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Preface

The rapid development of parallel computing systems made it possible to
recreate and predict physical processes on computers. Nowadays, computer
simulations complement and even substitute experiments. Moreover, simu-
lations allow to study processes that cannot be analyzed directly through
experiments. This accelerates the development of new products since costly
physical experiments can be avoided. Additionally, the quality of products
can be improved by the investigation of phenomena not previously accessible.
Hence, computer simulation plays a decisive role especially in the develop-
ment of new substances in the material sciences as well as in biotechnology
and nanotechnology.

Many interesting processes cannot be described nor understood in their
entirety in a continuum model, but have to be studied with molecular or
atomic models. The numerical simulation of models on this length scale usu-
ally relies on particle methods and other methods of molecular dynamics.
Areas of application range from physics, biology, and chemistry to modern
material sciences.

The fundamental mathematical model here is Newton’s second law. It is
a system of ordinary differential equations of second order. The law describes
the relationship between the force acting on a particle and the resulting accel-
eration of the particle. The force on each particle is caused by the interaction
of that particle with all other particles. The resulting system of differential
equations has to be numerically approximated in an efficient way. After an
appropriate time discretization, forces on all particles have to be computed in
each time step. Different fast and memory-efficient numerical methods exist
which are tailored to the short-range or long-range force fields and poten-
tials that are used. Here, especially the linked cell method, the particle mesh
method, the P3M method and its variants, as well as several tree methods
such as the Barnes-Hut method or the fast multipole method are to be men-
tioned. The execution times of these methods can be substantially reduced
by a parallel implementation on modern supercomputers. Such an approach
is also of fundamental importance to reach the very large numbers of parti-
cles and long simulation times necessary for some problems. The numerical
methods mentioned are already used with great success in many different
implementations by physicists, chemists, and material scientists. However,
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without a deeper understanding of the particular numerical method applied
it is hard to make changes or modifications, or to parallelize or otherwise
optimize the available programs.

The aim of this book is to present the necessary numerical techniques
of molecular dynamics in a compact form, to enable the reader to write a
molecular dynamics program in the programming language C, to implement
this program with MPI on a parallel computer with distributed memory, and
to motivate the reader to set up his own experiments. For this purpose we
present in all chapters a precise description of the algorithms used, we give
additional hints for the implementation on modern computers and present
numerical experiments in which these algorithms are employed. Further in-
formation and some programs can also be found on the internet. They are
available on the web page

http://www.ins.uni-bonn.de/info/md.

After a short introduction to numerical simulation in chapter 1, we derive
in chapter 2 the classical molecular dynamics of particle systems from the
principles of quantum mechanics. In chapter 3 we introduce the basic modules
of molecular dynamics methods for short-range potentials and force fields
(linked cell implementation, Verlet time integration). Additionally, we present
a first set of examples of their use. Here, the temperature is taken into account
using statistical mechanics in the setting of an NVT ensemble. The Parrinello-
Rahman method for the NPT ensemble is also reviewed. Subsequently we
discuss in detail the parallel implementation of the linked cell method in
chapter 4 and give a set of further examples. In chapter 5 we extend our
methods to molecular systems and more complex potentials. Furthermore, in
chapter 6 we give an overview of methods for time integration.

Different numerical methods for the efficient computation of long-range
force fields are discussed in the following chapters 7 and 8. The P3M method
approximates long-range potentials on an auxiliary grid. Using this method,
further examples can be studied that involve in particular Coulomb forces
or, on a different length scale, also gravitational forces. We review both the
sequential and the parallel implementation of the SPME technique, which
is a variant of the P3M method. In chapter 8 we introduce and discuss tree
methods. Here, the emphasis is on the Barnes-Hut method, its extension to
higher order, and on a method from the family of fast multipole methods.
Both sequential and parallel implementations using space filling curves are
presented. In chapter 9 we give examples from biochemistry that require a
combination of the methods introduced before.

We thank the SFB 611 (Collaborative Research Center sponsored by the
DFG - the German Research Association) “Singular Phenomena and Scaling
in Mathematical Models” at the University of Bonn for its support, Barbara
Hellriegel and Sebastian Reich for valuable hints and references, our col-
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leagues and coworkers Marcel Arndt, Attila Caglar, Thomas Gerstner, Jan
Hamaekers, Lukas Jager, Marc Alexander Schweitzer and Ralf Wildenhues
for numerous discussions, their support in the implementation of the algo-
rithms as well as for the programming and computation for various model
problems and applications. In particular we thank Attila and also Alex, Jan,
Lukas, Marcel, Ralf and Thomas for their active help. We also thank Bern-
hard Hientzsch for the efforts he put in translating the German version1 of
this book.

Bonn, Michael Griebel
April 2007 Stephan Knapek

Gerhard Zumbusch

1 Numerische Simulation in der Moleküldynamik, Numerik, Algorithmen, Paral-
lelisierung, Anwendungen, Springer Verlag, Heidelberg, 2004.
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1 Computer Simulation – a Key Technology

Experiments, Modelling and Numerical Simulation. In the natural
sciences one strives to model the complex processes occurring in nature as
accurately as possible. The first step in this direction is the description of na-
ture. It serves to develop an appropriate system of concepts. However, in most
cases, mere observation is not enough to find the underlying principles. Most
processes are too complex and can not be clearly separated from other pro-
cesses that interact with them. Only in rare exceptional cases one can derive
laws of nature from mere observation as it was the case when Kepler discov-
ered the laws of planetary motion. Instead, the scientist creates (if possible)
the conditions under which the process is to be observed, i.e., he conducts
an experiment. This method allows to discover how the observed event de-
pends on the chosen conditions and allows inferences about the principles
underlying the behavior of the observed system. The goal is the mathemat-
ical formulation of the underlying principles, i.e. a theory of the phenomena
under investigation. In it, one describes how certain variables behave in de-
pendence of each other and how they change under certain conditions over
time. This is mostly done by means of differential and integral equations. The
resulting equations, which encode the description of the system or process,
are referred to as a mathematical model.

A model that has been confirmed does not only permit the precise descrip-
tion of the observed processes, but also allows the prediction of the results of
similar physical processes within certain bounds. Thereby, experimentation,
the discovery of underlying principles from the results of measurements, and
the translation of those principles into mathematical variables and equations
go hand in hand. Theoretical and experimental approaches are therefore most
intimately connected.

The phenomena that can be investigated in this way in physics and chem-
istry extend over very different orders of magnitudes. They can be found from
the smallest to the largest observable length scales, from the investigation of
matter in quantum mechanics to the study of the shape of the universe.
The occurring dimensions range from the nanometer range (10−9 meters) in
the study of properties of matter on the molecular level to 1023 meters in
the study of galaxy clusters. Similarly, the time scales that occur in these
models (that is, the typical time intervals in which the observed phenomena
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take place) are vastly different. They range in the mentioned examples from
10−12 or even 10−15 seconds to 1017 seconds, thus from picoseconds or even
femtoseconds up to time intervals of several billions of years. The masses oc-
curring in the models are just as different, ranging between 10−27 kilograms
for single atoms to 1040 kilograms for entire galaxies.

The wide range of the described phenomena shows that experiments can
not always be conducted in the desired manner. For example in astrophysics,
there are only few possibilities to verify models by observations and experi-
ments and to thereby confirm them, or in the opposite case to reject models,
i.e., to falsify them. On the other hand, models that describe nature suffi-
ciently well are often so complicated that no analytical solution can be found.
Take for example the case of the van der Waals equation to describe dense
gases or the Boltzman equation to describe the transport of rarefied gases.
Therefore, one usually develops a new and simplified model that is easier to
solve. However, the validity of this simplified model is in general more re-
stricted. To derive such models one often uses techniques such as averaging
methods, successive approximation methods, matching methods, asymptotic
analysis and homogenization. Unfortunately, many important phenomena can
only be described with more complicated models. But then these theoretical
models can often only be tested and verified in a few simple cases. As an
example consider again planetary motion and the gravitational force acting
between the planets according to Newton’s law. As is known, the orbits fol-
lowing from Newton’s law can be derived in closed form only for the two
body case. For three bodies, analytical solutions in closed form in general no
longer exist. This is also true for our planetary system as well as the stars in
our galaxy.

Many models, for example in materials science or in astrophysics, consist
of a large number of interacting bodies (called particles), as for example stars
and galaxies or atoms and molecules. In many cases the number of particles
can reach several millions or more. For instance every cubic meter of gas under
normal conditions (that is, at a temperature of 273.15 Kelvin and a pressure
of 101.325 kilopascal) contains 2.68678 · 1025 atoms (Loschmidt constant).
12 grams of the carbon isotope C12 contain 6.02214 · 1023 atoms (Avogadro
constant). But large numbers of particles do not only occur on a microscopic
scale. Our galaxy, the Milky Way, consists of an estimated 200 billion stars. A
glance at the starry sky in a clear night delivers the insight that in such cases
there is no hope at all to determine a solution of the underlying equations
with paper and pencil.

These are some of the reasons why computer simulation has recently
emerged as a third way in science besides the experimental and theoretical
approach. Over the past years, computer simulation has become an indis-
pensable tool for the investigation and prediction of physical and chemical
processes. In this context, computer simulation means the mathematical pre-
diction of technical or physical processes on modern computer systems. The
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following procedure is typical in this regard: A mathematical-physical model
is developed from observation. The derived equations, in most cases valid for
continuous time and space, are considered at selected discrete points in time
and space. For instance, when discretizing in time, the solution of equations
is no longer to be computed at all (that is, infinitely many) points in time,
but is only considered at selected points along the time axis. Differential op-
erators, such as for example derivatives with respect to time, can then be
approximated by difference operators. The solution of the continuous equa-
tions is computed approximately at those selected points. The more densely
those points are selected, the more accurately the solution can be approxi-
mated. Here, the rapid development of computer technology, which has led
to an enormous increase in the computing speed and the memory size of
computing systems, now allows simulations that are more and more realistic.
The results can be interpreted with the help of appropriate visualization tech-
niques. If corresponding results of physical experiments are available, then
the results of the computer simulation can be directly compared. This leads to
a verification of the results of the computer simulation or to an improvement
in the applied methods or the model (for instance by appropriate changes
of parameters of the model or by changing the used equations). Figure 1.1
shows a schematic overview of the steps of a numerical simulation.

Altogether, also for a computer experiment, one needs a mathematical
model. But the solutions are now obtained approximately by computations
which are carried out by a program on a computer. This allows to study
models that are significantly more complex and therefore more realistic than
those accessible by analytical means. Furthermore, this allows to avoid costly
experimental setups. In addition, situations can be considered that otherwise
could not be realized because of technical shortcomings or because they are
made impossible by their consequences. For instance, this is the case if it is
hard or impossible to create the necessary conditions in the laboratory, if
measurements can only be conducted under great difficulties or not at all, if
experiments would take too long or would run too fast to be observable, or if
the results would be difficult to interpret. In this way, computer simulation
makes it possible to study phenomena not accessible before by experiment.
If a reliable mathematical model is available that describes the situation at
hand accurately enough, it does in general not make a difference for the com-
puter experiment, whether an experiment is carried out at a pressure of one
atmosphere or 1000 atmospheres. Obviously this is different, if the experiment
would actually have to be carried out in reality. Simulations that run at room
temperature or at 10000 Kelvin can in principle be treated in the same way.
Computer experiments can span µ-meters or meters, studied phenomena can
run within femtoseconds (10−15) or several millions of years. Moreover, the
parameters of the experiment can easily be changed. And the behavior of so-
lutions of the mathematical model with respect to such parameters changes
can be studied with relatively little effort.
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Fig. 1.1. Schematic presentation of the typical approach for numerical simulation.

By now, numerical simulation also provides clues for the correctness of
models in fields such as astronomy, in which there is only a slight possibility
of model verification. In nanotechnology it can help to predict properties of
new materials that do not yet exist in reality. And it can help to identify the
most promising or suitable materials. The trend is towards virtual laborato-
ries in which materials are designed and studied on a computer. Moreover,
simulation offers the possibility to determine mean or average properties for
the macroscopic characterization of such materials. All in all, computer ex-
periments act as a link between laboratory experiments and mathematical-
physical theory.
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Each of the partial steps of a computer experiment must satisfy a number
of requirements. First and foremost, the mathematical model should describe
reality as accurately as possible. In general, certain compromises between ac-
curacy in the numerical solution and complexity of the mathematical model
have to be accepted. In most cases, the complexity of the models leads to enor-
mous memory and computing time requirements, especially if time-dependent
phenomena are studied. Depending on the formulation of the discrete prob-
lem, several nested loops have to be executed for the time dependency, for
the application of operators, or also for the treatment of nonlinearities.

Current research therefore has its focus in particular on the development
of methods and algorithms that allow to compute the solutions of the discrete
problem as fast as possible (multilevel and multiscale methods, multipole
methods, fast Fourier transforms) and that can approximate the solution
of the continuous problem with as little memory as possible (adaptivity).
More realistic and therefore in general more complex models require faster
and more powerful algorithms. Vice versa, better algorithms allow the use of
more complex models.

Another possibility to run larger problems is the use of vector comput-
ers and parallel computers. Vector computers increase their performance by
processing similar arithmetical instructions on data stored in a vector in
an assembly line-like fashion. In parallel computers, several dozens to many
thousands of powerful processors1 are assembled into one computing sys-
tem. These processors can compute concurrently and independently and can
communicate with each other.2 A reduction of the required computing time
for a simulation is achieved by distributing the necessary computations to
several processors. Up to a certain degree, the computations can then be ex-
ecuted concurrently. In addition, parallel computer systems in general have a
substantially larger main memory than sequential computers. Hence, larger
problems can be treated.

As an example we mention the ASC Red System (formerly ASCI Red)
which was the first computer that reached the teraflops per second threshold
in processing speed, meaning that it can process a trillion, i.e. 1012 floating
point operations per second. This computer system consists of 9216 proces-
sors and was assembled within the framework of the Advanced Simulation
and Computing Program (ASC) (formerly ASCI) of the USA. This initiative

1 The processors in use today have mostly a RISC (reduced instruction set com-
puter) processor architecture. They have fewer machine instructions compared
to older processors, allowing a faster, assembly line-like execution of the instruc-
tions, see [467].

2 To improve portability of programs among parallel computers from different
manufacturers and to simplify the assembly of computers of different types to
a parallel computer, uniform standards for data exchange between computers
are needed. In recent years, the MPI (Message Passing Interface) platform has
emerged as a de facto standard for the communication between processes, see
appendix A.3.
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aimed to build a series of supercomputers with processing speeds starting at
1 teraflops/s, currently in the 100 teraflops/s and into the petaflop/s range.3

The latest computer (2007) in this series is an IBM BlueGene/L computer
system installed at the Lawrence Livermore National Laboratory. At the mo-
ment this system is the most powerful computer in the world. It consists
of 65,536 dual processor nodes. The nodes are connected as a 32 × 32 × 64
3D-torus. A total memory amount of 32 terabyte is available. BlueGene/L
achieves 280.6 teraflop/s, which is about 76 percent of its theoretical perfor-
mance (367 teraflop/s). This computer occupies a floor space of 2500 square
feet. The first computer performing more than 1 petaflop/s (1015 floating
point operations per second) will probably be available in 2008. A computer
with a peak performance of 10 petaflop/s is planned to be realized in 2012.

Figure 1.2 shows the development of the processing speed of high per-
formance computers from the last years measured by the parallel Linpack
benchmark.4 The performance in flops/s is plotted versus the year, for the
fastest parallel computer in the world, and for the computers at position 100
and 500 in the list of the fastest parallel computers in the world (see [1]). Per-
sonal computers and workstations have seen a similar development of their
processing speed. Because of that, satisfactory simulations have become pos-
sible on these smaller computers.

Particle Models. An important area of numerical simulation deals with
so-called particle models. These are simulation models in which the repre-
sentation of the physical system consists of discrete particles and their in-
teractions. For instance, systems of classical mechanics can be described by
the positions, velocities, and the forces acting between the particles. In this
case the particles do not have to be very small either with respect to their
dimensions or with respect to their mass – as possibly suggested by their
name. Rather they are regarded as fundamental building blocks of an ab-
stract model. For this reason the particles can represent atoms or molecules
as well as stars or parts of galaxies.5 The particles carry properties of physical
objects, as for example mass, position, velocity or charge. The state and the
evolution of the physical system is represented by these properties of the par-
3 These computer systems were intended for the development of software and sim-

ulation of, among other things, the production, aging, safety, reliability, testing,
and further development of the American nuclear arsenal with the aim to replace
the actual physical testing of atomic bombs. One fundamental idea was that ex-
perimental measurements at real tests of atomic bombs have relatively large
errors and that the same accuracy can be reached with computer simulations.

4 The Linpack benchmark tests the performance of computers on the solution of
dense linear systems of equations using Gaussian elimination.

5 Galaxies are often modeled as a few mass points which describe the average of
a large group of stars and not as a collection of billions of stars.
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Fig. 1.2. Development of processing speed over the last years (parallel Linpack
benchmark); fastest (1), 100th fastest (100) and 500th fastest (500) computer in
the world; up to now the processing speed increases tenfold about every four years.

ticles and by their interactions, respectively.6 Figure 1.3 shows the result of
a simulation of the formation of the large scale structure of the universe. The
model consists of 32768 particles that each represents several hundred galax-
ies. Figure 1.4 shows a protein called Nucleosome which consists of 12386
particles representing single atoms.

The laws of classical mechanics are used in many particle models. The
use of Newton’s second law results in a system of ordinary differential equa-
tions of second order describing how the acceleration of any particle depends
on the force acting on it. The force results from the interaction with the
other particles and depends on their position. If the positions of the particles
change relative to each other, then in general also the forces between the par-
ticles change. The solution of the system of ordinary differential equations
for given initial values then leads to the trajectories of the particles. This is
a deterministic procedure, meaning that the trajectories of the particles are
in principle uniquely determined for all times by the given initial values.

But why is it reasonable at all to use the laws of classical mechanics
when at least for atomic models the laws of quantum mechanics should be
used? Should not Schrödinger’s equation be employed as equation of motion
instead of Newton’s laws? And what does the expression “interaction between
particles” actually mean, exactly?
6 Besides the methods considered in this book there are a number of other

approaches which can be categorized as particle methods, see [448, 449],
[144, 156, 380, 408], [254, 369, 394, 437] and [677, 678]. Also the so-called gridless
discretization methods [55, 76, 194, 195, 270, 445] can be interpreted as particle
methods.
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Fig. 1.3. Result of a particle simula-
tion of the large scale structure of the
universe.

Fig. 1.4. A view of the protein Nucle-
osome.

If one considers a system of interacting atoms which consists of nuclei
and electrons, one can in principle determine its behavior by solving the
Schrödinger equation with the appropriate Hamilton operator. However, an
analytic or even numerical solution of the Schrödinger equation is only pos-
sible in a few simple special cases. Therefore, approximations have to be
made. The most prominent approach is the Born-Oppenheimer approxima-
tion. It allows a separation of the equations of motions of the nuclei and of the
electrons. The intuition behind this approximation is that the significantly
smaller mass of the electrons permits them to adapt to the new position of
the nuclei almost instantaneously. The Schrödinger equation for the nuclei
is therefore replaced by Newton’s law. The nuclei are then moved according
to classical mechanics, but using potentials that result from the solution of
the Schrödinger equation for the electrons. For the solution of this electronic
Schrödinger equation approximations have to be employed. Such approxima-
tions are for instance derived with the Hartree-Fock approach or with density
functional theory. This approach is known as ab initio molecular dynamics.
However, the complexity of the model and the resulting algorithms enforces
a restriction of the system size to a few thousand atoms.

A further drastic simplification is the use of parametrized analytical po-
tentials that just depend on the position of the nuclei (classical molecular
dynamics). The potential function itself is then determined by fitting it to
the results of quantum mechanical electronic structure computations for a
few representative model configurations and subsequent force-matching [208]
or by fitting to experimentally measured data. The use of these very crude
approximations to the electronic potential hypersurface allows the treatment
of systems with many millions of atoms. However, in this approach quantum
mechanical effects are lost to a large extent.
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The following incomplete list gives some examples of physical systems
that can be represented by particle systems in a meaningful way. They are
therefore amenable to simulation by particle methods:

Solid State Physics: The simulation of materials on an atomic scale is pri-
marily used in the analysis of known materials and in the development of
new materials. Examples for phenomena studied in solid state physics are
the structure conversion in metals induced by temperature or shock, the
formation of cracks initiated by pressure, shear stresses, etc. in fracture
experiments, the propagation of sound waves in materials, the impact of
defects in the structure of materials on their load-bearing capacity and
the analysis of plastic and elastic deformations.

Fluid Dynamics: Particle simulation can serve as a new approach in the
study of hydrodynamical instabilities on the microscopic scale, as for in-
stance, the Rayleigh-Taylor or Rayleigh-Benard instability. Furthermore,
molecular dynamics simulations allow the investigation of complex fluids
and fluid mixtures, as for example emulsions of oil and water, but also of
crystallization and of phase transitions on the microscopic level.

Biochemistry: The dynamics of macromolecules on the atomic level is one
of the most prominent applications of particle methods. With such meth-
ods it is possible to simulate molecular fluids, crystals, amorphous poly-
mers, liquid crystals, zeolites, nuclear acids, proteins, membranes and
many more biochemical materials.

Astrophysics: In this area, simulations mostly serve to test the soundness
of theoretical models. In a simulation of the formation of the large-scale
structure of the universe, particles correspond to entire galaxies. In a sim-
ulation of galaxies, particles represent several hundred to thousand stars.
The force acting between these particles results from the gravitational
potential.

Computer Simulation of Particle Models. In the computer simulation
of particle models, the time evolution of a system of interacting particles
is determined by the integration of the equations of motion. Here, one can
follow individual particles, see how they collide, repel each other, attract
each other, how several particles are bound to each other, are binding to
each other, or are separating from each other. Distances, angles and simi-
lar geometric quantities between several particles can also be computed and
observed over time. Such measurements allow the computation of relevant
macroscopic variables such as kinetic or potential energy, pressure, diffusion
constants, transport coefficients, structure factors, spectral density functions,
distribution functions, and many more.

In most cases, variables of interest are not computed exactly in computer
simulations, but only up to a certain accuracy. Because of that, it is desirable

– to achieve an accuracy as high as possible with a given number of opera-
tions,
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– to achieve a given accuracy with as few operations as possible, or
– to achieve a ratio of effort (number of operations) to achieved accuracy

which is as small as possible.

Clearly the last alternative includes the first two as special cases. A good
algorithm possesses a ratio of effort (costs, number of operations, necessary
memory) to benefit (achieved accuracy) that is as favorable as possible. As a
measure for the ranking of algorithms one can use the quotient

effort
benefit

=
# operations

achieved accuracy
.

This is a number that allows the comparison of different algorithms. If it is
known how many operations are minimally needed to achieve a certain accu-
racy, this number shows how far a given algorithm is from optimal. The mini-
mal number of operations to achieve a given accuracy ε is called ε-complexity.
The ε-complexity is thus a lower bound for the number of operations for any
algorithm to achieve an accuracy of ε.7

The two principal components of the computer simulation of particle mod-
els are (in addition to the construction of appropriate interaction potentials)
the time integration of Newton’s equations of motion and the fast evaluation
of the interactions between the individual particles.

Time Integration: In numerical time integration, the solution of the con-
sidered differential equation is only computed at a number of discrete points
in time. Incrementally, approximations to the values at later points in time
are computed from the values of the approximations at previous points in
time. Once a specific integration scheme has been chosen, the forces acting
on the individual particles have to be computed in each time step. For this,
the negative gradient of the potential function of the system has to be com-
puted. If we denote with xi,vi and Fi the position of the ith particle, the
velocity of the ith particle, and the force on the ith particle, respectively, we
can write the basic algorithm 1.1 for the computation of the trajectories of
N particles.8 With given initial values for xi and vi for i = 1, . . . , N , the
time is increased by δt in each step in an outer integration loop starting at
time t = 0 until the final time tend is reached. The forces on the individual
particles and their new positions and velocities are then computed in an inner
loop over all particles.

Fast Evaluation of the Forces: There are N2 interactions between particles
in a system which consists of N particles. If self-interactions are excluded,
this number is reduced by N . If we also consider that all other interactions
7 The branch of mathematics and computer science that deals with questions in

this context is called information-based complexity, see for instance [615].
8 In principle, the algorithms described in this book can be implemented in many

different programming languages. In the following, we give algorithms in the
programming language C, see [40, 354], and higher level expressions.
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Algorithm 1.1 Basic Algorithm
real t = t_start;

for i = 1, ..., N
set initial conditions xi (positions) and vi (velocities);

while (t < t_end) {
compute for i = 1, ..., N the new positions xi and velocities vi

at time t + delta_t by an integration procedure from the

positions xi, velocities vi and forces Fi on the particle at

earlier times;

t = t + delta_t;

}

are counted twice,9 we obtain in total (N2 − N)/2 actions between particles
that have to be determined to compute the forces between all particles. This
naive approach therefore needs O(N2) operations for N particles in each time
step.10 Thus, if the number of particles is doubled, the number of operations
quadruples. Because of the limited performance of computers, this approach
to the computation of the forces is only feasible for relatively small numbers
of particles. However, if only an approximation of the forces up to a cer-
tain accuracy is required, a substantial reduction of the complexity may be
possible.

The complexity of an approximative evaluation of the forces at a fixed time
is obviously at least of order O(N) since every particle has to be “touched”
at least once. Algorithms are called optimal if the complexity for the com-
putation up to a given accuracy is O(N). If the complexity of the algorithm
differs from the optimal by a logarithmic factor, meaning it is of the or-
der O(N log(N)α) with α > 0, the algorithm is called quasi-optimal. Fig-
ure 1.5 shows a comparison of the time complexities using an optimal, a
quasi-optimal and an O(N2)-algorithm. The evaluation of the interactions
for 1000 particles with the O(N2)-algorithm needs as much time as the op-
timal algorithm needs for the approximate evaluation of the interactions for
almost a million particles.

The goal is to find optimal algorithms and also to implement them on
computers. The design of a suitable algorithm necessarily has to be adapted
to the kind of interactions modeled and to other parameters, as for example
changes in the density of the particles. It is clear that algorithms which are
optimal for some form of interaction potentials may not be suitable for other
forms of potentials. This can be demonstrated most easily by the difference
between a potential that decays quickly and one that decays slowly. In this
9 By Newton’s third law the action of a particle i on a particle j is the same as

the action of the particle j on the particle i.
10 The relation f(N) = O(N2) means for a function f that f(N)/N2 is bounded

for N → ∞.
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Fig. 1.5. Comparison of the complexity of an optimal, a quasi-optimal, and an
O(N2)-algorithm (left: linear plot, right: doubly logarithmic plot).

context, for a fast decaying potential, a particle only exerts a significant
force on another particle if the distance between the two particles is small.
For almost uniformly distributed particles, the force evaluation can then be
implemented in O(N) operations, since only particles in the close vicinity of
a particle contribute significantly to the force acting on it. On the other hand,
long-range forces such as Coulomb forces or gravitational forces decay only
very slowly. Their effects can not be neglected in general even if the particles
are far apart, see [219, 672].

The graphs in Figure 1.6 and 1.7 show schematically a 1/r behavior which
is typical for long-range potentials. For very small values of the distance r the
potential is very large and decreases strongly with increasing distance. The
decrease slows down with increasing distance. For r small, a small change in
the position of the particle has a very strong effect on the resulting potential
value, compare Figure 1.6. However, a small change in the position of the
particles which are farer apart (r large) only has a small effect on the resulting
potential value, compare Figure 1.7. A similar statement is valid for the forces,
since the force is the negative gradient of the potential. In particular, in the
case of large r, one does not have to distinguish between two particles close
to each other for the approximative evaluation of potentials and forces, since
the resulting values of potential and force will be approximately the same.
This behavior is exploited in algorithms for long-range potentials.

History. The development of computer simulations of particle models has
been closely connected with the development of computers. The first article
about simulation in molecular dynamics was written by Alder and Wain-
wright [33] in 1957. The authors studied a model of some hundred particles
that interacted by elastic impact and computed the associated phase dia-
gram.11 Gibson, Goland, Milgram and Vineyard [252] soon afterwards inves-

11 These results were a big surprise at that time since it was generally assumed
that also an attractive potential was needed to generate such a phase transition.
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Fig. 1.6. In the near field (that is, for
small values of r), a small change in
position dx of the particles results in a
large change dy of the potential.

Fig. 1.7. In the far field (that is, for
large values of r), a small change in
position dx of the particles results in a
small change dy of the potential.

tigated damages caused by radioactive radiation in a molecular dynamics sim-
ulation involving 500 atoms. Rahman [498] studied properties of fluid argon
in 1964. He was the first who used the Lennard-Jones potential in molecular
dynamics simulations. In 1967, Verlet introduced an algorithm to efficiently
manage data in a molecular dynamics simulation using neighbor-lists [645].
This paper also presented a time integration scheme12 that serves as the
standard method in molecular dynamics simulations even today. Molecules
such as butane were first investigated in 1975 in [533]. Molecular dynamics
simulations with constant pressure or constant temperature were described
in the beginning of the eighties in the papers [42, 327, 452, 453]. Also, more
complex potentials with many-body interactions were introduced quite early
into simulation [57].

The potentials used in these early papers were mostly short-range poten-
tials and the simulations were very limited because of the small capacity of the
computers at that time. The simulation of models with long-range potentials,
in particular for large numbers of particles, demanded further developments
in computer technology and in the algorithms used. One method for the treat-
ment of such potentials relies in its main features on Ewald [216]. There, the
potential is split into its short-range and long-range part, each of which can
be computed efficiently with a specific separate approach. The decisive idea is
the use of fast Poisson solvers for the long-range part. Hierarchical methods,
such as fast Fourier transforms or multilevel methods, are applied in these
fast Poisson solvers. The variants of this so-called P3M method [202, 324]
differ in the selection of algorithms for the single components (interpolation,
force evaluation, adaptivity, fast solvers, etc.). A prominent example is the
so-called Particle Mesh Ewald method (PME), see [168, 215, 374], that uses

12 This scheme relies on an approach presented by Störmer in 1907 [588] which can
be traced back even further to Delambre in 1790 [566].
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B-spline or Lagrangian interpolation together with fast Fourier transforms.
See also [211, 488, 574] and [612] for a review of existing P3M variants.

Another class of methods for long-range potentials uses an expansion
(Taylor expansion, multipole expansion) of the potential functions in the
distance to approximately evaluate particle interactions. The resulting data is
stored in tree structures to allow efficient data management and computation.
Some earlier representatives of this class that are often used in astrophysics
were developed by Barnes and Hut [58] and Appel [47]. Newer variants by
Greengard and Rohklin [260, 263, 525] use higher moments in the expansions.

During the last years the parallelization of algorithms for molecular dy-
namics simulations has attracted much attention. A description of parallel
algorithms for short-range potentials can be found for example in [71, 483]
and [503]. Parallel variants of the P3M algorithm are found in [606, 613, 679]
and [221], respectively. Parallel versions of the Barnes-Hut algorithm and the
multipole method have been presented for example in [261, 651, 652, 654, 686].
Domain decomposition methods are employed in these versions as well as in
the parallelization of algorithms for short-range potentials.

Accounts of the theoretical background together with the detailed de-
scription of different methods and application areas of molecular dynam-
ics can be found in a number of books and edited volumes [34, 90, 147,
148, 239, 282, 324, 328, 373, 607]. By now, most of the methods have been
implemented in commercial and research software packages. Examples are
AL CMD [628], Amber [471], CHARMM [125, 126, 401], DL POLY [571],
EGO [205], GROMACS [83], GROMOS [634], IMD [530], LAMMPS [482],
Moldy [507], MOSCITO [463], NAMD [446], OPLS [348], ORAC [2, 491],
PMD [662], SIgMA [314], SPaSM [69] and YASP [441]. Pbody [93] and
DPMTA [95] provide parallel libraries for N -body problems. NEMO [604],
GADGET [3] and HYDRA [4] are suitable especially for applications in as-
trophysics.

This book tries to build a bridge from the theory of molecular dynamics to
the implementation of efficient parallel algorithms and their applications. Its
primary goal is to introduce the necessary numerical techniques of molecular
dynamics in a compact form, to present the necessary steps in the devel-
opment of efficient algorithms, and to describe the implementation of those
algorithms on sequential as well as parallel computer systems. All models
and algorithms are derived in detail. Also, programs and parameters nec-
essary for the example applications are listed. This will enable the reader
to implement programs for molecular dynamics simulations, to use them on
parallel computer systems, and to conduct simulations on his own.

This book primarily appeals to two audiences. On the one hand to stu-
dents, teachers, and researchers in physics, chemistry, and biology that want
to gain a deeper understanding of the fundamentals and the efficiency of
molecular dynamics software and its applications. On the other hand it ap-
peals to mathematicians and computer scientists by giving them the possi-
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bility to get acquainted with a number of different numerical methods from
the area of molecular dynamics.

Depending on prior knowledge and interest, the reader of this book is
advised to selectively choose and read particular chapters. Chapters 3 and 4
give a convenient introduction; the Sections 3.7.4 and 3.7.5 can be skipped
in a first reading. The Chapters 7, 8 and 9 are intended to be self-contained,
up to a few basic concepts and facts from chapters 3 and 4.



2 From the Schrödinger Equation to Molecular

Dynamics

In particle methods, the laws of classical mechanics [48, 371] are used, in
particular Newton’s second law. In this chapter we will pursue the question
why it makes sense to apply the laws of classical mechanics, even though one
should use the laws of quantum mechanics. Readers that are more interested
in the algorithmic details or in the implementation of algorithms in molecular
dynamics can skip this chapter.

In quantum mechanics, the Schrödinger equation is taking the place of
Newton’s equations. But the Schrödinger equation is so complex that it can
be solved analytically only for a few simple cases. Also the direct numeri-
cal solution on computers is limited to very simple systems and very small
numbers of particles because of the high dimension of the space in which
the Schrödinger equation is posed. Therefore, approximation procedures are
used to simplify the problem. These procedures are based on the fact that the
electron mass is much smaller than the mass of the nuclei. The idea is to split
the Schrödinger equation, which describes the state of both the electrons and
nuclei, with a separation approach into two coupled equations. The influence
of the electrons on the interaction between the nuclei is then described by an
effective potential. This potential results from the solution of the so-called
electronic Schrödinger equation. As a further approximation the nuclei are
moved according to the classical Newton’s equations using either effective po-
tentials which result from quantum mechanical computations (which include
the effects of the electrons) or empirical potentials that have been fitted to the
results of quantum mechanical computations or to the results of experiments.

All in all, this approach is a classical example for a hierarchy of approxi-
mation procedures and an example for the use of effective quantities. In the
following, the derivation of the molecular dynamics method from the laws
of quantum mechanics is presented. For further details see the large body of
available literature, for example [372, 427, 554], [381, 514], and [417, 626, 627].

2.1 The Schrödinger Equation

Up to the end of the nineteenth century, classical physics could answer the
most important questions using Newton’s equations of motion. The Lagrange
formalism and the Hamilton formalism both lead to generalized classical
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equations of motion that are essentially equivalent. These equations furnish
how the change in time of the position of particles depends on the forces
acting on them. If initial positions and initial velocities are given, the po-
sitions of the particles are determined uniquely for all later points in time.
Observable quantities such as angular momentum or kinetic energy can then
be represented as functions of the positions and the impulses of the particles.

In the beginning of the twentieth century the theory of quantum mechan-
ics was developed. There, the dynamics of the particles is described by a new
equation of motion, the Schrödinger equation. In contrast to Newton’s equa-
tions its solution no longer provides unique trajectories, meaning uniquely
determined positions and impulses of the particles, but only probabilistic
statements about the positions and impulses of the particles. Furthermore,
position and impulse of a single particle can no longer be measured arbitrarily
accurately at the same time (Heisenberg’s uncertainty principle) and certain
observables, as for example the energies of bound electrons, can only assume
certain discrete values. All statements that can be made about a quantum
mechanical system can be derived from the state function (or wave function)
Ψ which is given as the solution of the Schrödinger equation. Let us con-
sider as an example a system consisting of N nuclei and K electrons. The
time-dependent state function of such a system can be written in general as

Ψ = Ψ(R1, . . . ,RN , r1, . . . , rK , t),

where Ri and ri denote positions in three-dimensional space R3 associated
to the ith nucleus and the ith electron, respectively. The variable t denotes
the time-dependency of the state function. The vector space (space of con-
figurations) in which the coordinates of the particles are given is therefore of
dimension 3(N + K). In the following we will abbreviate (R1, . . . ,RN ) and
(r1, . . . , rK) with the shorter notation R and r, respectively.

According to the statistical interpretation of the state function, the ex-
pression

Ψ∗(R, r, t)Ψ(R, r, t)dV1 · · ·dVN+K (2.1)

describes the probability to find the system under consideration at time t in
the volume element dV1 · . . . · dVN+K of the configuration space centered at
the point (R, r). By integrating over a volume element of the configuration
space one determines the probability to find the system in this domain.

We assume in the following that nuclei and electrons are charged parti-
cles. The electrostatic potential (Coulomb potential) of a point charge (with
elementary charge +e) is e

4πε0
1
r , where r is the distance from the position of

the charged particle and ε0 is the dielectric constant. 1/(4πε0) is also called
Coulomb constant. An electron moving in this potential has the potential
energy V (r) = − e2

4πε0
1
r . Neglecting spin and relativistic interactions and as-

suming that no external forces act on the system, the Hamilton operator
associated to the system of nuclei and electrons is given as the sum over the
operators for the kinetic energy and the Coulomb potentials,
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H(R, r) :=− �2

2me

K∑
k=1

∆rk
+

e2

4πε0

K∑
k<j

1
|| rk − rj || −

e2

4πε0

K∑
k=1

N∑
j=1

Zj

|| rk − Rj ||

+
e2

4πε0

N∑
k<j

ZkZj

|| Rk − Rj || −
�2

2

N∑
k=1

1
Mk

∆Rk
. (2.2)

Here, Mj and Zj denote the mass and the atomic number of the jth nucleus,
me is the mass of an electron and � = h/2π with h being Planck’s constant.
‖rk − rj‖ are the distances between electrons, ‖rk − Rj‖ are distances be-
tween electrons and nuclei and ‖Rk −Rj‖ are distances between nuclei. The
operators ∆Rk

and ∆rk
stand here for the Laplace operator with respect to

the nuclear coordinates Rk and with respect to the electronic coordinates
rk.1 In the following we will denote the separate parts of (2.2) in abbreviated
form (written in the same order) with

H = Te + Vee + VeK + VKK + TK . (2.3)

The meanings of the individual parts are the following: Te and TK are the
operators of the kinetic energy of the electrons and of the nuclei, respectively.
Vee, VKK and VeK refer to the operators of the potential energy of the inter-
actions (thus the Coulomb energy) between only the electrons, between only
the nuclei, and between the electrons and the nuclei, respectively.

The state function Ψ is now given as the solution of the Schrödinger
equation

i�
∂Ψ(R, r, t)

∂t
= HΨ(R, r, t) (2.4)

where i denotes the imaginary unit. The expression ∆Rk
Ψ(R, r, t), which oc-

curs in HΨ , stands there for ∆YΨ(R1, . . . ,Rk−1,Y,Rk+1, . . . ,RN , r, t)|Rk
,

that is, the application of the Laplace operator to Ψ seen as a function of Y
(the kth vector of coordinates) and the evaluation of the resulting function
at the point Y = Rk. The operators ∆rk

and later ∇Rk
and others are to be

understood in an analogous way.
In the following we consider the case that the Hamilton operator H is

not explicitly time-dependent, as we already assumed in (2.2).2 Then, the
separation approach

Ψ(R, r, t) = ψ(R, r) · f(t) (2.5)

of Ψ with a function ψ = ψ(R, r) that does not depend on time and a function
f = f(t) that depends on time when substituted into (2.4) gives rise to
1 If we denote the three components of Rk by (Rk)1, (Rk)2 and (Rk)3, then we

obtain ∆Rk = ∂2

∂(Rk)21
+ ∂2

∂(Rk)22
+ ∂2

∂(Rk)23
.

2 Since the Hamilton operator H depends on the coordinates and impulses of the
particles, it depends implicitly on time this way. If time-dependent external forces
act on the system, the Hamilton operator could also explicitly depend on time.
Then, one would write H(R, r, t) to reflect this dependency.
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i�
df(t)
dt

ψ(R, r) = f(t)Hψ(R, r), (2.6)

since H does not act on f(t).3 A formal division of both sides by the term
ψ(R, r) · f(t) �= 0 yields

i�
1

f(t)
df(t)
dt

=
1

ψ(R, r)
Hψ(R, r). (2.7)

The left hand side contains only the time coordinate t, the right hand side
only the coordinates in space. Therefore, both sides have to be equal to a
common constant E and (2.7) can be separated. We obtain the two equations

i�
1

f(t)
df(t)
dt

= E (2.8)

and
Hψ(R, r) = Eψ(R, r). (2.9)

The differential equation (2.8) describes the evolution over time of the wave
function. Its general solution reads

f(t) = ce−iEt/�. (2.10)

Equation (2.9) is an eigenvalue problem for the Hamilton operator H with
the energy eigenvalue E. This equation is called time-independent (or station-
ary) Schrödinger equation. To every energy eigenvalue En there is one (or, in
the case of degenerated states, several) associated energy eigenfunctions ψn.
Also, for every energy eigenvalue En, (2.10) yields a time-dependent term fn.
The solution of the time-dependent Schrödinger equation (2.4) is then given
as a linear combination of the energy eigenfunctions ψn and the associated
time-dependent terms fn of the form

Ψ(R, r, t) =
∑

n

cne−iEnt/�ψn(R, r) (2.11)

with the weights cn =
∫

ψ∗
n(R, r)Ψ(R, r, 0)dRdr.

Similar to the time-dependent Schrödinger equation, (2.9) is so complex
that analytical solutions can only be given for a few very simple systems. The
development of approximation procedures is therefore a fundamental area of
research in quantum mechanics. There exists an entire hierarchy of approxi-
mations that exploit the different physical properties of nuclei and electrons
[417, 626, 627]. We will consider these approximations in the following in
more detail.
3 One then also calls ψ state or wave function.



2.2 A Derivation of Classical Molecular Dynamics 21

2.2 A Derivation of Classical Molecular Dynamics

In the following we will derive, starting from the time-dependent Schrödinger
equation (2.4), the equations of classical molecular dynamics by a series of
approximations. We follow [417] and [626, 627].

2.2.1 The TDSCF Approach and Ehrenfest’s Molecular Dynamics

First, we decompose the Hamilton operator (2.3) as follows: We set

H = He + TK (2.12)

with the electronic Hamilton operator

He := Te + Vee + VeK + VKK . (2.13)

We decompose He further into its kinetic and potential part

He := Te + Ve

where now
Ve := Vee + VeK + VKK

is just the operator for the potential energy of the entire system.
The wave function Ψ(R, r, t) depends on the coordinates of the electrons

and of the nuclei as well as on time. First, we separate the wave function into
a simple product form4

Ψ(R, r, t) ≈ Ψ̃(R, r, t) := χ(R, t)φ(r, t) exp
[

i

�

∫ t

t0

Ẽe(t′)dt′
]

(2.14)

of the contribution of the nuclei and electrons to the full wave function Ψ .
It is assumed that the nuclear wave function χ(R, t) and the electronic wave
function φ(r, t) are normalized for any point in time t, that means that both∫

χ∗(R, t)χ(R, t)dR = 1 and
∫

φ∗(r, t)φ(r, t)dr = 1 hold. The phase factor
Ẽe is chosen in the form

Ẽe(t) =
∫

φ∗(r, t)χ∗(R, t)Heφ(r, t)χ(R, t)dRdr (2.15)

which is convenient for the following derivation of a coupled system of equa-
tions.

Now, we insert (2.14) into the time-dependent Schrödinger equation (2.4)
with Hamilton operator H, multiply from the left with φ∗(r, t) and χ∗(R, t)
4 This approximation is a so-called single determinant or single configuration

ansatz for the full wave function. It can only result in a mean field description
of the coupled dynamics.
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and integrate over R and r. Finally, we require conservation of energy, that
is,

d

dt

∫
Ψ̃∗HΨ̃dRdr = 0,

and obtain thereby the coupled system of equations

i �
∂φ

∂t
= −

∑
k

�2

2me
∆rk

φ +
(∫

χ∗(R, t)Ve(R, r)χ(R, t)dR
)

φ, (2.16)

i �
∂χ

∂t
= −

∑
k

�2

2Mk
∆Rk

χ +
(∫

φ∗(r, t)He(R, r)φ(r, t)dr
)

χ. (2.17)

These equations constitute the foundation for the TDSCF approach (time-
dependent self-consistent field) introduced by Dirac in 1930, see [181, 186].
Both unknowns again obey a Schrödinger equation, but now with a time-
dependent effective operator for the potential energy which arises as an appro-
priate average of the other unknown. These averages can also be interpreted
as quantum mechanical expectation values with respect to the operators Ve

and He and give a mean field description of the coupled dynamics.
As a next step the nuclear wave function χ is to be approximated by

classical point particles. For this, we first write the wave function χ as

χ(R, t) = A(R, t) exp
[

i

�
S(R, t)

]
(2.18)

with an amplitude A > 0 and a phase factor S, both real [187, 427, 536].
Substitution into the equation for the nuclei in the TDSCF system (2.17) and
separating real and imaginary parts leads to the coupled system of equations

∂S

∂t
+

N∑
k

1
2Mk

(∇Rk
S)2 +

∫
φ∗Heφdr = �

2
N∑
k

1
2Mk

∆Rk
A

A
, (2.19)

∂A

∂t
+

N∑
k

1
Mk

(∇Rk
A) (∇Rk

S) +
N∑
k

1
2Mk

A (∆Rk
S) = 0. (2.20)

Here, ∇Rk
=
(

∂
∂(Rk)1

, ∂
∂(Rk)2

, ∂
∂(Rk)3

)T

. The abbreviation (∇Rk
S)2 denotes

the scalar product of ∇Rk
S with itself and (∇Rk

A) (∇Rk
S) denotes the scalar

product of the vectors ∇Rk
A and ∇Rk

S. This system corresponds exactly
to the second equation in the TDSCF system (2.17) in the new variables A
and S.5 The only term that directly depends on � is the right hand side of
5 This is the so-called quantum fluid dynamics representation [182, 187, 427, 536,

668] which opens up another possibility to treat the time-dependent Schrödinger
equation. (2.20) can be written with |χ|2 ≡ A2 as continuity equation that locally
conserves the probability density |χ|2 of the nuclei under a flow.
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equation (2.19). In the limit � → 0 equation (2.19) gives6

∂S

∂t
+

N∑
k

1
2Mk

(∇Rk
S)2 +

∫
φ∗Heφdr = 0.7 (2.21)

Setting ∇RS = (∇R1S, . . . ,∇RN S), this is isomorphic to the Hamilton-
Jacobi form

∂S

∂t
+ H (R,∇RS) = 0 (2.22)

of the equations of motion of classical mechanics with the classical Hamilton
function8

H(R,P) = T (P) + V (R) (2.23)

with P = (P1, . . . ,PN ), where one puts

Pk(t) ≡ ∇Rk
S(R(t), t).

Here, R corresponds to generalized coordinates and P to their conjugated
moments. Newton’s equations of motion Ṗk = −∇Rk

V (R) associated to
equation (2.22) are then

dPk

dt
= −∇Rk

∫
φ∗Heφdr or (2.24)

MkR̈k(t) = −∇Rk

∫
φ∗Heφdr (2.25)

=: −∇Rk
V Ehr

e (R(t)). (2.26)

The nuclei move now according to the laws of classical mechanics in an effec-
tive potential given by the electrons. This so-called Ehrenfest potential V Ehr

e

is a function of the nuclear coordinates R at time t. It results from an av-
eraging over the degrees of freedom of the electrons, weighted by He, where
the nuclear coordinates are kept constant at their current positions R(t).

There is still the wave function χ of the nuclei in the equation for the
electrons in the system for the TDSCF approach (2.16). Consistency requires
it to be replaced by the position of the nuclei. Thus, if one replaces the
probability density of the nuclei |χ(R, t)|2 by the product of delta functions

6 Because of this approximation step, the function φ is only an approximation of
the original wave function φ in (2.16) and (2.17). To keep the notation simple
we denote this approximation again by the symbol φ.

7 An expansion of the right hand side of equation (2.19) with respect to � leads
to a hierarchy of semi-classical methods [427].

8 In the literature often the notation Q is found instead of R for the general-
ized classical coordinates. For the sake of simplicity, we will continue using the
notation R in this chapter.
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Πkδ(Rk − Rk(t)) in the limit � → 0 in (2.16), then one obtains for example
for the position operator Rk with∫

χ∗(R, t)Rkχ(R, t)dR �→0−→ Rk(t) (2.27)

the classical position Rk(t) as limit of the quantum mechanical expectations.
Here, the delta functions are centered in the instantaneous positions R(t) of
the nuclei given by (2.25). For (2.16), this classical limit process9 leads to a
time-dependent wave equation for the electrons

i �
∂φR(t)(r, t)

∂t
= −

∑
k

�2

2me
∆rk

φR(t)(r, t) + Ve(R(t), r)φR(t)(r, t) (2.28)

= He(R(t), r)φR(t)(r, t), (2.29)

that move in a self-consistent way with the nuclei, if the classical nuclei are
propagated by (2.25). Note that now He and therefore the wave function φ
of the electrons depend parametrically via Ve on the positions R(t) of the
nuclei. The nuclei are thus treated as classical particles, whereas the electrons
are still treated using quantum mechanics. In honor of Ehrenfest, who first
posed the question how Newton’s classical dynamics could be derived from
Schrödinger’s equation, one often calls approaches that are based on the
equations

MkR̈k(t) = −∇Rk
V Ehr

e (R(t)), (2.30)

i �
∂φR(t)(r, t)

∂t
= He(R(t), r)φR(t)(r, t) (2.31)

Ehrenfest molecular dynamics. Alternatively, one finds such approaches in
the literature under the name QCMD (quantum-classical molecular dynam-
ics model) [104, 204, 447]. Note again that the wave function φR(t) of the
electrons is here not equal to the wave function φ in (2.16), since an approx-
imation was introduced by the limit process for the positions of the nuclei.
The wave function of the electrons depends implicitly on R via the coupling
in the system, which we expressed by the parametric notation φR(t). In the
following we will omit this parametrization for the sake of simplicity and will
denote, if clear from the context, the electronic wave function just by φ.

2.2.2 Expansion in the Adiabatic Basis

The TDSCF approach leads to a mean field theory. One should keep in mind
that transitions between different electronic states are still possible in this
9 A justification of the transition from the Schrödinger equation to Newton’s equa-

tion of motion of the nuclei is given by the theorem of Ehrenfest [381, 554] which
describes the time evolution of averages of observables.
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setting. This can be seen as follows: We expand the electronic wave function
φ from (2.31) for fixed t in an appropriate basis {φj} of the electronic states

φR(t)(r, t) =
∞∑

j=0

cj(t)φj(R(t), r) (2.32)

with complex coefficients {cj(t)} and
∑

j |cj(t)|2 ≡ 1. The {|cj(t)|2} describe
explicitly how the occupancy of the different states j evolves over time. A
possible orthonormal basis, called adiabatic basis, results from the solution
of the time-independent electronic Schrödinger equation

He(R, r)φj(R, r) = Ej(R)φj(R, r), (2.33)

where R denotes the nuclear coordinates from equation (2.25) at the chosen
time t. The values {Ej} are here the energy eigenvalues of the electronic
Hamilton operator He(R, r), and the {φj} are the associated energy eigen-
functions.

For (2.30) and (2.31) one obtains with the expansion (2.32) the equations
of motion in the adiabatic basis (2.33) as [447, 626, 627]

MkR̈k(t) = −
∑

j

|cj(t)|2 ∇Rk
Ej −

∑
j,l

c∗j (t)cl(t) (Ej − El) djl
k , (2.34)

i �ċj(t) = cj(t)Ej − i �

∑
k,l

cl(t)Ṙk(t)djl
k , (2.35)

with the coupling terms given as

djl
k =

∫
φ∗

j∇Rk
φldr, (2.36)

djj
k ≡ 0. (2.37)

Here, we used the properties∫
φ∗

j (R, r)∇Rk
Heφl(R, r)dr = (El(R) − Ej(R))

∫
φ∗

j (R, r)∇Rk
φl(R, r)dr,

∫
φ∗

j (R, r)φ̇l(R, r)dr =
N∑

k=1

Ṙk(t)
∫

φ∗
j (R, r)∇Rk

φl(R, r)dr, ∀j �= l,

of the adiabatic basis and used furthermore that φ and R in V Ehr
e (R(t)) can

be treated as independent variables. This implies that the time-dependent
wave function can be represented by a linear combination of adiabatic states
and that its evolution in time is described by the Schrödinger equation (2.31).
Here, |cj(t)|2 is the probability density that the system is in state φj at time
point t.10

10 This model can be modified by the assumption that the system remains in an
adiabatic state until it jumps instantaneously to another adiabatic state. The
coefficients cj(t) and the coupling terms djl

k serve as a criterion for such a jump.
This assumption is made in the so-called surface-hopping method [300, 625].
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2.2.3 Restriction to the Ground State

As a further simplification we will restrict the whole electronic wave function
φ to a single state, typically the ground state φ0 of He according to the
stationary equation (2.33) with |co(t)|2 ≡ 1 as in (2.32). We thus assume
that the system remains in the state φ0, and truncate the expansion (2.32)
after the first term. This approximation is justified as long as the difference in
energy between φ0 and the first excited state φ1 is everywhere large enough
compared to the thermal energy kBT so that transitions to excited states11

do not play a significant role.12 The nuclei are then moved according to the
equation of motion (2.25) on a single hypersurface of the potential energy

V Ehr
e (R) =

∫
φ∗

0(R, r)He(R, r)φ0(R, r)dr ≡ E0(R). (2.38)

To compute this surface, the time-independent electronic Schrödinger equa-
tion (2.33)

He(R, r)φ0(R, r) = E0(R)φ0(R, r) (2.39)

has to be solved for its ground state. Hence, we identified the Ehrenfest
potential function V Ehr

e just as the potential E0 of the stationary electronic
Schrödinger equation for the ground state. Note that E0 is here a function of
the nuclear coordinates R.

2.2.4 Approximation of the Potential Energy Hypersurface and
Classical Molecular Dynamics

As a consequence of (2.38), the computation of the dynamics of the nuclei
can now be separated from the computation of the hypersurface for the po-
tential energy. If we assume at first that we can solve the stationary electronic
Schrödinger equation (2.33) for a given nuclear configuration, then we could
derive an entirely classical approach by the following steps: First, the energy
of the ground state E0(R) is determined for as many representative nuclear
configurations Rj as possible from the stationary electronic Schrödinger equa-
tion (2.39). In this way, we evaluate the function V Ehr

e (R) at a number of
points and gain a number of data points (Rj , V Ehr

e (Rj)). From these discrete
data points we then approximately reconstruct the global potential energy
hypersurface for V Ehr

e . For this, we compute an approximate potential surface
by an expansion of many-body potentials in analytical form
11 In the case of bound atoms the spectrum is discrete. The ground state is an

eigenstate with the smallest energy level. The first excited state is an eigenstate
with the second smallest energy level.

12 So-called branching processes cannot be described this way in a satisfactory
manner.
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V Ehr
e ≈V appr

e (R)=
N∑

k=1

V1(Rk)+
N∑

k<l

V2(Rk,Rl)+
N∑

k<l<m

V3(Rk,Rl,Rm)+ . . . ,

(2.40)
which is appropriately truncated. With such an expansion the electronic de-
grees of freedom are replaced with interaction potentials Vn and are therefore
no longer explicit degrees of freedom of the equations of motion. After the
Vn are specified, the mixed quantum-mechanical and classical problem (2.30),
(2.31) is reduced to a completely classical problem. We obtain Newton’s equa-
tions of motion of classical molecular dynamics

MkR̈k(t) = −∇Rk
V appr

e (R(t)). (2.41)

Here, the gradients can be computed analytically.
This method of classical molecular dynamics is feasible for many-body

systems because the global potential energy gets decomposed according to
(2.40). Here, in practice, the same form of the potential is used for the same
kind of particles. For instance, if only a two-body potential function

V appr
e ≈

N∑
k<l

V2(||Rk − Rl||)

of the distance is used, only one one-dimensional function V2 has to be de-
termined.

This is certainly a drastic approximation that has to be justified in many
respects and that brings a number of problems with it. It is not obvious how
many and which typical nuclear configurations have to be considered to re-
construct the potential function from the potentials of these configurations
with an error which is not too large. In addition, the error caused by the trun-
cation of the expansion (2.40) plays certainly a substantial role. The precise
form of the analytic potential functions Vn and the subsequent fitting of their
parameters also have a decisive influence on the size of the approximation er-
ror. The assumption that the global potential function is represented well by
a sum of simple potentials of a few generic forms and the transferability of a
potential function to other nuclear configurations are further critical issues.
Altogether, not all approximation errors can be controlled rigorously in this
approach. Furthermore, quantum mechanical effects and therefore chemical
reactions are excluded by construction. Nevertheless, the method has been
proven successful, in particular in the computation of macroscopic properties.

The methods used in practice to determine the interactions in real sys-
tems are either based on the approximate solution of the stationary electronic
Schrödinger equation (ab initio methods) and subsequent force-matching
[208] or on the fitting (that is, parametrization) of given analytic poten-
tials to experimental or quantum mechanical results. In the first approach,
the potential is constructed implictly using ab initio methods. There, the
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electronic energy E0 and the corresponding forces are computed approxi-
mately13 for a number of chosen example configurations of the nuclei. By
extrapolation/interpolation to other configurations an approximate potential
energy hypersurface can be constructed that can in turn be approximated by
simple analytic functions. In the second, more empirical approach, one di-
rectly chooses an analytic form of the potential which contains certain form
functions that depend on geometric quantities such as distances, angles or
coordinates of particles. Subsequently, this form is fitted by an appropriate
determination of its parameters to available results from quantum mechanical
computations or from actual experiments. In this way one can model inter-
actions that incorporate different kinds of bond forces, possible constraints,
conditions on angles, etc. If the results of the simulation are not satisfactory,
the potentials have to be improved by the choice of better parameters or by
the selection of better forms of the potential functions with other or even ex-
tended sets of parameters. The construction of good potentials is still a form
of art and requires much skill, work, and intuition. Programs such as GULP
[5, 244] or THBFIT [6] can help in the creation of new forms of potentials
and in the fitting of parameters for solids and crystals.

Some Simple Potentials. The simplest interactions are those between
two particles. Potentials that only depend on the distance rij := ‖Rj −
Ri‖ between any pair of particles are called pair potentials. Here, we use
(R1, . . . ,RN) as a notation for the classical coordinates R(t). The associated
potential energy V has the form

V (R1, . . . ,RN) =
N∑

i=1

N∑
j=i+1

Uij(rij),

where Uij denotes the potential acting between the particles i and j. Exam-
ples for such pair potentials Uij between two particles are:

– The Gravitational Potential

U(rij) = −GGrav
mimj

rij
. (2.42)

13 The wave function in the electronic Schrödinger equation is still defined in a
high-dimensional space. The coordinates of the electrons are in R

3K . An ana-
lytic solution or an approximation by a conventional numerical discretization
method is impossible in general. Therefore, approximation methods have to be
used that substantially reduce the dimension of the problem. Over the years,
many variants of such approximation methods have been proposed and used, such
as the Hartree-Fock method, the density functional theory, configuration inter-
action methods, coupled-cluster methods, generalized valence bond techniques,
the tight-binding approach, or the Harris functional method. An overview of the
different approaches can be found for example in [526, 528].
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– The Coulomb Potential

U(rij) =
1

4πε0

qiqj

rij
. (2.43)

– The van der Waals Potential

U(rij) = −a

(
1
rij

)6

.

– The Lennard-Jones Potential

U(rij) = αε

[(
σ

rij

)n

−
(

σ

rij

)m]
, m < n. (2.44)

Here, α is given as α = 1
n−m

(
nn

mm

) 1
n−m . This potential is parametrized

by σ and ε. The value ε describes the depth of the potential and thereby
the strength of the repulsive and attractive forces. Materials of different
strength can be simulated in this way. Increasing ε leads to stronger bonds
and therefore harder materials. The value σ parametrizes the zero crossing
of the potential. With m = 6 (as in the van der Waals force) and n = 12
the Lennard-Jones potential – as well as the resulting force – decreases very
rapidly with increasing distance. Here, the choice n = 12 does not stem
from physical considerations but merely from mathematical simplicity.
For (m, n) = (10, 12) we obtain the related potential function

U(rij) = A/r12
ij − B/r10

ij ,

which allows the empirical modeling of hydrogen bonds. The parameters
A and B depend on the kind of the particular hydrogen bond and are in
general fitted to experimental data.

– The Morse Potential

U(rij) = D(1 − e−a(rij−r0))2. (2.45)

D is the dissociation energy of the bond, a is an appropriately chosen
parameter which depends on the frequency of the bond vibrations, and r0

is a reference length.
– Hooke’s Law (Harmonic Potential)

U(rij) =
k

2
(rij − r0)2.

Note that we omitted the indices i, j in the notation for the potentials U .
These simple potentials are certainly limited in their applications. How-

ever, noble gases can be represented well this way since their atoms are only
attracted to each other by the van der Waals force. These simple potentials
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are also used outside of molecular dynamics, as for instance in the simula-
tion of fluids on the microscale. However, more complex kinds of interactions,
such as the ones that occur in metals or molecules, can not be simulated with
such potentials in a realistic manner [209]. For this, other kinds of potential
functions are needed that include interactions between several atoms of a
molecule.

Since the eighties such many-body interactions have been introduced as
potential functions. The various approaches involve density and coordination
number, respectively, and exploit the idea that bonds are the weaker the
higher the local density of the particles is. This led to the development of
potentials with additional terms that most often consist of two components,
a two-body part and a part which takes the coordination number (that is,
the local density of particles) into account. Examples of such potentials are
the glue model [209], the embedded atom method [174], the Finnis-Sinclair
potential [232] and also the so-called effective-medium theory [336]. All these
approaches differ strongly in the way how the coordination number is used in
the construction of the potential. Sometimes different parametrizations are
obtained even for the same material because of the different constructions.
Special many-body potentials have been developed specifically for the study
of crack propagation in materials [593].

Still more complex potentials are needed for instance for the modeling of
semiconductors such as silicon. The potentials developed for these materials
also use the concept of coordination number and bond order, that means that
the strength of the bond depends on the local neighborhood. These potentials
share a strong connection with the glue models. Stillinger and Weber [584] use
a two-body and an additional three-body term in their potential. The family
of potentials developed by Tersoff [603] was modified slightly by Brenner [122]
and used in a similar form also in the modeling of hydrocarbons.

2.3 An Outlook on the Methods of Ab Initio Molecular
Dynamics

Until now we have employed approximation methods for the approximate
solution of the electronic Schrödinger equation only to obtain data for the
specification and fitting of analytical potential function for the methods of
classical molecular dynamics. But they can also be used in each time step
of Newton’s equation to directly compute the potential energy hypersurface
for the actual nuclear coordinates. This is the basic idea of the so-called ab
initio molecular dynamics. One solves the electronic Schrödinger equation
approximately to determine the effective potential energy of the nuclei. From
it one can compute the forces on the nuclei and move the nuclei accord-
ing to Newton’s equation of motion given these forces. This principle in its
different variants forms the basis of the Ehrenfest molecular dynamics, the
Born-Oppenheimer molecular dynamics and the Car-Parinello method.
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Ehrenfest Molecular Dynamics. We consider again equations (2.30),
(2.31) and assume that the system remains in a single adiabatic state, typi-
cally the ground state φ0. Then, one obtains

MkR̈k(t) = −∇Rk

∫
φ∗

0(R(t), r)He(R(t), r)φ0(R(t), r)dr (2.46)

= −∇Rk
V Ehr

e (R(t)),

i �
∂φ0(R(t), r)

∂t
= Heφ0(R(t), r), (2.47)

where φR(t)(r, t) = c0(t)φ0(R(t), r) was assumed with |c0(t)|2 ≡ 1, compare
(2.32).

Born-Oppenheimer Molecular Dynamics. In the derivation of the so-
called Born-Oppenheimer molecular dynamics one uses the large difference
in masses between electrons and atomic nuclei. The ratio14 of the velocity
vK of a nucleus to the velocity of an electron ve is in general smaller than
10−2. Therefore, one assumes that the electrons adapt instantaneously to the
changed nuclear configuration and so are always in the quantum mechanical
ground state associated to the actual position of the nuclei. The movement
of the nuclei during the adaptation of the electron movement is negligibly
small in the sense of classical dynamics. This justifies to set

Ψ(R, r, t) ≈ ΨBO(R, r, t) :=
∞∑

j=0

χj(R, t)φj(R, r), (2.48)

which allows to separate the fast from the slow variables. In contrast to (2.14)
the electronic wave functions φj(R, r) depend no longer on time but depend
on the nuclear coordinates R. Using a Taylor expansion of the stationary
Schrödinger equation and several approximations that rely on the difference
in masses between electrons and nuclei, see for example Chapter 8.4 in [546],
the stationary Schrödinger equation can be separated into two equations,
the electronic Schrödinger equation and an equation for the nuclei. The first
equation describes how the electrons behave when the position of the nuclei
is fixed. Its solution leads to an effective potential that appears in the equa-
tion for the nuclei and describes the effect of the electrons on the interaction
between the nuclei. After restriction to the ground state and further approx-
imations, the Born-Oppenheimer molecular dynamics results which is given
by the equations

MkR̈k(t) = −∇Rk
min
φ0

{∫
φ∗

0(R(t), r)He(R(t), r)φ0(R(t), r)dr
}

=: −∇Rk
V BO

e (R(t)), (2.49)
14 The ratio of the mass me of an electron and the mass MK of a nucleus is –

except for hydrogen and helium – smaller than 10−4. Furthermore, according to
classical kinetic gas theory, the energy per degree of freedom of non-interacting
particles is the same, thus it holds mev

2
e = MKv2

K .
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He(R(t), r)φ0(R(t), r) = E0(R(t))φ0(R(t), r).

With the forces Fk(t) = MkR̈k(t) acting on the nuclei, their positions can
be moved according to the laws of classical mechanics.15

In our case, in which we consider the ground state and neglect all coupling
terms, the Ehrenfest potential V Ehr

e agrees, according to equation (2.38), with
the Born-Oppenheimer potential V BO

e . However, the dynamics is fundamen-
tally different. In the Born-Oppenheimer method, the computation of the
electron structure is reduced to the solution of the stationary Schrödinger
equation, which then is used to compute the forces acting at that time on
the nuclei so that the nuclei can be moved according to the laws of classi-
cal molecular dynamics. The time-dependency of the state of the electrons
is here exclusively a consequence of the classical motion of the nuclei and
not, as in the case of the Ehrenfest molecular dynamics, determined from
the time-dependent Schrödinger equation in the coupled system of equations
(2.46). In particular the time evolution of the state of the electrons in the
Ehrenfest method corresponds to a unitary propagation [360, 361, 375]. If the
initial state is minimal, its norm and minimality are maintained [218, 605].
This is not true for the Born-Oppenheimer dynamics in which a minimization
is needed in every time step.

A further difference of the two methods is the following: Let us assume
that particle functions ψαi are given from which, as for instance in the
Hartree-Fock method,16 with r = (r1, . . . , rK) product functions ψSD

α1...αK
,

the so-called Slater determinants,17 are formed by

ψSD
α1...αK

(r, t) =
1√
K!

det

∣∣∣∣∣∣∣∣∣∣∣∣

ψα1(r1, t) ψα1(r2, t) . . . ψα1(rK , t)
ψα2(r1, t) ψα2(r2, t) . . . ψα2(rK , t)

. . . .

. . . .

. . . .
ψαK (r1, t) ψαK (r2, t) . . . ψαK (rK , t)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.50)

For an approximate solution of the electronic Schrödinger equation one now
expands the ground state φ0(R(t), r) with help of these products of particle
functions as

φ0(R(t), r) =
∑

α1,...,αK

γα1,...,αK (t)ψSD
α1...αK

(r, t) (2.51)

with the coefficients
15 There is also the approach to apply this method to every excited state φj without

taking interferences into account, i.e., to proceed analogously to (2.33-2.36) and
to neglect all or only certain coupling terms [304, 359].

16 In density functional theory one uses a different kind of function for the particles,
but the principle is the same.

17 This means that the spin of the particles is neglected here.



2.3 An Outlook on Methods of Ab Initio Molecular Dynamics 33

γα1,...,αK (t) :=
∫

ψ∗SD
α1...αK

(r, t)φ0(R(t), r)dr. (2.52)

Then, one has to minimize in equation (2.49) under the constraint that the
particle functions are orthonormal,

∫
ψ∗

αi
ψαj dr = δαiαj , since this is a nec-

essary requirement for the expansion (2.51). Since the time evolution of the
electrons under the Ehrenfest dynamics is a unitary propagation, the particle
functions remain orthonormal if they were orthonormal at the initial time.

Car-Parrinello Molecular Dynamics. The advantage of the Ehrenfest
dynamics is that the wave function stays minimal with respect to the current
position of the nuclei. The disadvantage is that the size of the time step is
determined by the motion of the electrons and is therefore “small”. The size
of the time step in the Born-Oppenheimer dynamics is determined by the
motion of the nuclei, on the other hand, and is therefore certainly “larger”.
The disadvantage however is that a minimization is required in each time
step. The Car-Parrinello molecular dynamics [137, 469] attempts to com-
bine the advantages of both methods and to avoid their disadvantages. The
fundamental idea is to transform the quantum mechanical separation of the
time scales of the “fast” electrons and the “slow” nuclei into a classical adi-
abatic separation of energy scales within the theory of dynamical systems
and to neglect the explicit time-dependency of the motion of the electrons
[106, 465, 466, 515].

To understand the idea, we consider at first again the Ehrenfest and Born-
Oppenheimer dynamics. If restricted to the ground state φ0(R, r), the central
quantity

VEl(R) :=
∫

φ∗
0(R, r)He(R, r)φ0(R, r)dr = E0(R)

is a function of the position of the nuclei R. From the Lagrange function of
classical mechanics for the motion of the nuclei

L(R, Ṙ) =
N∑
k

1
2
MkṘ2

k − VEl(R), (2.53)

we obtain, using the appropriate Euler-Lagrange equations d
dt

∂L
∂Ṙk

= ∂L
∂Rk

,
the equation of motion (2.49)

MkR̈k(t) = −∇Rk
E0(R(t)). (2.54)

One can regard the energy of the ground state E0 = VEl also as a functional
of the wave function φ0. If the wave function φ0 has an expansion with now
time-dependent particle functions {ψi(r, t)}, analog to the expansion (2.51)
in (one or several) Slater determinants (2.50), VEl can also be seen as a func-
tional of the orbitals {ψi(r, t)}. The force acting on the nuclei is obtained
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in classical mechanics as the derivative of a Lagrange function with respect
to the positions of the nuclei. If one now also views the orbitals as “classi-
cal particles”,18 one can determine the forces acting on the orbitals as the
functional derivative of an appropriate Lagrange function with respect to the
orbitals. Then, a purely classical approach results in a Lagrange function of
the form [137]

LCP (R, Ṙ, {ψi}, {ψ̇i}) = (2.55)∑
k

1
2
MkṘ2

k +
∑

i

1
2
µi

∫
ψ̇∗

i ψ̇idr − VEl(R, {ψi}) + ϕ(R, {ψi})

with the “fictitious masses” µi of the orbitals {ψi} and a general, appro-
priately chosen constraint ϕ. A simple example for such a constraint is the
orthonormality of the orbitals. This yields

ϕ(R, {ψi}) =
∑
i,j

λij

(∫
ψ∗

i ψjdr − δij

)

with the Lagrange multipliers λij . In this simple case ϕ does not depend
(plane wave basis) or does only implicitly depend (Gaussian basis) on R(t).
The respective Euler-Lagrange equations

d

dt

∂L

∂Ṙk

=
∂L

∂Rk
,

d

dt

δL

δψ̇∗
i

=
δL

δψ∗
i

(2.56)

give Newton’s equations of motion19

MkR̈k(t) = −∇Rk

∫
φ∗

0Heφ0dr + ∇Rk
ϕ(R, {ψi}), (2.57)

µiψ̈i(r, t) = − δ

δψ∗
i

∫
φ∗

0Heφ0dr +
δ

δψ∗
i

ϕ(R, {ψi}). (2.58)

The nuclei move according to a physical temperature proportional to the
kinetic energy

∑
k MkṘ2

k of the nuclei. In contrast, the electrons move ac-
cording to a “fictitious temperature” proportional to the fictitious kinetic
energy

∑
i µi

∫
ψ̇∗

i ψ̇idr of the orbitals.20

Let the initial state φ0 at time t0 be exactly the ground state. For a
“low temperature of the electrons” the electrons move almost exactly on the
Born-Oppenheimer surface. But the “temperature of the electrons” has to be
“high” enough so that the electrons can adjust to the motion of the nuclei.
The problem in practice is the “right temperature control”. The subsystem
of the physical motion of the nuclei described by equation (2.57) and the

18 For this, one treats the orbitals in the context of a classical field theory.
19 ψ∗

i (r, t) and ψi(r, t) are linearly independent for complex variations.
20 The physical kinetic energy of the electrons is included in E0.
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subsystem of the fictitious orbital motions described by equation (2.58) have
to be separated in such a way that the fast electronic subsystem stays “cold”
for a long time and nevertheless immediately adjusts to the slow motion
of the nuclei, while keeping the nuclei at the same time at their physical
temperature (which is much higher). In particular, there is no transfer of
energy allowed between the physical subsystem of the (“hot”) nuclei and the
fictitious subsystem of the (“cold”) electrons. It is possible to satisfy these
requirements if the force spectrum of the degrees of freedom of the electrons
f(ω) =

∫∞
0 cos(ωt)

(∑
i

∫
ψ̇∗

i (r, t)ψi(r, 0)dr
)

dt and that of the nuclei do not
overlap in any range of frequencies [515]. In [106] it could be shown that the
absolute error of the Car-Parrinello trajectory can be controlled relative to
the trajectory determined by the exact Born-Oppenheimer surface by using
the parameters µi.

The Hellmann-Feynman Theorem. In the molecular dynamics methods
described above the force acting on a nucleus has to be determined according
to the equations (2.46), (2.49) and (2.57). A direct numerical evaluation of
the derivative

Fk(R) = −∇Rk

∫
φ∗

0Heφ0dr,

for instance using a finite difference approximation, is too expensive on the
one hand and too inaccurate for dynamical simulations on the other hand. It
is therefore desirable to evaluate the derivative analytically and to apply it
directly to the different parts of He. This is made possible by the following
approach: Let q be any coordinate (Rk)i, i ∈ {1, 2, 3} of any component Rk

of R. Keep now all other components of R and the other two coordinates of
Rk fixed and only allow q to vary. Then, the electronic Hamilton operator
He(R, r) = H(q) depends on q (besides r) according to equation (2.13) via the
operators VeK(R, r) and VKK(R). By the stationary electronic Schrödinger
equation

H(q)φ0(q) = E0(q)φ0(q) (2.59)

therefore also the state of the electrons φ0 (beside r) and the energy E0

depend on q. If the electronic state is assumed to be normalized, that is, it
satisfies

∫
φ∗

0φ0dr = 1, then a translation by q results in a force F (q) of21

−F (q) =
dE0(q)

dq
=
∫

φ∗
0(q)

dH(q)
dq

φ0(q)dr. (2.60)

The justification for this result is provided by the Hellmann-Feynman
Theorem:22 Let φj(q) be the normalized eigenfunction of a self-adjoint op-
21 An analogous results holds for the excited states φj with the associated eigen-

values Ej(q) and the associated Schrödinger equation H(q)φj(q) = Ej(q)φj(q).
22 The so-called Hellmann-Feynman theorem for quantum mechanical forces was

proven originally in 1927 by Ehrenfest [204], it was discussed later by Hellman
[311] and was rediscovered independently by Feynmann [225] in 1939.
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erator H(q) associated to the eigenvalue Ej(q) and q a real parameter, then
it holds that

dEj(q)
dq

=
∫

φ∗
j (q)

dH(q)
dq

φj(q)dr. (2.61)

This can be shown as follows: Using the product rule one obtains

dEj(q)
dq

=
∫

φ∗
j (q)

dH(q)
dq

φj(q)dr +∫
dφ∗

j (q)
dq

H(q)φj(q)dr +
∫

φ∗
j (q)H(q)

dφj(q)
dq

dr.

The φj(q) are eigenfunctions associated to the eigenvalue Ej(q), therefore it
holds that

dEj(q)
dq

=
∫

φ∗
j (q)

dH(q)
dq

φj(q)dr +

Ej(q)
∫

dφ∗
j (q)
dq

φj(q)dr + Ej(q)
∫

φ∗
j (q)

dφj(q)
dq

dr

=
∫

φ∗
j (q)

dH(q)
dq

φj(q)dr + Ej(q)
d

dq

∫
φ∗

j (q)φj(q)dr

and now the normalization condition for φj implies the theorem.
This allows a simple numerical computation of the forces between different

bound atoms. Because of

Fk(R) = −∇Rk

∫
φ∗

0Heφ0dr = −
∫

φ∗
0∇Rk

Heφ0dr (2.62)

and
∇Rk

He = ∇Rk
(Vee + VeK + VKK) = ∇Rk

(VeK + VKK)

one obtains the force on the kth nucleus as

Fk(R) = −
∫

φ∗
0∇Rk

(VeK + VKK)φ0dr

= −
∫

φ∗
0∇Rk

VeKφ0dr −∇Rk
VKK (2.63)

=
e2

4πε0

⎛
⎝∫ φ∗

0φ0

K∑
i=1

N∑
j=1

∇Rk

Zj

|| Rj−ri ||dr −∇Rk

N∑
i<j

ZiZj

|| Ri − Rj ||

⎞
⎠ .

The derivatives now act directly on the potential functions VKK and VeK

and can be computed analytically. The force Fk = Fk(R) on the kth nucleus
therefore results from the Coulomb forces (from the potential VKK) acting
between the nuclei and an additional effective force caused by the electrons.
This effective force has the form of a Coulomb force induced by a hypo-
thetical electron cloud with a density given by the solution of the electronic
Schrödinger equation. In this way, the influence of the electrons on the nuclei
is taken into account.
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Potentials

In Chapter 1 we introduced the particle model, first potential functions and
the basic algorithm. Further potentials were presented in Section 2.2.4. So
far, we left open how to evaluate the potentials or forces efficiently and how
to choose a suitable time integration method. The following chapters will
cover these issues. Note that the different methods and algorithms for the
evaluation of the forces depend strongly on the kind of the potential used
in the model. We will start in this chapter with the derivation of an algo-
rithm for short-range interactions. This approach exploits the fast decay of
a short-range potential function and the associated forces. Thus, short-range
interactions can be approximated well if only the geometrically closest neigh-
bors of each particle are considered. Note that the algorithm presented here
also forms the basis for the methods discussed in the subsequent Chapters 7
and 8 for problems with long-range interactions.

We now consider a system which consists of N particles with masses
{m1, · · · , mN} characterized by the positions {x1, . . . ,xN} and the associ-
ated velocities {v1, · · · ,vN} (respective momenta pi = mivi). xi and vi are
here two-dimensional or three-dimensional vectors (one dimension for each
direction) and are functions of time t. The space spanned by the degrees of
freedom for the positions and velocities is called phase space. Each point in
the 4N -dimensional or 6N -dimensional phase space represents a particular
configuration of the system.

We assume that the domain of the simulation is rectangular, that is,
Ω = [0, L1] × [0, L2] in two dimensions, and Ω = [0, L1] × [0, L2] × [0, L3]
in three dimensions, respectively, with sides of the lengths L1, L2, and L3.
Depending on the specific problem certain conditions are imposed on the
boundary that are introduced in the following without giving too many details
at first. A more substantial description of these boundary conditions can be
found in the subsequent application sections.

In periodic systems, as for example in crystals, it is natural to impose
periodicity conditions on the boundaries. Periodic conditions are also used
in non-periodic problems to compensate for the limited size of a numerical
simulation domain Ω. In that case, the system is extended artificially by
periodic continuation to the entire R

2 or R
3, respectively, compare Figure 3.1.

Particles that leave the domain at one side reenter the domain at the opposite
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side. Also, particles located close to opposite sides of the domain interact with
each other.

Reflecting boundary conditions arise in the case of a closed simulation
box. A particle that gets closer than a certain distance to the wall is subject
to a repulsive force which bounces the particle back off the wall.

Fig. 3.1. Simulation domain with
periodic boundary conditions in two
dimensions. The simulation domain
shown in grey is replicated in all direc-
tions. Particles leaving the simulation
domain on one side reenter it at the
opposite side.

Fig. 3.2. Reflecting boundary condi-
tions in two dimensions. Particles hit-
ting the boundary of the domain are
reflected.

Outflow conditions are used for boundaries where particles can leave the
simulation domain, whereas inflow boundary conditions allow new particles
to enter the simulation domain at certain times across that boundary.

In addition there are a number of further boundary conditions that are
tailored to specific problems. One example is a wall with a fixed given temper-
ature. Particles hitting that wall are reflected but their velocities are changed
depending on the temperature of the wall.

We assume now that the evolution in time of the considered system in
the domain Ω is described by Hamilton’s equations of motion

ẋi = ∇piH, ṗi = −∇xiH, i = 1, . . . , N, (3.1)

with the Hamiltonian H. The dot ˙ denotes, as usually, the partial derivative
with respect to time.

If the interactions between the particles are described by a conservative
potential1

1 In Chapter 2 we used the notation (R1, . . . ,RN ) for the classical coordinates.
Here and in the following, we will denote the positions of the particles, and
thereby the independent variables in the potentials, by (x1, . . . ,xN). Specific
examples for possible potentials can be found at the end of Section 2.2.4 as well
as in the application Sections 3.6, 3.7.3 and 5.
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V = V (x1, . . . ,xN ) (3.2)

which does not explicitly depend on time, and if Cartesian coordinates and
velocities are used, the Hamiltonian reads

H(x1, . . . ,xN ,p1, . . . ,pN ) =
N∑

i=1

p2
i

2mi
+ V (x1, . . . ,xN ). (3.3)

From Hamilton’s equations of motion (3.1) one obtains with pi = mivi di-
rectly Newton’s equations of motion

ẋi = vi,
miv̇i = Fi,

i = 1, . . . , N, (3.4)

or

miẍi = Fi, i = 1, . . . , N, (3.5)

respectively, where the forces Fi only depend on the coordinates and are
given by

Fi = −∇xiV (x1, . . . ,xN ). (3.6)

The expression ∇xiV (x1, . . . ,xN ) is here again an abbreviation for the term
∇yV (x1, . . . ,xi−1,y,xi+1, . . . ,xN ) which is evaluated at the point y=xi,
compare also the comment on page 19. If the initial positions and veloci-
ties of the particles are given, the evolution of the system in time depends
only on the potential governing the interactions between the particles.2

The Hamiltonian (3.3) consists of the potential energy, given by the eval-
uation of the potential V at the positions of the particles, and the kinetic
energy

Ekin =
N∑

i=1

p2
i

2mi
=

N∑
i=1

1
2
miv2

i . (3.8)

The total energy of the system is then given by E = Ekin + V and the total
derivative with respect to time reads
2 For greater generality, one can consider the system of ordinary differential equa-

tions
M ẍ = −Ax + F(x). (3.7)

This book’s methods for the fast numerical solution of (3.5) can also be used to
solve (3.7) efficiently. This generalization makes it possible to treat for example
the smoothed particle hydrodynamic method [194, 254, 369, 394, 437] for the
Euler and the Navier–Stokes equations or vortex methods [144, 156, 380, 408]
for flow problems in the above framework.
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dE

dt
=

dEkin

dt
+

dV

dt
=

N∑
i=1

miviv̇i +
∂V

∂t
+

N∑
i=1

∇xiV · ∂xi

∂t
.

Systems with potentials of the form (3.2) satisfy ∂V/∂t = 0. Substituting the
definition of the force (3.6) and taking Newton’s equations of motion into
account one obtains

dE

dt
=

N∑
i=1

miv̇i +
N∑

i=1

∇xiV vi (3.9)

=
N∑

i=1

miv̇i −
N∑

i=1

Fivi = 0. (3.10)

The energy E is therefore a constant of motion, meaning that it is conserved
over time. For this reason, energy is a conserved quantity of the system [371].

Before we address the fast evaluation of the forces Fi and the computation
of the energy, we first introduce in the next section a standard method for
the time integration of the system.

3.1 Time Discretization – the Integration Method of
Störmer-Verlet

The concept of discretization in numerical mathematics describes the transi-
tion from a problem that is posed on a continuous interval to a problem that
is only posed at a finite number of points. Discretizations are primarily used
in the solution of differential equations to transform the differential equation
into a system of equations with a solution that approximates the solution of
the differential equations only at the chosen points. In our context, this boils
down to the computation of the new positions and velocities of the particles
from the old positions, old velocities, and the corresponding forces.

Basic Discretization Formulae. We now decompose the time interval
[0, tend] ⊂ R, on which the system of differential equations (3.4) is to be
solved, into l subintervals of the same size, δt := tend/l. In this way we
obtain a grid that contains the points tn := n ·δt, n = 0, . . . , l, located at the
ends of the subintervals. The differential equation is then only considered at
those points in time. According to the definition of the derivative

dx

dt
:= lim

δt→0

x(t + δt) − x(t)
δt

of a differentiable function x : R −→ R, the differential operator dx/dt for
continuous time is approximated at the grid point tn by the discrete, one-
sided difference operator
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dx

dt

]r

n

:=
x(tn+1) − x(tn)

δt
(3.11)

by omitting the limit. Here, tn+1 = tn + δt is the next grid point to the right
of tn. A Taylor expansion of the function x at the point tn+1 according to

x(tn + δt) = x(tn) + δt
dx

dt
(tn) + O(δt2) (3.12)

implies a discretization error of the order O(δt) for the approximation of the
first derivative. Thus, if the time step size is halved, one expects that the
error caused by the time discretization is also approximately halved.

The differential operator dx/dt at the grid point tn can be approximated
alternatively by the central difference operator[

dx

dt

]c

n

:=
x(tn+1) − x(tn−1)

2δt
. (3.13)

A Taylor expansion yields in this case a discretization error of the order
O(δt2) for the approximation of the first derivative.

The second derivative d2x/dt2 can be approximated at the grid point tn
by the difference operator[

d2x

dt2

]
n

:=
1

δt2
(x(tn + δt) − 2x(tn) + x(tn − δt)) . (3.14)

By Taylor expansion around both points tn + δt and tn − δt up to third order
one obtains

x(tn + δt) = x(tn)+ δt
dx(tn)

dt
+

1
2
δt2

d2x(tn)
dt2

+
1
6
δt3

d3x(tn)
dt3

+O(δt4) (3.15)

and

x(tn−δt) = x(tn)−δt
dx(tn)

dt
+

1
2
δt2

d2x(tn)
dt2

− 1
6
δt3

d3x(tn)
dt3

+O(δt4). (3.16)

Substituting these expansions into (3.14) yields directly[
d2x

dt2

]
n

=
d2x(tn)

dt2
+ O(δt2).

The discretization error for the approximation of the second derivative by
(3.14) is therefore of the order O(δt2).

The Discretization of Newton’s Equations of Motion. An efficient
and at the same time stable approach for the time discretization of Newton’s
equations (3.4) is the Verlet algorithm [323, 596, 645] which builds on the
integration method of Störmer [588]. The algorithm is based on the difference
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operators introduced above. In the following different variants of the Störmer-
Verlet method are derived.

Given a system of ordinary differential equations of second order in the
form (3.5), the differential quotient can be replaced by a difference quotient
at each time tn, n = 1, . . . , l − 1. Applying (3.14) one can determine the
position at time tn+1 from the positions at time tn and tn−1 and the force
at time tn. With the abbreviations xn

i := xi(tn) and analogous abbreviations
for vi and Fi one obtains at first

mi
1

δt2
(
xn+1

i − 2xn
i + xn−1

i

)
= Fn

i (3.17)

and then
xn+1

i = 2xn
i − xn−1

i + δt2 · Fn
i /mi, (3.18)

which involves the evaluation of the right hand side Fi at time tn.3 Given
the initial positions x0

i and the positions x1
i in the first time step, all the

later positions can be uniquely determined using this scheme. (3.18) is the
standard form [645] of the Störmer-Verlet method for the integration of New-
ton’s equations. For this method the positions at times tn and tn−1 and the
force at time tn have to be stored. A disadvantage of the method in this form
is the possibility of large rounding errors in the addition of values of very
different size. The force term δt2 · Fn

i /mi in (3.18), which is small because
of the factor δt2, is added to two much larger terms 2xn

i and xn−1
i that do

not depend on the time step δt. Also, (3.18) does not contain the velocities
which are needed for instance in the computation of the kinetic energy. To
this end, the velocity as the derivative of the position can be approximated
using the central difference (3.13) according to

vn
i =

xn+1
i − xn−1

i

2δt
. (3.19)

There are two other variants of the Störmer-Verlet method (equivalent in
exact arithmetic) that are less susceptible to rounding errors than the variant
(3.18). One is the so-called leapfrog scheme [323] in which the velocities are
computed at t + δt/2. There, one first computes the velocities vn+1/2

i from
the velocities at time tn−1/2 and the forces at time tn according to

vn+1/2
i = vn−1/2

i +
δt

mi
Fn

i . (3.20)

3 To discretize these equations completely in time one has to choose an unique
point in time at which the right hand side will be evaluated. If the right hand side
is evaluated at time tn, the resulting method is called an explicit time-stepping
method. There, the values of the function at time tn+1 can be computed directly
from those at previous times. Larger time steps are permitted by implicit time-
stepping methods that evaluate the right hand side at time tn+1. However, in
these methods it is necessary to solve a linear or nonlinear system of equations
in each time step. For a further discussion see Chapter 6.
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The positions xn+1
i are then determined as

xn+1
i = xn

i + δtvn+1/2
i , (3.21)

which involves the positions at time tn and the velocities vn+1/2
i that were just

computed. Compared to the standard form (3.18) the effect of rounding errors
is reduced. In addition the velocities are computed explicitly. However, the
positions and velocities are given at different times. Thus, the velocity at time
tn must be computed for example as an average vn

i = (vn+1/2
i + vn−1/2

i )/2.
Only then, one can evaluate the kinetic and potential energy at the same
time4 tn+1.

A different variant is the so-called Velocity-Störmer-Verlet method [596].
If one solves (3.19) for xn−1

i , substitutes the result into (3.18), and then solves
for xn+1

i , one obtains

xn+1
i = xn

i + δtvn
i +

Fn
i · δt2
2mi

. (3.22)

Furthermore, (3.18) and (3.19) yields

vn
i =

xn+1
i − xn−1

i

2δt
=

xn
i

δt
− xn−1

i

δt
+

Fn
i

2mi
δt.

Adding the corresponding expression for vn+1
i one obtains

vn+1
i + vn

i =
xn+1

i − xn−1
i

δt
+

(Fn+1
i + Fn

i )δt
2mi

. (3.23)

Using equation (3.19) it follows finally that

vn+1
i = vn

i +
(Fn

i + Fn+1
i )δt

2mi
. (3.24)

Equation (3.22) together with equation (3.24) yields the so-called Velocity-
Störmer-Verlet method.

Figure 3.3 shows schematically the sequence of the steps in the compu-
tation for the three variants described in this section. The first row shows
the procedure for the standard form (3.18). The second row illustrates the
sequence of operations for the leapfrog scheme (3.20) and (3.21). The third
row shows the order of computations in the Velocity-Störmer-Verlet method
(3.22) and (3.24).

All three formulations need approximately the same amount of memory,
the velocity variant of the Störmer-Verlet needs one auxiliary array to store
intermediate results. Furthermore, the accuracy of all three variants is of
4 Here, as starting values, the positions and velocities at time t0 must be given.

The velocity at time t1/2 can then be computed by v
1/2
i = v0

i + δt
2mi

F0
i .
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Fig. 3.3. Integration method of Störmer-Verlet: Three variants of the method.
Standard form (3.18) (top), leapfrog scheme (3.20) and (3.21) (middle), Velocity-
Störmer-Verlet method (3.22) and (3.24) (bottom).

second order, i.e. O(δt2). The representation (3.22) and (3.24) is especially
recommended for implementation since it is stable with respect to rounding
errors and positions and velocities are available at the same time without
additional computations.

The algorithm for the integration of the equations of motion (3.4) then
proceeds as follows: With the given initial values for x0

i and v0
i , i = 1, . . . , N ,

an outer loop starts at time t = 0 and increases the time by δt until the final
time tend is reached. If the values for time tn are already known, the values for
all the particles at time tn+1 can be computed according to (3.22) and (3.24).
At first, we determine in a loop over all particles their new positions. Then,
the new forces are determined. Finally, we compute the new velocities in a
loop over all particles.5 In this way we derive the complete Störmer-Verlet
method in the velocity form. It is summarized in Algorithm 3.1.6

Thermodynamic quantities – as for example the kinetic or the potential
energy – can be computed together at the same point in the program because
the positions as well as the velocities are available for the same point in time,
compare Figure 3.3 (lower left). In this way the kinetic energy

5 Algorithms for the other variants can be implemented in an analogous manner.
6 In Algorithm 3.1, three loops are needed inside the outside loop for the time

step to compute the positions, forces, and velocities. One can reduce this to two
loops over the particles by first computing the forces Fi in one loop, and then
computing the velocities vi and the positions xi in another loop. As a result one
obtains the position and the velocity at different points in time. If needed, the
output and the computation of derived quantities such as temperature, kinetic
or potential energy can be done in addition to the other computations within
that second loop.
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Algorithm 3.1 Velocity-Störmer-Verlet Method
// start with initial data x, v, t

// auxiliary vector Fold;

compute forces F;
while (t < t_end) {
t = t + delta_t;

loop over all i { // update x
xi = xi + delta_t * (vi + .5 / mi * Fi* delta_t); // using (3.22)

Fold
i = Fi;

}
compute forces F;
loop over all i // update v

vi = vi + delta_t * .5 / mi * (Fi + Fold
i ); // using (3.24)

compute derived quantities as for example kinetic or potential energy;
print values of t, x, v as well as derived quantities;

}

En
kin =

1
2

N∑
i=1

mi(vn
i )2 (3.25)

at time tn can be computed in the algorithm directly after the computation
of the velocities vn

i . In the same way one obtains the potential energy V n =
V (xn

1 , . . . ,xn
N ) at time tn from the positions xn

i of the particles at time tn.
Critical properties of integration methods in molecular dynamics are effi-

ciency, accuracy, and energy conservation. Accuracy specifies how much the
numerically computed trajectory deviates from the exact trajectory after one
time step. The error is usually given in powers of the time step δt. The en-
ergy is conserved along the trajectory of the particles for Hamiltonians that
do not explicitly depend on time, compare (3.10). The numerical trajectory
can deviate from the exact trajectory and thereby causes a small drift in
the energy. Here, it is important to distinguish between errors caused by the
finite accuracy of computer arithmetic and errors caused by the integration
method itself even if infinitely accurate arithmetic is assumed.

Closely connected with these issues is the question whether the integra-
tion method has the properties of time reversibility and symplecticity. Time
reversibility guarantees that, if the sign of the velocity is changed in the
differential equation, the computed trajectory is followed exactly in inverse
direction and the initial configuration is finally reached in the absence of
numerical rounding errors. An integration method can be interpreted as a
mapping in phase space, see Chapter 6. If the integration method is applied
to a measurable set of points in the phase space, this set is mapped to an-
other measurable set in the phase space. The integration method is called
symplectic if the measure of both of those sets is equal. The mapping is
then measure-preserving in the phase space and satisfies, as does the exact
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Hamiltonian, the so-called Liouville theorem [554]. Symplectic methods ex-
hibit excellent behavior with respect to energy conservation, see Section 6.1.
Numerical approximations computed by symplectic methods can be viewed
as exact solutions of slightly perturbed Hamiltonian systems. The perturba-
tion can be analyzed by an asymptotic expansion in powers of the time step.
A more detailed discussion of these aspects of integration methods as well as
further remarks can be found in Chapter 6. Compared to many other inte-
gration methods, the Störmer-Verlet method has the advantage to be time-
reversible and symplectic, as discussed in Section 6.2. Due to these properties
and its simplicity it is the most commonly used method for the integration
of Newton’s equations of motion.

3.2 Implementation of the Basic Algorithm

With the techniques introduced up to now, we can already implement a
prototype (see Algorithm 1.1) of the method of molecular dynamics. For
this, we use the Velocity-Störmer-Verlet method for the time integration from
Algorithm 3.1 and consider at first the gravitational potential (2.42) as an
example for the interactions between the particles. The resulting method
will be accelerated in the further course of the book by new methods for the
evaluation of the forces and it will be adapted to other forms of the potential.

We first declare the following constants, data types and macros:

#define DIM 2

typedef double real;

#define sqr(x) ((x)*(x))

Later, in the three-dimensional case, DIM has to be set equal to 3. For
a data structure of the particle we can directly use the variables for mass,
position, velocity and force of the time integration.

Data structure 3.1 Particle
typedef struct {
real m; // mass
real x[DIM]; // position
real v[DIM]; // velocity
real F[DIM]; // force

} Particle;

We adjust now the velocity variant of the Störmer-Verlet method from
Algorithm 3.1 to the particle data structure 3.1. For this purpose we need a
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routine compF basis that computes the force at time t at the current position
of the particles, see Algorithm 3.6. In addition we need routines compX basis
and compV basis that compute the positions and the velocities for the current
time step, compare Algorithm 3.4. There, the routines updateX and updateV
are called in a loop over all particles. These two routines are implemented in
Algorithm 3.5. In the routine compoutStatistic basis in Algorithm 3.2 we
compute derived quantities as for instance the kinetic energy7 and write their
values in an appropriate form to a file. In the routine outputResults basis
we finally write the current time as well as the values for the positions and
velocities of the particles into a file for postprocessing. The precise realization
of these two routines is left to the reader. The overall resulting method is
listed in Algorithm 3.2.

Algorithm 3.2 Velocity-Störmer-Verlet Method
void timeIntegration_basis(real t, real delta_t, real t_end,

Particle *p, int N) {
compF_basis(p, N);

while (t < t_end) {
t += delta_t;

compX_basis(p, N, delta_t);

compF_basis(p, N);

compV_basis(p, N, delta_t);

compoutStatistic_basis(p, N, t);

outputResults_basis(p, N, t);

}
}

Algorithm 3.3 Computation of the Kinetic Energy
void compoutStatistic_basis(Particle *p, int N, real t) {
real e = 0;

for (int i=0; i<N; i++) {
real v = 0;

for (int d=0; d<DIM; d++)

v += sqr(p[i].v[d]);

e += .5 * p[i].m * v;

}
// print kinetic energy e at time t

}

7 Also the computation of the potential energy, the temperature, the diffusion as
well as of further quantities of statistical mechanics can be carried out here,
compare Section 3.7.2.
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Algorithm 3.4 Routines for the Velocity-Störmer-Verlet Time Step for a
Vector of Particles
void compX_basis(Particle *p, int N, real delta_t) {
for (int i=0; i<N; i++)

updateX(&p[i], delta_t);

}
void compV_basis(Particle *p, int N, real delta_t) {
for (int i=0; i<N; i++)

updateV(&p[i], delta_t);

}

For the Velocity-Störmer-Verlet method we need an additional array real
F old[DIM] in the data structure for the particle 3.1 which stores the force
from the previous time step.8

Algorithm 3.5 Routines for the Velocity-Störmer-Verlet Time Step for One
Particle
void updateX(Particle *p, real delta_t) {
real a = delta_t * .5 / p->m;

for (int d=0; d<DIM; d++) {
p->x[d] += delta_t * (p->v[d] + a * p->F[d]); // according to (3.22)
p->F_old[d] = p->F[d];

}
}
void updateV(Particle *p, real delta_t) {
real a = delta_t * .5 / p->m;

for (int d=0; d<DIM; d++)

p->v[d] += a * (p->F[d] + p->F_old[d]); // according to (3.24)
}

We will first carry out the computation of the force in a naive way by
determining for each particle i its interaction with every other particle j.
With

V (x1, . . . ,xN ) =
N∑

i=1

N∑
j=1,j>i

U(rij)

we obtain the force on the particle i with

Fi = −∇xiV (x1, . . . ,xN ) =
N∑

j=1
j �=i

−∇xiU(rij) =
N∑

j=1
j �=i

Fij

8 If we later want to use a different time integration scheme, we possibly need to
add other auxiliary variables here.
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just as the sum of the pairwise forces Fij := −∇xiU(rij), where rij :=
||xj −xi|| denotes the distance between the particles i and j. This algorithm
is given in Algorithm 3.6. The computation of the forces can be written as a
double loop in which the function force is called with the addresses of the
particles i and j.9 It is clear that one needs O(N2) operations to compute
the forces in this way.

Algorithm 3.6 Computation of the Force with O(N2) Operations
void compF_basis(Particle *p, int N) {
for (int i=0; i<N; i++)

for (int d=0; d<DIM; d++)

p[i].F[d] = 0; // set F for all particles to zero
for (int i=0; i<N; i++)

for (int j=0; j<N; j++)

if (i != j) force(&p[i], &p[j]); // add the forces Fij to Fi

}

In the following example, we use the gravitational potential (2.42). From
the (scaled) potential U(rij) = −mimj/rij we obtain the force

Fij = −∇xiU(rij) =
mimj

r3
ij

rij ,

that particle j exerts on particle i. Here,

rij := xj − xi

denotes the direction vector between the particle i and j at the positions xi,
and xj and rij denotes its length.10 In Algorithm 3.7 the contribution Fij is
added to the previously initialized force Fi.

To store a set of N particles we can use a vector of particles. Since we do
not know the number N of particles at the compilation time of the program,
we cannot use the declaration Particle[N]. Therefore, we have to dynami-
cally allocate the necessary memory for that vector. Memory can be allocated
and freed in C as shown in the code fragment 3.1.

We need a procedure in which the parameters of the simulation, as for in-
stance the time step or the number of particles, are initialized. Furthermore,
9 Pointers and the dereferencing of pointers are designated in C by the operator *.

The inverse operation, the determination of the address of a variable, is written
as &. In pointer arithmetic the pairs of expressions p[0] and *p, p[i] and *(p+i),
as well as &p[i] and p+i are equivalent.

10 One should bear in mind that in some molecular dynamics books the distance
vector is defined as rij := xi−xj and has the opposite direction. In the computa-
tion of the force one therefore obtains the opposite sign from the inner derivative
of rij with respect to xi.
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Algorithm 3.7 Gravitational Force between two Particles
void force(Particle *i, Particle *j) {
real r = 0;

for (int d=0; d<DIM; d++)

r += sqr(j->x[d] - i->x[d]); // squared distance r=r2
ij

real f = i->m * j->m /(sqrt(r) * r);

for (int d=0; d<DIM; d++)

i->F[d] += f * (j->x[d] - i->x[d]);

}

Code fragment 3.1 Allocate and Free Memory Dynamically
Particle *p = (Particle*)malloc(N * sizeof(*p)); // reserve
free(p); // and release memory

a routine is needed to initialize the particles (mass, position, and velocity) at
the beginning of the simulation. The data for the particles could be given in
a file or could be created appropriately. We need to implement appropriate
functions inputParameters basis and initData basis for these initializa-
tion procedures. The output of the currently computed results takes place
in each time step in Algorithm 3.2 in the routines compoutStatistic basis
and outputResults basis. These routines have also to be implemented ap-
propriately. The main program for the particle simulation can then look as
in Algorithm 3.8.

Algorithm 3.8 Main Program
int main() {
int N;

real delta_t, t_end;

inputParameters_basis(&delta_t, &t_end, &N);

Particle *p = (Particle*)malloc(N * sizeof(*p));

initData_basis(p, N);

timeIntegration_basis(0, delta_t, t_end, p, N);

free(p);

return 0;

}

With this program first numerical experiments can be carried out. The
implemented time integration method originated in astronomy. Delambre al-
ready used it in 1790 [566], and later Störmer [588] and others used it to
calculate the motion of electrically charged particles and the orbits of plan-
ets and comets. Following these applications we consider an easy problem
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from astronomy. In a simplified model of our solar system we simulate the
motion of the Sun, the Earth, the planet Jupiter, and a comet similar to
Halley’s Comet. We restrict the orbits to a two-dimensional plane and put
the sun in the plane’s origin. Each astronomical body is represented by one
particle. Between any two particles acts the gravitational potential (2.42). A
set of initial values is given in Table 3.1. The resulting orbits of the celestial
bodies are shown in Figure 3.4.

mSun = 1, x0
Sun = (0,0), v0

Sun = (0,0),
mEarth = 3.0 · 10−6, x0

Earth = (0,1), v0
Earth = (-1,0),

mJupiter = 9.55 · 10−4, x0
Jupiter = (0,5.36), v0

Jupiter = (-0.425,0),
mHalley = 1 · 10−14, x0

Halley = (34.75,0), v0
Halley = (0,0.0296),

δt = 0.015, tend = 468.5

Table 3.1. Parameter values for a simplified simulation of the orbit of Halley’s
Comet.

Fig. 3.4. Trajectories of Halley’s Comet, the Sun, the Earth, and Jupiter in the
simplified model.

For the visualization we have written the coordinates of the positions of
the planets in each time step to a file using the routine outputResults basis.
This data can then be used by a visualization or graphics program to display
the trajectories. For references to visualization tools see also Appendix A.2.
We see that all the celestial bodies move approximately on elliptic Kepler
orbits. The ellipses for the orbit of the Earth and of Jupiter do not precisely
coincide which is due to mutual gravitational effects.11 Since the Sun does
not lie exactly in the center of gravity of the system we observe a slight
movement of the Sun. The simulation time is chosen so that it covers a
complete revolution of the comet in about 76 earth years while the other
planets revolve appropriately many times around the Sun. Further numerical
simulations of the dynamics of planetary systems can be found in [166].
11 The ellipsoidal Kepler orbits of the planets around a central star are stable if

one only considers the system which consists of the central star and a single
planet. If one includes in addition the impact of the forces between the different
planets, one obtains a system that depends very sensitively on its initial con-
ditions. This was shown by Kolmogorov and later by Arnold and Moser using
KAM theory [49]. Furthermore, relativistic effects and numerical rounding errors
can contribute to physical or numerical instabilities of the system.
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Modifications of the Basic Algorithm. For pairwise interactions New-
ton’s third law states that Fji + Fij = 0. Thus, the force that particle j
exerts on particle i is the same force, up to the sign, that particle i exerts
on particle j, and the outer force on both particles vanishes.12 Up to now
the two forces Fi and Fj on two particles i and j were computed separately
by evaluating both Fij and Fji separately and summing them up. But if Fij

has been evaluated, Fji is known at the same time and does not have to be
evaluated again. Thus, when Fij is added to Fi in Algorithm 3.6, one can
also add Fji = −Fij to Fj . This modification of the force computation is
shown in Algorithm 3.9. In the loops over all particles only half of all index
pairs (i, j) have to be considered, for instance i < j, see Algorithm 3.10.

Algorithm 3.9 Gravitational Force between two Particles
void force2(Particle *i, Particle *j) {
... // squared distance r=r2

ij

real f = i->m * j->m /(sqrt(r) * r);

for (int d=0; d<DIM; d++) {
i->F[d] += f * (j->x[d] - i->x[d]);

j->F[d] -= f * (j->x[d] - i->x[d]); // modify both particles
}

}

Algorithm 3.10 Computation of the Force with O(N2/2) Operations
void compF_basis(Particle *p, int N) {
... // set F for all particles to zero
for (int i=0; i<N; i++)

for (int j=i+1; j<N; j++)

force2(&p[i], &p[j]); // add the forces Fij and Fji

}

In such a way almost half the operations for the force evaluation can be
saved. Nevertheless, the method is still of order O(N2). Simulations using
the method in its original form are therefore very time-consuming and not
practical for a larger number of particles. Further modifications are needed
that lead to an improvement in the order of complexity. Such modifications
will be described later in this chapter.
12 The potentials that we have introduced in Chapter 1 all describe pairwise interac-

tions. Later on we will also consider many-body potentials. For a general k-body
potential one can save only a fraction 1/k of the operations using Newton’s third
law.
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3.3 The Cutoff Radius

In every time step of the integration method, the computation of the forces
on the particles requires the determination of the interactions of the particles
and their appropriate summation. For interactions that are limited only to
next neighbors of a particle it obviously does not make sense to sum over all
particles to compute the forces. It is enough to sum over only these particles
which contribute to the potential and to the force, respectively. One can
proceed similarly with potentials and forces that decay rapidly with distance.
In this context we say a function decays rapidly with the distance if it decays
faster in r than 1/rd, where d is the dimension of the problem.

We consider as an example the Lennard-Jones potential (2.44) with m =
12 and n = 6. The potential between two particles with a distance of rij is
given by

U(rij) = 4 · ε
((

σ

rij

)12

−
(

σ

rij

)6
)

= 4 · ε
(

σ

rij

)6

·
((

σ

rij

)6

− 1

)
. (3.26)

The potential is parameterized by σ and ε. The value of ε determines the
depth of the potential. A larger ε leads to more stable bonds. The value
of σ determines the zero crossing of the potential.13 Figure 3.5 shows the
Lennard-Jones potential with the parameters σ = 1 and ε = 1.
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Fig. 3.5. Lennard-Jones potential with the parameters ε = 1 and σ = 1.

The potential function for N particles is obtained as the double sum

V (x1, . . . ,xN ) =
N∑

i=1

N∑
j=i+1

U(rij)

= 4 · ε
N∑

i=1

N∑
j=i+1

(
σ

rij

)6

·
((

σ

rij

)6

− 1

)
. (3.27)

13 The zero crossing of the associated force is given by 2
1
6 σ, see also (3.28).
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The corresponding force Fi on the particle i is given by the gradient with
respect to xi as

Fi = −∇xiV (x1, . . . ,xN )

= 24 · ε
N∑

j=1
j �=i

1
r2
ij

·
(

σ

rij

)6

·
(

1 − 2 ·
(

σ

rij

)6
)

rij . (3.28)

Here, rij = xj − xi is the direction vector between particles i and j at the
positions xi and xj . The force on particle i consists therefore of a sum over
the forces Fij := −∇xiU(rij) between the particles i and j,

Fi =
N∑

j=1
j �=i

Fij . (3.29)

The routine for the computation of the Lennard-Jones force on particle i is
given in Algorithm 3.11.14 Initially, we use the same values of the parameters
σ and ε for all particles in the simulation and, for the sake of simplicity, we
define them in globally declared variables.15

Algorithm 3.11 Lennard-Jones Force between two Particles
void force(Particle *i, Particle *j) {
real r = 0;

for (int d=0; d<DIM; d++)

r += sqr(j->x[d] - i->x[d]); // squared distance r=r2
ij

real s = sqr(sigma) / r;

s = sqr(s) * s; // s=(σ/rij)
6

real f = 24 * epsilon * s / r * (1 - 2 * s);

for (int d=0; d<DIM; d++)

i->F[d] += f * (j->x[d] - i->x[d]);

}

The potential (as well as the corresponding force) decays very fast with
the distance rij between the particles, compare Figure 3.5. The idea is now

14 As in Algorithm 3.9 and 3.10, Newton’s third law can be used to save about half
of the computations.

15 If not all particles which occur in (3.27) are the same, the parameters ε and σ
depend on the types of particles involved in the interaction. One then writes εij

and σij to explicitly indicate this dependence of the parameters on the pair of
particles i and j. To ensure the symmetry Fij + Fji = 0 of the forces, so-called
mixing rules may be used for the parameters associated to the particles, see for
instance the Lorentz-Berthelot mixing rule in Algorithm 3.19 of Section 3.6.4.
We then extend the data structure 3.1 by the values of σ and ε for each particle.
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to neglect all contributions in the sums in (3.27) and (3.28) that are smaller
than a certain threshold.

The Lennard-Jones potential (3.26) is then approximated by

U(rij) ≈
⎧⎨
⎩4 · ε

((
σ

rij

)12

−
(

σ
rij

)6
)

rij ≤ rcut,

0 rij > rcut,

i.e., it is cut off at a distance r = rcut. The newly introduced parameter rcut,
which characterizes the range of the potential, is typically chosen as about
2.5 · σ. The potential function is thus approximated by

V (x1, . . . ,xN ) ≈ 4 · ε
N∑

i=1

N∑
j=i+1,

0<rij≤rcut

(
σ

rij

)6

·
((

σ

rij

)6

− 1

)
. (3.30)

The force Fi in (3.28) on particle i is approximated similarly by

Fi ≈ 24 · ε
N∑

j=1,j �=i
0<rij≤rcut

1
r2
ij

·
(

σ

rij

)6

·
(

1 − 2 ·
(

σ

rij

)6
)

rij . (3.31)

Contributions to the force on particle i that stem from particles j with
rij ≥ rcut are neglected.16 This introduces an error in the computation of
the forces that slightly changes the total energy of the system. Furthermore,
the corresponding potential and the force are no longer continuous and thus
the total energy of the system is no longer exactly conserved. However, if
the cutoff radius rcut is chosen large enough, the effects resulting from these
discontinuities are very small.17

We now assume that the particles are more or less uniformly distributed
throughout the simulation domain. Then, rcut can be chosen such that the
number of remaining terms in the truncated sum in (3.30) and (3.31), respec-
tively, is bounded independent of the number of particles N . The complexity
of the evaluation of the potential and the forces is then proportional to N ,
i.e., it is of the order O(N) only. This results in a substantial reduction of
the computational cost compared to the complexity of the order O(N2) for
the approach described in the last section. To develop and implement efficient
algorithms for problems with short-range potentials, the only issue left is how
16 In particular, in case of periodic boundary conditions and rcut < min(L1, L2, L3),

particles no longer interact with their periodic copies.
17 It is possible to introduce corrections to compensate for these effects. For instance

the truncated potential can be shifted in such a way that it gets continuous again.
However, this introduces an additional error in the energy. In other variants the
potential is smoothed using an additional function so that the resulting potential
is again continuous or even differentiable. A corresponding example is described
in Section 3.7.3.
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to manage the data so that for a given particle the neighboring particles it
interacts with, can be found efficiently. In our context this can be done purely
geometrically by a subdivision of the simulation domain into cells. Such an
approach will be described in the following section.

3.4 The Linked Cell Method for the Computation of
Short-range Forces

In this section we describe a method to approximately evaluate the forces and
energies for rapidly decaying potentials. It is relatively easy to implement and
it is at the same time very efficient.

The idea of the linked cell method is to split the physical simulation
domain Ω into uniform subdomains (cells). If the length of the sides of the
cells is chosen larger or equal to the cutoff radius rcut, then interactions in the
truncated potentials are limited to particles within a cell and from adjacent
cells. Figure 3.6 shows an example in two dimensions in which the simulation
domain is divided into cells of size rcut × rcut.18 The particle in the center
of the circle in Figure 3.6 only interacts with particles inside the dark-grey
shaded area and therefore only with particles from its cell or directly adjacent
cells.19

Fig. 3.6. Linked cell method: The simulation domain is decomposed into square
cells of size rcut × rcut. The dark-shaded area shows the domain of influence of a
particle for the cutoff radius rcut. This area is contained in the light-shaded area
which consists of 3 × 3 cells.

The sums in (3.30) or (3.31) are now split into partial sums corresponding
to the decomposition of the simulation domain into cells. For the force on
particle i in cell ic one obtains a sum of the form

Fi ≈
∑

cell kc
kc∈N(ic)

∑
j∈{particles in cell kc}

j �=i

Fij , (3.32)

18 Non-square cells are certainly possible as well.
19 Ultimately, the cells could be chosen to be smaller than rcut, but then more cells

are inside the cutoff radius.
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where N (ic) denotes ic itself together with all cells that are direct neighbors
of cell ic.

The question is now how to efficiently access the neighboring cells and
particles inside these cells in an algorithm. For this purpose, appropriate data
structures are needed to store particles and to iterate over all neighboring
cells.

In two dimensions the position of a cell in the grid of all cells can be de-
scribed by two indices (ic1, ic2). Each cell in the interior of the grid possesses
eight neighboring cells with the corresponding indices ic1 − 1, ic1, ic1 + 1 and
ic2−1, ic2, ic2 +1. Cells at the boundary of the domain have correspondingly
fewer neighboring cells except for the case of periodic boundary conditions
where the grid of cells is also extended periodically, see Figure 3.7. In three
dimensions a cell with indices (ic1, ic2, ic3) has analogously 26 neighboring
cells. The basic procedure is given in Algorithm 3.12.

Fig. 3.7. Domain with periodic boundary conditions: The area of interaction of a
particle within the cutoff radius rcut is dark-shaded and the neighboring cells are
light-shaded. The particle now interacts also with particles at the opposite sides of
the domain.

Algorithm 3.12 Computation of the Force in the Linked Cell Method
loop over all cells ic

loop over all particles i in cell ic {
i->F[d] = 0 for all d; // set Fi to zero

loop over all cells kc in N(ic)

loop over all particles j in cell kc

if (i != j)

if (rij <= r_cut)

force(&i, &j); // add Fij to Fi

}

The complexity of the computation of the forces on the particles amounts
to C · N operations if the particles are distributed almost uniformly and
thus the number of particles per cell is bounded from above. The constant C
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depends quadratically on this bound. Compared to the naive summation of
the force over all pairs of particles, the complexity is reduced from originally
O(N2) to now O(N).

The cells, as already mentioned, have to be at least as large as the cutoff
radius to be able to apply the linked cell method in this form. We denote
the dimension of the rectangular simulation domain along the dth coordinate
by Ld and the number of grid cells along the dth coordinate by ncd. Then,
the relation rcut ≤ Ld/ncd has to hold. The largest number of cells ncd per
direction for the method in this form can therefore be computed by

ncd =
⌊

Ld

rcut

⌋
. (3.33)

Here, x� denotes the largest integer ≤ x.

3.5 Implementation of the Linked Cell Method

After the explanation of the principles of the numerical method, we will now
discuss its actual implementation on a computer. We use as an example the
short-range-truncated variant of the Lennard–Jones potential (3.30) with the
corresponding force (3.31). Particles that are located in one grid cell will be
stored in a linked list associated with that cell.

The List of Particles. So far, we have used one long vector to store all
particles. In the linked cell method we are interested in the particles in each
cell. Here, the number of particles within each cell can change from time step
to time step, if particles move into or out of a cell. Therefore, we need a
dynamic data structure for the particles of each cell. We use linked lists for
this purpose, see also [559, 560]. These lists will be constructed from elements
which consist of the actual particle and a pointer next to the next element
of the respective list. These list elements are defined in data structure 3.2.

Data structure 3.2 Linked List
typedef struct ParticleList {
Particle p;

struct ParticleList *next;

} ParticleList;

Figure 3.8 shows an example for such a linked list. The end of the list is
marked by an “invalid” pointer. For this, a memory address is used where un-
der no circumstances valid data may reside. The predefined constant pointer
NULL to this address has on many computer systems the value 0.
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root NULL

Fig. 3.8. A linked list.

A linked list is represented by a pointer to the first element. If we denote
this root pointer by root list, we can use it to find the first element of
the list and then traverse the list one element after the other using the next
pointer associated to each element. A complete loop over all elements of the
list is given in the code fragment 3.2.

Code fragment 3.2 Loop over the Elements of a List
ParticleList *l = root_list;

while (NULL != l) {
process element l->p;

l = l->next;

}
or written in a different, but equivalent form

for (ParticleList *l = root_list; NULL != l; l = l->next)

process element l->p;

We now have to implement the creation and modification of linked lists.
For this purpose we write a routine that inserts one element into a list.
Repeatedly inserting elements into an initially empty list, we can fill that list
with the appropriate particles. The empty list is obtained by setting the root
pointer root list pointer to the value NULL, root list=NULL. The insertion
of an element into the list is easiest at the beginning of the list as is shown in
Figure 3.9. To implement it we only have to change the values of two pointers.
The details are shown in Algorithm 3.13.

root NULL

Fig. 3.9. Inserting elements into a linked list.

For the sake of completeness we also have to discuss how an element can
be removed from the list. If a particle leaves a cell and enters another cell,
it must be removed from the list of the first cell and inserted into the list
of the other cell. Figure 3.10 shows how the pointers must be changed to
achieve that. In this figure the list entry marked grey in list 2 is inserted at
the beginning of list 1 by insertion and removal operations.
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Algorithm 3.13 Inserting Elements into a Linked List.
void insertList(ParticleList **root_list, ParticleList *i) {
i->next = *root_list;

*root_list = i;

}

The problem one encounters in the implementation of a removal opera-
tion is that the next pointer of the previous element in the list has to be
changed. However, in a simply linked list there is no direct way to find the
previous element.20 Therefore, we must determine the pointer (*q)->next of
the predecessor **q of *i already during the traversal of the list. The actual
removal procedure looks then as in Algorithm 3.14.

Algorithm 3.14 Removing an Element in a Singly Linked List
void deleteList(ParticleList **q) {
*q = (*q)->next; // (*q)->next points to element to be removed

}

Here, the dynamically allocated memory for the element is not freed since
the particle will be moved to another cell as in Figure 3.10.

*iq**

list 1

list 2

q** *i

list 1

list 2

Fig. 3.10. Moving an element *i from list 2 to list 1 by inserting and removing.
Initial state (top) and final state (bottom).

20 This would be very easy to implement for doubly linked lists in which there are
pointers for both directions.
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It might be that some particles leave the simulation domain, for instance
as a consequence of outflow boundary conditions. Then, the data structure
associated to that particle has to be removed from its list and its dynami-
cally allocated memory should possibly be released. If new particles can enter
the simulation domain during the simulation, for instance because of inflow
boundary conditions, data structures for these particles have to be created
and inserted into the appropriate list. In the case of periodic boundary con-
ditions, particles leaving the simulation domain on one side enter it at the
opposite side of the domain, and they therefore just move from one cell to
another cell which can be realized just as discussed above.

The Data Structure for the Particles. The grid cells into which the
simulation domain has been decomposed are stored in a vector. A linked list
of particles is associated to each cell, and its root pointer will be stored in
that cell, i.e., the cell is represented as the root pointer of the list. All other
parameters of the cell, such as the size and the position of the cell, can be
determined from global parameters. The entire grid is then stored as a vector
grid of cells of the type Cell that can be dynamically allocated as in code
fragment 3.1. In the same way we allocate the memory for the particles which
we then sort into the lists.

typedef ParticleList* Cell;

We now have to decide which cell will be stored at which position in the
vector grid. The grid consists of

∏DIM−1
d=0 nc[d] cells and the vector grid is

therefore of just that length. We can enumerate the cells in the direction
of the dth coordinate. For this, we use a multi-index ic. Now, a mapping
is needed that maps this geometric index ic to the appropriate component
index(ic, nc) of the vector grid. This can be implemented in two dimensions
for instance as

index(ic, nc) = ic[0] + nc[0] ∗ ic[1].
In the general case one can use the macro from code fragment 3.3.

Code fragment 3.3 Macro for the Index Mapping
#if 1==DIM

#define index(ic,nc) ((ic)[0])

#elif 2==DIM

#define index(ic,nc) ((ic)[0] + (nc)[0]*(ic)[1])

#elif 3==DIM

#define index(ic,nc) ((ic)[0] + (nc)[0]*((ic)[1] + (nc)[1]*(ic)[2]))

#endif
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With these data structures and declarations for the grid and its cells the
evaluation of the forces by the linked cell method can be implemented as
shown in Algorithm 3.15.

Algorithm 3.15 Computation of the Force in the Linked Cell Method
void compF_LC(Cell *grid, int *nc, real r_cut) {
int ic[DIM], kc[DIM];

for (ic[0]=0; ic[0]<nc[0]; ic[0]++)

for (ic[1]=0; ic[1]<nc[1]; ic[1]++)

#if 3==DIM

for (ic[2]=0; ic[2]<nc[2]; ic[2]++)

#endif

for (ParticleList *i=grid[index(ic,nc)]; NULL!=i; i=i->next) {
for (int d=0; d<DIM; d++)

i->p.F[d] = 0;

for (kc[0]=ic[0]-1; kc[0]<=ic[0]+1; kc[0]++)

for (kc[1]=ic[1]-1; kc[1]<=ic[1]+1; kc[1]++)

#if 3==DIM

for (kc[2]=ic[2]-1; kc[2]<=ic[2]+1; kc[2]++)

#endif

{ treat kc[d]<0 and kc[d]>=nc[d] according to boundary conditions;
if (distance of i->p to cell kc <= r_cut)

for (ParticleList *j=grid[index(kc,nc)];

NULL!=j; j=j->next)

if (i!=j) {
real r = 0;

for (int d=0; d<DIM; d++)

r += sqr(j->p.x[d] - i->p.x[d]);

if (r<=sqr(r_cut))

force(&i->p, &j->p);

}
}

}
}

In this implementation an extra check of the distance of the particle i->p
to the cell kc has been inserted that was missing in the previous version
of the linked cell method. Thus, instead of testing that the distance from
the particle to each particle within the cell is beyond the cutoff radius, an
entire neighboring cell with all its particles can be directly excluded from the
force evaluation by such a check. This helps to improve the efficiency of the
program.

The iteration over the grid cells, which in Algorithm 3.15 explicitly de-
pends on the dimension, can be implemented in a more elegant fashion. For
instance the macro from code fragment 3.4 could be used.
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Code fragment 3.4 Macro for Dimension-Dependent Iteration
#if 1==DIM

#define iterate(ic,minnc,maxnc) \

for ((ic)[0]=(minnc)[0]; (ic)[0]<(maxnc)[0]; (ic)[0]++)

#elif 2==DIM

#define iterate(ic,minnc,maxnc) \

for ((ic)[0]=(minnc)[0]; (ic)[0]<(maxnc)[0]; (ic)[0]++) \

for ((ic)[1]=(minnc)[1]; (ic)[1]<(maxnc)[1]; (ic)[1]++)

#elif 3==DIM

#define iterate(ic,minnc,maxnc) \

for ((ic)[0]=(minnc)[0]; (ic)[0]<(maxnc)[0]; (ic)[0]++) \

for ((ic)[1]=(minnc)[1]; (ic)[1]<(maxnc)[1]; (ic)[1]++) \

for ((ic)[2]=(minnc)[2]; (ic)[2]<(maxnc)[2]; (ic)[2]++)

#endif

Using this macro, the loop over all grid cells can be written as

iterate(ic,nullnc,nc) {
...,
}
where nullc denotes a multi-index that has to be declared at an appropriate
place and that is initialized to zero.

The time integration could be carried out as in Algorithms 3.2 and 3.4
if the particles would all be compactly stored in a contiguous vector. But
the memory for the particles was allocated separately for each cell and each
particle to be able to treat the possible change in the number of particles of
each cell during the simulation. Therefore, the particles are traversed by an
outer loop over all cells and an inner loop over all particles in the particle list
of that cell, see Algorithm 3.16.

After the positions of the particles have been updated in the time step,
not all particles will be necessarily located in the appropriate cell since some
might have moved out of the cell. Therefore, we have to traverse the particles
again in compX LC to check if they left the cell and to move them to the new
cell if necessary. This can be implemented using the techniques introduced
above for the insertion and removal of particles. We obtain Algorithm 3.17.

The main program for the linked cell method needs just some small
changes, see Algorithm 3.18. Essentially only the new data structures have
to be initialized and added to the parameter lists of the appropriate routines.
Furthermore, a new initialization routine initData LC has to be provided
in which the particles (their masses, positions, and velocities) are initial-
ized at the start of the simulation. The particles have to be created in a
suitable way (or they could be given in a file). In addition, the output rou-
tines compoutStatistic LC and outputResults LC in timeIntegration LC
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Algorithm 3.16 Routines for the Velocity-Störmer-Verlet Time Stepping
with the Linked Cell Data Structure
void compX_LC(Cell *grid, int *nc, real *l, real delta_t) {
int ic[DIM];

for (ic[0]=0; ic[0]<nc[0]; ic[0]++)

for (ic[1]=0; ic[1]<nc[1]; ic[1]++)

#if 3==DIM

for (ic[2]=0; ic[2]<nc[2]; ic[2]++)

#endif

for (ParticleList *i=grid[index(ic,nc)]; NULL!=i; i=i->next)

updateX(&i->p, delta_t);

moveParticles_LC(grid, nc, l);

}
void compV_LC(Cell *grid, int *nc, real *l, real delta_t) {
int ic[DIM];

for (ic[0]=0; ic[0]<nc[0]; ic[0]++)

for (ic[1]=0; ic[1]<nc[1]; ic[1]++)

#if 3==DIM

for (ic[2]=0; ic[2]<nc[2]; ic[2]++)

#endif

for (ParticleList *i=grid[index(ic,nc)]; NULL!=i; i=i->next)

updateV(&i->p, delta_t);

}

as well as the routine timeIntegration LC have to be properly adapted to
the linked cell data structure.

As seen already in the O(N2)-algorithm, about half of the operations can
be saved if one exploits the symmetry of the forces. Then, one no longer has to
iterate through all 3DIM −1 neighboring cells but only through half of them.
For all interactions within a cell also only half of them have to computed.
However, one has to take the boundary conditions properly into account. In
the case of periodic boundary conditions as in Figure 3.7, the summation
over all neighboring cells also has to be adapted appropriately.

3.6 First Application Examples and Extensions

On the one hand, the method of molecular dynamics can be used to study the
behavior of particle systems over time. On the other hand it can also be used
to compute appropriate averages of microscopic quantities as approximations
to relevant macroscopic quantities.

In this section we show some results of simulations that illustrate the
dynamics of different particle systems. For the simulations we use the pro-
gram described in the last section. We will first present the many different
possibilities for applications for the program as described until now, and we
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Algorithm 3.17 Sorting the Particles into the Appropriate Cells
void moveParticles_LC(Cell *grid, int *nc, real *l) {
int ic[DIM], kc[DIM];

for (ic[0]=0; ic[0]<nc[0]; ic[0]++)

for (ic[1]=0; ic[1]<nc[1]; ic[1]++)

#if 3==DIM

for (ic[2]=0; ic[2]<nc[2]; ic[2]++)

#endif

{ ParticleList **q = &grid[index(ic,nc)]; // pointer to predecessor
ParticleList *i = *q;

while (NULL != i) {
treat boundary conditions for i->x;

for (int d=0; d<DIM; d++)

kc[d] = (int)floor(i->p.x[d] * nc[d] / l[d]);

if ((ic[0]!=kc[0])||(ic[1]!=kc[1])

#if 3==DIM

|| (ic[2]!=kc[2])

#endif

) {
deleteList(q);

insertList(&grid[index(kc,nc)], i);

} else q = &i->next;

i = *q;

}
}

}

Algorithm 3.18 Main Program of the Linked Cell Method
int main() {
int nc[DIM];

int N, pnc;

real l[DIM], r_cut;

real delta_t, t_end;

inputParameters_LC(&delta_t, &t_end, &N, nc, l, &r_cut);

pnc=1;

for (int d=0; d<DIM; d++)

pnc *= nc[d];

Cell *grid = (Cell*)malloc(pnc*sizeof(*grid));

initData_LC(N, grid, nc, l);

timeIntegration_LC(0, delta_t, t_end, grid, nc, l, r_cut);

freeLists_LC(grid, nc);

free(grid);

return 0;

}



66 3 The Linked Cell Method for Short-Range Potentials

will discuss a few simple extensions that arise from the treated applications.
These extensions include the implementation of various boundary conditions
(periodic, reflecting, moving boundaries, heated boundaries) as well as mixing
rules for the Lennard-Jones potential.

We start with examples in two dimensions since smaller numbers of par-
ticles are needed in that case. It is also easier to discover and correct possible
mistakes in the program code. First, we consider two examples for the col-
lision of two objects. Here, the respective values of the parameters of the
potential function model solid and fluid bodies on a phenomenological level.
Then, we simulate the dynamics of two fluids with different densities. Fur-
thermore, we study fluids which exhibit the Rayleigh-Taylor instability and
the Rayleigh-Bénard convection on the micro-scale. Finally, we consider sur-
face waves in granular media. We always use the truncated Lennard-Jones
interaction potential (3.30) and the resulting force (3.31) in this section.

3.6.1 Collision of Two Bodies I

We simulate the collision of two bodies made from the same material as a
first easy example, see also [70, 71, 199, 200, 390]. A sketch of the initial
configuration for the simulation can be found in Figure 3.11.

�

Fig. 3.11. Diagram for the collision of two bodies.

Here, the smaller body strikes the resting, larger body with high velocity.
Outflow boundary conditions are used at the sides of the simulation domain.
Particles leaving the domain are deleted.

At the beginning of the simulation the two bodies are put together from
40× 40 and 160× 40 particles of equal mass. These particles are arranged on
a lattice of mesh size 21/6σ (corresponding to the minimum of the potential)
according to Figure 3.11. The velocity of the particles in the moving body is
initially set to the given velocity v. In addition, the initial velocities of the
particles in both bodies are superimposed with a small thermal motion which
is chosen according to a Maxwell–Boltzmann distribution with mean velocity
0.1 per component, compare Appendix A.4.
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t=0.0 t=1.0

t=1.5 t=2.0

t=2.5 t=3.5

t=7.0 t=19.5

Fig. 3.12. Collision of two bodies, time evolution of the distribution of the particles.
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Figure 3.12 shows the result of a simulation with the parameter values
from Table 3.2.

L1 = 250, L2 = 40,
ε = 5, σ = 1,

m = 1, v = (0,−10),
N1 = 1600, N2 = 6400,

rcut = 2.5σ, δt = 0.00005

Table 3.2. Parameter values for the simulation of a collision.

The color of each particle encodes its velocity. The parameter ε and σ
are chosen here in such a way that the two solid bodies are relatively soft.
Immediately after impact shock waves start to spread through the larger
body, first along the surface, and then propagating into the interior of the
body. Both objects are completely destroyed by the collision.

Because of the simple Lennard-Jones potential used in the simulation,
this is only a phenomenological description of the collision of solid bodies.
More realistic and quantitative simulations can be accomplished by the use
of more sophisticated potentials, compare Chapter 5.

3.6.2 Collision of Two Bodies II

In this simulation we consider a drop which falls into a basin filled with fluid.
The initial configuration is depicted in Figure 3.13.

�

Fig. 3.13. Falling drop, initial configuration.

Two extensions of the program are necessary for this simulation. One
is the introduction of reflecting boundary conditions and the other is the
treatment of an external gravitational field that acts on all particles.

Implementation of the Gravitational Field. An important element of
this and following applications is the gravitational field G, an extrinsic ac-
celeration which affects all particles. In our example this acceleration acts in
the x2 direction only. The resulting force in the two-dimensional case then
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has the form FG
i = (0, mi ·G2) for all particles i, with a given value for G2.

For the implementation of such external forces we can introduce the global
quantity G as a vector real[DIM] that has to be properly added to the forces
on the particles. A possible way to implement this is to add the external
forces FG

i at the beginning of the function compF LC. So far, the new forces
F were set to zero, see Algorithm 3.15. Now, the force i->p.F on particle i
will instead be initialized to the external force by code fragment 3.5.

Code fragment 3.5 Implementation of the Gravitational Field
for (int d=0; d<DIM; d++)

i->p.F[d] = i->p.m * G[d];

Reflecting Boundaries. Reflecting boundary conditions are used on all
sides of the simulation domain to realize fixed solid walls. Such conditions
can be implemented by a repulsive force which acts on the particles that
come close to the walls. Here, the magnitude of the force corresponds to the
force from a virtual particle of the same mass that sits mirror-inverted on the
other side of the boundary outside of the simulation domain, see Figure 3.14
for an example with two particles.

Fig. 3.14. Reflecting boundary conditions in two dimensions; particles hitting the
boundary are reflected as if a particle would be located at the mirror image of the
particle at the other side of the boundary.

With the Lennard-Jones potential (3.26), the additional repulsive force
on particle i is

(Fi)2 = −24 · ε · 1
2r

·
( σ

2r

)6

·
(

1 − 2 ·
( σ

2r

)6
)

(3.34)

for the example of the lower wall. Here, r denotes the distance of the particle
from the wall. This force is cut off at 21/6σ and thus has only a repulsive
component. Note that the distance vector between particle i and its mirror
image i′ is rii′ = xi′ −xi = (0,−2r)T , which introduces a negative sign. Cor-
responding formulae can be derived for the force close to the other walls.21

21 Alternatively, one can place the reflecting particle on the boundary. Instead of
2r, (3.34) then contains the distance r.
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Note furthermore that the time step has to be chosen small enough to guar-
antee the stability of the method.

The type of a wall can be described using a flag (reflecting=1, non-
reflecting=0). For the four side edges in the two-dimensional case and the
six side faces in the three-dimensional case we then need two parameters
box lower and box upper as vectors int[DIM]. With their help the program
can easily determine if a particle is in a cell with a reflecting boundary. If
so, the additional force (3.34) has to be added to the force acting on that
particle in the routine compF LC.22 The iteration over all neighboring cells
in routine compF LC in Algorithm 3.15 has to be properly modified for cells
at the boundary. The non-existing neighboring cells are just skipped in our
case.

Initial Conditions. At the beginning of the simulation the fluid completely
fills the lower part of the simulation domain. The drop is located in x1 di-
rection in the center of the simulation domain above the filled basin. The
particles are placed on a regular mesh, in the drop as well as in the basin, and
their velocity is perturbed with a slight thermal motion given by a Maxwell–
Boltzmann distribution with a mean velocity 0.07 per component, compare
Appendix A.4.

Velocity Scaling. Until time t = 15 we let gravity act only on the particles
in the basin to bring them to rest. To this end, the velocity of the particles is
scaled every 1000th time step to prevent too large values. To be more precise,
the scaling proceeds as follows: The kinetic energy of the system at time tn
is given according to (3.25) by

En
kin =

1
2

N∑
i=1

mi(vn
i )2.

If the system is to be transformed into one with a desired kinetic energy ED
kin,

we can achieve this by multiplying the velocities vn
i of the particles in the

routine compV LC with the factor

β :=
√

ED
kin/En

kin (3.35)

according to
vn

i := β · vn
i .

22 Another possibility to create reflecting boundary conditions is to move particles
that would travel outside of the simulation domain across a reflecting boundary
back into the simulation domain by mirroring their positions across the boundary
and also to change the velocity of the particle in an appropriate way. For the
case of the lower boundary this would consist in giving the x2 component of the
new velocity a negative sign.
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With such a scaling it holds that
∑N

i=1
mi

2 (βvn
i )2 = β2En

kin = ED
kin. In our

simulation we use for the target kinetic energy the value ED
kin = 0.005 ·N . In

every time step the current value of En
kin is computed first. With that value

the scaling factor β can be computed according to (3.35), and the velocities
can then be scaled by this factor. After this scaling phase for the particles
in the basin, the actual simulation begins: At t = 15 the velocity scaling is
turned off and the particles in the drop are subjected to gravity. The drop
then begins to fall into the basin.

Figure 3.15 shows the results of a simulation with 17227 particles in the
basin and 395 particles in the drop with the parameter values from Table 3.3.
The drop enters the fluid, displaces it and slowly dissolves. A wave is created
that is subsequently reflected at the walls and leads to a swashing motion of
the fluid in the basin. The slight asymmetry visible in the pictures results
from the random (thermal) initial conditions for the particles.

t=18.5 t=19.5

t=20.5 t=21.5

t=23.0 t=29.5

Fig. 3.15. Falling drop, time evolution of the distribution of the particles.
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L1 = 250, L2 = 180,
ε = 1, σ = 1,

m = 1, G = (0,−12),
N = 395 and 17227, δt = 0.0005,

rcut = 2.5σ

Table 3.3. Parameter values for the simulation of a falling drop.

3.6.3 Density Gradient

Now, we consider a flow driven by a density gradient. We start with a rectan-
gular box which is divided into two chambers that contain the same amount
of particles, compare Figure 3.16 (left). Here, the partition wall splits the
simulation domain with the ratio 1:4. If we remove a part of the partition

Fig. 3.16. Initial configuration for the density gradient simulation; closed partition
wall (left), after opening a hole in the partition wall (right).

wall between the two chambers (Figure 3.16 (right)), the density difference
between the two chambers results in a flow of particles from the domain with
higher density to the domain with lower density until the densities in the two
domains are approximately equal.

Reflecting boundary conditions are to be set at the sides of the simulation
domain as well as at the partition wall separating the two chambers. No forces
are acting through the partition wall. The partition wall can therefore be
treated analogously to the reflecting external walls. To implement this, the
iteration over the neighboring cells in the force computation routine compF LC
has to be appropriately changed and a repulsive force has to be added to the
force of the particles close to the reflecting boundaries according to (3.34).

At the start of the simulation, the particles are positioned on a regu-
lar mesh in both chambers (different mesh sizes in the two chambers) and
are subjected to a small thermal motion according to a Maxwell-Boltzmann
distribution with ED

kin = 66.5 · N , compare Appendix A.4.
Figure 3.17 shows the evolution in time of a simulation of a total of 10920

particles with the parameter values given in Table 3.4. Particles flow from
the chamber with higher density into the chamber with lower density. This
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L1 = 160, L2 = 120,
ε = 1, σ = 1,
N = 10920, δt = 0.0005,

rcut = 2.5σ, m = 1

Table 3.4. Parameter values for the simulation of the density gradient flow.

Fig. 3.17. Density gradient examples, evolution in time of the particle distribution.

results in a mushroom-like structure that grows into the chamber with lower
density and slowly dissolves by mixing with other particles.

3.6.4 Rayleigh-Taylor Instability

The Rayleigh-Taylor instability is a well-known physical phenomenon in fluid
dynamics. The mixing processes related to it arise on various length scales.
They can be found inside exploding stars (supernovae) in astrophysics as well
as in flow problems in microtechnology. This instability occurs if a fluid of
higher density resides on top of a fluid with lower density while subjected to
gravity. The instable situation resolves with the heavier fluid sinking down
and displacing the lighter fluid. Here, characteristic structures emerge (see
Figures 3.20 and 3.21) which depend on the differences in density and mass
and on the strength of the gravitational (or other external) force field. On
the macroscopic level, classical methods from fluid dynamics can be used to
simulate the Rayleigh-Taylor instability. These methods allow a study of the
phenomenon from the continuum point of view.
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The Rayleigh-Taylor instability is self-similar. Therefore, it can also be
observed on the mesoscopic level. The study of the related phenomena on the
mesoscopic scale is of interest since this allows to better model and represent
the physical processes in the boundary layers between different fluids. To
this end, particle methods can be employed. It has already been shown that
known hydrodynamic instabilities can develop in mesoscopic particle systems,
compare [502, 505] and [32, 198, 494, 504].

In the following, we consider two examples for the Rayleigh-Taylor insta-
bility in two-dimensional systems. Figure 3.18 shows the initial configuration.

������	

������


Fig. 3.18. Initial configuration for the Rayleigh-Taylor instability; the heavy fluid
sits on top of the light fluid.

At the beginning of the simulation, the domain is filled completely with
particles. The particles in the lower half of the simulation domain are chosen
to be lighter than the particles in the upper half. Thus, the two types of
particles possess different masses. Also the values of the parameter σ for the
Lennard-Jones potential are different.

A Mixing Rule for the Lennard-Jones Potential. Since the model in
this application consists of two different kinds of particles we now have to
use parameters εij and σij in the interaction potential that depend on the
particles i and j involved,

V = 4
N∑

i=1

N∑
j=1,j>i

0<rij≤rcut

εij ·
(

σij

rij

)6

·
((

σij

rij

)6

− 1

)
. (3.36)

Analogously, the resulting force reads

Fi = 24
N∑

j=1,j �=i
0<rij≤rcut

εij · 1
r2
ij

·
(

σij

rij

)6

·
(

1 − 2 ·
(

σij

rij

)6
)

rij .

If one only knows the parameters for the potentials between particles of the
same type, one can try to deduce interaction parameters for the potential
between particles of different types. This leads to so-called mixing rules for
the potential parameters.

The procedure for the Lennard-Jones potential is the following: Let
(σii, εii), i = 1, 2, be the parameters of the Lennard-Jones potential for
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particles of the first and the second type, respectively. One assumes that
particles of different types also interact by a Lennard-Jones potential whose
parameters (σij , εij) can be determined from (σii, εii), i = 1, 2. Here, the
symmetry of the forces Fij = −Fji and Newton’s third law imply σij = σji

and εij = εji. A popular approach is the Lorentz-Berthelot mixing rule [34].
There, the parameters for the interactions between particles of different kinds
are computed by

σ12 = σ21 =
σ11 + σ22

2
(arithmetic mean) and

ε12 = ε21 =
√

ε11ε22 (geometric mean).

(3.37)

Although these mixing rules have been derived by empirical arguments only
they nevertheless deliver satisfactory results in many cases. The implementa-
tion is given in the data structure 3.3, where now the parameters for each par-
ticle are stored, and in Algorithm 3.19, where the mixing rule is programmed.
The previous global declarations of sigma and epsilon are omitted.

Data structure 3.3 Additional Particle Data for the Lennard-Jones Poten-
tial
typedef struct {
... // particle data structure 3.1
real sigma, epsilon; // parameters σ, ε

} Particle;

Algorithm 3.19 Lennard-Jones Force with Mixing Rule
void force(Particle *i, Particle *j) {
real sigma = 0.5 * (i->sigma + j->sigma); // Lorentz-Berthelot (3.37)
real epsilon = sqrt(i->epsilon * j->epsilon);

... // force computation from Algorithm 3.11
}

The cutoff radius rcut in these interactions should be chosen as the max-
imum of the two cutoff radii for the interactions of the particles of the same
type.

Periodic Boundary Conditions. In the present simulation periodic bound-
ary conditions are to be used on the vertical boundaries of the domain, while
reflecting boundary conditions are imposed on the horizontal boundaries.
Some changes in the code are necessary to implement periodic boundary
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conditions. For a given cell, the set of neighboring cells can now also include
cells from the opposite side of the simulation domain, compare Figure 3.7.
Furthermore, the distance to the closest periodic image is to be used in the
computation of the forces and potentials between particles, see Figure 3.19.

Fig. 3.19. Force computation for periodic boundary conditions: The simulation
domain shown in grey is replicated in all spatial directions. Particles close to the
boundaries interact with the closest periodic images of other particles.

In the program code this can be accounted for in the routine compF LC in
Algorithm 3.15. Conceptionally, kc[d] is just substituted by kc[d] modulo
nc[d]. The computation of the distances of the particles also has to be
changed appropriately. For instance, if we treat the case of the periodic left
boundary, i.e. kc[0] == -1, we set kc[0] = nc[0]-1, before we iterate over
the particles j of that cell. Inside the loop over the particles j, in the computa-
tion of the distance, the line r += sqr(j->p.x[0] - i->p.x[0]) has to be
replaced by the expression r += sqr((j->p.x[0] - l[0]) - i->p.x[0]).
Similar changes are necessary for the other coordinate directions. In the same
way, the routine moveParticles LC has to be modified to allow for the treat-
ment of periodic boundary conditions. The positions x[d] of the particles
that left the simulation box must be set to the positions of their periodic
images inside the simulation box by properly adding or subtracting l[d].

Again, the initial velocities are chosen according to a Maxwell-Boltzmann
distribution with ED

kin = 60 · N , compare Appendix A.4. In the simulation,
a velocity scaling is carried out every 1000 time steps. The kinetic energy is
set to ED

kin = 60 · N . Thus, in every time step in which a velocity scaling is
to be performed, the current value of En

kin is computed, the scaling factor β
is computing according to (3.35), and finally the velocities are scaled by that
factor.

Figure 3.20 shows the result of a simulation with the parameters from
Table 3.5. Here, a total number of 6384 particles is employed, where half of
the particles belong to one type.

One can see the formation of the typical mushroom-shaped structures over
the time of the simulation. The heavier particles (grey) sink down and displace
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L1 = 140, L2 = 37.5,
εup = εdown = ε = 1, σup = 0.9412, σdown = 1,

G = (0,-12.44), mup = 2, mdown = 1,
N = 6384, ED

kin = 60·N,
rcut = 2.5σ, δt = 0.0005

Table 3.5. Parameter values for the simulation of the Rayleigh-Taylor instability.

t=2 t=6

t=8 t=10

t=12 t=14

Fig. 3.20. Rayleigh-Taylor instability, time evolution of the particle distribution.

the lighter particles (black) which consequently rise up. In this simulation five
mushroom-like structures of different sizes can be observed.

Figure 3.21 shows the result of a simulation with a different set of pa-
rameters. There, as before, the positions of the particles at different times
are shown. The parameters associated to this simulation can be found in
Table 3.6. The total number of particles is now 47704 and, in turn, half of

L1 = 600, L2 = 100,
εup = εdown = ε = 1, σup = 1.1, σdown = 1.2,

G = (0,-12.44), mup = 2, mdown = 1,
N = 47704, ED

kin = 60·N,
rcut = 2.5σ, δt = 0.0005

Table 3.6. Parameter values for the simulation of the Rayleigh-Taylor instability.

the particles belong to one type. Again, the lighter particles are displaced by
the heavier, sinking particles. The larger simulation domain and the larger
number of particles result in a larger number of mushroom-shaped structures
that are distinctly different in size and form from the ones in Figure 3.20.
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t=6

t=10

t=12

t=14

t=16

t=18

t=22

Fig. 3.21. Rayleigh-Taylor instability, time evolution of the particle distribution.
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3.6.5 Rayleigh-Bénard Convection

In many technical applications, as for example in the growth of crystals, in
cooling towers, power plants, heat reservoirs, but also in meteorology and
oceanography, there is interest in the impact of differences in temperature
on the flow field. Related phenomena also arise on microscopic scales. As
an example for temperature-driven currents in microfluids we study here
the so-called Rayleigh-Bénard convection. To this end, we consider a box
with temperature-dependent horizontal walls and with periodic boundary
conditions for the vertical walls, compare Figure 3.22.

�

�

Fig. 3.22. Rayleigh-Bénard convection, configuration with heated lower wall.

If the lower wall is only slightly warmer than the upper wall, the heat is
transported in the fluid by diffusion (conduction). If however the temperature
difference between upper and lower wall exceeds a critical value, convection
becomes a more efficient way to exchange heat between the walls. Then,
convection cells form. Their number and shape depend on the temperature
difference, the boundary conditions and also the initial conditions [73]. Thus,
the flow is driven by the temperature difference, in which the processes

heating → expanding → rising
cooling → contracting → sinking

occur consecutively.
The analytic study of the behavior of a fluid on the macroscopic level is

based on the Navier-Stokes equations which are the standard equations for the
conservation of mass, momentum, and energy for fluids. In addition, the so-
called Boussinesq approximation [108, 455] is often used. There, it is assumed
that the density is the only material property of the fluid which depends on
the temperature. Furthermore, it is assumed that the density depends linearly
on the temperature. Numerical studies of the Rayleigh-Bénard problem that
use the Navier-Stokes equations together with the Boussinesq approximation
can be found in [355, 379, 457]. The results of physical experiments can be
found in [667].

The simulation of such phenomena with molecular dynamics methods
is also of interest. This surely can not replace the known techniques of
CFD (computational fluid dynamics), but may help to study the relation
between different scales of observation (microscopic and macroscopic scale,
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discrete and continuous description). Molecular dynamics simulations of a
two-dimensional Rayleigh-Bénard problem can be found in [410, 504, 505].
[494] presents a quantitative comparison of molecular dynamics simulations
with CFD simulations. A problem in the comparison of the results of molecu-
lar dynamics simulations with physical experiments is that the external forces
(here gravity) and the density differences now have to be much larger to trig-
ger convection. Moreover, the validity of the Boussinesq approximation is
much in doubt [259]. Furthermore, in the three-dimensional case the result-
ing flow is in general three-dimensional, but, for a very large ratio of width
to depth of the simulation box (Hele-Shaw flow) the problem can be replaced
by a two-dimensional one.

We study here the formation of Rayleigh-Bénard cells in two simulations
that differ in the ratio of length to width of the simulation box.

Boundary Conditions for a Heated Wall. Periodic conditions are im-
posed for the vertical boundaries. At the horizontal boundaries we use reflect-
ing boundary conditions. Furthermore, the lower boundary is heated,23 i.e.,
the particles will be accelerated when colliding with the wall. To this end, we
simply multiply the x2 component of the velocity of the particles which are
reflected by the lower wall with the fixed factor 1.4. Thus, for those particles,
we set

(vn
i )2 := 1.4 · (vn

i )2

in the routine compF LC.

Initial Conditions and Velocity Scaling. The heating of the lower wall
adds energy to the system which causes the kinetic energy to increase during
the simulation and leads to an increase in the velocities of the particles. To
counteract this effect, the energy of the system is reduced by a scaling of the
velocity every 1000 time steps using the factor β from (3.35) with a target
kinetic energy ED

kin = 60 · N .
Figure 3.23 shows the time evolution of a simulation with the parameters

from Table 3.7. Here, the length of the domain is four times larger than
its width. The total number of particles is 9600. They are distributed on a
regular mesh at the beginning of the simulation. The initial velocity of the
particles is chosen according to a Maxwell–Boltzmann distribution with a
kinetic energy of ED

kin = 90 · N , compare Appendix A.4.
To visualize the convection cells, at t = 90, the particles in the lower half

of the simulation box are colored black and the other particles are colored
grey, compare Figure 3.23 (upper left). At this point in time, the heat-driven
convection has started to stabilize. The following pictures then show the
movement of the colored particles. One clearly sees two Rayleigh-Bénard
cells in which the particles are transported up and down.
23 In Section 3.7, we will present a possibility to control the temperature of the

system by a so-called thermostat.
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t=90 t=93

t=96 t=99

t=105 t=111

Fig. 3.23. Rayleigh-Bénard convection, time evolution of the particle distribution.

t=102

t=108

t=114

t=120

Fig. 3.24. Rayleigh-Bénard convection, time evolution of the particle distribution.
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L1 = 240, L2 = 60,
ε = 1, σ = 1,

m = 1, G = (0,−12.44),
N = 9600, ED

kin = 60·N,
rcut = 2.5σ, δt = 0.0005

Table 3.7. Parameter values for the simulation of Rayleigh-Bénard convection.

Figure 3.24 shows the time evolution for a larger simulation box (ratio
length to width of 6 : 1) with an appropriately increased number of particles.
The length of the domain is L1 = 360 and 14400 particles are used. All other
parameters are kept at their previous values.

The color of the particles (black or grey) is now fixed at time t = 102,
compare Figure 3.24 (top). The following pictures show again the movement
of the particles. In this simulation four Rayleigh-Bénard cells are formed.

3.6.6 Surface Waves in Granular Materials

Granular materials [135, 154, 317, 337] occur in various forms in nature and
technology. Examples are sand, grain, washing powder, sugar, or dust. They
possess peculiar properties because they behave neither like solids nor like liq-
uids. For example, shaking experiments with granular material that consists
of grains of different sizes show that demixing and grain segregation pro-
cesses may occur. Here, grains of different sizes are separated by vibrations
(Brazil-nut effect) and clusters, patterns, and convection cells are sponta-
neously formed [92, 337, 425, 489].

In the following, we study the phenomenon of surface waves that de-
velop when a thin granular layer is exposed to vibrations. There, different
waveforms can be observed [425, 426, 629]. Numerical simulation can help
to better understand the mechanism behind this behavior. The relation be-
tween the excitation frequency, i.e. the frequency of the external vibration,
and the observed form of the wave has been investigated in [46, 506]. Com-
parisons between the results of simulations and experiments are found for
example in [92]. To numerically simulate granular materials several methods
are used: Direct Simulation Monte-Carlo methods (DSMC) [91, 440, 598], so-
called “Event Driven” simulation methods (ED) [395, 396, 418, 440], Hybrid
Simulation Monte-Carlo (HSMC) [439], and the molecular dynamics method.

We study surface waves in a granular medium in the two-dimensional case
[506] with molecular dynamics simulations. To this end, we consider a system
of particles subjected to gravity. Here, the bottom wall of the simulation box
moves periodically up and down with a fixed frequency, compare Figure 3.25.

The oscillation of the lower wall causes the particles to vibrate. After some
time, waves form at the free surface. The shape, amplitude, and frequency of
these waves depend strongly on the amplitude and frequency of the oscillation
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Fig. 3.25. Configuration for the simulation of surface waves in granular media:
The lower wall oscillates with a given frequency f .

of the wall, but also on the strength of gravity, the mass of the particles, and
the parameters of the potential function.

Moving Boundaries. In this application we impose periodic conditions on
the vertical boundaries and reflecting boundary conditions on the horizontal
boundaries. In addition, the lower boundary oscillates in vertical direction
with a given frequency f and amplitude A. The vertical position of the lower
boundary is then given by

(xwall)2(t) = A(1 + sin(2πft)).

To implement such a moving and reflecting boundary, we proceed in principle
as for the resting reflecting boundary in Section 3.6.2. However, we now
position the virtual particle in the implementation of the boundary condition
directly on the boundary, compare footnote 21 on page 69. In addition, we
have to take into account that the x2 position of the boundary depends
on time. In a similar way as in (3.34) we obtain the x2 component of the
additional repulsive force on particle i as

(Fi)2(t) = 24 · ε 1
r2
i (t)

·
(

σ

ri(t)

)6

·
(

1 − 2 ·
(

σ

ri(t)

)6
)

(ri)2(t)

with (ri)2(t) := (xwall)2(t) − (xi)2 and ri(t) = ||(xwall)2(t) − (xi)2||. The
strength of this force corresponds to the force from a virtual particle located
at the moving lower boundary.

Additional Friction Terms in the Equations of Motion. The moving
lower wall continuously supplies energy to the system. In this way the total
energy of the system steadily increases, and, on average, the velocities of the
particles grow larger and larger during the simulation. To counteract this
effect, energy is removed from the system by an additional friction term in
the equations of motion.

The force on a particle has now three parts: A Lennard-Jones term

Fi = 24 · ε
N∑

j=1
j �=i

1
r2
ij

·
(

σij

rij

)6

·
(

1 − 2 ·
(

σij

rij

)6
)

, (3.38)
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the gravitational force G, and the additional frictional force

Ri = γ

N∑
j=1
j �=i

(vij · rij)
rij

r2
ij

. (3.39)

Here, vij := vj − vi, and γ denotes an appropriately chosen constant.24 The
friction term is thus dependent on the velocity of the particles. The equation
of motion for a particle i then reads

miv̇i = Fi + Ri + G.

Both formulae (3.38) and (3.39) are now again cut off at a distance of
rcut. In this way, the friction term is approximated by

Ri ≈ γ

N∑
j=1,j �=i

rij<rcut

(vij · rij)
rij

r2
ij

and the linked cell method can directly be employed.
For the time integration we use the Velocity-Störmer-Verlet Algorithm 3.1.

To this end, we discretize the frictional force at time tn+1 by

Rn+1
i = γ

N∑
j=1,j �=i

rn
ij

<rcut

(vn
ij · rn

ij)
rn

ij

(rn
ij)2

.

This additional force has to be taken into account at an appropriate point in
the computation of the velocities.

The parameter σii of the particles i, i.e. the sigma in data structure
3.3, are randomly chosen from the interval [0.9 · σ, 1.1 · σ]. The interaction
parameters σij in (3.38) are determined according to the Lorentz-Berthelot
mixing rule as the arithmetic mean of the σii of the interacting particles.

Figure 3.26 shows the evolution in time of a simulation with the parame-
ter values from Table 3.8. Here, the parameters f , A, and γ are the frequency
and amplitude of the oscillation of the lower wall and the friction constant,
respectively. The total number of particles is 1200. They are distributed at
the beginning of the simulation on a regular mesh of the size 100× 12, com-
pare Figure 3.26 (upper left). The velocity of all particles at the start of the
simulation vanishes, i.e. vi = 0, i = 1, . . . , N .

After some time waves start to repeatedly appear and disappear with a
certain frequency. The plots show about half of a period of this oscillatory
behavior. The observed waves are entirely driven by the external excitation
and break down immediately when energy is no longer fed into the system.
24 Here, (vij ·rij) stands for the standard scalar product of the vectors vij and rij .
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L1 = 180, L2 = 40,
ε = 0.1, σ = 2.1,

m = 1, G = (0,−22.0),
N = 1200, δt = 0.002,
f = 0.83, A = 1.5,

rcut = 3.0, γ = 1

Table 3.8. Parameter values for the simulation of surface waves in a granular
medium.

t=0.0 t=74

t=74.8 t=75.6

t=77.2 t=78.4

Fig. 3.26. Surface waves in a granular medium, time evolution of the particle
distribution.

This is an important difference to wave phenomena in viscous fluids, in which
a slow oscillation persists and the waves slowly die away.

Depending on the parameters used, different wave forms develop during
several cycles of the oscillation of the lower wall. The number of wave crests
is affected by the size of the box and the type of the boundary conditions
at the walls. Furthermore, certain general qualitative observations can be
made, such as ranges of parameters with stable patterns, instable transition
regimes, and bifurcations in the parameter space. Here, oscillations with a
frequency of half of the excitation frequency f and sometimes even deeper
subharmonic frequencies were found [189, 426, 506]. One observes superposi-
tions of standing or traveling waves or waves that repeat every few cycles or
appear in every cycle but at different positions. Results of three-dimensional
experiments can be found for instance in [92].
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3.7 Thermostats, Ensembles, and Applications

So far, we changed the kinetic energy by a simple scaling of the velocity.
This affects the temperature on the mesoscopic level. In this section we will
consider methods to adjust and change the temperature of a simulated sys-
tem in more detail. First, the number N of particles, the volume V of the
simulation domain, and the temperature T (connected with a so-called heat
bath) are fixed. In statistical mechanics this is called an NVT ensemble with
thermostat. There are also approaches in which the number N of particles,
the pressure P and the temperature T are fixed but the volume V := |Ω|
and therefore the size of the simulation box can change. Such ensembles are
called NPT ensembles. To this end, Newton’s equations of motion have to be
extended appropriately, which leads to the Parrinello-Rahman method [462].
Finally, we use these methods to simulate the cooling of argon. There, de-
pending on the speed of cooling, the transition from fluid to solid results in
either a crystalline phase or an amorphic glass phase.

Simulation with Thermostat. If a system is thermically and mechanically
isolated, the total energy is constant in time according to (3.10). However,
in some simulations the energy or the temperature should be changed over
time for e.g. the following reasons: On the one hand, one may need the abil-
ity to control the temperature of the system to study physical or chemical
phenomena such as phase transitions. On the other hand, for a simulation of
an isolated system, the temperature may have to be adjusted to the desired
value at the beginning.

In physical experiments, the temperature is kept constant by letting the
considered system exchange heat with a significantly larger system, the so-
called heat bath or thermostat. The influence of the small system on the
temperature of the heat bath is negligible. The temperature of the heat bath
is therefore assumed to be constant, i.e., it is equal to a given value. In the
course of time the smaller system adopts the temperature of the heat bath. On
the microscopic level the exchange of heat takes place by collisions of particles
with the walls that separate the heat bath and the considered system. On
average, the kinetic energy of the particles which hit these separation walls
changes in dependence of the temperature of the heat bath. The resulting loss
or increase in kinetic energy cools or heats the system until its temperature
has reached that of the heat bath. To obtain the same effect in a simulation
the system has to gain or loose energy in an appropriate way until the desired
temperature is reached. This happens in a so-called equilibration phase. The
overall procedure is shown in Figure 3.27. At the beginning the particles
are assigned initial positions and initial velocities. Then, the temperature
of the system is adjusted by the thermostat. Once the desired temperature
is reached, the trajectories of the particles are computed and the relevant
quantities are measured (production phase). The temperature adjustment
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and the production phase is repeated if measurements and simulations for
other temperatures are desired.

  initalize positions
     and velocities

  adjust temperature
      via thermostat

production phase

  analyze data

Fig. 3.27. Diagram of the simulation process with thermostat.

3.7.1 Thermostats and Equilibration

In this section we describe how to enforce a certain temperature on a three-
dimensional system of particles.

The temperature T of a system and its kinetic energy Ekin are related by
the equipartition theorem of thermodynamics [141] as

Ekin =
3N

2
kBT. (3.40)

Here, N denotes the total number of particles in the system and 3N is the
number of degrees of freedom of the system (one degree of freedom for each
spatial direction).25 Three degrees of freedom are to be subtracted if the
center of gravity of the system is assumed to be at rest, three more degrees of
25 This corresponds to the so-called atomic scaling. Furthermore, there is the non-

periodic scaling with 3N − 6 degrees of freedom in which the translation and
rotation of the entire system are ignored. Then, there is the periodic scaling
with 3N − 3 degrees of freedom in which only the translation of the entire sys-
tem is ignored, see also page 107. In particle systems with a reduced number of
degrees of freedom caused for instance by rigid bonds between particles (as in
molecules which will be discussed later), the kinetic energy is correspondingly
reduced.
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freedom are to be subtracted if also the rotations of the system do not play a
role. The proportionality constant kB is called the Boltzmann constant. The
temperature is thus given as

T =
2

3NkB
Ekin =

2
3NkB

N∑
i=1

mi

2
v2

i . (3.41)

Common thermostats have been derived by Andersen [42], Berendsen [80],
and Nosé and Hoover [327, 451]. These thermostats all rely on a modification
of the velocities which is either carried out explicitly by a scaling of the
velocities of all particles or which is achieved implicitly by the introduction
of an additional friction term in the equations of motion. We describe the
method of velocity scaling and the method of Nosé-Hoover in more detail.

Velocity Scaling. In some of the preceding examples, for instance in the
Sections 3.6.4 and 3.6.5, we already changed the kinetic energy of the system
by a scaling of the velocities of the particles. In the following, we will rein-
terpret this procedure with respect to the temperature. Because of (3.40), a
multiplication of the velocity by the factor

β :=
√

ED
kin/Ekin =

√
T D/T (3.42)

transforms the system from the temperature T to the temperature T D, see
also (3.35). A simple possibility to control the temperature is therefore to
multiply the velocities of all particles at chosen times with the factor β (which
depends on time), i.e., to set

vn
i := βvn

i .

To implement this, the current temperature T (t) has to be computed ac-
cording to (3.41). Then, from this value and the target temperature T D, the
appropriate value of β is determined by (3.42).

Depending on the current and the target temperature, the factor β can be
relatively large or small, so that the scaling of the velocities could affect the
distribution of energy in the system quite strongly. Therefore, instead of the
above β, one often uses a modified version with damping parameter γ ∈ [0, 1]

βγ =
(

1 + γ

(
T D

T (t)
− 1
))1/2

(3.43)

to scale the velocities [80]. The choice γ = 1 leads to (3.42). In the case
of γ = 0 the velocities are not scaled at all. If one uses a scaling factor
proportional to the time step δt of the integration method, γ ∼ δt, then
the scaling of velocities in each time step according to (3.43) results in a
rate of change of the temperature which is proportional to the difference in
temperatures T and T D, i.e.
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dT (t)
dt

∼ (T D − T (t)).

The advantage of this procedure is its simplicity. However, this approach
is not able to remove undesired or local correlations in the motion of the
particles.

In our program the temperature is adjusted by velocity scaling as follows:
After the computation of the new velocities in routine updateV the velocities
are multiplied every kth time step by the factor β. In the intermediate steps
the system is integrated without scaling. This allows the system to restore
the “equilibrium” between potential and kinetic energy. This procedure is
repeated until the target temperature is reached. To this end, the target
temperature T D and the parameter k have to be introduced as new variables
in the code. In routine updateV one has to check if the velocities are to be
scaled at the present time step and to execute the scaling when required. Here,
the value of the current temperature T (t) is determined by the Algorithm
3.3 (appropriately adapted to the linked cell data structure) and the relation
(3.41).

Additional Friction Term in the Equations of Motion. A coupling
to a heat bath can also be achieved by an additional friction term in the
equations of motion, compare also Section 3.6.6. Newton’s equations then
have the form

ẋi = vi,
miv̇i = Fi − ξmivi,

i = 1, . . . , N. (3.44)

The additional force −ξmivi on particle i is proportional to the velocity of
the particle. Here, the function ξ = ξ(t) can depend on time. It is positive if
energy has to be removed from the system and negative if energy has to be
injected into the system. The form of ξ determines how fast the temperature
changes. In the literature one can find different proposals for the choice of
ξ, see [291, 452]. Before we examine two examples in more detail, we discuss
the impact of the friction term on the integration method.

Incorporation of the Friction Term into the Integration Method.
If one substitutes for the derivative of the velocity v̇i at time tn a one-sided
difference operator according to (3.11) in the equations of motion (3.44), one
obtains the discretization

mi
vn+1

i − vn
i

δt
= Fn

i − ξnmivn
i .

Here, we again use the notation ξn = ξ(tn). Solving for vn+1
i gives

vn+1
i = vn

i + δt Fn
i /mi − δt ξnvn

i = (1 − δt ξn)vn
i + δt Fn

i /mi. (3.45)

We see that the velocity vn
i in the nth time step is now multiplied by the

factor 1 − δt ξn. For ξn > 0 this corresponds to a decrease and for ξn < 0
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this corresponds to an increase in the velocity. Thus, the kinetic energy in
the system – and also the temperature of the system – decreases or increases
over time.

In the examples of the Sections 3.6.2, 3.6.4, and 3.6.5, we already scaled
the velocities of the particles at certain times. Now, we see that this just
corresponds to an additional friction term in the equations of motion. The
relation to the factor β from (3.35), which we used up to now, is given by

β = 1 − δt ξn,

or
ξn = (1 − β)/δt.

In this way, also the scaling of velocities according to (3.42) or (3.43) can be
interpreted as the introduction of an additional friction term in the equations
of motion.

Consider now the implications of the friction term on the Velocity-
Störmer-Verlet algorithm as described in Section 3.1. There, the force Fn

i

in (3.22) and (3.24) has to be replaced by Fn
i − ξnmivn

i , and Fn+1
i has to be

replaced by Fn+1
i − ξn+1mivn+1

i . One obtains from (3.22) the equation

xn+1
i = xn

i + δt(1 − δt

2
ξn)vn

i +
Fn

i · δt2
2mi

. (3.46)

Equation (3.24) yields after solving for the velocity vn+1
i the equation

vn+1
i =

1 − δt
2 ξn

1 + δt
2 ξn+1

vn
i +

1
1 + δt

2 ξn+1

(Fn
i + Fn+1

i )δt
2mi

. (3.47)

The friction term has therefore a double effect. For one, the velocity vn
i is

multiplied by 1 − δt
2 ξn. This factor enters into the computation of the new

positions and velocities. In addition, in the computation of the new velocities,
the result is scaled by the factor 1/(1 + δt

2 ξn+1). The extension (3.46) and
(3.47) of the Velocity-Störmer-Verlet algorithm to additional friction terms
can therefore be used to calibrate the temperature for a simulation or to
change the temperature of a system during a simulation and thereby to supply
energy to or to withdraw energy from the system.

About the Choice of ξ. We will now examine two examples for the choice
of ξ in some more detail. According to (3.40), a fixed constant temperature is
equivalent to a constant kinetic energy and therefore equivalent to dEkin/dt =
0. Using the equations of motion (3.44), one obtains

dEkin

dt
=

N∑
i=1

mivi · v̇i =
N∑

i=1

vi · (Fi − ξmivi)

= −
N∑

i=1

vi · (∇xiV + ξmivi) = −
(

dV

dt
+ ξ

N∑
i=1

miv2
i

)
.
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With the choice

ξ = −
dV
dt∑N

i=1 miv2
i

= −
dV
dt

2Ekin(t)
,

one achieves dEkin/dt = 0 and thereby a constant temperature [607]. The
function ξ here corresponds to the negative ratio of the change in the potential
energy to the current kinetic energy.

In the so-called Nosé-Hoover thermostat [327, 416, 451], the heat bath
is considered as an integral part of the simulated system and directly enters
the computations. The heat bath is represented by an additional degree of
freedom that also determines the degree of coupling of the particle system to
the heat bath. The evolution of the function ξ over time, which determines
the strength of the friction, is described in this approach by the ordinary
differential equation

dξ

dt
=

(
N∑

i=1

miv2
i − 3NkBT D

)
/M, (3.48)

where M ∈ R+ determines the coupling to the heat bath and has to be chosen
appropriately. A large value of M leads to a weak coupling.26

In addition to the integration of the equations of motion (3.44) one now
also has to integrate the differential equation (3.48) for the friction term ξ.

Implementation. We now describe one possible implementation of the
Nosé-Hoover thermostat in the framework of the Velocity-Störmer-Verlet
method (3.22) and (3.24). A symplectic variant can be found in [98], see
also Chapter 6. Depending on when the right hand side of (3.48) is used in
the discretization, several different methods can be derived. One example is
26 Hamiltonian system have the advantage that associated stable integrators can

be constructed. But in general, the equations of motion (3.44) can not be derived
from a Hamiltonian. Nevertheless, there is an equivalent formulation of the Nosé-
Hoover thermostat that arises from the Hamiltonian

H(x̄1, . . . , x̄N , p̄1, . . . , p̄N , γ, p̄γ) =
NX

i=1

p̄2
i

2miγ2
+ V (x̄1, . . . , x̄N)

+
p̄2

γ

2M
+ 3NkBT D ln(γ).

The variables with bars are so-called virtual variables that are related to the
“physical” variables by x̄i = xi, p̄i/γ = pi, p̄γ/γ = pγ and which depend on
a transformed time t̄ where dt̄/γ = dt [607], see also Section 3.7.4. Thus, time
depends implicitly on the variable γ. Now, certain equations of motion can be
derived from this Hamiltonian, which, after some further reformulations with
help of the definition ξ := γpγ/M , lead to the equations of motion (3.44) and
(3.48) in the “physical” variables [327].
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the discretization of the right hand side by an average of the values at the
old and the new time

ξn+1 = ξn + δt
( ∑N

i=1 mi(vn
i )2 − 3NkBT D +∑N

i=1 mi(vn+1
i )2 − 3NkBT D

)
/2M. (3.49)

The first step (3.46) of the method, i.e. the computation of the new posi-
tions xn+1

i of the particles, can be implemented without a problem, since the
necessary xn

i ,vn
i ,Fn

i , and ξn are known from the previous time step. In the
computation of the new velocities vn+1

i at time tn+1 due to (3.47), one needs
to know the friction coefficient ξn+1. But according to (3.49), this coefficient
depends on vn+1

i . The relations (3.47) and (3.49) constitute a nonlinear sys-
tem of equations for the velocities vn+1

i , i = 1, . . . , N, and the friction term
ξn+1. This system can be solved iteratively using Newton’s method. To this
end, one needs to compute and invert a Jacobian in each iteration step. In this
special case the Jacobian is a sparse matrix and can be inverted easily. A few
iteration steps of Newton’s method are thus sufficient to solve the nonlinear
system of equations to a satisfactory accuracy [239]. Alternatively, one can
solve the nonlinear system with a simple fixed point iteration. Such an ap-
proach is possible for time integrators for general Hamiltonians as presented
in Section 6.2.

Another possibility is a simpler approximation for ξn+1. For example, if
one uses the approximation

ξn+1 ≈ ξn + δt
( N∑

i=1

mi(vn
i )2 − 3NkBT D

)
/M

instead of (3.49), then ξn+1 can be computed independently of vn+1
i . A better

approximation is obtained by some kind of predictor-corrector method. To
this end, one can proceed as follows [247]: With the abbreviation

vn+1/2
i = vn

i +
δt

2
(Fn

i /mi − ξnvn
i ),

it holds with (3.47) that

vn+1
i =

1
1 + δt · ξn+1/2

(vn+1/2
i +

δt

2mi
Fn+1

i ) (3.50)

with an unknown value ξn+1. An approximation of ξn+1 can be obtained
from the predictor vn+1/2

i as

ξn+1 ≈ ξn + δt
( N∑

i=1

mi(v
n+1/2
i )2 − 3NkBT D

)
/M.

Afterwards, the new velocity vn+1
i can be computed according to (3.50).
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3.7.2 Statistical Mechanics and Thermodynamic Quantities

In this section we describe the necessary fundamentals of statistical mechan-
ics in a nutshell. A general introduction to thermodynamics and statisti-
cal mechanics can be found in one of the many textbooks, see for example
[141, 366, 512, 671].

In physics one distinguishes between so-called phenomenological thermo-
dynamics (also called thermostatics) and statistical thermodynamics (also
called statistical mechanics). In phenomenological thermodynamics one makes
the following assumptions:

– Macroscopic systems in equilibrium possess reproducible properties.
– Macroscopic systems in equilibrium can be described by a finite number of

state variables, as for example pressure, volume, temperature, etc.

Macroscopic here means that the physical system studied consists of so many
microscopic degrees of freedom that the behavior of individual degrees of
freedom is not relevant to the behavior of the complete system. Physical state
variables, i.e. observables, rather correspond to averages over all microscopic
degrees of freedom. Equilibrium here means that the macroscopic variables
such as pressure or total energy are constant over time.

In statistical thermodynamics one derives the physical behavior of macro-
scopic systems from statistical assumptions about the behavior of the micro-
scopic components (i.e. for instance single atoms or molecules). The objective
is to deduce the parameters of phenomenological thermodynamics from the
laws governing the forces between the microscopic components.

The Phase Space. We consider a system which consists of N particles.
To study the dazzling array of possible states of this system one introduces
the so-called phase space Γ . For the three-dimensional case this is the space
spanned by the 6 · N generalized positions and momenta. An element of
the phase space then corresponds to a particular physical system with N
particles. If the system at time t0 occupies the point (q0,p0) of the phase
space, the evolution of the system over time is described by a trajectory

Φq0,p0,t0 : R
+
0 −→ R3N × R3N ,

Φq0,p0,t0(t) := (q1(t), . . . ,qN (t),p1(t), . . . ,pN (t))

in the phase space, compare figure 3.28.
If one considers a variety of different systems that consist of the same

number of particles but cannot be distinguished on the macroscopic level,
i.e., they possess the same total energy and the same volume, one obtains
a “cloud” in the phase space. The set of all such physically similar systems
that only differ in the particular positions and velocities of the individual
particles but lead to the same values for the macroscopic state variables, is
called ensemble, compare Figure 3.29.
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Fig. 3.28. Trajectory in phase space.
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Fig. 3.29. An ensemble in phase space.

The trajectory of a system with a time-independent Hamiltonian cannot
leave its ensemble. Thus the trajectory of the system is contained in the
ensemble which is described by the quantities energy E, volume V = |Ω|,
and number of particles N . The set of all systems with the same energy,
same volume, and same number of particles is called NV E ensemble. There
are also other ensembles characterized by other state variables; an example
is the NPT ensemble (P pressure, T temperature).

Statistical Averages. In statistical mechanics one studies how the systems
in such an ensemble behave on average. To this end, one considers a collection
of many similar systems with states that are statistically distributed in a
suitable way, and introduces the concept of the phase density or N -particle
distribution function

fN : R
3N × R

3N × R
+ −→ R, fN : (q,p, t) �−→ fN (q,p, t).

It is defined as the probability density of the system to be found in the
subdomain I := [q,q+ dq]× [p,p+ dp] of the phase space. Thus, if Prob(I)
denotes the probability for the system to be inside the domain I, it holds
that

Prob(I) =
∫

I

fN (q,p, t)dqdp.

The determination of the probability density function for thermodynamic
systems is one of the main tasks of statistical mechanics.27

To obtain macroscopic variables from the microscopic variables, i.e. from
the positions and velocities of the particles, one is interested in the the so-
called ensemble average
27 The equation of motion for the N-particle distribution function is the Liouville

equation [48]. It has the form of a conservation law and is derived analogously to
the continuity equation in fluid dynamics using the transport theorem. So-called
reduced distribution functions result for example in the Vlasov equation, the
Boltzmann equation, or also the Navier-Stokes equations [56].
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〈A〉Γ (t) :=

∫
Γ

A(q,p)fN (q,p, t)dqdp∫
Γ fN (q,p, t)dqdp

, (3.51)

which is just an average of a function A weighted by the N -particle distribu-
tion function fN . Here, A is an arbitrary integrable function that depends on
the coordinates and velocities of the particles and the time. The integration∫

Γ
denotes the integration over the ensemble Γ .
The macroscopic state variables of a thermodynamic system are averages

over time of functions of the position and momentum coordinates of the
particles of the system. The ergodic hypothesis [48] states that the limit of
the time average

〈A〉τ (q0,p0, t0) :=
1
τ

t0+τ∫
t0

A(Φq0,p0,t0(t))dt (3.52)

for τ → ∞ and the ensemble average (3.51) are equal. In particular, this
implies that the limit of (3.52) for τ → ∞ does not depend on the initial
coordinates (q0,p0) nor on the initial time t0 (except for a negligible set of
exceptions). The equality with the ensemble average furthermore implies that
the trajectory in (3.52) reaches every part of the ensemble over time. It also
implies that the probability of the system being in a certain point in phase
space correlates with the phase density fN .

In a molecular dynamics simulation a particular trajectory Φq0,p0,t0(t) of
a system in phase space is computed approximately. This involves an approx-
imation of Φq0,p0,t0(t) at certain times tn = t0 + n · δt, n = 0, 1, . . . For this
reason, one can approximate the time average (3.52) by a sum28

δt

τ

�τ/δt�∑
n=0

A(Φq0,p0,t0(tn)). (3.53)

Here, the following questions have to be considered: Is the time interval τ
large enough so that the limit of the time average is sufficiently well approx-
imated?29 Does one possibly measure in an unimportant part of phase space
only? Does the ergodic hypothesis apply at all?

In the following, we employ thermostats and averaging in specific exam-
ples.
28 In contrast, the Monte-Carlo method [428] relies on averaging according to (3.51).

To this end, one selects points from the ensemble, evaluates the integrands in
(3.51) in these points, and computes an average to approximate (3.51). These
points are chosen according to a transition probability which depends on fN .

29 Symplectic integrators here guarantee that the approximated trajectory of a
system does essentially not leave the ensemble, see also Section 6.1.
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3.7.3 Liquid-Solid Phase Transition of Argon in the NVT
Ensemble

We study a three-dimensional system which consists of 512 (8×8×8) particles
in a cube with periodic boundary conditions. An initial configuration of the
particles is given together with velocities corresponding to a temperature
of 360 K (Kelvin). Initially, the particle system is relaxed with a constant
temperature for 20 ps (picoseconds) and then it is subsequently cooled. First,
a transition from the gas state to the liquid phase occurs, and then, a phase
transition to the solid phase takes place. Depending on the cooling rate we
obtain either a crystal or an amorphous, glass-like substance.

The material properties of the noble gas argon are now imposed onto the
Lennard-Jones potential by the choice of the physical potential parameters
as given in Table 3.9.

length σ 3.4 · 10−10 m = 3.4 Å,
energy ε 1.65 · 10−21 J = 120 K kB,

mass m 6.69 · 10−26 kg = 39.948 u,

time
q

σ2m
ε

2.17 · 10−12 s = 2.17 ps,

velocity
p

ε
m

1.57 · 102 m
s
,

force ε
σ

4.85 · 10−12 N,
pressure ε

σ3 4.22 · 107 N
m2 ,

temperature ε
kB

120 K

Table 3.9. Parameters for argon and derived quantities.

Before we describe the simulation in more detail we introduce dimension-
less equations at this point.

Dimensionless Equations – Reduced Variables. The idea is now to
transform the variables in the equations of motions in such a way that their
physical dimensions are reduced. This involves appropriately chosen reference
quantities in the following way:

dimensionless variable =
variable with dimension

reference quantity with the same dimension
.

The reference quantities should be characteristic for the problem and they
have to be constant. One goal of this approach is to obtain the relevant
quantities and coefficients for the evolution of the system. In addition, the
use of reduced variables avoids problems in the computation with unfavorably
chosen physical units that could lead to large rounding errors. Furthermore,
computations for one set of parameters can often directly be transformed to
give results for another set of parameters.

As an example we consider the Lennard-Jones potential (3.26). Its param-
eters are the depth ε of the potential and the position σ where the potential
crosses zero. Newton’s equations of motion with this potential read
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m
∂2

∂t2
xi = −24ε

N∑
j=1
j �=i

(
2
(

σ

rij

)12

−
(

σ

rij

)6
)

· rij

r2
ij

. (3.54)

Now, characteristic reference quantities are chosen and the other quantities
are scaled by them. Here, we use the length σ̃, the energy ε̃, and the mass m̃
and scale the quantities as follows:

m′ = m/m̃, x′
i = xi/σ̃, r′ij = rij/σ̃, E′ = E/ε̃, V ′ = V/ε̃,

σ′ = σ/σ̃, ε′ = ε/ε̃, T ′ = TkB/ε̃, t′ = t/α̃,
(3.55)

where α̃ =
√

m̃σ̃2

ε̃ . With the relations

∂xi

∂t
=

∂(σ̃x′
i)

∂t
= σ̃

∂x′
i

∂t′
∂t′

∂t
=

σ̃

α̃

∂x′
i

∂t′
(3.56)

and
∂2xi

∂t2
=

∂

∂t

σ̃

α̃

∂x′
i

∂t′
=

σ̃

α̃2

∂2x′
i

∂t′2
,

one obtains by substitution into (3.54)

m̃m′ ∂2(x′
iσ̃)

(∂(t′α̃))2
= −24

N∑
j=1
j �=i

ε′ε̃

⎛
⎝2

(
σ′

r′ij

)12

−
(

σ′

r′ij

)6
⎞
⎠ r′ij

(r′ij)2σ̃

and therefore the equations of motion

m′ ∂
2x′

i

∂t′2
= −24

N∑
j=1
j �=i

ε′

⎛
⎝2

(
σ′

r′ij

)12

−
(

σ′

r′ij

)6
⎞
⎠ r′ij

(r′ij)2
.

With this dimensionless formulation, problems with very large or very small
values of the variables no longer occur. Furthermore, systems with the same
values for σ′ and ε′ behave in the same way, i.e., for two different systems
with different physical parameters but the same values for σ′ and ε′ and the
same initial conditions in reduced form one obtains the same trajectories in
the reduced system.

Quantities as for instance the kinetic or the potential energy can be com-
puted directly from the reduced variables. Using (3.56) and the definition of
α̃ one obtains for particles with the same mass m

Ekin = ε̃E′
kin =

1
2

∑
i

m

(
∂xi

∂t

)2

=
1
2
m′ε̃

∑
i

(
∂x′

i

∂t′

)2

(3.57)

and
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Epot = ε̃E′
pot = ε̃

1
ε̃
ELJ =

∑
i,j,i<j

4ε′ε̃

⎛
⎝( σ′

r′ij

)12

−
(

σ′

r′ij

)6
⎞
⎠ . (3.58)

For the temperature it holds that

T = T ′ε̃/kB. (3.59)

In the following, we choose for simplicity σ̃ := σ, ε̃ := ε, and m̃ := m. This
directly implies σ′ = 1, ε′ = 1 and m′ = 1.

Crystallization of Argon. The simulation runs as follows: The initial po-
sitions of the particles are chosen on a regular grid as shown in Figure 3.30.
The simulation domain is a periodically continued cube with an edge length
of 31.96 Å which corresponds to a scaled, dimensionless value of 9.4, see
Tables 3.10 and 3.11. For heating and cooling we use the simple scaling
method from Section 3.7.1. First, the system is brought up to a tempera-
ture of T ′ = 3.00 (which corresponds to 360 K). To this end, 50 integration
steps are performed between two successive scalings of the velocity. After this
initial temperature is reached, the system is cooled in steps of 7.8 · 10−4 to
a temperature of T ′ = 0.5, where again 50 integration steps are performed
between the respective scalings.

ε = 1.65 · 10−21 J, σ = 3.4 Å, m = 39.948 u,
L1 = 31.96 Å, L2 = 31.96 Å, L3 = 31.96 Å,
N = 83, T = 360 K,

rcut = 2.3 σ, rl = 1.9 σ, δt = 0.00217 ps

Table 3.10. Parameter values with units for the simulation of argon.

ε′ = 1, σ′ = 1, m′ = 1,
L′

1 = 9.4, L′
2 = 9.4, L′

3 = 9.4,
N = 83, T ′ = 3.00,

r′cut = 2.3, r′l = 1.9, δt′ = 0.001

Table 3.11. Parameter values as scaled quantities for the simulation of argon.

Besides the kinetic and potential energy of the system (equations (3.57)
and (3.58)), we measure some further statistical data of the simulation that
will be introduced in the following.

The instantaneous pressure Pint of a particle system consists of a kinetic
part and a force term, i.e.

Pint =
1

3|Ω|

(∑
i

miẋ2
i +
∑

i

Fixi

)
. (3.60)
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A time average of this quantity results in the internal pressure of the system.
For constant volume |Ω|, one can then detect phase transitions by abrupt
changes in the pressure.

The diffusion of the particle system is measured as the mean standard
deviation of the particle positions. To this end, we determine the distance30

of the position of each particle at time t to its position at a reference time
t0, and compute

Var(t) =
1
N

N∑
i=1

‖xi(t) − xi(t0)‖2 . (3.61)

The diffusion equals zero at time t0 and increases strongly at first. Therefore,
one restarts the measurement in regular intervals. Here, one sets t0 = t and
measures the diffusion after a fixed time anew. A transition from the gas phase
to the liquid state and from the liquid to the solid state can be detected from
the value of the diffusion. At a phase transition, the value of the diffusion
decreases abruptly.

The radial distribution function g(r) describes the probability to find
a pair of particles with distance r. For its computation one determines all
N(N−1)

2 distances, sorts them, and produces a histogram such that ρ
(
[r, r +

δr)
)

gives the number of particle pairs with distance in the interval [r, r+δr).
If one divides this number ρ by the volume

4π

3
(
(r + δr)3 − r3

)
of the domain spanned by the range of distances r to r + δr, one obtains a
particle density [282]. The continuous analog of this density is

g(r) =
ρ(r)

4πr2
∫ R

r′=0 ρ(r′)
, (3.62)

where we scale the absolute numbers additionally with the number of all
particles up to a maximal distance R. To this end, we choose R as the largest
distance r found in the histogram.

An example for a radial distribution function is shown in Figure 3.30.
Here, small values of r up to a few atom distances are interesting. Then, the
particle distances can be computed efficiently by using the linked cell method.
Single peaks in the distribution function indicate fixed distances as in crystals
while more uniform distributions indicate disordered states. Furthermore, one
can compute a more accurate statistic by averaging the distances over several
time steps.
30 In the case of periodic boundary conditions, we have to compute the distance to

the real position of the particle. To this end, if a particle leaves the simulation
domain at one side and reenters it on the opposite side, the value of its initial
position xi(t0) is to be corrected appropriately.
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Fig. 3.30. Initial configuration and initial radial distribution.

In the following simulation, the particle interactions are governed by a
modified Lennard-Jones potential

Uij(rij) = 4 · ε · S(rij)

((
σ

rij

)12

−
(

σ

rij

)6
)

. (3.63)

Here, S(r) is a smoothing function defined as

S(r) =

⎧⎨
⎩

1 : r ≤ rl,

1 − (r − rl)
2(3rcut − rl − 2r)/(rcut − rl)

3 : rl < r < rcut,
0 : r ≥ rcut.

(3.64)
This function guarantees that the potential as well as the forces continuously
decrease to zero between rl and rcut. The parameters rl and rcut are chosen
as rl = 1.9σ and rcut = 2.3σ.

In Figure 3.31 the radial distribution function, the potential energy, the
diffusion as standard deviation, and the pressure for the crystallization of ar-
gon are shown for the NVT ensemble. Temperature is controlled by a rescal-
ing every 50 integration steps. We see that something drastic happens at
t′ = 150: We observe a sharp bend in the curve for the energy, a turning
point in the pressure curve, and a jump in the time evolution of the diffusion
(which is superimposed with a jump caused by the third rescaling step). The
time t′ = 150 corresponds to an actual temperature of 84 K. The temperature
for the transition into the crystal state is approximately T ′

K = 0.71 which
translates to TK = 84 K. This matches (up to an accuracy of 0.2%) with
the physical melting point of argon at 83.8 K and (up to an accuracy of 4%)
with the close-by boiling point at 87.3 K. Thus, in line with the accuracy of
the simulation, we observe both transitions at the same time. The transition
from the gas phase (over the liquid) to the solid state occurs and a crystal
is formed in the process. The spatial arrangement of the argon atoms and
the regularity of the crystal lattice can be seen from the graph of the radial
distribution function in figure 3.31. In the gas phase, disorder is prevalent (we
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Fig. 3.31. Crystallization of argon in the NVT ensemble with rescaling. Potential
energy, pressure, diffusion as standard deviation, and radial distribution function,
in scaled units for the cooling phase.

have a smooth, almost constant function starting at r′ = 1). In the crystal
phase, characteristic peaks in the distribution function arise that correspond
to the distances in the crystal lattice.

Fig. 3.32. Crystallization of argon in the NVT ensemble with rescaling, particle
distribution for t′ = 140 (left) and t′ = 250 (right). The colors of the particles
encode their velocities.
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Figure 3.32 shows a snapshot of the argon particles at time t′ = 140
(which is associated to the gas phase at 100 K) and at time t′ = 250 (which
is associated to the crystal phase at 60 K). In this simulation the system is
kept at a constant temperature (60 K) from t′ = 150 to t′ = 250. We clearly
see the resulting crystal structure. During the phase transition from liquid
to solid most materials, including argon, release latent heat, and therefore
the density and thus the volume change abruptly. In our simulation we work
with the NVT ensemble in which the number of particles, the volume (i.e.
the size of the simulation domain) and the temperature is kept constant.
Therefore, the transition to the crystalline phase leads to an unphysical hole
in the crystal as observed in Figure 3.32 (right).

Supercooling of Argon to a Glass State. In this example we consider the
supercooling of argon. Many liquids do not change to a crystalline state but
to a glass state if they are cooled fast enough. The theory of supercooling is
based on the singular behavior of the solution of the so-called mode-coupling
equations [517]. These equations are a simplified form of certain nonlinear
equations of motion. Here, molecular dynamics methods can be applied with
good success [358]. Simulations of the supercooling of argon and related sub-
stances can be found for instance in [210, 237, 269, 438].31

In our simulations, the interaction between particles is again realized by
the modified Lennard-Jones potential (3.63) using the set of parameters from
Table 3.11. The initial positions of the particles are chosen as the regular
lattice from Figure 3.30.

The simulation proceeds similarly to the last experiment, only the cooling
now happens significantly faster. First, the system is heated to the temper-
ature T ′ = 3.00, with 25 integration steps between each rescaling of the
velocities. The system is then subsequently cooled by a linear reduction of
the temperature in steps of 2.5 ·10−3 down to a temperature T ′ = 0.02. After
each scaling an equilibration phase of 25 time steps is employed.

The graphs of the computed potential energy, the pressure, the diffusion,
and the radial distribution function are shown in Figure 3.33. One can clearly
recognize a phase transition in the time range t′ = 46 to t′ = 48. The time
t′ = 47 for the glass transition corresponds to a temperature of 38 K or ap-
proximately T ′

G = 0.3. Thus, the phase transition occurs significantly later
than in the previous experiment where a slower cooling rate was employed.
It also takes place at a significantly lower critical temperature than the phys-
ical melting point of argon which is 83.8 K. The supercooled liquid is in a
metastable state, the phase transition then occurs like a shock and results in a
31 However, a problem is caused by the limited physical time for which the simula-

tions can be run. This enforces cooling rates that are several times larger than the
cooling rates in laboratory experiments. As a consequence, the measured critical
temperature for the transition into the glass state is higher in simulations than
in laboratory experiments.
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Fig. 3.33. Supercooled argon in the NVT ensemble with rescaling. Potential energy,
pressure, diffusion, and radial distribution function in scaled units for the cooling
phase.

characteristic amorphous glass state. The associated radial distribution func-
tion also supports such a finding. It differs significantly from the distribution
function for a crystal structure and exhibits a more disordered, amorphous
state.

Fig. 3.34. Supercooled argon in the NVT ensemble with rescaling, particles for
t′ = 42.5 (left) and t′ = 47.5 (right).
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Figure 3.34 displays two configurations, one shortly before, and the other
one shortly after the phase transition. Both pictures show disordered particle
systems. The system is transformed during cooling into an amorphous solid
state and stays in that state for the remaining simulation time. Thus, in
contrast to the previous simulation, no crystal structure develops.

Again, one can observe an unphysical hole in the structure which stems
from the abrupt increase in density at the phase transition. This would be
avoided if the volume of the simulation domain could adapt to the new state.
To allow such an adaptation one has to use a different ensemble that employs
a variable volume instead of the NVT ensemble which has been used up to
now. Such a technique and ensemble are discussed in the next section.

3.7.4 The Parrinello-Rahman Method for the NPT Ensemble

It is known that a system can be described by its Lagrangian. If momenta
are introduced, the Lagrangian can be transformed into the corresponding
Hamiltonian, and the equations of motion of the system can be derived, see
Appendix A.1 for details. We will now follow such a procedure to formulate a
method for a system in the NPT ensemble. The idea is to introduce additional
degrees of freedom for the whole coordinate system in time and space which
can be used to control the volume and the shape as well as the pressure and
the temperature of the system [453]. We obtain these additional degrees of
freedom by a transformation of the spatial coordinates xi to scaled positional
coordinates x̄i ∈ [0, 1)3 according to

xi = Ax̄i. (3.65)

Here, A = [a0, a1, a2] is a 3×3 matrix that depends on time. It is formed from
the basis vectors a0, a1, a2 of the periodic simulation box. We furthermore
scale the time t to t̄ by virtue of

t =
∫ t̄

0

dτ

γ(τ)
, thus dt̄ = γ(t̄)dt.

Then, for the velocities, it holds

ẋi(t) = γ(t̄)A(t̄) ˙̄xi(t̄).

The matrix A and the variable γ control the pressure and the temperature
of the extended system. To this end, we also define the fictitious potentials
of the thermodynamic variables P and T

VP = Pext detA, VT = NfkBT D ln γ ,

where Pext denotes the external pressure of the system, T D the target tem-
perature, Nf the number of degrees of freedom, and detA the volume of the
simulation box spanned by a0, a1, a2.
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The extended Lagrangian for the NPT ensemble is now defined as32

L =
1
2

N∑
i=1

miγ
2 ˙̄xT

i AT A ˙̄xi +
1
2
Wγ2tr(ȦT Ȧ) +

1
2
Mγ̇2 (3.66)

−V (Ax̄, A) − Pext detA − NfkBT D ln γ

where mi denotes the mass of th ith particle, M denotes the (fictitious) mass
of the Nosé-Hoover thermostat, and W denotes the (fictitious) mass of the
so-called barostat (pressure controller). With the notation G := AT A we
obtain as conjugated moments

px̄i = L ˙̄xi
= miγ

2G ˙̄xi, pA = LȦ = γ2WȦ, pγ = Lγ̇ = Mγ̇ .

The Hamiltonian can therefore be written as

H =
1
2

N∑
i=1

pT
x̄i

G−1px̄i

miγ2
+

1
2

tr(pT
ApA)

γ2W
+

p2
γ

2M
(3.67)

+V (Ax̄, A) + Pext detA + NfkBT D ln γ .

The use of a constant time step in rescaled time would lead to variable time
steps in physical time which complicates the implementation of an integra-
tion method. Therefore, we transform the time back to the original time.
Furthermore, the equations of motion are simplified by a multiplication of
the momenta with G−1 and by taking the logarithm of γ. Thus, we trans-
form the variables a second time according to

x̂i(t) := x̄i(t̄), Â(t) := A(t̄), Ĝ(t) := G(t̄),
η(t) := ln γ(t̄), px̂i := G−1px̄i/γ, pÂ := pA/γ.

With this transformation, the Hamiltonian (3.68) becomes33

H =
1
2

N∑
i=1

pT
x̂i

Gpx̂i

mi
+

1
2

tr(pT
Â
pÂ)

W
+

1
2

p2
γ

M
(3.68)

+V (Ax̄, A) + Pext det Â + NfkBT Dη ,

32 In (3.66), Ax̄ is an abbreviation for (Ax̄1, ..., Ax̄N). In the case of periodic bound-
ary conditions, the potential V explicitly depends on A. For instance, for a pair
potential it holds that

V (x, A) =
1

2

X
z∈Z3

NX
i,j=1

i�=j if z=0

U(xj − xi + Az).

This additional dependence on A in the periodic case must be taken into account
in any differentiation with respect to A.

33 After this transformation, (3.68) is no longer a Hamiltonian of the system since
Hamilton’s equations can no longer directly be gained from it. Instead, they have
to be derived from (3.68) while considering the transformations accordingly.
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and the associated equations of motion read

˙̂xi =
px̂i

mi
,

˙̂
A =

pÂ

W
, η̇ =

pγ

M
, (3.69)

ṗx̂i = −Â−1∇xiV − Ĝ−1 ˙̂
Gpx̂i −

pγ

M
px̂i , (3.70)

ṗÂ = −
N∑

i=1

∇xiV x̂T
i −∇AV +

N∑
i=1

miÂ ˙̂xi
˙̂x
T

i −Â−T Pext det Â− pγ

M
pÂ, (3.71)

ṗγ =
N∑

i=1

pT
x̂i

ÂT Âpx̂i

mi
+

tr(pT
Â
pÂ)

W
− NfkBT D . (3.72)

For the stress tensor and thus the pressure one now obtains

Πint =
1

det Â

N∑
i=1

(
miÂ ˙̂xi

˙̂x
T

i ÂT −∇xiV x̂T
i ÂT

)
, Pint =

1
3
tr(Πint) .

By this approach we introduced with A nine new degrees of freedom into
equation (3.65). Now, the question arises if these degrees of freedom are
physically meaningful. Without a further restriction this is certainly not the
case, since at least rotations of the system should be excluded. To this end,
there exist the following three methods:

– The entries of the force FÂ := ṗÂ acting on Â are set to zero below the
diagonal, i.e.

FÂα,β
= 0, α > β.

Thus, a reactive force that avoids rotations is directly applied.
– Symmetry is enforced by using

FS
Â

=
1
2
(FÂ + FT

Â
). (3.73)

This eliminates the redundant degrees of freedom, but in general leads to
distorted computational domains.

– Five constraints
Âα,β

Â11

=
Â0

α,β

Â0
11

, α ≤ β, (3.74)

are introduced, where the reference matrix Â0 is chosen as the initial matrix
A. Thus, due to these constraints and the symmetry of the stress tensor,
only one degree of freedom Â11 remains which can then be used for isotropic
volume control. For a pressure control with isotropic volume, the entire
trace of FÂ can be used similarly to the so-called Andersen thermostat
[42].
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Implementation. In principle, the equations of motion (3.69)–(3.72) can be
implemented as before. However, one has to pay attention to the integration
method since after differentiation of ˙̂xi = px̂i/mi and substitution of (3.70)
the relation

¨̂xi =
−Â−1∇xiV

mi
− Ĝ−1 ˙̂

G ˙̂xi − η̇ ˙̂xi

holds. Thus, ¨̂xi(t) depends on ˙̂xi(t). An analogous statement is valid for ¨̂
A

and η̈. This problem can be solved for instance with a variant of the Störmer-
Verlet method for general Hamiltonians or with a symplectic Runge-Kutta
method, see Section 6.2.

To compute the temperature we have to determine the number of effective
degrees of freedom. For systems of atoms without bonds this is just the
number of atoms times three.34 We here distinguish (compare the footnote
on page 87)

– the atomic scaling Nf = 3N , where N is the number of atoms,
– the non-periodic scaling Nf = 3N − 6, since the translation and rotation

of the center of gravity can be ignored,
– the periodic scaling Nf = 3N − 3, since in the periodic case only the

translation of the center of gravity can be ignored.

Thus, we can define the temperature and the kinetic energy as

Tins =
2Ekin

NfkB
and Ekin =

1
2

N∑
i=1

pT
x̂i

ÂT Âpx̂i

mi
.

This temperature can be used as target temperature T D in the thermostat in
(3.68). For the Parrinello–Rahman method we also need the fictitious masses
W and M of the barostat and thermostat which have to be chosen appropri-
ately [462].

3.7.5 Liquid-Solid Phase Transition of Argon in the NPT
Ensemble

Again, we study the system of 512 argon particles from Section 3.7.3. The
atoms are initially arranged in a periodic cube at a temperature of 360 K.
34 So far we have used the atomic scaling of the particles for temperature control.

If molecules are to be simulated, it makes sense to separate the center of gravity
from the coordinates of the atoms. Then, the atoms are parameterized in a lo-
cal coordinate system with respect to the common center of gravity such that a
scaling does not tear the molecule apart. From this parameterization one obtains
the corresponding Lagrangian and Hamiltonian and finally the equations of mo-
tion in the associated relative coordinates. Furthermore, in the case of molecules,
the number of inner bonds must be subtracted from the number of degrees of
freedom.
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They are cooled with different cooling rates. In contrast to the previous ex-
periments we now consider an NPT ensemble. The phase transition from the
gas phase to the solid phase or to the supercooled liquid and glass state sim-
ilarly occurs as before, but we now observe changes in the volume instead of
the pressure.

For the implementation of the NPT ensemble we use the Parrinello–
Rahman method from the previous Section 3.7.4 with a fictitious mass of
W = 100. The temperature is controlled by a Nosé-Hoover thermostat with
a fictitious mass of M = 10. The resulting system is integrated by a variant
of the Störmer-Verlet method for general Hamiltonians, see also Section 6.2.

Crystallization of Argon. First, we slowly cool the system from 360 K to
60 K (i.e. from T ′ = 3 to T ′ = 0.5) within the physical time interval from
20 ps to 180 ps. The volume of the simulation domain is allowed to change.

We discussed several possibilities which make changes in the volume
unique by imposing certain constraints. We now apply two of these ap-
proaches, the symmetric constraint (3.73) which enforces a symmetric stress
tensor and the isotropic constraint (3.74) which results in an undistorted
domain.
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Fig. 3.35. Crystallization of argon in the NPT ensemble: Isotropic (3.74) and
symmetric (3.73) constraints. Potential energy, volume, diffusion, and radial distri-
bution function in scaled units for the cooling phase.
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In Figure 3.35 the potential energy, the diffusion, the volume, and the
radial distribution function are presented. In contrast to the experiments with
the NVT ensemble, the phase transition can not be identified from the graphs
anymore. The associated jump in the density is just compensated in the NPT
ensemble by a change in the volume.35 At the end of the simulation, however,
the radial distribution function shows distinctive signs of a crystal structure
with its specific peaks at characteristic lattice distances. These peaks are
even more developed than in the simulation with constant volume in the
NVT ensemble.

The characteristic differences of a simulation in the NPT ensemble com-
pared to a simulation in the NVT ensemble can be seen in Figures 3.36 and
3.37.

Fig. 3.36. Crystallization of argon in the NPT ensemble: Isotropic constraints
(3.74), particles at t′ = 140 (left) and t′ = 250 (right).

Fig. 3.37. Crystallization of argon in the NPT ensemble: Symmetric constraints
(3.73), particles at t′ = 140 (left) and t′ = 250 (right).

35 The jumps in the diffusion are caused by the restarts in the computation of the
standard deviation.
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The volume of the domain decreases during the cooling period. Thus,
lattice imperfections and holes in the domain are avoided. Figure 3.36 shows
how the simulation cube uniformly contracts (the atoms therefore appear
somewhat larger than in Figure 3.32) and the atoms adopt positions in a
crystal lattice. For the symmetric constraint we see in Figure 3.37 that the
domain is highly distorted. The lattice structure of the annealed crystal is
clearly visible.

Supercooling of Argon to a Glass State. Finally we carry out an exper-
iment with a significantly larger cooling rate. To this end, we linearly reduce
the temperature from 360 K to 2.4 K within 30 ps. Then, instead of a crystal,
an amorphous substance is formed.

Figure 3.38 displays the measured values for symmetric constraints (3.73)
and for isotropic constraints (3.74). The difference in the diffusion stems from
the fact that the mean free path in the distorted domain is somewhat longer
than in the isotropically contracted domain. Again, in contrast to the NVT
simulation, the exact time for the phase transition can not be recognized from
the graphs. But the radial distribution function clearly signals an amorphous,
glass-like substance at the end of the simulation. There are no peaks in the
distribution function that would be characteristic for crystals.
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Fig. 3.38. Supercooled argon in the NPT ensemble: Isotropic (3.74) and symmet-
ric (3.73) constraints. Potential energy, volume, diffusion, and radial distribution
function in scaled units for the cooling phase.
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This can also be seen in the Figures 3.39 and 3.40. The resulting struc-
ture differs significantly from the ordered structure of a crystal for both the
isotropic constraints and the symmetric constraints.

Fig. 3.39. Supercooled argon in the NPT ensemble: Isotropic constraints (3.74),
particles at t′ = 42.5 (left) and t′ = 47.5 (right).

Fig. 3.40. Supercooled argon in the NPT ensemble: Symmetric constraints (3.73),
particles at t′ = 42.5 (left) and t′ = 250 (right).



4 Parallelization

In the following, we discuss the parallelization of the linked cell method from
Chapter 3. We will use domain decomposition [568] as parallelization tech-
nique and MPI (message passing interface) [7] as a communication library.
Parallelization is used to reduce the time needed to execute the necessary
computations. This is done by distributing the computations to several pro-
cessors, which can then execute these computations simultaneously, at least
to some extent. In addition, parallelization also has the advantage that on
a parallel computer there is often more memory available than on a single
processor machine, and hence, larger problems can be tackled.

In the last years, the development of modern computers has led to more
and more powerful scalable parallel computer systems, see Figure 1.2. By now,
such systems allow molecular dynamics simulations with many hundreds or
thousands of millions of particles. The proper usage of parallel computers
used to be an art since programming systems were very machine specific and
programs developed on those machines were hard to test and difficult to port
to other machines. Nowadays, however, there are (almost) fully developed
programming environments that allow debugging of parallel codes and also
ensure portability between different parallel computers.

We start with an overview of parallel computers and different paralleliza-
tion strategies. Then, in Section 4.2, we present domain decomposition as
parallelization strategy for the linked cell method. In Section 4.3 we discuss
in detail its implementation with MPI. Finally, in Section 4.5, we present
some application examples for our parallelized algorithm. We extend exam-
ples from Section 3.6 from the two- to the three-dimensional case.

4.1 Parallel Computers and Parallelization Strategies

Taxonomy of Parallel Computers. Since 1966 (Flynn [234]) parallel com-
puter systems are categorized depending on whether the data stream and/or
the instruction stream are processed in parallel. In this way, the fundamental
types SISD (single instruction/single data stream – the classical microproces-
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sor), SIMD (single instruction/multiple data stream) and MIMD (multiple
instruction/multiple data stream) can be distinguished.1

Older parallel computers by MasPar and the Connection Machine Series
by Thinking Machines or some current designs such as the “array processor
experiment” (APE) fall for instance into the class of SIMD computers. On
these computers, programs are executed on an array of very many, but simple
processors. However, this particular architecture nowadays plays a minor role
and is used only for some specific applications. Vector computers, such as
Cray T90 and SV1/2, NEC SX-5 or Fujitsu VPP, also fall into the class
of SIMD computers. In such computers, the same instructions are executed
in a quasi-parallel manner using the assembly line principle. In a certain
sense, RISC (reduced instruction set computer) microprocessors also belong
to this class. A RISC processor usually only executes simple instructions,
but with very high speed. Every such instruction is again split into smaller
subinstructions that are processed in a pipeline on the instruction level. In
this way, the processor always works on several instructions at the same time
(i.e. in parallel).2

Most of the current parallel computers are of the MIMD type. In MIMD
computers, every processor executes its own sequence of instructions in the
form of its own program. Here, one has to distinguish between MIMD multi-
processor systems with shared or with distributed memory.

Systems with shared memory have a large global memory to which dif-
ferent processors have read and write access. The shared memory may be
realized as one large bank of memory, as several distributed smaller memory
banks, or even as memory distributed to all processors, compare Figure 4.1.
However, such systems, regardless of realization, allow the programmer to
access the entire shared memory (at least virtually) within a global address
space.

Systems with shared memory permit a relatively easy parallelization of
sequential programs since memory is globally addressable and therefore no
significant changes have to be made to the data structures. In addition, sec-
tions of the program that can be executed independently can easily be deter-
mined and executed in parallel. Control directives have to be inserted into the
1 For a detailed review of current parallel computers see [8].
2 Further developments led to very long such pipelines (super-pipelining). Nowa-

days, the increased integration density of transistors on chips allows several arith-
metic units and pipelines to be placed on one processor, leading to superscalar
processors (post-RISC). In very long instruction word (VLIW) processors such
as Intel’s Itanium, several instructions that are explicitly independent of each
other are specified in one long instruction word. In both post-RISC and VLIW
architectures, several instructions are processed in parallel. This parallelization
on the lowest level is controlled either by a dispatcher unit in the processor or by
the compiler, depending on the processor type. It does not have a direct impact
on programming. However, a clever memory layout and ordering of instructions
in programs can lead to further speedups even on such RISC processors.
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Fig. 4.1. System with (virtual) shared memory. The network between the memory
banks and the processors can be realized in different ways and is not drawn in
detail.

sequential program that identify these parallelizable sections.3 It is impor-
tant that each processor performs approximately the same amount of work,
and that different operations do not interfere with each other. For example,
the latter can be the case if two processors try to write to the same memory
location at the same time. The exact timing of the two different processors
will determine which processor writes last and thereby determines the value
of the memory location after the write operations.4

Widely accepted programming models are “multi-threading”, which op-
erates on a low level of abstraction, and designs based on it that work with
compiler directives, such as “OpenMP” [9]. OpenMP has now been standard-
ized, and therefore parallel programs using it can be ported to other hardware
platforms to a large extent. Essentially, only a few additional directives and
possibly some restructuring of the code are needed to adapt a sequential
program to parallel computers with shared memory.

However, for large numbers of processors, memory bandwidth becomes
the bottleneck of such systems and limits their performance. One observes a
decline in performance starting at a certain number of processors which de-
pends on the hardware used for the parallel system. Therefore, large parallel
computers are designed with a multilevel memory hierarchy that only gives
the impression of a global address space, but exhibits significant differences in
performance depending on the distance between processor and memory mod-
ule. Examples for systems with shared memory are the Fire E25k by SUN,
3 There are also special auto-parallelizing compilers which automatically recognize

such sections in the code. However, these compilers are of limited efficiency and
they are only suitable for certain easy standard situations.

4 There are several ways to synchronize processors to prevent such situations. One
possibility consists in protecting locations in memory with semaphores that sig-
nal whether a different processor wants to access the same memory locations.
Often it is more advantageous to distribute the operations to the processors in
an appropriate way, together with barriers at which all processors are explicitly
synchronized with each other. Barriers prevent processors from executing oper-
ations after the barrier as long as there is at least one processor still executing
operations before the barrier.
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the HP 9000 SuperDome series and the HP AlphaServer series, the multipro-
cessor servers from the IBM pSeries 690 or the Cray XMT. Typically, these
computers consist of 16 to 64 processors of the same type, equipped with a
shared common global memory. The SGI Altix 4000 series can be cited as
a further example. It provides a virtual global address space, but explicitly
introduces the notion of nonuniform memory access (NUMA).

It should be mentioned that writing efficient parallel programs for parallel
computers with shared memory and large numbers of processors is difficult.
When optimizing such programs, one always has to take into account that
different parts of memory are accessible at different speeds, starting from
caches over local memory to memory modules located further away.

In contrast, in systems with distributed memory, every processor has its
own local memory which it can access and work with, see Figure 4.2. Memory
is addressed locally and references to other memory are meaningless since the
processor cannot access that memory directly. Hence, to make parallel pro-
gramming possible, data have to be exchanged explicitly between processors,
or more precisely, between their local memories. This requires appropriate
hard- and software for fast data exchange.
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Fig. 4.2. System with distributed memory. The network between different proces-
sors can be realized in different ways and is not drawn in detail.

On the hardware side, parallel computers with distributed memory need
fast connections between processors to allow the fast exchange of data be-
tween the distributed memory. These connections can be realized in a single
stage over a bus (shared medium) or a crossbar switch. There are variants of
multi-stage processor networks which directly use the communication chan-
nels of the processors to build rings, grids, or tori, and there are switched
networks in which (crossbar) switches are used to also form rings, tori, trees,
or more general networks. One condition for any powerful processor network
is that the network hardware has to allow multiple or competing paths be-
tween processors. It is also possible to construct efficient networks for very
large numbers of processors using small switches which are combined into
so-called “fat” trees or two- or three-dimensional tori.

Examples for systems with distributed memory are for instance the IBM
pSeries 690 (RS/6000-SP) which uses a fat tree of crossbar switches as connec-
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tion between processors, the Cray XT4, XT3 and T3E series which employs a
three-dimensional torus made from directly coupled processor-memory mod-
ules, modern architectures such as the IBM Blue Gene which employs a
mixture of three-dimensional torus and tree, the Hitachi SR series which
uses a large central crossbar switch, or Beowulf type cluster computers which
use PCs and Ethernet type networks. In most cases, cluster computers are
low cost parallel computers built from mass market components. Ethernet
is often used as network technology in such systems [581]. The performance
of these computers is, however, limited by the relatively high latency, the
low bandwidth, and the poor scalability of the network. The use of other
standardized high performance network technologies such as GigabitEther-
net, Myrinet or Infiniband can significantly improve the overall performance
of cluster computers for a number of applications [557]. Some examples are
the HP BladeSystem c-Class, the SGI Altix XE Series or the IBM System
Cluster 1600.

The computing nodes are connected in certain topologies, as shown in
Figure 4.3, depending on the network technology and the network proto-
col. The networks differ in the number of connections per processor and per
switch, in the network distance between two computing nodes, and in the
overall performance of the network, measured for instance by the bisection
bandwidth. Attempts to adapt the communication pattern of a parallel pro-
gram to the existing processor network and thereby to develop programs for
hypercubes or a specific kind of torus have not paid off. This is due to the fact
that switching and routing techniques are constantly updated and improved.
Therefore, we will not consider the actual structure of the parallel computer
in the following. We will just assume an abstract computer in which every
processor can communicate efficiently with every other processor.

The distinction between parallel computers with shared memory and with
distributed memory is becoming blurred by recent hybrid designs. In such de-
signs, several multiprocessor systems with shared memory are connected to
form a larger parallel computer, see Figure 4.4. Overall, one obtains a com-

Fig. 4.3. Topologies of parallel computers: d = 4-dimensional hypercube with 2d

processors in which each processors has d connections (left); a d = 3-dimensional
torus, in which each processor has 2d connections (center); a d = 4-stage fat tree
built from switches connecting 2d processors (right).
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puter with distributed global memory, but programs can use programming
techniques for shared memory for the several processors located together on
one node. In this way, the data and the problem do not have to be partitioned
into that many subproblems despite the often large number of processors. Ex-
amples for such computers are, besides some of the parallel computers already
mentioned above, the IBM ASCI White system consisting of 512 RS/6000
SP nodes with 16 CPUs per node, the SGI ASCI Blue Mountain system con-
sisting of 48 nodes with 128 CPUs per node, the Compaq ASCI-Q with 375
nodes with 32 CPUs per node, the Hitachi SR-8000 with, for instance, 144
nodes with eight processors per node, or the “earth simulator” by NEC with
640 nodes and eight vector processors per node. Finally, the computer with
the highest performance in the world at the writing of this book also falls
into this category. It is an IBM BlueGene/L computer system installed at
the Lawrence Livermore National Laboratory which consists of 65,536 dual
processor nodes connected by a 32 × 32 × 64 3D-torus.
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Fig. 4.4. System with distributed memory constructed from smaller multiprocessor
systems with shared memory. There are local networks between the processors and
the shared memory, and a global network between the multiprocessor systems, both
only symbolically represented and not drawn in detail.

On computers with distributed memory, the memory of each processor
has to contain all necessary data for all of its operations. The processors can
communicate between each other by messages, where one processor sends
data to another processor. Thus, a program for a parallel computer with
distributed memory does not only consist of a sequence of computations, but
data must also be sent and received at appropriate points in the program.
These operations for sending and receiving data have to be specified explicitly
by the programmer.

In the development of parallel computers, several different approaches
have been pursued for the specification of those communication operations.
Earlier “message passing” libraries such as PVM (parallel virtual machine)
[10], Parmacs (parallel macros), NX/2, Picl, or Chimp have finally led to
a uniform standard called “MPI” (Message Passing Interface) [7, 271, 272,
273]. There exists at least one (optimized) implementation of MPI for every
current parallel computer. For tests and experiments one can use the free
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MPI implementations “MPICH” (developed at Argonne National Lab) [11]
or “LAM” (now developed and supported at Notre Dame University) [12],
which simulate a parallel computer on a single computer or on a cluster of
workstations. A short introduction to MPI can be found in Appendix A.3.

In this book we deal exclusively with the parallelization for computers
with distributed memory.

Parallelization Strategies. The parallelization of a sequential molecular
dynamics code depends strongly on the type of parallel computer on which
the program will be executed. To this end, different techniques have been
developed for the parallelization of algorithms for problems with short-range
potentials, see for instance [69, 227, 280, 484]. For systems with shared mem-
ory the parallelization is relatively straightforward. As already mentioned, it
is sufficient to insert compiler directives (in C as #pragma) that indicate the
sections and loops which can be processed in parallel. In this way, no sub-
stantial change of the program is necessary. Compilers on sequential machines
ignore these compiler directives.

However, explicit communication of data is needed for systems with dis-
tributed memory. A naive approach to parallelization is called the replicated
data approach, see [126, 150, 178, 309, 339, 384, 544, 571]. Each processor
keeps a copy of all data in its memory, but it works only on the part of
the data associated to it. Thus, after a change of the data associated to a
processor, a global exchange of data is necessary to ensure that all data are
consistent among all processors. One disadvantage of this approach is the
relatively large communication complexity, since every change of data will
be communicated even to processors that do not need that piece of data in
their computation. This seriously impacts parallel efficiency. Also, memory
is wasted by storing all data on all processors and the problem size is limited
by the size of the local memory on a single processor.

For the simulation of a system of N particles on a parallel computer
with P processors, the replicated data method operates as follows. The N
particles are partitioned into P subsets. Every processor works only on the
N/P particles assigned to it. For example, for the basic force computation this
means that each processor computes all the sums for the subset of particles
i associated to it

Fi =
N∑

j=1,j �=i

Fij , (4.1)

where Fij again denotes the force from particle i on particle j. We restrict our-
selves to pair potentials here. To be able to execute these computations, each
processor needs the positions, and possibly parameters for the potentials of
all N particles as copies (replicated data) [484]. Therefore, a processor needs
in each time step a current copy of all particles. Each processor then has to
receive N pieces of data. In total this algorithm achieves a parallel complexity
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of the order O(N2/P ) for the CPU time, but its communication and mem-
ory complexities are of the order O(N). Thus, for an increasing number of
processors, the communication and memory complexities dominate the total
wall-clock time. If we now consider only potentials with finite range or poten-
tials that can be truncated and are still well approximated by their truncated
versions (as in the Linked-Cell-Method), the situation changes. Again each
processor processes only N/P particles out of the total N particles. However,
for the computation of the forces on a particle according to (4.1), one no
longer has to take into account interactions with all particles, but only in-
teractions with particles that are sufficiently close-by. The complexity of the
computation on each processor then reduces from O(N2/P ) to O(N/P ) but
the communication complexity remains O(N), see also Table 4.1.5 Thus, for
increasing numbers of processors the computation complexity decreases cor-
respondingly, but the communication complexity does not. The entire method
does not scale with P . Therefore, the replicated data approach is not ideally
suited for the parallelization of our linked cell algorithm.

A more suitable approach is parallelization by data partitioning. Here,
each processor stores only the data of the particles that it needs during the
computation. These are on the one hand the N/P particles that are as-
signed to the processor in the parallel computation, and on the other hand
the particles that interact with those particles. The assignment of particles
to processors could be done for example according to the particle number,
or according to other, not necessarily geometric criteria.6 After a subset of
particles is assigned to a processor, the particles interacting with these par-
ticles can be determined easily by the linked cell approach. To this end, only
particles in adjacent cells have to be examined. The number of particles to
be stored on each processor is therefore of the order O(N/P ). Furthermore,
each processor has to receive at most O(N/P ) particle data in each com-
munication step, and it has to send some part of its own O(N/P ) particle
data. Since the number of communicated particles is of the same order as the
number of computations, all complexities – computation complexity, commu-
nication complexity, memory complexity – decrease with increasing number
of processors, in contrast to the replicated data approach. The entire method
thus scales as O(N/P ). However, the amount of data communicated is also
of the order O(N/P ).

5 This argument is valid for all short-range potentials, including many-body po-
tentials which we will consider in Chapter 5. It is valid in particular for the angle
potentials for polymer chains [349], as long as there are only a bounded number
of interactions per particle.

6 This approach to parallelization is quite successful for the simulation of polymer
chains if the particles are distributed among processors according to the linear
order induced by the polymer chain. In this way only neighboring particles and
particles in regions where different parts of the polymer chain come close are
needed in the force computation [349].



4.1 Parallel Computers and Parallelization Strategies 121

A related approach is the parallelization by (static) domain decomposi-
tion. In this approach the data are partitioned and assigned to processors in
such a way that as little communication as possible is needed. To this end,
the simulation domain is decomposed into subdomains and each processor
is associated to a subdomain, see for example [149, 212, 662]. Each proces-
sor then computes the trajectories of the particles that are located in its
subdomain. If a particle moves from one subdomain to another subdomain,
then the particle also changes its “owner”, i.e. the processor it is associated
with. Assuming equidistribution of the particles in the domain of our prob-
lem, O(N/P ) particles are assigned to each processor which then computes
the forces on the particles assigned to it. Since the particles have been dis-
tributed to the processors according to their locations and the geometry of
the domain, most of the particles that are needed to compute the short-range
interactions are already in the subdomain and therefore on the same proces-
sor. For short-range potentials, the particles for which the processor misses
data are located in adjacent subdomains close to their subdomain boundaries.
In each communication step only the data of these particles from adjacent
subdomains have to be communicated. In this way, the number of particles
for which data have to be received or sent decreases to O(

√
N/P ) in two

dimensions and to O ((N/P )2/3
)

in three dimensions. Furthermore, particle
data only have to be exchanged with processors associated to adjacent sub-
domains. The number of adjacent subdomains is independent of the total
number of processors. The resulting parallel program therefore scales with
increasing number of processors and with increasing number of particles; the
complexity of the entire computation is of the order O(N/P ).

We assume in the remainder of this chapter that the particles are uni-
formly distributed within the simulation domain. Then, a subdivision of the
simulation domain into subdomains of equal size implies an approximately
equal load for all processors.7

Table 4.1 summarizes the properties of the different parallelization strate-
gies, compare also [484]. Altogether, domain decomposition proves to be the
most appropriate strategy for the parallelization of our sequential linked cell
algorithm because of its relatively low communication requirements. In addi-
tion, domain decomposition techniques are a good match with the cell concept
of the linked cell method. Therefore, we assume in the following a parallel
7 If we consider short-range forces and use a geometric decomposition of the do-

main it might happen that the particles are not uniformly distributed. However,
in this case dynamic domain decomposition can ensure an almost uniform distri-
bution of the N particles to the P processors. Dynamic domain decomposition
means that the decomposition of the domain into subdomains changes over time
and the particles are redistributed according to the new decomposition. Whether
the communication complexity is of the same order as for static domain decom-
position in the uniform case depends on further properties of the distribution,
see [277, 433].



122 4 Parallelization

computer with distributed memory and use static domain decomposition as
parallelization strategy for the linked cell method.

computation communication memory

replicated data O(N/P ) O(N) O(N)
data partitioning O(N/P ) O(N/P ) O(N/P )

domain decomposition O(N/P ) O(
p

N/P ) or O
“
(N/P )2/3

”
O(N/P )

Table 4.1. Comparison of parallelization strategies for the force computation; given
are the complexities for the computation, the communication complexities, and the
memory requirements per processor for N particles on P processors for short-range
forces.

4.2 Domain Decomposition as Parallelization Strategy
for the Linked Cell Method

We now turn to the parallelization of the sequential program described in
Chapter 3.

Domain Decomposition and Parallel Computing. According to Chap-
ter 3, the main idea of the sequential linked cell method for the simulation of
problems with short-range potentials is to decompose the simulation domain
Ω into cells with edges that are at least as long as the cutoff radius rcut of
the potential. Because the range of the potential is bounded by the cutoff
radius, the interactions with particles inside one of the cells can be computed
in one loop over the particles in the cell and the particles in directly adjacent
cells, compare Figure 3.6. Given suitable data structures for the particles in
each cell, particles within the cutoff radius can be found and accessed fast.
Altogether, this leads to an efficient force computation.

The decomposition into cells fits well with the decomposition of the sim-
ulation domain into subdomains for the parallelization. The domain is de-
composed in such a way that the subdomain boundaries coincide with cell
boundaries in the linked cell decomposition. To this end, we decompose the
simulation domain Ω into np[d] parts in the direction of the dth coordinate.
For simplicity we assume that the number of linked cells nc[d] along that
direction is a multiple of the number of subdomains np[d] along that direc-
tion. In this way, we obtain a total of

∏DIM−1
d=0 np[d] subdomains Ωip with

multi-indices ip = (ip[0], . . . , ip[DIM− 1]) in the range from (0, . . . , 0) to
np = (np[0] − 1, . . . , np[DIM− 1] − 1) where

Ωip =
DIM−1⊗
d=0

[
ip[d]

l[d]
np[d]

, (ip[d] + 1)
l[d]
np[d]

[
. (4.2)
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Figure 4.5 shows such a geometric subdivision of a rectangular domain Ω into
six subdomains Ω(0,0) to Ω(1,2) for the two-dimensional case. The subdomains
Ωip are all of the same size and they are subdivided into

∏ nc[d]
np[d] cells.

Fig. 4.5. Decomposition of the simulation domain Ω into six subdomains. The
global domain Ω is divided along the boundaries of the linked cells into subdomains
such that each processor owns the same number of cells.

Now, each processor is associated with one such subdomain and processes
the particles inside its subdomain Ωip. Thus, the linked cell method runs on
each processor and computes the forces, energies, new positions, and velocities
for the particles inside its subdomain. But to compute the forces on some
of the particles inside its subdomain, the processor needs the positions of
particles within distance rcut which can be situated in adjacent subdomains.
Such particles are located in those cells from adjacent subdomains that are
within a distance of rcut from the processor’s subdomain boundary. They
are called its border neighborhood. To store the data for these particles from
the adjacent subdomains, every subdomain is extended by one cell in each
coordinate direction, as shown in Figure 4.6. The particle data for these cells
are stored in particle lists as described in Section 3.5.

If the data for the particles in the border neighborhood have been copied
from these adjacent subdomains to the local processor, the local processor
can then compute – independently from all other processors – all the forces,
the new velocities, and the new positions of particles of its subdomain. In this
way, all subdomains are processed in parallel, and the forces, velocities, and
positions of particles can be computed in parallel. After the new positions
of the particles have been computed, particles that have left a subdomain
must be assigned and transported to a new processor. Furthermore, the data
of particles needed for the computation of the forces in other subdomains
have to be exchanged between processors. These data will be exchanged in a
communication phase among the processors and stored in the border neigh-
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Fig. 4.6. Subdomain assigned to a processor (light) and border neighborhood made
from cells belonging to adjacent subdomains (grey). Two-dimensional case (left)
and part of the border neighborhood in the three-dimensional case (right). Given
particle data for its subdomain and its border neighborhood, the interactions for
all cells in the subdomain can be computed locally, i.e., no further data are needed.

borhoods prior to the computation of the forces. This communication phase
is described in more detail in the following.

Communication. In the Velocity-Störmer-Verlet Algorithm 3.1 from Sec-
tion 3.1, the forces on the particles are computed first and then the particles
are moved from their old positions xn

i to their new positions xn+1
i . As we

already noted, every processor needs data from particles in cells adjacent to
its boundary (from its border neighborhood) to be able to compute the forces
on particles in its own subdomain. Therefore, the particle data from adjacent
subdomains that are needed for the force computation must be exchanged
before the computation of the forces can take place. It may also happen that
particles leave their subdomains and enter the border neighborhood when
they are moved. These particles are then assigned to different processors.
After the new positions of the particles have been computed, particles that
have left their subdomain must be “transported” to their new processors.

To exchange data among processors, every processor collects the appro-
priate particle data in buffers, and the contents of the buffers are then sent
over the network to the appropriate neighboring processors. These processors
receive the data in buffers and then insert them into the appropriate data
structures. One has to ensure that data are exchanged in as few communi-
cation steps as possible since establishing a connection between processors
takes a relatively long time. Furthermore, only as much data as necessary
should be sent because the exchange of data also takes a relatively long time
compared to the execution of instructions on the processors. If particles have
left their subdomain, all of their data must be sent. In the communication
for the force computation there is a further saving possible by just sending
the new positions of the particles and not their velocities or other data.
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Let us consider the communication of one processor with its neigh-
bors. Figures 4.7 and 4.8 show a schematic sketch for the two- and three-
dimensional case. The particles that lie in the border neighborhoods of other
processors have to be sent to these processors. In Figure 4.7 (left), data are
sent in the x2 direction. Let us focus on the processor assigned to the subdo-
main Ω(1,1) in the center of the 3× 3 array. The particles in the cells marked
in light gray are sent along the arrows to the two neighboring processors,
are received by these processors, and are sorted into the particle lists on
these processors. In return, the processor for subdomain Ω(1,1) receives data
from these two neighbors. The processor thus sends two data packets and re-
ceives two data packets. In a second communication step, data are exchanged
between processors in the x1 direction, see Figure 4.7 (right). To save commu-
nication steps with diagonally adjacent subdomains such as Ω(0,0) or Ω(0,2),
also those cells from the corners of the border neighborhood are sent which
were just received by the respective processor in the first communication
step. The analogous three-dimensional case is sketched in Figure 4.8. To this
end, the different parts of the border neighborhood are transported in three
steps. In this way, a processor has to communicate in total with 2d neigh-
bors in d dimensions, and does not have to communicate to all eight direct
neighbors in two dimensions, or all 26 direct neighbors in three dimensions,
respectively. Processors at the boundary of the simulation domain Ω send
and receive fewer messages, or (in the case of periodic boundary conditions)
exchange data with their neighbors at the other side of the domain. The data
in the particle lists for the border neighborhoods are no longer needed after
the forces have been computed and can then be deleted.

A further communication phase is needed to transport those particles with
new positions outside their old subdomains to their new subdomains. We
assume that the time step is small enough so that each particle travels across
at most one cell per time step. Then, data have to be exchanged only with
neighboring processors, and the border neighborhood of the old processor
contains all particle data that have to be sent. In such a way, we obtain a
communication pattern which corresponds to that of the force computation,
only traversed in the reverse order (and with different particle data). This
can be seen in Figures 4.9 and 4.10. Again, data are exchanged in d steps. In
the first step, data are exchanged with the neighbors in x1 direction. In the
second step, data (including the data from diagonal neighbor cells) are sent
to the processors neighboring each processor in the x2 direction and, in the
three-dimensional case, data are exchanged with the neighboring processors
in x3 direction. Structuring the communication in this way avoids as before
the direct communication with all neighbor processors that only have an edge
(in the three-dimensional case) or a corner in common with the processor in
question.
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Fig. 4.7. In the force computation by the linked cell method, the particle data
structures for the border neighborhoods must contain the correct values. Instead of
exchanging data with each of the 3d −1 neighboring processors, the communication
proceeds in d steps with communication with two processors in each step. The figure
shows the communication patterns for one subdomain and its neighbors. Data is
exchanged in both directions as indicated by the arrows; the arrows drawn with
solid lines show the communication from the subdomains drawn at the center, the
arrows drawn with dashed lines show the communication to the subdomains drawn
at the center. First, rows in x2 direction (left) are exchanged and then columns in
x1 direction (right). In the second step, processors send not only data from their
subdomains, but also data from parts of their border neighborhood (the corners)
which were just received in the first communication step.

Fig. 4.8. Communication for the force computation by the linked cell method in
three dimensions. In the first step, data are exchanged in x3 direction (left), in the
second step, data are exchanged in x2 direction (center), and in the third step, data
are exchanged in x1 direction (right). As shown, data are always exchanged in both
directions. Thus, with only six send and receive operations data are exchanged with
all 26 neighbor processors.
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Fig. 4.9. Particles that have moved out of the subdomain of their processor are
sent to the new owner. The transmission of the corresponding particle data from the
border neighborhoods proceeds in d steps with communication between two pro-
cessors per step. In the two-dimensional case shown, columns in x1 direction are
exchanged first (left) and then rows in x2 direction (right). This is exactly adjoint
to the communication pattern used in the communication before the force compu-
tation. If appropriate, data are also sent in the opposite direction, as indicated in
the figure.

Fig. 4.10. Communication pattern in three dimensions for the transport of particles
that have moved out of their subdomain. In the first step, data are exchanged in the
x1 direction (left), in the second step, data are exchanged in x2 direction (center),
and in the third step, data are exchanged in x3 direction (right). If appropriate,
data are also sent in the opposite direction.
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4.3 Implementation with MPI

We consider parallel computers with distributed memory. The goal is to write
a program that runs simultaneously on all of the processors and communi-
cates explicitly by send and receive operations with the programs on the
other processors. We will develop a single program that runs on each proces-
sor independently, but only works on the data it owns. The global execution
of the program is synchronized by the receiving of necessary data from other
processors. We use the Message Passing Interface (MPI) as programming
environment [7]. MPI essentially provides a library

– that allows to simultaneously start a certain number of processes (on one8

or several computers),
– that allows to uniquely identify processes by a process number, and
– provides functions through which the different processes can communicate

with each other.9

MPI is a very powerful and complex library with more than 120 different
functions. Fortunately, the parallelization of many methods – as for instance
our linked cell method – can be implemented with only a few of these func-
tions (see Appendix A.3 and [272, 273, 458] for details). The most important
functions are:

– MPI Init():
Initalizes the MPI library environment.

– MPI Finalize():
Terminates the MPI library environment.

– MPI Comm size():
Determines the number numprocs of processes started.

– MPI Comm rank():
Determines the number of the local process myrank∈ {0, . . . , numprocs− 1}.

– MPI Send() or MPI Isend():
Sends an MPI message.

– MPI Recv():
Receives an MPI message.

The local number of the process myrank and the total number numprocs of
processes can be used to control the behavior of particular processes. In our
case we use myrank and numprocs to determine which part of the data, i.e.
which cells, are handled by a particular process.
8 Note that codes parallelized with MPI can also run on sequential machines with

an appropriate MPI implementation. In this way, it is possible to simulate a
parallel computer on a sequential machine. This approach allows to recognize
errors in the code before production runs are started on a cluster computer or a
large parallel computer.

9 Usually one process is started on each available processor. Therefore, we will not
always distinguish in the following in detail between an MPI process and the
corresponding processor of the parallel computer.
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Subdomain. We now assume that a partition of the domain into subdomains
is given. The corresponding data which describe that partition are collected
in the data structure 4.1 SubDomain.

Data structure 4.1 Subdomain, Cells, and Neighbor Processes of Ωip

typedef struct {
real l[DIM]; // size of simulation domain
int nc[DIM]; // number of cells in simulation domain

// additional parameters for the parallelization
int myrank; // process number of the local process
int numprocs; // number of processes started
int ip[DIM]; // position of process in the process mesh
int np[DIM]; // size of process mesh, also number of subdomains
int ip_lower[DIM]; // process number of the neighbor processes
int ip_upper[DIM];

int ic_start[DIM]; // width of border neighborhood, corresponds to
// the first local index in the interior of the subdomain

int ic_stop[DIM]; // first local index in the upper border neighborhood
int ic_number[DIM]; // number of cells in subdomain, including border

// neighborhood
real cellh[DIM]; // dimension of a cell
int ic_lower_global[DIM]; // global index of the first cell of the subdomain

} SubDomain;

For this, we recall that the entire domain Ω has already been decomposed
into nc[d] cells for the sequential linked cell method. We now assign the
cells with the (global) indices ic lower global[d] to ic lower global[d]
+ (ic stop[d] - ic start[d]) to its associated process. To this end, anal-
ogously to the linked cell mesh, we organize the processes conceptionally into
a mesh which contains all processes 0, . . . , numprocs− 1 (see Figure 4.5). We
thus assign to each process a multi-index ip based on its process number
myrank. This multi-index identifies the process and thereby its associated
subdomain Ωip in the mesh of processes (see code fragment 4.1).
In this way we can represent the subdomain Ωip associated to the process
with the multi-index ip as

Ωip =
DIM−1⊗
d=0

[
ip[d]

l[d]
np[d]

, (ip[d] + 1)
l[d]
np[d]

[

and assign it to the process myrank for local computations. In addition,
during these local computations, each process needs data from a border
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Code fragment 4.1 Initialization of the SubDomain Data Structure
#if 1==DIM

#define inverseindex(i,nc,ic) \

((ic)[0]=(i))

#elif 2==DIM

#define inverseindex(i,nc,ic) \

((ic)[0]=(i)%(nc)[0], (ic)[1]=(i)/(nc)[0])

#elif 3==DIM

#define inverseindex(i,nc,ic) \

((ic)[0]=(i)%(nc)[0], \

(ic)[1]=((i)/(nc)[0])%(nc)[1], \

(ic)[2]=((i)/(nc)[0])/(nc)[1])

#endif

void inputParameters_LCpar(real *delta_t, real *t_end, int* N,

SubDomain *s, real* r_cut) {
// set parameters as in the sequential case
inputParameters_LC(delta_t, t_end, N, s->nc, s->l, r_cut);

// set additional parameters for the parallelization
MPI_Comm_size(MPI_COMM_WORLD, &s->numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &s->myrank);

// set np[d] so that
QDIM−1

d=0 np[d] = numprocs

// determine position of myrank in the process mesh np[d]

int iptemp[DIM];

inverseindex(s->myrank, s->np, s->ip);

for (int d=0; d<DIM; d++)

iptemp[d] = s->ip[d];

for (int d=0; d<DIM; d++) { // determine neighbor processes
iptemp[d] = (s->ip[d] - 1 + s->np[d]) % s->np[d];

s->ip_lower[d] = index(iptemp, s->np);

iptemp[d] = (s->ip[d] + 1 + s->np[d]) % s->np[d];

s->ip_upper[d] = index(iptemp, s->np);

iptemp[d] = s->ip[d];

}
for (int d=0; d<DIM; d++) { // set local parameters

s->cellh[d] = s->l[d] / s->nc[d];

s->ic_start[d] = (int) ceil(*r_cut / s->cellh[d]);

s->ic_stop[d] = s->ic_start[d] + (s->nc[d] / s->np[d]);

s->ic_number[d] = (s->ic_stop[d] - s->ic_start[d]) +

2 * (s->ic_start[d]);

s->ic_lower_global[d] = s->ip[d] * (s->nc[d] / s->np[d]);

}
}
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neighborhood that is ic start[d] cells wide.10 A process therefore stores
ic number[d] cells, including the cells in the border neighborhood, for each
of the coordinate directions d=0,...,DIM-1.

As already explained in the previous section, direct communication with
neighboring processes in the diagonal directions can be avoided by the se-
quencing of communication steps for each coordinate direction. In each co-
ordinate direction d, a process has to exchange data only with two other
processes. The process numbers of these processes will be stored in the multi-
indices ip lower[d] and ip upper[d]. For instance, ip lower[0] will contain
the process number of the left neighbor. The entire initialization of the data
structure SubDomain can be implemented as shown in code fragment 4.1.
There, we compute the appropriate values for the subdomain Ωip from the
dimensions l[d] of the simulation domain Ω, the process number myrank,
and the number numprocs of processes started.

In the next step of the parallelization, the sequential linked cell code has
to be adapted to this new generalized description of the domain and the
subdomains. The necessary changes are relatively small. Essentially, one only
has to replace the parameters l and nc with an instance s of the new data
structure SubDomain. All loops over cells in routines like compX LC now only
run over the local subdomain, meaning that instead of loops such as

for (ic[d]=0; ic[d]<nc[d]; ic[d]++)

now loops such as

for (ic[d]=s->ic start[d]; ic[d]<s->ic stop[d]; ic[d]++)

are used.11 Also, the calling sequences for the macro index have to be changed
from index(ic,nc) to index(ic, s->ic number).

Main Program. The changes in the main program are small, see Algo-
rithm 4.1. The more significant changes are the initialization and termina-
tion of the MPI library and the changes necessary to use the data structure
SubDomain describing the subdomain Ωip assigned to the local process.

In inputParameters LCpar, a subdomain Ωip associated to a process is
determined from the process number myrank, as described in the code frag-
ment 4.1. Of course, the partition into subdomains Ωip has to be taken into
account in the setup of the particles in initData LCpar. For instance, each
10 We implement here a general communication subroutine that allows an arbitrary

width of the border neighborhood. If one can ensure that particles can move at
most across one cell in each time step and that rcut is chosen appropriately, the
border neighborhood is only one cell wide and ic start[d] can be set to one.

11 If the macro iterate is used, calls of the form iterate(ic, nullnc, nc) have
to be replaced by iterate(ic, s->ic start, s->ic stop).
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process could read or create only particles in its subdomain.12 Alternatively,
one process could read or create all particles, then sorts them into the appro-
priate domains and sends them to the appropriate processes, if there is enough
memory available on that single processor to allow for such an approach. The
routine timeIntegration LCpar for the time integration can be implemented
analogously to the sequential case. The parallel computation and output of
further quantities is implemented in the routine compoutStatistic LCpar.
The parallel output of the positions and velocities of the particles is imple-
mented in outputResults LCpar.

Algorithm 4.1 Main Program: Parallel Linked Cell Method
#include <mpi.h>

int main(int argc, char *argv[]) {
int N, pnc, ncnull[DIM];

real r_cut, delta_t, t_end;

SubDomain s;

MPI_Init(&argc, &argv);

inputParameters_LCpar(&delta_t, &t_end, &N, &s, &r_cut);

pnc = 1;

for (int d = 0; d < DIM; d++) {
pnc *= s.ic_number[d];

ncnull[d] = 0;

}
Cell *grid = (Cell*) malloc(pnc*sizeof(*grid));

initData_LCpar(N, grid, &s);

timeIntegration_LCpar(0, delta_t, t_end, grid, &s, r_cut);

freeLists_LC(grid, ncnull, s.ic_number, s.ic_number);

free(grid);

MPI_Finalize();

return 0;

}

Parallel Force Computation and Parallel Particle Moving. To be
able to actually compute with multiple processes, we still have to insert the
communication steps described above in our linked cell code. First, a process
needs certain particle data from its neighboring processes before the compu-
tation of the forces. Thus, we have to appropriately generalize the function
compF LC to compF LCpar, see Algorithm 4.2. After the forces have been com-
puted, the particles are moved. Hence, all copies of particles from neighboring
12 Note that the parallel generation of initial values with a Maxwell-Boltzmann

distribution is in general not an easy task. It involves the parallel generation of
random numbers.
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Algorithm 4.2 Parallel Linked Cell Force Computation
void compF_LCpar(Cell *grid, SubDomain *s, real r_cut) {
compF_comm(grid, s);

compF_LC(grid, s, r_cut); // sequential version adapted to s

delete particles in the border neighborhood;
}

processes no longer contain valid data and can therefore be deleted right after
the force computation.

In addition, a data exchange between neighboring processes is necessary
after the particles are moved since particles can leave the subdomain Ωip as-
signed to the local process. These particles (i.e. all their data) have to be sent
to a neighboring process. We thus extend the function moveParticles LC
accordingly to moveParticles LCpar, see Algorithm 4.3. If necessary, the
appropriate boundary conditions have to be taken into account here as well.

Algorithm 4.3 Parallel Sorting of the Particles into their New Cells
void moveParticles_LCpar(Cell *grid, SubDomain *s) {
moveParticles_LC(grid, s); // sequential version adapted to s

moveParticles_comm(grid, s);

delete particles in the border neighborhood;
}

Before we consider how to exactly implement the functions compF comm
and moveParticles comm, we first implement a single communication step
of the communication patterns discussed in the last section (see Figures 4.7
to 4.10).

One-dimensional Communication. We implement the communication
with neighboring processes in one routine sendReceiveCell in Algorithm
4.4. With this routine we can then express the communication patterns from
Figures 4.7 to 4.10. The idea is to carry out a one-dimensional data ex-
change between the process and its two neighboring processes ip lower[d]
and ip upper[d] for each dimension separately. The process sends the con-
tents of cells from two opposite parts of the subdomain and possibly from
parts of the border neighborhood to the appropriate neighboring processes
and receives in exchange particles that have to be sorted into its cells.

The communication pattern should be implemented in such a way that
it uses as few send and receive operations as possible and that it transmits
only data which are necessary for the computation. It would be inefficient if
the content of each cell needed in the computation would be sent in a sep-
arate message. Instead, all data that have to be sent from the local process
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to a particular process should be sent together in one message. But the con-
tent of the cells is stored in linked lists, see data structure 3.2, and pointers
are used to connect the elements of the list. Hence, those elements do not
have to be contiguous in memory and it is not possible to just copy the area
of the memory directly. Therefore, we have to convert the linked list data
structure and the data contained in the list elements into a different (con-
tiguous) format.13 We will use a vector ip particle of particle data for that.
The routine sendReceiveCell is kept as general as possible so that it can
be reused easily. Thus, it is necessary to describe the local cells from grid
that have to be sent or received in a way that is sufficiently general to allow
such a reuse. Since all cells are stored in a vector grid and since indices are
computed from ranks, it is enough to store for both neighboring processes
lowerproc and upperproc the range of indices of the cells that have to be
sent (icstart to icstop) and the range of indices for the cells that have to
be received (icstartreceive to icstopreceive).

In a first step we determine the vector ic length of the numbers of par-
ticles from the cells that have to be transmitted. Next, we store all the cor-
responding particle data in the ordering of the cells ic in the long vector
ip particle. Each cell corresponds to a contiguous section in this vector.
To determine to which cell ic a particle belongs, one could look at the coor-
dinates of the particle. In our case it is easier, however, to (re-)compute the
appropriate cell ic from the vector ic length. This easy computation uses
the data in icstartreceive, icstopreceive, and ic lengthreceive, see
Algorithm 4.4.

We use non-blocking communication in which the execution of send and
receive operations can overlap if the parallel computer supports it.14 In a

Algorithm 4.4 Sending and Receiving of Particle Lists
void sendReceiveCell(Cell *grid, int *ic_number,

int lowerproc, int *lowericstart, int *lowericstop,

int *lowericstartreceive, int *lowericstopreceive,

int upperproc, int *uppericstart, int *uppericstop,

int *uppericstartreceive, int *uppericstopreceive) {
MPI_Status status; MPI_Request request;

int sum_lengthsend = 0, sum_lengthreceive = 0;

int k = 0, kreceive = 0, ncs = 1;

int *ic_lengthsend = NULL, *ic_lengthreceive = NULL, ic[DIM];

Particle *ip_particlesend = NULL, *ip_particlereceive = NULL;

13 In principle it is possible to leave this conversion to the MPI library if one
introduces appropriate data structures and their corresponding memory layout
there.

14 A parallel example program is given in Appendix A.3.
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// sending to lowerproc, receiving from upperproc

sum_lengthsend = sum_lengthreceive = k = kreceive = 0; ncs = 1;

for (int d = 0; d < DIM; d++)

ncs *= lowericstop[d] - lowericstart[d];

ic_lengthsend = (int*)malloc(ncs*sizeof(*ic_lengthsend));

ic_lengthreceive = (int*)malloc(ncs*sizeof(*ic_lengthreceive));

iterate (ic, lowericstart, lowericstop) {
ic_lengthsend[k] = lengthList(grid[index(ic,ic_number)]);

sum_lengthsend += ic_lengthsend[k++];

}
MPI_Isend(ic_lengthsend, ncs, MPI_INT, lowerproc, 1,

MPI_COMM_WORLD, &request);

MPI_Recv(ic_lengthreceive, ncs, MPI_INT, upperproc, 1,

MPI_COMM_WORLD, &status);

MPI_Wait(&request, &status);

free(ic_lengthsend);

for (k=0; k<ncs; k++)

sum_lengthreceive += ic_lengthreceive[k];

sum_lengthsend *= sizeof(*ip_particlesend);

ip_particlesend = (Particle*)malloc(sum_lengthsend);

sum_lengthreceive *= sizeof(*ip_particlereceive);

ip_particlereceive = (Particle*)malloc(sum_lengthreceive);

k = 0;

iterate(ic, lowericstart, lowericstop)

for (ParticleList *i = grid[index(ic,ic_number)]; NULL != i;

i = i->next)

ip_particlesend[k++] = i->p;

MPI_Isend(ip_particlesend, sum_lengthsend,

MPI_CHAR, lowerproc, 2, MPI_COMM_WORLD, &request);

MPI_Recv(ip_particlereceive, sum_lengthreceive,

MPI_CHAR, upperproc, 2, MPI_COMM_WORLD, &status);

MPI_Wait(&request, &status);

free(ip_particlesend);

kreceive = k = 0;

iterate(ic, uppericstartreceive, uppericstopreceive) {
for (int icp=0; icp<ic_lengthreceive[kreceive]; icp++) {
ParticleList *i = (ParticleList*)malloc(sizeof(*i));

i->p = ip_particlereceive[k++];

insertList(&grid[index(ic,ic_number)], i);

}
kreceive++;

}
free(ic_lengthreceive);

free(ip_particlereceive);

// sending to upperproc, receiving from lowerproc

...

}
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first step, the vectors ic length are exchanged. Afterwards, both the sender
and the receiver know the number of particles to be transmitted and therefore
the lengths of the messages. In a second step, the current particle data from
ic particle are transmitted. These two steps are implemented in Algorithm
4.4. In this algorithm, only half of the communication step is shown: Sending
data to lowerproc and receiving data from upperproc. The other half of the
communication step can be implemented in the same way, only lower and
upper have to be exchanged.

Communication for Force Computation and Particle Moving. To
be able to fully describe the communication steps for the force compu-
tation and the moving of the particles, we need an additional routine
setCommunication (see Algorithm 4.5) which determines the subdomains
for the communication pattern described in the previous section, compare
Figure 4.7. In setCommunication we compute the appropriate ranges of the
indices, icstart to icstop, which describe the portion of the local domain
that has to be sent to other processes, as well as the indices icstartreceive
to icstopreceive that describe the portion of the border neighborhood for
which particles have to be received from other processes.

Using this routine, one can now easily and concisely implement the com-
munication phase prior to the force computation according to Figure 4.7.
The cells in the border neighborhoods are filled with the appropriate copies
of particle data from neighboring processes, as written in Algorithm 4.6. For
subdomains next to the boundary of the simulation domain, the communica-
tion routines may have to be changed to take different boundary conditions
into account.

Particles are transported with the exactly reverse order of communication
steps in Algorithm 4.7, where particles are moved to their new cells. Here,
all particles that entered border neighborhoods have to be sent to their new
owners, i.e., we send the associated particle information from cells in the
border neighborhood to cells in the interior of their new subdomain. Since
the routines sendReceiveCell and setCommunication have been written for
a very general setting, this case can be implemented completely analogously
to the previous one.

The computation of the energy can also be distributed to all processes.
To compute the potential or kinetic energy of the system, which is needed
for instance to compute the temperature, the energies of the particles in the
subdomains are computed in parallel and the local results are then glob-
ally added together. This can be implemented in a communication step with
MPI Allreduce after the new velocities have been computed.

As in the O(N2)-method and in the sequential linked cell algorithm, about
half of the computations can be saved if one uses the fact that the forces are
symmetric. Then, not all 3DIM − 1 neighboring cells have to be traversed but
it is sufficient to traverse just half of them. In the same way, interactions
within one cell can be computed with half the number of operations. Here,
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Algorithm 4.5 Communication Pattern According to Figure 4.7
void setCommunication(SubDomain *s, int d,

int *lowericstart, int *lowericstop,

int *lowericstartreceive, int *lowericstopreceive,

int *uppericstart, int *uppericstop,

int *uppericstartreceive, int *uppericstopreceive) {
for (int dd = 0; dd < DIM; dd++) {

if (d == dd) { // only border neighborhood
lowericstart[dd] = s->ic_start[dd];

lowericstop[dd] = lowericstart[dd] + s->ic_start[dd];

lowericstartreceive[dd] = 0;

lowericstopreceive[dd] = lowericstartreceive[dd] +

s->ic_start[dd];

uppericstop[dd] = s->ic_stop[dd];

uppericstart[dd] = uppericstop[dd] - s->ic_start[dd];

uppericstopreceive[dd] = s->ic_stop[dd] + s->ic_start[dd];

uppericstartreceive[dd] = uppericstopreceive[dd] -

s->ic_start[dd];

}
else if (dd > d) { // including border neighborhood
int stop = s->ic_stop[dd] + s->ic_start[dd];

lowericstartreceive[dd] = lowericstart[dd] = 0;

lowericstopreceive[dd] = lowericstop[dd] = stop;

uppericstartreceive[dd] = uppericstart[dd] = 0;

uppericstopreceive[dd] = uppericstop[dd] = stop;

}
else { // excluding border neighborhood
lowericstartreceive[dd] = lowericstart[dd] = s->ic_start[dd];

lowericstopreceive[dd] = lowericstop[dd] = s->ic_stop[dd];

uppericstartreceive[dd] = uppericstart[dd] = s->ic_start[dd];

uppericstopreceive[dd] = uppericstop[dd] = s->ic_stop[dd];

}
}

}

one can either exchange the forces on the particles in the cells of the border
neighborhood in an extra communication phase and add them up, or one
can avoid communication but then incurs additional computation using the
original, less efficient algorithm in and close to the border neighborhood. In
both approaches, boundary conditions have to be taken into account properly.

If we merge the loop on updateX with the loop on the force computation
compF in the implementation of the Velocity-Störmer-Verlet method, the two
communication routines moveParticles comm and compF comm are called di-
rectly after each other in the resulting program. This suggests that it should
be possible to further optimize the communication among the processes. In-
stead of first sending particles to their new processes and then sending copies
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Algorithm 4.6 Communication before the Force Computation
void compF_comm(Cell *grid, SubDomain *s) {
int lowericstart[DIM], lowericstop[DIM];

int uppericstart[DIM], uppericstop[DIM];

int lowericstartreceive[DIM], lowericstopreceive[DIM];

int uppericstartreceive[DIM], uppericstopreceive[DIM];

for (int d = DIM-1; d >= 0; d--) {
setCommunication(s, d, lowericstart, lowericstop,

lowericstartreceive, lowericstopreceive,

uppericstart, uppericstop,

uppericstartreceive, uppericstopreceive);

sendReceiveCell(grid, s->ic_number,

s->ip_lower[d], lowericstart, lowericstop,

lowericstartreceive, lowericstopreceive,

s->ip_upper[d], uppericstart, uppericstop,

uppericstartreceive, uppericstopreceive);

}
}

Algorithm 4.7 Communication for Moving the Particles
void moveParticles_comm(Cell *grid, SubDomain *s) {
int lowericstart[DIM], lowericstop[DIM];

int uppericstart[DIM], uppericstop[DIM];

int lowericstartreceive[DIM], lowericstopreceive[DIM];

int uppericstartreceive[DIM], uppericstopreceive[DIM];

for (int d = 0; d < DIM; d++) {
setCommunication(s, d, lowericstartreceive, lowericstopreceive,

lowericstart, lowericstop,

uppericstartreceive, uppericstopreceive,

uppericstart, uppericstop);

sendReceiveCell(grid, s->ic_number,

s->ip_lower[d], lowericstart, lowericstop,

lowericstartreceive, lowericstopreceive,

s->ip_upper[d], uppericstart, uppericstop,

uppericstartreceive, uppericstopreceive);

}
}

of them to other processes, one can merge both communication steps into
one.

In this new communication step the data from all the particles that have
to be moved to new processes are transmitted to their new owners in only one
message. Thus, in each time step, every process sends only one message in-
stead of the original two messages to each of its 2 ·DIM directional neighboring
processes.
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4.4 Performance Measurements and Benchmarks

For sufficiently large numbers of particles and enough processors the parallel
program can be significantly faster than the sequential program. How can
one evaluate this increase in performance? One fundamental measure is the
so-called speedup

S(P ) :=
T

T (P )
, (4.3)

where P denotes the number of processors used in the computation, T (P ) de-
notes the time needed by the parallel computation on these P processors, and
T denotes the time needed for the same problem by the sequential program.15

Instead of the time T needed to execute the (best) sequential program one
often uses T (1), i.e. the time needed to execute the parallel program on one
processor. The speedup lies between 1 and P .16 A speedup equal to the num-
ber of processors P , i.e. S(P ) = P , is called linear. In general, this optimal
value P for the speedup is not obtained because parts of the program may
be hard to parallelize, because the loads of the different processors may be
hard to balance, or because the communication may require a non-negligible
time.

Another measure for the improvement of performance is the parallel effi-
ciency

E(P ) :=
T

P · T (P )
=

S(P )
P

(4.4)

or E(P ) = T (1)/(P · T (P )), in which the speedup is divided by the number
of processors. The optimal value here is E(P ) = 1 or 100%, the minimum
is 1/P . The efficiency measures how well the processors are used in parallel.
In practice one often observes parallel efficiencies significantly smaller than
one, especially for large numbers of processors. The sequential program is
accelerated by the parallelization, but some performance is lost because of
communication and unbalanced load.

One estimate for the speedup and the efficiency that is often cited in
this context was introduced by Amdahl [39]. It was originally introduced
for vector computers but can similarly be applied to parallel computers. In
the estimate, it is assumed that a certain portion of the program cannot be
15 In MPI one can use the function MPI Wtime() to measure the wall-clock time.

The function is called once at the beginning and once at the end of the part of
the program that is to be measured. Afterwards the time needed for that part
of the program is obtained from the difference of the two results.

16 If a speedup higher than P is obtained, one could execute the parallel algorithm
also as P processes on one processor and one should then obtain an improved
sequential execution time T barring cache effects. For the other extreme case of a
speedup less than one, which possibly should be called a “slow down”, one could
improve the speedup by using less processors, keeping some processors idle. In
this way a speedup can be obtained that always satisfies 1 ≤ S(P ) ≤ P .
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parallelized (or vectorized). From this, it is relatively easy to derive an upper
bound for the speedup. Let α be the portion of the execution time T that
has to be executed sequentially. Assume that the remainder γ = 1−α can be
parallelized perfectly. Then, it holds that T (P ) = αT + γT/P and therefore

S(P ) =
T

αT + γT/P
=

1
α + (1 − α)/P

.

Assuming that arbitrarily many processors are available, we obtain

S(P ) → 1/α and E(P ) → 0 for P → ∞.

Thus, the maximal speedup that can be realized, is bounded by the portion
α of the algorithm that cannot be parallelized. Analogously, the efficiency
becomes arbitrarily small. If only one percent of the algorithm cannot be
parallelized then only a speedup of 100 can be obtained. This is a serious
limitation that has long been used as an argument against massively parallel
computation, i.e. against the use of a very large number of processors. In
addition, the execution time T (P ) might increase for an increasing number
of processors because of increased communication between processors and
load unbalance.

Note that Amdahl’s law assumes a fixed size of the problem. But an
increase in the number of processors allows also to solve larger problems.
Here, the sequential portion of the algorithm can even become smaller since
a one-time fixed effort for program management or subproblems of lower
complexity might have a decreasing impact. Consequently, one could indeed
obtain good parallel efficiencies for sufficiently large problems. The problem is
that in general one cannot determine the execution time T for the sequential
program for such large problems. This is due to the fact that usually one
processor alone does not have enough memory or that the time needed to
run the sequential program on one processor is too long. Therefore, one often
uses a properly scaled value, the so-called scaleup

SC(P, N) :=
T (P, N)

T (κP, κN)
, κ > 1 . (4.5)

Here, T (P, N) denotes the time the parallel program needs to execute O(N)
operations on P processors. Assuming that the operations can be distributed
optimally to the processors, one obtains for T (κP, κN) always the same value,
independent of the factor κ by which the number of operations and the num-
ber of processors have been multiplied.17 The load per processor is then
constant and the scaleup (4.5) is one. Loss of efficiency can be recognized by
a smaller scaleup.18

17 κ is often set to 2 or 2DIM with DIM denoting the dimension of the problem.
18 The scaleup should be larger than 1/κ. If it would be smaller, one could use

P processors instead of κP processors in the computation and would need less
parallel computing time assuming that the P processors have enough memory.
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Amdahl’s estimate gives a different result for the scaleup than for the
speedup. If we denote by γ the portion of the execution time of the program
that is executed in parallel on P processors and by α the portion that has to
be executed sequentially, one obtains

T (P, N) = αT + γT
N

P
= αT + γT

κN

κP
= T (κP, κN).

Therefore, the scaleup is one.

An example. We now test the performance increase which stems from
the parallelization of the algorithm. We show results for the simulation of
one time step for a system with N particles in a three-dimensional simu-
lation box with periodic boundary conditions. The interaction of the parti-
cles is modeled by a Lennard-Jones potential. The particles are distributed
uniformly over the simulation domain, with a constant particle density
ρ′ := N

|Ω′| = N
L′

1·L′
2·L′

3
= 0.8442. Hence, a static decomposition of the sim-

ulation domain into subdomains of equal size should lead to a reasonable
load balance.

At the start of the simulation, the particles are arranged on a regular face-
centered cubic lattice, see Section 5.1.1. In addition, the initial velocities of
the particles are superimposed by a small thermal motion. The thermal mo-
tion is chosen according to a Maxwell-Boltzmann distribution with a reduced
temperature of T ′ = 1.44, compare also Appendix A.4. The external forces
are set to zero. Volume, number of particles, and energy are kept constant
during the simulation, i.e., we consider an NVE ensemble.

ε = 1, σ = 1,
m = 1,
ρ′ = 0.8442, T ′ = 1.44,

rcut = 2.5σ, δt = 0.00462

Table 4.2. Parameter values for the first parallel example.

The parameter values used in the simulation are shown in Table 4.2. The
size of the simulation domain is computed from the number N of particles
as L′

1 = L′
2 = L′

3 = (N/ρ′)1/3. The domain is subdivided into approximately
cubic subdomains so that the number of subdomains in each direction is
always a power of two and the number of subdomains in different directions
differs at most by a factor of two. The parallel program was run on a Cray
T3E parallel computer19 in single precision (32 bit, float in C, or real*4 in
Fortran). The local processors in this computer were 600 MHz DEC Alpha
processors.
19 The Cray T3E-1200 at the John von Neumann Institute for Computing (NIC)

at the Research Centre Jülich.
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Table 4.3 shows the execution time. We can observe in each row that
a doubling of the number of processors approximately halves the execution
time, given a large enough number of particles per processor. Also, the exe-
cution time approximately doubles when the number of particles is doubled,
as seen in the columns of the table. In the diagonal we observe that doubling
the number of processors and the number of particles results in an almost
constant execution time. No results are given for large numbers of particles
and small numbers of processors since the main memory of the processors is
no longer large enough for the resulting problem.

processors
particles 1 2 4 8 16 32 64 128 256

16384 0.9681 0.4947 0.2821 0.1708 0.1076 0.0666 0.0403 0.0269 0.0202
32768 1.8055 1.0267 0.5482 0.3266 0.1685 0.1089 0.0683 0.0422 0.0294
65536 3.3762 1.9316 1.0786 0.6346 0.3220 0.1724 0.1112 0.0707 0.0433

131072 6.0828 3.4387 2.0797 1.1637 0.5902 0.3316 0.1892 0.1139 0.0713
262144 12.6010 6.2561 3.6770 2.0825 1.1610 0.6544 0.3570 0.1937 0.1221
524288 26.2210 14.2460 6.5593 3.7391 2.0298 1.1569 0.6521 0.3354 0.1960

1048576 28.7260 13.1900 6.9030 3.7369 2.1510 1.1642 0.5968 0.3482
2097152 26.8290 14.0750 6.9057 3.8103 2.0890 1.1748 0.6768
4194304 28.2560 15.0430 6.9920 3.8077 2.0546 1.1915
8388608 29.4340 14.9250 7.7331 4.0058 2.1944

16777216 28.5110 14.7590 7.7412 3.9246

Table 4.3. Parallel execution time (in seconds) for one time step on the Cray T3E.

processors
particles 1 2 4 8 16 32 64 128 256

16384 1 1.95 3.43 5.66 8.99 14.53 24.02 35.98 47.92
32768 1 1.75 3.29 5.52 10.71 16.57 26.43 42.78 61.41
65536 1 1.74 3.13 5.32 10.48 19.58 30.36 47.75 77.97

131072 1 1.76 2.92 5.22 10.30 18.34 32.15 53.40 85.31
262144 1 2.01 3.42 6.05 10.85 19.25 35.29 65.05 103.20
524288 1 1.84 3.99 7.01 12.91 22.66 40.21 78.17 133.78

Table 4.4. Speedup for one time step on the Cray T3E.

In Table 4.4 we show the speedup which corresponds to the execution
times from the previous table. Here, T (1) was used for T , i.e., the time needed
by the sequential program is taken as the time needed by the parallel program
on one processor. One can observe how the program is accelerated by the use
of larger and larger numbers of processors. Ideally, the program would be
accelerated by a speedup factor of P for P processors. We observe a value
of 133 for 256 processors and 524288 particles. It is typical that the largest
accelerations are observed for large problems and can therefore be found
in the last row of the table. The reason is the relatively small loss due to
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sequential parts of the program and due to communication among processors
(compare also the discussion of Amdahl’s law above).

The parallel efficiency can be computed directly from the speedup. The
efficiencies are given in Table 4.5. For one processor, the value is one, by
definition. The efficiency decreases with increasing numbers of processors,
but also increases with larger problem sizes. Furthermore, one can observe
cache effects in the two Tables 4.4 and 4.5. For instance the efficiency is
larger than one for the case of 262144 particles on two processors. On one
processor, obviously a critical number of particles and thus memory size is
exceeded which slows down the access to memory and thus leads to longer
execution times.

processors
particles 1 2 4 8 16 32 64 128 256

16384 1 0.978 0.857 0.708 0.562 0.454 0.375 0.281 0.187
32768 1 0.879 0.823 0.691 0.669 0.518 0.413 0.334 0.239
65536 1 0.873 0.782 0.665 0.655 0.612 0.474 0.373 0.304

131072 1 0.884 0.731 0.653 0.644 0.573 0.502 0.417 0.333
262144 1 1.007 0.856 0.756 0.678 0.601 0.551 0.508 0.403
524288 1 0.920 0.999 0.876 0.807 0.708 0.628 0.610 0.522

Table 4.5. Parallel efficiency for one time step on the Cray T3E.

processors
particles 1 2 4 8 16 32 64 128

16384 0.942 0.902 0.863 1.013 0.988 0.975 0.955 0.915
32768 0.934 0.951 0.863 1.014 0.977 0.979 0.966 0.974
65536 0.981 0.928 0.926 1.075 0.971 0.911 0.976 0.991

131072 0.972 0.935 0.998 1.002 0.901 0.928 0.976 0.932
262144 0.884 0.953 0.983 1.026 1.003 1.003 1.064 0.988
524288 0.912 1.080 0.950 1.000 0.943 0.993 1.092 0.963

1048576 1.070 0.937 0.999 0.980 1.029 0.991 0.881
2097152 0.949 0.935 0.987 1.000 1.016 0.986
4194304 0.960 1.007 0.904 0.950 0.936
8388608 1.032 1.011 0.999 1.020

Table 4.6. Scaleup for κ = 2 for one time step on the Cray T3E.

We have used a factor of two in the problem size and the number of
processors for the computation of the scaleup in Table 4.6, i.e., we used κ = 2.
We can therefore also list values for problems that no longer fit into the main
memory of one processor (for N > 524288). All in all, we obtain very good
scaleup values close to one. This is because the parallel algorithm is of a
type that only needs communication between local neighbors. Some scaleup
values are even a little bit larger than one which is caused by the specific
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distribution and balance of the parallel data. We can only distribute entire
cells which means that, for certain numbers of processors, a processor has to
process one row of cells more than another processor. But a problem twice
the size can be distributed somewhat better to twice as many processors.

In the following, we study our parallel implementation of the linked cell
method on a different type of parallel computer. Besides conventional super-
computers as the Cray T3E, an alternative has evolved, namely clusters of
workstations and PCs. In such parallel systems, commodity computers are
connected by Ethernet or faster networks and are run as parallel comput-
ers using software packages such as PVM or MPI [248, 272]. These parallel
computers are often called Beowulf class supercomputers [581]. These “do-
it-yourself” machines differ in several aspects from commercial parallel com-
puters, as for instance in the performance of the communication network but
also in the software. As an example for this class of cluster computers we
show execution times for the Linux cluster “Parnass2” of the Institute for
Numerical Simulation at the University of Bonn in Table 4.7. It consists of
PCs, with two 400 MHz Intel Pentium II processors each, that are coupled
by a high speed network made by Myricom [557]. On this cluster computer
we use the MPI implementation SCore [13].

processors
particles 1 2 4 8 16 32 64 128

16384 0.9595 0.4953 0.2778 0.1591 0.0997 0.0627 0.0407 0.0253
32768 1.9373 1.0068 0.5394 0.3162 0.1712 0.1055 0.0730 0.0443
65536 3.7941 1.9502 1.0478 0.5983 0.3127 0.1743 0.1239 0.0721

131072 7.2012 3.6966 2.0093 1.1917 0.5697 0.3132 0.2152 0.1088
262144 16.859 7.6617 4.1565 2.0424 1.0624 0.6156 0.4054 0.1971
524288 32.072 14.879 8.4316 4.4442 2.1176 1.1310 0.6817 0.4113

1048576 64.407 32.069 16.369 8.5576 4.2066 2.0963 1.1645 0.6901
2097152 121.92 60.422 32.737 17.273 8.0585 4.0968 2.3684 1.1889
4194304 248.37 118.07 61.678 32.746 16.285 8.2477 4.2860 2.2772
8388608 119.68 64.623 31.615 15.562 8.4831 4.4283

16777216 31.837 16.740 8.5574

Table 4.7. Parallel execution time (in seconds) for one time step on the PC cluster
“Parnass2”, connected with a Myrinet network.

A comparison of the execution times in Table 4.3 with those in Table 4.7
shows no significant differences. The Cray T3E is approximately 10% faster.
The parallel program scales similarly on both machines. This demonstrates
that the PC cluster is nearly as adequate as a Cray T3E for this kind of
problems. Since such do-it-yourself clusters cost much less to buy, assemble,
and build, they are serious competitors to commercial parallel computers.
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In closing, we give results for the Cray T3E for another implementation of
the short-range force evaluation according to Plimpton [483] that is based on
the neighbor-list algorithm of Verlet [645] and is often cited as benchmark.
Table 4.8 shows the execution times of this algorithm for the example from
Table 4.3.

processors
particles 1 2 4 8 16 32 64 128 256

16384 0.1936 0.1030 0.0538 0.0288 0.0152 0.0080 0.0043 0.0025 0.0019
32768 0.3842 0.1985 0.1036 0.0587 0.0286 0.0150 0.0080 0.0043 0.0024
65536 0.4112 0.2059 0.1096 0.0563 0.0285 0.0151 0.0080 0.0043

131072 0.4265 0.2176 0.1120 0.0562 0.0285 0.0152 0.0080
262144 0.4290 0.2176 0.1091 0.0555 0.0286 0.0151
524288 0.4440 0.2177 0.1095 0.0562 0.0286

1048576 0.4424 0.2180 0.1123 0.0562
2097152 0.4294 0.2181 0.1092
4194304 0.4443 0.2179
8388608 0.4430

Table 4.8. Results for Plimpton’s implementation with neighborhood lists. Parallel
execution times (in seconds) for one time step on the Cray T3E.

A comparison of the results shows that the runtimes for Plimpton’s im-
plementation are consistently smaller than those for our implementation. Es-
sentially, this can be traced back to a different implementation of the force
computation for the short-range potentials. Unlike our linked cell algorithm,
in which at every time step the neighborhoods are computed anew, Plimp-
ton’s implementation uses neighbor-lists that are reused for several time steps.
For each particle a vector with pointers to particles within a distance of at
most 2.8σ is stored, which is somewhat larger than rcut. The implementation
assumes that during these time steps (here 20) no other particle (but the
ones in the list) will come closer than rcut = 2.5σ to the particle. In this way,
one avoids the expensive testing of the distances of the particles for those
particles that are in neighboring cells in the linked cell method but further
away than rcut. An easy estimate involving the volumes of the sphere and of
the cells shows that a sizeable percentage of particles in the neighbor cells
will lie outside of the cutoff radius. Also, vectors can be processed more effi-
ciently than linked lists. However, the construction of the neighbor-lists can
be significantly more expensive than one step of the linked cell method. To
further optimize the implementation, Plimpton’s method sets the values of σ,
ε and m to one which saves multiplications, and works in single precision. In
total this gives an acceleration by a factor of about five. Plimpton’s program,
however, is no longer flexible, and is – as are other typical benchmark codes
– very much adapted to the specific situation of the benchmark example.
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4.5 Application Examples

The parallelization of our linked cell code allows to treat problems with larger
numbers of particles. In particular, problems in three dimensions can now
properly be dealt with.

4.5.1 Collision of Two Bodies

We now extend the two-dimensional simulation of a collision between two
bodies of the same material from Section 3.6.1 to the three-dimensional case,
see also [199]. The setting of the simulation can be found in Figure 4.11
(upper left). The smaller body hits the larger, resting body with high velocity.
Standard outflow boundary conditions are used at the sides of the simulation
domain. We observe the evolution of the system for given parameters ε and
σ of the Lennard-Jones potential.

At the beginning of the simulation, the particles within the two bodies
are arranged on a regular mesh with mesh width 21/6σ (which corresponds
to the minimum of the potential). The two bodies consist of 10×10×10 and
10× 30× 30 cubic cells with four particles each, giving a cubic face centered
lattice, see Section 5.1.1. The velocities of the particles in the moving body are
set to the given parameter v. In addition, the initial velocity of the particles
is superimposed by a small thermal motion chosen according to a Maxwell-
Boltzmann distribution with an average velocity of 3.4 per component. There
are no external forces in this simulation.

Figure 4.11 shows the result of a simulation with the parameter values
from Table 4.9.

L1 = 150σ, L2 = 150σ, L2 = 150σ,
ε = 120, σ = 3.4,

m = 39.95, v = (0, 0,−20.4),

distance between particles = 21/6σ, N1 = 4000, N2 = 36000,
rcut = 2.5σ, δt = 0.001

Table 4.9. Parameter values for the simulation of a collision in three dimensions.

The color of the particles indicates their velocity, as in the results of the
two-dimensional simulation in Section 3.6.1. Immediately after the impact the
smaller body disintegrates. It is completely destroyed by the collision. Fur-
thermore, the impact punches a hole through the larger body and plastically
deforms it.

Because of the simple Lennard-Jones potential used in this simulation,
we obtain only a first, phenomenological description of the collision of solid
bodies. More realistic simulations can be obtained by the use of more com-
plicated potentials, compare Section 5.1. Further simulations of collisions can
be found in [69, 71, 390].
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t=0.0 t=1.2

t=2.1 t=2.9

t=4.2 t=8.1

t=10.9 t=21.9

Fig. 4.11. Collision of two bodies, time evolution of the particle distribution.
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4.5.2 Rayleigh-Taylor Instability

We now extend the simulation of the Rayleigh-Taylor instability from Sec-
tion 3.6.4 to three dimensions. Again, a fluid is put on top of another fluid
with lower density. The heavier fluid sinks down and thereby displaces the
lighter fluid. We use the parameters from Table 4.10.

L1 = 90, L2 = 80, L3 = 22.5
σ = 1.15, ε = 2.0, N = 96 × 84 × 22 = 177408,

mup = 80, mdown = 40, T ′ = 100,
G = (0, 0,−1.2435), rcut = 2.5σ, δt = 0.001

Table 4.10. Parameter values for the simulation of a Rayleigh-Taylor instability.

A total of 177408 particles is employed. At the start of the simulation,
the particles are arranged on a regular grid. One half of the particles, the
ones that are in the upper layer, have a mass of 80, and the other particles
have a mass of 40. The initial velocities are chosen according to a Maxwell-
Boltzmann distribution with a temperature parameter T ′ = 100. During
the computation, the velocities are scaled every 10 time steps according to
(3.35) and (3.40) using T ′ = 100. One can observe how typical mushroom-like
structures are formed during the simulation. The heavier particles sink down
and displace the lighter particles that therefore rise up. In this simulation we
can observe the emergence of 4 × 4 mushroom structures of approximately
equal size, see Figure 4.12.

In a further simulation with slightly changed parameters (as given in
Table 4.11), one large mushroom-like structure emerges. This is shown in
Figure 4.13.

L1 = 50, L2 = 40, L3 = 45
σ = 1.15, ε = 2.0, N = 54 × 42 × 46 = 104328,

mup = 80, mdown = 40, T ′ = 100,
G = (0, 0,−0.6217), rcut = 2.5σ, δt = 0.001

Table 4.11. Parameter values for the simulation of a Rayleigh-Taylor instability.
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t=16

t=28

t=36

Fig. 4.12. Rayleigh-Taylor instability, time evolution of the particle distribution.
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t=28 t=38

t=48 t=58

Fig. 4.13. Rayleigh-Taylor instability, time evolution of the particle distribution.



5 Extensions to More Complex Potentials and

Molecules

So far, only pair potentials were used in the previous simulations. In this
chapter, we now consider several applications which need more complex po-
tentials, and we discuss the necessary changes in the algorithms. We start
with three examples for many-body potentials, the potential of Finnis and
Sinclair [232, 330, 593], the EAM potential [64, 173, 174], and the potential
of Brenner [122]. The Finnis-Sinclair potential and the EAM potential de-
scribe metallic bonds. We use these potentials to simulate microcracks and
structural changes in metallic materials. The Brenner potential describes
hydrocarbon bonds. We employ it in the simulation of carbon nanotubes
and carbon buckyballs. Furthermore, we extend our code to potentials with
fixed bond structures. We then simulate simple networks of atoms and chain
molecules such as alkanes and polymers. Finally, we give an outlook on the
implementation of more complex biomolecules and proteins.

5.1 Many-Body Potentials

The application of appropriate potentials is crucial to obtain reliable results
in particle simulations. Simple pair potentials such as the Lennard-Jones
potential can not reproduce the specific properties of materials such as metals
or hydrocarbons with sufficient accuracy [174]. Instead, so-called many-body
potentials are necessary, in which the force between any two particles depends
on the position of several neighboring particles.

These potentials are of the form

V (x1, . . . ,xN ) =
N∑

i=1

⎛
⎜⎝ N∑

j=1
i�=j

U(rij) − Si(ri1, . . . , riN )

⎞
⎟⎠ (5.1)

with a repulsive part U , realized by a pair potential, and an attractive, more
complicated part Si. There, interactions between multiple particles are taken
into account, so that the force on a particle depends on the number and
position of neighboring particles. Such potentials allow for the modeling of
the specific bonds in metallic materials. They are superior to conventional
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pair potentials such as the Lennard-Jones potential and enable a physically
more accurate description.

In recent years, many empirical and semi-empirical approaches have been
developed for the simulation of metals and related covalent materials. In 1983,
Daw and Baskes [173, 174] published the so-called embedded atom method
(EAM) for transition metals with face-centered cubic (fcc) lattices, see Fig-
ure 5.1. This approach has been extended by Johnson and Adams to metals
with body-centered cubic (bcc) lattices [29, 344]. It was further improved to
the MEAM potential [63, 65] which also takes the bond neighborhood into
account. Abell and Tersoff took this method up and developed a similar po-
tential for silicon [28, 602]. Their potential in turn was used by Brenner [122]
as the starting point for his hydrocarbon potential, which we will treat in
more detail in Section 5.1.3.

An alternative approach was developed by Finnis and Sinclair in 1984
[232]. They derived a many-body potential from the tight-binding technique,
which is a semi-empirical approximation of the density functional theory. The
Finnis-Sinclair potential was originally developed for transition metals with
body-centered cubic lattices. Rosato et al. [529] and Sutton and Chen [593]
introduced variants for transition metals with face-centered cubic lattices
(fcc) and with hexagonal closest packed lattices (hcp). A generalization to
metallic alloys can be found in [497]. In the following, we present the Finnis-
Sinclair potential in more detail.

5.1.1 Crack Propagation in Metals – the Finnis-Sinclair Potential

The analysis of the formation and propagation of cracks in metals on a mi-
croscopic level is an interesting application of the method of molecular dy-
namics to material sciences. Here, one is especially interested to reproduce
the experimentally observed propagation of cracks [229, 230] and thus to find
explanations for the specific behavior of cracks on the microscopic level. It
has been observed in physical experiments that there is a maximum velocity
of crack propagation. Up to a certain velocity, a straight crack with smooth
edges forms, but when the velocity reaches this critical value, the dynamics of
crack propagation changes dramatically. The velocity of the crack propaga-
tion starts to oscillate and rough crack surfaces are produced. Furthermore,
bifurcations of the crack trajectory can be observed. The simulation of cracks
on the microscopic level by a molecular dynamics approach allows for a de-
tailed investigation and an accurate determination of the velocity of the crack
propagation [330]. To this end, the propagation of a crack can be followed
automatically via an analysis of the computed stresses. The results of such
simulations can then be used to improve macroscopic continuum models of
crack formation [496].

Metals can be classified into several distinct groups according to their
structural type, i.e. the arrangement of their atoms to a crystal lattice [524].
For instance, in copper, silver, gold and nickel, the atoms are arranged in
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a cubic face-centered Bravais-lattice (fcc), in which atoms are positioned at
every vertex and at the center of each face of a cubic unit cell (compare
Figure 5.1, lower left). Then, in iron the atoms are located on a cubic body-
centered Bravais-lattice (bcc). In such a lattice, an atom is placed at each
vertex and at the center of a cubic unit cell (compare Figure 5.1, upper
left). Furthermore, there is the arrangement in a hexagonal closest (spherical)
packing (hcp), compare Figure 5.1, right, which can be found in magnesium
or zinc. There are also more general cubic-like and rhombic lattices.1 The
preferred lattice types of the most important elements can be found in Figure
5.2.

Fig. 5.1. Lattice types. Upper left: Body-centered cubic (bcc). Lower left: Face-
centered cubic (fcc). Right: Hexagonal closest packing (hcp).

Potentials that describe metallic bonds have to be adapted to the respec-
tive lattice structure. Here, different forms and parameters of the potentials
exist, depending on the arrangement of atoms in the metal. In the following,
we use the Finnis-Sinclair potential

V = ε

N∑
i=1

⎛
⎜⎜⎝ N∑

j=i+1

(
σ

rij

)n

− c

⎡
⎢⎣ N∑

j=1
j �=i

(
σ

rij

)m

⎤
⎥⎦

1/2
⎞
⎟⎟⎠ (5.2)

for fcc metals according to Sutton and Chen [593]. Like the simple Lennard-
Jones potential (3.27), this potential features both a repulsive and an at-
tractive part. The repulsive part is realized by a pair potential, while the
1 The valence electrons of the atoms are delocalized in metallic bonds. This de-

creases the kinetic energy and contributes to the strength of the bonds. In so-
called transition metals, the d- and f-orbitals of different atoms also interact
covalently with each other. This often results in closest packed structures.
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Fig. 5.2. Preferred lattice types under normal conditions for some important ele-
ments.

attractive part is realized by a many-body potential. The material depen-
dent parameters n, m, ε, and σ play the same role as in the Lennard-Jones
potential. The additional parameter c is related to the material and describes
the specific type of lattice. Several sets of parameters are given in Table 5.1.

m n ε σ c

copper 6 9 1.2382 · 10−2eV 3.61 Å 39.432
silver 6 12 2.5415 · 10−3eV 4.09 Å 144.41
gold 8 10 1.2793 · 10−2eV 4.08 Å 34.408

Table 5.1. Parameters for the Sutton-Chen potential for some fcc metals [593].

Using the abbreviation

Si =
N∑

j=1
j �=i

(
σ

rij

)m

(5.3)

the potential can also be written as

V = ε

N∑
i=1

⎛
⎝ N∑

j=i+1

(
σ

rij

)n

− c
√

Si

⎞
⎠ . (5.4)

The gradient of the potential gives the force on the individual particles. With
rij = xj − xi, this force is

Fi = −ε
N∑

j=1
i�=j

(
n

(
σ

rij

)n

− c m

2

(
1√
Si

+
1√
Sj

)(
σ

rij

)m
)

rij

r2
ij

. (5.5)
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Now, the more complicated term (S−1/2
i + S

−1/2
j ) appears in addition to

the terms present in the force for the Lennard-Jones potential (3.28). Due to
this term, the force from particle j on particle i depends on the positions of
all other particles.

Since the terms in the sum decay rapidly with rij , the sums in (5.3), (5.4)
and (5.5), respectively, do not have to be evaluated for all particles, but can
be cut off as in the case of the Lennard-Jones potential. With a threshold
parameter rcut one then obtains the approximations

Si ≈ S̄i =
N∑

j=1,j �=i
rij<rcut

(
σ

rij

)m

, (5.6)

V ≈ ε
N∑

i=1

⎛
⎜⎝ N∑

j=i+1
rij<rcut

(
σ

rij

)n

− c
√

S̄i

⎞
⎟⎠ (5.7)

and

Fi ≈ −ε

N∑
j=1,i�=j

rij<rcut

(
n

(
σ

rij

)n

− c m

2

(
1√
S̄i

+
1√
S̄j

)(
σ

rij

)m
)

rij

r2
ij

. (5.8)

We abbreviate

Fij = −ε

(
σ

rij

)m

·
(

n

(
σ

rij

)n−m

− c m

2

(
1√
S̄i

+
1√
S̄j

))
rij

r2
ij

(5.9)

for the force from particle j on particle i. Then, we obtain

Fi ≈
N∑

j=1,i�=j
rij<rcut

Fij .

Now, we study the propagation of cracks in metals on the molecular level
using the potential (5.2). At the beginning of the simulation, the particles
are placed on a face-centered cubic lattice. At one side, a small dislocation
is introduced: The first 10 or 20 particles in the middle of the sample are
pulled apart by a small force which acts along a line (2D) or a plane (3D),
respectively, compare Figure 5.3. This force decreases linearly to zero from
the exterior of the metal to the interior. Furthermore, the bottom and the
top sides of the metal cube are pulled apart by a constant force which acts
on the particles at these boundaries, compare Figure 5.3 for a sketch in the
two-dimensional case.
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Fig. 5.3. Basic configuration for the simulation of crack formation in metals in the
two-dimensional case; on the upper and lower side the metal is pulled with a given
force F ; on the left hand side, a defect has been introduced.

Implementation. Now, several changes and extensions of the code are nec-
essary due to the many-body part of the potential. For the computation of
the potential energy V and the forces Fi, the terms S̄i, i = 1, . . . , N , from
(5.6) are needed. After they have been determined, the potential energy V
and the forces Fi can be computed as previously with the linked cell method
according to (5.7) and (5.8). Therefore, in each time step, the values for S̄i are
calculated and saved before the force computation. This can be done with one
loop over all particles. To this end, for a fixed i all the particles in the same
cell and in the neighboring cell are visited – as described in algorithm 3.15 –
and the appropriate interaction terms are added up.

In the implementation, we therefore complement the data structure 3.1
Particle by an additional value real s, which contains the value of S̄i

for particle i. Furthermore, a new routine compS LC has to be implemented,

void compS_LC(Cell *grid, int *n, real r_cut);

which computes the values S̄i according to (5.6). This routine is called at
the beginning of the routine compF LC in algorithm 3.15 before any forces are
computed. Additionally, we have to modify the computation of the potentials
and forces inside of the routine force according to (5.4), (5.8) and (5.9).

Parallelization. The parallelization of the linked cell method was already
described in Chapter 4. The parallel algorithm now has to be supplemented
by the parallel computation of the values S̄i according to (5.6). This can
be done analogously to the explanations in Section 4.2. If the data of the
particles in the cells of the border neighborhood of the respective subdomain
are available, S̄i can be computed inside each subdomain in parallel.

Additionally, the following problem occurs: All S̄j with ‖xj − xi‖ < rcut

are needed to compute the force Fi on particle i. Because of the cutoff in the
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summation for the S̄j , the corresponding particles lie either in the same cell as
particle i or in a cell directly adjacent to it. Close to the boundary of the local
simulation domain it may happen that the correct value has been computed
by a neighboring process and is therefore not known to the process that
computes the force Fi. Thus, an additional communication step is needed,2

in which the S̄j of the particles in the cells of the border neighborhood are
exchanged between processes. In the algorithm this is implemented directly
after the parallel computation of the S̄j . Again, the communication routines
from Section 4.3 can be used to realize this communication step.

Examples. Here, we present the results of one simulation for the two-
dimensional and the three-dimensional case, respectively. Figure 5.4 shows
the results of a two-dimensional simulation with the parameter values from
Table 5.2.3 One can see how the sound waves induced by the crack spread
through the material.4 Figure 5.5 shows the result of a three-dimensional
simulation with the parameter values from Table 5.3.

L1 = 200, L2 = 200,
ε = 1, σ = 1,
c = 10.7,

m = 6, n = 12,
lattice spacing = 1.1875, T = 1 K,

rcut = 5.046875,

Table 5.2. Parameter values for the simulation of a microcrack in silver (2D).

The propagation and thus the velocity of a crack can be tracked auto-
matically if one associates to each particle i the 3 × 3 matrix

σi = −1
2

1
|Ω|

N∑
j=1,i�=j

rij<rcut

Fij · rT
ij , (5.10)

2 This second communication step can be completely avoided, if the data of the
particles are saved and exchanged in a border neighborhood of double size. Then,
the S̄j needed for the force computation by any process can be computed from
data of that process. This however causes a moderate increase in the memory
requirements.

3 The parameter c depends on the type of lattice and on the number of neighboring
atoms. Therefore, its values in two and three dimensions are in general different.

4 These waves emanate from the crack, propagate through the material, and are
reflected at the boundary of the sample, which influences the propagation veloc-
ity and the trajectory of the crack. This can be avoided by damping the acoustic
waves at the boundary of the sample. The implementation of such a damping
consists of the introduction of an additional friction-like term (compare Sec-
tion 3.7.1) that only affects particles close to the boundary of the sample.
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Fig. 5.4. Propagation of a microcrack in silver in two dimensions.

Fig. 5.5. Propagation of a microcrack in silver in three dimensions.
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L1 = 80, L2 = 80, L3 = 80,
ε = 1, σ = 1, c = 144.41,

m = 6, n = 12,
lattice spacing = 1.21875, T = 1 K,

rcut = 4

Table 5.3. Parameter values for the simulation of a microcrack in silver (3D).

where |Ω| denotes the volume of the simulation domain.5 This matrix can be
interpreted as stress tensor at the position of the particle i (where the stress
caused by the thermal movement of the particles is not taken into account, see
also (5.27) and (5.28)). The propagation of the crack can be tracked with help
of the position of the maximal ‖σi‖. Here, one assumes that the measured
stress is maximal at the tip of the crack. An alternative formula for the stress
tensor can be found in [330].

The Lennard-Jones potential has been used in [464] to simulate the forma-
tion of cracks6. More detailed studies of crack propagation with the Finnis-
Sinclair potential can be found in [330, 685]. In [496] a microscopic molecular
dynamics model in the immediate vicinity of the crack tip is coupled with a
macroscopic finite element elasticity model and applied to the propagation
of cracks in a two-dimensional silver plate. The obtained multiscale model
successfully reproduces the crack velocity, the change of the roughness of the
crack surface over time, and the macroscopic trajectory of the crack.

The formation of cracks plays an important role not only in metals, but
also in semiconductors. For the latter case, most work in the literature uses
a potential introduced by Stillinger and Weber [584] or refined variants of
it. Results and references can be found for silicon in [409], and for gallium
arsenide and silicon nitride in [444, 639, 641]. In these articles, also the frac-
ture behavior of ceramics and the propagation of cracks in layers of graphite
is studied using the Brenner potential (see Section 5.1.3). Numerical experi-
ments for the crack dynamics in quasi-crystals can be found in [432]. Finally,
[326, 691, 692] describe simulations of the fracture dynamics and the propaga-
tion of cracks in copper with more than 35 million particles. These simulations
are based on a variant of the EAM potential which was developed in [648].
We explain the basic principles of the EAM in the following section.

5 Here, rT
ij stands for the transpose of the vector rij = xj−xi. The product Fij ·rT

ij

is a 3 × 3 tensor with the entries (Fij)l(rij)m in the lth row and mth column.
6 As we already noted, pair potentials such as the Lennard-Jones potential cannot

model the specific properties of metals accurately enough.
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5.1.2 Phase Transition in Metals – the EAM Potential of Daw
and Baskes

The embedded atom method (EAM) is another approach to derive potentials
that can be used in the simulation of metals and metal alloys by molecular
dynamics. These potentials have been used successfully in the modelling of
crack formation, surface reactions, epitaxial growth, the austenite-martensite
transformation, and phase transitions in solids, nanoparticles, and thin films
[350]. The embedded atom method was introduced by Daw and Baskes [173]
and has been further developed in a number of articles [64, 65, 649]. In
the meantime it has become a standard in the simulation of metals by the
molecular dynamics method.

The basic idea is as follows: Each energy potential induces an electron
density. The other way around, Hohenberg and Kohn [325] showed that also
the electron density uniquely determines the potential.7 This principle is used
in the EAM to construct the potential by means of the electron density: Each
atom i is surrounded by its host material, i.e. the bulk of all the other atoms.
Its energy therefore depends on the electron density of the host material at
position xi, in other words, the atom is embedded in the electron density of
the host. Via an appropriately chosen embedding function Fi we can specify
the energy V emb

i of the ith atom which is contributed by the embedding into
the electron density of the host material as

V emb
i = Fi(ρhost

i ). (5.11)

Here, ρhost
i describes the electron density of the host material without atom i

at the point xi. Now, we make the simplifying assumption that the electron
density ρhost

i is just the sum of all the electron densities ρatom
j of all the atoms

j with j �= i. We furthermore assume that these densities only depend on the
distance. Thus we set

ρhost
i =

N∑
j=1,j �=i

ρatom
j (‖rij‖). (5.12)

The embedding potential (5.11) is now combined with a pair potential of the
form8

V pair
i =

1
2

N∑
j=1,j �=i

φij(‖rij‖).

Here, the functions φij only depend on the types of the atoms i and j. The
interaction between different atom types is often well approximated by the
7 In Hohenberg and Kohn’s work the potential is generated by the energy density

of all atoms whereas in the EAM it is generated by the energy density of the all
atoms except of atom i.

8 The use of V emb alone results in unrealistic physical properties and conflicts with
experimental measurements on solids.
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geometric mean of the interaction between atoms of the same type, i.e. φij =√
φiiφjj [174]. Then, V pair

i can be written in the form

V pair
i =

1
2

N∑
j=1,j �=i

Zi(‖rij‖)Zj(‖rij‖)
‖rij‖ (5.13)

with appropriately chosen functions Zi which only depend on the distance.
The Zi can be interpreted as “effective charges”. Thus, one obtains an energy
similar to the electrostatic charge. Here, the functions Zi describe short-range
effects, they decay very rapidly and are practically zero for distances of just
a few Å.

Altogether, we obtain the potential

V =
N∑

i=1

Fi

⎛
⎝ N∑

j=1,j �=i

ρatom
j (‖rij‖)

⎞
⎠+

1
2

N∑
i=1

N∑
j=1,j �=i

Zi(‖rij‖)Zj(‖rij‖)
‖rij‖ (5.14)

where the embedding functions Fi, the effective charges Zi, and the func-
tions ρatom

j in the electron density have to be determined depending on the
material under consideration. In the case of Fi and Zi, this is done in a semi-
empirical way. To this end, Fi and Zi are modeled as cubic9 splines, where
the coefficients are calculated by a weighted least squares approach such that
typical physical properties like lattice constants, elastic constants, vacancy
formation energies, and others are reproduced as accurately as possible. The
density functions ρatom

j are determined by Hartree-Fock approximations, see
[151] for details. More recent and more accurate data can be found in [130].10

Implementation. The part of the potential (5.14) given by the embedding
in the host (5.11) needs some extensions to the force computation in the linked
cell algorithm in Section 3.5, analogous to the extensions necessary for the
potential of Finnis-Sinclair which we presented in the previous Section 5.1.1.

For the computation of the energy V and the forces Fi, we need the func-
tions ρatom

j (r), Zi(r) and Fi(ρ) and their derivatives. Usually, these functions
are chosen to be B-splines. To this end, one approximates the function be-
tween any two nodes as cubic polynomials that match the given values at
the nodes (interpolation) and furthermore give a globally twice differentiable
function. To obtain a unique characterization, boundary conditions for the
first derivative (for Zi(r)) or for the second derivative (for Fi(ρ)) are addi-
tionally prescribed, see also Table 5.4. From these values one first computes
the second derivative of the spline approximation at all nodes by the solution
of a tridiagonal system of linear equations. The subsequent evaluation of the
9 A linear Fi would result in a pair potential.

10 It does not pay off to invest too much effort in the electron density, because
simple Hartree-Fock calculations produce in general a much higher accuracy of
the electron densitiy than an empirically fitted embedding function.
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spline approximation at a point r can then be obtained with the values and
derivatives at the two neighboring nodes of r from a cubic polynomial or
a B-spline. The details can be found in many standard books in numerical
analysis such as [176, 180, 587]. The evaluation for arbitrary values of r and
ρ has to be implemented in appropriate procedures. We will describe such
procedures later in the algorithms 7.3 and 7.8 in Section 7.3.2 for general
degrees of the polynomials. Special attention has to be given to the efficiency
and speed of the evaluation of the spline approximation since it will be used
in any computation involving Zi(r) and Fi(ρ).

The functions ρatom
j (r) and Zi(r) are constructed in such a way that

they decay to zero within the threshold radius rcut. Then, the linked cell
method 3.15 with threshold radius rcut can be applied to compute forces
and energies. The pair potential V pair

i , which contains the effective charge
functions Zi, can be computed directly according to (5.13). However, for the
computation of the forces caused by the electron densities ρhost

i from (5.12)
we need an intermediary step, just as in the computation of the terms S̄i in
the Finnis-Sinclair potential. The electron density ρhost

i for all particles i is
computed in a first linked cell loop. In a second loop, the electron density
is used together with the embedding function Fi as in (5.11) to compute
energies and forces.

For this purpose, we add the variable real rho host to the data struc-
ture 3.1 Particle which we use to store the value of ρhost

i for the appro-
priate particle i. In a new subroutine compRho LC we determine the value of
that variable according to (5.12). The force computation has to be adapted
accordingly. The parallelization of the linked cell algorithm proceeds as in
Section 4.2, extended as in the previous Section 5.1.1. To compute ρhost

i in
parallel, an additional communication step is required, or, alternatively, a
border neighborhood of double the size is used and the ρhost

i are computed
redundantly by respective processes for particles i close to the subdomain
boundaries.

Example. In the following experiments, we simulate structural changes in
metal alloys using the EAM potential.11 We know from Section 5.1.1 that
crystalline metals can have different structural types, i.e. different arrange-
ments of the atoms in the crystal lattice, compare Figure 5.1. In some ele-
ments such as iron, but also in some alloys made from metals with different
lattice types, a change in temperature can cause a change in structural type.
One example is the transition from β- to γ-iron at 1185 K. Here, one speaks
of a temperature-induced structure conversion or a phase transition. Such
transitions in alloys were first observed by Adolf Martens around 1890 when
he studied alloys under a microscope [450]. The phase transition can occur
globally in the entire sample or only locally in regions of the size of several
atom layers which then leads to microstructures.
11 In our example of a iron nickel alloy, ferromagnetic effects are ignored and the

electrostatic forces are modeled by the EAM potential.
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We now study this dependence of the phase on the temperature and the
conversion from one phase to another for the case of a nanoparticle. To this
end, we consider an alloy which consists of 80% iron and 20% nickel atoms.
For a complete description of the associated EAM potential (5.12) we need
a concrete functional form for the electron density ρatom

j (r). Here, we pro-
ceed as follows: The electrons from the outer orbitals are most important for
the electrostatic interactions between atoms. Analogous to the wave func-
tions of the stationary Schrödinger equation, their density is approximated
by functions of the form

ρ∗−orbital(r) =
1
4π

∣∣∣∣∣∑
k

Ck
(2ζk)nk+1/2√

(2nk)!
rnk−1e−ζkr

∣∣∣∣∣
2

, (5.15)

where nk is a positive integer which relates to the principal quantum number.
The empirical parameters Ck and ζK depend on the material and the orbital,
respectively. The electron density ρ̂atom

j (r) is now assumed to be a linear
combination of the electron densities of the orbitals involved. In the case of
an iron nickel alloy, the outer electrons only occupy 4s and 3d orbitals. We
therefore set

ρ̂atom
j (r) = Nsρ

4s−orbital(r) + (N − Ns)ρ3d−orbital(r) ,

where N denotes the total number of the outer electrons of the respective
atom and Ns denotes the empirically determined number of electrons in the
4s orbital. Detailed values of the different parameters for iron and nickel
atoms are given in Table 5.4, see also [151]. We now cut off the density at
the radius rcut and translate it properly to achieve a continuous transition.
We then obtain

ρatom
j (r) ≈

{
ρ̂atom

j (r) − ρ̂atom
j (rcut), r ≤ rcut,

0, r > rcut.
(5.16)

The embedding functions Fi and the effective charges Zi are approximated by
cubic splines whose nodes and values are given in Table 5.4. The parameters
for iron and nickel are taken from [429] and [350, 430], respectively.12 The
nodes and values describe a cubic spline for each Fi and Zi. Here, the effective
charge Zi is set to zero outside of the interval which is spanned by the given
nodes, whereas the embedding function Fi is linearly continued there.

We now arrange 2741 particles in form of a ball on a bcc lattice with the
lattice constant a0 for iron from Table 5.4. To this end, 80% of the particles
represent iron atoms and 20% represent nickel atoms, with iron and nickel
atoms randomly distributed. This system represents a metallic nanoparticle
which we now study in the NVT ensemble for different temperatures. The
12 Note that these improved parameters differ somewhat from the original EAM

parameters for nickel from [173].
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nickel iron
k nk ζk [Å−1] Ck nk ζk [Å−1] Ck

4s 1 1 54.87049 -0.00389 1 51.08593 -0.00392
2 1 38.47144 -0.02991 1 35.92446 -0.03027
3 2 27.41786 -0.03189 2 25.54344 -0.02829
4 2 20.87506 0.15289 2 19.14388 0.15090
5 3 10.95341 -0.20048 3 9.85795 -0.21377
6 3 7.31714 -0.05423 3 6.56899 -0.05096
7 4 3.92519 0.49292 4 3.63805 0.50156
8 4 2.15217 0.61875 4 2.03603 0.60709

3d 1 3 12.67158 0.42120 3 11.46739 0.40379
2 3 5.43072 0.70658 3 4.94799 0.71984

nickel iron
N Ns rcut [Å] N Ns rcut [Å]

10 0.85 4.64453 8 0.57 4.40905

nickel iron
ρ [Å−3] F(ρ) [J] F ′′(ρ) ρ [Å−3] F(ρ) [J] F ′′(ρ)

0 0 0 0 0 0
0.01412 -5.87470e-19 0.00937 -6.15372e-19
0.02824 -8.63439e-19 0.01873 -9.32104e-19
0.05648 -5.78532e-19 0.03746 -6.60495e-19
0.06495 0 0 0.04308 0 0

nickel iron
r [Å] Z(r) [e] Z′(r) r [Å] Z(r) [e] Z′(r)
0 28.0 0 0 26.0 0
2.112 0.9874 2.00921 1.4403
2.4992 0.1596 2.49716 0.2452
2.992 0.0 0 2.69808 0.1491

2.87030 0.0734
3.44436 0 0

nickel iron
ρ0[Å

−3] a0[Å] lattice type ρ0[Å
−3] a0[Å] lattice type

0.02824 3.52 fcc 0.01873 2.87 bcc

Table 5.4. Parameters of the EAM potential for nickel and iron. Values of the
coefficients ζk in the electron densities ρ4s−orbital and ρ3d−orbital of the respective
orbitals, the total number N of the outer electrons, and the number Ns of the outer
electrons in the 4s orbital. Values of the cutoff radius rcut, the nodes ρj and rj ,
and the values of the embedding function Fi and the effective charge Zi at those
nodes. Number ρ0 of electrons per Å

3
and lattice parameter a0 (edge length of the

unit cube in the crystal, compare Figure 5.1) at equilibrium.
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temperature is adjusted after each time step by the scaling (3.42) of the
velocities as described in Section 3.7.1. The parameters of the simulation are
listed in Table 5.5.

L1 = 60 Å, L2 = 60 Å, L3 = 60 Å,
N = 2741, Nnickel = 2196, Niron = 545,

Sphere with radius = 20 Å, Lattice = bcc, a0 = 2.87 Å,
δt = 10−15 s, tend = 7.96·10−11 s,

T (t = 0) = 100 K, T (t = tend) = 530 K,
mnickel = 58.6934 u, miron = 55.845 u

Table 5.5. Parameter values for the simulation of an iron nickel alloy.

We start the simulation at a temperature of 100 K. Here, the bcc struc-
ture is preserved over time. We then increase the temperature of the system
linearly. At about 480 K, a conversion of the arrangement of the atoms can
be observed: First, local domains with fcc structure are formed, which sub-
sequently grow with increasing temperature. Figure 5.6 shows the results of
the simulation for temperatures of 100 K, 480 K and 530 K. One can clearly
see two different areas in the cross-section, one with an fcc structure and one
with an hcp structure. The lower part of the nanoparticle also exhibits an fcc
structure, but this structure is not aligned with the plane of the cross-section
and can therefore not be seen in the figure. This configuration is essentially
preserved when the temperature is further increased to 800 K.

The associated radial distribution functions (3.62) are shown in Figure 5.7.
The position and the relative height of the maxima clearly show a transition
from a pure bcc lattice at 100 K to a closest packed lattice with fcc and hcp
portions at 530 K which additionally contains some small perturbations and
dislocations.

This phase transition of the iron nickel alloy can be reversed to some ex-
tent. To this end, the temperature must be reduced very slowly and carefully.
The use of the NPT ensemble is also advantageous. Here, the transition to
the original state is somewhat retarded. This delay can also be seen from
macroscopic variables such as the size of the nanoparticle or the electric re-
sistance [350]. Such a behavior is typical for many phase transition processes
and is known as hysteresis [124]. If the cooling occurs too fast, the crystal
structure of the high temperature phase is preserved.

More experiments with iron nickel alloys and iron aluminum alloys can be
found in [350, 429, 430]. There, periodic crystals and thin layers are studied.
Chemical vapor deposition processes with ionic clusters are simulated in [281].
The formation of cracks and dislocations in metals is studied in [278, 322,
432, 475, 531, 691, 692].
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Fig. 5.6. Simulation of the heating of an iron nickel nanoparticle. Starting (top),
intermediate (middle) and final state (bottom) of the simulation at 100 K, 480 K
and 530 K, respectively. Left column: Three-dimensional pictures of the shape of
the nanoparticle with iron atoms (green) and nickel atoms (blue). Right column:
Two-dimensional cross-sections through the lattice structure in the x2-x3 plane,
approximately three atom layers thick, atom colors represent their x1 coordinate.
Pure bcc crystal (top) and structure with both fcc and hcp parts and dislocations
(bottom).



5.1 Many-Body Potentials 167

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 1 2 3 4 5

ra
di

al
 d

is
tr

ib
ut

io
n

distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5

ra
di

al
 d

is
tr

ib
ut

io
n

distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

ra
di

al
 d

is
tr

ib
ut

io
n

distance

Fig. 5.7. Radial distribution functions of the configurations of the iron nickel
nanoparticle at a temperature of 100 K (left), 480 K (middle) and 530 K (right).

5.1.3 Fullerenes and Nanotubes – the Brenner Potential

In the last years, new forms of carbon with remarkable structures have been
discovered. Examples are fullerene balls [364] and single- or multi-wall carbon
nanotubes [333]. Fullerene balls consist of 60 carbon atoms that are arranged
in pentagons and hexagons, as on a soccer ball.13 They promise a wide range
of applications and are studied in a new subfield in chemistry, the so-called
fullerene chemistry.

A single-wall (n, m) carbon nanotube is a rolled-up sheet of carbon atoms
arranged in a honeycomb pattern, compare Figures 5.8 and 5.9. Here, the pair
of integers (n, m) describes a vector na + mb along which the carbon sheet
is rolled up, where (a,b) is a given pair of base vectors, compare Figure 5.8
(right). The angle θ between the vector na + mb and the base vector a
is called the chiral angle. Depending on its value, nanotubes are classified
into zig-zag nanotubes (θ = 0), armchair nanotubes (θ = 30◦) and chiral
nanotubes (0 < θ < 30◦).

The diameter and chiral angle of a (n, m) nanotube can be derived from
geometric considerations.14 We obtain a diameter of 0.078

√
n2 + nm + m2

and a chiral angle θ = arctan[
√

3m/(m + 2n)], see also [670]. Information
about the exact geometry and structure of nanotubes can be found in [51].
There, also the structure of various caps is described which may close the
ends of a nanotube.

The diameter of nanotubes is on the order of nanometers, as suggested by
their name. Their length, on the other hand, can extend up to the order of
micrometers [279]. Possible applications for nanotubes range from the storage
of hydrogen for fuel cells to composite materials with improved mechanical
properties. In the meantime, there are already first prototypes of products
using nanotube technology, among them flat field emission displays. The spe-
cial electrical properties of nanotubes – depending on their type, they behave
13 These carbon molecules resemble the famous structures and buildings of the

architect Buckminster Fuller. They are named buckminsterfullerenes, or in short
buckyballs, in his honor.

14 Here, the honeycomb structure and the bond length of 0.14 nanometers between
two carbon atoms are taken into account.
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Fig. 5.8. Example of the struc-
ture of a carbon nanotube.

Fig. 5.9. A honeycomb structure made from
carbon atoms. Shown are the base vectors (a,b)
and an example of a vector na + mb with
(n, m) = (1, 2). The corresponding chiral angle
θ is the angle between the vectors na + mb and
a.

either like metals or like semiconductors – may enable the production of ex-
tremely small microelectronic components in the future. An extensive discus-
sion of the properties of nanotubes can be found in [670], further information
is given in [26, 27].

The production of fullerenes and nanotubes and the experimental study
of their material properties is difficult. Computer simulations are therefore an
important tool to gain further insight. Ab initio calculations of the electron
structure of C60 buckyballs by Hartree-Fock and density functional methods
have been carried out in [520]. But these approaches are not practicable for
larger molecules such as long nanotubes because of their computational com-
plexity. Here, molecular dynamical simulations can be a possible alternative.
To this end, the use of a many-body potential is again necessary for realistic
results. In the following, we present the potential of Brenner [122] in more
detail. It generalizes the potentials of Abell and Tersoff [28, 602] for carbons
to hydrocarbons.

The Brenner Potential. In this section we describe the potential of Bren-
ner [122] and discuss its implementation in a linked cell code. A newer version
can be found in [123]. The potential is given by

V =
N∑

i=1

N∑
j=1,j>i

fij(rij)
cij

sij − 1
[
UR(rij) − B̄ijUA(rij)

]
(5.17)

with a repulsive and an attractive part

UR(rij) = e−
√

2sijβij(rij−rij,0) and UA(rij) = sije
−

q
2

sij
βij(rij−rij,0)

, (5.18)

respectively. Here, the parameter cij relates to the minimum of the potential
whereas the parameter rij,0 yields the distance at equilibrium between atoms
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i and j. The parameters sij , βij , rij,0 and cij are constants that reflect the
types of the atoms i and j. They have different values depending on whether
carbon or hydrogen atoms are present. The possible combinations can be
expressed as sij ∈ {sCC , sHH , sCH , sHC}, and analogously for βij , rij,0 and
cij . These parameters are symmetric with respect to the atom types, for
instance sCH = sHC . Their specific values are listed in Table 5.6. These
parameters were determined by Brenner by an elaborate fitting to values
from theoretical and experimental tests. In the special case sij = 2, the two
terms UR and UA just reduce to the Morse potential (2.45).

The function fij is defined as

fij(r) =

⎧⎪⎨
⎪⎩

1 for r < rij,1,
1
2

[
1 + cos

(
π

r−rij,1
rij,2−rij,1

)]
for rij,1 ≤ r < rij,2,

0 for rij,2 ≤ r.

(5.19)

It is equal to one inside the sphere with radius rij,1, zero outside of the sphere
with radius rij,2, and it decays continuously in-between the spheres from one
to zero. The function fij ensures that the potential V has a short range. The
values of rij,1 and rij,2 for the combinations CC, CH, HC, HH can be found
in Table 5.6.

carbon hydrogen hydrocarbons

rCC,0 = 1.39 Å, rHH,0 = 0.74144 Å, rCH,0 = 1.1199 Å,
cCC = 6.0 eV, cHH = 4.7509 eV, cCH = 3.6422 eV,
βCC = 2.1 Å−1, βHH = 1.9436 Å−1, βCH = 1.9583 Å−1,
sCC = 1.22, sHH = 2.3432, sCH = 1.69077,

rCC,1 = 1.7 Å, rHH,1 = 1.1 Å, rCH,1 = 1.3 Å,
rCC,2 = 2.0 Å, rHH,2 = 1.7 Å, rCH,2 = 1.8 Å,

δC = 0.5, δH = 0.5,
αCCC = 0.0, αHHH = 4.0, αHHC, αCHH ,

αHCH , αHCC = 4.0 Å−1

Table 5.6. Parameters for the Brenner potential.

Apart from the so-called bond order term B̄ij , this potential is a simple
pair potential. However, the factor B̄ij alters – similarly to the Finnis-Sinclair
potential (5.2) in the last section – the attractive part of the potential. It re-
flects the kind of bond between the atoms i and j and takes the atom config-
uration in the local neighborhood of these two atoms into account. Here, the
number of carbon and hydrogen atoms in the immediate neighborhood plays
an important role and detailed knowledge about the bonding behavior of car-
bon and hydrogen (occupation numbers, coordination numbers, conjugated
systems) enters into the potential. To this end, estimates for the number of
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carbon and hydrogen atoms in the neighborhood to each particle are needed
to adapt the potential to the local bonding situation.

To be precise, let NC
i and NH

i denote the number of carbon and hydrogen
atoms bonded with the carbon atom i, respectively.15 These numbers can be
approximated using the function fij by

NC
i =

∑
j∈C

fij(rij) and NH
i =

∑
j∈H

fij(rij). (5.20)

Here,
∑

j∈C and
∑

j∈H denotes the summation over all carbon and hydro-
gen atoms, respectively. Because of the local support of fij , the summation
extends only to the neighbors of atom i within a distance of rij,2, but not
over all atoms. Furthermore, we denote by Ni = NC

i +NH
i the number of all

atoms that interact with the carbon atom i.
We now define a continuous function

N conj
ij = 1 +

∑
k∈C, k �=i,j

fik(rik)F (Nk − fik(rik)) +

∑
k∈C, k �=i,j

fjk(rjk)F (Nk − fjk(rjk)) (5.21)

with

F (z) =

⎧⎨
⎩

1 for z ≤ 2,
1
2 [1 + cos (π(z − 2))] for 2 < z < 3,
0 for z ≥ 3,

(5.22)

similarly to the definition of fij . The value of N conj
ij depends via Nk on the

number of carbon and hydrogen atoms in the local neighborhood of car-
bon atom i and j, respectively. In this way the potential can be adapted
to the known interaction between carbon atoms, between hydrogen atoms,
and between carbon and hydrogen atoms while taking the configuration of
neighboring atoms of the atoms i and j into account. The function N conj

ij is
continuous also for the case where bonds are broken or formed.

Furthermore, we define values Bij by

Bij =
(
1 + Hij(NH

i , NC
i ) + (5.23)

N∑
k=1

k �=i,j

Gi(θijk)fik(rik) exp (αijk(rij − Rij − rik + Rik))
)−δi

.

The number Bij describes the bonding state of atom i with respect to atom
j. Here, the Hij denote two-dimensional cubic splines that depend on the
atom types of i and j. The Hij smooth the transition from the bound state

15 In the following, the values for NC
i and NH

i are only needed for carbon atoms i,
not for hydrogen atoms i.
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to the unbound state. For more details see Table A.1 in Appendix A.5. The
δi and αijk are fitting parameters, their values are given in Table 5.6. The
function Gi depends on the angle θijk between the lines through the particles
i and j and the particles i and k, respectively. The index i of Gi can either be
C or H , depending on whether the particle i models a carbon or a hydrogen
atom. In the case of a hydrogen atom, GH is constant and equals to 12.33,
in the case of a carbon atom, G is of the form

GC(θijk) = a0

(
1 + c2

0/d2
0 − c2

0/
(
d2
0 + (1 + cos θijk)2

))
, (5.24)

where a0=0.00020813, c0=330, d0=3.5, see also [122]. Note that Bij is not
symmetric in its indices.

The empirical bond order function B̄ij in (5.17) is now computed as the
arithmetic mean of the two bond orders Bij and Bji and an additional three-
dimensional spline K that interpolates between the values at the neighbors,
compare Table A.1 in Appendix A.5,

B̄ij = (Bij + Bji)/2 + K(Ni, Nj, N
conj
ij ). (5.25)

The spline K also models the influence of radicals for pairs of atoms with
different coordination numbers. More information and explanations can be
found in [28, 122, 602].

The Brenner potential is able to reproduce intramolecular energies and
bonds in carbon and hydrocarbon molecules. It also permits the breaking and
forming of bonds. The basic structure of the bond order term can already
be found in the approaches of Abell [28] and Tersoff [602], which in turn
are based on the concept of bond order proposed by Pauling [468]. Brenner
generalized this approach in such a way that non-local effects from conjugated
bonds are taken into account as well. The computation of the force Fi on a
particle i as the negative gradient of the Brenner potential is a tedious task
which we leave as an exercise to the reader.

In addition to the Brenner potential, we employ a smoothed Lennard-
Jones potential between the particles i and j to account for intermolecular
van der Waals forces. It has the form

Uij(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, r < rij,2,
S1(r), rij,2 ≤ r < rij,3,

4εij

((σij

r

)12 − (σij

r

)6)
, rij,3 ≤ r < rij,4,

S2(r), rij,4 ≤ r < rij,5,
0, rij,5 ≤ r.

Here, S1(r) and S2(r) denote cubic splines that are given by the values and
derivatives at the respective boundary points. The values of the parameters
of the potential Uij are given in Table 5.7.
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εij [eV] σij [Å] rij,2[Å] rij,3[Å] rij,4[Å] rij,5[Å]

C–C 4.2038 × 10−3 3.37 2.0 3.2 9.875 10.0
H–H 5.8901 × 10−3 2.91 1.7 2.76 9.875 10.0
C–H 4.9760 × 10−3 3.14 1.8 2.98 9.875 10.0

Table 5.7. Parameter values for a Lennard-Jones-like potential from [407, 436]
that is employed in addition to the Brenner potential to model van der Waals
interactions. The values of the parameters εCH and σCH are given by the Lorentz-
Berthelot mixing rules: εCH =

√
εCCεHH and σCH = (σCC + σHH)/2.

Comments on the Implementation. A naive, direct implementation of
the Brenner potential would lead to a complexity of the order O(N4). Here,
a factor of N2 is due to the double sum over i and j in (5.17), an additional
factor of N is caused by the sum over the particles in the computation of B̄ij

in (5.23), and another factor of N stems from the dependence of F on Nk in
(5.21). In total this results in four nested loops over all particles.

However, we do not have to compute the sum over all combinations of par-
ticles since rij,2 in (5.19) acts as a cutoff parameter in the sums in (5.17) and
(5.20). An efficient implementation can therefore use the linked cell method
as described in Chapter 3. Then, just sums over particles in neighboring cells
must be formed. But note that the implementation is not as simple as in the
case of pair potentials. In particular one needs for B̄ij cutoff regions around
both particles i and j in the double sum over the particles in (5.17), see
Figure 5.10.

Fig. 5.10. Cutoff regions around particle i and particle j in two dimensions.

Then, similar to the evaluation of the Finnis-Sinclair potential in Sec-
tion 5.1.1, we can precompute certain quantities, compare also [133]. In this
way the complexity can be reduced to C3 ·N with a constant C that depends
on the particle density.

In the following, we present the results of several numerical computations
which involve the Brenner potential. We consider the collision reaction of
a C60 fullerene with dehydrobenzene and the behavior of carbon nanotubes
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under tensile load. In addition, we study the reinforcement of a polyethy-
lene matrix with nanotubes. Finally, we present the execution times for the
parallelized code on a Cray T3E and a PC cluster.

Example: Collision of Dehydrobenzene with a Buckyball. First, we
consider several cases of the collision of a dehydrobenzene molecule (C6H4)
with a C60 fullerene, see also [301]. A dehydrobenzene molecule is moved
with a given velocity towards a resting C60 molecule. The simulation uses
the Brenner potential with the parameters from Table 5.6 and Table A.1 in
Appendix A.5 and the modified Lennard-Jones potential (5.26) for the in-
termolecular interactions. Data for the different molecules can be found in
Appendix A.5. All simulations were run for 1 ps with an initial tempera-
ture of 316 K and time steps of 0.035 fs. Depending on the velocity of the
dehydrobenzene molecule, three possible interactions with the C60 molecule
can be observed: Elastic collision, collision reaction, or destruction of both
molecules. From our experiments we identified the following velocity ranges
for these three cases:

– elastic collision: 14.17 − 28.34 Å/ps
– collision reaction: 35.43 − 99.20 Å/ps
– destruction of the molecules: ≥ 106.29 Å/ps

Figure 5.11 shows a few snapshots of the simulation of an elastic collision.

Fig. 5.11. Elastic collision of a dehydrobenzene molecule with a C60 fullerene.

Example: Nanotube under Tensile Load. We now carry out several
tensile and bending experiments with (7, 0) zigzag nanotubes. The initial
configurations are taken from [51]. In the following, we consider in particular
the tensile load case. In this experiment, a constant force pulls at both ends
of the nanotube and, as a result, the nanotube is stretched.
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On the macroscopic level, a tensile force on a rod-shaped body of length l
causes an elongation ∆l. The size of this elongation depends on the physical
dimensions of the body, the strength of the material, and the acting tensile
load. The strain ε is the elongation ∆l of the tube, normalized by the length
of the tube at rest without any acting force, i.e. ε = ∆l/l. With the new
length l̃ := l + ∆l the following relation holds

l̃ = (1 + ε) l,

see also Figure 5.12.

� �

���

Fig. 5.12. A tensile load experiment.

If we generalize this one-dimensional concept of strain to three dimensions
and thus also allow shear forces, we can describe the strain with help of a
strain matrix ε ∈ R

3×3 where the off-diagonal elements of the matrix now
describe shear strains. For our atomic system we obtain analogously

x̃i = (1 + ε)xi, (5.26)

where x̃i denotes the new positions of the atoms and 1 denotes the identity
matrix.

The deformation of the system with the strain matrix ε results in stress.
This stress is then described by the stress tensor σ ∈ R3×3. The diagonal
elements of this tensor give the uniaxial stresses, the off-diagonal elements
describe shear stresses. The stress tensor consists of a kinetic and a potential
part and is defined by

σαβ =
1
|Ω|

d

dεαβ

(
Ekin((1 + ε)v1, . . . , (1 + ε)vN )

− V ((1 + ε)x1, . . . , (1 + ε)xN )
)∣∣∣∣

ε=0

=
1
|Ω|

N∑
i=1

mi(vi)α(vi)β + (Fi)α(xi)β , α, β ∈ {1, 2, 3}, (5.27)

where we denote the kinetic energy by Ekin, the potential energy by V , and
the force on particle i by Fi = −∇xiV . The volume of the simulated region
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Fig. 5.13. Stress-strain diagram for
a carbon nanotube under tensile load.
The component in the direction of the
tensile force is shown. Constant ten-
sile force 2.8 nN in axial direction from
both sides – the nanotube does not
snap.

Fig. 5.14. Stress-strain diagram for
a carbon nanotube under tensile load.
The component in the direction of the
tensile force is shown. Constant ten-
sile force 3.2 nN in axial direction from
both sides – the nanotube snaps.

– here the volume of the nanotube as hollow cylinder with a wall thickness
of 3.4 Å (the thickness of one layer of graphite) – is denoted by |Ω|. The
stress of the system is thus distributed onto the individual atoms. We define
the stress of a single atom as

σαβ,i = mi(vi)α(vi)β + (Fi)α(xi)β .

In the case of a two-body potential we can write

σαβ =
1
|Ω|

N∑
i=1

(
mi(vi)α(vi)β − 1

2

N∑
j=1
j �=i

(Fij)α(rij)β

)
, (5.28)

where rij = xj − xi denotes again the distance vector and Fij denotes the
force between particles j and i. This formula holds, unlike (5.27), also in the
periodic case, compare Section 3.7.4.

Now, we simulate the behavior of a nanotube composed of 308 carbon
atoms. Here and in the following, we use again the parameters from Table 5.6
and Table A.1 in Appendix A.5. The tube is stretched by a constant tensile
force of 2.8 nN which acts on both ends. Figure 5.13 shows the corresponding
stress-strain diagram. The maximum of the observed strain amounts to 30%
of the relaxed initial state of the tube. If the tensile force is increased to 3.2
nN, the nanotube snaps, as shown in Figure 5.14. Tear-off occurs at a strain
of approximately 35%. Our measurements yield a Young’s modulus – that
is the derivative of the stress with respect to the strain and therefore the
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slope in the stress-strain diagram – of about 1 TPa.16 Figure 5.15 shows a
few snapshots shortly before tear-off.

Corresponding experiments can be carried out in an analogous way also
for more complex structures. Figure 5.16 presents several snapshots of a sim-
ulation of the tensile load case with a multi-walled nanotube.

Fig. 5.15. Stretching a nanotube with constant force 3.2 nN.

Fig. 5.16. Tensile load experiment with a multi-walled carbon nanotube.

Finally, we consider an example for a bending experiment with a carbon
nanotube. Here, load is applied with an angle of 45 degrees at both ends of the
tube. Figure 5.17 shows the results. When the tube is released, it flips back
to its initial configuration. Similar experiments can be found in [579, 670].
16 For comparison: The Young’s modulus of diamond also amounts to approxi-

mately 1 TPa.
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Fig. 5.17. Bending experiment with a nanotube.

Example: Polyethylene with an Embedded Nanotube. The reinforce-
ment of materials by embedded nanotubes is an area of intensive research.
Here, a focus of interest are the properties of the composite material. Do the
nanotubes reinforce the composite material at all, and if so, how is the load
transfered from the host material to the nanotubes? Simulations can help to
find answers to these questions. As a result one obtains a prediction of the
functional relation between the Young’s modulus of the single components
and the Young’s modulus of the composite material.

As an example we consider polyethylene. It consists of chains of methylene
monomeres (CH2). We incorporate a nanotube into the polyethylene matrix
to possibly reinforce it. For the numerical simulation of such composite ma-
terials, we now have to take the atoms of the nanotube and the polyethylene
molecules as well as their interactions into account. Since polyethylene is a
hydrocarbon, the potential of Brenner can be directly employed together with
the Lennard-Jones potential (5.26).

The Figures 5.18 and 5.19 show pictures of a tensile load experiment17

with a capped (10, 10)-nanotube which is embedded into a polyethylene ma-
trix. Here, the nanotube consists of 1020 carbon atoms whereas the polyethy-
lene matrix is made from eight chains of 1418 CH2 molecules each (together
with CH3 molecules at the beginning and the end of each chain). Note that
the nanotube is initially positioned with an angle of approximately 15 degrees
to the x1 axis to avoid symmetry effects. The bond lengths at the start of the
simulation are 1.53 Å for C-C bonds and 1.09 Å for C-H bonds. The size of
the simulation domain is 53.7 Å×53.7 Å×133.95 Å. The composite material
is now subjected to a tensile force at the left and right side of the sample.
17 In this simulation an external stress – which increases linearly over time – is

applied to the system. Starting from the configuration of the old time step, the
configuration for the next time step is computed by a local minimization of the
potential energy.
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Fig. 5.18. Nanotube-polyethylene composite, relaxed state; the length of the nan -o

tube is 63 Å.

Fig. 5.19. Nanotubes-polyethylene composite at 16% elongation of the nanotube;
the length of the nanotube is 73 Å.

Figure 5.20 shows the resulting stress-strain diagram. One can see that
the polyethylene is significantly reinforced by the embedded nanotube. The
composite material has a Young’s modulus of about 14 GPa. This value has to
be compared to the Young’s modulus of the single components: polyethylene
has a modulus of 1.2 GPa, whereas the nanotube has a modulus of 526 GPa.
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Fig. 5.20. Stress-strain diagram of pure polyethylene (Pol) and the nanotube-
polyethylene composite (Com). Here, the stress component in the direction of the
traction is shown.
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Especially for long nanotubes and large amounts of polyethylene, such
simulations can only be run on large parallel computers because of their
huge computational requirements. Thus, in the following, we present a few
results of the parallelization.

Parallelization. The parallelization of the code is based on the domain
decomposition strategy [133] as described in Chapter 4. Now, the complicated
many-body part of the Brenner potential necessitates several communication
steps in each time step for an efficient parallel computation of the forces
and the energies. We here consider a tensile load experiment with nanotubes
of different lengths. As in Section 4.4, we use the Cray T3E-1200 and the
cluster Parnass2 which consists of Intel Pentium II PCs (400 MHz). The
simulation domain is subdivided into subdomains along the longitudinal axis
of the nanotube. The domain decomposition is static. It has been chosen in
such a way that a good load balancing is ensured during the entire run of
the simulation. A fifth order generalization of the Störmer-Verlet method has
been employed to integrate the equations of motion, compare also Section 6.2.

time processors
particles 1 2 4 8 16 32 64 128

10.000 8.80 4.55 2.31 1.17 0.62 0.46
20.000 17.78 9.12 4.56 2.31 1.17 0.75 0.35
40.000 35.86 18.56 9.19 4.60 2.32 1.19 0.61 0.44
80.000 72.15 36.83 18.46 9.22 4.61 2.56 1.28 0.71

160.000 146.16 75.17 37.80 18.63 9.23 4.73 2.38 1.40
320.000 292.37 150.86 74.47 37.20 18.64 9.26 4.67 2.59
640.000 298.32 151.28 74.89 37.78 21.02 10.42 5.09

1.280.000 301.37 151.08 76.64 37.55 21.46 10.12
2.560.000 306.77 153.68 75.54 40.25 20.78
5.120.000 309.03 152.47 90.07 39.39

10.240.000 307.83 157.71 82.56

Table 5.8. Parallel execution times (in seconds) for one time step on a PC cluster,
simulation of a tensile load case.

processors
1 2 4 8 16 32 64 128

speedup 1.00 1.94 3.93 7.86 15.69 31.57 62.61 112.89
efficiency 1.00 0.97 0.98 0.98 0.98 0.99 0.98 0.88

Table 5.9. Speedup and parallel efficiency for one time step on a PC cluster,
simulation of a tensile load case with 320 000 atoms.
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Table 5.8 shows the parallel execution times for one time step of the
algorithm on the PC cluster. The associated speedups and parallel efficiencies
can be found in Table 5.9. Table 5.10 gives the parallel execution times for
the Cray T3E. The corresponding speedups and parallel efficiencies are given
in Table 5.11.

time processors
particles 1 2 4 8 16 32 64 128 256

10.000 26.04 13.43 6.76 3.46 1.85 1.05
20.000 52.13 26.06 13.45 6.77 3.43 1.87 1.06
40.000 105.29 52.65 26.04 13.22 6.74 3.46 1.87 1.05
80.000 211.68 105.43 52.23 25.95 13.07 6.79 3.47 1.88 1.07

160.000 419.90 210.32 103.76 52.88 26.07 13.12 6.66 3.46 1.89
320.000 420.78 213.01 105.81 52.40 25.96 13.14 6.70 3.47
640.000 421.11 207.02 103.74 52.39 26.09 13.14 6.77

1.280.000 422.67 209.53 107.35 52.37 25.99 13.29
2.560.000 427.65 215.25 103.83 52.64 25.93
5.120.000 427.10 215.20 104.69 52.67

10.240.000 425.90 212.74 105.72
20.480.000 429.83 216.98
40.960.000 426.85

Table 5.10. Parallel execution times (in seconds) for one time step on the Cray
T3E-1200, simulation of a tensile load case.

processors
1 2 4 8 16 32 64 128 256

speedup 1.00 1.99 4.04 7.94 16.10 32.00 63.04 121.35 222.17
efficiency 1.00 0.99 1.01 0.99 1.01 1.00 0.99 0.94 0.86

Table 5.11. Speedup and parallel efficiency for one time step on the Cray T3E-
1200, simulation of a tensile load case with 160 000 atoms.

On both machines an almost linear speedup and a good scaling is ob-
served. If the number of processors is doubled, the running time is halved.
If the number of atoms is increased by a factor of two and if the number
of processors is doubled as well, the running time stays approximately con-
stant. Note that the PC cluster with Myricom network is even slightly faster
than the Cray T3E for this application. It thus represents a cost-efficient and
competitive alternative to larger high performance computers and supercom-
puters.
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5.2 Potentials with Fixed Bond Structures

The potentials described up to now were particularly appropriate to describe
materials composed of single atoms. In many applications – especially in the
simulation of polymers, proteins, DNA, and other biomolecules – molecules
are composed from atoms with fixed, given bond structure. In such cases,
the potential used must embody that given inner structure of the molecule.
To this end, we have to take into account the bond lengths, the bond angles
and the torsion angles between different atoms of the molecule. Parameters
and data for such potentials are made available for instance by the program
packages CHARMM [125], Amber [471] or Gromos [634].

In the following, we describe the necessary extensions of the previous
simulation code to potentials with given inner bond structure. First, we dis-
cuss the implementation of such bonding relations for harmonic potentials
in the example of a two-dimensional grid structure. Then, we introduce a
new data structure for linear chain molecules using polymers as an introduc-
tory example. Here, an additional vector with pointers to the atoms of the
chain molecule is stored for each molecule. If several molecules are modeled,
a two-dimensional array of pointers is used as a further data structure. We
also study potentials for bond lengths, bond angles and torsion angles. Using
these potentials, we investigate the properties of alkanes (butane, decane,
eicosane). Finally, we discuss how more complex molecules can be modeled
with pointer data structures, give a short outlook on how to employ data from
the RCSB Protein Data Bank PDB to set up simulations of biomolecules, and
discuss how such simulations could be carried out.

5.2.1 Membranes and Minimal Surfaces

In the following, we consider an elastic membrane (imagine for example a
very thin sheet of rubber) that is subjected to certain external forces and
thus changes its form accordingly. In a stable equilibrium, the membrane
adopts a position in which the potential energy is at its minimum. If the
membrane is deflected from its equilibrium, a counterforce results that op-
poses the deflection and tries to pull the membrane back to the starting
position. In the continuous case, it makes sense to assume that the potential
energy of the membrane is proportional to the change of area compared to
the area in the stable equilibrium, i.e.18

V (q) ∼
∫

Ω

√
1 + ||∇q||2dx,

18 Because of
p

1 + ||∇q||2 = 1 + 1
2
||∇q||2 + O(||∇q||4), the integrand can be ap-

proximated well by 1 + 1
2
||∇q||2 for small ||∇q||. We then obtain V (q) ∼̇ R

1 +
1
2
||∇q||2dx. Since we are interested in the deflection with minimal energy, the

term
R

1dx does not influence the position of the minima and can be omitted in
the minimization.
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where q describes the deflection from the resting position. If one limits the
deflection to small amplitudes ||∇q|| � 1, the Taylor series gives in first
approximation

V (q) ∼̇ 1
2

∫
Ω

||∇q||2dx.

We now use a simple model of a system of many coupled harmonic oscil-
lators to describe membranes in this section, compare Figure 5.21.

Fig. 5.21. Systems of coupled harmonic oscillators in two dimensions.

For this purpose we employ a harmonic potential

U(rij) =
k

2
(rij − r0)2 resp. U(rij) =

k

2
(rij −

√
2r0)2. (5.29)

Every particle therefore only interacts with its direct neighbors in the grid
of harmonic oscillators. Contrary to the applications considered before, the
particles now have fixed neighborhood relations that do not change during the
simulation. In a later section we will give a general modification of the linked
cell method for this case. But here, we proceed for the sake of simplicity as
follows: We restrict ourselves to a uniform m1×m2 grid of particles which are
pairwise bound as in Figure (5.21, right). The potential (5.29, right) only acts
between diagonally coupled neighbors while the potential (5.29, left) is used
for the other bonds. This choice ensures that a uniform initial configuration
with a grid spacing of r0 in both direction yields a minimizer of the energy,
compare Figure 5.22.

After an appropriate initialization of the particles, the simple linked cell
method can be used as follows: Since the particles form a two-dimensional
grid, we directly use the cell structure grid from the two-dimensional case,
compare also Section 3.5, and associate a fixed particle to each cell. The
cells of the linked cell method thus degenerate to trivial cells which only
contain a single particle, compare Figure 5.23. The two-dimensional grid
grid[index(ic,nc)] now points directly to the single particle in the cell
ic:= (i1, i2). The particle itself still has three-dimensional coordinates.
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Fig. 5.22. Basic setup of an initial configuration for the membrane. Grid points are
placed in both spatial directions at a distance of r0. With a choice of the potential
as in (5.29, right) for diagonal bonds and as in (5.29, left) for the other bonds, the
simulation starts at a minimizer of the energy.

Fig. 5.23. The linked cell method in two dimensions. In this case every cell only
contains a single particle. The computation of the forces is limited to the eight
neighboring cells in two dimensions.

During the computation of the forces, one can access the interacting pairs
simply using the grid grid and can thus evaluate the potential (5.29) easily.
The particle associated to cell ic= (i1, i2) interacts with the particles from
the four neighboring cells

(i1 ± 1, i2), (i1, i2 ± 1),

by the potential (5.29, left), and by the potential (5.29, right) with the par-
ticles from the four neighboring cells

(i1 ± 1, i2 ± 1).

Particles at the border of the grid have an appropriately smaller number
of neighbors, for instance, for a particle on the left boundary line only the
neighboring cells

(i1, i2 ± 1), (i1 + 1, i2 ± 1) and (i1 + 1, i2)

have to be taken into account.
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Furthermore, the procedure compX LC has to be modified slightly. Up to
now it called the algorithm 3.17 moveParticles LC which checks if particles
have left the cell and inserts them into their new cell if necessary. This call
is omitted in our case. We keep the particles in the same two-dimensional
cell structure during the entire simulation. The cells no longer correspond to
a geometric decomposition of the simulation box, but only serve as a data
structure which allows direct access to every particle and its eight neighbors.
The position of the particles are updated with the Störmer-Verlet method,
as described in Sections 3.1 and 3.2.

Minimal Surfaces. We consider a system of harmonic oscillators which
models a cylindrical membrane clamped between two annuli. The initial con-
figuration is shown in Figure 5.24 (left). In Figure 5.24 (right) we give a
smoothed graphical representation of the same configuration. There, individ-
ual particles are no longer shown, but a surface is fitted to the positions of
the particles which is then rendered by a visualization software package.

Fig. 5.24. Minimal surfaces: Particle representation and smoothed representation
of the initial configuration.

The tube itself consists of 50 × 64 (axial × radial) particles. Such a tube
can be constructed from a planar two-dimensional mesh with 64 mesh points
in x1 direction and 50 mesh points in x2 direction which is closed to a torus
and thus is extended periodically across the left and right edge. Then, the
right neighbors of the particle on the right edge which is associated to cell
(i1, i2) are contained in the cells with the indices (i1+1−m1, i2) and (i1+1−
m1, i2 ± 1), and analogously for the left edge. Figure 5.25 shows the result of
two simulations with the parameters given in Table 5.12. Here, the potential
(5.29) is used.

In the simulation which resulted in Figure 5.25 (left), the tube was pulled
apart at both ends with a constant radial force. In the simulation which led
to Figure 5.25 (right), the tube was pulled apart in the middle in circular
direction with constant radial force, while the ends of the tube were held
fixed. In both cases ||Fpull|| = 0.1 was used.
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L1 = 200, L2 = 200, L3 = 200,
r0 = 2.2, k = 400, m = 0.1,
N = 50 × 64, δt = 0.01, tend = 7.5

Table 5.12. Values of the parameters for the simulation of minimal surfaces.

Fig. 5.25. Minimal surfaces: Stationary final configurations of the two simulations.
The tube is pulled apart in circular direction at both ends (left). The tube is pulled
apart in circular direction in the middle (right).

Cloth. We now consider a two-dimensional system which consists of 50× 50
particles. It models a cloth. Initially, all particles are placed at the bottom of
the three-dimensional simulation box. The five adjacent particles associated
to the cell numbers (37, 25), (37, 24), (37, 26), (36, 25) and (38, 25) are then
pulled up with a constant force Fpull = (0, 1.5, 0)T , compare Figure 5.26
(upper left). Here, every inner particle interacts with its eight next neigh-
bors. The particles at the edges interact only with their existing neighbors,
compare Figure 5.21 (right). The potential between the particles is given
by (5.29). To avoid self-penetration, every particle is additionally equipped
with a three-dimensional repulsive potential (1/r)12. For the computation of
the resulting force, the standard three-dimensional linked cell method can
be used. Figure 5.26 shows the cloth at different stages of the simulation
with the parameter values given in Table 5.13. As before, the pictures show
a surface that has been fitted to the positions of the particles.

L1 = 200, L2 = 200, L3 = 200,
N = 50 × 50, m = 1, k = 300,
r0 = 2.2, δt = 0.01

Table 5.13. Values of the parameters for the simulation of a cloth.
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t = 7 t = 10

t = 14 t = 16

Fig. 5.26. Time evolution of the upwards pulled cloth.

5.2.2 Systems of Linear Molecules

Now, we study systems of molecules. To this end, we need to extend our
data structures properly to be able to describe molecules as sets of atoms or
particles, respectively, which are bonded in a certain way. We limit ourselves
at first to molecules with a linear internal structure, compare Figure 5.27.
We will treat molecules with a more complicated internal structure later in
Section 5.2.3.

Fig. 5.27. Example of a linear molecule (polyethylene).
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Intramolecular Interaction. In molecular systems we can distinguish be-
tween intermolecular and intramolecular interactions. Intermolecular inter-
actions act between the atoms of different molecules. Intramolecular inter-
actions act between the atoms within a single molecule. They are generally
much stronger than intermolecular interactions. To model intramolecular in-
teractions, essentially three different potential functions are commonly used,
the so-called bond potential, the angle potential, and the torsion potential,
compare also Figure 5.28.

�  �

!

"

 

�

" 

�

Fig. 5.28. Graphical representation of a valence bond potential (left), an angle
potential (middle), and a torsion potential (right).

Valence or bond forces exist between any two bonded atoms, see Fig-
ure 5.28 (left). These interaction can often be described well in the form of a
harmonic potential, i.e.

Ub(r) =
1
2
kb(rij − r0)2. (5.30)

In this potential, rij denotes the bond length between the atoms i and j, r0

denotes the equilibrium distance and kb denotes the force or spring constant.
Angular forces are three-body forces between three successive bonded

atoms, compare Figure 5.28 (middle). The associated angle potential is char-
acterized by an angle θ = θijk between the atoms i, j and k, which varies
around an equilibrium value θ0. For this potential one often uses the form

Ua(θ) = −kθ(cos(θ − θ0) − 1) (5.31)

or (for small deviations from the equilibrium value θ0)

Ua(θ) ≈ 1
2
kθ(θ − θ0)

2. (5.32)

The previous potentials only depended on the distance rij between two
atoms. Now, the potential depends on the angle determined by three suc-
cessive atoms i, j, and k. To compute the forces on the atoms which result
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from such a potential, one has to choose an appropriate coordinate system. A
natural choice would be the inner angle coordinates instead of cartesian co-
ordinates. But for now, we keep the cartesian coordinate system. The reason
is the following: During a simulation one has to compute the intramolecular
interactions due to chemical bonds as well as intermolecular nonbonded in-
teractions. Since the latter account for most of the work, we decided to also
employ the cartesian coordinates for the angle (and torsion) bonds. This,
however, forces us to perform a coordinate transformation from the cartesian
coordinates xi of particle i to the angles every time we compute the angular
forces. For three successive bound particles i, j, and k, the associated angle
θ can be computed from the cartesian coordinates xi,xj , and xk using the
relation

θ = θijk = arccos
( 〈rij , rkj〉
‖rij‖‖rkj‖

)
. (5.33)

Here, we again write rij := xj − xi. In the simulation we have to sum over
all possible angles θ = θijk. The resulting local forces are added to the forces
associated to the respective particles i, j and k. In the case of the particle j,
i.e. the middle particle, the force can simply be determined by the relation
Fj,θijk

= −Fi,θijk
− Fk,θijk

. Moreover, it holds that

Fi,θijk
= −∇xiUa(θijk)

= −kθ(θijk − θ0) · ∂θijk

∂xi

= −kθ(θijk − θ0) · ∂θijk

∂xi

∂ cos θijk

∂θijk

∂θijk

∂ cos θijk︸ ︷︷ ︸
=1

= −kθ(θijk − θ0) · ∂ cos θijk

∂xi

∂θijk

∂ cos θijk

∂θijk

∂θijk︸ ︷︷ ︸
=1

= −kθ(θijk − θ0) · ∂ cos θijk

∂xi
·
(
− 1

sin θijk

)

= kθ
(θijk − θ0)

sin θijk
· ∂ cos θijk

∂xi
.

(5.34)

We still have to compute the term

∂ cos θijk

∂xi
.

To this end, we define

S := 〈rij , rkj〉 and D := ‖rij‖‖rkj‖,
and, using the identity cos θijk = S/D (compare (5.33)), we obtain
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∂ cos θijk

∂xi
= − 1

D

(
rkj − S

D2
rij‖rkj‖2

)
.

Fk,θijk
can be computed in an analogous way. The total force on particle i

from angle potentials is thus determined by summing over all triples k, l, m
of successive bound particles according to

Fi =
∑
θklm
k<m

Fi,θklm
.

Torsion forces are four-body forces between four successive bonded atoms.
For a schematic representation of their effect, see Figure 5.28 (right). For the
associated potential one often uses the form

Ut(φijkl) =
3∑

n=1

kφn(cos(nφ − δn) + 1). (5.35)

Here, φ = φijkl denotes the angle between the planes spanned by the atoms
i, j, k and j, k, l. The parameters δn are appropriate phase shifts and the
parameters kφn denote appropriately chosen force constants. For small devi-
ations from the equilibrium state φ0 one may approximate this potential by
a harmonic potential Ut(φijkl) = 1

2kφ(φ − φ0)2 with an appropriately cho-
sen constant kφ. Alternatively, it is also customary to use a trigonometric
polynomial of the form

Ut(φijkl) =
∑

n

kφn cosn φ. (5.36)

Here, we again have to transform the cartesian coordinates into angular co-
ordinates. This is somewhat more complicated for torsion angles. Here, we
have the relation19

φ = φijkl = π ± arccos
(〈

rij −
〈
rij ,

rkj

rkj

〉
rkj , rlk −

〈
rlk,

rkj

rkj

〉
rkj

〉)
.

(5.37)

19 This is the so-called scalar product definition for the torsion angle since it only
involves the computation of scalar products 〈., .〉. In the literature on can find
an alternative definition

φ = φijkl = π ± arccos

„ 〈rij × rjk, rjk × rkl〉
〈||rij × rjk||, ||rjk × rkl||〉

«
,

which needs cross products. This definition is used in many articles, however, it
leads to more complicated expressions in the computation of the forces.
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The sign is given by the scalar quantity

sign(det(rij , rjk, rkl)) = sign(〈rij , rjk × rkl〉).
In the case of a torsion angle of zero or ±180 degree, all atoms lie in the same
plane. But the associated configurations differ substantially, compare Figure
5.29. The configuration with a torsion angle of zero degrees is called trans
configuration, the configuration with an angle of ±180 degrees is called cis
configuration.20

Fig. 5.29. Cis configuration and trans configuration.

The gradient of the torsion potential and hence the forces acting on the
particles are derived in the same way as for the angle potential. Their detailed
computation is left as an exercise to the reader. Here, one should bear in mind
that the often used factorization of the chain rule

−∇xiUt = −(dUt/dφ)(dφ/d cos φ)(∂ cosφ/∂xi)

has a singularity at φ = 0 or φ = π because of the factor dφ/d cosφ =
− sin−1 φ. This singularity can be avoided if one employs instead the chain
rule in the form

−∇xiUt = −(dUt/dφ)(∂φ/∂xi).

Then, with the definition (5.37) of the torsion angle, formulas for the torsion
forces can be derived that are free of singularities. For more details, see
[60, 74].

Altogether, the total potential includes the sum over all bonded and non-
bonded interactions and can be summarized as follows:

V =
∑

bonds
(i,j)

1
2
kb(rij − r0)2 +

∑
angles
(i,j,k)

1
2
kθ(θijk − θ0)2

︸ ︷︷ ︸
bonded interactions

20 We use in (5.37) the so-called polymer convention for the choice of origin of φ.
One also encounters the IUPAC convention which differs by a factor π. Then,
the cis configuration is associated to an angle of zero degrees and the trans
configuration is associated to an angle of ±180 degrees.
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+
∑

torsion
(i,j,k,l)

3∑
n=1

kφn(cos(nφ − δn) + 1)

︸ ︷︷ ︸
bonded interactions

+
∑
i,j
i<j

4ε

[(
σij

rij

)12

−
(

σij

rij

)6
]

.

︸ ︷︷ ︸
nonbonded interactions

(5.38)

Here, the parameters kb, r0, kθ, θ0, kφn, δn and ε are constants since we only
consider polymers made from a single kind of monomer with each monomer
considered as a particle.21 In principle, the linked cell method of Chapter 3
can be directly used to compute the forces and potentials for molecules. In ad-
dition to the intermolecular Lennard-Jones potential, now also intramolecular
potentials have to be taken into account. The intramolecular forces are ob-
viously short-ranged, since they only resemble interactions between bonded,
i.e. neighboring particles.

Implementation for Linear Molecules. In this section we describe a
possible implementation for linear molecules which is based on the code for
the linked cell method from Chapter 3. In addition to the forces consid-
ered there, now also intramolecular forces must be dealt with. The function
compF LC (algorithm 3.15), which computes the intermolecular forces, can be
used almost without changes. The only point to be additionally considered is
whether the intermolecular forces should also act within a molecule. Usually
one employs no intermolecular Lennard-Jones (and electrostatic) interactions
between four successive bonded atoms. Instead of removing these terms from
the explicit summation, it may be advantageous to sum them separately, save
them, and subtract them again in the routine for the intramolecular forces.

An extra routine compMol LC is now introduced in which intramolecular
forces are computed. Since the molecules have linear structure, the atoms can
be numbered uniquely in the order in which they appear in the linear molec-
ular chain. This linear arrangement simplifies the access to the other atoms
within the molecule which is needed in the different force computations. To
this end, we introduce the number of the associated molecule and the number
of the atom within the molecule into the particle data structure 3.1.

int MolNo; // number of molecule
int AtomNo; // number of atom

21 In general, however, these parameters depend on the types of the involved atoms
i, j, k, l. Then, kb, r0 and ε are functions of (i, j), while kθ and θ0 are functions
of (i, j, k) and kφn and δn are functions of (i, j, k, l).
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The intramolecular forces can then be computed within an outer loop over
all molecules and an inner loop over all the atoms (or particles, respectively,)
in each molecule.

The ordering of the molecules and atoms is realized using an additional
array M, see also Figure 5.30. Here, M[i][j] is a pointer to the jth atom
in the ith molecule. This additional array must be built and initialized at
the beginning of the simulation. In this way, the particles involved in the
computation of the intramolecular forces within a molecule can be found
easily via the vector M[i]. The bond parameters kb, r0, kθ, θ0, kφn, δn, σ,
and ε can be stored globally in our example, since they are constant.

struct Particle *M[][];

#$


#$


#$


#$�
#$�

#$


M
���	���
���������

Fig. 5.30. Data structure for linear molecules, here an alkane molecule in the linked
cell grid.

Parallelization. In the domain decomposition approach as in Chapter 4, it
now can happen that a molecule does not lie entirely within the subdomain
associated to a single process, but that different parts of the molecule lie
in different subdomains which are associated to different processes. To save
memory, the array M should not be stored globally. Instead, every process
should store only the information of M which are necessary for the force com-
putations for the part of the molecule by the respective process. Thus, each
process ip keeps a local array M associated to Ωip in which the memory ad-
dresses of the atoms can be found with positions inside the subdomain Ωip of
this process. To compute the forces within the molecules close to the edge of
the subdomain, information from neighboring subdomains is needed. Then,
data in M from particles in the border neighborhood of neighboring processes
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have to be exchanged and inserted and removed accordingly. This again can
be implemented analogously to algorithm 4.6. Furthermore, if during the sim-
ulation a particle moves from one cell to another cell, this particle is inserted
into the particle list of the new cell and is removed from the particle list of
the old cell, compare Section 3.5. Now, the local data structures M have to be
updated accordingly.

Example: Butane. The simplest organic compounds are composed of car-
bon and hydrogen. These hydrocarbons can be divided into three groups
based on their chemical properties: Saturated hydrocarbons (alkanes or paraf-
fins), unsaturated hydrocarbons (alkenes or olefins) and aromatic hydrocar-
bons. In the following, we study the family of alkanes in more detail.

Starting from the smallest possible saturated hydrocarbon, methane CH4,
other hydrocarbon molecules can be formed by successively adding methy-
lene groups CH2 to a chain. The stoichiometric formulas of the resulting
hydrocarbons have the general form CnH2n+2, n = 1, 2, 3, . . . The chemical
properties of the compound change only slightly with increasing number of
carbon atoms, whereas the physical properties generally change more signifi-
cantly. This sequence of hydrocarbon chains constitutes the family of alkanes.
The fourth element C4H10 of the series is butane, see Figure 5.31 and 5.32,
the tenth, C10H22, is decane, and the twentieth, C20H42, is eicosane.

Fig. 5.31. The first elements of the alkane sequence: methane, ethane, propane,
butane (upper row), pentane, hexane, heptane (lower row).
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Fig. 5.32. Principle of construction of alkanes (left), butane as example (right).
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In the following, we discuss a simple model for alkanes, the united atom
model [125]. In this model, each carbon atom together with its bonded hydro-
gen atoms is modeled as one larger particle (monomer). Monomeres are then
joined together into chains with the bond, angle, and torsion angle potentials
that have already been introduced in (5.30), (5.31), and (5.35), compare also
Figure 5.28. In addition, nonbonded interactions are modeled by means of
the Lennard-Jones potential. This potential is usually applied between the
monomers of different alkane molecules and between monomers inside a sin-
gle alkane molecule if these are more than three bonds apart in the molecular
chain. The various parameters of the potential are chosen in such a way that
the simulation results fit well with real measurements.

For the butane molecule we have to deal with four bonded monomers. The
two inner monomers represent a CH2 group, and the first and last monomer
represent a CH3 group. The intramolecular forces are valence forces resulting
from (5.30) that act between two neighboring (bonded) monomers. In addi-
tion, angular forces between two successive bonds are taken into account.
Differing from the expressions (5.31) and (5.32), we use

Ua(θ) = kθ(cos θ − cos θ0)2 (5.39)

for the angle potential. We furthermore use a potential function given by
[614] for the torsion angle adapted to the simulation of butane of the form
(5.36)

Ut(φ) = [1.116 − 1.462 cos(φ) − 1.578 cos2(φ) + 0.368 cos3(φ) + 3.156 cos4(φ)
+ 3.788 cos5(φ)]Kφ .

Force terms again result from the gradients of the potentials. The angle
φ = φijkl is computed as shown in equation (5.37). These bond forces and
their force constants account for the natural form of the butane polymer
chain after appropriate equilibration, see Figure 5.31. The short-range in-
termolecular interactions are modeled by the Lennard-Jones potential. Here,
the Lennard-Jones potential is only used for interactions of monomers from
different butane molecules, but not for interactions between monomers from
the same butane molecule. The actual parameters of the potential functions
are given in SI units in Table 5.14, following [614].

kb = 17.5 MJ
mol·nm2 , r0 = 1.53 Å, valence potential,

kθ = 65 kJ
mol

, θ0 = 109.47 degree, angle potential,

Kφ = 8.31451 kJ
mol

, torsion potential,

σ = 3.923 Å, ε = 0.5986 kJ
mol

, Lennard-Jones potential.

Table 5.14. Parameter values for the potential functions for the simulation of
alkanes.
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Our program uses unscaled variables. For this reason a scaling analogous
to (3.55) in Section 3.7.3 is necessary beforehand. We use for the scaling
σ̃ = 10−9 m, ε̃ = 1 kJ/mol, m̃ = 1 u and α̃ = σ̃

√
m̃/ε̃ = 10−12 s = 1 ps.

In the following, we study 64 butane molecules in a cubic simulation box
with periodic boundary conditions at a temperature of 296 K. This tempera-
ture is significantly higher than the boiling point of butane of approximately
274 K, i.e., we consider the gaseous phase of butane. An initial distribution
for the 64 molecules is obtained either by random or equidistant translations
of the configuration of one molecule. To this end, one can use the data set
5.1.

Code fragment 5.1 PDB entry for butane
ATOM 1 CH3 BUTL 1 2.142 1.395 -8.932 1.00 0.00

ATOM 2 CH2 BUTL 1 3.631 1.416 -8.537 1.00 0.00

ATOM 3 CH2 BUTL 1 4.203 -0.012 -8.612 1.00 0.00

ATOM 4 CH3 BUTL 1 5.691 0.009 -8.218 1.00 0.00

CONECT 1 2

CONECT 2 1 3

CONECT 3 2 4

CONECT 4 3

The PDB file format22 is an international standard in widespread use
for the storage of three-dimensional structure data of proteins and other
biomolecules [85]. The relevant data for our computations are contained in
columns 6–8. These columns give the x1, x2, and x3 coordinates of the four
carbon atoms of butan. They also serve as the centers of the four monomers.
In our simulation, we use the parameters from Tables 5.14 and 5.15. Note
here that the same average mass m is used for all monomers for reasons of
simplicity, even though the monomers at the beginning and the end of the
chain contain a different number of bonded hydrogen atoms than the two
inner ones.

L1 = 2.1964 nm, L2 = 2.1964 nm, L3 = 2.1964 nm,
m = 14.531 u, T = 296 K,

rcut = 2.5 σ, δt = 0.0005 ps

Table 5.15. Parameter values for the simulation of butane.

A butane molecule can assume different spatial configurations. Depending
on the value of the torsion angle, one distinguishes between a trans config-
uration with a torsion angle |φ| < π

3 and a cis configuration with all other
torsion angles.
22 We will present further information about this format in Section 5.2.3.
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Fig. 5.33. Configurations of butane: Cis and trans configuration, distinguished by
the torsion angle.

We report the percentages of the butane molecules in cis and trans config-
uration in Table 5.16. We averaged over all torsion degrees of freedom of all
molecules in each given time interval. Furthermore, we measure the pressure
of the complete system according to (3.60) and indicate the average energies
for the four different parts of the overall potential. It can be observed from
the values in Table 5.16 that butane molecules prefer the trans configura-
tion. From the histogram of torsion angles in Figure 5.34 we see that the
angle φ = 0, i.e. the trans configuration, predominates. In the cis configu-
ration, the angle φ = 2π/3 and its symmetric counterpart φ = 4π/3 occur
most often. These two cases taken together are half as likely as the trans
configuration.

time trans cis pressure LJ torsion angle bond
ps (%) (%) GPa kJ/mol kJ/mol kJ/mol kJ/mol

46-54 66.77 33.22 0.1664 -17.9573 2.2954 2.2653 3.3158
86-94 74.94 25.05 0.1602 -18.1049 2.1674 2.3692 3.3321
46-94 69.79 30.20 0.1622 -18.0180 2.2395 2.2476 3.3244

Table 5.16. Simulation of 64 butane molecules, statistical measurements. The
energies given are per butane molecule.

Finally, the energies associated to the bond, angle, torsion, and Lennard-
Jones potentials are shown in Figure 5.35. The intramolecular bond forces
are relatively large due to the parameters of the model. But in reality not
all of the degrees of freedom for all parts of the potential are active at a
temperature of 296 K. This is especially the case for bonds and angles. In the
Störmer-Verlet time integration scheme, these parts of the overall potential
now serve to approximately fix the bond angles and the distances between
atoms, since these degrees of freedom are virtually frozen for the simulated
temperatures.
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Fig. 5.34. Simulation of 64 butane molecules, histogram of the torsion angles.
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Fig. 5.35. Simulation of 64 butane molecules, time evolution of the energies.

Example: Decane. We study in the following the alkane of length ten, the
so-called decane, in its gaseous phase. We consider 27 molecules of decane,
in total 270 monomeres, in a cubic box with periodic boundary conditions at
a temperature of 296 K. Again, each carbon atom together with its bonded
hydrogen atoms is modeled as a monomer and serves as a particle23 in the
united atom model. These particles are then joined to chain molecules of
length ten by means of the bond, angle, and torsion potentials (5.30), (5.39),
and (5.36). Further nonbonded interactions are modeled by the Lennard-
Jones potential. They act between particles from different decane molecules
and also between particles from the same decane molecules if these particles
are more than three bonds apart in the molecular chain. For our simulation,
we use the values from Table 5.17 and the parameters from Table 5.14, see
also [614].

23 CH2 for an inner particle and CH3 for the first and last particle in a decane
chain molecule. For reasons of simplicity, we again use the same average mass m
for all particles in our simulation.
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L1 = 2.0598 nm, L2 = 2.0598 nm, L3 = 2.0598 nm,
m = 14.228 u, T = 296 K,

rcut = 2.5 σ, δt = 0.0005 ps

Table 5.17. Parameter values, simulation of decane.

The initial configuration is constructed as follows: First, 270 single parti-
cles are randomly scattered in the simulation domain. Then, particles that are
close together are combined to chains of length ten, initial velocities are as-
signed according to a Maxwell-Boltzmann distribution (Appendix A.4) and
an equilibration is carried out. During this equilibration phase of approx-
imately 10 ps, the natural geometry of the decane chain molecules slowly
emerges. After the completion of this equilibration phase, the particle posi-
tions represent realistic initial data that can now be used to start the actual
simulation.

Again, we measure the percentages of molecules in trans and cis configura-
tion by averaging over all occurring torsion degrees of freedom of all molecules
in the given time interval. In addition, we also measure the pressure in the
complete system according to (3.60) as well as the averaged energies associ-
ated to the four different parts of the overall potential. The results are shown
in Table 5.18.

time trans cis pressure LJ torsion angle bond
ps (%) (%) GPa kJ/mol kJ/mol kJ/mol kJ/mol

46-94 77.33 22.66 0.2849 -58.4045 15.4678 9.8089 10.8906

Table 5.18. Simulation of 27 decane molecules, statistical measurements. The
energies given are per decane molecule.

Again, we see that the trans configuration is clearly more likely than the
cis configuration. From the histogram of the torsion angles in Figure 5.36,
we see that this is mainly due to the angle φ = 0. In the cis configuration
one basically observes the angle φ = 2π/3 and its symmetric counterpart
φ = 4π/3. Compared to the simulation of butane, this effect is even stronger:
The angles φ = 2π/3 and φ = 4π/3 occur more rarely, the largest part of the
bonds oscillates around the angle φ = 0.

In contrast to butane, there is also significantly more energy in the torsion
angles, see Figure 5.37. One reason is that in molecules with longer chains, the
ratio of torsion degrees of freedom to bond degrees of freedom is substantially
larger. In total, the oscillations of the torsion angles are more realistic in a
physical sense. The potential forms and their parameters which we used, have
ultimately been developed for large molecules and therefore do not model
short chain molecules such as butane as accurately.
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Fig. 5.36. Simulation of 27 decane molecules, histogram of torsion angles.
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Fig. 5.37. Simulation of 27 decane molecules, time evolution of the energies.

Extension: Diffusion of Gas Molecules in Alkanes. Again, we study
alkanes. Now, 30 chains of 20 monomers each (20-alkane or eicosane) are sim-
ulated in a cubic box of length 25 Å with periodic boundary conditions at
a temperature of 360 K. This temperature lies significantly above the boil-
ing point of eicosane, i.e., we consider eicosane gas. The parameters for the
potentials and the simulation are taken from the Tables 5.14 and 5.17 of the
previous section. Also, the initial configuration for the simulation is gener-
ated by a similar procedure as before. Furthermore, some small molecules are
added – in our case oxygen (O2). To this end, we distribute 20 O2 molecules
randomly in the domain, i.e., we dissolve O2 in eicosane gas. Each oxygen
molecule is modeled as one particle. The oxygen particles interact with the
eicosane monomers by means of the Lennard-Jones potential. The appro-
priate parameters for the potential are determined by the Lorentz-Berthelot
mixing rule (algorithm 3.19 in Chapter 3.6.4) with the parameters for oxygen
as given in Table 5.19.
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εO = 940 J/mol
σO = 3.43 Å

Table 5.19. Parameter values for oxygen.

We now simulate the diffusion of the oxygen particles in the eicosane gas.
This diffusion process is strongly influenced by the eicosane chain molecules.
After an initial equilibration phase of 10 ps at a time step of ∆t = 5 · 10−4

ps, the molecular dynamics simulation is continued over a longer time period
and the motion of the oxygen molecules is observed. We measure the diffusion
of the oxygen and eicosane molecules. The diffusion of oxygen is computed
from the mean standard deviation of the particle positions which is given
by equation (3.61) in Section 3.7.3. Analogously we compute the diffusion of
eicosane.

Figure 5.38 shows the time evolution of the resulting diffusion of the
eicosane molecules and the oxygen molecules. As expected, the mobility of
the smaller and lighter oxygen molecules is higher than the mobility of the
eicosane molecules. However, at a temperature of 360 K, one would expect
much more than just a difference by a factor of three. This can be explained
with the geometrical structure of the eicosane molecules: The motion of the
oxygen molecules in the simulation domain is hampered by the long eicosane
molecules. The respective energies are given in Figure 5.39. Again, the energy
of the Lennard-Jones potential dominates, which acts here also between the
oxygen and the eicosane. The intramolecular energies are comparable to the
ones observed in the simulation of the decane molecules, but they do not
oscillate as strongly. Here, the torsion energy is larger than the energy of the
other bonded potentials. This is due to the length of the molecular chains.
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Fig. 5.38. Simulation of eicosane molecules (20-alkane) together with oxygen
molecules, time evolution of the diffusion coefficients starting at time 10 ps.
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Fig. 5.39. Simulation of eicosane molecules together with oxygen molecules, dia-
grams of the energies.

Alkanes are a simple special case of polymers. In general, polymers are
materials in which single molecules can be very large – up to 1000 atoms and
more. Every polymer molecule is composed of monomers. The monomers are
basic units that consist of very special atoms that predominately bind in form
of a long chain. There are synthetic polymers and biopolymers. Biopolymers
are polymers which occur in nature, such as for example DNA, RNA, pro-
teins, polysaccharides, and others. In the case of proteins, the monomers are
the amino acids. Synthetic polymers are the basis of all forms of the mate-
rials known as plastics (for example polyethylene, PVC, nylon, polyester).
Besides the material properties of the polymer, the process of polymerization
itself is also of particular interest. Here, chain molecules are formed from the
monomers by chemical reactions, e.g. catalysis, such that networks of enlaced
polymer molecules are built. Further properties of interest are the degree and
spatial structure of the interlacing. Computer simulations of polymers are ex-
tremely expensive because of the large size of the molecules and the resulting
runtime complexities. To this end, the simulation of polymers with the molec-
ular dynamics method24 is a relatively new area of research which certainly
allows for improvements in many respects. Here, the use of long-range elec-
trostatic forces (the Coulomb potential) is an important ingredient for the
simulation of the polymerization process, which needs large amounts of com-
putation time. In addition, the time scale of the phenomena of interest plays a
decisive role. Unfortunately, it is often much larger than the simulation times
which can be achieved by current molecular dynamics methods on computers
presently available, see also the discussion in Chapter 9.
24 Furthermore, Monte-Carlo methods are used successfully in such studies. There,

synthetic polymers are often represented using the bead-spring model or the
Rousse model. Further reading in this direction can be found for instance in
[197, 363, 442].
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5.2.3 Outlook to More Complex Molecules

Up to now we only dealt with simple linear chain molecules and their imple-
mentation. Now, we discuss in brief several modifications that allow the sim-
ulation of molecules with more complex structure. Furthermore, we present
techniques that allow us to gain molecular data and appropriate potential
parameters from databases and other program packages as input for our sim-
ulations.

Data Structure. A molecule has been represented in Section 5.2.2 as a
logical vector of atoms. Using this data structure, we implemented alkane
chain molecules via the united atom model. But there is an abundance of
more complex molecular structures beyond such chain molecules. Already
a simple isoalkane, in which the chain bifurcates, or a cyclic alkane, which
contains a ring structure, can not be represented in such a way. There are also
ring-like molecules, such as benzene, and molecules with more general graphs.
Further examples are proteins and other biomolecules. Their structures can
become arbitrarily complex with an increasing number of atoms.

To be able to represent the neighborhood/bonding relations of atoms in
such complex molecules, we need a new data structure for the molecules.
Instead of one vector we now use pointers that represent the graph of atoms
and bonds within the molecule. We encountered such techniques in a simple
form already in Section 3.5 where we considered linked lists. Now, we intro-
duce pointers for each particle to all its neighboring particles. This way, more
complex molecular structures can be represented and also different strands
of a molecule can be tracked. In our case it is practical to assume an upper
limit MAXNEIGHBOR on the number of neighboring atoms25 which we define to
be four, for example. For the particles, we then may use data structure 5.1,
see also Figure 5.40, where additional memory can be allocated for bond
parameters if necessary.26

For a linear molecule, this data structure reduces to a doubly-linked list.
In principle, a singly-linked structure would be enough for most operations.
However, for example when particles cross subdomain boundaries, i.e. in the
25 To keep the number of neighboring atoms variable, one can alternatively use

a list of pointers to the neighboring atoms. This can results in a net saving of
storage space in particular cases compared to the use of preallocated vectors of
fixed size.

26 There are different possibilities to manage the bond parameters. First, the pa-
rameters could be stored individually for each bond, for instance together with
the pointers to the neighboring atoms. One disadvantage is the variable number
of possible bonds, so that a lot of memory may remain unused if vectors of fixed
size are preallocated. Alternatively, the parameters could be stored in global (as-
sociative) tables (sorted by atoms types) in which they can be easily found and
accessed. Since often there are significantly more atoms than different choices of
bond parameters, storage space can be saved this way.
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Data structure 5.1 General molecules as connectivity graphs of atoms.
#define MAXNEIGHBOR 4

typedef struct {
... // data structure for particles 3.1
struct Particle *neighbor[MAXNEIGHBOR];

} Particle;

#$


#$

#$


#$�
#$�

#$


#$


#$�

#$


#$�

#$�

#$�#$
#$


#$


#$#$
#$


Fig. 5.40. Data structure for molecules as graph of particles and bonds for the
example of an isoalkane molecule. Branched structure (left) and molecule in the
linked cell grid (right).

parallel code, the insertion and removal of particles is easier to implement in
a doubly-linked structure. The array M[i][j] from Section 5.2.2 is then no
longer needed.

The doubly-linked structure of the molecule has to be allocated and ini-
tialized correctly at the start of the simulation. The computation of forces
for the nonbonded interactions is carried out as usual with the linked cell
method. The intramolecular forces can be computed in a loop over all parti-
cles and their pointers to neighboring particles. Here, the action of the bond-
ing forces onto each single particle is computed. Alternatively, one could also
use Newton’s third law to compute forces on groups of particles (mostly four
neighboring atoms) if one ensures (for example with additional flags) that
each bond potential is only computed once in the loop. Usually, some parti-
cles from the same molecule (e.g. four consecutive ones) are not to interact
through the Lennard-Jones potential. As already noted in Section 5.2.2 for
linear molecules, instead of checking in the linked cell method for each inter-
action whether it has to be computed and added, it can be advantageous to
compute and add such interactions in the linked cell method and then sub-
tract them again in the computation of the intramolecular forces, if needed.

Parallelization. The parallelization of our linked data structures requires
somewhat more effort than for the vector structure of linear molecules. It has
to be taken into account that a long molecule could extend across subdomain
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(and therefore, process) boundaries and that parts of molecules could move
across process boundaries.

If at first we assume a static data distribution, we only have to ensure that
the necessary copies of the particles in the border neighborhoods are available.
If now in addition the pointers of the particles in the border neighborhood
point to the appropriate copy of the neighboring particle, we only have to
prevent the possibility that a single force term is taken into account more
than once.

However, the case of a dynamical data distribution poses a challenge, since
parts of molecules can move from one process to another. Even though the
particles in the border neighborhoods can be sent as before, the pointers to
the neighboring particles have to be set correctly. Since the value of a pointer,
namely the memory address, does not make sense for the other processes
in a distributed memory system, a way has to be found to transmit the
graph structure across process boundaries. To this end, a unique numbering
of the particles as in Section 5.2.2 is an elegant possibility. Pointers are then
translated into its corresponding particle numbers, these are sent to their new
process and the new process translates the particle numbers back into (local)
pointers. If a search of the particle numbers in the corresponding cells of the
new process is too time-consuming in this back-translation, hash techniques
can be used instead [357].

Potentials. The overall potential function is basically constructed from the
potentials for linear molecules which we introduced in the previous section.
They consist of bonded and nonbonded terms. The bonded terms are com-
posed of harmonic bond potentials (5.30), angle potentials (5.31) for interac-
tions of three bonded atoms, and torsion potentials for interactions between
four bonded atoms. Here, we encounter a new form of torsion potential be-
sides the form in (5.35) for four consecutively bonded atoms i-j-k-l, namely
at branching points of the molecule, were several strands are connected. To
this end, we apply the so-called improper torsion potential

Uut(ω) =
1
2
kω(ω − ω0)2. (5.40)

Now, in contrast to the conventional torsion potential, the atoms i, j, k, l
which determine the torsion angle are not bonded in a chain but in a star-
like fashion. Figure 5.41 shows a sample configuration for such an interac-
tion.27 Here, ω = ωijkl denotes the angle between the two planes which are
spanned by the atoms i, j, k and j, k, l. Analogously, several improper torsion
potentials can be applied to atoms with more than three bonds.
27 Occasionally, improper torsion potentials are also applied at atoms that are not

branching points in the molecule. Thus, one can impose additional restrictions
on the geometry of the molecule, as for example the planarity of sp2-hybridized
carbons in carboxyl groups.
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Fig. 5.41. A configuration of atoms i, j, k, l and the improper torsion angle ωijkl

between the planes spanned by atoms i, j, k and j, k, l.

Geometry and Parameters for the Potentials. Besides their applica-
tions in the material sciences, molecular dynamics methods serve as an im-
portant tool in the study of biomolecules. The RCSB28 Protein Data Bank
(PDB) [85] provides three-dimensional structural data of proteins. It delivers
the atoms of the molecules with their coordinates and the bonds between
them.29 An example can be found in code fragment 5.2, another example
was already given in code fragment 5.1 for the simulation of butane.

Code fragment 5.2 The Structure of Ant Acid in PDB format.
ATOM 1 C UNK 1 -0.014 1.204 0.009 1.00 0.00

ATOM 2 O UNK 1 0.002 -0.004 0.002 1.00 0.00

ATOM 3 O UNK 1 1.139 1.891 0.001 1.00 0.00

ATOM 4 H UNK 1 -0.957 1.731 0.016 1.00 0.00

ATOM 5 H UNK 1 1.126 2.858 0.007 1.00 0.00

CONECT 1 2 2 3 4

CONECT 2 1

CONECT 3 1 5

CONECT 4 1

CONECT 5 3

The data contained in the PDB have mostly been found experimentally
by x-ray crystallography [113, 516] or solution-NMR (nuclear magnetic reso-
nance) [159, 113]. In general, x-ray crystallography cannot determine the po-
sition of hydrogen atoms, neither can it distinguish between nitrogen, oxygen,
28 The PDB is currently maintained by the Research Collaboratory for Structural

Bioinformatics (RCSB), which took over management from Brookhaven National
Laboratory in 1999.

29 Here, also atoms with different chemical types of bonds are distinguished, which
is expressed by suffixes to the atom identifiers. Unfortunately, not all bonds
between atoms are included. Furthermore, some particular groups of atoms such
as amino acids may be abbreviated by one symbol instead of listing all the atoms
in the group.



206 5 Extensions to More Complex Potentials and Molecules

and carbon atoms. Thus, these details have to be manually added afterward
using additional chemical knowledge. Furthermore, with x-ray crystallogra-
phy, the proteins must usually be analyzed in their crystal (dehydrated) form.
Consequently, only the structural data of a dehydrated and thus deformed
state can be gained this way.

Thus, before any realistic simulation of bioproteins can start, missing
hydrogen atoms and the surrounding water or other solvent molecules have
to be added to the structural data from the PDB database. The missing
hydrogen atoms can be produced using a “hydrogen generator” as available,
for instance, in HyperChem [14], which uses additional chemical knowledge.
The surrounding water can be generated as follows: First, a grid of water
molecules is produced, where the single molecules are randomly rotated and
slightly perturbed in their positions. Then, those water molecules are omitted
which overlap with the protein or are too close to it. To this end, the distance
of a water molecule to the protein molecule can be computed efficiently with
the linked cell method. Alternatively, water molecules can also be deposited
close to the protein molecule in a layer by layer fashion. Furthermore, salt and
mineral atoms dissolved in the water have to be added for some simulations.
The basic structure of the overall initialization process is given in Figure 5.42.
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Fig. 5.42. Preparatory steps for protein simulations: After the file containing the
coordinates of the basic atoms and the bonds of a molecule is read in from the
PDB database, its structure is completed with the help of a hydrogen generator by
filling in missing hydrogen atoms. Afterwards, the structure is surrounded by water
molecules, and finally the parameters of the potentials are read from a parameter
file.

Figure 5.43 shows the difference between a structure taken from the
database, the structure with missing hydrogen atoms added, and the final
structure with surrounding water molecules added, as used in the computa-
tion.

After the geometric configuration of the atoms is established, the bonds
between atoms have to be described. For that purpose we use the potentials
which were previously introduced. The force constants kb, kθ, kφn, δn, kω ,
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Fig. 5.43. The BPTI protein, as given in the PDB database (upper left), with
added hydrogen atoms (upper right), and with surrounding water molecules (be-
low).
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the equilibrium parameters r0, θ0, φ0, ω0, and the Lennard-Jones constants
σ and ε depend, however, on the atoms involved in the bond. Every combi-
nation of atoms therefore needs its own set of parameters. Here, equilibrium
distances and angles can be determined geometrically, while force constants
are identified using the energies and natural frequencies of the bonds. Typ-
ically, such parameters are derived by a fitting of the potential functions to
experimental data. Many teams have intensively worked (and are still work-
ing) on this problem. Nowadays, extensive libraries of such parameter sets
are available. Prominent representatives are the parameter sets contained in
the program packages CHARMM [125], Amber [471] or Gromos [634].

A section of a CHARMM parameter file, for example, can then look
like code fragment 5.3.30 The potential functions, constants and their units
are first described in comments, and then the parameter values for par-
ticular atom combinations are listed. In detail, the parameters for valence
bonds are given first. For example, the bond between hydrogen and car-
bon atoms has an equilibrium distance r0 = 1.11 Å and a force constant of
kb = 330 kcal/mol/Å2. Then, the angle potentials follow. For instance, the
triple of hydrogen, oxygen, and carbon atom here has an equilibrium angle of
θ0 = 108 degrees and a force constant of kθ = 65 kcal/mol/degree2. Further-
more, parameters for the torsion potentials and improper torsion potentials
are analogously specified. Here, the wild card X stands for arbitrary atoms.
Finally the parameters ε and σ/2 of the Lennard-Jones potential are given.
The parameters for pairs of atoms are computed with the Lorentz-Berthelot
mixing rule from the values for a single type of atom, as described in the
comment.

With help of a proper interface to the PDB data base and the associated
parameter files from Amber, CHARMM, or Gromos, potential functions for
almost all known proteins can be generated. Examples for simulations with
such complex molecules can be found in Chapter 9.

30 Here, differently bonded atoms are denoted by identifiers which are derived from
the atom name. The identifier X is used as a wild card which stands for an
arbitrary atom. In addition, atom groups such as amino acids are described, and
hydrogen bridge bonds, ions, and other irregularities are specified. Note that
each program package uses slightly different potentials which require accordingly
different parameter sets.
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Code fragment 5.3 Parameters for the Potentials in CHARMM Parameter
File Format.
BONDS

!V(bond) = Kb(b - b0)**2

!Kb: kcal/mole/A**2

!b0: A

!atom type Kb b0

H C 330.0 1.11

O C 620.0 1.23

O H 545.0 0.96

ANGLES

!V(angle) = Ktheta(Theta - Theta0)**2

!Ktheta: kcal/mole/rad**2

!Theta0: degrees

!atom types Ktheta Theta0

H O C 65.0 108.0

O C O 100.0 124.0

O C H 50.0 121.7

DIHEDRALS

!V(dihedral) = Kchi(1 + cos(n(chi) - delta))

!Kchi: kcal/mole

!n: multiplicity

!delta: degrees

!atom types Kchi n delta

X C O X 2.05 2 180.0

IMPROPER

!V(improper) = Kpsi(psi - psi0)**2

!Kpsi: kcal/mole/rad**2

!psi0: degrees

!atom types Kpsi psi0

O X X C 120.0 0.00

NONBONDED

!V(Lennard-Jones) = Eps,i,j[(Rmin,i,j/ri,j)**12 - 2(Rmin,i,j/ri,j)**6]

!epsilon: kcal/mole, Eps,i,j = sqrt(eps,i * eps,j)

!Rmin/2: A, Rmin,i,j = Rmin/2,i + Rmin/2,j

!atom epsilon Rmin/2

C -0.110 2.0000

H -0.046 0.2245

O -0.120 1.7000



6 Time Integration Methods

With a discretization in time like the Störmer-Verlet method from Section
3.1, the solution of the continuous Newton’s equations is computed only ap-
proximately at selected points along the time axis. There, approximations
to the values at later points in time are computed from the values of the
approximations at previous points in time in an incremental fashion. Now,
we consider time integration methods in a more general framework. First, we
discuss local and global error estimates. It will turn out that one has to be
careful in the interpretation of results from integrations over long times with
many time steps. We thus study the conservation properties of time integra-
tion schemes and introduce so-called symplectic integrators. Then, we give
techniques to construct more general schemes. Finally, we discuss possibilities
to speed up the time integration. To this end, we focus on three approaches:

– Higher order schemes. Their errors show a better order of convergence
with respect to the time step. Thus, for a given (small enough) time step,
the use of a higher order scheme decreases the error in the simulation.
Alternatively, also a larger time step can be selected to obtain a solution
of the same accuracy but now with a smaller number of time steps.

– Methods with multiple time steps. Especially for molecular problems, the
different length scales for the bond, angle, torsion angle, Lennard-Jones,
and Coulomb parts of the overall potential function imply different time
scales in the problem. With an appropriate separation, these different time
scales can be treated individually using time steps of different size. A typical
representative of such methods is the impulse or r-Respa method [274, 275,
621, 623] presented in Section 6.3.

– Freezing high frequency modes by enforcing additional constraints. If the
bond and angle forces are kept fixed, a larger time step can be used without
compromising the stability of the time integration scheme. This approach is
presented in more detail in Section 6.4, for which the SHAKE and RATTLE
methods [43, 534] give an example.

In Section 3.1 we already introduced the Störmer-Verlet method as one
possibility for the discretization of Newton’s equations of motion

mẍ = F(x). (6.1)



212 6 Time Integration Methods

In the following, we will consider other integration methods. To this end,
we rewrite (6.1) in the Hamilton formalism. This is possible since the total
energy of the mechanical system is conserved.1 We obtain

q̇ = ∇pH(q,p), ṗ = −∇qH(q,p) (6.2)

with the positions q and momenta p, which correspond to x and mẋ. In our
case, the Hamiltonian is

H(q,p) = T (p) + V (q) =
1
2
pT m−1p + V (q), (6.3)

where m denotes the masses of the particles and V denotes the potential. In
this way, (6.2) turns into the system

q̇ = m−1p, ṗ = −∇qV (q) (6.4)

of differential equations of first order.

6.1 Errors of the Time Integration

Local Error. In general, a one-step method2 for the time integration of
Newton’s equation of motion (6.2) can be written as(

qn+1

pn+1

)
= Ψ(qn,pn, δt) :=

(
Ψ1(qn,pn, δt)
Ψ2(qn,pn, δt)

)
(6.5)

with a function Ψ that specifies the method. If we denote by (q,p) the exact
solution of (6.1) that intersects (qn,pn, tn) at time tn, then the the corre-
sponding propagation function Φ can be defined by

Φ(qn,pn, δt) :=
(
q(δt + tn)
p(δt + tn)

)
.

Then, for an integration method of order p and a sufficiently smooth solution
(q(t),p(t)), the estimate

‖Ψ(qn,pn, δt) − Φ(qn,pn, δt)‖ = O(δtp+1) (6.6)

holds [297], and consequently, the local error in each time step satisfies
1 Note however that the temperature is not conserved for a system with only a

finite number of particles. In the case of an ergodic system, the instantaneous
temperature fluctuates around a mean value which depends only on the energy
of the initial data.

2 One-step methods need only one previous, old value
`
qn

pn

´
to determine the new

value
`
qn+1

pn+1

´
. In contrast, multi-step methods refer to the values at several pre-

vious points in time.
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‖qn+1 − q(δt + tn)‖ = O(δtp+1),
‖pn+1 − p(δt + tn)‖ = O(δtp+1) .

(6.7)

Thus, we can approximate Newton’s equations of motion very well across
one time step δt: The accuracy can be improved by using either a smaller
time step δt or, alternatively, an integration scheme with higher order p.
Also, values derived from q and p, such as energy and momentum, can be
computed very accurately across one time step.

Global Error. Consider now a fixed time interval from t0 to tend = t0+n·δt.
Hence, starting from t0, n time steps of size δt are needed to reach tend.
Let us again consider an integration method of order p, and let Ψ have Lip-
schitz constant M .3 Furthermore, let (q,p) denote the exact solution through
(q0,p0, t0). Then, we obtain for the global error of the time integration from
t0 to tend

‖qn − q(tend)‖ ≤ C · δtp · eM(tend−t0) − 1
M

, (6.8)

see [297], Theorem 3.4. A corresponding result holds also for the error in
the momentum p. Again, we can control the accuracy of the solution by
the selection of the time step δt and convergence order p of the method.4

The fundamental problem is now that the error grows exponentially with
the time tend. In many molecular dynamics applications, we are interested
in simulations over long times, where tend is large compared to the Lipschitz
constant M which is dominated by the highest frequency of the oscillations.
A small perturbation in the initial data may therefore be amplified exponen-
tially with the time tend and, at the end of the simulation, only the effects of
the perturbation are visible. In general this is summarized under the concept
of chaotic behavior.5 As a consequence, the results of a simulation no longer
directly depend on the initial data and derived quantities such as energy and
momentum may diverge with t. A simulation over long periods of time seems
therefore meaningless, regardless which integration method and which accu-
racy is used. Thus, there is no hope to use molecular dynamics simulations as
a molecular microscope to look at actual long-time trajectories of particles.

Let us illustrate this point in a numerical experiment. To study the ex-
ponential growth of errors we consider two simple simulations with 1000
particles each. We measure the distance of the particle trajectories q and q̂
3 A function f defined on D is called Lipschitz continuous or is said to satisfy a

Lipschitz condition, if there exists a constant M ≥ 0 such that for all x, y ∈ D

‖f(x) − f(y)‖ ≤ M · ‖x − y‖.
The smallest such number is called the Lipschitz constant of the function.

4 Here, a decrease in the time step δt may also lead to a loss of accuracy since the
rounding error grows with the number of time steps.

5 In this context the largest Ljapunov exponent [297] plays the role of the Lipschitz
constant M .
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from the two simulations. The simulations differ only in the initial conditions
for two particles: The velocities of these two particles differ by the factor of
10−10 in the x1 component. According to (6.8), we expect that this small
perturbation in the initial conditions will be amplified exponentially in time.
Thus, the particle configurations in both simulations should be essentially
independent after some time.

The parameters for the experiment are given in Table 6.1. The 1000 parti-
cles in each system interact with each other by the smoothed Lennard-Jones
potential (3.63) from Section 3.7.3. We measure the distance of the trajecto-
ries by ‖q(t)− q̂(t)‖. The results are given in Figure 6.1 (left). Indeed, we see
that the distance between the two simulations grows exponentially with time,
i.e., the estimate (6.8) is sharp. A small perturbation in the initial conditions
is sufficient to cause a difference in the positions of the particles of the order
of the size of the simulation domain. At time t = 5 we reach such a difference
and the particles can not drift further apart during the onward simulation.

L1 = 7.5, L2 = 7.5, L3 = 7.5,
ε = 1, σ = 1, m = 39.95,
N = 10 × 10 × 10, m = 39.95, T = 2000 K,

rcut = 2.5 σ, δt = 0.001, t ∈ [0, 5]

Table 6.1. Parameter values for the simulation of two particle systems with
Lennard-Jones forces.
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Fig. 6.1. Simulation of a particle system with 1000 particles over 5000 time steps
and comparison with a slightly perturbed system. The distance of the trajecto-
ries diverges exponentially in time (left). The time average of the total energy is
conserved, at least approximately (right).

The total energy of the system is shown in Figure 6.1 (right). We see
that, unlike the distance of the trajectories, the total energy only oscillates.
Its average value even seems to stay constant over time. In the following, we
will study this effect in more detail.
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Conserved Quantities. Despite the fact that the numerically computed
trajectory of a particle system differs in a substantial way from the exact
trajectory (q(t),p(t)) already after a short simulation time and is completely
off for long simulation times, molecular dynamics techniques can still help to
obtain meaningful results. It can be observed that at least certain statistical
averages of the simulation like the total energy can be obtained quite accu-
rately. Thus, reliable values for macroscopic observables in phase space can
be gained even for long simulation times as we will see in the following.

In every closed mechanical system H(q,p), there are a number of quan-
tities which are conserved over time by the exact solution of the Hamilton
equation.6 Prominent examples are the total energy, the momentum and the
angular momentum.7 There exist time integration schemes that conserve one
or more of these quantities exactly. One possibility to construct such an inte-
gration scheme is to compute a projection of the variables (qn+1,pn+1) after
each time step such that, given a conserved quantity A, the projected value
(q̂n+1, p̂n+1) satisfies

A(qn,pn) = A(q̂n+1, p̂n+1) .

Hence, numerical simulations of molecular systems can be meaningful even
though the computed trajectories of the particles are not accurate for long
times and quickly leave the neighborhood of the exact trajectory (q(t),p(t)).

Symplectic Integrators. We now consider a particular conserved quantity
which is characteristic for Hamiltonian systems, namely the volume in phase
space, see also Section 3.7.2. In the space of points (q,p), the measure of a
set is conserved under transport along the trajectories of the system. This
property can be expressed with the (outer) differential form

ω :=
∑

i

dqi ∧ dpi ,

as dω = 0, see also [296, 377]. A system with such a property is called
symplectic. A symplectic mapping Ψ from (q,p) to (q̃, p̃),(

q̃
p̃

)
= Ψ(q,p) :=

(
Ψ1(q,p)
Ψ2(q,p)

)
,

6 Conserved quantities of a Hamiltonian H can also be characterized by {A,H} = 0
with {·, ·} being a Poisson bracket. {A,H} is defined as

P
i

∂A
∂qi

∂H
∂pi

− ∂A
∂pi

∂H
∂qi

which corresponds to the time derivative Ȧ(q,p).
7 In simple cases one can directly eliminate the conserved quantity from the sys-

tem. However, eliminating or conserving one quantity exactly does not imply
anything on the quality of other quantities from the simulation. Unfortunately,
one cannot conserve all analytically conserved quantities numerically as well.
Additionally, the relevant conserved quantities might not be known or very hard
to determine for the system under study, especially for more complex systems.
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can equivalently be defined by the condition(∇qΨ1 ∇pΨ1

∇qΨ2 ∇pΨ2

)T ( 0 I
−I 0

)(∇qΨ1 ∇pΨ1

∇qΨ2 ∇pΨ2

)
=
(

0 I
−I 0

)
. (6.9)

A one-step method (6.5) is called symplectic if the mapping Ψ in (6.5)
from the approximation for one time tn to that for the next point in time
tn+1 is symplectic. A point in phase space is then transported by symplectic
mappings along a trajectory.

Let us now study the mappings implied by time integration schemes in
a numerical experiment. We consider a simple model of the mathematical
pendulum, with the Hamiltonian

H(q,p) = p2/2 − cosq

and the corresponding differential equation

q̇ = p, ṗ = − sinq .

This corresponds to an ideal undamped pendulum with unit mass which
is suspended with a thread at a fixed point and swings without friction in a
plane. For simplicity we use units such that the gravitational constant has the
numerical value one. We choose the coordinate system such that the position
q corresponds to the angular deflection of the pendulum. The momentum p
is then the angular velocity. If the pendulum oscillates periodically, the posi-
tion q lies in [qmin,qmax] = [−γ, γ] with γ < π. Because of the periodicity in
the description of the problem, systems with positions differing by a multiple
of 2π correspond to the same physical situation, and the given range for q
could be shifted by any multiple of 2π. The momentum of the system lies in
[−2, 2]. If the system possesses more energy, the pendulum no longer oscil-
lates, but turns over. The position then passes through all values in R, either
monotonically increasing or monotonically decreasing. Between periodic os-
cillation and overturning there is a limit case with the maximal angle of π
which is not reached by the system in finite time. The behavior of the system
is sketched as a phase diagram in Figure 6.2, upper left. Here, several orbits
of the system are drawn and marked with arrows. The periodic solutions
are located close to the origin. They correspond to a periodically swinging
pendulum. For small amplitudes, the trajectories are nearly circular and the
potential is approximately harmonic. The thick line corresponds to the limit
case and separates the phase space. Any trajectory outside corresponds to
an overturning pendulum.

In our experiment, we now follow a disk in phase space for several time
steps using different time integration schemes: Besides the Störmer-Verlet
method (3.22), we consider the following variants of the Euler method for
(6.4):
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Ψexplicit(qn,pn) =
(

qn + δt m−1pn

pn − δt∇qV (qn)

)
, (6.10)

Ψimplicit(qn,pn) =
(

qn + δt m−1pn+1

pn − δt∇qV (qn+1)

)
, (6.11)

Ψsymplectic(qn,pn) =
(

qn + δt m−1pn+1

pn − δt∇qV (qn)

)
. (6.12)

These methods are of first order in time. The results of the experiment are
shown in Figure 6.2. The exact solution is shown in the top right picture. To
allow easier orientation, all pictures also contain several exact orbits.

Fig. 6.2. Results of different time integration schemes for Hamiltonian flows in
phase space (q,p), for the example of a mathematical pendulum. δt = π/4. Flow
(top left), exact solution (top right) with the initial positions of the disks Ω1 and Ω2,
explicit (middle left), implicit (bottom left), and symplectic (middle right) Euler
method, Störmer-Verlet method (bottom right). The disks of initial values (light
color) are deformed time step by time step (successively darker colors).
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One can clearly see that the volume of the disk in phase space is growing
for the explicit Euler method, and is shrinking for the implicit Euler method.
Both methods are therefore not symplectic. In contrast, the symplectic Euler
method (6.12) and the Störmer-Verlet method (3.22) conserve the volume in
phase space and are therefore symplectic.

For one-dimensional systems, symplecticity is even equivalent to energy
conservation. This is however not the case for higher-dimensional systems.
In addition to the conservation of the physical structure of the Hamilto-
nian, the symplecticity of a time integration scheme has another consequence
which is important for the interpretation of the numerical error. Backward
error analysis interprets a computed trajectory as the exact solution of a
slightly perturbed differential equation.8 If the time integration scheme is
symplectic, this perturbed differential equation can be represented again by
a Hamiltonian H̃. We can therefore write

H̃(q,p) = H(q,p) + δtH1(q,p) + δt2H2(q,p) + . . . ,

where the perturbed Hamiltonian H̃ is symplectic if the original Hamilto-
nian is smooth9 [78, 292, 296, 510]. However, with H̃ �= H this implies that
symplectic methods in general do not conserve energy exactly [201] if they
do not reproduce the exact solution. But since the numerically computed
trajectory is an exact solution of the system described by H̃, the conserved
quantities Ã of H̃ are conserved on the computed trajectory. If the perturbed
Hamiltonian H̃ and the original Hamiltonian H differ only slightly and if
H̃ ≈ H implies Ã ≈ A, it follows that the numerically obtained A, which cor-
respond to the conserved quantity of the original Hamiltonian H, is at least
approximately conserved along the computed trajectory. Hence, one has to
show that the perturbed Hamiltonian H̃ and the original Hamiltonian H dif-
fer only slightly. In special cases, the perturbed Hamiltonian H̃ as well as its
conserved quantities Ã can be constructed explicitly. However, in general, the
perturbed Hamiltonian H̃ as well as other conserved quantities from the per-
turbed system are not available, which restricts the usefulness of backward
error analysis.

Errors in Long Time Integration. Often some observable quantity A is
not conserved exactly but stays close to an unknown value Ã. In addition,
the observed A usually oscillates. Therefore, it is more sensible to consider
appropriate time averages of A instead of the value of A along the trajec-
tory of the system. The ergodic hypothesis states that, roughly speaking, an
average over a long period of time corresponds to an average over statistical
ensembles, see also Section 3.7.2. If the numerical method is symplectic, one
8 The forward error analysis (6.8) directly considers the distance of the computed

trajectory from the exact solution.
9 This is the case for the potentials from Chapter 2, but not for potentials which

are truncated or modified as in Section 3.7.3.
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can hope, because of the conservation of the structure of the system by the
numerical method, that one can observe some kind of “numerical” ergodicity.
Thus, in a simulation that is run for a sufficiently long time, the numerically
computed trajectory comes arbitrarily close to all points in phase space. Un-
der this assumption, one can prove error estimates for exponentially large
integration times. For the time interval from t0 to

tend = t0 + C1 · eC2/δt · δt
and correspondingly exponentially many time steps n = C1 · eC2/δt, the dif-
ference between the time averages of a conserved quantity for the computed
trajectory and for the exact trajectory is bounded by

‖〈Aq1,...,qn〉τ − 〈Aq(t)〉τ‖ ≤ C · δtp (6.13)

with p being the order of the method from (6.6), see [78, 293, 295, 296, 377,
510]. Thus the error of the computed averages can be made arbitrarily small
by decreasing the time step size δt. One can also try to bound the difference
of the perturbed H̃ to the original H. These estimates imply the numerical
stability of symplectic time integrators: Depending on the time step size δt,
the accuracy of the computed averages of conserved quantities is high also
for long integration times. We have already observed such a behavior in the
simple experiment in Figure 6.1.

If δt is chosen to be larger, but below the stability threshold and thereby
far enough from the resonance frequencies of the system10, we still obtain
reasonable values as results of our numerical experiments. Now, we can no
longer successfully perform a backward error analysis. But at least an analysis
of a model problem is often possible. As an example let us consider a simple
chain of springs (the Fermi-Pasta-Ulam problem [222, 295, 296]) in which
springs are alternatingly stiff and soft. The springs are modeled by harmonic
potentials. In addition, the potentials for the soft springs are perturbed by
a fourth-order term. Then, one can show that a certain class of integration
methods does conserve energy on average over long times according to (6.13),
but the exchange of energy is not represented correctly because of the slow
linear terms in the energy. In this context, the time-reversibility of the almost
symplectic methods is of special importance.11

So-called stable and quasi-periodic orbits are further aspects to be con-
sidered in the study of errors of computed trajectories. According to KAM
10 Resonance is the tendency of a system to oscillate with high amplitude when

excited by energy at a certain frequency. This frequency is also called eigenfre-
quency of the system.

11 A method is called time-reversible or symmetric if a change of sign in time
from t to −t and therefore also in the momentum from p to −p allows to fol-
low the numerical trajectory backwards. A time integration scheme such as the
Störmer-Verlet method is time-reversible up to rounding errors. The properties
of symplecticity and time-reversibility are independent of each other.
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theory12 one can find under certain conditions orbits in phase space which
are stable against perturbations [49]. For these orbits, the exponential esti-
mate for the error (6.8) is too pessimistic. Instead, the growth of the error
is insignificant on the orbit and small in a neighborhood of the orbit. One
merely obtains an estimate of O(t) or, in case of the two orbits drifting apart,
an estimate of O(t2), if the initial conditions lie on such a stable orbit. On
the other hand, with initial conditions in other parts of the phase space, also
chaotic behavior and therefore exponential growth of the error may occur.

Errors in the Force Computation. Up to now we have assumed that
the time integration is performed in exact arithmetic. In practice however,
the effect of rounding errors has to be taken into account. Furthermore, the
consequences of approximations in the computation of the forces must be
considered, for instance those caused by the truncation of the potentials in
the linked cell method. The estimate (6.8) is valid also for such types of
errors: They can lead to an exponential growth of the total error in time.

In general one can hope that the integrator remains symplectic if the
rounding errors in its implementation are uncorrelated and therefore at least
the estimate for the energy averages (6.13) still holds. But if the rounding
errors depend on time or are correlated between different time steps, the
computation of the potential V (xn) may depend on further parameters such
as xn−1. The resulting method is then no longer symplectic and one observes
deviations from the averages.13

A further source of errors is any approximation in the force computation
made necessary by the complexity of the evaluation of the original force term.
Examples for such approximations are given by the truncation of the poten-
tials at a radius rcut in the linked cell method or the techniques still to be
described in Chapter 7 (grid based methods) and Chapter 8 (tree methods)
for the approximate evaluation of long-range forces. How do such approx-
imations change the energy and the momentum of the system beyond the
error estimates according to (6.13) and (6.8)? Only little is known about
this. If we modify the potential in the linked cell method in such a way that
it is exactly zero outside of the cutoff radius, then the truncation in (3.30)
removes only terms Fij with Fij = 0 from the summation, as presented in
Section 3.7.3.14 All other changes affect the computation of the energy so that
we can no longer make any general statements about the long-time behavior
12 Kolmogorov and later Arnold and Moser [49].
13 To confront this problem, one can define ergodicity also on lattices with finitely

many points. Then, all orbits consist of finitely many points in a discrete phase
space. In the algorithm this is implemented by an appropriate rounding to the
lattice points at each time step [201, 565]. If the rounding errors are small enough
compared to the lattice constant (the distance between the points on the lattice),
they disappear in the accuracy of the resulting integer arithmetic.

14 One has to ensure the differentiability of the potential to preserve an estimate
of type (6.13).
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of the computed energy. This is somewhat different for the momentum. As
long as we always include both Fij and Fji in the summation, Newton’s third
law implies that the total momentum is not changed. In this way, even huge
errors caused by the truncation in (3.30) do not affect the conservation of the
total momentum.

All in all we have different options to interpret the long-time behavior of
molecular systems. First, we observed that even the smallest perturbations
and errors can be amplified exponentially in time, compare (6.8) and Fig-
ure 6.1. Symplectic time integration schemes and the additional assumption
of “numerical ergodicity” imply at least the conservation of certain time av-
erages of conserved quantities. An alternative approach using KAM theory
shows that, depending on the initial values, the physical process can still
be stable over long times. Altogether this poses the question how far any of
these additional assumptions needed for long-time stability are satisfied for
realistic molecular dynamical simulations. Many real chemical and biological
systems are known to be stable against various kinds of perturbations in the
initial conditions and in the trajectories. This offers at least some hope that
the corresponding numerical simulations could be stable as well. But as far
as we know, nothing more definite can be said at the moment. Also, the ef-
fect of rounding errors and errors in the force computations on the long-term
stability of a simulation is not yet sufficiently understood.

6.2 Symplectic Time Integration Methods

Methods of higher order p come to mind immediately when one thinks of
the efficient integration of ordinary differential equations. There are various
classes of methods such as Runge-Kutta methods, extrapolation methods,
and general multi-step methods that provide higher orders in δt. We have
seen in the last section that additional properties such as symplecticity and
time-reversibility are important for the long-time behavior of the results of
the simulation. Furthermore, to obtain a fast algorithm, it is important to
keep the number of expensive force computations as small as possible. This
excludes a number of implicit methods which require many evaluations of the
force in the iterative solution of the resulting nonlinear systems of equations.

Multi-Step Methods. In contrast to one-step methods (6.5), multi-step
methods use not only the previous point (qn,pn, tn) from the trajectory,
but a longer sequence of points (qn−j ,pn−j , tn−j) with j = 0, . . . , s from
the trajectory to compute a new point (qn+1,pn+1, tn+1). In this respect,
a preferred class of methods in the area of molecular dynamics is that of
backward differentiation formulas (BDF) [247]. The definition of symplec-
ticity (6.9) cannot be applied directly to multi-step methods, since we have
to study a mapping of several pairs (qi,pi) to the new value (qn+1,pn+1).
However, multi-step methods can be interpreted as one-step methods in a
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higher-dimensional product space and symplecticity (6.9) can be generalized
to such a setting. Then, it can be shown that the usual multi-step methods
of order higher than the mid-point formula (which is of order two) cannot
be symplectic [294, 296]. It is also easy to see that it is difficult to construct
such methods which are both explicit and time-reversible since this would
require the same number of force evaluations in the future δt and the past
−δt. Therefore, one is left essentially only with one-step methods that could
have the desired property of symplecticity. One-step methods can be written
as Runge-Kutta methods. However, symplectic Runge-Kutta methods are in
general implicit [297] and require the expensive solution of nonlinear sys-
tems of equations. This is the reason why we consider in the following more
specific and less general time integration schemes for problems in molecular
dynamics. They possess at least some of the properties of the symplectic,
time-reversible and explicit Störmer-Verlet method.

Time Splitting Methods. One possibility to construct general time in-
tegration schemes is based on the idea of operator splitting. To this end,
the right hand side of the differential equation is split into several parts and
the parts are integrated separately. In our case we split the Hamiltonian from
(6.2) into two parts H1(q,p) and H2(q,p), i.e. H(q,p) = H1(q,p)+H2(q,p).
If we denote the integration schemes for the two parts by Ψ1

δt(q,p) and
Ψ2

δt(q,p), the time splitting method corresponds to their subsequent appli-
cation, i.e.

Ψδt(q,p) := Ψ2
δt ◦ Ψ1

δt (q,p) := Ψ2
δt(Ψ

1
δt(q,p)) . (6.14)

By construction, this approach leads only to a first order method regardless
of the order of the integration schemes for the two parts. A combination of
the integration schemes for the parts in the way

Ψδt(q,p) := Ψ1
δt/2 ◦ Ψ2

δt ◦ Ψ1
δt/2 (q,p) (6.15)

can lead to a second order method instead. This construction is called Strang
splitting15 and can also be derived from so-called Lie-Trotter factorizations
[617].

If we use the natural splitting of the Hamiltonian H(q,p) = T (p)+V (q)
from (6.3) and solve the resulting subproblems with the explicit Euler method
(6.10), we obtain with

ΨT
δt(q

n,pn) =
(

qn + δt m−1pn

pn

)
,

ΨV
δt (q

n,pn) =
(

qn

pn − δt∇qV (qn)

)
,

15 This splitting was proposed by Strang originally for partial differential equations
in [590]. There, the different parts of the splitting correspond to differential
operators in the different coordinate directions.
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from ΨT
δt ◦ ΨV

δt exactly the symplectic Euler method (6.12) and from ΨV
δt/2 ◦

ΨT
δt ◦ΨV

δt/2 the Störmer-Verlet method (3.22). It can easily be verified that the
mappings ΨT

δt and ΨV
δt are symplectic. This implies that the Störmer-Verlet

method and the symplectic Euler method are also symplectic as compositions
of symplectic mappings.

Furthermore, there are splitting formulas of higher order of the form

Ψδt := Ψ2
bk·δt ◦ Ψ1

ak·δt ◦ . . . ◦ Ψ1
a2·δt ◦ Ψ2

b1·δt ◦ Ψ1
a1·δt (6.16)

with coefficients aj and bj , j = 1, .., k. Such formulas use aj · δt and bj · δt as
local time steps [235, 296, 422].

Composition Methods. It is also possible to construct time-reversible
methods from symplectic methods. One then first derives the adjoint method
Ψ∗ from the original time integration method Ψ by reversing the time t. In
this way, for example, the explicit Euler method (6.10) turns into the im-
plicit Euler method (6.11) and vice versa. Then, the two methods Ψ∗ and
Ψ are used successively, i.e., they are composed to Ψ∗ ◦ Ψ or Ψ ◦ Ψ∗. The
resulting methods are again symplectic and additionally also time-reversible
[296]. However, they need twice as many function evaluations as the original
method Ψ alone.

One can also subsequently use a time integration scheme with different
time step sizes to construct new higher order methods. Following Yoshida
[676], we can define a so-called composition method by

Ψ̃δt := Ψak·δt ◦ . . . ◦ Ψa2·δt ◦ Ψa1·δt (6.17)

with coefficients aj , j = 1, . . . , k. For example, with the three values

a1 = a3 =
1

2 − 21/(p+1)
, a2 = − 21/(p+1)

2 − 21/(p+1)
, (6.18)

we obtain from a method Ψ of even order p a new method Ψ̃ of order p + 2
[296, 594, 676]. Such a construction can be applied repeatedly and will then
lead to methods of orders p + 4, p + 6, . . .

One disadvantage of (6.18) and similar sets of coefficients is that negative
time steps can occur (here with a2), and that force evaluations outside of the
time interval [tn, tn+1] may be required. Note that there are special compo-
sition methods which at least ensure that all force evaluations occur within
the time interval of the actual time step. Note furthermore that splitting and
composition methods are closely related, as are their coefficients [421, 422].

Partitioned Runge-Kutta Methods. Symplectic Runge-Kutta methods
are often expensive and in general not explicit. But the splitting of the Hamil-
tonian from (6.3) can be used to systematically construct explicit symplectic
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partitioned Runge-Kutta methods. A partitioned Runge-Kutta method for
(6.2) can be written as

Qi = qn + δt
s∑

j=1

aij∇pH(Qj , Pj),

Pi = pn − δt
s∑

j=1

âij∇qH(Qj , Pj),

qn+1 = qn + δt
s∑

i=1

bi∇pH(Qi, Pi),

pn+1 = pn − δt
s∑

i=1

b̂i∇qH(Qi, Pi),

(6.19)

with the intermediate values Qi and Pi and the coefficients aij , âij , bi, and b̂i

that specify the method. These coefficients and the number s of stages must
be chosen appropriately such that the resulting method possesses desired
properties. For instance, if the resulting system is of triangular form, the
time integration scheme is explicit and the system of equations (6.19) is easy
to solve for the unknowns Qi and Pi. With a separable Hamiltonian (6.3),
system (6.19) reduces to

Qi = qn + δt
s∑

j=1

aij∇pT (Pj),

Pi = pn − δt
s∑

j=1

âij∇qV (Qj),

qn+1 = qn + δt
s∑

i=1

bi∇pT (Pi),

pn+1 = pn − δt
s∑

i=1

b̂i∇qV (Qi).

(6.20)

The coefficients can now be computed by collocation based on quadrature
formulas.16 We start with a Gauss-Lobatto formula in which one quadrature
point is located at each end of the interval and the other points are chosen
so that the quadrature is of the highest possible order. We choose the so-
called Lobatto IIIA-IIIB pairs aij , âij , bi, and b̂i, see Tables 6.2, 6.3, and 6.4.
Usually, the coefficients are arranged in Butcher tableaus [297] from which
the matrices aij and âij and the vectors bi and b̂i can be read off.

In the two-stage Lobatto IIIA-IIIB pair from Table 6.2, the quadrature
points lie only on the ends of [tn, tn+1]. Inserting the values from Table 6.2
in (6.20), we obtain Q1 = qn. With one evaluation of the force, one can then
obtain P1 ≡ P2. Subsequently, one determines Q2 and qn+1 and pn+1. Thus,
this method is exactly the Störmer-Verlet method (3.22).

Methods of higher order can be constructed similarly using Lobatto
quadrature formulas of higher order. With the coefficients from Table 6.3,
16 For ordinary differential equations, the concept of collocation consists in search-

ing for a polynomial of degree s whose derivative coincides at s given points with
the vector field of the differential equation.



6.2 Symplectic Methods 225

a 0 0 â 1/2 0
1/2 1/2 1/2 0

b 1/2 1/2 b̂ 1/2 1/2

Table 6.2. Partitioned Runge-Kutta method based on the Lobatto IIIA-IIIB pair
with two stages s = 2. This corresponds to the Störmer-Verlet method for the
separable Hamiltonian.

a 0 0 0 â 1/6 −1/6 0
5/24 1/3 −1/24 1/6 1/3 0
1/6 2/3 1/6 1/6 5/6 0

b 1/6 2/3 1/6 b̂ 1/6 2/3 1/6

Table 6.3. Partitioned Runge-Kutta method based on the Lobatto IIIA-IIIB pair
with three stages.

a 0 0 0 0 â 1/12 −1−√
5

24
−1+

√
5

24
0

11+
√

5
120

25−√
5

120
25−13

√
5

120
−1+

√
5

120
1/12 25+

√
5

120
25−13

√
5

120
0

11−√
5

120
25+13

√
5

120
25+

√
5

120
−1−√

5
120

1/12 25+13
√

5
120

25−√
5

120
0

1/12 5/12 5/12 1/12 1/12 11−√
5

24
11+

√
5

24
0

b 1/12 5/12 5/12 1/12 b̂ 1/12 5/12 5/12 1/12

Table 6.4. Partitioned Runge-Kutta method based on the Lobatto IIIA-IIIB pair
with four stages.

one obtains a three-stage Runge-Kutta scheme and with the values from Ta-
ble 6.4, one obtains a four-stage scheme. In general such a method with s
stages has order p = 2s − 2. All such methods are symplectic. One still ob-
tains Q1 = qn and analogously Qs as last term, but one has to solve a system
of equations for Q2, . . . , Qs−1 and P1, . . . , Ps. This also implies that the po-
tential V has to be evaluated more often which makes these time integration
schemes significantly more expensive.

There are other symplectic partitioned Runge-Kutta methods that are
explicit. An example with three stages is given in Table 6.5. However, it is
only accurate up to third order [297, 532]. These classes of symplectic methods
are called Runge-Kutta-Nyström methods since they can be written directly
for differential equations of second order ẍ = f(x, ẋ, t) instead of treating x
and ẋ separately in a system of first order.

Altogether, we now can construct symplectic, time-reversible and explicit
methods of higher order. However, the question remains if these methods
really lead to more efficient simulations than the Störmer-Verlet method.



226 6 Time Integration Methods

a 0 0 0 â 7/24 0 0
2/3 0 0 7/24 3/4 0
2/3 − 2/3 0 7/24 3/4 − 1/24

b 2/3 − 2/3 1 b̂ 7/24 3/4 − 1/24

Table 6.5. An explicit, partitioned, symplectic Runge-Kutta method of third order
according to Ruth [532].

For one, the force terms have to be evaluated much more often for these
other methods. In addition, molecular dynamical simulations usually use time
steps δt which are absolutely small but nevertheless large compared to the
frequencies of the system17 and thus the asymptotic order p of the method
does not necessarily determine the local accuracy. For integrations over long
times, it may even be advantageous to use the Störmer-Verlet method with
a smaller time step instead of a more expensive method of higher order.

There are also attempts to construct methods with variable time steps
δt for the long-time integration of Hamiltonian flows. For a number of prob-
lems it can be advantageous not to use the same time step δt for the entire
calculation but to use a larger time step whenever possible. To this end, of-
ten good heuristics can be given which locally adapt the time step to the
simulated problem. Note however that additional efforts are necessary to
keep the resulting method time-reversible or stable in the sense of (6.13), see
[136, 134, 298, 376].

6.3 Multiple Time Step Methods – the Impulse Method

Bonded and non-bonded interactions occur at different time scales. The
bonded interactions in molecules which correspond to bond, angle, and tor-
sion forces are modeled as vibrations around an equilibrium position.18 The
time integration scheme has to resolve the fastest oscillations. The very high
frequencies of the bonds enforce the use of very small time steps to capture
also the fastest motions. The size of the time step δt is therefore limited by the
highest frequency fmax occurring in the considered system, i.e. δt � 1/fmax.

17 The situation is different in celestial mechanics. There, often systems with a
relatively small number of particles are studied, but higher accuracy is needed.

18 The dynamics of such a system can be represented approximately as the super-
position of harmonic oscillations, so-called eigenmodes. The frequencies of these
modes can be computed, at least in principle. Especially for biological systems
it turns out that the eigenmodes evolve on separate time scales. Bonded forces
correspond to high-frequency motions, non-bonded forces correspond to motions
of lower frequency. The fastest interactions limit the time step, in the case of the
Störmer-Verlet method to typically 1 fs.
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In general, the vibrations caused by the bond potentials are significantly
faster than the vibrations caused by the angle potentials. The torsion poten-
tials are responsible for larger deformations of the molecules and therefore
act on an even slower time scale. Therefore, we are looking for time inte-
gration schemes that can exploit the different time scales and hence allow
for different time steps for different classes of vibration modes depending on
their frequencies. In such a way, larger time steps can be used for most of the
interactions in Newton’s equations. A typical representative of such methods
is the impulse method, also called r-Respa method [274, 275, 620, 621, 623],
which we consider now in more detail.

The idea is the following: We construct a second order splitting of the
time integration scheme (6.15). To this end, we assume that the forces in
Newton’s equations of motion act on two time scales and write (6.1) as

mẍ = F(x) = Fshort(x) + Flong(x)

with Fshort(x) = −∇xV short(x) and Flong(x) = −∇xV long(x). The decom-
position should be chosen in such a way that, with an appropriate stable time
discretization, the time step δtlong for the slow term is larger than the time
step δtshort for the fast term.19

The reduced problem
mẍ = Flong(x)

now allows for a numerically stable integration with a substantially larger
time step than feasible for the whole system, typically a factor of about 4 to
5 [334]. The idea is then to evaluate Flong less often and to incorporate those
evaluations in an appropriate way in the integration of the whole system.

The splitting method is based on the decomposition of the Hamiltonian
into

H(q,p) = V long(q) +
(
V short(q) + T (p)

)
with the two parts V long and V short + T . Thus, the kinetic energy is treated
together with the forces Fshort. For the two parts of the splitting, we need
two appropriate time integration schemes Ψ long

δt and Ψ short
δt . Here, the Störmer-

Verlet method (3.22) can be directly applied for Ψ long
δt , but Ψ short

δt must still
be properly chosen.

This approach has been proposed for a problem from celestial mechanics
in 1982 in [663], in which the reduced problem for V short consists of the
motion of the planets around the sun according to Kepler’s theory, and V long

describes the interactions between the planets. The application of the method
to problems in molecular dynamics has been studied in [340]. If the reduced
system
19 Here, we us the terms long and short to describe the different parts of the system

that oscillate on different time scales. This is in anticipation of the methods in
Chapters 7 and 8 where we split the forces in short and long-range parts. These
parts then do indeed act on different time scales.
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mẍ = Fshort(x)

can be solved analytically, the time integration scheme Ψ short
δt corresponds to

an exact solution. Then, the long-range integration scheme is just corrected
appropriately in every time step by Ψ short

δt .
In general, however, the reduced problem for Ψ short

δt cannot be integrated
analytically. Therefore, we substitute for Ψ short

δt a sequence of Störmer-Verlet
steps with a smaller time step δt/M .20 We obtain

Ψδt = Ψ long
δt/2 ◦ Ψ short

δt ◦ Ψ long
δt/2

= ΨV long

δt/2 ◦
(
ΨV short+T

δt/M ◦ ΨV short+T
δt/M ◦ . . . ◦ ΨV short+T

δt/M

)
◦ ΨV long

δt/2 . (6.21)

Algorithm 6.1 Impulse Method based on Velocity-Störmer-Verlet Scheme
// set initial values x0, v0

for (int n=0; n<t_end/δt; n++) {
ṽn = vn + 1

2
δt m−1 Flong(xn);

for (int j=1; j<=M; j++) {
xn+j/M = xn+(j−1)/M + 1

M
δt ṽn+(j−1)/M +

1
2
( δt

M
)2 m−1 Fshort(xn+(j−1)/M );

ṽn+j/M = ṽn+(j−1)/M +
1

2M
δt m−1

“
Fshort(xn+(j−1)/M ) + Fshort(xn+j/M )

”
;

}
vn+1 = ṽn+1 + 1

2
δt m−1 Flong(xn+1);

}

In Algorithm 6.1 we use the Velocity-Störmer-Verlet method for both
ΨV short+T and ΨV long

in (6.21). Then, we obtain again a method that is both
time-reversible and symplectic. This method is the so-called impulse/r-Respa
time integration method. It was first proposed in [274, 275, 620, 621, 623].
Earlier papers in this direction were [231, 591]. The method can be directly
generalized to more than just two different time steps.

Note that it is enough to evaluate Flong just once in each long time step
since the positions are modified only in the inner loop in Algorithm 6.1. For
each such evaluation, we need M evaluations of Fshort. In the implementation,
both forces must be computed separately and then be stored for the use in
the corresponding next step or substep. The parallelization of the method
does not pose any new difficulties if the evaluation of the forces has already
been parallelized.

In general, the force F can be split into the two terms Fshort and Flong in
different ways. One possibility is to split the forces according to their types
20 For the trivial choice V long = 0 we obtain again the Störmer-Verlet method

(3.22) with smaller time step δt/M .
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so that for instance the bond and angle forces are included in the short-
range part and the torsion and Lennard-Jones forces are included in the
long-range part. Another possibility is, at least if there are large differences
in the masses and therefore in the velocities of the particles, to split the
forces into long-range or short-range according to the particle types involved.
Thus, in a situation with particles of mass one and m with m � 1 one
obtains a factor M of order

√
m between δtlong and δtshort, see [622]. The

forces can also be split into short-range and long-range forces according to
distance. For this approach, forces such as Lennard-Jones or Coulomb forces
have to be split into short-range and long-range parts. The different parts
can be defined for instance using the cutoff function from Section 3.7.3, see
[620]. Furthermore, the long-range forces can be approximated with various
methods. Here, the P3M method or the Ewald summation method from the
next chapter could be appropriate [492, 495, 690]. The tree-based methods of
Chapter 8 permit the introduction of additional long-range scales and coarser
time steps [226, 480, 689].

The impulse method allows for a time step δtlong of about 4 fs for
biomolecules. Studies show that time steps of 5 fs or larger cannot be at-
tained in this way. Furthermore, resonances may occur in the method that
may lead to instabilities if the frequency of the slow force evaluation is equal
or close to an eigenmode of the system. An analogous problem occurs for
time steps that are about half of the period of the fastest eigenmode. The
“mollified” impulse method MOLLY [245] tries to avoid these problems. To
this end, the potential is modified by defining it on time-averaged positions,
with the time averaging taking the high-frequency vibrations into account.
Different averages and extensions have been tested in [334]. There, a stable
time step of about 7 fs could be attained. This is a respectable, yet some-
what disappointing result. The multiple time step method is more expensive
than the simple Störmer-Verlet method and thus, depending on the particu-
lar implementation, an overall improvement of only about a factor of five in
runtime is possible in practice.

Larger time steps are attainable using Langevin dynamics [318, 682, 683,
684]. In this approach, Newton’s equation are augmented by friction and
stochastic terms. In this way, the high-frequency modes are damped and
special multiple time step methods with an even larger time step δtlong can
be used. Here, time steps of 12 fs for water, 48 fs for a biomolecule in water,
and 96 fs for a biomolecule in vacuum have been reported in [61, 62]. Further
variants can be found in [548]. While Langevin dynamics methods allow for
larger time steps sizes, the introduction of additional terms also changes the
model substantially. This can however lead to completely different numerical
results.
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6.4 Constraints – the RATTLE Algorithm

In many cases, the energy transport between high-frequency and low-frequency
degrees of freedom is very slow. Therefore, it is difficult to get close to an
equilibrium within reasonable time. In such a case it is often advantageous to
freeze the high-frequency degrees of freedom, i.e. the degrees of freedom for
the bond and angle potentials. This means that the lengths of the chemical
bonds and the values of the angles within the molecules are assumed to be
fixed. In practice this is implemented using geometric constraints that tie
bond lengths and angles to given values.21 If the system contains degrees of
freedom which are associated to those high frequencies but which only have
small amplitudes or small effects on other degrees of freedom, the use of con-
straints allows to freeze those degrees of freedom without significant loss of
accuracy. This approach works very well for bonds.

There are different methods to implement geometric constraints. One of
these methods is the so-called symplectic RATTLE algorithm [43]. In this
approach, the constraints are enforced by Lagrangian multipliers. Variants of
this algorithm include for instance the older SHAKE algorithm [534], various
methods that incorporate the constraints into the coordinate system, and a
number of methods that work with soft constraints [509]. In the RATTLE
algorithm, the Lagrangian multipliers are determined from a nonlinear system
of equations which is solved iteratively. We first formulate the symplectic
RATTLE algorithm for general Hamiltonians. Here, we follow [341, 508].

Constraints. The forces acting on each particle consist of physical forces
and forces resulting from constraints. The latter forces preserve the structure
of the molecule over time. We assume that the constraints are given in the
form

σij(x) = ‖xi − xj‖2 − d2
ij = 0, (6.22)

where x = {x1, . . . ,xN} denotes the positions of the particles. Here, dij de-
notes the length at which the distance rij = ‖xi − xj‖ between particles i
and j is to be frozen. Such conditions are called holonomic constraints since
they are independent of the time t. In total we use M different constraints.
Furthermore, we denote by I the set of the index pairs of the particles in-
volved, i.e. (i, j) ∈ I with i < j for each constraint. If the bond between atom
i and j is to be frozen to the length r0, we set dij = r0. In the case of angles

21 Note that the freezing of degrees of freedom changes the energy of the system.
In certain circumstances, this can significantly change the results of the simula-
tion. One method to compensate for these effects is the use of effective potentials
for the remaining degrees of freedom, compare also Chapter 2. Such potentials
compensate for the energy that is lost by the freezing of some degrees of free-
dom. Mathematically, effective potentials are derived by asymptotic analysis and
homogenization, see [103, 105].
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and distances between the atoms i, j, and k, for example, we have to freeze
the distances between i and j, between i and k, and between j and k.

We choose an approach with Lagrangian multipliers λij for all constraints
(i, j) ∈ I, which leads to the following equations of motion of classical me-
chanics:

mẍ = −∇x

⎛
⎝V (x) +

∑
(i,j)∈I

λijσij(x)

⎞
⎠

= −∇xV (x) −
∑

(i,j)∈I

λij∇xσij(x)

= F + Z. (6.23)

In addition to the force F = −∇xV (x) on the particles that stems from
the potential acting between the particles, now there is also the force

Z = −
∑

(i,j)∈I

λij∇xσij(x)

which stems from the constraints (6.22) that need to be satisfied. The addi-
tional M degrees of freedom λij for (i, j) ∈ I are to be chosen in such a way
that all M constraints (6.22) are satisfied at each point in time.

In addition to (6.22), another condition is fulfilled, the so-called hidden
constraint for the velocity ẋ, that results from the time derivative of (6.22).
This constraint is written as

0 = σ̇ij(x) = 2〈xi − xj , ẋi − ẋj〉 ∀(i, j) ∈ I , (6.24)

with the inner product 〈., .〉. The solution x(t) only remains on the manifold
of admissible values with σij(x) = 0, (i, j) ∈ I, if the velocities ẋ(t) are
tangential to the manifold and do not move particles away from this manifold.

Time Integration. We can rewrite the system (6.23) together with the con-
straints (6.22) in Hamiltonian form. Then, we can apply the time integration
schemes from Section 6.2. To this end, we write the constraints as σ(q) = 0
and the Lagrangian multipliers for time tn as Λn = (λij)T

ij∈I . Using for ex-
ample the partitioned Runge-Kutta method (6.19), we obtain with q = x
and p = mẋ the system

Qi = qn + δt
s∑

j=1

aij∇pH(Qj , Pj), σ(Qi) = 0,

Pi = pn − δt
s∑

j=1

âij (∇qH(Qj , Pj) + ∇qσ(Qj)Λj) ,

qn+1 = qn + δt
s∑

i=1

bi∇pH(Qi, Pi),

pn+1 = pn − δt
s∑

i=1

b̂i (∇qH(Qi, Pi) + ∇qσ(Qi)Λi) .

(6.25)
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The Lagrangian multipliers Λj have to be determined in such a way that all
constraints are satisfied simultaneously. To this end, we first rewrite (6.25).
For the separable Hamiltonian (6.3), this yields

Qi = qn + δt
s∑

j=1

aij∇pT (Pj), σ(Qi) = 0,

Pi = pn − δt
s∑

j=1

âij (∇qV (Qj) + ∇qσ(Qj)Λj) ,

qn+1 = qn + δt
s∑

i=1

bi∇pT (Pi),

pn+1 = pn − δt
s∑

i=1

b̂i (∇qV (Qi) + ∇qσ(Qi)Λi) .

(6.26)

With the Lobatto IIIA-IIIB pair from Table 6.2, we obtain a two-stage Runge-
Kutta method. In the absence of constraints, this method corresponds to the
Störmer-Verlet method. With Q1 = qn, P1 = P2, and the assumption that
the initial values qn already satisfy σ(qn) = 0, we arrive at the system of
equations

P2 = pn − δt
2 (∇qV (qn) + ∇qσ(qn)Λn) ,

Q2 = qn + δt∇pT (P2),

0 = σ(Q2),

with the unknowns Q2, P2 and Λn. Substitution then yields a nonlinear sys-
tem of equations in the unknown Λn

σ

(
qn + δt∇pT

(
pn − δt

2
(∇qV (qn) + ∇qσ(qn)Λn)

))
= 0 . (6.27)

From its solution Λn one can then obtain qn+1 = Q2.
To compute pn+1 from

pn+1 = pn − δt

2

1∑
i=0

∇qV (qn+i) + ∇qσ(qn+i)Λn+i,

one additionally needs the Lagrangian multiplier Λn+1 for the next time step.
However, its value is not yet available at this point. Here, the hidden con-
straint (6.24) for the velocities and impulses comes into play. In the RATTLE
algorithm, it leads to a further system of equations in pn+1 and µn+1

pn+1 = pn − δt
2 ∇q

(
V (qn) + σ(qn)Λn + V (qn+1) + σ(qn+1)µn+1

)
,

0 = σ̇(qn+1, m−1pn+1),
(6.28)

in which µn+1 plays the role of Λn+1. By way of substitution, we again obtain
a system of equations in the unknown µn+1
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σ̇
(
qn+1, m−1

(
pn − δt

2
∇q

(
V (qn) + V (qn+1) (6.29)

+σ(qn)Λn + σ(qn+1)µn+1

)))
= 0

with M equations and M unknowns. From its solution, one obtains pn+1 by
substitution into (6.28).

Implementation. We now turn to the discussion of the practical imple-
mentation of the RATTLE algorithm. In each time step, the nonlinear sys-
tems of equations (6.27) and (6.29) for the Lagrange multipliers have to be
solved. A direct solution of these systems is only possible in some very sim-
ple cases. Therefore, iterative methods for nonlinear systems of equations
must normally be used. As in the Störmer-Verlet method, only one expensive
force evaluation ∇qV (qn+1) is needed in each time step, while the constraint
function σ has to be evaluated more often in the iteration.

We again consider the special constraints (6.22). Their derivatives can be
computed as

∇xl
σij = ∇xl

(‖xi − xj‖2 − d2
ij

)
=

⎧⎨
⎩

2(xi − xj), for l = i,
2(xj − xi), for l = j,
0, for l �= i, j .

(6.30)

This special structure can be exploited to simplify the systems of equations
(6.27) and (6.29). Instead of using general iterative solvers for nonlinear equa-
tions such as Newton’s method, in which the system is linearized in each step
and the resulting linear system is solved, the RATTLE algorithm uses a sim-
pler approach. Each iteration step consists of a loop over all constraints σij

that are not yet satisfied. For each unsatisfied constraint, a new approxi-
mation of the Lagrangian multiplier λij is computed and the positions and
momenta are updated according to the new approximation. Since the system
is mostly close to equilibrium because the time step δt is small, this iteration
usually converges.

We first consider the system of equations (6.27). With the precomputed
auxiliary vectors

p̃n+1/2 := pn − δt

2
(∇qV (qn)) ,

q̃n+1 := qn + δt m−1p̃n+1/2, (6.31)

the system (6.27) can be simplified to

σ

(
q̃n+1 − δt2

2
m−1 (∇qσ(qn)Λn)

)
= 0 .

If we consider the equation corresponding to the constraint (i, j) ∈ I, we
obtain by (6.30)
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i − q̃n+1

j − δt2

2

(
1

mi

∑
l:(i,l)∈I∪I∗

(qn
i − qn

l )λil−
1

mj

∑
l:(l,j)∈I∪I∗

(qn
j − qn

l )λlj
)∥∥∥2

= d2
ij ,

with the transposed index sets I∗. In the RATTLE algorithm, the left hand
side is now approximated by truncating the sums to the two cases l = j
and l = i and dropping terms corresponding to other constraints. Setting
λji = λij we then have∥∥∥∥q̃n+1

i − q̃n+1
j − δt2

2

(
1

mi
+

1
mj

)
(qn

i − qn
j )λij

∥∥∥∥2 ≈ d2
ij .

After linearizing in λij and disregarding the δt4-terms one obtains

λij ≈ d2
ij − ‖q̃n+1

i − q̃n+1
j ‖2

δt2( 1
mi

+ 1
mj

)〈qn
i − qn

j , q̃n+1
i − q̃n+1

j 〉 . (6.32)

The updates for the positions and momenta from this new approximation are
then given by

q̃n+1
i = q̃n+1

i + δt2

2mi
(qn

i − qn
j )λij ,

q̃n+1
j = q̃n+1

j − δt2

2mj
(qn

i − qn
j )λij ,

p̃n+1/2
i = p̃n+1/2

i + δt
2 (qn

i − qn
j )λij ,

p̃n+1/2
j = p̃n+1/2

j − δt
2 (qn

i − qn
j )λij .

(6.33)

This nonlinear iteration step is repeated until the constraints are satisfied
up to an acceptable accuracy. The iteration is also terminated if the number
of iterations becomes too large. This can happen in the case of defective initial
values which result in very large forces (when particles are too close to each
other). In this case, the new positions computed without constraints can be
far away from the positions in the previous time step, so that no corrections
can be found that satisfy the constraints. But in most cases, dependent on the
size of the time step, only few iterations are needed to satisfy the constraints
up to an acceptable accuracy. However, to maintain the symplecticity of the
resulting method, the system of equations (6.27) must be solved exactly.

After the successful completion of this nonlinear iteration, the new qn+1

and pn+1/2 have been computed. Now, to compute pn+1, we have to solve
the system of equations (6.29). First, we precompute an auxiliary vector

p̃n+1 := p̃n+1/2 − δt

2
∇qV (qn+1) (6.34)

and use it to simplify (6.29) to

σ̇

(
qn+1, m−1

(
p̃n+1 − δt

2
∇qσ(qn+1)µn+1

))
= 0 .
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The constraint for the index pair (i, j) ∈ I now yields〈
qn+1

i − qn+1
j , 1

mi
p̃n+1

i − 1
mj

p̃n+1
j −

δt
2

(
1

mi

∑
l:(i,l)∈I∪I∗

(qn+1
i − qn+1

l )µil − 1
mj

∑
l:(l,j)∈I∪I∗

(qn+1
j − qn+1

l )µlj
)〉

= 0 .

Again, we restrict the sum to the cases l = j and l = i and neglect all other
constraints, set µji = µij , and obtain〈
qn+1

i − qn+1
j ,

1
mi

p̃n+1
i − 1

mj
p̃n+1

j − δt

2
(

1
mi

+
1

mj
)(qn+1

i − qn+1
j )µij

〉
≈ 0 .

Now, we can construct an iterative solver for this system of equations as
follows: Solving this equation for µij and using d2

ij = 〈qn+1
i − qn+1

j ,qn+1
i −

qn+1
j 〉 – compare also (6.22) – we obtain

µij ≈ 2
δt

〈qn+1
i − qn+1

j , 1
mi

p̃n+1
i − 1

mj
p̃n+1

j 〉
( 1

mi
+ 1

mj
)d2

ij

(6.35)

and thus
p̃n+1

i = p̃n+1
i + δt

2 (qn+1
i − qn+1

j )µij ,

p̃n+1
j = p̃n+1

j − δt
2 (qn+1

i − qn+1
j )µij (6.36)

as corresponding updates to the other variables. These steps are used itera-
tively to determine pn+1. The overall method is summarized in Algorithm 6.2.

The expressions (6.32) and (6.35) can also be derived directly. To this end,
one restricts the problem to a single constraint σij and changes the positions
and impulses in the direction of the vectors between pi to pj and between
qi to qj until both the distance dij has the right value and the position and
the velocity are orthogonal.

For the parallelization of the RATTLE Algorithm 6.2, we first assume
that a parallel version of the force evaluation is available, implemented for
instance as a parallel linked cell method. In addition, forces resulting from
the constraints have to be taken into account in the updates for the positions
and velocities. If the two particles connected by such a bond σij both belong
to the same process, the forces can be computed directly, otherwise the com-
putations of the Lagrangian multipliers and the updates for the positions and
velocities require communication between the processes. The computation of
the forces caused by the constraints is relatively cheap, but data needs to
be exchanged between processes in each iteration. Thus, depending on the
structure of the constraints and the number of molecules in the simulation,
this might suggest to compute all constraint forces for a molecule by one
process. This leads to an efficient algorithm if the simulation involves many
small molecules, such as many water molecules. However, if for example the
simulation involves a single large (bio-)molecule or only a few such molecules,
the constraint iterations and the evaluation of the constraint forces have to
be parallelized as well.
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Algorithm 6.2 RATTLE Time Integration for the Constrained Problem
(6.22)
// given initial values x, v, t that satisfy the constraints
// auxiliary vector xold;

Compute forces F;
while (t < t_end) {
t = t + delta_t;

loop over all particles i {
vi = vi + delta_t * .5 / mi * Fi;

xold
i = xi;

xi = xi + delta_t * vi;

}
real ε;
do {

ε = 0;

loop over all constraints (i, j) {
real r = d2

ij - ‖xi-xj‖2;

ε = ε + |r|;
real lambda = r/((1/mi+1/mj)*〈xold

i -xold
j , xi-xj〉);

xi = xi + (xold
i -xold

j ) * lambda *.5 / mi;

xj = xj - (xold
i -xold

j ) * lambda *.5 / mj;

vi = vi + (xold
i -xold

j ) * lambda *.5 / (mi * delta_t);

vj = vj - (xold
i -xold

j ) * lambda *.5 / (mj * delta_t);

}
} while (ε > εtol);

compute forces F;
loop over all particles i {

vi = vi + delta_t * .5 / mi * Fi;

}
do {

ε = 0;

loop over all constraints (i, j) {
real r = 〈xi-xj, vi-vj〉;
ε = ε + |r|;
real mu = r / ((1/mi+1/mj)*d

2
ij);

vi = vi + (xi-xj) * mu / mi;

vj = vj - (xi-xj) * mu / mj;

}
} while (ε > εtol);

compute derived quantities such as energies, write x, v to output;
}
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Variants. The iteration (6.32) and (6.33) without momentum updates had
already been implemented in the SHAKE algorithm [534]. This algorithm
omits the second iteration from the RATTLE Algorithm (6.35) and (6.36).
The SHAKE algorithm is not symplectic, even though it satisfies the con-
straints (6.22) and the condition (6.9). It is only the inclusion of the ad-
ditional constraints (6.24) for the velocities and momenta that leads to a
symplectic algorithm [378].

In the case of more complex constraints, one can also use other non-
linear iterative solvers such as Newton methods [180, 587] to compute the
Lagrangian multipliers. However, the iteration introduced above has the ad-
vantage that each step of the nonlinear iteration is cheap. Of course, there
are also other ways to satisfy the constraints. For small problems it is of-
ten possible to find a new coordinate system in which the constraints are
satisfied automatically. However, the equations of motion in such coordinate
systems are more complex. For rigid bodies one possible choice are quaternion
representations [34].

The freezing of degrees of freedom by the RATTLE approach eliminates
forces from the system and therefore allows the use of larger time steps with-
out compromising the stability of the method. Note finally that multiple
time step methods can also be used together with the RATTLE approach
[334, 492, 493, 541].22

22 The impulse/r-Respa method together with the SHAKE algorithm allows time
steps of up to 8 fs for molecular systems.
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Potentials

In Chapters 3 and 5 we have studied so-called short-range potentials such
as the Lennard-Jones potential (3.27), the Finnis-Sinclair potential (5.2),
the EAM potential (5.14), and the Brenner potential (5.17). In the three-
dimensional case, potentials that decay faster in r than 1/r3 are called short-
range.1 The relevant interactions resulting from these potentials occur only
between particles that are close together. Besides those short-range poten-
tials, there are also types of potentials in which the evolution of the simu-
lated particle system is influenced by the interactions of particles that are far
away from each other. For example, the gravitational potential (2.42) and the
Coulomb potential (2.43) belong to the class of slowly decaying, long-range
potentials.

The potentials V in the applications of this chapter consist of a short-
range part V short and an additional long-range part V long, i.e.

V = V short + V long. (7.1)

Here, V short may contain all types of potentials considered up to now, such
as bond, angle, torsion angle, and Lennard-Jones potentials, compare (5.38),
as well as other many-body potentials. The long-range part may be2

V long =
1

4πε0

N∑
i=1

N∑
j=i+1

qiqj
1

||xj − xi|| =
1
2

1
4πε0

N∑
i=1

N∑
j=1
j �=i

qiqj
1

||xj − xi|| . (7.2)

This term models for instance the electrostatic potential of N point charges
at the positions x1, . . . ,xN with the charges q1, . . . , qN .

In contrast to the rapidly decaying potentials, slowly decaying potentials
cannot be truncated without a significant loss of accuracy [219, 672]. There-
fore, the linked cell method cannot be applied directly. But evaluating the
sum in (7.2) exactly would lead to a method with O(N2) computational costs,

1 In general a function f(r) in d > 2 dimensions is called rapidly decaying if it
decays faster in r than 1/rd. This classification into rapidly and slowly decaying
functions reflects that functions which decay as 1/rd or slower are not integrable
over all of R

d.
2 ε0 = 8.854187817 × 10−12 C2/(Jm) denotes the dielectric constant.
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which is generally prohibitively expensive. Instead, certain approximations of
potentials such as (7.2) can be used. Here, the fundamental idea is to split
the long-range part V long of the potential into a smooth long-range part V lr

and a singular short-range part V sr, i.e.

V long = V sr + V lr. (7.3)

These two parts are then treated separately with different approximation
methods. For V sr one can again use the linked cell method. The long-range
part V lr is smooth and can therefore be approximated well by so-called grid-
based methods such as the P3M method of Hockney and Eastwood [202, 324],
the PME method of Darden et al., or the SPME method of Essmann et al.
[168, 215, 374].

Long-range potentials such as (7.2) can be represented in different ways
that in turn lead to different methods of approximation. Let us therefore
briefly introduce these representations in the following.

Representations of the Potential. Consider a continuous charge distri-
bution in the entire space R

3 with a charge density ρ (charge per volume).
The potential Φ induced by the charge density ρ is then

Φ(x) =
1

4πε0

∫
R3

ρ(y)
1

||y − x||dy. (7.4)

Here, the potential Φ is the solution of the partial differential equation3

−∆Φ(x) =
1
ε0

ρ(x) on R
3. (7.5)

It decays like Φ(x) → 0 for ‖x‖ → ∞. The equation (7.5) is called potential
equation or Poisson equation. It is a classical representative of the class of
elliptic partial differential equations of second order. The electrostatic energy
associated with this potential is now defined as4

V =
∫

R3
ρ(x)Φ(x)dx. (7.6)

Also, the forces on charged particles can be computed from Φ(x) by applying
gradients.

Altogether, we have the following two formulations, which the methods
for the evaluation of long-range interactions described in this and in the next
chapter are based on:

3 This follows from the fact that 1/r with r = ||y−x|| is the fundamental solution
of the Laplacian, i.e., in the sense of distributions, it holds that −∆ 1

r
= 4πδ0,

where δ0 is the delta distribution with peak at x = 0, compare also footnote 6.
4 The existence of solutions to (7.5) or of the integrals in (7.4) and (7.6), respec-

tively, depends on certain integrability conditions for the charge density ρ on
R

3.
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Partial Differential Equation

−∆Φ(x) =
1
ε0

ρ(x) ⇔

Integral Formulation

Φ(x) =
1

4πε0

∫
ρ(y)

1
||y − x||dy

The standard approach to determine the potential Φ from the partial
differential equation (7.5) consists of two steps, namely discretization and
solution. In the discretization step, the continuous equation is transformed
into a discrete system of equations. For example, the continuous variables
in the equation can be approximated on the grid points of a given grid, as
already described for some simple cases of difference quotients in Section 3.1.
A finer grid then leads to a more accurate approximation of the potential. The
discretization of the partial differential equation results in a linear system of
equations. This system can be solved with fast direct methods such as the fast
Fourier transform (FFT) [155], or with an iterative method, as for example a
multigrid or multilevel method [117, 289]. The discretization of the integral
expression (7.4) also leads to a linear system. However, this system does
not have to be solved, but merely a matrix-vector multiplication must be
computed in a fast and efficient way. To this end, the matrix-vector product
is computed approximatively. Here, various methods exist, for instance the
panel clustering method [289], the multilevel method [118, 119], the tree code
of Barnes and Hut [58], several different multipole methods [38, 263], wavelet
compression techniques [88, 165, 549], approaches that use H-matrices [286],
and pseudoskeleton approximations [257]. The tree code of Barnes and Hut
and a variant of the multipole method will be introduced in more detail in
Chapter 8.

The efficiency of all of these methods depends strongly on the smoothness
of the functions involved. In our case, the smoothness of ρ is most important.5

For smooth functions ρ, the associated potential Φ is also smooth. Standard
discretization methods such as finite elements [111] or finite differences [284]
will then lead to good approximations with known order of approximation
5 The smoothness of a square integrable function can be measured by how often

it is differentiable. Function classes can be defined using the order of differentia-
bility, which leads to so-called Sobolev spaces [30]. These spaces are defined for
s ∈ N as follows:

Hs(Ω) := {u ∈ L2(Ω) :
X

α∈N3
0:0≤‖α‖∞≤s

‖Dαu‖2
L2 < ∞}.

Here, Dαu denotes the generalized (or weak) derivative of u and L2 is the space of
square integrable functions on Ω with the associated norm ‖.‖L2 . The parameter
s describes the smoothness of functions in Hs. If the right hand side of the
potential equation is in Hs and the boundary of Ω is sufficiently smooth, then
the solution of the potential equation is in Hs+2. Thus, the solution is two times
more (weakly) differentiable than the right hand side.
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and convergence. However, in our case of a potential induced by N point
charges, the charge distribution is a sum of delta distributions

ρ =
N∑

i=1

qiδxi ,

and is therefore not smooth.6 The resulting potential Φ has singularities at
the positions of the particles. Standard discretization methods for the poten-
tial equation converge only very slowly in such cases. They lead to large errors
close to the positions of the particles. Nevertheless, the idea of a fast approx-
imative solution of the potential equation can still be used: The computation
of the potential is split into a smooth and a singular part. The singular part
contains the interactions of a particle with its nearest neighbors. Here, the
corresponding interactions can be computed with the algorithms developed
in the earlier chapters. The smooth part contains the interactions of a parti-
cle with particles further away. It can be treated with the already mentioned
methods for the fast solution of the Poisson equation. Altogether, this leads
to algorithms that evaluate interactions between the particles with a much
smaller complexity than a direct computation. Given a fixed maximal error,
the complexity of such algorithms is typically O(N(log(N))α), with α ≥ 0
depending on the specific method.

In this chapter, we study methods that are based on the formulation
of the problem as a differential equation. Fast methods that are based on
the integral formulation are discussed in Chapter 8. In the following, after a
short explanation of the boundary conditions necessary for the solution of the
potential equation, we explain how the potential Φ can be split appropriately
into a smooth and a non-smooth part. Then, we discuss methods that rely
on the discretization and fast solution of the potential equation with fast
Fourier transforms or multigrid methods. As a concrete example, we present
in Section 7.3 the so-called smooth particle-mesh Ewald method (SPME) in
detail [168, 215, 374]. It uses the fast Fourier transform together with B-spline
interpolation. Next, we explain the implementation of this method and apply
it to simulate a Rayleigh-Taylor instability with a Coulomb potential, phase
transitions in ionic KCl microcrystals, and water as a molecular system.
Finally, in Section 7.5, we discuss the parallelization of the SPME method and
study a problem from astrophysics, the formation of the large-scale structure
of the universe.
6 δxi(x) := δ(xi − x) is a distribution with

R
Ω

f(y) δxi(y)dy = f(xi) for xi ∈
Ω, f ∈ L2(Ω) almost everywhere. One can think of δxi as a (generalized) function
that is everywhere zero except at the point xi.
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7.1 Solution of the Potential Equation

In this section we discuss in detail the approach based on the formulation as
differential equation.

7.1.1 Boundary Conditions

Up to now, we have considered the case in which the domain is the entire
space. However, discretization methods for the potential equation in gen-
eral assume bounded domains. Here, one mostly finds two approaches for
the boundary conditions for the potential equation: In the first one, the do-
main is chosen to be finite but large, for instance Ω = [0, a]3 with a large
enough, and homogeneous Dirichlet boundary conditions are assumed.7 The
alternative is to extend the domain to infinity by periodicity. This approach
is suitable especially for regular structures such as crystals. It also allows a
simple splitting of the potential into a smooth and a singular part. For a more
extensive discussion of appropriate boundary conditions and their influence
on the results of the simulations, see [34, 100, 177].

In the following, we restrict ourselves to periodic systems. To this end, we
extend the simulation domain in all spatial directions with periodic images,
see Figure 7.1.

Fig. 7.1. Simulation box with particles and periodic extension to R
2.

7 Instead of Dirichlet boundary conditions, certain other non-reflecting boundary
conditions can be used as well.
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Every particle in the simulation box interacts with all other particles in
the box as well as with all particles in the periodically translated simulation
boxes, including its own periodic images. Note however that the physical
quantities are only computed for the particles in the simulation box. Thus,
the electrostatic energy of the particles in the simulation box is

V long =
1
2

1
4πε0

∑
n∈Z3

N∑
i=1

N∑
j=1

i�=j for n=0

qiqj
1

||xn
j − xi|| , (7.7)

where the sum
∑N

i=1 only runs through all particles within the simulation
box. The sum

∑
n =

∑
n1

∑
n2

∑
n3

runs over all periodic images of the
simulation domain, and xn

j = xj+(n1 ·L1, n2 ·L2, n3 ·L3) denotes the positions
of the periodic images of particle j. Here, the interaction of a particle of
the simulation box with itself is excluded. However, its interaction with its
periodic images is taken into account.8 Note that this sum is not absolutely
convergent, its value is therefore dependent on the order of summation.

7.1.2 The Potential Equation and the Decomposition of the
Potential

Now, we consider the simulation domain Ω :=[0, L1[×[0, L2[×[0, L3[, and we
identify opposite sides to take the periodic extension of the simulation domain
into account. In addition, a charge distribution is assumed to be given, which
is periodic with respect to Ω on R

3, i.e.

ρ(x + (n1L1, n2L2, n2L2)) = ρ(x), n ∈ Z
3,

and which also satisfies ∫
Ω

ρ(x)dx = 0. (7.8)

Analogous to (7.4) and (7.5), the potential can be represented in integral
form or as the solution of a potential equation. Because of the periodicity of
the charge distribution ρ, the potential in Ω can be found as the solution of
the potential equation

−∆Φ =
1
ε 0

ρ
∣∣
Ω

(7.9)

8 Here, we compute the energy in the simulation box. Since, in the case n = 0, the
interactions extend beyond the simulation box, only half of the pair interactions
have to be taken into account. For the interactions of the particles within the
simulation box, i.e. for the case n = 0, a factor of 1/2 is necessary because of
the double summation over all particle pairs. Altogether, this explains the factor
1/2 in (7.7).
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with periodic boundary conditions9 at the boundary ∂Ω of the simulation
domain Ω. Here, |Ω denotes the restriction to the domain Ω.

For periodic charge distributions ρ, the integral (7.4) does not exist in
general and we cannot directly use the representation (7.4) of the potential.
But analogous to (7.4), the potentials Φn which are defined on R3 and which
are induced by charge distributions χnρ restricted to the translated simula-
tion domain Ωn := [n1L1, (n1 +1)L1[×[n2L2, (n2 +1)L2[×[n3L3, (n3 +1)L3[,
allow the representation

Φn(x) =
1

4πε0

∫
R3

χn(y)ρ(y)
‖y − x‖ dy for n ∈ Z

3.

Here, χn denotes the characteristic function of Ωn, i.e. χn(y) = 1 for y ∈ Ωn

and χn(y) = 0 otherwise. The total potential in the simulation box Ω is then

Φ(x) =
∑
n∈Z3

Φn(x).

How can these two representations for the computation of the potential be
used to determine the energy and the forces in a system of N point charges?
As already mentioned, the idea is to appropriately decompose the charge
distribution ρ and thereby also the potential Φ and the corresponding energy
(7.6) into two parts.

One proceeds as follows: A “charge cloud” �n
i , spherically symmetric with

respect to xn
i and with the same absolute charge but with the opposite sign,

is attached to the point charge qi at position xn
i , compare Figure 7.2 (center).

This charge distribution now shields the interactions that are caused by the
point charges. The effect of the attached charge distributions is now removed
by opposite charge distributions, compare Figure 7.2 (right). In this way, we
can write the charge distribution induced by the N point charges and their
periodic images

ρ(x) =
∑
n∈Z3

N∑
j=1

qjδ
n
xj

(x) (7.10)

as

ρ(x) = (ρ(x) − ρlr(x)) + ρlr(x) = ρsr(x) + ρlr(x)
9 The solution of the potential equation with periodic boundary conditions is

determined uniquely only up to a constant. Thus, if Φ is a solution, then so
is Φ + C with an arbitrary constant C. Therefore, an additional constraint is
necessary for a unique solution, for instance

R
Ω

Φdx = 0. The missing unique-
ness has however no effect on the force evaluation, since ∇C = 0. In addition,
1
ε0

R
Ω

ρdx = − R
Ω

∆Φdx = − R
∂Ω

〈∇Φ,n〉dΓ = 0 (to prove this, apply Green’s
formula and use the periodic boundary conditions) implies that the condition
(7.8) is necessary for the solvability of (7.9). The condition

PN
j=1 qj = 0 on the

electric charges then follows using (7.10).
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with

ρsr(x) :=
∑
n∈Z3

N∑
j=1

qj(δn
j (x) − �n

j (x)) and ρlr(x) :=
∑
n∈Z3

N∑
j=1

qj�
n
j (x). (7.11)

Here, �n
j (x) is the translated version of the function �(x) defined as

�n
j (x) = �(x − xj − (n1L1, n2L2, n3L3)) (7.12)

and δxn
j
(x) = δ(x − xn

j ) are delta distributions centered at xn
j .

Fig. 7.2. The charge distribution of point charges (left) is split into a smoothed
version (right) and the remainder (center).

The function � has to satisfy the following conditions:

1. � is normalized, i.e., it satisfies∫
R3

�(x)dx = 1,

2. � is symmetric with respect to the origin,
3. � has compact support10 or decays rapidly (compare footnote 1),
4. � is a smooth function.

Condition 1 guarantees that the charge induced by qj�
n
j is equal to the charge

qj . Condition 2 implies that the functions �n
j are symmetric with respect to

xn
j and therefore only depend on the distance to xn

j . Conditions 1-3 together
imply that the potential induced by the charge distribution qj(δxn

j
− �n

j ) is
zero or at least very small outside of the (numerical) support of �n

j . Condition
3 is also necessary to cause the complexity of the evaluation of ρlr to be
independent of the number of particles (at least for equidistributed particles).
Condition 4 guarantees that the solution of the potential equation (7.9) with
ρlr as right hand side is a smooth function, compare footnote 5. Such functions
can be approximated well with standard approximation methods.11

10 The support of a function f is the closure of the set of x with f(x) = 0. This
condition therefore means that � is nonzero only in a bounded domain.

11 Instead of a single function �, different charge clouds can be chosen for each
particle. This is necessary especially for adaptive methods. Then, each of these
charge distributions has to satisfy conditions 1-4.
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Examples of appropriate choices for the shielding charge distribution �
are Gaussians

�(x) :=
(

G√
π

)3

e−G2||x||2 (7.13)

or spheres with uniformly decreasing density

�(x) =
{

48
πG4 (G

2 − ||x||), for ||x|| < G
2 ,

0, otherwise, (7.14)

each with a parameter G that specifies the width of the distribution. Fig-
ure 7.3 shows the graph of the Gaussian (7.13) for different values of G. For
increasing G the function becomes more and more localized and decays faster
and faster. A plot with a logarithmic scale for the y axis, see Figure 7.4, shows
this clearly.
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Fig. 7.3. Graphs of the charge dis-

tribution (G/
√

π)
3
e−G2x2

versus x for
different values of G, linear scale.

Fig. 7.4. Graph of the charge dis-

tribution (G/
√

π)
3
e−G2x2

versus x,
semilogarithmic plot.

The two charge distributions ρsr and ρlr, into which the charge distribu-
tion ρ of the N point charges is split, are associated with potentials Φsr and
Φlr, energies V sr and V lr, and forces Fsr

i and Flr
i . The total potential Φ, the

total energy, and the total forces can be obtained as sums of the correspond-
ing short-range and long-range terms. This follows from the superposition
principle for the solutions of the potential equation.12 For example, the total
12 The linearity of the Laplace operator implies the following superposition principle

for the solutions of the potential equation with periodic boundary conditions: If
u1 and u2 are solutions of problems −∆u1 = f and −∆u2 = g in Ω with periodic
boundary conditions on ∂Ω, then the solution u of the Poisson equation with
right hand side f + g is given as the sum of u1 and u2. Thus, −∆u = f + g holds
for u = u1 + u2 in Ω.
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potential is given as Φ = Φsr + Φlr. The two potentials Φsr and Φlr can again
be represented as solutions of potential equations

−∆Φsr =
1
ε0

ρsr
∣∣
Ω

and − ∆Φlr =
1
ε0

ρlr
∣∣
Ω

(7.15)

with periodic boundary conditions on Ω.

7.1.3 Decomposition of the Potential Energy and of the Forces

The electrostatic energy (7.7) of the simulation box induced by the N point
charges can now be written as

V =
1
2

1
4πε0

∑
n∈Z3

N∑
i=1

N∑
j=1

i�=j for n=0

qiqj

∫
R3

δxn
j
(y) − �n

j (y) + �n
j (y)

||y − xi|| dy

= V sr + V lr

with

V sr :=
1
2

1
4πε0

∑
n∈Z3

N∑
i=1

N∑
j=1

i�=j for n=0

qiqj

∫
R3

δxn
j
(y) − �n

j (y)

||y − xi|| dy (7.16)

and

V lr :=
1
2

1
4πε0

∑
n∈Z3

N∑
i=1

N∑
j=1

i�=j for n=0

qiqj

∫
R3

�n
j (y)

||y − xi||dy. (7.17)

If one substitutes the definition of ρlr as sum of charge clouds according to
(7.11) into the integral representation (7.4), one obtains13

Φlr(x) =
1

4πε0

∑
n∈Z3

N∑
j=1

qj

∫
R3

�n
j (y)

||y − x||dy. (7.18)

We now evaluate this expression for all particle positions xi ∈ Ω, multiply
with the corresponding charge qi, and compute the sum. This yields

N∑
i=1

qiΦ
lr(xi) =

1
4πε0

∑
n∈Z3

N∑
i=1

N∑
j=1

qiqj

∫
R3

�n
j (y)

||y − xi||dy. (7.19)

Then, a comparison of (7.19) with (7.17) shows that the long-range part V lr

of the electrostatic energy V long can also be represented as
13 The substitution here is entirely formal and has to be understood in the sense

of the explanation on page 245.



7.1 Solution of the Potential Equation 249

V lr = V lr
other−V lr

self =
1
2

N∑
i=1

qiΦ
lr(xi)− 1

2
1

4πε0

N∑
i=1

q2
i

∫
R3

�0
i (y)

||y − xi||dy. (7.20)

The second term on the right hand side is a correction term that removes
the interaction of the particle i at position xi with the charge distribution
�0

i which is included in the first term V lr
other. In the following, we denote this

correction as

V lr
self =

1
2

1
4πε0

N∑
i=1

q2
i

∫
R3

�0
i (y)

||y − xi||dy (7.21)

and call it self-energy. It holds that

∇xiV
lr
self =

1
2

1
4πε0

q2
i

∫
R3

∇xi

�0
i (y)

||y − xi||dy = 0, (7.22)

because, according to our conditions, �0
i is chosen to be symmetric around

xi, and
∂

∂t
V lr

self = 0,

because V lr
self does not explicitly depend on time. Therefore, the chain rule of

differential calculus implies

d

dt
V lr

self =
N∑

i=1

∇xiV
lr
self ·

∂

∂t
xi(t) +

∂

∂t
V lr

self = 0.

Thus, V lr
self is constant over time for given charges q1, . . . , qN and has to be

computed just once at the beginning of each simulation. The electrostatic
energy V long can therefore be written as

V long = V sr + V lr = V sr +
1
2

N∑
i=1

qiΦ
lr(xi) − V lr

self . (7.23)

Corresponding to this splitting of the energy into the two components V sr

and V lr, the force on a particle i can be computed from the two parts

Fsr
i = −∇xiV

sr and Flr
i = −∇xiV

lr = −1
2

N∑
j=1

qj∇xiΦ
lr(xj) (7.24)

according to Fi = Fsr
i + Flr

i . Note that the force Flr
i does not depend on

the self-energy V lr
self since the self-energy does not depend on the particle

positions, compare (7.22).
Here, the expression ∇xiΦ

lr(xj) is an abbreviation that is to be under-
stood in the following sense: The function Φlr : Ω → R depends para-
metrically on the particle positions {xi}N

i=1. This can also be viewed as a
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function of the particle positions, that means Φlr : ΩN × Ω → R with
Φlr → Φlr(x1, . . . ,xN ;x). Then, the expression ∇xiΦ

lr(x1, . . . ,xN ;x) de-
notes as before the gradient ∇yΦlr(x1, . . . ,xi−1,y,xi+1, . . . ,xN ;x) evaluated
at the position xi for y. In this sense, the expression ∇xiΦ

lr(x) stands for
∇yΦlr(x1, . . . ,xi−1,y,xi+1, . . . ,xN ;x) evaluated at y = xi and ∇xiΦ

lr(xj)
stands for ∇yΦlr(x1, . . . ,xi−1,y,xi+1, . . . ,xN ;xj) evaluated at y = xi. We
will use this abbreviated notation for the remainder of the book.

7.2 The Computation of Short-Range and Long-Range
Energy and Force Terms

If � satisfies the conditions 1–4 then the V sr from (7.16) can be treated
together with any V short by the linked cell method. V lr can be computed
according to (7.20) by first computing Φlr as the solution of the potential
equation in (7.15).

In the next sections we discuss the computation of these two terms in
detail.

7.2.1 Short-Range Terms – Linked Cell Method

The integral ∫
R3

�n
j (y)

||y − x||dy,

which occurs with x = xi in (7.16) and (7.17), can be split into two integrals
according to∫

R3

�n
j (y)

||y − x||dy =
∫

Bxn
j
(x)

�n
j (y)

||y − x||dy +
∫

R3\Bxn
j
(x)

�n
j (y)

||y − x||dy,

where Bxn
j
(x) denotes the ball around xn

j with radius ||xn
j −x||. The function

�n
j is symmetric around xn

j according to condition 2. Therefore, the first
summand can be written as∫

Bxn
j
(x)

�n
j (y)

||y − x||dy =
1

||xn
j − x||

∫
Bxn

j
(x)

�n
j (y)dy.

Thus, the action of such a radial charge distribution at a point x is the same
as the action of a point charge with the value∫

Bxn
j
(x)

�n
j (y)dy

in xn
j . For the second summand, it holds
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R3\Bxn

j
(x)

�n
j (y)

||y − x||dy =
∫

R3\Bxn
j
(x)

�n
j (y)

||y − z||dy for all z ∈ Bxn
j
(x).

Thus, the potential induced by the second summand is constant inside the
ball Bxn

j
(x). Evaluating this formula at z := xn

j yields∫
R3\Bxn

j
(x)

�n
j (y)

||y − z||dy =
∫

R3\Bxn
j
(x)

�n
j (y)

||y − xn
j ||

dy.

Together this results in the decomposition∫
R3

�n
j (y)

||y − x||dy =
1

||xn
j − x||

∫
Bxn

j
(x)

�n
j (y)dy +

∫
R3\Bxn

j
(x)

�n
j (y)

||y − xn
j ||

dy.

(7.25)
The coordinate transformation w := y−xn

j and a subsequent transformation
to spherical coordinates in the integrals lead to∫
R3

�n
j (y)

||y − x||dy =
1

||xn
j − x||

∫
B0(x−xn

j )

�(w)dw +
∫

R3\B0(x−xn
j )

�(w)
‖w‖ dw

=
4π

‖xn
j − x‖

∫ ‖xn
j −x‖

0

r2�(r)dr + 4π

∫ ∞

‖xn
j −x‖

r�(r)dr. (7.26)

If F is now an antiderivative of r · �(r) with F (r) → 0 for r → ∞,14 i.e.
F ′(r) = r · �(r), partial integration of the first integral on the right hand side
of (7.26) and substitution in the second integral results in∫

R3

�n
j (y)

||y − x||dy =
4π

‖xn
j − x‖

(
||xn

j − x|| · F (||xn
j − x||) −

∫ ||xn
j −x||

0

F (r)dr

)
− 4π · F (||xn

j − x||)

= − 4π

‖xn
j − x‖

∫ ||xn
j −x||

0

F (r)dr. (7.27)

Here, we exploited the fact15 that r · F (r) → 0 for r → 0 in the first integral
and that F (r) → 0 for r → ∞ in the second integral.

If one substitutes these results together with x := xi into (7.16), one
obtains

V sr =
1
2

1
4πε0

∑
n∈Z3

N∑
i=1

N∑
j=1

i�=j for n=0

qiqj

(
1

||xn
j − xi|| −

∫
R3

�n
j (y)

||y − xi||dy
)

(7.28)

14 The antiderivative is only determined up to a constant. The condition for r → ∞
selects a unique antiderivative.

15 This follows from condition 1 on � in Section 7.1.2. To show it, apply L’Hôpital’s
rule.
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=
1
2

1
4πε0

∑
n∈Z3

N∑
i=1

N∑
j=1

i�=j for n=0

qiqj

(
1

||xn
j − xi||+

4π

||xn
j − xi||

∫ ‖xn
j −xi‖

0

F (r)dr

)
.

The expression in parentheses is very small for a distance between xi and xn
j

that is sufficiently large, because of conditions 1 and 3 from Section 7.1.2.16

With a sufficiently large threshold parameter rcut, one can therefore restrict
the sum over j again to the indices j with ‖xn

j − xi‖ < rcut. The resulting
forces on the particles are given as negative gradients of the approximation
of V sr again. Therefore, the linked cell method from Chapter 3 for the case
of periodic boundary conditions can be used for the efficient evaluation of
the short-range part of the forces and the energies. Here, the choice of the
threshold parameter rcut is determined by the decay of �.

If, in addition to the term V sr arising from the long-range Coulomb poten-
tial, there are further short-range terms present, for example extra Lennard-
Jones terms, these are to be taken into account in the computation of the
short-range part of the potentials or the force as well. The cutoff radius rcut

is then determined by the maximum of the range of the short-range potential
and the range of the densities �.

7.2.2 Long-Range Terms – Fast Poisson Solvers

Since the direct evaluation of (7.17) requires O(N2) operations in general,
the electrostatic energy term V lr and the long-range forces Flr

i are evaluated
using the representation of Φlr as the solution of the potential equation

−∆Φlr =
1
ε0

ρlr
∣∣
Ω

(7.29)

on Ω, compare (7.15). Here, one discretizes equation (7.29) for instance by
the Galerkin method (see below) using K appropriate test basis functions
φk. This results in a linear system of equations Ac = b that has to be solved
efficiently. Fast Poisson solvers can be used for this task. Using the solution
c = (c0, . . . , cK−1)T of the linear system of equations, the solution Φlr of the
potential equation can be approximated by a function Φlr

K in the form of a
finite sum

Φlr
K =

K−1∑
k=0

ckφk, (7.30)

16 This can be seen for example from the representation (7.28) together with (7.25).
The second summand on the right hand side of (7.25) decays very rapidly to 0
for ||x − xn

j || → ∞ (this follows from the fast decay of � according to condition
3) and the first summand converges rapidly to 1/||x − xn

j || (this follows from
conditions 1 and 3 on �). This implies that the expression in parentheses in
(7.28) also decays rapidly to 0 for ||xi − xn

j || → ∞.
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compare (7.35) in the following section. The energy term V lr
other can be com-

puted according to (7.20) as a sum over the potential evaluated at the po-
sitions of the particles, weighted by their charges. Substituting the approxi-
mation (7.30) in (7.20), we obtain

V lr
other =

1
2

N∑
i=1

qiΦ
lr(xi) ≈ 1

2

N∑
i=1

qiΦ
lr
K(xi) =

1
2

N∑
i=1

qi

K−1∑
k=0

ckφk(xi). (7.31)

With functions φk of bounded support, the point-wise evaluation of the ap-
proximation Φlr

K requires only O(1) operations since the sum over k in (7.30)
extends only over those k for which the value of φk is nonzero at the given
point. The sum in (7.31) can therefore be evaluated with a complexity of
O(N).

The forces Flr
i on the particles can be computed directly according to

(7.24)17 from the approximation of the solution of the potential equation.
We obtain18

Flr
i ≈ −1

2

N∑
j=1

qj∇xiΦ
lr
K(xj) = −1

2

N∑
j=1

qj

K−1∑
k=0

∇xi (ckφk(xj)) . (7.32)

As for the computation of the energy, the complexity of the computation of
the forces Flr

i on N particles by (7.32) is also of order O(N) if the φk have
local support.19

The computation of the long-range force and of the potential terms con-
sists therefore of the following three steps:

1. Discretization: The potential equation (7.29) is discretized, which in turn
leads to an approximation of the solution Φlr. The accuracy of this ap-
proximation depends on the type of discretization used and on the choices
for its discretization parameters (such as e.g. the mesh size for a finite
element method).

17 For discretizations with Galerkin methods, the basis functions are (at least piece-
wise) differentiable. In other discretization approaches such as for example finite
difference methods or collocation methods, a representation as (7.30) in terms
of basis functions needs not to exist. Also, the basis functions do not have to
be differentiable as is the case for finite volume methods. Then, differentiable
approximations of Φlr

K have to be generated by reconstruction or, alternatively,
interpolation or possibly numerical differentiation may be employed. Note that
the error introduced this way should be smaller or comparable to the other errors
of the overall method.

18 Note that the coefficients {ck}K−1
k=0 also depend on the positions of the particles

{xi}N
i=1. The gradient operator ∇xi from (7.32) therefore does not only act on

the φk, but also on the coefficients ck, compare the remarks on page 250.
19 In general, the straightforward use of global functions for the φk leads only to

a complexity of order O(N · K), since the sums in (7.31) and (7.32) have to be
evaluated for all k.
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2. Solution of the discretized problem: The discretized potential equation
is solved with some (direct or iterative) method. Multilevel methods and
fast Fourier transforms (FFT) are most efficiently used in this step.

3. Computation of energies and forces: The computed approximation for
the potential is used to compute the energy V lr and the forces Flr

i at the
positions of the particles according to (7.31) and (7.32). Here, the compu-
tation of the forces may require the computation of the derivative of the
potential and an interpolation of the gradient at the particle positions.

Figure 7.5 shows in a schematic way the different steps in the computation
of the long-range forces.

Fig. 7.5. Schematic representation of the method for the computation of the forces
Flr

i , two-dimensional case. The charge density induced by the particles is approxi-
mated on a mesh. The associated potential is computed on that mesh as the solution
of the potential equation. Finally, the resulting forces on the particles are computed
as the gradient of the potential (after a possible interpolation from the mesh points
at the positions of the particles).

In general, each of these steps contributes an error term to the total
error of the approximation of the forces and the energy. The different steps
for the computation of the long-range terms are interdependent and must be
coordinated to obtain an efficient method for the overall problem. In addition,
it is beneficial if the error for the short-range and the long-range terms are
of the same order. The degrees of freedom that can be varied to achieve
this goal are the form of the shielding charge distribution �, the threshold
parameter rcut, the discretization parameters for the discretization of the
potential equation, such as the mesh width, and (if necessary) the number of
interpolation points for the interpolation in step 3.

We discuss in the following the three steps for the computation of the long-
range terms in detail. We choose a Galerkin discretization. First, we consider
the finite element method. Here, we employ a uniform mesh and use piecewise
polynomials as basis functions. Their local support allows the computation
of the potential and the forces in O(N) operations. In addition, this leads
to a system of linear equations with a sparse system matrix. However, the
condition number of this matrix is large, so that standard iterative methods
converge only slowly. Here, multilevel methods or direct solvers based on FFT
can be used instead. We also review the variants of this general approach for
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the computation of the long-range terms, which are commonly described in
the literature. Finally, we consider the case of trigonometric basis functions
in detail in the next section. Their orthogonality leads to a trivial system of
equations with a diagonal system matrix. However, their support is global
which generally results in a quite expensive computation of the energy and
the forces. But similar to pseudo-spectral methods [258], these costs can be
substantially reduced by the approximation on a uniform mesh using local
basis functions and the fast Fourier transform.

Galerkin Discretization and Finite Element Method. In numerical
analysis, the transition from a continuous system to a discrete system is called
discretization. In Section 3.1, we already encountered the finite difference
method for the time discretization of Newtons equations. We will now use
the Galerkin method [111, 146] to discretize the potential equation.

Let
(u, v) :=

∫
Ω

uv̄dx

be the L2 inner product over the domain Ω. The solution Φlr of (7.29) has
to satisfy the equation

−(∆Φlr, v) =
1
ε0

(ρlr, v)

for all test functions v chosen from an appropriate function space V .20 The
left hand side of the equation can be rewritten using partial integration, and
one obtains the so-called weak formulation of the differential equation

(∇Φlr,∇v) =
1
ε0

(ρlr, v) for all v ∈ V. (7.33)

The Galerkin method now consists in the choice of a finite-dimensional sub-
space VK ⊂ V with K = dim(VK), in which the solution of the problem is
approximated:

Find Φlr
K ∈ VK with (∇Φlr

K ,∇v) =
1
ε0

(ρlr, v) for all v ∈ VK . (7.34)

For the numerical implementation, one selects a basis {φ0, . . . , φK−1} of VK .
The solution of (7.34) is assumed to have the form

Φlr
K =

K−1∑
k=0

ckφk, (7.35)

compare (7.30). In this way, one obtains the system of equations

20 It is necessary to have V ⊂ H1 ⊂ L2 to be able to compute the gradients on the
left hand side of (7.33).
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K−1∑
k=0

(∇φk,∇φj) ck =
1
ε0

(ρlr, φj), j = 0, . . . , K − 1, (7.36)

or in matrix notation

Ac = b (7.37)

with Ajk = (∇φk,∇φj) the entries of the matrix A, bj = 1
ε0

(ρlr, φj) the
components of the vector b, and the K unknowns c0, . . . , cK−1 collected in
the vector c.

The finite element method [111, 146] is a Galerkin discretization with spe-
cial trial and test functions {φj} that have local support. To this end, we de-
compose the domain Ω into small disjoint subdomains called elements. In the
two-dimensional case these elements are mostly triangles or quadrilaterals. In
the three-dimensional case they are tetrahedra, cubes, bricks, pyramids, or
prisms. Altogether, these elements define a mesh on Ω. In the simplest case,
all elements have the same shape and size and constitute a uniform mesh.
Figure 7.6 (left) shows such a decomposition of a two-dimensional domain.
Here, the decomposition consists of square elements of the same size.

Fig. 7.6. Regular decomposition of a domain in the finite element method (left)
and a bilinear basis function with its support (right).

The basis functions φk are now defined over these subdomains as piecewise
polynomials that each assume the value one at their associated vertex x and
zero at all other vertices of the mesh. The support of φk is then the union of
the elements that have x as a vertex. In the simplest case, piecewise linear
functions can be used as basis functions. An example is given in Figure (7.6)
(right). The finite element method uses the approximation with piecewise
polynomials of fixed order. The size of the elements and thus the global mesh
size can now be decreased to obtain better approximations. Typically, this
leads to errors of the form C · hp, where h denotes the size of the elements
and p the largest obtainable order, which depends on the degree of the basis
functions as well as on the smoothness of the solution.21
21 This is the h-version of the finite element method. If one instead fixes h and

changes the order of the polynomials, one obtains the so-called p-version. Simul-
taneously changing both h and p leads to the so-called hp-version [54, 597].
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The finite element method provides an efficient interpolation (or approx-
imation) between the positions of the particles and the mesh points in a
natural way. Moreover, the evaluation of φlr

K at the positions of the particles
directly implements an interpolation via the basis functions. In a dual way,
the discretization of the right hand side in (7.36) yields an approximation of
the charge distribution on the finite element mesh, smoothed by the �j. If
one substitutes the definition (7.11) of the right hand side ρlr of the potential
equation (7.29) into the definition of bj, one obtains

bj =
1
ε0

∑
n∈Z3

N∑
i=1

qi(�n
i , φj) for all j = 0, . . .K − 1. (7.38)

Thus, to compute any component bj of the right hand side b, one has to
evaluate a sum over all particles, for which the integral (�n

i , φj) of the product
of basis function and charge cloud function is not zero (which means that the
support of the basis function φj and the support of �n

i overlap). Provided
that N = O(K) and that the particles are approximately equidistributed,
one can compute the integrals in (�n

i , φj) and hence bj with O(1) operations
since the functions φj have local support. The entire right hand side b can
then be obtained with O(K) operations.

In addition, the stiffness matrix A is sparsely populated, because the local
support of the basis functions implies that (∇φi,∇φj) is zero except for the
case of overlapping supports of φi and φj . This is advantageous with respect
to the memory requirements of the approach. Still the issue remains how to
efficiently solve the linear system of equations (7.37). It would be desirable to
use a method in which the complexity increases only linearly with the number
of unknowns K, so that only O(K) or O(K log(K)α), α > 0, operations are
necessary to solve the system of equations up to a prescribed accuracy.

The standard direct methods such as Gaussian elimination or the Cholesky
method [255] have a higher memory complexity (because of fill in) and a
higher time complexity than desired. Also classic iterative methods such as
the Richardson method, the Jacobi method, the Gauss-Seidel method, or
the SOR method [285] are in general not suitable because of their higher
complexity: The convergence rate of those simple iterative methods depends
on the mesh size (the dimension of the approximation space VK); the finer
the discretization, the worse the convergence rate becomes. A more careful
analysis shows that the convergence rate of these methods is initially high,
but decreases drastically after a few iterations. The reason for this behavior
becomes clear after a Fourier analysis of the error in the iterations: The low
wavelength/high frequency part of the error is reduced strongly in each step
of the iteration, but the high wavelength/low frequency part is damped only
weakly. Therefore, the low frequency components of the error dominate the
convergence rate after a few initial steps.

The fundamental idea behind the multigrid method [117, 283], and, at
least implicitly, behind other multilevel methods such as the BPX precondi-
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tioner [112, 456], is to avoid the drawbacks of the simple iteration methods by
using an additional so-called coarse grid correction. This correction ensures
that also the low frequency components of the error are reduced substantially
in each step. For the coarse grid correction, a coarser mesh (usually with ele-
ments twice as large in all directions) is used to approximate the linear system
of equations under consideration by a smaller system of equations whose so-
lution still represents the low frequency components of the fine grid solution
well. This smaller system may then again be treated by a simple iterative
method. A recursive application of this idea leads to the multigrid method.
Using a sequence of nested grids (and assuming that the problem under
consideration satisfies certain regularity conditions), the multigrid method
converges with a rate which is independent of the mesh size and therefore
independent of the number K of unknowns. The runtime complexity of the
solution of the Poisson equation up to a given accuracy with such multigrid
or multilevel methods is then only of the order O(K).

In our special case of rectangular simulation domains and periodic bound-
ary conditions, it is possible to alternatively use special direct methods based
on the fast Fourier transform. These methods have a complexity of the or-
der O(K log(K)) and, assuming K = O(N), also a complexity of the order
O(N log(N)). We will consider such techniques in Section 7.3 in more detail.

7.2.3 Some Variants

There is a large number of possibilities to combine different discretization
methods, different solvers for the discrete system, and different techniques
for the computation of the forces into a method for the overall problem. In
the following, we review briefly the most common approaches. They differ
in the choice of the shielding charge cloud, in the discretization method,
and in the computation of the forces from the potential. Often, a fast Fourier
transform is used for the solution of the potential equation. A survey on these
methods can be found in [211, 488, 574] and [612]. Articles that study the
different sources of errors in these methods are for instance [100] (artifacts
caused by boundary conditions, especially dielectric boundary conditions),
[97] (artifacts in the pressure and free energy) and [570].

Particle-Particle Particle-Mesh Method (P3M). The particle-particle
particle-mesh (P3M) method developed by Hockney and Eastwood [202, 324]
employs spherical charge clouds of the form (7.14) to shield the point charges.
The short-range terms can then be evaluated with the linked cell method.
The charge distribution is interpolated by trilinear interpolation to the mesh
points. The long-range terms are evaluated in Fourier space. Here, the Green’s
functions used can be optimized depending on the size of the system, the
form of the shielding charge distributions, and the interpolation method.
The forces at the mesh points are computed as differences of the values of
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the potential. The forces at the positions of the particles are then determined
by interpolation.

The variants derived from the original P3M method differ in the choice of
interpolation methods, the form of the shielding charge cloud, the optimized
Green’s function, and the computation of the forces from the potential. Some
suggestions for improvements and further developments of the method can
be found in [399, 646, 660].

Particle-Mesh Ewald Method (PME). The particle-mesh Ewald method
[168, 215, 374] uses the Gaussians from (7.13) as charge clouds.22 Further-
more, higher order methods are used for interpolation (such as Lagrange
interpolation or B-spline interpolation). The accuracy and efficiency of this
method have been considered in [477]. A combination with Respa time step-
ping is studied in [485]. In the following sections of this chapter, we describe a
variant in detail, the so-called smooth particle-mesh Ewald method (SPME).
There, B-splines of degree p > 2 are used in the interpolation. Furthermore,
the forces are computed as gradients of the derived approximation to the
potential. Thus, the trial and test functions used in this method have to be
differentiable. A comparison of the P3M method, the PME method, and the
SPME method can be found in [167, 179].

Fast Fourier Poisson Method. In the so-called fast Fourier Poisson
method [675], the charge clouds are evaluated at the mesh points and these
values are used to compute the elements bj of the vector on the right hand
side of the discretized equation. The resulting discrete Poisson problem is
then solved with help of the fast Fourier transform. Energies and forces are
computed from sums over the values of the approximated potential Φlr

K at
the mesh points (but not at the positions of the particles).

Multigrid Methods and Adaptive Refinement. The solver in the dis-
cussed mesh-based methods is not limited to fast Fourier transform methods.
Other methods for the efficient solution of the discrete potential equation can
be used as well, as for instance multilevel methods.

In the case of a nonuniform particle distribution, the efficiency of FFT
based techniques is substantially reduced. They require a discretization on
a uniform mesh. However, the mesh size has to be fine enough to capture
the nonuniformly distributed particles. To this end, adaptive methods have
been developed in which the mesh points no longer have to be distributed
22 The use of Gaussians to decompose the potential together with trigonometric

trial and test functions first leads (without the use of fast Poisson solvers (FFT))
to the so-called classic Ewald sum [216]. For a given accuracy one can choose
the number of degrees of freedom for the discretization, the threshold parameter
rcut in the linked cell method, and the parameter G from the Gaussian (which
determines the balance between long-range and short-range terms) in such a way
that the complexity is reduced from O(N2) to O(N3/2), compare [228, 239, 612].
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uniformly over the entire domain but which work with locally refined meshes
[157, 158, 249, 473, 577], compare Figure 7.7. Here, adaptive finite element
methods [53, 644] can be applied directly. For the solution of the resulting
systems, adaptive multigrid methods are a natural choice [114, 115, 116, 283].
An example can be found in [343].

Fig. 7.7. Adaptive mesh refinement in the finite element method.

7.3 Smooth Particle-Mesh Ewald Method (SPME)

We now discuss the so-called smooth particle-mesh Ewald (SPME) method
[168, 215, 374] in more detail. It is a particular variant of the approach pre-
sented in Section 7.1, which uses trigonometric functions. The components
of the method are chosen as follows:

– Gaussians from (7.13) are used as shielding charge distributions �n
i .

– B-splines with order > 2 are used as local basis functions φk. They are
differentiable and provide approximations of higher order.

– After computing the right hand side b of the linear system of equations
using B-splines, b is mapped into Fourier space via the fast discrete Fourier
transform. Then, the Laplacian, which corresponds to just a diagonal scal-
ing in Fourier space, is inverted, the result is mapped back to real space
via an inverse fast Fourier transform, and the result is expressed by local
basis functions.

– The force is computed according to (7.32) as the gradient of the approxi-
mation of the potential. Since the B-splines are differentiable, the gradient
can be computed directly.

With such methods one can achieve a high accuracy with a complexity of
O(N log(N)). Here, the logarithmic factor arises from the use of the fast
Fourier transform.
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7.3.1 Short-Range Terms

We now follow the approach described in general terms in Sections 7.2.1
and 7.2.2 for the computation of the energies and forces and explain its
implementation in more detail for the SPME method. With help of the so-
called error function

erf(x) :=
2√
π

∫ x

0

e−y2
dy,

the complementary error function

erfc(x) := 1 − erf(x),

the threshold parameter rcut, the distance vector rnij := xn
j −xi, the distance

rn
ij := ||xn

j −xi||, and with the choice of � as a Gaussian according to (7.13),
an approximation for (7.28) can be written explicitly as23

V sr ≈ 1
2

1
4πε0

∑
n∈Z3

N∑
i=1

N∑
j=1

i�=j for n=0
rn

ij
<rcut

qiqj

1 − erf(Grn
ij)

rn
ij

=
1
2

1
4πε0

∑
n∈Z3

N∑
i=1

N∑
j=1

i�=j for n=0
rn

ij
<rcut

qiqj

erfc(Grn
ij)

rn
ij

. (7.39)

The application of the gradient operator24 results in

23 Given �(r) =
“

G√
π

”3

· e−G2r2
, the antiderivative F of r · �(r) is

F (r) = −1

2

G

π3/2
e−G2r2

.

Applying (7.27), it follows that

Z
R3

�n
j (y)

||y − xi||dy = − 4π

‖xn
j − xi‖

Z ‖xn
j −xi‖

0

F (r)dr =

1

‖xn
j − xi‖

2√
π

Z G·‖xn
j −xi‖

0

e−r2
dr =

1

‖xn
j − xi‖erf(G · ‖xn

j − xi‖).

24 The gradient operator with respect to x0
i has to be applied to the total energy

1

2

1

4πε0

X
n,m∈Z3

NX
i,j=1

(n,i)�=(m,j)

qiqj
erfc(G||xn

j − xm
i ||)

||xn
j − xm

i ||

which results from the periodic extension of the simulation box to R
3, and is

infinite because of the summation over all n, m ∈ Z
3. Here, the interactions

between xm
i and xn

j appear twice. This is the reason why the factor 1/2 no longer
occurs in the computation of the force on the particles x0

i in the simulation box.
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Fsr
i ≈ − 1

4πε0
qi

∑
n∈Z3

N∑
j=1

j �=i for n=0
rn

ij
<rcut

qj
1

(rn
ij)2
(
erfc(Grn

ij)+
2G√

π
rn
ije

−(Grn
ij)

2
)rnij

rn
ij

. (7.40)

The linked cell method from Chapter 3 can then be used directly for the
computation of V sr and Fsr

i .25

Figure 7.8 shows the function erfc(x)/x (whose translated versions are
combined to make up the short range term Φsr), the function erf(x)/x (whose
translated versions are combined to make up the long range term Φlr), and
the sum erf(x)/x + erfc(x)/x = 1/x. For the purpose of comparison, the
fast decaying function 1/x6 is shown which appears in the Lennard-Jones
potential.

The graphs in Figure 7.9 on the semi-logarithmic scale show clearly that
erfc(x)/x decays very quickly, even significantly faster than 1/x6. For large
values of x, the functions erf(x)/x and 1/x agree well with each other.
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Fig. 7.8. The short-range function
erfc(x)/x, the long-range function
erf(x)/x, the Coulomb potential 1/x
and the 1/x6 potential on a linear
scale.

Fig. 7.9. The functions from Figure
7.8, semi-logarithmic plot.

25 The computation can be accelerated using tabulation and interpolation for the
exponential function, the erf function, and the erfc function. The values of
these functions at several places are computed and stored beforehand in a table
[75, 217]. These values can then be used directly if the function value at these
positions is sought. If interim values are to be computed, they can be approx-
imated by interpolation. This avoids the repeated and costly evaluation of the
exponential function and the erf and erfc functions. However, the actual saving
in runtime depends strongly on the particular implementation. Obviously, such
an optimization does not reduce the order of complexity of the algorithm.
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7.3.2 Long-Range Terms

Similarly to (7.39), V lr can be written explicitly as

V lr =
1
2

1
4πε0

∑
n∈Z3

N∑
i=1

N∑
j=1

i�=j for n=0

qiqj

erf(Grn
ij)

rn
ij

. (7.41)

Since a direct evaluation of this sum is too expensive, the long-range terms
V lr of the energy are computed approximately according to (7.31) and (7.21),
and the force terms Flr

i are computed approximately according to (7.32).
We have previously emphasized that the trial and test functions in the

Galerkin method have to be local so that, on the one hand, the discretization
of the right hand side according to (7.38) will not be too expensive, and
that, on the other hand, the Galerkin approximation to the potential can
be evaluated efficiently, compare (7.31) and (7.32). In this section, we show
that the use of special global basis functions can be advantageous as well.
The idea is to compute the inverse of the Laplace operator in Fourier space
(which is easily possible since the stiffness matrix Atrig resulting from the use
of trigonometric basis functions in the Galerkin method is diagonal, compare
(7.46)), but to represent the approximation Φlr

K to the potential as a sum over
local real basis functions. The coefficients of the Galerkin approximation from
(7.37) (this is the approximation with local real finite element basis functions)
are then determined by26

c ≈ T ∗A−1
trigTb, (7.42)

where the matrix T expresses the change from the representation in the
local real basis to the representation in the complex trigonometric basis.27

This approach corresponds to a Galerkin discretization of the right hand
side with local bases, its subsequent transformation to the Fourier space, the
inversion of the Laplace operator in the Fourier space, and a subsequent back-
transformation of the solution into (the dual of) the original space which is
spanned by the local bases.

It is now necessary to specify the maps T and T ∗. They can be im-
plemented efficiently using fast Fourier transforms and fast inverse Fourier
transforms.
26 T ∗ is the adjoint operator to T . With the representation T = T1 + iT2, where

T1 denotes the real part and iT2 the imaginary part of T , it holds that T ∗ =
(T1 + iT2)

∗ = T T
1 − iT T

2 .
27 Note that the spaces spanned by the local basis functions and the trigonometric

basis functions are in general not the same and that therefore the maps T and
T ∗ are in general not coordinate transforms. Rather, they correspond to the
approximation of the functions from one space by the functions of another space,
for instance by interpolation. In generally it only holds that A−1 ≈ T ∗A−1

trigT , i.e.,
equality does not necessarily hold. The quality of this approximation depends
on how well trigonometric functions can be represented by the chosen local basis
functions (and vice versa).
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Discretization Using Trigonometric Functions. We associate to the
index k = (k1, k2, k3) ∈ Z3 a new index

kL :=
(

k1

L1
,
k2

L2
,
k3

L3

)
∈ R

3, (7.43)

which has been scaled by the dimensions of the simulation domain. Further-
more, let |Ω| = L1 ·L2 ·L3 again denote the volume of the simulation domain.
Here, we use the complex trigonometric trial functions

ψk = e2πikL·x, k ∈ K \ 0, (7.44)

where

K :=
[− ⌊K1−1

2

⌋
,
⌈

K1−1
2

⌉]× [− ⌊K2−1
2

⌋
,
⌈

K2−1
2

⌉]× [− ⌊K3−1
2

⌋
,
⌈

K3−1
2

⌉]
, (7.45)

i.e., we use the integers from the symmetric intervals around the origin of the
lengths Ki, i = 1, 2, 3, as frequencies for our trigonometric basis functions.

The orthogonality property28 (ψk, ψj) = |Ω| · δk,j of the trigonometric
functions and the relation ∇xψk = 2πikLe2πikL·x yields the real diagonal
matrix

Atrig = {(∇xψk,∇xψj)}k,j∈K\0 = diag
({|Ω|(2π)2||kL||2

}
k∈K\0

)
(7.46)

as the stiffness matrix from the Galerkin method, compare (7.36). If one uses
trigonometric functions (7.44) as both trial and test functions, one therefore
obtains the linear system of equations

Atrigctrig = btrig

with Atrig from (7.46) and btrig
k = 1

ε0
(ρlr, ψk), which can be solved directly.

The Galerkin approximation of the potential in this discretization is then
given by

Φlr
K,trig =

∑
k∈K\0

ctrig
k ψk (7.47)

with
ctrig
k =

1
|Ω| (2π)2||kL||2

1
ε0

(ρlr, ψk),

and the right hand side satisfies the relation
28 Here, δk,j denotes the Kronecker delta. It satisfies δk,j = 1 for k = j and δk,j = 0

otherwise.



7.3 Smooth Particle-Mesh Ewald Method (SPME) 265

btrig
k =

1
ε0

(ρlr, ψk) =
1
ε0

∑
n∈Z3

N∑
j=1

qj(�n
j , ψk)

=
1
ε0

(
G√
π

)3 ∑
n∈Z3

N∑
j=1

qj

∫
Ω

e−G2||x−xn
j ||2e−2πikL·xdx

=
1
ε0

(
G√
π

)3 N∑
j=1

qj

∫
R3

e−G2||x−xj||2e−2πikL·xdx

=
y:=x−xj

1
ε0

(
G√
π

)3 N∑
j=1

qj

∫
R3

e−G2||y||2e−2πikL·(y+xj)dy

=
1
ε0

(
G√
π

)3 N∑
j=1

qje
−2πikL·xj

∫
R3

e−G2||x||2e−2πikL·xdx

=
Footnote 29

1
ε0

(
G√
π

)3 N∑
j=1

qje
−2πikL·xj

(√
π

G

)3

e−π2k2
L/G2

=
1
ε0

e−
||2πkL||2

4G2

N∑
j=1

qje
−2πikL·xj

=
1
ε0

e−
||2πkL||2

4G2

N∑
j=1

qjψk(xj), k ∈ K \ 0 (7.48)

for the components of the trigonometric Galerkin discretization btrig of the

right hand side of the potential equation. The factor e−
||2πkL||2

4G2 results from
the Fourier transform of the Gaussian centered at the origin and the factors
ψk(xj) = e−2πikL·xj result from the translation of the Gaussian to the particle
positions xj .

Approximation with Local Functions – B-Splines. The computation
of the btrig

k according to (7.48) would be very expensive, because of the global
support of the functions ψk. Therefore, we approximate the complex trigono-
metric functions ψk with a sum over local, real, and periodic functions φm

ψk ≈
K−1∑
m=0

tkmφm, tkm ∈ C. (7.49)

For example, one can choose finite element bases that are defined on a
mesh.30 The matrix T is then given by the weights tkm ∈ C, i.e., it holds that

29 Use
1√
2π

Z ∞

−∞
e−x2/2eixydx = e−y2/2.

30 Note that the running index of the sum in (7.49) is a multi-index m =
(m1, m2, m3). We use the notation

PK−1
m=0 for the multiple summationPK1−1

m1=0

PK2−1
m2=0

PK3−1
m3=0.
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Tkm = tkm. The vector c is computed approximately by (7.42). In this way,
the explicit computation of the right hand side btrig can be avoided, i.e., we
use the approximation btrig ≈ Tb instead.31 Here, the number of functions
φm is chosen such that a quadratic matrix T results.

Applying the approximation from (7.49) with local bases, one obtains

N∑
j=1

qjψk(xj) ≈
N∑

j=1

qj

K−1∑
m=0

tkmφm(xj)

=
K−1∑
m=0

tkm

N∑
j=1

qjφm(xj) = (TQ)k, (7.50)

with32

Qm :=
N∑

j=1

qjφm(xj) =
φm(x)∈R,

φm(x)=φm(x)

N∑
j=1

qjφm(xj), m ∈ [0, · · · ,K− 1]. (7.51)

The vector Q can be understood as the interpolation of the particle point
charges from the particle positions to the mesh points. For each index m, the
sum in (7.51) runs over those particles that lie within the support of φm. Since
the support of the φm is bounded, the entire vector Q for N = O(K1K2K3)
can be computed with a complexity of O(N), where the hidden constant is
proportional to the size of the support of the basis functions. The matrix-
vector product TQ can be implemented by way of fast Fourier transforms.

Using (7.48), one obtains all in all

btrig
k =

1
ε0

(ρlr, ψk) ≈ 1
ε0

e−
||2πkL||2

4G2 (TQ)k. (7.52)

The application of T ∗A−1
trig to this approximation of btrig leads to an approx-

imation of c (in a representation in the local basis) with c ≈ T ∗A−1
trigTb.33

31 With the approximation (7.49), it holds that

btrig
k =

1

ε0
(ρlr, ψk) =

1

ε0

Z
Ω

ρlrψkdx ≈
(7.49)

1

ε0

Z
Ω

ρlr
K−1X
m=0

tkmφmdx

=

K−1X
m=0

tkm
1

ε0

Z
Ω

ρlrφmdx =

K−1X
m=0

tkm
1

ε0
(ρlr, φm) = (Tb)k.

32 The expression m∈ [0, . . . ,K−1] is defined as (m1, m2, m3)∈ {0, . . . , K1−1}×
{0, . . . , K2−1}×{0, . . . , K3−1}.

33 Note that the result of this multiplication is real, without any complex part, even
though complex intermediate values appear in the computation. This follows
from the special structure of Atrig as a diagonal matrix with real entries.
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One possible choice for these local functions in (7.49) is given by B-splines
over a uniform mesh on Ω with a mesh width of

h = (L1/K1, L2/K2, L3/K3). (7.53)

The spline Mp of order34 p is defined in one dimension by the recursion

Mp(x) =
x

p − 1
Mp−1(x) +

p − x

p − 1
Mp−1(x − 1) (7.54)

with

M2(x) =
{

1 − |x − 1|, for x ∈ [0, 2],
0, otherwise. (7.55)

The spline Mp is p − 2 times continuously differentiable, and its derivative
satisfies the recurrence relation

dMp

dx
(x) = Mp−1(x) − Mp−1(x − 1). (7.56)

Multidimensional splines are defined as the appropriate products of one-
dimensional splines.

For splines of even order p, one obtains an approximation of e−2πikL·x

by35

e−2πikL·x ≈
∑
n∈Z3

K−1∑
m=0

tkm ·
3∏

d=1

Mp((x)dKd/Ld − md − ndKd), (7.57)

where

tkm := B(k) ·
(

3∏
d=1

e
−2πi

kdmd
Kd

)
(7.58)

and

B(k) :=
3∏

d=1

BKd
(kd) with BKd

(kd) =
e−2πi(p−1)kd/Kd

p−2∑
q=0

e−2πikdq/KdMp(q + 1)

, (7.59)

see also [89, 145] and [550]. Both sides of (7.57) are actually equal at the
mesh points (L1m1/K1, L2m2/K2, L3m3/K3) with m ∈ [0, . . . ,K− 1]. This
can be verified by plugging in the coordinates of the mesh points. In this case
the entries of the matrix T are given by tkm from (7.58).

34 The degree of the spline function is then p − 1.
35 The summation

P
n∈Z3 results in a periodic spline, as necessary for this approach.
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Solving the Potential Equation. With

Qm =
∑
n∈Z3

N∑
j=1

qj

3∏
d=1

Mp((xj)dKd/Ld − md − ndKd) (7.60)

as in (7.51) and

DF[Q](k) :=
K−1∑
m=0

Qm · e−2πi
“

k1m1
K1

+
k2m2

K2
+

k3m3
K3

”
, (7.61)

the discrete Fourier transform of Q, it holds that

N∑
i=1

qie
−2πikLxi ≈ (TQ)k = B(k)DF[Q](k), (7.62)

compare (7.50). Here, the action of T corresponds to a discrete Fourier trans-
form and a multiplication by B(k) from (7.59). In this way, one obtains the
coefficients of the approximation of the potential with trigonometric functions
(7.47) as

ctrig
k =

1
4π2|Ω|ε0

1
||kL||2 e−π2||kL||2/G2

B(k)DF[Q](k). (7.63)

The factor 1/||kL||2 corresponds to the inverse of the Laplace operator in
frequency space. The factor e−π2||kL||2/G2

results from the Fourier transform
of the Gaussians and leads to an exponential convergence of the coefficients.
For large frequencies k the error is damped by the factor e−π2||kL||2/G2

. The
reason for this very fast decay of the coefficients is given by the smoothness36

of the right hand side ρlr.37

36 The smoothness of a function (compare footnote 5) can be determined from the
decay of its Fourier coefficients [30, 50, 616]. Then, the Sobolev spaces Hs for
s ∈ R can also be defined directly with help of the Fourier transform as

Hs(Ω) = {u(x) =
X
k∈Zn

cke−ikx :
X
k∈Z3

(1 + ||k||∞)2s · |ûk|2 < ∞},

with the Fourier coefficients ûk := 1
|Ω|

R
Ω

u(x)e−2πikxdx for u ∈ L1(Ω). Similar
relations between the smoothness of a function and the decay of its coefficients
also hold for nonperiodic functions and their coefficients with respect to other
multiscale bases [132, 164, 456]. In particular, the Fourier coefficients of C∞

functions (i.e. functions which are infinitely often differentiable) decay exponen-
tially.

37 For ρ = 1
ε0

PN
i=1 δxi instead of ρlr as right hand side in the potential equation, one

would obtain the coefficients without the factors e−π2||kL||2/G2
, the summands

would not be damped, and the sum could not be truncated without introducing
larger errors.
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The solution vector c is now given approximately by c ≈ T ∗ctrig as

cm≈
∑
k∈K
k�=0

tkmctrig
k (7.64)

=
∑
k∈K
k�=0

(
3∏

d=1

BKd
(kd)e

−2πi
kdmd

Kd

)
1

4π2|Ω|ε0||kL||2 e−π2 ||kL||2
G2 B(k)DF[Q](k)

=
∑
k∈K
k�=0

1
4π2|Ω|ε0||kL||2 e−π2 ||kL||2

G2 |B(k)|2DF[Q](k) e2πi(
k1m1

K1
+

k2m2
K2

+
k3m3

K3
).

The last equation has the form of a Fourier series again. Therefore, we want
to use a fast discrete Fourier transform for the fast evaluation of this series.

To be able to apply the FFT directly, we rewrite the sum in (7.64) so that
it does not run from − ⌊Ki−1

2

⌋
to
⌈

Ki−1
2

⌉
, but from 0 to Ki − 1, i = 1, 2, 3.

The translation invariance of the trigonometric functions38 together with the
definitions

d(0) := 0,

d(k) :=
1

ε0|Ω|
1

(2π)2
1

||m||2 e−
π2||m||2

G2 · |B(k)|2, with (7.65)

m = (m1, m2, m3) with md =
{

kd/Ld for kd ≤ Kd/2,
(kd − Kd)/Ld for kd > Kd/2,

d = 1, 2, 3,

a(k) := d(k) · DF[Q](k), (7.66)

implies the relations

1
(2π)2|Ω|ε0

∑
k=(k1 ,k2,k3),k�=0

kd∈[−Kd−1
2 �,�Kd−1

2 �]

1
||kL||2 e−π2 ||kL||2

G2 |B(k)|2DF[Q](k) e
2πi(

P3
d=1

kdmd
Kd

)

=
K−1∑
k=0

d(k)DF[Q](k) e2πi(
k1m1

K1
+

k2m2
K2

+
k3m3

K3
)

=
K−1∑
k=0

a(k)e2πi(
k1m1

K1
+

k2m2
K2

+
k3m3

K3
)

= DF−1[a](m), (7.67)

where DF−1 denotes the discrete inverse Fourier transform.39

Altogether, we obtain for the coefficients cm an approximation
38 They satisfy e2πilk/K = e2πil(k−K)/K , for all l, k, K ∈ Z.
39 Note that we define the inverse transform without an additional scaling of

1
K1K2K3

. In the literature, both conventions for the inverse Fourier transform

can be found. Therefore, it only holds that DF−1[DF[Q]](m) = K1K2K3 ·Q(m).
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cm = DF−1[a](m) (7.68)

and therefore

Φlr
K(x) =

∑
n∈Z3

K−1∑
m=0

DF−1[a](m) ·
3∏

d=1

Mp(Kd(x)d/Ld − md − ndKd) (7.69)

for the solution Φlr as an implementation of (7.30).
The complexity of the computation of the ck is then O(#K log(#K)) +

O(p3N), with #K = K1K2K3, since the sums in (7.60) only have to be com-
puted for those points that lie in the support of Mp, and the discrete Fourier
transform DF[Q] of Q and the discrete inverse Fourier transform DF−1[a]
can be computed using the fast Fourier transform according to Cooley and
Tukey [155, 313] with a complexity of O(#K log(#K)). There are a number
of program packages that provide very efficient implementations of the fast
Fourier transforms, see for instance [240]. With #K ∼ N , the linear system
of equations can thus be solved with a total complexity of O(N log(N)).

The Approximation of the Energy. The self-energy (7.21) associated to
the long-range potential satisfies

V lr
self =

1
2

1
4πε0

N∑
i=1

q2
i erf(0)/0 =

1
4πε0

G√
π

N∑
i=1

q2
i , (7.70)

with
erf(0)/0 := lim

r→0
erf(Gr)/r.

Using (7.31) together with (7.60) and (7.69), the energy term V lr
other can be

expressed by

V lr
other ≈

1
2

N∑
i=1

qiΦ
lr
K(xi) =

1
2

K−1∑
m=0

DF−1[a](m) · Q(m)

=
1
2

K−1∑
k=0

a(k) · DF[Q](k) =
(7.66)

1
2

K−1∑
k=0

d(k) · |DF[Q](k)|2 (7.71)

and therefore in total

V lr ≈ 1
2

K−1∑
k=0

d(k) · |DF[Q](k)|2 − 1
4πε0

G√
π

N∑
i=1

q2
i . (7.72)

The Approximation of the Forces. Following (7.32), the application of
the gradient to (7.69) yields the approximation40

40 Note that Q appears in a, and Q contains B-splines which contain xi. To verify
this relation, substitute a, write out the definition of Q, and differentiate.
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Flr
i ≈ −1

2

N∑
j=1

qj∇xiΦ
lr
K(xj) (7.73)

= −qi

∑
n∈Z3

K−1∑
m=0

DF−1[a](m) · ∇xi

3∏
d=1

Mp(Kd(xi)d/Ld − md − ndKd)

= −qi

∑
n∈Z3

K−1∑
m=0

DF−1[a](m)

⎛
⎜⎝

∂
∂(xi)1

Mp(yi
1) · Mp(yi

2) · Mp(yi
3)

Mp(yi
1) · ∂

∂(xi)2
Mp(yi

2) · Mp(yi
3)

Mp(yi
1) · Mp(yi

2) · ∂
∂(xi)3

Mp(yi
3)

⎞
⎟⎠, (7.74)

with yi
d := (xi)dKd/Ld − (md + ndKd). In this way, only the derivatives

of the interpolating functions Mp are needed to compute the gradient. This
approximation can be evaluated in a complexity of O(1) in every point, since
the sum only runs over those m for which the B-splines Mp are not equal to
zero.

The partial derivatives of the B-splines can be computed according to the
recurrence formula (7.56). This yields for instance

dMp(yi
1)

dx1
=

K1

L1

(
Mp−1(yi

1) − Mp−1(yi
1 − 1)

)
. (7.75)

The factor K1/L1 stems from the chain rule, i.e. from dyi
1/dx1 = K1/L1.

To determine (7.71) and (7.74), we first compute the array Q. To this
end, an outer loop over all particles and an inner loop over the support of
the B-splines associated to the current particle is needed. Q is computed in
the body of the loops according to (7.60). Then, DF[Q] is computed by a
discrete fast Fourier transform, and a and V lr

other are computed subsequently
in a loop over the mesh. Next, DF−1[a] is computed by an inverse discrete fast
Fourier transform. Finally, the forces Flr

i are computed in an outer loop over
all particles and an inner loop over the supports of the associated B-splines.

In this method the force is computed directly as the gradient of the po-
tential, and therefore the total energy is conserved up to computer accuracy,
while no conservation of momentum is guaranteed.41

Finally, let us give a remark concerning the computation of the forces:
Since the force is computed as the gradient of the potential, the described
approach can only be employed for functions that are sufficiently differen-
tiable. For B-splines, this yields the condition p ≥ 3. If the chosen local bases
φm are not differentiable, (7.32) and (7.73) cannot be used to compute the
force on a particle. Instead an approximation of ∇xψk by appropriate local
functions φ̃m must be found which satisfies
41 Here, it is possible that more and more energy is transferred into the motion of

the center of mass. This effect can be prevented if one computes in each time

step the velocity
“PN

i=1 mivi

”
/

PN
i=1 mi of the center of mass and subtracts

this velocity from the velocity of all particles.
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∇xψk(x) ≈
K−1∑
m=0

t̃kmφ̃m(x). (7.76)

This approximation can then be employed to approximate the forces. Us-
ing trigonometric functions and the abbreviations f0 := 0, fk := kLa(k),
and yd := (x)dKd/Ld − md − ndKd, the approximation of ∇xe2πikL·x =
2πikLe2πikL·x with B-spline interpolants leads to the approximation

∇xΦlr
K(x) ≈ 2πi

∑
n∈Z3

K−1∑
m=0

DF−1[f ](m) ·
3∏

d=1

Mp(yd).

This results in the following approximation for the force

Flr
j ≈−1

2

N∑
r=1

qr∇xj Φ
lr
K(xr) ≈ −2πiqj

∑
n∈Z3

K−1∑
m=0

DF−1[f ](m)·
3∏

d=1

Mp(yd). (7.77)

Both equations have to be read as vector equations. To evaluate the forces,
three discrete Fourier transforms and three inverse discrete Fourier trans-
forms are necessary (one for each spatial direction). Both, the interpolation
of the charges to the mesh and the interpolation of the forces to the particle
coordinates, use the same interpolation scheme. This symmetry now ensures
that the momentum is conserved up to machine accuracy while no conserva-
tion of energy can be guaranteed. The sum

∑K−1
m=0 for each particle is only

to be computed for the mesh points inside of the support of the spline Mp.
Note that the approximations (7.74) and (7.77) do not have to lead to the
same results since in general approximation and gradient operator do not
commute.

Choosing the Parameters. The steps in the computation of the long-range
terms are coupled with each other and have to be adapted to each other to
yield an efficient global method. Thus,

– the width of the shielding charge distribution G,
– the threshold radius rcut, and
– the number of degrees of freedom #K

have to be chosen such that the resulting global algorithm has an optimal
ratio of computational complexity to accuracy. Here, the following points
should be considered:

1. The parameters G and rcut obviously depend on each other and have to
be chosen appropriately to obtain a given accuracy.

2. The accuracy can be improved by increasing the cutoff radius rcut or by
using a finer mesh, i.e. an increase of #K.

3. A smaller value for G together with a larger value for rcut leads to a
decrease in the complexity of the computation of the long-range terms
and an increase in the complexity of the computation of the short-range
terms.
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4. A larger value for G together with a smaller value for rcut leads to a
decrease in the complexity of the computation of the short-range terms
and an increase in the complexity of the computation of the long-range
terms.

A discussion on how to appropriately choose the parameters G, rcut, and the
number of degrees of freedom #K can be found in [215].

7.3.3 Implementation of the SPME method

After the presentation of the theory of the SPME method we can now con-
sider the actual implementation. We start with the three-dimensional variant
(DIM=3) of the program for the computation of the forces and the potentials
from Chapter 3, Section 3.5. This program only has to be changed in a few
places. Some routines are added which implement the computation of the
long-range forces and energies.

We already implemented the gravitational potential in Algorithm 3.7. If
we want to use the Coulomb potential instead, the charge of the particle is
needed as well. To this end, we extend the data structure 3.1 to include a
variable for the charge q as shown in data structure 7.1.

Data structure 7.1 Additional Particle Data for the Coulomb Potential
typedef struct {
... // particle data structure 3.1
real q; // charge

} Particle;

With this data structure we can already implement the computation of
the short-range force terms. Besides the classical short-range forces, which are
computed by force for the Lennard-Jones potential or those that result from
the potentials of Chapter 5, we also have to implement the additional short-
range term (7.40) from the SPME method that is caused by the shielding
Gaussian charge distributions. This additional term is computed in force sr
in Algorithm 7.1. For reasons of simplicity, we omit the factor 1/(4πε0) here,
since it can be eliminated by a proper scaling of the variables similar to
Section 3.7.3. For details see Section 7.4.2. However, to allow different scalings
we introduce an additional global parameter skal. The parameter G, also
globally defined, describes the width of the shielding Gaussians. The functions
erfc and the constant M 2 SQRTPI:=2/

√
π are taken from the header file

math.h of the math library of the programming language C.
With the programs from the linked cell method from Section 3.5 and

the new function force sr, we can already compute the short-range part
of the forces and integrate Newton’s equation of motion with the Störmer-
Verlet method. To this end, only the new function call to force sr has to
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Algorithm 7.1 Short-Range Terms (7.40) of the Coulomb Potential in the
SPME Method for the Linked Cell Method 3.12 and 3.15
real G; // parameter for the Gaussians
real skal = 1; // scaling parameter
void force sr(Particle *i, Particle *j) {
real r2 = 0;

for (int d=0; d<DIM; d++)

r2 += sqr(j->x[d] - i->x[d]); // distance squared r2=r2
ij

real r = sqrt(r2); // distance r=rij

real f = -i->q * j->q * skal *

(erfc(G*r)/r+G*M_2_SQRTPI*exp(-sqr(G*r)))/r2;

for (int d=0; d<DIM; d++)

i->F[d] += f * (j->x[d] - i->x[d]);

}

be inserted into the force computation compF LC after the call to force.
Alternatively, the body of function force sr could be appended to the body
of function force to obtain one function force for all short-range forces.42

What is still missing is the long-range portion of the forces. Besides the linked
cell structure already mentioned earlier, we need an appropriate mesh for the
SPME algorithm, functions for the interpolation of the particle charges to
this mesh, the solution of the discrete Poisson problem on the mesh, and the
evaluation of this solution at the particle positions for the computation of
the forces. We will present these parts of the algorithm in the following.

In code fragment 7.1 we show the basic approach for the interpolation of
the charges of the particles to a regular mesh. The details are written out in
the function compQ from Algorithm 7.2.

Code fragment 7.1 Interpolation to the Mesh
set Q = 0;

loop over all cells ic

loop over all particles i in cell ic {
determine the interpolation points for the interpolant Q for the
particle charge i->q in the SPME mesh using the macro index;

determine the values in array Q according to (7.60);
}

Here, the particles are stored in the linked cell data structure which is
based on a decomposition of the computational domain into a regular mesh
of cells ic. This linked cell grid grid will be described as before by a variable
42 Here, periodic boundary conditions have to be taken into account in the compu-

tation of the distance, compare also the remarks on page 76 in Section 3.6.4.
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Algorithm 7.2 Interpolation to the Mesh
void compQ(Cell *grid, int *nc, fftw_complex *Q, int *K, int pmax,

real *spme_cellh) {
int jc[DIM];

for (int i=0; i<K[0]*K[1]*K[2]; i++) {
Q[i].re = 0;

Q[i].im = 0;

}
for (jc[0]=0; jc[0]<nc[0]; jc[0]++)

for (jc[1]=0; jc[1]<nc[1]; jc[1]++)

for (jc[2]=0; jc[2]<nc[2]; jc[2]++)

for (ParticleList *i=grid[index(jc,nc)]; NULL!=i; i=i->next) {
int m[DIM], p[DIM];

for (int d=0; d<DIM; d++)

m[d] = (int)floor(i->p.x[d] / spme_cellh[d]) + K[d];

for (p[0]=0; p[0]<pmax; p[0]++)

for (p[1]=0; p[1]<pmax; p[1]++)

for (p[2]=0; p[2]<pmax; p[2]++) {
int mp[DIM];

for (int d=0; d<DIM; d++)

mp[d]=(m[d]-p[d])%K[d];

Q[index(mp,K)].re += i->p.q

* spline(p[0] + fmod(i->p.x[0], spme_cellh[0])

/ spme_cellh[0], pmax)

* spline(p[1] + fmod(i->p.x[1], spme_cellh[1])

/ spme_cellh[1], pmax)

* spline(p[2] + fmod(i->p.x[2], spme_cellh[2])

/ spme_cellh[2], pmax);

}
}

}

nc of type int[DIM]. Now, the SPME mesh is a new ingredient. It is in
general independent of the linked cell grid structure. We index it analogously
with the variable K that is also of type int[DIM]. The data associated to the
SPME mesh are stored in the linear array Q. In this array, we keep the real
values of the charges interpolated to the mesh according to (7.51), as well
as the results of the Fourier transform, of the scaling in Fourier space, and
of the inverse Fourier transform. We use a complex Fourier transform, and
therefore Q is declared as a complex array, see below. The linked cell grid and
the SPME mesh now have to be put into correspondence with each other.
This is implemented by a conversion of their coordinates using our macro
index, which we introduced in the implementation of the linked cell method
on page 61.
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The interpolation projects the particle charges i->q onto the SPME mesh.
To implement this, we first set all values of Q to zero. In a loop over the
particles, we add the contribution of each charge to the mesh. To this end,
we search for the appropriate interpolation points in the SPME mesh and
sum up the associated splines of order pmax weighted by the charges i->q.
A particle charge has an effect on pmax different SPME mesh cells in each
coordinate direction. Here, we use the mesh width h that is stored in the
variable spme cellh of type real[DIM].

We need a function spline for the evaluation of the splines. We implement
this function for the sake of simplicity43 in a recursive form according to (7.54)
and (7.55), see Algorithm 7.3.

Algorithm 7.3 Recursive Evaluation of a B-spline (7.54)
real spline(real x, int p) {
if ((x<=0.)||(x>=p)) return 0.;

if (p==2) return 1. - fabs(x-1.);

return (x * spline(x, p-1) + (p-x) * spline(x-1., p-1)) / (p - 1.);

}

In the next step, the Poisson problem with given right hand side Q has
to be solved on the SPME mesh. We use the fast Fourier transform (FFT),
a diagonal scaling, and the inverse fast Fourier transform. There are many
different implementations for the FFT. In our examples, we employ the ver-
sion 2.1.5. of the library FFTW by Frigo and Johnson [240].44 This library
and a description with usage guide and other details can be found on the
website http://www.fftw.org. The complex array Q is declared as the data
type fftw complex defined in the FFTW library.

For the solution of (7.29) we need the Fourier transform DF[Q] of Q, a
scaling of the results according to (7.66), and an inverse transform DF−1[Q].
This is implemented in the function compFFT from Algorithm 7.4 by the calls
to the function fftwnd one, the multiplication with D and a further call to
the function fftwnd one from the FFTW library.
43 Since the evaluation of the spline functions is needed frequently and demands

a relatively large amount of runtime in the described form, it would be advan-
tageous to further improve this implementation later on. One can for example
fix the spline order pmax, transform the recursive implementation into an itera-
tive one, and avoid the conditional statements. The resulting Neville-Newton-like
tableau can even be partially reused for the evaluation of the spline in neigh-
boring points. In addition, the coefficients of the interpolation scheme can be
precomputed once, stored in a table, and then be directly loaded from it when
needed.

44 Other FFT implementations can be found on the internet, for instance on the
website http://www.netlib.org.
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Algorithm 7.4 Computation of the Solution Q with FFTW
void compFFT(fftw_complex *Q, int *K, real *D) { // using FFTW library

fftwnd_one(fft1, Q, NULL); // complex in-place FFT

for (int i=0; i<K[0]*K[1]*K[2]; i++) {
Q[i].re *= D[i]; // scaling by the values from D

Q[i].im *= D[i]; // compute energy from (7.72)

} // here as well, if needed

fftwnd_one(fft2, Q, NULL); // inverse complex in-place FFT

}

Before calling compFFT, we have to compute the values of the scaling fac-
tors D and to initialize the FFTW library appropriately. This is implemented
in function initFFT in Algorithm 7.5.

Algorithm 7.5 Initialization for the FFT Solver
#include <fftw.h>

fftwnd_plan fft1, fft2;

void initFFT(real *D, int *K, int pmax, real *l) {
int k[DIM];

fft1 = fftw3d_create_plan(K[2], K[1], K[0],

FFTW_FORWARD, FFTW_IN_PLACE);

fft2 = fftw3d_create_plan(K[2], K[1], K[0],

FFTW_BACKWARD, FFTW_IN_PLACE);

D[0] = 0;

for (k[0]=K[0]/2; k[0]>-K[0]/2; k[0]--)

for (k[1]=K[1]/2; k[1]>-K[1]/2; k[1]--)

for (k[2]=K[2]/2; k[2]>-K[2]/2; k[2]--) {
int kp[DIM];

for (int d=0; d<DIM; d++)

kp[d]=(k[d]+K[d])%K[d];

real m = sqr(k[0]/l[0])+sqr(k[1]/l[1])+sqr(k[2]/l[2]);

if (m>0)

D[index(kp,K)] = exp(-m*sqr(M_PI/G))*skal/

(m*M_PI*l[0]*l[1]*l[2])*

bCoeff(pmax,K[0],k[0])*

bCoeff(pmax,K[1],k[1])*

bCoeff(pmax,K[2],k[2]);

}
}

In the initialization of FFTW, the two variables fft1 and fft2 of type
fftwnd plan (declared globally for reasons of simplicity) are to be set prop-
erly. Their initialization needs the direction of the Fourier transform, param-
eters describing the memory layout, but also the size K of the SPME mesh,
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since its prime factor decomposition and the order of the prime factors is
needed for an efficient FFT realization. The transforms are three-dimensional
and work in-place. The factors D are computed according to (7.65), using the
width of the Gaussians G, the spline order pmax, the mesh width K, and the
dimensions l of the domain.

As in the computation of the short-range forces in force sr, we allow for
a general scaling by the parameter skal. For the computation of the values
of

|B(k)|2 =
DIM−1∏

d=0

|BKd
(kd)|2

with BKd
(kd) from (7.59), we first note that |e−2πi(p−1)kd/Kd |2 = 1. Hence,

we only need to determine the expressions in the nominator of BKd
(kd), i.e.

the values of

∣∣∣ p−2∑
q=0

e−2πikdq/KdMp(q + 1)
∣∣∣−2

. (7.78)

They are computed in a loop from 0 to p − 2 in the function bCoeff from
Algorithm 7.6. This function calls the function spline from Algorithm 7.3
for the evaluation of Mp.

Algorithm 7.6 Computation of the Factors (7.78)
real bCoeff(int p, int K, int k) {
if ((p % 2 ==1) && (2*abs(k)==K)) return 0.;

real c=0., s=0.;

for (int q=0; q<=p-2; q++) {
c += spline(q + 1., p) * cos((2. * M_PI * k * q) / K);

s += spline(q + 1., p) * sin((2. * M_PI * k * q) / K);

}
return 1./(sqr(c)+sqr(s));

}

Finally, we have to compute the long-range forces at the particle positions
from the solution of the Poisson problem stored in Q. We assume that the
short-range forces have already been computed and we now add the long-
range forces. In code fragment 7.2 we present the basic approach.

A complete implementation can be found in the function compF SPME in
Algorithm 7.7. We traverse all particles from the linked cell structure as
already in the interpolation to the mesh in code fragment 7.1 and Algorithm
7.2. The particle coordinates are converted into coordinates with respect to
the SPME mesh. Now, we determine the interpolation points of the spline
approximation Q of the solution of the Poisson equation and compute its
gradient at the position of the particle. Again, we use splines of order pmax
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Code fragment 7.2 Computing Long-Range Forces from the Solution Q
loop over all cells ic

loop over all particles i in cell ic {
determine, using the macro index, the interpolation points of the
array Q for the evaluation of the long-range forces on the SPME mesh;
compute the force on particle i according to (7.74);

}

Algorithm 7.7 Computation of the Long-Range Forces from Q
void compF_SPME(Cell *grid, int *nc, fftw_complex *Q, int *K, int pmax,

real *spme_cellh) {
int jc[DIM);

for (jc[0]=0; jc[0]<nc[0]; jc[0]++)

for (jc[1]=0; jc[1]<nc[1]; jc[1]++)

for (jc[2]=0; jc[2]<nc[2]; jc[2]++)

for (ParticleList *i=grid[index(jc,nc)]; NULL!=i; i=i->next) {
int m[DIM], p[DIM];

for (int d=0; d<DIM; d++)

m[d] = (int)floor(i->p.x[d] / spme_cellh[d]) + K[d];

for (p[0]=0; p[0]<pmax; p[0]++)

for (p[1]=0; p[1]<pmax; p[1]++)

for (p[2]=0; p[2]<pmax; p[2]++) {
int mp[DIM];

real x[DIM], s[DIM];

for (int d=0; d<DIM; d++)

mp[d] = (m[d]-p[d])%K[d];

real q = i->p.q * Q[index(mp,K)].re;

for (int d=0; d<DIM; d++) {
x[d] = p[d] + fmod(i->p.x[d], spme_cellh[d])

/ spme_cellh[d];

s[d] = spline(x[d], pmax);

}
i->p.f[0] -= q * Dspline(x[0], pmax)

/ spme_cellh[0] * s[1] * s[2];

i->p.f[1] -= q * s[0] * Dspline(x[1], pmax)

/ spme_cellh[1] * s[2];

i->p.f[2] -= q * s[0] * s[1] * Dspline(x[2], pmax)

/ spme_cellh[2];

}
}

}
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and therefore need (pmax)3 cells of the SPME mesh. The derivative of the
spline function according to (7.56) is implemented in the function Dspline
in Algorithm 7.8.45

Algorithm 7.8 Derivative of a B-spline (7.56)
real Dspline(real x, int p) {
return spline(x, p-1) - spline(x-1., p-1);

}

Using these functions, we can implement the complete computation of
the forces in the SPME method concisely as in code fragment 7.3. First, the
short-range forces are computed with the function compF LC of the linked
cell method 3.15. There, the function force sr of the Algorithm 7.1 has
been inserted. Independently of the short-range computation, the particle
charges are interpolated with compQ to the mesh, and the Poisson problem is
solved with compFFT. Finally, the long-range forces on the mesh are computed
with compF SPME, then evaluated at the particle positions, and added to the
short-range forces.

Code fragment 7.3 Complete Force Computation with the SPME Method
compF_LC(grid, nc, r_cut);

compQ(grid, nc, Q, K, pmax, spme_cellh);

compFFT(Q, K, D);

compF_SPME(grid, nc, Q, K, pmax, spme_cellh);

The corresponding main program in Algorithm 7.9 has several new pa-
rameters compared to the original version of the linked cell method, such as
the width G of the Gaussians, the order of the splines pmax, as well as the
size K[DIM] and the mesh width spme cellh[DIM] of the SPME mesh. These
parameters have to be initialized or read from a configuration file at the be-
ginning of the program. The mesh width spme cellh of the SPME mesh can
be computed from K and the dimensions l of the domain according to (7.53).

Besides the linked cell data structure grid, the SPME mesh structures
Q and D have to be initialized in the main program. There, the necessary
amount of memory is allocated and the appropriate initialization routine
is called. The new time integration function timeIntegration SPME differs
from timeIntegration LC in that the extended force computation from code
fragment 7.3 is used. There, the force computation function force sr has
been inserted into compF LC.
45 This function can be further improved analogously to the remarks in footnote

43.
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Algorithm 7.9 Main Program of the SPME Method
int main() {
int nc[DIM], K[DIM], pmax;

real l[DIM], spme_cellh[DIM], r_cut;

real delta_t, t_end;

inputParameters_SPME(&delta_t, &t_end, nc, l, &r_cut, K,

spme_cellh, &G, &pmax);

Cell *grid = (Cell*)malloc(nc[0]*nc[1]*nc[2]*sizeof(*grid));

real *D = (real*) malloc(K[0]*K[1]*K[2]*sizeof(*D));

fftw_complex *Q = (fftw_complex*) malloc(K[0]*K[1]*K[2]*sizeof(*Q));

initFFT(D, K, pmax, l);

initData_LC(grid, nc, l);

timeIntegration_SPME(0, delta_t, t_end, grid, nc, l, r_cut,

Q, D, K, spme_cellh, G, pmax);

freeLists_LC(grid, nc);

free(Q); free(D); free(grid);

return 0;

}

7.4 Application Examples and Extensions

In this section we show some results for the simulation of particle systems
with the program described in the last section. In addition to the previously
implemented short-range potentials, a Coulomb potential will be used as an
interaction potential between the particles.

First, we consider two examples for an instability introduced by charges.
The setting is similar to the Rayleigh-Taylor problem which we studied in
Section 3.6.4, but now the dynamics of the particles is caused by the distri-
bution of charges. Next, we run a simulation in which a salt in crystalline
form (KCl) is slowly heated, melts, is cooled rapidly after melting, and then
transforms into a glass state. Finally, we study the behavior of water as an
example for a molecular system in which long-range forces play an impor-
tant role. We discuss different models for water, describe the implementation
of one specific model, and determine the self-diffusion coefficient for a small
system of 216 water molecules.

7.4.1 Rayleigh-Taylor Instability with Coulomb Potential

In this section we simulate an instability induced by the charges of the par-
ticles. It arises when layers of particles with different charges are put on top
of each other. Figure 7.10 (upper left) shows the initial state. The simulation
domain is filled completely with particles. The particles in a layer of half the
domain height (dark-shaded) carry positive charges, while all other particles
carry negative charges. This unstable state resolves by a mixing of the par-
ticles from the two subdomains. The mixing process depends on the “size”
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of the particles (given by the parameter σ of the Lennard-Jones potential)
and the charge differences. Before we describe the simulation in more de-
tail, we discuss the introduction of dimensionless equations for the Coulomb
potential.

Dimensionless Equations – Reduced Variables. As a further example
of how the quantities in the equations of motion can be put in nondimensional
form, we consider the mixture of two different types of particles (A or B)
which interact by a Lennard-Jones and a Coulomb potential. The potential
here reads (for the sake of simplicity in the nonperiodic case)

V =
N∑

i=1

N∑
j=1
j>i

1
4πε0

qiqj

rij
+

N∑
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j>i
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σij
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)12

−
(

σij

rij

)6
)

. (7.79)

Now, we select one type of particle (here the type A) and compute the scaling
based on its parameters. Analogously to Section 3.7.3, we scale the Lennard-
Jones potential by the values σ̃ = 2.22 Å, ε̃ = 1.04710−21 J, and m̃ = 1 u,
compare (3.55). Furthermore, the charges are scaled by

q′i = qi/q̃

with q̃ = 1 e.46 If one now defines ε′0 :=
4πε0σ̃ε̃

q̃2
, one obtains by substitution

into (7.79) the scaled potential energy
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Applying the gradient operator then results in the scaled forces
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In the two-dimensional example that we consider in the following47, the
two types of particles differ only in their charges so that ε′ij as well as σ′

ij are
eliminated after the re-scaling.

Figure 7.10 shows the results of a simulation for 14000 particles with
the parameter values (after scaling) of Table 7.1. At the beginning of the
simulation, the particles are placed on a regular grid of 200× 70 grid points
and are perturbed by a small thermal motion. The particles in the middle
layer carry a charge of q′A, while the other particles carry a charge of q′B .
46 The atomic mass unit is u = 1.6605655 · 10−27 kg, and the elementary charge is

e = 1.6021892 · 10−19 C.
47 The algorithm simulates the example in three dimensions; to this end, the third

coordinate of the position is set to a constant value, and the third coordinate of
the velocity is set to zero.
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t=0 t=2.4

t=3.0 t=4.0

Fig. 7.10. Instability with Coulomb potential, σ′
A = σ′

B = 1, time evolution of the
particle distribution.

t=0 t=2

t=4 t=6

Fig. 7.11. Instability with Coulomb potential, σ′
A = σ′

B = 0.4, time evolution of
the particle distribution.
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L′
1 = 144, L′

2 = 60,
ε′A = ε′B = 1, σ′

A = σ′
B = 1,

q′A = 0.5 , q′B = −0.5,
m′

A = m′
B = 23, N = 14000,

r′cut = 6, δt′ = 0.001,
T ′ = 0.1, G′ = 0.175,
h′ = 1, pmax = 4,

skal = 992.573

Table 7.1. Parameter values for the simulation of an instability with Coulomb
potential.

Fibrous, mushroom-shaped structures emerge, similar to the simulation of
the Rayleigh-Taylor instability from Section 3.6.4. The results of the simula-
tion depend strongly on the values of the parameters σ′

A and σ′
B. Figure 7.11

shows the result of another simulation with σ′
A = σ′

B = 0.4; all other param-
eters are kept unchanged. In this case the particles mix diffusively since their
smaller “size” allows them to pass each other more easily.

7.4.2 Phase Transition in Ionic Microcrystals

Now, we consider a three-dimensional example. We study the melting of salt
crystals (KCl) and the subsequent emergence of a glass state after cooling.
Here, the K+ and Cl− ions introduce non-negligible long-range terms into
the potential.

The melting of salt crystals has already been simulated in [33] and the
emergence of a glass phase has been observed in [324]. Despite the very short
time spans that can be treated in molecular dynamical simulations up to
now (in the range of picoseconds to microseconds), such computations help
to better understand the mechanisms of melting (especially the microscop-
ical details of the melting progress) and they can contribute to a theory
of melting, compare [238, 299]. As potentials for the simulation of the phase
transition in salts, the Born-Mayer-Huggins and the Tosi-Fumi potential [241]
have been used. Parameters for the potentials for different salts can be found
in [543]. The behavior of KCl has been simulated with the Tosi-Fumi poten-
tial in [383]. For a comparison of the results of the simulations with results
of experiments see [543]. The behavior of KCl for all of its possible phase
transitions was studied in a simulation in [41].

As potential we use a Coulomb interaction potential together with a short-
range repulsive term

U(rij) =
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qiqj
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)8
)

,

compare [468]. The force between two ions i and j with distance rij is given
by
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The parameters σij are computed with the Lorentz-Berthelot mixing rule
(3.37).

In our simulation we scale by σ̃ = 1 rB , q̃ = 1 e, m̃ = 1 u and ε̃ =
e2/(4πε0rB). Here, rB = 0.52917721Å is the Bohr radius. This scaling differs
somewhat from the ones introduced up to now, since rB is used instead of
σK or σCl in the scaling. With this scaling one obtains the scaled force
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We consider a cubic simulation box with periodic boundary conditions
which contains in its center a small cubic microcrystal consisting of 123 ions
(alternatingly K+ and Cl− ions) at equilibrium with a temperature of 10
K. This crystal is heated up to a temperature of 2000 K by first scaling the
velocities for 25 time steps by a factor of β = 1.001 and then simulating
the system for 600 time steps without any scaling (equilibration). When the
temperature of 2000 K is reached, the system is cooled down to a temperature
of 10 K by scaling the velocities for 25 time steps by a factor β = 0.999 and
then equilibrating the system for 600 time steps without any scaling. The
parameter values used in the simulation are given in Table 7.2.

L′
1 = 144, L′

2 = 144, L′
3 = 144,

σ′
K = 2.1354, σ′

Cl = 2.9291,
m′

K = 38.9626, m′
Cl = 35.4527,

q′K = 1, q′Cl = −1,
r′cut = 24, δt′ = 1.0,

h′ = 4, G′ = 0.1,
N = 123, pmax = 4, skal = 1

Table 7.2. Parameter values of the simulation of the melting of KCl.

In this simulation one can observe both the phase transition from solid to
fluid and the transition into a glass phase. Figure 7.12 shows the particle dis-
tribution before the melting (left), after the melting in a fluid state (middle),
and in a glass state (right).
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Fig. 7.12. KCl before the melting (left), t = 5.2 ps, after the melting in a fluid state
(middle), t = 144.6 ps, and in a glass state (right), t = 309.8 ps, NVE ensemble.
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Fig. 7.13. Graph of the intrinsic energy over the temperature from a simulation
of the melting and of the formation of a glass state for KCl.

In Figure 7.13 we show the intrinsic energy versus the temperature. The
values of V and T (and of the kinetic energy Ekin) are computed as averages
over the last 250 time steps of an equilibration phase (which consists of 625
time steps). One can clearly recognize that a phase transition occurs during
heating. The cooling does not restore the crystal state, but it transforms the
salt into a glass state. The melting point in our simulation is about 1010 K,
the glass formation point is about 310 K, and the heat of fusion is 1400 K. For
macroscopic samples, [324] reports the physical values 1045 K for the melting
point and 1580 K for the heat of fusion. The melting point in the simulation
is lower since the ratio of surface to volume is significantly larger for the
macroscopic sample and the crystal starts melting at the surface first. The
specific heat can be computed from the slope of the line drawn in Figure 7.13.
Here, the specific heat of the liquid is larger than the specific heat of the solid.
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7.4.3 Water as a Molecular System

In this section we consider the simulation of molecules with a Coulomb term in
the interaction potential. To this end, we focus on water as an example. Here,
we use a slightly extended version of the program developed above: If namely
some specified pair interactions are not to be considered in the molecule, we
have to correct the electrostatic energy of the entire system appropriately. It
is then advantageous to strictly distinguish between the intermolecular and
intramolecular terms in the electrostatic energy.

The potential induced by a Gaussian charge qj (G/
√

π)3 e−G2‖x−xn
j ‖2

at
the point xn

j is
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||xn
j − x|| ,

compare (7.41). The energy of the particles within a molecule48 is then
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The sum in this equation here runs over all pairs of atoms within the
molecules. In total, we obtain an electrostatic energy of

VCoulomb = V lr
other − Vself + V sr − V molecule

self + V molecule (7.82)

with the terms
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with V molecule
self and Vself as defined in (7.81) and (7.70), respectively, V lr

other

as defined in (7.31), and V molecule as defined in (5.38). The associated forces
are obtained as gradients of the energies.

On this basis, we study in the following some properties of water. Water
is the most abundant liquid on earth, it is important in biology, biochem-
istry, physical chemistry, and plays a central role in many of the processes
48 To keep the notation simple, we here assume that the molecule is contained

entirely within the simulation box. For molecules that cross the boundary and
therefore extend over one or more neighboring images of the simulation box, this
periodicity has to be taken into account in the inner sum over the parts of the
molecule.
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studied there. However, the geometric and electronic structure of its molecule
makes water a very complex many-particle system. The water molecule con-
sists of two hydrogen atoms and one oxygen atom. It assumes a tetrahedral
form, with the oxygen atom in the center, the two hydrogen atoms at two of
the vertices, and charge clouds with negative charges at the other two ver-
tices, compare Figure 7.14. The charge clouds result from the way hydrogen
and oxygen bond in the water molecule. Simply speaking, oxygen has eight
negatively charged electrons, with two belonging to the inner (and thereby
complete) electron shell and six belonging to the outer electron shell. The
outer shell can have up to eight electrons, however. In the bond with the two
hydrogen atoms, the electrons of the hydrogen atoms are attracted to the
oxygen atom, since the outer electron shell of oxygen tends to be filled com-
pletely. This implies a higher probability of finding the hydrogen electrons
close to the nucleus of the oxygen atom than to find them close to the pos-
itively charged hydrogen nuclei they are associated with. This is the reason
the water molecule is polar: It has two clouds of negative charge closer to
the oxygen atom, and the hydrogen nuclei possess a corresponding positive
charge. The angle between the two approximately 1 Å long hydrogen-oxygen
bonds is at about 105 degrees. This is somewhat smaller than the 109.5 degree
angle in a perfect tetrahedron.

Fig. 7.14. A water molecule in ball-and-stick representation (left) and the proba-
bility density function for the electrons (right).

The flexible triangular structure and the characteristic asymmetry of the
electron cloud of the water molecule makes different interactions with other
water molecules or polar groups possible. In such interactions between water
molecules, a positively charged hydrogen atom of one water molecule forms a
so-called hydrogen bond with the negatively charged oxygen atom of another
water molecule. Two such bonds are possible between the two hydrogen atoms
of a water molecule and the oxygen atoms of two other water molecules. Two
other such bonds are possible between its oxygen atom and the hydrogen
atoms of two other water molecules. In this way, many different networks and
clusters of water molecules of different size can emerge that again interact
with each other and with other dissolved molecules. Note that the number of
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hydrogen bonds per water molecule in its fluid form varies between three and
six, with an average of 4.5. The tetragonal form of its molecule gives water a
structure that is much more loosely packed than the structure of most other
fluids, such as oil or liquid nitrogen.

For a realistic molecular dynamical simulation of water, we need a model
that represents the polarity of the water molecules and allows for hydrogen
bonds just like the “real” water molecule does. Let us first consider models
that are both stiff and not polarizable. Then, two kinds of interactions be-
tween the atoms (which are assumed to be arranged with constant distances
and angles) of a H2O molecule have to be taken into account: The electro-
static forces and the van der Waals forces, which are described by Coulomb
potentials and Lennard-Jones potentials, respectively. Other contributions
from dipole moments and quantum mechanical effects are not treated sepa-
rately, but enter into the choice of the parameters of the potentials.

The first simulation of water molecules was performed by Rahman and
Stillinger in the early seventies of the last century [499]. They studied the
dynamics of 6× 6× 6 = 216 water molecules in a square box for five picosec-
onds. The simulation reproduced, at least qualitatively, important physical
properties of water such as the diffusion rate, the evaporation rate, and radial
distribution functions.

In the meantime, an entire series of different water models has been devel-
oped and studied. One can classify them according to the number of modeled
interaction sites. The simplest model consists of three point charges to which
effective pair potential functions are attached. The starting point was the
TIPS3 (transferable intermolecular potential with 3 sites) model [345]. The
three point charges are given by the oxygen atom and the two hydrogen
atoms. The hydrogen atoms carry positive fractional charges and the oxygen
atom carries an opposite charge of twice the magnitude. These charges enter
into Coulomb interactions. An additional Lennard-Jones force acts between
the oxygen atoms of the water molecules. An improved set of parameters,
which were adapted to the case of liquid H2O, resulted in the SPC model
(simple point charge) [81]. An extension thereof lead to the SPC/E model
(extended simple point charge) [79] and a different reparametrization of the
TIPS3 model for the case of liquid H2O resulted in the TIP3P model [347].

Fig. 7.15. Positions of the centers of mass and charge for four- and five-site models
of water.
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Better results can be obtained by models that use four interaction sites.
Here, the three-site model is only changed with respect to the position of the
negative charge of the oxygen atom. It is slightly moved on the bisector of
the H-O-H angle away from the oxygen atom towards the hydrogen atoms,
see Figure 7.15 (left). Such a model had been first proposed by Bernal and
Fowler [86]. TIPS2 [346] and TIP4P [347] are variants with changed geometry
and improved parameters.

Five interaction sites are used in the model of Ben-Naim and Stillinger
[77], as well as in the improved models ST2 [583], ST4 [306] and TIP5P
[404]. Here, the negative charge of the oxygen atom is distributed to two
sites so that the charges form an equilateral tetrahedron. The mass of the
oxygen atom is located in its center, see Figure 7.15 (right). To evaluate
the resulting potential, one has to compute seventeen distances, which is
relatively expensive when compared to the ten distances of a four-site model
and the nine distances of a three-site model. Therefore, four-site models are
most-often used in practice because they are more economical than five-site
models but deliver more accurate results than the simpler three-site models.
A more detailed description of these different models together with parameter
sets, references to the literature, and an accuracy comparison can be found
for instance in [79, 347, 404]. Newer comparisons with experimental data are
given in [575].

Even though the geometry and the parameters of the potentials of these
models have been continuously adapted over time, it is still not possible
to achieve a good approximation of all the properties of water that can be
measured in experiments. To this end, we have to turn to more sophisticated
water models which are either polarizable or where the charges fluctuate,
as for instance in the WK [655], TIP4P-FQ [518], POL5 [582] and SWFLEX
[638] models. In these models, the charges and therefore the potentials depend
on the neighboring atoms, modeling electron clouds that can deform and
adapt to their environment.

The parameters of the potentials are usually chosen by a comparison of
data from experiments with results from Monte-Carlo simulations in which
the force is truncated at a sufficiently large radius rcut and which is then
evaluated with the linked cell method. The results of the simulations de-
pend on the cutoff radius rcut [633] and on the chosen ensemble [405]. Other
approaches use the PME method [215], reaction fields [633], or the Ewald
summation method for water modeled by SPC and TIP3P models [100, 219].
A study of boundary conditions that resemble a dielectric environment of
the observed system such as water, can be found for the SPC water model in
[400].

In the TIP3P model the electric charge of the oxygen atom is chosen as
−0.834 e, and the charges of the hydrogen atoms are correspondingly chosen
to be 0.417 e, where e denotes the elementary charge. The geometry of the
water molecule is given by the fixed distance of the hydrogen and oxygen
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atoms and the fixed angle of the H-O-H bonds. In this model, the distance is
chosen to be 0.957 Å and the angle is chosen to be 104.52 degrees. Also, with
this fixed geometry, Lennard-Jones interactions are only computed between
oxygen atoms. Instead of the original nine degrees of freedom, the entire water
molecule then has only six degrees of freedom, which can be parametrized by
the center of mass and three angles.

It is both advantageous in our context and results in a simpler algorithm,
to move the hydrogen and oxygen atoms separately and to use the original
nine degrees of freedom. The distances and angles are fixed with the appro-
priate bond potentials, as described in Section 5.2.2. Furthermore, we use
Lennard-Jones forces with the appropriate mixing rule between all atoms
from different molecules. Note that this is different to the TIPS3 model in
which only the oxygen atoms from different molecules interact in this way.
The parameters for our model are given in Table 7.3.

distance potential O-H r0 = 0.957 Å, kb = 450 kcal/mol,
angle potential H-O-H θ0 = 104.52 degrees, kθ = 55 kcal/mol,
Coulomb potential qH = 0.417 e, qO = -0.834 e,
Lennard-Jones potential εH = 0.046 kcal/mol, σH = 0.4 Å,

εO = 0.1521 kcal/mol, σO = 3.1506 Å,
mH = 1.0080 u, mO = 15.9994 u

Table 7.3. Parameter values for the TIP3P-C water model.

An analogous model with a slightly different set of parameters is used in
CHARMM [125]. We call the new water model TIP3P-C. Even though it is
still a three-site model, it already has fluctuating charges and can be more
easily implemented in our context. But because of the bond potential, we
have to use smaller time steps (δt = 0.1 fs) than with a stiff water model or
with frozen bonds (δt = 1 fs).

Now, we simulate the self-diffusion of water. To this end, we place 216
TIP3P-C water molecules into a periodic box with a length of 18.77 Å. The
particle system is first equilibrated in the NVE ensemble to a temperature of
300 K and a density of 0.97 g/cm3. The simulation then proceeds at constant
temperature. We compute all bond and angle terms explicitly, i.e., we do not
freeze any degrees of freedom. The SPME method from Section 7.3 is applied
for the long-range Coulomb terms. We use a time step of 0.1 fs. The values
of the parameters for the simulation are summarized in Table 7.4.

In our simulation we compute an approximation to the self-diffusion co-
efficient, which is given as the limit t → ∞ of

D(t) =
N∑

i=1

d2
i (t)

6Nt
,



292 7 Mesh-Based Methods for Long-Range Potentials

L1 = 18.77 Å, L2 = 18.77 Å, L3 = 18.77 Å,
N = 216 H2O, T = 300 K, ρ = 0.97 g/cm3,

rcut = 9.0 Å, δt = 0.1 fs, tend = 100 ps,
h = 1 Å, G = 0.26 Å−1, p = 6

Table 7.4. Parameter values for the simulation of water with the TIP3P-C model.

compare also (3.61). Here, di(t) is the distance49 from the center of mass of
the molecule i at time t to its initial position xi(t0) at time t0. In our exam-
ple, the value of D is measured every 0.5 ps. After every 10 ps the current
configuration is used as the new initial position for the next measurement,
i.e., t0 is reset. In this way, it can be checked whether the values vary only
statistically or whether the system has not yet been equilibrated for a suffi-
ciently long time span. Typically the value for D is taken at the end of such a
series of measurements, since then the particle system is as much equilibrated
as possible. We also determine the potential energy of the system.

Figure 7.16 shows two different views of the spatial distribution of the
water molecules at a certain time during the simulation. Here, a clustering can
be observed. Figure 7.17 shows the evolution of the computed approximation

Fig. 7.16. Two different views of 216 water molecules simulated with the TIP3P-C
model.

49 For the case of periodic boundary conditions as in our simulations, this distance
must be measured from the actual position of the particle. If a particle leaves
the simulation domain at one side of the simulation domain and enters it from
the opposite side, we therefore correct the value of its initial position x(t0) ac-
cordingly.
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Fig. 7.17. Self-diffusion coefficient for the TIP3P-C water model.

to the self-diffusion coefficient D over time. Its measurement starts after 5
ps. The restart of the computation after every 10 ps results in a jump of the
graph. At the end of the simulation, the computed approximation of D is
about 4.1 · 10−9 m2/s. The potential energy varies in a 2% range around the
value of −9.63 kcal/mol. These values are given in Table 7.5 together with
values from other references for comparison.

model reference diffusion [10−9 m2/s] reference Epot [kcal/mol]

ST2 [583] 4.2 [583] −9.184
TIP5P [404] 2.62 [404] −9.86
POL5/TZ [582] 1.81 [582] −9.81

TIP4P [347] 3.29 [633] −9.84
TIP4P (reaction field) [633] −10.0
TIP4P-FQ [518] 1.9 [638] −9.89
WK [655] 1.1

SPC [655] 3.3 [633] −9.93
SPC/E [405] 2.49 [633] −11.2
TIP3P (linked cell) [347] 5.19 [633] −9.60
TIP3P (PME) [215] 5.1 [215] −9.5
TIP3P-C (PME) 4.1 −9.63

data from experiments [365] 2.30 [633] −9.96

Table 7.5. Simulation results using the TIP3P-C water model in comparison with
other models for normal conditions 105 Pa and 300 K or 307.5 K (depending on
reference).

Our computed potential energy is close to the results for the TIP3P model
and tends towards the values obtained with the TIP4P and TIP5P models
and the experimentally observed result. For the diffusion coefficient, our value
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differs somewhat from that of the TIP3P model. Note here that the value
measured in experiments at 300 K is 2.3 · 10−9 m2/s [365]. This value is
reproduced relatively well by the more expensive four-center and five-center
models.50 Also our TIP3P-C model, which is more expensive than the original
TIP3P model, reproduces these results better and yields a somewhat more
accurate, i.e. lower value for the diffusion coefficient. However, the small
number of particles still causes relatively large statistical fluctuations in the
measured values.

In addition to the water molecules one can also take further atoms and
molecules into account, like peptides or proteins [251]. This leads to the sim-
ulation of structures dissolved in an aqueous solution. We discuss some ex-
periments in this direction in the Sections 9.1, 9.2 and 9.3.

7.5 Parallelization

We now turn to the parallelization of the program from Section 7.3. Our
parallel SPME code will be based on our parallelized linked cell method,
extended by a parallel version of the computation of the long-range forces.
The parallelization of the program modules responsible for the evaluation of
the short-range terms in the forces and the potential, and for the motion of
the particles has already been described in Chapter 4.

The choice of suitable parallelization strategies for mesh-based methods
for the computation of long-range forces depends on the components used in
the method. A discussion for different computer architectures can be found
for instance in [221, 606, 679]. In the following, we again consider parallel
computers with distributed memory and we use a domain decomposition
technique as parallelization strategy. We moreover rely on the communication
library MPI, see also Chapter 4 and Appendix A.3.

We do not discuss the parallelization of the fast Fourier transform here
[140, 595], instead we opt for a modular implementation so that readers
can apply a parallel FFT of their choice. However, the data distribution
of this FFT implementation has to match that of our domain decomposition
approach. This is the case for instance for the parallel implementation fft 3d
of Plimpton [15], which can be based on the FFTW library [240].

7.5.1 Parallelization of the SPME Method

Now, we discuss the parallelization of the SPME method in more detail. To
this end, the following steps have to be implemented:
50 More accurate simulation results can be obtained for systems containing a small

number of water molecules with ab initio methods and the DFT approach [138,
555, 578].
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– The sums (7.60) in the computation of the array Q have to be computed
in parallel.

– The vector a from (7.66) has to be computed in parallel. This includes in
particular the computation of a parallel fast Fourier transform of Q.

– A parallel fast inverse Fourier transform of a has to be computed.
– The sum (7.71) in the computation of the long-range energy terms has to

be computed in parallel. First, partial sums are computed by each pro-
cess. Then, the results of each process are added up. This can be directly
implemented in a communication step with MPI Allreduce.

– The sums (7.74) in the computation of the long-range force terms have to
be computed in parallel.

The first three steps correspond to the solution of the potential equation. The
last two steps implement the computation of the long-range energy terms and
the long-range force terms.

Domain Decomposition as Parallelization Strategy. For the paral-
lelization, we again use the domain decomposition strategy. Here, we build
on the decomposition (4.2) of the simulation domain Ω into the subdomains
Ωip with the multi-indices ip to distribute the data to the processes and
thereby to the processors, compare Figure 7.18. It has already been used in
the parallelization of the linked cell method.

The data exchange necessary for the parallel execution of the linked cell
code is already known from Sections 4.2 and 4.3. In addition, we assume that
the numbers K[d] of degrees of freedom of the SPME mesh used in the dis-
cretization of the potential equation are (componentwise) integer multiples
of np[d]. This assumption guarantees that the decomposition of the simu-
lation domain in the linked cell method is also a valid decomposition of the
SPME mesh and can therefore be used to distribute the SPME mesh to the
processes, compare Figure 7.18.

Fig. 7.18. The decomposition of the domain Ω into subdomains Ωip implies a
distribution of the cells in the linked cell method (left) as well as a distribution of
the degrees of freedom of the SPME mesh (right) to the processes.
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The subdomains Ωip are again decomposed into
∏DIM−1

d=0 K[d]/np[d] mesh
cells each. The necessary computations for the long-range terms in the forces
and the energy are performed by each process, but only on the local data
assigned to it. However, at certain points during the computation, each pro-
cess needs data that are assigned to neighboring processes or that have been
computed by neighboring processes. Therefore, in each time step in the com-
putation of the long-range force and energy terms, these data have to be
exchanged between processes that handle neighboring subdomains.

Communication between the processes is thus necessary at the following
three points of the algorithm:

– After the computation of Q according to (7.60).
– During the fast Fourier transform and the fast inverse Fourier transform.
– Before the computation of the forces according to (7.74).

To compute Q and the forces on some of the particles in its subdomain, each
process needs values within a border neighborhood of width pmax − 1 across
the lower, front, and left boundary from neighboring subdomains. This results
from our chosen definition of B-splines in (7.55). To store this data of the
border neighborhoods, each subdomain is extended by pmax − 1 cell rows in
these directions. If the data in the border cells are copied to the process and
thus are locally available, the process can compute the array Q and the forces
on the particles in its subdomain independently of other processes. This works
for all processes and subdomains, and allows for the parallel computation of
the forces on the particles. In the following, we consider the three points of
communication separately.

Computation of Q. According to (7.60), the array Q is computed as follows

Qm =
∑
n∈Z3

N∑
j=1

qj

3∏
d=1

Mp((xj)dKd/Ld − md − ndKd).

The multi-index m in this formula runs over all SPME mesh points. A particle
at the position x influences the value of Q at all mesh points m with

0 ≤ (x)d

hd
− md < pmax, with the mesh width hd =

Ld

Kd
, d ∈ {1, 2, 3}.

These are its so-called support points. If the particles and meshes are dis-
tributed to the processes, each process computes the sum only over the par-
ticles associated to it.

It may happen at the left, lower, or front local boundary that the mesh
points m needed in the summation belong to other processes. The correspond-
ing border neighborhoods of the subdomain have been shown schematically
in Figure 4.6 already. But in this way, each process also computes parts of
the sum that are associated to other processes. For our definition of the Mp
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in (7.54), (7.55), the border neighborhoods have a width of pmax − 1, and are
situated next to the left, lower, and front boundary of the subdomain. To
compute Q completely, these data are needed on neighboring processes and
thus have to be sent there.

The data to be exchanged between processes lie at the left, lower, and
front border of the subdomain. The exact memory layout of those layers of
mesh cells of width pmax-1 depends on the parallel FFT used. Similar to
the parallelization of the linked cell method, one could extend the local Q
array by a border neighborhood. However, the FFT library – FFTW – that
we chose in the sequential case uses a linearized array to describe the three-
dimensional grid. It is easy to distinguish between border neighborhood cells
and interior cells of the grid if one uses a multi-index ic, but it is difficult to
distinguish them using the linear cell indices computed by index. The parallel
FFT is only computed on the data inside the subdomain, and therefore the
FFT would have to differentiate explicitly between border neighborhood cells
and interior cells. Essentially this means that the FFT would have to work
internally with an analogous index computation. An alternative approach is
not to extend the array for Q explicitly, but to introduce new arrays for the
border neighborhoods. Then, the loops in the computation of the interpolants
and in the evaluation of the forces have to be split into loops over the mesh
points over the different arrays. This approach is the more flexible one since
the parallel FFT does not have to be changed.

The actual communication of data then consists in the transport of these
border neighborhoods, as already shown in the Figures 4.9 and 4.10 for the
particle moving in the linked cell method. The received data are added to
the local values. We have to send and receive mesh data, similarly to how
we already sent and received particle data in Algorithm 4.7. But unlike the
number of particles there, the number of values to be sent is now determined
a priori and can be computed from the mesh structure. Furthermore, only one
communication in each direction is necessary. In this way, also values in the
corners are sent to the correct processes. Again, one has to handle the special
cases for subdomains next to the boundary ∂Ω of the simulation domain Ω
which are caused by periodic (or other) boundary conditions. At the end of
these communication steps, all values of Q are completely determined, and
they are distributed to all processes according to the domain decomposition
layout.

Fast Fourier Transform, Scaling, and Inverse Transform. The par-
allel fast Fourier transform can now be applied to the distributed data. Of
course, data has to be exchanged also during the Fourier transform, as well
as during the fast inverse Fourier transform. However, a parallel FFT does
in general not use the additional border neighborhood arrays that we intro-
duced for the evaluation of the splines, it uses other, internally defined data
and communication structures. Therefore, it is sufficient to call the parallel
FFT with the array Q that is distributed across the processes. We will not
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discuss the implementation of the parallel FFT in more depth. Instead we
refer to the literature and the available software packages [15, 240]. How-
ever, the distribution of the data in the parallelized FFT should match with
the one in our domain decomposition approach. We use in the following the
parallel FFT routine fft 3d developed by Plimpton in [15].

After the execution of the parallel Fourier transform, the Fourier trans-
formed data have to be multiplied with the factor (7.65). The different mul-
tiplications are independent of each other and do not require any communi-
cation.

Finally, a parallel fast inverse Fourier transform has to be applied to
the scaled data. After this step, the result DF−1[a] of the inverse Fourier
transform is stored in distributed form across all processes.

Computation of the Forces. The summation over the mesh points in the
computation of the force on one particle in a subdomain can be restricted
to the support of the associated spline Mp. In the parallel execution of the
program, each process computes the forces on all those particles that lie
within its subdomain Ωip. In this computation the process needs the values
of DF−1[a] also in a border neighborhood of width pmax−1. Correspondingly,
the computation of the forces needs this data from the neighboring processes
which are associated to the front, lower, and left neighboring subdomain. The
data are stored in the previously introduced additional arrays for the border
neighborhoods. We already presented an analogous data exchange in the
Figures 4.7 and 4.8 for the force computation in the linked cell method and
we implemented it in Algorithm 4.6. In-between the communication steps,
the received data have again to be copied into the mesh data structure to
ensure that they can be transmitted further in the next communication step.

Altogether, we obtain the parallel Algorithm 7.10 for the computation of
the long-range terms.

Algorithm 7.10 Parallel SPME Algorithm
compute the scaling factors D;
compute the interpolant of the charge by each process for its subdomain Ωip

including border neighborhoods;
exchange data from the border neighborhoods and add them to the local Q;
perform a parallel FFT;
compute the electrostatic energy and a;
perform a parallel inverse FFT;
exchange data of the border neighborhood;
compute the forces locally by each process;

Note that our definition of the splines Mp in (7.54) and (7.55) offers the
advantage that data only have to be sent to the left, lower, and front neigh-
boring processes and vice versa, and not also to the right, upper, and back
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neighboring processes. This significantly reduces the number of communica-
tion steps, but not the amount of data to be transported.

7.5.2 Implementation

Subdomain. We start with the description of the subdomain Ωip associated
to a process. The type SubDomainSPME is declared in data structure 7.2. It
collects all the data that a process needs for its computations.

Data structure 7.2 Subdomains, Cells and Neighboring Processes of Ωip

typedef struct {
struct SubDomain lc; // data structure 4.1 linked cell

int K[DIM]; // SPME mesh cells
int K_lower_global[DIM]; // global index of the first mesh point

// of the subdomain
int K_start[DIM]; // width of border neighborhood, also

// smallest local index inside the subdomain
int K_stop[DIM]; // first index following the upper border

// neighborhood of the subdomain
int K_number[DIM]; // number of mesh points in the subdomain

// including border neighborhoods
real spme_cellh[DIM]; // mesh width of the SPME mesh

} SubDomainSPME;

In code fragment 7.4, the appropriate values for the subdomain are com-
puted from the values for the entire domain Ω together with the process
number.51

The next step towards a parallel SPME method is the adaptation of
the sequential code to this new generalized domain decomposition. The
first step is the replacement of the sequential linked cell method for the
short-range force terms with its parallel version (see Chapter 4). For the
treatment of the long-range force terms we have to adapt the code to
the new subdomains: We change all loops running over all mesh points in
compQ SPME, etc., into loops that run only over the local subdomain. Here,
we do not only have to appropriately change the stopping criteria for the
loops, but we also have to take into account that the data are distributed
over two arrays Q and Q boundary; i.e., every code segment accessing mem-
ory in the form for (int d=0; d<DIM; d++) kp[d]=(k[d]-p[d])%K[d];
Q[index(kp,K)].re = ... has to be changed appropriately.
51 Compare also data structure 4.1 and code fragment 4.1 for the analogous con-

struction for the grid in the linked cell method.
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Code fragment 7.4 Initialization of the Data Structure SubDomainSPME
void inputParameters_SPMEpar(real *delta_t, real *t_end, int pmax,

SubDomainSPME *s) {
inputParameters_LCpar(delta_t, t_end, &(s->lc));

... // set s->K

for (int d=0; d<DIM; d++) {
s->spme_cellh[d] = s->lc.l[d] / s->K[d];

s->K_start[d] = pmax-1;

s->K_stop[d] = s->K_start[d] + (s->K[d]/s->lc.np[d]);

s->K_number[d] = (s->K_stop[d] - s->K_start[d]) + s->K_start[d];

s->K_lower_global[d] = s->lc.ip[d] * (s->K[d]/s->lc.np[d]);

}
}

Main Program. The changes in the main program are minimal, see Al-
gorithm 7.11. The routine inputParameters SPMEpar, as described in code
fragment 7.4, determines the subdomain for each process. Memory is allo-
cated for the arrays D and Q as well as for the border neighborhood array
Q boundary of Q. Furthermore, the parallel FFT library has to be initialized
with the routine initFFTpar before time integration is started.

In the routine timeIntegration SPMEpar for the time integration, which
is given in code fragment 7.5, one only has to add the calls to the routines
compQpar for the parallel computation of the interpolant, compFFTpar for the
parallel solution of the Poisson equation, and compF SPMEpar for the parallel
evaluation of the long-range force terms.

Exchange of Boundary Data and Parallel Evaluation of Forces. The
code fragments 7.6 and 7.7 present the implementation of the parallel inter-
polation and the parallel evaluation of the forces. As in the parallel linked cell
method, a further communication step is introduced after the computation
of the interpolant and before the evaluation of the forces. The corresponding
border neighborhood of the subdomain Ωip is shown in Figure 4.6 (right).
The communication after the computation of the interpolant, in which the
data in the border neighborhood is sent, was already shown in Figure 4.10.
It has to be implemented appropriately in the routine compQ comm. Data
are transported in exactly opposite order (see Figure 4.8) in the routine
compF SPME comm, which is executed before the computation of the long-range
force terms in compF SPME. There, data from the left, lower, or front border
have to be sent to the corresponding neighbors.

Communication. The entire communication between neighboring pro-
cesses52 is again to be implemented in a central routine like sendReceiveCell
which allows to realize the communication patterns of the Figures 4.8 and
52 Except for the communication in the parallel FFT.
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Algorithm 7.11 Main Program of the Parallel SPME Method
int main(int argc, char *argv[]) {
int N, pnc, pmax;

real r_cut;

real delta_t, t_end;

SubDomainSPME s;

int ncnull[DIM];

MPI_Init(&argc, &argv);

inputParameters_SPMEpar(&delta_t, &t_end, &N, &s, &r_cut, &G, &pmax);

pnc = 1;

for (int d = 0; d < DIM; d++)

pnc *= s.lc.ic_number[d];

Cell *grid = (Cell*) malloc(pnc*sizeof(*grid));

pnc = 1;

for (int d = 0; d < DIM; d++)

pnc *= s.K_stop[d]-s.K_start[d];

real *D = (real*) malloc(pnc*sizeof(*D));

fft_type *Q = (fft_type*) malloc(pnc*sizeof(*Q));

// data type fft_type depends on the chosen FFT library
fft_type *Q_boundary = (fft_type*) malloc(.... *sizeof(*Q));

// arrays for the border neighborhood of the Q array,
// its memory layout has to be adapted to the memory layout
// of the chosen parallel FFT library

initFFTpar(D, s.K, pmax, s.lc.l); // possibly further parameters
// depending on the chosen parallel
// FFT library

initData_LC(N, grid, &s);

timeIntegration_SPMEpar(0, delta_t, t_end, grid, Q, Q_boundary, D,

&s, r_cut, pmax);

for (int d = 0; d < DIM; d++)

ncnull[d] = 0;

freeLists_LC(grid, ncnull, s.lc.ic_number, s.lc.ic_number);

free(grid); free (Q); free (D);

MPI_Finalize();

return 0;

}

4.10. With the help of this routine, the routines compF SPME comm and
compQ comm can easily be implemented. Since the data is associated to the
mesh structure, the routine sendReceiveGrid implemented here is simpler
than the routine sendReceiveCell from algorithm 4.4. However, one has to
take into account the decomposition of the SPME-specific vector Q into the
two arrays Q and Q boundary when sending and receiving data.
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Code fragment 7.5 Time Integration
timeIntegration_SPMEpar(real t, real delta_t, real t_end, Cell *grid,

fft_type *Q, fft_type *Q_boundary, real *D,

SubDomainSPME *s, real r_cut, int pmax) {
compF_LCpar(grid, &s->lc, r_cut);

compQpar(grid, s, Q, Q_boundary, pmax);

compFFTpar(Q, s->K, D);

compF_SPMEpar(grid, s, Q, Q_boundary, pmax);

while (t < t_end) {
t += delta_t;

compX_LC(grid, &s->lc, delta_t);

compF_LCpar(grid, &s->lc, r_cut);

compQpar(grid, s, Q, Q_boundary, pmax);

compFFTpar(Q, s->K, D);

compF_SPMEpar(grid, s, Q, Q_boundary, pmax);

compV_LC(grid, &s->lc, delta_t);

compoutStatistic_LCpar(grid, s, t);

outputResults_LCpar(grid, s, t);

}
}

Code fragment 7.6 Parallel Interpolation of the Charge Distribution
compQpar(Cell *grid, SubDomainSPME *s, fft_type *Q,

fft_type *Q_boundary, int pmax) {
compQ(grid, s, Q, Q_boundary, pmax); // version adapted to s

// and Q_boundary

compQ_comm(Q, Q_boundary, s, pmax);

}

Code fragment 7.7 Parallel Evaluation of the Long-Range Force Terms
compF_SPMEpar(Cell *grid, SubDomainSPME *s, fft_type *Q,

fft_type *Q_boundary, int pmax) {
compF_SPME_comm(Q, Q_boundary, s, pmax);

compF_SPME(grid, s, Q, Q_boundary, pmax); // version adapted to s

// and Q_boundary

}

7.5.3 Performance Measurements and Benchmarks

In this section we analyze the parallel scaling of the components of our code
for the computation of the long-range terms in the forces and potentials. We
employ the potential
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for a model problem. We study the melting of a salt akin to sodium chloride.
We scale the variables as in the KCl example from Section 7.4.2 and obtain
the parameters from Table 7.6.

m′
1 = 22.9898, m′

2 = 35.4527,
σ′

11 = 4.159, σ′
22 = 7.332,

ε′11 = 75.832, ε′22 = 547.860,
q′1 = 1, q′2 = −1,

r′cut = 24, G′ = 0.1,
h′ = 4.0, p = 4

Table 7.6. Parameter values for the benchmark problem: Melting of salt.

We use this problem as a benchmark to study the properties of our par-
allelized SPME method. All computations have been carried out on a PC
cluster, compare Section 4.4 and [557]. Here, when the number of particles is
increased, the size of the simulation domain is increased by the same factor
so that the particle density remains constant. Analogously, the number of
mesh points for the solution of the potential equation is increased and the
mesh width is kept constant. Table 7.7 lists the values used for the number
of particles, the length of the domain, and the number of mesh points.

particles
1728 4096 8000 17576 32768 64000 140608 262144 592704 1191016

domain length 96 144 192 240 288 360 480 576 768 960
mesh points 243 363 483 603 723 903 1203 1443 1923 2403

Table 7.7. Numbers of particles, numbers of mesh points, and the length of the
domain for the benchmark problem.

Tables 7.8 and 7.9 show the runtimes for one time step for the computation
of the long-range and the short-range force terms, respectively.53 Table 7.10
shows the runtimes for a fast Fourier transform.

The corresponding parallel efficiency and speedup for computations with
262144 atoms are shown in the Tables 7.11 and 7.12. Both the computations
for the short-range terms and the computations for the long-range terms
show very good parallel scaling. The slight degradation in the parallel effi-
ciency of the computation of the long-range terms stems from the less efficient
53 Here we have used the implementation in which the splines and their derivatives

are computed recursively using the routines spline and Dspline. With the op-
timizations discussed in footnote 43, one can speed up the runtime by a factor
of two to three for pmax=4, depending on the particular problem. However, the
parallel scaling of the parallel algorithm changes only minimally.
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runtime processors
mesh points 1 2 4 8 16 32 64 128

13824 1.10 0.55 0.28 0.14
46656 2.68 1.36 0.68 0.35

110592 5.36 2.77 1.39 0.72 0.36
216000 11.62 5.99 3.05 1.59 0.83
373248 21.62 11.14 5.70 2.97 1.47 0.74
729000 42.20 21.30 10.81 5.67 3.05 1.56

1728000 93.79 48.55 24.59 13.30 6.63 3.38 1.68
2985984 179.23 90.13 45.50 24.39 12.27 6.32 3.13 1.63
7077888 103.91 55.45 28.10 14.61 7.38 3.86

13824000 111.60 55.97 29.31 14.92 7.82
23887872 107.40 55.64 28.33 15.11
56623104 121.59 63.96 34.25

110592000 126.31 67.54
242970624 156.30

Table 7.8. Parallel runtimes (in seconds) for the long-range force terms for one
time step.

runtime processors
particles 1 2 4 8 16 32 64 128

1728 1.32 0.67 0.35 0.18
4096 2.28 1.16 0.61 0.31
8000 3.99 1.97 1.02 0.52 0.27

17576 9.32 4.70 2.44 1.24 0.82
32768 18.31 9.21 4.75 2.40 1.22 0.62
64000 35.78 18.81 10.30 5.49 2.38 1.27

140608 74.61 37.46 19.26 9.74 4.94 2.50 1.24
262144 144.26 73.87 37.88 19.14 9.62 4.84 2.42 1.29
592704 82.74 41.76 20.97 10.53 5.26 2.67

1191016 85.35 42.66 21.77 10.76 5.51
2299968 89.90 44.07 21.85 11.02
4913000 90.25 44.43 22.95
9800344 89.39 45.52

21024576 91.38

Table 7.9. Parallel runtimes (in seconds) for the short-range force terms for one
time step.

parallelization of the fast Fourier transform. Table 7.13 shows the parallel ef-
ficiency and the speedup for the fast Fourier transform for a mesh with 1443

mesh points. Here, the high communication complexity of the parallel fast
Fourier transform causes a decrease in the parallel efficiency with increasing
numbers of processors. However, the runtime of the fast Fourier transform
is relatively small compared to the total time needed for the computation of
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runtime processors
mesh points 1 2 4 8 16 32 64 128

13824 0.018 0.0085 0.0057 0.0045
46656 0.071 0.043 0.023 0.017

110592 0.19 0.13 0.078 0.046 0.022
216000 0.36 0.27 0.17 0.11 0.14
373248 0.65 0.49 0.32 0.21 0.094 0.053
729000 1.26 0.92 0.64 0.47 0.27 0.15

1728000 3.62 2.43 1.51 1.23 0.57 0.33 0.15
2985984 5.99 4.25 2.75 1.92 1.00 0.60 0.29 0.22
7077888 6.30 4.15 2.42 1.46 0.76 0.54

13824000 7.95 4.80 3.10 1.64 1.15
23887872 8.35 5.45 2.78 1.43
56623104 12.71 7.15 5.78

110592000 13.68 7.56
242970624 19.44

Table 7.10. Parallel runtimes (in seconds) for the FFT.

processors

1 2 4 8 16 32 64 128
speedup 1.000 1.999 3.939 7.348 14.607 28.359 57.262 109.957

efficiency 1.000 0.994 0.985 0.919 0.913 0.886 0.895 0.859

Table 7.11. Speedup and parallel efficiency for one time step of the simulation of a
material akin to NaCl with 1443 mesh points and 262144 atoms, long-range terms.

processors

1 2 4 8 16 32 64 128
speedup 1.000 1.953 3.809 7.537 14.996 29.806 59.611 111.829

efficiency 1.000 0.976 0.952 0.942 0.937 0.931 0.931 0.874

Table 7.12. Speedup and parallel efficiency for one time step of the simulation of
a material akin to NaCl with 262144 atoms, short-range terms.

processors

1 2 4 8 16 32 64 128
speedup 1.0000 1.4094 2.1782 3.1198 5.9900 9.9833 20.6552 27.2273

efficiency 1.0000 0.7047 0.5445 0.3900 0.3744 0.3120 0.3227 0.2127

Table 7.13. Speedup and parallel efficiency of the FFT with 1443 mesh points.

the long-range force terms, see Table 7.10, so that this decrease in efficiency
does not have a dominant effect on the total runtime.
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Figure 7.19 shows the speedup and the parallel efficiency for the long-
range terms (including the parallel FFT), the short-range terms, and the
parallel FFT. One clearly sees the decrease in efficiency for the parallel FFT.
However, for our moderate numbers of processors, this decrease does not
strongly impact the efficiency of the entire computation of the long-range
terms. Further studies of the scalability of this type of algorithm can be
found in [160].
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Fig. 7.19. Speedup and parallel efficiency of the computation of the long-range
terms (including parallel FFT), the short-range terms, and the parallel FFT.

7.6 Example Application: Large-Scale Structure of the
Universe

The parallel version of our SPME code allows the simulation of problems
with larger numbers of particles. In the following, we consider an example
from astrophysics – a simulation of the evolution of the large-scale structure
of the universe.

Our Milky Way, which consists of approximately 200 billion stars, is only
one galaxy among millions of galaxies in the universe. The galaxies that
we can observe from earth are all moving away from us. The farther they
are away, the faster they move away. The entire universe expands since its
creation in the big bang, in which the universe arose from an unimaginably
hot and dense primeval mass. This expansion of the universe is slowed down
by the gravitational forces among the matter in the universe. If the average
mass density is smaller than a certain critical value, the gravitational force
cannot stop the expansion, and the universe will expand forever (the so-called
open universe). If the average mass density is larger than the critical value,
the expansion will be stopped by gravitation and the universe will start to
collapse at some point (the so-called closed universe) [188, 303].
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In its simplest form, the big bang theory [387] assumes that mass and
radiation are distributed uniformly in the universe. This theory accounts for
the existence of the cosmic background radiation and for the existence of
light elements, but it cannot account for the large-scale structures that are
observed in the universe. Galaxies are mostly aggregated in so-called galaxy
clusters. Up to now, about 10000 of these clusters are known. These galaxy
clusters again form so-called superclusters. Here, a kind of bubble structure
emerges, with galaxy clusters at the surface of the bubbles and almost empty
interiors. Most cosmologists assume that these observable structures have
formed under the influence of gravitation from small initial fluctuations in
the density of the universe. The universe expanded more slowly in regions
with higher relative density, so that the relative density of those regions
increased further [459, 472].

Theories about the evolution of the structure of the universe cannot be
tested experimentally. They have to be simulated instead. A numerical simu-
lation of the evolution of the structure of the universe essentially needs three
components: Assumptions on the cosmological model (masses, densities, etc.),
a model for the fluctuations at the beginning of the simulation (initial con-
ditions), and a method to solve the equations of motions that control the
movement of the masses.

We assume in the following that the masses in the universe move according
to Newton’s equation of motion

ẋi = vi

v̇i = Fi/mi,
i = 1, . . . , N,

where Fi denotes the gravitational force from the gravitational potential
(2.42). Initial conditions are needed to solve these equations of motion.

Initial Conditions. To obtain initial conditions for cosmological simula-
tions, the so-called Zel’dovich approximation [681] is most often used. There,
one specifies a spectrum which is modified by so-called transfer functions
that describe the circumstances during the early evolution of the universe
(as implicitly given by the model). The precise form of the transfer functions
depends on the specific cosmological model that is used. How can we now
obtain initial conditions from these data for our numerical simulations? The
idea is to compute a density distribution from the data and then to position
particles (equipped with velocities) according to the computed distribution.
To this end, a number of codes have been developed that produce such initial
conditions. Mostly, a mass distribution is created that differs only slightly
from a regular grid. The strength of the perturbations from the regular grid
strongly depends on the specific model.

Initial conditions are usually specified in comoving coordinates. Such co-
ordinates are standard in simulations of the evolution of the structure of
the universe. This simplifies the computations since the coordinate system
already takes into account the expansion of the universe.
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Formulation of the Problem in Comoving Coordinates. The universe
appears to be homogeneous and isotropic if averaged over sufficiently large
regions of space so that the inhomogeneities resulting from the structures
are smoothed out. This mean density ρ̄(t) then only depends on time but no
longer on position. Every point in the universe can thus be chosen as the origin
from which all other masses move away. The assumption of homogeneity then
implies that the expansion of the universe corresponds to a radial motion that
can be characterized by an expansion factor

a(t) =
ri(t)
ri(0)

,

where ri(t) denotes the distance of a particle i at time t from an arbitrarily
chosen center. This describes by which factor the distance of a mass from the
origin has changed relative to the distance of the mass at a fixed time t = 0.
This factor does not depend on the position, since space is assumed to be
homogeneous. The factor a(t) is typically chosen to be of the form a(t) ∼ tn

with n < 1. The definition of the expansion factor a(t) directly implies that
the escape velocity is proportional to the distance from the origin (Hubble’s
law). The factor a(t) obeys the so-called Friedman equation

ȧ(t)2 − 8
3
π

Gρ̄(0)
a(t)

= −k (7.83)

with k the constant of integration (the curvature of space). This equation
can be derived from the homogeneity of space and the law of gravity [324].
Here, ρ̄(0) is the mean density at time t = 0. If k < 0 holds, then the
gravitational force cannot stop the expansion (and it holds that the kinetic
energy is larger than the potential energy), and the universe will expand
forever (open universe). However, if k > 0 holds (and the kinetic energy is
smaller than the potential energy), the expansion is stopped by gravitation
and the universe starts to collapse at some point in time (closed universe).
In the special case k = 0, the universe expands, but is closed.

The positions scaled by the expansion factor a(t) can now be used as
the new coordinate system xi = xold

i /a(t). In this coordinate system, the
equations of motion read

ẋi = vi,
v̇i = Fi/mi − γvi,

i = 1, . . . , N,

with γ(t) = 2H(t) and the so-called Hubble constant

H(t) =
ȧ(t)
a(t)

.

The force Fi is now given as the gradient54 of the solution Φ of the potential
equation
54 Since we work in the new, comoving, coordinates, the chain rule produces an

additional factor of 1/a3 in the force.
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∆Φ(x, t) = 4πGGrav(ρ(x, t) − ρ0), (7.84)

i.e. Fi = − 1
a3∇xiΦ(xi). Here, ρ(x, t) denotes the mass density at the point x

at time t and ρ0 denotes the mean mass density (which is constant over time
in the new comoving coordinate system).

The change of coordinates has two main effects:

– An additional friction term, which depends on H(t), is introduced into
the equations of motion and leads to a slowdown in the expansion of the
universe.

– Locally negative mass densities ρ(x, t)−ρ0 can occur on the right hand side
of the potential equation (7.84), since the mean density is subtracted from
the density ρ(x, t). This now guarantees that the potential equation with
periodic boundary conditions has a solution: The integral over the entire
space satisfies

∫
ρ(x, t)−ρ0dx = 0, which is necessary for the solvability of

the potential equation with periodic boundary conditions, compare (7.8).

Time Integration. In this application of our code, we use the leapfrog
version of the Störmer-Verlet method from Section 3.1, compare (3.20) and
(3.21). The velocities of the particles at half-step are given according to (3.20)
as

vn+1/2
i = vn−1/2

i +
δt

mi
(Fn

i − γnmivn
i ). (7.85)

The right hand side is evaluated here at time tn. To evaluate all velocities at
the times tn+1/2 and tn−1/2, we use the central difference vn

i ≈ (vn−1/2
i +

vn+1/2
i )/2. We obtain55

vn+1/2
i =

1 − γnδt/2
1 + γnδt/2

vn−1/2
i +

δt

1 + γnδt/2
Fn

i .

For the new positions of the particles, (3.21) yields

xn+1
i = xn

i + δtvn+1/2
i .

The forces Fi are computed from the solution of the potential equation
(7.84). We split the computation of the forces into two parts according to
the SPME method from Section 7.3; one part, which we obtain as a direct
sum, and another part, which we obtain from the approximate solution of
the potential equation with a smoothed right hand side.56

55 The term Fn
i is multiplied with an additional factor 1/a3 in the new coordinates,

compare footnote 54.
56 In earlier sections we have always used the Coulomb potential as a long-range

potential, with a right hand side of 1
ε0

ρ, where ρ is the charge density. We now
consider the gravitational potential, which is similar in form to the Coulomb
potential. However, the constants on the right hand side are different, which has
to be taken into account in the code.
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In addition, equation (7.83) has to be solved for a(t) at the same time as
the other equations. From a(t) one obtains H(t), and finally γ at time tn,
which is needed for the computation of the velocities of the particles according
to (7.85).

Smoothing of the Potential. The gravitational potential is a purely at-
tractive potential, which leads to some numerical problems. For instance,
singularities occur that can strongly limit the quality of the simulations. As
a remedy, instead of the term 1/rij in the potential, one uses the expression
1/(rij + ε) with a small parameter ε. The short-range energy and force terms
are smoothed in this way and now read

V sr = −1
2
GGrav

N∑
i=1

∑
n∈Z3

mi

N∑
j=1

i�=j for n=0
rn

ij
<rcut

mj

erfc(G(rn
ij + ε))

rn
ij + ε

and

Fsr
i =

1
a3

GGravmi

∑
n∈Z3

N∑
j=1

j �=i for n=0
rn

ij
<rcut

mj
1

(rn
ij + ε)2

(
erfc(G(rn

ij + ε))

+
2G√

π
(rn

ij + ε)e−(G(rn
ij+ε))2

)rnij
rn
ij

.

Example. We present some results of simulations with 323 and with 643

particles. For simplicity, we limit ourselves to the case ȧ(t) = 1
a(t)1/2 , which

is a special case of (7.83) resulting from the scaling of time by H(0). Then,
it holds that

a(t) =

√
3
2
(t + t0)2/3 and ȧ(t) =

√
2
3
(t + t0)−1/3,

and therefore

H(t) =
ȧ(t)
a(t)

=
2
3

1
t + t0

.

Figure 7.20 shows the distribution of the particles at the beginning of the
simulation in the case of 323 particles. To determine initial conditions in
our example, we use the Fortran77 code Cosmics [87]. Figure 7.21 shows
the particle distribution at the end of the simulation. One can see that the
particles agglomerate in some subdomains and that larger structures emerge.
The results of a simulation with 643 particles and slightly changed initial
conditions are shown in Figure 7.22. A color coded representation of such
particle densities in space was already shown in Figure 1.3. Again, one can
see that structures emerge. Further results for the simulation of the large-
scale structure of the universe can be found for instance in [16, 17, 18, 353].





8 Tree Algorithms for Long-Range Potentials

In Chapter 7 we described mesh-based methods for long-range potentials us-
ing Coulomb and gravitational potentials as examples. These methods rely
on a representation of the potential Φ as a solution of the Poisson equation
(7.5). Such methods work well as long as the corresponding potentials are
of type 1/r and particles are distributed approximately uniformly. In the
case of a nonuniform particle distribution, i.e., when particles accumulate
in only some parts of the simulation domain, the efficiency of methods that
work with uniform meshes is substantially reduced. The mesh has to be fine
enough to resolve the inhomogeneous particle distribution. Such situations
arise particularly often in astrophysics, but they also occur in many molecu-
lar dynamical simulations in biochemistry. This has led to the development
of adaptive methods, which use no longer a uniform mesh over the entire
domain, but which work with locally refined meshes, compare Subsection
7.2.3.

Alternatively, so-called tree algorithms can be employed when nonuniform
particle distributions are present. Consider for example a continuous charge
distribution in the entire space R

3 with a charge density ρ (charge per vol-
ume). Then, tree algorithms are based on the representation of the potential
Φ as

Φ(x) =
1

4πε0

∫
R3

ρ(y)
1

||y − x||dy, (8.1)

compare also (7.4). They use tree-like hierarchical decompositions of the sim-
ulation domain to adaptively approximate the density distribution ρ of the
particles. These hierarchical decompositions implement splittings of the sim-
ulation domain into near and far fields. Often decompositions associated with
octrees are used for this purpose. This leads to algorithms which achieve a
complexity of order O(N log N) or even O(N) for a given accuracy. Due to
their natural adaptivity, tree algorithms allow the computation of the po-
tentials and the forces with a high accuracy also for inhomogeneous particle
distributions.

Tree algorithms can also be used directly for long-range potentials other
than 1/r-potentials. They admit the treatment of ionized systems, which
occur for instance in biomolecular problems. Tree algorithms also allow the
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evaluation of modified gravitational potentials, such as the regularized Plum-
mer potential or the Biot-Savart kernel for vortex methods.1

In this chapter we consider tree algorithms in more detail. First, we
present the adaptive Barnes-Hut algorithm. We then parallelize it by means
of space-filling curves, see Section 8.4. In Section 8.5 we extend our method to
higher orders of approximation and introduce a variant of the fast multipole
method. We also discuss some applications from astrophysics.

8.1 Series Expansion of the Potential

We recall first the integral form of the potential given in (8.1) (compare also
(7.4) in Chapter 7), written for general kernels G as

Φ(x) =
∫

Ω

G(x,y)ρ(y)dy (8.2)

with ρ being the particle density in the domain Ω.

Taylor Expansion. Under the assumption that the integral kernel G is, up
to a singularity at x = y, differentiable sufficiently often, we can expand it
in y around y0 up to terms of degree p as long, as x does not lie on the line
segment [y,y0]. We obtain

G(x,y) =
∑

‖j‖1≤p

1
j!

G0,j(x,y0)(y − y0)j + Rp(x,y) , (8.3)

with the multi-indices j = (j1, j2, j3) and the abbreviations and definitions
dj

dzj = dj1

dz
j1
1

dj2

dz
j2
2

dj3

dz
j3
3

, j! := j1!·j2!·j3!, ‖j‖1 = j1+j2+j3, and yj = yj1
1 ·yj2

2 ·yj3
3 .

This expression generalizes the standard one-dimensional Taylor expansion
to higher dimensions. Here,

Gk,j(x,y) :=
[

dk

dwk

dj

dzj
G(w, z)

]
w=x,z=y

denotes the mixed (k, j)-th derivative of G evaluated at the point (x,y). The
remainder Rp(x,y) can be written in Lagrange form as

1 Since mesh-based methods rely on the representation of the potential Φ as a so-
lution of a differential equation (like the Poisson equation), they do not allow to
treat such potentials in a straightforward way. While in general one can find for a
given differential operator a corresponding integral kernel (for the fundamental
solution), the converse does not have to be true. In general, the correspond-
ing operator is only a pseudo-differential operator that still needs an integral
representation.
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Rp(x,y) =
∑

‖j‖1=p+1

1
j!

G0,j(x,y0 + ζ · (y − y0)) · (y − y0)j (8.4)

with a function ζ, 0 ≤ ζ ≤ 1. Besides the term (y − y0)j, the remainder
contains the (p + 1)-th derivatives of G(x,y) with respect to y on the line
segment [y0,y]. If we substitute the expansion (8.3) into the integral form
(8.2), we obtain

Φ(x) =
∫

Ω

ρ(y)
∑
‖j‖≤p

1
j!

G0,j(x,y0)(y − y0)jdy +
∫

Ω

ρ(y)Rp(x,y)dy

=
∑
‖j‖≤p

1
j!

G0,j(x,y0)
∫

Ω

ρ(y)(y − y0)jdy +
∫

Ω

ρ(y)Rp(x,y)dy.

Let us introduce so-called moments

Mj(Ω,y0) :=
∫

Ω

ρ(y)(y − y0)jdy. (8.5)

Using them, we obtain the expression

Φ(x) =
∑

‖j‖1≤p

1
j!

Mj(Ω,y0)G0,j(x,y0) +
∫

Ω

ρ(y)Rp(x,y)dy. (8.6)

Near Field and Far Field. Now we will construct an algorithm for the
fast computation of the energy and the force using the approximation

Φ(x) ≈
∑

‖j‖1≤p

1
j!

Mj(Ω,y0)G0,j(x,y0). (8.7)

We use an idea that is similar to the use of the splitting V short +V long of the
potential into near field and far field in (7.1) in the last chapter. First, for
any given x, we partition the entire integration domain Ω into a near region
Ωnear and a far region Ωfar with Ω = Ωnear ∪ Ωfar and Ωnear ∩ Ωfar = ∅.
Then, we further decompose the far region into a set of disjoint, convex
subdomains Ωfar

ν , with a “center” yν
0 ∈ Ωfar

ν associated with each of them.
This decomposition then satisfies2

Ω = Ωnear ∪
⋃
ν

Ωfar
ν . (8.8)

Here, we choose the decomposition of the far field in such a way that
2 The decomposition is dependent on x, i.e., it must be chosen appropriately for

each x. We will see later that we can derive an appropriate decomposition for
all x from a single tree decomposition of the entire domain using hierarchical
methods.
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diam

‖x− yν
0‖

≤ θ (8.9)

holds with a given constant θ < 1 for all Ωfar
ν in the decomposition, where

diam := sup
y∈Ωfar

ν

‖y − yν
0‖. (8.10)

Figure 8.1 shows the situation for one subdomain in the far field for a discrete
particle distribution.

0x yv

Fig. 8.1. Interaction of a particle at x with a set of particles in Ωfar
ν around the

center yν
0 .

Now, we first apply to (8.2) the decomposition of the domain in near field
and far field(s) according to (8.8). Then, we use the approximation (8.7) in
each subdomain of the far region, with Ωfar

ν as the domain of integration for
the moments (8.5). Thus, for a fixed x, we obtain

Φ(x) =
∫

Ω

ρ(y)G(x,y)dy

=
∫

Ωnear
ρ(y)G(x,y)dy +

∫
Ωfar

ρ(y)G(x,y)dy

=
∫

Ωnear
ρ(y)G(x,y)dy +

∑
ν

∫
Ωfar

ν

ρ(y)G(x,y)dy

≈
∫

Ωnear
ρ(y)G(x,y)dy +

∑
ν

∑
‖j‖1≤p

1
j!

Mj(Ωfar
ν ,yν

0 )G0,j(x,yν
0 ) (8.11)

with the corresponding local moments

Mj(Ωfar
ν ,yν

0 ) =
∫

Ωfar
ν

ρ(y)(y − yν
0 )jdy . (8.12)

Error Estimates. Using (8.4), the corresponding relative local approxima-
tion error for Ωfar

ν is given for a fixed x as

erel
ν (x) :=

eabs
ν (x)
Φν(x)
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with

eabs
ν (x) :=

∫
Ωfar

ν

ρ(y)
∑

‖j‖1=p+1

1
j!

G0,j(x,yν
0 + ζ · (y − yν

0 ))(y − yν
0 )jdy, (8.13)

Φν(x) :=
∫

Ωfar
ν

ρ(y)G(x,y)dy. (8.14)

We now assume that Ωfar
ν is convex3 and that G and its (p+1)th derivative

behave somewhat similar to the 1/r-potential and its (p + 1)th derivative.
More precisely, we assume that for j with ‖j‖1 = p + 1 it holds that

|G0,j(x,y)| ≤ c · 1
‖x− y‖‖j‖1+1

, c · 1
‖x− y‖ ≤ G(x,y). (8.15)

Then, for positive densities ρ and positive4 kernels G, the following estimate
for the local relative approximation error holds:

erel
ν (x) ≤ O(θp+1). (8.16)

To show this, we use first that

|erel
ν (x)| ≤

∫
Ωfar

ν

ρ(y)
∑

‖j‖1=p+1

1
j!
|G0,j(x,yν

0 + ζ(y − yν
0 ))| · |(y − yν

0 )j|dy
∫

Ωfar
ν

ρ(y)dy · gν
min(x)

≤ c
gν,p+1
max (x) · diamp+1

gν
min(x)

,

where

gν,p+1
max (x) := sup

y∈Ωfar
ν

max
‖j‖1=p+1

1
j!
|G0,j(x,y)| ,

gν
min(x) := inf

y∈Ωfar
ν

G(x,y).

In the derivation of this estimate we have used the positivity of ρ and G and
the property yν

0 + ζ(yν
0 −y) ∈ Ωfar

ν , which follows from the convexity of Ωfar
ν .

Inequality (8.9) implies the relations

1
‖x − y‖ ≥ 1

‖x− yν
0‖ + ‖yν

0 − y‖ ≥
1

‖x− yν
0‖ + θ‖x − yν

0‖
=

1
1 + θ

1
‖x− yν

0‖
,

1
‖x − y‖ ≤ 1

‖x− yν
0‖ − ‖yν

0 − y‖ ≤
1

‖x− yν
0‖ − θ‖x − yν

0‖
=

1
1 − θ

1
‖x− yν

0‖
.

3 Later on, we will exclusively consider decompositions into cubic subdomains Ωfar
ν .

Such subdomains are convex.
4 An analogous result is valid for negative densities ρ or negative kernels G, but ρ

or G must not change sign.
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Combining these estimates with (8.15), we obtain

gν,p+1
max (x) ≤ c · 1

‖x− yν
0‖p+2

and c · 1
‖x − yν

0‖
≤ gν

min(x).

This results in

|erel
ν (x)| ≤ c

gν,p+1
max (x) · diamp+1

gν
min(x)

≤ c · ‖x− yν
0‖ · diamp+1

‖x − yν
0‖p+2

= c ·
(

diam

‖x − yν
0‖
)p+1

≤ cθp+1.

Here, c denotes a generic constant depending on p. Thus, we have shown the
estimate (8.16).

For the global relative error

erel(x) =
∑

ν

eabs
ν (x)/

∑
ν

Φν(x),

(8.13) and (8.14) then imply the bound

|erel(x)| ≤

∑
ν

|eabs
ν (x)|∑

ν

Φν(x)
=

∑
ν

|eabs
ν (x)|
Φν(x)

Φν(x)∑
ν

Φν(x)
=

∑
ν

|erel
ν (x)|Φν (x)∑
ν

Φν(x)

≤

∑
ν

c θp+1Φν(x)∑
ν

Φν(x)
=

c θp+1
∑

ν

Φν(x)∑
ν

Φν(x)
= c θp+1,

where c denotes again a generic constant depending on p. The condition
(8.9) for the decomposition of the far field for the point x therefore allows
to control the global relative approximation error at point x. Relation (8.9)
also implies a geometric condition for the far field decomposition: The closer
the subdomain Ωfar

ν is to x, the smaller the subdomain has to be in order to
satisfy (8.9). This is shown in Figure 8.2 for several subdomains from a far
field decomposition.

Similar relative error bounds for a number of other types of potentials can
be obtained with the same approach. Furthermore, there are also absolute
error bounds for nonpositive kernels and nonpositive charge densities [289].
They are useful to obtain estimates for the forces instead of the potentials,
since the derivative of the kernel is often nonpositive.

Note that Taylor expansion is not the only possible suitable series expan-
sion. If one uses other coordinate systems instead of Cartesian coordinates,
one obtains other series expansions. For instance, for spherical coordinates
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Fig. 8.2. Cells Ωfar
ν of different sizes that partition the far field Ωfar for x and

satisfy the condition (8.9) with θ = 0.4472 in two dimensions.

one obtains series of spherical harmonics [260]. Another possibility is the use
of plane waves [260] or piecewise Lagrange polynomials [121].

Now, the central question is the following: How do we construct suitable
decompositions of the far field as efficiently as possible? Note here that it is
not sufficient to determine a far field decomposition for a single given x. In
fact, decompositions for the far field for all particle positions xi, i = 1, . . .N ,
have to be found, the subdomains of which all have to satisfy the condition
(8.9) for a given accuracy θ. Furthermore, since the moments Mj(Ωfar

ν ,yν
0 )

are rather expensive to compute, they should not only be usable for the eval-
uation of the potential at a single point x, but be reusable in the computation
for other particle positions.5 Therefore, it is crucial that the moments of larger
subdomains can be computed from those of the smaller subdomains subdi-
viding them. This is achieved for example with a recursive decomposition of
the entire domain Ω into a sequence of smaller and smaller cubic or cuboid
subdomains. Altogether, such an approach allows an efficient approximative
computation of the potential and the forces. The resulting structures can be
described with geometric trees that will be introduced in the next section.
5 Let mi denote again the mass of particle i. The identification of the respective

far fields and their decompositions into subdomains for a given mass distribution
ρ =

PN
i=1 miδxi is equivalent to finding partitions of the set of particles into

subsets that on the one hand satisfy (8.9) and on the other hand minimize
the complexity for the evaluation of the approximation of the potential. This
second task can be formulated abstractly as a discrete optimization problem
which, however, is very expensive to solve. The tree algorithms described in
the following are good heuristics for the efficient approximate solution of this
optimization problem.
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8.2 Tree Structures for the Decomposition of the Far
Field

First, we define trees in an abstract way. To this end, we introduce some
concepts and notations: A graph is given as a set of vertices/nodes and a
set of edges. Here, an edge is a connection between two vertices. A path
is a sequence of different vertices in which any two successive vertices are
connected by an edge. A tree is a graph in which there is exactly one path
connecting any two vertices. One of the vertices of the tree is designated as
the root of the tree. Then, there is exactly one path from the root to each
other vertex in the tree.

Fig. 8.3. An example of a tree of depth three.

Contrary to biological intuition, we represent a tree with its root on top
and growing in the downward direction, see Figure 8.3. The edges are directed
downward from the root to the other nodes. A node that lies directly below
another node in the tree and is connected to it is called son node of that node.
The node above is correspondingly called father node. Further terms such as
brother, grandson or grandfather can be defined in similar fashion. The first
generation of nodes, directly connected to the root by one edge, belongs to
level one. Every further generation of nodes, connected to the root by paths
of length l, belongs to level l. The depth of a tree is the maximum of the
levels of all nodes of the tree, i.e. the length of the longest path starting at
the root.

We can distinguish the nodes in the tree according to whether they have
sons, in which case they are called inner nodes, or not, in which case they
are called leaf nodes. A subtree consists of one node of the original tree that
has been designated as the root of the subtree, of all of its descendants, and
of the edges of the original tree between them.

Quadtree and Octree. In the following, we combine the abstract definition
of trees with geometric information and use them to provide the splitting of
the domain into near field and far field and the decomposition of the far field
into subdomains for each particle i. The tree is then associated to a recursive
partition of the entire domain into cells of different sizes. We proceed as
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follows: First, we assign the entire cubic or cuboid domain Ω and all the
particles contained in it to the root of the tree. Then, we partition Ω into
disjoint subdomains and assign them to the son nodes of the root. Every
subdomain is then again partitioned into smaller subdomains and assigned
to the son nodes in the next generation in the tree. This way, we proceed
recursively. The recursion is terminated when there is either one particle
only or no particle in the corresponding subdomain, compare Figures 8.5 and
8.7.

The question is now how to split a subdomain into smaller subdomains. A
simple approach is to split a subdomain in each coordinate direction into two
equal parts. For a square domain, this results in four equally sized smaller
squares, for a cubic domain this results in eight equally sized smaller cubes
with their edges being half as long as those of the original cube. An example
for the two-dimensional case is shown Figure 8.4.

Fig. 8.4. An example for a quadtree.

The inner nodes of the tree constructed in this way have four sons which
correspond to the quadrants of the local coordinate system. We obtain a so-
called quadtree. In the three-dimensional case, the inner nodes of the tree
have eight sons which correspond to the eight octants of the local coordinate
system. Therefore, this type of tree is also called octree, or more accurately,
PR octree (for point region octree) [540].

There are several other ways to decompose the domain into cells. Binary
trees, i.e. trees with exactly two sons for each inner node, correspond to a
bisection of the domain. This bisection can be carried out perpendicular to
a coordinate axis so that in general rectangular instead of square cells result
[47], see Figure 8.5. Furthermore, the decomposition does not always have to
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produce cells of equal volume. It might make more sense to decompose a cell
depending on ρ, such that the number of particles in the resulting subcells is
approximately the same. The volume of cells on the same level will then in
general be different. In addition, cells can also be shrunk to exclude parts of
the domain in which the particle density ρ vanishes, i.e. parts of the domain
without particles [386], see Figure 8.5 (middle). For the sake of simplicity we
will restrict ourselves in the following to PR octrees.

Fig. 8.5. Decomposition of the domain for different tree variants. Left: In each step
the x1 and x2 axis are split alternatingly so that approximately the same number
of particles is contained in each resulting subdomain. Middle: Shrunken version.
After each subdivision, the resulting subdomains are shrunk so that they are just
large enough to contain all particles in the subdomain. Right: In each step the
longer coordinate axis is split so that approximately the same number of particles
is contained in each resulting subdomain.
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Recursive Computation of the Far Field. We now use the octree struc-
ture determined from a given set of particles to find a decomposition of the
domain Ω into far field and near field for all particles and to furthermore find
a decomposition of the far field into subdomains that satisfy the condition
(8.9). Using this decomposition, we then compute the approximation (8.11),
where we also try to use as few cells as possible. We proceed as follows: Every
inner node of the tree represents a subdomain of Ω. To each subdomain we
associate a designated expansion point y0. For instance, this could be the
center of the cell or the center of mass of the particles contained in the cell.
Furthermore, for each vertex, we know the size of the corresponding subdo-
main. From this, we can determine the size diam of the circumscribed sphere.
We now start for a given particle i with particle position xi in the root of
the tree and descend recursively to the son nodes. There, we compute the
ratio diam/‖xi−yν

0‖. If this value is smaller than or equal to the given θ, we
terminate the recursion and have found a cell that locally satisfies (8.9). Oth-
erwise, we descend the tree to the son nodes and again compute the associated
ratios, etc. When the recursive procedure is finished, we have determined a
decomposition (8.8) of the domain for xi, in which the subdomains of the
far field all satisfy (8.9). This recursive procedure can be executed for each
particle separately. Note that in general we will obtain different decomposi-
tions for different particles. However, the decompositions for all particles are
contained in one tree.

Recursive Computation of the Moments. We still have to determine
the moments Mj(Ωfar

ν ,yν
0) from (8.12) that are needed for the computation

of the approximation (8.11). One could be tempted to compute these values
directly by numerical integration over the density, or, in the case of a discrete
density, by a sum over the particles. This, however, is not efficient. Instead
we employ the hierarchical tree structure to compute all moments for all
subdomains which are associated to the nodes of the tree. We also use the
tree structure to store the moments in the respective nodes of the tree for
their multiple use in a subsequent evaluation of (8.11). Note that it is possible
to compute the moments for a father cell from the moments of its son cells.
To this end, the following properties of the moments are useful:

For two disjoint subdomains Ω1 ∩ Ω2 = ∅ and the same expansion point
y0 it holds that

Mj(Ω1 ∪ Ω2,y0) = Mj(Ω1,y0) + Mj(Ω2,y0) , (8.17)

which follows directly from the properties of the integral. A translation of the
expansion point within a subdomain Ων from y0 to ŷ0 changes the moments
to

Mj(Ων , ŷ0) =
∫

Ων

ρ(y)(y − ŷ0)jdy
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=
∑
i≤j

(
j
i

)∫
Ων

ρ(y)(y − y0)i(y0 − ŷ0)j−idy

=
∑
i≤j

(
j
i

)
(y0 − ŷ0)j−iMi(Ων ,y0) , (8.18)

where i ≤ j has to be understood component-wise and
(
j
i

)
is defined by∏DIM

d=1

(
jd
id

)
.6 Given an expansion of the moments Mj(Ω

sonµ
ν ,yν,sonµ

0 ) of the son
cells Ω

sonµ
ν of a cell Ων , we can then compute an expansion of the moments

Mj(Ων ,yν
0 ) of the father cell Ων =

⋃
µ Ω

sonµ
ν according to (8.17) and (8.18)

without having to compute all the integrals or sums again, see also Figure 8.6.
The computation of all moments can then proceed recursively starting from
all leaves of the tree and ending in the root.
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Fig. 8.6. The moments Mj(Ων ,yν
0) of the father cell Ων are computed from the

moments Mj(Ω
sonµ
ν ,y

ν,sonµ

0 ) of the son cells Ω
sonµ
ν . Here, we have chosen the centers

of the cells as expansion points.

It is still open how to compute the values for the leaves of the tree. By
construction, a subdomain associated to a leaf of the tree contains (besides
the trivial case7) exactly one particle xi with mass mi. For a discrete particle
density ρ(x) =

∑N
j=1 mjδxj the moment is then given as8

Mj(Ωleaf
ν ,yν

0 ) =
∫

Ωleaf
ν

ρ(y)(y − yν
0 )jdy

=
∫

Ωleaf
ν

miδxi(y − yν
0 )jdy = mi(xi − yν

0 )j.

The integrals (or sums) for the near field approximation are evaluated in a
similar fashion. Altogether, we see that the computation of all moments in
6 We have used here the binomial formula (x − a)p =

Pp
i=0

`
p
i

´
xiap−1.

7 If a leaf contains no particle at all, the associated moment is trivially zero. We
will not explicitly store such empty leaves later.

8 In the case of a continuous density ρ, one has to use an appropriate quadrature
method to compute the integral [289].
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the tree constitutes a successive summation process. The moments associated
with particular subdomains are partial sums and are stored in the associated
nodes for later use.

To fully devise a concrete numerical method for the approximate evalua-
tion of the potentials and the associated forces, we have to specify in detail
how the tree is constructed from the set of particles, how the tree is stored,
how the cells and the expansion points are chosen, and how far field and near
field are determined in the force evaluation. We will discuss possible choices
in more detail in the following sections.

8.3 Particle-Cluster Interactions and the Barnes-Hut
Method

The simplest form of a tree-like method for the approximative computation
of potentials and forces traces back to Barnes and Hut [58].9 It had been orig-
inally developed for astrophysical problems. In general, very large numbers
of particles and inhomogeneous density distributions occur in such applica-
tions. The interaction between the particles is modeled by the gravitational
potential

U(rij) = −GGrav
mimj

rij
(8.19)

or modifications thereof.10 The Barnes-Hut method uses octrees. As already
discussed, the simulation domain is recursively split into subdomains of equal
size (cells) until each cell contains at most one particle. The cells are then
mapped to vertices in the tree. The inner vertices represent cells with several
particles, so-called clusters. For an inhomogeneous distribution of particles,
such an approach results in so-called unbalanced trees, see for example Fig-
ure 8.4.

The method of Barnes and Hut can be interpreted as a special case of the
approximation by the Taylor series expansion (8.11), see below. It is based on
the idea that the effect of the gravitation of many particles in a cell far away is
essentially the same as the effect of the gravitation of one large particle in the
center of mass of the cell. Therefore, the many interactions with these many
particles can be modeled by one interaction with a so-called pseudoparticle.
The position of the pseudoparticle is the center of mass of the particles in the
cell and the mass of the pseudoparticle is the total mass of all the particles
in the cell.
9 For some earlier developments, see [47].

10 In the modeling of the dynamics of galaxies, various modifications of the gravi-
tational potential are used. Examples are the potentials of Plummer [486], Jaffe
[338], Hernquist [316], or Miyamoto and Nagai [435].
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8.3.1 Method

The method consists of three main elements: The construction of the tree,
the computation of the pseudoparticles and the computation of the forces.
Pseudoparticles represent cells with more than one particle and are therefore
associated with inner vertices of the tree, while the real particles are only
stored in the leaves of the tree. The geometric coordinates of a pseudoparticle
are given by the average of the coordinates of all particles in the associated
cell weighted by their masses. The mass of the pseudoparticle is the total
mass of all particles in its cell. Both values can be computed recursively for
all vertices of the tree in one traversal starting from the leaves according to

mΩν :=
8∑

µ=1

mΩson,µ
ν ,

yν
0 :=

8∑
µ=1

mΩson,µ
ν∑8

γ=1 mΩson,γ
ν

yson,µ
0 =

1
mΩν

8∑
µ=1

mΩson,µ
ν yson,µ

0 . (8.20)

Here, as in the previous section, Ων denotes a cell associated to a vertex in
the tree, Ωson,µ

ν denotes the eight son cells associated to that vertex (if they
exist), yν

0 and yson,µ
0 , respectively, denote the associated expansion points,

and mΩν and mΩνson,µ denote the associated masses. The expansion point
of a (nontrivial) leaf, which contains by construction only one particle, and
its mass, are given as the position and the mass of that particle.11

For the computation of the forces, the algorithm descends, for each given
particle i with position xi ∈ Ω, along the edges of the tree starting at the
root until the visited cells satisfy the selection criterion (θ criterion)

diam

r
≥ θ, (8.21)

where diam is defined in (8.10) and r denotes the distance of the associated
pseudoparticle from the position xi of particle i. Then, the interactions of
particle i with the pseudoparticles associated to these resulting vertices are
computed and added to the global result. In the case that the descent ends
in a leaf, which by definition only contains one particle, the interaction be-
tween the two particles is computed directly and added to the global result.
The set of leaves reached in this way constitutes the near field Ωnear of the
decomposition. An example for the descent in a tree controlled by (8.21) is
shown in Figure 8.7.
11 In a simpler variant of the Barnes-Hut method, the geometric cell centers are

used as expansion points, as already suggested in Figure 8.6. For strongly in-
homogeneous particle distributions, however, as they occur in the simulation of
collisions of galaxies, such an approach can negatively effect the accuracy of the
obtained results.
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Fig. 8.7. Decomposition of the domain Ω by the quadtree (left) and the parts of
the quadtree traversed in the computation of the force for xi with θ = 1

2
(right).

There are several variants of the criterion (8.21), differing in the definition
of the distances diam and r between the particle and the cell, see also Fig-
ure 8.8. These differences can be significant for the convergence of the method,
especially in the case of extremely inhomogeneous particle distributions. In
practice, one often uses the length of the edge of the cell for diam since it
can be computed very inexpensively. This corresponds to an upper bound of
(8.10) (up to a constant), which (for an appropriately changed choice of θ)
does not change the error estimates from Section 8.1. There are a number
of other selection criteria that have been developed from expansions of the
relative error or from local error estimates, for examples see [58, 538].

As already mentioned, the method of Barnes and Hut can be interpreted
as a special case of the approximation by the Taylor series expansion from
the last section, compare (8.11), where the degree of approximation is chosen
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Fig. 8.8. Some variants for the definition of diam and r in the Barnes-Hut method.
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to be p = 0.12 The error of the method therefore only depends on the control
parameter θ. The smaller the chosen θ, the more accurate is the evaluation by
the truncated series expansion. However, this also increases the complexity
of the method since there is a direct correlation between the size of θ and
the number of cells in the decomposition. In [537] it has been shown that,
for the case of almost uniformly distributed particles, the number of cells is
bounded by C log N/θ3, with N being the number of particles and C being a
constant. In total, the method then has a complexity of O(θ−3N log N). For
θ → 0 the method degenerates to the original O(N2) summation in the near
field since only leaves of the tree are selected in the decomposition.

8.3.2 Implementation

In the following, we implement the tree method of Barnes and Hut for the
approximate evaluation of the forces. To this end, we reuse the data struc-
ture 3.1 from Section 3.2 for a particle with mass, position, velocity, and
force. To implement a tree we have to define the nodes of the tree and the
edges that connect the nodes. Memory for one particle is allocated for each
node of the tree. The connections between nodes are implemented as pointers,
compare also the discussion for linked lists in Section 3.5. Here, it is enough
to provide pointers from the father node to the son nodes. For each node we
need POWDIM:= 2DIM pointers, i.e., for a quadtree we need four pointers and
for an octree eight pointers. In addition, we store the position and the size
of the subdomain which is associated to a node. To this end, we declare the
structure Box, see data structure 8.1, in which we store the position of the left
lower front vertex lower[DIM] and the position of the right upper back ver-
tex upper[DIM] of the boundary of the respective cell13. These coordinates
of course satisfy lower[d]<upper[d] component-wise.

Data structure 8.1 Geometric Cell in a Tree
typedef struct Box {
real lower[DIM];

real upper[DIM];

} Box;

12 The quality of the approximation is indeed even better in the center of mass since
the first moments vanish identically, see also (8.25). This, however, holds only
for positive masses, i.e. particularly in astrophysical applications. In the case of
molecules, the electrostatic charge can be both positive and negative. Then, the
original Barnes-Hut method does not perform as well, since for the values of θ
chosen in practice, its lower quality of approximation strongly affects the energy
conservation.

13 One could also compute the boundaries of the subdomains recursively in a tree
traversal later in the algorithms and save the memory for Box.
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The implementation of a vertex in a tree is given in data structure 8.2.14

Data structure 8.2 Node of a Tree
typedef struct TreeNode {
Particle p;

Box box;

struct TreeNode *son[POWDIM];

} TreeNode;

A tree is then represented as follows: The root of the tree is a TreeNode.
Its address is stored in root. Each node has pointers to all its sons. Pointers
that are not used and do not point to any valid address are set to NULL. A
node with all pointers set to NULL does not have any sons and is therefore a
leaf.

Various operations can now be implemented on this tree structure. Among
them are different traversals of all nodes in the tree, the insertion and deletion
of nodes, and the search for certain nodes in the tree.

Tree Traversal. We first discuss how a given tree is traversed and a de-
sired operation is performed for all its nodes. The simplest implementation
is a recursive one: The tree traversal function calls itself but always with a
different argument. The first time the function is called with the root node
root as argument, the next time it is called with a son node of the root as
argument, etc. Thus, the recursion descends in the tree until the leaf nodes
are reached. During the descent (the way to the leaves) or during the ascent
(the way back), after the son nodes have been processed, operations can be
performed on each node.

Algorithm 8.1 Abstract Post-Order Traversal of the Nodes of a Tree via
the Function FUNCTION
void FUNCTION(TreeNode *t) {
if (t != NULL) {

for (int i=0; i<POWDIM; i++)

FUNCTION(t->son[i]);

Perform the operations of the function FUNCTION on *t ;

}
}

14 There are several approaches to store trees. For example, if the sons of a node are
connected by a linked list or are defined as an array of fixed size, it is enough to
store one pointer to the sons instead of POWDIM pointers. One can also completely
avoid pointers and implement trees with associative data structures (so-called
hash techniques) [357].
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This is shown abstractly in Algorithm 8.1 for a general function FUNCTION.
Here, an operation is only performed on each node on the way back. This
results in a so-called post-order traversal. Later on, we will insert specific
function names and operations into this abstract algorithm.

We can traverse all the nodes of the tree with a call FUNCTION(root)
and perform the appropriate operations on them. An example for such a
post-order traversal of a tree is shown in Figure 8.9.

Fig. 8.9. A post-order tree traversal (from left to right).

Analogously, an operation could be performed only on the way to the
leaf nodes. We then obtain a so-called pre-order traversal. The operations on
*t are now inserted before the for loop. An example for such a pre-order
traversal of a tree is shown in Figure 8.10.15

Fig. 8.10. A pre-order tree traversal (from left to right).

An important variant of the post-order traversal results if the operations
are only performed on the leaves of the tree. This can be implemented by
a simple conditional statement. We will use this variant later to traverse all
particles. By construction, particles are only associated to leaves of the tree.
An example for such a traversal of the leaf nodes of a tree is given in Figure
8.11.
15 Recursive pre-order or post-order traversal of the tree is a so-called depth-first

approach. The function descends first into the depth of the tree. An alternative is
the so-called breadth-first approach, in which all nodes on one level are processed
first before the next level is visited.
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Fig. 8.11. A traversal of all leaves of a tree (from left to right).

Building the Tree. We now consider the building of the tree. In principle,
there is a variety of different types of trees that differ in the number of
son nodes and the order in which the nodes are sorted into the tree. In the
following, we use a geometric octree. The sons of a node then describe the
subcubes which are created by bisection of all edges of the cube corresponding
to the node. The tree is built by successive insertion of the particles.

We start with the root of the tree. For a given particle and a given node of
the tree, we determine the son tree into which the particle has to be inserted.
This is easily possible from the particle coordinates and the geometric data
of the node. We recursively descend the tree until we encounter the situation
that the son tree into which the particle would belong does not yet exist
(i.e., the corresponding pointer to the son node is NULL). Here, we have to
distinguish two cases: Either the current node is an inner node or it is a leaf
node. In the first case, we allocate memory for a new tree node, insert it as
the appropriate son node of the current node, and fill it with the data of the
particle. In the second case, the current node is a leaf node and thus already
represents a particle. This node is now turned into an inner node. We again
allocate memory for a new tree node, insert it as a son node into the current
node, and fill it with the data for the particle to be inserted. The particle
that was stored beforehand in the leaf node now has to be inserted into the
created subtree. This approach is implemented in Algorithm 8.2.16

Figure 8.12 shows how a particle is inserted into a tree by way of this
algorithm.
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Fig. 8.12. Insertion of a particle g into a tree (from left to right).

16 Here, instead of implementing the insertion recursively, we could implement the
insertion with loops as well. Such an implementation would be somewhat faster.
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Algorithm 8.2 Insertion of a Particle into an Existing Tree (t != NULL)
void insertTree(Particle *p, TreeNode *t) {

determine the son b of t in which particle p is located;
compute the boundary data of the subdomain of the son node
and store it in t->son[b].box;

if (t->son[b] == NULL) {
if (*t is a leaf node) {
Particle p2 = t->p;

t->son[b] = (TreeNode*)calloc(1, sizeof(TreeNode));

t->son[b]->p = *p;

insertTree(&p2, t);

} else {
t->son[b] = (TreeNode*)calloc(1, sizeof(TreeNode));

t->son[b]->p = *p;

}
} else

insertTree(p, t->son[b]);

}

One can also delete a leaf node from a tree in a similar way. Then, one
has to erase the leaf node and possibly also further inner nodes in a process
inverse to the insertion. Figure 8.13 shows an example.
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Fig. 8.13. Deletion of a leaf node g from a tree (from left to right).

In the function insertTree, we allocate new memory as we did in the code
fragment 3.1 in Section 3.2, but we also have to set all son node pointers son[]
to NULL. This can be implemented with the C library function calloc, which
does not only allocate the new memory but also automatically initializes it
to zero. To determine whether a node is a leaf node, we test if all pointers to
son nodes are NULL. Finally, we have to determine the number b of the son
cell which contains the particle. To this end, we compare the coordinates of
the particle with the coordinates of the boundary vertices which are stored
in the data structure TreeNode.

We start with the boundary data of the entire simulation domain which
we store in root->box in the root root of the tree. The cell which corresponds
after subdivision to the new *t is then computed from t->box.lower and
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t->box.upper. The index b of the subcell and its boundary data can be
computed for instance as in Algorithm 8.3.

Algorithm 8.3 Determining the Index and the Boundary Data of a Son Cell
int sonNumber(Box *box, Box *sonbox, Particle *p) {
int b = 0;

for (int d=DIM-1; d>=0; d--) {
if ( p->x[d] < .5 * (box->upper[d] + box->lower[d]) ) {
b = 2*b;

sonbox->lower[d] = box->lower[d];

sonbox->upper[d] = .5 * (box->upper[d] + box->lower[d]);

}
else {
b = 2*b+1;

sonbox->lower[d] = .5 * (box->upper[d] + box->lower[d]);

sonbox->upper[d] = box->upper[d];

}
return b;

}

We now use the function insertTree to build the tree for a given set
of particles with the positions {xi}N

i=1. We initialize root so that root->p
contains the first particle, and all its pointers to son nodes are set to NULL.
All other particles are then inserted with insertTree, see Algorithm 8.4.
The data for the particles either have to be read before from a file or have to
be generated in an appropriate way.

Algorithm 8.4 Building the Particle Tree for the Barnes-Hut Method
void initData_BH(TreeNode **root, Box *domain, int N) {
... // read particle data from a file or generate such data
*root = (TreeNode*)calloc(1, sizeof(TreeNode));

(*root)->p = (first particle with number i=1);

(*root)->box = *domain;

for (int i=2; i<=N; i++)

insertTree(&(particle number i), *root);

}

We have now constructed the tree in such a way that every leaf node
contains exactly one particle.17 The algorithm has a complexity of order
17 Compare also footnote 7.



334 8 Tree Algorithms for Long-Range Potentials

O(N log N) for approximately uniformly distributed18 particles, as can be
easily verified.

Computing the Values for the Pseudoparticles. Now, the inner nodes
of the tree, which resemble the so-called pseudoparticles, have to be filled
with the coordinates of the center of mass and the sum of the mass of
the corresponding particles according to (8.20). To this end, we start with
the leaf nodes and ascend recursively to the root. For the implementa-
tion we use a post-order tree traversal. The values for the pseudoparticles
are then computed recursively as shown in Algorithm 8.5 with a call to
compPseudoParticle(root).

Algorithm 8.5 Computation of the Values for Pseudoparticles Using a Post-
Order Traversal
void compPseudoParticles(TreeNode *t) {

called recursively as in Algorithm 8.1;
// start of the operation on *t

if (*t is not a leaf node) {
t->p.m = 0;

for (int d=0; d<DIM; d++)

t->p.x[d] = 0;

for (int j=0; j<POWDIM; j++)

if (t->son[j] != NULL) {
t->p.m += t->son[j]->p.m;

for (int d=0; d<DIM; d++)

t->p.x[d] += t->son[j]->p.m * t->son[j]->p.x[d];

}
for (int d=0; d<DIM; d++)

t->p.x[d] = t->p.x[d] / t->p.m;

}
// end of the operation on *t

}

After this tree traversal, every node of the tree contains a mass and a set of
coordinates, which either correspond to an actual particle or a pseudoparticle.

Computing the Forces. In the force computation one determines for each
particle in the tree an approximation of the sum of the forces which corre-
sponds to the interaction with all other particles. We use a tree traversal over
all leaf nodes. There, for each leaf node, we again traverse the tree descending
18 The complexity can increase to O(N2) for extremely degenerated particle distri-

butions. However, such particle distributions only rarely occur in practice. Here,
geometrically more flexible subdivision strategies can be an alternative, compare
Figure 8.5.
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recursively from the root until the criterion (8.21) is satisfied for the given θ,
compare Algorithm 8.6.

Algorithm 8.6 Loop over all Particles for the Force Computation
void compF_BH(TreeNode *t, real diam) {

called recursively as in Algorithm 8.1;
// start of the operation on *t

if (*t is a leaf node) {
for (int d=0; d<DIM; d++)

t->p.F[d] = 0;

force_tree(t, root, diam);

}
// end of the operation on *t

}

We start the force computation with the root of the tree and with the
size of the simulation domain which we store in the variable diam. We can
then compute the current cell size diam in the recursion in a similar way
as the cell coordinates t->box. Algorithm 8.7 uses the function force from
Algorithm 3.7 to compute the gravitational force between a particle tl->p
and another (pseudo-)particle t->p. For the sake of simplicity, we declare the
control parameter theta as a global variable.

Algorithm 8.7 Force Computation in the Barnes-Hut Algorithm
real theta;

void force_tree(TreeNode *tl, TreeNode *t, real diam) {
if ((t != tl) && (t != NULL)) {

real r = 0;

for (int d=0; d<DIM; d++)

r += sqr(t->p.x[d] - tl->p.x[d]);

r = sqrt(r);

if ((*t is a leaf node) || (diam < theta * r))

force(tl->p, t->p);

else

for (int i=0; i<POWDIM; i++)

force_tree(p, t->son[i], .5 * diam);

}
}

The value r is here computed as the distance between the particle tl->p
and the (pseudo-)particle t->p. If a modification of the distance function is
wanted as shown in Figure 8.8, it can be implemented here.
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Time Integration. For a complete implementation of the Barnes-Hut
method we also have to implement a time integration scheme and the result-
ing transport of the particles. We do this in the routine timeIntegration BH.
A step in the Störmer-Verlet time stepping method (or any other desired ex-
plicit scheme) can be implemented with a tree traversal19 over all particles,
in which we call the update routines of Algorithm 3.5 from Section 3.2 for
the particles, see Algorithm 8.8. The positions and velocities are updated in
compX BH and compV BH.20

Algorithm 8.8 Part of a Störmer-Verlet Time Step for a Tree of Particles
void compX_BH(TreeNode *t, real delta_t) {

called recursively as in Algorithm 8.1;
// start of the operation on *t

if (*t is a leaf node) {
updateX(t->p, delta_t);

// end of the operation on *t

}
void compV_BH(TreeNode *t, real delta_t) {

called recursively as in Algorithm 8.1;
// start of the operation on *t

if (*t is a leaf node) {
updateV(t->p, delta_t);

// end of the operation on *t

}

After the update, every particle has new coordinates and velocities. Thus,
some of the particles in the existing tree may no longer be at the appropriate
position in the tree. Since the particles only move for a short distance in
each time step and therefore most of the particles will still be in the right
cell after the time step, it makes sense to only modify the tree from the
previous time step, rather than to construct it anew from scratch. This can
be accomplished as follows: We introduce for each particle an additional label
moved that shows whether the particle has already been moved or not. We
also introduce a label todelete which shows if the particle has already been
sorted into its new position. To this end, we extend the particle data structure
3.1 appropriately.21 Then, the re-sorting of the particles can be implemented
as shown in Algorithm 8.9.
19 Analogously, one can implement the routines outputResults BH and

compoutStatistic BH using tree traversals.
20 Here, the boundary conditions have to be taken into account appropriately.
21 Alternatively, we could store the label moved in the array entry F[0] which is not

needed in this phase of the algorithm. The labelling of a particle with todelete

can be implemented efficiently by setting the mass of the particle to zero.
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Algorithm 8.9 Re-Sorting of the Particles in the Tree
void moveParticles_BH(TreeNode *root) {
setFlags(root);

moveLeaf(root,root);

repairTree(root);

}
void setFlags(TreeNode *t) {

called recursively as in Algorithm 8.1;
// start of the operation on *t

t->p.moved = false;

t->p.todelete = false;

// end of the operation on *t

}
void moveLeaf(TreeNode *t, TreeNode *root) {

called recursively as in Algorithm 8.1;
// start of the operation on *t

if ((*t is a leaf node)&&(!t->p.moved)) {
t->p.moved=true;

if (t->p outside of cell t->box) {
insertTree(&t->p, root);

t->p.todelete = true;

}
} // end of the operation on *t

}
void repairTree(TreeNode *t) {

called recursively as in Algorithm 8.1;
// start of the operation on *t

if (*t is not a leaf node) {
int numberofsons = 0;

int d;

for (int i=0; i<POWDIM; i++) {
if (t->son[i] != NULL) {

if (t->son[i]->p.todelete)

free(t->son[i]);

else {
numberofsons++;

d = i;

}
}

if (0 == numberofsons) // *t is an ‘‘empty’’ leaf node and can be deleted
t->p.todelete = true;

else if (1 == numberofsons) {
// *t adopts the role of its only son node and
// the son node is deleted directly
t->p = t->son[d]->p;

free(t->son[d]->p);

}
} // end of the operation on *t

}



338 8 Tree Algorithms for Long-Range Potentials

The labels are initialized with the function setFlags in the first traversal
of the tree.22 The second traversal moves the particles which are at the wrong
position to the correct leaves of the tree by recursively inserting them into
the tree with the function insertTree, see function moveLeaf in Algorithm
8.9.23 The particles that have been moved by moveLeaf should not be deleted
immediately, in order to still allow the checking of all other nodes. Instead,
it is simpler and faster to clean up the entire tree in a third step as shown in
repairTree. There, leaf nodes that no longer contain particles are removed
recursively in a post-order traversal. Furthermore, inner nodes are removed
as well if they only have one son node. This is achieved by copying the data
from the son node to the inner node and by deleting the empty son node
afterwards. This procedure is continued automatically on the next higher
level in the post-order tree traversal.

The main program for a particle simulation with the Barnes-Hut force
computation is given in Algorithm 8.10. The routine timeIntegration BH
for the time integration with the Störmer-Verlet method can be adapted from
Algorithm 3.2 from Section 3.2. Now, just compX BH, compF BH and compV BH
are called correspondingly. In addition, the tree has to be re-sorted by a call
to Algorithm 8.9 after the particles have been moved. Finally, the routine
freeTree BH frees the memory in a recursive post-order tree traversal.

Algorithm 8.10 Main Program
int main() {
TreeNode *root;

Box box;

real delta_t, t_end;

int N;

inputParameters_BH(&delta_t, &t_end, &box, &theta, &N);

initData_BH(&root, &box, N);

timeIntegration_BH(0, delta_t, t_end, root, box);

freeTree_BH(root);

return 0;

}

22 If todelete is implemented by a mass of zero, then all nodes already have a
non-zero mass after the computation of the pseudoparticles.

23 Instead of the insertion of a particle starting at the root, one could also ascend
in the tree, test if the particle belongs to a cell, and then insert it into that cell.
However, this is often more expensive than the simple insertion starting at the
root.
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8.3.3 Applications from Astrophysics

Tree codes such as the method of Barnes and Hut have been developed espe-
cially for problems from astrophysics. In the early works [47, 342], the idea of
hierarchical clusters had already been implemented, but the search for neigh-
bors was very expensive, since arbitrarily structured trees had been used. The
Barnes-Hut method avoids this search for neighbors by using octrees instead
of general trees. It has been used in many forms in astrophysics [315, 538].
Typical problems studied with it are the formation and collision of galaxies
and the formation of planets and protoplanetary systems. But it was also
used to study theories of the formation of the moon [353] or the collision of
the comet Shoemaker-Levy-9 with Jupiter [538].

In the following, we consider the formation of galaxies. There are essen-
tially two different fundamental types of galaxies: The elliptical type, in which
the stars are distributed within an ellipsoid and have three-dimensional or-
bits, and the structurally richer spiral type, in which the stars are distributed
within a flat disk and all rotate in the same direction around a common cen-
ter. Here, spiral arms are formed. Elliptical galaxies develop from star clusters
with low global angular momentum, while spiral galaxies develop from star
clusters with higher global angular momentum.24 Spiral galaxies consist of
approximately 90% stars and 10% atomic hydrogen gas. Elliptical galaxies
contain even less gas. Therefore, we disregard the gas in our simulation.25 Fur-
thermore, we assume that the galaxies can be modeled as a collision-free26

system.
We choose a spiral galaxy for our simulation. At the beginning, we ran-

domly distribute particles/stars with a constant uniform density inside a
sphere with radius one. The stars interact by way of the gravitational poten-
tial (8.19). For simplicity, all stars have the same mass. We set mi = 1/N ,
which leads to a total system mass of one. The initial velocities of the stars
are chosen in such a way that the sphere formed by the particles rotates as
a rigid body around an axis through the center of the sphere. Here, the ve-
locities are set in such a way that the centrifugal force approximately equals
the gravitational force (as in Kepler orbits) and therefore the sphere does not
implode or explode.
24 Some few galaxies belong to neither of the two types. It is believed that they

were formed by a collision of conventional galaxies.
25 Astrophysical simulations of gas-rich galaxies are most often performed with a

combination of the Barnes-Hut method with the smoothed particle hydrodynam-
ics (SPH) method [196, 315].

26 Collision-free systems consist of very many – typically 1010 to 1012 – particles.
The time evolution of the system is then determined by the particle density
instead of the exact positions of the particles. Collision systems consist of few
particles, typically in the order of several hundred. The trajectories then strongly
depend on the exact positions of all particles. For a discussion see for instance
[324].
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Fig. 8.14. Formation of a spiral galaxy, evolution of the particle distribution over
time, view parallel to the axis of rotation.
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Figure 8.14 shows the formation of a spiral structure at different points
in time in such a simulation with 100000 stars. We used here δt = 0.001
as step size for the time integration and we chose a θ of 0.6. In the upper
left, we see the spherically homogeneous initial configuration. Already after
a small number of rotations, the configuration evolves into a structure with
first smaller and then ever larger inhomogeneities. A swirly pattern forms
next, which finally transforms into a stable spiral structure with two spiral
arms. The conservation of angular momentum prevents strong contractions
perpendicular to the axis of rotation and leads to the spiral structure in which
the inner stars rotate quickly around the center and the outer stars rotate
more slowly. Parallel to the axis of rotation, gravitation leads to a strong
contraction which results in a thin, disk-like structure. Note that the chosen
projection for the three-dimensional data parallel to the axis of rotation in
Figure 8.14 does not reveal this structure in the figure. It turns out that
the evolution of the system over time is strongly dependent on the angular
momentum of the initial configuration, whereas the exact initial positions of
the particles have only little impact.

8.4 Parallel Tree Methods

We now discuss how the Barnes-Hut method can be parallelized on a system
with distributed memory. Here, an appropriate distribution of the data to
the processes and thereby to the processors is of crucial importance to obtain
an efficient method. In the previous chapters we always assumed an approx-
imately uniform distribution of the particles in the simulation domain and
could therefore use a uniform decomposition of the domain in the paralleliza-
tion of the linked cell method and the SPME method. In this way, approx-
imately the same number of cells and, therefore, particles were assigned to
each process. Tree methods however adapt to inhomogeneous particle distri-
butions. Thus, a simple uniform decomposition of the domain will in general
lead to performance losses in the parallelization. Such losses are caused by the
resulting load imbalance. As an example, consider the irregular distribution
of particles shown in Figure 8.15.

A partition of the domain into the four subdomains would lead to an
unbalanced assignment of particles to processes and therefore to an unbal-
anced distribution of computations to the processors. This load imbalance
impairs the parallel efficiency of the method. Additionally, since the particles
move according to Newton’s laws over time, their (optimal) assignment to
processes should change dynamically over time as well.

For the distribution of the nodes of a tree to several processes one cannot
use domain decomposition for the upper nodes closest to the root. We first
have to descend a certain number of levels in the tree to reach a point at
which the number of nodes/subtrees is larger than or equal to the number
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Fig. 8.15. A non-uniform particle distribution and its static partition into four
equally-sized subdomains.

of processes. At that point, one or several subtrees (and thus their corre-
sponding subdomains and particles) can be assigned to each process. The
number of particles per process should be approximately the same to avoid
a load imbalance. All operations that can be executed independently on the
subtrees are then executed by the appropriate process. Altogether, such a
distribution of subtrees can be interpreted as a decomposition of the do-
main which is adapted to the particle density. However, in the Barnes-Hut
method, computational operations are executed not only for the leaf nodes,
which correspond to particles, but also for the inner nodes, which correspond
to pseudoparticles. Here, the operations on the inner nodes of the subtrees
cause no problems, but the operations that work on the coarse upper part
of the global tree which connects the subtrees have to be treated separately.
Furthermore, the distribution of the tree to the processes has to be updated
over time to retain load balance, since the particles move in each time step.

Hence, the distribution of the particles to the processes is no longer as
straightforward as in the grid-based or cell-based algorithms. In the following,
we use a partition strategy which exploits the structure of the current octree.
On the one hand, we attempt to balance the computational load, and on the
other hand, we try to assign complete subtrees to each process so that the
amount of communication is minimized. To this end, we present an imple-
mentation of trees for parallel computers with distributed memory that works
with keys and thus allows a simple assignment of the data to the processes.
In addition, we use a heuristic based on space-filling curves to achieve good
load balancing. Such methods have been first proposed by Salmon and War-
ren [538, 539, 651, 652, 653, 654] in computational astrophysics. Meanwhile,
they are also applied successfully in other application areas [556, 693].
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8.4.1 An Implementation with Keys

Key-Based Domain Decomposition. We now partition the tree and as-
sign subtrees to different processes. On a parallel computer with distributed
memory, an implementation of a tree data structure based on pointers as
introduced in the last section leads to the following problem: Pointers and
memory addresses can be used for the computation in the memory of one
process but are in general meaningless for the other processes. What is miss-
ing is an absolute addressing scheme for all nodes of the tree for all processes.
We can obtain such an addressing scheme by encoding the address of a node
with integer keys. Every possible node is then assigned a unique number. In
this way the set of all possible nodes of an octree – or, equivalently, of the
corresponding geometric cells – is mapped to the natural numbers. A partic-
ular tree is then described by the set of keys that are associated to existing
nodes.

The challenging question is how to choose the keys such that the cor-
responding decomposition of the domain and the associated tree nodes to
different processes results in an overall efficient method. This includes the
condition that entire subtrees should lie in the same process and that as
little communication as possible is needed in the parallel algorithm. We will
reach this goal in several steps. First, we introduce a very simple level by level
mapping of tree nodes to keys and discuss a first decomposition which gives
a distribution to processes. Then, we modify the resulting keys to obtain de-
compositions, where whole subtrees are distributed to processes. Finally, we
use space-filling curves to obtain decompositions that lead to an even more
localized decomposition for which the parallel communication is substantially
reduced.

Let us first introduce a simple level by level mapping of tree nodes to
keys. Starting with the root, all possible nodes of each new generation are
numbered consecutively. This is implemented by a mapping that encodes in
the key the path from the root of the tree to the node to be numbered. We
already assigned a local number (from 0 to 7) to the direct sons of a node
of the octree in function sonNumber (in Algorithm 8.3). We also used these
numbers as indices for the son nodes in the data structure son. Based on these
local numbers, we can now describe all nodes of the tree: We start at the root
and encode the path to a node by listing the local numbers of the relevant son
nodes on that path. We then concatenate the numbers and obtain an integer.
This is the path key of the node to be numbered. For simplicity we use the
binary representation for the numbers of the son nodes and also for their
concatenation in the path key. The root node of the tree is encoded by the
number 1.27 An example with a quadtree is given in Figure 8.16. If we have
to descend from the root first into the first son node (01), then into the third

27 This serves as stop bit and is necessary to guarantee the uniqueness of the key
values.
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son node (11), then into the zeroth son node (00), and finally into the second
son node (10) to reach the desired node, then this node is associated with the
path key 101110010. We proceed analogously in the three-dimensional case
for octrees. In that case, three bits are added to the key in each level of the
tree.

1

01

00

11

10

Fig. 8.16. A path in the tree and the associated path key.

This definition of a path key allows to determine the key of the father
node of a given node by deleting the last three bits (in the case of an octree)
of the path key of the given node. Conversely, all sons, grandsons, and further
descendants of a tree node can be recognized, since the leading bits of their
keys correspond exactly to the key of the tree node in question.

The use of keys for each tree node that are global, unique, and of inte-
ger type, allows a simple description of the decomposition of a given tree
and, correspondingly, of a given domain. To decompose the tree to several
processes, we now just have to distribute the keys that correspond to the
nodes of the tree to the processes. The set of all possible keys, i.e. the set
of all integers up to a certain length in bits,28 is decomposed into P subsets
that are assigned to the P processes available for computations. The keys are
natural numbers and can therefore be sorted according to their magnitude.
A decomposition of the set of sorted keys into P subsets can then be given
by interval limits according to

0 = range0 ≤ range1 ≤ range2 ≤ . . . ≤ rangeP = KEY MAX. (8.22)

Using this decomposition, we assign to each process i all keys k in the half-
open interval

[rangei, rangei+1) =
{
k | rangei ≤ k < rangei+1

}
,

see Figure 8.17.
28 The maximal value of a key KEY MAX is a constant which depends on the compiler

available on the parallel computer. This constant limits the maximal refinement
depth of the trees that can be used in the code.
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process 0 process 1 process 2 process 3 process 4

Fig. 8.17. Distribution of the particles to the processes according to the values
range[0] to range[P].

We thus have a unique procedure to determine which tree node will be
stored in which process. The procedure is deterministic and can be used at
any time by any process while always giving the same result.

For the implementation, we declare the data type keytype for the keys
as unsigned long in the code fragment 8.1.29

Code fragment 8.1 Definition of the Key Data Type and the Subdomain
Data Structure
typedef unsigned long keytype;

#define KEY_MAX ULONG_MAX

const int maxlevel = (sizeof(keytype)*CHAR_BIT - 1)/DIM;

typedef struct {
int myrank;

int numprocs;

keytype *range;

} SubDomainKeyTree;

To this end, the interval limits range are defined in the data structure
SubDomainKeyTree which also contains the number of the processes partici-
pating in the parallel computation and the local process number. Given a key
k, one can then compute its process number as in Algorithm 8.11.30 With this
simple approach, every process can determine in which (possibly different)
process a certain tree node is stored.
29 The bit length depends on the computer and its operating system. In the case

of a 32 bit architecture, up to 10 tree levels can be handled, in the case of a
64 bit architecture, up to 21 tree levels can be managed. Some 32 bit systems
offer a 64 bit wide data type called long long which again allows 21 tree levels.
Further extensions could be implemented using a multi precision library which
would allow longer integer data types.

30 The complexity of this implementation is O(P ). It can be improved to O(log P )
if a binary search is used instead of a linear search on the components of range
sorted in ascending order.
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Algorithm 8.11 Mapping a Key to a Process Number
int key2proc(keytype k, SubDomainKeyTree *s) {
for (int i=1; i<=s->numprocs; i++)

if (k >= s->range[i])

return i-1;

return -1; // error
}

The question remains if the use of the path key for the decomposition of
the domain and the associated tree nodes results in an efficient method. The
assignment of nodes to processes should be done in such a way that entire
subtrees lie in the same process.31 This would lead to efficient tree traver-
sals and thus to efficient tree methods. However, the path key numbering
introduced above rather leads to a horizontal than a vertical ordering of the
tree nodes, as can be seen in Figure 8.18. Consequently, entire subtrees will
not lie in the same process after the partition. We therefore have to suitably
transform the path key to obtain a better ordering.

k=16 k=17 k=18 k=19

k=4 k=5 k=6

k=28 k=29 k=30 k=31

k=7

k=1

Fig. 8.18. Horizontal ordering in the tree using the path keys k for an example
quadtree. The keys are given here in decimal notation and not in binary notation.

A transformation that will lead to a vertical ordering of the tree nodes
is the following: We first remove the leading bit (the original key of the root
node). The remaining bits are shifted to the left until the maximal bit length
of the key type is reached.32 We denote the resulting bit word as domain
key. In the domain key ordering the tree nodes are sorted vertically and we
can identify subtrees and assign them to processes using the simple interval
decomposition (8.22). Applied to the two-dimensional example from Figure
8.16, the path key is transformed into the domain key as follows
31 In addition, the decomposition should be carried out such that as little commu-

nication as possible is needed in the parallel algorithm. To achieve this, we will
later modify the keys again and use space-filling curves to obtain decompositions
that result in a more efficient method.

32 This transformation needs O(1) operations if the refinement level of the tree is
known. Otherwise, O(maxlevel) operations are needed.
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000000000000000000000001 01110010︸ ︷︷ ︸
path

�→

01110010︸ ︷︷ ︸
path

000000000000000000000000, (8.23)

if a 32 bit key type is used.
If the keys for the nodes of one level of the tree are mapped in this way,

they are all different, the keys for nodes of different levels can however happen
to be the same: The zeroth son of a node has the same key as the node itself.
Only then the (new) keys of the other sons follow. This holds recursively in
the entire tree.33 We show the effect of the transformation from path key to
domain key in a two-dimensional example in Figure 8.19. There, we place
65536 randomly distributed particles in a circle and determine the associated
quadtree as well as the path key and the domain key for each particle (leaf
node) of the tree. We then connect the points representing the particles with
lines in the order given by the two different keys. On the left, we see the
polygonal line resulting from the path key ordering, on the right, we see the
polygonal line resulting from the domain key ordering. The right polygonal
line clearly shows a stronger local character and is shorter. If the domain key

Fig. 8.19. The linear particle ordering induced by the path key (left panel) and
by the domain key (right panel) for 65536 particles randomly placed in a two-
dimensional circle. One can clearly see the improved locality of the ordering induced
by the domain key.

33 The transformed numbers of the nodes are no longer unique for the nodes of the
tree, but they are still unique for the leaf nodes. This is sufficient to compute the
domain decomposition and the partitioning of the particle set with the intervals
[rangei, rangei+1).



348 8 Tree Algorithms for Long-Range Potentials

ordering is used for the parallelization in the decomposition of the particle
set into subsets using range values, one thus obtains a better parallelization.
The resulting geometric domain decomposition is more connected and more
compact, and less data has to be exchanged between processes.

Note that the description of the data distribution with the intervals
[rangei, rangei+1) defines a minimal upper part of the tree that has to be
present in all processes as a copy to ensure the consistency of the distributed
global tree. The leaf nodes of this common coarse tree are the coarsest tree
cells for which all possible descendants are stored in the same process, com-
pare Figure 8.20. The values of the domain keys of all possible descendants
of a leaf node of this coarse tree lie in the same interval [rangei, rangei+1)
as the domain key of this node (if the value rangei+1 was chosen matching
with the coarse tree). These leaf nodes of the common coarse tree are also
the roots of the local subtrees which are associated to single processes. Such
a given coarse tree can then be used to determine at any time which particle
belongs to which process.

Fig. 8.20. A tree (top) distributed to three processes (bottom). The nodes of
the common coarse tree (dark grey with dashed border) are kept as copies in all
processes, while the nodes representing particles (white) and further pseudoparticles
(light grey) are only kept in one process.

Altogether, we now have three different types of tree nodes: Leaf nodes,
which are nodes without sons in which particle data are stored, inner tree
nodes that do not belong to the common coarse tree and in which pseudopar-
ticles are stored, and tree nodes that belong to the common coarse tree and
which describe the domain decomposition. To simplify the implementation
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of the parallel tree operations later, only pseudoparticle data is stored in the
last kind of nodes, and never particle data. We tag the different types of
nodes explicitly. This is implemented in code fragment 8.2.

Code fragment 8.2 Definition of the Types of Nodes in the Tree
typedef enum { particle, pseudoParticle, domainList } nodetype;

typedef struct {
...

nodetype node;

} TreeNode;

Here, we extended the data structure TreeNode by a flag node. We mark
nodes of the common coarse tree which are kept as copies in all processes with
the type domainList, since they describe the geometric distribution of the
computational domain to the processes. The leaf nodes are marked with type
particle and the remaining nodes are flagged with type pseudoParticle.

An important procedure for the parallelization is the computation and
flagging of the domainList-nodes from the range values contained in data
structure SubDomainKeyTree. This is implemented in detail in Algorithm
8.12.

Algorithm 8.12 Computation of the domainList Flags Using range Values
void createDomainList(TreeNode *t, int level, keytype k,

SubDomainKeyTree *s) {
t->node = domainList;

int p1 = key2proc(k,s);

int p2 = key2proc(k | ~(~0L << DIM*(maxlevel-level)),s);

if (p1 != p2)

for (int i=0; i<POWDIM; i++) {
t->son[i] = (TreeNode*)calloc(1, sizeof(TreeNode));

createDomainList(t->son[i], level+1,

k + i<<DIM*(maxlevel-level-1), s);

}
}

We here use bit operations such as the complement and the bit-wise OR
to manipulate the domain keys appropriately. First, we look at the key of
the node itself, and thus at the minimal key of all son nodes in the subtree.
By filling all the remaining digits with 1, we also look at the maximal key
of all son nodes. Now, if both keys are mapped to the same process, the
monotonicity of key2proc ensures that the entire subtree is mapped to the
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same process. However, if they are mapped to different processes, we have to
descend deeper into the tree. createDomainList is called as shown in code
fragment 8.3.

Code fragment 8.3 Initialization of the Tree
root = (TreeNode*)calloc(1, sizeof(TreeNode));

createDomainList(root, 0, 0, s);

We now adapt the sequential routines for the tree operations from the last
section to the parallel tree data structures according to the type of the node
(i.e. according to the flag node). Here in particular, the nodes flagged with
domainList may not be deleted in repairTree. Furthermore, insertTree
should not insert particle data into domainList nodes. Thus, when inserting a
node in insertTree, particles cannot be inserted directly into a domainList
node, but have to be inserted (recursively) into its son nodes. In this way,
some particle might lie in deeper levels in the parallel tree with domainList
nodes as in the sequential case. However, the numerical result of the Barnes-
Hut method does not change.34

The Barnes-Hut method computes not only particle-particle interactions
but also particle-pseudoparticle interactions. This can lead to the situation
that a process has to access pseudoparticle data on a different process in the
parallel computation. Thus, the process has to insert certain pseudoparticles
from other processes into its local tree to be able to compute the force on
its particles. Therefore, we have to extend the routine insertTree in such
a way that we can insert a domainList node into a given tree. Then, the
associated decomposition of the domain changes. To this end, pseudoparticles
can be simply re-flagged as domainList there. However, if we encounter a
real particle, we have to create a domainList node and insert the particle as
a son node.

There are several possibilities to provide the parallel program with initial
data: All particles could be created in process zero or are read from a file
into process zero. For large numbers of particles, this approach is limited
by the available memory of process zero. Therefore, we want to be able to
create or read the particles for several processes in parallel. In general, the
initial parallel distribution of the particles will then be different from the
distribution that would result from our domain decomposition. Hence, the
particles have to be redistributed to the appropriate processes.

Altogether, we proceed as follows: We assume that the values of range
are given. First, every process creates a local tree using createDomainList.
Particles created or read by the process are inserted into this local tree. With
34 Alternatively, one could also flag particles with domainList. However, this would

lead to more case distinctions in the code.
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help of the domainList flag, we can decide to which process the particle truly
belongs. Every process now traverses its local tree, removes particles that are
not assigned to it, and sends these particles to the appropriate process. After
this operation, the tree should be cleaned up as in the sequential case, i.e.,
its structure should be adapted to the actual distribution of the particles.
Subsequently, the process receives the particles from the other processes and
sorts them into its local tree. This approach is implemented schematically in
Algorithm 8.13. For simplicity, we store the particles to be sent to process
to in a particle list plist[to], an instance of the abstract list data type
ParticleList.35

Algorithm 8.13 Sending Particles to Their Owners and Inserting Them in
the Local Tree
void sendParticles(TreeNode *root, SubDomainKeyTree *s) {

allocate memory for s->numprocs particle lists in plist;

initialize ParticleList plist[to] for all processes to;

buildSendlist(root, s, plist);

repairTree(root); // here, domainList nodes may not be deleted
for (int i=1; i<s->numprocs; i++) {

int to = (s->myrank+i)%s->numprocs;

int from = (s->myrank+s->numprocs-i)%s->numprocs;

send particle data from plist[to] to process to;

receive particle data from process from;

insert all received particles p into
the tree using insertTree(&p, root);

}
delete plist;

}

void buildSendlist(TreeNode *t, SubDomainKeyTree *s,

ParticleList *plist) {
called recursively as in Algorithm 8.1;

// start of the operation on *t

int proc;

if ((*t is a leaf node) &&

((proc = key2proc(key(*t), s)) != s->myrank)) {
// the key of *t can be computed step by step in the recursion

insert t->p into list plist[proc];

mark t->p as to be deleted;
}

// end of the operation on *t

}

35 This list data type might be implemented as the list data type from Chapter 3.
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Here, we use the sequential implementation of insertTree which is ex-
tended to handle the field node. In this way, we have distributed the particles
to the processes according to the information given in range. All nodes that
are marked as particle or pseudoParticle are contained in one subtree
that belongs completely to one process. The root of the tree and the nodes
on the coarse levels of the tree, which are all marked with domainList, have
to be treated separately for some operations, since son nodes may belong to
other processes. In the actual implementation, the content of the particle lists
first has to be copied into an array, which then can be handed to the mes-
sage passing library MPI for parallel communication. Also, the right amount
of memory has to be allocated for buffer. This can be implemented for in-
stance by a prior message that only communicates the length of the following
message. Alternatively, one can use other MPI commands to determine the
length of an incoming message, to allocate the right amount of memory, and
then to receive and process the message.

Computing the Values for the Pseudoparticles. As in the sequential
case one first computes the values for the pseudoparticles and subsequently
determines the forces. We split both routines into separate parts for com-
munication and computation. The computation of the values of the pseu-
doparticles for a subtree completely owned by a process can proceed as in
the sequential case from the leaf nodes to the root of the subtree. We then
exchange the values of these domainList nodes, which are the leaf nodes of
the global coarse tree, among all processes. Finally, we compute the values
of the pseudoparticles in the coarse domainList tree by all processes at the
same time, in a redundant fashion. This approach is presented in Algorithm
8.14.

We can use a global sum over all processes for the communication36 if we
transfer and sum the first moments for each node, i.e. m*x[i], instead of the
coordinates. Each process then contributes either zero or the value already
computed for the node and receives afterwards the global sum needed for the
operations on the coarse domainList tree. In this way, the pseudoparticles
assume exactly the same values as in the sequential case. In summary, we
compute the values on the subtrees completely independently, communicate
data globally, and then finish the computation on the coarse domainList tree
independently and redundantly for each process.

Force Computation. The force on a particle will be computed by the
process to which the particle has been assigned. To this end, the sequen-
tial implementation of compF BH is changed as shown in Algorithm 8.15. The
algorithm uses the routine force tree (see Algorithm 8.7) locally in each
process. For this, the necessary data from other processes have to be stored
36 When implementing this with MPI Allreduce, one has to copy the data into an

array first.



8.4 Parallel Tree Methods 353

Algorithm 8.14 Parallel Computation of the Values of the Pseudoparticles
void compPseudoParticlespar(TreeNode *root, SubDomainKeyTree *s) {
compLocalPseudoParticlespar(root);

MPI_Allreduce(..., {mass, moments} of the lowest domainList nodes,
MPI_SUM, ...);

compDomainListPseudoParticlespar(root);

}

void compLocalPseudoParticlespar(TreeNode *t) {
called recursively as in Algorithm 8.1;
// start of the operation on *t

if ((*t is not a leaf node)&&(t->node != domainList)) {
// operations analogous to Algorithm 8.5

}
// end of the operation on *t

}

void compDomainListPseudoParticlespar(TreeNode *t) {
called recursively as in Algorithm 8.1 for the coarse domainList-tree;
// start of the operation on *t

if (t->node == domainList) {
// operations analogous to Algorithm 8.5

}
// end of the operation on *t

}

Algorithm 8.15 Adapting the Sequential Routine to the Parallel Implemen-
tation
void compF_BH(TreeNode *t, real diam, SubDomainKeyTree *s) {

called recursively as in Algorithm 8.1;
// start of the operation on *t

if ((*t is a leaf node) && (key2proc(key(*t), s) == s->myrank)) {
// the key of *t can be computed step by step in the recursion
for (int d=0; d<DIM; d++)

t->p.F[d] = 0;

force_tree(t, root, diam);

// end of the operation on *t

}
}

as copies in the local process. Because of the θ criterion used in the Barnes-
Hut method, the recursion does not descend through entire subtrees that
lie in other processes, but terminates earlier, depending on the distance to
the particle. If we ensure that all pseudoparticles and particles necessary in
the computation of the forces are copied to the local process, the sequential
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version of force tree can be used and will give the same result in the par-
allel case as in the sequential case. To this end, we have to determine which
data are needed and we have to exchange this data between the processes
appropriately and efficiently.

The difficulty is that the local process cannot determine which nodes of
the other trees it has to request since it does not know the exact structure of
the entire tree nor the data for all processes. We therefore proceed as follows:
Every process determines which nodes another process will request from it
during the force computation and sends the appropriate data to the appro-
priate process. This can be implemented in the following way: Each process
p0 (i.e. myrank == p0) stores all global domainList nodes in addition to its
own nodes. To a domainList node td of a different process p1, there exists an
associated subtree below it in process p1. Then, all of the particles and pseu-
doparticles in this subtree lie in the geometric cell td->box. Therefore, when
process p0 tests for its particles and pseudoparticles t->p, whether process
p1 might possibly need them in its force computation, it can assume that
all particles from p1 lie in the cell of *td. If now an interaction is excluded
even for the minimal distance from t->p.x to the cell td->box due to the θ
criterion, process p1 will not need the particle t->p in its computation. The
same holds for all descendants of *t since the size diam of the associated cells
is smaller than that of *t. This is shown in 8.21 for an example.

domainList node
*td

r

mydomain p0

diam
t >p.x

from other process p1

Fig. 8.21. Extension of the θ criterion to geometric cells and thus to entire subtrees.

In summary, we employ a communication routine before the parallel force
computation in which every process sends a number of particles and pseu-
doparticles to other processes. These processes sort these particles into their
own tree. For this, we need the routine symbolicForce which is given in
Algorithm 8.16.
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Algorithm 8.16 Determining Subtrees that are Needed in the Parallel Force
Computation
void symbolicForce(TreeNode *td, TreeNode *t, real diam,

ParticleList *plist, SubDomainKeyTree *s) {
if ((t != NULL) && (key2proc(key(*t), s) == s->myrank)) {

// the key of *t can be computed step by step in the recursion
insert t->p into list plist;

real r = smallest distance from t->p.x to cell td->box;

if (diam >= theta * r)

for (int i=0; i<POWDIM; i++)

symbolicForce(td, t->son[i], .5 * diam, plist, s);

}
}

Algorithm 8.17 Parallel Force Computation
void compF_BHpar(TreeNode *root, real diam, SubDomainKeyTree *s) {

allocate memory for s->numprocs particle lists in plist;

initialize ParticleList plist[to] for all processes to;

compTheta(root, s, plist, diam);

for (int i=1; i<s->numprocs; i++) {
int to = (s->myrank+i)%s->numprocs;

int from = (s->myrank+s->numprocs-i)%s->numprocs;

send (pseudo-)particle data from plist[to] to process to;

receive (pseudo-)particle data from process from;

insert all received (pseudo-)particles p into
the tree using insertTree(&p, root);

}
delete plist;

compF_BH(root, diam);

}

void compTheta(TreeNode *t, SubDomainKeyTree *s, ParticleList *plist,

real diam) {
called recursively as in Algorithm 8.1;
// start of the operation on *t

int proc;

if ((*t is a domainList node) &&

((proc = key2proc(key(*t), s)) != s->myrank))

// the key of *t can be computed step by step in the recursion
symbolicForce(t, root, diam, &plist[proc], s);

// end of the operation on *t

}



356 8 Tree Algorithms for Long-Range Potentials

The computation of the distance of a cell to a particle can be implemented
with appropriate case distinctions. One has to test whether the particle lies
left, right, or inside the cell along each coordinate direction. The particles
to be sent are collected in lists. It could happen that a (pseudo-)particle
is inserted into the list several times, if several cells td are traversed for
one process. Such duplicate (pseudo-)particles should be removed before the
communication step. This can be implemented easily via sorted lists.

The actual parallel force computation is shown in Algorithm 8.17. After
the particles have been received by a process, they have to be inserted into its
local subtree. Here, the pseudoparticles should be inserted first, each one on
its appropriate level, and then the particles should be inserted. This ensures
the proper insertion of the subtree. An ordering into pseudoparticles and
particles can be guaranteed for example by sorting the (pseudo-)particles
according to decreasing mass. This sorting can be implemented in the routine
symbolicForce in the insertion into the send lists. Son nodes are inserted
automatically after father nodes into the local subtree.

Main Program. The remaining parts needed to complete the parallel pro-
gram can be implemented in a straightforward way. After the force com-
putation, copies of particles from other processes have to be removed. The
routine for the time integration can be reused from the sequential case. It
only processes all particles that belong to the process. Particles are moved in
two phases. First, the sequential routine is used to re-sort particles that have
left their cell in the local tree. Afterwards, particles that have left the process
have to be sent to other processes. We have already implemented this in the

Algorithm 8.18 Parallel Main Program
int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);

TreeNode *root;

Box box;

SubDomainKeyTree s;

real delta_t, t_end;

inputParameters_BHpar(&delta_t, &t_end, &box, &s);

root = (TreeNode*)calloc(1, sizeof(TreeNode));

createDomainList(root, 0, 0, &s);

initData_BHpar(&root, &box, &s);

timeIntegration_BHpar(0, delta_t, t_end, root, &box, &s);

outputResults_BHpar(root, &s);

freeTree_BHpar(root);

free(s.range);

MPI_Finalize();

return 0;

}
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routine sendParticles. Whenever the tree is cleaned up, one has to ensure
that nodes of the type domainList are not be deleted.

Altogether, this results in the main program from Algorithm 8.18. The
domainList nodes are created and initialized with createDomainList(root,
0, 0) in initData BHpar. Then, as in the sequential case, particles of the
local process are inserted into its subtree. We leave further details to the
reader.

8.4.2 Dynamical Load Balancing

A still open question is how to choose the values of range. If the particles are
geometrically equidistributed, we can simply use a uniform partition of the
set of key values.37 However, if the particles are not uniformly distributed,
such a static and fixed choice of the values in range is unsatisfactory. Instead,
the values should be adapted to the particle data which are changing over
time in the simulation. Here, values of range are sought that lead to an
almost uniform distribution of the particles to the processes.

One possible approach is described in code fragment 8.4. Note that
the tree, particles, domainList nodes, and range values have to be con-
sistent when this code is called. This is for instance the case after a call to
sendParticles. In this code fragment, we first determine the current load
distribution and then compute a new, balanced load distribution.

Code fragment 8.4 Determining Current and New Load Distribution
long c = countParticles(root);

long oldcount[numprocs], olddist[numprocs+1];

MPI_Allgather(&c, &oldcount, MPI_LONG);

olddist[0] = 0;

for (int i=0; i<numprocs; i++)

olddist[i+1] = olddist[i] + oldcount[i];

long newdist[numprocs+1];

for (int i=0; i<=numprocs; i++)

newdist[i] = (i * olddist[numprocs]) / numprocs;

Here, we first count the number of particles of each process in the routine
countParticles using a post-order tree traversal. After a global communi-
cation with MPI Allgather, we then know how many particles are owned
by each single process. If we now number the particles in increasing order
37 Since we want to keep the depth of the domainList tree and thereby the number

of domainList nodes small, we can choose values of range that correspond to
nodes of as high a level as possible. These are nodes with domain keys that
have been filled with as many zeros as possible from the right. Altogether, this is
achieved by an appropriate rounding instead of a straightforward integer division.
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of their keys, we know furthermore that process i owns the particles with
numbers olddist[i] to olddist[i+1]-1. This is the case since the parti-
cles are distributed according to the old range values to the processes and
these numbers are monotonically increasing. The total number of particles is
olddist[numprocs]. If we now distribute the particles uniformly to the pro-
cesses, i.e., assign each process olddist[numprocs]/numprocs particles up to
rounding, each process i will receive the particles with numbers newdist[i]
to newdist[i+1]-1. In this way, each process can determine which particles
it has to send to which process and which particles it has to receive from
which process.38

We could in principle transfer all particles right away in the routine of code
fragment 8.4. However, we would save some work if we reused the routines
sendParticles and createDomainList. We then only have to determine the
new values of range. The values range[0]=0 and range[numprocs]=MAX KEY
can be set correctly by each process independently, but the other range val-
ues cannot be determined independently by any process. Here, we proceed
as follows: Each process runs through its particles and counts them. If a
newdist-limit is reached, the corresponding key of the current particle is
chosen as new value for range. In this way, every process knows exactly one
new range value. If the range values have been initialized with zero, comput-
ing the maximum over all processes over the range values is then enough to
obtain the correct range values for all processes. This global communication
can then be implemented with a call to Allreduce(range, MPI MAX).

To find the keys for the particles sought, the process has to walk through
its particles in increasing key order. Because of the construction of the key,
this can be achieved simply with a post-order traversal of the leaf nodes
of the tree. The first particle encountered by the process has the number
olddist[myrank]. Starting with this number, the process can count along.
The details are given in code fragment 8.5.

Afterwards, one has to delete the old domainList flags in the tree, cre-
ate new ones with createDomainList, and transport the particles with
sendParticles. The number of particles to be sent depends strongly on
the load distribution. If the load is redistributed in every time step, usually
only few particles have to be transported.

The presented approach can be interpreted as a parallel sorting method.
In a first step, each process has a bucket into which all particles within its
subdomain are sorted. The transporting of the particles to the right processes
and the sorting into their bucket can then also be interpreted as local sorting.
38 It could possibly happen that a process has to send all of its particles to other

processes and will receive completely different particles. This would be the case
if [olddisti, olddisti+1) ∩ [newdisti, newdisti+1) = ∅. However, this would only
occur when there is a very large load imbalance which generally does not happen
in practice.
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Code fragment 8.5 Determining New range Values from the Load Distri-
bution
for (int i=0; i<=numprocs; i++)

range[i] = 0;

int p = 0;

long n = olddist[myrank];

while (n > newdist[p])

p++;

updateRange(root, &n, &p, range, newdist);

range[0] = 0;

range[numprocs] = MAX_KEY;

MPI_Allreduce(..., range, MPI_MAX,...);

void updateRange(TreeNode *t, long *n, int *p,

keytype *range, long *newdist) {
called recursively as in Algorithm 8.1;
// the key of *t can be computed step by step in the recursion
// start of the operation on *t

if (*t is a leaf node) {
while (*n >= newdist[*p]) {
range[*p] = key(*t);
(*p)++;

}
(*n)++;

}
// end of the operation on *t

}

Analogous approaches can be found in algorithms like bucket sort or one-
stage radix sort [357].

The described method can be generalized to an equidistribution of the
computational load. Then, one distributes estimated computational costs per
particle. The vectors olddist and newdist there no longer contain the num-
ber of particles, but for instance the accumulated load or the number of
interactions in the previous time step.

8.4.3 Data Distribution with Space-Filling Curves

In the last subsection, we distributed the particles uniformly to the processes.
However, the question still remains how much communication is needed in
the resulting parallel tree method. This depends on the number of processes
and the number of particles. If we fix both numbers, we directly see that the
amount of domainList nodes plays a certain role in the parallel computation
of the pseudoparticles, especially if the domainList-subtrees are not very
deep. Furthermore, the communication in the parallel force computation is
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even more involved. The reason is that often relatively large subtrees have
to be sent and received here. The question is therefore, how effective our
domain decomposition technique is with respect to the amount of data to be
communicated.

This question cannot be answered exactly, both for our as well as for many
other domain decomposition heuristics. Let us first assume equidistributed
particles and balanced trees. Then, it is rather easy to see how to improve
our heuristics: If we run through the particles according to their domain keys
in increasing order and connect them by line segments, we obtain a so-called
discrete Lebesgue curve, compare Figure 8.22 for the two-dimensional case. If
we decompose the computational domain into several subdomains, the curve
will be subdivided as well. The same statement holds the other way around,
i.e., a partitioning of the curve induces a certain domain decomposition. The
subdomain described by a piece of the curve is then assigned to one process.
Since the Lebesgue curve has “jumps”, these subdomains might consist of
several disconnected pieces. This is not a problem in itself, but it is an in-
dication that the geometric boundary of a subdomain produced in this way
might be relatively large. However, the size of the subdomain boundaries has
a strong influence on the communication load, i.e., on how many particles
have to be sent in the force computation. Hence, to improve the domain
decomposition with respect to the resulting communication effort, we need
to find keys such that the resulting curve leads to subdomains with small
geometric boundary.

One way to improve our domain decomposition is to use a so-called Hilbert
curve instead of the Lebesgue curve, which we implicitly employed up to now.
A partitioning of the Hilbert curve will always lead to connected subdomains,
see Figures 8.28 and 8.29. Both the Lebesgue curve and the Hilbert curve are
examples of space-filling curves. They were discovered in 1890 and 1891 by
Peano [470] and Hilbert [321]. The aim was to construct surjective mappings
of a line segment, e.g. the unit interval [0, 1], to a two-dimensional surface,
for instance [0, 1]2. An introduction to the theory of space-filling curves can
be found in [535].

A space-filling curve K : [0, 1] → [0, 1]2 is given as the limit of a sequence
of curves Kn : [0, 1] → [0, 1]2, n = 1, 2, 3, . . . Every curve Kn connects the
centers of the 4n squares that are created by successive subdivision of the
unit square by line segments in a certain order. The curve Kn+1 results from
the curve Kn as follows: Each square is subdivided, the centers of the newly
created four smaller squares are connected in a specific given order, and all
the 4n groups of 4n+1 centers of smaller squares are connected in the order
given by the curve Kn. In this sense, the curve Kn+1 refines the curve Kn.

Hilbert and Lebesgue curves differ in the ordering of the centers in each
refinement step. In the case of the Lebesgue curve, the same order is used
everywhere, as shown in the upper left of Figure 8.22. For the Hilbert curve
the order is chosen in such a way that, whenever two successive centers are
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Fig. 8.22. Three steps in the construction of the Lebesgue curve.

Fig. 8.23. Three steps in the construction of the Hilbert curve.

connected by a straight line, only the common edge of the two squares is
crossed. The construction is made clearer in Figure 8.23. One can show that
the sequence Kn for Hilbert’s curve converges uniformly to a curve K, which
implies that the limit curve K is continuous. For the Lebesgue curve, the
sequence only converges pointwise and the limit is discontinuous.

The construction can be generalized to arbitrary space dimensions DIM,
i.e. to curves K : [0, 1] → [0, 1]DIM. Such a Hilbert curve is shown for the
three-dimensional case in Figures 8.24 and 8.25.

1

2 3

4

5

67

8

Fig. 8.24. Construction of a three-dimensional Hilbert curve.
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Fig. 8.25. A number of refinement steps of a three-dimensional Hilbert curve.

We implement the replacement of the Lebesgue curve by the Hilbert curve
with a second transformation of the path key.39 Thus, we still compute the
path key during the recursion which is mapped by shifting to the correspond-
ing domain key according to (8.23). This key corresponds to the ordering of
the Lebesgue curve. The domain key is subsequently transformed into the
corresponding Hilbert key using the function Lebesgue2Hilbert from Algo-
rithm 8.19.

Algorithm 8.19 Transformation of a Lebesgue Key into a Hilbert Key.
(Tables for DIM=2.)
const unsigned char DirTable[4][4] =

{ {1,2,0,0}, {0,1,3,1}, {2,0,2,3}, {3,3,1,2} };
const unsigned char HilbertTable[4][4] =

{ {0,3,1,2}, {0,1,3,2}, {2,3,1,0}, {2,1,3,0} };

keytype Lebesgue2Hilbert(keytype lebesgue) {
keytype hilbert = 1;

int level = 0, dir = 0;

for (keytype tmp=lebesgue; tmp>1; tmp>>=DIM, level++);

for (; level>0; level--) {
int cell = (lebesgue >> ((level-1)*DIM)) & ((1<<DIM)-1);

hilbert = (hilbert<<DIM) + HilbertTable[dir][cell];

dir = DirTable[dir][cell];

}
return hilbert;

}

39 One can also compute the Hilbert keys directly during the descent in the tree.
Then, one has to take into account how the local ordering of the Hilbert curve
depends on the current position. The fast computation of Hilbert keys is also
used in computer graphics and coding theory, see for instance [131].
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For clarity, this routine is presented for the two-dimensional case. To
extend it to the three-dimensional case, one just has to exchange the tables
DirTable and HilbertTable with those from code fragment 8.6.

Code fragment 8.6 Tables for Algorithm 8.19 for DIM=3.
const unsigned char DirTable[12][8] =

{ { 8,10, 3, 3, 4, 5, 4, 5}, { 2, 2,11, 9, 4, 5, 4, 5},
{ 7, 6, 7, 6, 8,10, 1, 1}, { 7, 6, 7, 6, 0, 0,11, 9},
{ 0, 8, 1,11, 6, 8, 6,11}, {10, 0, 9, 1,10, 7, 9, 7},
{10, 4, 9, 4,10, 2, 9, 3}, { 5, 8, 5,11, 2, 8, 3,11},
{ 4, 9, 0, 0, 7, 9, 2, 2}, { 1, 1, 8, 5, 3, 3, 8, 6},
{11, 5, 0, 0,11, 6, 2, 2}, { 1, 1, 4,10, 3, 3, 7,10} };

const unsigned char HilbertTable[12][8] =

{ {0,7,3,4,1,6,2,5}, {4,3,7,0,5,2,6,1}, {6,1,5,2,7,0,4,3},
{2,5,1,6,3,4,0,7}, {0,1,7,6,3,2,4,5}, {6,7,1,0,5,4,2,3},
{2,3,5,4,1,0,6,7}, {4,5,3,2,7,6,0,1}, {0,3,1,2,7,4,6,5},
{2,1,3,0,5,6,4,7}, {4,7,5,6,3,0,2,1}, {6,5,7,4,1,2,0,3} };

The function Lebesgue2Hilbert works level by level, starting at the
coarsest level which corresponds to the root of the tree. On each level, the
variable cell is set to the number of the cell into which the algorithm will
descend, numbered in the Lebesgue order. The variable dir keeps track which
of the four possible refinement orders is used for the refinement, as shown in
Figure 8.26.40

Fig. 8.26. Refinement orders 0 to 3 for the two-dimensional Hilbert curve.

From the variable dir of the refinement order and the cell cell one
can now, by means of table HilbertTable, determine the cell number in
the Hilbert ordering into which one descends. This table thus describes
which cell in the Lebesgue order corresponds to which cell in the Hilbert
order with respect to the refinement order dir. One obtains for instance
for dir=0 the mapping 0 �→ 0, 1 �→ 3, 2 �→ 1, 3 �→ 2, which leads to the
40 There are of course more than four different orderings but the others are not

needed here.
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entry {0,3,1,2} in HilbertTable, compare also Figure 8.27. The number
HilbertTable[dir][cell] constructed in this way is appended at the end
of the current Hilbert key. The refinement order for the next refinement step
is then determined using the table DirTable. This approach is repeated until
all levels have been processed. The 4 × 4 tables of the two-dimensional case
have to be replaced by corresponding 12× 8 tables in the three-dimensional
case, see code fragment 8.6.

1

0 0

32

1

2

3

Fig. 8.27. Mapping of the Lebesgue order to the Hilbert order for refinement order
0. The cells {0, 1, 2, 3} are mapped to the cells {0, 3, 1, 2}.

Fig. 8.28. Mapping of the cells to the processes. The Hilbert curve is split into
segments according to the range values. The domain decomposition created by this
splitting is shown at the right.

Fig. 8.29. Domain decomposition using the Lebesgue curve (left, disconnected
subdomains) and the Hilbert curve (right, connected subdomains).



8.4 Parallel Tree Methods 365

Fig. 8.30. Particle ordering induced by the domain key (left) and the Hilbert key
(right) for 65536 randomly (top) and uniformly (bottom) distributed particles in a
circle in two dimensions. One clearly sees the improved locality of the Hilbert curve
as compared to the Lebesgue curve.

To apply the space-filling Hilbert curve in our program, we have to insert
the transformation to the Hilbert key at any place where the number of the
process is computed from the domain key of a cell by key2proc. In addition,
in the load balancing, we have to traverse all particles in order of increasing
Hilbert keys. Here, it is no longer enough to just use a post-order tree traversal
of all leaf nodes of the tree. Instead, we have to test in the recursion which
son node possesses the lowest Hilbert key. For this, we compute the Hilbert
keys of all (four or eight) son nodes, sort them, and then descend in the tree
in the correct order.
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8.4.4 Applications

Our parallelized program has two advantages. First, it results in substantially
faster running times than the sequential version. Second, we can now use the
larger distributed main memory of the parallel computer, which allows us to
run substantially larger application problems.

Collision of Two Spiral Galaxies. We consider the collision of two spiral
galaxies. Numerical simulations can here recreate the specific structures of
interacting systems that can be observed in space and give hints on how
they evolved.41 To obtain the initial configuration we put two spheres with
a generic radius of one into our simulation box. The stars are distributed
randomly with a constant density inside the spheres. Each galaxy contains
500000 particles that interact by the gravitational potential (8.19). All stars
have, for simplicity, the same mass and we set mi = 1/N , which normalizes
the total mass of the system to one. The initial velocities are chosen so that
each sphere rotates like a rigid body around an axis through the center of the
sphere which is also parallel to the x3 axis. The velocities are again chosen
so that the centrifugal force is approximately equal to the gravitational force
(Kepler orbits). In addition we move the right upper sphere with a velocity
of -0.1 in the x1 direction and move the left lower sphere with a velocity of
0.1 in the x1 direction. Without gravitation the two systems would just pass
each other. With gravitation the systems attract each other, rotate around
each other, and finally merge.

Figure 8.31 shows the formation of two spiral galaxies and their collision
at different times. We have again chosen δt = 0.001 as time step for the time
integration. We use the value 0.6 for θ. In the upper left, we see the initial
configuration consisting of two homogeneous spheres. As in the experiment in
Section 8.3.3, the homogeneous spheres turn into spiral structures with two
spiral arms each. The two spiral galaxies move towards each other because
of gravitation and start to rotate around each other.42 The high intrinsic
rotation leads to the formation of two large spiral arms. Finally, the two
galactic cores merge and a larger spiral galaxy with two arms is formed.
Further results of simulations of the collision of galaxies can be found on
Barnes’ website [19].

In Figure 8.32 we see the distribution43 of the domain cells that is created
by the partitioning of the particles using a Hilbert curve. The cells assigned to
41 Barnes [19] explains the approach as follows: “The rules of this game are to

build models of isolated galaxies, place them on approaching orbits, and evolve
the system until it matches the observations; if the model fails to match the
observations, one adjusts the initial conditions and tries again.”

42 This rotation would not occur if the two galaxies would collide head-on.
43 We show essentially the cells of the leaf nodes of the tree. In the graphical

representation we have limited the depth of the tree to 6 levels and thereby fixed
the size of the smallest cells.
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t=6.0 t=10.0

t=13.0 t=15.0

t=17.0 t=18.6

Fig. 8.31. Collision of two spiral galaxies, time evolution of the particle distribu-
tion, view parallel to the common axis of rotation. The particle densities are shown
as color-map.
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Fig. 8.32. Tree adaptivity and color-mapped data distribution. Section of the
distribution (left) where some cells were removed for better visibility. Exploded view
of the entire distribution (right). Collision of two spiral galaxies: Two galaxies (top),
merged single galaxy (bottom) (at two different points of time in the simulation.)
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a single processor are all shown in the same color. The distribution of the data
is dynamical, it changes over time and follows the particles of the colliding
galaxies. The load balance is maintained by rebalancing via the dynamical
partitioning with a Hilbert curve.

Speedup and Parallel Efficiency. Table 8.1 and Figure 8.33 show the
speedup and the parallel efficiency for the computation for one time step of
the entire Barnes-Hut method for 32768, 262144, and 2097152 particles with
up to 256 processors of a Cray T3E-1200. Here, the particles were uniformly
distributed within the simulation domain. θ was set again to a value of 0.6.
For the case of 2097152 particles, the main memory of a single processor
is not sufficiently large to hold the data. We therefore use the definition
S(P ) = 4 · T (4)/T (P ) for the speedup and thus normalize to 4 processors.

32768 particles 262144 particles 2097152 particles
proc. speedup efficiency speedup efficiency speedup efficiency

1 1.00 1.000 1.00 1.000
2 1.96 0.981 1.99 0.998
4 3.84 0.960 3.92 0.980 4.00 1.000
8 7.43 0.928 7.83 0.978 7.98 0.998

16 12.25 0.765 14.68 0.917 16.02 1.000
32 18.15 0.567 26.08 0.815 31.89 0.997
64 26.87 0.420 45.71 0.714 61.49 0.961

128 34.36 0.268 70.93 0.554 104.41 0.816
256 35.21 0.138 112.65 0.440 194.96 0.762

Table 8.1. Speedup and parallel efficiency of the Barnes-Hut method.
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Fig. 8.33. Speedup and parallel efficiency of the parallel Barnes-Hut method on
a Cray T3E-1200. Dotted line: 32768 particles, dashed line: 262144 particles, solid
line: 2097152 particles.
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For the smaller number of 32768 particles we observe a saturation starting
at around 16 processors. With increasing number of processors, the processors
are assigned less and less computations but the communication load remains
approximately constant. For the case of 262144 particles we see good results
up to approximately 64 processors, before saturation occurs. For the largest
case of 2097152 particles good speedups and efficiencies were achieved for up
to 256 processors. We observe an almost linear behavior of the speedups.44

Analogous results are obtained in the case of colliding galaxies due to our
dynamical load balancing.

8.5 Methods of Higher Order

In the previous sections we considered the Barnes-Hut method in detail. It
is an example for an approximation (8.11) of the potential using a Taylor
expansion of the kernel function up to degree p = 0. In the following, we
now discuss methods of higher order. There, the series expansion (8.6) is not
truncated after the first term but higher order terms are included into the
computation.45 Still, the algorithmic approach of the Barnes-Hut method can
be used. Also the parallelization is similar. Essentially only the force compu-
tation routine in Algorithm 8.7 and the computation of the pseudoparticles
in Algorithm 8.5 have to be changed. There, the appropriate equation with
higher degree p

Φ(x) ≈
∫

Ωnear
ρ(y)G(x,y)dy +

∑
ν

∑
‖j‖1≤p

1
j!

Mj(Ωfar
ν ,yν

0 )G0,j(x,yν
0 ) (8.24)

has to be used for the force computation instead of (8.11) with p = 0. Here,
the local moments are again given by Mj(Ωfar

ν ,yν
0 ) =

∫
Ωfar

ν
ρ(y)(y − yν

0 )jdy
from (8.11).

In the Barnes-Hut method we just precomputed the zeroth moments and
stored them in the inner nodes of the tree, i.e. in the pseudoparticles. Now,
we also have to determine the higher moments Mj(Ωfar

ν ,yν
0 ) with ‖j‖1 ≤ p. To

use the tree approach also for the higher moments, we again need appropriate
transfer operations according to (8.17) and (8.18) that allow to compute the
moments of a node from the moments of its son nodes. For the Barnes-Hut
method this was simple, we just summed the masses to compute the values
for the pseudoparticles. For higher values of p, additional loops over p are
necessary.
44 The kink at 128 processors in Figure 8.33 is probably caused by the memory

architecture of the parallel machine. We suspect cache effects.
45 Also other expansions can be used instead of the Taylor series. The modular ver-

sion of the method presented here is independent of the specific series expansion,
it can be employed for the Taylor series as well as for expansions into spherical
harmonics which were used in the original fast multipole method.
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As in the Barnes-Hut method we choose the position of the pseudoparti-
cles as the center of mass

yν
0 :=

∫
Ωfar

ν
ρ(z)zdz∫

Ωfar
ν

ρ(z)dz
,

compare also (8.20). Then, it holds for the first moments Mj(Ωfar
ν ,yν

0 ) with
‖j‖1 = 1 that

Mj(Ωfar
ν ,yν

0 ) =
∫

Ωfar
ν

ρ(y)

(
y −

∫
Ωfar

ν
ρ(z)zdz∫

Ωfar
ν

ρ(z)dz

)j

dy

=
∫

Ωfar
ν

ρ(y)yjdy −
∫

Ωfar
ν

ρ(y)dy
∫

Ωfar
ν

ρ(z)zjdz∫
Ωfar

ν
ρ(z)dz

=
∫

Ωfar
ν

ρ(y)yjdy −
∫

Ωfar
ν

ρ(z)zjdz = 0. (8.25)

Thus, the first moments, the so-called dipole moments, vanish. This shows
that the original Barnes-Hut method is already of order two.46

The overall algorithm again splits into three parts: Building the tree,
computing the moments, and computing the force. Algorithms to build the
tree have already been discussed and can be reused without changes. The
two other parts of the algorithm now have to be extended to the higher order
terms.

8.5.1 Implementation

To modify our implementation of the Barnes-Hut method to the case p > 0,
we have to extend the routine for the computation of the pseudoparticles by
the computation of the higher moments. In the routine for the force compu-
tation we have to take the additional terms of the Taylor series into account.
First, we have to be able to store the higher moments. To this end, we ex-
tend the data structure Particle by a field moments. There, we retain the
values of the moments with respect to the monomials, ordered for instance
as follows:

{ 1,
x1, x2, x3,
x2

1, x1x2, x1x3, x2
2, x2x3, x2

3,
x3

1, x2
1x2, x2

1x3, x1x
2
2, x1x2x3, x1x

2
3, x3

2, x2
2x3, x2x

2
3, x3

3,
. . .} .

46 We also could have chosen the center of the cell as the position of the pseudopar-
ticle. The position then would not have to be explicitly saved because it can be
determined easily. However, the dipole moments then no longer vanish in general
and have to be computed and stored.
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To this end, we define the constant DEGREE for the polynomial degree p of
the expansion of the potentials and the constant MOMENTS for the number of
the associated coefficients in the code fragment 8.7.47

Code fragment 8.7 Definition of Higher Moments
#define DEGREE 2

#if DIM==2

#define MOMENTS (((DEGREE+1)*(DEGREE+2))/2)

#else

#define MOMENTS (((DEGREE+1)*(DEGREE+2)*(DEGREE+3))/6)

#endif

typedef struct {
...

real moments[MOMENTS];

} Particle;

The moments can now be obtained in different ways: First, one could
compute the moments directly for each cell in the tree which represents a
cluster of particles. To this end, one would sum over all particles belonging
to the cell, in a coordinate system which has its origin at the pseudoparticle.
For each cell, the total complexity of this operation is proportional to the
number of particles contained in the cell. With N particles approximately
equidistributed in the entire domain, one would obtain a balanced tree and
one would need O(N log N) computational operations to compute all mo-
ments. With respect to N , the computation of the moments has therefore
the same complexity as the force computation. Note that the constant in
front of the N log N -term depends on p and its size plays an important role
in practice.

However, the moments can also be obtained more efficiently in O(N)
operations by computing the moments of a cell recursively from the moments
of its son cells. To this end, we translate the moments from the coordinate
system of the son cells to the coordinate system of the father cell and then
just add these vectors.

To translate a monomial, we can use the binomial formula

(x − a)p =
p∑

i=0

(
p

i

)
xiap−i.

47 If we still store the total mass in mass, instead of in moments[0], and if we put
the pseudoparticles at the center of mass, then the dipole moments vanish and
we can directly start with the storage of the moments with quadratic terms, i.e.
the quadrupole moments. The vector moments is then DIM+1 entries shorter.
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The necessary binomial coefficients
(
p
i

)
can be computed beforehand via Pas-

cal’s triangle and can be stored in a table. This is implemented in Algorithm
8.20.

Algorithm 8.20 Tabulating the Binomial Coefficients
int binomial[DEGREE+1][DEGREE+1];

void compBinomial() {
for (int i=0; i<=DEGREE; i++) {

binomial[0][i] = 1;

binomial[i][i] = 1;

for (int j=1; j<i; j++)

binomial[j][i] = binomial[j-1][i-1] + binomial[j][i-1];

}
}

We first consider how to re-expand polynomials of several variables in
a coordinate system with a different origin. This can be implemented by re-
expanding the polynomial along each coordinate direction, one direction after
the other. Here, we use the binomial formula for each single monomial. Since
it takes a complexity proportional to p to re-expand each monomial, and
since there are O(p3) polynomials up to degree p, the overall re-expansion
has a total complexity of O(p4) computational operations.48

Admittedly, we do not have to transform the polynomials but the mo-
ments. To this end, we can again use the binomial formula. Here, we do not
consider each monomial in the source coordinate system and transform it to
the target coordinate system, but instead we expand the monomials in the
target coordinate system and match them with the source polynomial. Thus,
if a term xi occurs on the right side of the binomial formula, the coefficient

(
p
i

)
“mediates” between the old moment associated to xi and the new moment
associated to xp. The transformation of the polynomials can be interpreted
as a linear mapping. The transformation of the moments then corresponds
to the adjoint of that linear mapping. With this interpretation we can also
translate the moments in a complexity of O(p4).49

Algorithm 8.21 gives a routine that shifts the vector moments of moments
along the x1 axis by a and stores the result in m. To implement arbitrary
translations in three dimensions, we also need the corresponding shifts along
the x2 and x3 axis. For simplicity we have used the moment vectors as three-
dimensional arrays in code fragment 8.8 to be able to express derivatives
48 Other transformations such as rotations are more expensive. A general linear

mapping would require O(p6) operations.
49 In the case p = 0, the adjoint mapping is again (the multiplication with) the

mass. The translation does not change the mass.
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with respect to the three coordinate directions.50 These indices still have to
be mapped to the linearly addressed vector of moments.

Code fragment 8.8 Indexing Moments by Numbers of Directional Deriva-
tives
int dm[DEGREE+1][DEGREE+1][DEGREE+1] = // for DIM=3

{{{ 0, 3, 9},{ 2, 8,-1},{ 7,-1,-1}}, // and DEGREE=2

{{ 1, 6,-1},{ 5,-1,-1},{-1,-1,-1}},
{{ 4,-1,-1},{-1,-1,-1},{-1,-1,-1}}};

Algorithm 8.21 Shifting Moments of a Three-Dimensional Taylor Series by
a in x1 Direction
void shiftMoments_x0(real* moments, real a, real* m) {
for (int j=0; j<=DEGREE; j++)

for (int k=0; k<=DEGREE-j; k++) {
for (int i=0; i<=DEGREE-j-k; i++)

m[dm[i][j][k]] = 0;

for (int i=0; i<=DEGREE-j-k; i++) {
real s = moments[dm[i][j][k]];

for (int l=i; l<=DEGREE-j-k; l++) {
m[dm[l][j][k]] += s * binomial[i][l];

s *= a;

}
}

}
}

To correctly start the recursion for the computation of the moments of the
pseudoparticles, we need the moments of the particles in their original coordi-
nate systems. The zeroth moment of a particle is the mass of the particle. All
other moments are set to zero. The moments of the son nodes are shifted and
added to compute the moments for each pseudoparticle. The corresponding
algorithm is given in 8.22.

Now, we are only missing a routine for the computation of the forces.
For each particle we compute an approximation of the force acting on that
particle. Here, the recursive descent in the tree is still controlled by the ge-
ometric θ criterion. But now, the values of the higher moments have to be
taken into account in the actual computation of the forces. The force acting
on a particle at position x is as always given as the negative gradient of the
potential F(x) = −∇Φ(x) . Using the Taylor expansion of the potential as in

50 Here, unused indices are set to -1 for clarity.
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Algorithm 8.22 Computing Pseudoparticles and Higher Moments (replaces
compPseudoParticles from Algorithm 8.5)
void compMoments(TreeNode *t) {

called recursively as in Algorithm 8.1;
// start of the operation on *t

for (int i=0; i<MOMENTS; i++)

t->p.moments[i] = 0;

if (*t is a leaf node)
t->p.moments[0] = p.m;

else {
determine the coordinates of the pseudoparticle t->p.x;

for (int j=0; j<POWDIM; j++)

if (t->son[j] != NULL)

t->p.moments +=

shift moments t->son[j]->p.moments

by (t->p.x - t->son[j]->p.x) using Algorithm 8.21;
}
// end of the operation on *t

}

Algorithm 8.23 Computing the Force Between Particles and Pseudoparti-
cles up to Degree p=DEGREE

void force(Particle *p, Particle *q) { // particle p, pseudoparticle q

for (int i=0; i<=DEGREE; i++)

for (int j=0; j<=DEGREE-i; j++)

for (int k=0; k<=DEGREE-i-j; k++) {
real tmp = fact[i] * fact[j] * fact[k] *

p->m * q->moments[dm[i][j][k]];

p->F[0] -= tmp * PotentialDeriv(p->x, q->x, i+1, j , k );

p->F[1] -= tmp * PotentialDeriv(p->x, q->x, i , j+1, k );

p->F[2] -= tmp * PotentialDeriv(p->x, q->x, i , j , k+1);

}
}

real PotentialDeriv(real xp[3], real xq[3], int d1, int d2, int d3) {
return

`
G(0,0,0),(d1,d2,d3)(xp, xq)

´
;

}

(8.11), one has to evaluate a sum of moments and derivatives of the kernel G
in the far field. We have already computed the moments for all pseudoparti-
cles in the routine compPseudoParticles. The force can now be computed
as before using the routines compF BH and force tree. The only change re-
quired is in the evaluation of the force between particles and pseudoparticles
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in routine force to also take higher moments into account now. This is im-
plemented in Algorithm 8.23. Here, an array fact[DEGREE+1] is used to store
the precomputed factorials. It has to be initialized appropriately beforehand.

This approach works for arbitrary kernels G that satisfy the proper-
ties from Section 8.1. The evaluation of the different derivatives using
PotentialDeriv is generally quite expensive. But for a fixed, given G, as
for instance for the gravitational potential, and for a fixed degree DEGREE,
the force can be written out as an explicit formula and can thus be directly
coded. This can speed up the force evaluation substantially.

Finally, let us consider the quality of the results of the Barnes-Hut method
for different values of p. In Figure 8.34 we plot the resulting relative error
of the potential over θ for a case with a very inhomogeneous distribution of
particles as it occurs in the simulation of the collision of two spiral galaxies
from Section 8.4.4 at time t = 17.
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Fig. 8.34. Dependence of the relative error on θ for the Barnes-Hut method with
p = 0 (dashed line) and p = 2 (solid line) for the simulation of the formation of a
spiral galaxy.

In the case p = 0 we obtain a method of second order because of (8.25).
In the case p = 2 we obtain a method of third order. One clearly sees the
substantially improved error behavior for p = 2 even for relatively large values
of θ. Using a method of higher order thus allows the choice of substantially
larger values for θ, which significantly decreases the computing time.

8.5.2 Parallelization

Only a few changes are necessary in the parallelization of the Barnes-Hut
method of higher order as compared to the parallelization of the original
method. Note here that our simple approach with the summation over the
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masses with Allreduce from the original method only works for the com-
putation of the moments of the pseudparticles if the moments are already
correctly translated. This results however in additional costs in the computa-
tions. Instead, it is more efficient to use Allgather to exchange the moments
and coordinates of the domainList nodes and to translate the moments lo-
cally for each process separately before the summation. The computation of
the forces does not change. When the (pseudo-)particles are communicated,
their moments now have to be communicated as well. They are then used
in the local computation of the force. The tree selection criterion involving
θ has not been changed by the higher order of approximation, so that the
parallel symbolic computation of the forces can be reused without changes
as well.

8.6 Cluster-Cluster Interactions and the Fast Multipole
Method

The method of Barnes and Hut, which has been discussed up to now, relies on
the idea to substitute as many particle-particle interactions in the far field as
possible by interactions between a particle and a pseudoparticle. This allows
to reduce the complexity of the naive approach from O(N2) to O(N log N)
if the particles are approximately uniformly distributed. In the following, we
discuss an extension of the method that allows us to reach an optimal linear
complexity, i.e. the order O(N).

The essential idea is the following: Instead of directly computing an ap-
proximation of the interaction for each single particle with far field pseu-
doparticles, we now take interactions between different pseudoparticles, the
so-called cluster-cluster interactions,51 into account. Their multiple use then
further reduces the number of necessary computations in an approximate
evaluation of the potential and forces.

8.6.1 Method

We start again from the expansion of the kernel function G(x,y) into a Taylor
series as in Section 8.1. Now, G is not only expanded up to degree p in the
variable y around a point yν

0 , but also in the variable x around the point xµ
0 .

We obtain

G(x,y) =
∑

‖k‖1≤p

∑
‖j‖1≤p

1
k!j!

(x−xµ
0 )k(y−yν

0 )jGk,j(x
µ
0 ,yν

0)+R̂p(x,y). (8.26)

The remainder term R̂p(x,y) will be studied more closely in the context of
the error estimate in Section 8.6.3.
51 The cells belonging to each pseudoparticle, together with the particles contained

in them, are called clusters, see [289].
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By substituting (8.26) into the integral representation of the potential
(8.2), we obtain the interaction ΦΩν (x) of a subdomain Ων ⊂ Ω with a point
x ∈ Ω as

ΦΩν (x) =
∫

Ων

G(x,y)ρ(y)dy

≈
∫

Ων

∑
‖k‖1≤p

∑
‖j‖1≤p

1
k!j!

Gk,j(x
µ
0 ,yν

0 )(x − xµ
0 )k(y − yν

0 )jρ(y)dy

=
∑

‖k‖1≤p

1
k!

(x − xµ
0 )k

∑
‖j‖1≤p

1
j!

Gk,j(x
µ
0 ,yν

0 )Mj(yν
0 , Ων), (8.27)

where the moments Mj(yν
0 , Ων) are given again by (8.12). The expansion of

the kernel function G in x around xµ
0 thus induces an expansion of ΦΩν (x)

around xµ
0 , in which the coefficients

∑
‖j‖1≤p

1
j!

Gk,j(x
µ
0 ,yν

0 )Mj(yν
0 , Ων)

of this expansion are given by the interaction between Ωµ and Ων . This allows
to convert the cluster-cluster interaction between Ωµ and Ων to x, see also
Figure 8.35. Thus, for all particles contained in the cell associated to Ωµ, the
interaction between Ωµ and Ων has to be computed only once and can then
be used for all x ∈ Ωµ after an appropriate conversion. In this way a certain
amount of computational operations can be saved and the resulting method
has a complexity of order O(N).

0x yv
0

Fig. 8.35. Interaction of a cluster of particles around the center xµ
0 with the

particles from a distant cluster of particles around the center yν
0 .

The multipole method applies this principle in a hierarchical fashion: Ini-
tially, interactions between large clusters are computed. These interactions
are converted to the next smaller clusters, and interactions are computed on
the next lower level of clusters. This approach is repeated while one descends
down the tree. Here, on each level of the tree, each cluster inherits the inter-
actions of its father cluster and interacts itself with other clusters. Finally,
every particle (as a leaf node in the tree) receives the complete interaction
with all other particles.



8.6 Cluster-Cluster Interactions and the Fast Multipole Method 379

For this hierarchical approach we need an appropriate decomposition of
the domain Ω×Ω. We again start from the quadtree or octree decomposition
of the domain Ω as described in Section 8.2. It therefore holds that

Ω =
⋃
ν∈I

Ων , (8.28)

where I is an index set for the occurring indices ν. Each cell Ων represents
a pseudoparticle, if it corresponds to an inner node of the tree, or a single
particle, if it corresponds to a leaf node of the tree. Every Ων is again assigned
a “center” xν

0 = yν
0 ∈ Ων .52 Usually the center of mass is chosen for xν

0 and
yν

0 , respectively.53

From the decomposition of the domain Ω one immediately obtains a de-
composition of Ω × Ω:

Ω × Ω =
⋃

(µ,ν)∈I×I

Ωµ × Ων . (8.29)

The tree decompositions of Ω and Ω×Ω are not disjoint. To be able to cover
the total interaction ∫

Ω

∫
Ω

G(x,y)ρ(x)ρ(y)dxdy

exactly once for later formulae, we select a subset J ⊂ I × I so that

Ω × Ω =
⋃

(µ,ν)∈J

Ωµ × Ων ∪ Ωnear (8.30)

form a disjoint partitioning of the domain (up to the boundaries of the cells).
For the error estimate in Section 8.6.3 one needs that each pair (µ, ν) ∈ J
satisfies the selection criterion (θ criterion)

‖x− xµ
0‖

‖xµ
0 − yν

0‖
≤ θ and

‖y − yν
0‖

‖xµ
0 − yν

0‖
≤ θ for all x ∈ Ωµ,y ∈ Ων , (8.31)

compare also (8.21). Since this criterion cannot be satisfied along the diag-
onal, a near field Ωnear ⊂ Ω × Ω remains, which yet can be chosen so small
that it does not substantially affect the computing time needed. The θ crite-
rion of the multipole method corresponds to that of the Barnes-Hut method.
The difference is that, for the treatment of cluster-cluster interactions, Ω×Ω

52 It is possible to choose different centers xν
0 = yν

0 for the two sides of Ω × Ω.
In general, this does not lead to a better method. We will thus not pursue this
variant here. Nevertheless, we will use the notation xν

0 for the left side and yν
0

for the right side for clarity, since they fit with the used variable names x and y.
53 In the original multipole method of Greengard and Rokhlin, the geometric center

of the cell was chosen.
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is now decomposed instead of Ω and the old θ criterion is to be fulfilled on
both, the x side and the y side. An example of a decomposition satisfying
the criterion for the one-dimensional case is shown in Figure 8.36. The algo-
rithmic construction of such a decomposition is explained in more detail in
Section 8.6.2. Again, as already discussed in Section 8.3.1 for the Barnes-Hut
method, the selection criterion (8.31) can be replaced by a modified version.

x

y

Fig. 8.36. Decomposition of Ω × Ω in one space dimension. The near field close
to the diagonal is shaded in grey.

This hierarchical domain decomposition can now be used for the compu-
tation of the interactions. To this end, we consider the interaction of a point
x ∈ Ω with the whole domain Ω. It consists of the re-expanded interactions
between all Ωµ and Ων with x ∈ Ωµ and (µ, ν) ∈ J . We obtain

Φ(x) =
∑

(µ,ν)∈J
x∈Ωµ

∫
Ων

G(x,y)ρ(y)dy

≈
∑

(µ,ν)∈J
x∈Ωµ

∑
‖k‖1≤p

1
k!

(x − xµ
0 )k

∑
‖j‖1≤p

1
j!

Gk,j(x
µ
0 ,yν

0 )Mj(yν
0 , Ων)

=: Φ̃(x), (8.32)

where Φ̃(x) denotes the approximation after the remainder term has been
dropped. This sum can now be decomposed corresponding to the tree hi-
erarchy of Ω. To this end, let µ0 be the root of the tree, i.e. Ωµ0 = Ω.
Furthermore, denote recursively µl as the son of µl−1 which contains x, until
µL is finally a leaf node and ΩµL just contains the particle x. Therefore, L
denotes the level of the tree on which the leaf node occurs that contains x.
It depends on the particle x and can be different for different particles. With
this notation, one can rewrite (8.32) as
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Φ̃(x) =
L∑

l=0

∑
‖k‖1≤p

1
k!

(x− xµl

0 )k Wl,k, (8.33)

where the terms

Wl,k :=
∑

ν:(µl,ν)∈J

∑
‖j‖1≤p

1
j!

Gk,j(x
µl

0 ,yν
0 )Mj(yν

0 , Ων) (8.34)

describe the direct interactions of Ωµl
. Using the recursively defined coeffi-

cients

K0,k := W0,k, Kl,k := Wl,k+
∑

‖m‖1≤p
m≥k

1
(m − k)!

(
xµl

0 − xµl−1
0

)m−k
Kl−1,m,

(8.35)
one can rewrite (8.33) as follows:

Φ̃(x) =
L∑

l=0

∑
‖k‖1≤p

1
k!

(x − xµl

0 )k Wl,k

=
L∑

l=1

∑
‖k‖1≤p

1
k!

(x − xµl

0 )k Wl,k +
∑

‖k‖1≤p

1
k!

(x − xµ1
0 + xµ1

0 − xµ0
0 )k K0,k

=
L∑

l=1

. . . +
∑

‖k‖1≤p

∑
‖m‖≤p
m≤k

1
k!

(
k
m

)
(x − xµ1

0 )m (xµ1
0 − xµ0

0 )k−m
K0,k

=
L∑

l=1

. . . +
∑

‖k‖1≤p

1
k!

(x− xµ1
0 )k

∑
‖m‖1≤p

m≥k

1
(m − k)!

(xµ1
0 − xµ0

0 )m−k
K0,m

=
L∑

l=2

. . . +
∑

‖k‖1≤p

1
k!

(x − xµ1
0 )k

·
(
W1,k +

∑
‖m‖1≤p

m≥k

1
(m − k)!

(xµ1
0 − xµ0

0 )m−k
K0,m

)

=
L∑

l=2

. . . +
∑

‖k‖1≤p

1
k!

(x − xµ1
0 )k K1,k

=
L∑

l=3

. . . +
∑

‖k‖1≤p

1
k!

(x − xµ2
0 )k K2,k

= . . .

=
∑

‖k‖1≤p

1
k!

(x − xµL

0 )k KL,k. (8.36)
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This computation suggests an algorithm on each level l as follows: The
interactions inherited from the father cluster µl−1 are re-expanded from its
center xµl−1

0 to the respective center xµl

0 of the son cluster. Then, the direct
interactions Wl,k of the current level are added. This is also reflected in the
definition of the coefficient Kl,k as the sum of the direct interactions Wl,k of
the cluster and the re-expanded contributions of the father cluster. Starting
from the root, all terms Kl,k are computed by descending in the tree until
the leaf nodes are reached. These leaf nodes consist only of one particle xµL

0 ,
for which one obtains the interaction as

Φ̃(xµL

0 ) = KL,0. (8.37)

We now need the negative gradient of the potential to compute the force
vector. For this we could substitute Ged,0 for G in the computation above
and repeat the computation for each component.54 However, it can be shown
that the dth component of the force is given by

− ∂

∂(x)d
Φ(xµL

0 ) = KL,ed
, (8.38)

if one substitutes the potential for G. But this is just equivalent to a series
expansion of Ged,0 up to degree p−1 instead of p. Therefore, the computation
has to be executed only once for the potential G and we obtain at the same
time an approximation of the potential up to degree p and an approximation
of the force up to degree p − 1.

8.6.2 Implementation

We use the higher-order particle-cluster method from Section 8.5 as a start-
ing point for the implementation of the cluster-cluster algorithm. Since the
two methods just differ in the computation of the interactions, i.e. in the
computation of the potential and the forces, only the implementation of the
computation of the interactions is discussed in detail.

The arguments in the previous Section 8.6.1 lead to the following algorith-
mic approach for the computation of the potential and the force: First, the
moments Mj are computed in a post-order traversal (that means ascending
from the leaf nodes to the root). Then, the coefficients Kl,k are determined in
a pre-order traversal (that means descending from the root to the leaf nodes)
and added to the interactions. We already described the recursive computa-
tion of the moments with a post-order traversal for the Barnes-Hut method,
see Algorithm 8.22. Here, a new algorithmic element was given by the decom-
position of Ω × Ω and the computation of the coefficients Kl,k. Both tasks
must now be realized in a common routine. We use for the implementation a
function force fmm with a node t as first argument and a list L of nodes as
54 ed here denotes the dth unit vector.
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the second argument. The node t plays the role of the cluster Ωµ, and the
list L describes a set of clusters Ων . The function force fmm is now called
with the root node as the first argument and a list just containing the root
node as the second argument. The function tests for each cluster t2 from the
list L, whether it satisfies the θ criterion (8.31) together with t. If that is
the case, the interaction of the two clusters is computed, which corresponds
to the addition of the appropriate part of the Wl,k term in (8.35). If that is
not the case, one has to refine further. The refinement is symmetric on both
sides, i.e., one looks at both the son nodes of t and the son nodes of t2.
For this task, the appropriate son nodes of t2 are written into a list L2 and
force fmm is called recursively for each son node of t. Here, L contains just
the set of clusters for which interactions have to be computed with t, either
on the same or on a finer level. Figure 8.37 shows the so-called interaction
sets {Ωµ × Ων , (µ, ν) ∈ J} for a two-dimensional example.

� � �

Fig. 8.37. Interaction sets (black×white) in the fast multipole method for a par-
ticle p. Interactions with the white cells are computed on this level of the tree,
interactions with the light gray cells already have been computed, and interactions
with the dark cells will be computed later.

If a leaf of the tree is reached on either side, one cannot refine anymore on
this side, and one must descend in the tree asymmetrically. If leaf nodes are
reached on both sides, the interaction is computed in any case, independently
of the result of the θ criterion. This is shown in Figure 8.38. If t is a leaf
node and if all interactions are processed, i.e. L2 is empty, the computation
of the terms Kl,k is finished and the force is added to t->p.F according to
(8.38).55

55 There are variants of the method in which more than one particle (for instance a
fixed maximal amount of particles) is stored in a leaf node of the tree, i.e., in the
tree construction one no longer refines until all particles belong to different cells
of the tree. Then, leaf nodes can also carry corresponding pseudoparticles. With
an approximation of higher-order, the pseudoparticle of a leaf node can then be
used for the interaction with the field of several particles at a larger distance.
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Algorithm 8.24 Domain Decomposition and Computation of the Direct
Interaction in the Multipole Method for DIM=3
void force_fmm(TreeNode *t, list L, real diam, real *K) {
if (t==NULL) return;

list L2; // create empty list L2

for all elements t2 of L {
if (diam < theta * ( distance of t->p.x and t2->p.x))

compInteract_fmm(&(t->p), &(t2->p), K);

else

if (t2 is not a leaf node)
for (int i=0; i<POWDIM; i++)

append t2->son[i] to list L2

else

if (t is not a leaf node)
append t2 to list L2

else

compInteract_fmm(&(t->p), &(t2->p), K);

}
if (t is not a leaf node)

for (int i=0; i<POWDIM; i++) {
compute K2 as re-expansion of K from t->p.x

to t->son[i]->p.x according to (8.35)
force_fmm(t->son[i], L2, diam/2, K2);

}
else

if (L2 is not empty)
force_fmm(t, L2, diam/2, K);

else {
t->p.F[0] -= K[dm[1][0][0]];

t->p.F[1] -= K[dm[0][1][0]];

t->p.F[2] -= K[dm[0][0][1]];

}
}

void compInteract_fmm(Particle *p, Particle *p2, real *K) {
for (int k=0; k<DEGREE; k++)

for (int j=0; j<DEGREE-k; j++)

for (int i=0; i<DEGREE-k-j; i++)

for (int k2=0; k2<DEGREE; k2++)

for (int j2=0; j2<DEGREE-k2; j2++)

for (int i2=0; i2<DEGREE-k2-j2; i2++)

K[dm[i][j][k]] += PotentialDeriv2(p->x, p2->x, i,

j, k, i2, j2, k2) * p2->moments[dm[i2][j2][k2] *

fact[i2] * fact[j2] * fact[k2];

}
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�

Fig. 8.38. Direct summation in the fast multipole method of particles in the white
cells on the finest level of the tree.

The near field Ωnear no longer appears explicitly. The reason is that the
algorithm refines the domain Ω×Ω until all particles away from the diagonal
belong to the far field. The near field then only consists of the diagonal
which is automatically treated by particle-particle interactions. We describe
the function force fmm with its case distinctions in Algorithm 8.24. The
implementation of the lists is left to the reader. They could be implemented
as linked lists, for instance. We do not store the terms K explicitly in the
Particle structure but we pass them as arguments in the recursion. The
decomposition of Ω × Ω is not stored explicitly either, but created by the
recursion.

The function force fmm uses the function compInteract fmm for the com-
putation of the direct interactions. This function in turn calls the func-
tion PotentialDeriv2, which computes the derivative of the potential G
analogously to function PotentialDeriv in Algorithm 8.23, but now with
respect to both of its arguments.56 For specific potentials, such as for
G(x,y) = 1

‖y−x‖ , and for fixed degree DEGREE of the expansion, one should
exploit specific properties of the potential, as for instance radial symmetry,
and optimize the routine compInteract fmm accordingly. This allows to fur-
ther reduce the complexity of the method with respect to p.

8.6.3 Error Estimate

The error estimate proceeds analogously to the error estimate for the Barnes-
Hut method. The remainder term R̂p(x,y) of the expansion (8.26) is given
by

R̂p(x,y) =
∑

(k,j)∈Ip

1
k!j!

(x − xµ
0 )k(y − yν

0 )jGk,j(x̃k,j, ỹk,j) (8.39)

with Ip = {(k, j) : k = 0, ‖j‖1 = p + 1 or ‖k‖1 = p + 1, ‖j‖1 ≤ p}. For all
multi-indices (k, j) ∈ Ip, it holds that ‖k + j‖1 ≥ p + 1. If x,xµ

0 ∈ Ωµ and
56 For the sake of efficiency, the different derivatives should be written out explicitly

for a given G and implemented directly.
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y,yν
0 ∈ Ων , and if the cells Ωµ and Ων are convex,57 then the points x̃k,j and

ỹk,j at which the remainder term is evaluated, are also contained in Ωµ and
Ων , respectively.

We assume again that G and ρ are positive functions and that G and
its derivatives are equivalent to the 1/r potential and its derivatives up to
multiplicative constants, compare (8.15). Then, it holds for all x̃, ỹ by virtue
of the θ criterion (8.31) that

Gk,j(x̃, ỹ) ≤ c‖x̃− ỹ‖−‖k+j‖1−1 ≤ c
(
(1 + 2θ)‖xµ

0 − yν
0‖
)−‖k+j‖1−1

,

G(x,y) ≥ c‖x− y‖−1 ≥ c(1 − 2θ)‖xµ
0 − yν

0‖−1. (8.40)

Using the notation
Ωx

near := {y : (x,y) ∈ Ωnear}, (8.41)

the relative error of Φ̃(x) can then be estimated as follows:

∣∣∣∣∣Φ(x) − Φ̃(x)
Φ(x)

∣∣∣∣∣ ≤
∑

(µ,ν)∈J
x∈Ωµ

∫
Ων

|R̂p(x,y)|ρ(y)dy

∑
(µ,ν)∈J
x∈Ωµ

∫
Ων

G(x,y)ρ(y)dy +
∫

Ωx
near

G(x,y)ρ(y)dy

≤ c

∑
(k,j)∈Ip

∑
(µ,ν)∈J
x∈Ωµ

∫
Ων

‖x− xµ
0‖‖k‖1‖y − yν

0‖‖j‖1‖xµ
0 − yν

0‖−‖k+j‖1−1ρ(y)dy

∑
(µ,ν)∈J
x∈Ωµ

∫
Ων

‖xµ
0 − yν

0‖−1ρ(y)dy

≤ c

∑
(k,j)∈Ip

∑
(µ,ν)∈J
x∈Ωµ

∫
Ων

θ‖k+j‖1‖xµ
0 − yν

0‖−1ρ(y)dy

∑
(µ,ν)∈J
x∈Ωµ

∫
Ων

‖xµ
0 − yν

0‖−1ρ(y)dy
≤ cθp+1. (8.42)

The relative error for the multipole method is therefore of order O(θp+1) as
well.

8.6.4 Parallelization

The parallelization of the Barnes-Hut method has already been described in
Section 8.4. The multipole method differs only in the force computation. As
in the parallel Barnes-Hut algorithm, it is done locally by each process after
the domain decomposition. Again, one has to make sure that all needed data
57 The cells in our decompositions into cubical subdomains are convex.
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from other processes are available locally as a copy. To this end, we proceeded
as follows for the Barnes-Hut method in Section 8.4.1: Each process checks
which particles or pseudoparticles each other process will need in the force
computation later. To test whether the θ criterion is satisfied, the distance
between the pseudoparticle and the particle of the other process (whose exact
position is only known to the other process) is estimated by the minimal
distance of all cells which belong to this other process. These cells are given
by the domainList nodes which are stored and thus known to all processes.
It is possible that more data are sent in this way than necessary. However,
in any case all the data possibly needed by the other processes will then be
available there.

This approach might fail for the multipole method with an arbitrary do-
main decomposition that satisfies the θ criterion (8.31), since the distance
‖x− xµ

0‖ for the criterion is not known locally. But the implementation sug-
gested in Section 8.6.2 uses a symmetric criterion to decide whether to de-
scend or not. Therefore, the distances ‖x− xµ

0‖ and ‖y− yν
0‖ are symmetric

and the θ criterion for the Barnes-Hut method is viable for the multipole
method as well. The method only descends asymmetrically if one of the two
sides is a leaf node. If the side which belongs to the other process (corre-
sponding to Ωµ) is a leaf node, the criterion is tested with the smaller cell
diameter of the local pseudoparticle (as can be seen in Algorithm 8.24), and
the method will succeed. If the side which belongs to the local process is a
particle, the particle is communicated in any case and thus all necessary data
is exchanged in this case as well. Therefore, the domain decomposition sug-
gested in Section 8.6.2 combined with the symmetric criterion allows to reuse
the parallelized version of the Barnes-Hut method without modification for
the multipole method.

Further reading for parallel cluster-cluster algorithms and parallel fast
multipole methods can be found in [196, 261, 454, 500, 501, 564, 680].

8.7 Comparisons and Outlook

In the previous section, we introduced the cluster-cluster method using an
expansion into Taylor series. This way, one can achieve a complexity of or-
der O(θ−3p6N) for uniformly distributed particles in the three-dimensional
case.58 The factor p6 stems from the computation of the direct interactions
58 For this complexity bound one assumes a uniform tree in which the particles are

already stored in the leaf nodes. The construction of the tree and the sorting
of the particles into the tree are neglected. In the case of uniformly distributed
particles the sorting of the particles into the tree can be implemented by a
bucket or radix sort in O(N) operations [357]. In the case of extremely non-
uniformly distributed particles, both the cluster-cluster method and the fast
multipole method can degenerate to a method of order O(N2), see also [36].
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between any two clusters. The computation of the moments and the conver-
sion of the coefficients takes O(p4N) operations. Other expansions besides
Taylor series can be used in the method as well. The original fast multipole
method of Greengard and Rokhlin [38, 139, 260, 263, 264, 265, 525] employed
spherical harmonics, which appear naturally in the treatment of the Coulomb
potential and the gravitational potential. Then, since the kernel is radially
symmetric, only O(p2) moments are necessary, the computation of the di-
rect interactions between two clusters costs therefore only O(p4), and the
total complexity of the method is O(θ−3p4N). Several implementations with
slightly modified spherical harmonics are described in [206, 474, 650, 659].
Further explanations and related methods can be found in [66, 185, 262, 481].
Adaptive variants are discussed in [143, 454]. A generalization to more gen-
eral kernel functions can be found in [599]. Greengard, Rokhlin and others
have presented a new version of the fast multipole method in [207, 266, 329]
which decreases the complexity to O(θ−3p2N) by using plane waves.59 A
related approach uses the technique of Chebyshev economization [398]. One
can find an error estimate for the fast multipole method with a slightly im-
proved constant in [478, 479]. Note that the multipole method as described in
the previous section only works for the nonperiodic case. However, it can be
generalized to the periodic case in a similar fashion as the Ewald method, see
[84, 96, 370]. A comparison with the PME method can be found in [488, 574].

An independent direction of development started with the panel cluster-
ing method suggested by Hackbusch and Novak in [289] for boundary inte-
gral equations, see also [253, 290]. It uses the expansion into Taylor series.
Closely related to this approach are the pseudoskeleton approximation and
its generalizations [72, 256, 257, 368]. There, one uses special interpolation
methods as well as low rank approximations which are constructed by singu-
lar value decompositions. Further developments along this line are the panel
clustering method of variable order by Hackbusch and Sauter [424, 545, 600],
in which lower values of p are used deep into the tree and higher values
of p are used close to the root. This allows to further reduce the complex-
ity while maintaining the same order in the error. In the best case one can
achieve a complexity of order O(θ−3N), independent of p. The panel cluster-
ing approach has lead in the meantime to the theory of H and H2 matrices
[101, 102, 287, 286, 288], which offers, among other things, a fast and ef-
ficient approximate matrix-vector product for a wide class of matrices and
their inverses.

Finally, Brandt [118, 119, 121, 542] suggested approaches that are based
directly on multigrid techniques. They can be interpreted as panel clustering
59 The complexity of the method is actually O(θ−3p3N), see [266]. But if the tree

is constructed in such a way that s = 2p particles lie in each leaf node and these
particles interact directly with each other and with particles from neighboring
leaf nodes, one can eliminate the leading term in the complexity and obtains a
method of complexity O(θ−3p2N).
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methods or multipole methods that use Lagrange interpolation polynomials
as expansion systems.

A fair comparison of the different methods is not easy. Which approach
is faster depends on the number of particles, their distribution in the simu-
lation domain, and finally on the particular implementation of the particular
method. Already the difference in complexity between the two techniques
presented in the two last sections helps to clarify this point: The Barnes-
Hut method of higher order has a complexity of order O(θ−3p4N log N), the
cluster-cluster method has a complexity of O(θ−3p6N). Assuming the same
constant, they have the same complexity for log N = p2, i.e. for N = 8p2

.
For larger values of p, the number N of the particles has to become ex-
tremely large, before the cluster-cluster method gives an advantage. Take
as an example the case p = 4. Then, the number of particles has to be
N > 816 = 281474976710656 for the cluster-cluster method to be faster than
the particle-cluster method. This shows the importance of the variants of the
cluster-cluster method mentioned above. They allow to reduce the order of
complexity in p. Similar approaches can also be used for the particle-cluster
method to reduce its complexity in p. A comparison of the complexities of the
parallelized versions of the different method is strongly machine-dependent
and is even harder [94]. We will therefore refrain from any further discussion
of the subject here.



9 Applications from Biochemistry and

Biophysics

Genetic engineering and biotechnology have become a more and more im-
portant subject within the last decade. Therefore, we now want to give a
perspective on the various problems from biochemistry and biophysics which
can be treated and studied with the molecular dynamics methods that we
described in this book. Applications include the general dynamics of proteins
and their conformations, the formation of membrane structures, the determi-
nation of inhibitor-ligand binding energies, and the study of the folding and
unfolding of peptides, proteins, and nucleic acids.

Such problems are at the front of current research. They are challenging
and mostly require long running times on parallel computers. Additionally,
the molecular dynamics techniques that we discussed up to now, often need
to be adapted and modified to fit the specific problem at hand. Moreover, the
data for the potential and the setup for the specific experiment mostly require
specialist knowledge which is beyond the scope of this book. Therefore, we
will not treat the following applications in depth discussing all the relevant
details. However, we want to provide at least some insight into the various
possibilities molecular dynamics methods have to offer in this area of research,
to give readers further suggestions for their own activities and projects, and
to direct readers to the appropriate literature for further studies.

Properties of biomolecules should be considered in aqueous solutions. Of-
ten the aqueous solution also contains additional salts. The presence and
concentration of those salts can cause drastic changes in a biomolecule. Elec-
trostatic effects of the molecule and the surrounding water result in long-range
forces that need to be considered in the numerical simulations. However, even
today many simulations still use only the linked cell method (compare Chap-
ters 3 to 5) together with a slightly larger cutoff radius. In general, this
approach is not appropriate (and will presumably lead to wrong results).
Instead, techniques for long-range potentials like the SPME method from
Chapter 7 or one of the tree methods from Chapter 8 need to be used.

However, due to the time complexity of the methods, only relatively fast
physical processes can be studied by molecular dynamics simulations with
current algorithms and computers. Nowadays, on large parallel computers,
processes up to the microsecond range are within reach, see [192].
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9.1 Bovine Pancreatic Trypsin Inhibitor

One of the biomolecules that have been studied most extensively with molecu-
lar dynamics methods is the trypsin inhibitor of the bovine pancreas, in short
BPTI for bovine pancreatic trypsin inhibitor. It is a small, monomeric, spher-
ical molecule consisting of 910 atoms and 58 amino acids, which can be found
in the pancreas and the body tissues of cattle. It inhibits the action of trypsin
on foodstuff. Trypsin is a molecule that breaks peptide bonds between amino
acids in proteins. BPTI has been very well studied experimentally and there
is a wealth of measured data. The first simulation of BPTI was published in
1977 [419]. Other early work can be found in [351, 352, 382, 635, 636, 664].
Since then, BPTI serves as a popular model for the test of new numerical
methods. By now, it is a standard task in student lab courses to study the
molecular dynamics of BPTI on a computer. This way, one can learn much
about its structure and its stability under different conditions (such as tem-
perature and solution). A simulation in vacuum already allows the analysis of
the trajectory, the study of the movement of side chains and subdomains of
the structure, as well as first comparisons with the results of x-ray diffraction
and NMR (nuclear magnetic resonance) experiments.

The coordinates for BPTI are available from the Brookhaven protein data
bank [85], for instance under the name 1bpti. The protein structures stored
there often stem from a dehydrated state, since most proteins have to be
dehydrated to allow analysis by, e.g. x-ray crystallography. Their structure is
therefore given in the crystalline phase, see also Section 5.2.3. However, the
geometry and form of the molecule in an aqueous solution can differ substan-
tially from the dehydrated one. It is known that already the incorporation of
a single water molecule can stiffen a protein [406, 665]. The method of molec-
ular dynamics can now be used to relax such a protein molecule, after water
molecules have been added, to simulate the resulting structure in aqueous
solution at different temperatures, to study the protein’s movements, and to
compare the results with results from simulations in vacuum [162, 305].

For the numerical simulation of BPTI, we use the molecular coordinates
from the Brookhaven protein data bank and add the missing hydrogen atoms
according to chemical rules (using HyperChem [14]), see Section 5.2.3. The
parameters for the bond, angle, and torsion potentials for the molecule can be
obtained from CHARMM [125]. Then, we additionally place 5463 TIP3P-C
water molecules, see Section 7.4.3, into our cubic simulation box with a size of
56.1041 Å and relax the entire system. Afterwards, we heat the system step-
by-step up to room temperature (300 K). We finally let the BPTI molecule
relax again in the aqueous solution using the NVE ensemble at a constant
temperature for 40 ps. To this end, we employ our parallel SPME method
from Chapter 7 coupled with the routines for the evaluation of the fixed bond
potentials from Chapter 5.2.2 for the overall simulation. We use a time step of
0.1 fs in the Störmer-Verlet method, i.e., we propagate the system for a total
of 400000 time steps. Figure 9.1 shows snapshots of the molecule in ball-stick
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t = 0 ps

t = 11.7 ps

t = 40 ps

Fig. 9.1. Simulation of a BPTI molecule in aqueous solution, evolution over
time. Ball-stick representation (left), ribbon representation without water molecules
(right).
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representation (left) and in ribbon representation (right), produced by VMD
[332], at the times t = 11.7 ps and t = 40 ps. For clarity, the water molecules
are shown in a smaller scale. It can be seen how the molecule relaxes under
the influence of the water molecules and changes its form.

Further studies of BPTI with molecular dynamics methods can be found
for instance in [523, 674]. Often a simplified united atom model and also
the SHAKE method are employed. As already mentioned, mostly variants of
the linked cell method or of Verlet’s neighbor-list algorithm with somewhat
larger cutoff radius are used to take electrostatics at least approximately into
account [246]. However, this is in general not accurate enough. A comparison
of the conventional cutoff method, the P3M method and a variant of the mul-
tipole method is given in [561, 562]. There, a BPTI-water system with 23531
atoms was considered. Additionally, the differences between the electrostat-
ics of the system for periodic and for nonperiodic experiments are discussed.
Studies of the PME method and the Ewald summation technique are found
in [215]. Furthermore, detailed studies of the structural stability and of the
unfolding process of BPTI can be found in [128, 163, 547].

9.2 Membranes

Membranes are thin layers of molecules. They appear in a number of appli-
cations in material sciences, such as in graphite oxides [576], polymers [142],
silicates [487], or zeolites [563]. They also occur in oil-water emulsions with
amphiphilic molecules such as surfactants [443], lipids or detergents, where
they form as primary structures together with spherical micelles and vesicles
[250].

Biomembranes are of particular interest. They typically consist of a double
layer of lipids into which different proteins are embedded. Such biomembranes
are generally just a few nanometers thick. A cubic centimeter of biological tis-
sues contains membranes with a surface area of approximately 105 cm2. They
include the plasma membrane, which delineates the cell, and a large num-
ber of intracellular membranes that enclose the nucleus, the mitochondria,
the Golgi apparatus, and the organelles of the cell such as the endoplasmic
reticulum, the lysosomes, the endosomes, and the peroxisomes. Membranes
are therefore fundamental building blocks that give structure to biological
material. In addition, many important receptor molecules are embedded in
the lipid double layer of a membrane. Here, the lipid environment has an ef-
fect on the structure and the properties of such molecules. The permeation of
smaller molecules (intermediate catabolic products, endogenous components
such as peptides, active substances from pharmaceuticals) across the lipid
double layer is also of great importance. Therefore, an understanding of the
functionalities and the mechanisms of membranes is central to biochemistry
and biomedicine. Here, simulations with molecular dynamics methods can
make a relevant contribution, at least to some extent.
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The first numerical simulations can be found in [362] for a monolayer
membrane and in [630, 631] for a bilayer membrane made from decane chains.
There, a simplified model for the alkanes was used, in which each methyl
or methylene group is represented as one particle (united atom model) but
realistic torsion potentials are employed between the groups. Another simple
model goes back to [161]. It features two types of particles, i.e. oil-like and
water-like particles. A tenside molecule is then modeled as a short chain of
such particles connected by harmonic potentials. The two different types of
particles interact by a Lennard-Jones potential. It turns out that, for a certain
range of temperatures, this simple approach already leads to a demixing of
the oil and water particles and to the formation of a stable boundary layer
between the two fluid phases. Moreover, single or double membranes develop
depending on the concentration of the tenside molecules. The formation of
micelles and vesicles can also be observed. Further details can be found in
[161, 213, 567].

With increasing computer power, more and more complex models could
be used in the numerical simulations and, thus, the results of simulations
became more and more accurate. By now, models are employed that take
every single atom into account. The challenge was and still is the study of a
realistic biological bilayer membrane in full atomic detail. One can find a cur-
rent survey of molecular dynamics simulations of lipid bilayer membranes in
[82], [609], and [611]. The material explored best is DPPC (dipalmitoylphos-
phatidylcholine). In addition there are also a few studies of DLPE, DMPC,
and DPPS1. Lately, systems with unsaturated lipids have been considered
more intensively. Such systems are of special interest since most biological
membranes contain mixtures of proteins and unsaturated lipids. [310] exam-
ined a POPC (palmitoyloleoylphosphatidylcholine) system with 200 lipids.
Furthermore, DOPC [331], DOPE [331], and DLPE [214, 687] are subjects
of intensive molecular dynamics studies. Here, it is interesting that phos-
pholipids such as DPPC carry a large dipole moment. The dipoles arrange
themselves preferentially parallel to the boundary layer and interact with the
water molecules. This causes a substantial electric field which is equalized
by the orientation of the surrounding water molecules. Furthermore, order
parameters, atomic and electronic density profiles as well as radial distribu-
tion functions can be determined, from which one can compute the hydration
numbers around the lipid headgroups.

Altogether, the structure of a double membrane is well-described by a
four region model which was first proposed by Marrink and Berendsen [411],
see Figure 9.2. In the first region one finds water molecules with orientations
influenced by the headgroups and tails of the lipids. In a second region, the
density of the water decreases to almost zero and the density of the lipid
1 DLPE is an abbreviation for dilaureoylphosphatidylethanolamine, DMPC abbre-

viates dimyristoylphosphatidylcholine, and DPPS abbreviates dipalmitoylphos-
phatidylserine.
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becomes maximal. Furthermore, all atoms of the headgroups and some parts
of the tail methylene group are located here. The water molecules in this
phase are all part of hydration shells of the phospholipid headgroups. In the
third region, the lipid chains are increasingly aligned, similar to a soft poly-
mer. This region is the main barrier for the permeation of the membrane
by small proteins. The fourth region – the center of the bilayer – is com-
pletely hydrophobic and has a relatively low density which is comparable to
decane. Larger hydrophobic molecules could be dissolved in this region. From
here onward, the third, second, and first region follow in reverse order, see
Figure 9.2.

1

2

3

4

3

2

1

Fig. 9.2. POPC double membrane with the different regions of the four region
model.

The simulation of biological bilayer membranes poses the following prob-
lem: How do we find a good structure that can be used as initial data for a
simulation? Starting from a crystalline structure of the membrane, the sim-
ulation would need far too long to obtain the equilibrated liquid-crystalline
phase, in which the actual studies are to be performed. The time scale on
which biomembranes fully form is very long. Thus, to obtain a reasonable
initial structure one could instead select lipids from a library of structures
and arrange them on a grid in such a way that certain properties agree with
data from physical experiments, such as order parameters observed in NMR
measurements [643, 666]. Alternatively, one could select only one or a few
lipid structures, arrange them on a grid, and randomly rotate and trans-
late them perpendicularly to the membrane to obtain a certain given surface
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roughness. Good structures from earlier simulations also could be used as
initial structures for new simulations. Quite a number of biomembranes have
been studied until now and their data can be downloaded from web sites
[20, 21, 22, 23].

Another question is the choice of ensemble to be used in a simulation. One
can find experiments in the NPT as well as the NVT ensemble. It seems that
the NPT ensemble has become widely accepted as the standard approach for
simulations of biomembranes.

As a numerical example for the simulation of a membrane, let us study
the evolution of a POPC double membrane. We use data from Heller [23,
308, 310]. To produce the initial configuration for the experiment, 200 POPC
molecules are arranged in a box of size 84 Å×96 Å×96 Å in a water bath of
4526 H2O molecules. This leads to a total number of 40379 particles. We fix
a temperature of 300 K for the simulation, use periodic boundary conditions,
and employ the parameters for the potentials from CHARMM v27 [401].
We apply our SPME method from Chapter 7 coupled with the routines for
the short-range force computation (here with a cutoff radius of 12 Å) from
Chapters 3 and 5. Figure 9.3 shows the initial configuration (left) and the
result after a simulation time of 19.5 ps (right). One can observe how some
water molecules penetrate the membrane layer and how the molecules align
with each other. More detailed studies can be found in [23, 308, 310].

t = 0 ps t = 19.5 ps

Fig. 9.3. Simulation of a POPC double membrane from Figure 9.2.

Further numerical studies consider the temperature dependency of the
gel and fluid phases of membranes [214, 220, 619, 642], the mixing of differ-
ent lipids [521], the diffusion and permeation of lipid membranes [589], the
transport of ions through membranes, and the formation of pores in mem-
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branes [608]. Numerical experiments to determine adhesive forces in double
membranes are also of special interest. To this end, a spring with a harmonic
potential is attached to the atom of the headgroup of a lipid and the spring
is pulled. The force necessary to pull the lipid from the membrane can be
measured over time and the conformation of the lipid being pulled out can
be traced dynamically. Both depend strongly on the velocity with which the
spring is pulled. This idea goes back to [276] and was applied to phospholipid
membranes in [412, 580]. Studies of surface tension can be found in [413].
Finally, the interaction of a lipid membrane with smaller molecules and pro-
teins such as phosolipase A2 [688], bacteriorhodopsin [203], alamethicin [610]
or cholesterol [572, 573] has been studied intensively.

9.3 Peptides and Proteins: Structure, Conformation,
and (Un-)Folding

Amino acids (monopeptides) are the basic modules of life. They are aminocar-
bon acids which are formed by an amino group (-NH2) and a carboxyl group
(-COOH). In addition, there is also a central CH group and a specific side
chain, see Figure 9.4. This side chain characterizes the amino acid and can
consist of further carbon, amino or hydrosulfide groups.
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Fig. 9.4. Structure of an amino acid with side chain R (left) and primary structure
of a tripeptide (right).

There are 20 different naturally occuring amino acids. Each has its own
name and is usually represented by an associated three letter code. Figure 9.5
shows the chemical structural formula and a ball-stick representation of cys-
teine.

Amino acids can be joined together in polymer chains similar to alkanes or
polyamides. Depending on the number and types of the involved amino acids
one speaks of peptides, proteins (long-chain polypeptides), or nucleic acids
(DNA or RNA). The amino acids are connected in these chains by peptide
bonds, where the amino and carboxyl groups are reduced to (–CO–NH–),
releasing a molecule of water H2O, see also Figure 9.4. Hence, a peptide or
a protein can be described by its sequence of amino acids in the chain. This
is the so-called primary structure. An example is given in Figure 9.6.
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Fig. 9.5. The amino acid cysteine SH–CH2–CH(NH2)–COOH . Structural for-
mula and three-dimensional ball-stick representation.

Lys-Val-Phe-Gly-Arg-Cys-Glu-Leu-Ala-Ala-Ala-Met-Lys-Arg-His-Gly-Leu-Asp-
Asn-Tyr-Arg-Gly-Tyr-Ser-Leu-Gly-Asn-Try-Val-Cys-Ala-Ala-Lys-Phe-Glu-Ser-
Asn-Phe-Asn-Thr-Gln-Ala-Thr-Asn-Arg-Asn-Thr-Asp-Gly-Ser-Thr-Asp-Tyr-Gly-
Ile-Leu-Gln-Ile-Asn-Ser-Arg-Try-Try-Cys-Asp-Asn-Gly-Arg-Thr-Pro-Gly-Ser-Arg-
Asn-Leu-Cys-Asn-Ile-Pro-Cys-Arg-Ala-Leu-Leu-Ser-Ser-Asp-Ile-Thr-Ala-Ser-Val-
Asn-Cys-Ala-Lys-Lys-Ile-Val-Ser-Asp-Gly-Asp-Gly-Met-Asn-Ala-Try-Val-Ala-Try-
Arg-Asn-Arg-Cys-Lys-Gly-Thr-Asp-Val-Gln-Ala-Try-Ile-Arg-Gly-Cys-Arg-Leu

Fig. 9.6. Primary structure of lysozyme.

Many peptides and – because of their length – all proteins assume
well-defined three-dimensional structures in space.2 This so-called secondary
structure results from the arrangement of the side chains of consecutive amino
acids due to regular hydrogen bonds between the peptide bonds. Two fre-
quently occurring structures are the α-helix and the β-sheet. An α-helix is
formed when the chain of amino acids twists around itself in a regular fash-
ion. Then, a cylinder is formed in which every peptide bond is connected
to other peptide bonds by way of hydrogen bonds. In this arrangement, the
side chains of the amino acids point to the outside. An example is shown in
Figure 9.7.

Fig. 9.7. α-helix in ball-stick representation and in ribbon representation.

2 Some peptides assume stable forms based on secondary structure, others do not
assume any definite stable form but assume random coil configurations instead.



400 9 Applications from Biochemistry and Biophysics

A β-sheet is formed when two peptide chains lie side by side and each
peptide bond forms a hydrogen bond with the corresponding peptide bond
in the other chain. The sheet is folded like an accordion, the side chains of
the amino acids are aligned almost vertically up and down, see Figure 9.8.

Fig. 9.8. β-sheet in ball-stick-representation and in ribbon representation. Parallel
structure (top) and anti-parallel hairpin structure (bottom). The two strands still
have to be connected at one end by a bend.

Proteins also have more advanced spatial structures. The tertiary struc-
ture refers to the three-dimensional conformation of the protein. It describes
the position of all atoms and thereby the relative spatial position of the
basic configurations from the secondary structure. It is determined by many
types of interactions between the different amino acids. These interactions in-
clude hydrogen bonds, ionic bonds between positively and negatively charged
groups in the side chains, hydrophobic bonds in the interior of the proteins,
and disulfide bridge bonds.3 Disulfide bridges can also connect two amino
acid chains of different lengths. Proteins that consist of two or more chains
are said to have a quaternary structure. It describes the shape and the relative
spatial position of the polypeptide chains. The chains can be identical copies
of the same protein or can be different proteins with different amino acid
sequences. Examples for the quaternary structure of proteins can be seen in
Figure 9.9.

Ribonucleic acids (RNA) and desoxyribosenucleic acid (DNA) are formed
in a similar chain-like way from four different nucleotides. They also assume
higher-order structures in space, as for instance the famous double helix ac-
cording to Watson and Crick [656].

Peptides, proteins, ribonucleic and desoxyribosenucleic acids fulfil specific
functions in the cell. Peptides, for instance, regulate the activity of other
3 Disulfide (bridge) bonds are formed by the oxidation of the SH-groups of two

cysteine side chains to cystine side chains.
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Fig. 9.9. Quarternary structure of some proteins in atomic (left) and cartoon
(right) representation. From top to bottom: Insulin (two protein chains), myosin
(three protein chains), rhinovirus 14 (four protein chains), aminoacyl-tRNA syn-
thetase (two protein chains with two active pieces of tRNA).
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molecules and proteins by interactions with a target molecule. In addition,
there are peptides with hormonal or antibiotic properties. Enzymes, a sub-
class of proteins, catalyze certain biochemical reactions. DNA serves to store
and RNA serves to translate genetic information. These specific functions are
made possible only by the native spatial structure of the different biopoly-
mers. There is a strong direct connection between the function of a biopoly-
mer and its dynamical behavior.

Some of the greatest challenges of molecular biology and biophysics are

– the prediction of the structure of biological macromolecules given their
primary structure (that is the sequence of basic modules such as amino
acids or nucleotides) and

– the study of the folding pathway of biological macromolecules [420].

If the folding pathway could be followed in a realistic way by simulation
from the primary structure to the tertiary or even quaternary structure, the
problem of structure prediction would be solved. If furthermore it would be
possible to predict conformational or structural changes depending on, e.g.
solvent, salt concentration, temperature, and other nearby macromolecules,
one could gain a crucial understanding of many processes in the cell. Struc-
ture prediction would also have practical benefits: Protein molecules with
improved or even new properties could be constructed, which is of great in-
terest to pharmaceutics and biotechnology.

Dynamical behavior of proteins occurs on different time scales: Conforma-
tional changes of parts of the molecule happen in the nanosecond to micro-
second range, reactions between different proteins and changes in the quater-
nary structure take milliseconds to tenths of seconds, and the entire folding
process can take seconds or even minutes. Hence, the main problem in the
simulation of the folding of proteins is to reach sufficiently long simulation
times. Molecular dynamics methods on current computers are not yet able
to attain such time scales. The longest simulations of proteins in aqueous so-
lution up to date reach the microsecond range. However, this is only possible
with simplified models. Even then, such computations require running times
of half a year or more on large parallel computers.

One way to simplify the model is to freeze high frequency modes for ex-
ample by using the SHAKE method, compare Section 6.4. The elimination
of degrees of freedom that are responsible for the extremely high frequencies
in the simulation then allows the selection of larger time steps. There are
more advanced approaches in which the model is reduced to its essential dy-
namics by “normal mode analysis” (a singular value decomposition is used
to project the time evolution of the system to the low-frequency modes of
the motion) [37, 44, 127, 601, 669, 682, 683]. Improved time stepping tech-
niques, such as multiple time step methods, can also help to some extent,
compare Section 6.3. Then, for specific problems, time steps can be increased
up to about 8 fs. However, these techniques are also more expensive than
for example the simple Störmer-Verlet method and cannot be parallelized as
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efficiently. According to our experience, one thus can only achieve a total
speedup by a factor of three to four. Additionally, simple cutoff techniques
for the electrostatic interaction could be used at the price of dramatically
decreased accuracy. Overall, these techniques are not yet able to solve the
time scale problem of the molecular dynamics method even on the fastest
computers available today.

Under some circumstances, stochastic approaches might be more promis-
ing. In such techniques, Newton’s equations of motion are supplemented by
stochastic friction terms. These terms have a damping effect on the high
frequency modes of the dynamical system and therefore allow substantially
larger time steps. Two classes of such techniques are Langevin dynamics4

[318, 682, 683, 684] and Brownian dynamics [242, 243, 403]. However, the
simulation results are no longer deterministic but stochastic and the dynam-
ics of the system may be changed. Additionally, there is the question how
accurate the results are in the sense of statistical physics. Langevin dynamics
is often used in practice to approximate the effect of a surrounding solvent
on a protein without explicitly taking the many degrees of freedom of the
solvent into account.

Another approach to reduce the complexity is to treat the solvent im-
plicitly by a macroscopic model. The biomolecule and a thin layer of water
molecules and ions are handled with the molecular dynamics method, while
the effect of the surrounding fluid is modeled with a continuous model. For
example, the electrostatics of the surrounding water domain can be described
with Poisson-Boltzmann models [45, 312, 664].

Still, scientists are intensively using molecular dynamics techniques to
simulate the behavior of peptides and proteins. At least a preliminary un-
derstanding of protein folding can be gained from the simulation of peptide
folding. The formation of small scale structures can be observed in peptides
in the microsecond range.5 For example, the folding of a small part of protein,
the head piece of the villin molecule, was simulated in aqueous solution in
[192]. After a fast “burst” phase with hydrophobic collapse, the precursor of
a helix was formed and a tertiary structure was observed. This computation
with a simulation time of more than one microsecond is the longest simula-
tion of a peptide in solution to date. In fact, a structure was obtained that
was very close to the known native conformation.

Another focus of recent work is the study of the stability of the confor-
mations of peptides in aqueous solution at different temperatures [169, 172,
175, 476, 567, 569, 592, 632, 658]. Changes in the conformation of small parts

4 In Langevin dynamics, two terms are added to the equation of motion mv̇i =
Fi − γivi + Ri(t): A pure friction term −γivi, which depends on the velocity,
and a stochastic noise term Ri(t), which just depends on time, with a vanishing
mean over time.

5 However, it will be a very, very long way to the complete folding of a DNA
molecule given the data from the recently completed human genome project.
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of peptides, such as the β hairpin structure, have been studied intensively in
[99, 460, 522]. The results lead to a model in which the bend is formed first,
hydrogen bonds then close the hairpin, and finally hydrophobic interactions
of the side chains stabilize the hairpin. The reversible formation of secondary
structures for a small peptide in methanol has been studied in a number of
simulations for a time span of 50 nanoseconds in [170, 171]. It was observed
that the accessible space of conformation quickly narrows to a few clusters.
Additionally, different folding pathways could be determined depending on
the temperature.

There is currently an intensive discussion on whether the simulation of the
process reverse to folding, the unfolding of a protein, can yield information
about folding pathways. Unfortunately, even for long simulation times, com-
plete unfolding cannot be observed yet. Therefore, the idea is to accelerate the
unfolding process by the application of an external force or other constraints.
In [319, 320] the dynamics of a protein complex, the streptavidin-biotin sys-
tem, was first studied under external forcing.6 In such a simulation one can
observe several phases of separation and unfolding. In the simulations of the
streptavidin-biotin system, the dominant hydrogen bonds were broken first,
new hydrogen bonds were established next, which then finally were broken
as well. The separation of dinitrophenyl hapten from a fragment of a mono-
clonal antibody was studied with this method in [320]. There, several different
phases of the separation and quite complex separation patterns were ob-
served. This technique has also been applied under the name “steered molec-
ular dynamics” to the avidin-biotin complex [335], the titin immunoglobulin
domain [391, 392, 393, 415], and further proteins [389]. Whether, and if so,
how far the spontaneous unfolding corresponds to such a forced unfolding is
still an open question at this time. Nevertheless, this simulation approach can
complement experiments with atomic force microscopes and optical tweezers
[513, 335].

In “targeted molecular dynamics” (TMD) one similarly intervenes into
the dynamics of a protein to shorten the running time needed for the simu-
lation. Here, one introduces a reaction coordinate which connects the initial
state and a given target conformation of the molecule. Typically, this is the
mean distance between the positions of the atoms in the initial state and the
target state. This distance is then slowly decreased to zero using appropri-
ate additional constraints for the system, while allowing the other degrees
of freedom of the molecule and of the aqueous solution to relax freely. For
larger proteins the radius of gyration of the molecule can also be used as
6 Essentially, this is a computer simulation of the functionality of an atomic force

microscope. For a few years now, such a microscope offers the possibility to study
the behavior of single molecules or molecule complexes under local application
of force [519]. Analogously, in the simulations a spring with a harmonic potential
is attached to a part of the molecule complex, a tractive force is exerted over the
spring, and the molecule is pulled apart step-by-step until it breaks.
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the reaction coordinate. In such a way it is possible to study the transition
between conformations and to analyze chemical reactions. This method was
applied to the G protein Ha-ras p21 and offered an explanation of how the
protein switches between its active and passive state and therefore is able to
transmit signals. A disadvantage of this approach is the necessity to know the
target structure beforehand. Further results of targeted molecular dynamics
can be found in [183, 184, 367] and [223, 224].

As numerical example for structural changes of peptides and proteins,
we now consider the behavior of a “leucine zipper” in vacuum and in an
explicitly modeled aqueous solution. These experiments study how two α-
helices bond – they twist into each other – and show a binding mechanism
which resembles a zipper. Both strands bond by leucine side chains. This
type of bonding can be found for instance as marker of the beginning and
the end of a DNA strand. A better understanding of this mechanism can
suggest possible points of attack for drugs.

t = 0 ps t = 1.4 ps

t = 3.3 ps t = 10.0 ps

Fig. 9.10. Simulation of two leucine zippers in vacuum, evolution over time, ribbon
representation.
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The numerical simulations start with a configuration which consists of
several independent helical strands from the synthetic part of a hepatitis D
antigen (PDB entry 1a92) at a temperature of 300 K. Figure 9.10 shows
the results of a simulation in vacuum with our higher-order tree method
from Chapter 8. One can see how the two pairs of helices move away from
each other and how two of the strands start to develop bridge bonds in a
screw-like form. A second simulation of leucine zippers, this time in aqueous
solution (12129 TIP3P-C molecules) with periodic boundary conditions, can
be seen in Figure 9.11. Here, the movements occur substantially slower and
the surrounding water has a stabilizing influence on the helices. Again, one
can see how the strands start to bond.

Fig. 9.11. Simulation of two leucine zippers in aqueous solution. Ribbon represen-
tation without water molecules, t = 1.4 ps.

As another example let us consider the α-amylase inhibitor tendamistat.
This protein consists of only 74 amino acids but forms six β-sheets and has
two disulfide bridge bonds. Its small size allows to perform a relatively large
number of time steps which is enough to observe the complete folding pathway
starting from the elongated state of the protein (the amino acid sequence of
the PDB entry 3ait) in vacuum. However, in an aqueous solution, the folding
process would take about 10 ms even for such a small protein, which can not
be reached in a numerical simulation. For our vacuum experiment, we put
the 281 atoms of the protein into a cube of dimensions 50 Å× 50 Å× 90 Å
at a temperature of 300 K. Then, we cool the system in small successive
steps down to 300 K while observing the movement of the protein over time.
Some snapshots of the dynamics are shown in Figure 9.12. The different time
scales of the different phases of the folding pathway can be seen clearly: The
molecule first leaves the elongated, energetically unfavorable state, and then
the real folding starts. More extensive experiments for tendamistat can be
found in [99].
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t = 0 ps t = 0.5 ps

t = 2.5 ps t = 5 ps

t = 10 ps t = 25 ps

t = 50 ps t = 250 ps

t = 400 ps t = 500 ps

Fig. 9.12. Simulation of the folding of tendamistat in vacuum.
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9.4 Protein-Ligand Complex and Bonding

In general, the activity of a biopolymer is controlled by small molecules, the
so-called ligands. Certain ligands attach to certain parts of the surface of
the macromolecule and are thereby “recognized” by it. The efficacy of many
drugs and pharmaceuticals depends on this process of ligand recognition. To
be able to create new and effective drugs and medicaments, the structure
and the mechanism of bonding between the biopolymer and the ligand in the
complex has to be known or at least be predictable. This problem is analogous
to the task of structure prediction from the last section. The bonding of the
ligand to its protein can be understood as a folding problem. Again, the
bonding process occurs on a relatively slow time scale.

One example for ligands are enzymes. Enzymes are special proteins that
act to synthesize or cleave molecules of some substances inside of the body,
such as other proteins or nucleic acids. They work as catalysts for almost all
biological systems. The substrate binds to a particular part of the enzyme
which is called the active site or binding pocket. The active site is a small
three-dimensional part of the enzyme that is shaped like a cave or a crevice.
Here, the specificity of the bond depends on the arrangement of the atoms
at the active site. Only very few similar substrates fit in the active site.

The determination of the structure of an enzyme and the decoding of the
sequence of its amino acids allows to identify the active site. With this infor-
mation one can then reconstruct the chemical reaction between the enzyme
and its substrate. On this basis one may attempt to find new substrates that
inhibit the given enzymes. It is of particular interest to construct substrates
that fit even better in the active site than the natural substrate. Such sub-
strates could win in competition with the natural substrate and bind instead
to the active site. This inhibits the function of the enzyme and prevents or
at least delays the enzymatical reaction.

The lock and key model, going back to Fischer [233], makes the assump-
tion that the active site already has its particular shape without the substrate
being present. In this model the specificity of the enzyme (lock) for a given
substrate (key) results from the geometrically and electrically complementary
structure. To say it in a different way: The key fits into the lock. Another
model of the bonding mechanism is based on the induced fit hypothesis. In
this model it is assumed that the active site of the enzyme, to which the
substrate binds, is fully formed only during the bonding process. The mech-
anisms underlying each of the models are shown in Figure 9.13.

X-ray studies have shown that the binding sites for substrates in enzymes
are already preformed, but that there are small conformational changes dur-
ing bonding. In this sense the induced fit model is more realistic. In the
laboratory it is easier to separately produce the components of the enzyme-
substrate complex and then to separately determine their structure by X-ray
crystallography. However, the results do not allow to directly determine the
active site of the enzyme and the surface region of the substrate to which the
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key is unchanged induced fit

Fig. 9.13. Enzyme bonding models: Lock and key model (left) and induced fit
model (right).

enzyme binds. Methods to predict these docking regions are under intensive
development. But since such approaches mostly assume rigid geometries of
the molecules, they cannot account for the dynamics of induced fit bonding
and are often doomed to fail. Certain molecular dynamics methods can make
a contribution to the solution of this problem, at least up to some extent. Ex-
amples are the techniques already described briefly in the previous chapter,
the application of external forces [276, 320, 319], steered molecular dynamics
[335, 391, 415], and targeted molecular dynamics [183, 184, 223, 224, 367].

Besides the time complexity, there is another problem in the application
of molecular dynamics methods in the study of ligand-protein or enzyme-
inhibitor complexes: The recognition and docking process often involves cat-
alytic reactions. It has been shown that quantum mechanical effects occur
in those reactions which cannot be neglected. A conventional molecular dy-
namics method with a given force field, for which the parameters are taken
from CHARMM or Amber, for instance, is not flexible enough and produces
results that are not sufficiently accurate. Instead, it is necessary to adjust
the potential functions in every time step, using a newly computed electron
structure. This is of special importance close to the active site. Such an ap-
proach can be implemented by coupling the molecular dynamics method to
an ab initio method for the approximate computation of the solution of the
electronic Schrödinger equation with a fixed configuration of the nuclei, com-
pare Chapter 2. The electronic Schrödinger equation is then treated by local
Hartree-Fock or density functional methods [35, 302, 417, 527]. The Hellman-
Feynman forces (see Section 2.3) are determined in this way directly from the
electron structure. It is therefore not necessary to parametrize the potential
function explicitly.

A standard approach to implement the coupling of molecular dynamics
methods for the classical treatment of the nuclei with the (local) quantum
mechanical treatment of the electrons is the Car-Parinello molecular dynam-
ics method [137, 461]. Only with the use of such ab initio methods in the
local neighborhood of the active site, it is possible to reproduce the occurring
reactions with sufficient accuracy. One example is HIV, the human immunod-
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eficiency virus. This virus is responsible for AIDS, the acquired immunodefi-
ciency syndrome. Since AIDS first occurred about 25 years ago, great efforts
have been made to understand how HIV acts and to develop drugs against
HIV. The structure of the virus has been determined in a relatively short
time, and an understanding of its replication in the cells of the human im-
mune system has been reached. First drugs have been developed to suppress
HIV replication, among them AZT (zidovudine), saquinavir, ritonavir, and
indinavir. However, the virus mutates relatively fast and becomes resistant
to such drugs.

By now, one knows at least three targets for inhibitors against HIV repli-
cation: The enzymes protease (PR), reverse transcriptase (RT), and integrase
(IN), see Figure 9.14.

Fig. 9.14. HIV-1: Section of protease (left), reverse transcriptase (center) and
integrase (right).

Fig. 9.15. HIV-1 protease (left) together with its inhibitor Ro 31-8959 (right),
PDB entry 1hxb.
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Inhibitors for these targets have been and are under intensive development
and study. Meanwhile, there exist data bases just for HIV and its inhibitors,
see [647]. Great efforts are made to find new drugs. Here, molecular dynamics
simulations are an important tool. They have been employed to study the
possibility to use zinc ions [673] or C60 molecules and variants of fullerenes
[431] as inhibitors of HIV protease. Also mutations of protease and their resis-
tance against drugs have been examined in [558, 657] with molecular dynam-
ics methods. The dynamical behavior of protease and reverse transcriptase
has been studied in [152, 153, 397, 558] and [402], respectively. Molecular
dynamics simulations for integrase and its mutations can be found in [59].

For more accurate studies of the reactions in the HIV-inhibitor complex
one needs, as already mentioned, methods that couple quantum mechanical
ab initio methods for the electrons with classical molecular dynamics methods
for the nuclei. Corresponding result for HIV protease can be found in [388,
637] and for reverse transcriptase in [31].
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In this book we have presented the most important steps in the numerical
simulation of molecular dynamics. It was our intention to enable the reader to
develop and implement codes for the efficient solution of Newton’s equations
of motion. We have used the Störmer-Verlet method for the time discretiza-
tion. For the force evaluation we have discussed, in addition to the linked
cell method for short-range potentials, also the SPME method and several
tree algorithms for the efficient simulation of long-range Coulomb potentials.
A further main theme of this book was the parallelization of the presented
algorithms using MPI. This allows to treat problems with large numbers of
particles on parallel computers with distributed memory. Finally, we have
presented many specific applications of the molecular dynamics method from
material sciences, biophysics, and astrophysics. Furthermore, we have given
hints and details that will allow readers to implement the presented methods
and algorithms on their own.

We have attempted to introduce the most common many-body potentials.
However, the limited amount of space has made our list of potentials incom-
plete. In the following, we would like to address briefly further potentials that
are relevant to certain practical applications. The Buckingham potential [129]
is often used to model the molecular dynamics of disordered structures and
clusters. It is a generalization of the Lennard-Jones potential, where the re-
pulsive −r−12

ij term is replaced by the term Aij exp(−Bijrij)−Cijr
−8
ij . In the

Stockmayer potential [585, 586], the term 1/r3
ij ·
(
pipj − 3(pirij)(pjrij)/r2

ij

)
is added to the Lennard-Jones terms. It models dipole-dipole interaction,
where pi denotes the dipole moment of particle i. Many-body potentials are
substantially more expensive than simple two-body potentials, but allow for
a correspondingly more accurate model.1 They play an important role espe-
cially in material sciences. For example, the Stillinger-Weber potential [584]
and the Tersoff potential [602] are used for the simulation of silicon; the po-
tentials of Vashishta [640] and Tsuneyuki [618] are used for silicon oxide. It
is a further interesting problem how to model the polarizability of materials
with molecular dynamics methods. Here, core-shell potentials [385, 434, 551]
are used. To this end, the atom is conceptually split into its core and its shell.
1 First three-body potentials were introduced by, amongst others, Axilrod and

Teller [52].
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The charge of the polarized atom is divided analogously between the core and
the shell. The mass of the atom is either also split into a fictitious mass of
the core and a fictitious mass of the shell (adiabatic model) or the shell is
assigned no mass at all (static model). These two models lead to different
numerical approaches: Since both parts – core and shell – have a mass in
the adiabatic model, they can interact like ordinary particles in a molecular
dynamics method. In the static model, the shell is explicitly attached to the
core by a harmonic spring. Then, in every time step, one has to first minimize
the energy with respect to the harmonic potential of the shell, for instance
by the method of conjugate gradients; the cores are then moved classically
according to Newton’s equations of motion.

Furthermore, we have discussed the computation of a number of different
macroscopic parameters such as the energy, the temperature, the pressure, the
diffusion coefficient, the radial distribution functions, or cis-trans statistics.
We could not discuss the computation of structure factors, more complicated
transport coefficients, and correlation functions of higher order, which can
be gained with the Green-Kubo relation and the linear response theory of
statistical mechanics. Here, we refer to [34, 141, 239, 511] and the literature
cited therein. In addition, short-range and long-range order functions play
an important role in crystalline and amorphous materials. Waves associated
to those order functions, the so-called phonons, can be extracted from the
autocorrelation of the velocities. For this purpose, one needs in general very
large simulation domains and high numbers of particles to reduce finite size
effects in the results.

Finally, we would like to point out that the methods and techniques pre-
sented in this book are not only limited to conventional molecular dynamics.
They can also be applied directly to ab initio molecular dynamics, such as
Ehrenfest molecular dynamics, Born-Oppenheimer molecular dynamics, or
Car-Parinello molecular dynamics. With these methods, the potential is no
longer given as a fixed parametrized function but is determined in each time
step directly from the electronic structure as computed by the Hartree-Fock
method, the density functional theory, the configuration interaction method,
or the coupled cluster method. Ab initio molecular dynamics methods do not
need complex empirical potential functions with parameter sets that have
been fitted time-consumingly to results of measurements, since such methods
do not have parameters by construction. Since they take quantum mechanical
effects into account, they furthermore allow for the simulation of the dynamics
of chemical reactions. At the moment, such methods are still limited to sys-
tems with a hundred atoms, but they are expected to become more and more
powerful, not at least because of the increasing performance and capacity of
parallel computers. The molecular dynamics method can also be combined
with a Monte-Carlo approach [193]. In hybrid Monte-Carlo simulations, one
computes short trajectories by molecular dynamics for a sequence of random
initial configurations and performs a statistical averaging over these trajec-
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tories in the Monte-Carlo part of the algorithm.2 Application areas for such
methods are solid state physics and polymer physics [236, 307, 423], more re-
cently also biophysics [552, 553] and path integrals [624]. Molecular dynamics
methods can moreover be employed for a number of more general ensembles,
for open systems, for non-equilibrium phenomena (NEMD: non-equilibrium
molecular dynamics) and for quantum mechanical problems (QMD: quantum
molecular dynamics). Details and further references can be found in [34] and
[282].

Molecular dynamics methods can also be extended without difficulties
beyond Newton’s equations of motion to other areas in which the motion of
particles plays a role.

Vortex methods [144, 156, 380, 408] are used in the simulation of incom-
pressible flows with high Reynolds numbers. The vorticity is discretized in
such methods by N Lagrangian particles and the flow equation is thus trans-
formed into a system of 2N ordinary differential equations which is similar
to Newton’s equations of motion. The theorems of Kelvin and Helmholtz,
which determine the dynamics of the vorticity of inviscid fluids, are enforced
directly in the resulting discrete method. The particles are now propagated
over time and interact by potential functions which are derived from the flow
equation and the types of the particles used. The velocity of each particle can
be computed by the Biot-Savart law. The techniques discussed in this book,
especially tree methods, can be used to implement these computations in an
efficient way, see also [190, 191, 661].

The smoothed particle hydrodynamics method (SPH) [194, 254, 394, 437,
369] is a meshfree Lagrangian particle method for the numerical simulation
of flow problems. It simulates the fluid with help of particles which possess a
certain size, an interior density distribution, a velocity, and, if needed, also a
temperature or a charge. To this end, a kernel function, usually with compact
support, is assigned to each particle. The well-known equations of fluid me-
chanics, such as the Euler equations or the Navier-Stokes equations, can then
be formulated approximately as systems of ordinary differential equations in
which the particles are convectively propagated over time and interact with
each other by potentials. These potentials result from the application of the
differential operators of the flow equations to the kernel functions. Altogether,
particles move according to a force field as in molecular dynamics methods,
where in each time step, the forces acting on each particle have to be com-
puted. Here, the techniques described in this book can be applied with just
a few simple modifications. The SPH method is often used for astrophysical
flow problems as well as for flow problems with free surfaces.
2 See also the Folding@Home project at http://folding.stanford.edu which carried

out the longest protein folding simulations so far. There, the folding of the villin
headpiece using the so-called MSM sampling technique was studied up to a time
span of 500 µs.
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Finally, the described computational methods can also be adopted to
the fast evaluation of discretized integral transforms and the fast solution of
integral equations. Examples are the fast Gauss transform [267, 268], the fast
Radon transform [110, 120], or the fast evaluation of radial basis functions
[66, 67, 68].

We hope that, after having worked through this book, readers will find
their way quickly into these application areas of particle methods and will
be able to apply the techniques learned for molecular dynamics with success
also for such problems.



A Appendix

A.1 Newton’s, Hamilton’s, and Euler-Lagrange’s
Equations

We consider the equations of classical mechanics for a system in Rd which
consists of N particles with the masses {m1, . . . , mN}. We denote the position
of the ith particle at time t by xi(t) ∈ Rd and its velocity by vi(t) = ẋ(t) ∈
R

d. The momentum is then given by pi(t) := mivi(t) = miẋ(t).
The motion of the particles obeys Newton’s equations of motion

miẍi = −∇xiV (x), or
ẋi = vi

miv̇i = −∇xiV (x), (A.1)

where the function
V : R

dN → R

denotes the potential energy. Here, we have combined the positions of the
particles into a vector x := (x1, . . . ,xN )T . Analogously, we combine the
velocities and momenta of the particles into vectors v := (v1, . . . ,vN )T and
p := (p1, . . . ,pN )T .

An alternative description of the motion of the system results from Hamil-
ton’s principle, sometimes called the principle of least action. To this end, we
consider the Lagrangian

L(x,v) :=
1
2

N∑
i=1

miv2
i − V (x), (A.2)

which depends on the positions x and velocities v. The motion of the system
is determined by the condition that it will make the action integral

L(x) :=
∫ T

0

L(x(t), ẋ(t))dt

stationary, i.e., that the integral’s first variation δL vanishes. This means

δL(x,y) := lim
ε→0

L(x + εy) − L(x)
ε

=
∫ T

0

∇xL(x, ẋ)y + ∇ẋL(x, ẋ)ẏ dt = 0 ∀y ∈ C∞
c ((0, T ); RdN).

This is equivalent to the Euler-Lagrange equation

∇xL(x, ẋ) − d
dt

∇ẋL(x, ẋ) = 0. (A.3)
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One can easily see by substituting (A.2) into (A.3) that the equations are
equivalent to Newton’s equations of motion (A.1).

One obtains a third description of the motion of the system using the
Legendre transform (x, ẋ, t) → (x,p, t). We define the Hamiltonian, which
depends on the positions x and the momenta p, as the Legendre transform
of the Lagrangian,

H(x,p) :=
N∑

i=1

p2
i

mi
− L(x,

p
m

) =
1
2

N∑
i=1

p2
i

mi
+ V (x),

with p
m := ( p1

m1
, p2

m2
, . . . , pN

mN
)T . Hamilton’s equations for a system (x,p) are

then given by
ẋ = ∇pH(x,p), ṗ = −∇xH(x,p). (A.4)

Again, it is easy to see that Newton’s equations of motion, together with the
definition of the momenta pi := miẋi, are equivalent to Hamilton’s equations
(A.4). The relation

d
dt

H(x,p) = ∇xH(x,p)ẋ + ∇pH(x,p)ṗ

= ∇xH(x,p)∇pH(x,p) −∇pH(x,p)∇xH(x,p) = 0

implies that the sum of kinetic and potential energy is conserved for any
system which satisfies Hamilton’s equations.

A.2 Suggestions for Coding and Visualization

The algorithms described in this book can be implemented in many different
programming languages. We have used the language C in our examples, see
[40, 354].

It is advisable to group the procedures needed in the implementation of
the algorithms into different modules (and files) since that makes it easier to
obtain a clearly laid out program in C and to avoid redundancies. The different
files are then automatically compiled and linked together. It is recommended
to split the source code into header files (.h) containing the declaration of
procedures and data types and into (.c) files containing the implementa-
tion of the procedures. For instance, in the SPME method from Section 7.3,
the procedures for the computation of the short-range and long-range force
terms can be combined into one single file mesh.c. Dependencies and files
are usually automatically managed by integrated development environments.
Computers running variants of the UNIX operating systems allow to autom-
atize the compilation and linking process with the program make. Further
information can be found in books covering the pertinent features of UNIX,
as for instance [107]. The Makefile necessary for the program make could
look in our case as given in algorithm A.1.
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Algorithm A.1 Makefile
OBJ = particle.o mesh.o # the modules
CC = cc # the compiler
CFLAGS = -... # optional flags for the compiler
CLIBS = -lfft -lmpi -lm # the libraries used
AOUT = a.out

.c.o: # rules for compilation
$(CC) -c $(CFLAGS) $*.c

$(AOUT): $(OBJ) # rules for linking
$(CC) -o $(AOUT) $(OBJ) $(CLIBS)

particle.o: particle.h mpi.h # further dependencies
mesh.o: mesh.h particle.h mpi.h fft.h

In the following we give explanations for some of the commands in this
file:

– The modules that are supposed to be linked together into a program are
collected in the variable OBJ. The files with the extension .o are modules
which are already compiled; they are called object files.

– Rules are marked by a colon. The first rule describes how to compile a
module from its source code.

– The second rule describes how the executable program is built from the
modules.

– The lines with $(CC) have to start with a tabulator character so that make
can distinguish between rules and actions.

– The -l option tells the linker into which libraries it should look for object
files. In our case, in addition to the math library, we also link to a library for
the fast Fourier transform fft and the MPI library for parallel computing
with message passing.

– The -c options allows the creation of object files without further linking.
– Further rules specify the dependencies of the files among each other.

For instance, the object file particle.o depends also on the header file
particle.h. Thus, the object file has to be recompiled when the header
file has been changed. These kinds of entries can be created automatically
in UNIX using the call makedepend *.c. Some compilers are also able to
determine dependencies directly from the include commands in the files
without the programmer specifying them in the Makefile. This ensures
that the dependencies are complete and up-to-date, which is not necessar-
ily the case if the dependencies are updated manually.

Of course, languages for object-oriented programming such as C++ and
Java can be used for the implementation instead of C. The data structures
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struct of our implementation are then promoted to classes class and the
procedures are accordingly assigned to those classes. This allows a more de-
tailed structuring and a better encapsulation of data and algorithms. One
should at least use general implementations with container classes for linked
lists and trees, as suggested by the concepts of generic programming. Time
integration and force computation offer themselves as abstract interfaces for
entire hierarchies of algorithms.

The particle data structure 3.1 and the three functions updateX,
updateV and force in algorithms 3.5 and 3.7 could be combined to a com-
mon class in an object-oriented implementation, see code fragment A.1. In
this way, for different potentials and time integration schemes, one obtains
different types (and classes) of particles with their own methods for time
integration and force computation. Of course, one could also structure the
program using multiple inheritance or parametrized classes instead.

Code fragment A.1 A Class for the Störmer-Verlet Method
class GravitationStoermerVerletParticle: public Particle {
private:

real F_old[DIM];

public:

GravitationStoermerVerletParticle();

void updateX(real delta_t);

void updateV(real delta_t);

void force(const GravitationStoermerVerletParticle& j);

};

There are other programming languages such as Pascal, Fortran90, and
their variants. Implementations of our algorithms in these languages will differ
at least syntactically from our example programs in C.

The results of a simulation, including the number, positions, and veloc-
ities of the particles as well as relevant computed quantities, such as the
kinetic and potential energy, should be written in regular intervals into an
output file. The data from this output file can then be used in the further
analysis of the results of the simulation. Using an appropriate visualization
program, one can display and animate the data from this file. The simplest
visualization represents the particles of the system at a given time as points
or small spheres which may be colored according to the velocity or the type
of the particle. However, if there are too many particles, such a representa-
tion reaches its limits and is no longer adequate. Instead, one could use a
color representation of the density of the particles for the visualization. The
dynamic behavior of the particles can be shown in a movie created from a
sequence of representations of the system at different times. There are var-
ious programs with different capabilities, as for instance gnuplot, IDL, MS
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Visualizer, AVS, OpenDX, VTK, or Explorer. Specialized representations of
molecules are possible for instance with RASMOL, ProteinExplorer, CHIME,
EXPLOR, KiNG, Jmol, WebMol, MIDAS, and VMD.

A.3 Parallelization by MPI

We addressed the parallelization of algorithms for parallel computers with
distributed memory in this book. In such a parallel computer, every processor
has its own local memory where all the data needed by local processes must
be present. In turn, each process owns a certain part of this local memory.
The processes can communicate with each other by messages; one process
sends another process data in such messages. Thus, a parallel program does
not only consist of a sequence of computational operations as in the sequential
case, but additional send and receive operations have to be inserted at the
appropriate places by the programmer. We use the SPMD (single program,
multiple data) approach for our programs. In this approach the programmer
writes one program that runs on every processor in parallel. The copies on
different processors then communicate by explicit send and receive operations
and are synchronized by receive operations.

Different approaches have been used in the course of the development of
parallel computers to implement such communication operations. Based on
earlier message passing libraries such as PVM, Parmacs, NX/2, Picl, or chip,
a uniform standard “MPI” (Message Passing Interface) has been established
[7, 271, 272, 273, 458]. Nowadays, there is at least one implementation of
MPI available for all existing parallel computers. For testing and debugging
purposes one can also use the freely available MPI implementations “MPICH”
(from Argonne National Lab) [11] or “LAM” (from Notre Dame University)
[12], which run on many parallel computers and are able to simulate a parallel
system on a single computer or on a network of workstations.

MPI basically provides a library which allows to start a certain number
of processes at the same time on one or several processors. These processes
exchange data among each other. The processes are identified by a unique
process number. MPI is a very powerful and complex system with more than
120 different functions, for more details see [272, 273, 458]. Fortunately, many
programs can be parallelized using only six of these functions. The six func-
tions are:

– MPI Init():
Initialization of the MPI library.

– MPI Finalize():
Termination of the MPI library.

– MPI Comm size():
Determine the number numprocs of processes started.

– MPI Comm rank():
Determine the local process number myrank ∈ {0, . . . , numprocs− 1}.
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– MPI Send() or MPI Isend():
Send MPI message.

– MPI Recv():
Receive MPI message.

The initialization of a parallel main program is given in Algorithm A.2.

Algorithm A.2 Parallel Main Program a.out
#include <mpi.h>

int main(int argc, char *argv[])

{
int myrank, numprocs;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

... // main part consisting of the

... // computational and communication

... // operations of the parallel program
MPI_Finalize();

return 0;

}

The MPI library has to be initialized first by calling MPI Init. In between
the calls to MPI Init and MPI Finalize, data can be sent to other processes
or can be received from other processes. In total, there are numprocs paral-
lel processes available for the parallel program. The value of numprocs can
be queried by MPI Comm size. The processes are numbered in increasing or-
der starting at 0. To determine the rank of the process, one can use the
function MPI Comm rank. After the call to this function, the return variable
myrank contains a value between 0 and numprocs-1. Using the process num-
ber myrank and the total number numprocs of processes, one can control the
behavior of the local process.

Parallel programs can be started in different ways, depending on the par-
allel computer used. Ultimately, the executable program has to be copied to
each processor and the desired amount of processes have to be started on
each processor. Two possible ways to start the parallel program a.out in two
processes are for instance mpirun -np 2 a.out and mpiexec -n 2 a.out.

There are a number of different send and receive functions in MPI for
the sending and receiving of data between two processes. We first consider
the routines

int MPI_Send(void* data, int length, MPI_Datatype, int to,
int tag, MPI_Comm);

int MPI_Recv(void* data, int length, MPI_Datatype, int from,
int tag, MPI_Comm, MPI_Status *);



A.3 Parallelization by MPI 423

in more detail. With their help one can transport a vector of length length
between two processes. The data type (for instance MPI INT or MPI DOUBLE)
and a pointer to the first element data have to be given as arguments. For
the send operation, the rank of the target process has to be given, for the
corresponding receive operation the process, from which the message origi-
nates, has to be given. The field tag can be used as a filter for messages, as
only messages with matching tags are received. The communicator MPI Comm
is usually MPI COMM WORLD.1

The functions just introduced have one flaw, however: They are blocking
operations. Thus, the program cannot continue unless the operation has been
completed. This sounds harmless. But imagine a situation in which every
process sends some data to its neighboring process. If we write a program
in which MPI Send is followed by MPI Recv, it might work if only a small
amount of data is to be transported. But if a lot of data have to be sent, the
operation MPI Send blocks until the operation MPI Recv is encountered by the
receiving process and enough memory is allocated to receive the message. In
the worst case, all processes get stuck in the operation MPI Send and no
process ever reaches the receiving operation MPI Recv which would allow
the parallel program to proceed. To eliminate this kind of deadlock among
the processes one could change the communication pattern, for instance by
having all processes with even numbers send and having all processes with
odd numbers receive in the first step, and reversing the pattern in the second
step. However, it is simpler to use a nonblocking send routine. The following
Algorithm A.3 solves our problem.

Algorithm A.3 Nonblocking Communication
void comm(void *send_data, int send_length, int send_to,

void *recv_data, int recv_length, int recv_from,

int tag, MPI_Datatype datatype) {
MPI_Request req;

MPI_Status status1, status2;

MPI_Isend(send_data, send_length, datatype, send_to,

tag, MPI_COMM_WORLD, &req);

MPI_Recv (recv_data, recv_length, datatype, recv_from,

tag, MPI_COMM_WORLD, &status1);

MPI_Wait(&req, &status2);

}

The call MPI Isend (I stands for immediate) does not block. We can
therefore use the receive operation MPI Recv without change. To make sure
that all data are sent we now have to insert a further call to MPI Wait, which
1 One can also use other communicators to combine only some of the processes to

a smaller, virtual, parallel computer, see [272].
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waits for the completion of the MPI operation MPI Request. Only then we
can change the vector of data pointed to by send data.

In principle, one can write complete parallel programs with these point-
to-point communication operations. For operations that involve all processes,
as for instance a sum or a maximum of values distributed on all processes, it
is advantageous to use a few additional specialized routines. They are:

int MPI_Allreduce(void* datain, void* dataout, int length,
MPI_Datatype, MPI_Op, MPI_Comm);

int MPI_Allgather(void* datain, int lengthin, MPI_Datatype,
void* dataout, int lengthout, MPI_Datatype,
MPI_Comm);

The call to MPI Allreduce computes the data contributed by each pro-
cess according to MPI Op and returns the final result to all processes. Possible
choices for MPI Op are MPI SUM, MPI PROD, MPI MIN or MPI MAX. It is guar-
anteed that all processes receive exactly the same final result. The precise
sequence of operations depends on the MPI implementation. Thus, different
MPI implementations might lead to differently rounded values. Usually, all
data are first sent to a master process which then reduces the data according
to MPI Op.

The function MPI Allgather is a simplified variant of such a reduction.
It delivers the collected data to all processes without any further processing.
Both functions block until all processes have contributed their data.

Finally, we present a small parallel example program that employs the
communication operations just introduced. We use the main program from
Algorithm A.2 completed by a call to a new routine solve which uses the
nonblocking communication routine comm from Algorithm A.3. In addition,
it employs the MPI function MPI Wtime() which returns the value of a local
system clock. The implementation of solve is given in A.4.

The routine solve from Algorithm A.4 solves a one-dimensional Poisson
problem −∆x = f with periodic boundary conditions. This is implemented
with a damped Jacobi iteration.2 The unknowns are stored for each process
in x[1] to x[n], the corresponding right hand side is stored in f[1] to f[n].
The data are distributed to the processes so that each process only owns
n values from a much longer parallel vector. The neighboring processes for
each process are called left and right. To implement periodic boundary
conditions, the left neighbor of process 0 is set to process numprocs-1 and
correspondingly the right neighbor of process numprocs-1 is set to process
0. A loop over j then executes m Jacobi iterations. First, the “ghost cells”
x[0] and x[n+1] are filled with the correct values from the neighboring
processes in a nonblocking communication step. A damped Jacobi iteration
step is executed next. We use the discretization stencil [−1 2 − 1] for the

2 This program is just intended as a first example for parallelization. The parallel
FFT solver discussed in Chapter 7 is substantially faster for our applications.
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Algorithm A.4 Parallel Iterative Jacobi-Solver
void solve() {
#define n 10

#define m 50

double x[n+2], y[n+2], f[n+2];

int myrank, numprocs;

MPI_Comm_size(MPI_COMM_WORLD, &numprocs); // to determine

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); // neighboring processes

int left = (myrank + numprocs - 1) % numprocs;

int right = (myrank + 1) % numprocs;

for (int i=1; i<=n; i++) {
x[i] = 0;

f[i] = sin((i + n * myrank) * 2. * M_PI / (n * numprocs));

}
real t = MPI_Wtime();

for (int j=0; j<m; j++) { // iteration counter

comm(&x[n], 1, right, &x[0], 1, left, 7, MPI_DOUBLE);

comm(&x[1], 1, left, &x[n+1], 1, right, 8, MPI_DOUBLE);

for (int i=1; i<=n; i++)

y[i] = 0.5 * x[i] + (f[i] + x[i-1] + x[i+1]) * 0.25;

double s = 0, c;

for (int i=1; i<=n; i++) s += y[i];

MPI_Allreduce(&s, &c, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

for (int i=1; i<=n; i++)

x[i] = y[i] - c / (n * numprocs); // force average to 0

}
printf("proc %d: %g sec\n", myrank, MPI_Wtime()-t);

for (int i=1; i<=n; i++)

printf("x[%d] = %g\n", i + n * myrank, x[i]);

}

Laplace operator. A damping factor of 1/2 is employed. The solution of our
problem is only defined up to an additive constant because of the periodic
boundary conditions. We therefore force the solution to have zero average. To
this end, we first compute the local sum in s, compute then the global sum
with MPI Allreduce, and finally subtract out the average on all processes in
parallel. At the end of the program, we print the time needed for the solution
and the solution itself.

A.4 Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann distribution is given for a vector v = (v1, v2, v3) ∈
R

3 as an appropriately transformed Gaussian N(0, 1) normal distribution
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f(v) :=
(

m

2πkBT

) 3
2

e
− mv2

2kB T . (A.5)

Here, T denotes the temperature, m denotes the mass of the particles, and
kB = 1.380662·10−23 J

K denotes the Boltzmann constant. If a velocity vector v
is distributed according to a Maxwell-Boltzmann distribution, its magnitude
has the distribution

f0(||v||) := 4πv2f(v) = 4π

(
m

2πkBT

) 3
2

v2e
− mv2

2kBT . (A.6)

The mean square velocity thus satisfies〈
v2
〉

:=
∫ ∞

0

v2f0(||v||)d||v|| =
3kBT

m
. (A.7)

Every degree of freedom vd, d = 1, 2, 3, contributes a mean kinetic energy of

1
2
m
〈
v2

d

〉
=

kBT

2
(A.8)

to the total kinetic energy. This is the so-called equidistribution theorem of
thermodynamics. Here,

〈
v2

d

〉
is the mean squared velocity for the dth com-

ponent of v, d = 1, 2, 3. In general a system with N particles of equal mass
(which has Nf = 3N degrees of freedom) then satisfies

Ekin =
1
2

N∑
i=1

mv2
i =

1
2

N∑
i=1

m

3∑
d=1

(vi)2d =
Nf

2
kBT. (A.9)

To construct a set of particles from a Maxwell-Boltzmann distribution,
one first generates random vectors which are distributed according to a mul-
tivariate N(0, 1) normal distribution. They are then scaled by a factor of√

kBT/m. This factor can also be expressed in terms of the kinetic energy
or the mean velocity. (A.8) and (A.9) imply√

(kBT )/m =
√

(2Ekin)/(Nfm) =
√

〈v2
d〉. (A.10)

Thus, given the kinetic energy or the mean velocity, we easily obtain a cor-
responding Maxwell-Boltzmann distribution as well.

Algorithm A.5 shows a possible implementation following Marsagila [414],
see also [109, 356] for the general Box-Muller method. There, the function
GaussDeviate generates random numbers distributed according to a N(0, 1)
normal distribution. First, two random numbers a1 and a2 from a uniform
random distribution are generated (here using the rand function for simplic-
ity3) which are interpreted as coordinates of a point in the unit circle. The
polar transform [414] then produces two numbers
3 Here, two independent uniformly distributed random numbers are needed. The
rand function is not really adequate since the same algorithm with the same seed
is used for both numbers. However, the generation of good random numbers is
an extensive subject that cannot be covered here in detail, see also [490].
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b1 = a1

√
(−2 ln r)/r, b2 = a2

√
(−2 ln r)/r

from a normal distribution, with r = a2
1 + a2

2. These values are multiplied
with the value factor in the function MaxwellBoltzmann. The quantities√〈v2

d〉, Ekin, or T were given as parameter in the examples from Chapter 3.
These values then must be plugged into (A.10) to obtain the respective value
of factor.4

Algorithm A.5 Maxwell-Boltzmann Distribution
void MaxwellBoltzmann(Particle *p, real factor) {
for (int d=0; d<DIM; d++)

p->v[d] = factor * GaussDeviate ();

}

real GaussDeviate(void) {
real a1, a2, s, r, b1;

static int iset = 0;

static real b2;

if (!iset) {
do { // two uniformly
a1 = 2.0 * rand () / (RAND_MAX + 1.0) - 1.0; // distributed
a2 = 2.0 * rand () / (RAND_MAX + 1.0) - 1.0; // random numbers
r = a1 * a1 + a2 * a2; // from (-1,1)

} while (r>=1.0); // is (a1,a2) inside the unit circle?
s = sqrt (-2.0 * log (r) / r); // polar transform
b1 = a1 * s;

b2 = a2 * s;

iset = 1;

return b1;

}
else {

iset = 0;

return b2;

}
}

4 Other algorithms for the generation of normally distributed random variables
are implemented for instance in the GNU Scientific Library [24] and can be used
as library functions.
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A.5 Parameters for the Brenner Potential and Data for
Initial Configurations

Parameter Table for the Splines in the Brenner Potential

In the following, we give the nodal values for the two-dimensional and three-
dimensional cubic Hermite splines HCC , HCH and K needed in the definition
of the Brenner potential in the formula (5.23) and (5.25). They smooth the
transition from the bound to the unbound state. Further explanations can
be found in [122, 123, 602].

Carbon Hydrogen Hydrocarbons

- - - - HCC(1, 1) -0.0226
- - - - HCC(2, 0) -0.0061
- - - - HCC(3, 0) 0.0173
- - - - HCC(1, 2) 0.0149
- - - - HCC(2, 1) 0.0160
- - - - HCH (1, 0) -0.0984
- - - - HCH (2, 0) -0.2878
- - - - HCH (3, 0) -0.4507
- - - - HCH (0, 1) -0.2479
- - - - HCH (0, 2) -0.3221
- - - - HCH (1, 1) -0.3344
- - - - HCH (2, 1) -0.4438
- - - - HCH (0, 3) -0.4460
- - - - HCH (1, 2) -0.4449

- - - -
∂HCH (1,1)

∂C -0.17325

- - - -
∂HCH (2,0)

∂C -0.09905

- - - -
∂HCH (0,2)

∂H -0.17615

- - - -
∂HCH (1,1)

∂H -0.09795
K(2, 3, 1) -0.0363 - - - -
K(2, 3, 2) -0.0363 - - - -
K(1, 2, 2) -0.0243 - - - -
- - - - K(1, 1, 1) 0.1264
- - - - K(2, 2, 1) 0.0605
- - - - K(1, 2, 1) 0.0120
- - - - K(1, 3, 1), K(1, 3, 2) -0.0903
- - - - K(0, 3, 1), K(0, 3, 2) -0.0904
- - - - K(0, 2, 2) -0.0269
- - - - K(0, 2, 1) 0.0427
- - - - K(0, 1, 1) 0.0996
- - - - K(1, 1, 2) 0.0108

- - - -
∂K(3,1,1)

∂i -0.0950

- - - - ∂K(3,2,1)
∂i -0.10835

- - - - ∂K(3,1,2)
∂i -0.0452

- - - - ∂K(2,3,2)
∂i 0.01345

- - - - ∂K(2,4,2)
∂i -0.02705

- - - - ∂K(3,4,2)
∂i 0.04515

- - - - ∂K(3,4,1)
∂i 0.04515

- - - -
∂K(3,2,2)

∂i -0.08760

Table A.1. Nodal values for the two-dimensional and three-dimensional cubic
Hermite splines HCC , HCH and K in the Brenner potential. The following prop-
erties hold: K(i, j, k) = K(j, i, k), K(i, j, k > 2) = K(i, j, 2), and ∂K(i, j, k)/∂i =
∂K(j, i, k)/∂i. The partial derivatives are needed for the force computation. Values
not listed are equal to zero.
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Data for Dehydrobenzene and a C60 Molecule

We give the positions of the atoms for a C60 molecule and a dehydrobenzene
molecule in the Tables A.2 and A.3. They are needed for the initial config-
uration for the simulations in Section 5.1.3. For further details see also the
web site [25].

x1[Å] x2[Å] x3[Å] x1[Å] x2[Å] x3[Å]

C 4.13127 2.04365 0.24220 C 2.72152 1.66445 0.42819
C 1.86478 2.86901 0.34933 C 2.78173 3.98528 0.06360
C 4.13936 3.48140 -0.00753 C 5.78527 0.70439 3.17888
C 4.89453 0.45453 2.02247 C 5.18828 1.44270 0.98960
C 6.25133 2.30427 1.49597 C 6.61994 1.85765 2.84958
C 1.65940 0.48262 3.70735 C 1.26109 0.92194 2.37547
C 2.41952 0.73208 1.46188 C 3.50540 0.16862 2.24948
C 3.04602 0.05591 3.62921 C -0.05841 4.24502 3.15406
C 0.39476 4.42145 1.75617 C 0.79918 3.08211 1.28696
C 0.45394 2.09464 2.31554 C -0.06301 2.80125 3.49715
C 3.04828 6.89601 2.18925 C 3.53632 6.16548 1.01429
C 2.45515 5.29269 0.54756 C 1.23755 5.52335 1.37420
C 1.64629 6.46513 2.45815 C 6.69230 4.65624 2.21740
C 6.31185 3.71062 1.17977 C 5.18969 4.31888 0.44867
C 4.87531 5.65965 0.95503 C 5.81036 5.85288 2.08070
C 4.29026 2.99332 7.03625 C 2.90557 3.49798 7.11094
C 2.92756 4.93406 6.76120 C 4.31490 5.30613 6.45220
C 5.18211 4.11225 6.65676 C 3.91401 0.20644 4.75482
C 3.43612 0.85954 5.97599 C 4.55447 1.68667 6.49877
C 5.72588 1.45256 5.58961 C 5.30675 0.52704 4.50972
C 0.30899 2.34704 4.82214 C 0.70633 3.29736 5.88615
C 1.82469 2.70502 6.62986 C 2.10143 1.34401 6.04534
C 1.20806 1.18868 4.87518 C 1.26425 6.21960 3.81811
C 2.13242 6.47272 4.94969 C 1.81030 5.53400 6.06702
C 0.70986 4.69924 5.55349 C 0.37137 5.11396 4.19912
C 5.32320 6.54249 3.22881 C 5.72396 6.08319 4.56802
C 4.54943 6.27301 5.45155 C 3.46748 6.86751 4.67617
C 3.93181 7.01512 3.28944 C 6.99425 2.77353 3.84704
C 6.54811 2.56795 5.22097 C 6.27829 3.90803 5.77491
C 6.57361 4.92334 4.71704 C 7.01550 4.19431 3.52312

Table A.2. Coordinates of the atoms of a C60 molecule.

x1[Å] x2[Å] x3[Å]

C 12.99088 3.50000 2.83052
C 12.99088 3.50000 4.21148
C 14.18373 3.50000 2.07479
H 14.14772 3.50000 0.98434
C 15.35883 3.50000 2.81770
H 16.31845 3.50000 2.29236
C 15.35883 3.50000 4.22430
H 16.31845 3.50000 4.74964
C 14.18373 3.50000 4.96721
H 14.14772 3.50000 6.05766

Table A.3. Coordinates of the atoms of a dehydrobenzene molecule.
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165. W. Dahmen, S. Prössdorf, and R. Schneider, Wavelet approximation
methods for pseudo-differential equations II: Matrix compression and fast so-
lution, Adv. Comp. Math., 1 (1993), pp. 259–335.

166. J. Danby, Fundamentals of celestial mechanics, Willmann-Bell, Richmond,
2 ed., 1988.



References 439

167. T. Darden, A. Toukmaji, and L. Pedersen, Long-range electrostatic ef-
fects in biomolecular simulations, J. Chimie Physique Physico-Chimie Bi-
ologique, 94 (1997), pp. 1346–1364.

168. T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N log(N)
method for Ewald sums in large systems, J. Chem. Phys., 98 (1993), pp. 10089–
10092.
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287. W. Hackbusch and S. Börm, Approximation of boundary element opera-
tors by adaptive H2 matrices. Max Planck Institute for Mathematics in the
Sciences, Preprint Nr. 5/2003, 2003.

288. W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lec-
tures on Applied Mathematics, Springer Berlin, 2000, pp. 9–29.

289. W. Hackbusch and Z. Nowak, On the fast matrix multiplication in the
boundary element method by panel clustering, Numer. Math., 54 (1989),
pp. 463–491.

290. W. Hackbusch and S. Sauter, On the efficient use of the Galerkin-method
to solve Fredholm integral equations, Appl. Math., 38 (1993), pp. 301–322.

291. J. Haile and S. Gupta, Extension of molecular dynamics simulation method.
III. Isothermal systems, J. Chem. Phys., 70 (1983), pp. 3067–3076.

292. E. Hairer, Backward analysis of numerical integrators and symplectic meth-
ods, Ann. Numer. Math., 1 (1994), pp. 107–132.

293. , Backward error analysis for multistep methods, Numer. Math., 84
(1999), pp. 199–232.

294. E. Hairer and P. Leone, Order barriers for symplectic multi-value methods,
in Numerical analysis 1997, Proceedings of the 17th Dundee Biennial Confer-
ence, D. Griffiths, D. Higham, and G. Watson, eds., vol. 380 of Research Notes
in Mathematics, Pitman, 1998, pp. 133–149.

295. E. Hairer and C. Lubich, The life-span of backward error analysis for nu-
merical integrators, Numer. Math., 76 (1997), pp. 441–462.

296. E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration.
Structure-preserving algorithms for ordinary differential equations, vol. 31 of
Series in Computational Mathematics, Springer, Berlin, 2002.

297. E. Hairer, S. Nørsett, and G. Wanner, Solving ordinary differential equa-
tions I, Nonstiff problems, Springer, Berlin, 1993.

298. E. Hairer and D. Stoffer, Reversible long-term integration with variable
step sizes, SIAM J. Sci. Stat. Comput., 18 (1997), pp. 257–269.

299. B. Halperin and D. Nelson, Theory of two-dimensional melting, Phys. Rev.
Lett., 41 (1978), pp. 121–124.

300. S. Hammes-Schiffer and J. Tully, Proton transfer in solution: Molecular
dynamics with quantum transitions, J. Chem. Phys., 101 (1994), pp. 4657–
4667.

301. J. Han, A. Globus, R. Jaffe, and G. Deardorff, Molecular dynamics
simulations of carbon nanotube based gears, Nanotech., (1997), p. 103.

302. N. Handy, Density functional theory, in Lecture notes in quantum chemistry
II, B. Roos, ed., vol. 64 of Lecture Notes in Chemistry, Springer, Berlin, 1994,
pp. 91–124.

303. E. Harrison, Cosmology: The science of the universe, Cambridge University
Press, Cambridge, 2000.

304. B. Hartke and E. Carter, Ab initio molecular dynamics with correlated
molecular wave functions: Generalized valence bond molecular dynamics and
simulated annealing, J. Chem. Phys., 97 (1992), pp. 6569–6578.

305. S. Hayward, A. Kitao, F. Hirata, and N. Go, Effect of solvent on collec-
tive motions in globular protein, J. Mol. Biol., 234 (1993), pp. 1207–1217.

306. T. Head-Gordon and F. Stillinger, An orientational perturbation theory
for pure liquid water, J. Chem. Phys., 98 (1993), pp. 3313–3327.

307. D. Heermann and L. Yixue, A global-update simulation method for polymer
systems, Macromol. Chem. Theor. Simul., 2 (1993), pp. 299–308.



446 References

308. H. Heller, Simulation einer Lipidmembran auf einem Parallelrechner, Dis-
sertation, TU München, 1993.

309. H. Heller, H. Grubmüller, and K. Schulten, Molecular dynamics sim-
ulation on a parallel computer, Mol. Sim., 5 (1990), pp. 133–165.
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Chemistry, P. von Ragué Schleyer, ed., vol. 1, John Wiley & Sons, Chichester,
1998, pp. 271–277.

402. M. Madrid, A. Jacobo-Molina, J. Ding, and E. Arnold, Major sub-
domain rearrangement in HIV-1 reverse transcriptase simulated by molecular
dynamics, Proteins: Struct. Funct. Genet., 35 (1999), pp. 332–337.

403. J. Madura, J. Briggs, R. Wade, and R. Gabdoulline, Brownian dynam-
ics, in Encyclopedia of Computational Chemistry, P. von Ragué Schleyer, ed.,
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Jülich, 1999, John von Neumann Institute for Computing (NIC), Research
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α-Helix, 399
ab initio approaches, 30
adaptive refinement, 259
adiabatic basis, 24
Advanced Simulation and Computing

Program, 5
Amdahl’s law, 139
Andersen thermostat, 106
angular force, 187, 194

β-sheet, 400
B-spline, see spline
Barnes-Hut method, 325–370
– dynamical load balancing, 357–365
– higher order, 370–377
– implementation, 328–338
– parallelization, 341–365
bcc lattice, 153
benchmark, 139, 302
body-centered cubic lattice, 153
bond force, 187
Born-Oppenheimer molecular dynam-

ics, 31
boundary conditions
– heated wall, 80
– moving boundaries, 83
– periodic, 75, 243–244
– reflecting, 69
BPTI molecule, 206, 392
Brenner potential, 167–179
butane, 193

Car-Parrinello molecular dynamics, 33
chaotic behavior, 213, 220
cis configuration, 195
cluster-cluster interaction, 377–387
collision of galaxies, 366
collision of two bodies, 66, 68, 146

comoving coordinates, 308
composition methods, 223
Coulomb potential, 29
crack propagation, 155
Cray T3E, 142, 143, 180, 369
cutoff radius, 53

difference operator, 40–41
diffusion constant, 99, 100, 102, 109,

200, 291
discretization
– finite element method, 255
– Galerkin, 255
– time, 40, 211–237
– trigonometric functions, 264
distributed memory, 116
domain decomposition, 122, 295

EAM potential, 160
Ehrenfest molecular dynamics, 21, 24,

31
energy, 39
ensemble, 86, 93
ensemble average, 94
equilibration, 87
ergodic hypothesis, 95, 220
Euler equations, 417
Euler-Lagrange equation, 33, 417
Ewald summation method, 259, 290

face-centered cubic lattice, 153
fast Fourier Poisson method, 259
fast Fourier transform, see FFT
fast multipole method, see multipole

method
fcc lattice, 153
FFT, 241–242, 260, 268–294
finite element method, 255–257
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Finnis-Sinclair potential, 152
force computation
– Barnes-Hut method, 334, 374
– linked cell method, 62
– multipole method, 383
– naive, 49
– SPME method, 278
formation of galaxies, 339
friction term, 83, 89
Friedman equation, 308
fullerene, 173

Galerkin discretization, 255
Gaussian, 247–273, 278, 287
granular materials, 82
gravitational field, 68
gravitational potential, 28, 49

H2 matrix, 388
Hamilton’s equations, 38, 417
Hamiltonian, 18, 39, 105
harmonic potential, 29, 182, 219
Hartree-Fock method, 32, 161
hcp lattice, 153
Hellmann-Feynman theorem, 35, 409
hexagonal closest packing, 153
Hilbert curve, 361, 362
holonomic constraint, 230
Hooke’s law, 29

implementation
– Barnes-Hut method, 328–338, 371
– basic algorithm, 46
– linked cell method, 58–64
– multipole method, 382
– SPME method, 273–280
impulse method, 226–229

KAM theory, 51, 219
keys, 343
kinetic energy, 44

Lagrangian, 105
Lagrangian multiplier, 232
Langevin dynamics, 229, 403
leapfrog method, 41
Lebesgue curve, 361
Lennard-Jones potential, 29, 53, 74
leucine zipper, 406

Lie-Trotter factorization, 222
ligand, 408
linked cell method, 56–64, 122–145,

250, 394
– implementation, 58
– parallelization, 122
list of particles, 58
Lobatto method, 224
lock and key model, 408
Lorentz-Berthelot mixing rule, 54, 74,

75, 208

make, 418
many-body potential, 151
Maxwell-Boltzmann distribution,

425–427
membranes, 181, 394
Message Passing Interface, see MPI
MIMD, 114
minimal surfaces, 181, 184
molecular dynamics
– Born-Oppenheimer, 31
– Car-Parrinello, 33
– classical, 26
– Ehrenfest, 31
– history of, 12
– Parrinello-Rahman, 104
– steered, 404
– targeted, 404
moments, 315, 316, 323
Morse potential, 29
MPI, 113, 118, 119, 128, 130–132, 134,

136, 139, 144, 300, 352, 353, 355–359,
421–425

multi-step methods, 221
multigrid method, 259
multiple time step method, 226
multipole method, 377–389
– implementation, 382
– parallelization, 386

nanotube, 167, 173
neighbor-list algorithm, 13, 145, 394
Newton’s equations, 34, 39, 41, 417
Nosé-Hoover thermostat, 91
NPT ensemble, 104, 107
numerical simulation, 1–15
NVT ensemble, 86, 96
Nyström method, 225
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octree, 313, 320, 379
OpenMP, 115
orbit, 216, 219

P3M method, 258
panel clustering method, 388
parallel computers, 113
parallel efficiency, 139, 303, 369
parallelization, 113–148
– Barnes-Hut method, 341–365, 376
– linked cell method, 113–148
– multipole method, 386
– SPME method, 294–301
Parrinello-Rahman method, 104
particle models, 6
particle-cluster interaction, 325–370
PC cluster, 144, 179
PDB file format, 195, 205, 206, 208
peptide, 398
periodic boundary conditions, 75
phase space, 93
phase transition, 96, 99, 107, 284
PME method, 259
Poisson equation, 240, 252, 276
Poisson-Boltzmann model, 403
POPC double membrane, 397
potential, 28
– angle, 187
– Brenner, 167–179, 428
– Coulomb, 29
– EAM, 160, 162
– Finnis-Sinclair, 152
– gravitational, 28, 49, 325
– harmonic, 29, 182
– improper torsion, 204
– Lennard-Jones, 29, 53, 74
– many-body, 151
– Morse, 29
– torsion, 189
– valence, 187
– van der Waals, 29
potential energy hypersurface, 26
potential equation, 240, 243
– boundary conditions, 243
– decomposition, 244
predictor-corrector method, 92
pressure, 98, 100, 102, 106
primary structure, 398
protein, 206, 398, 408

quadtree, 320
quaternary structure, 400

r-Respa method, see impulse method
radial distribution function, 99, 100,

102, 109
RATTLE algorithm, 230–237
Rayleigh-Bénard convection, 79
Rayleigh-Taylor instability, 73, 148, 281
reduced variables, 96, 282
reflecting boundaries, 69
Runge-Kutta method, 222–226, 231,

232

scaleup, 140
Schrödinger equation, 17–20
secondary structure, 399
selection criterion, 326, 354, 379
SHAKE algorithm, 230, 237
shared memory, 114
Slater determinant, 32
smoothness, 241, 268
space-filling curves, 359
speedup, 139, 303, 369
SPH method, 339, 415
spline, 161, 242, 259, 265–276
SPMD approach, 421
SPME method, 242, 259–280
– implementation, 273–280
– long-range terms, 263
– parallelization, 294–301
– short-range terms, 261
Störmer-Verlet method, 13, 40–46, 309
– leapfrog scheme, 42, 309
– standard form, 42
– velocity variant, 43, 44
statistical averages, 94
statistical mechanics, 93
steered molecular dynamics, 404, 409
Strang splitting, 222
stress, 159
stress tensor, 106
supercooling, 102, 110
symplectic method, 45, 46, 95, 215, 216

targeted molecular dynamics, 404, 409
Taylor expansion, 41, 314, 377
TDSCF approach, 21, 22
tendamistat, 406
tertiary structure, 400
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thermostat, 86–92
– Andersen, 106
– friction term, 89
– Nosé-Hoover, 91
– velocity scaling, 88
time discretization, 40–46, 211–237
time splitting methods, 222
TIPS3 model, 289
torsion angle, 194
torsion force, 189
trans configuration, 195
trees, 320–325
trypsin inhibitor, 392

valence force, 187, 194
van der Waals potential, 29
variable time step, 226
velocity scaling, 70, 80, 88
Verlet method, see Störmer-Verlet

method
Verlet’s list algorithm, see neighbor-list

algorithm
vortex methods, 415

water, 287–294

Zel’dovich approximation, 307
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