT and the scaling fac-
tor 1 in the inverse transform. Important is that the product of both scaling fac-
tors in the DFT and in the inverse DFT equals 1/N¢yjs - Nyows. We could have split

1/Ncois - Nrows into two scaling factors, say, for example, 1/+/N¢ois - Nyows in both
transforms.

Basis Functions Equation (1.23) shows that we represent the image I now as a
weighted sum of basis functions exp(icr) = cosa + i sina being 2D combinations
of cosine and sine functions in the complex plane. Figure 1.15 illustrates five of such
basis functions sin(u# + nv) for the imaginary parts b of complex values a + ib rep-
resented in the uv frequency domain; for the real part a, we have cosine functions.
The values I(u, v) of the Fourier transform of I in (1.23), called the Fourier
coefficients, are the weights in this sum with respect to the basis functions exp(i).
For example, point noise or edges require sufficiently large coefficients for high

1.2 Images in the Frequency Domain 17

Fig. 1.15 Top, left: Waves on water. Top, middle, to bottom, right: 2D waves defined by
sin(u + nv), for n = 1,...,5, having decreasing wave length (thus being of higher frequency)
for an increase in n

frequency (i.e. short wave length) components, to be properly represented in this
weighted sum.

1.2.3 The Complex Plane

We provide a brief discussion of elements, contributing to the DFT definition in
(1.21), for supporting a basic understanding of this very fundamental signal trans-
formation.

It is common practice to visualize complex numbers a + i - b as points (a, b) or
vectors [a, b]T in the plane, called the complex plane. See Fig. 1.16.

Calculus of Complex Numbers Letz; =a;+i-bj and 72 =ar +i - by be two
complex numbers, with i = +/—1, real parts a; and a», and imaginary parts b; and
b,y. We have that

+zn=(@+a)+i-(b1+by) (1.24)
and
2122 = (a1a2 — b1by) +1i - (a1by + azby) (1.25)

The sum or the product of two complex numbers is again a complex number, and
both are invertible (i.e. by a difference or a multiplicative inverse; see z~! below).

18 1 Image Data

Fig. 1.16 A unit circle in the Imaginary part
complex plane with all the 4
powers of W = i2m/24. The W WS s

figure also shows one
complex number z =a +ib
having (, o) as polar
coordinates

Real part

The norm of a complex number z = a +i - b coincides with the L,-length of the
vector [a, b] " (starting at the origin [0, 0] "); we have that ||z|> = Va2 + b2.

The conjugate z* of a complex number z = a + i - b is the complex number
a —i-b. We have that (z*)* = z. We also have that (z1 - z2)* = z} - 25, and, assuming
that z #0, 27! = ||zll5 2 - z*.

Complex Numbers in Polar Coordinates A complex number z can also be writ-
ten in the form z = r - ¢/®, with r = ||z||» and o (the complex argument of z) is
uniquely defined modulo 27 if z # 0. This maps complex numbers into polar coor-
dinates (r,).

A rotation of a vector [c,d]" [i.e., starting at the origin [0, 0177 about an angle
« is the vector [a, b]T, with

a+i-b=e% (c+i-d) (1.26)

Roots of Unity The complex number Wy, = exp[i2w/M] defines the Mth root

of unity; we have WJ{‘,,” = W/%,IM = W;,IM = ... = 1. Assume that M is a multiple of
4. Then we have that W9 = 14i-0, Wol/* =0+i -1, Wir’> = —1+4i -0, and
3IM/4

Wt =04i-(~1).

Insert 1.4 (Fast Fourier Transform) The properties of Mth roots of unity, M
a power of 2, supported the design of the original Fast Fourier Transform
(FFT), a time-efficient implementation of the DFT.

1.2 Images in the Frequency Domain 19

The design of the FFT has an interesting history, see [J.M. Cooley, P.A. Lewis,
P.D. Welch. History of the fast Fourier transform. Proc. IEEE 55 (1967), pp. 1675-1677].
Origins date back to C.F. Gauss (see Insert 2.4). The algorithm became pop-
ular by the paper [J.M. Cooley, J.W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Math. Comp. 19 (1965), pp. 297-301].

The FFT algorithm typically performs “in place”: the original image is
used for initializing the Neois X Nyows matrix of the real part, and the matrix
of the imaginary part is initialized by zero at all positions. Then the 2D FFT
replaces all values in both matrices by 2D DFT results.

Figure 1.16 shows all the powers of the 24th root of unity, Way = ¢/>*/?*. In

: 0 0 1 . o 6
this case we have, for example, that Wy=e = 1, Wy, = cos % +isin % Wy, =
cos % +i sin% =i, Wzlf =cosmw+isinmt =—1,and Wzlf = cos 37”+i sin%" = —i.

Equation (1.21) can be simplified by using the notion of roots of unity. It follows
that

1 Neois—1 Nyoyws—1

Wwn)=o—— 37 3 10y Wilh - Wyt (1.27)
Neois - Nrows =0 =0 cols s

For any root of unity W,, =i2x/n, n > 1, and for any power m € Z, it follows that

|wirl, = e /™|, = \/cos(2nm/n)2 +sinQrm/n)? =1 (1.28)

Thus, all those powers are located on the unit circle, as illustrated in Fig. 1.16.

1.2.4 Image Data in the Frequency Domain

The complex values of the 2D Fourier transform are defined in the uv frequency
domain. The values for low frequencies u or v (i.e. close to 0) represent long wave-
lengths of sine or cosine components; values for large frequencies u or v (i.e. away
from zero) represent short wavelengths. See Fig. 1.15 for examples for sine waves.

Interpretation of Matrix I Low frequencies represent long wavelengths and thus
homogeneous additive contributions to the input image /. High frequencies repre-
sent short wavelengths (and thus local discontinuities in 7 such as edges or intensity
outliers).

Directional patterns in I, for example lines into direction B or 8 + m, create
value distributions in I in the orthogonal direction (i.e., in direction 8 + 7 /2 in the
assumed line example).

In images we have the origin at the upper left corner (according to the assumed
left-hand coordinate system; see Fig. 1.1). The values in the matrix I can be re-
peated periodically in the plane, with periods N,,;s and Ny, This infinite number

20 1 Image Data

Fig. 1.17 The shaded area is
the Neois X Nyows area of
matrix I, and it is surrounded o ~
by eight more copies of I in

this figure. The origins are ,.-'/ N\ / h
always at the upper left { [e | low [©

corner. Due to the periodicity, %, o / N @
low frequencies are in the 1 _—— igh \M..______
shown ellipses and thus in the ¥ s 3 =S / .
four corners of the matrix I; low low N
the highest frequencies are at { [® 1 [®

the centre of the matrix I \) '\\ ;5

of copies of the matrix I tessellates the plane in the form of a regular rectangular
grid; see Fig. 1.17.

If we want to have the origin (i.e. the low frequencies) in the centre locations
of the Fourier transform, then this can be achieved by a permutation of the four
quadrants of the matrix. Alternatively (as not difficult to verify mathematically),
this shift of I into a centred position can also be achieved by first multiplying all
values I (x, y) by (—1)**7, before performing the 2D DFT.

Three Properties of the DFT We consider the 2D Fourier transform of an im-
age I. It consists of two N y;s X Nyoys arrays representing the real (i.e., the as) and
the imaginary part (i.e., the bs) of the obtained complex numbers a + i - b. Thus,
the Neois X Nyows real data of the input image I are now “doubled”. But there is an
important symmetry property:

I(Ncois — u, Nyows — v) =1(—u, —v) =I(u, U)* (1.29)

(recall: the number on the right is the conjugate complex number). Thus, actually
half of the data in both arrays of I can be directly obtained from the other half.
Another property is that

Neots—1 Nrows—1

1(0,0)=; Z Z 1(x,y) (1.30)

Neois - Nyows =0 y=0

which is the mean of /. Because [has only real values, it follows that the imaginary
part of I(0, 0) is always equal to zero. Originating from applications of the Fourier
transform in Electrical Engineering, the mean I(0, 0) of the signal is known as the
DC component of 1, meaning direct current. For any other frequency (u, v) # (0, 0),
I(u, v) is called an AC component of I, meaning alternating current.

As a third property, we mention Parseval’s theorem

1
T 2l =3l v (131)
2

2

1.2 Images in the Frequency Domain 21

which states identities in total sums of absolute values for the input image / and
the Fourier transform I; the placement of the scaling factor WI‘ corresponds to our
chosen way of having this scaling factor only in the forward transform.

Insert 1.5 (Parseval and Parseval’s Theorem) The French mathematician
M.-A. Parseval (1755-1836) is famous for his theorem that the integral of
the square of a function is equal to the integral of the square of its trans-
form, which we formulate in (1.31) in discrete form, using sums rather than
integrals.

Spectrum and Phase The L)-norm, magnitude or amplitude |z|2 = r =
v/a? +b?, and the complex argument or phase a = atan2(b, a) define complex
numbers z =a + i - b in polar coordinates (r, Ol).4 The norm receives much atten-
tion because it provides a convenient way of representing the complex-valued matrix
I in the form of the spectrum |/I||. (To be precise, we use ||I||(u, v) = [|I(u, v)||, for
all N¢ois - Nyows frequencies (u, v).)

Typically, when visualizing the spectrum ||I|| in the form of a grey-level image,
it would be just black, just with a bright dot at the origin (representing the mean).
This is because all values in I are typically rather small. For better visibility, the
spectrum is normally log-transformed into log;o(1 + [|[I(«, v)||2). See Fig. 1.18.

Visualizations of the phase components of I are not so common,; this is actually
not corresponding to the importance of phase for representing information present
in an image.

The image I in the lower example in Fig. 1.18 has a directional pattern; ac-
cordingly, it is rotated by /2 in the spectrum. The upper example does not have a
dominant direction in / and thus also no dominant direction in the spectrum.

Figure 1.19 illustrates that uniform transforms of the input image, such as adding
a constant to each pixel value, histogram equalization, or value inversion do not
change the basic value distribution pattern in the spectrum.

Fourier Pairs An input image and its Fourier transform define a Fourier pair. We
show some examples of Fourier pairs, expressing in brief form some properties of
the Fourier transform:
Function I < its Fourier transform I
I(x,y) & I(u,v)
I+G(x,y) < ToG(u,v)

4The function atan2 is the arctangent function with two arguments that returns the angle in the
range [0, 27r) by taking the signs of the arguments into account.

22 1 Image Data

Fig.1.18 Left: Original images Fibers and Straw. Right: Centred and log-transformed spectra
for those images

, 't

a-I(x,y)+b-J(x,y) < a-I(u,v)+b-Ju,v)

N, N,
10y (D & 1(u 1 Neots W)

The first line expresses just a general relationship. The second line says that the
Fourier transform of a convolution of I with a filter kernel G equals a point-by-point
product of values in the Fourier transforms of / and G; we discuss this important
property, known as the convolution theorem further below; it is the theoretical basis
for Fourier filtering.

The third line expresses the mentioned shift of the Fourier transform into a cen-
tred position if the input image is multiplied by a chessboard pattern of +1 and —1.

1.2 Images in the Frequency Domain 23

Fig. 1.19 Left, top to bottom: Original low-quality jpg-image Donkey (in the public domain),
after histogram equalization (showing jpg-artefacts), and in inverted grey levels. Right: The corre-
sponding spectra do not show significant changes because the “image structure” remains constant

24 1 Image Data

Fig. 1.20 Simple geometric shapes illustrating that the main directions in an image are rotated by
90° in the spectrum (e.g., a vertical bar also generates a horizontal stripe in its spectrum)

The fourth line is finally the brief expression for the important property that the
Fourier transform is a linear transformation. Rotations of main directions are illus-
trated in Fig. 1.20. The additive behaviour is illustrated in the upper right example
in Fig. 1.21.

1.2.5 Phase-Congruency Model for Image Features

By phase congruency (or phase congruence) we quantify the correspondence of
phase values calculated in an image window defined by a reference point p, ex-
pressed below by a measure Zjgeal_phase(P)-

Local Fourier Transform at Image Features Equation (1.23) describes the input
signal in the frequency domain as a sum of sine and cosine waves. Figure 1.22
illustrates this for a 1D signal: The shown step-curve is the input signal, and it is
decomposed in the frequency domain into a set of sine and cosine curves whose
addition defines (approximately) the input signal. At the position of the step, all
those curves are in the same phase.

When discussing the Fourier transform, we noticed that real-valued images are
mapped into a complex-valued Fourier transform and that each complex number z =
a + +/—1b is defined in polar coordinates by the amplitude |z[> = r = /a2 + b2

1.2 Images in the Frequency Domain 25

Fig. 1.21 Top, left: The ideal wave pattern generates non-negative values only at v = 0. Bottom,
left: The diagonal wave pattern is influenced by the “finite-array effect”. Top, right: For the overlaid
diagonal wave pattern, compare with the DFT spectrum shown in Fig. 1.19. Bottom, right: We
apply the shown (very simple) mask in the frequency domain that blocks all the values along the
black diagonal; the inverse DFT produces the filtered image on the right; the diagonal pattern is
nearly removed

Fig. 1.22 1D signal

describing a step (in bold " UV
grey) and frequency
components (in shades of
brown to orange) whose
addition defines the blue
signal, which approximates
the ideal step
VO VAN

and phase o = arctan(b/a). We do not use i for the imaginary unit here because we
will use it as an index in the sum below. According to (1.30), we have b = 0 at the
origin in the frequency domain, i.e. the phase o = 0 for the DC component.

Consider a local Fourier transform, centred at a pixel location p = (x, y) in
image I, using a (2k 4+ 1) x (2k + 1) filter kernel of Fourier basis functions:

k k
1
J(M, U)=m E E I(x—f—l,y-l—])'WZkl_:_Al'Wzk{i_Ul (132)
i=—k j=—k

26 1 Image Data

Fig. 1.23 Addition of four Imaginary part 4
complex numbers represented
by polar coordinates (ry,, otj,)
in the complex plane

Real part

Ignoring the DC component that has the phase zero (and is of no importance for
locating an edge), the resulting Fourier transform J is composed of n = (2k+1)2 — 1
complex numbers z;, each defined by the amplitude r, = ||z || and the phase oy,
forl <h<n.

Figure 1.23 illustrates an addition of four complex numbers represented by the
amplitudes and phases, resulting in a complex number z. The four complex numbers
(rn, o) are roughly in phase, meaning that the phase angles o« do not differ much
(i.e. have a small variance only). Such an approximate identity defines a high phase
congruency, formally defined by the property measure

lzll2
e@ideal_phase(p) = m (1.33)
h=1

with z being the sum of all n complex vectors represented by (r,, o). We have that
Pideal_phase(p) = 1 defines perfect congruency, and Pjeqi_phase(p) = 0 occurs for
perfectly opposing phase angles and amplitudes.

Observation 1.3 Local phase congruency identifies features in images. Under the
phase congruency model, step-edges represent just one narrow class of an infinite
range of feature types that can occur. Phase congruency marks lines, corners, “roof
edges”, and a continuous range of hybrid feature types between lines and steps.

Insert 1.6 (Origin of the Phase-Congruency Measure) The measure of phase
congruency was proposed in [M. C. Morrone, J. R. Ross, D. C. Burr, and R. A. Owens.
Mach bands are phase dependent. Nature, vol. 324, pp. 250-253, November 1986] follow-
ing a study on relations between features in an image and Fourier coefficients.

See Fig. 1.24 for an example when applying the Kovesi algorithm (reported later
in Sect. 2.4.3), which implements the phase-congruency model.

1.3 Colour and Colour Images 27

Fig. 1.24 Left: Original image AnnieYukiTim. Right: Edge map resulting when applying the
Kovesi algorithm

1.3 Colour and Colour Images

Perceived colour is not objectively defined. Colour perception varies for people,
and it depends on lighting. If there is no light, then there is no colour, such as, for
example, inside of a non-transparent body. Colour can be an important component
of given image data, and it is valuable for visualizing information by using false
colours (e.g., see Fig. 7.5). Human vision can only discriminate a few dozens of
grey levels on a screen, but hundreds to thousands of different colours.

This section informs about the diversity of interesting subjects related to the topic
“colour” and provides details for the RGB and HSI colour model such that you may
use those two when analyzing colour images, or when visualizing data using the
colour as an important tool.

1.3.1 Colour Definitions

An “average human” perceives colour in the visible spectrum as follows (recall that

1 nm = 1 nanometer = 10~ m):

1. Red (about 625 to 780 nm) and Orange (about 590 to 625 nm) for the long wave-
lengths of the visible spectrum [the invisible spectrum continues with Infrared
IR)];

2. Yellow (about 565 to 590 nm), Green (about 500 to 565 nm), and Cyan (about
485 to 500 nm) in the middle range of the visible spectrum;

3. Blue (about 440 to 485 nm) for the short wavelengths, for example visible on
the sky during the day when the sun is high up, and there is neither air pollution
nor clouds (but the light is broken into short wavelengths by the multi-layered
atmosphere); and, finally, also

4. Violet (about 380 to 440 nm) for very short wavelengths of the visible spectrum,
before it turns into the invisible spectrum with Ultraviolet (UV).

28 1 Image Data

Insert 1.7 (Retina of the Human Eye) The photoreceptors (some 120 million
rods for luminosity response and some 6 to 7 million cones) in the retina of
the human eye are concentrated towards the fovea.

Iris Pupil Cornea

Retina
Choroid

Sclera

Experimental evidence (from 1965 and later) suggests that there are three
different types of colour-sensitive cones corresponding roughly to Red (about
64 % of the cones), Green (about 32 %), and Blue (about 2 %). Apart from
these unbalanced values, blue sensitivity is actually comparable to the others.
Visible colour is modelled by tristimulus values for Red, Green, and Blue
components of the visible light.

Tristimulus Values The CIE (Commission Internationale de I’Eclairage = Inter-
national Commission on Illumination) has defined colour standards since the 1930s.

A light source creates an energy distribution L(X) for the visible spectrum for
wavelengths 380 < A < 780 of monochromatic light. See Fig. 1.25, left, for an ex-
ample. Such an energy distribution is mapped into three tristimulus values X, Y, and
Z by integrating a given energy distribution function L weighted by given energy
distribution functions X, y, and 7 as follows:

700
X:/ L()x(A)dA (1.34)
400

700
Y:/ L()y(A)da (1.35)
400

1.3 Colour and Colour Images 29

4
2.0

\/

>

380 550 780 380 500 550 600 700 780

Fig. 1.25 Left: Sketch of an energy distribution curve L(A) of an incandescent house lamp, for
wavelengths A between 380 nm and 780 nm for monochromatic light. Right: The energy distri-
bution functions x(A) (blue), y(A) (green), and z(X) (red) for defining tristimulus values X, Y,
and Z

700
Z= / L)z (A)dA (1.36)
400

The weighting functions X, y, and 7 have been defined by the CIE within the visible
spectrum. The cut-offs on both ends of those weighting functions do not correspond
exactly to human-eye abilities to perceive shorter (down to 380 nm) or larger (up
to 810 nm) wavelengths. The three curves have also been scaled such that their
integrals are all equal:

700 700 700
/ x(A)dr = / yA)da = / zZ(A)da (1.37)
4 400 400

00

For example, the value Y models the brightness (= intensity) or, approximately,
the green component of the given distribution L. Its energy distribution curve y
was derived by modelling the luminosity response of an “average human eye”. See
Fig. 1.25, right.

The tristimulus values X, Y, and Z define the normalized x y-parameters

y (1.38)

TXivr+z T X+r+z

Assuming that Y is given, we are able to derive X and Z from x and y. Together
with z=Z/(X + Y + Z) we would have x + y 4+ z = 1; thus, we do not need this
third value z.

The xy Colour Space of the CIE Parameters x and y define the 2D CIE Colour
Space, not representing brightness, “just” the colours. The xy colour space is
commonly represented by a chromaticity diagram as shown in Fig. 1.26. It is
0 < x,y < 1. This diagram only shows the gamut of human vision, that is, the
colours that are visible to the average person; the remaining white parts in the square
shown in the diagram are already in the invisible spectrum.

30 1 Image Data

Fig. 1.26 Chromaticity
diagram for the xy CIE
Colour Space

The convex outer curve in the diagram contains monochromatic colours (pure
spectral colours). The straight edge at the bottom (i.e. the purple line) contains
colours that are not monochromatic. In the interior of the human vision gamut, there
are less saturated colours, with white at the centre E = (0.33, 0.33). The triangle
displayed is the gamut of the RGB primaries, as defined by the CIE by standardized
wavelengths of 700 nm for Red, 546.1 nm for Green, and 435.8 nm for Blue; the
latter two are monochromatic lines of a mercury vapour discharge.

Insert 1.8 (Different Gamuts of Media) The gamut is the available colour
range (such as “perceivable”, “printable”, or “displayable”). It depends on
the used medium. An image on a screen may look very different from a printed
copy of the same image because screen and printer have different gamuts. You

might see a warning like that in your image-editing system:

L)
a (Cancel)

Warning: out of gamut for printing

As a rule of thumb, transparent media (such as a TV, a computer screen,
or slides) have potentially a larger gamut than printed material. The (very
rough!) sketch above just indicates this. For common gamuts (also called

1.3 Colour and Colour Images 31

Fig. 1.27 A dot pattern as
used in an Ishihara colour
test, showing a 5 for most of
the people, but for some it
shows a 2 instead

colour spaces), you may check, for example, for DCI-P3, Rec. 709, or sRGB.
Mapping images from one gamut to another is an important subject in colour
image processing.

1.3.2 Colour Perception, Visual Deficiencies, and Grey Levels

When designing figures for reports, publications, or presentations, it is worthwhile
to think about a good choice of a colour scheme, such that all of the audience can
see best what is supposed to be visualized.

Red-Green Colour Blindness Two energy distributions L () and L2 (X) for the
visible spectrum may be different curves, but a human H may perceive both as
identical colours, formally expressed by

L2, (1.39)

Colour blindness means that some colours cannot be distinguished. In about 99 %
of cases this is red—green colour blindness. Total colour blindness is extremely rare
(i.e. seeing only shades of grey). Estimates for red—green colour blindness for people
of European origin are about 8—12 % for males and about 0.5 % for females.

Normal colour vision sees a 5 revealed in the dot pattern in Fig. 1.27, but an
individual with red—green colour blindness sees a 2.

Observation 1.4 When using red—green colours in a presentation, the above-men-
tioned percentage of your audience with European origin might not see what you
are intending to show.

32 1 Image Data

Insert 1.9 (Dalton, Ishihara, and the Ishihara Colour Test) Red—green colour
blindness was discovered by the chemist J. Dalton (1766—1844) in himself,
and it is usually called Daltonism. The Japanese ophthalmologist S. Ishihara
(1879-1963) and his assistant (who was a colour-blind physician) designed
test patterns for identifying colour blindness.

Algebra of Colour Vision Adding two colours L and C means that we are super-
imposing both light spectra L(A) and C(A). Experimental evidence (R.P. Feynman
in 1963) has shown that

L+cZ,+c it 2L, (1.40)
aliZar, ifL1Z1,and0<a<1 (1.41)

These equations define (for a test person H) an algebra of colour perception, with
general linear combinations aL 4 bC as elements.

If you are interested in doing related experiments, then be aware that a computer
screen uses gamma correction for some y > 0. When specifying colour channel
values u = k/2% (e.g. for R, G, and B channels), the presented values on screen
are actually equal to u”, where y < 1 defines the gamma compression, and y > 1
defines the gamma expansion. The perception of changes in colour values will be
influenced by the given y.

Insert 1.10 (Benham Disk and Colour as a Purely Visual Sensation) A typical
colour-based visual illusion is the “Benham disk” (of a nineteenth-century

toymaker):

/

1

{{

N

1.3 Colour and Colour Images 33

Fig. 1.28 The four primary
colours for colour perception 1

When spinning this disk (at various speeds, clockwise or counter-clockwise)
under bright incandescent light or sunlight, different “bands” of colour ap-
pear.

An explanation is given on www.exploratorium.edu/snacks/, starting with
the words: “There are three types of cones (in the eye). One is most sensitive
to red light, one to green light, and one to blue light. Each type of cone has a
different latency time, the time it takes to respond to a colour, and a different
persistence of response time, the time it keeps responding after the stimulus
has been removed.”

At the end it reads: “The explanation of the colours produced by Benham’s
disk is more complicated than the simple explanation outlined above.”

Primary Colour Perceptions Humans perceive colour differently; “colour” is a
psychological phenomenon. But there appears to be agreement that Yellow (top row
in the colour pyramid in Fig. 1.28), Red (right), Green (left), and Blue (bottom)
define the four primary colour perceptions.

For avoiding possible green-red misperceptions, there is, for example, the option
to use yellow, red, and blue as base colours in presentations.

Grey Levels Grey levels are not colours; they are described by the luminance (the
physical intensity) or the brightness (the perceived intensity). A uniform scale of
grey levels or intensities is common, such as

up=k/2% for0<k <2 (1.42)

http://www.exploratorium.edu/snacks/

34 1 Image Data

where ug = 0 represents black, and uz«_; =~ 1 represents white. We decided in
Chap. 1 to represent such intensities by integers 0, 1, ..., Gnax = 2% — 1 rather than
by fractions between O and 1.

Both squares in Fig. 1.29, top, have the same constant intensity. Human vision
perceives the ratio of intensities. Grey value ratios are 5:6 in all the three cases
shown in Fig. 1.29, bottom, for a smaller and brighter rectangle in a larger and darker
rectangle. It is visually very difficult to discriminate between slightly different very
dark grey levels. The human eye has better abilities for noticing different very bright
grey levels.

Insert 1.11 (Visual Illusions Originating from Colour) They can originate
from motion, luminance or contrast, geometry, 3D space, cognitive effects,
specialized imaginations, and, of course, also from colour; see, for example,
www.michaelbach.de/ot/.

The strength of the illusion of the rotating snake by A. Kitaoka, shown above,
depends on contrast, background luminance, and viewing distance. Colour
enhances the illusion, but you may also try a grey-level version as well.

1.3.3 Colour Representations

Figure 1.4 shows an RGB colour image and its representation in three scalar chan-
nels, one for the Red, one for the Green, and one for the Blue component. The
used RGB colour representation model is additive: adding to a colour, which means

http://www.michaelbach.de/ot/

1.3 Colour and Colour Images 35

Fig. 1.29 Top: Two squares of identical intensity. Bottom: Three examples for grey-level ratios
of 5to6

Fig. 1.30 The RGB cube

spanned by the Red, Green,

and Blue coordinate axes,

illustrating one colour q in

the cube defined by a value Magenta
triple (R, G, B)

Red &
/ G uax Yellow

R

increasing values in its scalar representation, contributes to going towards White.
This is the common way for representing colours on a screen. Colour models used
for printing are subtractive: adding to a colour means adding more ink, which con-
tributes to going towards Black.

The RGB Space Assume that 0 < R, G, B < G« and consider a multi-channel
image I with pixel values u = (R, G, B). If Gpax = 255, then we have 16,777,216
different colours, such as u = (255, 0,0) for Red, u = (255, 255, 0) for Yellow,
and so forth. The set of all possible RGB values defines the RGB cube, a common
representation of the RGB colour space. See Fig. 1.30.

The diagonal in this cube, from White at (255, 255, 255) to Black at (0, 0, 0), is
the location of all grey levels (u, u, u), which are not colours. In general, a point
q = (R, G, B) in this RGB cube defines either a colour or a grey level, where the

36 1 Image Data

Black

Fig. 1.31 The intensity axis points along the grey-level diagonal in the RGB cube. For the cut
with the cube, we identify one colour (here, Red) as the reference colour. Now we can describe q
by the intensity (i.e. its mean value), hue, which is the angle with respect to the reference colour
(Red here, and, say, in counter-clockwise order), and saturation corresponding to the distance to
the intensity axis

mean

_R+G+B
- 3

M (1.43)

defines the intensity of colour or grey level q.

The HSI Space Consider a plane that cuts the RGB cube orthogonally to its grey-
level diagonal, with q = (R, G, B) incident with this plane but not on the diagonal
(see also Fig. 1.33). In an abstract sense, we represent the resulting cut by a disk,
ignoring the fact that cuts of such a plane with the cube are actually simple polygons.
See Fig. 1.31.

For the disk, we fix one colour for reference; this is Red in Fig. 1.31. The lo-
cation of q in the disk is uniquely defined by an angle H (the hue) and a scaled
distance S (the saturation) from the intersecting grey-level diagonal of the RGB
cube. Formally, we have

8 ifB<G .
H_{Zn—S FB=G with (1.44)
R— R—B
8 = arccos (G +() in [0,) (1.45)
2V (R—G)2+ (R - B)(G — B)
in{R, G, B
§—1_3. mnlR G B (1.46)
R+G+B

Altogether, this defines the HSI colour model. We represent intensity by M, to avoid
confusion with the use of / for images.

1.3 Colour and Colour Images 37

Example 1.2 (RGB and HSI Examples) Grey levels (u, u, u) with u # 0 have the
intensity M = u and the saturation S = 0, but the hue H remains undefined because
8 is undefined (due to division by zero). In the case of Black (0, 0, 0) we have the
intensity M = 0, and the saturation and hue remain undefined.

Besides these cases of points in the RGB cube representing non-colours, the
transformation of RGB values into HSI values is one-to-one, which means that we
can also transform HSI values uniquely back into RGB values. The hue and satura-
tion may represent RGB vectors with respect to an assumed fixed intensity.

Red (Gmax, 0, 0) has the intensity M = Gnax/3, the hue H = 0° (note: Red was
chosen to be the reference colour), and the saturation § = 1. We always have S =1
if R=0orG=0o0r B=0.

Green (0, Gax, 0) has the intensity M = Gpax/3 and the saturation S = 1; we
obtain that § = arccos(—0.5), thus § =27 /3 in [0, 7) and H =27 /3 because B =
0 < G = Gmax. Blue (0,0, Gpax) also leads to 6 = 2 /3, but H = 47 /3 because
B=Gnx>G=0.

Assume that we map S and H both linearly into the grey-level set {0, 1, ..., Gmax}
and visualize the resulting images. Then, for example, the hue value of (G nax, €1, €2)
can either be about black or white, just for minor changes in ¢; and &;. Why?
Fig. 1.32 illustrates this effect at the bottom, left.

Figure 1.32, top, left, shows one of the colour checkers used for testing colour
accuracy of a camera, to be used for computer vision applications. There are three
rows of very precisely (uniform) coloured squares numbered 1 to 18 and one row of
squares showing grey levels. When taking an image of the card, the lighting at this
moment will contribute to the recorded image. Assuming monochromatic light, all
the grey-level squares should appear equally in the channels for Red (not shown),
Green, Blue, and intensity. The bottom, right, image of the saturation channel il-
lustrates that grey levels have the saturation value zero assigned in the program. Of
course, there can be no “undefined” cases in a program. Note that the hue value for
reference colour Red (Square 15) also “jumps” from white to black, as expected.

Insert 1.12 (Itten and Colour Perception) J. Itten (1888-1967, Switzerland)
wrote the influential book “The Art of Colour”, which deals with contrast,
saturation, and hue and how colour affects a person’s psychology. In brief, he
assigned the following meanings:

Red: resting matter, the colour of gravity and opacity.

Blue: eternal restless mind, relaxation, and continuous motion.

Yellow: fierce and aggressive, thinking, weightless.

Orange: brilliant luminance, cheap and brash, energy and fun, an unpop-
ular colour (well, do not say this in The Netherlands).

Purple: ancient purple dye was made out of purple sea-snails, and more
valuable than gold, only kings were allowed to wear purple; the colour of
power, belief, and force, or of death and darkness, of loneliness, but also of
devotedness and spiritual love.

38 1 Image Data

Gretagilacheth™ ColorChecker Color Readition Chart

Fig. 1.32 Top: Colour checker by Macbeth™ and the channel for Green. Middle: Channels for
Blue and intensity values. Botfom: Channels visualizing hue and saturation values by means of
grey levels

Green: resting at the centre, neither active nor passive; natural, live and
spring, hope and trust, silence and relaxation, healthy, but also poisonous.

b

1.4 Exercises 39

Itten also assigned geometric shapes to colours, illustrated by a few examples
above.

We end this brief section about colour with a comment of Leonardo da Vinci
(1452-1519); see [The Notebooks of Leonardo da Vinci. Edited by J.P. Richter,
1880]:

Note 273: The effect of colours in the camera obscura.

The edges of a colour(ed) object transmitted through a small hole are more conspicuous
than the central portions.

The edges of the images, of whatever colour, which are transmitted through a small aperture
into a dark chamber, will always be stronger than the middle portion.

Leonardo da Vinci provided a large number of interesting notes on colour in those
notebooks.

1.4 Exercises
1.4.1 Programming Exercises

Exercise 1.1 (Basic Acquaintance with Programmed Imaging) Implement a pro-

gram (e.g., in Java, C++, or Matlab) that does the following:

1. Load a colour (RGB) image I in a lossless data format, such as bmp, png, or
tiff, and display it on a screen.

2. Display the histograms of all three colour channels of 7.

3. Move the mouse cursor within your image. For the current pixel location p in the
image, compute and display
(a) the outer border (see grey box) of the 11 x 11 square window W, around

pixel p in your image I (i.e., p is the reference point of this window),
(b) (above this window or in a separate command window) the location p (i.e.,
its coordinates) of the mouse cursor and the RGB values of your image I at
D,

(c) (below this window or in a separate command window) the intensity value
[R(p) + G(p) + B(p)l/3 at p, and

(d) the mean “w, and standard deviation oW,

4. Discuss examples of image windows W, (within your selected input images)
where you see “homogeneous distributions of image values”, and windows show-
ing “inhomogeneous areas”. Try to define your definition of “homogeneous” or
“inhomogeneous” in terms of histograms, means, or variances.

The outer border of an 11 x 11 square window is a 13 x 13 square curve (which
could be drawn, e.g., in white) having the recent cursor position at its centre. You
are expected that you dynamically update this outer border of the 11 x 11 window
when moving the cursor.

40 1 Image Data

Alternatively, you could show the 11 x 11 window also in a second frame on
a screen. Creative thinking is welcome; a modified solution might be even more
elegant than the way suggested in the text. It is also encouraged to look for solutions
that are equivalent in performance (same information to the user, similar run time,
and so forth).

Insert 1.13 (Why not jpg format?) jpg is a lossy compression scheme that
modifies image values (between compressed and uncompressed state), and
therefore it is not suitable for image analysis in general. bmp or raw or tiff
are examples of formats where pixel values will not be altered by some type
of compression mechanism. In jpg images you can often see an 8 x 8 block
structure (when zooming in) due to low-quality compression.

Exercise 1.2 (Data Measures on Image Sequences) Define three different data mea-

sures Z;(t), i =1, 2, 3, for analysing image sequences. Your program should do the

following:

1. Read as input an image sequence (e.g. in VGA format) of at least 50 frames.

2. Calculate your data measures %; (t), i = 1, 2, 3, for those frames.

3. Normalize the obtained functions such that all have the same mean and the same
variance.

4. Compare the normalized functions by using the L;-metric.

Discuss the degree of structural similarity between your measures in dependence of

the chosen input sequence of images.

Exercise 1.3 (Different Impacts of Amplitudes and Phase in Frequency Space on

Resulting Filtered Images) It is assumed that you have access to FFT programs for

the 2D DFT and inverse 2D DFT. The task is to study the problem of evaluating

information contained in amplitude and phase of the Fourier transforms:

1. Transform images of identical size into the frequency domain. Map the resulting
complex numbers into amplitudes and phases. Use the amplitudes of one image
and the phases of the other image, and transform the resulting array of complex
numbers back into the spatial domain. Who is “winning”, i.e. can you see the
image contributing the amplitude or the image contributing the phase?

2. Select scalar images showing some type of homogeneous textures; transform
these into the frequency domain and modify either the amplitude or the phase of
the Fourier transform in a uniform way (for all frequencies), before transform-
ing back into the spatial domain. Which modification causes a more significant
change in the image?

3. Do the same operations and tests for a set of images showing faces of human
beings.

Discuss your findings. How do uniform changes (of different degrees), either in
amplitude or in phase, alter the information in the given image?

1.4 Exercises 41

Fig. 1.33 Cuts through the RGB cube at u = 131 showing the RGB image /;3; and saturation
values for the same cutting plane

Exercise 1.4 (Approximating the HSI Space by Planar Cuts) Assume that Gpax =

255. We are cutting the RGB cube by a plane I7T, that is orthogonal to the grey-

level diagonal and passing through the grey level (u, u, u) for 0 < u < 255. Each

cut (i.e., the intersection of 7, with the RGB cube) is represented by one N x N

image I, where the value u = (R, G, B) at pixel location (x, y) is either defined by

the nearest integer-valued RGB triple in the RGB cube (or the mean if there is more

than one nearest RGB triple), if this distance is less than «/E or equals a default

value (say, black) otherwise. Do the following:

1. Implement a program which allows one to show the RGB images I, for u =0,
u=1,...,u=255(e.g., by specifying the value of u in a dialogue or by having
a continuously running animation).

2. Also show the (scalar) saturation values instead of RGB values. Figure 1.33
shows the results for u = 131.

3. You may either select a fixed value N > 30 (size of the image), or you may also
allow a user to choose N within a given range.

1.4.2 Non-programming Exercises
Exercise 1.5 Show the correctness of (1.4).

Exercise 1.6 Who was Fourier? When was the Fast Fourier Transform designed for
the first time? How is the Fourier transform related to optical lens systems?

Exercise 1.7 Assume an N x N image. Prove that a multiplication by (—1)**Y in
the spatial domain causes a shift by N /2 (both in row and column direction) in the
frequency domain.

42 1 Image Data

Exercise 1.8 In extension of Example 1.2, transform a few more (easy) RGB values
manually into corresponding HSI values.

Exercise 1.9 Let (8, S, M) be the colour representation in the HSI space. Justify
the following steps for recovering the RG B components in the following special
cases:

e If§€[0,2m/3],then B=(1—-S)M.

o Ifée[2n/3,4n/3],then R=(1 - S)M.

o If§e[4n/3,2n],then G=(1 — S)M.

How can we compute the remaining components in each of the above cases?

Exercise 1.10 In the CIE’s RGB colour space (which models human colour percep-
tion), the scalars R, G, or B may also be negative. Provide a physical interpretation
(obviously, we cannot subtract light from a given spectrum).

Image Processing

This chapter introduces basic concepts for mapping an image into an image, typi-
cally used for improving image quality or for purposes defined by a more complex
context of a computer vision process.

2.1 Point, Local, and Global Operators

When recording image data outdoors (a common case for computer vision), there
are often particular challenges compared to indoor recording, such as difficulties
with lighting, motion blur, or sudden changes in scenes. Figure 2.1 shows images
recorded in a car (for vision-based driver-assistance). An unwanted data is called
noise. These are three examples of noise in this sense of “unwanted data”. In the
first case we may aim at transforming the images such that the resulting images
are “as taken at uniform illumination”. In the second case we could try to do some
sharpening for removing the blur. In the third case we may aim at removing the
noise.

This section provides time-efficient methods that you may consider for prepro-
cessing your data prior to subsequent image analysis.

2.1.1 Gradation Functions

We transform an image / into an image /., of the same size by mapping a grey
level u at pixel location p in I by a gradation function g onto a grey level v = g(u)
at the same pixel location p in I,,,,. Because the change only depends on value u at
location p, we also speak about a point operator defined by a gradation function g.

If the goal is that I, satisfies some properties defined in terms of its histogram,
then we speak about a histogram transform.

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science, 43
DOI 10.1007/978-1-4471-6320-6_2, © Springer-Verlag London 2014

http://dx.doi.org/10.1007/978-1-4471-6320-6_2

44 2 Image Processing

Fig. 2.1 Top: A pair of images SouthLeft and SouthRight taken time-synchronized but of
different brightness; see the shown grey-level histograms. Bottom left: Blurring caused by rain in
image Wiper. Bottom right: Noise in a scene Uphill recorded at night

Histogram Equalization We transform a scalar image I such that all grey levels
appear equally often in the transformed image I,,.,,. The goal is to achieve that

NeoisN,
Hy,, (u) = const = Neols N rows on
Gmax + 1

forallu € {0, 1, ..., Gmax}-

Unfortunately, this is not possible in general, due to the constraint that identical
values in / can only map on the same value in /. For example, a binary image
I cannot be mapped onto a histogram-equalized grey-level image I, (even in the
case if we would have a continuous binary image; but having digital images also
contributes to excluding perfect equalization). The following transform is thus just
an approximate solution towards the ideal goal.

Given is an Nys X Nyoys scalar image I with absolute frequencies Hj(u) for
0 <u < Gpax. We transform 7 into an image I,., of the same size by mapping
intensities u in I by the following gradation function g onto new intensities v = g(u)
in Lyey:

gu) =cy(u) - Gmax 2.2)

2.1 Point, Local, and Global Operators 45

Fig.2.2 Left: Input image RagingBull (in the public domain) with histogram. Right: The same
image after histogram equalization

Fig. 2.3 Graph of the 4 /
gradation function for linear Ginax
scaling, defined by being

incident with points (#m;n, 0)

and (Umax, Gmax)

g(u)

u

0 Vs T
Unin Unnax Ginax

where c; is the relative cumulative frequency function. Figure 2.2 illustrates such a
histogram equalization.

It is not difficult to show the equalization property for the histogram transform,
defined by (2.2), using the property that the cumulative relative frequency ¢y is an
increasing function. The relative histogram %;(x) corresponds to an estimate of a
density function, cj(u) to an estimate of a probability distribution function, and
hy,,, (1) to an estimate of the uniform density function.

Linear Scaling Assume that an image / has positive histogram values in a limited
interval only. The goal is that all values used in I are spread linearly onto the whole
scale from 0 to Gmax. Let umin = min{/ (x, y) : (x, ¥) € 2}, umax = max{l (x, y) :
(x,y) € £2}, and

a=—Uppy and b= —"7"-— 2.3)
gw)=bu+a) 2.4)

As a result, pixels having the value up;, in the image I now have the value 0 in the
resulting image I, and pixels having the value un;,x in the image I now have the
value Gpax in ey . This is illustrated in Fig. 2.3. This figure can also serve as an

46 2 Image Processing

illustration when discussing the correctness of the histogram transform defined by
2.4).

Conditional Scaling As another example of a use of a gradation function, we
want to map an image J into an image Jy.,, such that it has the same mean and the
same variance as an already given image /. For this conditional scaling, let

ay

a:MJ~Z—;—,u1 and b="* (2.5)

gu) =bu+a) (2.6)

Now we map the grey level u at pixel p in J onto the new value v = g(u) at the
same pixel p in Jye,. It is not difficult to show that w,,, = u; and oy, =oj.
The performed normalization is the same as in (1.12), where we normalized data
measures.

2.1.2 Local Operators

For a given N¢ojs X Nyoys image I, we consider sliding windows W, each of size
2k + 1) x (2k + 1), where the reference point p is always at the centre of the
window. The reference point moves into all possible pixel locations of I and so
moves the window over the image. At these locations we perform a local operation;
the result of the operation defines the new value at p. Thus, the input image I is
transformed into a new image J.

Two Examples: Local Mean and Maximum For example, the local operation
can be the local mean, J(p) = piw, (1), With

ko 4k
| o4

W) = S I +iy+)) (2.7)
i=—k j=—k

for p = (x, y).
As another example, the local operation can be the calculation of the local maxi-
mum

J(p)=max{I(x+i,y+j): —k<i<kAn—k=<j=<k} (2.8)

for p = (x, y). See Fig. 2.4 for an example.

Windows centred at p and not completely contained in /, require a special
“border-pixel strategy”; there is no general proposal for such a strategy. One option
is to consider the same local operation just for a smaller window, which is possible
for the two examples of local operations given above.

2.1 Point, Local, and Global Operators 47

Fig. 2.4 Top, left: Original image Set1Seqgl with N¢o;s = 640. Top, right: Local maximum for
k = 3. Bottom, left: Local minimum for k = 5. Bottom, right: Local operator using the 3 x 3 filter
kernel shown in the middle of Fig. 2.5

W,

WZZ

Wy | /S 210]-2(/9 111(1//9
Wiy |Wa3 110]-1 11111

31

Fig. 2.5 Left: General representation for a 3 x 3 filter kernel. Middle: Filter kernel illustrated in
Fig. 2.4, bottom, right, approximating a derivative in x-direction. Right: The filter kernel of a 3 x 3
box filter

Linear Operators and Convolution A linear local operator is defined by a con-
volution of an image I at p = (x, y) with a filter kernel W,

+k +k

J(p):I*W(p):EZ D wij I +iy+) 2.9)
i=—k j=—k

with weights w; ; € R and a scaling factor S > 0. The arguments in (2.9) go out
of §2 if p is close to the border of this image carrier. A theorem says that then you
apply a modulo rule conceptually equivalent to a 2D periodic copying of the image
I on £2 into the grid Z2.

The array of (2k + 1) x (2k + 1) weights and scaling factor S define the filter
kernel W. It is common to visualize filter kernels W of linear local operators as
shown in Fig. 2.5.

Equation (2.7) is an example of such a linear local operator, known as a box
filter. Here we have all weights equal to 1, and S = (2k 4 1)? is the sum of all those
weights.

48 2 Image Processing

General View on Local Operators We summarize the properties of local opera-

tors:

1. Operations are limited to windows, typically of square and odd size (2k + 1) x
(2k 4 1); of course, with respect to isotropy (i.e. rotation invariance), approxi-
mately circular windows should be preferred instead, but rectangular windows
are easier to use.

2. The window moves through the given image following a selected scan order
(typically aiming at a complete scan, having any pixel at the reference position
of the window at some stage).

3. There is no general rule how to deal with pixels close to the border of the image
(where the window is not completely in the image anymore), but they should be
processed as well.

4. The operation in the window should be the same at all locations, identifying the
purpose of the local operator.

5. The results can either be used to replace values in place at the reference points in
the input image I, defining a sequential local operator where new values prop-
agate like a “wave” over the original values (windows of the local operator then
contain the original data and already-processed pixel values), or resulting values
are written into a second array, leaving the original image unaltered this way,
defining a parallel local operator, so called due to the potential of implementing
this kind of a local operator on specialized parallel hardware.

In case of k =0 (i.e., the window is just a single pixel), we speak about a point

operator. If k grows so that the whole picture is covered by the window, then it

turns into a global operator. The 2D Fourier transform of an image is an example
for a global transform.

Insert 2.1 (Zamperoni) There is immense diversity of published proposals for
image processing operators due to the diversity of image data and particular
tasks in applications. For example, the book [R. Klette and P. Zamperoni. Handbook
of Image Processing Operators. Wiley, Chichester, 1996] details many of the usual
point, local, and global operators.

The memory of Piero Zamperoni (1939-1998), an outstanding educator in
pattern recognition, is honoured by the IAPR by issuing the Piero Zamperoni
Best Student Paper Award at their biennial ICPR conferences.

2.1.3 Fourier Filtering

The inverse 2D DFT (see (1.23)) transforms a Fourier transform I back from the
frequency domain into the spatial domain. The inverse 2D DFT will lead to a real-
valued function / as long as I satisfies the symmetry property of (1.29). Thus, any
change in the frequency domain is constrained by this.

2.1 Point, Local, and Global Operators 49

Fourier Filtering The inverse 2D DFT can be read as follows: the complex num-
bers I(u, v) are the Fourier coefficients of I, defined for different frequencies u
and v. Each Fourier coefficient is multiplied with a combination of sine and cosine
functions (see the Eulerian formula (1.22)), and the sum of all those combinations
forms the image 7. In short, the image [is represented by basis functions being
powers of roots of unity in the complex plane, and the Fourier coefficients specify
this basis function representation.

This means that if we modify one of the Fourier coefficients (and its symmetric
coefficient due to the constraint imposed by the symmetry property) before applying
the inverse 2D DFT, then we obtain a modified function /.

For a linear transform of the image I, there are two options:

1. We modify the image data by a linear convolution

Neots—1 Nyows—1
Je.=UxG)x,)= Y > I1G)-Gx—i,y—j) (210)
i=0 j=0

in the spatial domain, where G is the filter kernel (also called the convolution
function). Function J is the filtered image.

2. We modify the 2D DFT I of / by multiplying the values in I, position by position,
with the corresponding complex numbers in G [i.e., I(u, v) - G(u, v)]. We denote
this operation by I o G (not to be confused with matrix multiplication). The re-
sulting complex array is transformed by the inverse 2D DFT into the modified
image J.

Interestingly, both options lead to identical results assuming that G is the 2D

DEFT of G, due to the convolution theorem:

I % G equals the inverse 2D DFT of I o G 2.11)

Thus, either a convolution in the spatial domain or a position-by-position multi-
plication in the frequency domain produce identical filtered images. However, in
the convolution case we miss the opportunity to design frequency-dependent filter
functions in the frequency domain.

Steps of Fourier Filtering Given is an image / and a complex-valued filter func-
tion G (which is satisfying the symmetry property of (1.29)) in the frequency do-
main. Apply an FFT program for doing the following; if required for the applied
FFT program, first map the image / into a larger 2" x 2" array:
1. Transform the image I into the frequency domain, into the complex-valued I by
using the FFT program.
2. Multiply the complex-valued I, element by element, with the complex-valued
filter function G.
3. Transform the result back into the spatial domain by using the FFT program for
the inverse DFT.
The filter function G can be obtained as the Fourier transform of a filter kernel G
in the spatial domain. It is common procedure to design filter functions G directly
in the frequency domain.

50 2 Image Processing

S
>

I
AN VAN

Fig. 2.6 1D profiles of rotation-symmetric filter functions. Top: A linear high-pass filter and an
ideal low-pass filter. Botfom: An exponential high-emphasis filter and a linear band-pass filter

Example 2.1 The box filter is a linear convolution in the spatial domain. Its filter
kernel is defined by the weights G(x, y) =1/a for (x,y) ina 2k + 1) x 2k + 1)
window, centred at the origin (0, 0), with a = (2k + 1)2. Outside of this window we
have that G(x, y) =0.

The 2D DFT of this function G has amplitudes close to 1 for low frequencies,
with a steep decrease in amplitudes towards zero for higher frequencies.

The Fourier transform G of Example 2.1 is a typical low-pass filter: low frequen-
cies are “allowed to pass” (because multiplied with values of amplitudes close to 1),
but higher frequencies are “drastically reduced” (because multiplied with values of
amplitude close to 0).

Design of Filter Functions The frequency domain is well suited for the design
of filter functions. See Fig. 2.6. We may decide for a high-pass filter (e.g., for edge
detection, or for visualizing details and for suppressing low frequencies), a high-
emphasis filter (e.g., for enhancing contrast), a band-pass filter (for allowing only
a certain range of frequencies “to pass”), or a filter that eliminates or enhances se-
lected frequencies (under proper consideration of the symmetry constraint). The
impact of a low-pass filter is a reduction of outliers and of contrast, i.e. a smoothing
effect.

Attributes “linear”, “exponential”, or “ideal” of a filter function specify the way
how the transition is defined from large amplitudes of the filter to low amplitudes.
See Fig. 2.6 for examples of transitions. Low-pass and band-pass filtering of an
image is illustrated in Fig. 2.7.

Besides the flexibility in designing filter functions, the availability of time-
efficient 2D FFT algorithms is also an important argument for using a DFT-based
filter instead of a global convolution. Local convolutions are normally more effi-
ciently performed in the spatial domain by a local operator.

2.2 Three Procedural Components

This section introduces three procedural components that are commonly used in
image processing programs, such as for local operators, but also when implementing
particular image analysis or computer vision procedures.

2.2 Three Procedural Components 51

Fig. 2.7 Upper row, left: Intensity channel of image Emma, shown also in colour in Fig. 2.9.
Upper row, right: Its spectrum, centred and with log-transform. Lower row, left: An ideal low-pass
filtered Emma, showing a typical smoothing effect. Lower row, right: An exponential-band-pass
filtered Emma, already showing more higher frequencies than lower frequencies

2.2.1 Integral Images

The calculation of an integral image I;,; for a given image I is a common prepro-
cessing step for speeding up operations on / which involve rectangular windows
(e.g. for feature detection). “Integration” means adding small units together. In this
case, the small units are the pixel values. For a pixel p = (x, y), the integral value

Lu(p)= Y 16,) (2.12)

l<i<xAl<j<y

is the sum of all the values I (i, j) at pixel locations g = (i, j) that are neither below
p nor right of p. See Fig. 2.8, left.

52 2 Image Processing

B
=

I

cols -

00O @ e e 0o e e e
00000 @00 00
00O @0 @0 000
000 @ e e e e o0
000 @ e e e e o0
e
)
0000000000
0000000000
0000000000
0000000000
000000000 O0|~-
0000000000
000000000
00 0@ e ee 000
00O @ @0 @0 0 OO0
00O 0@ 0@ e 0 OO0
00O @@ 0 @0 00O
OO0 e e e eeO0 OO0
OO0 e e e ee O OO
00 @ @ @ @0 0O
00000 00000|=

Tows TOWS

v v

Fig. 2.8 Left: At I;;;(x, y) we have the sum of all the shown pixel values. Right: If an algorithm
requires to use the sum of all pixel values in the shown rectangular window, then we only need
to combine the values of the integral image in the four corners p, ¢, r, and ¢; see the text for the
formula

Insert 2.2 (The Introduction of Integral Images into Computer Vision) In-
tegral images have been introduced in the Computer Graphics literature in
[E.C. Crow. Summed-area tables for texture mapping. Computer Graphics, vol. 18, pp. 207—
212, 1984] and then popularized by [J.P. Lewis. Fast template matching. In Proc. Vision
Interface, pp. 120-123, 1995] and [P. Viola and M. Jones. Robust real-time object detec-
tion. Int. J. Computer Vision, pp. 137154, 2001] in the Computer Vision literature.

Now consider a rectangular window W in an image defining four pixels p, ¢, r,
and s, as illustrated in Fig. 2.8, right, with ¢, r, and s just one pixel away from W.
The sum Sy of all pixel values in W is now simply defined by

Sw = Line(p) — Ling(r) — Line () + Ling(q) (2.13)

We only have to perform one addition and two subtractions, independent upon the
size of the rectangular window W. This will later (in this book) prove to be very
handy for classifying objects shown in images.

Example 2.2 (Number of Operations with or Without Integral Image) Assume that
we calculate the sum in an n x m window by using (2.13). We have three arithmetic
operations, no matter what are the values of m or n.

Without an integral image, just by adding all the m - n numbers in the window,
we have m - n — 1 arithmetic operations.

If we also count the addressing arithmetic operations, for the sequential sliding
window in the integral image, they are reduced to four ++ increments if we keep the
addresses for pixels p, g, r, and s in address registers.

2.2 Three Procedural Components 53

Image /

I
/I |

/- i 1

//p /ﬁ' E‘\ q Image\/

Fig. 2.9 Tllustrations of picture pyramids. Left: A regular pyramid is the assumed model behind
subsequent size reductions. Left, top: Sketch of pairwise disjoint arrays. Left, bottom: Example of
layers for image Emma

Observation 2.1 After one preprocessing step for generating the integral image,
any subsequent step, requiring to know the sum of pixel values in a rectangular
window, only needs constant time, no matter what is the size of the window.

2.2.2 Regular Image Pyramids

A pyramid is a common data structure used for representing one input image [/ at
different sizes. See Fig. 2.9. The original image is the base layer of the pyramid.
Images of reduced sizes are considered to be subsequent layers in the pyramid.

Use of Scaling Factor 2 If scaling down by factor 2, as illustrated in Fig. 2.9,
then all additional levels of the pyramid require less than one third of the space of
the original image, according to the geometric series

L ! (2.14)
— — ...<— .
2.2 22.22

1 _
+ 23.23 3

When reducing the size from one layer to the next layer of the pyramid, bottom-
up, the mean was calculated for 2 x 2 pixels for generating the corresponding sin-
gle pixel at the next layer. For avoiding spatial aliasing, it is also recommended to
perform some Gauss smoothing (to be explained in the following section) prior to
taking those means.

By creating a new pixel r in Layer n 4 1 of the pyramid, defined by (say) four
pixels p1, p2, p3, and ps at Layer n, we create new adjacencies (pi,r), (p2,r),
(p3,r), and (p4, r), additionally to (say) 4-adjacency in Layer n, as illustrated in

54 2 Image Processing

Fig. 2.9, right. For going via adjacent pixels from pixel location p to pixel location
q in image I, we now also have the option to go first up in the pyramid to some
level, then a few steps sideward in this level, and again down to ¢g. In general, this
supports shorter connecting paths than only using 4-adjacency in the input image /.

Example 2.3 (Longest Path in a Regular Pyramid of Scaling Factor 2) Assume an
image I of size 2" x 2" and a regular pyramid on top of this image created by using
scaling factor 2.

For the longest path between two pixel locations, we consider p and g being
diagonal corners in /. Using 4-adjacency in /, their distance to each other is 2" — 1
steps towards one side, and again 2" — 1 steps towards another side, no matter in
which order we do those steps. Thus, the longest path in 7, not using the pyramid,
equals

PR (2.15)

This reduces to a path of length 2n when also using the adjacencies defined by the
pyramid.

Observation 2.2 Adjacencies in a pyramid reduce distances between pixels in an
image significantly; this can be used when there is a need to send a “message” from
one pixel to others.

Pyramids can also be used for starting a computer vision procedure at first at
one selected level in the data structure, and results are then refined by propagating
them down in the pyramid to layers of higher resolution. We will discuss examples
at some places in the book.

2.2.3 Scan Orders

The basic control structure of an image analysis program (not only for local opera-
tors, also, e.g. for component labelling) typically specifies a scan order for visiting
all or some of the pixels.

Standard Scan Order and Variants Figure 2.10 illustrates not only the standard
scan order, but also others that might be of interest under particular circumstances.
Spiral or meander scans offer the opportunity that prior calculations are used at the
next location of the sliding window, because only 2k + 1 pixels enter the window,
replacing 2k + 1 “leaving” pixels.

Insert 2.3 (Hilbert, Peano, and Euclid) In 1891, D. Hilbert (1862—-1943),
the major German mathematician, defined a curve filling completely the unit
square, following Jordan’s initial definition of a curve. A finite number of rep-
etitions of this construction, as illustrated in Fig. 2.11, leads to a Hilbert scan

2.2 Three Procedural Components 55

8 [10]11]5 e
e 1206 |79 e
mm———veoo 1 [15] 144 a -

Fig.2.10 Scan orders: standard (upper left), inward spiral (upper middle), meander (upper right),
reverse standard (lower left), magic square (lower middle), and selective standard (as used in inter-
laced scanning), e.g. every second row (lower right)

in a grid of size 2" x 2", not to be confused with the original curve defined by
Hilbert in the Euclidean space. Hilbert’s curve is a variant of a curve defined
in 1890 by the Italian mathematician G. Peano (1858-1932) for the same
purpose.

Euclid of Alexandria (about —300) was a Greek mathematician, known
for his Elements, which was the standard work in Geometry until the 19th
century.

A magic square scan (Fig. 2.10, bottom, middle, shows a simple 4 x 4 example)
generates a pseudo-random access to pixels; in a magic square, numbers add up
to the same sum in each row, in each column, and in forward and backward main
diagonals. A Hilbert scan is another option to go towards pseudo-random access (or
output, e.g. for generating a picture on a screen). See Fig. 2.11.

Hilbert Scan Fig. 2.11 specifies the Hilbert scan in a way that we enter the image
at its north—west corner, and we leave it at its north—east corner. Let us denote the
four corners of a 2" x 2" picture by a, b, ¢, d, starting at the north—west corner and in
clock-wise order. We assume a Hilbert scan H, (a, d, ¢, b), where we start at corner
a, continue then with corner d, proceed to corner ¢, and terminate then at corner b.

Hi(a,b,c,d)is ascan of a 2 x 2 image, where we just visit in the order a, b, ¢, d
as shown.

56 2 Image Processing

Fig. 2.11 Hilbert scans for 2 x 2, 4 x 4, or 8 x 8 images illustrating the recursive extension to
larger images of size 2" x 2"

H,11(a,d,c,b) is a scan where we start at the north—west corner; we perform
H,(a,b,c,d), followed by one step down, then H,(a,d, c,b), followed by one
step to the right, then (again) H,(a,d, c, b), followed by one step up, and finally
H,(c,d,a,b), which takes us to the north—east corner of the 2"+! x 2"*1 image.

23 Classes of Local Operators

Local intensity patterns in one image can be considered to be “fairly” independent
if they are at some distance to each other within the carrier £2. Local operators make
good use of this and are time-efficient and easy to implement on usual sequential
and parallel hardware. Thus, not surprisingly, there is a large diversity of proposed
local operators for different purposes. This section illustrates this diversity by only
providing a few “popular” examples for four classes of local operators.

2.3.1 Smoothing

Image smoothing aims at eliminating “outliers” in image values considered to be
noise in a given context.

Box Filter The (2k + 1) x (2k 4 1) box filter, performing the local mean calcula-
tion as already defined in (2.7), is a simple option for image smoothing. It removes
outliers, but it also reduces significantly the contrast C(/) of an image /. Often it
is sufficient to use just a 3 x 3 or 5 x 5 filter kernel. The local mean for larger ker-
nel sizes can be conveniently calculated by using the integral image I;;;; of input
image I.

Median Operator The median of 2n + 1 values is the value that would ap-
pear in sorted order at position n + 1. For example, 4 is the median of the
set {4,7,3,1,8,7,4,5,2,3,8} because 4 is in position 6 in the sorted sequence
1,2,3,3,4,4,5,7,7,8,8.

2.3 Classes of Local Operators 57

0.4

0.2}

0.0

5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 2.12 Left: The 2D Gauss function for expected values =y = 0. Right: Four examples
of 1D Gauss functions for different expected values and different variances

The (2k + 1) x (2k + 1) median operator maps the median of a 2k + 1) x (2k+1)
window to the reference pixel p. It achieves the removal of outliers with only an
insignificant change in image contrast C (7).

Insert 2.4 C.F. Gauss (1777-1855), a brilliant German mathematician work-
ing at Gottingen university, very well described in a novel “Measuring the
World” by D. Kehlmann (original publication in German in 2005).

Gauss Filter The Gauss filter is a local convolution with a filter kernel defined by
samples of the 2D Gauss function. This function is the product of two 1D Gauss
functions defined as follows:

1
Gle/vvay (x,y) = 5 exXp

(_ (=)+ (v — My)2>

2o 202
1 CGmpd?)’
=5-> e 202 .e 202 (2.16)
o

where (ux, ity) combines the expected values for x- and y-components, o is the
standard deviation (o2 is the variance), which is also called the radius of this func-
tion, and e is the Euler number.

The Gauss function is named after C.F. Gauss (see Insert 2.4). The Euler number
is named after L. Euler; see Insert 1.3 and 1.22 for the Eulerian formula. Figure 2.12
illustrates the Gauss function. The standard deviation o is also called the scale.

Observation 2.3 The second line in (2.16) shows that a 2D Gauss filter can be
realized by two subsequent 1D Gauss filters, one in horizontal and one in vertical
direction.

58 2 Image Processing

Fig.2.13 Filter kernel for

Gaussian smoothing defined L 47141

byk=2ands=2(1e 4 16 26|16 | 4

o=1) 7 (126(41 26| 7 | /273
41162616 | 4
1141174 1

Centred Gauss Function By assuming a centred Gauss function (i.e. with zero
means py = iy =0, as in Fig. 2.12, left), (2.16) simplifies to

2 2 2)
1 X X
exp<_x +y)=—~e 20‘2 - e 20‘2 (217)

G ,y) =
o (X, ¥) 2702

Such a centred Gauss function is now sampled at (2k + 1) x (2k 4 1) locations,
with the window’s reference pixel at the origin (0, 0). This defines an important
filter kernel for a local operator, parameterized by o > 0 and £ > 1. We will later
use it for defining differences of Gaussians (DoGs) and the scale space.

Figure 2.13 shows a sampled filter kernel for o = 1. Following the three-sigma
rule in statistics, G is sampled by a kernel of size 60 — 1.

For an input image /, let

Lx,y,0)=[*xGsl(x,y) (2.18)

be a local convolution with function G, with o > 0. For implementation, we sample
G, symmetrically to the origin at w x w grid positions for defining the filter kernel,
where w is the nearest odd integer to 60 — 1.

Gaussian Scale Space For a scaling factor a > 1, we can step from the smoothed
image L(x,y,o) to L(x,y,ao). By using repeatedly scales a” - o, for an initial
scale 0 and n =0, 1,...,m, we create a set of subsequent layers of a Gaussian
scale space. See Fig. 2.14 for an example.

In this book, the layers in a scale space are all of identical size Ncois X Nyows. For
implementation efficiency, some authors suggested to reduce this size by a factor
of 2 for any doubling of the used scale o, thus creating octaves of blurred images.
The blurred images in one octave remain at constant size until the next doubling of
o occurs, and the size is then again reduced by factor of 2. This is an implementation
detail, and we do not use octaves in the discussion of scale spaces in this book.

Sigma Filter This filter is just an example of a simple but often useful local
operator for noise removal. For an example of a result, see Fig. 2.15. Again, we
discuss this local operator for (2k + 1) x (2k + 1) windows W, (1) with k > 1. We
use a parameter ¢ > 0, considered to be an approximation of the image acquisition
noise of image I (for example, o equals about 50 if Gpax = 255). Suggesting a
parallel local operator, resulting values are forming a new picture J as follows:

2.3 Classes of Local Operators 59

Fig.2.14 Smoothed versions of the image Set1Seql (shown in Fig. 2.4, upper left) for o = 0.5,
o=1,0=2,0=4,0 =38, and o0 = 16, defining six layers of the Gaussian scale space

1. Calculate the histogram of window W, (I).
2. Calculate the mean p of all values in the interval [/ (p) — o, I(p) +o].
3. Let J(p) = .

In some cases, camera producers specify parameters for the expected noise of
their CCD or CMOS sensor elements. The parameter o could then be taken as 1.5
times the noise amplitude. Note that

I(p)+o

p=—- > u-Hw (2.19)

u=I(p)—o

where H (1) denotes the histogram value of u for window W, (I) and scaling factor
S=HU(p)—o)+---+HU(p)+0).

Figure 2.15 illustrates the effects of a box filter, the median filter, and the sigma
filter on a small image.

60 2 Image Processing

Fig. 2.15 Tllustration of noise removal. Upper left: 128 x 128 input image with added uniform
noise (£15). Upper right: 3 x 3 box filter. Lower left: 3 x 3 sigma-filter with o = 30. Lower right:
3 x 3 median filter

2.3.2 Sharpening

Sharpening aims at producing an enhanced image J by increasing the contrast of
the given image I along edges, without adding too much noise within homogeneous
regions in the image.

Unsharp Masking This local operator first produces a residual R(p) = I(p) —
S(p) with respect to a smoothed version S(p) of I(p). This residual is then added
to the given image /:

J(p)=1(p)+A[1(p) — S(p)]
=[14+ A (p) — AS(p) (2.20)

2.3 Classes of Local Operators 61

Fig. 2.16 Illustration of unsharp masking with k =3 and A = 1.5 in (2.20). Upper left: 512x512
blurred input image Altar (of the baroque altar in the church at Valenciana, Guanajuato). Upper
right: Use of a median operator. Lower left: Use of a Gauss filter with o = 1. Lower right: Use of
a sigma filter with 0 =25

where A > 0 is a scaling factor. Basically, any of the smoothing operators of
Sect. 2.3.1 may be tried to produce the smoothed version S(p). See Fig. 2.16 for
three examples.

The size parameter k (i.e. the “radius”) of those operators controls the spatial
distribution of the smoothing effect, and the parameter A controls the influence of
the correction signal [/ (p) — S(p)] on the final output. Thus, k& and X are the usual
interactive control parameters for unsharp masking.

According to the second equation (2.20), the process is also qualitatively de-
scribed by the equation

J(p)=1(p) = X'S(p) (2.21)

62 2 Image Processing

(for some A" > 0), which saves some computing time. Instead of applying unsharp
masking uniformly in the whole image /, we can also add some kind of local adap-
tivity, for example such that changes in homogeneous regions are suppressed.

2.3.3 Basic Edge Detectors

We describe simple edge detectors that follow the step-edge model, either by ap-
proximating first-order derivatives or by approximating second-order derivatives.

Discrete Derivatives The derivative of a unary function f in the continuous case
is defined by the convergence of difference quotients where a nonzero offset ¢ ap-
proaches 0:

d . x+¢e)— f(x

—f(x) = f/(x) = lim Jare) =/ (2.22)
dx e—0 &
The function f is differentiable at x if there is a limit for these difference quotients.
In the case of functions with two arguments, we have partial derivatives, such as

af f(x’Y"'f?)_f(x’Y)

5()@ y) = fylx,y)= £lg)l% " (2.23)

with respect to y, and analogously with respect to x.

However, in the discrete grid we are limited by a smallest distance ¢ = 1 between
pixel locations. Instead of just reducing the derivative in (2.23) to a difference quo-
tient for ¢ = 1, we can also go for a symmetric representation taking the difference
& = 1 in both directions. The simplest symmetric difference quotient with respect to
y is then as follows:

I(x7y+8)_1(-x7y_8)
2¢e
T, y+ D —Ix,y—1)

N 2

Iy(-xv J’) =

(2.24)

where we decide for a symmetric difference for better balance. We cannot use any
smaller ¢ without doing some subpixel-kind of interpolations.

Equation (2.24) defines a very noise-sensitive approximation of the first deriva-
tive. Let I, (x, y) be the corresponding simple approximation of %(x, v). The re-
sulting approximated magnitude of the gradient is then given by

VG2 + L, 2 ~ [grad 1,) (2.25)

This value combines results of two linear local operators, one with a filter kernel
representing I, and one for I, shown in Fig. 2.17. The scaling factor 2 is in this
case not the sum of the given weights in the kernel; the sum of the weights is zero.
This corresponds to the fact that the derivative of a constant function equals zero.

2.3 Classes of Local Operators 63

Fig. 2.17 Filter kernels for olo]o 0|-1]0

differences as defined -1 0 [1|2 0|0]0(2

in (2.24) o[o]o 0110

Fig. 2.18 Filter kernels for 1o |1 “1=2 1=

the Sobel operator -2/ 0 |2]/11 0|0 |0]/1
-11 0 112

The result of a convolution with one of those kernels can be negative. Thus,
I and I, are not images in the sense that we also have negative values here, and
also rational numbers, not only integer values in {0, 1, ..., Gpax}. It is common to
visualize discrete derivatives such a I, and I, by showing rounded integer values of
[1c| and [1y].

Insert 2.5 (Origin of the Sobel Operator) The Sobel operator was published
in [LE. Sobel. Camera models and machine perception. Stanford, Stanford Univ. Press,
1970, pp. 277-284].

Sobel Operator The Sobel operator approximates the two partial derivatives of
image I by using the filter kernels shown in Fig. 2.18. The convolution with the filter
kernel approximating a derivative in the x-direction is shown in Fig. 2.4, bottom,
right.

These two masks are discrete versions of simple Gaussian convolutions along
rows or columns followed by derivative estimates described by masks in Fig. 2.17.
For example,

-1 0 1 1
-2 0 2|=|2[[-1 0 1] (2.26)
-1 0 1 1

The two masks in Fig. 2.18 define two local convolutions that calculate approxima-
tions Sy and Sy of the partial derivatives. The value of the Sobel operator at pixel
location (x, y) equals

|Sx (e,)|+ [Sy(x,)| ~ |grad I (x,)|, (2.27)

This value is shown as grey level in the edge map defined by the Sobel operator. Of
course, this can also be followed by a detection of local maximum of the values of
the Sobel operator; this extension explains why the Sobel operator is also called an
edge detector.

64 2 Image Processing

Insert 2.6 (Origin of the Canny Operator) This operator was published in
[J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Analysis Ma-
chine Intelligence, vol. 8, pp. 679—698, 1986].

Canny Operator The Canny operator maps a scalar image into a binary edge
map of “thin” (i.e. having the width of one pixel only) edge segments. The output is
not uniquely defined; it depends on two thresholds 7}, and Thien with 0 < Ty <
Thigh < Gmax, not counting a fixed scale used for Gaussian smoothing.

Let I be already the smoothed input image, after applying a convolution with a
Gauss function G, of scale o > 0, for example | <o <2.

We apply now a basic gradient estimator such as the Sobel operator, which pro-
vides, for any p € §2, simple estimates for the partial derivatives I, and I, allow-
ing one to have estimates g(p) for the magnitude ||grad I (p)||> of the gradient and
estimates 6(p) for its direction atan2(ly, I,). The estimates 6(p) are rounded to
multiples of /4 by taking (6(p) + 7 /8) modulo /4.

In a step of non-maxima suppression it is tested whether a value g(p) is maximal
in the (now rounded) direction 6(p). For example, if 6(p) = /2, i.e. the gradient
direction at p = (x, y) is downward, then g(p) is compared against g(x,y — 1) and
g(x,y 4+ 1), the values above and below of p. If g(p) is not larger than the values
at both of those adjacent pixels, then g(p) becomes O.

In a final step of edge following, the paths of pixel locations p with g(p) > Ty
are traced, and pixels on such a path are marked as being edge pixels. Such a trace
is initialized by a location p with g(p) > Tjign.

When scanning £2, say with a standard scan, left-to-right, top-down, and arriving
at a (not yet marked) pixel p with g(p) > Thign, then
1. mark p as an edge pixel,

2. while there is a pixel location ¢ in the 8-adjacency set of p with g(g) > Tiow,
mark this as being an edge pixel,

3. call ¢ now p and go back to Step 2,

4. search for the next start pixel p until the end of £2 is reached.

By using two thresholds, this algorithm applies hysteresis: The following pixel g
may not be as good as having a value above T}, but it had at least one predecessor
on the same path with a value above Tj;gp; thus, this “positive” history is used to
support the decision at g, and we also accept g(g) > T}, for continuation.

Insert 2.7 (Laplace) P.S. Marquis de Laplace (1749—-1827) was a French ap-
plied mathematician and theoretical physicist.

Laplacian Following the step-edge model, edges are also identified with zero-
crossings of second-order derivatives. Common (simple) discrete approximations
of the Laplacian of an image I are defined by the filter kernels shown in Fig. 2.19.

2.3 Classes of Local Operators 65

Fig.2.19 Three masks for of[1]o 1[1]1
approximate calculations of 1]-4]1]1 1[-8]1]1 2[-4]2]1
the Laplacian ol1l0 11111

In the following example we derive the filter kernel given on the left as an example
for operator discretization.

Example 2.4 For deriving the first mask in Fig. 2.19, assume that we map / into a
matrix of first-order difference quotients

I(x,y+0.5) —I(x,y —0.5)
Iy(x,y) = I

=I(x,y+05 —1I(x,y—0.5)

and then again into a matrix of second-order difference quotients

Iyy(x,y) =1,(x,y+0.5) — I;(x,y —0.5)
:[I(x’y+1)_I(X,)’)]_[I(x»}’)_l(xsy_1)]
=Ix,y+D)+Ix,y—1)—2-1(x,y)

We do the same for approximating I, and add both difference quotients. This
defines an approximation of VI = AI, which coincides with the first mask in
Fig. 2.19. Figure 2.20 illustrates a row profile of an image after applying this ap-
proximate Laplacian.

2.3.4 Basic Corner Detectors

A corner in an image [is given at a pixel p where two edges of different directions
intersect; edges can be defined by the step-edge or the phase congruency model.
See Fig. 2.21 for a general meaning of “corners” in images and Fig. 2.22 for an
illustration of three corners when zooming into an image.

Insert 2.8 (Hesse and the Hessian Matrix) The Hessian matrix is named after
L.O. Hesse (1811-1874), a German mathematician.

Corner Detection Using the Hessian Matrix Following the definition of a corner
above, it is characterized by high curvature of intensity values. Accordingly, it can
be identified by the eigenvalues X1 and 1, (see Insert 2.9) of the Hessian matrix

| Lx(p) Ixy(p)
H(p)_[lxy(p) Iyy(p):| (2.28)

66 2 Image Processing

LoG intensity profile
20 !

10 | g

T T T T T

_60 I 1 L 1 L L
0 100 200 300 400 500 600 X

Fig. 2.20 Value profile of a row (close to the middle) in the resulting array when applying the
Laplacian to a smoothed version of the image Set1Seql (see Fig. 2.4, upper left) using scale
s = 2. The steep global minimum appears between branches of a shrub

Fig.2.21 Detected corners
provide important
information for localizing and
understanding shapes in 3D
scenes

at pixel location p. If the magnitude of both eigenvalues is “large”, then we are at
a corner; one large and one small eigenvalue identifies a step edge, and two small
eigenvalues identify a low-contrast region.

Insert 2.9 (Trace of a Matrix, Determinant, and Eigenvalues) The trace
Tr(A) of an n x n matrix A = (a;;) is the sum Y1 aii of its (main) diagonal
elements. The determinant of a 2 x 2 matrix A = (a;;) is given by

det(A) = aj1ax — apasn

2.3 Classes of Local Operators 67

1]
]
]
B P53 =F
L] |
[il
2
[1T
(1 11
[] []
4=la
[
2

Fig. 2.22 Pixels p, g, and r are at intersections of edges; directions of those edges are indicated
by the shown blue lines. The shown discrete circles (of 16 pixels) are used in the discussion of the
FAST corner detector. Small window of image Set1Seql

The determinant of a 3 x 3 matrix A = (a;;) is given by
det(A) = aj1axa33 +a12a23a31 +aj3az1a32 —a13a22a31 —a12021433 — 411423032

The eigenvalues of an n x n matrix A are the n solutions of its characteristic
polynomial det(A — AI) = 0, where 1 is the n X n identity matrix, and det
denotes the determinant.

Eigenvalues are real numbers for a real-valued matrix A. They can be
used for modelling stability of solutions of a linear equational system defined
by a matrix A.

The determinant of a square matrix is equal to the product of its eigenval-
ues, and the trace is equal to the sum of its eigenvalues.

Corner Detector by Harris and Stephens This corner detection method is
known as the Harris detector. Rather than considering the Hessian of the origi-
nal image I (i.e. second-order derivatives), we use the first-order derivatives of the
smoothed version L(., ., 0), as defined in (2.18), for some o > 0. Let

L2(p.o) Lx(p,a>Ly<p,a)}

Ly(p,o)Ly(p,0o) Lg(p,o) (2.29)

G(p,o)= [

68 2 Image Processing

at pixel location p. The eigenvalues A; and A, of the matrix G represent changes in
the intensities in orthogonal directions in the image /. Instead of calculating those
eigenvalues, we consider the cornerness measure

H(p,o,a) =det(G) —a - Tr(G) (2.30)

for a small parameter a > 0 (e.g. a = 1/25). Due to the general properties of eigen-
values, we have that

JC(p,o, M) =Arr—a- (A1 +Xp) (2.31)

If we have one large and one small eigenvalue (such as on a step edge), then having
also the trace in (2.30) ensures that the resulting value 7 (p, o, a) remains reason-
ably small.

The cornerness measure .77 was proposed in 1988 as a more time-efficient way
in comparison to a calculation and analysis of eigenvalues. For results, see Fig. 2.23,
left.

Insert 2.10 (Origin of the Harris Detector) This method was published in
[C. Harris and M. Stephens. A combined corner and edge detector. In Proc. Alvey Vision
Conference, pp. 147-151, 1988].

FAST Time constraints in today’s embedded vision (i.e. in “small” indepen-
dent systems such as micro-robots or cameras in mini-multi-copters), define time-
efficiency as an ongoing task. Features from an accelerated segment test FAST iden-
tify a corner by considering image values on a digital circle around the given pixel
location p; see Fig. 2.22 for 16 image values on a circle of radius p = 3.

Cornerness test: The value at the centre pixel needs to be darker (or brighter)
compared to more than 8 (say, 11 for really identifying a corner and not just an
irregular pixel on an otherwise straight edge) subsequent pixels on this circle and
“similar” to the values of the remaining pixels on the circle.

For results, see Fig. 2.23, right.

Time Efficiency For being time efficient, we first compare the value at the centre
pixel against the values at locations 1, 2, 3, and 4 in this order (see Fig. 2.22); only in
cases where it still appears to be possible that the centre pixel passes the cornerness
test, we continue with testing more pixels on the circle, such as between locations
1, 2, 3, and 4. The original FAST paper proposes to learn a decision tree for time
optimization. The FAST detector in 0opencV (and also the one in 1ibCvD) applies
SIMD instructions for concurrent comparisons, which is faster then the use of the
originally proposed decision tree.

Non-maxima Suppression FAST also applies non-maxima suppression for keep-
ing numbers of detected corners reasonably small. For example, for a detected cor-
ner, we can calculate the maximum difference 7 between the value at the centre

2.3 Classes of Local Operators 69

Fig. 2.23 Window of image Set1Seql. Left: Detected corners using the Harris detector. Right:
Corners detected by FAST

pixel and values on the discrete circle being classified as “darker” or “brighter”
such that we still detect this corner. Non-maxima suppression deletes then in the
order of differences T'.

Insert 2.11 (Origin of FAST) The paper [E. Rosten and T. Drummond. Machine
learning for high-speed corner detection. In Proc. European Conf. Computer Vision, vol. 1,
pp- 430-443, 2006] defined FAST as a corner detector.

2.3.5 Removal of lllumination Artefacts

Hllumination artefacts such as differing exposures, shadows, reflections, or vi-
gnetting pose problems for computer vision algorithms. See Fig. 2.24 for examples.

Failure of Intensity Constancy Assumption Computer vision algorithms of-
ten rely on the intensity constancy assumption (ICA) that there is no change in
the appearance of objects according to illumination between subsequent or time-
synchronized recorded images. This assumption is actually violated when using
real-world images, due to shadows, reflections, differing exposures, sensor noise,
and so forth.

There are at least three different ways to deal with this problem. (1) We can trans-
form input images such that illumination artefacts are reduced (e.g. mapping images
into a uniform illumination model by removing shadows); there are proposals for
this way but the success is still limited. (2) We can also attempt to enhance com-
puter vision algorithms so that they do not rely on ICA, and examples for this option
are discussed later in this book. (3) We can map input images into images containing
still the “relevant” information for subsequent computer vision algorithms, without
aiming at keeping those images visually equivalent to the original data, but at re-
moving the impacts of varying illumination.

70 2 Image Processing

Fig. 2.24 Example images from real-world scenes (black pixels at borders are caused by im-
age rectification, to be discussed later in the book). The pair of images NorthLeft and
NorthRight in the fop row show illumination differences between time-synchronized cameras
when the exposures are bad. The bottom-left image Light AndTrees shows an example where
trees can cause bad shadow effects. The bottom-right image MainRoad shows a night scene where
head-lights cause large bright spots on the image

We discuss two methods for the third option. A first approach could be to use ei-
ther histogram equalization or conditional scaling as defined before. Those methods
map the whole image uniformly onto a normalized image, normalized with respect
to a uniform grey-level histogram or constant mean and standard deviation, respec-
tively. But those uniform transforms are not able to deal with the non-global nature
of illumination artefacts.

For example, in vision-based driver assistance systems, there can be the “danc-
ing light” from sunlight through trees, creating local illumination artefacts. See the
bottom-left image in Fig. 2.24.

Using Edge Maps Local derivatives do not change when increasing image val-
ues by an additive constant. Local derivatives, gradients, or edge maps can be
used to derive image representations that are less impacted by lighting varia-
tions.

For example, we may simply use Sobel edge maps as input for subsequent com-
puter vision algorithms rather than the original image data. See Fig. 2.25 on the

2.3 Classes of Local Operators 71

Fig.2.25 Original image Set2Seql (left) has its residual image (middle), computed using TVL,
(not discussed in this textbook) for smoothing, and the Sobel edge map (right) shown

right. The Sobel edge map is not a binary image, and also not modified due to par-
ticular heuristics (as it is the case for many other edge operators), just the “raw edge
data”.

Insert 2.12 (Video Test Data for Computer Vision on the Net) The shown
synthetic image in Fig. 2.25 is taken from Set 2 of EISATS, available online at
www.mi.auckland.ac.nz/EISATS. There are various test data available on the
net for comparing computer vision algorithms on recorded image sequences.
For current challenges, see also www.cvlibs.net/datasets/kitti/, the KITTI Vi-
sion Benchmark Suite, and the Heidelberg Robust Vision Challenge at ECCV
2012, see hci.iwr.uni-heidelberg.de/Static/challenge2012/.

Another Use of Residuals with Respect to Smoothing Let / be an original im-
age, assumed to have an additive decomposition

I(p)=S(p)+R(p) (2.32)

for all pixel positions p, S denotes the smooth component of image I (as above
when specifying sharpening), and R is again the residual image with respect to
the smoothing operation which produced image S. The decomposition expressed in
(2.32) is also referred to as the structure-texture decomposition, where the structure
refers to the smooth component, and the texture to the residual.

The residual image is the difference between an input image and a smoothed
version of itself. Values in the residual image can also be negative, and it might be
useful to rescale it into the common range of {0, 1, ..., Gmax}, for example when
visualizing a residual image. Figure 2.25 shows an example of a residual image
R with respect to smoothing when using a TV-L? operator (not explained in this
textbook).

http://www.mi.auckland.ac.nz/EISATS
http://www.cvlibs.net/datasets/kitti/
http://hci.iwr.uni-heidelberg.de/Static/challenge2012/

72 2 Image Processing

A smoothing filter can be processed in multiple iterations, using the following
scheme:

SO =1
™ =5(s" V) forn >0 (2.33)
RMW — 1 _ g

The iteration number n defines the applied residual filter. When a 3 x 3 box filter is
used iteratively n times, then it is approximately identical to a Gauss filter of radius
n+1.

The appropriateness of different concepts needs to be tested for given classes of
input images. The iteration scheme (2.33) is useful for such tests.

24 Advanced Edge Detectors

This section discusses step-edge detectors that combine multiple approaches into
one algorithm, such as combining edge-detection with pre- or post-processing into
one optimized procedure. We also address the phase-congruency model for defining
edges by discussing the Kovesi operator.

2.4.1 LoGand DoG, and Their Scale Spaces

The Laplacian of Gaussian (LoG) and the difference of Gaussians (DoG) are very
important basic image transforms, as we will see later at several places in the book.

Insert 2.13 (Origin of the LoG Edge Detector) The origin of the Laplacian
of Gaussian (LoG) edge detector is the publication [D. Marr and E. Hildreth. The-
ory of edge detection. Proc. Royal Society London, Series B, Biological Sciences, vol. 207,
pp. 187-217, 1980]. For this reason, it is also known as the Marr—Hildreth algo-
rithm.

LoG Edge Detector Applying the Laplacian for a Gauss-filtered image can be
done in one step of convolution, based on the theorem

V3(Gy x1)=1%V*G, (2.34)

where * denotes the convolution of two functions, and 7 is assumed (for showing
this theorem) to be twice differentiable. The theorem follows directly when applying
twice the following general rule of convolutions:

D(F+H)=D(F)xH=FxD(H) (2.35)

2.4 Advanced Edge Detectors 73

Fig.2.26 The 2D Gauss

. . . 1 : Gauss function —
function is rotationally : 1st derivative
. . 2nd derivative —
symmetric with respect to the 0.8
origin (0, 0); it suffices that
we show cuts through the 0.6

function graph of G and its

subsequent derivatives 0.4
02
0.2
0.4 ;
) 4 2 Ez 2 4 6

where D denotes a derivative, and F and H are differentiable functions. We have:

Observation 2.4 For calculating the Laplacian of a Gauss-filtered image, we only
have to perform one convolution with VG

The filter kernel for V2G, is not limited to be a 3 x 3 kernel as shown in
Fig. 2.19. Because the Gauss function is given as a continuous function, we can
actually calculate the exact Laplacian of this function. For the first partial derivative
with respect to x, we obtain that

G X 2,2 2
Gy (=g e (2.36)

and the corresponding result for the first partial derivative with respect to y. We
repeat the derivative for x and y and obtain the LoG as follows:

1 2 2_2 2
V2Gy(x,y) = 4<x +y —)e‘“z”z)/z"z (2.37)
2wo o

See Fig. 2.26. The LoG is also known as the Mexican hat function. In fact, it is an
“inverted Mexican hat”. The zero-crossings define the edges.

Advice on Sampling the LoG Kernel Now we sample this Laplacian into a (2k +
1) x (2k 4 1) filter kernel for an appropriate value of k. But what is an appropriate
value for £? We start with estimating the standard deviation o for the given class of
input images, and an appropriate value of k follows from this.

The parameter w is defined by zero-crossings of V2G, (x, y); see Fig. 2.26. Con-
sider V2G4 (x, y) = 0 and, for example, y = 0. We obtain that we have both zero-
crossings defined by x2 = 202, namely at x; = —v/20 and at x, = ++/20. Thus,
we have that

w = |x; — x2| = 2+/20 (2.38)

74 2 Image Processing

Fig. 2.27 Laplacians of the images shown in Fig. 2.13, representing six layers in the LoG scale
space of the image Set1Seql

For representing the Mexican hat function properly by samples, it is proposed to use
a window size of 3w x 3w = 6+/20 x 6+/20. In conclusion we have that

2k +1 x 2k + 1 = ceil (6+v/20) x ceil (6+/20) (2.39)

where ceil denotes the ceiling function (i.e. the smallest integer equal to or larger
than the argument).

The value of o needs to be estimated for the given image data. Smoothing a
digital image with a very “narrow” (i.e. 0 < 1) Gauss function does not make
much sense. So, let us consider o > 1. The smallest kernel (for ¢ = 1, thus
3w =8.485...) will be of size 9 x 9 (i.e., k = 4). For given images, it is of interest
to compare results for k =4, 5,6,

LoG Scale Space Figure 2.13 shows six layers of the Gaussian scale space for
the image set1Seql. We calculate the Laplacians of those six layers and show the
resulting images (i.e. the absolute values of results) in Fig. 2.27; linear scaling was
applied to all the images for making the intensity patterns visible. This is an example
of a LoG scale space. As in a Gaussian scale space, each layer is defined by the

2.4 Advanced Edge Detectors 75

scale o, the used standard deviation in the Gauss function, and we can generate
subsequent layers when starting at an initial scale o and using subsequent scales
a’-ofora>1landn=0,1,...,m.

Difference of Gaussians (DoG) The difference of Gaussians (DoG) operator is a
common approximation of the LoG operator, justified by reduced run time. Equa-
tion (2.17) defined a centred (i.e. zero-mean) Gauss function G .

The DoG is defined by an initial scale o and a scaling factor a > 1 as follows:

Dgo(x,y)=L(x,y,0)—L(x,y,ao) (2.40)

It is the difference between a blurred copy of image / and an even more blurred
copy of I. As for LoG, edges (following the step-edge model) are detected at zero-
crossings.

Regarding a relation between LoG and DoG, we have that

Gao(xs y) - Ga(xs)/)
(a —1)o?

V2Ggy(x, y) ~ (2.41)

with a = 1.6 as a recommended parameter for approximation. Due to this approxi-
mate identity, DoGs are used in general as time-efficient approximations of LoGs.

DoG Scale Space Different scales o produce layers D, in the DoG scale space.
See Fig. 2.28 for a comparison of three layers in LoG and DoG scale space, using
scaling factor a = 1.6.

Insert 2.14 (Origins of Scale Space Studies) Multi-scale image representa-
tions are a well-developed theory in computer vision, with manifold appli-
cations. Following the LoG studies by Marr and Hildreth (see Insert 2.13),
P.J. Burt introduced Gaussian pyramids while working in A. Rosenfeld’s
group at College Park; see [P.J. Burt. Fast filter transform for image processing. Com-
puter Graphics Image Processing, vol. 16, pp. 20-51, 1981].

See also [J.L. Crowley. A representation for visual information. Carnegie-Mellon Uni-
versity, Robotics Institute, CMU-RI-TR-82-07, 1981] and [A.P. Witkin. Scale-space fil-
tering. In Proc. Int. Joint Conf. Artificial Intelligence, pp. 1019-1022, 1983] for early
publications on Gaussian pyramids, typically created in increments by factor
a =2, and resulting blurred images of varying size were called octaves.

Arbitrary scaling factors a > 1 were later introduced into scale-space the-
ory; see, for example, [T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer
Academic Publishers, 1994] and [J.L. Crowley and A.C. Sanderson. Multiple resolution
representation and probabilistic matching of 2-D grey-scale shape. IEEE Trans. Pattern
Analysis Machine Intelligence, vol. 9, pp. 113-121, 1987].

76 2 Image Processing

Fig. 2.28 LoG (left) and DoG (right) layers of image Set1Seql are generated for o = 0.5 and
a, =1.6" forn=0,...,5, and the figure shows results forn =1,n=3,andn =5

2.4.2 Embedded Confidence

A confidence measure is quantified information derived from calculated data, to be
used for deciding about the existence of a particular feature; if the calculated data
match the underlying model of the feature detector reasonably well, then this should
correspond to high values of the measure.

Insert 2.15 (Origin of the Meer—Georgescu Algorithm) This algorithm has
been published in [P. Meer and B. Georgescu. Edge detection with embedded confi-
dence. IEEE Trans. Pattern Analysis Machine Intelligence, vol. 23, pp. 1351-1365, 2001].

The Meer-Georgescu Algorithm The Meer—Georgescu algorithm detects edges
while applying a confidence measure based on the assumption of the validity of the
step-edge model.

2.4 Advanced Edge Detectors 77

: for every pixel p in image I do
estimate gradient magnitude g(p) and edge direction 6(p);
compute the confidence measure 7(p);
end for
: for every pixel p in image I do
determine value p(p) in the cumulative distribution of gradient magnitudes;
end for
: generate the pn diagram for image /;
: perform non-maxima suppression;
10: perform hysteresis thresholding;

A O ol e

N=J

Fig. 2.29 Meer—Georgescu algorithm for edge detection

Four parameters are considered in this method. For an estimated gradient vec-
tor g(p) = VI(x, y) at a pixel location p = (x, y), these are the estimated gradient
magnitude g(p) = ||g(p)]l2, the estimated gradient direction 6(p), an edge confi-
dence value n(p), and the percentile p; of the cumulative gradient magnitude distri-
bution. We specify those values below, to be used in the Meer—Georgescu algorithm
shown in Fig. 2.29.

Insert 2.16 (Transpose of a Matrix) The transpose W' of a matrix W is
obtained by mirroring elements about the main diagonal, and W' = W if
W is symmetric with respect to the main diagonal.

Let A be a matrix representation of the (2k + 1) x (2k + 1) window centred at
the current pixel location p in input image /. Let

W=sd" (2.42)

be a (2k + 1) x (2k + 1) matrix of weights, obtained as the product of two vectors

d=[dy,...,dxw+1]and s =[s1, ..., S2k+1], where

1. both are unit vectors in the Li-norm, i.e. |di|+-- -+ |dok+1| =1 and |s1|+-- -+
[sok1l=1,

2. d is an asymmetric vector, i.e. di = —d+1, do = —dok, ..., dk+1 = 0, which
represents differentiation of one row of matrix A, and

3. sis a symmetric vector, i.e. S| = $2k4+1 < 52 = $2k < -- - < Sx+1, which represents
smoothing in one column of a matrix A.

For example, asymmetric d = [—0.125, —0.25, 0, 0.25, 0.125]T and symmetric s =

[0.0625,0.25,0.375,0.25,0.0625] T define a 5 x 5 matrix W.
Let a; be the ith row of Matrix A. By using

di = Tr(WA) =Tr(sd"A) (2.43)

2k+1
dy=Tr(W'A)=s"Ad=) s;(d"a) (2.44)
i=1

78 2 Image Processing

Fig. 2.30 Left: Illustration of curves L and H in a pn diagram; each separates the square into
points with positive L or H, or negative L or H signs. For a (p,n) point on a curve, we have
L(p,n)=0o0r H(p,n) =0. Right: A 3 x 3 neighbourhood of pixel location p and virtual neigh-
bours g1 and ¢ in estimated gradient direction

we obtain the first two parameters used in the algorithm:

d
g(p)=Jd?+d? and 9(p):arctan<d—;) (2.45)

Let Ajgeqs be a (2k + 1) x (2k + 1) matrix representing a template of an ideal step
edge having the gradient direction 6 (p). The value n(p) = |Tr(Al.Ee)| specifies
the used confidence measure. The values in A and A,z are normalized such that
0 <n(p) <1, with n(p) =1 in case of a perfect match with the ideal step edge.

Let gy < -+ < gy < -+ < gn] be the ordered list of distinct (rounded)
gradient-magnitudes in image /, with cumulative distribution values (i.e. probabili-
ties)

pr = Problg < gix] (2.46)

for 1 <k < N. For a given pixel in /, assume that &[] is the closest real to its edge
magnitude g(p); then we have the percentile p(p) = pr.

Altogether, for each pixel p, we have a percentile p(p) and a confidence n(p)
between O and 1. These values p(p) and n(p) for any pixel in I define a 2D pn-
diagram for image 1. See Fig. 2.30, left.

We consider curves in the pf space given in implicit form, such as L(p,) =0.
For example, this can be just a vertical line passing the square, or an elliptical arc.
Figure 2.30, left, illustrates two curves L and H. Such a curve separates the square
into points having positive or negative signs with respect to the curve and into the
set of points where the curve equals zero. Now we have all the tools together for
describing the decision process.

Non-maxima Suppression For the current pixel p, determine virtual neighbours
q1 and g7 in estimated gradient direction (see Fig. 2.30, right) and their p and n
values by interpolation using values at adjacent pixel locations.

A pixel location p describes with respect to a curve X in pf space a maximum
if both virtual neighbours ¢; and ¢> have a negative sign for X. We suppress non-
maxima in Step 9 of the algorithm by using a selected curve X for this step; the
remaining pixels are the candidates for the edge map.

2.4 Advanced Edge Detectors 79

Fig. 2.31 Resultant images when using the Meer—Georgescu algorithm for a larger (left) or
smaller (right) filter kernel defined by parameter k. Compare with Fig. 2.32, where the same input
image Set1Seql has been used (shown in Fig. 2.4, top, left)

Hysteresis Thresholding Hysteresis thresholding is a general technique to de-
cide in a process based on previously obtained results. In this algorithm, hysteresis
thresholding in Step 10 is based on having two curves L and H in the p6 space,
called the two hysteresis thresholds; see Fig. 2.30, left. Those curves are also al-
lowed to intersect in general.

We pass through all pixels in / in Step 9. At pixel p we have values p and 6. It
stays on the edge map if (a) L(p,n) > 0 and H(p,n) > 0 or (b) it is adjacent to a
pixel in the edge map and satisfies L(p, 1) - H(p,) < 0. The second condition (b)
describes the hysteresis thresholding process; it is applied recursively.

This edge detection method can be a Canny operator if the two hysteresis thresh-
olds are vertical lines, and a confidence-only detector if the two lines are horizontal.
Figure 2.31 illustrates images resulting from an application of the Meer-Georgescu
algorithm.

2.4.3 The Kovesi Algorithm

Figure 2.32 illustrates results of four different edge detectors on the same night-
vision image, recorded for vision-based driver assistance purposes. The two edge
maps on the top are derived from phase congruency; the two at the bottom by ap-
plying the step-edge model.

Differences between step-edge operators and phase-based operators are even bet-
ter visible for a simple synthetic input image as in Fig. 2.33. Following its under-
lying model, a gradient-based operator such as the Canny operator identifies edge
pixels defined by maxima of gradient magnitudes, resulting in double responses
around the sphere and a confused torus boundary in Fig. 2.34, left. We present the
algorithm used for generating the result in Fig. 2.34, right.

Gabor Wavelets For a local analysis of frequency components, it is convenient
not to use wave patterns that run uniformly through the whole (2k 4+ 1) x (2k + 1)
window (as illustrated in Fig. 1.15) but rather wavelets, such as Gabor wavelets,
which are sine or cosine waves modulated by a Gauss function of some scale o and

80 2 Image Processing

Fig. 2.32 The phase-congruency model versus the step-edge model on the image SetlSeql,
shown in Fig. 2.4, top, left. Upper row: Results of the Kovesi operator, which is based on the
phase-congruency model, using program phasecongmono .m (see link in Insert 2.18) on the
left and the next most recent code phasecong3 .m on the right, both with default parameters.
Lower left: The Sobel operator follows the step-edge model, using OpenCV’s Sobel () with x
order 1, y order O, and aperture 3. Lower right: The Canny operator is another implementation for
the step-edge model using Canny () with minimum threshold 150 and maximum threshold 200

=

Fig. 2.33 Left: Synthetic input image. Right: Intensity profiles along Section A—A (top) and Sec-
tion B-B (bottom)

thus of decreasing amplitudes around a centre point. See Fig. 2.35. The image in the
middle shows stripes that are orthogonal to a defining rotation angle 6.

There are odd and even Gabor wavelets. An odd wavelet is generated from a sine
wave, thus having the value O at the origin. An even wavelet is generated from a
cosine wave, thus having its maximum at the origin.

2.4 Advanced Edge Detectors 81

Fig. 2.34 Left: Edges detected by the Canny operator. Right: Edges detected by the Kovesi algo-

rithm
| dd wavelet

Fig. 2.35 Left: Two 1D cuts through an odd and an even Gabor wavelet. Middle: A grey-level
representation of a square Gabor wavelet in a window of size (2k 4+ 1) x (2k + 1) with direction 6,
with its 3D surface plot (right)

Insert 2.17 (Gabor) The Hungarian born D. Gabor (1900-1979) was an
electrical engineer and physicist. He worked in Great Britain and received
in 1971 the Nobel Prize in Physics for inventing holography.

For a formal definition of Gabor wavelets, we first recall the definition of the
Gauss function:

Gy (x,)’) =

1 x4+ y?
- 2.47
2o’ exp(202) (247)

Furthermore, we map the coordinates x and y in the image into rotated coordinates

u=xcos + ysin6 (2.48)
v = —xsinf + ycos6 (2.49)

82 2 Image Processing

where 6 is orthogonal to the stripes in the Gabor wavelets; see Fig. 2.35, middle.
Now consider also a phase-offset ¢ > 0, wavelength A > 0 of the sinusoidal factor,
and a spatial aspect ratio y > 0. Then, altogether,

Zeven(X. ¥) = G (u, yv) - cos(znf + w) (2.50)

8odd(x,y) = Go (u, yv) - Sin<2ﬂ% + lﬁ) (2.51)

define one Gabor pair where sine and cosine functions are modulated by the same
Gauss function. The pair can also be combined into one complex number using

gpair(x9 ¥) = Zeven(x, ¥) +~ =1+ goda(x,y)

— G, (u, yv)- exp(Zn% + w) (2.52)

Insert 2.18 (Origin of the Kovesi Algorithm) This algorithm has been pub-
lished in [P.D. Kovesi. A dimensionless measure of edge significance from phase congru-
ency calculated via wavelets. In Proc. New Zealand Conf. Image Vision Computing, pp. 87—
94, 1993]. See also sources provided on www.csse.uwa.edu.au/~pk/Research/
MatlabFns/index.html#phasecong. The program is very fast and routinely ap-
plied to images of size 2000 x 2000 or more; it applies actually log-Gabor
wavelets instead of Gabor wavelets for better operator response and for bet-
ter time efficiency.

Preparing for the Algorithm The Kovesi algorithm applies a set of n square
Gabor pairs, centred at the current pixel location p = (x, y). Figure 2.36 illustrates
such a set for n = 40 by illustrating only one function (say, the odd wavelet) for
each pair; the Kovesi algorithm uses 24 pairs as default.

The convolution with each Gabor pair defines one complex number. The obtained
n complex numbers have amplitude r;, and phase «y.

Equation (1.33) defines an ideal phase congruency measure. For cases where the
sum Y, _, r; becomes very small, it is convenient to add a small positive number
¢ to the denominator, such as € = (0.01. There is also noise in the image, typically
uniform. Let 7 > 0 be the sum of all noise responses over all AC components (which
can be estimated for given images). Assuming constant noise, we simply subtract
the noise component and have

pos(lizll2 = T)

f@phase(p) = Zn ot €
h=1

(2.53)

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html#phasecong
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html#phasecong

2.4 Advanced Edge Detectors

Fig. 2.36 Illustration of a set of Gabor functions to be used for detecting phase congruency at a
pixel location

where the function pos returns the argument if positive and O otherwise. We have
that

0= gphase(p) <1 (2.54)

Select m1 uniformly distributed directions 61, ..., 6,,, and m scales s1, ..., Sy,
(for example, m| = 6 and m, = 4). For specifying the set of m| - m, Gabor wavelets,
select the smallest scale (e.g. equal to 3) and a scaling factor between successive
scales (say, equal to 2.1). The convolution with those Gabor wavelets can be done
more time-efficiently in the frequency domain than in the spatial domain. If in the
spatial domain, then the size (2k + 1) x (2k 4 1) of the convolution kernel should
be such that 2k + 1 is about three times the wavelength of the filter.

Processing at One Pixel Now we have all together for analysing phase congru-

ency at the given pixel location p = (x, y):

1. Apply at p the set of convolution masks of n = m - m, Gabor pairs producing n
complex numbers (ry,, orp,).

2. Calculate the phase congruency measures &;(p), 1 <i < my, as defined in
(2.53), but by only using the m, complex numbers (r;, ;) defined for direc-
tion 6; by m, scales.

3. Calculate the directional components X; and Y; for 1 <i <m by

[Xi, YT = 2,(p) - [sin(6), cos(@)] " (255)
4. For the resulting covariance matrix of directional components,
Zml X2 27;‘1 XiY;
|:Z:n=11 XiYi Z:nzll Yi2 :|

calculate the eigenvalues A1 and A,; let A1 > X,. (This matrix corresponds to the
2 x 2 Hessian matrix of second-order derivatives; for L.O. Hesse, see Insert 2.8.)

(2.56)

84 2 Image Processing

Fig.2.37 Colour-coded ——— Step
results when classifying
detected feature points in a \E
scale between “Step” and N,
“Line”, using the colour key SN LT .
shown on the right. For the ' N A '
original image, see Fig. 2.33, TN
left

l Line

The magnitude of A; indicates the significance of a local feature (an edge, corner,
or another local feature); if A, is also of large magnitude, then we have a corner; the
principle axis corresponds with the direction of the local feature.

Detection of Edge Pixels After applying the procedure above for all p € 2, we
have an array of A values, called the raw result of the algorithm. All values below
a chosen cut-off threshold (say, 0.5) can be ignored.

We perform non-maxima suppression in this array (possibly combined with hys-
teresis thresholding, similar to the Meer—Georgescu algorithm), i.e. set to zero all
values that do not define a local maximum in their (say) 8-neighbourhood.

All the pixels having non-zero values after the non-maxima suppression are the
identified edge pixels.

Besides technical parameters which can be kept constant for all processed images
(e.g. the chosen Gabor pairs, parameter ¢ for eliminating instability of the denomi-
nator, or the cut-off threshold), the algorithm only depends on the parameter 7 used
in (2.53), and even this parameter can be estimated from the expected noise in the
processed images.

Equation (2.53) gives a measure & (p) that is proportional to the cosine of the
phase deviation angles, which gives a “soft” response.

Given that & (p) represents a weighted sum of the cosines of the phase deviation
angles, taking the arc cosine gives us a weighted sum of the phase deviation angles.
A suggested revision of the phase deviation measure is then given by

Prev(p) = pos(1 — arccos(Z(p))) (2.57)

with function pos as defined above.

Classification into Edge or Line Pixels Having two eigenvalues as results for
each pixel, these two values can also be used for classifying a detected feature. See
Fig. 2.37 for an example.

2.5 Exercises 85

2.5 Exercises
2.5.1 Programming Exercises

Exercise 2.1 (Variations of Histogram Equalization) The book [R. Klette and P.
Zamperoni: Handbook of Image Processing Operators. Wiley, Chichester, 1996]
discusses variations of histogram transforms, in particular variations of histogram
equalization

G
G u) max
Sequat1) = =5 2 i) with Q=3 hy(w)”
w=0 w=0

Use noisy (scalar) input pictures (of your choice) and apply the sigma filter prior to
histogram equalization. Verify by your own experiments the following statements:

A stronger or weaker equalization can be obtained by adjusting the exponent
r > 0. The resultant histogram is uniformly (as good as possible) distributed for
r = 1. For r > 1, sparse grey values of the original picture will occur more often
than in the equalized picture. For r = 0, we have about (not exactly!) the identical
transform. A weaker equalization in comparison to » = 1 is obtained for r < 1.

Visualize results by using 2D histograms where one axis is defined by r and the
other axis, as usual, by grey levels; show those 2D histograms either by means of a
2D grey-level image or as a 3D surface plot.

Exercise 2.2 (Developing an Edge Detector by Combining Different Strategies)

Within an edge detector we can apply one or several of the following strategies:

1. An edge pixel should define a local maximum when applying an operator (such
as the Sobel operator) that approximates the magnitude of the gradient V /.

2. After applying the LoG filter, the resulting arrays of positive and negative values
need to be analysed with respect to zero-crossings (i.e. pixel locations p where
the LoG result is about zero, and there are both positive and negative LoG values
at locations adjacent to p).

3. The discussed operators are modelled with respect to derivatives in x- or y-
directions only. The consideration of directional derivatives is a further option;
for example, derivatives in directions of multiples of 45°.

4. More heuristics can be applied for edge detection: an edge pixel should be adja-
cent to other edge pixels.

5. Finally, when having a sequences of edge pixels, then we are interested in ex-
tracting “thin arcs” rather than having “thick edges”.

The task in this programming exercise is to design your own edge detector that
combines at least two different strategies as listed above. For example, verify the
presence of edge pixels by tests using both first-order and second-order derivatives.
As a second example, apply a first-order derivative operator together with a test for
adjacent edge pixels. As a third example, extend a first-order derivative operator by
directional derivatives in more than just two directions. Go for one of those three
examples or design your own combination of strategies.

86 2 Image Processing

Exercise 2.3 (Amplitudes and Phases of Local Fourier Transforms) Define two
(2k + 1) x (2k + 1) local operators, one for amplitudes and one for phases, map-
ping an input image I into the amplitude image .# and phase image & defined as
follows:

Perform the 2D DFT on the current (2k + 1) x (2k + 1) input window, centred
at pixel location p. For the resulting (2k 4+ 1)> — 1 complex-valued AC coefficients,
calculate a value .# (p) representing the percentage of amplitudes at high-frequency
locations compared to the total sum of all (2k + 1)> — 1 amplitudes and the phase-
congruency measure Z(p) as defined in (2.53).

Visualize .# and & (p) as grey-level images and compare with edges in the input
image /. For doing so, select an edge operator, thresholds for edge map, amplitude
image, and phase image and quantify the numbers of pixels being in the thresholded
edge and amplitude image versus numbers of pixels being in the thresholded edge
and phase image.

Exercise 2.4 (Residual Images with Respect to Smoothing) Use a 3 x 3 box fil-
ter recursively (up to 30 iterations) for generating residual images with respect to
smoothing. Compare with residual images when smoothing with a Gauss filter of
size 2k+1) x (2k+1) fork =1, ..., 15. Discuss the general relationship between
recursively repeated box filters and a Gauss filter of the corresponding radius. Ac-
tually, what is the corresponding radius?

2.5.2 Non-programming Exercises

Exercise 2.5 Linear local operators are those that can be defined by a convolu-
tion. Classify the following whether they are linear operators or not: box, median,
histogram equalization, sigma filter, Gauss filter, and LoG.

Exercise 2.6 Equalization of colour pictures is an interesting area of research. Dis-
cuss why the following approach is expected to be imperfect: do histogram equal-
ization for all three colour (e.g. RGB) channels separately; use the resulting scalar
pictures as colour channels for the resulting image.

Exercise 2.7 Prove that conditional scaling correctly generated an image J that has
the mean and variance identical to those corresponding values of the image I used
for normalization.

Exercise 2.8 Specify exactly how the integral image can be used for minimizing
run time for a box filter of large kernel size.

Exercise 2.9 Following Example 2.4, what could be a filter kernel for the quadratic
variation (instead of the one derived for the Laplace operator)?

2.5 Exercises 87

Exercise 2.10 Prove that Sobel masks are of the form ds' and sd" for 3D vectors
s and d that satisfy the assumptions of the Meer—Georgescu algorithm for edge
detection.

Exercise 2.11 The sigma filter replaces I(p) by J(p) as defined in (2.19). The
procedure uses the histogram H (u) computed for values u in the window W, (1)
that belong to the interval [1 (p) — o, I (p) + o]. Alternatively, a direct computation
can be applied:

2qez,, 1@
1Zp.ol

where Z, ; ={g € W,(I): I(p) —o <1(q) < I(p) + o}. Analyse possible ad-
vantages of this approach for small windows.

J(p) = (2.58)

Exercise 2.12 Sketch (as in Fig. 2.6) filter curves in the frequency domain that
might be called an “exponential low-emphasis filter” and “ideal band-pass filter”.

Image Analysis

This chapter provides topologic and geometric basics for analysing image regions,
as well as two common ways for analysing distributions of image values. It also
discusses line and circle detection as examples for identifying particular patterns in
an image.

3.1 Basic Image Topology

In Sect. 1.1.1 it was stated that pixels do not define a particular adjacency relation
between them per se. It is our model that specifies a chosen adjacency relation. The
selected adjacency relation has later significant impacts on defined image regions,
to be used for deriving properties in an image analysis context. See Fig. 3.1.

This section is a brief introduction into digital topology as needed for understand-
ing basic concepts such as an “image region” or “border of an image region”, also
highlighting particular issues in a digital image that do not occur in the Euclidean
plane.

Insert 3.1 (Topology and Listing) Topology can informally be described as
being “rubber-sheet geometry”. We are interested in understanding the num-
bers of components of sets, adjacencies between such components, numbers
of holes in sets, and similar properties that do not depend on measurements
in a space equipped with coordinates.

The Descartes—Euler theorem og — o] + o = 2 is often identified as the
origin of topology, where oy, a1, and ag are the numbers of faces, edges,
and vertices of a convex polyhedron. (A convex polyhedron is a nonempty
bounded set that is an intersection of finitely many half-spaces.) For Euler
and Descartes, see Insert 1.3.

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science, 89
DOI 10.1007/978-1-4471-6320-6_3, © Springer-Verlag London 2014

http://dx.doi.org/10.1007/978-1-4471-6320-6_3

90 3 Image Analysis

Fig.3.1 Left: The number of black regions does not depend on a chosen adjacency relation. Right:
In the Euclidean topology, the number of black regions depends on whether two adjacent black
squares are actually connected by the black corner point between both or not

J.B. Listing (1802—-1882) was the first to use the word “topology” in his
correspondence, beginning in 1837. He defined: “Topological properties are
those which are related not to quantity or content, but to spatial order and
position.”

3.1.1 4-and 8-Adjacency for Binary Images

Assumed pixel adjacency (or pixel neighbourhood) defines connectedness in an im-
age and thus regions of pairwise connected pixels.

Pixel Adjacency Assuming 4-adjacency, each pixel location p = (x, y) is adja-
cent to pixel locations in the set

Asp)=p+As={x+1,y).x =1y, (x,y+ 1, (x,y =D} (3.1)

for the 4-adjacency set A4 = {(1,0),(—1,0),(0,1),(0,—1)}. The graphs in
Figs. 1.1 and 1.2 illustrate 4-adjacency. This type of adjacency corresponds to edge-
adjacency when considering each pixel as a shaded tiny square (i.e. the grid cell
model). Assuming 8-adjacency, each grid point p = (x, y) is adjacent to pixel loca-
tions in the set

Ag(p)=p+As={Gx+1y+D,x+1,y—D,x—Ly+D, x—1y—1),
(x+1»y)v(x_1sy)»(x7y+1)s(-x7y_1)} (32)

for the 8-adjacency set Ag = {(1,1),(1,—1),(—=1,1),(—1,—1)} U A4. This also
introduces diagonal edges that are not shown in the graphs in Figs. 1.1 and 1.2.
Figure 3.3, left, illustrates 8-adjacency for the shown black pixels. This type of
adjacency corresponds to edge- or corner-adjacency in the grid cell model.

3.1 Basic Image Topology 91

o e O e o o o e O e o o
® Op e ® Op @ e Op o e Oep e
c e O e o o o e O e o o

Fig.3.2 Left: 4-adjacency set and 8-adjacency set of p. Right: 4-neighbourhood and 8-neighbour-
hood of p

Pixel Neighbourhoods A neighbourhood of a pixel p contains the pixel p itself
and some adjacent pixels. For example, the 4-neighbourhood of p equals A4(p) U
{p}, and the 8-neighbourhood of p equals Ag(p) U {p}. See Fig. 3.2.

Insert 3.2 (Adjacency, Connectedness, and Planarity in Graph Theory) An
(undirected) graph G = [N, E] is defined by a set N of nodes and a set E of
edges; each edge connects two nodes. The graph G is finite if N is finite.

Two nodes are adjacent if there is an edge between them. A path is a se-
quence of nodes, where each node in the sequence is adjacent to its predeces-
sor.

A set S C N of nodes is connected iff there is a path in S from any node in
S to any node in S. Maximal connected subsets of a graph are called compo-
nents.

A planar graph can be drawn on the plane in such a way that its edges
intersect only at their endpoints (i.e. nodes). Let o1 be the number of edges,
and o be the number of nodes of a graph. For a planar graph with oo > 3,
we have that a1 < 3ag — 6; if there are no cycles of length 3 in the graph, then
it is even a1 <20p — 4.

Euler’s formula states that for a finite planar and connected graph, oy —
o1 + ag = 2, where oy denotes the number of faces of the planar graph.

Pixel Connectedness The following transitive closure of the adjacency relation

defines connectedness. Let S C £2:

1. A pixel is connected to itself.

2. Adjacent pixels in S are connected.

3. If pixel p € S is connected to pixel ¢ € S, and pixel g € S is adjacent to pixel
r € S, then p is also connected to (in).

Depending on the chosen adjacency, we thus have either 4-connectedness or 8-

connectedness of subsets of £2.

Regions Maximal connected sets of pixels define regions, also called components.
The black pixels in Fig. 3.3, left, define one 8-region and eight 4-regions (isolated
pixels); the figure contains two white 4-regions and only one white 8-region.
Figure 3.4, left, provides a more general example. Assume that the task is to
count “particles” in an image represented (after some image processing) by black
pixels. The chosen adjacency relation defines your result, not the input image!

92 3 Image Analysis

o 0O O O O O
O O O O O O

O o O

0O 0O 0O 0 0o O O

Fig. 3.3 Left: Assume 4-adjacency: The disconnected black pixels separate a connected “inner
region” from a connected “outer region”. Assume 8-adjacency: The black pixels are connected (as
illustrated by the inserted edges), but all the white pixels remain connected (see the dashed edge
as an example). Right: A simple curve in the Euclidean plane always separates interior (the shaded
region) from exterior

0O O 0O 0O O 0O oo 0o 0o O o o o0 o o
0O O e O O O O OO O O O O e O O O O
O ©€ @€ € O O O O OO O OC @ @@ @ O O O
O ©€ @€ € € O O O O O O @ @ @¢ @¢ O O O
0O O @€ @€ @€ O O O O @€ O e @ @€ O O O O
0O O O O O @ O O @@ @ @€ O O O O O O O
O O O O @ ¢ @ O ©¢ @ ¢ O O @@ @€ O O O
O O O @ @ ¢ @ O O @ ¢ O @ @ ¢ ¢ O O
0O O O O @€ ¢ @ O O @€ ¢ O O e o o o O
0O 0O 0O 0O O 0O 0O 0O 0O O 0O O O O e e e O
0 o0 o o0 o0 o o0 o o0 0 o0 o0 o0 0o o0 0 o0 o

Fig. 3.4 Left: Assuming 4-adjacency for black pixels, we count five “particles” in this binary
image; assuming 8-adjacency, the count is three. Right: Illustration of an application where such a
count is relevant

Insert 3.3 (Jordan) C. Jordan (1838-1922), a French mathematician, con-
tributed to many areas in mathematics. For example, he showed that the centre
of a tree is either a single node or a pair of adjacent nodes. He is especially
known for his definitions and characterizations of curves in the plane.

Dual Adjacencies in Binary Images Figure 3.3 illustrates the consequences
when deciding for one particular type of adjacency by drawing a comparison with
the geometry in the Euclidean plane R?. R is the set of all real numbers. A simple
curve, also known as a Jordan curve, always separates an inner region, called the
interior, from an outer region, called the exterior. This appears to be obvious, in
correspondence with our intuition, but a mathematical proof of this property, known

3.1 Basic Image Topology 93

as the Jordan—Brouwer theorem, is actually difficult. What is the corresponding the-
orem for images based on connectedness?

Insert 3.4 (Rosenfeld and the Origin of Dual Adjacencies) Figure 3.3, left,
was used in [A. Rosenfeld and J.L. Pfaltz. Sequential operations in digital picture process-
ing. J. ACM, 13:471-494, 1966] for showing that one uniformly applied adjacency
relation leads to topological ‘issues’. The authors wrote:

“The ‘paradox’ of (Fig. 3.3, left,) can be (expressed) as follows: If the ‘curve’ is con-
nected (‘gapless’) it does not disconnect its interior from its exterior; if it is totally
disconnected it does disconnect them. This is of course not a mathematical paradox
but it is unsatisfying intuitively; nevertheless, connectivity is still a useful concept. It
should be noted that if a digitized picture is defined as an array of hexagonal, rather
than square, elements, the paradox disappears”.

Commenting on this publication, R.O. Duda, P.E. Hart, and J.H. Munson pro-
posed (in an unpublished technical report in 1967) the dual use of 4- and
8-connectedness for black and white pixels.

A. Rosenfeld (1931-2004) is known for many pioneering contributions to
computer vision. The Azriel Rosenfeld Life-Time Achievement Award was es-
tablished at ICCV 2007 in Rio de Janeiro to honour outstanding researchers
who are recognized as making significant contributions to the field of Com-
puter Vision over longtime careers.

Figure 3.3, left, contains one 8-region forming a simple digital curve. But this
curve does not separate two white 8-regions. Assuming 4-adjacency, then we have
isolated pixels, thus no simple curve, and thus there should be no separation. But,
we do have two separated 4-regions. Thus, using the same adjacency relation for
both black and white pixels leads to a topological result that does not correspond
to the Jordan—Brouwer theorem in the Euclidean plane and thus not to our intuition
when detecting a simple curve in an image. The straightforward solution is:

Observation 3.1 The dual use of types of adjacency for white or black pixels, for
example 4-adjacency for white pixels and 8-adjacency for black pixels, ensures that
simple digital curves separate inner and outer regions. Such a dual use results in a
planar adjacency graph for the given binary image.

Insert 3.5 (Two Separation Theorems) Let ¢ be a parameterized continuous
path ¢ : [a,b] — R? such that a # b, ¢(a) = ¢ (b), and let ¢(s) # ¢ (t) for
all s,t (a <s <t <b). Following C. Jordan (1893), a Jordan curve in the
plane is a set

y={0.»:¢@0) =y Aa<t<b}

94 3 Image Analysis

An open set M is called topologically connected if it is not the union of
two disjoint nonempty open subsets of M.

Theorem 3.1 (C. Jordan, 1887; O. Veblen, 1905) Let y be a Jordan curve in
the Euclidean plane. The open set R\ y consists of two disjoint topologically
connected open sets with the common frontier y .

This theorem was first stated by C. Jordan in 1887, but his proof was in-
correct. The first correct proof was given by O. Veblen in 1905.

Two sets S1, S» € R" are homeomorphic if there is a one-to-one contin-
uous mapping ® such that ®(S) = S, and ' is also continuous [with
27($) =811

L.E.J. Brouwer generalized in 1912 the definition of a Jordan curve. A Jor-
dan manifold in R" (n > 2) is the homeomorphic image of the frontier of the
n-dimensional unit ball.

Theorem 3.2 (L.E.J. Brouwer, 1911) A Jordan manifold separates R" into
two connected subsets and coincides with the frontier of each of these subsets.

3.1.2 Topologically Sound Pixel Adjacency

The dual use of 4- or 8-adjacency avoids the described topological problems for
binary images. For multi-level images (i.e. more than two different image values),
we can either decide that we ignore topological issues as illustrated by Fig. 3.3 (and
assume just 4- or 8-adjacency for all pixels, knowing that this will cause topological
problems sometimes), or we apply a topologically sound adjacency approach, which
comes with additional computational costs.

If your imaging application requires to be topologically sound at pixel adjacency
level, or you are interested in the raised mathematical problem, then this is your
subsection. Figure 3.5 illustrates the raised mathematical problem: how to provide
a sound mathematical model for dealing with topology in multi-level images?

For the chessboard-type pattern in Fig. 3.1, right, we assume that it is defined in
the Euclidean (i.e., continuous) plane, and we have to specify whether the corners of
squares are either black or white. Topology is the mathematical theory for modelling
such decisions.

Insert 3.6 (Euclidean Topology) We briefly recall some basics of the Eu-
clidean topology. Consider the Euclidean metric d, in the n-dimensional (nD)
Euclidean space R" (n = 1, 2, 3 is sufficient for our purpose). Let ¢ > 0. The

3.1 Basic Image Topology 95

Fig. 3.5 Is the black line
crossing “on top” of the grey
line? How many grey
components? How many
black components? How
many white components?

set
Ue(p)={q:q9 €R" Ada(p.q) <¢}
is the (open) e-neighbourhood of p € R", also called the (open) e-ball cen-
tred at p, or unit ball if e = 1.

Let S C R". The set S is called open if, for any point p € S, there is a pos-
itive & such that Ug(p) C S. A set S C R" is called closed if the complement
S =R"\ S is an open set. The class of all open subsets of R" defines the nD
Euclidean topology.

Let S C R". The maximum open set S° contained in S is called the interior
of S, and the minimum closed set S®, containing S, is called the closure of S.

It follows that a set is open iff it equals its interior; a set is closed iff it
equals its closure. The difference set §S = S°® \ S° is the boundary or frontier
of S.

Examples: Consider n = 1. For two reals a < b, the interval [a,b] = {x :a <
x < b} is closed, and the interval (a, b) = {x : a < x < b} is open. The frontier
of la, b], (a, b], [a, b), or (a, b) equals {a, b}.

A straight line y = Ax + B in 2D space also contains open or closed seg-
ments. For example, {(x,y):a <x <b ANy = Ax + B} is an open segment.
The singleton {p} is closed for p € R?. The frontier of a square can be parti-
tioned into four (closed) vertices and four open line segments.

A set in R" is compact iff it is closed and bounded; it has an interior and a
frontier. After removing its frontier, it would become open. See Fig. 3.6 for an
illustration of a set in the plane.

We can consider all black squares in a chessboard-type pattern to be closed; then
we have only one connected black region. We can consider all black squares to be

96 3 Image Analysis

Fig. 3.6 The dashed line T |
illustrates the open interiors, .

and the solid line illustrates

the frontier. Of course, in the

continuous plane there are no

gaps between interior and

frontier; this is just a rough

sketch

IR e
N\ 79207 4=
IOC GOSN
SO UBIe
IO S HBEP:
= b

Q8=

BN

Fig. 3.7 Components for
“black > grey > white”

open; then we have only one connected white region. The important point is: Which
pixel “owns” the corner where all four pixels meet?

Observation 3.2 We have to define a preference which grey-level pixels should be
closed or open in relation to another grey level; considering closed pixels as being
“more important”, we need to define an order of importance.

Consider the example in Fig. 3.5 and assume that “black > grey > white” for
the order of importance. If four pixels meet at one corner (as shown in Fig. 3.6)
and there is any black pixel in the set of four, then the corner is also black. If there
is no black pixel in the set of four, then a grey pixel would “win” against white
pixels. Applying this order of importance, we have two black components, three
grey components, and seven white components. See Fig. 3.7.

Under the assumption of “white > grey > black”, we would have one white
component, two grey components, and five black components for Fig. 3.5.

3.1 Basic Image Topology 97

Fig.3.8 Three 2-by-2 pixel
arrays defining each
“flip-flop” case

The order of importance defines the key for this way of adjacency definition; thus,
we call it K-adjacency. A simple general rule for a scalar image is that the order of
importance follows the order of grey levels, either in increasing or in decreasing
order. For a vector-valued image, it is possible to take an order by vector magni-
tudes followed by lexicographic order (in cases of identical magnitudes). Defining
K-adjacencies based on such orders of importance solves the raised mathematical
problem (due to a partition of the plane in the sense of Euclidean topology), and the
analysis in the image thus follows the expected topological rules.

We need to access those orders actually only in cases where two pixel locations,
being diagonally positioned in a 2 x 2 pixel array, have an identical value, which is
different from the two other values in this 2 x 2 pixel array. This defines a flip-flop
case. Figure 3.8 illustrates three flip-flop cases.

The number of such flip-flop cases is small in recorded images; see four examples
of grey-level images in Fig. 3.9. Despite those small numbers, the impact of those
few flip-flop cases on the shape or number of connected regions (defined by identical
image values) in an image is often significant.

Observation 3.3 K-adjacency creates a planar adjacency graph for a given image
and ensures that simple digital curves separate inner and outer regions.

Back to the case of binary images: If we assume that “white > black”, then K -
adjacency means that we have 8-adjacency for white pixels, and 4-adjacency for
black pixels, and “black > white” defines the swapped assignment.

3.1.3 Border Tracing

When arriving via a scanline at an object, we like to trace its border such that the
object region is always on the right or always on the left. See Fig. 3.10.

According to the defined pixel adjacency, at a current pixel we have to test all
the adjacent pixels in a defined order such that we keep to our strategy (i.e. object
region either always on the right or always on the left).

The adjacency used might be 4-, 8-, or K-adjacency, or any other adjacency
of your choice. At every pixel location p we have a local circular order &£(p) =
{(q1,...,qn), which lists all adjacent pixels in A(p) exactly once. In case of K-
adjacency, the number n of adjacent pixels can vary from pixel to pixel. We trace a
border and generate the sequence of pixels pg, pi, ..., p; on this border.

Assume that we arrive at p; 1 € A(p;). Let g1 be the pixel next to pixel p; in the
local circular order of p;y;. We test whether g is in the object; if “yes”, then we
have p;+> = ¢q1 and continue at p;,; if “not”, then we test the next pixel ¢, in the
local circular order £(p;11) of pi+1, and so forth.

98 3 Image Analysis

Fig. 3.9 These images are of size 2014 x 1426 (they contain 2,872,964 pixels) and have
Gmax = 255. For the image Tomte on the upper left, the percentage of flip-flop cases is 0.38 %
compared to the total number of pixels. In the images PobleEspanyol, Rangitoto,and Kiri
on the upper right, lower left, and lower right, respectively, the percentages of flip-flop cases are
0.22 %, 0.5 %, and 0.38 %, respectively

Fig.3.10 Illustration of two
scanlines that arrive for the
first time (assuming a
standard scan: fop—down, left
to right) at objects of interest
(lights). At this moment a
tracing procedure starts for
going around on the border of
the object

Not any local circular order of an adjacency set is applicable. Clockwise or
counter-clockwise orders of adjacent pixels are the possible options.

3.1 Basic Image Topology 929

...........

Fig.3.11 Left: Used local circular order. Right: Arrival at an object when going from gg to po

: Let (qo, po) = (q, p),i =0, and k =1,
: Let g1 be the pixel which follows gg in £(po);
. while (g, pi) # (g0, po) do
while ¢ in the object do
Leti:=i+1and p; := g;
Let g1 be the pixel which follows p;_; in £(p;) and k = 1;
end while
Let k =k + 1 and go to pixel gx in £(p;);
: end while
: The calculated border cycle is (po, p1,---, Pi);

SR IFIDNE LD

—

Fig.3.12 Voss algorithm

Example 3.1 We consider tracing for 4-adjacency. See the example in Fig. 3.11.

We arrive at the object via edge (g, p); let (g0, po) := (¢, p) and assume the local
circular order for 4-adjacency as shown. We take the next pixel position in &(py),
which is the pixel position right of pg: this is in the object, and it is the next pixel
p1 on the border.

We stop if we test again the initial edge; but this would be in direction (p, q),
opposite to the arrival direction (g, p). Arriving at the same pixel again is not yet a
stop.

General Border-Tracing Algorithm by Voss Given is an image with a defined
adjacency relation and an initial edge (g, p) such that we arrive at p for the first time
at an object border not yet traced so far. Note: We do not say “first time at an object”
because one object may have one outer and several inner borders. The algorithm is
provided in Fig. 3.12.

An object O may have holes, acting as objects again (possibly again with holes).
Holes generate inner border cycles for object O in this case; see the following ex-
ample. The provided tracing algorithm is also fine for calculating inner borders. The
local circular orders remain always the same, only defined by adjacent object or
non-object pixels.

100 3 Image Analysis

| Outer border cycle

|- QO\

3 inner border cycles

Fig. 3.13 Left: Object for “white < black”. Middle: All border cycles of the non-object pixels.
Right: All border cycles of the object

Example 3.2 We illustrate all border-tracing results for a binary image. See
Fig. 3.13. Here we apply the dual adjacency for binary images defined by the key
“white < black”. In the figure there is one object with three holes. We notice the
correct topologic duality of connectedness and separation. The set of all border cy-
cles of the non-object pixels subdivides the plane and the set of all border cycles
of the object. Both subdivisions are topologically equivalent by describing one set
with three holes in both cases.

Insert 3.7 (Voss) Klaus Voss (1937-2008) described the given general
border-tracing algorithm in his book [K. Voss. Discrete Images, Objects, and Func-
tions in Z". Springer, Berlin, 1993]. He contributed to many areas of theoretical
foundations of image analysis and computer vision.

3.2 Geometric 2D Shape Analysis

This section discusses the measurement of three basic properties, length, area, and
curvature in 2D images. By measuring we leave topology and enter the area of
geometry. The section also presents the Euclidean distance transform.

Images are given at some geometric resolution, specified by the size N5 X
Nyows. An increase in geometric resolution should lead to an increase in accu-
racy for measured properties. For example, measuring the perimeter of an object
in an image of size 1,000 x 600 should provide (potentially) a more accurate value
than measuring the perimeter for the same object in an image of size 500 x 300.
Spending more on technically improved equipment should pay off with better re-
sults.

3.2 Geometric 2D Shape Analysis 101

3.2.1 Area

A triangle IT = (p, q,r), where p = (x1, y1), ¢ = (x2, y2), and r = (x3, ¥3), has the
area

1
A (1) =5 |D(p.q.1)| (3.3)
where D(p, g, r) is the determinant
x1 oy 1
x2 y2 1|=x1y2+x3y1 +x2y3 — X3y2 — X2¥1 — X1)3 (3.4)
x3 y3 1

The value D(p, q,r) can be positive or negative; the sign of D(p, g, r) identifies
the orientation of the ordered triple (p, g, r).

The area of a simple polygon IT = (py, p2, ..., pn) in the Euclidean plane, with
pi = (xj,y;)fori=1,2,...,n,is equal to

n
D X Qi1 — yic1)

i=1

o (IT) = 3.5

1
2
for yo = y, and y,+1 = y1. In general, the area of a compact set R in R? equals

o (R) = /R dxdy (3.6)

How to measure the area of a region in an image?

Figure 3.14 illustrates an experiment. We generate a simple polygon in a grid of
size 512 x 512 and subsample it in images of reduced resolution. The original poly-
gon [T has the area 102,742.5 and perimeter 4,040.7966. . .in the 512 x 512 grid.

For the perimeter of the generated polygons, we count the number of cell edges
on the frontier of the polygon times the length of an edge for the given image resolu-
tion. For the 512 x 512 image, we assume the edge length to be 1, for the 128 x 128
image, the edge length to be 4, and so forth.

For the area of the generated polygons, we count the number of pixels (i.e. grid
cells) in the polygon times the square of the edge length.

The relative deviation is the absolute difference between the property values for
the subsampled polygon and original polygon I1, divided by the property value
for I1.

Figure 3.15 summarizes the errors of those measurements by showing the rel-
ative deviations. It clearly shows that the measured perimeter for the subsampled
polygons is not converging towards the true value; the relative deviations are even
increasing!

Regarding the measurement of the area of a region in an image, since the times of
Gauss, it is known that the number of grid points in a convex set S estimates the area
of § accurately. Thus, not surprisingly, the measured area shows the convergence
towards the true area as the image size increases.

102 3 Image Analysis

128 x 128

512x512

Fig. 3.14 Different digitizations of a simple polygon /7 using grids of size 8 x 8 to 128 x 128;
the original polygon was drawn on a grid of resolution 512 x 512. All images are shown in the grid
cell model

Fig.3.15 Relative Relative deviation &
deviations of the area and (in percent)
perimeter of subsampled

polygons relatively to the true 20
value in the 512 x 512 grid

25

Perimeter of digitized polygon
to perimeter of polygon

. Area of digitized polygon
5 N Lo area of polygon
0 + Size of image

8 16 32 64 128 (in grid points)

Observation 3.4 The number of grid points in a region is a reliable estimator for
the area of the shown object.

The experimental data for the method used for estimating the perimeter show that
there are “surprises” on the way.

3.2.2 Length

We start with the definition of length for the Euclidean plane. Length is measured
for arcs (e.g. line segments or segments of a circle).

3.2 Geometric 2D Shape Analysis 103

Fig.3.16 A polygonal A
approximation of an arc / \\

defined by points ¢ (z;) on the
arc

o(ty)

Assume that we have a parameterized one-to-one representation ¢ (¢) of an arc y,
starting with ¢ (c) and ending at ¢(d) forc <d. Values to=c <t; <---<t, =d
define a polygonal approximation of this arc; see Fig. 3.16.

A polygonal approximation has a defined length (i.e. the sum of lengths of all line
segments on this polygonal path). The limits of lengths of such polygonal approx-
imations, as n tends to infinity (i.e. as line segments become smaller and smaller),
define the length of y.

Insert 3.8 (Jordan Arcs) The general mathematical definition of an arc is as
follows: A Jordan arc y is defined by a subinterval [c, d] of a Jordan curve (or
simple curve)

{.»:p() =@, y)Aa<t<b}

witha <c<d <b, ¢(t1) # ¢(tp) for t; #tr, except t| = a and t, = b.
A rectifiable Jordan arc y has a bounded arc length as follows:

ZLy)= sup Zd ¢(t:). (1i-1)) <0

n>1Ac=tg<---<ty,=d i—1
See Fig. 3.16. In 1883, Jordan proposed the following definition of a curve:
={x.y:x=a@)Ay=B0t)Aa<t<b}

G. Peano showed in 1890 that this allows a curve that fills the whole unit
square. The Peano curve is not differentiable at any point in [0, 1]. Thus,
Jordan’s 1883 definition is used for arc length calculation:

2
.)_f \/ da(t) d,::)) "

(assuming differentiable functions o and f).

104 3 Image Analysis

—q —q ‘ ‘ =4

0 X 0 X 0 X 0 X
0 1 0 1 0 1 0 1

Fig. 3.17 Top: Approximations of the diagonal in a square by 4-paths for different grid resolu-
tions. Bottom: Digitizations of a unit disk for different grid resolutions

The “Staircase Effect” Assume a diagonal pg in a square with sides of length a.
The length of the diagonal is equal to a+/2. Consider a 4-path approximating the
diagonal as shown in Fig. 3.17, top (i.e. for different grid resolutions). The length of
these 4-paths is always equal to 2a, whatever grid resolution will be chosen.

As a second example, consider the frontiers of digitized disks as shown in
Fig. 3.17, bottom. Independent of grid resolution, the length of these frontiers is
always equal to 4.

Observation 3.5 The use of the length of a 4-path for estimating the length of a
digital arc can lead to errors of 41.4 % (compared to original arcs in the continuous
pre-image), without any chance to reduce these errors in some cases by using higher
grid resolution. This method is not recommended for length measurements in image
analysis.

Use of Weighted Edges Assume that we are using the length of an 8-path for
length measurements. We use the weight +/2 for diagonal edges and just 1 as be-
fore for edges parallel to one of the coordinate axes. (A line or line segment in the
Euclidean plane is isothetic iff it is parallel to one of the two Cartesian coordinate
axes.)

We consider the line segment pg in Fig. 3.18 with slope 22.5° and a length of
5v5/2.

The length of p(pq) is 3 + 2+/2 for a grid with edges of length 1 (shown on the
left) and (5 + 5+/2)/2 for any grid with edges of length 1/2" (n > 1). This shows
that the length of those 8-paths does not converge to 5+/5/2 as the length of grid
edges goes to zero.

3.2 Geometric 2D Shape Analysis 105

i‘f off q

Pe Do 4

Fig. 3.18 Approximation of line segment pq by 8-paths for different grid resolutions

o O o
@) O o

O @)
oo O LN] o
e o @] L] o O
LB O O ® @ @ ® o
oo o (ONN) L B o e 0]
e o @] o O ® o 0 o @ O
(] O O O O [BN] o O o
@] 000000000 O0O0o

End vertex of an DSS

Fig. 3.19 Clockwise (left) and counterclockwise (right) polygonal approximation of the border
of a region by calculating maximum-length DSSs in subsequent order

Observation 3.6 For 8-paths we have a situation similar as for the use of 4-paths,
but here only with errors of up to 1.9 ... % (when digitizing arcs of known length),
without any chance to reduce these errors in some cases by using higher grid reso-
lution.

This upper bound for magnitudes of errors might be acceptable in some applica-
tions. The use of weighted edges (including diagonal edges) for length estimation is
certainly acceptable for low image resolution or relatively short digital arcs.

Polygonal Simplification of Borders What is a certified accurate way for measur-
ing length? We go back to the scheme illustrated in Fig. 3.16. If segmenting an arc
into maximum-length digital straight segments (DSSs), as illustrated in Fig. 3.19,
then the sum of lengths of those straight segments converges to the true length of a
digitized arc, provided that we have the budget to acquire equipment with finer and
finer grid resolution.

106 3 Image Analysis

Fig.3.20 The Frenet frame n
at p = y(¢), also showing
length [= £ (t)

L

Insert 3.9 (Digital Geometry) Publications in digital geometry provide fur-
ther details on “How to calculate DSSs?” and other algorithmic problems
related to calculations in the image grid. For example, see the monograph
[R. Klette and A. Rosenfeld. Digital Geometry. Morgan Kaufmann, San Francisco, 2004].

3.2.3 Curvature

A Jordan curve is called smooth if it is continuously differentiable. A polygon is
not smooth at singular points (i.e. its vertices). Curvature can be defined only at
non-singular points of a curve.

Curvature as Rate of Change of Tangential Angle Assume an arc y in the Eu-
clidean plane that is a segment of a smooth Jordan curve. Thus, we have a tangent
t(p) defined at any point p on y. This tangent describes an angle Y with the positive
x-axis, called the slope angle. See Fig. 3.20.

Insert 3.10 (Frenet Frame and Frenet) To define curvature it is convenient
to use the Frenet frame, which is a pair of orthogonal coordinate axes (see
Fig. 3.20) with origin at a point p = y (t) on the curve, named after the French
mathematician J.F. Frenet (1816—1900). One axis is defined by the tangent
vector

t(1) = [cos Y (@), sinyr ()]

where Y is the slope angle between the tangent and the positive x-axis. The
other axis is defined by the normal vector

n(t) = [—sin Y (¢), cos Y (£)[|

While p is sliding along y, the angle ¢ will change. The rate of change in ¥
(with respect to the movement of p on y) is one way to define curvature Ky, (p)
along y.

3.2 Geometric 2D Shape Analysis 107

Fig. 3.21 Three tangents (dashed lines). The curvature is positive on the left, has a zero crossing
in the middle, and is negative on the right

Let [= Z(t) be the arc length between the starting point y (a) and general point
p = y(t). A curvature definition has to be independent of the speed (or rate of
evolution)

d.Z(t)
H= 3.7
v(t) ” (3.7)
of the parameterization of y. Curvature is now formally defined by
dy (1)
Kian(t) = dl (3.8)

at a point y (t) = (x(¢), y(¢)) of a smooth Jordan curve y.

The rate of change can be positive or negative, and zero at points of inflection.
If positive at p, then p is a concave point, and if negative at p, then p is a convex
point. See Fig. 3.21.

As Fig. 3.21 shows, the situation at p can be approximated by measuring the
distances between y and the tangent to y at p along equidistant lines perpendicular
to the tangent. In Fig. 3.21, positive distances are represented by bold line segments
and negative distances by “hollow” line segments. The area between the curve and
the tangent line can be approximated by summing these distances; it is positive on
the left, negative on the right, and zero in the middle where the positive and negative
distances cancel.

For example, assume that y is a straight line. Then the tangent coincides with y
at any point p, and there is no rate of change at all, i.e. there is curvature zero for all
points on y. Assume that y is a circle. Then we already know that there is a constant
rate of change in slope angle; assuming uniform speed, it follows that this constant
is the inverse of the radius of this circle.

Curvature as Radius of Osculating Circle Another option for analysing curva-
ture is by means of osculating circles; see Fig. 3.22. The osculating circle at a point
p of y is the largest circle tangent to y at p on the concave side. Assume that the
osculating circle at p has radius r. Then y has the curvature k,5(p) = 1/r at p. In
the case of a straight line, r is infinity, and the curvature equals zero. It holds that

Kosc(p) = ‘Ktan(p)‘ (3.9

108 3 Image Analysis

X

\

Fig. 3.22 Illustration of curvature defined either by rate of change (left) or radius of osculating
circle (right). Points p, g, and r illustrate curvature by rate of change in the slope angle 1. Assume
that points move from left to right. Then p has a positive curvature, zero curvature at a point of
inflection ¢, and negative curvature at r. Points s and ¢ illustrate curvature by their osculating
circles. The curvature at s equals 1/ry, and at ¢ itis 1/r;

Fig. 3.23 [llustration for the O O 0O O 0O O O O

use of k =3 when estimating pl+k

the curvature at p; o O e .P’ -®o--® O @ O

- i "

O # 0 0 0 OO0 O ®
¢--eo-0-0 0 0O O & O
Dik
O 0O 0O O ® O € O O
O 0 OO @€ 0 O @ O
O 0 0O 0O O - O O

Curvature of a Parameterized Arc There is a third option for defining curva-
ture in the Euclidean plane. Assume a parametric representation y () = (x(¢), y(¢)),
which is Jordan’s first proposal for defining a curve. Then it follows that

x()-y@) —y@)-X(@)

where
. dx() o dy@) Lo dx@) Lo diy()
Hn=—= SO=—— F0=—3 J0O=—5 31D

Algorithms for estimating curvature of digital curves in images are a subject of
digital geometry. Typically, they follow the rate-of-change model, rather than the
osculating circle model, and only a few attempt to digitize (3.10).

3.2 Geometric 2D Shape Analysis 109

Example 3.3 (An Option for Estimating Curvature of a Digital Curve) Actually,
(3.10) can be followed very easily. Assume that a given digital curve (p1, ..., pm),
where p; = (xj, y;) for 1 < j <m, is sampled along a parameterized curve y (t) =
(x(®), y(t)), where t € [0, m]. At point p; we assume that y (i) = p;. The functions
x(t) and y(¢) are locally interpolated by second-order polynomials

x(t) = ap + at + axt* (3.12)
y(t) = by + bt + bot? (3.13)

and curvature is calculated using (3.10). Let x(0) = x;, x(1) = x;_¢, and x(2) =
Xi+k with integer parameter k > 1, and analogously for y(¢). See Fig. 3.23. The
curvature at p; is then defined by

2(a1by — braz)
o = 4192 — 01a2) 3.14
© laf+ b1 49

The use of a constant k > 1 can be replaced by locally adaptive solutions.

3.2.4 Distance Transform (by Gisela Klette)

The distance transform labels each object pixel (say, defined by I(p) > 0) with
the Euclidean distance between its location and the nearest non-object pixel loca-
tion (defined by I (p) = 0). For simplicity, we can say that the distance transform
determines for all pixel locations p € §2 the distance value

D(p) Z;Ileig{dz(pﬂ) :1(q) =0} (3.15)

where dy(p, qr) denotes the Euclidean distance. It follows that D(p) = O for all
non-object pixels.

Insert 3.11 (Origins of the Distance Transform) [A. Rosenfeld and J.L. Pfaltz.
Distance functions on digital pictures. Pattern Recognition, vol. 1, pp. 33-61] is the pi-
oneering paper not only for defining distance transforms in images, but also
for an efficient 2-pass algorithm; A. Rosenfeld and J. Pfaltz used grid metrics
rather than the Euclidean metric and proposed the alternative use of 4- and
8-adjacency for approximating Euclidean distances. This approximation im-
proves by chamfering as defined in [G. Borgefors: Chamfering—a fast method for
obtaining approximations of the Euclidean distance in N dimensions. In Proc. Scand. Conf.
Image Analysis, pp. 250-255, 1983].

110 3 Image Analysis

The papers [T. Saito and J. Toriwaki. New algorithms for Euclidean distance trans-
formation of an n-dimensional digitized picture with applications. Pattern Recognition,
vol. 27, pp. 1551-1565, 1994] and [T. Hirata. A unified linear-time algorithm for com-
puting distance maps. Information Processing Letters, vol. 58, pp. 129-133, 1996] ap-
plied the Euclidean metric and introduced a new algorithm using the lower
envelopes of families of parabolas.

Maximal Circles in the Image Grid Let S C £2 be the set of all object pixel
locations, and B = §2 \ S be the set of all non-object pixel locations. The distance
transform satisfies the following properties:

1. D(p) represents the radius of the largest disk centred at p and totally contained
in S.

2. If there is only one non-object pixel location g € B with D(p) = d2(p, q), then
there are two cases:

(a) There exists a pixel location p’ € S such that the disk centred at p’ totally

contains the disk centred at p, or

(b) there exist pixel locations p’ € S and ¢’ € B such that d>(p, q) =d2(p’, q)

and p is 4-adjacent to p’.

3. If there are two (or more) non-object pixel locations ¢, ¢’ € B such that D(p) =
dr(p,q) = dz(p,q/), then the disk centred at p is a maximal disk in S; the
point p is called symmetric in this case.

In Case 2(b), the pixel locations p and p’ are both centres of maximal discs, and
they are 4-adjacent to each other.

Figure 3.24, top, shows a rectangle with a subset of maximal disks. At least two
non-object pixel locations have the same distance to one of the centres of those
disks. The middle row shows maximal disks where two centres are 4-adjacent to
each other and there is only one non-object pixel location with distance r (radius
of the disk) for each disk. Figure 3.24, bottom, shows a disk B that has only one
non-object pixel location at distance r to its centre and is contained in the maximal
disk A.

Distance and Row—Column Component Map The distance map is a 2D array of
the same size as the original image that stores the results D(p) at locations p € £2.

Let a shortest distance D(p) be defined by the distance dz(p,q) with p =
(xp,yp) and g = (x4, y4). Then we have that

D(p) =/ (xp — 200> + (vp — 3y)? (3.16)

By knowing Ax =x, — x; and Ay =y, — y, we also know D(p), but just the
distance value D(p) does not tell us the signed row component Ax and the signed
column component Ay. Thus, instead of the distance map, we might also be inter-
ested in the row—column component map: At p € §2 we store the tuple (Ax, Ay)
that defines D(p).

3.2 Geometric 2D Shape Analysis 11

D000
900

Fig.3.24 Top: A set of maximal disks. Middle: Symmetric points as defined in Case 2(b). Bottom:
Illustration of Case 2(a)

Squared Euclidean Distance Transform (SEDT) It is common to compute
squares D(p)? of Euclidean distances for saving time. We explain the principles
of one algorithm that delivers accurate SEDT maps in linear time, where many au-
thors have contributed to improvements over time.

The algorithm starts with integer operations to compute the SEDT to the nearest
non-object point for one dimension in two row scans. Then it operates in the contin-
uous plane R? by computing the lower envelope of a family of parabolas for each
column. The algorithm identifies the parabolas that contribute segments to the lower
envelope and calculates the endpoints of those segments. The squared Euclidean dis-
tance values are calculated in an additional column scan using the formulas of the
parabolas identified in the previous step.

We explain the algorithm for the 2D case in detail and also highlight that all
computations can be done independently for each dimension; thus, the approach
can be followed for arbitrary dimensions.

112 3 Image Analysis

0 g 0 0 0 o 0 0 0 O 0o 0 0 0 o0 o0 0 0 O
0 0
0 0
0 0
0 0
0o o o0 0o 0 0 0 0 O 6 0 o 0o 0 o0 o0 0o 0 O

Fig. 3.25 The zeros are all the non-object pixels. The numbers are squared Euclidean distances.
Left: Intermediate results after the initial row scans. Right: Final results after column scans

Distances in a Row The initial step is a calculation of the distance from a pixel in
an object to the nearest non-object pixel in the same row:

i, y)=fA-1Ly+1 ifl(x,y)>0 3.17)
Six,y)=0 ifI(x,y)=0 (3.18)
G, y) =min{ fi(x,y), L+ 1Ly)+1} if fike,) #0 (3.19)
fox,y) =0 if fi(x,y)=0 (3.20)

Here, fi(x, y) determines the distance between the pixel location p(x, y) and near-
est non-object pixel location ¢ on the left, and f> replaces fi if the distance to the
nearest non-object pixel location on the right is shorter.

The result is a matrix that stores integer values (f>(x, y))? in each pixel location.
See Fig. 3.25, left, for an example.

We express f>(x, y) for a fixed row y as follows:

(e y)= _ min {Ix—il:1G,y)=0} (3.21)

=Ly cols
The example in Fig. 3.25, left, shows the results for the 1D SEDT after computing
[f2(x,)7)]2 row by row for I <y < Nyoys.

Distances in a Column If there are only two non-object pixel locations, then,
for given p = (x, y), we need to know which of the two non-object pixel locations
(x, y1) or (x, yz) is closer. We compare

[(20)" + & =y < [(&) + & — y2)?] (3.22)

The function f3(x, y) determines values for the 2D SEDT, column by column,
considering x to be fixed, for all 1 <y < Nyps:

ey = min {(f200)+ =) (3.23)

s iV rows

3.2 Geometric 2D Shape Analysis 113

Fig.3.26 Family of 30 -
parabolas for column
[0,4,9,16,4,0] in Fig. 3.25,

\ _,&

__-’ ‘-“__u
1 2 3 4 5 6

2
s

1

\

We discuss a geometric interpretation that illustrates the basic idea for designing a
time-efficient solution.

Lower Envelopes For a fixed column (e.g., for x =5, let f>(5,y) =g(y)) and a
fixed row (e.g. y = 3), consider the equation

y3(J) = (g(3))2 +3-) (3.24)

with j =1, ..., Nyws. We continue to refer to Fig. 3.25; the assumed values repre-
sent the third parabola in Fig. 3.26.

For 1 <y < Ny, altogether we consider a family of N,,,s parabolas; see
Fig. 3.26. This is one parabola for each row and a family of N,,,s parabolas per
column. The horizontal axis represents the row number y, and the vertical axis rep-
resents yy (), with the local minima at y = j and yy(j) = (g())-

The lower envelope of the family of parabolas corresponds to the minimum cal-
culation in (3.23). Efficient SEDT algorithms calculate the lower envelope of the
family of parabolas and then assign the height (i.e. the vertical distance to the ab-
scissa) of the lower envelope to the point with coordinates (x, y). The computation
of the lower envelope of the family of parabolas is the main part of the SEDT algo-
rithm.

Observation 3.7 The concept of envelope calculation reduces the quadratic time
complexity of a naive EDT algorithm to linear time as envelopes can be computed
incrementally.

Example 3.4 (Calculation of Sections) The example in Fig. 3.26 shows a family of
six parabolas. The lower envelope consists of two curve segments.

The first segment starts at (1, 0) and ends at the intersection of the first and last
parabolas. The second segment begins at this intersection and ends at (6, 0). The
projections of the segments on the horizontal axis are called sections.

114 3 Image Analysis

s

/

Fig.3.27 Left: Sketch for ys(y2, v3) > ys(y1, v2). Right: Sketch for ys(y2, y3) < ys(¥1, v2)

In this simple example, the interval [1, 6] is partitioned into two sections. Only
two of the six parabolas contribute to the lower envelope of the family. For calculat-
ing f3(y) (x is fixed), we need the start and end for each section, and the index of
the associated parabola.

This can be done in two more column scans; one scan from the top to the bot-
tom that identifies the parabola segments of the lower envelope together with their
associated sections, and a second scan that calculates the values for f3(y).

Preparing for the Calculation of the Lower Envelope The determination of the
lower envelope is done by a sequential process of computing the lower envelope of
the first k parabolas. We calculate the intersection between two parabolas. Let y; be
the abscissa of the intersection, and let y; < y,. The equation for the intersection
vs = ¥s(¥1, ¥2) of any two parabolas y; and y» is given by

[sOD]* + s —)2 =[] + (s — 32)? (3.25)
From this we obtain that

2 2)
Ve = ya + [e(y2)]" = [gGD]* — (2 —y1) (3.26)
2(y2 — y1)

We apply (3.26) in the SEDT algorithm for the first column scan, where we compute
the lower envelope of parabolas per column. We store the information in a stack.

Only parabolas that contribute to the lower envelope stay in the stack, and all the
others are eliminated from the stack. This results in a straightforward algorithm; see
also the sketch in Fig. 3.27.

The Calculation of the Lower Envelope Each stack item stores a pair of real
values (b, e) for the begin and end of the section of a parabola, which contributes to
the lower envelope. (b;, e;) belongs to the top parabola of the stack, and (bs, ey) is
the pair associated with the subsequent parabola in the sequential process.

The first item stores the start and end of the section for the first parabola. It is
initialized by (1, N,,ys); the lower envelope would consist of one segment between
(1, Nyows) if all the following parabolas have no intersections with the first one.

3.2 Geometric 2D Shape Analysis 115

The parabolas are ordered according to their y-values in the image. For each
sequential step, we evaluate the intersection for the top item of the stack representing
vt, and the next following parabola ys. There are three possible cases:

L. ys(¥s, V) > Nyows: ¥ does not contribute to the lower envelope, do not change
the stack, take the following parabola;

2. ys(v1» Yr) < b;: Remove y; from the stack, evaluate the intersection of the new
top item with y (see Fig. 3.27, right); if the stack is empty, then add the item for
v to the stack;

3. s, vr) > by Adjust y, with e, = ys (v, vr), add the item for y to the stack
with by =e;, ey =n (see Fig. 3.27, left).

The procedure continues until the last parabola has been evaluated with the top item

of the stack. At the end, only sections of the lower envelope are registered in the

stack, and they are used for calculating the values for f3(x, y) in an additional scan.

Example 3.5 (Lower Envelope) For our simple example (see Fig. 3.26), the lower
envelope consists of y; starting at b = 1 and ending at e; = 3.5 and of yg starting
at by = 3.5 and ending at e; = 6. Now we just compute the values for

NG =(gM)+a—j? forj=123 (327)
and
v6(/) = (8(©)* + (6 — j)* for j=4,5,6 (3.28)

Variations of this principal approach can reduce the number of computations.

Preprocessing and Time Complexity In a preprocessing step, we can eliminate
all the parabolas with g(y) > (Ns — 1)/2 that have no segment in the lower enve-
lope. In our simple example (see Fig. 3.26), the parabolas y3(j) with g(3) =3 > 2.5
and y4(j) with g(4) =4 > 2.5 would be eliminated before starting with computa-
tions of intersections for the lower envelop.

The SEDT algorithm works in linear time. Computations for each dimension are
done independently. The resulting squared minimal distance for one dimension is
an integer value for each grid point, which will be used for the computation in the
next dimension.

Arbitrary Dimensions The 2D SEDT can be expressed as follows:

D(x,y)= min [=)+ -j)?} (3.29)

=1,.., N[?OIS/\.].=17~~')NI‘()WS

Because i does not depend on j, we can reformulate into

Dex.y)= _min {izlmir}v CS 2+ (y— j)2}} (3.30)

.....

116 3 Image Analysis

The minimum calculation in (3.30), min ((x — i)?) = g(j)2, corresponds to the row
scans in the first part of the SEDT algorithm. We can rewrite the equation for fixed
x and derive the equation for the second dimension:

s iV rows

Dexy) = _min {g(j)*+ =)’} (3.31)

The minimum calculation in (3.31) corresponds to the column scans.

Let p be a 3D point at location (x, y, k) for k =1, ..., Njayer, and h(k)? be the
result of the minimum computation in (3.31) for fixed pairs x, y. Then we have also
an equation for the third dimension:

D(x,y,z)=, _ min [h()? + (z — k)?} (3.32)

=L1,...;Nlgyer

This can be continued for further dimensions.

3.3 Image Value Analysis

Besides geometric analysis of image contents, we are also interested in describing
the given signal, i.e. the distribution of image values. We continue with assuming a
scalar input image /.

This section describes co-occurrence matrices and data measures defined on
those matrices, and moments of regions or image windows.

3.3.1 Co-occurrence Matrices and Measures

Basic statistics (mean, variance, grey-level histogram) provide measures summariz-
ing individual pixel values. Co-occurrence studies the distribution of values in de-
pendence upon values at adjacent pixels. Such co-occurrence results are represented
in the co-occurrence matrix C.

Assume an input image / and an adjacency set A. For example, in case of 4-
adjacency we have the adjacency set A4 = {(0, 1), (1, 0), (0, —1), (—1, 0)}, defining
A4(p) = Aq + p for any pixel location p. As before, we denote by 2 the set of all
Neois X Nyows pixel locations. We define the (Gmax + 1) X (Gmax + 1) co-occurrence
matrix C; for image / and image values u and v in {0, 1, ..., Gnax} as follows:

1 iflI(p)=uand I(p+q)=v
Ci(u,v) = 3.33
1) Z Z 0 otherwise ()

pER qeANP+qgESRR
The adjacency set can also be non-symmetric, for example A = {(0, 1), (1, 0)}. Fig-
ure 3.28 illustrates the adjacency set A = {(0, 1)}. The figure shows three exam-
ples for increasing a counter value in the co-occurrence matrix. For example, at
(x,y) =(3,2) we have the value u = 2 and v = 1 one row down. Accordingly, the
counter at (u, v) = (2, 1) increases by one.

3.3 Image Value Analysis 117

1 2 3 4 5|>x oo s

2] 1] o|o_| C >
of| +|

23 1310212 o
1

sl[3 311210
||

sllods i1 o

. 3“’
S{{3 32111
v v

Fig.3.28 We have a small 5 x 5 image on the left, with G,x = 3, and generate its 4 x 4 co-oc-
currence matrix on the right. The adjacency set A = {(0, 1)} only contains one off-set, meaning
that we have to look from a pixel location one row down. At (x,y) = (5, 1) we have the value
u =0 and v = 0 one row down. Accordingly, the counter at (u, v) = (0, 0) increases by one

211]1lo]o L > U
3lololo sl2]21o0
332210
1121270 1[s]a]2
33120
12111 1 3]2]3
2311]o
ol1]2]4 ol1]3]7
‘7332111/’ :,’
y
> U » U
713130 g8 33 o0
117]s 3[10]7
11535 3746
volt]4fn viol3][e]s
A% v

Fig. 3.29 Top, left: Input image 7; x goes from 1 to N.os =5, and y goes from 1 to Nyys = 5.
Top, middle: Co-occurrence matrix C; for adjacency set Ay; u and v go from 0 to Gax = 3. Top,
right: Co-occurrence matrix C; for adjacency set Ay. Bottom, middle: Co-occurrence matrix C3
for adjacency set A3. Bottom, right: Co-occurrence matrix C4 for adjacency set A4

Example 3.6 (Examples of four Co-Occurrence Matrices) We consider a small 5 x 5
image I (see Fig. 3.29, left), Gmax = 3, and four different adjacency sets: first,
Ap ={(0, 1)}, then A, = {(0, 1), (1,0)}, then A3 = {(0, 1), (1, 0), (0, —1)}, and fi-
nally the usual adjacency set A4. These simple data should allow you to follow the
calculations easily.

Figure 3.29, middle, and Fig. 3.29, right, show the corresponding four co-
occurrence matrices.

We provide a few examples for the performed calculations. We start with Aj.
At first we have (1, v) = (0,0). We have to count how often there is a case that
I(x,y)=0and I(x,y+1)=01in I, i.e. a zero at a pixel and also a zero at the

118 3 Image Analysis

pixel below. This occurs three times. Accordingly, we have C(0,0) =3 for Aj.
One more example: Consider (u#, v) = (3, 1). It never happens that a 3 is on top of
a 1, thus we have C{(3,1) =0.

Now also two examples for A,. Ay is a subset of Aj, thus we have that C (u, v) <
Ca(u, v) for any pair (u, v) of image values. In case of (u, v) = (0, 0), besides the
case “I(x,y)=0and I (x,y + 1) =0” we have also to count how often there is a
zero at (x, y) and also a zero at (x + 1, y). There is one case. Thus, we have that
C,(0,0) =341 =4. A final example: (u, v) = (2, 1). For g = (0, 1), we count two
cases. For g = (1, 0), we also count two cases, and thus C3(2,1) =2+ 2 =4.

The sums of all entries in one of those co-occurrence matrices are 20 times the
number of elements in the adjacency set. The final matrix (for A4) is symmetric
because A4 is symmetric.

The example illustrates two general properties of those co-occurrence matrices:
1. Each element g in the adjacency set adds either Neois - (Nyows — 1) or (Neois — 1) -

Nyows to the total sum of entries in the co-occurrence matrix, depending on

whether it is directed in row or column direction.

2. A symmetric adjacency set produces a symmetric co-occurrence matrix.

Those co-occurrence matrices are used to define co-occurrence-based measures
to quantify information in an image /. Note that noise in an image is still consid-
ered to be information when using these measures. We provide here two of such
measures:

Cr(u, .
Mpom(I) = Z % (Homogeneity measure) (3.34)
u,ve{0,1,...,Gmax}

Moi(1) = Z C;(u,v)?> (Uniformity measure) (3.35)
u,UE{O,l,...,Gmax}

Informally speaking, a high homogeneity or uniformity indicates that the image 1
has more “untextured” areas.

Measures can also be defined by comparing the sum of all entries on or close
to the main