

This page intentionally left blank

THE ART OF MOLECULAR DYNAMICS SIMULATION

The extremely powerful technique of molecular dynamics simulation involves solv-
ing the classical many-body problem in contexts relevant to the study of matter at
the atomistic level. Since there is no alternative approach capable of handling this
broad range of problems at the required level of detail, molecular dynamics meth-
ods have proved themselves indispensable in both pure and applied research. This
book is a blend of tutorial and recipe collection, providing both an introduction to
the subject for beginners and a reference manual for more experienced practition-
ers. It is organized as a series of case studies that take the reader through each of
the steps from formulating the problem, developing the necessary software, and
then using the programs to make actual measurements.
This second edition has been extensively revised and enlarged. It contains a sub-
stantial amount of new material and the software used in the case studies has been
completely rewritten.

Dennis Rapaport received his B.Sc. and M.Sc. degrees in physics from the Uni-
versity of Melbourne, and his Ph.D. in theoretical physics from King’s College,
University of London. He is a Professor of Physics at Bar-Ilan University and is
currently departmental chairman. He has held visiting appointments at Cornell Uni-
versity and IBM in New York, is an Adjunct Professor at the University of Georgia
and a Fellow of the American Physical Society. His interest in computer modeling
emerged during his undergraduate years and his present research interests include
both the methodology of molecular dynamics simulation and its application to a
variety of fields.

THE ART OF MOLECULAR
DYNAMICS SIMULATION

Second Edition

D. C. RAPAPORT

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-82568-9

isbn-13 978-0-511-19448-1

© Cambridge University Press 1995, Dennis Rapaport 2004

2004

Information on this title: www.cambridge.org/9780521825689

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-19448-x

isbn-10 0-521-82568-7

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (EBL)

eBook (EBL)

hardback

Contents

Preface to the first edition page ix

Preface to the second edition xii

About the software xiii

1 Introduction 1
1.1 Historical background 1
1.2 Computer simulation 2
1.3 Molecular dynamics 4
1.4 Organization 8
1.5 Further reading 10

2 Basic molecular dynamics 11
2.1 Introduction 11
2.2 Soft-disk fluid 11
2.3 Methodology 18
2.4 Programming 20
2.5 Results 34
2.6 Further study 43

3 Simulating simple systems 44
3.1 Introduction 44
3.2 Equations of motion 44
3.3 Potential functions 46
3.4 Interaction computations 49
3.5 Integration methods 60
3.6 Initial state 67
3.7 Performance measurements 74
3.8 Trajectory sensitivity 77
3.9 Further study 82

v

vi Contents

4 Equilibrium properties of simple fluids 83
4.1 Introduction 83
4.2 Thermodynamic measurements 84
4.3 Structure 90
4.4 Packing studies 96
4.5 Cluster analysis 112
4.6 Further study 118

5 Dynamical properties of simple fluids 120
5.1 Introduction 120
5.2 Transport coefficients 120
5.3 Measuring transport coefficients 124
5.4 Space–time correlation functions 134
5.5 Measurements 145
5.6 Further study 152

6 Alternative ensembles 153
6.1 Introduction 153
6.2 Feedback methods 154
6.3 Constraint methods 165
6.4 Further study 174

7 Nonequilibrium dynamics 176
7.1 Introduction 176
7.2 Homogeneous and inhomogeneous systems 176
7.3 Direct measurement 177
7.4 Modified dynamics 188
7.5 Further study 198

8 Rigid molecules 199
8.1 Introduction 199
8.2 Dynamics 200
8.3 Molecular construction 216
8.4 Measurements 222
8.5 Rotation matrix representation 232
8.6 Further study 243

9 Flexible molecules 245
9.1 Introduction 245
9.2 Description of molecule 245
9.3 Implementation details 247
9.4 Properties 251
9.5 Modeling structure formation 256

Contents vii

9.6 Surfactant models 257
9.7 Surfactant behavior 262
9.8 Further study 266

10 Geometrically constrained molecules 267
10.1 Introduction 267
10.2 Geometric constraints 267
10.3 Solving the constraint problem 270
10.4 Internal forces 278
10.5 Implementation details 286
10.6 Measurements 291
10.7 Further study 294

11 Internal coordinates 296
11.1 Introduction 296
11.2 Chain coordinates 296
11.3 Kinematic and dynamic relations 298
11.4 Recursive description of dynamics 299
11.5 Solving the recursion equations 308
11.6 Implementation details 317
11.7 Measurements 322
11.8 Further study 325

12 Many-body interactions 326
12.1 Introduction 326
12.2 Three-body forces 326
12.3 Embedded-atom approach 332
12.4 Further study 343

13 Long-range interactions 344
13.1 Introduction 344
13.2 Ewald method 345
13.3 Tree-code approach 359
13.4 Fast-multipole method 365
13.5 Implementing the fast-multipole method 373
13.6 Results 386
13.7 Further study 389

14 Step potentials 391
14.1 Introduction 391
14.2 Computational approach 392
14.3 Event management 403
14.4 Properties 411
14.5 Generalizations 414

viii Contents

14.6 Further study 417
15 Time-dependent phenomena 418

15.1 Introduction 418
15.2 Open systems 418
15.3 Thermal convection 420
15.4 Obstructed flow 429
15.5 Further study 435

16 Granular dynamics 436
16.1 Introduction 436
16.2 Granular models 436
16.3 Vibrating granular layer 439
16.4 Wave patterns 443
16.5 Further study 445

17 Algorithms for supercomputers 446
17.1 Introduction 446
17.2 The quest for performance 446
17.3 Techniques for parallel processing 447
17.4 Distributed computation 450
17.5 Shared-memory parallelism 467
17.6 Techniques for vector processing 473
17.7 Further study 480

18 More about software 481
18.1 Introduction 481
18.2 Structures and macro definitions 481
18.3 Allocating arrays 487
18.4 Utility functions 488
18.5 Organizing input data 495
18.6 Configuration snapshot files 498
18.7 Managing extensive computations 500
18.8 Header files 504

19 The future 505
19.1 Role of simulation 505
19.2 Limits of growth 506
19.3 Visualization and interactivity 507
19.4 Coda 508

Appendix 509
References 519
Function index 532
Index 535
Colophon 549

Preface to the first edition

Molecular dynamics simulation provides the methodology for detailed microscopic
modeling on the molecular scale. After all, the nature of matter is to be found in
the structure and motion of its constituent building blocks, and the dynamics is
contained in the solution to the N -body problem. Given that the classical N -body
problem lacks a general analytical solution, the only path open is the numerical
one. Scientists engaged in studying matter at this level require computational tools
to allow them to follow the movement of individual molecules and it is this need
that the molecular dynamics approach aims to fulfill.

The all-important question that arises repeatedly in numerous contexts is the re-
lation between the bulk properties of matter – be it in the liquid, solid, or gaseous
state – and the underlying interactions among the constituent atoms or molecules.
Rather than attempting to deduce microscopic behavior directly from experiment,
the molecular dynamics method – MD for short – follows the constructive ap-
proach in that it tries to reproduce the behavior using model systems. The continu-
ally increasing power of computers makes it possible to pose questions of greater
complexity, with a realistic expectation of obtaining meaningful answers; the in-
escapable conclusion is that MD will – if it hasn’t already – become an indispens-
able part of the theorist’s toolbox. Applications of MD are to be found in physics,
chemistry, biochemistry, materials science, and in branches of engineering.

This is a recipe book. More precisely, it is a combination of an introduction to
MD for the beginner, and a cookbook and reference manual for the more expe-
rienced practitioner. The hope is that through the use of a series of case studies,
in which real problems are studied, both goals can be achieved. The book can be
read from cover to cover to explore the principles and capabilities of MD, or it
can be used in cookbook style – with a certain amount of cross-referencing – to
obtain the recipe for a particular kind of computation. Some familiarity with clas-
sical and statistical mechanics, numerical methods and computer programming is
assumed.

ix

x Preface to the first edition

The case studies take the reader through all the stages from initial problem state-
ment to the presentation of the results of the calculation. The link between these
endpoints is the computer program – the recipe. The results of the simulations
are ‘experimental’ observations, in the sense that the simulation is an experiment
conducted on an actual, albeit highly idealized, substance. Some of these obser-
vations amount to mere measurement, while others can include the discovery of
qualitatively novel effects; the custom of referring to MD simulation as computer
experimentation is most certainly justified.

Computer programs are an important part of any MD project and feature promi-
nently among the recipes. The view that programs are best kept out of sight along
with the plumbing is seriously outdated, and program listings are integrated into
the text, with the same status as mathematical equations. After all, a computer pro-
gram is merely the statement of an algorithm (supplemented by a myriad details
to assist the computer in performing its task), and an algorithm is a mathematical
procedure. Without the details of the programs, the recipe oriented goal would not
have been met: there are many vital, but often subtle, details that only emerge when
the program is actually written, so that the program text is an essential part of any
recipe and is meant to be read.

Given the near ubiquity of MD, the choice of material had to be restricted to
avoid a volume of encyclopedic size. The focus is on the simplest of models, since
these form the basis of almost all later developments. Even what constitutes a sim-
ple model is open to debate, and here a modest bias on the part of the (physicist)
author may be discerned. The emphasis is on showing that MD can reproduce
known physical phenomena at a qualitative and semiquantitative level, but with-
out fine-tuning potential functions, molecular structures, or other parameters, for
precise quantitative agreement with experiment. Exercises such as demonstrating
the solid–fluid phase transition in a system of soft-disk atoms, observing the local
ordering in a simple model for water, and following the gyrations of a highly ide-
alized polymer chain, are all far more rewarding experiences for the beginner than
detailed computations of specific heats or viscosities across the entire state space
of the system. Quantitative detail is not neglected, however, although here some
aspects will obviously appeal to more limited segments of the audience.

The model systems to be introduced in these pages can be readily extended and
adapted to problems of current interest; suggestions for further work of this kind
accompany the case studies, and can serve as exercises (or even research projects)
in courses devoted to simulation. The same holds true for the computational tech-
niques. We cover a variety of methods, but not all combinations of methods and
problems. In some cases all that is required is a simple modification or combina-
tion of the material covered, but in other cases more extensive efforts are called
for – the literature continues to report such methodological developments. While

Preface to the first edition xi

MD can hardly be regarded as a new technique, neither can it be regarded as a fully
matured method, and thus there are often several ways of approaching a particular
problem, with little agreement on which is to be preferred. It is not our intent to
pass judgment, and examples based on alternative methods are included.

The practical side of MD is no less important than the theoretical. A true appreci-
ation of the capabilities and shortcomings of the various methods, an understanding
of the assumptions used in the models, and a feeling for what kinds of problem are
realistic candidates for MD treatment can only be obtained from experience. This
is something that even users of commercial and other packaged software should be
aware of. The bottom line is that the reader should be prepared to use this book like
any other recipe book: off to the kitchen and start cooking!

January, 1995 Dennis C. Rapaport

Preface to the second edition

The second edition of The Art of Molecular Dynamics Simulation is an enlarged
and updated version of the first. The principal differences between the two editions
are the inclusion of a substantial amount of new material, both as additional chap-
ters and within existing chapters, and a complete revision of all the software used in
the case studies to reflect a more modern programming style. This style change is a
consequence of the population shift in the research community. At the time the first
edition was written older versions of the Fortran language were still in widespread
use; despite this fact, C was chosen as the programming language for the book
in preference to Fortran, but in a form that would appear familiar to Fortran pro-
grammers of the era. Now that C – and related languages – are in widespread use,
and Fortran has even evolved to become more like C, the expressive capabilities
of C can be employed to the full, resulting in software that is easier to follow. The
power of desktop computers has also increased by a large factor since the case
studies of the first edition were developed; in recognition of this fact some of the
studies consider larger systems, reflecting a shifting view of what is considered a
‘short’ computation. Other minor changes and corrections have been incorporated
throughout the text. The exhortation to employ this volume as a cookbook remains
unchanged.

January, 2003 D.C.R.

xii

About the software

Software availability
Readers interested in downloading the software described in this book in a
computer-readable form for personal, noncommercial use should visit the Cam-
bridge University Press web site at http://uk.cambridge.org, where the home
page for this book and the software can be found; a listing of the programs included
in the software package appears in the Appendix. Additional material related to
the book, as well as contact information, can be found at the author’s website –
http://www.ph.biu.ac.il/~rapaport.

Legal matters
The programs appearing in this book are provided for educational purposes only.
Neither the author nor the publisher warrants that these programs are free from
error or suitable for particular applications, and both disclaim all liability from any
consequences arising out of their use.

xiii

1

Introduction

1.1 Historical background

The origins of molecular dynamics – MD – are rooted in the atomism of antiquity.
The ingredients, while of more recent vintage, are not exactly new. The theoreti-
cal underpinnings amount to little more than Newton’s laws of motion. The sig-
nificance of the solution to the many-body problem was appreciated by Laplace
[del51]: ‘Given for one instant an intelligence which could comprehend all the
forces by which nature is animated and the respective situation of the beings who
compose it – an intelligence sufficiently vast to submit these data to analysis – it
would embrace in the same formula the movements of the greatest bodies of the
universe and those of the lightest atom; for it, nothing would be uncertain and the
future, as the past, would be present to its eyes’. And the concept of the computer,
without which there would be no MD, dates back at least as far as Babbage, even
though the more spectacular hardware developments continue to this day. Thus
MD is a methodology whose appearance was a foregone conclusion, and indeed
not many years passed after digital computers first appeared before the first cau-
tious MD steps were taken [ald57, gib60, rah64].

The N -body problem originated in the dynamics of the solar system, and the
general problem turns out to be insoluble for three or more bodies. Once the atomic
nature of matter became firmly established, quantum mechanics took charge of the
microscopic world, and the situation became even more complicated because even
the constituent particles seemed endowed with a rather ill-defined existence. But
a great deal of the behavior of matter in its various states can still be understood
in classical (meaning nonquantum) terms, and so it is that the classical N -body
problem is also central to understanding matter at the microscopic level. And it is
the task of the numerical solution of this problem that MD addresses.

For systems in thermal equilibrium, theory, in the form of statistical mechanics,
has met with a considerable measure of success, particularly from the conceptual

1

2 1 Introduction

point of view. Statistical mechanics provides a formal description – based on the
partition function – of a system in equilibrium; however, with a few notable ex-
ceptions, there are no quantitative answers unless severe approximations are intro-
duced, and even then it is necessary to assume large (essentially infinite) systems.
Once out of equilibrium, theory has very little to say. Simulations of various kinds,
including MD, help fill the gaps on the equilibrium side, but in the more general
case it is only by means of simulation – principally MD – that progress is possible.

From the outset, the role of computers in scientific research has been a central
one, both in experiment and in theory. For the theoretician, the computer has pro-
vided a new paradigm of understanding. Rather than attempting to obtain simplified
closed-form expressions that describe behavior by resorting to (often uncontrolled)
approximation, the computer is now able to examine the original system directly.
While there are no analytic formulae to summarize the results neatly, all aspects of
the behavior are open for inspection.

1.2 Computer simulation
Science requires both observation and comprehension. Without observation there
are no facts to be comprehended; without comprehension science is mere docu-
mentation. The basis for comprehension is theory, and the language of theoretical
science is mathematics. Theory is constructed on a foundation of hypothesis; the
fewer the hypotheses needed to explain existing observations and predict new phe-
nomena, the more ‘elegant’ the theory – Occam’s razor.

The question arises as to how simulation is related to physical theory. Univer-
sity education abounds with elegant theoretical manipulation and is a repository
for highly idealized problems that are amenable to closed-form solution. Despite
the almost ‘unreasonable applicability’ of mathematics in science [wig60], the fact
is that there is usually a chasm between the statement of a theory and the abil-
ity to extract quantitative information useful in interpreting experiment. In the real
world, exact solutions are the notable exception. Theory therefore relies heavily on
approximation, both analytical and numerical, but this is often uncontrolled and so
reliability may be difficult to establish. Thus it might be said that simulation rests
on the basic theoretical foundations, but tries to avoid much of the approximation
normally associated with theory, replacing it by a more elaborate calculational ef-
fort. Where theory and simulation differ is in regard to cost. Theory requires few
resources beyond the cerebral and is therefore ‘cheap’; simulation needs the hard-
ware and, despite plummeting prices, a computer system for tackling problems at
the forefront of any field can still prove costly.

Simulation also draws from experiment. Experimental practice rests on a long
(occasionally blemished) tradition; computer simulation, because of its novelty,

1.2 Computer simulation 3

is still somewhat more haphazard, but methodologies are gradually evolving. The
output of any simulation should be treated by the same statistical methods used in
the analysis of experiments. In addition to estimating the reliability of the results
(on the assumption that the measurements have been made correctly) there is also
the issue of adequate sampling. This is particularly important when attempting to
observe ‘rare’ events: quantitative studies of such events require that the entire oc-
currence be reproduced as many times as necessary to assure adequate sampling –
if computer resources cannot accommodate this requirement it is presumptuous to
expect reliable results.

What distinguishes computer simulation in general from other forms of compu-
tation, if such a distinction can be made, is the manner in which the computer is
used: instead of merely performing a calculation, the computer becomes the virtual
laboratory in which a system is studied – a numerical experiment. The analogy can
be carried even further; the results emerging from a simulation may be entirely un-
expected, in that they may not be at all apparent from the original formulation of the
model. A wide variety of modeling techniques have been developed over the years,
and those relevant for work at the molecular level include, in addition to MD, clas-
sical Monte Carlo [all87, lan00], quantum based techniques involving path-integral
[ber86c, gil90] and Monte Carlo methods [sch92], and MD combined with elec-
tron density-function theory [rem90, tuc94], as well as discrete approaches such as
cellular automata and the lattice–Boltzmann method [doo91].

Although the goal of science is understanding, it is not always obvious what
constitutes ‘understanding’. In the simulational context, understanding is achieved
once a plausible model is able to reproduce and predict experimental observation.
Subsequent study may lead to improvements in the model, or to its replacement, in
order to explain further experiments, but this is no different from the way in which
science is practiced in the broader context. Clearly, there is no inherent virtue in
an excessively complex model if there is no way of establishing that all its features
are essential for the desired results (Occam again). The practical consequence of
this policy is that, despite any temptation to do otherwise, features should be added
gradually. This helps with quality control in the notoriously treacherous world of
computer programming; since the outcome of a simulation often cannot be pre-
dicted with enough confidence to allow full validation of the computation, the in-
cremental approach becomes a practical necessity.

Simulation plays an important role in education. It takes little imagination to
see how interactive computer demonstrations of natural phenomena can enrich any
scientific presentation. Whether as an adjunct to experiment, a means of enhanc-
ing theoretical discussion, or a tool for creating hypothetical worlds, simulation
is without peer. Especially in a conceptually difficult field such as physics, sim-
ulation can be used to help overcome some of the more counterintuitive concepts

4 1 Introduction

encountered even at a relatively elementary level. As to the role of MD, it can bring
to life the entire invisible universe of the atom, an experience no less rewarding for
the experienced scientist than for the utter tyro. But, as with education in general,
simulation must be kept honest, because seeing is believing, and animated displays
can be very convincing irrespective of their veracity.

1.3 Molecular dynamics

Foundations

The theoretical basis for MD embodies many of the important results produced
by the great names of analytical mechanics – Euler, Hamilton, Lagrange, Newton.
Their contributions are now to be found in introductory mechanics texts (such as
[gol80]). Some of these results contain fundamental observations about the appar-
ent workings of nature; others are elegant reformulations that spawn further theo-
retical development. The simplest form of MD, that of structureless particles, in-
volves little more than Newton’s second law. Rigid molecules require the use of the
Euler equations, perhaps expressed in terms of Hamilton’s quaternions. Molecules
with internal degrees of freedom, but that are also subject to structural constraints,
might involve the Lagrange method for incorporating geometric constraints into
the dynamical equations. Normal equilibrium MD corresponds to the microcanon-
ical ensemble of statistical mechanics, but in certain cases properties at constant
temperature (and sometimes pressure) are required; there are ways of modifying
the equations of motion to produce such systems, but of course the individual tra-
jectories no longer represent the solution of Newton’s equations.

The equations of motion can only be solved numerically. Because of the nature
of the interatomic interaction, exemplified by the Lennard-Jones potential with a
strongly repulsive core, atomic trajectories are unstable in the sense that an in-
finitesimal perturbation will grow at an exponential rate†, and it is fruitless to
seek more than moderate accuracy in the trajectories, even over limited periods of
time. Thus a comparatively low-order numerical integration method often suffices;
whether or not this is adequate emerges from the results, but the reproducibility of
MD measurements speaks for itself. Where softer interactions are involved, such
as harmonic springs or torsional interactions, either or both of which are often used
for modeling molecules with internal degrees of freedom, a higher-order integrator,
as well as a smaller timestep than before, may be more appropriate to accommo-
date the fast internal motion. The numerical treatment of constraints introduces an
additional consideration, namely that the constraints themselves must be preserved
to much higher accuracy than is provided by the integration method, and methods

† This is discussed in §3.8.

1.3 Molecular dynamics 5

exist that address this problem. All these issues, and more, are covered in later
chapters.

While MD is utterly dependent on the now ubiquitous computer, an invention
of the twentieth century, it pays little heed to the two greatest developments that
occurred in physics in the very same century – relativity and quantum mechan-
ics. Special relativity proscribes information transfer at speeds greater than that
of light; MD simulation assumes forces whose nature implies an infinite speed
of propagation. Quantum mechanics has at its base the uncertainty principle; MD
requires – and provides – complete information about position and momentum at
all times. In practice, the phenomena studied by MD simulation are those where
relativistic effects are not observed and quantum effects can, if necessary, be in-
corporated as semiclassical corrections – quantum theory shows how this should
be done [mai81]. But, strictly speaking, MD deals with a world that, while intu-
itively appealing to late nineteenth-century science, not to mention antiquity, has
little concern for anything that is ‘nonclassical’. This fact has in no way diminished
the power and effectiveness of the method.

Relation to statistical mechanics
Statistical mechanics (for example [mcq76]) deals with ensemble averages. For the
canonical ensemble, in which the temperature T and number of particles Nm are
fixed, the equilibrium average of some quantity G is expressed in terms of phase-
space integrals involving the potential energy U (r1, . . . rNm),

〈G〉 =

∫
G(r1, . . . rNm)e−βU (r1,...rNm) d r1 · · · rNm∫

e−βU (r1,...rNm) d r1 · · · rNm

(1.3.1)

where {ri |i = 1, . . . Nm} are the coordinates, β = 1/kB T , and kB is the Boltzmann
constant. This average corresponds to a series of measurements over an ensemble
of independent systems.

The ergodic hypothesis relates the ensemble average to measurements carried
out for a single equilibrium system during the course of its natural evolution –
both kinds of measurement should produce the same result. Molecular dynamics
simulation follows the dynamics of a single system and produces averages of the
form

〈G〉 = 1

M

M∑
µ=1

Gµ(r1, . . . rNm) (1.3.2)

over a series of M measurements made as the system evolves. Assuming that the

6 1 Introduction

sampling is sufficiently thorough to capture the typical behavior, the two kinds of
averaging will be identical. The observation that MD corresponds to the micro-
canonical (constant energy) ensemble, rather than to the canonical (constant tem-
perature) ensemble, will be addressed when it appears likely to cause problems.

Relation to other classical simulation methods

The basic Monte Carlo method [lan00] begins by replacing the phase-space inte-
grals in (1.3.1) by sums over states

〈G〉 =

∑
s

G(s)e−βU (s)

∑
s

e−βU (s)
(1.3.3)

Then, by a judicious weighting of the states included in the sum, which for the
general case results in

〈G〉 =

∑
s

W (s)−1G(s)e−βU (s)

∑
s

W (s)−1e−βU (s)
(1.3.4)

where W (s) is the probability with which states are chosen, (1.3.4) can be reduced
to a simple average over the S states examined, namely,

〈G〉 = 1

S

S∑
s=1

G(s) (1.3.5)

Clearly, we require

W (s) = e−βU (s) (1.3.6)

for this to be true, and much of the art of Monte Carlo is to ensure that states are ac-
tually produced with this probability; the approach is called importance sampling.
The Monte Carlo method considers only configuration space, having eliminated the
momentum part of phase space. Since there are no dynamics, it can only be used
to study systems in equilibrium, although if dynamical processes are represented
in terms of collision cross sections it becomes possible to study the consequences
of the process, even if not the detailed dynamics [bir94].

Molecular dynamics operates in the continuum, in contrast to lattice-based meth-
ods [doo91], such as cellular automata, which are spatially discrete. While the lat-
ter are very effective from a computational point of view, they suffer from certain
design problems such as the lack of a range of particle velocities, or unwanted ef-
fects due to lattice symmetry, and are also not easily extended. The MD approach
is computationally demanding, but since it attempts to mimic nature it has few

1.3 Molecular dynamics 7

inherent limitations. One further continuum-dynamical method, known as Brown-
ian dynamics [erm80], is based on the Langevin equation; the forces are no longer
computed explicitly but are replaced by stochastic quantities that reflect the fluctu-
ating local environment experienced by the molecules.

Applications and achievements
Given the modeling capability of MD and the variety of techniques that have
emerged, what kinds of problem can be studied? Certain applications can be elim-
inated owing to the classical nature of MD. There are also hardware imposed lim-
itations on the amount of computation that can be performed over a given period
of time – be it an hour or a month – thus restricting the number of molecules of
a given complexity that can be handled, as well as storage limitations having sim-
ilar consequences (to some extent, the passage of time helps alleviate hardware
restrictions).

The phenomena that can be explored must occur on length and time scales that
are encompassed by the computation. Some classes of phenomena may require re-
peated runs based on different sets of initial conditions to sample adequately the
kinds of behavior that can develop, adding to the computational demands. Small
system size enhances the fluctuations and sets a limit on the measurement accu-
racy; finite-size effects – even the shape of the simulation region – can also influ-
ence certain results. Rare events present additional problems of observation and
measurement.

Liquids represent the state of matter most frequently studied by MD methods.
This is due to historical reasons, since both solids and gases have well-developed
theoretical foundations, but there is no general theory of liquids. For solids, theory
begins by assuming that the atomic constituents undergo small oscillations about
fixed lattice positions; for gases, independent atoms are assumed and interactions
are introduced as weak perturbations. In the case of liquids, however, the inter-
actions are as important as in the solid state, but there is no underlying ordered
structure to begin with.

The following list includes a somewhat random and far from complete assort-
ment of ways in which MD simulation is used:

• Fundamental studies: equilibration, tests of molecular chaos, kinetic theory,
diffusion, transport properties, size dependence, tests of models and potential
functions.

• Phase transitions: first- and second-order, phase coexistence, order parameters,
critical phenomena.

• Collective behavior: decay of space and time correlation functions, coupling
of translational and rotational motion, vibration, spectroscopic measurements,
orientational order, dielectric properties.

8 1 Introduction

• Complex fluids: structure and dynamics of glasses, molecular liquids, pure wa-
ter and aqueous solutions, liquid crystals, ionic liquids, fluid interfaces, films
and monolayers.

• Polymers: chains, rings and branched molecules, equilibrium conformation,
relaxation and transport processes.

• Solids: defect formation and migration, fracture, grain boundaries, structural
transformations, radiation damage, elastic and plastic mechanical properties,
friction, shock waves, molecular crystals, epitaxial growth.

• Biomolecules: structure and dynamics of proteins, protein folding, micelles,
membranes, docking of molecules.

• Fluid dynamics: laminar flow, boundary layers, rheology of non-Newtonian
fluids, unstable flow.

And there is much more.
The elements involved in an MD study, the way the problem is formulated, and

the relation to the real world can be used to classify MD problems into various cat-
egories. Examples of this classification include whether the interactions are short-
or long-ranged; whether the system is thermally and mechanically isolated or open
to outside influence; whether, if in equilibrium, normal dynamical laws are used or
the equations of motion are modified to produce a particular statistical mechanical
ensemble; whether the constituent particles are simple structureless atoms or more
complex molecules and, if the latter, whether the molecules are rigid or flexible;
whether simple interactions are represented by continuous potential functions or by
step potentials; whether interactions involve just pairs of particles or multiparticle
contributions as well; and so on and so on.

Despite the successes, many challenges remain. Multiple phases introduce the
issue of interfaces that often have a thickness comparable to the typical simulated
region size. Inhomogeneities such as density or temperature gradients can be diffi-
cult to maintain in small systems, given the magnitude of the inherent fluctuations.
Slow relaxation processes, such as those typical of the glassy state, diffusion that
is hindered by structure as in polymer melts, and the very gradual appearance of
spontaneously forming spatial organization, are all examples of problems involv-
ing temporal scales many orders of magnitude larger than those associated with the
underlying molecular motion.

1.4 Organization

Case studies

Case studies are used throughout. The typical case study begins with a review of
the theoretical background used for formulating the computational approach. The

1.4 Organization 9

computation is then described, either by means of a complete listing of the func-
tions that make up the program, or as a series of additions and modifications to an
earlier program. Essential but often neglected details such as the initial conditions,
organization of the input and output, accuracy, convergence and efficiency are also
addressed.

Results obtained from running each program are shown. These sometimes repro-
duce published results, although no particular effort is made to achieve a similar
level of accuracy since our goal is one of demonstration, not of compiling a collec-
tion of definitive measurements. Suggested extensions and assorted other projects
are included as exercises for the reader.

We begin with the simplest possible example, to demonstrate that MD actually
works. Later chapters extend the basic model in a variety of directions, improve
the computational methods, deal with various kinds of measurement and introduce
new models for more complex problems. The programs themselves are constructed
incrementally, with most case studies building on programs introduced earlier. In
order to avoid a combinatorial explosion, the directions explored in each chapter
tend to be relatively independent, but in more ambitious MD applications it is quite
likely that combinations of the various techniques will be needed. Some care is
necessary here, because what appears obvious and trivial for simple atoms may,
for example, require particular attention for molecules subject to constraints – each
case must be treated individually.

Itinerary
Chapter 2 introduces the MD approach using the simplest possible example, and
demonstrates how the system behaves in practice; general issues of programming
style and organization that are used throughout the book are also introduced here.
In Chapter 3 we discuss the methodology for simulating monatomic systems, the
algorithms used, and the considerations involved in efficient and accurate computa-
tion. Chapter 4 focuses on measuring the thermodynamic and structural properties
of systems in equilibrium; some of these properties correspond to what can be
measured in the laboratory, while others provide a microscopic perspective unique
to simulation. The dynamical properties of equilibrium systems are the subject of
Chapter 5, including transport coefficients and the correlation functions that are
associated with space- and time-dependent processes.

More complex systems and environments form the subject of subsequent chap-
ters. Modifications of the dynamics to allow systems to be studied under conditions
of constant temperature and pressure, as opposed to the constant energy and vol-
ume implicit in the basic MD approach, are covered in Chapter 6. In Chapter 7 we
discuss further methods for measuring transport properties, both by modeling the

10 1 Introduction

relevant process directly and by using a modified form of the dynamics designed
for systems not in thermal equilibrium. The dynamics of rigid molecules forms
the subject of Chapter 8; methods for handling the general problem are described
and a model for water is treated in some detail. Flexible molecules are discussed
in Chapter 9 and a model for surfactants examined. Molecules possessing internal
degrees of freedom, but also subject to geometric constraints that provide a cer-
tain amount of rigidity, are analyzed in Chapter 10, together with a model used for
simulating alkane chains. An alternative route to dealing with molecules having
internal degrees of freedom, based on treating the internal coordinates directly, is
described in Chapter 11. Approaches used for three-body and many-body inter-
actions are introduced in Chapter 12. Specialized methods for treating long-range
forces involving Ewald sums and multipole expansions are discussed in Chapter 13.

Chapter 14 describes an alternative approach to MD based on step potentials,
rather than on the continuous potentials of earlier chapters; this calls for entirely
different computational techniques. In Chapter 15 we focus on the study of time-
dependent behavior and demonstrate the ability of MD to reproduce phenomena
normally associated with macroscopic hydrodynamics. The methods developed for
MD can also be applied to studying the dynamics of granular materials; a short in-
troduction to this subject appears in Chapter 16. The special considerations that are
involved in implementing MD computations on parallel and vector supercomputers
form the subject of Chapter 17. Chapter 18 deals with a range of software topics
not covered by the case studies. And, finally, some closing thoughts on where MD
may be headed appear in Chapter 19. A concise alphabetical summary of the vari-
ables used in the software and a list of the programs that are available for use with
the book appear in the Appendix.

1.5 Further reading
A great deal of information about MD methodology and applications is scattered
throughout the scientific literature, and references to material relevant to the sub-
jects covered here will appear in the appropriate places. Three volumes of con-
ference proceedings include pedagogical expositions of various aspects of MD
simulation [cic86a, cat90, all93b] and a monograph on liquid simulation covers
both MD and Monte Carlo techniques [all87]. Another book devoted in part to
MD is [hoo91]. Three evenly spaced reviews of the role of simulation in statistical
mechanics are [bee66, woo76, abr86]. Two extensive literature surveys on liquid
simulation [lev84, lev92] and a collection of reprints [cic87] are also available.

2

Basic molecular dynamics

2.1 Introduction
This chapter provides the introductory appetizer and aims to leave the reader new
to MD with a feeling for what the subject is all about. Later chapters will address
the techniques in detail; here the goal is to demonstrate a working example with
a minimum of fuss and so convince the beginner that MD is not only straightfor-
ward but also that it works successfully. Of course, the technique for evaluating
the forces discussed here is not particularly efficient from a computational point
of view and the model is about the simplest there is. Such matters will be recti-
fied later. The general program organization and stylistic conventions used in case
studies throughout the book are also introduced.

2.2 Soft-disk fluid

Interactions and equations of motion

The most rudimentary microscopic model for a substance capable of existing in
any of the three most familiar states of matter – solid, liquid and gas – is based
on spherical particles that interact with one another; in the interest of brevity such
particles will be referred to as atoms (albeit without hint of their quantum origins).
The interactions, again at the simplest level, occur between pairs of atoms and are
responsible for providing the two principal features of an interatomic force. The
first is a resistance to compression, hence the interaction repels at close range. The
second is to bind the atoms together in the solid and liquid states, and for this
the atoms must attract each other over a range of separations. Potential functions
exhibiting these characteristics can adopt a variety of forms and, when chosen care-
fully, actually provide useful models for real substances.

The best known of these potentials, originally proposed for liquid argon, is the
Lennard-Jones (LJ) potential [mcq76, mai81]; for a pair of atoms i and j located

11

12 2 Basic molecular dynamics

at ri and r j the potential energy is

u(ri j) =

⎧⎪⎨
⎪⎩

4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

ri j < rc

0 ri j ≥ rc

(2.2.1)

where ri j = ri − r j and ri j ≡ |ri j |. The parameter ε governs the strength of the
interaction and σ defines a length scale; the interaction repels at close range, then
attracts, and is eventually cut off at some limiting separation rc. While the strongly
repulsive core arising from (in the language of quantum mechanics) the nonbonded
overlap between the electron clouds has a rather arbitrary form, and other powers
and functional forms are sometimes used, the attractive tail actually represents the
van der Waals interaction due to electron correlations. The interactions involve
individual pairs of atoms: each pair is treated independently, with other atoms in
the neighborhood having no effect on the force between them.

We will simplify the interaction even further by ignoring the attractive tail and
changing (2.2.1) to

u(ri j) =

⎧⎪⎨
⎪⎩

4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

+ ε ri j < rc = 21/6σ

0 ri j ≥ rc

(2.2.2)

with rc chosen so that u(rc) = 0. A model fluid constructed using this potential is
little more than a collection of colliding balls that are both soft (though the softness
is limited) and smooth. All that holds the system together is the container within
which the atoms (or balls) are confined. While the kinds of system that can be
represented quantitatively by this highly simplified model are limited – typically
gases at low density – it does nevertheless have much in common with more de-
tailed models, and has a clear advantage in terms of computational simplicity. If
certain kinds of behavior can be shown to be insensitive to specific features of the
model, in this instance the attractive tail of the potential, then it is clearly prefer-
able to eliminate them from the computation in order to reduce the amount of
work, and for this reason the soft-sphere system will reappear in many of the case
studies.

The force corresponding to u(r) is

f = −∇u(r) (2.2.3)

so the force that atom j exerts on atom i is

fi j =
(

48ε

σ 2

)[(
σ

ri j

)14

− 1
2

(
σ

ri j

)8
]

ri j (2.2.4)

2.2 Soft-disk fluid 13

provided ri j < rc, and zero otherwise. As r increases towards rc the force drops
to zero, so that there is no discontinuity at rc (in both the force and the potential);
∇ f and higher derivatives are discontinuous, though this has no real impact on
the numerical solution. The equations of motion follow from Newton’s second law,

m r̈i = fi =
Nm∑
j=1

(j �=i)

fi j (2.2.5)

where the sum is over all Nm atoms (or molecules in the monatomic case), ex-
cluding i itself, and m is the atomic mass. It is these equations which must be
numerically integrated. Newton’s third law implies that f j i = − fi j , so each atom
pair need only be examined once. The amount of work† is proportional to N 2

m , so
that for models in which rc is small compared with the size of the container it would
obviously be a good idea to determine those atom pairs for which ri j ≤ rc and use
this information to reduce the computational effort; we will indeed adopt such an
approach in Chapter 3. In the present example, which focuses on just the smallest
of systems, we continue with this all-pairs approach.

Dimensionless units

At this point we introduce a set of dimensionless, or reduced, MD units in terms of
which all physical quantities will be expressed. There are several reasons for doing
this, not the least being the ability to work with numerical values that are not too
distant from unity, instead of the extremely small values normally associated with
the atomic scale. Another benefit of dimensionless units is that the equations of
motion are simplified because some, if not all, of the parameters defining the model
are absorbed into the units. The most familiar reason for using such units is related
to the general notion of scaling, namely, that a single model can describe a whole
class of problems, and once the properties have been measured in dimensionless
units they can easily be scaled to the appropriate physical units for each problem
of interest. From a strictly practical point of view, the switch to such units removes
any risk of encountering values lying outside the range that is representable by the
computer hardware.

For MD studies using potentials based on the LJ form (2.2.1) the most suitable
dimensionless units are defined by choosing σ , m and ε to be the units of length,

† Note that for the potential function (2.2.2), or the corresponding force (2.2.4), it is never necessary to evaluate
|ri j |; only its square is needed, so that the (sometimes costly) square root computation is avoided.

14 2 Basic molecular dynamics

0.0 0.5 1.0 1.5 2.0 2.5
-5

0

5

10

15

20

distance

en
er

gy

Fig. 2.1. Lennard-Jones and soft-sphere interaction energy (in dimensionless MD units).

mass and energy, respectively, and making the replacements

length: r → rσ

energy: e → eε

time: t → t
√

mσ 2/ε

(2.2.6)

The resulting form of the equation of motion, now in MD units, is

r̈i = 48
∑
j (�=i)

(
r−14

i j − 1
2r−8

i j

)
ri j (2.2.7)

The dimensionless kinetic and potential energies, per atom, are

EK = 1

2Nm

Nm∑
i=1

v2
i (2.2.8)

EU = 4

Nm

∑
1≤i< j≤Nm

(
r−12

i j − r−6
i j

)
(2.2.9)

where vi is the velocity. The functional forms of the LJ and soft-sphere potentials,
in MD units, are shown in Figure 2.1.

The unit of temperature is ε/kB , and since each translational degree of freedom
contributes kB T/2 to the kinetic energy, the temperature of a d-dimensional (d = 2

2.2 Soft-disk fluid 15

or 3) system is

T = 1

d Nm

∑
i

v2
i (2.2.10)

We have set kB = 1, so that the MD unit of temperature is now also defined.
Strictly speaking, of the total d Nm degrees of freedom, d are eliminated because
of momentum conservation, but if Nm is not too small this detail can be safely
ignored.

If the model is intended to represent liquid argon, the relations between the di-
mensionless MD units and real physical units are as follows [rah64]:

• Lengths are expressed in terms of σ = 3.4 Å.
• The energy units are specified by ε/kB = 120 K, implying that ε = 120 ×

1.3806 × 10−16 erg/atom†.
• Given the mass of an argon atom m = 39.95 × 1.6747 × 10−24 g, the MD time

unit corresponds to 2.161 × 10−12 s; thus a typical timestep size of �t = 0.005
used in the numerical integration of the equations of motion corresponds to
approximately 10−14 s.

• Finally, if Nm atoms occupy a cubic region of edge length L , then a typical
liquid density of 0.942 g/cm3 implies that L = 4.142N 1/3

m Å, which in reduced
units amounts to L = 1.218N 1/3

m .
Suitably chosen dimensionless units will be employed throughout the book. Other
quantities, such as the diffusion coefficient and viscosity studied in Chapter 5, will
also be expressed using dimensionless units, and these too are readily converted to
physical units.

Boundary conditions
Finite and infinite systems are very different, and the question of how large a rel-
atively small system must be to yield results that resemble the behavior of the
infinite system faithfully lacks a unique answer. The simulation takes place in a
container of some kind, and it is tempting to regard the container walls as rigid
boundaries against which atoms collide while trying to escape from the simulation
region. In systems of macroscopic size, only a very small fraction of the atoms is
close enough to a wall to experience any deviation from the environment prevailing
in the interior. Consider, for example, a three-dimensional system with Nm = 1021

at liquid density. Since the number of atoms near the walls is of order N 2/3
m , this

amounts to 1014 atoms – a mere one in 107. But for a more typical MD value of

† Several kinds of units are in use for energy; conversion among them is based on standard relations that include
1.3806 × 10−16 erg/atom = 1.987 × 10−3 kcal/mole = 8.314 J/mole.

16 2 Basic molecular dynamics

Fig. 2.2. The meaning of periodic boundary conditions (the two-dimensional case is
shown).

Nm = 1000, roughly 500 atoms are immediately adjacent to the walls, leaving very
few interior atoms; if the first two layers are excluded a mere 216 atoms remain.
Thus the simulation will fail to capture the typical state of an interior atom and the
measurements will reflect this fact. Unless the goal is the study of behavior near
real walls, a problem that is actually of considerable importance, walls are best
eliminated.

A system that is bounded but free of physical walls can be constructed by resort-
ing to periodic boundary conditions, shown schematically in Figure 2.2. The intro-
duction of periodic boundaries is equivalent to considering an infinite, space-filling
array of identical copies of the simulation region. There are two consequences of
this periodicity. The first is that an atom that leaves the simulation region through
a particular bounding face immediately reenters the region through the opposite
face. The second is that atoms lying within a distance rc of a boundary interact
with atoms in an adjacent copy of the system, or, equivalently, with atoms near
the opposite boundary – a wraparound effect. Another way of regarding periodic
boundaries is to think of mapping the region (topologically, not spatially) onto the
equivalent of a torus in four dimensions (a two-dimensional system is mapped onto
a torus); then it is obvious that there are no physical boundaries. In this way it is
possible to model systems that are effectively bounded but that are nevertheless
spatially homogeneous insofar as boundaries are concerned.

The wraparound effect of the periodic boundaries must be taken into account in
both the integration of the equations of motion and the interaction computations.
After each integration step the coordinates must be examined, and if an atom is

2.2 Soft-disk fluid 17

found to have moved outside the region its coordinates must be adjusted to bring
it back inside. If, for example, the x coordinate is defined to lie between −Lx/2
and Lx/2, where Lx is the region size in the x direction, the tests (which can be
expressed in various equivalent ways) are:

• if ri x ≥ Lx/2, replace it by ri x − Lx ;
• otherwise, if ri x < −Lx/2, replace it by ri x + Lx .

The effect of periodicity on the interaction calculation appears in determining the
components of the distance between pairs of atoms; the tests are very similar:

• if ri j x ≥ Lx/2, replace it by ri j x − Lx ;
• otherwise, if ri j x < −Lx/2, replace it by ri j x + Lx .

Periodic wraparound may also have to be considered when analyzing the results of
a simulation, as will become apparent later.

Periodic boundaries are most easily handled if the region is rectangular in two
dimensions, or a rectangular prism in three. This is not an essential requirement,
and any space-filling, convex region can be used, although the boundary compu-
tations will not be as simple as those just illustrated. The motivation for choosing
alternative region shapes is to enlarge the volume to surface ratio, and thus increase
the maximum distance between atoms before periodic ambiguity appears (it is ob-
viously meaningless to speak of interatomic distances that exceed half the region
size), the most desirable shape in three dimensions – though not space filling –
being the sphere. In two dimensions a hexagon might be used, while in three the
truncated octahedron [ada80] is one such candidate. Another reason for choosing
more complex region shapes is to allow the modeling of crystalline structures with
nonorthogonal axes, for example, a trigonal unit cell; there, too, an alternative re-
gion shape, such as a sheared cube, might be worth considering.

Although not an issue in this particular case, the use of periodic boundaries
limits the interaction range to no more than half the smallest region dimension –
in practice the range is generally much less. Long-range forces require entirely
different approaches that will be described in Chapter 13. Problems can also arise
if there are strong correlations between atoms separated by distances approaching
the region size, because periodic wraparound can then lead to spurious effects. One
example is the vibration of an atom producing what are essentially sound waves;
the disturbance, if not sufficiently attenuated, can propagate around the system and
eventually return to affect the atom itself.

Even with periodic boundaries, finite-size effects are still present, so how big
does the system have to be before they can be neglected? The answer depends on
the kind of system and the properties of interest. As a minimal requirement, the
size should exceed the range of any significant correlations, but there may be more
subtle effects even in larger systems. Only detailed numerical study can hope to
resolve this question.

18 2 Basic molecular dynamics

Initial state

In order for MD to serve a useful purpose it must be capable of sampling a repre-
sentative region of the total phase space of the system. An obvious corollary of this
requirement is that the results of a simulation of adequate duration are insensitive to
the initial state, so that any convenient initial state is allowed. A particularly simple
choice is to start with the atoms at the sites of a regular lattice – such as the square
or simple cubic lattice – spaced to give the desired density. The initial velocities
are assigned random directions and a fixed magnitude based on temperature; they
are also adjusted to ensure that the center of mass of the system is at rest, thereby
eliminating any overall flow. The speed of equilibration to a state in which there is
no memory of this arbitrarily selected initial configuration is normally quite rapid,
so that more careful attempts at constructing a ‘typical’ state are of little benefit.

2.3 Methodology

Integration

Integration of the equations of motion uses the simplest of numerical techniques,
the leapfrog method. The origin of the method will be discussed in §3.5; for the
present it is sufficient to state that, despite its low order, the method has excellent
energy conservation properties and is widely used.

If h = �t denotes the size of the timestep used for the numerical integration,
then the integration formulae applied to each component of an atom’s coordinates
and velocities are

vi x(t + h/2) = vi x(t − h/2) + hai x(t) (2.3.1)

ri x(t + h) = ri x(t) + hvi x(t + h/2) (2.3.2)

The name ‘leapfrog’ stems from the fact that coordinates and velocities are evalu-
ated at different times; if a velocity estimate is required to correspond to the time
at which coordinates are evaluated, then

vi x(t) = vi x(t − h/2) + (h/2)ai x(t) (2.3.3)

can be used. The local errors introduced at each timestep due to the truncation of
what should really be infinite series in h are of order O(h4) for the coordinates and
O(h2) for velocities.

The leapfrog method can be reformulated in an alternative, algebraically equiva-
lent manner that enables the coordinates and velocities to be evaluated at the same
instant in time, avoiding the need for the velocity adjustment in (2.3.3). To do this,
the computations are split into two parts: Before computing the acceleration values,

2.3 Methodology 19

update the velocities by a half timestep using the old acceleration values, and then
update the coordinates by a full timestep using the intermediate velocity values,

vi x(t + h/2) = vi x(t) + (h/2)ai x(t) (2.3.4)

ri x(t + h) = ri x(t) + hvi x(t + h/2) (2.3.5)

Now use the new coordinates to compute the latest acceleration values and update
the velocities over the second half timestep,

vi x(t + h) = vi x(t + h/2) + (h/2)ai x(t + h) (2.3.6)

This two-step procedure† is the version of the leapfrog method that will be used
throughout the book.

Measurements
The most accessible properties of systems in equilibrium are those introduced in el-
ementary thermodynamics, namely, energy and pressure, each expressed in terms
of the independent temperature and density variables T and ρ. Measuring such
quantities during an MD simulation is relatively simple, and provides the link be-
tween the world of thermodynamics – which predates the recognition of the atomic
nature of matter – and the detailed behavior at the microscopic level. However, it
is energy rather than temperature that is constant in our MD simulation, so the
thermodynamic results are expressed in terms of the average 〈T 〉, rather than T .

In this case study, energy and pressure are the only properties measured. Pressure
is defined in terms of the virial expression [han86b] (with kB = 1)

PV = Nm T + 1

d

〈 Nm∑
i=1

ri · fi

〉
(2.3.7)

In two dimensions, the region volume V is replaced by the area. For pair potentials,
(2.3.7) can be written as a sum over interacting atom pairs, namely,

PV = Nm T + 1

d

〈∑
i< j

ri j · fi j

〉
(2.3.8)

and for the force (2.2.4) this becomes (in MD units)

PV = 1

d

〈∑
i

v2
i + 48

∑
i< j

(
r−12

i j − 1
2r−6

i j

)〉
(2.3.9)

While the total energy per atom E = EK +EU is conserved, apart from any numer-
ical integration error, quantities such P and T (= 2EK /d) fluctuate, and averages

† The first edition used the one-step method of (2.3.1)–(2.3.2).

20 2 Basic molecular dynamics

must be computed over a series of timesteps; such averaging will be included in
the program and used for estimating the mean values as well as the statistical mea-
surement errors.

2.4 Programming

Style and conventions

In this section we will be presenting the full listing of the program used in the case
study. Not only is the program the tool for getting the job done, it also incorporates
a definitive statement of all the computational details. But before addressing these
details a few general remarks on matters of organization and programming style are
in order. Style, to a considerable degree, is a matter of personal taste; the widely
used C language chosen for this work offers a certain amount of flexibility in this
respect†, a boon for some, but a bane for others.

A similar form of organization is used for most programs in the book. Parts of
the program discussed in this chapter may seem to be expressed in a more general
form than is absolutely necessary; this is to provide a basis for extending the pro-
gram to handle later case studies. We assume that the reader has a reasonable (and
easily acquired) familiarity with the C language. C requires that all variables be
defined prior to use; all the definitions will be included, but because the material
is presented in a ‘functional’ manner, rather than as a serial listing of the program
text, variables may first appear in the recipe before they are formally defined (this
is of course not the case in the program sources). Local variables used within func-
tions are not preserved between calls.

We adopt the convention that all variable names begin with a lower case let-
ter; names formed by joining multiple words use intermediate capitals to clarify
meaning. Function names begin with an upper case letter, as do macro definitions
specified using #define statements. Constants specified with #define statements
are fully capitalized. The format of a C program is also subject to taste. The phys-
ical layout used here is fairly standard, with indentation and the positioning of
block-delimiting braces used to emphasize the logical structure. The line numbers
are of course not part of the program, and are included merely to aid reference.

† In the interest of readability, we have tried to avoid some characteristics of C that allow writing extremely
concise code (often bordering on the obfuscated); while the experienced C user may perceive their absence,
the efficiency of the compiled program is unlikely to be affected in any serious way. As some readers may
notice, the software here differs from the first edition in two key respects: (a) Arrays of C structures are used
to represent sets of molecular variables, rather than doubly-indexed arrays that represent individual variables
(such as atomic coordinates) in which one of the indices is used to select the component of the vector. (b) The
conventional C indexing style is used, in which array indices begin at zero, rather than unity as in the original
algebraic formulation of the problem. The programming style of the first edition was aimed at making the
software more acceptable to Fortran programmers; with the increasing popularity of C, and other programming
languages that borrow much of its syntax, not to mention the changing nature of the Fortran language, this is
no longer an issue.

2.4 Programming 21

Program organization

The main program♠ of this elementary MD exercise, which forms the basis of most
of the subsequent case studies as well, is as follows.

int main (int argc, char **argv)

{

GetNameList (argc, argv);

PrintNameList (stdout);

SetParams (); 5

SetupJob ();

moreCycles = 1;

while (moreCycles) {

SingleStep ();

if (stepCount >= stepLimit) moreCycles = 0; 10

}

}

After the initialization phase (GetNameList, SetParams, SetupJob), in the
course of which parameters and other data are input to the program or initial-
ized, and storage arrays allocated, the program enters a loop. Each loop cycle ad-
vances the system by a single timestep (SingleStep). The loop terminates when
moreCycles is set to zero; here this occurs after a preset number of timesteps,
but in a more general context moreCycles can be zeroed once the total process-
ing time exceeds a preset limit, or even by means of an interrupt generated by the
user from outside the program when she feels the run has produced enough results
(there are also more drastic ways of terminating a program)†.

The function that handles the processing for a single timestep, including calls to
functions that deal with the force evaluation, integration of the equations of motion,
adjustments required by periodic boundaries, and property measurements, is

void SingleStep ()

{

++ stepCount;

timeNow = stepCount * deltaT;

LeapfrogStep (1); 5

ApplyBoundaryCond ();

ComputeForces ();

LeapfrogStep (2);

EvalProps ();

AccumProps (1); 10

if (stepCount % stepAvg == 0) {

♠ pr_02_1 (This is a reference to one of the programs accompanying the book; the full list appears in the
Appendix.)

† As a reminder to lapsed C users, main is where the program begins, argc is the number of arguments passed
to the program from the command line (as in Unix), and the array argv provides access to the text of each of
these arguments.

22 2 Basic molecular dynamics

AccumProps (2);

PrintSummary (stdout);

AccumProps (0);

} 15

}

All the work needed for initializing the computation is concentrated in the follow-
ing function.

void SetupJob ()

{

AllocArrays ();

stepCount = 0;

InitCoords (); 5

InitVels ();

InitAccels ();

AccumProps (0);

}

Having dealt with the top level functions of the program it is appropriate to in-
sert a few comments on the program structure adopted in these recipes. The order
of presentation of this introductory case study reflects the organization of the pro-
gram: the organization is modular, with separate functions being responsible for
distinct portions of the computation. In this initial case study, given the simplicity
of the problem the emphasis on organization may appear overdone, but, as indi-
cated earlier, our aim is to provide a more general framework that will be utilized
later†.

The meaning of most program variables should be apparent from their names,
with the same being true for functions. Where the meanings are not obvious, or
additional remarks are called for, the text will include further details. An alpha-
betically ordered summary of the globally declared variables appears in the Ap-
pendix. Other questions ought to be resolved by examining functions that appear
subsequently.

There are many program elements that are common to MD simulations of var-
ious kinds. Some of these already appear in this initial case study, others will be
introduced later on. Examples include:

• parameter input with completeness and consistency checks;
• runtime array allocation, with array sizes determined by the actual system size;
• initialization of variables;
• the main loop which cycles through the force computations and trajectory inte-

gration, and performs data collection at specified intervals;
• the processing and statistical analysis of various kinds of measurement;

† On the other hand, in order to avoid the risk of tedium, we have not carried this functional decomposition to
the extremes sometimes practiced in professional software development.

2.4 Programming 23

• storage of accumulated results and condensed configurational snapshots for
later analysis;

• run termination based on various criteria;
• provision for checkpointing (or saving) the current computational state of a

long simulation run, both as a safety measure, and to permit the run to be inter-
rupted and continued at some later time.

Computational functions

The function ComputeForces encountered in the listing of SingleStep is respon-
sible for the interaction computations. Before considering the general form of this
function we start with a version suitable for a two-dimensional system in order to
allow the gradual introduction of data structures and other elements that will be
used throughout the book.

This listing differs from conventional C in that a new kind of floating-point vari-
able, real, is introduced. To allow flexibility, real can be set to correspond to
either single or double precision, known respectively in C as float and double.
Single precision saves storage, whereas double precision provides additional ac-
curacy; as for relative computation speed, this depends on the particular processor
hardware, and either precision may be faster, sometimes significantly. Double pre-
cision will be used throughout by including the declaration

typedef double real;

at the beginning of the program.
Many of the quantities involved in the calculations, such as the atomic coordi-

nates, are in fact vectors; the programming style used here will reflect this obser-
vation in order to enhance the readability of the software. With this goal in mind
we introduce the following C structure type to represent a two-dimensional vector
quantity with floating-point components

typedef struct {

real x, y;

} VecR;

Organizing the variables associated with each atom or molecule is simplified by
the introduction of another structure

typedef struct {

VecR r, rv, ra;

} Mol;

24 2 Basic molecular dynamics

in which r, rv and ra correspond, respectively, to the coordinate, velocity and
acceleration vectors of the atom. An array of such structures will be introduced
later on to represent the state of the system.

The initial version of the function for computing the forces (which are identical
to the accelerations in the MD units defined earlier), as well as the potential energy
uSum, can be written in terms of these vector quantities as

void ComputeForces ()

{

VecR dr;

real fcVal, rr, rrCut, rri, rri3;

int j1, j2, n; 5

rrCut = Sqr (rCut);

for (n = 0; n < nMol; n ++) {

mol[n].ra.x = 0.;

mol[n].ra.y = 0.; 10

}

uSum = 0.;

for (j1 = 0; j1 < nMol - 1; j1 ++) {

for (j2 = j1 + 1; j2 < nMol; j2 ++) {

dr.x = mol[j1].r.x - mol[j2].r.x; 15

dr.y = mol[j1].r.y - mol[j2].r.y;

if (dr.x >= 0.5 * region.x) dr.x -= region.x;

else if (dr.x < -0.5 * region.x) dr.x += region.x;

if (dr.y >= 0.5 * region.y) dr.y -= region.y;

else if (dr.y < -0.5 * region.y) dr.y += region.y; 20

rr = dr.x * dr.x + dr.y * dr.y;

if (rr < rrCut) {

rri = 1. / rr;

rri3 = rri * rri * rri;

fcVal = 48. * rri3 * (rri3 - 0.5) * rri; 25

mol[j1].ra.x += fcVal * dr.x;

mol[j1].ra.y += fcVal * dr.y;

mol[j2].ra.x -= fcVal * dr.x;

mol[j2].ra.y -= fcVal * dr.y;

uSum += 4. * rri3 * (rri3 - 1.) + 1.; 30

}

}

}

}

Periodic boundaries are included by testing whether any of the components of the
interatomic separation vector dr exceed half the system size, and if they do, per-
forming a wraparound operation.

While C does not provide the capability for defining new operations, in partic-
ular operations associated with vector algebra, it does support the use of macro

2.4 Programming 25

definitions that can simplify the code considerably. Definitions of this kind will be
introduced as necessary, and a complete listing appears in §18.2.

The following definitions can be used for vector addition and subtraction (in two
dimensions),

#define VAdd(v1, v2, v3) \

(v1).x = (v2).x + (v3).x, \

(v1).y = (v2).y + (v3).y

#define VSub(v1, v2, v3) \

(v1).x = (v2).x - (v3).x, \ 5

(v1).y = (v2).y - (v3).y

where the extra parentheses are a safety measure to cover the possible ways these
definitions might be employed in practice. Other vector operations that will be used
here, some of which are specialized instances of preceding definitions, are

#define VDot(v1, v2) \

((v1).x * (v2).x + (v1).y * (v2).y)

#define VSAdd(v1, v2, s3, v3) \

(v1).x = (v2).x + (s3) * (v3).x, \

(v1).y = (v2).y + (s3) * (v3).y 5

#define VSet(v, sx, sy) \

(v).x = sx, \

(v).y = sy

#define VSetAll(v, s) VSet (v, s, s)

#define VZero(v) VSetAll (v, 0) 10

#define VVSAdd(v1, s2, v2) VSAdd (v1, v1, s2, v2)

#define VLenSq(v) VDot (v, v)

The definitions have been constructed in a manner that will minimize the changes
required when switching to three dimensions – such as defining the scalar product
of two vectors and then using this in defining the squared length of a vector. Finally,
the expressions for handling the periodic wraparound can be defined as

#define VWrap(v, t) \

if (v.t >= 0.5 * region.t) v.t -= region.t; \

else if (v.t < -0.5 * region.t) v.t += region.t

#define VWrapAll(v) \

{VWrap (v, x); \ 5

VWrap (v, y);}

Note that it is implicitly assumed that atoms will not have moved too far outside
the region before the periodic wraparound is applied; the above treatment is clearly
inadequate for atoms that have traveled so far that this adjustment does not bring
them back inside the region. In practice, it should be impossible for an atom to
travel such a distance in just a single timestep; thus the alternative, strictly correct

26 2 Basic molecular dynamics

but more costly computation based on evaluating

(rxi + Lx/2) (mod Lx) − Lx/2 (2.4.1)

is not used.
Aided by these definitions, as well as by

#define Sqr(x) ((x) * (x))

#define Cube(x) ((x) * (x) * (x))

#define DO_MOL for (n = 0; n < nMol; n ++)

we arrive at the following revised version of the interaction function, now also
including the contribution of the interactions to the virial.

void ComputeForces ()

{

VecR dr;

real fcVal, rr, rrCut, rri, rri3;

int j1, j2, n; 5

rrCut = Sqr (rCut);

DO_MOL VZero (mol[n].ra);

uSum = 0.;

virSum = 0.; 10

for (j1 = 0; j1 < nMol - 1; j1 ++) {

for (j2 = j1 + 1; j2 < nMol; j2 ++) {

VSub (dr, mol[j1].r, mol[j2].r);

VWrapAll (dr);

rr = VLenSq (dr); 15

if (rr < rrCut) {

rri = 1. / rr;

rri3 = Cube (rri);

fcVal = 48. * rri3 * (rri3 - 0.5) * rri;

VVSAdd (mol[j1].ra, fcVal, dr); 20

VVSAdd (mol[j2].ra, - fcVal, dr);

uSum += 4. * rri3 * (rri3 - 1.) + 1.;

virSum += fcVal * rr;

}

} 25

}

}

The code is more concise and transparent, and the use of the vector definitions
reduces the scope for typing errors that might otherwise go unnoticed. It should
also be noted that by simply changing the definition of the structure VecR to

typedef struct {

real x, y, z;

} VecR;

2.4 Programming 27

and suitably augmenting the vector operations defined above, as well as VWrapAll,
to include a z component, the code can be used without change for three-
dimensional computations. The benefits of this kind of approach will be appreci-
ated more as the problems become increasingly complicated. It is worth reiterating
that this approach to the force computations involves all Nm(Nm − 1)/2 pairs of
atoms, and is not the way to carry out serious simulations of this kind; however, a
small performance improvement might be achieved here by testing the magnitudes
of the individual dr components as they are computed to see if they exceed rCut,
and bypassing the atom pair as soon as this happens.

The function LeapfrogStep handles the task of integrating the coordinates
and velocities; it appears twice in the listing of SingleStep, with the argument
part determining which portion of the two-step leapfrog process, (2.3.4)–(2.3.5)
or (2.3.6), is to be performed.

void LeapfrogStep (int part)

{

int n;

if (part == 1) { 5

DO_MOL {

VVSAdd (mol[n].rv, 0.5 * deltaT, mol[n].ra);

VVSAdd (mol[n].r, deltaT, mol[n].rv);

}

} else { 10

DO_MOL VVSAdd (mol[n].rv, 0.5 * deltaT, mol[n].ra);

}

}

The function ApplyBoundaryCond, called after the first call to LeapfrogStep, is
responsible for taking care of any periodic wraparound in the updated coordinates.

void ApplyBoundaryCond ()

{

int n;

DO_MOL VWrapAll (mol[n].r); 5

}

The brevity of these functions, and their applicability in both two and three dimen-
sions, are a result of the vector definitions introduced previously.

Initial state
Preparation of the initial state uses the following three functions, one for the atomic
coordinates, the others for the velocities and accelerations. The number of atoms
in the system is expressed in terms of the size of the array of unit cells in which the

28 2 Basic molecular dynamics

atoms are initially arranged, the relevant values appear in initUcell, which is a
vector with integer components defined as

typedef struct {

int x, y;

} VecI;

Here a simple square lattice (with the option of unequal edge lengths) is used, so
that each unit cell contains just one atom, and the system is centered about the
origin.

void InitCoords ()

{

VecR c, gap;

int n, nx, ny;

5

VDiv (gap, region, initUcell);

n = 0;

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) {

VSet (c, nx + 0.5, ny + 0.5); 10

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

mol[n].r = c;

++ n;

} 15

}

}

The new vector operations used here are

#define VMul(v1, v2, v3) \

(v1).x = (v2).x * (v3).x, \

(v1).y = (v2).y * (v3).y

and the corresponding VDiv.
The initial velocities are set to a fixed magnitude velMag that depends on the

temperature (see below), and after assigning random velocity directions the veloci-
ties are adjusted to ensure that the center of mass is stationary. The function VRand

(§18.4) serves as a source of uniformly distributed random unit vectors, here in two
dimensions. The accelerations are simply initialized to zero.

void InitVels ()

{

int n;

VZero (vSum); 5

DO_MOL {

2.4 Programming 29

VRand (&mol[n].rv);

VScale (mol[n].rv, velMag);

VVAdd (vSum, mol[n].rv);

} 10

DO_MOL VVSAdd (mol[n].rv, - 1. / nMol, vSum);

}

void InitAccels ()

{ 15

int n;

DO_MOL VZero (mol[n].ra);

}

New vector operations used here are

#define VScale(v, s) \

(v).x *= s, \

(v).y *= s

#define VVAdd(v1, v2) VAdd (v1, v1, v2)

Variables

It is debatable which should be discussed first, the program, or the variables on
which it operates. Here we have picked the former in order to provide some moti-
vation for a discussion of the latter.

The scheme we have chosen is that all variables needed by more than one func-
tion are declared globally; this implies that they are accessible to all functions†.
The alternative is to make extensive use of argument lists, perhaps using structures
to organize the data transferred between functions; while offering a means of reg-
ulating access to variables, it makes the program longer and more tedious to read,
so we forgo the practice.

Having settled this issue, what are the global variables used by the program? The
list of declarations – each type ordered alphabetically – follows:

Mol *mol;

VecR region, vSum;

VecI initUcell;

Prop kinEnergy, pressure, totEnergy;

real deltaT, density, rCut, temperature, timeNow, uSum, velMag, 5

virSum, vvSum;

int moreCycles, nMol, stepAvg, stepCount, stepEquil, stepLimit;

† This is not an approach recommended for large software projects because it is difficult to keep track of (and
control) which variables are used where.

30 2 Basic molecular dynamics

A new C structure is introduced for representing property measurements that will
undergo additional processing,

typedef struct {

real val, sum, sum2;

} Prop;

The three elements here are an actual measured value, a sum accumulated over
several such measurements in order to evaluate the average, and a sum of squares
used in evaluating the standard deviation (more on this below).

The following definition is also included, both to ensure the correct dimension-
ality of the vectors, and for use in formulae that depend explicitly on whether the
system is two- or three-dimensional,

#define NDIM 2

Most of the names should be self-explanatory. The variable mol is actually a
pointer to a one-dimensional array that is allocated dynamically at the start of the
run and sized according to the value of nMol. From a practical point of view, writ-
ing *mol in the above list of declarations is equivalent to mol[...] with a specific
array size, except that in the former case the array size is established when the pro-
gram is run rather than at compilation time†. The vector region contains the edge
lengths of the simulation region. The other quantities, as well as a list of those vari-
ables supplied as input to the program, will be covered by the remaining functions
below.

All dynamic array allocations are carried out by the function AllocArrays. In
this example there is just a single array,

void AllocArrays ()

{

AllocMem (mol, nMol, Mol);

}

where AllocMem is defined as

#define AllocMem(a, n, t) a = (t *) malloc ((n) * sizeof (t))

and provides a convenient means of utilizing the standard C memory allocation
function malloc while ensuring the appropriate type casting.

† The advantage of such dynamic allocation (in addition to bypassing any size limitations that some compilers
might impose on arrays whose limits are included in the program source) is that it enhances program flexibility
by eliminating any arbitrary built-in size assumptions.

2.4 Programming 31

Other variables required for the simulation (expressed in MD units when appro-
priate), excluding those that form part of the input data, are set by the function
SetParams,

void SetParams ()

{

rCut = pow (2., 1./6.);

VSCopy (region, 1. / sqrt (density), initUcell);

nMol = VProd (initUcell); 5

velMag = sqrt (NDIM * (1. - 1. / nMol) * temperature);

}

which uses the additional definitions

#define VSCopy(v2, s1, v1) \

(v2).x = (s1) * (v1).x, \

(v2).y = (s1) * (v1).y

#define VProd(v) ((v).x * (v).y)

The evaluation of nMol and region assumes just one atom per unit cell, and al-
lowance is made for momentum conservation (which removes NDIM degrees of
freedom) when computing velMag from the temperature.

Measurements

In this introductory case study the emphasis is on demonstrating a minimal working
program. The measurements of the basic thermodynamic properties of the system
that are included are covered by the following functions. The quantity vSum is used
to accumulate the total velocity (or momentum, since all atoms have unit mass) of
the system; the fact that this should remain exactly zero serves as a simple – but
only partial – check on the correctness of the calculation.

The first of the functions computes the velocity and velocity-squared sums and
the instantaneous energy and pressure values.

void EvalProps ()

{

real vv;

int n;

5

VZero (vSum);

vvSum = 0.;

DO_MOL {

VVAdd (vSum, mol[n].rv);

vv = VLenSq (mol[n].rv); 10

vvSum += vv;

}

32 2 Basic molecular dynamics

kinEnergy.val = 0.5 * vvSum / nMol;

totEnergy.val = kinEnergy.val + uSum / nMol;

pressure.val = density * (vvSum + virSum) / (nMol * NDIM); 15

}

The second function collects the results of the measurements, and evaluates
means and standard deviations upon request.

void AccumProps (int icode)

{

if (icode == 0) {

PropZero (totEnergy);

PropZero (kinEnergy); 5

PropZero (pressure);

} else if (icode == 1) {

PropAccum (totEnergy);

PropAccum (kinEnergy);

PropAccum (pressure); 10

} else if (icode == 2) {

PropAvg (totEnergy, stepAvg);

PropAvg (kinEnergy, stepAvg);

PropAvg (pressure, stepAvg);

} 15

}

Depending on the value of the argument icode (0, 1 or 2), AccumProps will
initialize the accumulated sums, accumulate the current values, or produce the
final averaged estimates (which overwrite the accumulated values). The follow-
ing operations† are defined for use with the Prop structures (Max is defined in
§18.2):

#define PropZero(v) \

v.sum = 0., \

v.sum2 = 0.

#define PropAccum(v) \

v.sum += v.val, \ 5

v.sum2 += Sqr (v.val)

#define PropAvg(v, n) \

v.sum /= n, \

v.sum2 = sqrt (Max (v.sum2 / n - Sqr (v.sum), 0.))

#define PropEst(v) \ 10

v.sum, v.sum2

† While the argument of the square-root function evaluated here should never be negative, the Max test is in-
cluded to guard against computer rounding error in cases where the result is close to zero.

2.4 Programming 33

Input and output

The function GetNameList, called from main, reads all the data required to spec-
ify the simulation from an input file. It uses a Fortran-style (almost) ‘namelist’ to
group all the data conveniently and automate the input task. It also checks that all
requested data items have been provided. For this case study the list of variables is
specified in the following way:

NameList nameList[] = {

NameR (deltaT),

NameR (density),

NameI (initUcell),

NameI (stepAvg), 5

NameI (stepEquil),

NameI (stepLimit),

NameR (temperature),

};

The C macro definitions NameR and NameI are used to signify real and integer
quantities (either single variables, or entire structures with all members of that
type). The name of the data file from which the input values are read is derived
from the name of the program (if the program happens to be called md_prog

then the data file should be named md_prog.in). The function PrintNameList,
also called by main, outputs an annotated copy of the input data. Full details
of these functions and macros appear in §18.5; VCSum simply adds the vector
components.

Output from the run is produced by

void PrintSummary (FILE *fp)

{

fprintf (fp,

"%5d %8.4f %7.4f %7.4f %7.4f %7.4f %7.4f %7.4f %7.4f\n",

stepCount, timeNow, VCSum (vSum) / nMol, PropEst (totEnergy), 5

PropEst (kinEnergy), PropEst (pressure));

}

Data are written to a file, which in the present case is just the user’s terminal be-
cause the call to PrintSummary in SingleStep used the argument stdout. By
calling this function twice, with different arguments, output can be sent both to the
terminal and to a file that logs all the output†.

† The reader unfamiliar with standard C library functions will find fprintf – and numerous other functions
used later – described in any text on the C language, or in generally available C documentation.

34 2 Basic molecular dynamics

2.5 Results
In this section we present a few of the results that can be obtained from simulations
of the two-dimensional soft-disk fluid. In view of the fact that the MD algorithm
described here is far from efficient, the results will mostly be confined to short
simulation runs of small systems, just to give a foretaste of what is to come. More
detailed results based on more extensive computations will appear later.

The input file used in the first demonstration contains the following entries:

deltaT 0.005

density 0.8

initUcell 20 20

stepAvg 100

stepEquil 0

stepLimit 10000

temperature 1.

The initial configuration is a 20 × 20 square lattice so that there are a total of
400 atoms. The timestep value deltaT is determined by the requirement that en-
ergy be conserved by the leapfrog method (to be discussed in §3.5). The initial
temperature is T = 1; temperature will fluctuate during the run, and no attempt
will be made here to set the mean temperature to any particular value.

Conservation laws
The most obvious test that the computation must pass is that of momentum and
energy conservation. While the former is intrinsic to the algorithm and, assuming
periodic boundaries, its violation would suggest a software error, the latter is sen-
sitive to the choice of integration method and the size of �t . One quantity that
is not conserved is angular momentum; a conservation law requires the system to
be invariant under some change, such as translation, but, because of the periodic
boundaries, the rotational invariance needed for angular momentum conservation
is not applicable. Programming errors can sometimes (but not always) be detected
by the violation of a conservation law; when this occurs the effect can be gradual,
intermittent, or catastrophic, depending on the cause of error.

In Table 2.1 we show an edited version of the output† of the run specified above;
the results listed are the sum of the velocity components, the mean energy and
kinetic energy per atom, their standard deviations, and the mean pressure. Clearly,
energy and momentum are conserved as expected, kinetic energy fluctuates by a

† Note that the higher-order digits of some of the values listed here – and elsewhere in the book – may vary, de-
pending on the computer, compiler and level of optimization; this is an expected consequence of the trajectory
sensitivity, discussed later in this section.

2.5 Results 35

Table 2.1. Edited output from a short MD run.

timestep
∑

v 〈E〉 σ(E) 〈EK 〉 σ(EK) 〈P〉
100 0.0000 0.9952 0.0002 0.6555 0.0910 4.5751
200 0.0000 0.9951 0.0001 0.6493 0.0118 4.5802
300 0.0000 0.9951 0.0001 0.6398 0.0168 4.6445
400 0.0000 0.9951 0.0000 0.6476 0.0155 4.5685
500 0.0000 0.9951 0.0000 0.6599 0.0167 4.4682

1000 0.0000 0.9950 0.0000 0.6481 0.0256 4.5489
2000 0.0000 0.9951 0.0001 0.6500 0.0125 4.5370
3000 0.0000 0.9951 0.0001 0.6301 0.0166 4.6898
5000 0.0000 0.9952 0.0001 0.6410 0.0139 4.6254

10000 0.0000 0.9949 0.0001 0.6535 0.0205 4.4886

limited amount, and it is also apparent that as a result of some of the initial kinetic
energy being converted to potential energy the temperature of the system (here
T = EK) has dropped considerably below the initial setting.

Equilibration

Characterizing equilibrium is by no means an easy task, especially for small sys-
tems whose properties fluctuate considerably. Averaging over a series of timesteps
will reduce the fluctuations, but different quantities relax to their equilibrium av-
erages at different rates, and this must also be taken into account when trying to
establish when the time is ripe to begin making measurements. Fortunately, re-
laxation is generally quite rapid, but one must always beware of those situations
where this is not true. Equilibration can be accelerated by starting the simulation
at a higher temperature and later cooling by rescaling the velocities (this is similar,
but not identical, to using a larger timestep initially); too high a temperature will,
however, lead to numerical instability.

One simple measure of equilibration is the rate at which the velocity distribu-
tion converges to its expected final form. Theory [mcq76] predicts the Maxwell
distribution

f (v) = ρ

(2πT)d/2
e−v2/2T (2.5.1)

(in MD units) which, after angular integration, becomes

f (v) ∝ vd−1e−v2/2T (2.5.2)

36 2 Basic molecular dynamics

The distribution can be measured by constructing a histogram of the velocity values
{hn | n = 1, . . . Nb}, where hn is the number of atoms with velocity magnitude
between (n − 1)�v and n�v, �v = vm/Nb, and vm is a suitable upper limit to v.
The normalized histogram represents a discrete approximation to f (v).

The function that carries out this computation♠ is

void EvalVelDist ()

{

real deltaV, histSum;

int j, n;

5

if (countVel == 0) {

for (j = 0; j < sizeHistVel; j ++) histVel[j] = 0.;

}

deltaV = rangeVel / sizeHistVel;

DO_MOL { 10

j = VLen (mol[n].rv) / deltaV;

++ histVel[Min (j, sizeHistVel - 1)];

}

++ countVel;

if (countVel == limitVel) { 15

histSum = 0.;

for (j = 0; j < sizeHistVel; j ++) histSum += histVel[j];

for (j = 0; j < sizeHistVel; j ++) histVel[j] /= histSum;

PrintVelDist (stdout);

countVel = 0; 20

}

}

in which the definitions Min (§18.2) and

#define VLen(v) sqrt (VDot (v, v))

are used. Depending on the value of countVel, the function will, in addition to
adding the latest results to the accumulated total, either initialize the histogram
counts, or carry out the final normalization. Other kinds of analysis in subsequent
case studies will involve functions that operate in a similar manner.

In order to use this function storage for the histogram array must be allocated,
and a number of additional variables declared and assigned values. The variables
are

real *histVel, rangeVel;

int countVel, limitVel, sizeHistVel, stepVel;

♠ pr_02_2

2.5 Results 37

and those included in the input data must be added to the array nameList,

NameI (limitVel),

NameR (rangeVel),

NameI (sizeHistVel),

NameI (stepVel),

Allocation of the histogram array is included in AllocArrays,

AllocMem (histVel, sizeHistVel, real);

Initialization, in SetupJob, requires the additional statement

countVel = 0;

and the histogram function is called from SingleStep by

if (stepCount >= stepEquil &&

(stepCount - stepEquil) % stepVel == 0) EvalVelDist ();

Histogram output is provided by the function

void PrintVelDist (FILE *fp)

{

real vBin;

int n;

5

printf ("vdist (%.3f)\n", timeNow);

for (n = 0; n < sizeHistVel; n ++) {

vBin = (n + 0.5) * rangeVel / sizeHistVel;

fprintf (fp, "%8.3f %8.3f\n", vBin, histVel[n]);

} 10

}

To demonstrate the way in which the velocity distribution evolves over time dur-
ing the early portion of the simulation we study a system with Nm = 2500. Use
of a larger system than before produces smoother results, and these are further
improved by averaging over five separate runs with different random initial veloc-
ities; to simulate a system of this size efficiently we resorted to methods that will
be introduced in §3.4, although this has no effect on the results.

The initial velocities are based on random numbers generated using a default
initial seed; to change this value introduce a new integer variable randSeed (whose
default value is arbitrarily set to 17) and in SetupJob use this value to initialize a

38 2 Basic molecular dynamics

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

velocity

pr
ob

ab
ili

ty

Fig. 2.3. Velocity distribution as a function of time; successively broader graphs are at
times 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, and 1.0 (the zero-time state – not shown – is a
spike at the initial velocity

√
2).

different random sequence by the call

InitRand (randSeed);

Also add

NameI (randSeed),

to the array nameList. The input data are as above, except for

deltaT 0.001

initUcell 50 50

limitVel 4

randSeed 17

rangeVel 3.

sizeHistVel 50

stepVel 5

and randSeed is different for each run. The results are shown in Figure 2.3; the
final distribution develops rapidly and is reached within about 0.4 time units. From
results of this kind it is clear that there is no need to assign an initial velocity
distribution carefully – the system takes care of this matter on its own (for very
small systems there will be deviations from the theoretical distribution [ray91]).

2.5 Results 39

The Boltzmann H-function occupies an important position in the development
of statistical mechanics [hua63]. It is defined as

H(t) =
∫

f (v, t) log f (v, t) dv (2.5.3)

and it can be proved that 〈d H/dt〉 ≤ 0, with equality only applying when f (v) is
the Maxwell distribution. In order to compute H(t) we use the velocity histogram
{hn} obtained previously; if we neglect constants, H(t) can be approximated by

h(t) =
∑

n

hn log(hn/v
d−1
n) (2.5.4)

An additional variable is required for this computation, namely,

real hFunction;

and the following code must be added to the summary phase of EvalVelDist (for
the two-dimensional case),

hFunction = 0.;

for (j = 0; j < sizeHistVel; j ++) {

if (histVel[j] > 0.) hFunction += histVel[j] * log (histVel[j] /

((j + 0.5) * deltaV));

} 5

For output, add the extra line to PrintVelDist

fprintf (fp, "hfun: %8.3f %8.3f\n", timeNow, hFunction);

In Figure 2.4 we show the results of this analysis for several densities, using the
above system, but with a quarter the number of atoms to enhance the fluctuations.
The long-time limit of the H-function depends on T (as well as ρ), and since no
attempt is made to force the system to a particular temperature the limiting val-
ues will differ. Convergence is fastest at high density, while at lower density h(t)
does not begin to change until atoms come within interaction range. Finite systems
lack the monotonicity suggested by the theorem, but the overall trend is clear and,
strictly speaking, the theorem only addresses average quantities. A computation
of this kind was carried out in the early days of MD [ald58]; Boltzmann would
presumably have found the results much to his liking.

Thermodynamics

To provide a glimpse of what can be done, we show a few measurements made
during some short test runs using as input data,

40 2 Basic molecular dynamics

0.0 0.2 0.4 0.6 0.8 1.0
-4

-3

-2

-1

time

h-
fu

nc
tio

n

Fig. 2.4. Time dependence of the Boltzmann H-function (neglecting constants) start-
ing from an ordered state, at densities 0.2–1.0; convergence is faster at higher
density.

deltaT 0.005

density 0.8

initUcell 20 20

stepAvg 1000

stepEquil 1000

stepLimit 3000

temperature 1.

Various values of density are used; any data items not explicitly shown take val-
ues specified previously. The output is summarized in Table 2.2.

It is unlikely that the temperature (here just 〈EK 〉) is the one wanted, and the
value will certainly not be the one used to create the initial state. To obtain a partic-
ular 〈T 〉, the velocities must be adjusted over a series of timesteps until the system
settles down at the correct state point. The actual velocity rescaling should be based
on 〈T 〉, and not on the instantaneous T values that may be subject to consider-
able fluctuation. Though not apparent here, the energy can gradually drift upward
because of the numerical error in the leapfrog method; the drift rate for a given
temperature depends on �t and is negligible for sufficiently small values. We will
return to these matters in Chapter 3.

2.5 Results 41

Table 2.2. Measurements from soft-disk simulations at different densities: total energy,
kinetic energy and pressure are shown.

ρ 〈E〉 〈EK 〉 σ(EK) 〈P〉 σ(P)

0.4 0.9935 0.917 0.014 0.803 0.056
0.6 0.9936 0.823 0.016 1.955 0.099
0.8 0.9952 0.645 0.022 4.578 0.165

Trajectories

The first opportunity for using MD to provide results that are unobtainable by other
means is in the study of the trajectories followed by individual atoms. Clearly, a
single trajectory conveys very little information, but if the trajectories of groups of
nearby atoms are examined a clear picture emerges of the different behavior in the
solid, liquid and gaseous states of matter. In the solid phase the atoms are confined
to small vibrations around the sites of a lattice, the gas is distinguished by trajecto-
ries that are ballistic over relatively long distances, while the liquid is characterized
by generally small steps, occasional rearrangement, and no long-range positional
order. The differences in the trajectories are reflected at the macroscopic level by
the values of the diffusion coefficient. Diffusion is just the mean-square atomic
displacement (after allowing for periodic wraparound in the MD case), and is one
example of a transport process that MD can examine directly; we will return to this
in Chapter 5.

The best way to observe these features is by running an MD simulation interac-
tively and watching the trajectories as they develop for different T and ρ. Trajecto-
ries can be shown on a computer display screen by simply drawing a line between
the atomic positions every few timesteps; whenever a periodic boundary is crossed
simply interrupt the trajectory drawing and restart it from the opposite boundary.
Suitable graphics functions are readily added to the program; all that is required,
apart from setting up the display functions and arranging for atomic coordinates to
be converted to screen coordinates, is the decision as to how frequently the display
should be updated. Typical trajectories obtained in the solid and dense fluid phases
appear in Figure 2.5.

An example of a simple interactive MD simulation is shown in Figure 2.6. Here
the user interface permits realtime control of the computation, including the choice
of system size, altering the values of T and ρ, and changing the display update rate.
The details involved in writing such programs depend on the computer and soft-
ware environment; this two-dimensional example is described in [rap97], although

42 2 Basic molecular dynamics

Fig. 2.5. Trajectory plots at densities of 1.05 and 0.85 showing the difference between
solid and dense fluid phases, namely, localized and diffusing trajectories.

Fig. 2.6. Example of an interactive simulation.

a little more effort would be required for the corresponding three-dimensional case.
Visualization plays an essential role in many kinds of problem, and the ability
to interact with the simulation while in progress can prove to be of considerable
value.

2.6 Further study 43

2.6 Further study
2.1 Compare the observed velocity distribution with the theoretical result

(2.5.2).
2.2 Check that the correct limiting values of H(t), defined in (2.5.3), are ob-

tained.
2.3 Extend the graphics capability of the interactive MD program so that trajec-

tories can be displayed.

3

Simulating simple systems

3.1 Introduction

In this chapter we focus on a number of techniques used in MD simulation, pri-
marily the methods for computing the interactions and integrating the equations of
motion. The goal is to generate the atomic trajectories; subsequent chapters will
deal with the all-important question of analyzing this raw ‘experimental’ data. We
continue to work with the simplest atomic systems, in other words, with monatomic
fluids based on the LJ potential, not only because we want to introduce the method-
ology gradually, but also because a lot of the actual qualitative (and even quantita-
tive) behavior of many-body systems is already present in this simplest of models.
Models of this kind are widely used in MD studies of basic many-body behavior,
examples of which will be encountered in later chapters.

3.2 Equations of motion

While Newton’s second law suffices for the dynamics of the simple atomic fluid
discussed in this chapter, later chapters will require more complex forms of the
equations of motion. The Lagrangian formulation of classical mechanics provides
a general basis for dealing with these more advanced problems, and we begin with a
brief summary of the relevant results. There are, of course, other ways of approach-
ing the subject, and we will also make passing reference to Hamilton’s equations.
A full treatment of the subject can be found in textbooks on classical mechanics,
for example [gol80].

Lagrange equations of motion

The starting point is Hamilton’s variational principle, which concisely summa-
rizes most of classical mechanics into the statement that the phase-space trajectory

44

3.2 Equations of motion 45

followed by a mechanical system is the one for which the time integral
∫ L dt is an

extremum, where L is the Lagrangian. Given a set of N independent generalized
coordinates and velocities {qi , q̇i } that describe the state of a conservative system
(one in which all forces derive from some potential energy function U), so that
L = L({qi }, {q̇i }, t

)
, then L can be shown to satisfy the Lagrange equations

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0 , i = 1, . . . N (3.2.1)

These equations form the starting point for many of the subsequent developments.
Newton’s second law is a simple consequence of this result, where, if qi denotes a
component of the cartesian coordinates for one of the atoms (and assuming identi-
cal masses m),

L = 1
2 m
∑

i

q̇2
i − U

({qi }
)

(3.2.2)

so that (3.2.1) becomes

mq̈i = −∂U

∂qi
= fi (3.2.3)

where fi is the corresponding force component.

Lagrange equations with constraints

There are situations where it is desirable to define the dynamics in ways which
cannot be based just on forces obtained from some potential function. For example,
in the case of partially rigid molecules the lengths of interatomic bonds should be
kept constant. Such restrictions on the dynamics are called constraints and their
effect on the equations of motion is the appearance of extra terms that play the role
of internal forces, although these terms have an entirely different origin. Here we
outline the general framework; the details depend on the problem, and examples
will be encountered in Chapters 6 and 10.

Hamilton’s principle can be extended to systems with constraints having the
general form∑

k

alkq̇k + al = 0 , l = 1, . . . M (3.2.4)

This includes the special case of holonomic constraints for which there exist rela-
tions between the coordinates of form

gl
({qk}, t

) = 0 (3.2.5)

46 3 Simulating simple systems

in which case

alk = ∂gl

∂qk
, al = ∂gl

∂t
(3.2.6)

The resulting Lagrange equations are

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
=
∑

l

λlali , i = 1, . . . N (3.2.7)

where the time evolution of the M Lagrange multipliers {λl} is evaluated along
with the N coordinates: there is a total of N + M equations with a similar num-
ber of unknowns. The sum on the right-hand side of (3.2.7) can be regarded as a
generalized force, equivalent in its effect to the imposed constraints.

Hamilton equations of motion

An alternative formulation of the equations of motion sometimes appears in the
MD literature. Replace the generalized velocities {q̇i } in the Lagrange formulation
by generalized momenta

pi = ∂L/∂ q̇i (3.2.8)

(if the coordinates are cartesian, then pi = mq̇i) and consider the Hamiltonian
H = H({qi }, {pi }, t

)
defined by

H =
∑

i

q̇i pi − L (3.2.9)

The two first-order equations of motion associated with each coordinate are

q̇i = ∂H
∂pi

, ṗi = −∂H
∂qi

(3.2.10)

If H has no explicit time dependence, then Ḣ = 0, and H – the total energy – is a
conserved quantity.

3.3 Potential functions

Origins

Modeling of matter at the microscopic level is based on a comprehensive descrip-
tion of the constituent particles. Although such a description must in principle be
based on quantum mechanics, MD generally adopts a classical point of view, typ-
ically representing atoms or molecules as point masses interacting through forces
that depend on the separation of these objects. More complex applications are
likely to require extended molecular structures, in which case the forces will also
depend on relative orientation. The quantum picture of interactions arising from

3.3 Potential functions 47

overlapping electron clouds has been transformed into a system of masses coupled
by exotic ‘springs’. The justification for this antithesis of quantum mechanics is
that not only does it work, but it appears to work surprisingly well; on the other
hand, the rigorous quantum mechanical description is still hard pressed in dealing
with even the smallest systems.

Obviously the structural models and potential functions used in classical MD
simulation should not be taken too literally, and the potentials are often referred
to as effective potentials in order to clarify their status. The classical approxima-
tion to the quantum mechanical description of a molecule and its interactions is
not derived directly from ‘first principles’, but, rather, is the result of adapting both
structure and potential function to a variety of different kinds of information; these
include the results of quantum mechanical energy calculations, experimental data
obtained by thermodynamic and various kinds of spectroscopic means, the struc-
ture of the crystalline state, measurements of transport properties, collision studies
using molecular beams, and so on [hir54, mai81]. These models undergo refine-
ment as new comparisons between simulation and experiment become available,
and whenever the evidence against a particular model becomes overwhelming, a
revised or even an entirely new model must be developed. (From a strictly theo-
retical point of view the interactions between molecules can always be written in
terms of a multipole expansion [pri84]; if most of the important behavior can be
confined to the leading-order terms, then this could be used as the basis for a model
potential. While such a systematic approach is appealing, it is not generally used
in practice.)

It is always the simplest models that are tried first. Atoms are modeled as point
particles interacting through pair potentials. Molecules are represented by atoms
with orientation-dependent forces, or as extended structures, each containing sev-
eral interaction sites; the molecules may be rigid, flexible, or somewhere in be-
tween, and if there are internal degrees of freedom there will be internal forces as
well. The purpose of this book is not to discuss the design of molecular models; we
will make use of existing models and – from a pedagogical viewpoint – the sim-
pler the model the better. Our aim is to demonstrate the general methodology by
example, not to review the enormous body of literature devoted to many different
kinds of model developed for specific applications. As far as MD is concerned the
complexity of the model has little effect on the nature of the computation, merely
on the amount of work involved.

Example potentials
The most familiar pair interaction is the LJ potential, introduced in (2.2.1). It has
been used quite successfully for liquid argon [rah64, ver67] (although there are
better potentials [bar71, mai81]), and is also often used as a generic potential

48 3 Simulating simple systems

for qualitative explorations not involving specific substances. The LJ interaction
is characterized by its strongly repulsive core and weakly attractive tail. To keep
computation to a reasonable level the interaction is truncated at a relatively short
range; at a typical cutoff distance of rc = 2.5 (in MD units) the interaction energy
is just 0.016 of the well depth.

The discontinuity at rc affects both the apparent energy conservation and the ac-
tual atomic motion, with atoms separated by a distance close to rc sometimes mov-
ing repeatedly in and out of interaction range. The discontinuity can be smeared
out by changing the form of the potential function slightly, although this must be
done carefully since it is the potential that defines the model. For example, a poten-
tial function u(r) can be modified to eliminate the discontinuity in both u(r) and
the force −u′(r) by replacing it with

u1(r) = u(r) − u(rc) − du(r)

dr

∣∣∣∣
r=rc

(r − rc) (3.3.1)

This modification applies across the entire interaction range; an example of an al-
ternative that confines the change to the vicinity of rc involves the use of a cubic
spline polynomial (as in §12.3) that interpolates smoothly and differentiably be-
tween the value of u(r) at r = rc − δr and zero at rc.

A slight change to the LJ interaction leads to a potential that is entirely repulsive
in nature and very short-ranged (2.2.2). The particles represented by this potential
are little more than soft spheres (in three dimensions, or disks in two), although
softness is confined to a very narrow range of separations and the spheres rapidly
tend to become hard as they are driven together. (Another version of the ‘soft-
sphere’ interaction retains just the r−12 term of the LJ potential, again with a cutoff
at which u(r) is discontinuous; we will not consider this variant here.) A system
subject to the original LJ potential can exist in the solid, liquid, or gaseous states;
the attractive part of the potential is used to bind the system when in the solid and
liquid states, and the repulsive part prevents collapse. When the attractive interac-
tion is eliminated, the behavior is determined primarily by density; at high density
the soft-sphere system is packed into a crystalline state, but once melted, unlike the
LJ case where there is also a liquid–gas phase transition, the liquid and gas states
are thermodynamically indistinguishable.

Other functional forms can be used for interactions between atoms, and between
small molecules in cases where spherical symmetry applies [mai81]. Some prove
more suitable than others for particular problems. There is even an alternative to
the LJ potential for use in simple cases, namely, a function in which the r−12 term
is replaced by Ae−αr ; while such a potential produces a softer central core, the
repulsive part contributes over a longer range. But since the subject is MD, not
the construction of potential functions, we will not pursue this subject any further.

3.4 Interaction computations 49

Fig. 3.1. The different approaches to computing interactions: all pairs, cell subdivision
(the cell size exceeds the interaction range), and neighbor lists (the concentric circles show
the interaction range and the extra area covered by the neighbor list for one of the atoms).

Interactions suitable for describing other kinds of molecule will be introduced in
subsequent chapters.

3.4 Interaction computations

All-pairs method

This method was introduced in §2.4. It is the simplest to implement, but extremely
inefficient when the interaction range rc is small compared with the linear size of
the simulation region. All pairs of atoms must be examined because, owing to the
continual rearrangement that characterizes the fluid state, it is not known in advance
which atoms actually interact. Although testing whether atoms are separated by
less than rc is only a part of the overall interaction computation, the fact that the
amount of computation needed grows as O(N 2

m) rules out the method for all but
the smallest values of Nm . Two techniques for reducing this growth rate to a more
acceptable O(Nm) level, often used in tandem, will be discussed here; to within
a numerical factor this clearly represents the lower bound for the amount of work
required to process all Nm atoms. A schematic summary of the methods appears in
Figure 3.1.

Cell subdivision

Cell subdivision [sch73, hoc74] provides a means of organizing the information
about atom positions into a form that avoids most of the unnecessary work and
reduces the computational effort to the O(Nm) level. Imagine that the simulation
region is divided into a lattice of small cells, and that the cell edges all exceed rc in
length. Then if atoms are assigned to cells on the basis of their current positions it is
obvious that interactions are only possible between atoms that are either in the same

50 3 Simulating simple systems

cell or in immediately adjacent cells; if neither of these conditions are met, then
the atoms must be at least rc apart. Because of symmetry only half the neighboring
cells need be considered; thus a total of 14 neighboring cells must be examined
in three dimensions, and five in two dimensions (these numbers include the cell
itself). The wraparound effect due to periodic boundaries is readily incorporated
into this scheme. Clearly, the region size must be at least 4rc for the method to be
useful, but this requirement is usually met. It is not essential that the cell edges
exceed rc, but if this condition is not satisfied, further cells, not merely nearest
neighbors, will have to be included [que73].

The program for the cell-based force calculation involves a form of data organi-
zation known as a linked list [knu68]. Rather than accessing data sequentially, the
linked list associates a pointer pn with each data item xn , the purpose of which is to
provide a nonsequential path through the data. Each linked list requires a separate
pointer f to access the first data item, and the item terminating the list must have
a special pointer value, such as –1, that cannot be mistaken for anything else. Thus
f = a points to xa as the first item in the list, pa = b points to xb as the sec-
ond item, and so on, until a pointer value pz = –1 is encountered, terminating the
list. (This kind of data organization will reappear in other contexts in subsequent
chapters.)

In the cell algorithm, linked lists are used to associate atoms with the cells in
which they reside at any given instant; a separate list is required for each cell. The
reason for using linked lists is to economize on storage. It is not known in advance
how many atoms occupy each cell, since the number can be anywhere between
zero and a value determined by the highest possible packing density; the use of se-
quential tables that list the atoms in each cell, while guaranteeing sufficient storage
so that any cell can be maximally occupied, is extremely wasteful. The linked list
approach does not have this problem because of the way the cell occupancy data
are organized; the total storage required for all the linked lists is fixed and known
in advance.

The additional variables required to support the cell method are

VecI cells;

int *cellList;

and memory allocation for the array cellList that will hold all the information
associated with the linked lists is added to the function AllocArrays,

AllocMem (cellList, VProd (cells) + nMol, int);

3.4 Interaction computations 51

where, in three dimensions,

#define VProd(v) ((v).x * (v).y * (v).z)

and, of course,

#define NDIM 3

typedef struct {

real x, y, z;

} VecR; 5

typedef struct {

int x, y, z;

} VecI;

Rather than use separate arrays for the two kinds of pointer, namely, those
between atoms in the same cell (p) and those to the initial atom in the list belong-
ing to each cell (f), the first nMol elements in cellList are used for the former
and the remainder for the latter. How the list elements are accessed will be clari-
fied by the program listing. The size of the cell array is determined in SetParams

(using the three-dimensional version of VSCopy),

VSCopy (cells, 1. / rCut, region);

We have tacitly assumed that it is most efficient to use the smallest cells (exceeding
rc in size) possible; only when the density is sufficiently low that the mean cell
occupancy drops substantially below unity is it worth considering using larger (and
hence fewer) cells.

The force computation function, including cell assignment, allowance for pe-
riodic boundaries, energy and virial calculation, is as follows♠ (this is the three-
dimensional version).

void ComputeForces ()

{

VecR dr, invWid, rs, shift;

VecI cc, m1v, m2v, vOff[] = OFFSET_VALS;

real fcVal, rr, rrCut, rri, rri3, uVal; 5

int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset;

rrCut = Sqr (rCut);

VDiv (invWid, cells, region);

for (n = nMol; n < nMol + VProd (cells); n ++) cellList[n] = -1; 10

DO_MOL {

♠ pr_03_1

52 3 Simulating simple systems

VSAdd (rs, mol[n].r, 0.5, region);

VMul (cc, rs, invWid);

c = VLinear (cc, cells) + nMol;

cellList[n] = cellList[c]; 15

cellList[c] = n;

}

DO_MOL VZero (mol[n].ra);

uSum = 0.;

virSum = 0.; 20

for (m1z = 0; m1z < cells.z; m1z ++) {

for (m1y = 0; m1y < cells.y; m1y ++) {

for (m1x = 0; m1x < cells.x; m1x ++) {

VSet (m1v, m1x, m1y, m1z);

m1 = VLinear (m1v, cells) + nMol; 25

for (offset = 0; offset < N_OFFSET; offset ++) {

VAdd (m2v, m1v, vOff[offset]);

VZero (shift);

VCellWrapAll ();

m2 = VLinear (m2v, cells) + nMol; 30

DO_CELL (j1, m1) {

DO_CELL (j2, m2) {

if (m1 != m2 || j2 < j1) {

VSub (dr, mol[j1].r, mol[j2].r);

VVSub (dr, shift); 35

rr = VLenSq (dr);

if (rr < rrCut) {

rri = 1. / rr;

rri3 = Cube (rri);

fcVal = 48. * rri3 * (rri3 - 0.5) * rri; 40

uVal = 4. * rri3 * (rri3 - 1.) + 1.;

VVSAdd (mol[j1].ra, fcVal, dr);

VVSAdd (mol[j2].ra, - fcVal, dr);

uSum += uVal;

virSum += fcVal * rr; 45

}

}

}

}

} 50

}

}

}

}

The above function is longer and more intricate than the all-pairs version in
§2.4, but, as we have already indicated, it is incomparably faster for systems of
beyond minimal size; within the limits set by numerical rounding it will of course
produce the same answers. The basic organization involves scanning cell pairs,

3.4 Interaction computations 53

namely each cell with itself and with half its neighbors (not only those sharing
a common face, but also those with a shared edge or corner); for each pair of
cells the atoms contained in each are also paired to determine which of them lie
within interaction range. Part of the code is devoted to the special handling of
cells adjacent to one or more of the periodic boundaries, and there is an implicit
assumption that there are at least three cells in each direction (otherwise the same
neighbor will be accessed on both sides).

As indicated above, the array cellList plays a dual role: the first part of the
array consists of pointers linking different atoms belonging to the same cell, while
the remaining elements, one per cell, point to the first atom in each cell; the value –1
indicates the final atom in the list belonging to a cell and an empty cell respectively.
If there are roughly as many cells as there are atoms this array requires close to two
elements per atom.

It is important to note that there is no check made to ensure that the cell assign-
ments are ‘legal’. If there is any risk that a component of cc might lie outside the
cell array, an indication that something is seriously wrong with the computation
since it implies an atom has escaped from the system (this is more likely to hap-
pen when using hard walls rather than periodic boundaries), a check of this kind is
easily inserted.

Several new constants and vector operations appear in this listing. The operation

#define VLinear(p, s) \

(((p).z * (s).y + (p).y) * (s).x + (p).x)

combines the components of a VecI quantity into an offset into a singly-indexed
array (the array cells is inherently three dimensional, but for computational effi-
ciency it is represented as a one-dimensional array that is accessed by just a single
index). Another vector operation is

#define VVSub(v1, v2) VSub (v1, v1, v2)

There is also an array vOff that specifies the offsets of each of the 14 neighbor
cells. The array covers half the neighboring cells, together with the cell itself; its
size and contents are specified as

#define N_OFFSET 14

#define OFFSET_VALS \

{{0,0,0}, {1,0,0}, {1,1,0}, {0,1,0}, {-1,1,0}, {0,0,1}, \

{1,0,1}, {1,1,1}, {0,1,1}, {-1,1,1}, {-1,0,1}, \

{-1,-1,1}, {0,-1,1}, {1,-1,1}} 5

54 3 Simulating simple systems

Dealing with periodic boundaries is handled by the definitions

#define VCellWrap(t) \

if (m2v.t >= cells.t) { \

m2v.t = 0; \

shift.t = region.t; \

} else if (m2v.t < 0) { \ 5

m2v.t = cells.t - 1; \

shift.t = - region.t; \

}

#define VCellWrapAll() \

{VCellWrap (x); \ 10

VCellWrap (y); \

VCellWrap (z);}

Finally, a loop over all atoms belonging to a particular cell is expressed concisely
as

#define DO_CELL(j, m) \

for (j = cellList[m]; j >= 0; j = cellList[j])

The corresponding two-dimensional version of the function is easily derived by
removing all references to the z components and reducing the number of cell offsets
to just the first five.

In view of the fact that the majority of the work in this function is carried out
inside a highly nested set of loops, it hardly comes as a surprise to learn that there
are different ways of organizing the computation. The method used here is to scan
over cells, then over offsets, and only then over cell contents; alternatives include
scanning over relative cell offsets and then over cells, or scanning the atoms in
the outermost loop, with inner loops that scan the neighboring cells of the cell
containing the atom together with their contents. Some computer architectures may
be sensitive to the method chosen (§17.6), otherwise it is a matter of convenience.
Since the cells are often used as part of the neighbor-list method, this issue is
usually not critical.

Neighbor-list method

Only a small fraction of the atoms examined by the cell method – an average of
4π/81 ≈ 0.16 in three dimensions, π/9 ≈ 0.35 in two – lie within interaction
range. If we construct a list of such pairs from those found by the cell method, but
in order to allow this list to be useful over several successive timesteps we replace
rc in the test of interatomic separation by

rn = rc + �r (3.4.1)

3.4 Interaction computations 55

then it should be possible to benefit from this reduced neighborhood size [ver67].
The success of the approach relies on the slowly changing microscopic environ-
ment, which implies that the list of neighbors remains valid over a number of
timesteps, typically 10–20, even for relatively small �r . The fact that the list con-
tains atom pairs that lie outside the interaction range ensures that over this se-
quence of timesteps no new interacting pairs can appear that are not already listed.
The only disadvantage is the additional storage needed for the list of pairs; once,
this might have proved an obstacle, but modern computers usually have sufficient
memory for all except (possibly) the very largest of systems.

The value of �r is inversely related to the rate at which the list must be rebuilt,
and it also determines the number of extra noninteracting pairs that are included
in the list; it therefore has a certain influence on both processing time and storage
requirements. The decision to refresh the neighbor list is based on monitoring the
maximum velocity at each timestep and waiting until

∑
steps

(
max

i
|vi |
)

>
�r

2�t
(3.4.2)

before doing the refreshing. This criterion, which is equivalent to examining atomic
displacements, errs slightly on the conservative side, since it combines contri-
butions from different atoms, but it guarantees that no interacting pairs are ever
missed because atoms cannot approach from rn to rc during the elapsed time inter-
val; a more precise test could be based on the accumulated motions of individual
atoms, but, because the refreshing is already infrequent, the saving will be minimal.
Typically, for the fastest computation at liquid densities, �r ≈ 0.3−0.4.

The neighbor list can be represented in various ways, one of which is a simple
table of atom pairs – the method used here♠. An alternative method, used in §12.2,
employs a separate list of neighbors for each atom; all lists are stored in a single
array with a separate set of indices specifying the range of list entries for each
atom. In either instance, the cell method is used to build the neighbor list, with the
cell size now being determined by the distance rn rather than rc (if the system is too
small – relative to rn – for the cell method to work, then the more costly all-pairs
approach must be used to build the list).

The new variables required by the neighbor-list method are

real dispHi, rNebrShell;

int *nebrTab, nebrNow, nebrTabFac, nebrTabLen, nebrTabMax;

♠ pr_03_2

56 3 Simulating simple systems

The quantities that are set in SetParams are

VSCopy (cells, 1. / (rCut + rNebrShell), region);

nebrTabMax = nebrTabFac * nMol;

the initialization in SetupJob is

nebrNow = 1;

and additional input data items

NameI (nebrTabFac),

NameR (rNebrShell),

are required. The variable nebrTabFac determines how much storage should be
provided for the neighbor list (per atom), and rNebrShell is the variable corre-
sponding to �r . The memory allocation in AllocArrays for the neighbor list is

AllocMem (nebrTab, 2 * nebrTabMax, int);

The decision as to when to refresh the neighbor list is based on information about
the maximum possible movement of the atoms; this is monitored in EvalProps by
adding

real vvMax;

...

vvMax = 0.;

DO_MOL {

... 5

vvMax = Max (vvMax, vv);

}

dispHi += sqrt (vvMax) * deltaT;

if (dispHi > 0.5 * rNebrShell) nebrNow = 1;

If a refresh is due, it is carried out during the next timestep in SingleStep,

...

LeapfrogStep (1);

ApplyBoundaryCond ();

if (nebrNow) {

nebrNow = 0; 5

dispHi = 0.;

BuildNebrList ();

}

ComputeForces ();

LeapfrogStep (2); 10

...

3.4 Interaction computations 57

Refreshing the neighbor list implies complete reconstruction. The construction
function is very similar to the cell version of ComputeForces. The difference is
that, instead of computing the interactions, potentially interacting pairs are merely
recorded in the neighbor list for subsequent processing (each pair is recorded as two
consecutive values). Note the safety check to ensure that the neighbor list does not
grow beyond the storage available; the constant ERR_TOO_MANY_NEBRS denotes a
predefined error code (§18.4).

void BuildNebrList ()

{

VecR dr, invWid, rs, shift;

VecI cc, m1v, m2v, vOff[] = OFFSET_VALS;

real rrNebr; 5

int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset;

rrNebr = Sqr (rCut + rNebrShell);

VDiv (invWid, cells, region);

for (n = nMol; n < nMol + VProd (cells); n ++) cellList[n] = -1; 10

DO_MOL {

VSAdd (rs, mol[n].r, 0.5, region);

VMul (cc, rs, invWid);

c = VLinear (cc, cells) + nMol;

cellList[n] = cellList[c]; 15

cellList[c] = n;

}

nebrTabLen = 0;

for (m1z = 0; m1z < cells.z; m1z ++) {

for (m1y = 0; m1y < cells.y; m1y ++) { 20

for (m1x = 0; m1x < cells.x; m1x ++) {

VSet (m1v, m1x, m1y, m1z);

m1 = VLinear (m1v, cells) + nMol;

for (offset = 0; offset < N_OFFSET; offset ++) {

VAdd (m2v, m1v, vOff[offset]); 25

VZero (shift);

VCellWrapAll ();

m2 = VLinear (m2v, cells) + nMol;

DO_CELL (j1, m1) {

DO_CELL (j2, m2) { 30

if (m1 != m2 || j2 < j1) {

VSub (dr, mol[j1].r, mol[j2].r);

VVSub (dr, shift);

if (VLenSq (dr) < rrNebr) {

if (nebrTabLen >= nebrTabMax) 35

ErrExit (ERR_TOO_MANY_NEBRS);

nebrTab[2 * nebrTabLen] = j1;

nebrTab[2 * nebrTabLen + 1] = j2;

++ nebrTabLen;

} 40

}

}

58 3 Simulating simple systems

}

}

} 45

}

}

}

The neighbor list can now be used to compute the interactions; the following
function is also partly derived from the cell version of ComputeForces.

void ComputeForces ()

{

VecR dr;

real fcVal, rr, rrCut, rri, rri3, uVal;

int j1, j2, n; 5

rrCut = Sqr (rCut);

DO_MOL VZero (mol[n].ra);

uSum = 0.;

virSum = 0.; 10

for (n = 0; n < nebrTabLen; n ++) {

j1 = nebrTab[2 * n];

j2 = nebrTab[2 * n + 1];

VSub (dr, mol[j1].r, mol[j2].r);

VWrapAll (dr); 15

rr = VLenSq (dr);

if (rr < rrCut) {

rri = 1. / rr;

rri3 = Cube (rri);

fcVal = 48. * rri3 * (rri3 - 0.5) * rri; 20

uVal = 4. * rri3 * (rri3 - 1.) + 1.;

VVSAdd (mol[j1].ra, fcVal, dr);

VVSAdd (mol[j2].ra, - fcVal, dr);

uSum += uVal;

virSum += fcVal * rr; 25

}

}

}

The check for coordinate wraparound associated with periodic boundaries, us-
ing the function ApplyBoundaryCond (§2.4), is really only necessary when the
neighbor list is about to be refreshed, or when properties that depend on the atomic
coordinates are to be evaluated†.

† While only a minor detail here, since the extra work is minimal, it becomes a more significant issue when
distributed processing is involved (§17.4).

3.4 Interaction computations 59

Further methods

For completeness, we make brief mention of two additional techniques that can
prove useful, although they are not in widespread use; both aim at reducing the
amount of work required for the interaction calculations.

The replication method simplifies the calculation of interactions across periodic
boundaries by introducing copies of all atoms that are within a distance rn of any
region boundary, and placing them just outside the simulation region adjacent to
the opposite boundary. If these replica atoms are included in the force computa-
tion the wraparound checks are no longer required, but the cell array will have
to be enlarged to include the region that the replica atoms can occupy. The set of
replica atoms need only be rebuilt (taking care to avoid storage overflow) when
the neighbor list is refreshed, but the coordinates of these atoms are updated at
each timestep. This technique proves particularly useful for distributed and vector
processing (Chapter 17), but when the computations are carried out on a single
processor the gain is small and usually barely justifies the effort.

The multiple-timestep method is available for medium-range forces that ex-
tend beyond several mean atomic spacings (but excluding long-range forces of the
Coulomb type which require special treatment – Chapter 13) [str78]. Pairs of in-
teracting neighbors are divided into groups on the basis of their separation, and the
contributions of more distant groups are evaluated at less frequent intervals. While
the method has proved useful, it is essential to verify that this approximation does
not adversely affect the behavior being studied.

Force tabulation

In most MD simulations the bulk of the computation time is spent computing inter-
actions, and every effort is made to ensure that this is done as efficiently as possible.
As an alternative to direct evaluation, interactions can be computed using a simple
table lookup, possibly accompanied by interpolation for additional accuracy (there
are also situations where the potential only exists in tabular form). Which method
is faster depends on the complexity of the potential function. For the LJ case direct
evaluation is likely to be more efficient, but for a potential involving, for example,
exponential functions, tabulating the entire function, or at least certain parts of it,
could improve performance.

The value of tabulation can depend on the computer hardware in ways that are
not obvious. Just to give one example, several floating-point computations can of-
ten be carried out in the time required merely to retrieve one item at random from a
large table. So, for extensive simulations, some empirical investigation of this sub-
ject should prove worthwhile. If the potential function also depends on molecular

60 3 Simulating simple systems

orientation the lookup table becomes multidimensional, and storage limitations
may prevent construction of a table with adequate resolution.

3.5 Integration methods

Selection criteria

A variety of different numerical methods is available, at least in principle, for in-
tegrating the equations of motion [pre92]. Most can be quickly dismissed for the
simple reason that the heaviest component of the computation is the force eval-
uation, and any integration method requiring more than one such calculation per
timestep is wasteful, unless it can deliver a proportionate increase in the size of
the timestep �t while maintaining the same accuracy. However, because of the
strongly repulsive force at short distances in the typical LJ-based potential, there
is, in effect, an upper bound to �t , so that the well-known Runge–Kutta methods
are unable to enlarge the timestep beyond this limit. The same holds true for adap-
tive methods that change �t dynamically to maintain a specified level of accuracy;
the fact that each atom experiences a rapidly changing environment due to the local
rearrangement of its neighborhood will defeat such an approach. Only two classes
of method have achieved widespread use, one a low-order leapfrog technique, the
other involving a predictor–corrector approach; both appear in various different but
equivalent forms.

Obtaining a high degree of accuracy in the trajectories is neither a realistic nor
a practical goal. As we will see below, the sharply repulsive potentials result in
trajectories for which even the most minute numerical errors grow exponentially
with time, rapidly overwhelming the power-law type of local error introduced by
any of the numerical integrators. This is not merely a mathematical curiosity, it
also corresponds to what happens in nature, and the issue of trajectory accuracy
beyond several average ‘collision times’ is not a meaningful one. So the criteria for
choosing a numerical method focus on energy conservation and on the ability to
reproduce certain time- and space-dependent correlations to a sufficient degree of
accuracy.

Leapfrog-type methods

Two very simple numerical schemes that are widely used in MD are known as
the leapfrog and Verlet methods [bee76, ber86b]; they are completely equivalent
algebraically. In their simplest form the methods yield coordinates that are accurate
to third order in �t , and, from the point of view of energy conservation when LJ-
type potentials are involved, tend to be considerably better than the higher-order
methods discussed subsequently. Their storage requirements are also minimal.

3.5 Integration methods 61

The derivation of the Verlet formula (described much earlier by Delambre
[lev93]) follows immediately from the Taylor expansion of the coordinate
variable – typically x(t),

x(t + h) = x(t) + hẋ(t) + (h2/2)ẍ(t) + O(h3) (3.5.1)

where t is the current time, and h ≡ �t . Here, ẋ(t) is the velocity component and
ẍ(t) the acceleration. Note that although ẍ(t) has been expressed as a function of
t , it is actually a known function – via the force law – of the coordinates at time
t . If we add the corresponding expansion for x(t − h) to (3.5.1) and rearrange, we
obtain

x(t + h) = 2x(t) − x(t − h) + h2 ẍ(t) + O(h4) (3.5.2)

The truncation error is of order O(h4) because the h3 terms cancel†. The velocity
is not directly involved in the solution, but if required it can be obtained from

ẋ(t) = [x(t + h) − x(t − h)]/2h + O(h2) (3.5.3)

with higher-order expressions based on values from earlier timesteps available if
needed, though rarely used.

The (highly intuitive [fey63]) leapfrog method is equally simple to derive. Rewrite
the Taylor expansion as

x(t + h) = x(t) + h[ẋ(t) + (h/2)ẍ(t)] + O(h3) (3.5.4)

The term multiplying h is just ẋ(t + h/2), so (3.5.4) becomes (3.5.6) below. The
result (3.5.5) is obtained by subtracting from ẋ(t + h/2) the corresponding expres-
sion for ẋ(t − h/2). The leapfrog integration formulae are then

ẋ(t + h/2) = ẋ(t − h/2) + hẍ(t) (3.5.5)

x(t + h) = x(t) + hẋ(t + h/2) (3.5.6)

The fact that coordinates and velocities are evaluated at different times does not
present a problem; if an estimate for ẋ(t) is required there is a simple connection
that can be expressed in either of two ways,

ẋ(t) = ẋ(t ∓ h/2) ± (h/2)ẍ(t) (3.5.7)

The initial conditions can be handled in a similar manner, although a minor in-
accuracy in describing the starting state, namely, the distinction between ẋ(0) and
ẋ(h/2), is often ignored. The implementation of this method in a slightly more con-
venient two-step form – that avoids having coordinates and velocities at different

† A possible disadvantage of (3.5.2) is that at low machine precision the h2 term multiplying the acceleration
may prove a source of inaccuracy.

62 3 Simulating simple systems

times – appeared in §2.3, and corresponds to

ẋ(t + h/2) = ẋ(t) + (h/2)ẍ(t) (3.5.8)

x(t + h) = x(t) + hẋ(t + h/2) (3.5.9)

followed by

ẋ(t + h) = ẋ(t + h/2) + (h/2)ẍ(t + h) (3.5.10)

Predictor–corrector methods

Predictor–corrector (PC) methods [gea71, bee76, ber86b] are multiple-value meth-
ods, in the sense that they make use of several items of information computed at
one or more earlier timesteps. In the two most familiar forms of the method there
is a choice between using the acceleration values at a series of previous timesteps –
the multistep (Adams) approach – or using the higher derivatives of the acceler-
ation at the current timestep (the Nordsieck method). For methods accurate to a
given power of h the two forms can be shown to be algebraically equivalent. The
methods are of higher order than leapfrog, but entail a certain amount of extra com-
putation and require storage for the additional variables associated with each atom.
We will focus just on multistep methods, because derivatives of the acceleration –
quantities that are not natural participants in Newtonian dynamics – are absent. The
advantage of using higher derivatives is that h can easily be changed in the course
of the calculation; this is never done in MD.

Since the origin of the numerical coefficients appearing in the PC formulae may
seem a little mysterious we include a brief summary of the derivation. The goal is
to solve the second-order differential equation

ẍ = f (x, ẋ, t) (3.5.11)

with P() and C() denoting the formulae used in the predictor and corrector steps
of the calculation. The predictor step for time t + h is simply an extrapolation of
values computed at earlier times t , t − h, . . ., namely,

P(x) : x(t + h) = x(t) + hẋ(t) + h2
k−1∑
i=1

αi f (t + [1 − i]h) (3.5.12)

and, for a given value of k, this Adams–Bashforth formula (which contains the
same information as a Taylor expansion) provides exact results for x(t) = tq pro-
vided q ≤ k; in the general case the local error is O(hk+1). In order for this to be

3.5 Integration methods 63

true the coefficients {αi } must satisfy the set of k − 1 equations

k−1∑
i=1

(1 − i)qαi = 1

(q + 1)(q + 2)
, q = 0, . . . k − 2 (3.5.13)

These and the subsequent sets of linear equations are readily solved; the coeffi-
cients are all rational fractions. A similar result holds for ẋ ,

P(ẋ) : hẋ(t + h) = x(t + h) − x(t) + h2
k−1∑
i=1

α′
i f (t + [1 − i]h) (3.5.14)

with coefficients that satisfy equations

k−1∑
i=1

(1 − i)qα′
i = 1

q + 2
(3.5.15)

After computing the value of f (t + h) using the predicted values of x and ẋ ,
the corrections are made with the aid of the Adams–Moulton formula (which was
originally formulated as a separate implicit method, but subsequently adopted for
use as a means of refining the predicted estimate),

C(x) : x(t + h) = x(t) + hẋ(t) + h2
k−1∑
i=1

βi f (t + [2 − i]h) (3.5.16)

C(ẋ) : hẋ(t + h) = x(t + h) − x(t) + h2
k−1∑
i=1

β ′
i f (t + [2 − i]h) (3.5.17)

with coefficients obtained from
k−1∑
i=1

(2 − i)qβi = 1

(q + 1)(q + 2)
,

k−1∑
i=1

(2 − i)qβ ′
i = 1

q + 2
(3.5.18)

Note that the predicted values do not appear in the corrector formulae, except for
their involvement in evaluating f . The coefficients (αi , . . .) obtained by solving
these equations for k = 4 and 5 appear in Table 3.1, and those for k = 4 are em-
bedded in the integration functions described below. The results are readily adapted
to the multivariable MD situation: the first part of the processing involves applying
the predictor step to all the variables (atomic coordinates and velocities), followed
by the force computation based on the predicted values, and finally the corrector
step.

While most of the dynamical problems studied here can be expressed as second-
order differential equations, there are cases where first-order equations are required.
Analogous PC formulae are available for the equation

ẋ = f (x, t) (3.5.19)

64 3 Simulating simple systems

Table 3.1. PC coefficients for second-order equations.

k = 4 (× 1/24) 1 2 3

P(x) : 19 −10 3
P(ẋ) : 27 −22 7
C(x) : 3 10 −1
C(ẋ) : 7 6 −1

k = 5 (× 1/360) 1 2 3 4

P(x) : 323 −264 159 −38
P(ẋ) : 502 −621 396 −97
C(x) : 38 171 −36 7
C(ẋ) : 97 114 −39 8

Table 3.2. PC coefficients for first-order equations.

k = 3 (× 1/12) 1 2 3

P(x) : 23 −16 5
C(x) : 5 8 −1

k = 4 (× 1/24) 1 2 3 4

P(x) : 55 −59 37 −9
C(x) : 9 19 −5 1

The predictor and corrector are

P(x) : x(t + h) = x(t) + h
k∑

i=1

αi f (t + [1 − i]h) (3.5.20)

C(x) : x(t + h) = x(t) + h
k∑

i=1

βi f (t + [2 − i]h) (3.5.21)

with coefficients that satisfy

k∑
i=1

(1 − i)qαi = 1

q + 1
,

k∑
i=1

(2 − i)qβi = 1

q + 1
(3.5.22)

The resulting coefficients are listed in Table 3.2 and incorporated into programs
used in later case studies.

The functions that use the k = 4 PC method for integrating the MD equations
of motion follow; the predicted velocities are not always required but are included

3.5 Integration methods 65

here for use in those cases where they are. Several definitions will first be intro-
duced to simplify the code. The basic operations involved in the PC method are
contained in the definitions

#define PCR4(r, ro, v, a, a1, a2, t) \

r.t = ro.t + deltaT * v.t + wr * (cr[0] * a.t + \

cr[1] * a1.t + cr[2] * a2.t)

#define PCV4(r, ro, v, a, a1, a2, t) \

v.t = (r.t - ro.t) / deltaT + wv * (cv[0] * a.t + \ 5

cv[1] * a1.t + cv[2] * a2.t)

and, for the particular case considered here,

#define PR(t) \

PCR4 (mol[n].r, mol[n].r, mol[n].rv, mol[n].ra, \

mol[n].ra1, mol[n].ra2, t)

#define PRV(t) \

PCV4 (mol[n].r, mol[n].ro, mol[n].rv, mol[n].ra, \ 5

mol[n].ra1, mol[n].ra2, t)

#define CR(t) \

PCR4 (mol[n].r, mol[n].ro, mol[n].rvo, mol[n].ra, \

mol[n].ra1, mol[n].ra2, t)

#define CRV(t) \ 10

PCV4 (mol[n].r, mol[n].ro, mol[n].rv, mol[n].ra, \

mol[n].ra1, mol[n].ra2, t)

where additional quantities ra1, ra2, ro and rvo, all of type VecR, have been
added to the definition of the Mol structure; these quantities are used to hold the
acceleration values from two earlier timesteps (times t − h and t − 2h), and to
provide temporary storage for the old coordinates and velocities from time t so
that they can be overwritten by the predicted values (if the predicted velocity is not
required all reference to it can be dropped).

The predictor and corrector functions♠ can then be written in compact form as

void PredictorStep ()

{

real cr[] = {19., -10., 3.}, cv[] = {27., -22., 7.}, div = 24.,

wr, wv;

int n; 5

wr = Sqr (deltaT) / div;

wv = deltaT / div;

DO_MOL {

mol[n].ro = mol[n].r; 10

mol[n].rvo = mol[n].rv;

PR (x);

PRV (x);

♠ pr_03_3, pr_03_4

66 3 Simulating simple systems

PR (y);

PRV (y); 15

PR (z);

PRV (z);

mol[n].ra2 = mol[n].ra1;

mol[n].ra1 = mol[n].ra;

} 20

}

void CorrectorStep ()

{

real cr[] = {3., 10., -1.}, cv[] = {7., 6., -1.}, div = 24., 25

wr, wv;

int n;

wr = Sqr (deltaT) / div;

wv = deltaT / div; 30

DO_MOL {

CR (x);

CRV (x);

CR (y);

CRV (y); 35

CR (z);

CRV (z);

}

}

In SingleStep, the changes necessary in order to use this method (including
removal of the calls to LeapfrogStep) are

PredictorStep ();

ApplyBoundaryCond ();

ComputeForces ();

CorrectorStep ();

ApplyBoundaryCond (); 5

The interactions are evaluated using the results of the predictor step, but are not
reevaluated following the corrector; as a consequence, those properties of the sys-
tem that depend on the interactions themselves, such as the pressure, are based
on the predicted rather than the corrected values – the mean error should be in-
significant. Variations of this method tried in the past include actually doing this
second evaluation – at considerable computational cost – and applying the cor-
rector more than once; neither were found to provide noticeable improvement
in accuracy and they are not used. Two calls to the periodic boundary function
ApplyBoundaryCond have been included here: if the neighbor-list method is used
the first call serves no useful purpose and can be omitted; the second call is re-
ally only necessary if the neighbor list is due for reconstruction, or if the corrected

3.6 Initial state 67

coordinates are needed for evaluating properties of the system, but because only a
small amount of computation is involved it is perhaps safer to leave it in place.

Comparison

Because of the greater flexibility and potentially higher local accuracy, PC meth-
ods tend to be suited to more complex problems such as rigid bodies or constrained
dynamics, where greater accuracy at each timestep is desirable. The leapfrog ap-
proach needs less work and reduced storage, but has the disadvantage that it must
sometimes be specially adapted for certain kinds of problem; because of its essen-
tially time-reversible nature, the leapfrog method provides better energy conser-
vation with strongly divergent LJ-type potentials at larger �t , and because of its
minimal storage needs it is suitable for extremely large-scale studies where stor-
age can become an important issue. Tests of comparative accuracy will be given
in §3.7.

3.6 Initial state

Initial coordinates

If we assume that the purpose of the simulation is to study the equilibrium fluid
state, then the nature of the initial configuration should have no influence whatso-
ever on the outcome of the simulation. In choosing the initial coordinates, the usual
method is to position the atoms at the sites of a lattice whose unit cell size is cho-
sen to ensure uniform coverage of the simulation region. Typical lattices used in
three dimensions are the face-centered cubic (FCC) and simple cubic, whereas in
two dimensions the square and triangular lattices are used; if the goal is the study
of the solid state, then this will dictate the lattice selection. There is little point in
laboriously constructing a random arrangement of atoms, typically using a Monte
Carlo procedure to avoid overlap, since the dynamics will produce the necessary
randomization very quickly†.

The function that generates an FCC arrangement (with the option of unequal
edges) follows; there are four atoms per unit cell, and the system is centered at the
origin. Examples of other lattices are shown subsequently.

void InitCoords ()

{

VecR c, gap;

int j, n, nx, ny, nz;

5

VDiv (gap, region, initUcell);

† An obvious way of reducing equilibration time is to base the initial state on the final state of a previous run.

68 3 Simulating simple systems

n = 0;

for (nz = 0; nz < initUcell.z; nz ++) {

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) { 10

VSet (c, nx + 0.25, ny + 0.25, nz + 0.25);

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

for (j = 0; j < 4; j ++) {

mol[n].r = c; 15

if (j != 3) {

if (j != 0) mol[n].r.x += 0.5 * gap.x;

if (j != 1) mol[n].r.y += 0.5 * gap.y;

if (j != 2) mol[n].r.z += 0.5 * gap.z;

} 20

++ n;

}

}

}

} 25

}

For the FCC lattice, evaluation of the region size in SetParams (§2.4) uses the
expression

VSCopy (region, 1. / pow (density / 4., 1./3.), initUcell);

and the total number of atoms must be changed to

nMol = 4 * VProd (initUcell);

Examples of alternative versions of InitCoords when other lattice arrange-
ments are used as the initial state, together with other necessary changes, will now
be demonstrated. For the simple cubic lattice, where there is only a single atom in
each unit cell,

void InitCoords ()

{

VecR c, gap;

int n, nx, ny, nz;

5

VDiv (gap, region, initUcell);

n = 0;

for (nz = 0; nz < initUcell.z; nz ++) {

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) { 10

VSet (c, nx + 0.5, ny + 0.5, nz + 0.5);

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

3.6 Initial state 69

mol[n].r = c;

++ n; 15

}

}

}

}

Minor changes are also required in SetParams,

VSCopy (region, 1. / pow (density, 1./3.), initUcell);

nMol = VProd (initUcell);

The body-centered cubic (BCC) lattice has two atoms per unit cell,

void InitCoords ()

{

VecR c, gap;

int j, n, nx, ny, nz;

5

VDiv (gap, region, initUcell);

n = 0;

for (nz = 0; nz < initUcell.z; nz ++) {

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) { 10

VSet (c, nx + 0.25, ny + 0.25, nz + 0.25);

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

for (j = 0; j < 2; j ++) {

mol[n].r = c; 15

if (j == 1) VVSAdd (mol[n].r, 0.5, gap);

++ n;

}

}

} 20

}

}

and in SetParams,

VSCopy (region, 1. / pow (density / 2., 1./3.), initUcell);

nMol = 2 * VProd (initUcell);

The diamond lattice calls for a slightly more complicated version of the FCC
code since the lattice is most readily defined as two staggered FCC lattices, one of
which is offset along the diagonal by a quarter unit cell.

void InitCoords ()

{

VecR c, gap;

70 3 Simulating simple systems

real subShift;

int j, m, n, nx, ny, nz; 5

VDiv (gap, region, initUcell);

n = 0;

for (nz = 0; nz < initUcell.z; nz ++) {

for (ny = 0; ny < initUcell.y; ny ++) { 10

for (nx = 0; nx < initUcell.x; nx ++) {

VSet (c, nx + 0.125, ny + 0.125, nz + 0.125);

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

for (m = 0; m < 2; m ++) { 15

subShift = (m == 1) ? 0.25 : 0.;

for (j = 0; j < 4; j ++) {

VSAdd (mol[n].r, c, subShift, gap);

if (j != 3) {

if (j != 0) mol[n].r.x += 0.5 * gap.x; 20

if (j != 1) mol[n].r.y += 0.5 * gap.y;

if (j != 2) mol[n].r.z += 0.5 * gap.z;

}

++ n;

} 25

}

}

}

}

} 30

The changes to SetParams are as for the BCC, but with the value 2 replaced by 8.
Returning to two-dimensional systems, the triangular lattice with two atoms per

unit cell requires

void InitCoords ()

{

VecR c, gap;

int j, n, nx, ny;

5

VDiv (gap, region, initUcell);

n = 0;

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) {

VSet (c, nx + 0.5, ny + 0.5); 10

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

for (j = 0; j < 2; j ++) {

mol[n].r = c;

if (j == 1) VVSAdd (mol[n].r, 0.5, gap); 15

++ n;

}

}

3.6 Initial state 71

}

} 20

Because the unit cell shape is not square, the region size must be specified differ-
ently in SetParams,

VSet (region, initUcell.x / sqrt (density * sqrt (3.) / 2.),

initUcell.y / sqrt (density / (2. * sqrt (3.))));

nMol = 2 * VProd (initUcell);

One further initial arrangement is worth including here, namely, a totally ran-
dom set of initial coordinates. Though not used in the MD programs, it is useful
during analysis of spatial organization, in order to contrast MD results with those
of random point arrays.

void InitCoords ()

{

real randTab[100];

int i, n, k;

5

for (i = 0; i < 100; i ++) randTab[i] = RandR ();

DO_MOL {

for (k = 0; k < NDIM; k ++) {

i = (int) (100. * RandR ());

VComp (mol[n].r, k) = (randTab[i] - 0.5) * VComp (region, k); 10

randTab[i] = RandR ();

}

}

}

The function RandR (§18.4) serves as a source of uniformly distributed random
values in the range (0, 1). To reduce any possible unwanted correlations in the
random numbers a shuffling scheme is employed; the random values are used as
indices for accessing a table of random numbers, the entries of which are replaced
each time they are used. Referencing a particular component of a vector is done by

#define VComp(v, k) \

*((k == 0) ? &(v).x : ((k == 1) ? &(v).y : &(v).z))

Initial velocities

Similar considerations apply to the initial velocities, namely, that rapid equilibra-
tion renders the careful fabrication of a Maxwell distribution unnecessary. The sim-
ple function InitVels of §2.4 can be used, with VRand (§18.4) now producing a
random unit vector in three dimensions.

72 3 Simulating simple systems

Initialization of integration variables

In addition to setting the initial values for the more obvious physical quantities, the
numerical integrator requires its own initializing. For the leapfrog method,

void InitAccels ()

{

int n;

DO_MOL { 5

VZero (mol[n].ra);

}

}

and for the PC method add

VZero (mol[n].ra1);

VZero (mol[n].ra2);

While these are of course not the correct values, there is little benefit in doing a
more careful job, such as using a self-starting Runge–Kutta method for the first few
timesteps. One reason for this is that the trajectories are highly sensitive to com-
putational details such as rounding error (see below), and this has a much stronger
influence than the precise details of the initial state; the other is that additional
velocity adjustments are usually made early in the run to drive the system to the
desired temperature.

Temperature adjustment

Bringing the system to the required average temperature calls for velocity rescal-
ing. If there is a gradual energy drift due to numerical integration error, further
velocity adjustments will be required over the course of the run. The drift rate de-
pends on a number of factors – the integration method, potential function, the value
of �t and the ambient temperature.

Since T fluctuates there is no point in making adjustments based on instanta-
neous estimates. Instead, we can make use of the average 〈T 〉 values that are al-
ready available. The temperature adjustment (or velocity rescaling) function be-
low would therefore be called from SingleStep immediately following the call
AccumProps(2) used for summarizing the results.

void AdjustTemp ()

{

real vFac;

int n;

3.6 Initial state 73

5

vvSum = 0.;

DO_MOL vvSum += VLenSq (mol[n].rv);

vFac = velMag / sqrt (vvSum / nMol);

DO_MOL VScale (mol[n].rv, vFac);

} 10

How frequently this adjustment is required, if at all, must be determined empiri-
cally; initially it should be omitted since it may interfere with energy conservation.
If needed, the interval between adjustments would be specified by the variable

int stepAdjustTemp;

the value included in the input data

NameI (stepAdjustTemp),

and the adjustment made by a call from SingleStep

if (stepCount % stepAdjustTemp == 0) AdjustTemp ();

A possible alternative would be to automate the scheme, applying the adjustment
whenever the drift exceeds a given threshold.

Forcing the system to have the correct 〈T 〉 during the equilibration phase of the
simulation uses separate estimates of 〈EK 〉. In SingleStep add (after the call to
EvalProps)

if (stepCount < stepEquil) AdjustInitTemp ();

and introduce the new function

void AdjustInitTemp ()

{

real vFac;

int n;

5

kinEnInitSum += kinEnergy.val;

if (stepCount % stepInitlzTemp == 0) {

kinEnInitSum /= stepInitlzTemp;

vFac = velMag / sqrt (2. * kinEnInitSum);

DO_MOL VScale (mol[n].rv, vFac); 10

kinEnInitSum = 0.;

}

}

74 3 Simulating simple systems

with extra variables

real kinEnInitSum;

int stepInitlzTemp;

an additional input data item

NameI (stepInitlzTemp),

and initialization

kinEnInitSum = 0.;

3.7 Performance measurements

Accuracy

In order to demonstrate the accuracy of the integration methods, and the way in
which accuracy depends on �t , we will carry out a series of measurements of the
energy as a function of time for the leapfrog and k = 4 PC integrators with several
timestep values. We use the soft-sphere interaction rather than LJ in order to avoid
any additional fluctuations due to the discontinuity at rc.

Input data to the calculation are as follows:

deltaT 0.00125

density 0.8

initUcell 5 5 5

nebrTabFac 8

rNebrShell 0.4

stepAvg 8000

stepEquil 0

stepInitlzTemp 999999

stepLimit 160000

temperature 1.

In the series of runs deltaT varies over a 16 : 1 range between 0.001 25 and 0.02,
the value of stepLimit is chosen to give a total run length of 200 time units (the
extreme values being 160 000 and 10 000), and stepAvg is set so that a result
is output every ten time units. The initial state is a simple cubic lattice, so that
Nm = 125, and computations are carried out in 64-bit (double) precision. This
particular value of nebrTabFac is more than adequate for the soft-sphere fluid
at moderate density; for an LJ fluid the value depends on rc, with 50 or larger
sometimes being required. A few brief test runs with the actual potential function

3.7 Performance measurements 75

0 50 100 150 200
1.6

1.7

1.8

1.9

2.0

2.1

time

to
ta

l e
ne

rg
y

Fig. 3.2. Energy drift for different values of �t ; leapfrog results (solid curves – the first
four of which are indistinguishable) are for �t = 0.001 25, 0.0025, 0.005, 0.01 and 0.02;
predictor–corrector results (dashed curves) are for �t = 0.001 25, 0.0025 and 0.005.

Table 3.3. Energy conservation for leapfrog (LF) and predictor–corrector (PC) methods.

�t : 0.001 25 0.001 25 0.0025 0.0025 0.005 0.01
t LF PC LF PC LF LF

10 1.6846 1.6848 1.6848 1.6864 1.6858 1.6890
50 1.6846 1.6864 1.6846 1.6991 1.6857 1.6876

100 1.6846 1.6883 1.6848 1.7153 1.6843 1.6853
150 1.6846 1.6902 1.6847 1.7316 1.6853 1.6867
200 1.6847 1.6921 1.6848 1.7482 1.6852 1.6886

in the density range of interest should be sufficient to determine an appropriate
value, including a safety margin.

The results are shown in Figure 3.2, where it is clear that the leapfrog method
allows a much larger �t for a given degree of energy conservation [ber86b]. To
emphasize the accuracy of the method – from the energy point of view – most of
these results are repeated in Table 3.3. To a limited extent, accuracy can be sacri-
ficed in the cause of speed, for example when the goal is a realtime demonstration,
but there are limits to the size of �t if numerical instability is to be avoided. All
computations in the case studies will use 64-bit precision (although, in many cases,
32-bit arithmetic could be used without significantly affecting the results).

76 3 Simulating simple systems

0 10 20 30
1.0

1.2

1.4

1.6

time

ki
ne

tic
 e

ne
rg

y

Fig. 3.3. Convergence of mean kinetic energy from different initial states.

Reproducibility

The issue of reproducibility is tied to the rate of approach to equilibrium (or to
a stationary final state). In most cases, once the system has equilibrated there
will be no memory of the details of the initial state, but problems can arise in
cases of very slow convergence, or where there are different metastable states
in which the system can become trapped. If we exclude such special circum-
stances, the averaged results from separate runs should agree to within the limits
set by the fluctuations. As a brief demonstration we show how the kinetic energy
varies with time for simulations that differ only in the choice of the initial random
velocities.

The input data for this test are:

deltaT 0.005

density 0.8

initUcell 6 6 6

nebrTabFac 8

randSeed 17

rNebrShell 0.4

stepAvg 200

stepEquil 1000

stepInitlzTemp 200

stepLimit 6000

temperature 1.

The runs use different values of randSeed (such as 17, 18 and 19), and the results
are shown in Figure 3.3. Convergence of 〈EK 〉 to its final value is dominated by

3.8 Trajectory sensitivity 77

Table 3.4. Timing measurements (µs/atom–step) for the different methods.

Nm pairs cells nebrs

64 2.2 2.0 0.7
216 7.0 2.3 0.7
512 16.0 2.2 0.7

1000 – 2.2 0.7

the temperature adjustments that are made while t < 5, but the differences between
the runs lie within the range of the fluctuations.

Efficiency

Two methods of improving the efficiency of the force computation were described
here, cells and neighbor lists. To show that these methods really do provide at least
some of the promised benefits we provide a few timing comparisons for the three
methods. It is the relative timings and not the the absolute values that are of most
interest here†. The major cause of any timing anomalies is the size of the cells used
in both the cell and neighbor-list methods; the fact that an integral number of cells
must fit along each region edge can lead to variations in the mean cell occupancy
that will affect performance, especially for smaller systems.

Assorted timing results for soft-sphere systems at ρ = 0.8 are shown in Table 3.4.
The runs extend over 4000 timesteps each, with T = 1 and �t = 0.005; leapfrog
integration is used (the PC method takes slightly longer). When rNebrShell has
the value 0.4 the neighbor list is typically refreshed every 12–15 timesteps. If the
theoretical performance expectations are not met in these relatively small systems,
allowance should be made for contributions from other parts of the computation as
well as the features of the processor architecture‡.

3.8 Trajectory sensitivity
One particular consequence of the numerical approach deserves special consider-
ation. We have seen how measurements of bulk properties, such as kinetic energy,

† These particular measurements were made on a 2 GHz Intel Pentium 4 Xeon processor (compiled with GNU
C using the optimization option -O3); all case studies were run on this system.

‡ The way data are organized can sometimes affect performance. Patterns of memory access can have a signifi-
cant impact on computation speed, especially in modern computers with complex hardware architectures that
include mapped and interleaved memory and multilevel caches. Awareness of the issues involved, a subject
that can demand some familiarity with the specific processor design, may suggest how to arrange data and
organize the loop structure of a program; this is a specialized subject – ignored by most – that will not be
covered here.

78 3 Simulating simple systems

are reproducible, subject only to well-understood statistical fluctuations. Other
equilibrium and steady state properties are similarly well-behaved. When it comes
to the trajectories themselves it is an entirely different story: trajectories display an
exponential sensitivity to even the most minute perturbation. This implies that tra-
jectories are sensitive to the precision and rounding method used for floating-point
arithmetic, and even to the exact sequence of machine instructions in the program.
In the absence of infinite precision, there is no way in which two different MD
programs, or even the same MD program run on computers of different design,
will yield the same trajectories†. This is hardly surprising, but it is also irrelevant,
since there is no meaningful physical quantity that depends on just a single trajec-
tory realization; all meaningful measurements involve averages that conceal this
sensitivity, including the transport properties based on integration along the actual
trajectories (§5.2). This extreme sensitivity is the microscopic basis for molecular
chaos that plays such an important role in statistical mechanics; though the equa-
tions of motion are time reversible, this fact turns out to be unobservable in most
practical situations [orb67, lev93].

To actually measure this behavior we consider a system of 2Nm atoms in which
odd- and even-numbered atoms form independent but identical subsystems that
are assigned the same initial coordinates and velocities. One subsystem is slightly
perturbed by multiplying its velocities by 1+εs, where ε is a small number and s a
random value in the range (−1, 1), and we then examine how the root-mean-square
coordinate difference

�r =
√√√√ 1

Nm

Nm∑
i=1

(r2i − r2i−1)2 (3.8.1)

varies with time. Although the study uses soft atoms and a leapfrog method subject
to numerical integration error, this error is not the dominant factor, because similar
results can also be obtained in hard-sphere studies that are free from integration
error.

Only a few simple modifications♠ to the MD program are required. The atoms
are divided into two entirely separate subsystems, and nMol is doubled. The

† And so the Laplacian vision is laid to rest.
♠ pr_03_5

3.8 Trajectory sensitivity 79

criterion for selecting pairs in BuildNebrList is replaced by

if ((j1 - j2) % 2 == 0 && (m1 != m2 || j2 < j1))

Properties such as the energy can be computed for either or both subsystems by
selecting which atoms contribute to the various sums. A simple addition to the
innermost loop of InitCoords produces consecutive pairs of atoms (n and n+1)
with the same initial coordinates,

mol[n + 1].r = mol[n].r;

n += 2;

and InitVels is replaced by

void InitVels ()

{

int n;

VZero (vSum); 5

for (n = 0; n < nMol; n += 2) {

VRand (&mol[n].rv);

VScale (mol[n].rv, velMag);

mol[n + 1].rv = mol[n].rv;

VVSAdd (vSum, 2., mol[n].rv); 10

}

DO_MOL VVSAdd (mol[n].rv, - 1. / nMol, vSum);

}

The trajectory perturbation function is

void PerturbTrajDev ()

{

VecR w;

int n;

5

for (n = 0; n < nMol; n += 2) {

mol[n + 1].r = mol[n].r;

VRand (&w);

VMul (w, w, mol[n].rv);

VSAdd (mol[n + 1].rv, mol[n].rv, pertTrajDev, w); 10

}

countTrajDev = 0;

}

80 3 Simulating simple systems

and trajectory analysis, allowing for periodic boundaries, is carried out by

void MeasureTrajDev ()

{

VecR dr;

real dSum;

int n; 5

dSum = 0.;

for (n = 0; n < nMol; n += 2) {

VSub (dr, mol[n + 1].r, mol[n].r);

VWrapAll (dr); 10

dSum += VLenSq (dr);

}

valTrajDev[countTrajDev] = sqrt (dSum / (0.5 * nMol));

++ countTrajDev;

} 15

The additional code needed in SingleStep consists of

if (stepCount == stepEquil) PerturbTrajDev ();

if (stepCount > stepEquil &&

(stepCount - stepEquil) % stepTrajDev == 0) {

MeasureTrajDev ();

if (countTrajDev == limitTrajDev) { 5

PrintTrajDev (stdout);

PerturbTrajDev ();

BuildNebrList ();

}

} 10

and output is produced by

void PrintTrajDev (FILE *fp)

{

real tVal;

int n;

5

for (n = 0; n < limitTrajDev; n ++) {

tVal = (n + 1) * stepTrajDev * deltaT;

fprintf (fp, "%.4e %.4e\n", tVal, valTrajDev[n]);

}

} 10

New variables needed for these measurements are

real *valTrajDev, pertTrajDev;

int countTrajDev, limitTrajDev, stepTrajDev;

3.8 Trajectory sensitivity 81

0 2 4 6 8 10
-20

-15

-10

-5

0

5

time

se
pa

ra
tio

n
(l

og
)

Fig. 3.4. Trajectory divergence for different initial velocity perturbations (the vertical
scale is logarithmic).

with additional input data items in nameList

NameI (limitTrajDev),

NameR (pertTrajDev),

NameI (stepTrajDev),

and an array allocated in AllocArrays

AllocMem (valTrajDev, limitTrajDev, real);

The measurements shown in Figure 3.4 are based on a soft-sphere system with
an FCC initial state, Nm = 2048, T = 1, ρ = 0.8, and �t = 0.005. Other input
data items include

limitTrajDev 100

pertTrajDev 1.0e-6

stepEquil 3000

stepTrajDev 20

Three values of the velocity perturbation pertTrajDev are used, namely, 10−6,
10−5 and 10−4; just one set of measurements averaged over all atoms is made after
allowing sufficient time for equilibration. The linear growth in log(�r), measured
from time zero when the perturbation is applied and, depending on the perturbation,
extending to times between 2.5 and 4, corresponds to trajectories that diverge at an

82 3 Simulating simple systems

exponential rate. Once the size of the deviation reaches the atomic diameter (≈ 1)
the more familiar diffusive processes take over.

3.9 Further study
3.1 Implement the cell and neighbor-list methods in two dimensions.
3.2 See whether the k = 5 PC method is an improvement over the k = 4 method

used here.
3.3 Explore the use of PC methods involving derivatives of the acceleration

[bee76, ber86b].
3.4 Determine the performance benefits of tabulated interactions.
3.5 How is the computation speed affected by the way the data are organized?
3.6 How is energy conservation affected by smoothing (as in §12.3) the LJ in-

teraction near rc?
3.7 Investigate the use of multiple-timestep methods.

4

Equilibrium properties of simple fluids

4.1 Introduction

In this chapter we examine the behavior of systems in equilibrium; in particular, we
focus on measurements of thermodynamic properties and studies of spatial struc-
ture and organization. The treatment of properties associated with the motion of
atoms – the dynamical behavior – forms the subject of Chapter 5.

While basic MD simulation methods – formulating and solving the equations of
motion – fall into a comparatively limited number of categories, a wide range of
techniques is used to analyze the results. Rarely is the wealth of detail embodied
in the atomic or molecular trajectories of particular interest in itself, and the issue
is how to extract meaningful information from this vast body of data; even a small
system of 103 structureless atoms followed over a mere 104 timesteps can produce
up to 6 × 107 numbers, corresponding to a full chronological listing of the atomic
coordinates and velocities. A great deal of data averaging and filtration of various
kinds is required to reduce this to a manageable and meaningful level; how this is
achieved depends on the questions that the simulation is supposed to answer. Much
of this processing will be carried out while the simulation is in progress, but some
kinds of analysis are best done subsequently, using data saved in the course of the
simulation run; the choice of approach is determined by the amount of work and
data involved, as well as the need for active user participation in the analysis.

Averages corresponding to thermodynamic quantities in homogeneous systems
at equilibrium are the easiest measurements to make. Statistical mechanics relates
such MD averages to their thermodynamic counterparts, and the ergodic hypoth-
esis can be invoked to justify equating trajectory averages with ensemble-based
thermodynamic properties [mcq76]. However, the fact that statistical mechanics
has no knowledge of trajectories means that it is incapable of discussing quanti-
ties that are defined in terms of atomic motion – diffusion for example. This is
the strength of MD; detailed trajectory histories are available, so that not only can

83

84 4 Equilibrium properties of simple fluids

quantities meaningful in a statistical mechanical framework be addressed, but so,
too, can any other conceivable quantity.

Some aspects of behavior, such as the structural correlations present in the fluid,
ranging from the basic pair correlation function to more subtle correlations involv-
ing both position and orientation, or the three-body correlation function, require
quite heavy calculations, often rivaling the interaction computation in terms of the
amount of work required. Fortunately, such calculations are not needed at each
timestep since fluid structure changes only gradually; the rate of change is indeed
the criterion for choosing the interval between such measurements.

If the system is spatially inhomogeneous, all quantities, from the simplest ther-
modynamic values onward, must be based on localized measurements. If the sys-
tem is also nonstationary over time, long term time averaging is ruled out because
it would obliterate the very effects being studied. In short, the more complex the
phenomenon the more demanding the measurement task. These topics will be en-
countered in Chapters 7 and 15.

4.2 Thermodynamic measurements

Relation to statistical mechanics

Measurements of equilibrium properties that are thermodynamic in nature can be
regarded as exercises in numerical statistical mechanics. In such instances MD
provides an alternative to Monte Carlo, and if no further information is required
about the system, computational efficiency alone should determine the choice of
technique. While Monte Carlo requires less computation per interacting atom pair,
because only the potential energy has to be evaluated, the number of Monte Carlo
cycles required to obtain uncorrelated samples (more precisely, a series of samples
that are only weakly correlated) may exceed the corresponding number of MD
timesteps. The reason for this is that the atomic displacements are randomly chosen
in Monte Carlo, and this can be a less efficient way for the system to traverse
configuration space than via the cooperative dynamics intrinsic to MD.

Because both the number of atoms and the total energy (assuming that numerical
drift has been suppressed) are fixed in the MD simulations encountered so far,
the relevant statistical mechanical ensemble for discussing equilibrium behavior
is the microcanonical (NVE) one. There is just one minor difference, in that each
conserved momentum component removes one degree of freedom, but this is a
negligible effect for systems beyond a minimal size.

Error analysis

The measurement process in MD is very similar to experiment. But the experi-
mentalist often has the advantage of knowing that each estimate is independent,

4.2 Thermodynamic measurements 85

allowing well-established statistical methods to be used in the data analysis. With
MD, where a series of measurements is carried out in the course of a simulation
of limited duration, there is no guarantee that successive estimates are sufficiently
unrelated to ensure the reliability of these simple statistical methods. Averages of
directly measured quantities may not be the main problem, given an adequate run
length, but statistical error estimates are particularly sensitive to correlations be-
tween samples.

We assume that the problem has been correctly formulated and implemented;
errors in the results can then be categorized as follows. There are systematic errors
associated with, for example, finite-size effects, interaction cutoff, and the numeri-
cal integration itself; these are an intrinsic part of the computer experiment and are
reproducible. There are errors due to inadequate sampling of phase space where,
especially near a thermodynamic phase boundary, or in the case of infrequently
occurring events, enough of the relevant behavior fails to be sampled; this is symp-
tomatic of poor experimental design. And finally there is statistical error due to
random fluctuations in the measurements; under normal circumstances this deter-
mines the degree of confidence that can be placed in the results. Only for errors of
the last kind is the usual statistical analysis applicable.

Consider a series of M measurements of some fluctuating property A in a system
at equilibrium. The mean value is

〈A〉 = 1

M

M∑
µ=1

Aµ (4.2.1)

and if each measurement Aµ is independent, with variance

σ 2(A) = 1

M

∑
µ

(
Aµ − 〈A〉)2 = 〈A2〉 − 〈A〉2 (4.2.2)

then the variance of the mean 〈A〉 is

σ 2
(〈A〉) = 1

M
σ 2(A) (4.2.3)

But if, as is usually the case in MD (and other) simulations, the assumed indepen-
dence of the Aµ is unwarranted, σ 2

(〈A〉) is liable to be underestimated because the
effective number of independent measurements is considerably less than M . How
the correlation between measurements affects the results can be seen by rewriting
the variance correctly as

σ 2
(〈A〉) = 1

M
σ 2(A)

[
1 + 2

∑
µ

(1 − µ/M)φµ

]
(4.2.4)

86 4 Equilibrium properties of simple fluids

where φµ is the autocorrelation function

φµ = 〈Aµ A0〉 − 〈A〉2

〈A2〉 − 〈A〉2
(4.2.5)

A detailed error analysis would involve examining φµ, but there is little need for
this in practice because a much simpler method is available based on block aver-
aging [fly89].

Assuming the Aµ to be correlated, if averages are evaluated over blocks of suc-
cessive values, then as the block size increases the block averages will be decreas-
ingly correlated; eventually, once the block length exceeds the (unknown) longest
correlation time present in the data, the block averages will be independent from a
statistical point of view. What is needed is a criterion for choosing the minimal nec-
essary block length: too short a block provides little improvement over the original
correlated data, too long a block reduces the number of block averages available
for reliable estimation of the variance of the final result.

A very straightforward scheme is based on a series of successive block sizes
b = 1, 2, 4, . . ., with the upper bound being set by the total size of the data set. For
each b the estimator for the variance can be shown to be

σ 2
(〈A〉b

) = 1

Mb − 1

Mb∑
β=1

(
A2

β − 〈A〉2
b

)
(4.2.6)

where Mb is the total number of blocks, Aβ a typical block average, and 〈A〉b

the overall average. Whenever the current Mb is odd, the last value is simply dis-
carded before doubling the block size. What should happen, assuming that the total
measurement period far exceeds the longest correlation time, is that the successive
σ 2
(〈A〉b

)
increase until a plateau is eventually reached; the plateau value is the

result. In less than ideal situations where the measurement period is too short, or
barely adequate in length, the plateau will either not appear at all or will be very
narrow; in such cases the variance estimate is unreliable. When the method works
successfully the block size at the start of the plateau is an indication of the extent
to which the samples are correlated.

Energy
Energy measurements♠ are the simplest, and here we briefly examine both LJ and
soft-sphere systems. The initial state is an FCC lattice, so that Nm = 500. Leapfrog
integration is used; for the LJ system we use a cutoff rc = 2.2. The temper-
ature fluctuates, and in three dimensions we have 〈EK 〉 = 3〈T 〉/2. Figure 4.1

♠ pr_04_1, pr_04_2

4.2 Thermodynamic measurements 87

0.0 0.5 1.0 1.5 2.0
-7.5

-5.0

-2.5

0.0

2.5

5.0

temperature

to
ta

l e
ne

rg
y

Fig. 4.1. Density and mean-temperature dependence of energy for Lennard-Jones (solid
curves) and soft-sphere (dashed) systems, for densities 0.4–1.0.

shows the dependence of E on ρ and 〈T 〉 as measured in a series of runs that
include the following input data (the values of density and temperature are
varied):

deltaT 0.005

density 0.4

initUcell 5 5 5

stepAvg 2000

stepEquil 4000

stepInitlzTemp 200

stepLimit 10000

temperature 0.4

For careful quantitative studies, the results should be examined closely when de-
ciding on the run length stepLimit and the equilibration period stepEquil.

In the microcanonical ensemble, thermodynamic quantities based on fluctuations
adopt a different form from the canonical ensemble. The most familiar such quan-
tity is the constant-volume specific heat CV = (∂ E/∂T)V . It is usually defined in
terms of energy fluctuations, namely (with kB = 1),

CV = Nm

T 2
〈δE2〉 (4.2.7)

where 〈δE2〉 = 〈E2〉−〈E〉2, but while this is appropriate in the canonical ensemble,
for MD we have 〈δE2〉 = 0. Instead, it can be shown [leb67] that the relevant

88 4 Equilibrium properties of simple fluids

0.0 0.5 1.0 1.5 2.0
-5

0

5

10

15

20

25

temperature

pr
es

su
re

Fig. 4.2. Density and temperature dependence of pressure for Lennard-Jones (solid
curves) and soft-sphere (dashed) systems, for densities 0.4–1.0.

fluctuations to consider are those of EK or EU individually (they are identical) and
that the specific heat is

CV = 3

2

(
1 − 2Nm〈δE2

K 〉
3T 2

)−1

(4.2.8)

Either this directly measurable result or numerical differentiation of the E(T)

graph – strictly speaking, E(〈T 〉) – could be used for estimating CV .

Equation of state

Pressure is obtained from the virial expression (2.3.8); while it can also be ex-
pressed in terms of momentum transferred across an arbitrary plane, there is little
reason to resort to such a definition that only uses information from a fraction of the
atoms and is therefore subject to larger fluctuations. The virial definition assumes
the presence of hard walls responsible for imposing the external pressure, but the
result is equally applicable in the case of periodic boundaries [erp77].

Pressure measurements for the runs described above are shown in Figure 4.2.
Negative pressure is an indication that the system is being held at too low a den-
sity, and in a sufficiently large system separation into distinct liquid (or solid) and
vapor phases occurs. A more extensive analysis of this kind would lead to the com-
plete equation of state [nic79]. In the LJ case, when a ‘real’ substance is being
modeled, the values of both E and P can be corrected [vog85] to compensate for
the truncation at rc – as in (4.3.9).

4.2 Thermodynamic measurements 89

Table 4.1. Block-averaged estimates of σ
(〈P〉); b is the block size and Mb the number of

blocks.

b Mb σ(〈P〉)
1 16384 0.0012
2 8192 0.0017
4 4096 0.0023
8 2048 0.0031

16 1024 0.0039
32 512 0.0045
64 256 0.0046

128 128 0.0048
256 64 0.0048
512 32 0.0052

1024 16 0.0060
2048 8 0.0068
4096 4 0.0088

Finite-size effects are already relatively small at Nm = 500, at least for positive
pressure (and away from the critical point). For example, consider the LJ fluid at
ρ = 0.8 and T = 1. The result obtained in this case is P = 2.02, σ(P) = 0.14,
based on a single average over 2000 timesteps. For the case where Nm = 2048, an
average over 4000 timesteps leads to the same P = 2.02, with σ(P) = 0.08. Thus,
even this very rough comparison suggests that size dependence will normally only
be an issue if high-quality estimates are required.

The pressure measurements provide an opportunity to demonstrate the block
averaging method♠ for estimating the variance of the mean described earlier. Here
we consider the soft-sphere fluid with Nm = 500, ρ = 0.8 and T = 1. The pressure
measurements are governed by the replacement input data

stepAvg 1

stepEquil 1000

stepLimit 17384

and the results are sufficient for 12 doublings of the block size starting from b = 1.
Table 4.1 shows the outcome of this analysis, and reveals that convergence occurs
at a block size of 32. The fact that σ

(〈P〉) ≈ 4σ(P), the value at b = 1, should
serve as a reminder that closely spaced measurements are strongly correlated.

♠ pr_anblockavg (There are a few supplementary programs in the software package that are not described in
the text; this is one of them.)

90 4 Equilibrium properties of simple fluids

4.3 Structure

Radial distribution function

The fluid state is characterized by the absence of any permanent structure. There
are, nevertheless, well-defined structural correlations that can be measured exper-
imentally to provide important details about the average molecular organization
[mcq76, han86b]. The treatment of structural correlation (in the canonical ensem-
ble) begins with the completely general pair distribution function,

g(r1, r2) =
Nm(Nm − 1)

∫
e−U (r1,...rNm)/T d r3 · · · rNm

ρ2
∫

e−U (r1,...rNm)/T d r1 · · · rNm

(4.3.1)

where the integral in the denominator is just the partition function (with kB = 1),
and the integral in the numerator differs only in that r1 and r2 are excluded from the
integration. In the case of spatially homogeneous systems, only relative separation
is meaningful, leading to a sum over atom pairs,

g(r) = 2V

N 2
m

〈∑
i< j

δ(r − ri j)

〉
(4.3.2)

and if the system is also isotropic the function can be averaged over angles without
loss of information. The result is the radial distribution function g(r) – RDF for
short – a function that describes the spherically averaged local organization around
any given atom; g(r) plays a central role in liquid-state physics and all functions
that depend on the pair separation, such as potential energy and pressure, can be
expressed in terms of integrals involving g(r).

The definition of g(r) implies that ρg(r) d r is proportional to the probability
of finding an atom in the volume element d r at a distance r from a given atom,
and (in three dimensions) 4πρg(r)r2�r is the mean number of atoms in a shell
of radius r and thickness �r surrounding the atom. The RDF is related to the
experimentally measurable structure factor S(k) by Fourier transformation – S(k)

is a key quantity in interpreting x-ray scattering measurements. The general result,
not assuming isotropy, is

S(k) = 1 + ρ

∫
g(r)e−i k·r d r (4.3.3)

and for isotropic liquids this simplifies to

S(k) = 1 + 4πρ

∫
sin kr

kr
g(r)r2 dr (4.3.4)

Equation (4.3.4) supplies an important link between MD simulation and the real

4.3 Structure 91

world. The MD approach can, of course, provide the answer to any question about
structure, such as the nature of spatial correlations between atoms taken three at a
time; while this kind of information can prove useful in trying to understand the
behavior, comparison is impossible since the corresponding experimental data are
unobtainable.

From the definition of g(r) in (4.3.2) it is apparent that the RDF can be measured
[rah64, ver68] using a histogram of discretized pair separations. If hn is the number
of atom pairs (i, j) for which

(n − 1)�r ≤ ri j < n�r (4.3.5)

then, assuming that �r is sufficiently small, we have the result†

g(rn) = V hn

2π N 2
mr2

n�r
(4.3.6)

where

rn = (n − 1
2

)
�r (4.3.7)

If the RDF measurements extend out to a maximum range re the required number
of histogram bins is re/�r . The two-dimensional version is

g(rn) = Ahn

π N 2
mrn�r

(4.3.8)

The normalization factors ensure that g(r →∞) = 1, although periodic boundaries
limit the range re to no more than half the smallest edge of the simulation region,
with wraparound used in evaluating interatomic distances.

The RDF computation has much in common with the interaction calculation,
and the cell method can be used if re is sufficiently small. Otherwise, all pairs
must be considered and this is the version♠ shown here (where M_PI denotes π);
quite accurate results can in fact be obtained from a relatively small number of
measurements, so that the overall computational cost is not excessive.

void EvalRdf ()

{

VecR dr;

real deltaR, normFac, rr;

int j1, j2, n; 5

if (countRdf == 0) {

for (n = 0; n < sizeHistRdf; n ++) histRdf[n] = 0.;

}

deltaR = rangeRdf / sizeHistRdf; 10

† hn is Nm/2 times the mean number of neighbors in the shell.
♠ pr_04_3

92 4 Equilibrium properties of simple fluids

for (j1 = 0; j1 < nMol - 1; j1 ++) {

for (j2 = j1 + 1; j2 < nMol; j2 ++) {

VSub (dr, mol[j1].r, mol[j2].r);

VWrapAll (dr);

rr = VLenSq (dr); 15

if (rr < Sqr (rangeRdf)) {

n = sqrt (rr) / deltaR;

++ histRdf[n];

}

} 20

}

++ countRdf;

if (countRdf == limitRdf) {

normFac = VProd (region) / (2. * M_PI * Cube (deltaR) *

Sqr (nMol) * countRdf); 25

for (n = 0; n < sizeHistRdf; n ++)

histRdf[n] *= normFac / Sqr (n - 0.5);

PrintRdf (stdout);

countRdf = 0;

} 30

}

In addition to computing the discretized version of the RDF for the current state
of the system, the above function also accumulates the average over a series of
such ‘snapshots’, as well as initializing the calculation and producing the final
output when sufficient data have been collected; the decision whether to initial-
ize or prepare the final summary is based on the value of countRdf. This is the
three-dimensional version of the computation; the changes for two dimensions are
minor.

New quantities introduced here are

real *histRdf, rangeRdf;

int countRdf, limitRdf, sizeHistRdf, stepRdf;

and the additional input data items are

NameI (limitRdf),

NameR (rangeRdf),

NameI (sizeHistRdf),

NameI (stepRdf),

Memory allocation is carried out in AllocArrays

AllocMem (histRdf, sizeHistRdf, real);

4.3 Structure 93

and the measurement counter is initialized in SetupJob

countRdf = 0;

The addition to SingleStep to request RDF processing is

if (stepCount >= stepEquil &&

(stepCount - stepEquil) %stepRdf == 0) EvalRdf ();

while the output function is simply

void PrintRdf (FILE *fp)

{

real rb;

int n;

5

fprintf (fp, "rdf\n");

for (n = 0; n < sizeHistRdf; n ++) {

rb = (n + 0.5) * rangeRdf / sizeHistRdf;

fprintf (fp, "%8.4f %8.4f\n", rb, histRdf[n]);

} 10

}

The RDF results shown here are obtained from soft-sphere runs that include the
following input data (other data items are taken from earlier case studies):

initUcell 8 8 8

limitRdf 100

rangeRdf 4.

sizeHistRdf 200

stepEquil 2000

stepInitlzTemp 200

stepLimit 17000

stepRdf 50

temperature 1.

An FCC initial state is used, so that Nm = 2048. Three density values are used,
namely, 0.6, 0.8 and 1.0. The results appearing in Figure 4.3 are those obtained
during the last 1000 timesteps of each run; the way in which structure emerges as
density increases is clearly visible.

For a simple monatomic fluid g(r) shows how, on average, the neighborhood
seen by an atom consists of concentric shells of atoms with well-defined radii. As
the density increases, these shells become distorted, an effect reflected in the RDF
by additional peaks that appear once the lattice structure of the nascent solid phase
begins to make its presence felt. The fact that in the liquid all correlation is lost
beyond a few atomic diameters confirms the absence of any long-range positional

94 4 Equilibrium properties of simple fluids

0 1 2 3 4
0

1

2

3

4

distance

ra
di

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Fig. 4.3. Radial distribution function for soft spheres at densities 0.6–1.0.

order and suggests a picture in which atoms can regard their more distant neighbors
as a smeared-out continuum, a useful idealization when trying to construct simple
liquid models.

Once the RDF is known, estimates of the errors in the thermodynamic proper-
ties due to the interaction cutoff can be determined from the definitions of these
quantities in terms of g(r). For example, the error in the potential energy is

�EU = 2πρ

∫ ∞

rc

g(r)u(r)r2 dr (4.3.9)

and a related expression exists for the pressure [han86b]. Since g(r) ≈ 1 at suffi-
ciently large r , the calculation can be simplified; in some cases the error can even
be evaluated analytically, such as for the LJ potential, where

�EU = 8πρ

(
1

9r9
c

− 1

3r3
c

)
(4.3.10)

Long-range order
The RDF primarily addresses the local structure, but gives little direct information
as to whether long-range crystalline order exists. The sharpness of the RDF peaks
and the presence of additional peaks at positions indicative of specific lattices pro-
vide indirect evidence that is better appreciated once the existence of crystalline
order has been established by other means.

Long-range order corresponds to the presence of lattice structure and is the quan-
tity underlying x-ray scattering measurements from crystalline materials. The local

4.3 Structure 95

density at a point r can be expressed as a sum over atoms,

ρ(r) =
Nm∑
j=1

δ(r − r j) (4.3.11)

and its Fourier transform is simply

ρ(k) = 1

Nm

Nm∑
j=1

e−i k·r j (4.3.12)

In a calculation of |ρ(k)| designed to test for the presence of long-range order, k
should be chosen to be a reciprocal lattice vector of the ordered state; this can be
any linear combination of the vectors appropriate for the expected FCC lattice, so
we choose

k = 2π

l
(1, −1, 1) (4.3.13)

where l is the unit cell edge. If the system is almost fully ordered |ρ(k)| ≈ 1, but
in the disordered liquid state |ρ(k)| = O(N−1/2

m).
The function♠ for evaluating long-range order, assuming (for convenience) all

region edges to be the same length, is

void EvalLatticeCorr ()

{

VecR kVec;

real si, sr, t;

int n; 5

kVec.x = 2. * M_PI * initUcell.x / region.x;

kVec.y = - kVec.x;

kVec.z = kVec.x;

sr = 0.; 10

si = 0.;

DO_MOL {

t = VDot (kVec, mol[n].r);

sr += cos (t);

si += sin (t); 15

}

latticeCorr = sqrt (Sqr (sr) + Sqr (si)) / nMol;

}

One additional variable is introduced here,

real latticeCorr;

♠ pr_04_4

96 4 Equilibrium properties of simple fluids

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

time

lo
ng

-r
an

ge
 o

rd
er

Fig. 4.4. Time dependence of long-range order in soft-sphere systems that start in an
ordered state; the results are for densities 0.8–1.1.

This function is called prior to the call to PrintSummary and the output should
include the value of latticeCorr. No averaging over separate measurements is
included, but this could easily be added.

One point must be kept in mind when studying solidification in a finite system,
namely, that the best results will be obtained if the region size and shape allow
the formation of an integral number of unit cells along each lattice direction. Any
mismatch will introduce imperfections of one kind or another into the ordered state,
leading to a reduction in the apparent long-range order.

In Figure 4.4 we show how long-range order varies with time during the early
stages of runs begun in the ordered state; we use the same system as for the RDF
studies but without any initial temperature adjustment. The four density values
shown are between 0.8 and 1.1. At the larger densities a moderate to high degree of
order persists throughout the observation period (although this is not a guarantee
of what might happen over much longer times), whereas at the lowest density the
long-range order rapidly vanishes.

4.4 Packing studies

Local structure

There are many reasons for seeking information about local atomic organization
that is more detailed than the RDF can provide. In simple fluids the motivation is

4.4 Packing studies 97

Fig. 4.5. The Voronoi subdivision for a small, random set of points in two dimensions;
the region boundaries are periodic.

to understand better how atoms are arranged, and what distinguishes the average
packing from the fully ordered crystalline state. In more complex systems the same
packing questions can be asked in order to gain more specific information about
molecular organization; for example, an estimate of the exposed surface of part of
a large molecule can be important for studies of chemical reactivity.

How to describe the spatial organization of what sometimes amounts to little
more than a random array of atoms is far from obvious. The most widely used
method is based on a Voronoi subdivision [hsu79, cap81, rap83, med90], in which
each atom is surrounded by a convex polyhedron constructed using certain pre-
scribed rules. The outcome of this construction process is the partitioning of space
into a set of polyhedra, with all points that are closer to a particular atom than
to any other belonging to its polyhedron. In this way it is possible to define the
neighborhood of an atom uniquely, and atoms can then be regarded as adjacent
if their polyhedra share a common face. The polyhedra themselves are also of
considerable interest since the interactions can influence their geometrical prop-
erties. Displaying an image of such a partitioning in three dimensions is not partic-
ularly informative, but in Figure 4.5 we show the corresponding two-dimensional
result (the name of Dirichlet is associated with this problem) for a random set of
points.

98 4 Equilibrium properties of simple fluids

Voronoi subdivision

The Voronoi analysis will be carried out separately from the MD run♠ to demon-
strate how this kind of postprocessing is done in general; in view of the complexity
of the Voronoi analysis it is clearly desirable to keep it distinct from the simulation.
Every so often a snapshot containing sufficient information to reproduce the atomic
configuration is written to a disk file; this will provide the raw data for subsequent
analysis. The following line is added to main following the call to SingleStep,

if (stepCount % stepSnap == 0) PutConfig ();

where stepSnap specifies the number of timesteps between snapshots and

NameI (stepSnap),

is added to the input data. The function PutConfig is described in §18.6.
Construction of Voronoi polyhedra is an exercise in computational geometry and

is by far the longest and most complex of the analysis programs used in these case
studies. There are various ways of dealing with this problem [bro78, fin79, tan83];
the version described here computes each polyhedron separately, but does the job
with a constant computational effort that is independent of the total number of
atoms. Periodic boundaries are assumed.

A concise summary of the method follows. The first step for each atom is to
generate a list of its neighbors ordered by distance. A large tetrahedron is then
constructed as a generous overestimate of the eventual polyhedron; portions of this
polyhedron will be removed in the course of the computation until what remains at
the end is the Voronoi polyhedron for that atom. The computation begins with the
initial tetrahedron, and carries out the following sequence of operations for each
neighbor in the list until none remains that could possibly alter the polyhedron
shape:

• compute the bisecting plane between the atom of interest and the neighbor;
• determine which polyhedron vertices lie on the far side of the plane;
• determine which edges and faces are cut by the plane;
• compute the locations of the intercepts of the plane with each cut edge;
• update the description of each cut face and determine which faces are deleted

from the polyhedron entirely;
• add the new vertices and edges to the polyhedron, together with the new face;
• remove deleted vertices, edges and faces from the polyhedron description;
• locate the most distant vertices in the new and cut faces.

♠ pr_04_5

4.4 Packing studies 99

When the process terminates, a test is made to ensure that nothing remains of the
initial faces; any remnants are symptomatic of a poor choice of initial polyhedron.
Measurements made on the resulting polyhedron include vertex, edge and face
counts, as well as the volume and surface area.

Assuming that a list of atoms to be tested during the construction of the poly-
hedron for a particular atom has already been prepared, the following function♠

shows how the computation is organized.

void AnalVorPoly ()

{

int nf;

Sort (distSq, siteSeq, nTestSites); 5

InitVorPoly ();

for (curSite = 0; curSite < nTestSites; curSite ++) {

if (distSq[siteSeq[curSite]] >= 4. * vDistSqMax) break;

siteB = testSites[siteSeq[curSite]];

nvDel = 0; 10

neNew = 0;

neDel = 0;

neCut = 0;

nfDel = 0;

nfCut = 0; 15

BisectPlane ();

if (nvDel > 0) ProcDelVerts ();

if (neCut > 0) ProcCutEdges ();

if (nfCut > 0) ProcCutFaces ();

if (neNew > 0) ProcNewVerts (); 20

if (nfCut > 0) ProcNewFace ();

RemoveOld ();

if (nfCut > 0) FindDistVerts ();

}

for (nf = 0; nf < 4; nf ++) 25

if (face[nf].stat != 0) ErrExit (ERR_SUBDIV_UNFIN);

PolyGeometry ();

PolySize ();

}

The algorithm
The Voronoi construction task (in common with other exercises in computational
geometry) involves a great many details†. Because of the rather complex nature of
the algorithm these details can be handled in a variety of ways; this is one pos-
sible approach. For brevity we omit checks on array overflow and other potential

♠ pr_anvorpol
† The details can be skipped without affecting the continuity of the discussion.

100 4 Equilibrium properties of simple fluids

problems, although such safety measures should be included to help detect pro-
gramming or runtime errors.

The method for determining which atoms can contribute to a particular polyhe-
dron assumes that the region has been subdivided into cells. The atoms required
are obtained by first scanning a range of cells around the one containing the atom
under examination, then sorting the atoms found into ascending distance order and
placing the ordered list of atom indices in the array siteSeq (the call to Sort in
AnalVorPoly can use any standard sorting function – see §18.4). Here we only
scan neighbor cells, but the range could be extended.

void FindTestSites (int na)

{

VecR dr;

VecI cn;

int c, cx, cy, cz, i, ofx, ofy, ofz; 5

cx = mol[na].inCell % cells.x;

cy = (mol[na].inCell / cells.x) % cells.y;

cz = mol[na].inCell / (cells.x * cells.y);

nTestSites = 0; 10

for (ofz = -1; ofz <= 1; ofz ++) {

cn.z = (cz + ofz + cells.z) % cells.z;

for (ofy = -1; ofy <= 1; ofy ++) {

cn.y = (cy + ofy + cells.y) % cells.y;

for (ofx = -1; ofx <= 1; ofx ++) { 15

cn.x = (cx + ofx + cells.x) % cells.x;

c = VLinear (cn, cells) + nMol;

DO_CELL (i, c) {

VSub (dr, mol[na].r, mol[i].r);

VWrapAll (dr); 20

testSites[nTestSites] = i;

distSq[nTestSites] = VLenSq (dr);

++ nTestSites;

}

} 25

}

}

}

Several arrays of structures are used in the program to describe the geometrical
details (edges, faces and vertices) of a polyhedron as it is being constructed. The
structures themselves are the following:

typedef struct {

int f[2], v[2], stat;

} Edge;

typedef struct { 5

real dist;

4.4 Packing studies 101

int fPtr, stat, vFar;

} Face;

typedef struct { 10

int e, link, v;

} Flist;

typedef struct {

VecR pos; 15

real distSq;

int e[3], stat;

} Vert;

A structure of type Edge is associated with each polyhedron edge. In each such
structure, the identities of the two vertices joined by the edge are stored in v and
the two faces that share the edge appear in f.

With each face is associated a circular linked list (a linked list whose final el-
ement points back to the start [knu68]) consisting of elements that are structures
of type Flist that itemize, in order of appearance, the edges and vertices defining
the face boundary; these are stored in e and v, with link providing the indices that
tie the list together. A structure of type Face is also associated with each face. The
element dist records the shortest distance from the atom to the plane of the face,
fPtr is the index of the first item in the circular list and vFar identifies the furthest
vertex in the face from the atom.

In the structure of type Vert associated with each vertex, the vertex coordinates
are stored in pos, the squared distance of each vertex from the atom in distSq and
the identities of the three edges terminating at the vertex appear in e. To simplify
an already complex program, the data representation assumes that there will be
exactly three edges attached to each vertex; this excludes certain regular lattice
arrangements, as well as the extremely rare case of numerical degeneracy (one
candidate for the missing safety checks).

The structures also contain status indicators stat which, as the construction
progresses, show whether the elements still belong to the polyhedron, have been
deleted, or are about to change status. The reader will detect a certain amount of
redundancy in the information stored in the structures, but having it all readily
accessible simplifies the computation.

The polyhedron used to start the calculation is a tetrahedron. The following func-
tion specifies the vertex coordinates and initializes all the data needed to describe
the structure of the polyhedron during its subsequent modification.

void InitVorPoly ()

{

VecR w, vPosI[] = {{-1., -1., -1.}, {1., -1., -1.}, {0., 2., -1.},

{0., 0., 3.}};

102 4 Equilibrium properties of simple fluids

real r2, r6; 5

int m, n, ne, nf, nv, s,

vValI[] = {0,2,5,0,1,4,1,2,3,3,4,5},

eFacesI[] = {0,3,0,1,0,2,1,2,1,3,2,3},

eVertsI[] = {0,1,1,2,0,2,2,3,1,3,0,3},

eI[] = {0,1,2,4,3,1,2,3,5,5,4,0}, 10

vI[] = {0,1,2,1,3,2,0,2,3,0,3,1};

r2 = sqrt (2.) * rangeLim;

r6 = sqrt (6.) * rangeLim;

siteA = testSites[siteSeq[0]]; 15

eLast = 5;

fLast = 3;

vLast = 3;

m = 0;

for (nv = 0; nv <= vLast; nv ++) { 20

vert[nv].pos = mol[siteA].r;

VSet (w, r6 / 3., r2 / 3., rangeLim / 3.);

VMul (w, w, vPosI[nv]);

VVAdd (vert[nv].pos, w);

vert[nv].distSq = Sqr (rangeLim); 25

vert[nv].stat = 2;

for (n = 0; n < 3; n ++) {

vert[nv].e[n] = vValI[m];

++ m;

} 30

}

vDistSqMax = vert[0].distSq;

for (ne = 0; ne <= eLast; ne ++) {

edge[ne].v[0] = eVertsI[2 * ne];

edge[ne].f[0] = eFacesI[2 * ne]; 35

edge[ne].v[1] = eVertsI[2 * ne + 1];

edge[ne].f[1] = eFacesI[2 * ne + 1];

edge[ne].stat = 3;

}

for (s = 0; s < MAX_FLIST - 1; s ++) flist[s].link = s + 1; 40

s = 0;

for (nf = 0; nf <= fLast; nf ++) {

face[nf].vFar = vI[s];

face[nf].stat = 3;

face[nf].fPtr = s; 45

for (n = 0; n < 3; n ++) {

flist[s].v = vI[s];

flist[s].e = eI[s];

++ s;

} 50

flist[s - 1].link = face[nf].fPtr;

}

fListLast = s - 1;

}

4.4 Packing studies 103

A number of other arrays will be introduced at this point. Elements that have
been identified as deleted by the plane currently under consideration are listed in
vDel, eDel and fDel, while eCut and fCut identify edges and faces that are only
cut (intersected) by the current plane and eNew identifies new edges that are in the
process of being added to the polyhedron. Variables such as fListLast indicate
the last storage element in use.

Bisection of the line between the atom and one of its neighbors to produce a
possible new face for the polyhedron is carried out by the following function; the
coefficients of the plane equation are placed in the array fParam. Allowance is
made for periodic boundaries. The vector operations appearing in the function im-
plement the following results:

• the equation of the plane bisecting ri j is

(ri − r j) · p = (r2
i − r2

j)/2 (4.4.1)

or, more concisely, a · p = b;
• the equation of the edge joining vertices v1 and v2 is

p = pv1 + α(pv2 − pv1) (4.4.2)

where 0 ≤ α ≤ 1;
• the intercept between the plane and the edge, if there is one, occurs when

α = (b − a · pv1)

a · (pv2 − pv1)
(4.4.3)

void BisectPlane ()

{

VecR dr, shift;

real d1, d2, d3;

int nv; 5

d1 = 0.;

fParamS = 0.;

VSub (fParamV, mol[siteB].r, mol[siteA].r);

VZero (shift); 10

VShiftAll (fParamV);

VVAdd (fParamV, shift);

d1 = VDot (fParamV, mol[siteA].r);

VAdd (dr, mol[siteB].r, shift);

fParamS = 0.5 * (VLenSq (dr) - VLenSq (mol[siteA].r)); 15

for (nv = 0; nv <= vLast; nv ++) {

if (vert[nv].stat != 0) {

d2 = VDot (fParamV, vert[nv].pos);

if (d1 != d2) {

d3 = (fParamS - d1) / (d2 - d1); 20

if (d3 > 0. && d3 < 1.) {

104 4 Equilibrium properties of simple fluids

vDel[nvDel] = nv;

++ nvDel;

vert[nv].stat = 1;

} 25

}

}

}

}

To handle periodic boundaries we have introduced

#define VShift(v, t) \

if (v.t >= 0.5 * region.t) shift.t -= region.t; \

else if (v.t < -0.5 * region.t) shift.t += region.t

#define VShiftAll(v) \

{VShift (v, x); \ 5

VShift (v, y); \

VShift (v, z);}

Several functions are called in succession from AnalVorPoly to deal with those
vertices, edges and faces of the polyhedron that are added, deleted or modified, as
a result of including this new face. The first of these functions determines the edges
and faces affected by the deleted vertices.

void ProcDelVerts ()

{

int e, m, n, nv;

for (nv = 0; nv < nvDel; nv ++) { 5

for (m = 0; m < 3; m ++) {

e = vert[vDel[nv]].e[m];

-- edge[e].stat;

if (edge[e].stat == 2) {

eCut[neCut] = e; 10

++ neCut;

} else {

eDel[neDel] = e;

++ neDel;

} 15

for (n = 0; n < 2; n ++) {

if (face[edge[e].f[n]].stat == 3) {

fCut[nfCut] = edge[e].f[n];

++ nfCut;

face[edge[e].f[n]].stat = 2; 20

}

}

}

}

} 25

4.4 Packing studies 105

The next function deals with the edges that have been cut by the plane; the inter-
section points will become vertices of the polyhedron.

void ProcCutEdges ()

{

VecR dr;

real d, dt1, dt2;

int nd, ne, vt1, vt2; 5

for (ne = 0; ne < neCut; ne ++) {

if (edge[eCut[ne]].stat == 2) {

edge[eCut[ne]].stat = 3;

vt1 = edge[eCut[ne]].v[0]; 10

vt2 = edge[eCut[ne]].v[1];

dt1 = VDot (fParamV, vert[vt1].pos);

dt2 = VDot (fParamV, vert[vt2].pos);

if (vert[vt1].stat == 1) nd = 0;

else if (vert[vt2].stat == 1) nd = 1; 15

++ vLast;

vert[vLast].stat = 2;

vert[vLast].distSq = 0.;

d = (fParamS - dt1) / (dt2 - dt1);

VInterp (vert[vLast].pos, d, vert[vt2].pos, vert[vt1].pos); 20

VSub (dr, vert[vLast].pos, mol[siteA].r);

vert[vLast].distSq = VLenSq (dr);

edge[eCut[ne]].v[nd] = vLast;

vert[vLast].e[0] = eCut[ne];

vert[vLast].e[1] = 0; 25

vert[vLast].e[2] = 0;

}

}

}

Here,

#define VInterp(v1, s2, v2, v3) \

VSSAdd (v1, s2, v2, 1. - (s2), v3)

#define VSSAdd(v1, s2, v2, s3, v3) \

(v1).x = (s2) * (v2).x + (s3) * (v3).x, \

... 5

The faces cut by the plane are now examined; if a face is not completely eliminated,
its lists of boundary edges and vertices are updated to account for the changes.

void ProcCutFaces ()

{

int faceGone, nf, s, s1, s2, s3, s4, v1, v2, vDelCount;

eLastP = eLast; 5

++ fLast;

for (nf = 0; nf < nfCut; nf ++) {

106 4 Equilibrium properties of simple fluids

s = face[fCut[nf]].fPtr;

faceGone = 0;

while (vert[flist[s].v].stat != 2 && ! faceGone) { 10

s = flist[s].link;

if (s == face[fCut[nf]].fPtr) faceGone = 1;

}

if (faceGone) {

fDel[nfDel] = fCut[nf]; 15

face[fCut[nf]].stat = 1;

++ nfDel;

} else {

face[fCut[nf]].stat = 3;

face[fCut[nf]].fPtr = s; 20

for (s1 = s, s2 = flist[s1].link; vert[flist[s2].v].stat == 2;

s2 = flist[s1].link) s1 = s2;

vDelCount = 1;

for (s3 = s2, s4 = flist[s3].link; vert[flist[s4].v].stat != 2;

s4 = flist[s3].link) { 25

++ vDelCount;

s3 = s4;

}

v1 = edge[flist[s1].e].v[0] + edge[flist[s1].e].v[1] -

flist[s1].v; 30

v2 = edge[flist[s3].e].v[0] + edge[flist[s3].e].v[1] -

flist[s4].v;

++ eLast;

flist[s3].v = v2;

if (vDelCount == 1) { 35

++ fListLast;

s = fListLast;

flist[s1].link = s;

flist[s].link = s2;

flist[s].v = v1; 40

flist[s].e = eLast;

} else {

flist[s2].v = v1;

flist[s2].e = eLast;

if (vDelCount > 2) flist[s2].link = s3; 45

}

edge[eLast].v[0] = v1;

edge[eLast].v[1] = v2;

edge[eLast].f[0] = fCut[nf];

edge[eLast].f[1] = fLast; 50

edge[eLast].stat = 2;

eNew[neNew] = eLast;

++ neNew;

}

} 55

}

A little extra bookkeeping is required for the newly added vertices,

4.4 Packing studies 107

void ProcNewVerts ()

{

int ne, v;

for (ne = 0; ne < neNew; ne ++) { 5

if (eNew[ne] > eLastP) {

v = edge[eNew[ne]].v[0];

if (vert[v].e[1] == 0) vert[v].e[1] = eNew[ne];

else vert[v].e[2] = eNew[ne];

v = edge[eNew[ne]].v[1]; 10

if (vert[v].e[1] == 0) vert[v].e[1] = eNew[ne];

else vert[v].e[2] = eNew[ne];

}

}

} 15

and likewise for new faces,

void ProcNewFace ()

{

int e, n, ne, v;

for (n = 0; n < neNew; n ++) { 5

++ fListLast;

if (n == 0) {

e = eNew[0];

face[fLast].fPtr = fListLast;

v = edge[e].v[0]; 10

} else {

ne = 1;

for (e = eNew[ne]; edge[e].v[0] != v && edge[e].v[1] != v ||

edge[e].stat == 3; e = eNew[ne]) ++ ne;

} 15

flist[fListLast].v = v;

v = edge[e].v[0] + edge[e].v[1] - v;

flist[fListLast].e = e;

edge[e].stat = 3;

} 20

face[fLast].stat = 3;

flist[fListLast].link = face[fLast].fPtr;

face[fLast].dist = 0.5 * sqrt (distSq[siteSeq[curSite]]);

}

Deleted vertices, edges and faces are then flagged appropriately.

void RemoveOld ()

{

int n;

108 4 Equilibrium properties of simple fluids

for (n = 0; n < nvDel; n ++) vert[vDel[n]].stat = 0; 5

for (n = 0; n < neDel; n ++) {

if (edge[eDel[n]].stat == 1) edge[eDel[n]].stat = 0;

}

for (n = 0; n < nfDel; n ++) face[fDel[n]].stat = 0;

} 10

Keeping track of the most distant vertex in each face, as well as the furthest
vertex of all, simplifies the task of determining whether a given plane could become
a face of the polyhedron. This is done as follows.

void FindDistVerts ()

{

real dd;

int nf, s;

5

fCut[nfCut] = fLast;

for (nf = 0; nf < nfCut + 1; nf ++) {

if (face[fCut[nf]].stat != 0) {

s = face[fCut[nf]].fPtr;

dd = vert[flist[s].v].distSq; 10

face[fCut[nf]].vFar = flist[s].v;

for (s = flist[s].link; s != face[fCut[nf]].fPtr;

s = flist[s].link) {

if (vert[flist[s].v].distSq > dd) {

dd = vert[flist[s].v].distSq; 15

face[fCut[nf]].vFar = flist[s].v;

}

}

}

} 20

vDistSqMax = 0.;

for (nf = 0; nf <= fLast; nf ++) {

if (face[nf].stat != 0 && vDistSqMax < vert[face[nf].vFar].distSq)

vDistSqMax = vert[face[nf].vFar].distSq;

} 25

}

Evaluation of the geometrical properties of the current polyhedron is as follows.
Here, the four quantities computed and stored in the array polyGeom are the num-
bers of vertices, edges, faces, and the average number of edges per face. These
results are subsequently combined (in main) with those from other polyhedra to
produce averages for the entire system.

void PolyGeometry ()

{

int n, ne, nf, nv, s;

for (n = 0; n < 4; n ++) polyGeom[n].val = 0.; 5

4.4 Packing studies 109

for (nv = 0; nv <= vLast; nv ++) {

if (vert[nv].stat != 0) ++ polyGeom[0].val;

}

for (ne = 0; ne <= eLast; ne ++) {

if (edge[ne].stat != 0) ++ polyGeom[1].val; 10

}

for (nf = 0; nf <= fLast; nf ++) {

if (face[nf].stat != 0) {

++ polyGeom[2].val;

++ polyGeom[3].val; 15

for (s = flist[face[nf].fPtr].link; s != face[nf].fPtr;

s = flist[s].link) ++ polyGeom[3].val;

}

}

polyGeom[3].val /= polyGeom[2].val; 20

}

The surface area and volume of the polyhedron are computed by the function
below; these results will also be used in producing averages. The area of a single
(convex) face f of the polyhedron is just the sum of the areas of the triangles into
which it can be decomposed,

A f = 1
2

∑
i

|(ri+1 − r1) × (ri − r1)| (4.4.4)

where the ri are the vertices of f , and the volume is given by the sum over faces

V = 1
3

∑
f

d f A f (4.4.5)

where d f is the distance of the face from the atom position.

void PolySize ()

{

VecR ca, d1, d2, d3;

real a;

int nf, s, v1, v2; 5

polyArea.val = 0.;

polyVol.val = 0.;

for (nf = 0; nf <= fLast; nf ++) {

if (face[nf].stat != 0) { 10

s = face[nf].fPtr;

v1 = flist[s].v;

s = flist[s].link;

v2 = flist[s].v;

VSub (d1, vert[v2].pos, vert[v1].pos); 15

VZero (ca);

for (s = flist[s].link; s != face[nf].fPtr; s = flist[s].link) {

110 4 Equilibrium properties of simple fluids

v2 = flist[s].v;

VSub (d2, vert[v2].pos, vert[v1].pos);

VCross (d3, d1, d2); 20

VVAdd (ca, d3);

d1 = d2;

}

a = VLen (ca);

polyArea.val += a / 2.; 25

polyVol.val += face[nf].dist * a / 6.;

}

}

}

Here, VCross evaluates the vector cross product,

#define VCross(v1, v2, v3) \

(v1).x = (v2).y * (v3).z - (v2).z * (v3).y, \

(v1).y = (v2).z * (v3).x - (v2).x * (v3).z, \

(v1).z = (v2).x * (v3).y - (v2).y * (v3).x

A list of the (global) variables used in the program follows.

typedef struct {

VecR r;

int inCell;

} Mol;

5

Mol *mol;

Edge *edge;

Face *face;

Flist *flist;

Vert *vert; 10

VecR *r, fParamV, region;

VecI cells;

real *distSq, cellRatio, eulerSum, fParamS, fracPolyVol, rangeLim,

regionVol, timeNow, vDistSqMax;

Prop polyGeom[4], polyArea, polyVol; 15

int *cellList, *eCut, *eDel, *eNew, *fCut, *fDel, *siteSeq,

*testSites, *vDel, blockNum, blockSize, curSite, eLast, eLastP,

fLast, fListLast, nCell, neCut, neDel, neNew, nfCut, nfDel, nMol,

nTestSites, nvDel, runId, siteA, siteB, stepCount, vLast;

FILE *fp; 20

The variables blockNum, blockSize, runId and fp are needed for dealing with
the snapshot file. Several parameters are used to set the sizes of the arrays, namely,

#define MAX_EDGE 200

#define MAX_FACE 50

#define MAX_FLIST 500

4.4 Packing studies 111

#define MAX_ITEM 50

#define MAX_VERT 200 5

The values are larger than necessary (for simplicity, the storage used by deleted
items is not reused), but if safety checks are added to the program all risk of array
overflow can be avoided.

Array allocation is carried out by a new version of AllocArrays.

void AllocArrays ()

{

AllocMem (mol, nMol, Mol);

AllocMem (distSq, nMol, real);

AllocMem (siteSeq, nMol, int); 5

AllocMem (testSites, nMol, int);

AllocMem (cellList, VProd (cells) + nMol, int);

AllocMem (edge, MAX_EDGE, Edge);

AllocMem (face, MAX_FACE, Face);

AllocMem (flist, MAX_FLIST, Flist); 10

AllocMem (vert, MAX_VERT, Vert);

AllocMem (eCut, MAX_ITEM, int);

... (similarly eDel, eNew, fCut, fDel, vDel) ...

}

The main program for the Voronoi calculation follows. Configurations are read
by GetConfig (described in §18.6) while the input snapshot file is selected by call-
ing SetupFiles (§18.7); the value of runId must be supplied when the program
is run. The function SubdivCells (not shown) contains code borrowed from the
cell version of ComputeForces (§3.4) that assigns atoms to cells and also saves
the cell numbers in mol[].inCell.

int main (int argc, char **argv)

{

int n, na;

runId = atoi (argv[1]); 5

cellRatio = 0.5;

SetupFiles ();

blockNum = -1;

while (GetConfig ()) {

regionVol = VProd (region); 10

SubdivCells ();

rangeLim = region.x;

PropZero (polyArea);

PropZero (polyVol);

for (n = 0; n < 4; n ++) PropZero (polyGeom[n]); 15

for (na = 0; na < nMol; na ++) {

FindTestSites (na);

AnalVorPoly ();

PropAccum (polyArea);

112 4 Equilibrium properties of simple fluids

PropAccum (polyVol); 20

for (n = 0; n < 4; n ++) PropAccum (polyGeom[n]);

}

fracPolyVol = polyVol.sum / regionVol;

PropAvg (polyArea, nMol);

PropAvg (polyVol, nMol); 25

for (n = 0; n < 4; n ++) PropAvg (polyGeom[n], nMol);

polyArea.sum /= pow (regionVol, 2./3.);

polyArea.sum2 /= pow (regionVol, 2./3.);

polyVol.sum /= regionVol;

polyVol.sum2 /= regionVol; 30

eulerSum = polyGeom[0].sum + polyGeom[2].sum - polyGeom[1].sum;

... (print the results) ...

}

}

The first call to GetConfig calls AllocArrays, and also the following function
to set the cell size; the prescription is somewhat arbitrary, with the parameter
cellRatio used to adjust the number of cells per edge to ensure that the full
complement of neighbors is found.

void SetCellSize ()

{

VSCopy (cells, cellRatio, region);

nCell = VProd (cells);

} 5

Two quantities evaluated in main serve as checks on the computation: the sum
of the volumes of the polyhedra must of course be identical to the region volume,
otherwise it is likely that insufficient neighbors are being examined, and the value
of eulerSum should be exactly 2, a familiar result from graph theory.

Results

The sample results shown Table 4.2 are obtained using soft-sphere systems with
864 atoms, started at T = 1 but without any temperature adjustment, and at
three different densities. Three sets of configurations are recorded at intervals of
1000 timesteps for use in the analysis (starting after 2000 timesteps). To allow
comparison with the behavior of random systems, results from arrays of 4000 to-
tally random points (generated by a special version of InitCoords shown in §3.6)
are included. The trends in the results are clearly visible.

4.5 Cluster analysis

Cluster algorithm

Cluster formation in fluids is a subject of frequent interest, both because clustering
is a real physical process (see also §9.6) and because some models attribute special

4.5 Cluster analysis 113

Table 4.2. Properties of Voronoi polyhedra for soft-sphere systems and for random sets of
points; results shown are mean numbers of vertices nv , edges ne and faces n f per poly-
hedron, and mean number of edges per face nef ; three sets of results are shown for each
case.

density nv ne n f ne f

1.0 24.199 36.299 14.100 5.145
24.194 36.292 14.097 5.146
24.259 36.389 14.130 5.147

0.8 25.310 37.965 14.655 5.173
25.477 38.215 14.738 5.177
25.347 38.021 14.674 5.174

0.6 25.819 38.729 14.910 5.183
25.843 38.764 14.921 5.182
25.750 38.625 14.875 5.180

random 27.005 40.508 15.502 5.187
27.021 40.532 15.511 5.189
27.067 40.600 15.534 5.189

properties to clusters. In either case it is important to be able to identify atoms
belonging to common clusters and to measure various cluster properties. Here we
focus on clusters appearing in instantaneous snapshots of a soft-sphere system, but
a deeper analysis might also need to consider time-dependent behavior, such as
cluster growth rates, or cluster lifetimes in systems where attractive interactions
actually bind atoms together.

Different criteria are available for determining whether an atom belongs to a
cluster. One option is to consider the energy that binds (assuming interactions with
an attractive component) an atom to other atoms already in the cluster. An alter-
native method requiring less computation (which, for attractive pair potentials, is
essentially the same) is to base the criterion on the interatomic distance, so that if
atom i is already in the cluster, atom j will also be included if ri j < rd , where rd

is the chosen threshold separation; we will adopt this definition here. The value of
rd would typically be based on some energy condition, but this does not affect the
technique. If there is no physical reason for preferring a particular value of rd , the
sensitivity of the results to a change in rd should of course be examined.

This analysis♠ will also be carried out separately from the MD run; the user will
want to try different rd values, so it is more sensible to have the MD configurations
available for immediate analysis. The configuration data are input to the analysis

♠ pr_anclust

114 4 Equilibrium properties of simple fluids

program in the same way as in the earlier Voronoi study. Cluster construction be-
gins by determining those atom pairs that are separated by less than rd ; the function
used for this is derived from BuildNebrList (§3.4), with a cell size (use of cells
is optional) based on the variable rClust that corresponds to rd .

void BuildClusters ()

{

real rrClust;

rrClust = Sqr (rClust); 5

...

if (VLenSq (dr) < rrClust) AddBondedPair (j1, j2);

...

}

The tasks of adding atoms to clusters and merging existing clusters that are found
to share a common member are carried out by AddBondedPair below. Two struc-
tures are defined here, one a modified version of Mol, the other to help organize the
cluster work,

typedef struct {

VecR r;

int inClust;

} Mol;

5

typedef struct {

int head, next, size;

} Clust;

In Mol, inClust records the cluster to which an atom belongs. In Clust, head
points to the first atom of the cluster, next is a pointer from one atom in the cluster
to the next (atoms belonging to a cluster are associated using a linked list) and
size eventually contains the number of atoms in the cluster. Tracing the detailed
logic of this function is left as an exercise for the reader.

void AddBondedPair (int j1, int j2)

{

int cBig, cSmall, m, mp, nc1, nc2;

nc1 = mol[j1].inClust; 5

nc2 = mol[j2].inClust;

if (nc1 < 0 && nc2 < 0) {

mol[j1].inClust = nClust;

mol[j2].inClust = nClust;

clust[nClust].size = 2; 10

clust[nClust].head = j1;

clust[j1].next = j2;

4.5 Cluster analysis 115

clust[j2].next = -1;

++ nClust;

} else if (mol[j1].inClust < 0) { 15

mol[j1].inClust = nc2;

clust[j1].next = clust[nc2].head;

clust[nc2].head = j1;

++ clust[nc2].size;

} else if (mol[j2].inClust < 0) { 20

mol[j2].inClust = nc1;

clust[j2].next = clust[nc1].head;

clust[nc1].head = j2;

++ clust[nc1].size;

} else { 25

if (nc1 != nc2) {

cBig = (clust[nc1].size > clust[nc2].size) ? nc1 : nc2;

cSmall = nc1 + nc2 - cBig;

for (m = clust[cSmall].head; m >= 0; m = clust[m].next) {

mol[m].inClust = cBig; 30

mp = m;

}

clust[mp].next = clust[cBig].head;

clust[cBig].head = clust[cSmall].head;

clust[cBig].size += clust[cSmall].size; 35

clust[cSmall].size = 0;

}

}

}

Prior to starting cluster construction a little preparation is required.

void InitClusters ()

{

int n;

DO_MOL mol[n].inClust = -1; 5

nClust = 0;

}

After the work is complete the clusters can be reindexed to remove any reference
to those clusters that were absorbed by others during construction.

void CompressClusters ()

{

int j, m, nc;

nc = 0; 5

for (j = 0; j < nClust; j ++) {

if (clust[j].size > 0) {

clust[nc].head = clust[j].head;

clust[nc].size = clust[j].size;

116 4 Equilibrium properties of simple fluids

for (m = clust[nc].head; m >= 0; m = clust[m].next) 10

mol[m].inClust = nc;

++ nc;

}

}

nClust = nc; 15

}

The arrays and variables used here include

Mol *mol;

Clust *clust;

VecR region;

VecI cells;

real rClust, timeNow; 5

Prop cSize;

int *cellList, bigSize, blockNum, blockSize, nCellEdge, nClust,

nMol, nSingle, runId, stepCount;

FILE *fp;

All the arrays used to hold cluster data are of size nMol, to allow for the extreme
situation where all atoms form their own clusters. The size of the cell array is based
on the number of cells per edge,

nCellEdge = region.x / rClust;

The array allocation function is

void AllocArrays ()

{

AllocMem (mol, nMol, Mol);

AllocMem (clust, nMol, Clust);

AllocMem (cellList, Cube (nCellEdge) + nMol, int); 5

}

Once generation is complete the analysis of both geometric and spatial prop-
erties of the clusters can be carried out. Spatial properties of the clusters include
the radius of gyration and moments of the mass distribution; such studies involve
calculations similar to those used for polymer chains in §9.4 and will not be con-
sidered here. Other measurements are of a more geometrical flavor; as an example
the following function counts the number of isolated atoms, finds the cluster with
the most atoms and evaluates the mean and standard deviation of the cluster size
distribution.

4.5 Cluster analysis 117

void AnalClusterSize ()

{

int cBig, nc, ncUse;

PropZero (cSize); 5

ncUse = 0;

cBig = 0;

for (nc = 0; nc < nClust; nc ++) {

cSize.val = clust[nc].size;

if (cSize.val > clust[cBig].size) cBig = nc; 10

if (cSize.val > 1) {

++ ncUse;

PropAccum (cSize);

}

} 15

bigSize = clust[cBig].size;

nSingle = nMol - cSize.sum;

if (ncUse > 0) PropAvg (cSize, ncUse);

}

More complex aspects, such as the number of ways in which atoms are linked into
a cluster, or the topology of the link network, can also be explored using the data
available.

The main program used in the cluster analysis is the following; the values of
runId and rClust must be supplied when the program is run.

int main (int argc, char **argv)

{

runId = atoi (argv[1]);

rClust = atof (argv[2]);

SetupFiles (); 5

blockNum = -1;

while (GetConfig ()) {

InitClusters ();

BuildClusters ();

CompressClusters (); 10

AnalClusterSize ();

printf ("%d %d %d %.1f %.1f\n", nSingle, nClust, bigSize,

PropEst (cSize));

}

} 15

Measurements

Examples of cluster properties are shown in Table 4.3. The configuration data pro-
duced by the ρ = 0.8 Voronoi run are used here as well. The results of analyzing
three different realizations are shown for various values of the cluster threshold

118 4 Equilibrium properties of simple fluids

Table 4.3. Cluster properties for a soft-sphere fluid; results shown are numbers of isolated
atoms ni and multisite clusters nc, size of the largest cluster sm and mean cluster size 〈s〉;
three sets of results are shown for each rd .

rd ni nc sm 〈s〉
1.02 344 148 25 3.5

313 147 26 3.7
340 152 23 3.4

1.04 175 117 165 5.9
173 90 280 7.7
183 121 98 5.6

1.06 80 39 636 20.1
84 23 712 33.9
89 48 623 16.1

1.08 38 4 817 206.5
31 10 808 83.3
36 13 796 63.7

1.10 16 3 843 282.7
16 2 846 424.0
14 4 840 212.5

separation rd . Percolation theory can be used to explain the changing behavior as
rd is varied and also to inspire other kinds of cluster analysis [sta92].

4.6 Further study
4.1 Compare specific heats obtained from kinetic energy fluctuations and from

d E/dT .
4.2 Examine the errors in energy and pressure due to truncating the LJ interaction.
4.3 Study the soft-sphere equation of state near the melting transition; what kind

of transition occurs?
4.4 The possible existence of a hexatic phase in two-dimensional liquids – in

which there is long-range orientational order although no translational order –
has been explored using MD [abr86]; look into the subject.

4.5 Examine the difference between the LJ and soft-sphere RDFs.
4.6 Extend the structural analysis to consider correlations involving the coordi-

nates of three atoms at a time [vog84, bar88]; for example, study the distri-
bution of angles subtended by pairs of neighbors (suitably defined) of each
atom.

4.6 Further study 119

4.7 The Voronoi analysis is greatly simplified when applied to systems in two
dimensions (see Figure 4.5); generate and analyze some typical soft-disk
configurations.

4.8 Examine the cluster distributions for the two-dimensional case from the
point of view of percolation theory [hey89].

4.9 Apply cluster analysis to the LJ fluid; here, unlike soft spheres, the bind-
ing energy can be computed for each cluster, so that the study of cluster
formation takes on physical meaning.

5

Dynamical properties of simple fluids

5.1 Introduction
In this chapter we encounter measurements of a type demonstrating some of the
unique capabilities of MD. Because the complete trajectories are available, it is no
more difficult to measure time-dependent properties, both in and out of equilib-
rium, than it is to measure thermodynamic and structural properties at equilibrium.
Here we concentrate on properties defined in terms of time-dependent correlation
functions at the atomic level – the dynamic structure factor and transport coeffi-
cients such as the shear viscosity are examples. Most of the analysis is incorporated
into the simulation program, but it would of course be possible (though extremely
storage intensive) to store the required trajectory data for subsequent processing.

5.2 Transport coefficients

Background

Transport coefficients describe the material properties of a fluid within the frame-
work of continuum fluid dynamics. Discrete atoms play no role whatsoever in the
continuum picture, but this does not seriously limit the enormous range of prac-
tical engineering applications of the continuum approach. The most familiar of
the transport coefficients are those applicable to simple fluids; these are the diffu-
sion coefficient, the shear and bulk viscosities and the thermal conductivity. Other
transport coefficients appear when dealing with more complex fluids, such as those
containing more than one species, or those with novel rheological behavior. In
many problems the transport coefficients are assumed to be experimentally deter-
mined constants, depending only on the temperature and density of the fluid, which
themselves are often assumed constant for a given problem, but in more complex
situations transport coefficients can depend on local behavior, an example being
the dependence of shear viscosity on the velocity gradient.

120

5.2 Transport coefficients 121

While statistical mechanics focuses its attention on equilibrium systems, and
there is no corresponding general theory for systems away from equilibrium, lin-
ear response theory [mcq76, han86b] describes the reaction of an equilibrium sys-
tem to a small external perturbation and defines generalized ‘susceptibilities’ that
are expressed in terms of various equilibrium correlation functions. The trans-
port coefficients we will be discussing here can be expressed in a similar fashion
[hel60, mcq76], despite the fact that there are no obvious mechanical perturbations
corresponding to the concentration, velocity and thermal gradients associated with
the underlying transport processes; we will return to this subject in §7.4.

Each transport coefficient can be derived directly from one of the continuum
equations of fluid dynamics, such as the Navier–Stokes equation, after taking the
long wavelength (small k) limit of the Fourier transformed version of the equation.
The eventual result of the derivation is a direct relation between a macroscopic
transport coefficient and the time integral of a particular microscopic autocorrela-
tion function measured in an equilibrium system; such correlations are not directly
accessible to experiment.

The alternative, and from the historical point of view original, definition of a
transport coefficient, namely, the constant factor relating the response of a system
to an imposed driving force – such as the Newtonian definition of shear viscosity, or
Fourier’s law of heat transport – implies a nonequilibrium system. Measurements
based on these definitions are also feasible within the MD framework; there are,
however, certain technical details that must be addressed in order to carry out such
simulations, and we will deal with this approach in §7.3.

Diffusion

In a continuous system the diffusion coefficient D is defined by Fick’s law relating
mass flow to density gradient [mcq76],

ρu = −D∇ρ (5.2.1)

where u(r, t) is the local velocity and ρ(r, t) the local density or concentration, so
that the time evolution of ρ is described by the equation

∂ρ

∂t
= D∇2ρ (5.2.2)

This result applies both to the diffusion of one species through another and to self-
diffusion within a single species. At the discrete-particle level ρ is just

ρ(r, t) =
Nm∑
j=1

δ
(
r − r j (t)

)
(5.2.3)

122 5 Dynamical properties of simple fluids

Then, for large t – compared with the ‘collision interval’, a vague but intuitively
obvious period of time where continuous potentials are involved – we have the
Einstein expression [mcq76]

D = lim
t→∞

1

6Nmt

〈 Nm∑
j=1

[
r j (t) − r j (0)

]2〉
(5.2.4)

Note that for a finite system, t cannot become too large because the allowed dis-
placements are bounded; eventually this asymptotic result will break down, so that
after reaching a plateau D will begin to drop to zero.

For periodic boundaries we need the ‘true’ atomic displacements r ′
j (t), from

which the effects of wraparound have been removed. If we assume that the dis-
placement per timestep is small relative to the system size (as it always is), then
the two sets of coordinate components are related by

r ′
j x(t) = r j x(t) + nint

([r ′
j x(t − �t) − r j x(t)]/Lx

)
Lx (5.2.5)

where nint(x) is the nearest integer to x , and r ′
j (0) = r j (0). In (5.2.4), 〈. . .〉 denotes

the average over a sufficiently large number of (in principle) independent samples.
The alternative Green–Kubo expression for D [mcq76] is based on the integrated

velocity autocorrelation function,

D = 1

3Nm

∫ ∞

0

〈 Nm∑
j=1

v j (t) · v j (0)

〉
dt (5.2.6)

The two definitions, (5.2.4) and (5.2.6), can be shown to be completely equivalent.
A reliable estimate of D, as well as the other transport coefficients discussed

subsequently, requires that the trajectories be computed relatively accurately for as
long as the velocities remain correlated. As pointed out in §3.8, the main source of
uncertainty in the trajectories is the strongly repulsive potential and not the trunca-
tion error of the numerical method used for solving the differential equations. The
former is a real physical effect that influences the velocity correlations in a way
that mimics nature, so that the velocities remain correlated until overwhelmed by
the noise inherent in the trajectories.

Shear viscosity

The shear viscosity η is defined by the Navier–Stokes equation [mcq76]

ρ

(
∂

∂t
+ u · ∇

)
u = η∇2u +

(η

3
+ ηv

)
∇(∇ · u) − ∇ P (5.2.7)

5.2 Transport coefficients 123

Another transport coefficient also appears in this equation, the bulk viscosity ηv,
but it will not be studied here. Theory then leads to an expression analogous to the
Einstein diffusion formula (5.2.4) [hel60, mcq76] (however, see [all93a]), namely,

η = lim
t→∞

1

6T V t

〈∑
x<y

[∑
j

m jr j x(t)v j y(t) −
∑

j

m jr j x(0)v j y(0)
]2
〉

(5.2.8)

where
∑

x<y denotes a sum over the three pairs of distinct vector components (xy,
yz and zx) used to improve the statistics (and kB = 1). The formula shows how
η characterizes the rate at which some component (for example, y) of momentum
diffuses in a perpendicular (x) direction. While this result bears a certain formal
similarity to the diffusion expression, the conspicuous difference is that here a sin-
gle sum combines the contributions from all atoms, whereas with diffusion each
atom contributes individually – in short, the square of a sum as opposed to a sum
of squares. This expression turns out to be unusable with periodic boundaries be-
cause they violate the translational invariance assumed in the derivation [all93a].

The alternative Green–Kubo form, based on the integrated autocorrelation func-
tion of the pressure tensor, does not experience this problem. The definition is
[mcq76]

η = V

3T

∫ ∞

0

〈∑
x<y

Pxy(t)Pxy(0)

〉
dt (5.2.9)

where

Pxy = 1

V

[∑
j

m jv j xv j y + 1
2

∑
i �= j

ri j x fi j y

]
(5.2.10)

is a component of the pressure tensor (the negative of which is known as the stress
tensor). Evaluation of the second term in Pxy can be carried out along with the force
computation, treating periodic boundaries in the normal way. For pair potentials
such as LJ, in which fi j = f (ri j)r̂i j , it is clear that Pxy = Pyx . Averaging over
vector components is again used to improve the statistics.

Thermal conductivity

The equation for heat transfer derived from Fourier’s law [mcq76], assuming that
the process involves thermal conduction alone and that there is no convection (im-
plying mass flow), is

ρCV
∂ E

∂t
= λ∇2 E (5.2.11)

124 5 Dynamical properties of simple fluids

and the resulting diffusion-like formula for the thermal conductivity is

λ = lim
t→∞

1

6T 2V t

〈∑
x

[∑
j

r j x(t)e j (t) −
∑

j

r j x(0)e j (0)
]2
〉

(5.2.12)

where

e j = 1
2 mv2

j + 1
2

∑
i(�= j)

u(ri j) − 〈e〉 (5.2.13)

is the instantaneous excess energy of atom j , 〈e〉 is the mean energy and
∑

x is a
sum over vector components. The periodic boundary limitation also applies here,
but there is an alternative form based on the integrated heat flux autocorrelation
function,

λ = V

3T 2

∫ ∞

0

〈
S(t) · S(0)

〉
dt (5.2.14)

where†

S = 1

V

[∑
j

e jv j + 1
2

∑
i �= j

ri j (fi j · v j)
]

(5.2.15)

5.3 Measuring transport coefficients

Direct evaluation of diffusion

We now turn to the practical side of studying the transport coefficients, beginning
with the simplest example, the diffusion coefficient, based on the Einstein defini-
tion (5.2.4). The computations will introduce a standardized framework that can
be used for all measurements extending over a series of timesteps, with each such
calculation including initialization, the actual process of making and accumulating
measurements at evenly spaced time intervals, and a final summary. An impor-
tant feature of these computations is that the samples are overlapped to provide
extra results; this calls for additional storage and bookkeeping. While the overlap
increases the correlation between successive samples, with similar consequences
for error estimates as described in §4.2, it can improve the quality of the results
without extending the duration of the run; ideally, overlap should be confined to
time intervals over which the correlation between measurements has decayed to a
comparatively small value.

The measurements entail following the atomic trajectories over a sufficient num-
ber of timesteps to obtain convergence of (5.2.4) to asymptotic behavior. New sets

† The expression for S should also include a term proportional to 〈h〉∑ j v j , where 〈h〉 is the mean enthalpy
per atom, but, provided the total momentum is zero, the term can be dropped.

5.3 Measuring transport coefficients 125

Fig. 5.1. Use of overlapped data collection for time-dependent properties; the measure-
ments at any instant contribute to several sets of results (shown as shaded lines), with the
dashed lines marking the different time origins.

of diffusion measurements are begun at fixed time intervals, so that several sets of
measurements based on different time origins will be in progress simultaneously
because of the overlapped measurements – see Figure 5.1. To be more specific, a
total of nValDiffuse measurements contribute to the set used to produce a single
(unaveraged) estimate of D, there are nBuffDiffuse sets of data being collected
at any time (except for very early in the run), each occupying a separate storage
buffer, and measurements are made every stepDiffuse timesteps. The last of the
parameters governing the data collection is limitDiffuseAv, which specifies the
total number of individual estimates used to produce the averaged value of D. Each
set of measurements is carried out completely independently and they are com-
bined only when complete, with a variable count used to keep track of the number
of measurements currently in that set; this will be initialized in a particular way by
the function InitDiffusion (shown later) to ensure that the measurements are
evenly spaced. Given the values of these parameters, the total run length needed
for a given number of measurements can easily be determined; only complete sets
of results are used and partially filled buffers are discarded at the end of the run.

The functions appearing below measure the squared displacement of each atom
from each of several reference points (or origins), one per set, making allowance
for periodic boundaries, and produce a series of estimates that for sufficiently large
time intervals should converge to D. With each set of measurements, or buffer, is
associated a structure defined as

typedef struct {

VecR *orgR, *rTrue;

real *rrDiffuse;

int count;

} TBuf; 5

in which the array orgR stores the origins for the set of measurements, rTrue ac-
cumulates the components of the ‘true’ displacement of each atom after removing

126 5 Dynamical properties of simple fluids

any wraparound effects, rrDiffuse accumulates the mean-square displacements
and count is a counter. Similarly named structures, but with different contents,
will be encountered in subsequent time-dependent measurements where multiple
overlapped sets of results must also be collected.

The measurement functions♠ are as follows, where Nint (§18.2) performs the
nint(x) operation.

void EvalDiffusion ()

{

VecR dr;

int n, nb, ni;

5

for (nb = 0; nb < nBuffDiffuse; nb ++) {

if (tBuf[nb].count == 0) {

DO_MOL {

tBuf[nb].orgR[n] = mol[n].r;

tBuf[nb].rTrue[n] = mol[n].r; 10

}

}

if (tBuf[nb].count >= 0) {

ni = tBuf[nb].count;

tBuf[nb].rrDiffuse[ni] = 0.; 15

DO_MOL {

VSub (dr, tBuf[nb].rTrue[n], mol[n].r);

VDiv (dr, dr, region);

dr.x = Nint (dr.x);

dr.y = Nint (dr.y); 20

dr.z = Nint (dr.z);

VMul (dr, dr, region);

VAdd (tBuf[nb].rTrue[n], mol[n].r, dr);

VSub (dr, tBuf[nb].rTrue[n], tBuf[nb].orgR[n]);

tBuf[nb].rrDiffuse[ni] += VLenSq (dr); 25

}

}

++ tBuf[nb].count;

}

AccumDiffusion (); 30

}

void AccumDiffusion ()

{

real fac; 35

int j, nb;

for (nb = 0; nb < nBuffDiffuse; nb ++) {

if (tBuf[nb].count == nValDiffuse) {

for (j = 0; j < nValDiffuse; j ++) 40

rrDiffuseAv[j] += tBuf[nb].rrDiffuse[j];

♠ pr_05_1

5.3 Measuring transport coefficients 127

tBuf[nb].count = 0;

++ countDiffuseAv;

if (countDiffuseAv == limitDiffuseAv) {

fac = 1. / (NDIM * 2 * nMol * stepDiffuse * 45

deltaT * limitDiffuseAv);

for (j = 1; j < nValDiffuse; j ++)

rrDiffuseAv[j] *= fac / j;

PrintDiffusion (stdout);

ZeroDiffusion (); 50

}

}

}

}

The functions that initialize (InitDiffusion) and reset (ZeroDiffusion) the
calculation and output the results (PrintDiffusion) follow. Note the values ini-
tially assigned to tBuf[].count that determine the spacing between measure-
ments: using negative initial values delays the start of data collection for each set
of measurements until the appropriate moment.

void InitDiffusion ()

{

int nb;

for (nb = 0; nb < nBuffDiffuse; nb ++) 5

tBuf[nb].count = - nb * nValDiffuse / nBuffDiffuse;

ZeroDiffusion ();

}

void ZeroDiffusion () 10

{

int j;

countDiffuseAv = 0;

for (j = 0; j < nValDiffuse; j ++) rrDiffuseAv[j] = 0.; 15

}

void PrintDiffusion (FILE *fp)

{

real tVal; 20

int j;

fprintf (fp, "diffusion\n");

for (j = 0; j < nValDiffuse; j ++) {

tVal = j * stepDiffuse * deltaT; 25

fprintf (fp, "%8.4f %8.4f\n", tVal, rrDiffuseAv[j]);

}

}

128 5 Dynamical properties of simple fluids

Incorporating the above functions into the MD program requires several addi-
tions. The measurement function is called from SingleStep at regular intervals
after equilibration by

if (stepCount >= stepEquil &&

(stepCount - stepEquil) % stepDiffuse == 0) EvalDiffusion ();

and program initialization (SetupJob) includes

InitDiffusion ();

The new quantities associated with these calculations are

TBuf *tBuf;

real *rrDiffuseAv;

int countDiffuseAv, limitDiffuseAv, nBuffDiffuse, nValDiffuse,

stepDiffuse;

the measurement parameters input to the program are

NameI (limitDiffuseAv),

NameI (nBuffDiffuse),

NameI (nValDiffuse),

NameI (stepDiffuse),

and the necessary arrays are allocated by AllocArrays (note the various array
sizes),

int nb;

...

AllocMem (rrDiffuseAv, nValDiffuse, real);

AllocMem (tBuf, nBuffDiffuse, TBuf);

for (nb = 0; nb < nBuffDiffuse; nb ++) { 5

AllocMem (tBuf[nb].orgR, nMol, VecR);

AllocMem (tBuf[nb].rTrue, nMol, VecR);

AllocMem (tBuf[nb].rrDiffuse, nValDiffuse, real);

}

Diffusion from the velocity autocorrelation function

The alternative approach to measuring the diffusion coefficient is based on the inte-
grated velocity autocorrelation function (5.2.6). Considerations governing the use
of overlapped samples discussed previously also apply; the work itself is organized
in a similar way and even the new variables have corresponding names. Each data
collection buffer has an associated structure of type TBuf whose contents for this

5.3 Measuring transport coefficients 129

particular program are

typedef struct {

VecR *orgVel;

real *acfVel;

int count;

} TBuf; 5

where orgVel stores a copy of the atom velocities at the start of the measure-
ment period and the autocorrelation function is constructed in acfVel. The gen-
eral technique described here forms the basis for studying the remaining transport
coefficients later in this section.

The calculation♠ is carried out by the following functions.

void EvalVacf ()

{

int n, nb, ni;

for (nb = 0; nb < nBuffAcf; nb ++) { 5

if (tBuf[nb].count == 0) {

DO_MOL tBuf[nb].orgVel[n] = mol[n].rv;

}

if (tBuf[nb].count >= 0) {

ni = tBuf[nb].count; 10

tBuf[nb].acfVel[ni] = 0.;

DO_MOL tBuf[nb].acfVel[ni] +=

VDot (tBuf[nb].orgVel[n], mol[n].rv);

}

++ tBuf[nb].count; 15

}

AccumVacf ();

}

void AccumVacf () 20

{

real fac;

int j, nb;

for (nb = 0; nb < nBuffAcf; nb ++) { 25

if (tBuf[nb].count == nValAcf) {

for (j = 0; j < nValAcf; j ++)

avAcfVel[j] += tBuf[nb].acfVel[j];

tBuf[nb].count = 0;

++ countAcfAv; 30

if (countAcfAv == limitAcfAv) {

fac = stepAcf * deltaT / (NDIM * nMol * limitAcfAv);

intAcfVel = fac * Integrate (avAcfVel, nValAcf);

for (j = 1; j < nValAcf; j ++) avAcfVel[j] /= avAcfVel[0];

avAcfVel[0] = 1.; 35

♠ pr_05_2

130 5 Dynamical properties of simple fluids

PrintVacf (stdout);

ZeroVacf ();

}

}

} 40

}

The function Integrate (§18.4) computes the integral of its first argument using
a simple method such as the trapezoidal rule. Other required functions are

void InitVacf ()

{

int nb;

for (nb = 0; nb < nBuffAcf; nb ++) 5

tBuf[nb].count = - nb * nValAcf / nBuffAcf;

ZeroVacf ();

}

void ZeroVacf () 10

{

int j;

countAcfAv = 0;

for (j = 0; j < nValAcf; j ++) avAcfVel[j] = 0.; 15

}

void PrintVacf (FILE *fp)

{

real tVal; 20

int j;

fprintf (fp, "acf\n");

for (j = 0; j < nValAcf; j ++) {

tVal = j * stepAcf * deltaT; 25

fprintf (fp, "%8.4f %8.4f\n", tVal, avAcfVel[j]);

}

fprintf (fp, "vel acf integral: %8.3f\n", intAcfVel);

}

To incorporate the measurements into the MD program add the following state-
ment to SingleStep,

if (stepCount >= stepEquil &&

(stepCount - stepEquil) % stepAcf == 0) EvalVacf ();

and a call to the initialization function from SetupJob

InitVacf ();

5.3 Measuring transport coefficients 131

The additional variables used are

TBuf *tBuf;

real *avAcfVel, intAcfVel;

int countAcfAv, limitAcfAv, nBuffAcf, nValAcf, stepAcf;

the measurement parameters input to the program are

NameI (limitAcfAv),

NameI (nBuffAcf),

NameI (nValAcf),

NameI (stepAcf),

and the array allocations (in AllocArrays) are

AllocMem (avAcfVel, nValAcf, real);

AllocMem (tBuf, nBuffAcf, TBuf);

for (nb = 0; nb < nBuffAcf; nb ++) {

AllocMem (tBuf[nb].acfVel, nValAcf, real);

AllocMem (tBuf[nb].orgVel, nMol, VecR); 5

}

Shear viscosity and thermal conductivity

These transport coefficient computations♠ are also based on the appropriate auto-
correlation functions and closely follow the treatment used to compute D from the
velocity autocorrelation. Indeed, to simplify matters we will assume that all three
transport coefficients are computed together and that identical parameters govern
the measurements. In order to compute the quantities involved in the autocorrela-
tion functions, certain additions must be made to the interaction calculations.

In the expressions for the pressure tensor (5.2.10) and heat current (5.2.15) used
in the definitions of the transport coefficients, sums over products such as ri j x fi j y ,
ri j x fi j yv j y and e jv j x appear; these terms should be evaluated at the same time
as the forces. Additional arrays are needed to save sums of the form

∑
i ri j x fi j y

and the values of e j separately for each atom; these two arrays are represented by
adding extra quantities† to the definition of Mol,

VecR rf[3];

real en;

♠ pr_05_3
† The matrix represented by the array rf is symmetric because ri j x fi j y ≡ ri j y fi j x .

132 5 Dynamical properties of simple fluids

The following additions to ComputeForces are required:

VecR w[3];

int k;

...

DO_MOL {

mol[n].en = 0.; 5

for (k = 0; k < 3; k ++) VZero (mol[n].rf[k]);

}

for (n = 0; n < nebrTabLen; n ++) {

...

if (rr < rrCut) { 10

...

mol[j1].en += uVal;

mol[j2].en += uVal;

for (k = 0; k < 3; k ++) w[k] = dr;

VScale (w[0], fcVal * dr.x); 15

VScale (w[1], fcVal * dr.y);

VScale (w[2], fcVal * dr.z);

for (k = 0; k < 3; k ++) {

VVAdd (mol[j1].rf[k], w[k]);

VVAdd (mol[j2].rf[k], w[k]); 20

}

New elements that are added to TBuf for the autocorrelation function computa-
tions are

VecR orgTherm, orgVisc;

real *acfTherm, *acfVisc;

additional quantities needed are

real *avAcfTherm, *avAcfVisc, intAcfTherm, intAcfVisc;

and the arrays are allocated (in AllocArrays) by

AllocMem (avAcfTherm, nValAcf, real);

AllocMem (avAcfVisc, nValAcf, real);

for (nb = 0; nb < nBuffAcf; nb ++) {

AllocMem (tBuf[nb].acfTherm, nValAcf, real);

AllocMem (tBuf[nb].acfVisc, nValAcf, real); 5

}

The function EvalVacf is modified to incorporate the additional data collection:

VecR vecTherm, vecVisc;

...

VZero (vecVisc);

VZero (vecTherm);

5.3 Measuring transport coefficients 133

DO_MOL { 5

vecVisc.x += mol[n].rv.y * mol[n].rv.z + 0.5 * mol[n].rf[1].z;

vecVisc.y += mol[n].rv.z * mol[n].rv.x + 0.5 * mol[n].rf[2].x;

vecVisc.z += mol[n].rv.x * mol[n].rv.y + 0.5 * mol[n].rf[0].y;

mol[n].en += VLenSq (mol[n].rv);

VVSAdd (vecTherm, 0.5 * mol[n].en, mol[n].rv); 10

vecTherm.x += 0.5 * VDot(mol[n].rv, mol[n].rf[0]);

vecTherm.y += 0.5 * VDot(mol[n].rv, mol[n].rf[1]);

vecTherm.z += 0.5 * VDot(mol[n].rv, mol[n].rf[2]);

}

for (nb = 0; nb < nBuffAcf; nb ++) { 15

...

if (tBuf[nb].count == 0) {

tBuf[nb].orgVisc = vecVisc;

tBuf[nb].orgTherm = vecTherm;

} 20

tBuf[nb].acfVisc[ni] = VDot (tBuf[nb].orgVisc, vecVisc);

tBuf[nb].acfTherm[ni] = VDot (tBuf[nb].orgTherm, vecTherm);

}

The following additions are made to AccumVacf to evaluate the autocorrelation
integrals and transport coefficients:

if (tBuf[nb].count == nValAcf) {

...

for (j = 0; j < nValAcf; j ++) {

avAcfVisc[j] += tBuf[nb].acfVisc[j];

avAcfTherm[j] += tBuf[nb].acfTherm[j]; 5

}

...

if (countAcfAv == limitAcfAv) {

...

fac = density * stepAcf * deltaT / (3. * temperature * 10

nMol * limitAcfAv);

intAcfVisc = fac * Integrate (avAcfVisc, nValAcf);

for (j = 1; j < nValAcf; j ++) avAcfVisc[j] /= avAcfVisc[0];

avAcfVisc[0] = 1.;

fac = density * stepAcf * deltaT / (3. * Sqr (temperature) * 15

nMol * limitAcfAv);

intAcfTherm = fac * Integrate (avAcfTherm, nValAcf);

for (j = 1; j < nValAcf; j ++) avAcfTherm[j] /= avAcfTherm[0];

avAcfTherm[0] = 1.;

Finally, the function ZeroVacf requires

for (j = 0; j < nValAcf; j ++) {

avAcfVisc[j] = 0.;

avAcfTherm[j] = 0.;

}

134 5 Dynamical properties of simple fluids

and, in PrintVacf, the two quantities avAcfVisc[j] and avAcfTherm[j] are
added to the output loop and the integrated values intAcfVisc and intAcfTherm

are also output.

5.4 Space–time correlation functions

Definitions

The experimental significance of time-dependent correlation functions is that spec-
troscopic techniques, of which neutron scattering is one example, actually mea-
sure the spectra of microscopic dynamical quantities. The MD approach provides
equivalent information directly from the trajectories, so that comparison with ex-
periment can be made by carrying out a Fourier analysis of the simulation results –
in a sense this amounts to performing the experiment on the model system. Such
correlation functions span the entire range of length and time scales, from slow
long-wavelength modes at the hydrodynamic limit, right down to the atomic level
[boo91].

To link the discrete atomistic picture with the continuum view of a system de-
scribed in terms of smoothly varying scalar and vector fields, a function such as the
number density (for a single species this is just the mass density in dimensionless
MD units) at a point r at time t is expressed as a sum over atoms, as in (5.2.3),

ρ(r, t) =
∑

j

δ
(
r − r j (t)

)
(5.4.1)

In a practical sense, this defines the local density in terms of the average occupancy
of a small volume of space situated at r and measured over a short time interval.
There are of course fluctuations as atoms enter and leave the volume, but these can
be reduced by using larger volumes and/or longer time intervals. The definition
satisfies the obvious requirement that matter is conserved,∫

ρ(r, t) d r = Nm (5.4.2)

Space- and time-dependent density correlations are described by means of the
van Hove correlation function [han86b], defined as

G(r, t) = 1

Nm

〈∫
ρ(r ′ + r, t)ρ(r ′, 0) d r ′

〉
(5.4.3)

= 1

Nm

〈∑
i j

δ
(
r + ri (0) − r j (t)

)〉
(5.4.4)

where homogeneity is assumed in order to carry out the r ′ integration in (5.4.3).

5.4 Space–time correlation functions 135

The double summation can be divided into two parts,

G(r, t) = Gs(r, t) + Gd(r, t) (5.4.5)

where

Gs(r, t) = 1

Nm

〈∑
j

δ
(
r + r j (0) − r j (t)

)〉
(5.4.6)

is the probability of an atom being displaced by a distance r during time t and
Gd(r, t) contains the remaining terms of the double sum. The t = 0 limits of Gs

and Gd are

Gs(r, 0) = δ(r) (5.4.7)

Gd(r, 0) = ρg(r) (5.4.8)

In the limits r → ∞ or t → ∞, Gs → 1/V and Gd → ρ. There have been
attempts in the past to establish a functional relationship between Gs and Gd , but
these have been unsuccessful because of the wealth of dynamical detail that must
be discarded.

The Fourier transform of the density is

ρ(k, t) =
∫

ρ(r, t)e−i k·r d r (5.4.9)

=
∑

j

e−i k·r j (t) (5.4.10)

and the intermediate scattering function is defined by

F(k, t) =
∫

G(r, t)e−i k·r d r (5.4.11)

= 1

Nm

〈
ρ(k, t)ρ(−k, 0)

〉
(5.4.12)

Note the connection to the static structure factor, F(k, 0) = S(k). The dynamic
structure factor is defined as

S(k, ω) = 1

2π

∫ ∞

−∞
F(k, t)eiωt dt (5.4.13)

and satisfies the sum rule∫ ∞

−∞
S(k, ω) dω = S(k) (5.4.14)

If l and τ are the mean free path and collision time (suitably interpreted when
dealing with continuous potentials), then the regime kl � 1 and ωτ � 1, or,
equivalently, wavelength � l and timescale � τ , is where the behavior can be

136 5 Dynamical properties of simple fluids

described by continuum fluid mechanics and the underlying atomic nature of the
fluid is totally hidden. The ability to use MD to study the behavior across a range
of scales provides the bridge between atomistic and macroscopic worlds.

While the local density conveys information about the distribution of atoms, it
is equally possible to examine local variations in the motion of the atoms. The
definition of the particle current (or momentum current for a single atomic species
using MD units) is [han86b]

π(r, t) =
∑

j

v jδ
(
r − r j (t)

)
(5.4.15)

with Fourier transform

π(k, t) =
∑

j

v j e
−i k·r j (t) (5.4.16)

The spatial correlation functions of the components of the current vector are de-
fined as

Cαβ(k, t) = k2

Nm

〈
πα(k, t)πβ(−k, 0)

〉
(5.4.17)

For isotropic fluids, symmetry considerations lead to an expression in terms of
longitudinal and transverse currents (the directions are relative to k),

Cαβ(k, t) = kαkβ

k2
CL(k, t) +

(
δαβ − kαkβ

k2

)
CT (k, t) (5.4.18)

and by setting k = k ẑ we obtain

CL(k, t) = k2

Nm

〈
πz(k, t)πz(−k, 0)

〉
(5.4.19)

CT (k, t) = k2

2Nm

〈
πx(k, t)πx(−k, 0) + πy(k, t)πy(−k, 0)

〉
(5.4.20)

The dynamic structure factor is related to the Fourier transform of the longitudinal
current

S(k, ω) = 1

ω2
CL(k, ω) (5.4.21)

In the small k (continuum) limit, the form of S(k, ω) is known [han86b]. The
function is of course symmetric in ω, there are Lorentzian shaped Brillouin peaks
at ω = ±vsk, where vs is the adiabatic speed of sound, and there is a Rayleigh peak
at ω = 0. The width of each peak is proportional to k2; the Rayleigh peak width is
also proportional to the thermal diffusivity (λ/ρCP) and the Brillouin peak width is
proportional to the sound attenuation coefficient (a quantity expressible in terms of
transport coefficients and specific heats). Note that wraparound effects can occur

5.4 Space–time correlation functions 137

for times t > L/vs , where L is the region size; if significant, this sets an upper
bound to the timescales that can be examined, and hence a lower limit to ω. The
values of k that can be examined are restricted to vectors with components that are
integer multiples of 2π/L , so that the larger the region, the smaller the k values
that can be reached.

Computational methods

The MD evaluation of S(k, ω) is based on the Fourier transform of F(k, t). This
in turn can be expressed either as the Fourier transform of a discretized form of the
van Hove correlation function (5.4.11) – an extension of the method used in §4.3
for g(r) – or as the time correlation of the Fourier-transformed density (5.4.12).
The latter is clearly preferable since it requires a great deal less work. Evaluation
of ρ(k, t) is based directly on a sum over atoms, as in the study of long-range order
in §4.3 (but there only for a single k value). An alternative for very large systems
that is not explored here is to first evaluate a coarse-grained density function ρ(r, t)
based on a grid with suitable spatial resolution, and then use a discrete (preferably
fast-) Fourier transform to obtain ρ(k, t). Some of the detail is lost when grid
averages are used, but this affects results at short distances – typically of the order
of the grid spacing – while details of the more interesting long-range behavior are
preserved.

Further simplification is possible when studying isotropic systems, since the
function of interest is the spherically-averaged quantity S(k, ω), and it is therefore
sufficient to consider k vectors in a very limited number of directions. Averaging
over several spatially equivalent directions will improve the statistics, so that if we
confine our attention to k vectors along the coordinate axes, the computation re-
quires evaluation of ρ(k, t) for the three vectors k = (k, 0, 0), (0, k, 0) and
(0, 0, k). If we assume a cubic region, periodic boundaries restrict the allowed
values of k to integer multiples of 2π/L .

Program details

We now turn to the details♠ of computing the density and current correlation func-
tions. The technique of overlapped measurements introduced in §5.3 is also used
here, and the variables involved in the data collection are organized in a similar
manner.

Because of the considerable amount of data that must be collected, we begin with
some remarks on how the computations and data are organized. The calculation
starts by evaluating the Fourier sums for the density and the three current compo-
nents – one longitudinal and two transverse – along each of the three k directions.

♠ pr_05_4

138 5 Dynamical properties of simple fluids

The real and imaginary parts of these complex valued results are stored in the array
valST, with the index determined by a combination of the direction of k, the value
of k and the kind of quantity; there are four of these – the density and the three
current components – so storage must be provided for a total of 24 real numbers
for each value of k considered. The real parts of the contributions to the correla-
tion functions computed by a single call to EvalSpacetimeCorr are placed in the
array acfST that is part of the structure TBuf tailored for this calculation,

typedef struct {

real **acfST, *orgST;

int count;

} TBuf;

The first index of the two-dimensional array acfST specifies the kind of corre-
lation, namely the k value and whether the value corresponds to the real part of
CL(k, t), CT (k, t) or F(k, t); the second index specifies the time offset. The num-
ber of different k values used is denoted by nFunCorr.

The contributions to all the (overlapped) correlation function measurements in
progress at a given instant are evaluated by the following function. A cubic region
shape and leapfrog integrator are assumed. The recursion relations

sin nθ = 2 cos θ sin(n − 1)θ − sin(n − 2)θ (5.4.22)

cos nθ = 2 cos θ cos(n − 1)θ − cos(n − 2)θ (5.4.23)

are used for evaluating sines and cosines of multiple angles.

void EvalSpacetimeCorr ()

{

real b, c, c0, c1, c2, kVal, s, s1, s2, w;

int j, k, m, n, nb, nc, ni, nv;

5

for (j = 0; j < 24 * nFunCorr; j ++) valST[j] = 0.;

kVal = 2. * M_PI / region.x;

DO_MOL {

j = 0;

for (k = 0; k < 3; k ++) { 10

for (m = 0; m < nFunCorr; m ++) {

if (m == 0) {

b = kVal * VComp (mol[n].r, k);

c = cos (b);

s = sin (b); 15

c0 = c;

} else if (m == 1) {

c1 = c;

s1 = s;

c = 2. * c0 * c1 - 1.; 20

s = 2. * c0 * s1;

5.4 Space–time correlation functions 139

} else {

c2 = c1;

s2 = s1;

c1 = c; 25

s1 = s;

c = 2. * c0 * c1 - c2;

s = 2. * c0 * s1 - s2;

}

valST[j ++] += mol[n].rv.x * c; 30

valST[j ++] += mol[n].rv.x * s;

valST[j ++] += mol[n].rv.y * c;

valST[j ++] += mol[n].rv.y * s;

valST[j ++] += mol[n].rv.z * c;

valST[j ++] += mol[n].rv.z * s; 35

valST[j ++] += c;

valST[j ++] += s;

}

}

} 40

for (nb = 0; nb < nBuffCorr; nb ++) {

if (tBuf[nb].count == 0) {

for (j = 0; j < 24 * nFunCorr; j ++)

tBuf[nb].orgST[j] = valST[j];

} 45

if (tBuf[nb].count >= 0) {

for (j = 0; j < 3 * nFunCorr; j ++)

tBuf[nb].acfST[j][tBuf[nb].count] = 0.;

j = 0;

for (k = 0; k < 3; k ++) { 50

for (m = 0; m < nFunCorr; m ++) {

for (nc = 0; nc < 4; nc ++) {

nv = 3 * m + 2;

if (nc < 3) {

w = Sqr (kVal * (m + 1)); 55

-- nv;

if (nc == k) -- nv;

else w *= 0.5;

} else w = 1.;

tBuf[nb].acfST[nv][tBuf[nb].count] += 60

w * (valST[j] * tBuf[nb].orgST[j] +

valST[j + 1] * tBuf[nb].orgST[j + 1]);

j += 2;

}

} 65

}

}

++ tBuf[nb].count;

}

AccumSpacetimeCorr (); 70

}

140 5 Dynamical properties of simple fluids

Accumulating the averages is the task of the following function, where nValCorr
is the number of time offsets.

void AccumSpacetimeCorr ()

{

int j, n, nb;

for (nb = 0; nb < nBuffCorr; nb ++) { 5

if (tBuf[nb].count == nValCorr) {

for (j = 0; j < 3 * nFunCorr; j ++) {

for (n = 0; n < nValCorr; n ++)

avAcfST[j][n] += tBuf[nb].acfST[j][n];

} 10

tBuf[nb].count = 0;

++ countCorrAv;

if (countCorrAv == limitCorrAv) {

for (j = 0; j < 3 * nFunCorr; j ++) {

for (n = 0; n < nValCorr; n ++) 15

avAcfST[j][n] /= 3. * nMol * limitCorrAv;

}

PrintSpacetimeCorr (stdout);

ZeroSpacetimeCorr ();

} 20

}

}

}

The additional variables are

TBuf *tBuf;

real **avAcfST, *valST;

int countCorrAv, limitCorrAv, nBuffCorr, nFunCorr, nValCorr,

stepCorr;

new input values,

NameI (limitCorrAv),

NameI (nBuffCorr),

NameI (nFunCorr),

NameI (nValCorr),

NameI (stepCorr), 5

and required array allocations (in AllocArrays),

AllocMem (valST, 24 * nFunCorr, real);

AllocMem2 (avAcfST, 3 * nFunCorr, nValCorr, real);

AllocMem (tBuf, nBuffCorr, TBuf);

for (nb = 0; nb < nBuffCorr; nb ++) {

AllocMem (tBuf[nb].orgST, 24 * nFunCorr, real); 5

5.4 Space–time correlation functions 141

AllocMem2 (tBuf[nb].acfST, 3 * nFunCorr, nValCorr, real);

}

where AllocMem2 dynamically allocates a two-dimensional array a[n1][n2] of
the specified type†

#define AllocMem2(a, n1, n2, t) \

AllocMem (a, n1, t *); \

AllocMem (a[0], n1 * n2, t); \

for (k = 1; k < n1; k ++) a[k] = a[k - 1] + n2;

The calls to the functions that do the analysis (from SingleStep) and the initial-
ization (from SetupJob) are

if (stepCount > stepEquil && (stepCount - stepEquil) %

stepCorr == 0) EvalSpacetimeCorr ();

InitSpacetimeCorr ();

Finally, the initialization and output functions are

void InitSpacetimeCorr ()

{

int nb;

for (nb = 0; nb < nBuffCorr; nb ++) 5

tBuf[nb].count = - nb * nValCorr / nBuffCorr;

ZeroSpacetimeCorr ();

}

void ZeroSpacetimeCorr () 10

{

int j, n;

countCorrAv = 0;

for (j = 0; j < 3 * nFunCorr; j ++) { 15

for (n = 0; n < nValCorr; n ++) avAcfST[j][n] = 0.;

}

}

void PrintSpacetimeCorr (FILE *fp) 20

{

real tVal;

int j, k, n;

char *header[] = {"cur-long", "cur-trans", "density"};

25

fprintf (fp, "space-time corr\n");

† The allocation produces a one-dimensional array of size n1 × n2 together with an array of pointers containing
the offsets that allow it to be treated as doubly indexed.

142 5 Dynamical properties of simple fluids

for (k = 0; k < 3; k ++) {

fprintf (fp, "%s\n", header[k]);

for (n = 0; n < nValCorr; n ++) {

tVal = n * stepCorr * deltaT; 30

fprintf (fp, "%7.3f", tVal);

for (j = 0; j < nFunCorr; j ++)

fprintf (fp, " %8.4f", avAcfST[3 * j + k][n]);

fprintf (fp, "\n");

} 35

}

}

Correlation analysis

In order to evaluate S(k, ω) in (5.4.13) for a given k at a total of nω frequency values
(including ω = 0), it is necessary to collect nω + 1 equally spaced measurements
of F(k, t). Since F(k, t) is an even function of t , these results are reflected about
t = 0, providing a total of 2nω values – the first and last measurements are used
only once each. Then the Fourier transform is carried out using all 2nω values (this
would normally be some power of two, to simplify the use of the FFT method),
and the discrete form of the function S(k, ω) appears as the real part of the first
nω terms [pre92]. The current correlation functions are treated in the same way.
This analysis is carried out separately from the run itself; the program for doing
this, as well as for tabulating the normalized functions F(k, t)/F(k, 0), will now
be described.

The analysis program♠ shown below first averages the data produced by the run
and then either generates the normalized time-dependent correlations (and error
estimates, here unused) or the Fourier transforms. The program also demonstrates
a general approach to organizing analysis in which only selected data are extracted
from the job output file based on the headings accompanying the data. Whether the
real-space or Fourier version of the program is run depends on doFourier, and for
the latter, a windowing function [pre92] is applied if doWindow is set; these options
are specified on the command line when the program is run, as is the amount of
early data to skip, and the name of the file containing a full copy of the program
output that is to be processed. Cutoffs for limiting the output are built into the
program (but could also be added to the command line if desired).

A complex data type is introduced here

typedef struct {

real R, I;

} Cmplx;

♠ pr_anspcor

5.4 Space–time correlation functions 143

#define CSet(a, x, y) \ 5

a.R = x, \

a.I = y

The macro NameVal (§18.5) is used in locating a selected data item from near
the start of the data file†, while the function FftComplex (§18.4) performs a fast
Fourier transform (FFT) and overwrites the original data with the result (the length
of the processed array must be a power of 2).

#define BUFF_LEN 1024

char *header[] = {"cur-long", "cur-trans", "density"},

*txtCorr = "space-time corr";

int main (int argc, char **argv) 5

{

Cmplx *work;

real *corrSum[3], *corrSumSq[3], damp, deltaT, deltaTCorr,

omegaMax, tMax, w, x;

int doFourier, doWindow, j, k, n, nData, nFunCorr, nSet, nSetSkip, 10

nv, nValCorr, stepCorr;

char *bp, *fName, buff[BUFF_LEN];

FILE *fp;

n = 1; 15

if (-- argc < 1 || ! strcmp (argv[1], "-h")) PrintHelp (argv[0]);

doFourier = 1;

doWindow = 0;

nSetSkip = 1;

while (-- argc >= 0) { 20

if (! strcmp (argv[n], "-t")) doFourier = 0;

else if (! strcmp (argv[n], "-w")) doWindow = 1;

else if (! strcmp (argv[n], "-s")) nSetSkip = atoi (argv[n] + 2);

else {

fName = argv[n]; 25

break;

}

++ n;

}

if (argc > 0) PrintHelp (argv[0]); 30

omegaMax = 10.;

tMax = 5.;

if ((fp = fopen (fName, "r")) == 0) {

printf ("no file\n");

exit (0); 35

}

while (1) {

bp = fgets (buff, BUFF_LEN, fp);

† The file being processed begins with a copy of the input data used for the run; this is terminated by a line start-
ing with a ‘-’ character, denoted here by CHAR_MINUS. Several standard C file and character-string functions
are used in this program.

144 5 Dynamical properties of simple fluids

if (*bp == CHAR_MINUS) break;

NameVal (deltaT); 40

NameVal (nFunCorr);

NameVal (nValCorr);

NameVal (stepCorr);

}

deltaTCorr = stepCorr * deltaT; 45

for (j = 0; j < 3; j ++) {

AllocMem (corrSum[j], nFunCorr * nValCorr, real);

AllocMem (corrSumSq[j], nFunCorr * nValCorr, real);

for (n = 0; n < nFunCorr * nValCorr; n ++) {

corrSum[j][n] = 0.; 50

corrSumSq[j][n] = 0.;

}

}

AllocMem (work, 2 * (nValCorr - 1), Cmplx);

nData = 0; 55

nSet = 0;

while (1) {

if (! (bp = fgets (buff, BUFF_LEN, fp))) break;

if (! strncmp (bp, txtCorr, strlen (txtCorr))) {

++ nSet; 60

if (nSet < nSetSkip) continue;

++ nData;

for (j = 0; j < 3; j ++) {

bp = fgets (buff, BUFF_LEN, fp);

for (n = 0; n < nValCorr; n ++) { 65

bp = fgets (buff, BUFF_LEN, fp);

w = strtod (bp, &bp);

for (k = 0; k < nFunCorr; k ++) {

w = strtod (bp, &bp);

corrSum[j][k * nValCorr + n] += w; 70

corrSumSq[j][k * nValCorr + n] += Sqr (w);

}

}

}

} 75

}

fclose (fp);

printf ("%d\n", nData);

for (j = 0; j < 3; j ++) {

for (n = 0; n < nFunCorr * nValCorr; n ++) { 80

corrSum[j][n] /= nData;

corrSumSq[j][n] = sqrt (corrSumSq[j][n] / nData -

Sqr (corrSum[j][n]));

}

} 85

if (doFourier) {

for (j = 0; j < 3; j ++) {

for (k = 0; k < nFunCorr; k ++) {

for (n = 0; n < nValCorr; n ++) {

5.5 Measurements 145

if (doWindow) damp = (nValCorr - n) / (nValCorr + 0.5); 90

else damp = 1.;

CSet (work[n], corrSum[j][k * nValCorr + n] * damp, 0.);

}

for (n = nValCorr; n < 2 * (nValCorr - 1); n ++)

work[n] = work[2 * (nValCorr - 1) - n]; 95

FftComplex (work, 2 * nValCorr - 2);

for (n = 0; n < nValCorr; n ++)

corrSum[j][k * nValCorr + n] = work[n].R;

}

} 100

omegaMax = Min (omegaMax, M_PI / deltaTCorr);

nv = nValCorr * omegaMax / (M_PI / deltaTCorr);

} else {

for (j = 0; j < 3; j ++) {

for (k = 0; k < nFunCorr; k ++) { 105

for (n = 1; n < nValCorr; n ++)

corrSum[j][k * nValCorr + n] /= corrSum[j][k * nValCorr];

corrSum[j][k * nValCorr] = 1.;

}

} 110

tMax = Min (tMax, (nValCorr - 1) * deltaTCorr);

nv = nValCorr * tMax / ((nValCorr - 1) * deltaTCorr);

}

for (j = 0; j < 3; j ++) {

printf ("%s\n", header[j]); 115

for (n = 0; n < nv; n ++) {

if (doFourier) x = n * omegaMax / nv;

else x = n * deltaTCorr;

printf ("%9.4f", x);

for (k = 0; k < nFunCorr; k ++) 120

printf (" %9.4f", corrSum[j][k * nValCorr + n]);

printf ("\n");

}

}

} 125

void PrintHelp (char *pName)

{

printf ("Usage: %s [-t{time_corr}] [-s{skip}n] [-w{window}]"

" input-file \n", pName); 130

exit (0);

}

5.5 Measurements

Velocity autocorrelation function

The velocity autocorrelation functions shown in Figure 5.2 are computed during
soft-sphere runs that use the following data,

146 5 Dynamical properties of simple fluids

0.0 0.5 1.0 1.5 2.0
-0.5

0.0

0.5

1.0

time

ve
lo

ci
ty

 a
ut

oc
or

re
la

tio
n

fu
nc

tio
n

Fig. 5.2. Soft-sphere velocity autocorrelation functions for densities 0.6–1.0.

deltaT 0.005

density 0.6

initUcell 5 5 5

limitAcfAv 200

nBuffAcf 10

nebrTabFac 8

nValAcf 200

rNebrShell 0.4

stepAcf 3

stepAvg 1000

stepEquil 2000

stepInitlzTemp 100

stepLimit 15000

temperature 0.5

with values of density between 0.6 and 1.0. Leapfrog integration is used. The
initial state is an FCC lattice, so that Nm = 500. A single set of results based
on 200 sets of partially overlapped measurements is produced during a run of
15 000 timesteps. The negative correlations that are observed at higher densities
(both for LJ and hard-sphere systems) were one of the important early revelations
of MD [rah64, ald67].

Given the exponential sensitivity of the trajectories to any numerical error, as
demonstrated in §3.8, it is important to establish that results such as the velocity
autocorrelation function are fully reproducible. Here we show one example to con-
firm that this is indeed the case. The system used is the same as above, at a density
of 0.9, but with different values of �t ; measurement intervals and run lengths are

5.5 Measurements 147

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

time

ve
lo

ci
ty

 a
ut

oc
or

re
la

tio
n

fu
nc

tio
n

Fig. 5.3. Velocity autocorrelation functions for ρ = 0.9 computed using �t = 0.005,
0.0025 and 0.001 25; the results at later times are also shown with a vertical 100-fold
magnification.

adjusted accordingly. Figure 5.3 shows the results; in order to resolve the extremely
small differences at later times, the results are replotted with the vertical scale en-
larged by a factor of 100.

Transport coefficients

Diffusion coefficient measurements using (5.2.4) for the same system♠ are shown
in Figure 5.4. The necessary input data include

limitDiffuseAv 200

nBuffDiffuse 10

nValDiffuse 250

stepDiffuse 4

stepLimit 63000

For ρ ≥ 0.9 the values drop to zero and there is no significant diffusion, while
at smaller ρ they appear to asymptote to increasingly larger values, although
convergence also slows and longer measurements are seen to be necessary at ρ =
0.6 and 0.7.

Estimates for D based on (5.2.6) can be obtained by integrating the velocity
autocorrelation functions shown in Figure 5.2. The results, without any attempt at

♠ pr_andiffus

148 5 Dynamical properties of simple fluids

0 1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

0.10

time

di
ff

us
io

n
co

ef
fi

ci
en

t

Fig. 5.4. Diffusion coefficient measurements for densities 0.6–1.0.

0 2 4 6 8
-0.02

0.00

0.02

0.04

time

au
to

co
rr

el
at

io
n

fu
nc

tio
ns

Fig. 5.5. Velocity, pressure-tensor and heat-current autocorrelation functions; the vertical
scale has been expanded to show the noise present in the results.

error estimation, for ρ = 0.9, 0.8, 0.7 and 0.6, are 0.001, 0.038, 0.067 and 0.108
respectively; these can be compared with the D values of Figure 5.4.

In Figure 5.5 we show the three autocorrelation functions whose integrals yield
D, η and λ, namely velocity, pressure tensor and heat current. The system used
here has Nm = 864, ρ = 0.8 and T = 1. To improve the quality of the results,

5.5 Measurements 149

Table 5.1. Transport coefficients (c) from the integrated autocorrelation functions.

c 〈c〉 σ(c) σ (c)/〈c〉
D 0.0818 0.0015 0.0180
η 1.4468 0.6297 0.4352
λ 5.6299 1.9573 0.3477

the computation is run for almost a half million timesteps, with the following mea-
surement parameters included in the input data:

stepEquil 4000

limitAcfAv 500

nBuffAcf 30

nValAcf 600

stepAcf 3

This yields 15 sets of autocorrelation results; the leapfrog integrator produces prac-
tically no energy drift (a mere one part in 2000) over the entire run. There is a
clear difference between the smooth velocity autocorrelation function, which in-
volves separate contributions from each atom, and the other two functions which
are comparatively noisy because the entire system must be considered to obtain a
single measurement.

Evaluation of the transport coefficients by integrating these autocorrelation func-
tions♠ over the entire range to t = 9 leads to the results shown in Table 5.1. The
uncertainty in the estimates of η and λ is considerable, but can be reduced once it is
realized that the noise in the integrands makes a substantial contribution to the error
without improving the estimate of the mean [lev87]. To show the potential for im-
provement, Table 5.2 lists the results obtained by terminating the integration after
the first 70 values, corresponding to t ≈ 1, as well as after two and three times this
number of values. Further information on transport coefficient calculations using
these methods can be found in [lev73, sch85, lev87, vog87].

Space–time correlations

Sample results for space–time correlation functions are obtained from a single run
of a soft-sphere system with Nm = 2048, T = 0.7 and ρ = 0.84. The state point

♠ pr_antransp

150 5 Dynamical properties of simple fluids

Table 5.2. Effect of truncating the autocorrelation function integration after n values.

n c 〈c〉 σ(c) σ (c)/〈c〉
70 D 0.0780 0.0006 0.0076

η 1.6890 0.1877 0.1111
λ 6.3320 0.6518 0.1029

140 D 0.0807 0.0008 0.0094
η 1.6904 0.2125 0.1257
λ 6.3355 1.1238 0.1774

210 D 0.0815 0.0011 0.0129
η 1.7120 0.3338 0.1950
λ 5.9660 1.3919 0.2333

0 1 2 3 4 5
-0.25

0.00

0.25

0.50

0.75

1.00

time

in
te

rm
ed

ia
te

 s
ca

tte
ri

ng
 f

un
ct

io
n

Fig. 5.6. Normalized intermediate scattering function F(k, t) for the four smallest k val-
ues; the decay becomes slower as k → 0.

is chosen to be fairly close to published results for the LJ fluid [sch86]. The input
data include

limitCorrAv 500

nBuffCorr 80

nFunCorr 4

nValCorr 1025

stepCorr 5

A run of a little over 4 × 105 timesteps produces 13 sets of results.

5.5 Measurements 151

0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

1.0

time

cu
rr

en
t c

or
re

la
tio

n
fu

nc
tio

ns

Fig. 5.7. Normalized longitudinal (solid curve) and transverse (dashed) current correlation
functions, CL(k, t) and CT (k, t), for the two smallest k values.

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

frequency

dy
na

m
ic

 s
tr

uc
tu

re
 f

ac
to

r

Fig. 5.8. Dynamic structure factor S(k, ω) for the four smallest k values.

Figure 5.6 shows the normalized intermediate scattering function F(k, t) for the
four smallest values of k. The normalized current correlation functions CL(k, t)
and CT (k, t) are shown in Figure 5.7, with results for the two smallest k values
included in both cases. The absence of any structure in CT is expected for normal
liquids that do not support shear waves; the peaks in CL correspond to sound prop-
agation. Finally, the dynamic structure factor S(k, ω), with its expected peaks, is
shown in Figure 5.8. In general, the soft-sphere results resemble those for the LJ

152 5 Dynamical properties of simple fluids

case [sch86] (allowing for the different time units); they can also be compared
with hard-sphere results [all83]. Additional correlation functions are treated in
[des88].

5.6 Further study
5.1 All the transport coefficient values have been given in reduced MD units;

convert them to physical units and compare with the experimental values
for argon.

5.2 Extend the diffusion measurements until all converge.
5.3 Compare the transport coefficients for soft-sphere and LJ fluids under simi-

lar conditions.
5.4 The large t behavior of the autocorrelation functions is a subject of par-

ticular interest [erp85, erp88]; examine the kind of decay that occurs and
whether it depends on some power of t (rather than the exponential decay
that might have been naı̈vely expected). What kind of cooperative motion
is responsible for this behavior in the case of the velocity autocorrelation
function [ald70b]?

5.5 The bulk viscosity is another transport coefficient; measure it using the ap-
propriate autocorrelation function [lev73, lev87].

5.6 New transport coefficients appear when binary fluids are studied; consider
the possibilities [vog88].

5.7 Explore alternative, possibly more efficient methods for organizing the
space–time correlation computations.

5.8 The space–time correlations show propagating longitudinal modes (these
correspond to sound waves); is it possible to observe similar transverse
modes (shear waves) at sufficiently high density [lev87]?

6

Alternative ensembles

6.1 Introduction

The equations of motion used in MD are based on Newtonian mechanics; in this
way MD mimics nature. If one adopts the purely mechanical point of view there is
little more to be said, but if a broader perspective is permitted and MD is regarded
as a tool for generating equilibrium states satisfying certain specified requirements,
then it is possible to modify the dynamics and address a broader range of problems.
But at the outset it must be emphasized that no physical meaning is attributed to
the actual dynamics, and the approach is merely one of computational convenience
for generating particular equilibrium thermodynamic states, although – and this is
not an attempt to extract any such meaning – the deviations of the motion from the
truly Newtonian may in fact be extremely small.

Conventional MD differs from most experimental studies in that it is the energy
and volume that are fixed, rather than temperature and pressure. In statistical me-
chanical terms, MD produces microcanonical (NVE) ensemble averages, whereas
constant-temperature experiments correspond to the canonical (NVT) ensemble; if
constant pressure is imposed as well, as is generally the case in the laboratory, it is
the isothermal–isobaric (NPT) ensemble that is the relevant one. While the choice
of ensemble is usually one of convenience at the macroscopic level since (away
from the critical point) thermal fluctuations are small, for the microscopic sys-
tems studied by MD the fluctuations of nonregulated quantities can be sufficiently
large to make precise measurement difficult. Modifying the dynamics allows MD
to model the equilibrium behavior of such ensembles directly.

We will describe two different approaches to the problem. One employs a feed-
back mechanism for correcting deviations in the controlled parameter (for example,
temperature) from the preset mean value; the value fluctuates, but the size of the
fluctuations can be regulated. The other method ensures that the controlled param-
eter is strictly constant, apart from numerical drift, by augmenting the equations of

153

154 6 Alternative ensembles

motion with suitable mechanical constraints; thus temperature can be held constant
by introducing a constraint that fixes the kinetic energy.

There are other ways to change the ensemble, such as by coupling the system
to a constant-temperature heat bath, or even by simply resetting the kinetic energy
at each timestep. The former requires a stochastic mechanism for adjusting veloc-
ities in order to reproduce the effect of a heat bath [and80], but this violates the
deterministic nature of the dynamics. The latter method is sufficiently crude not
to merit consideration, although when it comes to introducing hard walls into the
simulation (§7.3) the same idea can be adopted, but the justification is of course
entirely different.

6.2 Feedback methods

Controlled temperature

The mechanism for feedback regulation of temperature rests on the idea that be-
cause the temperature is proportional to the mean-square velocity it ought to be
possible to vary the temperature by adjusting the rate at which time progresses
[nos84a]. A new dynamical variable s is introduced into the Lagrangian in a man-
ner that is equivalent to rescaling the unit of time, and extra terms are added in
just the way needed to obtain the desired behavior. There are now two distinct time
variables: the real, or physical, time t ′, and a scaled, or virtual, time t ; the relation
between them is through their differentials,

dt = s(t ′) dt ′ (6.2.1)

The Lagrangian for this unusual ‘extended’ system is written as

L = 1
2 ms2

∑
i

ṙ2
i −

∑
i< j

u(ri j) + 1
2 Msṡ2 − n f T log s (6.2.2)

where T is the required temperature,

n f = 3Nm + 1 (6.2.3)

is the number of degrees of freedom (which could be reduced by three to account
for momentum conservation), Ms plays the role of a mass that is needed in or-
der to construct an equation of motion for the new ‘coordinate’ s, and the dot
stands for the derivative d/dt – note that (6.2.2) is defined in terms of the vir-
tual time. The Lagrange equations of motion that are obtained by the standard

6.2 Feedback methods 155

procedure are

r̈i = 1

ms2
fi − 2ṡ

s
ṙi (6.2.4)

Mss̈ = ms
∑

i

ṙ2
i − n f T

s
(6.2.5)

Because the relationship between t and t ′ depends on the entire history of the sys-
tem, namely,

t =
∫

s(t ′) dt ′ (6.2.6)

it is more convenient if the equations are transformed to use physical time units
[nos84b, hoo85]; henceforth the dot will be used to denote d/dt ′, and the equations
can be rewritten as

r̈i = 1

m
fi − ṡ

s
ṙi (6.2.7)

s̈ = ṡ2

s
+ G1s

Ms
(6.2.8)

where

G1 = m
∑

i

ṙ2
i − n f T (6.2.9)

The first of these equations of motion resembles the conventional Newtonian equa-
tion with an additional frictionlike term, though not true friction because the coef-
ficient can be of either sign; the second equation defines the feedback mechanism
by which s is varied to regulate temperature.

The motivation for the log s term in the Lagrangian can now be appreciated.
Assume that it is replaced by a general function w(s); since s is finite, the time
average of s̈ must vanish, implying that

m

〈
1

s

∑
i

ṙ2
i

〉
=
〈

dw

ds

〉
(6.2.10)

The left-hand side is just n f 〈T/s〉, so that if we equate the actual values rather than
just the averages we find that w(s) = n f T log s.

The equilibrium averages of the physical system can be shown to be those of the
canonical ensemble at temperature T [nos84a]. In order to establish this result the
microcanonical partition function of the extended system is simply integrated over
the s variable and what remains is the canonical partition function. The temperature

156 6 Alternative ensembles

itself is not constant, however, but the negative feedback acting through s ensures
that the fluctuations are limited and the mean value is equal to T .

The Hamiltonian of the extended system

H = 1
2 m
∑

i

ṙ2
i +

∑
i< j

u(ri j) + 1
2 Ms

(
ṡ

s

)2

+ n f T log s (6.2.11)

is conserved since there are no time-dependent external forces and this provides
a useful check on the accuracy of the numerical solution. The Hamiltonian has
no physical significance; its first two terms represent the energy of the physical
system, but their sum is free to fluctuate.

The quantity Ms is a parameter whose value must be determined empirically; Ms

has no particular physical meaning and is simply a part of the computational tech-
nique. In principle, the value of Ms does not affect the final equilibrium results,
but it does influence their accuracy and reliability, because if the kinetic energy
fluctuations are allowed to become too large it is rather difficult to think of the sys-
tem existing at a particular temperature. For small variations in s the characteristic
period of the fluctuations is [nos84a]

τs = 2π

√
Ms〈s〉2/2n f T (6.2.12)

and the simulation must extend over many such periods to prevent these fluctua-
tions from influencing the results adversely.

An MD program demonstrating temperature feedback will not be shown sepa-
rately but will be combined with the version that incorporates pressure feedback as
well. This method is described below.

Controlled pressure and temperature

While the connection between time and temperature just introduced is not remi-
niscent of any physical mechanism, pressure can be adjusted by altering the con-
tainer volume. In the MD context this is achieved by a uniform isotropic volume
change brought about by rescaling the atomic coordinates [and80]. A more use-
ful method emerges if this is combined with the temperature feedback; the appro-
priate Lagrangian treatment leads to a system whose behavior corresponds to the
isothermal–isobaric (NPT) ensemble.

We consider a cubic simulation region with a volume that is allowed to vary.
Scaled coordinates r are introduced that span the unit cube and are related to the
physical coordinates r ′ by

r = r ′/V 1/3 (6.2.13)

6.2 Feedback methods 157

The same scaled time variable introduced previously is also used here, so that now
both V and s are treated as supplementary dynamical variables. The Lagrangian for
this system is a generalization of (6.2.2), with additional terms designed to ensure
the correct pressure feedback mechanism [nos84b] (and once again the dot denotes
d/dt),

L = 1
2 mV 2/3s2

∑
i

ṙ2
i −

∑
i< j

u(V 1/3ri j) + 1
2 Msṡ2 + 1

2 Mv V̇ 2

− n f T log s − PV

(6.2.14)

where P and T are the required (externally imposed) values and Mv is another
generalized mass parameter. Roughly speaking, Mv can be regarded as the mass
of a piston that could have been used to regulate pressure by altering the volume,
but because of the need to avoid explicit walls the effect of a sliding piston is
achieved by means of a uniform volume change; a real piston would also introduce
undesirable effects such as pressure waves. The first term in the Lagrangian is the
kinetic energy, though not that of the physical system obtained by the substitution
ṙ ′ = V 1/3 ṙ + (V̇ /3V 2/3)r , but a value based on velocities measured relative to
the rate at which the region size changes (the V̇ term is dropped) [and80]; removal
of the flow component of the atomic velocities is essential to ensure the correct
definition of temperature.

The Lagrange equations of motion, in scaled variables, are

r̈i = 1

mV 1/3s2
fi −

(
2ṡ

s
+ 2V̇

3V

)
ṙi (6.2.15)

Mss̈ = mV 2/3s
∑

i

ṙ2
i − n f T

s
(6.2.16)

Mv V̈ = ms2

3V 1/3

∑
i

ṙ2
i + 1

3V 2/3

∑
i< j

ri j · fi j − P (6.2.17)

Returning to physical time units, with the dot now denoting d/dt ′, we obtain

r̈i = 1

mV 1/3
fi −

(
ṡ

s
+ 2V̇

3V

)
ṙi (6.2.18)

s̈ = ṡ2

s
+ G1s

Ms
(6.2.19)

V̈ = ṡ V̇

s
+ G2s2

3MvV
(6.2.20)

158 6 Alternative ensembles

where

G1 = mV 2/3
∑

i

ṙ2
i − n f T (6.2.21)

G2 = mV 2/3
∑

i

ṙ2
i + V 1/3

∑
i< j

ri j · fi j − 3PV (6.2.22)

Scaled coordinates have been retained since they are more convenient from a com-
putational point of view (see further).

When the dynamics are supplemented by these two extra degrees of freedom,
the equilibrium averages of the physical system can be shown to be those of the
NPT ensemble [nos84b]. The Hamiltonian is

H = 1
2 mV 2/3

∑
i

ṙ2
i +

∑
i< j

u(V 1/3ri j) + 1
2 Ms

(
ṡ

s

)2

+ 1
2 Mv

(
V̇

s

)2

+ n f T log s + PV

(6.2.23)

and, though conserved, it is once again not a physically meaningful quantity. The
method of establishing a reasonable value for Mv is again empirical; for small
variations in V the characteristic period is [nos83]

τv = 2π
√

Mv〈δV 〉2/T (6.2.24)

Periodic boundaries are most readily handled when the problem is expressed
in terms of scaled coordinates, because the simulation region is then a fixed unit
cube; use of physical variables introduces unnecessary complications when han-
dling boundary crossings, because velocities and accelerations must be adjusted as
well as coordinates [eva84]. When working with the PC method, the conversion
to physical coordinates needed for the interaction calculations can overwrite the
scaled coordinates because the predicted values are not needed for the corrector
computation. Since the volume varies, provision must be made for an adjustable
number of cells for use in the interaction calculations; for simplicity♠ we use the
cell method without a neighbor list.

In SingleStep the following code is required:

PredictorStep ();

PredictorStepPT ();

ApplyBoundaryCond ();

UpdateCellSize ();

UnscaleCoords (); 5

ComputeForces ();

♠ pr_06_1

6.2 Feedback methods 159

ComputeDerivsPT ();

CorrectorStep ();

CorrectorStepPT ();

ApplyBoundaryCond (); 10

The changes to EvalProps (assuming for simplicity n f = 3Nm) are

totEnergy.val += (0.5 * (massS * Sqr (varSv) +

massV * Sqr (varVv)) / Sqr (varS) + extPressure * varV) /

nMol + 3. * temperature * log (varS);

pressure.val = (vvSum + virSum) / (3. * varV);

where totEnergy.val corresponds to the Hamiltonian (6.2.23). Note the call to
UpdateCellSize (see below) immediately after the predictor calculation to deter-
mine the current cell size.

The new variables needed are

real extPressure, g1Sum, g2Sum, massS, massV, varS, varSa,

varSa1, varSa2, varSo, varSv, varSvo, varV, varVa, varVa1,

varVa2, varVo, varVv, varVvo;

int maxEdgeCells;

where varS and varV correspond to s and V , and the various suffixes denote
derivatives and earlier values (for the PC method) in the same way as for r. The
extra input data consists of

NameR (extPressure),

NameR (massS),

NameR (massV),

and additional initialization functions must be called from SetupJob,

InitFeedbackVars ();

ScaleCoords ();

ScaleVels ();

The maximum size of the cell array is set in SetParams. The calculation assumes
a cubic region, and we allow for a reasonable (but arbitrarily chosen) amount of
expansion beyond the initial region size,

maxEdgeCells = 1.3 * cells.x;

Storage allocation, in AllocArrays, to provide a cell array based on this maximum

160 6 Alternative ensembles

size requires the change

AllocMem (cellList, Cube (maxEdgeCells) + nMol, int);

Computing the right-hand sides of the feedback equations is as follows.

void ComputeDerivsPT ()

{

real aFac, vFac;

int n;

5

vvSum = 0.;

DO_MOL vvSum += VLenSq (mol[n].rv);

vvSum *= pow (varV, 2./3.);

g1Sum = vvSum - 3. * nMol * temperature;

g2Sum = vvSum + virSum - 3. * extPressure * varV; 10

aFac = pow (varV, -1./3.);

vFac = - varSv / varS - 2. * varVv / (3. * varV);

DO_MOL VSSAdd (mol[n].ra, aFac, mol[n].ra, vFac, mol[n].rv);

varSa = Sqr (varSv) / varS + g1Sum * varS / massS;

varVa = varSv * varVv / varS + g2Sum * Sqr (varS) / 15

(3. * massV * varV);

}

The second-order feedback equations for s and V are solved using the same PC
method as the equations of motion.

#define PCR4(r, ro, v, a, a1, a2) \

r = ro + deltaT * v + wr * (cr[0] * a + cr[1] * a1 + cr[2] * a2)

#define PCV4(r, ro, v, a, a1, a2) \

v = (r - ro) / deltaT + wv * (cv[0] * a + cv[1] * a1 + cv[2] * a2)

5

void PredictorStepPT ()

{

real cr[] = {19., -10., 3.}, cv[] = {27., -22., 7.}, div = 24., e,

wr, wv;

10

wr = Sqr (deltaT) / div;

wv = deltaT / div;

varSo = varS;

varSvo = varSv;

PCR4 (varS, varS, varSv, varSa, varSa1, varSa2); 15

PCV4 (varS, varSo, varSv, varSa, varSa1, varSa2);

varSa2 = varSa1;

varSa1 = varSa;

... (ditto for varV) ...

e = pow (varV, 1. / NDIM); 20

VSetAll (region, e);

}

6.2 Feedback methods 161

void CorrectorStepPT ()

{ 25

real cr[] = {3., 10., -1.}, cv[] = {7., 6., -1.}, div = 24., e,

wr, wv;

wr = Sqr (deltaT) / div;

wv = deltaT / div; 30

PCR4 (varS, varSo, varSvo, varSa, varSa1, varSa2);

PCV4 (varS, varSo, varSvo, varSa, varSa1, varSa2);

... (ditto for varV) ...

e = pow (varV, 1. / NDIM);

VSetAll (region, e); 35

}

Initialization of the extra variables is as follows.

void InitFeedbackVars ()

{

varS = 1.;

varV = Cube (region.x);

varSv = 0.; 5

varSa = 0.;

varSa1 = 0.;

varSa2 = 0.;

... (ditto for varV...) ...

} 10

Coordinate and velocity rescaling (just one of the functions is shown) and cell size
adjustment are handled by

void ScaleCoords ()

{

real fac;

int n;

5

fac = pow (varV, -1. / 3.);

DO_MOL VScale (mol[n].r, fac);

}

void UpdateCellSize () 10

{

VSCopy (cells, 1. / rCut, region);

cells.x = Min (cells.x, maxEdgeCells);

cells.y = Min (cells.y, maxEdgeCells);

cells.z = Min (cells.z, maxEdgeCells); 15

}

162 6 Alternative ensembles

The function EvalProps needs a minor addition to allow for the scaled veloci-
ties; the form of the kinetic energy term in (6.2.23) determines the way vvSum must
be calculated,

vvSum *= pow (varV, 2./3.);

and the definition of VWrap used in ApplyBoundaryCond must be altered to use
scaled coordinates (the function itself is unchanged),

#define VWrap(v, t) \

if (v.t >= 0.5) v.t -= 1.; \

else if (v.t < -0.5) v.t += 1.

Output of the instantaneous region edge length region.x should be added to
PrintSummary.

The results shown here are based on a soft-sphere system with input data

deltaT 0.001

density 0.8

extPressure 6.5

initUcell 5 5 5

massS 0.1

massV 0.01

stepAvg 200

stepEquil 0

stepLimit 20000

temperature 1.

The values used for Mv (massV) are 0.01, 0.1 and 1.0, with just the single value
used for Ms (massS); the value of �t depends to some extent on both these mass
parameters, but here the drift in the total Hamiltonian (6.2.23) over the entire run
is less than one part in 5000. The initial state is an FCC lattice, so that Nm = 500.

The fluctuating kinetic energy for the case Mv = 1 is shown in Figure 6.1.
The average value over 18 000 timesteps, ignoring the first 2000 timesteps, is the
expected 〈EK 〉 = 1.5000, with σ(EK) = 0.0013.

Pressure could be displayed similarly. A more revealing result, however, is the
way the region edge length varies with time; this is shown for different values of
Mv in Figure 6.2. The corresponding pressure results for all three values of Mv are
listed in Table 6.1. It is clear that in the case of Mv = 1 the run is not long enough,
so that even though the apparent σ(P) is the smallest, the estimate of 〈P〉 could
be incorrect due to inadequate sampling. The additional degrees of freedom used
in the feedback methods introduce their own timescales that must be taken into
account in determining the run length.

6.2 Feedback methods 163

Table 6.1. Pressure estimates.

Mv 〈P〉 σ(P)

1.00 6.543 0.142
0.10 6.559 0.278
0.01 6.465 0.344

0 5000 10000 15000 20000
1.496

1.498

1.500

1.502

1.504

timestep

ki
ne

tic
 e

ne
rg

y

Fig. 6.1. Kinetic energy fluctuations for PT -feedback simulation with Mv = 1.

0 5000 10000 15000 20000
8.45

8.50

8.55

8.60

8.65

8.70

timestep

le
ng

th

Fig. 6.2. Region edge fluctuations for Mv = 0.01, 0.1 and 1.0; the frequency is higher for
smaller Mv .

164 6 Alternative ensembles

Controlled pressure with variable region shape

In the above treatment of pressure feedback the simulation volume retained its
cubic form, so that changes consist of uniform contractions and expansions. The
method is readily extended to the case of a simulation region in which the lengths
and directions of the edges are allowed to vary independently, subject to uniform
external pressure [par80, nos83] (an even more general case where the applied
stress components are specified separately can also be handled [par81]). The more
flexible approach allows for the size and shape changes needed to accommodate
lattice formation on freezing and for the study of structural phase transitions be-
tween different crystalline states. We will outline the mathematical formulation of
the problem (omitting temperature feedback), but it will not be treated as a case
study.

Once again, scaled coordinates are introduced, but they are now defined using a
more general linear transformation

r ′ = H r (6.2.25)

where the transformation matrix

H = (hµν) = (c1, c2, c3) (6.2.26)

is defined in terms of the vectors {cµ} specifying the edges of the MD region, and
the volume is

V = c1 · c2 × c3 = det H (6.2.27)

A metric tensor

G = H T H (6.2.28)

can be introduced, so that

r ′2
i j = rT

i j Gri j (6.2.29)

The scaled coordinates span the unit cube and periodic images have coordinates
H
(
r + (nx , ny, nz)

)
. Note the standard relation between spatial derivatives in the

two coordinate systems,

∂/∂ r ′ = (H T)−1∂/∂ r (6.2.30)

The distortion of the simulation region is limited by the requirement that the inter-
action range does not exceed half the smallest region dimension.

The Lagrangian for this system is

L = 1
2 m
∑

i

ṙT
i Gṙi −

∑
i< j

u(H ri j) + 1
2 Mv

∑
µν

ḣ2
µν − PV (6.2.31)

6.3 Constraint methods 165

so that the Lagrange equations for the coordinates are

r̈i = H−1 fi/m − G−1Ġ ṙi (6.2.32)

In the isotropic case this reduces to the earlier result, because H−1 = V 1/3 I and
G−1Ġ = 2V̇ /3V . The Lagrange equations for the components of H are

Mv ḧµν = m
∑

i

[H ṙi]µṙi ν +
∑
i< j

fi j µri j ν − P
∂V

∂hµν

(6.2.33)

If we introduce an additional matrix

U = (uµν) =
(

∂V

∂hµν

)
= V (H−1)

T

= (c2 × c3, c3 × c1, c1 × c2) (6.2.34)

then because

ri ν = V −1
∑

µ

uµν[H ri]µ (6.2.35)

the equation of motion (6.2.33) can be expressed concisely as

Mv Ḧ = (P − P I)U (6.2.36)

where P is the pressure tensor.

6.3 Constraint methods

Constant temperature
The alternative to feedback control is the use of mechanical constraints. Enforc-
ing constant temperature amounts to introducing a nonholonomic constraint into
the equations of motion in order to fix the kinetic energy; in effect, this serves
as a mathematical thermostat [hoo82, eva83a]. The justification for this arises not
from Hamilton’s variational principle, but from another formulation of mechan-
ics known as Gauss’s principle of least constraint [eva83b], which states that the
quantity∑

i

mi (r̈i − fi/mi)
2 (6.3.1)

is minimized by the constrained motion. If the nonholonomic constraints are non-
linear but homogeneous functions of velocity (as is the case here), the results are
formally the same as those the variational principle would have produced [ray72].
The equilibrium properties of this isothermal system can be shown to be those of

166 6 Alternative ensembles

the canonical ensemble [eva84], but the dynamics must once again be interpreted
with care since the motion is no longer Newtonian.

Since there are 3Nm degrees of freedom (we ignore the three lost to momentum
conservation), the constraint equation designed to ensure constant temperature is
(assuming that all mi are equal)

Nm EK = 1
2 m

Nm∑
i=1

ṙ2
i (6.3.2)

The constrained equation of motion is

r̈i = 1

m
fi + α ṙi (6.3.3)

and since ĖK = 0, or equivalently∑
i

ṙi · r̈i = 0 (6.3.4)

it follows that the value of the Lagrange multiplier α is

α = −
∑

i ṙi · fi

m
∑

i ṙ2
i

(6.3.5)

If the thermostat is used together with the PC method, the following function
(m = 1 is assumed) should be called from SingleStep immediately after the
force evaluation:

void ApplyThermostat ()

{

real s1, s2, vFac;

int n;

5

s1 = 0.;

s2 = 0.;

DO_MOL {

s1 += VDot (mol[n].rv, mol[n].ra);

s2 += VLenSq (mol[n].rv); 10

}

vFac = - s1 / s2;

DO_MOL {

VVSAdd (mol[n].ra, vFac, mol[n].rv);

} 15

}

It is also possible to combine the constant-temperature approach with the leapfrog
integrator, by embedding† the isothermal condition into the integration procedure

† This was done in the first edition.

6.3 Constraint methods 167

[bro84]. An alternative – one more readily generalized to other problems – is not
to alter the leapfrog integrator, but to modify ApplyThermostat so that it uses
estimates of the velocity at the end of the timestep instead of the values available
at the midpoint; this ensures that the contributions to α in (6.3.5) are evaluated at
the same time. The leapfrog version of the thermostat function♠ is

void ApplyThermostat ()

{

VecR vt;

real s1, s2, vFac;

int n; 5

s1 = 0.;

s2 = 0.;

DO_MOL {

VSAdd (vt, mol[n].rv, 0.5 * deltaT, mol[n].ra); 10

s1 += VDot (vt, mol[n].ra);

s2 += VLenSq (vt);

}

vFac = - s1 / s2;

DO_MOL { 15

VSAdd (vt, mol[n].rv, 0.5 * deltaT, mol[n].ra);

VVSAdd (mol[n].ra, vFac, vt);

}

}

The temperature constraint is only preserved to the accuracy of the numerical
integration. Any temperature drift must be corrected periodically (at intervals of
stepAdjustTemp) by velocity rescaling, although this can now be based on the
instantaneous value of EK rather than on an average over preceding timesteps as in
§3.6. The function used for this is

void AdjustTemp ()

{

real vFac;

int n;

5

vvSum = 0.;

DO_MOL vvSum += VLenSq (mol[n].rv);

vFac = velMag / sqrt (vvSum / nMol);

DO_MOL VScale (mol[n].rv, vFac);

} 10

In Table 6.2 we make a limited comparison between the constant-energy MD
results obtained earlier for an Nm = 500 LJ system (with rc = 2.2 and ρ = 0.8) and
the corresponding results obtained using isothermal dynamics; leapfrog integration

♠ pr_06_2

168 6 Alternative ensembles

Table 6.2. Constant-energy and temperature results for LJ fluid.

constant-E constant-T constant-E constant-T
T E 〈E〉 σ(E) 〈P〉 σ(P) 〈P〉 σ(P)

0.8 −3.903 −3.896 0.038 0.998 0.117 1.019 0.195
1.0 −3.411 −3.421 0.044 2.021 0.145 1.999 0.208
1.2 −2.957 −2.947 0.049 2.967 0.165 2.976 0.230
1.4 −2.460 −2.486 0.054 3.880 0.176 3.837 0.247
1.6 −2.029 −2.048 0.062 4.684 0.224 4.636 0.282

is used (�t = 0.005). The agreement is satisfactory, as more careful tests will
confirm.

Constant pressure and temperature
The idea of using mechanical constraints to fix thermodynamic properties can be
extended to include pressure as well [eva84]. The problem is formulated in terms
of scaled coordinates, exactly as in the feedback case, and so the unconstrained
Lagrangian is

L = 1
2 mV 2/3

∑
i

ṙ2
i −

∑
i< j

u(V 1/3ri j) (6.3.6)

Here, the kinetic energy is again defined using velocities measured relative to the
rate at which the region size changes. The equations for the T and P constraints
are

Nm EK = 1
2 mV 2/3

∑
i

ṙ2
i (6.3.7)

3PV = mV 2/3
∑

i

ṙ2
i + V 1/3

∑
i< j

ri j · fi j (6.3.8)

The equation of motion is

r̈i = 1

mV 1/3
fi + (α′ − 2γ)ṙi (6.3.9)

where

γ = V̇ /3V (6.3.10)

is the dilation rate and α′ the Lagrange multiplier. From the constant-temperature
condition ĖK = 0 we have∑

i

ṙi · r̈i + γ
∑

i

ṙ2
i = 0 (6.3.11)

6.3 Constraint methods 169

and it follows that

α ≡ α′ − γ = −
∑

i ṙi · fi

mV 1/3
∑

i ṙ2
i

(6.3.12)

so that (6.3.9) can be expressed in terms of α rather than α′.
The constant-P condition provides the means for computing γ . Starting with

d

dt
(PV) = PV̇ = 3γ PV = 1

3

∑
i< j

d

dt
(r ′

i j · fi j) (6.3.13)

and noting that for pair potentials (such as LJ) that depend only on distance r ′ · f =
−r ′du(r ′)/dr ′, we obtain

d

dt
(r ′ · f) = −ψ r ′ · ṙ ′ (6.3.14)

where we have defined

ψ(r) = d2

dr2
u(r) + 1

r

d

dr
u(r) (6.3.15)

Thus,

9γ PV = −V 2/3
∑
i< j

ψi j

(
ri j · ṙi j + γ r2

i j

)
(6.3.16)

where ψi j denotes ψ(r ′
i j), and for the LJ (or soft-sphere) potential

ψ(r) = 144(4r−14 − r−8) (6.3.17)

Rearrangement of (6.3.16) yields an expression for γ in terms of known quantities,
namely,

γ = −
V 2/3

∑
i< j

ψi j ri j · ṙi j

9PV + V 2/3
∑
i< j

ψi j r
2
i j

(6.3.18)

In situations where the use of an interaction cutoff has a significant effect on P the
estimated corrections can be included in the evaluation of γ .

The equations of motion need to be supplemented by the dilation equation,
where L = V 1/3,

L̇ = γ L (6.3.19)

This equation must be integrated numerically to obtain L(t) at each timestep, given

170 6 Alternative ensembles

the current value of γ (t). The pressure can initially be set to the required value and
any subsequent small drift eliminated by solving the nonlinear equation

P(V) − P = 0 (6.3.20)

to obtain the appropriate V . The solution is obtained using the Newton–Raphson
method [pre92]; here this entails iterating the expression

L ← L

(
1 + P(V) − P

3P(V) +
∑
i< j

ψi j r
′
i j

2
/3V

)
(6.3.21)

and recomputing the interactions and pressure at each cycle, until

|P(V) − P|
P

< εP (6.3.22)

The equilibrium averages are those of the NPT ensemble [eva84].
Many of the implementation details♠ are based on the feedback case treated

previously. The cell method is used, and the required additions to ComputeForces

(§3.4) are

VecR dv;

real w;

...

dvirSum1 = dvirSum2 = 0.;

... 5

w = 144. * rri3 * (4. * rri3 - 1.) * rri;

VSub (dv, mol[j1].rv, mol[j2].rv);

dvirSum1 += w * VDot (dr, dv);

dvirSum2 += w * rr;

In the function ApplyThermostat, the second loop contains

VSSAdd (mol[n].ra, 1. / varL, mol[n].ra, vFac / varL -

dilateRate, mol[n].rv);

♠ pr_06_3

6.3 Constraint methods 171

where varL is the value of L . The new variables used in these computations are

real dilateRate, dilateRate1, dilateRate2, dvirSum1, dvirSum2,

extPressure, tolPressure, varL, varLo, varLv, varLv1, varLv2;

int maxEdgeCells, nPressCycle, stepAdjustPress;

and the additional inputs

NameR (extPressure),

NameI (stepAdjustPress),

NameR (tolPressure),

where tolPressure is εP in (6.3.22). A new function is needed to evaluate the
dilation rate γ :

void ApplyBarostat ()

{

real vvS;

int n;

5

vvS = 0.;

DO_MOL vvS += VLenSq (mol[n].rv);

dilateRate = - dvirSum1 * varL / (3. * (vvS * Sqr (varL) + virSum) +

dvirSum2);

} 10

The dilation equation (6.3.19) is solved using the k = 3 PC method for first-
order differential equations described in §3.5.

void PredictorStepBox ()

{

real c[] = {23., -16., 5.}, div = 12.;

varLv = dilateRate * varL; 5

varLo = varL;

varL = varL + (deltaT / div) * (c[0] * varLv + c[1] * varLv1 +

c[2] * varLv2);

varLv2 = varLv1;

varLv1 = varLv; 10

dilateRate2 = dilateRate1;

dilateRate1 = dilateRate;

VSetAll (region, varL);

}

15

void CorrectorStepBox ()

{

real c[] = {5., 8., -1.}, div = 12.;

varLv = dilateRate * varL; 20

172 6 Alternative ensembles

varL = varLo + (deltaT / div) * (c[0] * varLv + c[1] * varLv1 +

c[2] * varLv2);

VSetAll (region, varL);

}

The changes that must be made to SingleStep to accommodate the extra compu-
tations are

PredictorStep ();

PredictorStepBox ();

ApplyBoundaryCond ();

UpdateCellSize ();

UnscaleCoords (); 5

ComputeForces ();

ApplyBarostat ();

ApplyThermostat ();

CorrectorStep ();

CorrectorStepBox (); 10

ApplyBoundaryCond ();

EvalProps ();

nPressCycle = 0;

if (stepCount % stepAdjustPress == 0) AdjustPressure ();

if (stepCount % stepAdjustPress == 10) AdjustTemp (); 15

and in EvalProps

vvSum *= Sqr (varL);

...

pressure.val = (vvSum + virSum) / (3. * Cube (varL));

The reason for separating the pressure and temperature adjustments by several
timesteps is to allow the system to settle down after the volume change; the ef-
fect of the delay can be seen in the results.

Pressure adjustments employ a Newton–Raphson procedure to modify the re-
gion size, as discussed earlier.

void AdjustPressure ()

{

real rFac, w;

int maxPressCycle, n;

5

maxPressCycle = 20;

if (fabs (pressure.val - extPressure) > tolPressure * extPressure) {

UnscaleCoords ();

vvSum = vvSum / Sqr (varL);

for (nPressCycle = 0; nPressCycle < maxPressCycle; 10

nPressCycle ++) {

6.3 Constraint methods 173

UpdateCellSize ();

ComputeForces ();

w = 3. * Cube (varL);

pressure.val = (vvSum * Sqr (varL) + virSum) / w; 15

rFac = 1. + (pressure.val - extPressure) / (3. * pressure.val +

dvirSum2 / w);

DO_MOL VScale (mol[n].r, rFac);

VScale (region, rFac);

varL *= rFac; 20

if (fabs (pressure.val - extPressure) <

tolPressure * extPressure) break;

}

ScaleCoords ();

vvSum *= Sqr (varL); 25

}

}

The variable maxPressCycle is provided as a safety measure in the unlikely event
of the method failing to converge. The counter nPressCycle is globally declared
to allow its inclusion in the output. The previous acceleration values used by the
PC method are not modified following the volume change; since this change ought
to be small the consequences of this omission should be negligible.

The function AdjustTemp shown earlier requires the addition after the first loop

vvSum *= Sqr (varL);

Initialization (in SetupJob) now includes

InitBoxVars ();

ScaleCoords ();

ScaleVels ();

and the variables associated with the region size are initialized by

void InitBoxVars ()

{

varL = region.x;

varLv = 0.;

varLv1 = 0.; 5

varLv2 = 0.;

dilateRate1 = 0.;

dilateRate2 = 0.;

}

The variable maxEdgeCells is used, as in the earlier feedback case, to allow
for extra cells. Note that varL (the current region edge) is used instead of varV

174 6 Alternative ensembles

Table 6.3. Results from constant-PT run.

timestep 〈E〉 〈EK 〉 〈P〉 L

1 000 1.6334 1.4970 0.7985 11.2765
2 000 1.6327 1.4971 0.8105 10.0277
4 000 2.3421 1.4987 6.7568 8.5371
8 000 2.3222 1.4979 6.5538 8.5432

12 000 2.3170 1.4979 6.5383 8.5484
16 000 2.3152 1.4979 6.5222 8.5846
20 000 2.3155 1.4979 6.5286 8.5835

(the region volume in the feedback case) in converting between real and scaled
coordinates.

The demonstration of this method uses a soft-sphere system with Nm = 500; the
input data are

deltaT 0.002

density 0.8

extPressure 6.5

initUcell 5 5 5

stepAdjustPress 2000

stepAvg 500

stepEquil 0

stepLimit 20000

temperature 1.

tolPressure 0.001

Edited output of this run is shown in Table 6.3; the results include the current value
of the region edge L . The pressure is adjusted every 2000 timesteps, but the drift is
sufficiently small that only two cycles of the correction process are required (except
on the very first call where 12 are needed). The typical value of σ(P) for this run
is 0.002.

6.4 Further study
6.1 By examining the relevant partition functions confirm that the equilibrium

properties of these methods correspond to the NVT and NPT ensembles.
6.2 If scaled coordinates are not used in the constrained-pressure method, ex-

amine the implications for processing the periodic boundaries.
6.3 Make a careful comparison of E(T) and P(T) measurements using feed-

back and basic MD methods.

6.4 Further study 175

6.4 Implement the pressure feedback simulation for the case of variable region
shape [nos83].

6.5 A further extension of the feedback approach is to the case of fixed external
stress [par81]; investigate applications of this method.

6.6 Study the soft-sphere and LJ melting transitions at constant pressure; when
the fluid freezes what is the crystal structure?

7

Nonequilibrium dynamics

7.1 Introduction

In the study of equilibrium behavior, MD is used to probe systems that, at least
in principle, are amenable to treatment by statistical mechanics. The fact that sta-
tistical mechanics is generally unable to make much headway without resorting
to simplification and approximation is merely a practical matter; the concepts and
general relationships are extremely important even in the absence of closed-form
solutions. When one departs from equilibrium, very little theoretical guidance is
available and it is here that MD really begins to fill the role of an experimental
tool.

There are many nonequilibrium phenomena worthy of study, but MD applica-
tions have so far tended to concentrate on relatively simple systems, and the case
studies in this chapter will focus on the simplest of problems. To be more spe-
cific, we will demonstrate two very different approaches to questions related to
fluid transport. The first approach uses genuine Newtonian dynamics applied to
spatially inhomogeneous systems, in which the boundaries play an essential role:
simulations of fluids partly constrained by hard walls will be used to determine
both shear viscosity and thermal conductivity. The second approach is based on a
combination of modified equations of motion and fully homogeneous systems: the
same transport coefficients will be measured, but since there are no explicit bound-
aries the dynamics must be altered in very specific ways to compensate for their
absence.

7.2 Homogeneous and inhomogeneous systems

As computational tools, both homogeneous and inhomogeneous nonequilibrium
methods have their strengths and weaknesses. Before delving into the case studies,
which include a sampling of both approaches, it is appropriate to point out the
benefits and limitations of the different methods.

176

7.3 Direct measurement 177

The reason for preferring homogeneous systems is that if physical walls can be
eliminated (and replaced by periodic boundaries) all atoms perceive a similar envi-
ronment. Inhomogeneous systems, on the other hand, must allow for perturbations
to the structure and dynamics due to the presence of the walls. Furthermore, inho-
mogeneous systems may not exist at a uniquely defined temperature or density –
essential if any comparison with experiment is to be made – as a consequence of
the relatively large force needed to drive the mass or heat flow combined with the
small system size. Not all problems offer the homogeneous alternative, although
the more familiar transport coefficients can indeed be studied in this way.

The disadvantage of homogeneous nonequilibrium systems in general is the un-
physical nature of the dynamics, for not only are the equations of motion mod-
ified in such a way that the desired transport coefficient emerges directly from
linear response theory (actually a version of the theory extended to handle isother-
mal systems), they are also altered to mechanically suppress the heat generated
by the applied force [eva84, eva90]. The method is therefore best regarded as a
computational technique whose results are valid in the limit of zero applied force.
The fact that each transport property requires a separate simulation because of the
differing dynamical requirements leads to the question: if homogeneous systems
are already being used why isn’t it better to follow the more straightforward ap-
proach with Newtonian trajectories and autocorrelation functions as described in
§5.2, where all the transport coefficients can be computed together? Historically,
the answer focused on the accuracy of results obtained for comparatively small
systems, with non-Newtonian methods having a clear advantage. Whether this ad-
vantage still exists now that much more extensive simulation is possible remains to
be seen.

7.3 Direct measurement

Viscous flow

Two of the more elementary exercises in fluid dynamics, both with closed-form
solutions, are Couette flow and Poiseuille flow. In planar Couette flow the fluid is
confined between two parallel walls that slide relative to one another at a constant
rate. An example of Poiseuille flow is a fluid forced to flow between two fixed
walls. The walls are rough, so that a thin, stationary – relative to the wall – layer
of fluid exists close to each wall. In each of these flow problems we can assume
the system to be unbounded (or, for MD purposes, periodic) in the remaining two
directions.

The viscous nature of the fluid requires sustained work to maintain motion. For
Couette flow a force must be applied to keep the walls moving relative to one

178 7 Nonequilibrium dynamics

another, whereas for Poiseuille flow a pressure head or gravity-like force acts in
the flow direction. This work is converted to heat that must be removed from the
fluid through the walls to limit the temperature rise. Temperature will vary in the
direction perpendicular to the walls, a reflection of the fact that heat generated in
the interior must be transported to the walls. This is true in both experiment and
simulation.

Once walls have been introduced explicitly into the problem the question arises
as to how realistically they need to be modeled. Real walls are complicated and
can only be represented in an average sense because roughness is essentially a
statistical notion; this observation, however, is of little help when trying to develop
a detailed microscopic simulation. All we require are walls that are sufficiently
rough to ensure nonslip flow, but the precise way by which this is achieved is
unlikely to affect the overall flow. One could, for example, use a layer of either
fixed or tethered atoms that mimic the effect of a rough wall [ash75]; by adjusting
the way the wall atoms are arranged the roughness can even be varied to a certain
extent. While this scheme offers a semblance of reality, it presents a problem if the
walls are also required to transfer heat in and out of the fluid; by using a thermostat
applied to the tethered wall atoms this issue can also be resolved, but the question
is whether such an intricate scheme is really necessary.

At the opposite extreme there are ‘stochastic’ walls [tro84]. Whenever an atom
attempts to cross a wall it is reflected back into the interior; the effects of wall
roughness and temperature are achieved by randomizing the direction of the re-
flected velocity and scaling its magnitude to match the wall temperature. The ap-
proach may appear simplistic and, if not used carefully, could interfere with the
integration of the equations of motion, especially if the region near the wall is at
relatively high density and temperature. Whether such boundary conditions actu-
ally work (they do) can only be established by trying them out.

This case study deals with Poiseuille flow; the Couette problem will be discussed
in §7.4, in the context of homogeneous systems. The analytic results for (incom-
pressible) Poiseuille flow can be summarized as follows: Assume that the two fixed
walls lie in the xy plane and that flow is in the x direction. In terms of the normal-
ized cross-stream coordinate z, where 0 ≤ z ≤ 1, solving the Navier–Stokes and
heat conduction equations [lan59] leads to polynomial velocity and temperature
profiles

vx(z) = ρgL2
z

2η

[
1
4 − (z − 1

2)
2
]

(7.3.1)

T (z) = Tw + ρ2g2L4
z

12λη

[
1
16 − (z − 1

2)
4
]

(7.3.2)

7.3 Direct measurement 179

where Lz is the channel width, Tw the wall temperature and g the external field
driving the flow. By dividing the simulation region into slices parallel to the walls
and measuring the mean flow velocity and temperature in each slice, the shear
viscosity η and thermal conductivity λ can be determined by fitting second- and
fourth-degree polynomials to the results.

In order to carry out this simulation♠ we must first modify the neighbor-list gen-
eration function to allow for the fact that the z boundaries are no longer periodic.
In BuildNebrList (§3.4) the line

VCellWrapAll ();

is replaced by

VCellWrap (x);

VCellWrap (y);

if (m2v.z < 0 || m2v.z >= cells.z) continue;

This removes all reference to nonexistent cells beyond the walls during the search
for interaction partners.

Flow rate depends directly on the force used to drive the fluid (experimentally
the flow is more likely to be due to a pressure difference between the pipe inlet
and outlet); the value needed for a given flow rate will have to be determined by
experiment because it depends on both ρ and Lz . The variable corresponding to g
is declared as

real gravField;

and its value is included with the input data

NameR (gravField),

As part of the interaction computation the following function must be called:

void ComputeExternalForce ()

{

int n;

DO_MOL mol[n].ra.x += gravField; 5

}

The presence of hard walls calls for a change in the usual boundary process-
ing in the z direction. Whenever an atom attempts to cross either of these walls

♠ pr_07_1

180 7 Nonequilibrium dynamics

it is reflected back into the interior; the magnitude of the new velocity is set to
a fixed value, corresponding to the wall temperature, and the direction is ran-
domized. In addition, because the atom will have slightly overshot the wall dur-
ing the current timestep, it is moved back inside (and away from the wall by
a minute amount to avoid any numerical problems). The revised version of the
function is

void ApplyBoundaryCond ()

{

real vSign;

int n;

5

DO_MOL {

VWrap (mol[n].r, x);

VWrap (mol[n].r, y);

vSign = 0.;

if (mol[n].r.z >= 0.5 * region.z) vSign = 1.; 10

else if (mol[n].r.z < -0.5 * region.z) vSign = -1.;

if (vSign != 0.) {

mol[n].r.z = 0.49999 * vSign * region.z;

VRand (&mol[n].rv);

VScale (mol[n].rv, velMag); 15

if (mol[n].rv.z * vSign > 0.) mol[n].rv.z *= -1.;

}

}

}

Minor changes are required to use this function for the two-dimensional version of
the problem, where it is the y direction that is not periodic.

Analysis of the flow requires the construction of cross-stream vx and T profiles
based on a series of slices in the xy plane; in the case of T , each profile value
must be computed in a frame of reference moving with the mean flow in that slice.
However, rather than just show the simple profile computation, we will introduce
a more general scheme for computing properties based on a two-dimensional grid
subdivision of the simulation region, with profiles being produced as a byproduct.
This method will prove useful in later work (Chapter 15).

The following function performs the grid averaging, using cells based on the
atomic coordinates; in this example there is no y dependence, so the cell array
size can be set to unity in the y direction. Depending on the value of the argument
opCode, the function initializes the arrays used for collecting the results, accumu-
lates the results for a single measurement, or computes the final averages. The five
quantities collected for each cell (the parameter NHIST – used for flexibility – is
equal to 5) are the occupation count, the sums over the squares of the velocities

7.3 Direct measurement 181

and the sums of each of the velocity components. The final averaging produces the
cell-averaged densities, temperatures and velocities.

void GridAverage (int opCode)

{

VecR invWid, rs, va;

VecI cc;

real pSum; 5

int c, hSize, j, n;

hSize = VProd (sizeHistGrid);

if (opCode == 0) {

for (j = 0; j < NHIST; j ++) { 10

for (n = 0; n < hSize; n ++) histGrid[j][n] = 0.;

}

} else if (opCode == 1) {

VDiv (invWid, sizeHistGrid, region);

DO_MOL { 15

VSAdd (rs, mol[n].r, 0.5, region);

VMul (cc, rs, invWid);

c = VLinear (cc, sizeHistGrid);

++ histGrid[0][c];

histGrid[1][c] += VLenSq (mol[n].rv); 20

histGrid[2][c] += mol[n].rv.x;

histGrid[3][c] += mol[n].rv.y;

histGrid[4][c] += mol[n].rv.z;

}

} else if (opCode == 2) { 25

pSum = 0.;

for (n = 0; n < hSize; n ++) {

if (histGrid[0][n] > 0.) {

for (j = 1; j < NHIST; j ++) histGrid[j][n] /= histGrid[0][n];

VSet (va, histGrid[2][n], histGrid[3][n], histGrid[4][n]); 30

histGrid[1][n] = (histGrid[1][n] - VLenSq (va)) / NDIM;

pSum += histGrid[0][n];

}

}

pSum /= hSize; 35

for (n = 0; n < hSize; n ++) histGrid[0][n] /= pSum;

}

}

The grid computation requires several additional variables, namely,

VecI sizeHistGrid;

real **histGrid;

int countGrid, limitGrid, stepGrid;

182 7 Nonequilibrium dynamics

extra input data,

NameI (limitGrid),

NameI (sizeHistGrid),

NameI (stepGrid),

and array allocation (in AllocArrays)

AllocMem2 (histGrid, NHIST, VProd (sizeHistGrid), real);

The following code is added to SingleStep,

if (stepCount >= stepEquil &&

(stepCount - stepEquil) % stepGrid == 0) {

++ countGrid;

GridAverage (1);

if (countGrid % limitGrid == 0) { 5

GridAverage (2);

EvalProfile ();

PrintProfile (stdout);

GridAverage (0);

} 10

}

and to SetupJob, for initialization,

GridAverage (0);

countGrid = 0;

In this case study the grid results will be used to compute profiles, but other kinds
of processing could be carried out that utilize the spatial dependence of the data,
including graphics (Chapter 15).

The functions that extract the profiles from the grid data and output the results
follow.

void EvalProfile ()

{

int k, n;

for (n = 0; n < sizeHistGrid.z; n ++) { 5

profileV[n] = 0.;

profileT[n] = 0.;

}

for (n = 0; n < VProd (sizeHistGrid); n ++) {

k = n / (sizeHistGrid.x * sizeHistGrid.y); 10

profileV[k] += histGrid[2][n];

profileT[k] += histGrid[1][n];

}

7.3 Direct measurement 183

for (n = 0; n < sizeHistGrid.z; n ++) {

profileV[n] /= sizeHistGrid.x * sizeHistGrid.y; 15

profileT[n] /= sizeHistGrid.x * sizeHistGrid.y;

}

}

void PrintProfile (FILE *fp) 20

{

real zVal;

int n;

fprintf (fp, "V profile\n"); 25

for (n = 0; n < sizeHistGrid.z; n ++) {

zVal = (n + 0.5) / sizeHistGrid.z;

fprintf (fp, "%.2f %.3f\n", zVal, profileV[n]);

}

... (ditto for T profile) ... 30

}

The arrays for holding the T and vx profiles

real *profileT, *profileV;

are allocated by

AllocMem (profileT, sizeHistGrid.z, real);

AllocMem (profileV, sizeHistGrid.z, real);

A three-dimensional soft-sphere system is used in this study, but the simulation
region is not cubic in shape. Since the sheared flow develops in the xz plane the
two longer region edges are assigned to the x and z directions; in this way we
achieve a relatively large area for examining the flow details while retaining the
three-dimensional nature of the system. The input data include

deltaT 0.005

density 0.8

gravField 0.1

initUcell 20 5 20

limitGrid 100

sizeHistGrid 1 1 50

stepAvg 2000

stepEquil 1000

stepGrid 50

stepLimit 32000

temperature 1.

The parameter gravField takes values between 0.1 and 0.4. The initial state is

184 7 Nonequilibrium dynamics

Table 7.1. Kinetic energy during the runs.

timestep g = 0.1 0.2 0.3 0.4

4 000 1.65 3.60 6.71 11.62
8 000 3.05 9.12 18.32 31.64

12 000 4.03 12.16 22.95 36.57
16 000 4.47 12.87 22.86 35.32
20 000 4.69 12.63 22.37 34.64
24 000 4.72 12.58 22.14 34.60
28 000 4.72 12.23 22.55 34.13
32 000 4.70 12.20 22.53 33.96

0.0 0.2 0.4 0.6 0.8 1.0
0

4

8

12

position

fl
ow

 s
pe

ed
 /

te
m

pe
ra

tu
re

Fig. 7.1. Flow-velocity and temperature profiles for g values 0.1–0.4; polynomial fits are
included.

a simple cubic lattice, so that Nm = 2000, and at the start of the run there is no
overall flow.

A certain amount of time is required for the system to achieve steady flow.
Table 7.1 shows how the mean kinetic energy initially increases with time, eventu-
ally reaching a steady value after about 16 000 timesteps (there is even a suggestion
of overshoot). The flow velocity and temperature measurements made over the last
15 000 timesteps of each run appear in Figure 7.1. Polynomial fits to the data based
on (7.3.1) and (7.3.2) are also shown. Estimates of η and λ derived from the fits are
listed in Table 7.2.

7.3 Direct measurement 185

Table 7.2. Transport coefficients from the fits in Figure 7.1.

g η λ

0.1 1.52 6.7
0.2 1.66 7.2
0.3 1.79 8.4
0.4 1.91 9.6

The fits are not forced to comply with the boundary conditions, namely, vx = 0,
T = 1, because of the limited spatial resolution of the coarse-grained measure-
ments. Other examples of problems that might complicate the analysis include a
small amount of slip at the walls and density variations across the flow. The fact
that the transport coefficients can depend on ρ, T and even the local shear rate,
contributes to the error when trying to fit to analytic results that assume η and λ are
constant. Despite all these reservations, the fits obtained here appear remarkably
good. On the other hand, there are too many variables involved to determine the
reason why η and λ vary with flow rate.

Heat transport

We now turn to another example of the use of MD to mimic a real experiment, in
this case heat flow between two parallel walls maintained at different temperatures
[ten82]. If heat is transferred only by conduction, from Fourier’s law [mcq76] the
thermal conductivity is the ratio of the rate of heat (kinetic energy) transfer across
the system to the temperature gradient,

λ = �E (in)
K + �E (out)

K

2tm A�T/Lz
(7.3.3)

where tm is the measurement interval, �T the temperature difference, and A =
Lx L y the wall area.

The program♠ is similar to the previous one, differing only in that the external
force is absent and the walls are maintained at different temperatures. In the modi-
fied version of ApplyBoundaryCond shown below, the processing associated with
the z boundary has been altered to handle two distinct wall temperatures; it also
evaluates the total heat transferred in and out of the system as the impacting atoms

♠ pr_07_2

186 7 Nonequilibrium dynamics

exchange energy with the constant-temperature walls.

void ApplyBoundaryCond ()

{

real vNew, vSign, vvNew, vvOld;

int n;

5

enTransSum = 0.;

DO_MOL {

VWrap (mol[n].r, x);

VWrap (mol[n].r, y);

vSign = 0.; 10

if (mol[n].r.z >= 0.5 * region.z) vSign = 1.;

else if (mol[n].r.z < -0.5 * region.z) vSign = -1.;

if (vSign != 0.) {

mol[n].r.z = 0.49999 * vSign * region.z;

vvOld = VLenSq (mol[n].rv); 15

vNew = sqrt (NDIM * ((vSign < 0.) ? wallTempHi : wallTempLo));

VRand (&mol[n].rv);

VScale (mol[n].rv, vNew);

vvNew = VLenSq (mol[n].rv);

enTransSum += 0.5 * vSign * (vvNew - vvOld); 20

if (mol[n].rv.z * vSign > 0.) mol[n].rv.z *= -1.;

}

}

}

New variables are

real *profileT, enTransSum, wallTempHi, wallTempLo;

Prop thermalCond;

and there are additional inputs

NameR (wallTempHi),

NameR (wallTempLo),

Heat transfer measurements require additions to EvalProps,

thermalCond.val = 0.5 * enTransSum / (deltaT * region.x *

region.y * ((wallTempHi - wallTempLo) / region.z));

and to AccumProps,

if (icode == 0) {

...

PropZero (thermalCond);

} else if (icode == 1) {

... 5

7.3 Direct measurement 187

0.0 0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

2.5

position

te
m

pe
ra

tu
re

Fig. 7.2. Temperature profiles for �T between 0.5 and 2.0; linear fits to the interior values
are included.

PropAccum (thermalCond);

} else if (icode == 2) {

...

PropAvg (thermalCond, stepAvg);

} 10

The value of thermalCond.sum that should be output by PrintSummary is the
estimate of λ.

The system used is similar to the previous case, with changed input data

sizeHistGrid 1 1 25

stepAvg 5000

stepEquil 0

stepLimit 50000

wallTempHi 1.5

wallTempLo 1.

The parameter wallTempHi ranges between 1.5 and 3.0. The simulation is started
with the fluid at uniform temperature; achieving a steady state once again requires
a certain amount of time, after which measurement can begin.

The temperature measurements made over the latter 15 000 timesteps of each
run appear in Figure 7.2 (the z coordinate is normalized). Linear fits to the data
are shown; the fits ignore the three values closest to each wall where the deviations
from linearity are strongest. Estimates of λ derived from the fits and the measured

188 7 Nonequilibrium dynamics

heat flow are 4.84, 5.06, 5.92 and 5.75, for �T = 0.5, 1.0, 1.5 and 2.0, respectively;
these may be compared with the earlier Poiseuille flow values.

As in the case of Poiseuille flow, the fact that the system is inhomogeneous can
create problems when trying to interpret the results. Here, a kind of thermal bound-
ary layer exists close to each wall where the fluid temperature varies more rapidly
than in the bulk, so that the effective thermal gradient is overestimated. Failure to
account for this leads to λ estimates that are some 40% too small. Temperature-
dependent density variations may also create problems.

7.4 Modified dynamics

Linear response theory
The question addressed by linear response theory [han86b, eva90] can be stated
in the following way. Given a system with Hamiltonian H0, evaluate the change
in some dynamical variable B(t) caused by an external field Fe(t) applied starting
at t = 0, whose effect on the system can be expressed schematically in terms of
atomic coordinates and momenta as

H = H0 − A(r, p)Fe(t) (7.4.1)

The actual coupling of Fe to the system may be more general than the form sug-
gested here, with vector or tensor products being involved. The step function is just
one possible form of perturbation, and sinusoidal and delta functions are also of
interest.

Assuming that the effect of Fe is small enough to permit a linear perturbation
treatment, an analysis based on the Liouville equation then leads to〈

B(t)
〉− 〈B(0)

〉 = 1

T

∫ t

0

〈
B(t − t ′) Ȧ(0)

〉
0 Fe(t

′) dt ′ (7.4.2)

This result is valid in the limit Fe → 0, with 〈. . .〉0 denoting an equilibrium average
evaluated in the unperturbed system. The existence of the perturbed Hamiltonian
H is not required for this result to be true [eva84]. If, for example, the equations of
motion are

ṙi = pi/m + Ci (r, p)Fe(t) (7.4.3)

ṗi = fi + Di (r, p)Fe(t) (7.4.4)

then if the phase-space distribution function f (r, p) obeys d f (r, p)/dt = 0 (as
systems defined by a Hamiltonian always do – the Liouville theorem) and,
consequently,∑

i

(∇ri · Ci + ∇ pi · Di

) = 0 (7.4.5)

7.4 Modified dynamics 189

the result also holds, but with Ȧ in (7.4.2) replaced by −J defined via

Ḣ0 =
∑

i

(ṗi · pi/m − ṙi · fi)

= −
∑

i

(− pi · Di/m + fi · Ci) Fe(t)

≡ −J (r, p)Fe(t) (7.4.6)

Since the applied force Fe performs mechanical work on the system the temper-
ature rises, and equilibrium is never attained. To eliminate this problem [mor85] a
thermostat is included in the dynamics (as in §6.3) by adding a term α pi to (7.4.4);
constant kinetic energy is assured if the value of the Lagrange multiplier is†

α = −
∑

i (fi + Di Fe) · pi∑
i p2

i

(7.4.7)

Transport coefficients can be evaluated by applying the appropriate force Fe and
examining the behavior in the limit Fe → 0. If the transport coefficient can be
expressed as the integrated autocorrelation function of some dynamical quantity J ,

Q = 1

T

∫ ∞

0

〈
J (t)J (0)

〉
dt (7.4.8)

then, provided the perturbation is designed so that linear response theory yields an
expression that is formally identical to the definition of the transport coefficient
(7.4.8) – in other words B = J – we obtain

Q = lim
Fe→0

lim
t→∞

〈
J (t)

〉
Fe

(7.4.9)

The order of the limits is important, with the large t results obtained at finite Fe

being extrapolated to Fe = 0. Since the goal is to use this definition for Q in
constant-temperature simulations, but the usual formulation of linear response the-
ory assumes constant-energy (Newtonian) dynamics, the theory must be extended
to cover this situation. When this is done [mor85, eva90] the same expressions ap-
pear, but with the averages now evaluated at constant temperature. In the remainder
of this section we will use this approach to evaluate the two transport coefficients
considered previously – shear viscosity and thermal conductivity.

Shear viscosity
We consider the case of Couette flow in which the fluid undergoes sheared flow due
to boundary walls that are in relative motion. The equations of motion used in this

† The momenta appear in the analysis because of Hamilton’s equations of motion, but we will dispense with
them shortly.

190 7 Nonequilibrium dynamics

shear viscosity study are based on the constant-temperature dynamics described in
§6.3. A small, but significant, change is required in order to ensure that temperature
is correctly defined in the presence of flow, and this affects the velocity terms in
the Lagrange multiplier used for the thermostat.

The usual microscopic definition of temperature in terms of mean-square veloc-
ity assumes that there is no overall motion; any local flow must be subtracted from
the velocities before using them to evaluate temperature (similar situations have
been encountered in earlier case studies). The same holds true for the velocities
used in the thermostat. However, knowing the bulk flow to an accuracy suitable for
use in the equations of motion implies that the problem has already been solved;
this circularity can be removed by assuming the nature of the flow, and only later
checking to see whether consistent results are obtained. A less reliable alternative
is to evaluate local flow by means of coarse-grained averaging and then use the
results in the equations of motion; such an approach is unstable to any fluctuations
in the flow because these variations are interpreted by the equations of motion as
temperature fluctuations that must be suppressed.

In this study we impose the reasonable requirement that the MD flow obeys the
linear velocity profile known from the exact solution of the continuum problem.
Assuming it is the z boundaries that are in motion, then if the relative velocity of
the walls is γ Lz , the shear rate dvx/dz has the constant value γ . The thermostatted
equation of motion is then [eva84]

r̈i = 1

m
fi + α(ṙi − γ ri z x̂) (7.4.10)

The value of the Lagrange multiplier α follows from the constant-temperature
constraint,

α = −
∑

i (ṙi − γ ri z x̂) · (fi/m − γ ṙi z x̂)∑
i (ṙi − γ ri z x̂)2

(7.4.11)

The equation of motion (7.4.10) assumes that the linear velocity profile has already
been established; creating the initial sheared flow is most readily done as part of the
initial conditions, and from the more formal point of view this amounts to applying
an impulse of the correct size and direction to each atom at t = 0. The sliding
boundaries, in the form of a special kind of boundary condition (see below), main-
tain the constant shear rate. The constant-temperature version of linear response
theory for this problem provides an expression for η based on the pressure tensor

η = − lim
γ→0

lim
t→∞

〈Pxz〉
γ

(7.4.12)

To show that (7.4.10) corresponds to the more general form given by (7.4.3)–(7.4.4)

7.4 Modified dynamics 191

we define the momentum measured relative to the local flow

pi/m = ṙi − γ ri z x̂ (7.4.13)

The first-order equations are then

ṙi = pi/m + γ ri z x̂ (7.4.14)

ṗi = fi − γ pi z x̂ + α pi (7.4.15)

exactly as required (if the thermostat is ignored).
The boundaries are periodic, but of a special form to accommodate the uni-

formly sheared flow [lee72]. The idea is to replace sliding walls by sliding replica
systems; layers of replicas that are adjacent in the z direction move with relative
velocity γ Lz x̂, an arrangement designed to ensure periodicity at shear rate γ . An
atom crossing a z boundary requires special treatment because the x components
of position and velocity are both discontinuous – not for the replica system just
entered, but relative to the opposite side of the region into which the atom must
be inserted. The velocity change whenever a ±z boundary is crossed is ∓γ Lz x̂,
and the coordinate change is ∓dx x̂, where the total relative displacement of the
neighboring replicas – a quantity only meaningful over the range (−Lx/2, Lx/2) –
is given by

dx = (γ Lzt + Lx/2) (mod Lx) − Lx/2 (7.4.16)

Note that because the x coordinate changes when a z boundary is crossed, a further
correction for periodic wraparound in the x direction may be needed. Interactions
that occur between atoms separated by the z boundary require an offset value −dx

to be included in the distance computation.
When using the cell method for the interaction calculation, the range of neighbor

cells in the x direction for adjacent cells on opposite sides of the z boundary must
extend over four cells, instead of the usual three, to allow for the fact that the cells
of the sliding replicas are not usually aligned. If there are Mx cells on an edge, the
additional cell offset across the positive z boundary is

�mx = �Mx (1 − dx/Lx)� − Mx (7.4.17)

Taking these considerations into account, the modified form of the function
ComputeForces♠ is the following.

#define OFFSET_VALS \

{{0,0,0}, {1,0,0}, {1,1,0}, {0,1,0}, {-1,1,0}, \

{0,0,1}, {1,0,1}, {1,1,1}, {0,1,1}, {-1,1,1}, \

♠ pr_07_3

192 7 Nonequilibrium dynamics

{-1,0,1}, {-1,-1,1}, {0,-1,1}, {1,-1,1}, {2,-1,1}, \

{2,0,1}, {2,1,1}} 5

void ComputeForces ()

{

...

int cellShiftX, offsetHi; 10

...

cellShiftX = (int) (cells.x * (1. - bdySlide / region.x)) - cells.x;

pTensorXZ = 0.;

for (m1z ...

... 15

m1 = VLinear (m1v, cells) + nMol;

offsetHi = (m1v.z == cells.z - 1) ? 17 : 14;

for (offset = 0; offset < offsetHi; offset ++) {

VAdd (m2v, m1v, vOff[offset]);

VZero (shift); 20

if (m1v.z == cells.z - 1 && vOff[offset].z == 1) {

m2v.x += cellShiftX;

shift.x = bdySlide;

if (m2v.x >= cells.x) {

m2v.x -= cells.x; 25

shift.x += region.x;

} else if (m2v.x < 0) {

m2v.x += cells.x;

shift.x -= region.x;

} 30

} else {

VCellWrap (x);

}

VCellWrap (y);

VCellWrap (z); 35

m2 = ...

...

if (rr < rrCut) {

...

pTensorXZ += fcVal * dr.x * dr.z; 40

...

}

The quantity bdySlide corresponding to dx is computed at the beginning of
SingleStep,

bdySlide = shearRate * region.z * timeNow + 0.5 * region.x;

bdySlide -= (int) (bdySlide / region.x) * region.x + 0.5 * region.x;

A modified version of ApplyBoundaryCond handles the sliding boundary condi-
tions by treating z boundary crossings in the prescribed manner.

7.4 Modified dynamics 193

void ApplyBoundaryCond ()

{

int n;

DO_MOL { 5

VWrap (mol[n].r, x);

VWrap (mol[n].r, y);

if (mol[n].r.z >= 0.5 * region.z) {

mol[n].r.x -= bdySlide;

if (mol[n].r.x < 0.5 * region.x) mol[n].r.x += region.x; 10

mol[n].rv.x -= shearRate * region.z;

mol[n].r.z -= region.z;

} else if (mol[n].r.z < -0.5 * region.z) {

mol[n].r.x += bdySlide;

if (mol[n].r.x >= 0.5 * region.x) mol[n].r.x -= region.x; 15

mol[n].rv.x += shearRate * region.z;

mol[n].r.z += region.z;

}

}

} 20

New variables introduced are

real bdySlide, pTensorXZ, shearRate, vvSumXZ;

Prop shearVisc;

and there is an additional input data item

NameR (shearRate),

The thermostat plays a key role in this approach, with temperature being eval-
uated with respect to the local flow to adhere to the correct definition. We assume
that local flow is determined by the constant shear rate γ . The changes – PC inte-
gration is used – require the x components to be singled out for special treatment
(7.4.11),

void ApplyThermostat ()

{

real s1, s2, vFac;

VecR as, vs;

int n; 5

s1 = 0.;

s2 = 0.;

DO_MOL {

vs = mol[n].rv; 10

vs.x -= shearRate * mol[n].r.z;

as = mol[n].ra;

as.x -= shearRate * mol[n].rv.z;

194 7 Nonequilibrium dynamics

s1 += VDot (vs, as);

s2 += VLenSq (vs); 15

}

vFac = - s1 / s2;

DO_MOL {

VVSAdd (mol[n].ra, vFac, mol[n].rv);

mol[n].ra.x -= vFac * shearRate * mol[n].r.z; 20

}

}

Corresponding modification is needed in AdjustTemp. The initial velocities in-
clude the uniform shear flow; the addition to InitVels is

mol[n].rv.x += shearRate * mol[n].r.z;

Changes to EvalProps for the evaluation of η(γ) are

vvSumXZ = 0.;

DO_MOL {

v = mol[n].rv;

v.x -= shearRate * mol[n].r.z;

VVAdd (vSum, v); 5

vvSum += VLenSq (v);

vvSumXZ += (mol[n].rv.x - shearRate * mol[n].r.z) * mol[n].rv.z;

}

...

pTensorXZ = (pTensorXZ + vvSumXZ) * density / nMol; 10

shearVisc.val = - pTensorXZ / shearRate;

The averaging of shearVisc is included in AccumProps,

if (icode == 0) {

...

PropZero (shearVisc);

} else if (icode == 1) {

... 5

PropAccum (shearVisc);

} else if (icode == 2) {

...

PropAvg (shearVisc, stepAvg);

} 10

and the appropriate output added to PrintSummary.
The runs used for the shear viscosity measurements are based on the following

input data,

deltaT 0.002

density 0.8

7.4 Modified dynamics 195

0 1 2 3
1.2

1.3

1.4

1.5

1.6

1.7

1.8

shear rate

vi
sc

os
ity

Fig. 7.3. Shear viscosity for various shear rates; the equilibrium value appears at the left
edge of the graph.

initUcell 4 4 4

shearRate 0.5

stepAdjustTemp 999999

stepAvg 1000

stepEquil 1000

stepLimit 22000

temperature 1.

with the value of shearRate ranging between 0.5 and 2.5. An FCC initial state is
used, so that Nm = 256.

Estimates of η(γ) are shown in Figure 7.3; the error bars show the standard de-
viation of the mean σ(〈η〉), computed from the block averages that are produced
every 1000 timesteps. Taking into account the more extensive computation required
in the equilibrium case (§5.5) and the larger uncertainty in the final estimate, the
advantage of the nonequilibrium approach here is apparent. Further discussion ap-
pears in [eva90, fer91, lie92].

Thermal conductivity

The thermal conductivity is another example of a transport coefficient that can be
measured by a similar approach, assuming a suitable equation of motion can be
synthesized. In this case a fictitious external field Fe of an unusual kind is intro-
duced [eva82, gil83]: it has the effect of driving atoms with a higher than average
energy in the direction of Fe, while those with a lower energy are driven in the

196 7 Nonequilibrium dynamics

opposite direction; in other words, Fe generates heat flow and so, at least for small
values of the field, produces the effect of an imposed temperature difference.

The additional force acting on each atom is defined† as

f ′
i = ei Fe + 1

2

∑
j (�=i)

fi j (ri j · Fe) − 1

2Nm

∑
j �=k

f jk(r jk · Fe) (7.4.18)

where ei is the excess energy of atom i . Here, f ′
i has been chosen so that in terms

of the heat current S (5.2.15),∑
i

ṙi · f ′
i = V S · Fe (7.4.19)

The force conserves total momentum because
∑

f ′
i = 0. Since only relative dis-

tances occur in f ′
i , and assuming the force is sufficiently weak that the system

remains homogeneous, there is nothing to prevent the use of periodic boundary
conditions – exactly the motivation for devising methods of this kind. If J = Sz

and Fe = Fe ẑ, then the constant-temperature version of (7.4.9) leads to the result

λ = lim
Fe→0

lim
t→∞

〈Sz〉
FeT

(7.4.20)

The thermostat is the usual one, based on the total force, so that the equations of
motion are simply

r̈i = fi + f ′
i + α ṙi (7.4.21)

For computational convenience we introduce a matrix associated with each atom i
whose elements are

Bi xy =
∑
j (�=i)

fi j xri j y (7.4.22)

so that the components of (7.4.18) can be written

f ′
i µ = ei Feδµz + 1

2

(
Bi µz − 〈Bµz〉

)
Fe (7.4.23)

where 〈Bµz〉 is just the mean of Bi µz .
The following variables are added to the structure Mol and evaluated exactly as

in the equilibrium case (§5.3)

VecR rf[3];

real en;

† The signs differ from [eva82] because of the way ri j is defined.

7.4 Modified dynamics 197

and the other variables used in this calculation are

real heatForce;

Prop thermalCond;

The only new input item is the thermal driving force Fe

NameR (heatForce),

Evaluating the right-hand side of the equation of motion, again assuming the use
of PC integration, requires the additional function♠

void ComputeThermalForce ()

{

VecR rfMolSumZ;

real enMolSum;

int n; 5

VZero (rfMolSumZ);

enMolSum = 0.;

DO_MOL {

VVAdd (rfMolSumZ, mol[n].rf[2]); 10

mol[n].en += VLenSq (mol[n].rv);

enMolSum += mol[n].en;

}

DO_MOL {

VVSAdd (mol[n].rf[2], -1. / nMol, rfMolSumZ); 15

mol[n].en = 0.5 * (mol[n].en - enMolSum / nMol);

}

DO_MOL {

mol[n].ra.z += mol[n].en * heatForce;

VVSAdd (mol[n].ra, 0.5 * heatForce, mol[n].rf[2]); 20

}

}

The value of λ(Fe) is computed by a modified version of EvalProps that includes

real thermVecZ;

...

thermVecZ = 0.;

DO_MOL thermVecZ += mol[n].rv.z * mol[n].en +

0.5 * VDot (mol[n].rf[2], mol[n].rv); 5

thermalCond.val = thermVecZ * density / (temperature *

heatForce * nMol);

Final averages are processed by AccumProps in exactly the same way as the
viscosity – simply change the variable names to those used here.

♠ pr_07_4

198 7 Nonequilibrium dynamics

0.0 0.1 0.2 0.4 0.5
4

5

6

7

8

force

th
er

m
al

 c
on

du
ct

iv
ity

Fig. 7.4. Thermal conductivity for different values of thermal driving force; the equilib-
rium result is included.

The results of this case study are based on the same input data as previously,
except that the shear rate is replaced by the parameter heatForce, with values in
the range 0.05 to 0.4. Run lengths of 84 000 timesteps are used to reduce the error
estimates. The results appear in Figure 7.4 (error bars are computed as before); the
benefits of the nonequilibrium approach are not as pronounced here as in the case
of shear viscosity, although the fact that these runs are substantially shorter than
the run of §5.5 should not be forgotten.

7.5 Further study
7.1 Examine the Couette flow problem when hard sliding walls are included

[tro84].
7.2 Compare the transport coefficients obtained by nonequilibrium methods with

those from the autocorrelation integrals [erp77]; for a given level of accu-
racy, which is more efficient, and by how much?

7.3 Consider walls with atomic structure based on atoms that are either fixed or
mobile [ash75, tho90, lie92]; how can the effect of a constant-temperature
wall be achieved?

7.4 Homogeneous shear MD can produce a spurious ‘string’ phase [eva86, loo92],
and homogeneous heat flow MD can become unstable for large systems
[han94]; in both cases the proposed solution is a more carefully designed
thermostat – explore this issue.

8

Rigid molecules

8.1 Introduction

The elementary constituents of most substances are structured molecules, rather
than the spherically symmetric atoms treated in previous chapters. The emphasis
on simple monatomic models is justified for a number of reasons: the dynamics
are simpler, thereby making life easier for newcomers; it reflects the historical de-
velopment of the field, since the original work establishing the viability of the MD
approach as a quantitative tool dealt with liquid argon [rah64]; and once the basic
techniques have been mastered they can be extended to a variety of more complex
situations. In this chapter we discuss the first of these excursions – to molecules
constructed from a rigidly linked atomic framework. This approach is suitable for
small, relatively compact molecules, where rigidity seems a reasonable assump-
tion, but if this is not true then motion within the molecule must also be taken into
account, as we will see in later chapters. There is really no such thing as a rigid
molecule, but from the practical point of view it is a very effective simplification
of the underlying quantum problem; the model also does not account for chemical
processes – no mechanism is provided for molecular formation and dissociation.

The chapter begins with a summary of rigid-body dynamics, but with a slightly
unfamiliar emphasis. In treatises on classical mechanics Euler angles play a central
part [gol80]; while they provide the most intuitive means for describing the orienta-
tion of a rigid body and are helpful for analyzing certain exactly soluble problems,
in numerical applications they actually represent a very poor choice. Quaternions,
originally a purely theoretical development due to Hamilton, turn out to be a better
choice, and the dynamics will be described using such quantities. Linear molecules,
with only two rotational degrees of freedom rather than three, are treated separately.
A simple but useful model for liquid water is considered in the case studies; the re-
sults derived for linear molecules will be used in §13.2. The chapter concludes
with a discussion of an alternative approach that employs the molecular rotation

199

200 8 Rigid molecules

matrices themselves as the orientation variables; this allows the leapfrog method
to be used and the approach is demonstrated on a system of tetrahedral molecules.
The methods shown here also apply when there is no translational motion and the
molecules merely rotate about fixed lattice sites (as in molecular crystals [kle86]);
the force computations are simpler because the neighbors within interaction range
never change.

8.2 Dynamics

Coordinates

Rigid-body motion can be decomposed into two completely independent parts,
translational motion of the center of mass and rotation about the center of mass.
A basic result of classical mechanics is that the former is governed by the total
force acting on the body, whereas the latter depends on the total applied torque.
Thus translation can be treated as before and we need only consider the dynamics
of rotation.

Fully rigid molecules come in two flavors, linear and nonlinear, with each molec-
ule having two or three rotational degrees of freedom respectively. The orienta-
tion of a rodlike linear molecule can be specified using two angular coordinates,
whereas the more general case requires three, and it is for the latter that Euler an-
gles are usually introduced as a particularly simple way of describing orientation.
We begin with the nonlinear case [gol80].

The Euler angles are defined in terms of a sequence of rotations of a set of
cartesian coordinate axes about the origin. The first rotation is through an angle
(measured counterclockwise) φ about the z axis; this is followed by a rotation θ

about the new x axis; the final rotation is through an angle ψ about the new z axis.
The full rotation matrix R is the product of the individual rotation matrices

R = R(ψ)R(θ)R(φ) (8.2.1)

and, if required, the elements of R can be expressed in terms of the Euler angles.
There are two ways of interpreting the rotation described by R. One is to consider
a vector r ′ and use R to obtain its components in the rotated coordinate system,
namely,

r = Rr ′ (8.2.2)

The other is to rotate the vector, beginning with r and applying the opposite rota-
tions in reverse order by means of the transpose of R, in which case the result is
the rotated vector r ′ = RT r .

8.2 Dynamics 201

Quaternions
There are other ways of describing rotations, perhaps not as intuitively obvious,
but often more convenient for numerical problem solving. Here we consider a par-
ticularly useful method – Hamilton’s quaternions [gol80].

We begin by specifying the components† of a quaternion in terms of the Euler
angles,

q1 = sin(θ/2) cos
(
(φ − ψ)/2

)
q2 = sin(θ/2) sin

(
(φ − ψ)/2

)
q3 = cos(θ/2) sin

(
(φ + ψ)/2

)
q4 = cos(θ/2) cos

(
(φ + ψ)/2

)
(8.2.3)

The components are normalized,∑
m

q2
m = 1 (8.2.4)

The inverse relations are

sin θ = 2
√

(q2
1 + q2

2)(1 − q2
1 − q2

2)

cos θ = 1 − 2 (q2
1 + q2

2)

sin φ = 2 (q1q3 + q2q4)/ sin θ

cos φ = 2 (q1q4 − q2q3)/ sin θ

sin ψ = 2 (q1q3 − q2q4)/ sin θ

cos ψ = 2 (q1q4 + q2q3)/ sin θ

(8.2.5)

These results break down when θ = 0 or π , corresponding to the coincidence of
two of the rotation axes; since φ and ψ cannot be identified separately in this case
we (arbitrarily) set ψ = 0 to remove any ambiguity.

An alternative definition is motivated by the fact that any rotation about a fixed
point can be expressed in the form

r ′ = r cos ζ + (c · r)c(1 − cos ζ) + (c × r) sin ζ (8.2.6)

where c is a unit vector specifying the axis of rotation and ζ is the rotation angle.
If we define

qm =
{

cm sin(ζ/2) m = 1, 2, 3

cos(ζ/2) m = 4
(8.2.7)

then

r ′ = (2q2
4 − 1)r + 2(q · r)q + 2q4q × r (8.2.8)

† There is a minor change of indices: q0 is replaced by q4.

202 8 Rigid molecules

While the definition based on Euler angles (8.2.3) is useful for converting to and
from the quaternion representation, the completely equivalent result (8.2.8) leads
directly to the rotation matrix

R = 2

⎛
⎜⎝

q2
1 + q2

4 − 1
2 q1q2 + q3q4 q1q3 − q2q4

q1q2 − q3q4 q2
2 + q2

4 − 1
2 q2q3 + q1q4

q1q3 + q2q4 q2q3 − q1q4 q2
3 + q2

4 − 1
2

⎞
⎟⎠ (8.2.9)

One of the benefits of quaternions is obvious – no trigonometric functions are re-
quired in evaluating R. However, there is a more important advantage that will
become apparent shortly.

A more formal treatment of quaternions [gol80] can be summarized as follows.
Define a quaternion as the complex sum of a scalar and a vector,

q̃ = q4 + iq (8.2.10)

The product of two quaternions is then

q̃q̃ ′ = q4 q ′
4 − q · q ′ + i(q4 q ′ + qq ′

4 + q × q ′) (8.2.11)

itself also a quaternion. The complex conjugate of q̃ is q̃∗ = q4 − iq, so that
normalization implies q̃q̃∗ = 1. The connection with rotation is made by choosing
a vector r , defining two quaternions r̃ = 0 + i r and r̃ ′ = 0 + i r ′, where r and r ′

are related as above, and with a little algebra arriving at the result r̃ ′ = q̃r̃ q̃∗. In
this way quaternions are seen to provide the correct answers.

There are other ways of describing rotations, and even the quaternions can be
expressed in an alternative fashion as complex 2 × 2 matrices, but our interest
is confined to the set of real numbers {qm}. The next step is to demonstrate the
important role of quaternions in the dynamics of rigid bodies.

Equations of motion for nonlinear molecules
Rigid-body dynamics generally deals with two coordinate frames, one fixed in
space, the other attached to the principal axes of the rotating body. The expression
for the angular velocity ω′ measured in the body-fixed frame, in terms of Euler
angles, is a familiar one [gol80],⎛
⎜⎝

ω′
x

ω′
y

ω′
z

⎞
⎟⎠ =

⎛
⎜⎝

sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0

cos θ 0 1

⎞
⎟⎠
⎛
⎜⎝

φ̇

θ̇

ψ̇

⎞
⎟⎠ (8.2.12)

Texts on mechanics tend to ignore the fact that the matrix in this equation is sin-
gular when sin θ = 0. Since the inverse of the matrix appears in the equations of

8.2 Dynamics 203

motion, the numerical treatment is destined to become unstable whenever θ even
approaches 0 or π . The simplest and most elegant way to avoid this inconvenience
is to abandon Euler angles and use quaternions instead [eva77a, eva77b]; this elim-
inates the problem of singular matrices.

The angular velocity ω′ is related to ˙̃q by⎛
⎜⎜⎜⎜⎝

ω′
x

ω′
y

ω′
z

0

⎞
⎟⎟⎟⎟⎠ = 2W

⎛
⎜⎜⎜⎜⎝

q̇1

q̇2

q̇3

q̇4

⎞
⎟⎟⎟⎟⎠ (8.2.13)

where

W =

⎛
⎜⎜⎜⎜⎝

q4 q3 −q2 −q1

−q3 q4 q1 −q2

q2 −q1 q4 −q3

q1 q2 q3 q4

⎞
⎟⎟⎟⎟⎠ (8.2.14)

is an orthogonal matrix. This result [cor60, eva77a] follows from the fact that if

r̃(t) = q̃(t)r̃(0)q̃∗(t) (8.2.15)

then the time derivative is

˙̃r(t) = ˙̃q(t)r̃(0)q̃∗(t) + q̃(t)r̃(0) ˙̃q∗(t) (8.2.16)

Now

r̃(0) = q̃∗(t)r̃(t)q̃(t) (8.2.17)

and, dropping the explicit t dependence for convenience,

˙̃qq̃∗ = −q̃ ˙̃q∗ (8.2.18)

so that

˙̃r = ˙̃qq̃∗r̃ − r̃ ˙̃qq̃∗ (8.2.19)

Thus

ṙ = u × r − r × u = 2u × r (8.2.20)

where u is the vector part of the quaternion ũ = ˙̃qq̃∗; the scalar part is zero. In
other words, since ṙ = ω × r ,

ω = 2u (8.2.21)

204 8 Rigid molecules

The result (8.2.13) follows immediately because

ũ′ = q̃∗ũq̃ = q̃∗ ˙̃q (8.2.22)

In a space-fixed coordinate frame, torque equals the rate of change of angular
momentum,

n = d l
dt

(8.2.23)

Given that the general relation between time derivatives in space- and body-fixed
coordinate frames is(

d l
dt

)
space

=
(

d l
dt

)
body

+ ω × l (8.2.24)

the body-fixed version of (8.2.23) can be written

nx = l̇x + ω′
ylz − ω′

zly (8.2.25)

with corresponding expressions for the other two components. In the body-fixed
frame, each of the components of l has the simple form lx = Ix ω′

x , where Ix is one
component of the (diagonal) inertia tensor, so that (8.2.25) becomes

Ix ω̇′
x = nx + (Iy − Iz)ω′

yω
′
z (8.2.26)

with similar equations for the other components. These are the Euler equations
describing the rotation of a rigid body.

The quaternion accelerations are obtained from

˙̃u′ = ˙̃q∗ ˙̃q + q̃∗ ¨̃q (8.2.27)

Premultiply by q̃ and rearrange to get

¨̃q = q̃(˙̃u′ − ˙̃q∗ ˙̃q) (8.2.28)

or, equivalently,⎛
⎜⎜⎜⎜⎝

q̈1

q̈2

q̈3

q̈4

⎞
⎟⎟⎟⎟⎠ = 1

2 W T

⎛
⎜⎜⎜⎜⎝

ω̇′
x

ω̇′
y

ω̇′
z

−2
∑

q̇2
m

⎞
⎟⎟⎟⎟⎠ (8.2.29)

We can eliminate ω̇′ from the right-hand side of (8.2.29) by using the Euler equa-
tions, and if the components of ω′ that then appear are replaced by linear combi-
nations of the q̇i from (8.2.13), the result is a set of equations of motion expressed
entirely in terms of quaternions and their derivatives [pow79, rap85]; Euler angles
and angular velocities no longer play any part in the computation.

8.2 Dynamics 205

A new C structure type is introduced to hold the quaternion components♠

typedef struct {

real u1, u2, u3, u4;

} Quat;

and several useful operations on quaternions are defined,

#define QSet(q, s1, s2, s3, s4) \

(q).u1 = s1, \

(q).u2 = s2, \

(q).u3 = s3, \

(q).u4 = s4 5

#define QZero(q) \

QSet (q, 0., 0., 0., 0.)

#define QScale(q, s) \

(q).u1 *= s, \

... 10

#define QSAdd(q1, q2, s3, q3) \

(q1).u1 = (q2).u1 + (s3) * (q3).u1, \

...

#define QLenSq(q) \

(Sqr ((q).u1) + Sqr ((q).u2) + Sqr ((q).u3) + \ 15

Sqr ((q).u4))

#define QMul(q1, q2, q3) \

(q1).u1 = (q2).u4 * (q3).u1 - (q2).u3 * (q3).u2 + \

(q2).u2 * (q3).u3 + (q2).u1 * (q3).u4, \

(q1).u2 = (q2).u3 * (q3).u1 + (q2).u4 * (q3).u2 - \ 20

(q2).u1 * (q3).u3 + (q2).u2 * (q3).u4, \

(q1).u3 = - (q2).u2 * (q3).u1 + (q2).u1 * (q3).u2 + \

(q2).u4 * (q3).u3 + (q2).u3 * (q3).u4, \

(q1).u4 = - (q2).u1 * (q3).u1 - (q2).u2 * (q3).u2 - \

(q2).u3 * (q3).u3 + (q2).u4 * (q3).u4 25

An extended form of the Mol structure is used to hold all the molecular state in-
formation; the elements include the quaternion components, their first and second
derivatives, other values required for the PC integration, and the torque on the
molecule with components expressed in the body-fixed coordinate frame,

typedef struct {

VecR r, rv, ra, ra1, ra2, ro, rvo;

Quat q, qv, qa, qa1, qa2, qo, qvo;

VecR torq;

} Mol; 5

♠ pr_08_1

206 8 Rigid molecules

The function for evaluating the quaternion accelerations – in other words, the
rotational equations of motion – is the following, with mInert a vector whose
components are Ix , Iy and Iz .

void ComputeAccelsQ ()

{

Quat qs;

VecR w;

int n; 5

DO_MOL {

ComputeAngVel (n, &w);

QSet (qs,

(mol[n].torq.x + (mInert.y - mInert.z) * w.y * w.z) / mInert.x, 10

(mol[n].torq.y + (mInert.z - mInert.x) * w.z * w.x) / mInert.y,

(mol[n].torq.z + (mInert.x - mInert.y) * w.x * w.y) / mInert.z,

-2. * QLenSq (mol[n].qv));

QMul (mol[n].qa, mol[n].q, qs);

QScale (mol[n].qa, 0.5); 15

}

}

The angular velocities w required here are computed by a function that is called
separately for each molecule,

void ComputeAngVel (int n, VecR *w)

{

Quat qt, qvt;

qvt = mol[n].qv; 5

qvt.u4 *= -1.;

QMul (qt, qvt, mol[n].q);

QScale (qt, 2.);

VSet (*w, qt.u1, qt.u2, qt.u3);

} 10

The interactions between rigid molecules are usually expressed as sums of con-
tributions from pairs of ‘interaction sites’ on different molecules. It is sufficient to
know the center of mass separation of the two molecules and their orientations in
order to be able to compute the interactions between the site pairs – the subject is
discussed in §8.3. Assuming that the site forces have already been computed, the
forces and torques acting on the molecules as a whole are evaluated by the function
given below. If k labels the interaction sites, and rk is the location of a site relative
to the center of mass of the molecule to which it belongs, then the total torque
acting on the molecule is

∑
k rk × fk .

8.2 Dynamics 207

A new C structure associated with the interaction sites

typedef struct {

VecR f, r;

} Site;

is used to hold the current coordinates of the site and the results of the force calcu-
lation. Rotation matrices are represented by the structure

typedef struct {

real u[9];

} RMat;

The variable sitesMol is the number of interaction sites in each molecule (all
molecules are assumed identical for simplicity). The torques are evaluated in the
space-fixed coordinate frame and then transformed to the body-fixed frame as re-
quired by the equations of motion.

void ComputeTorqs ()

{

RMat rMat;

VecR dr, t, torqS;

int j, n; 5

DO_MOL {

VZero (mol[n].ra);

VZero (torqS);

for (j = 0; j < sitesMol; j ++) { 10

VVAdd (mol[n].ra, site[n * sitesMol + j].f);

VSub (dr, site[n * sitesMol + j].r, mol[n].r);

VCross (t, dr, site[n * sitesMol + j].f);

VVAdd (torqS, t);

} 15

BuildRotMatrix (&rMat, &mol[n].q, 0);

MVMul (mol[n].torq, rMat.u, torqS);

}

}

The rotation matrix for each molecule (or its transpose, as required below) is con-
structed from the quaternion components by BuildRotMatrix and stored in col-
umn order as a linear array.

void BuildRotMatrix (RMat *rMat, Quat *q, int transpose)

{

real p[10], tq[4], s;

int k, k1, k2;

5

tq[0] = q->u1;

208 8 Rigid molecules

tq[1] = q->u2;

tq[2] = q->u3;

tq[3] = q->u4;

for (k = 0, k2 = 0; k2 < 4; k2 ++) { 10

for (k1 = k2; k1 < 4; k1 ++, k ++) p[k] = 2. * tq[k1] * tq[k2];

}

rMat->u[0] = p[0] + p[9] - 1.;

rMat->u[4] = p[4] + p[9] - 1.;

rMat->u[8] = p[7] + p[9] - 1.; 15

s = transpose ? 1. : -1.;

rMat->u[1] = p[1] + s * p[8];

rMat->u[3] = p[1] - s * p[8];

rMat->u[2] = p[2] - s * p[6];

rMat->u[6] = p[2] + s * p[6]; 20

rMat->u[5] = p[5] + s * p[3];

rMat->u[7] = p[5] - s * p[3];

}

The interaction site coordinates must be computed in preparation for the force
calculation. These coordinates are specified when the molecule is in a predefined
reference orientation and are kept in the structure

typedef struct {

VecR r;

int typeF;

} MSite;

together with an element typeF that is used to distinguish individual sites for the
force evaluation. Computation of interaction site coordinates is as follows, where
mSite is an array of MSite structures.

void GenSiteCoords ()

{

RMat rMat;

VecR t;

int j, n; 5

DO_MOL {

BuildRotMatrix (&rMat, &mol[n].q, 1);

for (j = 0; j < sitesMol; j ++) {

MVMul (t, rMat.u, mSite[j].r); 10

VAdd (site[sitesMol * n + j].r, mol[n].r, t);

}

}

}

8.2 Dynamics 209

The operation for multiplying a matrix by a vector, here used in rotating the molecule
from its predefined reference orientation to the current state, is defined by

#define MVMul(v1, m, v2) \

(v1).x = (m)[0] * (v2).x + (m)[3] * (v2).y + (m)[6] * (v2).z, \

(v1).y = (m)[1] * (v2).x + (m)[4] * (v2).y + (m)[7] * (v2).z, \

(v1).z = (m)[2] * (v2).x + (m)[5] * (v2).y + (m)[8] * (v2).z

Numerical integration of these second-order equations uses the same PC method
as the translational equations. The integration functions, named PredictorStepQ

and CorrectorStepQ, are based on the translational functions of §3.5 and only
differ in the name and number of variables processed.

#define PQ(t) \

PCR4 (mol[n].q, mol[n].q, mol[n].qv, mol[n].qa, \

mol[n].qa1, mol[n].qa2, t)

#define PQV(t) \

PCV4 (mol[n].q, mol[n].qo, mol[n].qv, mol[n].qa, \ 5

mol[n].qa1, mol[n].qa2, t)

#define CQ(t) \

PCR4 (mol[n].q, mol[n].qo, mol[n].qvo, mol[n].qa, \

mol[n].qa1, mol[n].qa2, t)

#define CQV(t) \ 10

PCV4 (mol[n].q, mol[n].qo, mol[n].qv, mol[n].qa, \

mol[n].qa1, mol[n].qa2, t)

void PredictorStepQ ()

{ 15

...

DO_MOL {

mol[n].qo = mol[n].q;

mol[n].qvo = mol[n].qv;

PQ (u1); 20

PQV (u1);

... (ditto for u2, u3, u4) ...

mol[n].qa2 = mol[n].qa1;

mol[n].qa1 = mol[n].qa;

} 25

}

void CorrectorStepQ ()

{

... 30

DO_MOL {

CQ (u1);

CQV (u1);

...

} 35

}

210 8 Rigid molecules

Normalization of the quaternions must be enforced separately to prevent gradual
accumulation of numerical error (the error over a single timestep is very small); the
adjustments can be carried out after each integration step.

void AdjustQuat ()

{

real qi;

int n;

5

DO_MOL {

qi = 1. / sqrt (QLenSq (mol[n].q));

QScale (mol[n].q, qi);

}

} 10

The contribution of the rotational motion to the kinetic energy is computed by
an addition to EvalProps,

VecR w;

...

vvqSum = 0.;

DO_MOL {

ComputeAngVel (n, &w); 5

vvqSum += VWLenSq (mInert, w);

}

where VWLenSq is defined as

#define VWLenSq(v1, v2) VWDot(v1, v2, v2)

#define VWDot(v1, v2, v3) \

((v1).x * (v2).x * (v3).x + (v1).y * (v2).y * (v3).y + \

(v1).z * (v2).z * (v3).z)

Tests based on momentum and energy conservation serve as partial checks on
the correctness of the calculation. Angular momentum is not conserved however;
this is a consequence both of the abrupt changes in angular momentum whenever
a molecule crosses a periodic boundary and interaction wraparound. In order to
verify angular momentum conservation, an isolated cluster of molecules would
have to be simulated in a region that is nominally unbounded, thus eliminating the
effects of periodicity.

Equations of motion for linear molecules

Linear rigid bodies are treated in a different way, since there are only two rotational
degrees of freedom rather than three. The torque on a linear molecule can be written

8.2 Dynamics 211

as a sum over interaction sites,

n =
∑

k

rk × fk = s ×
∑

k

dk fk = s × g (8.2.30)

where the orientation is defined by s, the unit vector along the molecular axis, and
where dk is the signed distance along the axis of each interaction site from the
center of mass. In the linear case, angular momentum is simply l = Iω, so that the
equations of motion are

I ω̇ = s × g (8.2.31)

ṡ = ω × s (8.2.32)

There is also a two-dimensional version of this problem, in which s is confined to
the xy plane and the only nonzero component of ω is ωz .

We have a choice of either using this pair of first-order equations, or eliminating
ω to obtain a single second-order equation

s̈ = ω̇ × s + ω × ṡ

= I −1(s × g) × s + ω × (ω × s)

= I −1 g − (I −1(s · g) + ṡ2
)
s (8.2.33)

where we have used the results ω · s = 0 – a consequence of (8.2.31) – and ṡ2 =
ω2. Here, it is important that the initial state be defined consistently, to ensure
that (8.2.32) is satisfied. In both cases the length of s must be adjusted at regular
intervals (not necessarily at every timestep, although this causes no harm) to avoid
any gradual buildup of error.

The PC integration functions (§3.5) for the first-order equations (8.2.31)–(8.2.32)
follow (the second-order equation is used in §13.2). Here, mol[].sv and mol[].sa
denote ω and ω̇ (for the second-order equation they stand for ṡ and s̈); mol[].svxs
and related quantities hold the current and previous values of ω × s appearing in
(8.2.32).

#define PC(r, ro, v, v1, v2, t) \

r.t = ro.t + w * (c[0] * v.t + c[1] * v1.t + c[2] * v2.t)

void PredictorStepF ()

{ 5

real c[] = {23., -16., 5.}, div = 12., w;

int n;

w = deltaT / div;

DO_MOL { 10

so[n] = mol[n].s;

svo[n] = mol[n].sv;

PC (mol[n].s, mol[n].s, mol[n].svxs, mol[n].svxs1,

212 8 Rigid molecules

mol[n].svxs2, x);

PC (mol[n].sv, mol[n].sv, mol[n].sa, mol[n].sa1, mol[n].sa2, x); 15

... (ditto for y and z components) ...

mol[n].sa2 = mol[n].sa1;

mol[n].sa1 = mol[n].sa;

mol[n].svxs2 = mol[n].svxs1;

mol[n].svxs1 = mol[n].svxs; 20

VCross (mol[n].svxs, mol[n].sv, mol[n].s);

}

}

void CorrectorStepF () 25

{

real c[] = {5., 8., -1.}, div = 12., w;

int n;

w = deltaT / div; 30

DO_MOL {

PC (mol[n].s, so[n], mol[n].svxs, mol[n].svxs1, mol[n].svxs2, x);

PC (mol[n].sv, svo[n], mol[n].sa, mol[n].sa1, mol[n].sa2, x);

... (ditto for y and z components) ...

VCross (mol[n].svxs, mol[n].sv, mol[n].s); 35

}

}

The contribution of the rotational motion to the kinetic energy is once again com-
puted by code added to EvalProps,

vvsSum = 0.;

DO_MOL vvsSum += mInert * VLenSq (mol[n].sv);

vvSum += vvsSum;

Temperature control

In the same way that the constant-temperature constraint was applied to simple
atoms (§6.3), it can also be applied to nonlinear rigid molecules, but now the con-
straint must be based on the combined translational and rotational kinetic energy.
For each molecule we include a Lagrange multiplier term in the translational equa-
tions as before, and a term of the general form α Ixω

′
x must be added to each Euler

equation (8.2.26). Since the total kinetic energy is

Nm EK = 1
2 m
∑

i

ṙ2
i + 1

2

∑
x

Ix

∑
i

ω′
i x

2 (8.2.34)

8.2 Dynamics 213

with
∑

x denoting a sum over the vector components, by setting ĖK = 0 we obtain

α = −

∑
i

ṙi · fi +
∑

i

ω′
i · ni

m
∑

i

ṙ2
i +

∑
x

Ix

∑
i

ω′
i x

2
(8.2.35)

where fi and ni are the total force and torque on molecule i . When using quater-
nions, the kth component of the right-hand side of the equation of motion (8.2.29)
gains an extra term (we omit the molecule index) +αq̇k .

A similar expression for the Lagrange multiplier also applies in the case of linear
molecules. The equation for α is similar to (8.2.35), but involves sums over either
ωi · ni and Iω2

i , or ṡi · [gi − (si · gi + I ṡ2
i)si] and I ṡ2

i , depending on which form of
the equation of motion is used.

The version of ApplyThermostat needed for nonlinear rigid molecules (assum-
ing m = 1) is

void ApplyThermostat ()

{

real s1, s2, vFac;

VecR w;

int n; 5

s1 = 0.;

s2 = 0.;

DO_MOL {

s1 += VDot (mol[n].rv, mol[n].ra); 10

s2 += VLenSq (mol[n].rv);

}

DO_MOL {

ComputeAngVel (n, &w);

s1 += VDot (w, mol[n].torq); 15

s2 += VWLenSq (mInert, w);

}

vFac = - s1 / s2;

DO_MOL {

VVSAdd (mol[n].ra, vFac, mol[n].rv); 20

QSAdd (mol[n].qa, mol[n].qa, vFac, mol[n].qv);

}

}

while the changes for the linear case are

...

DO_MOL {

s1 += mInert * VDot (mol[n].sv, mol[n].sa);

s2 += mInert * VLenSq (mol[n].sv);

} 5

214 8 Rigid molecules

...

DO_MOL {

...

VVSAdd (mol[n].sa, vFac, mol[n].sv);

} 10

Temperature adjustment to correct numerical drift is applied separately to the
translational and rotational motion. The addition to AdjustTemp for the nonlinear
case, assuming a constant-temperature simulation, is

VecR w;

...

vvqSum = 0.;

DO_MOL {

ComputeAngVel (n, &w); 5

vvqSum += VWLenSq (mInert, w);

}

vFac = velMag / sqrt (vvqSum / nMol);

DO_MOL QScale (mol[n].qv, vFac);

and for linear molecules it is

vvsSum = 0.;

DO_MOL vvsSum += mInert * VLenSq (mol[n].sv);

vFac = velMag / sqrt (1.5 * vvsSum / nMol);

DO_MOL VScale (mol[n].sv, vFac);

In both cases the value of velMag (see below) determines the correct kinetic energy
value.

Initial state

The functions listed below are called from SetupJob to handle the initialization
of the rotational variables. Here we consider only nonlinear molecules; the linear
case will be treated in §13.2. Molecular orientation is randomly assigned (atan2 is
a standard library function), with each angular velocity having a fixed magnitude
based on the temperature (through the quantity velMag) and a randomly chosen
direction. Angular coordinates and velocities are converted to quaternion form,
and angular accelerations used by the PC method are set to zero.

void InitAngCoords ()

{

VecR e;

real eAng[3];

int n; 5

8.2 Dynamics 215

DO_MOL {

VRand (&e);

eAng[0] = atan2 (e.x, e.y);

eAng[1] = acos (e.z); 10

eAng[2] = 2. * M_PI * RandR ();

EulerToQuat (&mol[n].q, eAng);

}

}

15

void EulerToQuat (Quat *qe, real *eAng)

{

real a1, a2, a3;

a1 = 0.5 * eAng[1]; 20

a2 = 0.5 * (eAng[0] - eAng[2]);

a3 = 0.5 * (eAng[0] + eAng[2]);

QSet (*qe, sin (a1) * cos (a2), sin (a1) * sin (a2),

cos (a1) * sin (a3), cos (a1) * cos (a3));

} 25

void InitAngVels ()

{

Quat qe;

VecR e; 30

real f;

int n;

DO_MOL {

VRand (&e); 35

QSet (qe, e.x, e.y, e.z, 0.);

QMul (mol[n].qv, mol[n].q, qe);

f = 0.5 * velMag / sqrt (VWLenSq (mInert, e));

QScale (mol[n].qv, f);

} 40

}

void InitAngAccels ()

{

int n; 45

DO_MOL {

QZero (mol[n].qa);

QZero (mol[n].qa1);

QZero (mol[n].qa2); 50

}

}

The translational variables are initialized in exactly the same way as for atomic
fluids.

216 8 Rigid molecules

8.3 Molecular construction

General features

Now that we have seen how to formulate and solve the dynamical problem we turn
to the details of the molecules themselves. Interactions between rigid molecules are
most readily introduced by specifying the locations of the sites in the molecule at
which the forces act. The total force between two molecules is then simply the sum
of the forces acting between all pairs of interaction sites. The amount of work is
proportional to the square of the number of sites, so this number should be kept as
small as possible. The potential function used for each pair can be defined indepen-
dently, but molecular symmetry reduces the number of functions needed. Interac-
tion sites may be associated with the positions of the nuclei, but this is not essential
and often just serves as the initial version of a model. There is considerable scope
for fine-tuning the structure and interactions in this engineering-like approach, with
the simulations themselves being used to refine the models; for further details see
[gra84, lev92].

Molecular fluids require substantially more computation per molecule than their
atomic counterparts because of the need to consider all pairs of interaction sites.
Coulomb interactions are usually involved, so the cutoff distance should be as
large as possible, again adding to the computational effort; the specialized meth-
ods available for such long-range forces (see Chapter 13) are not used here. The
fact that the interaction range now extends over a substantial fraction of the sim-
ulation region can erase the benefits of the cell and neighbor-list methods, so that
the all-pairs approach is often the method of choice for systems that are not too
large.

Model water

The most popular molecular fluid for MD exploration, for obvious reasons, is wa-
ter. Not only because of its ubiquity and importance, but also for its many unusual
features that defy simple explanation, water has long been associated with MD
simulation [rah71, sti72, sti74] and numerous models have been proposed to help
understand the microscopic mechanisms underlying the behavior.

For our case study we will use one of several available rigid models, the TIP4P
model [jor83]. The model molecule, shown in Figure 8.1, is based on four interac-
tion sites located in a planar configuration, two of which – labeled M and O – are
associated with the oxygen nucleus, and two – labeled H – with the protons; the
site M lies on the symmetry axis, between O and the line joining the H sites. The

8.3 Molecular construction 217

Fig. 8.1. The TIP4P water molecule; site coordinates are given in the text.

distances and angle required to fully specify the site coordinates are

rOH = 0.957 Å

rOM = 0.15 Å
� HOH = 104.5◦

(8.3.1)

The interaction energy between two molecules i and j consists of a double sum
over the interaction sites of both molecules; the terms in the sum, indexed by k and
l, allow for Coulomb interactions between the electric charges assigned to the sites,
as well as contributions of LJ type,

ui j =
∑
k∈i

∑
l∈ j

(
qkql

rkl

+ Akl

r12
kl

− Ckl

r6
kl

)
(8.3.2)

The charges associated with the sites, while maintaining some resemblance to the
actual molecule, are generally regarded as parameters that can be adjusted to fit
known molecular properties, such as the multipole moments. The corresponding
force is

fi j =
∑
k∈i

∑
l∈ j

(
qkql

r3
kl

+ 12Akl

r14
kl

− 6Ckl

r8
kl

)
rkl (8.3.3)

The charges appearing in the potential function are

qH = 0.52 e

qO = 0

qM = −2qH

(8.3.4)

where e = 4.803×10−10 esu; to convert to units used experimentally note that e2 =
331.8 (kcal/mole) Å. As part of the molecular design process, the negative charge
has been shifted away from the O site by a small amount, to the M site introduced

218 8 Rigid molecules

specifically for this purpose. The parameters in the LJ part of the potential, which
acts only between O sites, are

AOO ≡ A = 600 × 103 (kcal/mole) Å
12

COO ≡ C = 610 (kcal/mole) Å
6

(8.3.5)

We now switch to reduced MD units appropriate to the problem. Define the
length unit σ to be the value of r for which

A

r12
− C

r6
= 0 (8.3.6)

namely

σ = (A/C)1/6 (8.3.7)

and the unit of energy to be

ε = A/4σ 12 (8.3.8)

The mass unit is the mass of the water molecule, 2.987 × 10−23 g. Physical and
reduced units are then related by σ = 3.154 Å, ε = 0.155 kcal/mole (or 1.08 ×
10−14 erg/molecule) and the unit of time is 1.66×10−12 s. We also define a reduced
unit of charge e in terms of which qH = 1, and for convenience we let

b = e2/εσ (8.3.9)

In reduced units, b = 183.5.
The coordinates of the interaction sites when the molecule is situated in a ref-

erence state in the yz plane with its center of mass at the origin are (in reduced
units)

rO = (0, 0, −0.0206)

rM = (0, 0, 0.0274)

rH = (0, ±0.240, 0.165)

(8.3.10)

Masses denoted by mO and mH are associated with the O and H sites, and mO =
16mH; in reduced units mO + 2mH = 1. The principal moments of inertia are

Iy = mOz2
O + 2mHz2

H = 0.0034

Iz = 2mH y2
H = 0.0064

(8.3.11)

and, of course, Ix = Iy + Iz .

8.3 Molecular construction 219

Interaction calculations
In terms of the reduced units just introduced, the potential energy and force contri-
butions from the different pairs of interaction sites, namely, LJ between the O sites
and Coulomb between all pairs of charges, are

OO : u = 4(r−12 − r−6) f = 48(r−14 − 1
2r−8)r

MM : u = 4b/r f = (4b/r3)r

MH : u = −2b/r f = (−2b/r3)r

HH : u = b/r f = (b/r3)r

(8.3.12)

The function shown below computes these interactions using an all-pairs ap-
proach and assuming periodic boundaries. The different kinds of interaction site
are assigned numerical types 1, 2 and 3, corresponding to O, M and H; these values
appear in the element typeF in the MSite structure. The decision as to whether a
pair of sites lies within the cutoff range is based on the distance between the centers
of mass of the molecules containing the sites, and not on the distance between the
sites themselves; not only is this more efficient computationally than testing pairs
of sites individually, but it means that there are no partially interacting molecules.

void ComputeSiteForces ()

{

VecR dr, shift;

real fcVal, rr, rrCut, rri, rri3, uVal;

int j1, j2, m1, m2, ms1, ms2, n, typeSum; 5

rrCut = Sqr (rCut);

for (n = 0; n < nMol * sitesMol; n ++) VZero (site[n].f);

uSum = 0.;

for (m1 = 0; m1 < nMol - 1; m1 ++) { 10

for (m2 = m1 + 1; m2 < nMol; m2 ++) {

VSub (dr, mol[m1].r, mol[m2].r);

VZero (shift);

VShiftAll (dr);

VVAdd (dr, shift); 15

rr = VLenSq (dr);

if (rr < rrCut) {

ms1 = m1 * sitesMol;

ms2 = m2 * sitesMol;

for (j1 = 0; j1 < sitesMol; j1 ++) { 20

for (j2 = 0; j2 < sitesMol; j2 ++) {

typeSum = mSite[j1].typeF + mSite[j2].typeF;

if (mSite[j1].typeF == mSite[j2].typeF || typeSum == 5) {

VSub (dr, site[ms1 + j1].r, site[ms2 + j2].r);

VVAdd (dr, shift); 25

rr = VLenSq (dr);

rri = 1. / rr;

220 8 Rigid molecules

switch (typeSum) {

case 2:

rri3 = Cube (rri); 30

uVal = 4. * rri3 * (rri3 - 1.);

fcVal = 48. * rri3 * (rri3 - 0.5) * rri;

break;

case 4:

uVal = 4. * bCon * sqrt (rri); 35

fcVal = uVal * rri;

break;

case 5:

uVal = -2. * bCon * sqrt (rri);

fcVal = uVal * rri; 40

break;

case 6:

uVal = bCon * sqrt (rri);

fcVal = uVal * rri;

break; 45

}

VVSAdd (site[ms1 + j1].f, fcVal, dr);

VVSAdd (site[ms2 + j2].f, - fcVal, dr);

uSum += uVal;

} 50

}

}

}

}

} 55

}

Further details

New variables appearing in this simulation are

Site *site;

MSite *mSite;

VecR mInert;

real bCon, vvqSum;

int sitesMol; 5

and in SetParams we set

sitesMol = 4;

The additional array allocations in AllocArrays are

AllocMem (site, nMol * sitesMol, Site);

AllocMem (mSite, sitesMol, MSite);

8.3 Molecular construction 221

The details of the molecule are specified in the function DefineMol, called from
SetupJob,

void DefineMol ()

{

int j;

for (j = 0; j < sitesMol; j ++) VZero (mSite[j].r); 5

mSite[0].r.z = -0.0206;

mSite[1].r.z = 0.0274;

mSite[2].r.y = 0.240;

mSite[2].r.z = 0.165;

mSite[3].r.y = - mSite[2].r.y; 10

mSite[3].r.z = mSite[2].r.z;

VSet (mInert, 0.00980, 0.00340, 0.00640);

bCon = 183.5;

mSite[0].typeF = 1;

mSite[1].typeF = 2; 15

mSite[2].typeF = 3;

mSite[3].typeF = 3;

}

The full sequence of function calls in SingleStep used for the interaction com-
putations and integration is

PredictorStep ();

PredictorStepQ ();

GenSiteCoords ();

ComputeSiteForces ();

ComputeTorqs (); 5

ComputeAccelsQ ();

ApplyThermostat ();

CorrectorStep ();

CorrectorStepQ ();

AdjustQuat (); 10

ApplyBoundaryCond ();

A few additional items complete the description: The interaction cutoff is at rc =
7.5 Å, or 2.38 in reduced units; this value of rCut can be added to the input data. A
density of 1 g/cm3 is equivalent to a unit cell spacing of 3.103 Å for an initial cubic
lattice arrangement, or 0.983 in reduced units. Since the unit of energy corresponds
to ε/kB = 78.2 K, a typical temperature of 298 K corresponds to 3.8 in reduced
units. The timestep used is �t = 0.0005; in real units this equals 8 × 10−16 s.

222 8 Rigid molecules

8.4 Measurements

Types of measurement

A model such as the one described here has a variety of properties that are of
experimental relevance, and others that, although not directly measurable in the
laboratory, are able to contribute towards understanding the behavior at the micro-
scopic level. We will consider two examples of the former and one of the latter, all
in connection with pure water. A particularly important use of water models is in
the study of solvation of other kinds of molecules, ranging from simple atoms and
ions to complex molecules such as biopolymers; we will not attempt to delve into
this extensive subject [bro88, lev92].

The first of the measurements involves the site–site RDFs. Here, rather than
simply examining the distribution of center of mass separations, we study RDFs
associated with distinct sites on the molecules; together, these RDFs are able to
provide clues to local molecular arrangement beyond just the distances themselves.
The second measurement deals with rotational diffusion by looking at the rate at
which molecules undergo orientational change, an important aspect of certain kinds
of spectroscopic study. The final feature examined, the one without a direct experi-
mental counterpart, is the nature of the hydrogen-bond network formed by the fluid.

Other properties, including those of thermodynamic interest, as well as the di-
electric constant, can also be measured, although they will not be considered here.
A quantity such as the pressure, normally expressed in terms of the virial sum,
needs to be redefined for use with rigid molecules. There are in fact two ways
of dealing with the virial which, for equilibrium systems, are readily shown to be
completely equivalent [cic86b]; it can be expressed either as a sum involving just
the intermolecular forces and center of mass separations, ignoring all the internal
details, or as a sum over all pairs of interaction sites in each pair of molecules.

Radial distribution functions

When evaluating the RDF we consider three distinct site–site distribution functions
that are accessible experimentally – gOO, gOH and gHH. For computational purposes
we assign numerical labels to the sites to simplify the task of deciding which site
pairs contribute to which function; this is done by adding an element typeRdf to
MSite and initializing the values in DefineMol,

mSite[0].typeRdf = 1;

mSite[1].typeRdf = -1;

mSite[2].typeRdf = 2;

mSite[3].typeRdf = 2;

8.4 Measurements 223

The array required for the RDFs is

real **histRdf;

where, unlike §4.3, histRdf is now a two-dimensional array that provides for
several distinct RDF measurements; the allocation (in AllocArrays) is

AllocMem2 (histRdf, 3, sizeHistRdf, real);

The modified version of EvalRdf is as follows.

void EvalRdf ()

{

VecR dr, shift;

real deltaR, normFac, rr;

int j1, j2, k, m1, m2, ms1, ms2, n, rdfType, typeSum; 5

if (countRdf == 0) {

for (k = 0; k < 3; k ++) {

for (n = 0; n < sizeHistRdf; n ++) histRdf[k][n] = 0.;

} 10

}

deltaR = rangeRdf / sizeHistRdf;

for (m1 = 0; m1 < nMol - 1; m1 ++) {

for (m2 = m1 + 1; m2 < nMol; m2 ++) {

VSub (dr, mol[m1].r, mol[m2].r); 15

VZero (shift);

VShiftAll (dr);

VVAdd (dr, shift);

rr = VLenSq (dr);

if (rr < Sqr (rangeRdf)) { 20

ms1 = m1 * sitesMol;

ms2 = m2 * sitesMol;

for (j1 = 0; j1 < sitesMol; j1 ++) {

for (j2 = 0; j2 < sitesMol; j2 ++) {

typeSum = mSite[j1].typeRdf + mSite[j2].typeRdf; 25

if (typeSum >= 2) {

VSub (dr, site[ms1 + j1].r, site[ms2 + j2].r);

VVAdd (dr, shift);

rr = VLenSq (dr);

if (rr < Sqr (rangeRdf)) { 30

n = sqrt (rr) / deltaR;

if (typeSum == 2) rdfType = 0;

else if (typeSum == 3) rdfType = 1;

else rdfType = 2;

++ histRdf[rdfType][n]; 35

}

}

}

}

224 8 Rigid molecules

} 40

}

}

++ countRdf;

if (countRdf == limitRdf) {

normFac = VProd (region) / (2. * M_PI * Cube (deltaR) * 45

Sqr (nMol) * countRdf);

for (k = 0; k < 3; k ++) {

for (n = 0; n < sizeHistRdf; n ++)

histRdf[k][n] *= normFac / Sqr (n - 0.5);

} 50

PrintRdf (stdout);

countRdf = 0;

}

}

It is not necessary to recompute the site coordinates after the corrector step, since
the values computed for use in the interaction calculations are adequate for this
purpose. Because there are two H sites per molecule, and we have not allowed for
this symmetry in the RDF computation, both gOH and gHH must be divided by four.
This can be done by the function PrintRdf, which must also be modified to output
three sets of RDF measurements.

The run used to produce the RDF results involves the following input data:

deltaT 0.0005

density 0.98

initUcell 6 6 6

limitRdf 100

rangeRdf 2.5

rCut 2.38

sizeHistRdf 125

stepAdjustTemp 1000

stepAvg 200

stepEquil 1000

stepLimit 16000

stepRdf 50

temperature 3.8

A cubic initial array is used, so that the system contains Nm = 216 molecules.
The value of �t is an order of magnitude smaller than that used in the soft-sphere
work; this is a result of the higher temperature (in MD units) and the need to allow
for the rotational motion of molecules with a small moment of inertia and hence a
relatively high angular velocity. Constant-temperature MD is used; with the value
of �t shown, the temperature drift over 1000 timesteps amounts to about 4%, but
if this presents a problem the drift can be reduced by an order of magnitude simply
by halving �t .

8.4 Measurements 225

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

distance

ra
di

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Fig. 8.2. Site–site radial distribution functions for TIP4P water: gOO (solid curve), gOH
(short dashes) and gHH (long dashes).

Averaged♠ gOO, gOH and gHH measurements are shown in Figure 8.2. The lat-
ter two curves are truncated at distances less than rangeRdf because the criterion
for limiting the distance between sites is applied to the molecular centers of mass
(exactly as in the force computation) and not to the sites themselves. Without go-
ing into detail, the results are consistent with the expected tetrahedral, or icelike,
structural correlations known to occur in liquid water [jor83]. One example of a
measurement demonstrating the loose packed molecular organization of the fluid
is the integral of the function 4πr2gOO(r) out to a distance that includes the first
peak of gOO; this provides an estimate of the number of molecules that can be
regarded as nearest neighbors, and here the value is found to be 4.7.

Rotational diffusion

Rotational diffusion, a measure of the rate at which the direction of the molec-
ular dipole changes, is another quantity of experimental significance. The dipole
direction appears as the bottom row of the rotation matrix (8.2.9) and is the unit
vector

µ = 2

⎛
⎜⎝

q1q3 + q2q4

q2q3 − q1q4

q2
3 + q2

4 − 1
2

⎞
⎟⎠ (8.4.1)

♠ pr_anrdf

226 8 Rigid molecules

Rotational diffusion – the mean-square rate of change in orientation – is expressed
in terms of the time-dependent dipole autocorrelation function

C(t) = 〈µi (t) · µi (0)
〉

(8.4.2)

Translational diffusion will also be measured, based on the molecular center of
mass coordinates.

The measurement♠ is organized in the same way as translational diffusion, with
extra elements in TBuf,

VecR *orgD;

real *ddDiffuse;

and additions to EvalDiffusion (§5.3),

VecR e;

...

for (nb = 0; nb < nBuffDiffuse; nb ++) {

if (tBuf[nb].count == 0) {

DO_MOL { 5

...

e.x = 2. * (mol[n].q.u1 * mol[n].q.u3 +

mol[n].q.u2 * mol[n].q.u4);

e.y = 2. * (mol[n].q.u2 * mol[n].q.u3 -

mol[n].q.u1 * mol[n].q.u4); 10

e.z = 2. * (Sqr (mol[n].q.u3) + Sqr (mol[n].q.u4) - 0.5);

tBuf[nb].orgD[n] = e;

}

}

if (tBuf[nb].count >= 0) { 15

...

tBuf[nb].ddDiffuse[ni] = 0.;

DO_MOL {

e.x = ... (as above) ...

... 20

tBuf[nb].ddDiffuse[ni] += VDot (tBuf[nb].orgD[n], e);

}

}

...

} 25

Additions to AccumDiffusion, in the appropriate places, are

for (j = 0; j < nValDiffuse; j ++)

ddDiffuseAv[j] += tBuf[nb].ddDiffuse[j];

...

♠ pr_08_2

8.4 Measurements 227

fac = 1. / (nMol * limitDiffuseAv);

for (j = 0; j < nValDiffuse; j ++) ddDiffuseAv[j] *= fac; 5

and to ZeroDiffusion,

for (j = 0; j < nValDiffuse; j ++) ddDiffuseAv[j] = 0.;

In PrintDiffusion, the values of ddDiffuseAv must be included in the output.
Array declaration and allocation (AllocArrays) requires

real *ddDiffuseAv;

AllocMem (ddDiffuseAv, nValDiffuse, real);

for (nb = 0; nb < nBuffDiffuse; nb ++) {

AllocMem (tBuf[nb].ddDiffuse, nValDiffuse, real); 5

AllocMem (tBuf[nb].orgD, nMol, VecR);

}

The runs used for these measurements are similar to the one described above,
but the system size is reduced to Nm = 125 and the following additional input data
are required,

limitDiffuseAv 10

nBuffDiffuse 20

nValDiffuse 200

stepDiffuse 40

The translational diffusion coefficients and the dipole autocorrelations, at T = 3.8
and 4.4, are shown in Figure 8.3. The runs of 57 600 timesteps used to produce
these results allow averaging over nine sets of data, after skipping the first three.

Hydrogen bonds
The molecular structure of normal ice involves a diamond (or tetrahedral) lattice;
short-range correlations reminiscent of this order persist into the liquid state. The
forces responsible for this loosely packed arrangement are attributed to hydrogen-
bonding, in which each molecule forms four strong, highly directional bonds with
its immediate neighbors. One of the basic requirements of any water model is that
it should reproduce this behavior. What exactly constitutes a hydrogen bond is not
included in the definition of the molecule, since it is a feature whose origin is
quantum mechanical, but, for modeling purposes, it is reasonable to assume that
the presence of such a bond between two molecules is marked by an interaction
energy lying in a particular range, and a molecular alignment that satisfies certain
conditions insofar as the distance and angles are concerned. Once all the hydrogen

228 8 Rigid molecules

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

time

di
ff

us
io

n
/ d

ip
ol

e
au

to
co

rr
el

at
io

n

Fig. 8.3. Water diffusion coefficients and dipole autocorrelation functions at temperatures
3.8 (solid curves) and 4.4 (dashed curves).

bonds have been identified, it is possible to study the properties of the network
formed by the bonds [rah73, gei79].

Here we will focus on the pair-energy distribution [jor83], to see whether there
is anything special about its form to warrant using it in determining where hydro-
gen bonds have formed. Since this exercise♠ turns out to be successful, we then
make use of what has been learned to count the numbers of bonds formed by each
molecule.

The first step is to separately evaluate the interaction energy of each pair of
molecules and construct a histogram of these values. In addition, each pair whose
energy lies below a certain threshold is regarded as linked by a hydrogen bond, and
bond counts associated with these molecules are incremented. The threshold is de-
termined by a parameter boundPairEng. The following alterations and additions
to ComputeSiteForces are required, where nBond is added to the Mol structure
for use in the counting task.

real uSumPair;

int j;

...

DO_MOL mol[n].nBond = 0;

uSum = 0.; 5

for (m1 = 0; m1 < nMol - 1; m1 ++) {

for (m2 = m1 + 1; m2 < nMol; m2 ++) {

♠ pr_08_3

8.4 Measurements 229

...

if (rr < rrCut) {

uSumPair = 0.; 10

...

for (j1 = 0; j1 < sitesMol; j1 ++) {

for (j2 = 0; j2 < sitesMol; j2 ++) {

typeSum = ...

if (mSite[j1].typeF == mSite[j2].typeF || typeSum == 5) { 15

...

uSumPair += uVal;

}

}

} 20

uSum += uSumPair;

j = sizeHistPairEng * (uSumPair - minPairEng) /

(maxPairEng - minPairEng);

++ histPairEng[Clamp (j, 0, sizeHistPairEng - 1)];

if (uSumPair < boundPairEng) { 25

++ mol[m1].nBond;

++ mol[m2].nBond;

}

}

} 30

}

DO_MOL ++ histBondNum[Min (mol[n].nBond, sizeHistBondNum - 1)];

++ countPairEng;

Here, Clamp (§18.2) ensures that the array index is in the permitted range.
The data collected are processed by a function called from SingleStep,

if (countPairEng == limitPairEng) PrintPairEng (stdout);

which computes the average pair-energy distribution over a series of configura-
tions, constructs a histogram of the number of bonds per molecule and outputs the
results.

void PrintPairEng (FILE *fp)

{

real eVal, hSum;

int n;

5

hSum = 0.;

for (n = 0; n < sizeHistPairEng; n ++) hSum += histPairEng[n];

for (n = 0; n < sizeHistPairEng; n ++) histPairEng[n] /= hSum;

hSum = 0.;

for (n = 0; n < sizeHistBondNum; n ++) hSum += histBondNum[n]; 10

for (n = 0; n < sizeHistBondNum; n ++) histBondNum[n] /= hSum;

fprintf (fp, "pair energy\n");

for (n = 0; n < sizeHistPairEng; n ++) {

230 8 Rigid molecules

eVal = minPairEng + (n + 0.5) * (maxPairEng - minPairEng) /

sizeHistPairEng; 15

fprintf (fp, "%8.4f %8.4f\n", eVal, histPairEng[n]);

}

fprintf (fp, "bond count\n");

for (n = 0; n < sizeHistBondNum; n ++)

fprintf (fp, "%d %8.4f\n", n, histBondNum[n]); 20

InitPairEng ();

}

Initialization is carried out by the function (called from SetupJob)

void InitPairEng ()

{

int n;

for (n = 0; n < sizeHistPairEng; n ++) histPairEng[n] = 0.; 5

for (n = 0; n < sizeHistBondNum; n ++) histBondNum[n] = 0.;

countPairEng = 0;

}

The new variables used here are

real *histBondNum, *histPairEng, boundPairEng, maxPairEng, minPairEng;

int countPairEng, limitPairEng, sizeHistBondNum, sizeHistPairEng;

additional data to be input are

NameR (boundPairEng),

NameI (limitPairEng),

NameR (maxPairEng),

NameR (minPairEng),

NameI (sizeHistBondNum), 5

NameI (sizeHistPairEng),

and the array allocations (AllocArrays)

AllocMem (histBondNum, sizeHistBondNum, real);

AllocMem (histPairEng, sizeHistPairEng, real);

To investigate the pair-energy distribution we carry out a run with input data

boundPairEng -8.

deltaT 0.0003

density 0.98

initUcell 6 6 6

limitPairEng 1000

8.4 Measurements 231

-40 -20 0 20
0.000

0.005

0.010

0.015

pair energy

pr
ob

ab
ili

ty

Fig. 8.4. Pair-energy distribution.

maxPairEng 20.

minPairEng -40.

rCut 2.38

sizeHistBondNum 8

sizeHistPairEng 60

stepAdjustTemp 1000

stepAvg 200

stepEquil 0

stepLimit 5000

temperature 3.8

The value of �t has been reduced to improve stability. The results shown in
Figure 8.4 are obtained by averaging over 1000 timesteps, after skipping the first
4000; the smaller peak corresponds to tightly bound, nearest neighbor molecule
pairs.

If we now assume that all pairs of molecules with mutual interaction energy be-
low a certain threshold eh are hydrogen-bonded, we can actually examine the dis-
tribution of hydrogen bonds. By way of example, we use values of boundPairEng
(corresponding to eh) of –8, –10 and –12 to obtain the results shown in Figure 8.5.
Although a more detailed analysis taking the relative orientation of the molecules
into account is required to ensure a consistent picture, the fact that for physically
reasonable values of eh (eh = –10 corresponds to 1.55 kcal/mole) the average num-
ber of hydrogen bonds formed by each molecule is close to four is encouraging.
Further analysis appears in [jor83].

232 8 Rigid molecules

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

bound count

pr
ob

ab
ili

ty

Fig. 8.5. Distribution of mean number of hydrogen bonds per molecule for threshold
energy eh = –8 (squares), –10 (triangles) and –12 (diamonds).

8.5 Rotation matrix representation

Equations of motion

Although the quaternion representation has achieved popularity, there is an alterna-
tive method that considers the rotation matrices of the molecules directly [dul97],
and in doing so avoids the need for the supplementary normalization calculations
required by the quaternions. Furthermore, this approach can be incorporated into
a leapfrog integration scheme and does not require a PC integrator. The extra stor-
age needed by the matrix components (nine elements instead of four) is more than
compensated for by the reduced quantity of data retained from earlier timesteps.
Another potential benefit, although this depends on the relative magnitudes of the
rotational and translational velocities (which, in turn, depends on the moment of
inertia of the molecules), is the ability to use a larger integration timestep than al-
lowed by the PC method, while maintaining a high degree of energy conservation.

Two ways of formulating the problem are described here. One approach involves
expressing the angular velocity and acceleration vectors – ω′

i and α′
i – in the coor-

dinate frame fixed to the principal axes of the molecule. Let Ri denote the rotation
matrix of molecule i ; the transpose RT

i would be used, as before, in converting the
site coordinates of the molecule to their values in the space-fixed frame. The first
stage of the leapfrog integration consists of a half-timestep update of the angular

8.5 Rotation matrix representation 233

velocities,

ω′
i (t + h/2) = ω′

i (t) + h

2
α′

i (t) (8.5.1)

together with a full update of the rotation matrix, expressed in terms of a symmetric
product of matrices each describing a small partial rotation about a different axis,

Ri (t + h) = Ri (t) U T
1 U T

2 U T
3 U T

2 U T
1 (8.5.2)

where the matrices

U1 = Ux(ω
′
i x h/2) , U2 = Uy(ω

′
i yh/2) , U3 = Uz(ω

′
i zh) (8.5.3)

correspond to the rotations around the different axes. Writing the product of the
noncommuting rotation matrices in this symmetric form is necessary to ensure the
time-reversible nature of the numerical integration.

Next, express the updated angular velocity in the newly rotated frame of the
molecule that results from applying these small partial rotations,

ω′
i (t + h/2) → U1 U2 U3 U2 U1 ω′

i (t + h/2) (8.5.4)

The translational part of the first stage of the leapfrog integration is also carried out
at this point, and the force and torque computations performed as before. Since the
torque τi on the molecule is evaluated in the space-fixed frame,

α′
i (t + h) = (Ic

i

)−1
RT

i (t + h) τi (t + h) (8.5.5)

where Ic
i is the diagonal moment of inertia matrix in the principal-axes frame of

the body. Finally, in the second stage of the leapfrog process, the rotational part
consists of

ω′
i (t + h) = ω′

i (t + h/2) + h

2
α′

i (t + h) (8.5.6)

The alternative is to work entirely in the space-fixed frame†. The first stage of
the leapfrog integration is then

ωi (t + h/2) = ωi (t) + h

2
αi (t) (8.5.7)

and, since it is more convenient to work with the transpose of Ri ,

RT
i (t + h) = U1 U2 U3 U2 U1 RT

i (t) (8.5.8)

where the rotation matrices of (8.5.3) are replaced by

U1 = Ux(ωi x h/2) , U2 = Uy(ωi yh/2) , U3 = Uz(ωi zh) (8.5.9)

† This version is required for dealing with molecules having limited internal degrees of freedom (Chapter 11).

234 8 Rigid molecules

which are evaluated in the space-fixed frame. The required angular acceleration is
now

αi (t + h) = Ri (t + h)
(Ic

i

)−1
RT

i (t + h) τi (t + h) (8.5.10)

and the second stage of the leapfrog integration is

ωi (t + h) = ωi (t + h/2) + h

2
αi (t + h) (8.5.11)

The trigonometric functions appearing in the rotation matrices can be approxi-
mated to second order in h, but this must be done in a manner that preserves the
orthogonality of the matrices, for example,

Ux(θ) ≡
⎛
⎜⎝

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎟⎠ ≈

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0
1 − θ2/4
1 + θ2/4

−θ

1 + θ2/4

0
θ

1 + θ2/4
1 − θ2/4
1 + θ2/4

⎞
⎟⎟⎟⎟⎟⎠ (8.5.12)

Integration
The variables associated with each molecule are contained in the structure

typedef struct {

VecR r, rv, ra;

VecR wv, wa;

RMat rMatT;

} Mol; 5

that differs from the Mol structure used in §8.2. Here, the quaternion components,
and their first and second derivatives, have been replaced by a rotation matrix (ac-
tually its transpose) rMatT, together with the angular velocity and acceleration
(expressed in the space-fixed frame); acceleration values from earlier timesteps are
no longer required.

Since the matrix U3 ≡ Uz(ωi zh) that appears in (8.5.8) can be replaced by
Uz(ωi zh/2) Uz(ωi zh/2), evaluating the product of the partial rotation matrices can
be carried out by explicitly constructing a pair of matrix products that together
make up (8.5.8), namely,

Ux(ωi x h/2) Uy(ωi yh/2) Uz(ωi zh/2) (8.5.13)

and the product terms in reversed order (the terms of the two products share com-
mon elements), and then multiplying the results. This is accomplished by the fol-
lowing function, in which the first argument points to the matrix and the second to
the vector hω/2.

8.5 Rotation matrix representation 235

void BuildStepRmatT (RMat *mp, VecR *a)

{

RMat m1, m2;

real c[3], s[3], ak, c0c2, c0s2, s0c2, s0s2, t;

int k; 5

for (k = 0; k < 3; k ++) {

ak = VComp (*a, k);

t = 0.25 * Sqr (ak);

c[k] = (1. - t) / (1. + t); 10

s[k] = ak / (1. + t);

}

c0c2 = c[0] * c[2];

c0s2 = c[0] * s[2];

s0c2 = s[0] * c[2]; 15

s0s2 = s[0] * s[2];

m1.u[0] = c[1] * c[2];

m1.u[1] = s0c2 * s[1] + c0s2;

m1.u[2] = - c0c2 * s[1] + s0s2;

m1.u[3] = - c[1] * s[2]; 20

m1.u[4] = - s0s2 * s[1] + c0c2;

m1.u[5] = c0s2 * s[1] + s0c2;

m1.u[6] = s[1];

m1.u[7] = - s[0] * c[1];

m1.u[8] = c[0] * c[1]; 25

m2.u[0] = m1.u[0];

m2.u[1] = - m1.u[3];

m2.u[2] = - m1.u[6];

m2.u[3] = s0c2 * s[1] - c0s2;

m2.u[4] = s0s2 * s[1] + c0c2; 30

m2.u[5] = - m1.u[7];

m2.u[6] = c0c2 * s[1] + s0s2;

m2.u[7] = c0s2 * s[1] - s0c2;

m2.u[8] = m1.u[8];

MulMat (mp->u, m1.u, m2.u, 3); 35

}

The function MulMat (§18.4) is used for multiplying matrices.
The leapfrog integration function is an extension of earlier versions; the addi-

tional computation (8.5.8) required for the rotation matrices makes use of the func-
tions BuildStepRmatT and MulMat.

void LeapfrogStep (int part)

{

RMat mc, mt;

VecR t;

int n; 5

if (part == 1) {

DO_MOL {

236 8 Rigid molecules

VVSAdd (mol[n].wv, 0.5 * deltaT, mol[n].wa);

VVSAdd (mol[n].rv, 0.5 * deltaT, mol[n].ra); 10

}

DO_MOL {

VSCopy (t, 0.5 * deltaT, mol[n].wv);

BuildStepRmatT (&mc, &t);

MulMat (mt.u, mc.u, mol[n].rMatT.u, 3); 15

mol[n].rMatT = mt;

}

DO_MOL VVSAdd (mol[n].r, deltaT, mol[n].rv);

} else {

DO_MOL { 20

VVSAdd (mol[n].wv, 0.5 * deltaT, mol[n].wa);

VVSAdd (mol[n].rv, 0.5 * deltaT, mol[n].ra);

}

}

} 25

Interaction calculations
Instead of revisiting the water model considered previously, the case study used to
demonstrate the rotation matrix approach (the method also appears in Chapter 11)
deals with a fluid of rigid molecules constructed from tetrahedral assemblies of soft
spheres♠. The simulations differ from the water study in a number of respects. The
moment of inertia components of the water molecule are quite small, resulting in
an integration timestep that is limited by the relatively high angular velocity; those
of the tetrahedral molecule are considerably larger, leading to similar contributions
to the site velocities from the translational and angular velocities, so that a larger
timestep can be used. The interactions here are short ranged, so the force calcula-
tions can utilize neighbor lists rather than the all-pair approach used earlier. One
additional new feature is the introduction of hard, reflecting container walls, as an
alternative to the periodic boundaries used in most other case studies.

The neighbor list should only include pairs of interaction sites belonging to dis-
tinct molecules; the function BuildNebrList in §3.4 must therefore be modified
by replacing the quantity nMol with nSite, and references to coordinates mol[].r
are replaced by site[].r. The test that ensures each pair of sites is examined only
once must be augmented with a check that the sites involved belong to different
molecules,

if ((m1 != m2 || j2 < j1) && j1 / sitesMol != j2 / sitesMol)

The change resulting from the replacement of periodic boundaries by hard walls

♠ pr_08_4, pr_08_5

8.5 Rotation matrix representation 237

involves ensuring that the second member of the cell pair lies within the region;
this is accomplished by inserting

if (m2v.x < 0 || m2v.x >= cells.x ||

m2v.y < 0 || m2v.y >= cells.y || m2v.z >= cells.z) continue;

prior to the innermost pair of loops over cell contents and removing all references
to periodic wraparound.

The function for evaluating site forces, ComputeSiteForces, is derived from
the function ComputeForces used for the simplest soft-sphere case, in which the
interaction site forces site[].f are evaluated for those pairs in the neighbor list
that lie within interaction range; site coordinates site[].r are used and the refer-
ence to periodic wraparound removed. The site coordinates themselves are gener-
ated from the available rotation matrices, so the function GenSiteCoords (§8.2)
now contains the replacement line

MVMul (t, mol[n].rMatT.u, mSite[j].r);

and the code for generating the rotation matrices is omitted.

Wall interactions

When any of the molecular interaction sites approach a container wall they are sub-
jected to a repulsive force in the direction perpendicular to the wall. The interaction
is based on the soft-sphere potential, but only the distance component normal to the
wall enters the calculation. Each wall contributes independently, so that a site near
a container edge or corner can experience the sum of two or three separate wall in-
teractions. While an extension to the neighbor-list procedure could have been used
to select the sites affected, here we simply examine all sites, although the amount
of work is reduced by first testing whether the center of mass of the molecule is
sufficiently close to the wall for such interactions to be possible.

A pair of definitions are introduced for convenience,

#define NearWall(t) \

fabs (fabs (mol[n].r.t) - 0.5 * region.t) < \

farSiteDist + 0.5 * rCut

#define WallForce(t) \ 5

{ dr = ((site[j].r.t >= 0.) ? site[j].r.t : \

- site[j].r.t) - 0.5 * (region.t + rCut); \

if (dr > - rCut) { \

if (site[j].r.t < 0.) dr = - dr; \

rri = 1. / Sqr (dr); \ 10

238 8 Rigid molecules

rri3 = Cube (rri); \

site[j].f.t += 48. * rri3 * (rri3 - 0.5) * rri * dr; \

uSum += 4. * rri3 * (rri3 - 1.) + 1.; \

} \

} 15

where farSiteDist is the distance of the furthest site in the molecule from its
center of mass. The function that evaluates wall forces is then simply

void ComputeWallForces ()

{

real dr, rri, rri3;

int j, n;

5

DO_MOL {

if (NearWall (x)) {

for (j = n * sitesMol; j < (n + 1) * sitesMol; j ++)

WallForce (x);

} 10

... (ditto for y and z components) ...

}

}

The wall forces ensure that the molecules remain within the container. Their in-
troduction here is just for demonstration purposes; under normal circumstances
periodic boundaries are preferable to hard walls (since the effect of walls on the
behavior can extend a considerable distance into the bulk).

Other details
Once the total force acting on each of the sites has been determined the forces and
torques acting on the molecules – the latter expressed in the space-fixed frame –
can be evaluated by a suitably modified version of ComputeTorqs,

void ComputeTorqs ()

{

VecR dr, t, torqS, waB;

int j, n;

5

DO_MOL {

VZero (mol[n].ra);

VZero (torqS);

for (j = 0; j < sitesMol; j ++) {

VVAdd (mol[n].ra, site[n * sitesMol + j].f); 10

VSub (dr, site[n * sitesMol + j].r, mol[n].r);

VCross (t, dr, site[n * sitesMol + j].f);

VVAdd (torqS, t);

8.5 Rotation matrix representation 239

}

MVMulT (waB, mol[n].rMatT.u, torqS); 15

VDiv (waB, waB, mInert);

MVMul (mol[n].wa, mol[n].rMatT.u, waB);

}

}

where MVMulT corresponds to MVMul with a transposed matrix.
The initialization procedure is

void SetupJob ()

{

AllocArrays ();

DefineMol ();

stepCount = 0; 5

InitCoordsWalls (farSiteDist);

InitVels ();

InitAccels ();

InitAngCoords ();

InitAngVels (); 10

InitAngAccels ();

AccumProps (0);

nebrNow = 1;

}

in which AllocArrays includes allocation of the arrays needed for both the rigid-
body simulation and the neighbor-list method, and SingleStep includes

LeapfrogStep (1);

GenSiteCoords ();

if (nebrNow) {

nebrNow = 0;

dispHi = 0.; 5

BuildNebrList ();

}

ComputeSiteForces ();

ComputeWallForces ();

ComputeTorqs (); 10

LeapfrogStep (2);

The characteristics of the tetrahedral molecules considered here, namely their
site coordinates and moments of inertia, are specified in the following function,
with the parameter siteSep allowing for an adjustable molecule size. To allow
generalization† the center of mass position rCm is computed from the site positions;
here, the same mass value is associated with each site of the tetrahedron and the

† Linear molecules are allowed, provided a nonzero moment of inertia is associated with the longitudinal axis.

240 8 Rigid molecules

molecules have unit total mass.

void DefineMol ()

{

VecR rCm;

int j;

5

VSet (mSite[0].r, 0., 0.5 / sqrt (3.), sqrt (2.) / sqrt (3.));

VSet (mSite[1].r, 0., 1.5 / sqrt (3.), 0.);

VSet (mSite[2].r, 0.5, 0., 0.);

VSet (mSite[3].r, - 0.5, 0., 0.);

for (j = 0; j < sitesMol; j ++) VScale (mSite[j].r, siteSep); 10

VZero (rCm);

for (j = 0; j < sitesMol; j ++) VVAdd (rCm, mSite[j].r);

for (j = 0; j < sitesMol; j ++)

VVSAdd (mSite[j].r, -1. / sitesMol, rCm);

VZero (mInert); 15

for (j = 0; j < sitesMol; j ++) {

mInert.x += Sqr (mSite[j].r.y) + Sqr (mSite[j].r.z);

mInert.y += Sqr (mSite[j].r.z) + Sqr (mSite[j].r.x);

mInert.z += Sqr (mSite[j].r.x) + Sqr (mSite[j].r.y);

} 20

VScale (mInert, 1. / sitesMol);

}

Generating the initial state uses a function based on InitCoords that ensures
molecules are not placed too close to the walls,

void InitCoordsWalls (real border)

{

VecR ... regionI;

VAddCon (regionI, region, - 2. * border); 5

where VAddCon (§18.2) adds the same value to each of the vector components,
and the reduced region size regionI is used instead of region for initializing the
coordinates. The value of border is set equal to farSiteDist to ensure that all
sites lie within the container. Function SetParams sets various quantities, includ-
ing farSiteDist,

siteSep = 0.8;

farSiteDist = siteSep / (2. * sqrt (2./3.));

sitesMol = 4;

nSite = nMol * sitesMol;

nebrTabMax = nebrTabFac * nSite; 5

8.5 Rotation matrix representation 241

and the required new variables are

real farSiteDist, siteSep;

int nSite;

For the initial angular coordinates, now expressed in terms of the rotation matrices,
a minor change to the function InitAngCoords is required,

Quat qe;

...

BuildRotMatrix (&mol[n].rMatT, &qe, 1);

while angular velocities are set using

void InitAngVels ()

{

VecR e, wvB;

real f;

int n; 5

DO_MOL {

VRand (&e);

f = velMag / sqrt (VWLenSq (mInert, e));

VSCopy (wvB, f, e); 10

MVMul (mol[n].wv, mol[n].rMatT.u, wvB);

}

}

and the angular accelerations are initialized to zero by InitAngAccels.
Computation of the energy, together with a fairly generous estimate of the max-

imum site displacement that is used in deciding when to rebuild the neighbor list,
is carried out as follows.

void EvalProps ()

{

VecR wvB;

real vv, vvMax, vvrMax, vvwMax;

int n; 5

VZero (vSum);

vvSum = 0.;

vvrMax = 0.;

vvwMax = 0.; 10

DO_MOL {

VVAdd (vSum, mol[n].rv);

vv = VLenSq (mol[n].rv);

vvSum += vv;

vvrMax = Max (vvrMax, vv); 15

242 8 Rigid molecules

MVMulT (wvB, mol[n].rMatT.u, mol[n].wv);

vvSum += VWLenSq (mInert, wvB);

vv = VLenSq (wvB);

vvwMax = Max (vvwMax, vv);

} 20

vvMax = Sqr (sqrt (vvrMax) + farSiteDist * sqrt (vvwMax));

...

}

In order to use the constant-temperature constraint together with rotation matri-
ces and leapfrog integration, the following form of the thermostat function – based
on the method in §6.3 – is required.

void ApplyThermostat ()

{

RMat mc, mt;

VecR vt, waB, wvB;

real s1, s2, vFac; 5

int n;

s1 = 0.;

s2 = 0.;

DO_MOL { 10

VSAdd (vt, mol[n].rv, 0.5 * deltaT, mol[n].ra);

s1 += VDot (vt, mol[n].ra);

s2 += VLenSq (vt);

VSAdd (vt, mol[n].wv, 0.5 * deltaT, mol[n].wa);

MVMulT (wvB, mol[n].rMatT.u, vt); 15

MVMulT (waB, mol[n].rMatT.u, mol[n].wa);

s1 += VWDot (mInert, wvB, waB);

s2 += VWLenSq (mInert, wvB);

}

vFac = - s1 / s2; 20

DO_MOL {

VSAdd (vt, mol[n].rv, 0.5 * deltaT, mol[n].ra);

VVSAdd (mol[n].ra, vFac, vt);

VSAdd (vt, mol[n].wv, 0.5 * deltaT, mol[n].wa);

VVSAdd (mol[n].wa, vFac, vt); 25

}

}

Finally, when adjusting the temperature, the contribution from the rotational mo-
tion must also be rescaled, so the relevant code in AdjustTemp is changed to

VecR wvB;

vvSum = 0.;

DO_MOL {

MVMulT (wvB, mol[n].rMatT.u, mol[n].wv); 5

8.6 Further study 243

Table 8.1. Energy measurements for fluid of tetrahedral molecules.

timestep 〈E〉 σ(E) 〈EK 〉 σ(EK)

1 000 3.3961 0.0004 2.9858 0.0283
2 000 3.3969 0.0002 2.9717 0.0298
3 000 3.3970 0.0002 2.9820 0.0270
4 000 3.3970 0.0002 2.9883 0.0284
5 000 3.3970 0.0002 2.9722 0.0234

10 000 3.3974 0.0002 2.9773 0.0268

vvSum += VWLenSq (mInert, wvB);

}

vFac = velMag / sqrt (vvSum / nMol);

DO_MOL VScale (mol[n].wv, vFac);

Measurements

The measurements shown here focus on how well the rotation matrix approach suc-
ceeds in conserving energy. During the initial equilibration period the temperature
is reset to the desired value every 100 timesteps, but then the system is allowed to
run without any further adjustment. The run includes the following data and the
results are shown in Table 8.1. The energy conservation in this case is of similar
quality to the soft-sphere fluid of §3.7.

deltaT 0.005

density 0.15

initUcell 8 8 8

stepAvg 200

stepEquil 1000

stepLimit 10000

temperature 1.

8.6 Further study

8.1 Explore the relation between quaternions and other representations of ori-
entation [gol80].

8.2 The leapfrog method can also be used with quaternions [fin93]; examine its
effectiveness.

8.3 Study the relative orientation of neighboring water molecules.
8.4 Study the nature of the hydrogen-bond network formed and the bond life-

times [gei79].

244 8 Rigid molecules

8.5 Compute the dielectric constant [spr91, smi94]; how sensitive is this to the
choice of model and how significant is the effect of truncating the long-range
Coulomb forces?

8.6 Because of the unusual properties of water, various models have been used
in MD studies to account for the experimental observations; investigate the
factors contributing to the design of different models.

8.7 The rigid molecule used for water ignores important polarizability effects;
how can the model be extended [spr88] to incorporate such behavior?

8.8 Constant-pressure techniques can also be applied to rigid bodies; investigate
[nos83].

8.9 A subtle, but important, property of water is the density maximum that oc-
curs while still in the liquid state (the reason why ice floats); how successful
has MD been in studying this phenomenon [bil94]?

8.10 Compare the efficiency of the quaternion and rotation matrix methods as
applied to water.

8.11 Study other examples of rigid molecular models – both linear and nonlinear –
for real fluids [lev92].

9

Flexible molecules

9.1 Introduction
The rigid molecule approach described in Chapter 8 is limited in its applicabil-
ity, because it is really only appropriate for small, compact molecules. Here we
consider the opposite extreme, namely, completely flexible molecules of a type
used in certain kinds of polymer studies. No new principles are involved, since the
intramolecular forces that maintain structural integrity by holding the molecule to-
gether, as well as providing any other necessary internal interactions, are treated
in the same way as intermolecular forces. Later, in Chapters 10 and 11, we will
consider more complex models, in which molecules exhibit a certain amount of
flexibility but are also subject to various structural constraints that restrict the in-
ternal motion. The first case study in this chapter deals with the configurational
properties of a single chain molecule in solution. The second deals with a model
of a surfactant in solution, in which very short, interacting chain molecules are
just one of the components of a three-component fluid; this very simple system
is capable of producing coherent structures on length scales greatly exceeding the
molecular size, as the results will demonstrate.

9.2 Description of molecule

Polymer chains

Owing to the central role played by polymers in a variety of fields, biochemistry
and materials science are just two examples, model polymer systems have been the
subject of extensive study, both by MD and by other methods such as Monte Carlo
[bin95]. Of the many kinds of polymer topology that occur, chains have received
the most attention, but other types, including stars [gre94] and membranes [abr89],
have not been neglected. Chain properties can be divided into two categories, equi-
librium and dynamical; much of the equilibrium behavior – especially in the case

245

246 9 Flexible molecules

of long chains – actually falls under the heading of critical phenomena, and here
MD is unable to compete with lattice-based methods because of their far less de-
manding nature, but when it comes to transport phenomena MD is, once again, the
only viable method.

Polymer chain models can be studied for different reasons. At one extreme is
the attempt to reproduce the behavior of a real polymer, an example being the
alkane model we will meet in Chapter 10, or complex biopolymers such as proteins
[ber86a, bro88, bro90a, dua98]. Here we concentrate on a much simpler model
that aims at capturing some of the more general aspects of chain behavior, rather
than all the myriad quantitative details. One can regard this model as analogous to
the soft-sphere fluid, but while for simple fluids there is just one basic model, for
polymers there are a number of different systems that might be regarded as basic.
The simplest is a single chain in the vacuum, used for studying the configurational
properties of an isolated polymer. This is followed by a chain in an inert soft-sphere
solvent, the purpose of the solvent being to introduce a certain amount of hydro-
dynamic coupling into the motion of the chain [pie92, smi92, dun93]. Then there
are multiple-chain fluids [kre92]; here the chain density is an important parameter,
because it determines how much of the dynamics is due to the chain interacting
with itself and how much is due to interactions between chains. In each instance,
the details of the interactions between chain atoms, as well as the nature of the
solvent, if present, must be addressed.

A problem that must be faced when studying polymers is the range of timescales
over which configurational change occurs. At one extreme are the localized changes
in internal arrangement that involve only short segments of the chain; at the other
are large-scale conformational changes and chain diffusion, processes that are seri-
ously impeded by effects such as mutual obstruction and entanglement. This means
that some of the more interesting rheological properties of polymer liquids, and the
challenging problems of protein folding, appear to be beyond the limits of what can
be simulated by MD. But a great deal can still be done within the timescales that
are currently accessible.

Chain structure
The goal of the simplest models is to represent the excluded volume of the indi-
vidual monomers out of which the polymer is constructed and the bonds that link
them into chains. The monomers can be simple atoms modeled using a soft-sphere
potential, while bonds with limited length variation can be produced by means of
an attractive interaction between chain neighbors. Single or multiple chains can
be included and a soft-sphere solvent is readily added. Chains constructed in this
way are totally flexible, within the limits set by the repulsive potential; a controlled

9.3 Implementation details 247

degree of stiffness can be introduced by means of an interaction regulating the sep-
aration of next-nearest neighbors, although we will not do this here. More specific
structural requirements are best addressed using the methods described in subse-
quent chapters.

In the model treated here, all pairs of atoms interact via the familiar soft-sphere
repulsive force, which we will call fss ; in addition, there is an attractive interaction
between each pair of adjacent bonded atoms of form

fbb(r) =
{

fss
(
(1 − rm/r)r

)
rm − rc < r < rm

0 otherwise
(9.2.1)

In (9.2.1), the direction of the soft-sphere force has been reversed, and its origin
shifted to produce a force that limits the separation of bonded atoms; in practice,
the bond-length variation can be restricted to a (not too) narrow range by a suitable
choice of rm (> rc). The energy and length scales characterizing the potential, ε

and σ , are left unchanged.

9.3 Implementation details

Interactions

The evaluation♠ of the forces between nonbonded atoms belonging to the same
chain, as well as between atoms in different chains and between solvent–chain and
solvent–solvent atom pairs, are all handled by the soft-sphere functions of §3.4,
with just one minor alteration. If we assume that neighbor lists are used, the change
affects the condition for selecting atom pairs in BuildNebrList. The modified
form is

if ((m1 != m2 || j2 < j1) && (mol[j1].inChain == -1 ||

mol[j1].inChain != mol[j2].inChain || abs (j1 - j2) > 1))

so that bonded atom pairs are excluded – they will be treated separately. The el-
ement inChain that has been added to the Mol structure indicates whether the
particular atom belongs to a polymer chain, and if so – denoted by a value ≥ 0 –
the identity of the chain.

An additional function is required for evaluating the forces between bonded
atoms. The total number of chains is given by nChain, the number of atoms per

♠ pr_09_1

248 9 Flexible molecules

chain – assuming all chains to have the same length – by chainLen, and rm is
represented by the variable bondLim.

void ComputeChainBondForces ()

{

VecR dr;

real fcVal, rr, rrCut, rri, rri3, uVal, w;

int i, j1, j2, n; 5

rrCut = Sqr (rCut);

for (n = 0; n < nChain; n ++) {

for (i = 0; i < chainLen - 1; i ++) {

j1 = n * chainLen + i; 10

j2 = j1 + 1;

VSub (dr, mol[j1].r, mol[j2].r);

VWrapAll (dr);

rr = VLenSq (dr);

if (rr < rrCut) { 15

... (same as ComputeForces) ...

}

w = 1. - bondLim / sqrt (rr);

if (w > 0.) ErrExit (ERR_BOND_SNAPPED);

rr *= Sqr (w); 20

if (rr < rrCut) {

rri = 1. / rr;

rri3 = Cube (rri);

fcVal = 48. * w * rri3 * (rri3 - 0.5) * rri;

... (same as ComputeForces) ... 25

}

}

}

}

In computing the attractive part of the bond interaction a safety check is included
to ensure that the bond has not ‘snapped’, either because of numerical error or due
to incorrectly formulated initial conditions (see below).

Initial state
When preparing the initial state it is essential that the atoms of each chain be po-
sitioned so that the bond lengths are all within their permitted ranges, and that no
significant overlap occurs between atoms belonging to either the same or different
chains. Neither of these issues presents any difficulty in this particular case study,
especially if the density is not too high, but questions of how to pack molecules cor-
rectly into a reasonably low energy state while avoiding overlap between molecules
can arise in other situations [mck92]. Solvent atoms pose less of a problem because
they can be added after the chains are in place.

9.3 Implementation details 249

Possible initial chain states include fully stretched and planar zigzag configura-
tions; another option is the linear helix which is even more compact than the zigzag
form, a useful feature when chain packing becomes problematic at higher densi-
ties. The following function arranges the atoms of each chain in a zigzag state,
with the major axis of the chain aligned in the x direction. The chains themselves
are organized as a BCC lattice, and after they have been positioned the coordinates
are corrected to allow for any periodic wraparound. We also show how the solvent
is added; the very simple but inefficient approach demonstrated here attempts to
place solvent atoms at the sites of a simple cubic lattice by checking whether the
proposed location overlaps any of the chain atoms already in position, and if over-
lap is found to occur the tentative solvent atom is discarded (for large systems a
method based on the use of cells would be preferable).

void InitCoords ()

{

VecR c, dr, gap;

real by, bz;

int i, j, m, n, nx, ny, nz; 5

by = rCut * cos (M_PI / 4.);

bz = rCut * sin (M_PI / 4.);

n = 0;

VDiv (gap, region, initUchain); 10

for (nz = 0; nz < initUchain.z; nz ++) {

for (ny = 0; ny < initUchain.y; ny ++) {

for (nx = 0; nx < initUchain.x; nx ++) {

VSet (c, nx + 0.25, ny + 0.25, nz + 0.25);

VMul (c, c, gap); 15

VVSAdd (c, -0.5, region);

for (j = 0; j < 2; j ++) {

for (m = 0; m < chainLen; m ++) {

VSet (mol[n].r, 0., (m % 2) * by, m * bz);

VVSAdd (mol[n].r, 0.5 * j, gap); 20

VVAdd (mol[n].r, c);

++ n;

}

}

} 25

}

}

nMol = n;

ApplyBoundaryCond ();

VDiv (gap, region, initUcell); 30

for (nz = 0; nz < initUcell.z; nz ++) {

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) {

VSet (c, nx + 0.5, ny + 0.5, nz + 0.5);

VMul (c, c, gap); 35

250 9 Flexible molecules

VVSAdd (c, -0.5, region);

for (i = 0; i < nChain * chainLen; i ++) {

VSub (dr, mol[i].r, c);

if (VLenSq (dr) < Sqr (rCut)) break;

} 40

if (i == nChain * chainLen) {

mol[n].r = c;

++ n;

}

} 45

}

}

nMol = n;

}

The variables introduced here are

VecI initUchain;

real bondLim;

int chainLen, nChain;

and there is additional input data

NameR (bondLim),

NameI (chainLen),

NameI (initUchain),

The number of chains, assuming the BCC arrangement, is computed in SetParams,

nChain = 2 * VProd (initUchain);

if (nChain == 2) nChain = 1;

where the values in initUchain (an integer vector) specify the number of unit
cells in the lattice used for arranging the chains. To enable the study of just a single
chain, we have assumed that if a single unit cell is specified the intention is to have
just one chain; to accommodate this case a change is needed in InitCoords,

if (nChain == 1) {

for (m = 0; m < chainLen; m ++) {

VSet (mol[n].r, 0., (m % 2) * by, m * bz);

VVSAdd (mol[n].r, -0.25, region);

++ n; 5

}

} else {

... (as before) ...

}

9.4 Properties 251

The maximum possible number of atoms, subject to later reduction because of
overlap between solvent and chain atoms, is set in SetParams,

nMol = VProd (initUcell) + nChain * chainLen;

where initUcell now specifies the number of unit cells that contain solvent atoms
(ignoring overlap).

The final stage of the initialization process involves explicit assignment of atoms
to chains for use in the interaction calculations; since the chains are constructed
consecutively this is a trivial task.

void AssignToChain ()

{

int i, j, n;

n = 0; 5

for (i = 0; i < nChain; i ++) {

for (j = 0; j < chainLen; j ++) {

mol[n].inChain = i;

++ n;

} 10

}

for (n = nChain * chainLen; n < nMol; n ++) mol[n].inChain = -1;

}

9.4 Properties

Chain conformation

Three spatial properties of polymer chains are frequently studied because of their
experimental relevance. The first is the mean-square end-to-end distance 〈R2〉 from
which it is possible to learn whether, on average, the chain is in an open or com-
pact configuration; the distribution of R2 values, or at least the moments of the
distribution, can be used to determine the importance of effects such as excluded
volume. Then there is the mean-square radius of gyration 〈S2〉 that provides in-
formation on the entire mass distribution of the chain and plays a central role in
interpreting light scattering and viscosity measurements. Lastly, since the actual
mean spatial distribution of the chain mass – essentially its ‘shape’ – need not be
spherical, details of the moments of the mass (or monomer) distribution can be
informative.

For a chain of ns monomers

〈R2〉 = 〈|rns − r1|2
〉

(9.4.1)

252 9 Flexible molecules

and, if all monomers have the same mass,

〈S2〉 = 1

ns

〈 ns∑
i=1

|ri − r̄|2
〉

(9.4.2)

where r̄ is the center of mass. Elements of the tensor describing the mass distribu-
tion have the form

Gxy = 1

ns

ns∑
i=1

(ri x − r̄x)(ri y − r̄y) (9.4.3)

The three eigenvalues of G are denoted by g1, g2 and g3; their sum is just 〈S2〉,
but it is their ratios that are of interest because if they are not equal to unity it
means that the distribution is nonspherical†. Rearrangement of (9.4.3) leads to an
alternative expression that is used in the computations, namely,

Gxy = 1

ns

ns∑
i=1

ri xri y − 1

n2
s

[ns∑
i=1

ri x

][ns∑
i=1

ri y

]
(9.4.4)

The function shown below accumulates these chain properties over a sequence
of configurations; it is called from SingleStep by

if (stepCount >= stepEquil &&

(stepCount - stepEquil) % stepChainProps == 0) EvalChainProps ();

New variables, input data items and the initialization of this calculation (each in
the appropriate place) are

real bbDistSq, bondLim, eeDistSq, gMomRatio1, gMomRatio2, radGyrSq;

int countChainProps, limitChainProps, stepChainProps;

NameI (limitChainProps),

NameI (stepChainProps), 5

countChainProps = 0;

The following function measures and averages the end-to-end distance, the ra-
dius of gyration, the eigenvalue ratios and the actual bond lengths. Evaluating the
eigenvalues {gi } requires diagonalizing a 3 × 3 matrix; to do this, simply expand
the determinant det|G −g I | to obtain the cubic characteristic equation, so that {gi }
are just the solutions of this equation obtained by a call to SolveCubic (§18.4).
The organization of this function adheres to a pattern that should be familiar by

† The familiar inertia tensor [gol80] has components S2δxy − Gxy .

9.4 Properties 253

now; the output function is trivial.

void EvalChainProps ()

{

VecR c, cs, dr, shift;

real a[3], g[6], gVal[3];

int i, j, k, n, n1; 5

if (countChainProps == 0) {

bbDistSq = 0.;

eeDistSq = 0.;

radGyrSq = 0.; 10

gMomRatio1 = 0.;

gMomRatio2 = 0.;

}

n = 0;

for (i = 0; i < nChain; i ++) { 15

VZero (shift);

VZero (cs);

for (k = 0; k < 6; k ++) g[k] = 0.;

n1 = n;

for (j = 0; j < chainLen; j ++) { 20

if (j > 0) {

VSub (dr, mol[j].r, mol[j - 1].r);

VShiftWrap (dr, x);

VShiftWrap (dr, y);

VShiftWrap (dr, z); 25

bbDistSq += VLenSq (dr);

}

VAdd (c, mol[n].r, shift);

VVAdd (cs, c);

g[0] += Sqr (c.x); 30

g[1] += Sqr (c.y);

g[2] += Sqr (c.z);

g[3] += c.x * c.y;

g[4] += c.z * c.x;

g[5] += c.y * c.z; 35

++ n;

}

VVSub (c, mol[n1].r);

eeDistSq += VLenSq (c);

VScale (cs, 1. / chainLen); 40

for (k = 0; k < 6; k ++) g[k] /= chainLen;

g[0] -= Sqr (cs.x);

g[3] -= cs.x * cs.y;

... (similarly for other elements) ...

a[0] = - g[0] - g[1] - g[2]; 45

a[1] = g[0] * g[1] + g[1] * g[2] + g[2] * g[0] -

Sqr (g[3]) - Sqr (g[4]) - Sqr (g[5]);

a[2] = g[0] * Sqr (g[5]) + g[1] * Sqr (g[4]) + g[2] * Sqr (g[3]) -

2. * g[3] * g[4] * g[5] - g[0] * g[1] * g[2];

254 9 Flexible molecules

SolveCubic (g, a); 50

gVal[0] = Max3 (g[0], g[1], g[2]);

gVal[2] = Min3 (g[0], g[1], g[2]);

gVal[1] = g[0] + g[1] + g[2] - gVal[0] - gVal[2];

radGyrSq += gVal[0] + gVal[1] + gVal[2];

gMomRatio1 += gVal[1] / gVal[0]; 55

gMomRatio2 += gVal[2] / gVal[0];

}

++ countChainProps;

if (countChainProps == limitChainProps) {

bbDistSq /= nChain * (chainLen - 1) * limitChainProps; 60

eeDistSq /= nChain * limitChainProps;

... (ditto for radGyrSq, gMomRatio1, gMomRatio2) ...

PrintChainProps (stdout);

countChainProps = 0;

} 65

}

Here, Min3 and Max3 (§18.2) extend Min and Max to three arguments, and

#define VShiftWrap(v, t) \

if (v.t >= 0.5 * region.t) { \

shift.t -= region.t; \

v.t -= region.t; \

} else if (v.t < -0.5 * region.t) { \ 5

shift.t += region.t; \

v.t += region.t; \

}

Measurements

The results shown here are for a single chain in a soft-sphere solvent. We consider
chains consisting of ns = 8, 16 and 24 monomers. The input data for a chain with
ns = 8 include

bondLim 2.1

chainLen 8

density 0.5

initUcell 10 10 10

initUchain 1 1 1

limitChainProps 100

stepAdjustTemp 1000

stepAvg 20000

stepChainProps 20

stepEquil 0

stepLimit 500000

temperature 2.

9.4 Properties 255

Table 9.1. Chain measurements.

ns 〈l〉 〈R2〉 σ(R2) 〈S2〉 σ(S2) 〈g2/g1〉 〈g3/g1〉
8 1.0531 13.08 0.61 2.105 0.050 0.2433 0.0780

16 1.0534 31.92 2.91 5.040 0.261 0.2700 0.0894
24 1.0533 59.07 10.30 9.015 0.937 0.2411 0.0751

Table 9.2. Block-averaged error estimates.

ns = 8 ns = 16 ns = 24
b σ(〈R2〉) σ (〈S2〉) σ (〈R2〉) σ (〈S2〉) σ (〈R2〉) σ (〈S2〉)
1 0.245 0.021 1.016 0.091 2.149 0.185
2 0.269 0.022 1.207 0.106 2.813 0.238
4 0.268 0.020 1.268 0.114 3.210 0.279
8 0.258 0.019 1.257 0.112 3.120 0.282

16 0.255 0.020 1.133 0.112 3.267 0.323
32 0.270 0.021 1.346 0.132 2.920 0.260
64 0.257 0.023 0.640 0.075 4.496 0.372

Since a simple cubic lattice is used for the initial positions of the solvent atoms,
the maximum number of solvent atoms is 1000 (the values in initUcell also help
determine the region size), although overlap with chain monomers may reduce this
number very slightly. For ns = 16 the values in initUcell are increased to 12,
and for ns = 24 to 16 – the region must be large enough to hold the chain in its
initial state and avoid unwanted wraparound effects. The empirically determined
value of bondLim ensures that bond length variation is confined to a fairly narrow
range. Constant-temperature dynamics and leapfrog integration are used.

Results♠ obtained from runs of 5 × 105 timesteps are listed in Table 9.1 for the
three chain lengths studied. The mean bond lengths 〈l〉 are practically the same in
each case; the value of σ(l) is typically 2 × 10−4, so that bond length is seen to be
tightly controlled. The values of 〈R2〉 and 〈S2〉 are comparable to published results,
although the values do depend on solvent density [smi92]. The eigenvalue ratios
〈g2/g1〉 and 〈g3/g1〉 provide clear evidence that the mean shape of the chain is far
from spherical, indeed the shape is more like a flattened cigar.

In order to obtain error estimates for 〈R2〉 and 〈S2〉 we resort to the block aver-
aging described in §4.2. The results of this analysis over a series of block sizes b
are shown in Table 9.2. The quality of the estimates is seen to decrease as the chain
length grows, suggesting a need for even longer runs.

♠ pr_anchprops

256 9 Flexible molecules

9.5 Modeling structure formation

One of the more fascinating processes associated with polymers in solution is the
formation of large-scale spatial structures in certain types of three-component flu-
ids. Two of the fluid components are typically water and an oil-like liquid that
is insoluble in water. The third component is a relatively small fraction of am-
phiphilic chain molecules, or surfactants; the term amphiphilic means that one end
of the chain is hydrophilic, in other words, it has an affinity for water, and the
other end is hydrophobic with a preference for oil-rich surroundings. What occurs
in such systems is that the amphiphilic chains form surfaces separating the water
and oil; in the case of low oil concentration, the oil will be packaged by the chains
into droplets, or micelles, that are themselves water soluble; at higher oil concen-
trations, layers, bilayer vesicles, or a variety of other structures can form, again
corresponding to oil-rich regions separated from the water by surfaces formed out
of chain molecules [mye88, gel94]. There are many processes, both natural and
industrial, where this kind of supramolecular self-assembly occurs; the nature of
the constituent molecules and their interactions determine the morphology of the
structures that can develop.

Since phenomena of this kind occur for many different combinations of
molecules, it seems reasonable that the underlying behavior ought to be under-
standable using simplified models that ignore much of the specific molecular de-
tail [kar96]. In particular, these models should be able to reveal how the collec-
tive behavior of aggregates – whose sizes greatly exceed those of the individual
molecules – are related to the molecular properties. Due to the computationally
intensive nature of the MD approach it is important to simplify the model as much
as possible; this requires isolating the molecular characteristics that dominate the
behavior.

A particularly successful class of model is based on representing both the water
and oil molecules, labeled W and O, as simple spherical atoms. The forces between
pairs of like atoms, fWW(r) and fOO(r), involve the LJ potential (which is attractive
except upon close approach), whereas the interaction between unlike pairs, fWO(r),
is a soft-sphere repulsion used simply to prevent molecular overlap. This choice
ensures the immiscibility of the W and O species and, in order to reduce the number
of parameters, fWW(r) and fOO(r) are assumed identical. The surfactant molecules
are constructed from short, completely flexible chains, in which one or more W
atoms form the hydrophilic head group, and one or more O atoms make up the
hydrophobic tail; the atoms in the chain are linked by the springlike force fbb(r)

defined in (9.2.1). A series of studies based on this kind of approach – although
with a linear form for fbb(r) – are described in [smi91, ess94, kar94].

9.6 Surfactant models 257

Even such a highly simplified representation provides ample scope for exploring
a range of phenomena by suitably modifying the model parameters. Here, the case
study focuses principally on micelle growth and on how the micelle sizes vary as
a function of time. Measuring the properties of these structures calls for cluster
analysis (§4.5) in order to mechanize the task of micelle identification. Minor ex-
tensions of the model (not discussed here) include varying the relative monomer
sizes (for example, using larger W atoms for the chain head groups), the relative
interaction strengths, and the chain lengths and structure; another possibility is re-
ducing the flexibility of the surfactants by introducing constraints (Chapter 10).

In general, as the simulated systems become more complicated, visualization
begins to play a particularly important role. The ability to follow the evolution of
the system as a whole, as well as the motions of individual molecules, can prove
extremely valuable, both while developing the simulations and then in analyzing
those aspects of the behavior that are not readily expressed in quantitative form.
This is particularly true in the present case and the case study will include ‘snap-
shots’ of the structures that develop in the course of the simulations; such images
can be generated from the molecular coordinates, but details of the algorithms and
three-dimensional graphics software required lie outside the scope of this book.
The role of computer graphics extends beyond mere static images, since sets of
snapshots produced over a period of time can be used to generate animated se-
quences showing the evolution of the system, from which time-dependent aspects
of the behavior can be deduced. Such a highly visual approach complements more
conventional quantitative methods of analyzing simulation results.

9.6 Surfactant models

Interactions

The program♠ used for simulating surfactant solutions is partly based on the earlier
program for a single chain in solution (§9.3). Now, however, there are multiple
chains and two species of atoms – representing oil and water molecules – in the
solution. The different kinds of interactions are the following:

• LJ between pairs of like atoms (OO and WW) and soft-sphere repulsion be-
tween unlike (OW) pairs, irrespective of whether both atoms belong to the so-
lution, or one atom belongs to the solution and the other is a monomer in a
chain, or both atoms are monomers in different chains;

• soft-sphere repulsion between nonlinked monomers in the same chain, irre-
spective of type;

• bonding forces between linked monomers in the same chain.

♠ pr_09_2

258 9 Flexible molecules

The last of these are processed by ComputeChainBondForces (§9.3); the others
are handled using a slight modification of the neighbor-list method.

The neighbor list is constructed using cells large enough to include all the attrac-
tive OO and WW pairs; while this implies the inclusion of repulsive OW pairs that
may lie outside their cutoff range, it is a more concise approach than the alternative
of maintaining multiple neighbor lists for the different types of interactions. As-
sociated with each entry in the neighbor list is an element from an array intType

specifying the kind of interaction required by the atom pair, with the values 1 and
2 denoting soft-sphere and LJ, respectively; this is determined in advance when
constructing the neighbor list, rather than during the subsequent force evaluations.
The Mol structure is

typedef struct {

VecR r, rv, ra;

int inChain, typeA;

} Mol;

where typeA values of 1 and 2 distinguish O from W atoms and inChain is the
chain to which the atom belongs (or –1 if the atom is not a chain monomer).

The modifications to BuildNebrList are

real rrNebrA;

int iType, sameChain;

rrNebrA = Sqr (rCutA + rNebrShell);

... 5

if (m1 != m2 || j2 < j1) {

VSub (dr, mol[j1].r, mol[j2].r);

VVSub (dr, shift);

sameChain = (mol[j1].inChain == mol[j2].inChain &&

mol[j1].inChain >= 0); 10

iType = 0;

if (mol[j1].typeA == mol[j2].typeA && ! sameChain) {

if (VLenSq (dr) < rrNebrA) iType = 2;

} else if (! sameChain || abs (j1 - j2) > 1) {

if (VLenSq (dr) < rrNebr) iType = 1; 15

}

if (iType > 0) {

...

nebrTab[2 * nebrTabLen] = j1;

nebrTab[2 * nebrTabLen + 1] = j2; 20

intType[nebrTabLen] = iType;

...

9.6 Surfactant models 259

where rCut is the usual soft-sphere interaction range and rCutA that of the LJ
interaction. The corresponding modifications to the neighbor-list version of the
function ComputeForces are

real rrCutA;

rrCutA = Sqr (rCutA);

...

if (rr < rrCut || intType[n] == 2 && rr < rrCutA) { 5

rri = 1. / rr;

rri3 = Cube (rri);

fcVal = 48. * rri3 * (rri3 - 0.5) * rri;

uVal = 4. * rri3 * (rri3 - 1.);

if (intType[n] == 1) uVal += 1.; 10

...

Other parts of the calculation, namely, the integration, treatment of periodic bound-
aries and temperature adjustment, are handled in the usual way. The additional
array associated with the neighbor list requires

int *intType;

AllocMem (intType, nebrTabMax, int);

Initial state

Assigning the initial coordinates can be carried out in a variety of ways. The follow-
ing, chosen for its simplicity, demonstrates just one possibility and can be extended
to accommodate differing requirements.

As in other cases, atoms are initially positioned on the sites of a lattice, here the
simple cubic; since the nominal chain bond length can differ from the lattice spac-
ing, only one of the chain monomers is actually placed on a lattice site and the other
monomers are then suitably spaced along the x axis. The chains are positioned first;
random locations are chosen in a way that ensures the chains do not overlap and
the head–tail direction is randomly chosen. A temporary array initSiteOcc is
used to flag sites that become occupied in the course of this process†. Note that
this technique will fail at sufficiently high chain concentration (for a given chain
length) if there are no gaps of sufficient size between the chains already in place to
allow insertion of any remaining chains. Atom types and chain assignment are also
determined; the way atoms are numbered ensures that atoms belonging to a single

† Even though only one of the chain atoms is placed on a lattice site, we assume for simplicity that a number of
lattice sites equal to the chain length are filled, a correct assumption if the bond length is reasonably close to,
but does not exceed, the lattice spacing.

260 9 Flexible molecules

chain are indexed sequentially from head to tail and that chain atoms have smaller
indices than solvent and solute atoms. Finally, the remaining lattice sites are filled
with O or W atoms, chosen randomly according to the required concentration.

New variables introduced here are

real solConc;

int chainHead;

for specifying the relative concentration of the O species and the number of mono-
mers in the hydrophilic chain head; other quantities are taken from §9.4. Coordinate
initialization is as follows; other initialization is carried out as before.

void InitCoords ()

{

VecR c, gap;

VecI cc;

int *initSiteOcc, dir, j, n, nc, nn, nx, ny, nz; 5

AllocMem (initSiteOcc, nMol, int);

DO_MOL initSiteOcc[n] = 0;

for (nc = 0; nc < nChain; nc ++) {

while (1) { 10

VSet (cc, RandR () * (initUcell.x - chainLen),

RandR () * initUcell.y, RandR () * initUcell.z);

n = VLinear (cc, initUcell);

for (j = 0; j < chainLen; j ++) {

if (initSiteOcc[n + j]) break; 15

}

if (j == chainLen) {

for (j = 0; j < chainLen; j ++) initSiteOcc[n + j] = 1;

break;

} 20

}

}

VDiv (gap, region, initUcell);

nc = 0;

n = 0; 25

nn = 0;

for (nz = 0; nz < initUcell.z; nz ++) {

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) {

VSet (c, nx + 0.5, ny + 0.5, nz + 0.5); 30

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

if (initSiteOcc[nn]) {

dir = (RandR () < 0.5) ? 0 : 1;

for (j = 0; j < chainLen; j ++) { 35

mol[n].r = c;

mol[n].r.x += (dir ? j : chainLen - 1 - j) * rCut;

9.6 Surfactant models 261

mol[n].typeA = (j >= chainHead) ? 1 : 2;

mol[n].inChain = nc;

++ n; 40

}

nx += chainLen - 1;

++ nc;

nn += chainLen;

} else ++ nn; 45

}

}

}

nn = 0;

for (nz = 0; nz < initUcell.z; nz ++) { 50

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) {

VSet (c, nx + 0.5, ny + 0.5, nz + 0.5);

VMul (c, c, gap);

VVSAdd (c, -0.5, region); 55

if (initSiteOcc[nn]) {

nx += chainLen - 1;

nn += chainLen;

} else {

mol[n].r = c; 60

mol[n].typeA = (RandR () < solConc) ? 1 : 2;

mol[n].inChain = -1;

++ n;

++ nn;

} 65

}

}

}

free (initSiteOcc);

} 70

Cluster properties

In order to analyze micelle growth we will use the cluster analysis technique in-
troduced in §4.5 to measure the properties of clusters of O atoms; no distinction
is made between the O atoms of the solvent and those that are chain monomers.
If two O atoms are separated by less than the distance rClust they are regarded
as belonging to the same cluster. The results of such an analysis are, of course,
only relevant to the micelle problem if the O atoms in solution gather together in
compact groups surrounded by chains whose tails of O monomers tend to be on the
inside; establishing that this is indeed what occurs is not part of this study, although
computer generated images show that this is precisely the outcome.

The only change required to the functions used in the earlier cluster analysis
(§4.5) is in BuildClusters, where the condition for adding a bonded pair is

262 9 Flexible molecules

changed to deal only with OO (type 1) atom pairs

if ((m1 != m2 || j2 < j1) && mol[j1].typeA == 1 &&

mol[j2].typeA == 1)

Since, for convenience, the same cell array used for neighbor-list construction is
also used here, rClust must not be allowed to exceed the neighbor shell size, a
requirement that is normally satisfied. The input data includes

NameR (bondLim),

NameI (chainHead),

NameI (chainLen),

NameI (nChain),

NameR (rClust), 5

NameR (rCutA),

NameR (solConc),

9.7 Surfactant behavior

Micelle growth

In order to ensure adequate space for the molecules to organize themselves into
structures that are considerably bigger than the molecules themselves, the surfac-
tant simulations require larger systems than those considered in earlier case studies.
The results shown here are for a fairly modest system of 27 000 atoms, with an O
concentration of 0.05. The system includes 1600 chains of four monomers, two
of which are O atoms and two W; this represents a relatively high surfactant con-
centration, but it is necessary because the system is really quite small. Periodic
boundaries are used and the run is based on data that includes the following:

bondLim 2.1

chainHead 2

chainLen 4

density 0.8

initUcell 30 30 30

nChain 1600

rClust 1.8

rCutA 2.

solConc 0.05

stepAdjustTemp 1000

stepAvg 200

stepLimit 200000

stepSnap 2000

temperature 0.7

9.7 Surfactant behavior 263

0 200 400 600 800 1000
0

100

200

300

time

cl
us

te
r

nu
m

be
r

/ m
ea

n
si

ze

Fig. 9.1. Number of micelle clusters (solid curve) and their mean size (dashed curve) for
low solute concentration.

As the run progresses, the system forms a number of compact O regions sur-
rounded by chains that are typically oriented with outward pointing W ends. More
detailed aspects of the behavior can depend on the relative concentrations and on
other factors such as chain length and interaction strength. Figure 9.1 shows the
number of micelles, as reported by the cluster analysis algorithm, together with the
mean cluster size, both as functions of time. These results appear consistent with
visual observation of the structures. The initial cluster growth from the uniform so-
lution is followed by a certain amount of cluster merging, although the decreasing
merge rate makes it difficult to determine whether the final state has been reached
in this run; the behavior of the larger structures will obviously be influenced by the
size of the system.

Structure formation

While quantitative measurements, such as the cluster analysis, provide some idea
of what is happening, there is no better way of examining the behavior than by
actually looking at the spatially organized structures as they form.

Recording the coordinates and other relevant data for producing images can
employ the function PutConfig described in §18.6. The parameters chainHead,
chainLen and nChain must be added to the output. Additional information
concerning atom types and chain membership must also be included in the
configuration snapshot file; such details are needed for creating the images. After

264 9 Flexible molecules

writing out the coordinate data, the following code records the atom types, whether
each atom belongs to a chain and if so which one,

DO_MOL rI[n] = ((mol[n].inChain + 1) << 2) + mol[n].typeA;

WriteFN (rI, nMol);

where WriteFN (defined in §18.2) writes out the entire array.
These details really need be specified only once at the start of the snapshot file;

here we have chosen to have all data blocks identical for simplicity (at the expense
of disk storage). Note that since high precision is not required for the graphics, the
coordinate data can be scaled to, for example, 10-bit integers for storage, so that a
coordinate x ,y,z triple can be packed into a single 32-bit integer word; the resulting
additional savings in disk storage are likely to be worthwhile when large systems
and long runs are contemplated.

The program used to draw the configurations reads this file and displays an
animated sequence of frames depicting the evolution of the system. Since these
full-color images are based on the complete three-dimensional coordinates, they
are able to provide depth perception and can be rotated and zoomed interactively.
The details recorded in the file are adequate for the linear chains employed here,
assuming the monomers belonging to the chains are indexed as specified earlier;
by storing additional information about chain membership and connectivity more
general situations can be accommodated. As mentioned previously, details of the
actual visualization software are beyond the scope of the discussion, since spe-
cialized computer graphics techniques are required; monochrome renditions of the
screen images are reproduced here.

The figures show the final states of two systems after 2×105 timesteps. The first,
in Figure 9.2, is the system considered previously, in which a number of relatively
compact micelle clusters develop. The second, in Figure 9.3, shows a different
system, in which there are equal concentrations of the O and W species. This results
in a state in which each of the species occupies one or more extended regions
separated by surfactant chain layers; the layers are far from planar and their form
is also affected by the periodic boundaries.

Two kinds of visualization are used for the images. The first is a perspective
rendering of stick figures representing the actual surfactant molecules (in the case
of low solute concentration, the O atoms are included as points). The second shows
the continuous surfaces separating the domains of each species. Such surfaces are
produced by evaluating the O and W concentrations over a discrete grid and then,
with the aid of interpolation, locating the isosurface on which the concentrations

9.7 Surfactant behavior 265

Fig. 9.2. Formation of micelles at low solute concentration: two views of the same system,
one showing surfactant chains and solute O atoms (the solvent W atoms are omitted for
clarity), the other, the corresponding surfaces delineating the micelles.

Fig. 9.3. Surfactant layers separating O and W atoms that are present in equal concentra-
tions: one view shows the chains, the other the surfaces between the domains.

are equal (this is analogous to a contour plot, but in three dimensions); the surface
roughly follows the chain midpoint locations†.

These are, of course, many other structures that might develop, depending on the
model parameters. Considerable variation can also occur over repeated runs with
different initial conditions. The use of even larger systems would provide extra
space for structural development.

† In principle, the micelle surfaces should be closed; the fact that they do not appear to be so is due to the
periodic boundaries – the surfaces are in fact continuous across opposite faces of the simulation cell.

266 9 Flexible molecules

9.8 Further study
9.1 Implement block averaging and determine the simulation lengths needed to

ensure convergence of the chain properties.
9.2 The length dependence of 〈R2〉 and 〈S2〉 has been studied extensively for

chains on lattices [kre88], and while MD cannot reach the extremely long
chains that lattice-based Monte Carlo methods can handle, the results for
shorter chains are still of interest; investigate.

9.3 Study the rate at which the chain structure relaxes by examining the time-
dependent autocorrelation function of a quantity such as 〈R2〉; relaxation
rates are very sensitive to chain length and solvent density [smi92].

9.4 How does the presence of a solvent alter the chain dynamics [dun93]?
9.5 Model a pure polymer liquid; here, reptation is considered to be an important

mechanism for molecular motion [kre92]. A suitable initial state must be
constructed for this problem.

9.6 Explore how the morphology of the surfactant structures depends on the
solute and chain concentrations and on the chain length.

9.7 Devise other ways of constructing initial states for surfactant simulations.
9.8 Generalize the surfactant model to allow for chains whose monomers vary

in size from head to tail.

10

Geometrically constrained molecules

10.1 Introduction
Some internal degrees of freedom are important to molecular motion, while oth-
ers can be regarded as frozen. Classical mechanics allows geometrical relations
between coordinates to be included as holonomic constraints. We have already en-
countered constraints in connection with non-Newtonian modifications of the dy-
namical equations (Chapter 6); here the constraints occur in a Newtonian context,
so that there is little doubt as to the physical nature of the trajectories.

In this chapter we focus on a class of model where constraints play an impor-
tant role, namely, the polymer models used for studying alkane chains and more
complex molecules, in which a combination of geometrical constraints and internal
motion is required. The treatment of constraints is not the only new feature of such
models; the interactions responsible for bond bending and torsion are essentially
three- and four-body potentials, and some rather intricate vector algebra is required
to determine the forces. The particular alkane model described here incorporates
one further simplification, namely, the use of the often encountered ‘united atom’
approximation – the hydrogen atoms attached to each carbon atom in the backbone
are absorbed into the backbone atoms and are thereby eliminated from the problem.

10.2 Geometric constraints

Role of constraints

The notion of a constraint acting at the molecular level is merely an attempt at
simplification; the justification for assuming that certain bond lengths and an-
gles are constant is that, at the prevailing temperature, there is insufficient en-
ergy to excite the associated vibrational degrees of freedom (or modes) out of their
quantum ground states. Or, adopting a classical perspective, the potential function

267

268 10 Geometrically constrained molecules

responsible for limiting the variation of the bond length or angle must involve a
very deep and narrow well; the natural frequency associated with such a potential
will be much higher than those of other kinds of internal motion and is therefore
likely to demand an intolerably small integration timestep. To avoid this situation it
is customary to eliminate such degrees of freedom entirely by the simple expedient
of replacing them with constraints.

The only unanswered question is whether a completely frozen mode is an ac-
curate way of representing a mode that is really only ‘stiff’, in the sense that its
vibration frequency is much greater than that of other modes and coupling with the
rest of the system is weak; there is no completely satisfactory answer since con-
straints and stiff potentials are both attempts to describe what is fundamentally a
quantum problem. The distinction between stiff and frozen modes is important in
statistical mechanics, and configurational averages depend on the choice [hel79];
the same is true for dynamical properties [van82].

Problem formulation

Consider a molecule whose structure is subject to one or more geometrical con-
straints; fixing the distance between any two atoms introduces a constraint of the
form

|ri − r j |2 = b2
i j (10.2.1)

thereby eliminating one degree of freedom. If i and j are bonded neighbors within
a molecule, then this constraint amounts to fixing the bond length; if they are next-
nearest neighbors, and the two intervening bonds also have constant length, then
it is the bond angle that is fixed. While these are examples of replacing stiff inter-
actions between pairs and triplets of atoms, there are other types of structural con-
straint, such as those used for maintaining the planarity of a molecule; constraints
must be formulated with care to ensure the correct selection is made [cic82]. As-
suming there are a total of nc distance constraints imposed on a particular molecule,
then if the kth constraint acts between atoms ik and jk , the constraints can be sum-
marized by the set of equations

σk ≡ r2
ik jk − b2

ik jk = 0 , k = 1, . . . nc (10.2.2)

For simplicity, the indexing used here considers just a single molecule, but this is
readily extended. Note that, because constraints remove degrees of freedom that
would otherwise contribute to the temperature, allowance must be made when re-
lating temperature to kinetic energy.

10.2 Geometric constraints 269

The equations of motion follow directly from the Lagrangian formulation de-
scribed in §3.2. The result (now allowing for different masses) is

mi r̈i = fi + gi (10.2.3)

where fi is the usual force term, mi the mass of the i th atom, or group of atoms
combined into a single monomer, and the additional forcelike term gi that ex-
presses the effect of the constraints on atom i can be written

gi = −
∑
k∈Ci

λk∇iσk (10.2.4)

Here, Ci denotes the set of constraints that directly involve ri , and the {λk} are the
Lagrange multipliers introduced into the problem (the reversed sign in (10.2.4) fol-
lows custom [ryc77]). The force fi includes all non-constraint interactions within
the molecule, as well as the intermolecular forces acting on individual atoms (or
monomers). There are three scalar equations of motion for each atom, as well as
nc constraint equations for the molecule as a whole, exactly the number needed to
evaluate the Lagrange multipliers and integrate the equations of motion.

Solving the problem can be carried out in various ways. A particularly simple
method is to advance the system over a single timestep by integrating the uncon-
strained equations of motion – ignoring gi – and then adjusting all the coordinates,
in practice by only a small amount, so that the constraints are again satisfied in the
new state [ryc77]. This adjustment is carried out by means of an iterative relax-
ation procedure that modifies each pair of constrained coordinates in turn until all
constraints are satisfied to the required accuracy. The alternative is to solve the full
problem, by first computing the Lagrange multipliers from the time-differentiated
constraint equations and then using these values in solving the equations of mo-
tion [edb86]. But, unlike the relaxation approach, which restores the constraints to
their correct values, here the constraints are subject to numerical integration error.
In practice, the error is small and can be corrected by, for example, including an
occasional series of relaxation cycles. Both methods will be described below, but
first the subject of how to label the atoms and constraints systematically must be
addressed.

Atom and constraint indexing

For the linear chain molecules discussed here the indexing problem has a sim-
ple solution. For more complex molecular structures, which can involve both tree
and ring topologies, the problem is a little more difficult [mor91]. We concentrate

270 10 Geometrically constrained molecules

on the case of a simple chain subjected to bond-length constraints and, option-
ally, to bond-angle constraints as well. Once the constraints have been identified
the remainder of the processing need not be concerned with the topology of the
molecule.

Consider a polymer chain consisting of ns monomers – atoms for short. If only
the bond lengths are constrained there will be a total of nc = ns − 1 constraints,
with constraint k relating the coordinates of atoms k and k + 1. If, on the other
hand, the chain is subject to both length and angle constraints, there will be ns − 1
of the former and ns − 2 of the latter, so nc = 2ns − 3. Each of the constraints
acting on atom i then involves one of the four atoms j = i ± 1, i ± 2; length and
angle constraints can be indexed in alternating fashion, leading to the simple result
that the kth constraint acts between atoms �(k + 1)/2� and �(k + 4)/2�.

10.3 Solving the constraint problem

Matrix method

Of the two methods, solving the equations of motion together with the constraints
seems to be the more appealing approach from a strictly aesthetic point of view.
This entails expressing the constraint equations in matrix form and then solving
the resulting linear algebra problem using standard numerical techniques. The con-
straints will of course be subject to numerical error, but if this turns out to be suf-
ficiently small the results can be corrected from time to time using the relaxation
method discussed later in this section; such corrections can also be carried out by,
for example, using standard optimization methods to minimize a penalty function
that measures constraint deviations [edb86].

The constraint forces can be rewritten in the form

gi = −2
∑
k∈Ci

λk rik jk =
nc∑

k=1

Mikλk sk (10.3.1)

where

sk = rmin(ik , jk) − rmax(ik , jk) (10.3.2)

and the elements of the matrix M, which has ns rows and nc columns, are

Mpk =

⎧⎪⎨
⎪⎩

+2 k ∈ Cp , jk < ik

−2 k ∈ Cp , jk > ik

0 k �∈ Cp

(10.3.3)

Since s2
k is constant, it follows that

s̈k · sk + ṡ2
k = 0 (10.3.4)

10.3 Solving the constraint problem 271

The acceleration s̈k appearing in (10.3.4) can be replaced by the actual equation of
motion obtained from (10.2.3). If the indices of the atoms associated with the kth
constraint are arranged so that ik < jk , and we define a new matrix

Lkk′ = (Mik k′/mik − M jk k′/m jk

)
sk · sk′ (10.3.5)

then the result of this replacement is

nc∑
k′=1

Lkk′λk′ = −(fik /mik − f jk /m jk

) · sk − ṡ2
k , k = 1, . . . nc (10.3.6)

The matrix L is of size nc × nc and the only unknowns in (10.3.6) are the λk′ .
If only bond lengths are constrained there will be exactly two nonzero elements

in the i th row of M, corresponding to the two constraints that involve atom i ,

Mi,i−1 = +2, Mii = −2 (10.3.7)

If both lengths and angles are constrained there are four nonzero elements per row,
namely,

Mi,2i−4 = Mi,2i−3 = +2, Mi,2i−1 = Mi,2i = −2 (10.3.8)

As an example, the equation of motion of an atom that is subject to both kinds of
constraints and not located at the chain ends is

r̈i = fi + 2λ2i−4ri−2,i + 2λ2i−3ri−1,i − 2λ2i−1ri,i+1 − 2λ2i ri,i+2 (10.3.9)

where we assume that all masses are the same and use MD units. The correspond-
ing equations for the two atoms at either end of the chain omit the terms referring
to nonexistent neighbors.

The function that constructs M for the case of bond-length constraints follows;
the matrix is stored columnwise as a linear array mMat†, chainLen corresponds to
ns and nCons to nc.

void BuildConstraintMatrix ()

{

int i, m;

for (i = 0; i < chainLen * nCons; i ++) mMat[i] = 0; 5

for (i = 0; i < chainLen; i ++) {

m = i - 1;

if (m >= 0) mMat[m * chainLen + i] = 2;

++ m;

if (m < nCons) mMat[m * chainLen + i] = -2; 10

}

for (m = 0; m < nCons; m ++) {

† mMat[m * chainLen + i] corresponds to Mi+1,m+1; +1 is required because m and i start from zero.

272 10 Geometrically constrained molecules

cons[m].distSq = Sqr (bondLen);

cons[m].site1 = m;

cons[m].site2 = m + 1; 15

}

}

An array of structures cons of type

typedef struct {

VecR vec;

real bLenSq, distSq;

int site1, site2;

} Cons; 5

appears in this function; vec holds the constraint vector sk , bLenSq is the current
bond length r2

ik jk
, distSq corresponds to b2

ik jk
, and site1 and site2 denote the

atoms ik and jk involved in the constraint. The version of the function for con-
structing M in the case that angle constraints are also present♠ is

void BuildConstraintMatrix ()

{

int i, m;

for (i = 0; i < chainLen * nCons; i ++) mMat[i] = 0; 5

for (i = 0; i < chainLen; i ++) {

m = 2 * i - 3;

if (m >= 0) mMat[m * chainLen + i] = 2;

++ m;

if (m >= 0) mMat[m * chainLen + i] = 2; 10

m += 2;

if (m < nCons) mMat[m * chainLen + i] = -2;

++ m;

if (m < nCons) mMat[m * chainLen + i] = -2;

} 15

for (m = 0; m < nCons; m ++) {

cons[m].distSq = Sqr (bondLen);

if (m % 2 == 1) cons[m].distSq *= 2. * (1. - cos (bondAng));

cons[m].site1 = m / 2;

cons[m].site2 = (m + 3) / 2; 20

}

}

Evaluating the Lagrange multipliers and including the constraint forces in the
equations of motion is the task of the function that follows. In the course of the
processing the matrix L, represented by lMat, is constructed and the linear equa-
tions (10.3.6) solved using a standard method such as LU decomposition [pre92];

♠ pr_10_1

10.3 Solving the constraint problem 273

the solution is evaluated by the function SolveLineq described in §18.4. Both the
right-hand side of (10.3.6) and, subsequently, the solution (the set of λk′) are stored
in consVec.

void ComputeConstraints ()

{

VecR da, dv;

real w;

int i, m, m1, m2, mDif, n, nn; 5

for (n = 0; n < nChain; n ++) {

nn = n * chainLen;

for (m = 0; m < nCons; m ++) {

VSub (cons[m].vec, mol[nn + cons[m].site1].r, 10

mol[nn + cons[m].site2].r);

VWrapAll (cons[m].vec);

}

m = 0;

for (m1 = 0; m1 < nCons; m1 ++) { 15

for (m2 = 0; m2 < nCons; m2 ++) {

lMat[m] = 0.;

mDif = mMat[m1 * chainLen + cons[m2].site1] -

mMat[m1 * chainLen + cons[m2].site2];

if (mDif != 0) 20

lMat[m] = mDif * VDot (cons[m1].vec, cons[m2].vec);

++ m;

}

}

for (m = 0; m < nCons; m ++) { 25

VSub (dv, mol[nn + cons[m].site1].rv,

mol[nn + cons[m].site2].rv);

VSub (da, mol[nn + cons[m].site1].ra,

mol[nn + cons[m].site2].ra);

consVec[m] = - VDot (da, cons[m].vec) - VLenSq (dv); 30

}

SolveLineq (lMat, consVec, nCons);

for (m = 0; m < nCons; m ++) {

for (i = 0; i < chainLen; i ++) {

w = mMat[m * chainLen + i]; 35

if (w != 0.)

VVSAdd (mol[nn + i].ra, w * consVec[m], cons[m].vec);

}

}

} 40

}

Any residual drift in the constraints can be removed when necessary, as discussed
later, but the drift should be sufficiently small that such adjustments are infrequent.

274 10 Geometrically constrained molecules

A list of the new quantities appearing in the calculations, including some used
later, is

Cons *cons;

real *consVec, *lMat, bondAng, bondLen, consDevA, consDevL, consPrec;

int *mMat, chainLen, nChain, nCons, nCycleR, nCycleV, stepRestore;

and the related array allocations (in AllocArrays) are

AllocMem (cons, nCons, Cons);

AllocMem (consVec, nCons, real);

AllocMem (lMat, Sqr (nCons), real);

AllocMem (mMat, chainLen * nCons, int);

The deviations of the supposedly constrained bond lengths from the correct val-
ues are easily monitored (here only averages are computed).

void AnlzConstraintDevs ()

{

VecR dr1;

real sumL;

int i, n, ni; 5

sumL = 0.;

for (n = 0; n < nChain; n ++) {

for (i = 0; i < chainLen - 1; i ++) {

ni = n * chainLen + i; 10

VSub (dr1, mol[ni + 1].r, mol[ni].r);

VWrapAll (dr1);

cons[i].bLenSq = VLenSq (dr1);

sumL += cons[i].bLenSq;

} 15

}

consDevL = sqrt (sumL / (nChain * (chainLen - 1))) - bondLen;

}

If bond angles are also constrained add

VecR dr2;

real sumA;

...

sumA = 0.;

... 5

for (i = 1; i < chainLen - 1; i ++) {

ni = n * chainLen + i;

VSub (dr1, mol[ni + 1].r, mol[ni].r);

VWrapAll (dr1);

VSub (dr2, mol[ni - 1].r, mol[ni].r); 10

VWrapAll (dr2);

10.3 Solving the constraint problem 275

sumA += Sqr (VDot (dr1, dr2)) / (cons[i - 1].bLenSq *

cons[i].bLenSq);

}

... 15

consDevA = sqrt (sumA / (nChain * (chainLen - 2))) -

cos (M_PI - bondAng);

Relaxation method
This approach to dealing with constraints – the so-called ‘shake’ method – [ryc77]
begins by advancing the system over a single timestep while ignoring the con-
straints. If the simple Verlet integration method (3.5.2) is used, we obtain a set of
uncorrected coordinates

r ′
i (t + h) = 2 ri (t) − ri (t − h) + (h2/mi) fi (t) (10.3.10)

We now want to adjust all the r ′
i to obtain corrected coordinates ri that satisfy

the constraints. This can be done by adding in the missing constraint force term
(10.2.4); since

∇iσk = 2 ri j (t) (10.3.11)

this leads to

ri (t + h) = r ′
i (t + h) − 2(h2/mi)

∑
k∈Ci

λk ri j (t) (10.3.12)

At this point we change the meaning of λk . It will no longer be regarded as a
Lagrange multiplier, but rather as an additional variable whose value is determined
by having the constraint satisfied to full numerical accuracy and not subject to the
truncation error of the integration method. This will ensure that, despite the numer-
ical error experienced by the atomic trajectories, the constrained bond lengths and
angles always maintain their correct values.

Implementation of the iterative method begins by setting r ′
i = r ′

i (t +h) and then,
for each constraint, applying corrections along the direction of ri j (t),

r ′′
i = r ′

i − 2(h2/mi)γ ri j (t)

r ′′
j = r ′

j + 2(h2/m j)γ ri j (t)
(10.3.13)

The correction factor γ is determined from the solution of

r ′′
i j

2 = b2
i j (10.3.14)

namely,

|r ′
i j − 2h2(1/mi + 1/m j)γ ri j |2 = b2

i j (10.3.15)

276 10 Geometrically constrained molecules

which, to lowest order in h2, is

γ = r ′
i j

2 − b2
i j

4h2(1/mi + 1/m j)r ′
i j · ri j

(10.3.16)

The estimated coordinates r ′
i and r ′

j are then updated by using this value of γ in
(10.3.13). The process is repeated, cycling through each of the constraints in turn,
until all the constraints satisfy

|r ′
i j

2 − b2
i j | < εr b2

i j (10.3.17)

where εr is the specified tolerance†.
As shown here, the method is tied to a specific integration method, but a very

similar result can be used for restoring the constraints in general. Simply write

r ′
i = ri − γ ri j

r ′
j = r j + γ ri j

(10.3.18)

where γ is now just a small number, and then solve the equations

r ′
i j

2 = b2
i j (10.3.19)

iteratively as before; here we assume that all atoms have the same mass, otherwise
the inverse mass terms must be included to avoid moving the center of mass. If
terms quadratic in γ are neglected, the solution is reminiscent of (10.3.16),

γ = r2
i j − b2

i j

4 r2
i j

(10.3.20)

and b2
i j can replace r2

i j in the denominator.
The velocities can be corrected in a similar manner, thereby ensuring that the

atoms have zero relative velocity along the direction of their mutual constraint;
corrections of this kind can also be incorporated in the original ‘shake’ method
[and83]. Each such restriction is equivalent to

σ̇k = 2 ṙi j · ri j = 0 (10.3.21)

Following the same approach as before, the velocities are adjusted by iterating the
equations

ṙ ′
i = ṙi − γ ri j

ṙ ′
j = ṙ j + γ ri j

(10.3.22)

where the value of γ is now chosen to ensure that ṙ ′
i j · ri j = 0,

γ = ṙi j · ri j

2 r2
i j

(10.3.23)

† The value of λk is just the sum of all the γ corrections for that constraint, but it is not needed in the calculation.

10.3 Solving the constraint problem 277

Since ri j already satisfies the constraint, b2
i j can be used in the denominator. The

process is repeated until all corrections fall below a specified tolerance.
The function for restoring the coordinates and velocities to their constrained

values in this more general case is

void RestoreConstraints ()

{

VecR dr, dv;

real cDev, cDevR, cDevV, g, ga;

int changed, m, m1, m2, maxCycle, n; 5

maxCycle = 200;

cDevR = cDevV = 0.;

for (n = 0; n < nChain; n ++) {

nCycleR = 0; 10

changed = 1;

while (nCycleR < maxCycle && changed) {

++ nCycleR;

changed = 0;

cDev = 0.; 15

for (m = 0; m < nCons; m ++) {

m1 = n * chainLen + cons[m].site1;

m2 = n * chainLen + cons[m].site2;

VSub (dr, mol[m1].r, mol[m2].r);

VWrapAll (dr); 20

g = (VLenSq (dr) - cons[m].distSq) / (4. * cons[m].distSq);

ga = fabs (g);

cDev = Max (cDev, ga);

if (ga > consPrec) {

changed = 1; 25

VVSAdd (mol[m1].r, - g, dr);

VVSAdd (mol[m2].r, g, dr);

}

}

} 30

cDevR = Max (cDevR, cDev);

nCycleV = 0;

changed = 1;

while (nCycleV < maxCycle && changed) {

++ nCycleV; 35

changed = 0;

cDev = 0.;

for (m = 0; m < nCons; m ++) {

m1 = n * chainLen + cons[m].site1;

m2 = n * chainLen + cons[m].site2; 40

VSub (dr, mol[m1].r, mol[m2].r);

VWrapAll (dr);

VSub (dv, mol[m1].rv, mol[m2].rv);

g = VDot (dv, dr) / (2. * cons[m].distSq);

ga = fabs (g); 45

cDev = Max (cDev, ga);

278 10 Geometrically constrained molecules

if (ga > consPrec) {

changed = 1;

VVSAdd (mol[m1].rv, - g, dr);

VVSAdd (mol[m2].rv, g, dr); 50

}

}

}

cDevV = Max (cDevV, cDev);

} 55

}

Here, consPrec is the tolerance used in establishing convergence. The limit
maxCycle is introduced as a safety measure; the number of iterations should gener-
ally not be much greater than ten or so (for small molecules), otherwise one might
be inclined to suspect the reliability of the whole approach.

10.4 Internal forces

Bond-torsion force

The torsional force associated with twisting around a bond is another example of an
effective interaction. This particular motion provides the means for local changes
in spatial arrangement of the polymer chain; simultaneous twisting around two
bonds, for example, can be enough to provide a crankshaft form of motion. The
force associated with the twist, or torsional degree of freedom, is defined in terms
of the relative coordinates of four consecutive atoms, here, for convenience, labeled
1. . . 4; this force depends on the angle of rotation around the bond between atoms
2 and 3 – the dihedral angle. The dihedral angle is defined as the angle between the
planes formed by atoms 1,2,3 and 2,3,4 measured in the plane normal to the 2–3
bond; it is zero when all four atoms are coplanar and atoms 1 and 4 are on opposite
sides of the bond. Only these four atoms are directly affected by the torsion due to
this bond, and the purpose of the following analysis is to determine the force on
each.

Labeling the atoms, bonds and angles of a linear polymer in a systematic manner
is trivial for linear chains; for molecules with other topologies the problem is more
complex, requiring an algorithm (not addressed here) that systematically traverses
the graph describing the connectivity of the molecule. Here bond i joins atoms i −1
and i , and is denoted by the vector

bi = ri − ri−1 (10.4.1)

As shown in Figure 10.1, the angle between bonds i − 1 and i is given by

cos αi = bi−1 · bi

|bi−1||bi | (10.4.2)

10.4 Internal forces 279

Fig. 10.1. The sites, bonds, bond angles and dihedral angles in a portion of an alkane
chain.

so that αi = 0 if the bonds are parallel; by convention, the ‘bond angle’ refers to
π − αi . The dihedral angle associated with bond i is obtained from

cos θi = − (bi−1 × bi) · (bi × bi+1)

|bi−1 × bi ||bi × bi+1| (10.4.3)

There are two parts to the torsional force calculation; the functional dependence
on the dihedral angle θi , and the vector algebra used to derive expressions for the
forces on each of the four affected atoms. We begin with the second part [pea79,
dun92]. If we define

ci j = bi · b j (10.4.4)

then we can express the bond and dihedral angles as

cos αi = ci−1,i/(ci−1,i−1cii)
1/2 (10.4.5)

cos θi = pi/q1/2
i (10.4.6)

where, for conciseness, we have introduced the quantities

pi = ci−1,i+1cii − ci−1,i ci,i+1 (10.4.7)

qi = (ci−1,i−1cii − c2
i−1,i

)(
cii ci+1,i+1 − c2

i,i+1

)
(10.4.8)

The torque caused by a rotation about bond i produces forces on the four atoms
j = i − 2, . . . i + 1 equal to

−∇r j u(θi) = − du(θ)

d(cos θ)

∣∣∣∣
θ=θi

f (i)
j (10.4.9)

where u(θ) is the torsion potential and

f (i)
j = ∇r j cos θi (10.4.10)

280 10 Geometrically constrained molecules

It is clear that the sums of the forces and torques acting on the four atoms are zero,
therefore

i+1∑
j=i−2

f (i)
j = 0 (10.4.11)

i+1∑
j=i−2

r j × f (i)
j = 0 (10.4.12)

so that

(bi−1 + bi) × f (i)
i−2 + bi × f (i)

i−1 − bi+1 × f (i)
i+1 = 0 (10.4.13)

Since (10.4.11) and (10.4.12) provide two relations between the four f (i)
j we can

write

f (i)
i−1 = β1 f (i)

i−2 + β2 f (i)
i+1 (10.4.14)

so that (10.4.13) becomes

(bi−1 + bi + β1bi) × f (i)
i−2 + (β2bi − bi+1) × f (i)

i+1 = 0 (10.4.15)

and because both f (i)
i−2 and f (i)

i+1 are normal to bi it follows that

β1 = −1 − ci−1,i/cii

β2 = ci,i+1/cii
(10.4.16)

Hence,

f (i)
i−1 = −(1 + ci−1,i/cii) f (i)

i−2 + (ci,i+1/cii) f (i)
i+1 (10.4.17)

and, since the four f (i)
j sum to zero,

f (i)
i = (ci−1,i/cii) f (i)

i−2 − (1 + ci,i+1/cii) f (i)
i+1 (10.4.18)

We next evaluate f (i)
i−2 and f (i)

i+1 by expanding (10.4.10),

f (i)
j = q−3/2

i

(
qi∇r j pi − pi∇r j qi/2

)
(10.4.19)

In order to complete the evaluation we need the derivatives of all the scalar products
bα · bβ with respect to r j ; the full list (apart from results due to the symmetry

10.4 Internal forces 281

cαβ = cβα) is

∇r j cαβ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2b j α = β = j

−2b j+1 α = β = j + 1

b j+1 − b j α = j, β = j + 1

bβ α = j, β �= j, j + 1

−bβ α = j + 1, β �= j, j + 1

0 otherwise

(10.4.20)

A certain amount of algebra using the above results leads to

f (i)
i−2 = cii

q1/2
i (ci−1,i−1cii − c2

i−1,i)

[
t1bi−1 + t2bi + t3bi+1

]
(10.4.21)

f (i)
i+1 = cii

q1/2
i (cii ci+1,i+1 − c2

i,i+1)

[
t4bi−1 + t5bi + t6bi+1

]
(10.4.22)

where

t1 = ci−1,i+1cii − ci−1,i ci,i+1

t2 = ci−1,i−1ci,i+1 − ci−1,i ci−1,i+1

t3 = c2
i−1,i − ci−1,i−1cii

t4 = cii ci+1,i+1 − c2
i,i+1

t5 = ci−1,i+1ci,i+1 − ci−1,i ci+1,i+1

t6 = −t1

(10.4.23)

Both force vectors are normal to bi , although this may be less than obvious
from an expression such as (10.4.21). In certain cases considerable simplification
is possible; if, for example, all |bi | = b and αi = α, then

cos θi = bi−1 · bi+1/b2 − cos2 α

1 − cos2 α
(10.4.24)

The force expressions are simplified, but the reduction in computational effort is
probably not large enough to justify separate functions for individual cases.

The torsional potential function is typically expressed in polynomial form
[ryc78],

u(θ) =
∑
j≥0

w j cos j θ (10.4.25)

so that the derivative used for the forces in (10.4.9) is

− du(θ)

d(cos θ)
= −

∑
j≥1

jw j cos j−1 θ (10.4.26)

282 10 Geometrically constrained molecules

0 90 180 270 360
0

25

50

75

100

angle

po
te

nt
ia

l

Fig. 10.2. Bond torsion (solid curve) and bond angle (dashed curve) potentialfunctions.

For the alkane model, the potential (whose coefficients, in energy units appropri-
ate to the problem, are incorporated into the function listed below) is shown in
Figure 10.2. The deepest minimum is at the ‘trans’ angle θ = 0, two secondary
minima at the ‘gauche’ angles (±2π/3), barriers at θ = ±π/3 and a maximum at
π . Other similar functions are also in use for this model [cla90].

The torsional contribution to the interactions is computed by the following
function.

void ComputeChainTorsionForces ()

{

VecR dr1, dr2, dr3, w1, w2;

real c, c11, c12, c13, c22, c23, c33, ca, cb1, cb2, cd,

cr1, cr2, f, t1, t2, t3, t4, t5, t6, 5

g[6] = {1.000, 1.310, -1.414, -0.330, 2.828, -3.394},

tCon = 15.50;

int i, n, nn;

for (n = 0; n < nChain; n ++) { 10

for (i = 0; i < chainLen - 3; i ++) {

nn = n * chainLen + i;

VSub (dr1, mol[nn + 1].r, mol[nn].r);

VWrapAll (dr1);

VSub (dr2, mol[nn + 2].r, mol[nn + 1].r); 15

VWrapAll (dr2);

VSub (dr3, mol[nn + 3].r, mol[nn + 2].r);

VWrapAll (dr3);

10.4 Internal forces 283

c11 = VLenSq (dr1);

c12 = VDot (dr1, dr2); 20

c13 = VDot (dr1, dr3);

c22 = VLenSq (dr2);

c23 = VDot (dr2, dr3);

c33 = VLenSq (dr3);

ca = c13 * c22 - c12 * c23; 25

cb1 = c11 * c22 - c12 * c12;

cb2 = c22 * c33 - c23 * c23;

cd = sqrt (cb1 * cb2);

c = ca / cd;

f = - tCon * (g[1] + (2. * g[2] + (3. * g[3] + 30

(4. * g[4] + 5. * g[5] * c) * c) * c) * c);

t1 = ca;

t2 = c11 * c23 - c12 * c13;

t3 = - cb1;

t4 = cb2; 35

t5 = c13 * c23 - c12 * c33;

t6 = - ca;

cr1 = c12 / c22;

cr2 = c23 / c22;

VSSAdd (w1, t1, dr1, t2, dr2); 40

VVSAdd (w1, t3, dr3);

VScale (w1, f * c22 / (cd * cb1));

VSSAdd (w2, t4, dr1, t5, dr2);

VVSAdd (w2, t6, dr3);

VScale (w2, f * c22 / (cd * cb2)); 45

VVAdd (mol[nn].ra, w1);

VVSAdd (mol[nn + 1].ra, - (1. + cr1), w1);

VVSAdd (mol[nn + 1].ra, cr2, w2);

VVSAdd (mol[nn + 2].ra, cr1, w1);

VVSAdd (mol[nn + 2].ra, - (1. + cr2), w2); 50

VVAdd (mol[nn + 3].ra, w2);

uSum += tCon * (g[0] + (g[1] + (g[2] + (g[3] +

(g[4] + g[5] * c) * c) * c) * c) * c);

}

} 55

}

Bond angle force

While bond lengths are generally held fixed by constraints, there is no clear prefer-
ence for bond angles, and both constraints and potentials are in use [cla90, ryc90].
Here we treat the case where interactions ensure that bond angles have only lim-
ited variation (the angle and torsion forces are assumed fully independent). The
notation is the same as before.

284 10 Geometrically constrained molecules

A change in the angle αi produces forces on the three atoms j = i − 2, i − 1, i
given by

−∇r j u(αi) = − du(α)

d(cos α)

∣∣∣∣
α=αi

f (i)
j (10.4.27)

where u(α) is the angle potential and

f (i)
j = ∇r j cos αi (10.4.28)

The sum of the three forces is zero. More of the above algebra leads to

f (i)
i−2 = (ci−1,i−1cii)

−1/2
[
(ci−1,i/ci−1,i−1)bi−1 − bi

]
(10.4.29)

f (i)
i = (ci−1,i−1cii)

−1/2
[
bi−1 − (ci−1,i/cii)bi

]
(10.4.30)

The potential associated with bond angle variation for the alkane model is

u(α) = (w/2)(cos α − cos α0)
2 (10.4.31)

where w is a constant [cla90] and cos α0 = 1/3; a plot of the potential function is
included in Figure 10.2.

The function that carries out the force and energy computations for this interac-
tion follows.

void ComputeChainAngleForces ()

{

VecR dr1, dr2, w1, w2;

real c, c11, c12, c22, cCon, cd, f, aCon = 868.6;

int i, n, nn; 5

cCon = cos (M_PI - bondAng);

for (n = 0; n < nChain; n ++) {

for (i = 0; i < chainLen - 2; i ++) {

nn = n * chainLen + i; 10

VSub (dr1, mol[nn + 1].r, mol[nn].r);

VWrapAll (dr1);

VSub (dr2, mol[nn + 2].r, mol[nn + 1].r);

VWrapAll (dr2);

c11 = VLenSq (dr1); 15

c12 = VDot (dr1, dr2);

c22 = VLenSq (dr2);

cd = sqrt (c11 * c22);

c = c12 / cd;

f = - aCon * (c - cCon); 20

VSSAdd (w1, c12 / c11, dr1, -1., dr2);

VScale (w1, f / cd);

VSSAdd (w2, 1., dr1, - c12 / c22, dr2);

VScale (w2, f / cd);

VVAdd (mol[nn].ra, w1); 25

VVSub (mol[nn + 1].ra, w1);

10.4 Internal forces 285

VVSub (mol[nn + 1].ra, w2);

VVAdd (mol[nn + 2].ra, w2);

uSum += 0.5 * aCon * Sqr (c - cCon);

} 30

}

}

Other interactions

So far we have discussed just two of the interactions in the model, namely, the bond
torsion and bond angle forces. Pairs of atoms in each molecule that are neither di-
rectly linked by a constraint, nor jointly involved in these three- and four-body
forces, interact with the usual LJ potential (the butane molecule studied later on
is sufficiently small that there are no pairs in this category). Atoms in different
molecules interact with the same force, and solvent atoms can also be included
with similar or distinct interaction parameters, depending on what is being mod-
eled; here, for faster computation, the LJ interactions are replaced by soft spheres
[tox88].

If the neighbor-list method is used for computing the interactions between pairs
of atoms not involved in constraints or bond forces, the only change required in
BuildNebrList is the elimination of such pairs. This is done by modifying the
condition used to select atom pairs for the list,

if ((m1 != m2 || j2 < j1) && (mol[j1].inChain == -1 ||

mol[j1].inChain != mol[j2].inChain || abs (j1 - j2) > 3))

The additional test checks whether both atoms belong to the same molecule (the
element inChain is used in the same way as for flexible chains, see §9.3) and
if this is true then how far apart they are. The interaction functions called from
SingleStep are (the first of them only if relevant)

ComputeChainAngleForces ();

ComputeChainTorsionForces ();

ComputeConstraints ();

Adjustment of minor constraint deviations is carried out at suitable intervals by

nCycleR = 0;

nCycleV = 0;

if (stepCount % stepRestore == 0) {

RestoreConstraints ();

ApplyBoundaryCond (); 5

}

286 10 Geometrically constrained molecules

To obtain reports on how well the constraints are preserved, add the following to
SingleStep prior to any call to RestoreConstraints,

if (stepCount % stepAvg == 0) AnlzConstraintDevs ();

and to PrintSummary add

fprintf (fp, "constraint devs: %.3e %.3e cycles: %d %d\n",

consDevL, consDevA, nCycleR, nCycleV);

The function RestoreConstraints should also be called at the beginning of the
run to correct the randomly assigned initial velocities.

10.5 Implementation details

Initial state and parameters

The initial state uses the same BCC lattice arrangement and planar zigzag (or trans)
conformation used previously for flexible chains (§9.3) but with distances and an-
gles (in InitCoords) modified,

by = bondLen * cos (bondAng / 2.);

bz = bondLen * sin (bondAng / 2.);

New input data items are

NameR (bondAng),

NameR (bondLen),

NameI (chainLen),

NameR (consPrec),

NameI (initUchain), 5

NameI (stepRestore),

and initialization (SetupJob) requires

AssignToChain ();

BuildConstraintMatrix ();

No solvent is used here, so the values of initUchain replace initUcell when
determining the region size. In the case of a simulation involving both multiple
chains and solvent there will be two independent densities – for chains and for
solvent atoms – that must be specified.

The effect of the constraints must be taken into account when choosing initial
velocities that correspond to a given temperature. The total number of degrees

10.5 Implementation details 287

of freedom per chain is reduced from 3ns to 2ns + 1 in the case of bond-length
constraints, and to ns + 3 if bond angles are also constrained. Allowance for this,
and the loss of three more degrees of freedom because of momentum conserva-
tion, are incorporated in the quantity velMag evaluated in SetParams (the value
of nCons shown here is for the case of length and angle constraints),

nCons = 2 * chainLen - 3;

velMag = sqrt ((NDIM * (1. - 1. / nMol) - (real) nCons / chainLen) *

temperature);

Temperature adjustment early in the run uses the function InitAdjustTemp.
The reduced length and energy units [ryc78] are σ = 3.92 Å and ε/kB = 72 K.

All atoms (or monomers) are assumed to have mass 2.411 × 10−23 g, and this is
defined as the unit of mass in MD units. The unit of time is then 1.93 × 10−12 s.
The bond length of 1.53 Å used in the model corresponds to 0.390; the bond angle
is 109.47◦. At the density of liquid butane (0.675 g/cm3) there are 0.422 molecules
per unit volume, again in MD units.

Structural properties

Properties of the chain fluid as a whole can be studied using the atomic RDF, as in
§4.3. An extra test is needed in EvalRdf to eliminate the very sharp peaks at the
fixed distance between nearest neighbors, and at either the fixed or narrowly spread
next-nearest neighbor distance,

if (mol[j1].inChain == mol[j2].inChain &&

mol[j1].inChain != -1 && abs (j1 - j2) < 3) continue;

The first example♠ of a measurement specific to this chain model constructs a
normalized histogram of the dihedral angle distribution averaged over all chains
and over all angles in each chain. If there is some reason to believe that the dis-
tribution depends on where the bond is located in the chain (not for the example
studied here), then the results for each bond would have to be maintained sepa-
rately. Usage of this function follows the familiar pattern established in earlier case
studies; Sgn is defined in §18.2.

void AccumDihedAngDistn (int icode)

{

VecR dr1, dr2, dr3, w;

real c11, c12, c13, c22, cosAngSq, dihedAng, t;

int i, j, n, nn; 5

♠ pr_10_2

288 10 Geometrically constrained molecules

if (icode == 0) {

for (j = 0; j < sizeHistDihedAng; j ++) histDihedAng[j] = 0.;

} else if (icode == 1) {

for (n = 0; n < nChain; n ++) { 10

for (i = 0; i < chainLen - 3; i ++) {

nn = n * chainLen + i;

VSub (dr1, mol[nn + 1].r, mol[nn].r);

VWrapAll (dr1);

VSub (dr2, mol[nn + 2].r, mol[nn + 1].r); 15

VWrapAll (dr2);

VSub (dr3, mol[nn + 3].r, mol[nn + 2].r);

VWrapAll (dr3);

c11 = VLenSq (dr1);

c12 = VDot (dr1, dr2); 20

c13 = VDot (dr1, dr3);

c22 = VLenSq (dr2);

cosAngSq = Sqr (c12) / (c11 * c22);

t = (c13 / Sqr (bondLen) - cosAngSq) / (1. - cosAngSq);

if (fabs (t) > 1.) t = Sgn (1., t); 25

dihedAng = acos (t);

VCross (w, dr2, dr3);

if (VDot (dr1, w) < 0.) dihedAng = 2. * M_PI - dihedAng;

j = dihedAng * sizeHistDihedAng / (2. * M_PI);

++ histDihedAng[j]; 30

}

}

} else if (icode == 2) {

t = 0.;

for (j = 0; j < sizeHistDihedAng; j ++) t += histDihedAng[j]; 35

for (j = 0; j < sizeHistDihedAng; j ++) histDihedAng[j] /= t;

}

}

The function is called from SingleStep by

if (stepCount >= stepEquil && (stepCount - stepEquil) %

stepChainProps == 0) AccumDihedAngDistn (1);

New variables, input data items and array allocation are

real *histDihedAng;

int sizeHistDihedAng, stepChainProps;

NameI (sizeHistDihedAng),

NameI (stepChainProps), 5

AllocMem (histDihedAng, sizeHistDihedAng, real);

10.5 Implementation details 289

The results are output as part of PrintSummary (§2.3),

real hVal;

int n;

...

fprintf (fp, "dihed ang\n");

for (n = 0; n < sizeHistDihedAng; n ++) { 5

hVal = (n + 0.5) * 360. / sizeHistDihedAng;

fprintf (fp, "%5.1f %.4f\n", hVal, histDihedAng[n]);

}

which is called (in SingleStep) as part of the sequence

AccumDihedAngDistn (2);

PrintSummary (stdout);

AccumDihedAngDistn (0);

to normalize the accumulated results prior to their output and zero them afterwards.
The next example♠ considers the bond angle distribution, and is obviously only

relevant when bond angles are controlled by a potential instead of constraints. The
computation is very similar to the preceding one (with the appropriate additional
variables and other details).

void AccumBondAngDistn (int icode)

{

VecR dr1, dr2;

real bondAng, c11, c12, c22, t;

int i, n, j, nn; 5

if (icode == 0) {

for (j = 0; j < sizeHistBondAng; j ++) histBondAng[j] = 0.;

} else if (icode == 1) {

for (n = 0; n < nChain; n ++) { 10

for (i = 0; i < chainLen - 2; i ++) {

nn = n * chainLen + i;

VSub (dr1, mol[nn + 1].r, mol[nn].r);

VWrapAll (dr1);

VSub (dr2, mol[nn + 2].r, mol[nn + 1].r); 15

VWrapAll (dr2);

c11 = VLenSq (dr1);

c22 = VLenSq (dr2);

c12 = VDot (dr1, dr2);

bondAng = M_PI - acos (c12 / sqrt (c11 * c22)); 20

j = bondAng * sizeHistBondAng / M_PI;

++ histBondAng[j];

}

}

♠ pr_10_3

290 10 Geometrically constrained molecules

} else if (icode == 2) { 25

t = 0.;

for (j = 0; j < sizeHistBondAng; j ++) t += histBondAng[j];

for (j = 0; j < sizeHistBondAng; j ++) histBondAng[j] /= t;

}

} 30

The final example♠ considers the time dependence of the dihedral angle autocor-
relation function. The quantity measured is

C(t) = 〈cos
(
θi (t) − θi (0)

)〉
(10.5.1)

and again no distinction is made between different bonds, although it is quite likely
that for longer chains the time dependence will vary with the position in the chain.
We also omit any mention of overlapped data buffers (§5.3) that could be used to
improve the quality of the results.

void EvalDihedAngCorr ()

{

VecR dr1, dr2, dr3, w;

real c11, c12, c13, c22, cosAngSq, dihedAng, t;

int i, j, n, nn; 5

dihedAngCorr[countDihedAngCorr] = 0.;

j = 0;

for (n = 0; n < nChain; n ++) {

for (i = 0; i < chainLen - 3; i ++) { 10

nn = ...

... (same as AccumDihedAngDistn) ...

if (VDot (dr1, w) < 0.) ...

if (countDihedAngCorr == 0) dihedAngOrg[j] = dihedAng;

dihedAngCorr[countDihedAngCorr] += 15

cos (dihedAng - dihedAngOrg[j]);

++ j;

}

}

++ countDihedAngCorr; 20

if (countDihedAngCorr == limitDihedAngCorr) {

for (n = 0; n < limitDihedAngCorr; n ++)

dihedAngCorr[n] /= nDihedAng;

PrintDihedAngCorr (stdout);

countDihedAngCorr = 0; 25

}

}

♠ pr_10_4

10.6 Measurements 291

New variables and input data are

real *dihedAngCorr, *dihedAngOrg;

int countDihedAngCorr, limitDihedAngCorr, nDihedAng, stepDihedAngCorr;

NameI (limitDihedAngCorr),

NameI (stepDihedAngCorr), 5

and there is a quantity computed in SetParams,

nDihedAng = nChain * (chainLen - 3);

The array allocations, initialization and the function call for the processing (each
in the appropriate place) are

AllocMem (dihedAngCorr, limitDihedAngCorr, real);

AllocMem (dihedAngOrg, nDihedAng, real);

countDihedAngCorr = 0;

5

if (stepCount >= stepEquil && (stepCount - stepEquil) %

stepDihedAngCorr == 0) EvalDihedAngCorr ();

10.6 Measurements

Constraint preservation

The first part of the case study is an examination of the behavior of the constraint
algorithm itself. The runs include the following input data:

bondAng 1.91063

bondLen 0.39

chainLen 4

consPrec 1.0e-05

deltaT 0.002

density 0.422

initUchain 3 3 3

stepAvg 1000

stepEquil 1000

stepInitlzTemp 100

stepRestore 200

temperature 4.17

Since a BCC lattice is used for the initial state the total number of chains
is 54.

292 10 Geometrically constrained molecules

The above data are for a model butane liquid in which both bond-length and
bond-angle constraints are applied. Constant-energy MD is used together with
PC integration. No energy adjustments are made after the correct temperature is
reached, but the energy drift over a run of 70 000 timesteps is just 4%.

If we examine the degree to which the constraints are maintained over the first
few thousand timesteps we find that if constraints are restored using the relax-
ation method every 200 timesteps (stepRestore), then the deviations measured
by AnlzConstraintDevs are typically 2 × 10−4 for consDevL and 10−3 for
consDevA. If restoration occurs every 100 timesteps then both deviations are re-
duced by a factor of three. Typical numbers of restoration cycles, nCycleR and
nCycleV, needed each time are in the approximate range 3–15.

The alternative is to replace the bond angle constraint by a potential. Because of
the very stiff nature of this interaction the timestep must be reduced by a factor of
four to 0.0005 in order to achieve the same degree of energy conservation. If con-
straints are restored every 1600 timesteps (equivalent to 400 of the larger timesteps
in the preceding test), then the deviation measured by consDevL is 6 × 10−5; more
frequent restoration at intervals of 800 or 400 timesteps leads to deviations of size
2 × 10−5 and 6 × 10−6 (close to the tolerance level) respectively. Typically, 2–4
restoration cycles are required in this case.

Properties

The RDF obtained from the butane simulation is shown in Figure 10.3 for the case
of both bond-length and bond-angle constraints. Additional input data needed for
this computation are

limitRdf 100

rangeRdf 2.2

sizeHistRdf 110

stepLimit 21000

stepRdf 50

Only the final set of averaged RDF values is considered. The computation excludes
the contributions from nearest and next-nearest neighbor pairs within each chain
whose separations are fixed by the constraints.

We now turn to the distribution of dihedral angles (θ) for both kinds of con-
straint – bond length only and combined length and angle – and for the former the
bond angle (α) distribution as well. Total run lengths are (a relatively short) 70 000
timesteps for length and angle constraints and four times this value for length con-
straints. In the former case we omit the first two sets of output and average over the
remaining 15 sets; in the latter the first eight sets are skipped, leaving 64 sets for

10.6 Measurements 293

0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

distance

ra
di

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Fig. 10.3. Radial distribution function for liquid butane; intramolecular pairs with fixed
separations are excluded.

computing the average distributions. The extra input data are

sizeHistBondAng 36

sizeHistDihedAng 36

The results of this analysis appear in Figure 10.4. Combined length and angle
constraints produce a slightly sharper distribution at zero dihedral angle, although
it is not clear from the data shown whether the deviations are statistically signifi-
cant (the omitted error bars might also account for this difference). The bond an-
gle distribution is relatively narrow, as might be expected from the stiff potential
involved.

In Figure 10.5 we show the behavior of the dihedral angle autocorrelation func-
tion for the case of length and angle constraints. Additional input data needed here
are

limitDihedAngCorr 100

stepDihedAngCorr 100

Only a single series of measurements covering just 10 000 timesteps are included
here; the large fluctuations in the results are due to the very limited sample size.
The large-time limit is determined by the average dihedral angle, but the results
have not been adjusted to allow for this.

294 10 Geometrically constrained molecules

0 90 180 270 360
0.00

0.05

0.10

0.15

0.20

0.25

angle

pr
ob

ab
ili

ty

Fig. 10.4. Butane dihedral angle distributions subject to length and angle constraints (solid
curve), and to length constraints alone (short dashes); for the latter, the narrow bond angle
distribution is also shown (long dashes).

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

time

di
he

dr
al

 a
ng

le
 a

ut
oc

or
re

la
tio

n

Fig. 10.5. Dihedral angle autocorrelation function.

10.7 Further study

10.1 Compare the computational requirements of the matrix method for con-
straints with the ‘shake’ method using just relaxation; how does the result
depend on chain length?

10.7 Further study 295

10.2 Include a thermostat that acts on the centers of mass of the molecules [edb86];
how can one apply the thermostat to the intramolecular motion as well?

10.3 Pressure can be studied after establishing that the constraints do not con-
tribute to the virial [cic86b]; measure the pressure for butane (or some other
molecule involving constraints) and compare with previous work.

10.4 Consider how to describe branched and ring polymers systematically in or-
der to construct their constraint matrices [mor91].

10.5 In addition to constraints that preserve distances and angles there is a need
for constraints that will, for example, maintain the planarity of a molecule;
how can this problem be handled without introducing more than a minimal
number of constraints [cic82]?

10.6 Study the rate at which crossings of the dihedral potential barrier occur
[bro90b].

10.7 There is almost unlimited scope for studying more complex molecules, with
proteins and other biopolymers providing the most exciting challenges; ex-
plore the capabilities and limitations of the MD approach in this field.

11

Internal coordinates

11.1 Introduction

In earlier chapters, polymer chains were represented as series of atoms coupled
by customized springs (Chapter 9), or atoms coupled by rigid links whose length
and angle constraints are handled by computations that supplement the timestep
integration (Chapter 10). It is also possible to formulate the problem so that the
only internal coordinates of the molecule are those actually corresponding to the
physical degrees of freedom. Though the formalism involved, which is based on
techniques used in robot dynamics, is more complex than the previous methods,
the elegance of the approach and the fact that it provides an effective solution to
the problem cannot be denied.

11.2 Chain coordinates

Consider a linear polymer chain of monomers. While in principle, each monomer
(assumed to be a rigid object) contributes six mechanical degrees of freedom –
abbreviated DOFs – to the chain, we use the argument of §10.2 to justify freezing
the DOFs associated with variations in bond length and bond angle. Thus, apart
from the first monomer which has six DOFs, each additional monomer contributes
just a single DOF to the chain. Each such DOF corresponds to torsional motion, or
twist, around the appropriate bond axis and is represented by a dihedral angle†.

If each torsional DOF is regarded as a mechanical joint with a single rotational
DOF that is associated with the site at one end of the link, then the system corre-
sponds to a standard problem in the field of robotic manipulators for which tech-
niques are available that express the dynamical equations of motion in a particu-
larly effective manner [jai91, rod92]. Applications of the method to MD simulation

† The terms site and monomer (which, in the case considered here, consists of a single atom) are synonymous,
as are link and bond.

296

11.2 Chain coordinates 297

Fig. 11.1. The elements in a section of the linked chain.

appear in [jai93, ber98]. The description of the approach presented in this chapter
deals with a linear chain having a single torsional DOF per joint [rap02a], but the
treatment is readily generalized (for example, variable bond angles can be intro-
duced, either by allowing two DOFs per joint, or by decomposing each joint into a
pair of coincident joints with just one DOF each). The formalism can also be ex-
tended to deal with treelike structures; closed loops can be handled, but with extra
effort needed to maintain ring closure.

The chain configuration is defined by the site positions rk ; the bond vectors
between adjacent sites are denoted by bk , where, as shown† in Figure 11.1,

rk+1 = rk + bk (11.2.1)

The internal configuration of the chain can be specified by a set of bond rotation
matrices Rk . The transformation between coordinate frames attached to bonds k−1
and k (k ≥ 1) involves two rotations: a rotation through the bond angle αk – where
cos αk = b̂k−1 · b̂k – about the axis x̂k−1, followed by a rotation through the dihedral
angle θk about the joint axis ẑk−1. The (transposed) rotation matrix corresponding
to the two operations is

RT
k−1,k =

⎛
⎜⎝

cos θk − sin θk 0

sin θk cos θk 0

0 0 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0

0 cos αk − sin αk

0 sin αk cos αk

⎞
⎟⎠

=
⎛
⎜⎝

cos θk − sin θk cos αk sin θk sin αk

sin θk cos θk cos αk − cos θk sin αk

0 sin αk cos αk

⎞
⎟⎠ (11.2.2)

The complete rotation matrix for the kth bond is

RT
k = RT

0 RT
0,1 · · · RT

k−1,k (11.2.3)

† Note that the indices of bk and αk used in §10.4 are shifted by unity.

298 11 Internal coordinates

where RT
0 is the rotation matrix of the initial bond; in terms of this matrix,

(11.2.1) can be written

rk+1 = rk + |bk |RT
k ẑ (11.2.4)

It is assumed that all bond lengths |bk | and angles αk are constant; thus the
only internal DOFs are those associated with the dihedral angles θk . Define ĥk

to be the rotation axis of the joint between bonds k − 1 and k that is fixed in the
frame of bond k − 1; here ĥk ≡ ẑk−1. Insofar as indexing is concerned, there are
nr internal rotational joints labeled 1, . . . nr , while the nb = nr + 1 bonds are
labeled 0, . . . nr and the nr + 2 sites 0, . . . nr + 1. In order to complete the de-
scription of the chain state, an additional joint with three translational and three
rotational DOFs is associated with the k = 0 site. This joint specifies the over-
all position and orientation of the chain; it is included in the general formalism
described below, but, as will become apparent subsequently, it requires special
treatment. A chain of nr + 2 sites has a total of nr + 6 DOFs, of which nr are
internal.

11.3 Kinematic and dynamic relations

If vk and ωk are the linear and angular velocities of site k, then the velocities and
accelerations of adjacent sites are related by

ωk = ωk−1 + ĥk θ̇k

vk = vk−1 + ωk−1 × bk−1

ω̇k = ω̇k−1 + ĥk θ̈k + ωk−1 × ĥk θ̇k

v̇k = v̇k−1 + ω̇k−1 × bk−1 + ωk−1 × (ωk−1 × bk−1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

k = 1, . . . nr

(11.3.1)

While the mass elements of the chain are normally (and rather arbitrarily) re-
garded as residing at the sites, one can equally well associate these masses with the
bonds; if

rc
k = rk + ck (11.3.2)

is the position of the center of mass of the atoms fixed to bond k, then the acceler-
ation of rc

k is

v̇c
k = v̇k + ω̇k × ck + ωk × (ωk × ck) (11.3.3)

Define fk to be the force and nk the torque acting on bond k across joint k (an
equal but opposite force and torque act on bond k−1 across the joint); the rotational

11.4 Recursive description of dynamics 299

and translational equations of motion for bond k are

Ikω̇k + ωk × (Ikωk) = nk − nk+1 − ck × fk

− (bk − ck) × fk+1 + ne
k

(11.3.4)

mk v̇
c
k = fk − fk+1 + f e

k (11.3.5)

where f e
k and ne

k are the externally applied force and torque on the bond (ne
k in-

cluding, of course, the torque produced by f e
k). The left-hand side of (11.3.4) is just

d(Ikωk)/dt ; mk and Ik are the mass of the bond and its moment of inertia, the lat-
ter evaluated relative to the bond center of mass (to be defined later) and expressed
in the space-fixed frame†. The terms of (11.3.4) and (11.3.5) can be rearranged,

nk = nk+1 + bk × fk+1 + mk ck × v̇c
k + Ikω̇k + ωk × (Ikωk)

− ne
k − ck × f e

k

(11.3.6)

fk = fk+1 + mk v̇
c
k − f e

k (11.3.7)

Finally,

tk = ĥk · nk (11.3.8)

is the component of the torque along the rotation axis ĥk at joint k and corresponds
to the torsional interaction produced by twisting around bond k − 1; the functional
dependence of this quantity on the dihedral angle θk is known.

11.4 Recursive description of dynamics

Spatial vector formulation

The relations (11.3.1) can be expressed in a more concise form by introducing six-
component ‘spatial’ vectors which combine rotational and translational quantities
(such as ω and v). It is also convenient to represent some of the vectors by means
of antisymmetric matrices having the form

ũ =
⎛
⎜⎝

0 −uz uy

uz 0 −ux

−uy ux 0

⎞
⎟⎠ (11.4.1)

so that a vector cross product can be expressed as a matrix product

ũv ≡ u × v (11.4.2)

† In dealing with rigid bodies it is often convenient to work in a body-fixed frame; this turns out not to be the
case here and vector components will be expressed in the space-fixed coordinate frame.

300 11 Internal coordinates

The result of combining the rotational and translational relations (11.3.1) is(
ωk

vk

)
=
(

I 0

−b̃k−1 I

)(
ωk−1

vk−1

)
+
(

ĥk

0

)
θ̇k (11.4.3)

(
ω̇k

v̇k

)
=
(

I 0

−b̃k−1 I

)(
ω̇k−1

v̇k−1

)
+
(

ĥk

0

)
θ̈k +

(
ωk−1 × ĥk θ̇k

ωk−1 × (ωk−1 × bk−1)

)

(11.4.4)

or, equivalently,

Vk = φT
k−1,k Vk−1 + H T

k Ẇk (11.4.5)

Ak = φT
k−1,k Ak−1 + H T

k Ẅk + Xk (11.4.6)

where Vk and Ak are examples of spatial vectors. The 6 × 6 matrix

φT
k−1,k =

(
I 0

−b̃k−1 I

)
(11.4.7)

and its untransposed form – appearing in (11.4.10) – are used to propagate kine-
matic and dynamic information between joints. The spatial vector

H T
k =

(
ĥk

0

)
(11.4.8)

is the six-component joint axis vector (in the more general case of a joint with n
DOFs, H T

k becomes a 6 × n matrix); the spatial vector

Xk =
(

ω̃k−1 0

0 ω̃k−1

)(
ĥk θ̇k

vk − vk−1

)
(11.4.9)

contains the remaining terms of the acceleration equation; Wk ≡ θk are the dihedral
angles; I and 0 denote appropriately sized unit and zero matrices†.

In a similar way, we can combine (11.3.6) and (11.3.7),(
nk

fk

)
=
(

I b̃k

0 I

)(
nk+1

fk+1

)
+
⎛
⎝mk ck × v̇c

k + Ikω̇k + ωk × (Ikωk)

mk v̇
c
k

⎞
⎠

−
(

ne
k + ck × f e

k

f e
k

)
(11.4.10)

† Italic capitals are used to represent most of the six-component vectors and the associated matrices; the type of
quantity will be apparent from the context.

11.4 Recursive description of dynamics 301

and, in terms of spatial vectors, (11.4.10) and (11.3.8) can be expressed as

Fk = φk,k+1 Fk+1 + Mk Ak + Yk (11.4.11)

Tk = Hk Fk (11.4.12)

Here we have used (11.3.3) and defined the symmetric 6 × 6 mass matrix

Mk =
(

Ik − mk c̃k c̃k mk c̃k

−mk c̃k mk I

)
(11.4.13)

The spatial vector Yk in (11.4.11) holds the remaining force contributions; with the
aid of the identity

ck × [ωk × (ωk × ck)] = −ωk × [ck × (ck × ωk)] (11.4.14)

it can be written as

Yk =
(

ω̃k(Ik − mk c̃k c̃k)ωk

mkω̃kω̃k ck

)
−
(

ne
k + ck × f e

k

f e
k

)
(11.4.15)

For later use, we define a spatial vector corresponding to the external force and
torque

Fe
k =

(
ne

k + ck × f e
k

f e
k

)
(11.4.16)

In order to use the recursion relations for Vk , Ak and Fk , the velocity and accel-
eration of the initial site, V0 and A0, must be provided; for the final site, Fnr +1 is
zero since there are no further bonds. Once the external forces have been evaluated
for the current chain state, the recursion relations (11.4.11) and (11.4.6) provide
the means for determining the Ẅk (equivalent to θ̈k) in terms of known quantities,
which, along with A0 (which contains ω̇0 and v̇0), can then be integrated over a
single timestep.

Stacked operators

The expressions (11.4.5), (11.4.6), (11.4.11) and (11.4.12) can be rewritten in a
concise, ‘stacked’ form

V = φT V + H T Ẇ (11.4.17)

A = φT A + H T Ẅ + X (11.4.18)

F = φF + M A + Y (11.4.19)

T = H F (11.4.20)

302 11 Internal coordinates

that combines all values of k for the chain. A quantity such as V , which contains all
the Vk values, is also referred to as a spatial vector, while, for example, the matrix
φ containing all the φk,k+1 is known as a spatial operator. The contents of these
vectors and matrices are addressed in the next paragraph.

The spatial operator approach was originally developed for the case of a fixed
initial bond [rod92] – the base in the example of a robot arm – for which V0 = 0, so
that Ẇ = (θ̇1, . . . θ̇nr)

T is a vector with just nr components, and the other vectors
and matrices are sized accordingly. In order to remove the restriction of a fixed base
[jai95], six extra DOFs are added to the problem. The changes and the resulting
vector and matrix sizes are as follows:

• Redefine Ẇ = (V0, θ̇1, . . . θ̇nr)
T as a vector with nr + 6 components; likewise

for Ẅ .
• Increase the size of the block diagonal matrix H = diag(H1, . . . Hnr) from

6nr × nr to 6(nr + 1) × (nr + 6) by including an extra 6 × 6 block H0 = I , so
that now H = diag(I, H1, . . . Hnr).

• The block diagonal matrix M is of size 6(nr + 1) × 6(nr + 1).
• Matrix φ is of similar size and its only nonzero blocks are those to the imme-

diate right of the diagonal, namely {φ01, . . . φnr −1,nr }.
• Vectors V , A, F , X and Y all have 6(nr + 1) components, for example, V =

(V0, . . . Vnr)
T .

• Vector T is organized in the same way as Ẇ , with nr + 6 components, and
T0 = 0 because the special k = 0 joint exerts no torque.

These enlarged vectors and matrices are used in the subsequent analysis.
The next step is to define

Φ = (I − φ)−1 (11.4.21)

so that

Φ = Φφ + I (11.4.22)

Since it is easily seen that φnr +1 = 0, (11.4.21) is equivalent to

Φ = I + φ + φ2 + · · · + φnr (11.4.23)

From (11.4.23), the elements of the upper triangular block matrix Φ, each a 6 × 6
matrix, are

Φi j =

⎧⎪⎨
⎪⎩

I j = i

φi,i+1 j = i + 1

φi,i+1 · · · φ j−1, j j > i + 1

(11.4.24)

11.4 Recursive description of dynamics 303

Then, in terms of Φ, (11.4.17)–(11.4.20) become

V = ΦT H T Ẇ (11.4.25)

A = ΦT (H T Ẅ + X) (11.4.26)

F = Φ(M X + Y) (11.4.27)

T = MẄ + HΦ(MΦT X + Y) (11.4.28)

where

M = HΦMΦT H T (11.4.29)

While M is a sparse, 6(nr + 1) × 6(nr + 1) block diagonal matrix, M is
only of size (nr + 6) × (nr + 6), but, though smaller, it is densely populated.
The equation of motion (11.4.28) can, in principle, be integrated numerically, and
this is one of the approaches to solving the problem, but the computation re-
quired to evaluate M−1 in order to obtain Ẅ grows as (nr + 6)3 and so does
not provide a practical approach for any but the shortest of chains. The alterna-
tive method, to be described below, requires a computational effort that grows only
linearly with nr , together with what amounts to the inversion of a 6 × 6 matrix;
clearly this will prove to be a much more efficient calculation, even for relatively
small nr .

Mass matrix inversion

The task of obtaining an explicit expression for M−1 begins with the definition of
a new 6 × 6 matrix Pk that is related to Mk in the following way – the motivation
for this particular approach is discussed in [rod92] –

Pk = φk,k+1(I − Gk+1 Hk+1)Pk+1φ
T
k,k+1 + Mk (11.4.30)

where

Gk = Pk H T
k D−1

k (11.4.31)

Dk = Hk Pk H T
k (11.4.32)

For joints with a single DOF, Gk is a six-component vector and Dk a nonzero
scalar. Note that Pk is symmetric. Now introduce another new matrix

ψk,k+1 = φk,k+1(I − Gk+1 Hk+1) (11.4.33)

304 11 Internal coordinates

and substitute it in (11.4.30). The stacked forms of (11.4.30)–(11.4.33) are

P = ψ PφT + M (11.4.34)

G = P H T D−1 (11.4.35)

D = H P H T (11.4.36)

ψ = φ(I − G H) (11.4.37)

Here, P and ψ are 6(nr + 1) × 6(nr + 1) matrices, and G is a (nr + 6) × 6(nr + 1)

block diagonal matrix (so that Gk+1 Hk+1 is a square matrix). The matrix D is of
size (nr +6)× (nr +6); the first 6×6 diagonal block corresponds to D0, while the
remaining nr diagonal elements are the scalars Dk . From (11.4.34) and (11.4.37),

M = P − φPφT + φG H PφT (11.4.38)

and so, by using (11.4.22),

ΦMΦT = P + ΦφP + PφT ΦT + ΦφP H T D−1 H PφT ΦT (11.4.39)

Substituting (11.4.39) in (11.4.29) and then using G D = P H T from (11.4.35), as
well as (11.4.36), leads to

M = H P H T + HΦφP H T + H PφT ΦT H T + HΦφP H T D−1 H PφT ΦT H T

= (I + HΦφG)D(I + HΦφG)T (11.4.40)

Note that the new factorization of M in (11.4.40) has the form of a product of three
(nr + 6) × (nr + 6) square matrices.

Now it is a simple matter to invert M. Use a special case of the Woodbury
formula [pre92] for the inverse of a matrix†

(I + Q1 Q2)
−1 = I − Q1(I + Q2 Q1)

−1 Q2 (11.4.41)

to obtain

(I + HΦφG)−1 = I − HΦ(I + φG HΦ)−1φG (11.4.42)

If, by analogy with (11.4.21) for Φ, we define

Ψ = (I − ψ)−1 (11.4.43)

then, from (11.4.37) and (11.4.22),

Ψ −1 = Φ−1 + φG H (11.4.44)

so that (11.4.42) becomes

(I + HΦφG)−1 = I − HΨ φG (11.4.45)

† This can be proved by matching the terms of a formal power series expansion.

11.4 Recursive description of dynamics 305

Thus the inverse of (11.4.40) is

M−1 = (I − HΨ φG)T D−1(I − HΨ φG) (11.4.46)

and so, from (11.4.28),

Ẅ = (I − HΨ φG)T D−1(I − HΨ φG)[T − HΦ(MΦT X + Y)]
= (I − HΨ φG)T D−1[T − HΨ (φGT + MΦT X + Y)] (11.4.47)

where we have used (11.4.44) to replace H(I − Ψ φG H)Φ by HΨ .
To eliminate Ψ rewrite (11.4.47) as

(I + HΦφG)T Ẅ = D−1[T − HΨ (φGT + MΦT X + Y)] (11.4.48)

and use (11.4.34) and (11.4.22) to obtain

Ψ MΦT = Ψ P(φT ΦT + I) − Ψ ψ PφT ΦT

= Ψ P + Ψ (I − ψ)PφT ΦT

= Ψ P + PφT ΦT (11.4.49)

Then, by defining

E = T − H Z (11.4.50)

where

Z = Ψ (φGT + P X + Y) (11.4.51)

it follows from the transpose of (11.4.35) that

(I + HΦφG)T Ẅ = D−1 E − GT φT ΦT X (11.4.52)

Rearranging (11.4.52) and using A from (11.4.26) leads to

Ẅ = D−1 E − GT φT ΦT (H T Ẅ + X)

= D−1 E − GT φT A (11.4.53)

It is also possible to eliminate Ψ from the definition of Z by substituting T from
(11.4.50) into (11.4.51),

(I − Ψ φG H)Z = Ψ (φG E + P X + Y) (11.4.54)

and then using (11.4.44) to obtain

Z = Φ(φG E + P X + Y) (11.4.55)

306 11 Internal coordinates

The two equations (11.4.53) and (11.4.55) embody the required new recursion
relations. Use (11.4.21) and reintroduce the k indices to obtain

Zk = φk,k+1(Zk+1 + Gk+1 Ek+1) + Pk Xk + Yk (11.4.56)

Ẅk = D−1
k Ek − GT

k φ
T
k−1,k Ak−1 (11.4.57)

Note that (11.4.56) and (11.4.57), which are intended to be used in opposite k
directions, provide the required results without the need for explicit evaluation of
M−1 as implied by (11.4.28).

Recursion relations
The recursion relations for propagating the velocity, force and acceleration values
along the chain are as follows. The velocities (translational and rotational) Vk are
obtained by starting with V0 and iterating (11.4.5),

Vk = φT
k−1,k Vk−1 + H T

k Ẇk , k = 1, . . . nr (11.4.58)

The forces (including torques), as represented by Ek , as well as the matrices Dk

and Gk , are obtained by iterating (11.4.30) and (11.4.56),

Pk = φk,k+1(I − Gk+1 Hk+1)Pk+1φ
T
k,k+1 + Mk

Dk = Hk Pk H T
k

Gk = Pk H T
k D−1

k

Zk = φk,k+1 Z ′
k+1 + Pk Xk + Yk

Ek = Tk − Hk Zk

Z ′
k = Zk + Gk Ek

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

k = nr , . . . 0 (11.4.59)

where the additional quantity Z ′
k has been introduced for computational conve-

nience, and the iteration begins with Pnr +1 = 0 and Z ′
nr +1 = 0.

Finally, the values of Ẅk (≡ θ̈k) are determined by starting with A0, whose
evaluation is discussed below, and iterating (11.4.6) and (11.4.57),

A′
k = φT

k−1,k Ak−1

Ẅk = D−1
k Ek − GT

k A′
k

Ak = A′
k + H T

k Ẅk + Xk

⎫⎪⎬
⎪⎭ k = 1, . . . nr (11.4.60)

where A′
k is also introduced for convenience.

Recall that k = 0 is associated with a ‘joint’ having the full six DOFs, so that
H0 = I , X0 = 0 and Ẅ0 = A0. Now because A−1 = 0, we have A0 = D−1

0 E0

from (11.4.60), and since T0 = 0,

D0 A0 = −Z0 (11.4.61)

11.4 Recursive description of dynamics 307

where both D0 and Z0 have already been determined by (11.4.59). Thus A0 can
be evaluated numerically by solving the set of six linear equations implicit in
(11.4.61).

The overall algorithm for a single timestep entails the following sequence of
steps using the two-stage leapfrog integrator:

• integrate the base velocities and coordinates, and the joint angular velocities
and angles (first leapfrog stage);

• iterate (11.4.58) to compute the velocities;
• compute the site coordinates;
• compute the external forces acting on the sites and the resulting torques, as well

as any other necessary quantities;
• iterate (11.4.59);
• solve the set of linear equations (11.4.61);
• iterate (11.4.60) to compute the accelerations;
• integrate the base velocities and joint angular velocities (second leapfrog

stage).

Interactions

Two kinds of interaction are used in this model. The first is the pair interaction used
to prevent overlap of the atoms (or atom groups) located at the sites of the chain.
Here, a simple soft-sphere repulsion will suffice, and the nearest and next-nearest
(and possibly further) neighbor pairs need not be examined because the fixed bond
angles preclude their close approach. In the case of a simulation involving multi-
ple chains in solution, similar interactions would be employed between atoms in
different chains and also with the atoms of a simple solvent.

The second kind of interaction is the torsion potential associated with each in-
ternal DOF. Here we assume the form of this potential to be

u(θk) = −u′ cos(θk − θ ′) (11.4.62)

where u′ is the interaction strength, and the value of the dihedral angle θ ′ can
be chosen, together with a suitable value of the fixed bond angle, to ensure that
the ground state has the correct amount of twist to produce a helix. The torque
appearing in (11.3.8) is then

tk = −u′ sin(θk − θ ′) (11.4.63)

Note the absence of the intricate vector algebra associated with the torque calcula-
tions required (§10.4) when using methods based on cartesian coordinates.

308 11 Internal coordinates

Inertia tensor

The elements of the inertia tensor appearing in (11.4.13) and (11.4.15) are defined
as

(Ik)i j =

⎧⎪⎨
⎪⎩

∑
κ∈k

mκ(r
2
κ − r2

κi) i = j

−∑
κ∈k

mκrκi rκ j i �= j
(11.4.64)

where the sum (or, if appropriate, the volume integral) is over all the mass elements
κ that are rigidly attached to bond k, and the coordinates are expressed relative to
the center of mass in the space-fixed frame. Then, in (11.4.13) and (11.4.15),

(Ik − mk c̃k c̃k)i j =
{

(Ik)i i + mk(c
2
k − c2

ki) i = j

(Ik)i j − mkcki ck j i �= j
(11.4.65)

where

mk =
∑
κ∈k

mκ (11.4.66)

The (six-component) spatial momentum of the chain is

nr∑
k=0

Mk Vk (11.4.67)

and the kinetic energy is

1
2

nr∑
k=0

[mkv
c
k · vc

k + ωk · (Ikωk)] = 1
2

nr∑
k=0

V T
k Mk Vk (11.4.68)

11.5 Solving the recursion equations

Organizational matters

In the present case study♠ it is assumed that all bond lengths |bk | = b and all
bond angles αk = α, values referred to as bondLen and bondAng, respectively.
A spherical mass element, with a finite moment of inertia about its own center, is
associated with each site. Each bond has a single mass attached to its far (k + 1)
site, except for the first bond which has masses attached at both ends (the k =
0,1 sites); thus the external force associated with bond k acts on site k + 1, and
in the case of the first bond an external force acts on site 0 as well. The mass
and inertia matrix (in the space-fixed frame) of each link are denoted by mass and
inertiaM.

♠ pr_11_1

11.5 Solving the recursion equations 309

For chains whose monomers are single atoms, the definition of each dihedral
angle involves three consecutive bonds. The general formulation described above
did not associate a torsion term with the last bond, but did include such a term for
the first bond. In order to make this first torsion term physically meaningful, it is
necessary to extend the chain with an additional bond and site on the other side
of the site with six DOFs. This effectively introduces an extra site with index –1
(although, in the program that follows, the array containing the site information
is shifted by unity to avoid the negative index); its relative coordinates, prior to
applying the overall rotation R0 in (11.2.3), are obtained from (11.2.2) using a
zero dihedral angle, namely −bRT

0,1 ẑ. The chain is now longer by one link, but the
initial two bonds and three sites form a rigid unit (with no internal DOFs) having
the correct bond angle. This additional site would not be required in the more
general case where the monomers are used to represent rigid assemblies of atoms,
rather than single atoms, since the first torsion term is then already associated with
the relative rotation of extended bodies.

The quantities required to describe the state of each bond and the atoms rigidly
attached to it are stored in the structure

typedef struct {

RMat rMatT;

VecR r, rv, omega, omegah, bV, cV, hV;

real inertiaM[9], fV[6], gV[6], xV[6], yV[6], mass, s, sv, svh, sa,

torq; 5

} Link;

The (transposed) rotation matrix RT
k is denoted by rMatT. In the case of the initial

link (which is actually a virtual link from the origin to the initial site), RT
k represents

the state of the three rotational DOFs associated with site zero, whereas for sub-
sequent links it is the cumulative product matrix describing the link orientation in
the space-fixed frame. Other members of the structure include the site coordinates
and velocity, r and rv, the link angular velocity in the space-fixed frame omega

(omegah and svh are discussed later), and s, sv and sa corresponding to the dihe-
dral angle and its first two derivatives. The vectors bV, cV and hv represent bk , ck

and ĥk ; the six-component quantities fV, gV, xV and yV correspond, respectively,
to Fe

k , Gk , Xk and Yk . Other variables required for a complete description of the
chain, including an array of all the Link structures for the bonds, are placed in the
structure

typedef struct {

Link *L;

VecR ra, wa;

310 11 Internal coordinates

int nLink;

} Poly; 5

Site coordinates and velocities

Given the current state of the chain, namely, the position and orientation of the ini-
tial link, the dihedral angles for all of the subsequent links, and the time derivatives
of these quantities, the site positions and velocities can be evaluated using (11.2.4)
and (11.4.58). The following function performs this task, including the evaluation
of the link rotation matrices; it, and many of the subsequent functions, are just the
software renditions of the algebra implicit in the formulation, in which much of the
work involves processing the six-component vectors and 6 × 6 matrices. The site
coordinates (and forces) are stored in an array of Site structures; the indices of
this array are shifted up by unity (relative to the normal chain link indices) to allow
for the additional site at the beginning of the chain, as already mentioned.

void ComputeLinkCoordsVels ()

{

RMat rMat;

VecR bEx, bVp, hVp;

real phiT[36], vs[6], vsp[6]; 5

int k;

VSet (bVp, 0., 0., bondLen);

VSet (hVp, 0., 0., 1.);

for (k = 0; k < P.nLink; k ++) { 10

if (k > 0) {

MVMul (P.L[k].hV, P.L[k - 1].rMatT.u, hVp);

BuildLinkRotmatT (&rMat, P.L[k].s, bondAng);

MulMat (P.L[k].rMatT.u, P.L[k - 1].rMatT.u, rMat.u, 3);

} 15

MVMul (P.L[k].bV, P.L[k].rMatT.u, bVp);

}

for (k = 0; k < P.nLink; k ++) {

VToLin (vs, 0, P.L[k].omega);

VToLin (vs, 3, P.L[k].rv); 20

BuildLinkPhimatT (phiT, k);

MulMatVec (vsp, phiT, vs, 6);

if (k < P.nLink - 1) {

VFromLin (P.L[k + 1].omega, vsp, 0);

VVSAdd (P.L[k + 1].omega, P.L[k + 1].sv, P.L[k + 1].hV); 25

}

VFromLin (P.L[k + 1].rv, vsp, 3);

}

for (k = 0; k < P.nLink; k ++)

VAdd (P.L[k + 1].r, P.L[k].r, P.L[k].bV); 30

for (k = 0; k < P.nLink + 1; k ++) site[k + 1].r = P.L[k].r;

11.5 Solving the recursion equations 311

VSet (bEx, 0., - sin (bondAng), - cos (bondAng));

VScale (bEx, bondLen);

MVMul (site[0].r, P.L[0].rMatT.u, bEx);

VVAdd (site[0].r, site[1].r); 35

}

Here,

#define VToLin(a, n, v) \

a[(n) + 0] = (v).x, \

a[(n) + 1] = (v).y, \

a[(n) + 2] = (v).z

#define VFromLin(v, a, n) \ 5

VSet (v, a[(n) + 0], a[(n) + 1], a[(n) + 2])

are used for converting between vectors and array elements. In order to maintain
clarity in an already complex problem, this version of the software is designed to
accommodate just a single chain, but by replacing the single structure P by a dy-
namically allocated array of structures, with one element per chain, this limitation
can be removed.

The following macros are introduced for conciseness:

#define MAT(a, n, i, j) (a)[(i) + n * (j)]

#define M3(a, i, j) MAT (a, 3, i, j)

#define M6(a, i, j) MAT (a, 6, i, j)

#define DO(m, n) for (m = 0; m < n; m ++)

The functions referenced by ComputeLinkCoordsVels are then

void BuildLinkRotmatT (RMat *rMat, real dihedA, real bondA)

{

real cb, cd, sb, sd;

cb = cos (bondA); 5

sb = sin (bondA);

cd = cos (dihedA);

sd = sin (dihedA);

M3 (rMat->u, 0, 0) = cd;

M3 (rMat->u, 1, 0) = sd; 10

M3 (rMat->u, 2, 0) = 0.;

M3 (rMat->u, 0, 1) = - sd * cb;

M3 (rMat->u, 1, 1) = cd * cb;

M3 (rMat->u, 2, 1) = sb;

M3 (rMat->u, 0, 2) = sd * sb; 15

M3 (rMat->u, 1, 2) = - cd * sb;

M3 (rMat->u, 2, 2) = cb;

}

312 11 Internal coordinates

for assembling the rotation matrix (11.2.2) used to transform between successive
links,

void BuildLinkPhimatT (real *phiT, int k)

{

int i, j;

DO (i, 6) { 5

DO (j, 6) M6 (phiT, i, j) = (i == j) ? 1. : 0.;

}

M6 (phiT, 3, 1) = P.L[k].bV.z;

M6 (phiT, 3, 2) = - P.L[k].bV.y;

M6 (phiT, 4, 0) = - P.L[k].bV.z; 10

M6 (phiT, 4, 2) = P.L[k].bV.x;

M6 (phiT, 5, 0) = P.L[k].bV.y;

M6 (phiT, 5, 1) = - P.L[k].bV.x;

}

for building the (6×6) matrix φT (11.4.7), and MulMatVec (§18.4) for multiplying
a matrix by a vector.

Link inertia and forces

The center of mass position and the inertia matrix associated with each link are
evaluated by the following function; it includes special treatment for the initial link
that has three sites attached.

void BuildLinkInertiaMats ()

{

VecR d;

real dd, iBall, inertiaK;

int k; 5

inertiaK = 0.1;

for (k = 0; k < P.nLink; k ++) {

if (k > 0) {

P.L[k].mass = 1.; 10

VSub (P.L[k].cV, site[k + 2].r, site[k + 1].r);

} else {

P.L[k].mass = 3.;

VAdd (P.L[k].cV, site[2].r, site[1].r);

VVAdd (P.L[k].cV, site[0].r); 15

VScale (P.L[k].cV, 1./3.);

VVSub (P.L[k].cV, site[1].r);

}

iBall = inertiaK * P.L[k].mass;

VSub (d, site[k + 2].r, site[k + 1].r); 20

dd = VLenSq (d);

M3 (P.L[k].inertiaM, 0, 0) = dd - Sqr (d.x) + iBall;

M3 (P.L[k].inertiaM, 1, 1) = dd - Sqr (d.y) + iBall;

11.5 Solving the recursion equations 313

M3 (P.L[k].inertiaM, 2, 2) = dd - Sqr (d.z) + iBall;

M3 (P.L[k].inertiaM, 0, 1) = - d.x * d.y; 25

M3 (P.L[k].inertiaM, 0, 2) = - d.x * d.z;

M3 (P.L[k].inertiaM, 1, 2) = - d.y * d.z;

if (k == 0) {

VSub (d, site[0].r, site[1].r);

M3 (P.L[k].inertiaM, 0, 0) += dd - Sqr (d.x); 30

M3 (P.L[k].inertiaM, 0, 1) -= d.x * d.y;

... (similarly for the other matrix elements) ...

}

M3 (P.L[k].inertiaM, 1, 0) = M3 (P.L[k].inertiaM, 0, 1);

M3 (P.L[k].inertiaM, 2, 0) = M3 (P.L[k].inertiaM, 0, 2); 35

M3 (P.L[k].inertiaM, 2, 1) = M3 (P.L[k].inertiaM, 1, 2);

}

}

Now that the positions of all the chain sites have been determined, the forces
acting on the sites, both due to other sites in the chain that are not close neighbors,
and from other sources – other chains, solvent atoms, walls bounding the region –
can be evaluated; this computation is discussed later. The following function then
uses these site forces to compute the components of (11.4.16); it also evaluates the
torques due to bond torsion and the resulting contribution to the potential energy.

void ComputeLinkForces ()

{

VecR d, fc, tq, tq1;

real ang;

int k; 5

for (k = 1; k < P.nLink; k ++) {

ang = P.L[k].s - twistAng;

P.L[k].torq = - uCon * sin (ang);

uSum -= uCon * cos (ang); 10

}

for (k = 0; k < P.nLink; k ++) {

fc = site[k + 2].f;

VCross (tq, P.L[k].bV, fc);

if (k == 0) { 15

VVAdd (fc, site[1].f);

VVAdd (fc, site[0].f);

VSub (d, site[0].r, site[1].r);

VCross (tq1, d, site[0].f);

VVAdd (tq, tq1); 20

}

VToLin (P.L[k].fV, 0, tq);

VToLin (P.L[k].fV, 3, fc);

}

} 25

314 11 Internal coordinates

Here, uCon corresponds to u′ in (11.4.62) and twistAng to θ ′; the indices of the
array site have again been shifted by unity. Note that if f s

k denotes the force
acting on site k, then (11.4.16) becomes

Fe
k =

(
bk × f s

k+1

f s
k+1

)
(11.5.1)

for k > 0, with appropriate additional contributions for k = 0.

Link accelerations

Computing the link accelerations involves recursion relations that traverse the chain
in both directions. Prior to this, the Xk and Yk vectors defined in (11.4.9) and
(11.4.15) must be evaluated,

void BuildLinkXYvecs (int k)

{

VecR dv, w, w1, w2;

int i;

5

if (k > 0) {

VCross (w, P.L[k - 1].omega, P.L[k].hV);

VScale (w, P.L[k].sv);

VToLin (P.L[k].xV, 0, w);

VSub (dv, P.L[k].rv, P.L[k - 1].rv); 10

VCross (w, P.L[k - 1].omega, dv);

VToLin (P.L[k].xV, 3, w);

} else {

DO (i, 6) P.L[k].xV[i] = 0.;

} 15

MVMul (w, P.L[k].inertiaM, P.L[k].omega);

VCross (w1, P.L[k].omega, w);

VToLin (P.L[k].yV, 0, w1);

VCross (w, P.L[k].omega, P.L[k].cV);

VCross (w2, P.L[k].omega, w); 20

VScale (w2, P.L[k].mass);

VToLin (P.L[k].yV, 3, w2);

}

Applying the backward (11.4.59) and forward (11.4.60) recursion relations leads
to the link accelerations. Once again, the software merely implements the algebra
contained in these relations. Vector quantities whose only role is to transfer values
between successive iterations, such as Z ′

k , need not be assigned permanent storage
and are represented as arrays, such as zp, that are overwritten during each iteration.

11.5 Solving the recursion equations 315

void ComputeLinkAccels ()

{

real as[6], asp[6], h[3], mMat[36], phi[36], phiT[36], pMat[36],

tMat1[36], tMat2[36], z[6], zp[6], zt[6], dk, e;

int i, j, k; 5

DO (i, 6) zp[i] = 0.;

for (k = P.nLink - 1; k >= 0; k --) {

BuildLinkPhimatT (phiT, k);

DO (i, 6) { 10

DO (j, 6) M6 (phi, i, j) = M6 (phiT, j, i);

}

BuildLinkXYvecs (k);

BuildLinkMmat ((k == P.nLink - 1) ? pMat : mMat, k);

if (k < P.nLink - 1) { 15

DO (i, 6) {

DO (j, 6) M6 (tMat1, i, j) = (i == j) ? 1. : 0.;

}

VToLin (h, 0, P.L[k + 1].hV);

DO (i, 6) { 20

DO (j, 3) M6 (tMat1, i, j) -= P.L[k + 1].gV[i] * h[j];

}

MulMat (tMat2, tMat1, pMat, 6);

MulMat (tMat1, tMat2, phiT, 6);

MulMat (pMat, phi, tMat1, 6); 25

DO (i, 6) {

DO (j, 6) M6 (pMat, i, j) += M6 (mMat, i, j);

}

}

if (k > 0) { 30

VToLin (h, 0, P.L[k].hV);

dk = 0.;

DO (i, 3) {

DO (j, 3) dk += h[i] * M6 (pMat, i, j) * h[j];

} 35

}

MulMatVec (z, phi, zp, 6);

DO (i, 6) z[i] += P.L[k].yV[i] - P.L[k].fV[i];

if (k > 0) {

DO (i, 6) { 40

P.L[k].gV[i] = 0.;

DO (j, 3) P.L[k].gV[i] += M6 (pMat, i, j) * h[j];

P.L[k].gV[i] /= dk;

}

MulMatVec (zt, pMat, P.L[k].xV, 6); 45

DO (i, 6) z[i] += zt[i];

e = P.L[k].torq;

DO (i, 3) e -= h[i] * z[i];

P.L[k].sa = e / dk;

DO (i, 6) zp[i] = z[i] + e * P.L[k].gV[i]; 50

316 11 Internal coordinates

}

}

SolveLineq (pMat, z, 6);

DO (i, 6) as[i] = - z[i];

VFromLin (P.wa, as, 0); 55

VFromLin (P.ra, as, 3);

for (k = 1; k < P.nLink; k ++) {

BuildLinkPhimatT (phiT, k - 1);

MulMatVec (asp, phiT, as, 6);

DO (i, 6) P.L[k].sa -= P.L[k].gV[i] * asp[i]; 60

if (k < P.nLink - 1) {

DO (i, 6) as[i] = asp[i] + P.L[k].xV[i];

VToLin (h, 0, P.L[k].hV);

DO (i, 3) as[i] += h[i] * P.L[k].sa;

} 65

}

}

The matrices Mk are constructed by

void BuildLinkMmat (real *mMat, int k)

{

VecR w;

int i, j;

5

DO (i, 6) {

DO (j, 6) {

if (i < 3 && j < 3)

M6 (mMat, i, j) = M3 (P.L[k].inertiaM, i, j);

else M6 (mMat, i, j) = (i == j) ? P.L[k].mass : 0.; 10

}

}

VSCopy (w, P.L[k].mass, P.L[k].cV);

M6 (mMat, 2, 4) = w.x;

M6 (mMat, 1, 5) = - w.x; 15

M6 (mMat, 0, 5) = w.y;

M6 (mMat, 2, 3) = - w.y;

M6 (mMat, 1, 3) = w.z;

M6 (mMat, 0, 4) = - w.z;

M6 (mMat, 4, 2) = M6 (mMat, 2, 4); 20

... (fill other entries of symmetric matrix) ...

}

The call to SolveLineq (§18.4) solves the set of linear equations in (11.4.61)
forD0 using the standard LU decomposition method.

11.6 Implementation details 317

11.6 Implementation details

If the simulation treats a single chain without solvent, then it is reasonable just
to use cells and not a neighbor list (this is a minor issue). Irrespective of ap-
proach, there are no direct pair interactions between nearest-, second- or third-
nearest neighbor monomers, because these are taken into account by either the
rigid structure or the torsional interactions. Thus for the cell method – the function
is now called ComputeSiteForces – the rule used to select interacting atom pairs
in ComputeForces (§3.4) is changed to

if ((m1 != m2 || j2 < j1) && abs (j1 - j2) > 3)

The double loop over the contents of pairs of cells can be skipped if either of the
cells is empty, a likely occurrence for the case of just a single chain; this is done by
including the test

if (cellList[m1] < 0) continue;

immediately after the evaluation of the cell index m1 and likewise for the index m2.
The integration routine updates the state of the initial link, as well as the dihedral

angles. Part of the following function is borrowed from the one used for the rotation
matrix approach to rigid bodies in §8.5, while the rest is just a straightforward
treatment of the dihedral angle variables.

void LeapfrogStepLinks (int part)

{

RMat mc, mt;

VecR t;

int k; 5

if (part == 1) {

VVSAdd (P.L[0].omega, 0.5 * deltaT, P.wa);

VVSAdd (P.L[0].rv, 0.5 * deltaT, P.ra);

for (k = 1; k < P.nLink; k ++) 10

P.L[k].sv += 0.5 * deltaT * P.L[k].sa;

VSCopy (t, 0.5 * deltaT, P.L[0].omega);

BuildStepRmatT (&mc, &t);

MulMat (mt.u, mc.u, P.L[0].rMatT.u, 3);

P.L[0].rMatT = mt; 15

VVSAdd (P.L[0].r, deltaT, P.L[0].rv);

for (k = 1; k < P.nLink; k ++) P.L[k].s += deltaT * P.L[k].sv;

} else {

VVSAdd (P.L[0].omega, 0.5 * deltaT, P.wa);

VVSAdd (P.L[0].rv, 0.5 * deltaT, P.ra); 20

for (k = 1; k < P.nLink; k ++)

318 11 Internal coordinates

P.L[k].sv += 0.5 * deltaT * P.L[k].sa;

}

}

In order to ensure that the angular velocity values (omega and sv) used in the
recursion relations correspond to the same instant in time as the coordinates, these
values can optionally be updated over an additional half timestep at the end of
the first part of the procedure, after storing the current values. Then, at the start
of the second part, the original values are restored. This leads to reduced energy
fluctuations.

P.L[0].omegah = P.L[0].omega;

VVSAdd (P.L[0].omega, 0.5 * deltaT, P.wa);

for (k = 1; k < P.nLink; k ++) {

P.L[k].svh = P.L[k].sv;

P.L[k].sv += 0.5 * deltaT * P.L[k].sa; 5

}

...

P.L[0].omega = P.L[0].omegah;

for (k = 1; k < P.nLink; k ++) P.L[k].sv = P.L[k].svh;

The dihedral angles are reset to the [0, 2π] range by

void AdjustLinkAngles ()

{

int k;

for (k = 1; k < P.nLink; k ++) { 5

if (P.L[k].s >= 2. * M_PI) P.L[k].s -= 2. * M_PI;

else if (P.L[k].s < 0.) P.L[k].s += 2. * M_PI;

}

}

The following function evaluates the kinetic and total energies; the quantities are
normalized per degree of freedom, as is appropriate for an isolated chain†.

void EvalProps ()

{

VecR w1, w2;

int k;

5

kinEnVal = 0.;

for (k = 0; k < P.nLink; k ++) {

MVMul (w2, P.L[k].inertiaM, P.L[k].omega);

† The values of rv and omega for links beyond the first could be reevaluated (using ComputeLinkCoordsVels)
at the end of the timestep before using them here.

11.6 Implementation details 319

VCross (w1, P.L[k].cV, P.L[k].rv);

kinEnVal += 0.5 * (P.L[k].mass * (VLenSq (P.L[k].rv) + 10

2. * VDot (P.L[k].omega, w1)) + VDot (P.L[k].omega, w2));

}

totEnVal = (kinEnVal + uSum) / nDof;

kinEnVal /= nDof;

} 15

The function for resetting the temperature to a specified value is

void AdjustTemp ()

{

real vFac;

int k;

5

vFac = sqrt (temperature / (2. * kinEnVal));

VScale (P.L[0].rv, vFac);

VScale (P.L[0].omega, vFac);

for (k = 1; k < P.nLink; k ++) P.L[k].sv *= vFac;

ComputeLinkCoordsVels (); 10

EvalProps ();

}

The functions introduced above are called by SingleStep, which includes the
sequence of calls (for a container with hard walls)

LeapfrogStepLinks (1);

AdjustLinkAngles ();

ComputeLinkCoordsVels ();

BuildLinkInertiaMats ();

ComputeSiteForces (); 5

ComputeWallForces ();

ComputeLinkForces ();

ComputeLinkAccels ();

LeapfrogStepLinks (2);

In SetParams the following values are set,

nSite = chainLen + 1;

nDof = chainLen + 4;

bondAng = 2. * M_PI / helixPeriod;

twistAng = asin (1.1 * rCut / (helixPeriod * bondLen));

where the bond parameters are tailored to produce a helical ground state with peri-
odicity helixPeriod and a small amount of space between nearby monomers in

320 11 Internal coordinates

adjacent turns of the helix. Memory allocation (AllocArrays) includes

AllocMem (P.L, chainLen, Link);

AllocMem (site, nSite, Site);

The initial state of the chain is generated by the following function; it produces a
coiled chain with a relatively large coil radius, and a local zigzag conformation for
each successive pair of bonds (as shown later in Figure 11.3). This configuration
is far removed from the ground state favored by the torsion potential. Dihedral
angle time derivatives are randomly set, the translational velocity of the initial site
is adjusted so that the center of mass of the entire chain is at rest and the chain is
shifted to the center of the region; velocities are then scaled to correspond to the
desired temperature.

void InitLinkState ()

{

VecR rs, vs, w;

real mSum;

int j, k; 5

P.nLink = chainLen - 1;

VZero (P.L[0].r);

VZero (P.L[0].rv);

VZero (P.ra); 10

DO (j, 9) P.L[0].rMatT.u[j] = (j % 4 == 0) ? 1. : 0.;

VZero (P.L[0].omega);

VZero (P.wa);

for (k = 1; k < P.nLink; k ++) {

P.L[k].s = M_PI + ((k % 2 == 0) ? 0.42 : -0.4); 15

P.L[k].sv = 0.2 * (1. - 2. * RandR ());

P.L[k].sa = 0.;

}

ComputeLinkCoordsVels ();

BuildLinkInertiaMats (); 20

VZero (rs);

VZero (vs);

mSum = 0.;

for (k = 0; k < P.nLink; k ++) {

VAdd (w, P.L[k].r, P.L[k].cV); 25

VVSAdd (rs, P.L[k].mass, w);

VCross (w, P.L[k].omega, P.L[k].cV);

VVAdd (w, P.L[k].rv);

VVSAdd (vs, P.L[k].mass, w);

mSum += P.L[k].mass; 30

}

VVSAdd (P.L[0].r, -1. / mSum, rs);

VVSAdd (P.L[0].rv, -1. / mSum, vs);

ComputeLinkCoordsVels ();

11.6 Implementation details 321

BuildLinkInertiaMats (); 35

ComputeSiteForces ();

ComputeLinkForces ();

EvalProps ();

AdjustTemp ();

} 40

The functions AccumProps and PrintSummary are used to accumulate and output
averages, as in previous examples; the former must include

totEnergy.val = totEnVal;

kinEnergy.val = kinEnVal;

Additional variables introduced here are

Poly P;

Site *site;

real bondAng, bondLen, kinEnVal, totEnVal, twistAng, uCon;

int chainLen, helixPeriod, nDof, nSite;

and the input data must now include (the region size is specified explicitly here
instead of via the density)

NameR (bondLen),

NameI (chainLen),

NameI (helixPeriod),

NameR (region),

NameR (uCon), 5

If the bond angles and torsional interactions have been suitably chosen (as is the
case here), then at low temperature the chain should collapse into a helical ground
state, unless it manages to become entangled in a manner that somehow prevents
this occurring. An order parameter quantifying the structure of the ground state can
be defined as

S = 1

nr

∣∣∣∣
nr∑

k=1

d̂k

∣∣∣∣ (11.6.1)

where dk = bk−1 × bk ; for a well-formed helix S ≈ 1 and any entanglement pro-
duces a noticeable reduction in this value. The quantity S is evaluated as follows.

void EvalHelixOrder ()

{

VecR dr1, dr2, rc, rcSum;

real f;

int k; 5

322 11 Internal coordinates

VZero (rcSum);

for (k = 0; k < P.nLink; k ++) {

VSub (dr1, site[k + 1].r, site[k].r);

VSub (dr2, site[k + 2].r, site[k + 1].r); 10

VCross (rc, dr1, dr2);

f = VLen (rc);

if (f > 0.) VVSAdd (rcSum, 1. / f, rc);

}

helixOrder = VLen (rcSum) / P.nLink; 15

}

11.7 Measurements

Equilibrium

In order to test how well energy is conserved, a run was carried out using the
following data:

bondLen 1.3

chainLen 80

deltaT 0.001

helixPeriod 8

region 24. 24. 24.

stepAvg 2000

stepEquil 10000

stepLimit 100000

temperature 2.

uCon 1.

The various velocities are adjusted periodically during the equilibration period, and
then the system is allowed to proceed with no further intervention. The results are
summarized in Table 11.1 and it is apparent that, left unattended, the total energy
is subject to a slight amount of drift.

Chain collapse

The goal of this case study♠ is to follow the behavior of the chain as it gradually
cools from a high temperature state. The fixed bond angles and the preferred dihe-
dral angles have already been chosen so that the minimum energy ground state of
the chain is a neatly coiled helix; the question is whether the chain will be able to
collapse into this ordered conformation, or will this process be obstructed by the
chain becoming entangled with itself.

♠ pr_11_2

11.7 Measurements 323

Table 11.1. Energy conservation

timestep 〈E〉 σ(E) 〈EK 〉 σ(EK)

20 000 0.7466 0.0001 0.9334 0.0283
40 000 0.7472 0.0005 0.9130 0.0307
60 000 0.7456 0.0008 1.0019 0.0109
80 000 0.7561 0.0003 0.9996 0.0131

100 000 0.7547 0.0009 1.0556 0.0165

To achieve progressive temperature reduction, add to SingleStep

if (stepCount % stepReduceTemp == 0 && temperature > tempFinal) {

temperature *= tempReduceFac;

AdjustTemp ();

}

and, after incorporating the additional variables used here, run the simulation with
data that includes

chainLen 80

deltaT 0.004

helixPeriod 6

stepAdjustTemp 2000

stepAvg 2000

stepLimit 1000000

stepReduceTemp 4000

stepSnap 10000

tempFinal 0.001

tempInit 4.

tempReduceFac 0.97

uCon 5.

Figure 11.2 shows how the order parameter S and the negative of the potential
energy, vary with time; snapshots of initial, intermediate and final states of the
run appear in Figure 11.3. The chain behaves as might be expected; other initial
states – governed by the choice of random number seed used to set the velocities –
produce entirely different folding pathways, most of which still lead to the helical
final state (if other parameters are left unchanged); a more extensive treatment of
this problem appears in [rap02a].

324 11 Internal coordinates

0 1000 2000 3000 4000
0

1

2

3

4

5

time

en
er

gy
 /

or
de

r

Fig. 11.2. Time dependence of the order parameter (solid curve) and the negative of the
energy (dashed curve) as the chain collapses into an ordered helical state.

Fig. 11.3. Helix formation: snapshots of the initial state, a fairly random state early in the
run, a subsequent state with helical domains and the eventual well-formed helix.

11.8 Further study 325

11.8 Further study
11.1 Extend the recursive approach to handle molecules with more general tree-

like topological structures.
11.2 Explore techniques for dealing with molecules that either consist of, or con-

tain, closed ring structures.

12

Many-body interactions

12.1 Introduction
The range of problems amenable to study using MD knows few bounds and as
computers become more powerful the range continues to expand. Because of the
enormous breadth of the subject, we have chosen to concentrate on the simplest of
systems and avoid overly specialized models. Most of the case studies up to this
point have been based on short-ranged, two-body interactions; within this frame-
work a considerable variety of problems can be studied, but a few conspicuous
gaps remain. Pair potentials have their limitations, and while certain kinds of in-
termolecular interaction can be imitated by the appropriate combinations of pair
potentials, it is sometimes essential to introduce many-body interactions to capture
specific features of the ‘real’ intermolecular force [mai81].

In this chapter we present two different approaches to the introduction of many-
body interactions, namely, three-body interactions and the embedded-atom method,
each in the form of a case study. We cannot do justice to the range of applications
to which these and other enhancements of the MD method, such as those discussed
in Chapter 13, have contributed, but in the prevailing culinary atmosphere we hope
the reader will gain at least a taste of what is involved.

12.2 Three-body forces

The problem

Even when regarded simply as effective potentials, the capacity of the pair poten-
tial to reproduce known behavior has its limitations. We have already encountered
situations where the potential extends beyond the basic two-body form: the inter-
action site method used for rigid molecules, in which forces between molecules (as
opposed to the sites in the molecules) involve both distance and orientation (§8.3),
and the intramolecular forces associated with the internal degrees of freedom of

326

12.2 Three-body forces 327

partially rigid molecules that depend on the relative coordinates of sets of three or
four atoms (§10.4). The situation described here is entirely different; the force be-
tween two atoms will now depend on the positions of all other atoms in the vicinity.
Thus, in addition to the forces between pairs of atoms, a new type of force is in-
troduced that acts on triplets of atoms and whose strength is a function of the three
interatomic distances.

The crystalline state of silicon is a four-coordinated diamond lattice whose den-
sity increases upon melting; this reflects the fact that the liquid is more closely
packed than the solid, exactly the opposite of what normally occurs – with wa-
ter being another prominent exception. Since LJ-type potentials can only produce
closely packed solids, the question is how to augment the potential function so
that it incorporates a preferred set of bond directions, such as the tetrahedral ar-
rangement needed for silicon. The simplest way to do this is to introduce three-
body interactions, chosen in a manner that stabilizes particular bond angles; this
represents yet another attempt to imitate classically what is at heart a quantum
effect.

Formulation

The model proposed for liquid silicon [sti85] has been kept as simple as possible –
to the extent that any three-body interaction can be considered ‘simple’ from the
computational perspective. The interactions include both two- and three-body con-
tributions, expressed in suitable reduced units.

The two-body part of the potential has the form

u2(r) =
⎧⎨
⎩a
(b

r4
− 1
)

exp
(1

r − rc

)
r < rc

0 r ≥ rc

(12.2.1)

and the corresponding force is

−∇ru2 = a

r

[
4b

r5
+
(b

r4
− 1
) 1

(r − rc)2

]
exp
(1

r − rc

)
r (12.2.2)

Observe the design of the function: both u2 and its derivatives are zero at the cutoff
range rc; while this has the advantage of reducing spurious effects associated with
cutoffs in general, care is required in the computation to avoid any risk of numerical
overflow when r ≈ rc.

The three-body part is symmetric under permutations of the atom indices and is,
of course, invariant under translation and rotation,

u3(r1, r2, r3) = h(r12, r13) + h(r21, r23) + h(r31, r32) (12.2.3)

328 12 Many-body interactions

Each function h has the form

h(r12, r13) = λ exp
(γ

r12 − rc
+ γ

r13 − rc

) (
cos θ213 + 1

3

)2
(12.2.4)

provided both r12 < rc and r13 < rc, and is zero if either condition is violated;
θ213 is the angle between r12 and r13. The cutoff at rc is smooth, as in the two-body
part. An important feature built into the functional form of h is that it has a min-
imum when θ213 equals the tetrahedral angle (cos θ = −1/3). Not only does this
introduce the desired angular correlations, it helps ensure that each atom prefers
a considerably smaller number of immediate neighbors (namely four) than close
packing allows.

The force contribution of each h function in (12.2.3) is evaluated separately; the
forces due to a typical function h(r12, r13) act on three atoms, and since

∇r1h = −∇r2h − ∇r3h (12.2.5)

only two of the derivatives need be computed. Thus, if

c ≡ cos θ213 = r̂12 · r̂13 (12.2.6)

then, for m = 2 and 3,

−∇rm h(r12, r13) = −λ
(
c + 1

3

)
exp
(γ

r12 − rc
+ γ

r13 − rc

)

×
(

γ
(
c + 1

3

)
(r1m − rc)2

r̂1m + 2∇rm c

) (12.2.7)

The derivatives ∇rm c are computed in exactly the same way as the bond angle
forces discussed in §10.4,

∇r2c = (c r̂12 − r̂13)/r12 (12.2.8)

∇r3c = (c r̂13 − r̂12)/r13 (12.2.9)

Numerical values for the constants appearing in (12.2.1) and (12.2.4) are specified
in the function ComputeForces below.

Implementation details

The neighbor-list method is once again the preferred choice, although with some
modification. In order to identify all interacting atom triplets the list will have to be
scanned twice inside a doubly nested loop, and the list must also include each atom
pair twice, both as i j and j i . The neighbor list will be stored in an alternative form
better suited for this computation: instead of simply listing the possibly interacting
pairs, the information will now be stored in two parts, one a table of serial numbers
of the neighboring atoms, the other a set of pointers to the first entry in the table

12.2 Three-body forces 329

corresponding to the neighbors of each atom. Such an approach could have been
used for the original treatment in §3.4, although the extra data operations and the
low repetition count of the resulting inner loop could reduce the computational
efficiency.

Neighbor-list construction♠ is carried out by the following function derived from
the original version. Here atoms are scanned first, then the set of cells surrounding
the cell in which the particular atom resides and, finally, the contents of each of
these cells.

#define OFFSET_VALS \

{{-1,-1,-1}, {0,-1,-1}, {1,-1,-1}, {-1,0,-1}, \

{0,0,-1}, {1,0,-1}, {-1,1,-1}, {0,1,-1}, {1,1,-1}, \

{-1,-1,0}, {0,-1,0}, {1,-1,0}, {-1,0,0}, {0,0,0}, \

{1,0,0}, {-1,1,0}, {0,1,0}, {1,1,0}, {-1,-1,1}, \ 5

{0,-1,1}, {1,-1,1}, {-1,0,1}, {0,0,1}, {1,0,1}, \

{-1,1,1}, {0,1,1}, {1,1,1}}

void BuildNebrList ()

{ 10

...

nebrTabLen = 0;

for (j1 = 0; j1 < nMol; j1 ++) {

VSAdd (rs, mol[j1].r, 0.5, region);

VMul (m1v, rs, invWid); 15

nebrTabPtr[j1] = nebrTabLen;

for (offset = 0; offset < 27; offset ++) {

VAdd (m2v, m1v, vOff[offset]);

VZero (shift);

VCellWrapAll (); 20

m2 = VLinear (m2v, cells) + nMol;

DO_CELL (j2, m2) {

if (j2 != j1) {

VSub (dr, mol[j1].r, mol[j2].r);

VVSub (dr, shift); 25

if (VLenSq (dr) < rrNebr) {

if (nebrTabLen >= nebrTabMax)

ErrExit (ERR_TOO_MANY_NEBRS);

nebrTab[nebrTabLen] = j2;

++ nebrTabLen; 30

}

}

}

}

} 35

nebrTabPtr[nMol] = nebrTabLen;

}

♠ pr_12_1

330 12 Many-body interactions

The arrays used are

int *nebrTab, *nebrTabPtr;

and they are allocated (in AllocArrays – note that the size of nebrTab has been
halved) by

AllocMem (nebrTab, nebrTabMax, int);

AllocMem (nebrTabPtr, nMol + 1, int);

The interaction calculations, including both two- and three-body contributions,
are carried out by the following function.

void ComputeForces ()

{

VecR dr, dr12, dr13, w2, w3;

real aCon = 7.0496, bCon = 0.60222, cr, er, fcVal, gCon = 1.2,

lCon = 21., p12, p13, ri, ri3, rm, rm12, rm13, rr, rr12, 5

rr13, rrCut;

int j1, j2, j3, m2, m3, n;

rrCut = Sqr (rCut) - 0.001;

DO_MOL VZero (mol[n].ra); 10

uSum = 0.;

for (j1 = 0; j1 < nMol; j1 ++) {

for (m2 = nebrTabPtr[j1]; m2 < nebrTabPtr[j1 + 1]; m2 ++) {

j2 = nebrTab[m2];

if (j1 < j2) { 15

VSub (dr, mol[j1].r, mol[j2].r);

VWrapAll (dr);

rr = VLenSq (dr);

if (rr < rrCut) {

rm = sqrt (rr); 20

er = exp (1. / (rm - rCut));

ri = 1. / rm;

ri3 = Cube (ri);

fcVal = aCon * (4. * bCon * Sqr (ri3) +

(bCon * ri3 * ri - 1.) * ri / Sqr (rm - rCut)) * er; 25

VVSAdd (mol[j1].ra, fcVal, dr);

VVSAdd (mol[j2].ra, - fcVal, dr);

uSum += aCon * (bCon * ri3 * ri - 1.) * er;

}

} 30

}

}

for (j1 = 0; j1 < nMol; j1 ++) {

for (m2 = nebrTabPtr[j1]; m2 < nebrTabPtr[j1 + 1] - 1; m2 ++) {

j2 = nebrTab[m2]; 35

VSub (dr12, mol[j1].r, mol[j2].r);

12.2 Three-body forces 331

VWrapAll (dr12);

rr12 = VLenSq (dr12);

if (rr12 < rrCut) {

rm12 = sqrt (rr12); 40

VScale (dr12, 1. / rm12);

for (m3 = m2 + 1; m3 < nebrTabPtr[j1 + 1]; m3 ++) {

j3 = nebrTab[m3];

VSub (dr13, mol[j1].r, mol[j3].r);

VWrapAll (dr13); 45

rr13 = VLenSq (dr13);

if (rr13 < rrCut) {

rm13 = sqrt (rr13);

VScale (dr13, 1. / rm13);

cr = VDot (dr12, dr13); 50

er = lCon * (cr + 1./3.) * exp (gCon / (rm12 - rCut) +

gCon / (rm13 - rCut));

p12 = gCon * (cr + 1./3.) / Sqr (rm12 - rCut);

p13 = gCon * (cr + 1./3.) / Sqr (rm13 - rCut);

VSSAdd (w2, p12 + 2. * cr / rm12, dr12, -2. / rm12, dr13); 55

VSSAdd (w3, p13 + 2. * cr / rm13, dr13, -2. / rm13, dr12);

VScale (w2, - er);

VScale (w3, - er);

VVSub (mol[j1].ra, w2);

VVSub (mol[j1].ra, w3); 60

VVAdd (mol[j2].ra, w2);

VVAdd (mol[j3].ra, w3);

uSum += (cr + 1./3.) * er;

}

} 65

}

}

}

}

Measurements
The simulations shown here cursorily examine the RDFs in the crystalline and
liquid phases based on input data

deltaT 0.005

density 0.483

initUcell 3 3 3

limitRdf 20

nebrTabFac 50

rangeRdf 2.5

rCut 1.8

rNebrShell 0.4

sizeHistRdf 100

stepAdjustTemp 500

332 12 Many-body interactions

0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

distance

ra
di

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Fig. 12.1. Radial distribution functions for model silicon in the crystalline (solid curve)
and liquid (dashed curve) states.

stepAvg 200

stepEquil 0

stepLimit 5000

stepRdf 50

temperature 0.08

The initial state is a diamond lattice, so that Nm = 216. Runs are carried out at
temperatures 0.08 and 0.12. Constant-temperature MD is used together with PC
integration.

The RDF results shown in Figure 12.1 are based on an average over 3000 time-
steps, after allowing 2000 timesteps for equilibration. A more detailed discussion
of the degree to which this model captures the unusual structural properties of
silicon is to be found in [sti85].

12.3 Embedded-atom approach

Interactions

The use of density-independent pair potentials – the Lennard-Jones potential is a
well-known example – is justified when the electron clouds responsible for the
attractive and repulsive components of the interatomic interactions remain local-
ized close to the individual atoms. In metals this is no longer the case and valence
electrons may be shared among atoms. This calls for potentials that take the local
electron density into account and which, consequently, have a many-body nature.

12.3 Embedded-atom approach 333

A convenient way of describing such interactions involves the embedded-atom
potential [daw84]. This potential consists of two parts: a pair interaction between
metal atoms – actually ions – that does not explicitly depend on density, and a
many-body term that depends on the local value of the density at the point where
the atom is located. The introduction of many-body interactions can lead to sub-
stantial changes in the mechanical properties of the solid, compared with those
based on pair interactions alone; examples include the elastic shear moduli and the
energy of vacancy formation, properties that cannot be characterized correctly if
just pair interactions are involved. A simplified version of the embedded-atom po-
tential, expressed entirely in terms of analytic functions, is described in [hol91];
this form will be considered here.

The two parts of the potential energy are expressed as

U = 1
2

Nm∑
i=1

[
χ
∑
j �=i

φ(ri j) + (1 − χ)U(ρi)
]

(12.3.1)

Here, φ(r) is a density-independent pair potential and χ is the fractional contri-
bution of this part. The embedding energy U is a nonlinear function of the local
atomic density ρi , which is defined in terms of a sum over the neighbors of i of a
local weighting function w(r),

ρi =
∑
j �=i

w(ri j) (12.3.2)

The function w(r) will be defined in (12.3.7). The nonlinearity of U is necessary
to ensure that it introduces many-body effects, otherwise its contribution would
simply be pairwise additive.

The pair potential has the form

φ(r) =

⎧⎪⎨
⎪⎩

φlj(r) r < rs

φsp(r) rs ≤ r < rm

0 r ≥ rm

(12.3.3)

where φlj(r) is the LJ potential (2.2.1) – other potential functions can also be used.
The function

φsp(r) = −a2(r
2
m − r2)2 + a3(r

2
m − r2)3 (12.3.4)

is a cubic spline (in the variable r2) that is introduced to ensure the pair interaction
drops smoothly to zero over the range rs to rm ; this is accomplished by requiring

334 12 Many-body interactions

that φlj and φsp satisfy

φlj(rs) = φsp(rs) ≡ φs

φ′
lj(rs) = φ′

sp(rs) ≡ φ′
s

φ′′
lj(rs) = φ′′

sp(rs) = 0

(12.3.5)

The cutoff at rm is introduced, as in other MD studies, to reduce the computational
effort. The conditions (12.3.5) lead to relations between the unknowns rm , a2 and
a3,

r2
m = 5r2

s

[
1 −

√
1 − (9 − 24φs/rsφ′

s

)
/25

]

a2 = 5r2
s − r2

m

8r3
s (r2

m − r2
s)

φ′
s

a3 = 3r2
s − r2

m

12r3
s (r2

m − r2
s)2

φ′
s

(12.3.6)

The numerical values are determined by the function EvalEamParams later on.
The weighting functions w(r) that contribute to the local density (12.3.2) have

the spherically symmetric form

w(r) =

⎧⎪⎨
⎪⎩

1

d(d + 1)e

(
r2

m − r2

r2
m − r2

0

)2

r < rm

0 r ≥ rm

(12.3.7)

where d is the dimensionality of the problem (2 or 3), r0 = 21/6σ corresponds
to the minimum of φlj and e ≡ exp(1). At r = r0, a value corresponding to the
normal (zero pressure) bulk density provided the interaction range encompasses
nearest neighbors only,

w(r0) = 1

d(d + 1)e
(12.3.8)

so that at this density ρi = 1/e; the choice of w(r) is governed by the requirement
that the minimum of U should occur at this density.

The nonlinear embedding energy function U is chosen to be

U(ρi) = d(d + 1)εeρi log ρi (12.3.9)

so that at r = r0

U = Nm

2
[−χd(d + 1)ε − (1 − χ)d(d + 1)ε]

= −Nmnbε (12.3.10)

12.3 Embedded-atom approach 335

Since there are nb = d(d + 1)/2 bonds per atom in a close packed solid, this
amounts to a contribution of −ε per bond; −U/Nm can be regarded as the bulk
cohesive energy. The value of χ is chosen so that the energy required to form a
vacancy is considerably smaller than the cohesive energy, as occurs in practice;
this is very different from the situation at χ = 1, where only the pair potential
contributes to the cohesive energy.

The forces acting on the atoms are readily determined, starting from

fk = −∂U

∂ rk

= −χ
∑
j �=k

φ′(rk j)r̂k j − (1 − χ)nbe
Nm∑
i=1

(log ρi + 1)
∂ρi

∂ rk
(12.3.11)

The second sum in (12.3.11) can be reorganized,

Nm∑
i=1

(log ρi + 1)
∂ρi

∂ rk
=
∑
i �= j

(log ρi + 1)w′(ri j)(δik − δ jk)r̂i j

=
∑
j �=k

w′(r jk)(log ρk + log ρ j + 2)r̂k j (12.3.12)

since w′(ri j) = w′(r ji). Thus

fi = −
∑
j �=i

[χφ′(ri j) + (1 − χ)nbew′(ri j)](log ρi + log ρ j + 2)r̂i j (12.3.13)

where

nbew′(r) = −2r

(
r2

m − r2

r2
m − r2

0

)
(12.3.14)

Implementation

The following function♠ computes the forces due to the embedded-atom potential.
It employs a neighbor list, constructed in the usual way for two-body interactions.
Standard reduced units are used, in which σ = 1, r0 = 21/6 and ε = 1. The value of
χ is fixed at 1/3. The local densities ρi are evaluated by summing over all neighbors
j of i for which r2

i j < r2
m ; identification of such pairs is facilitated by the fact that

♠ pr_12_2

336 12 Many-body interactions

they all appear in the neighbor list used for computing the pair interactions.

void ComputeForces ()

{

VecR dr;

real eDim, fcVal, rCutC, rr, rrCdi, rrCut, rrd, rri, rri3,

rrSwitch, t, uVal; 5

int j1, j2, n;

eDim = NDIM * (NDIM + 1) * exp (1.);

rCutC = pow (2., 1./6.);

rrCut = Sqr (rCut); 10

rrCdi = 1. / Sqr (rrCut - Sqr (rCutC));

rrSwitch = Sqr (rSwitch);

DO_MOL mol[n].logRho = 0.;

for (n = 0; n < nebrTabLen; n ++) {

j1 = nebrTab[2 * n]; 15

j2 = nebrTab[2 * n + 1];

VSub (dr, mol[j1].r, mol[j2].r);

VWrapAll (dr);

rr = VLenSq (dr);

if (rr < rrCut) { 20

t = Sqr (rrCut - rr);

mol[j1].logRho += t;

mol[j2].logRho += t;

}

} 25

DO_MOL {

if (mol[n].logRho > 0.)

mol[n].logRho = log ((rrCdi / eDim) * mol[n].logRho);

}

DO_MOL VZero (mol[n].ra); 30

uSum = 0.;

for (n = 0; n < nebrTabLen; n ++) {

j1 = nebrTab[2 * n];

j2 = nebrTab[2 * n + 1];

VSub (dr, mol[j1].r, mol[j2].r); 35

VWrapAll (dr);

rr = VLenSq (dr);

if (rr < rrCut) {

rrd = rrCut - rr;

if (rr < rrSwitch) { 40

rri = 1. / rr;

rri3 = Cube (rri);

fcVal = 48. * rri3 * (rri3 - 0.5) * rri;

uVal = 4. * rri3 * (rri3 - 1.);

} else { 45

fcVal = (4. * splineA2 + 6. * splineA3 * rrd) * rrd;

uVal = (splineA2 + splineA3 * rrd) * Sqr (rrd);

}

fcVal = embedWt * fcVal + (1. - embedWt) * 2. * rrCdi *

12.3 Embedded-atom approach 337

(mol[j1].logRho + mol[j2].logRho + 2.) * rrd; 50

VVSAdd (mol[j1].ra, fcVal, dr);

VVSAdd (mol[j2].ra, - fcVal, dr);

uSum += uVal;

}

} 55

t = 0.;

DO_MOL t += mol[n].logRho * exp (mol[n].logRho);

uSum = embedWt * uSum + (1. - embedWt) * 0.5 * eDim * t;

}

The structure Mol includes an additional real quantity logRho standing for log ρi .
Several new variables are used in defining the potential,

real embedWt, rSwitch, splineA2, splineA3;

corresponding to χ , rs , a2 and a3, respectively, with rCut now denoting rm ; these
variables are initialized by a function called from SetParams,

void EvalEamParams ()

{

real bb, p, pd, rr, rr3;

rSwitch = pow (26. / 7., 1. / 6.); 5

rr = Sqr (rSwitch);

rr3 = Cube (rr);

p = 4. * (1. / rr3 - 1.) / rr3;

pd = - 48. * (1. / rr3 - 0.5) / (rSwitch * rr3);

bb = 4. * (1. - sqrt (1. + 3. * p / (2. * rSwitch * pd))); 10

splineA2 = (6. * p + bb * rSwitch * pd) / (2. * Sqr (bb * rr));

splineA3 = - (4. * p + bb * rSwitch * pd) / (2. * Sqr (bb * rr) *

bb * rr);

rCut = rSwitch * sqrt (bb + 1.);

embedWt = 0.3333; 15

}

The rest of the program for this version of the embedded-atom method is similar
to the two-body case.

Structure measurements

The first of the case studies examines the RDF of a fluid whose atoms interact
via the embedded-atom potential, using a system whose initial state is an FCC
lattice. The input data are similar to those used in the soft-sphere RDF study (§4.3)
at a density of 0.8. The results are shown in Figure 12.2 and compared with the soft-
sphere fluid under similar conditions. Apart from a certain amount of softening in

338 12 Many-body interactions

0 1 2 3 4
0

1

2

3

distance

ra
di

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Fig. 12.2. Radial distribution function for the embedded-atom fluid (solid curve) com-
pared with the soft-sphere fluid (dashed curve).

the peaks, the two curves exhibit similar trends, although this does not prevent
other properties from differing substantially, as is indeed the case.

Collision modeling

The second case study♠ focuses on collisions between extended bodies; this
includes the phenomenon of spallation, in which one body (the projectile) im-
pacting at high speed on the surface of another, larger body (the target) causes
the ejection of material from the opposite surface [hol91]. The bodies involved
are often metallic and it is therefore appropriate to model them using embedded-
atom potentials. In order to simplify the task of visualizing the results, as well
as reducing the amount of work involved, the simulations are carried out in two
dimensions.

The simulated system initially contains two objects: the moving disklike projec-
tile consisting of an array of atoms interacting by means of the embedded-atom
potential, and a strip (or wall) of similar atoms forming the stationary target with
which the disk is due to collide. A picture of the system appears in Figure 12.3
below. The boundaries of the system are hard walls – to prevent atoms escaping
the simulation container – and the atoms at each end of the strip are anchored to
prevent the target from moving as a whole.

♠ pr_12_3

12.3 Embedded-atom approach 339

The following function initializes the coordinates, using CoordInRegion to
identify the atoms forming the projectile and target. The atoms belonging to these
two bodies are initially arranged on a triangular lattice. Two extra items are in-
cluded in the Mol structure, inObj for indicating which atom belongs to which
body and fixed for identifying anchored atoms.

void InitCoords ()

{

VecR c;

real wyMax, wyMin;

int n, nx, ny, p; 5

n = 0;

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) {

p = CoordInRegion (nx, ny, &c); 10

if (p >= 0) {

mol[n].r = c;

mol[n].inObj = p;

++ n;

} 15

}

}

wyMin = 0.5 * region.y;

wyMax = - wyMin;

DO_MOL { 20

if (mol[n].inObj == 1) {

wyMin = Min (wyMin, mol[n].r.y);

wyMax = Max (wyMax, mol[n].r.y);

}

} 25

DO_MOL mol[n].fixed = (mol[n].inObj == 1 &&

(mol[n].r.y == wyMin || mol[n].r.y == wyMax)) ? 1 : 0;

}

int CoordInRegion (int nx, int ny, VecR *pr) 30

{

VecR c, dr;

int regionCode;

regionCode = -1; 35

c.x = nx - initUcell.x / 2 + ((ny % 2 == 0) ? 0.5 : 0.);

c.y = (ny - initUcell.y / 2) * 0.5 * sqrt (3.);

VScale (c, initSep);

if (fabs (c.x) < 0.5 * nMolWall * initSep &&

fabs (c.y) < 0.5 * region.y) regionCode = 1; 40

else {

VSub (dr, c, diskInitPos);

if (VLenSq (dr) < Sqr (0.5 * nMolDisk * initSep)) regionCode = 0;

}

340 12 Many-body interactions

if (regionCode >= 0) *pr = c; 45

return (regionCode);

}

Here, nMolDisk and nMolWall specify the projectile diameter and target thickness
in terms of numbers of atoms; the initial spacing of the atoms is determined by
initSep. The initial x coordinate of the projectile is diskInitPos, and the target
is oriented parallel to the y axis and positioned at the origin. The actual number of
atoms involved in the simulation is computed by the following function.

void EvalMolCount ()

{

VecR c;

int nx, ny;

5

nMol = 0;

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) {

if (CoordInRegion (nx, ny, &c) >= 0) ++ nMol;

} 10

}

}

The velocities are initialized as follows, where diskInitVel is the initial pro-
jectile speed and all mobile atoms are also assigned small random thermal velocities.

void InitVels ()

{

int n;

velMag = 0.1; 5

VZero (vSum);

DO_MOL {

if (! mol[n].fixed) {

VRand (&mol[n].rv);

VScale (mol[n].rv, velMag); 10

VVAdd (vSum, mol[n].rv);

} else VZero (mol[n].rv);

}

DO_MOL {

if (! mol[n].fixed) VVSAdd (mol[n].rv, - 1. / nMol, vSum); 15

if (mol[n].inObj == 0) mol[n].rv.x += diskInitVel;

}

}

12.3 Embedded-atom approach 341

Other required quantities are determined by SetParams, which includes

VecR t;

initSep = pow (2., 1./6.);

region.x = 4. * nMolDisk * initSep;

region.y = region.x; 5

VSet (t, initSep, 0.5 * sqrt (3.) * initSep);

VDiv (initUcell, region, t);

initUcell.y += 2;

VSet (diskInitPos,

0.5 * (- 0.5 * region.x - 0.5 * nMolWall * initSep), 0.); 10

The function SingleStep includes a call to ApplyWallBoundaryCond after
the first call to the leapfrog integrator and to ZeroFixedAccels prior to the second.

void ApplyWallBoundaryCond ()

{

real vSign;

int n;

5

DO_MOL {

if (fabs (mol[n].r.x) >= 0.5 * region.x) {

vSign = (mol[n].r.x > 0.) ? 1. : -1.;

mol[n].r.x = 0.49999 * vSign * region.x;

VScale (mol[n].rv, 0.1); 10

if (mol[n].rv.x * vSign > 0.) mol[n].rv.x *= -1.;

}

... (ditto for y component) ...

}

} 15

void ZeroFixedAccels ()

{

int n;

20

DO_MOL {

if (mol[n].fixed) VZero (mol[n].ra);

}

}

If, after updating the coordinates, an atom is found to be outside the container (in
practice by only a very small amount), then its position and velocity are modified
as if it had collided with the relevant container wall (similar functions appear in
§7.3). The affected coordinate component is altered to bring the atom back inside
and the normal component of the velocity reversed. The velocity is also rescaled to

342 12 Many-body interactions

Fig. 12.3. Collision modeling for a small system: successive frames show the initial state,
the start of the collision, the ejection of matter from the target surface, and the fragmenta-
tion of the projectile.

make collisions of this kind highly inelastic; this helps prevent atoms that bounce
off the container walls from interfering with the process under observation.

All atoms interact the same way, although it is straightforward to allow different
interactions within the projectile and target, and between the two. New variables
and inputs are

VecR diskInitPos;

real diskInitVel, initSep;

int nMolDisk, nMolWall;

NameR (diskInitVel), 5

NameI (nMolDisk),

NameI (nMolWall),

and input data

diskInitVel 4.

nMolDisk 20

nMolWall 8

The results of a single simulation run are shown as a series of images in
Figure 12.3. This is another example of the kind of problem where direct visual-
ization of the behavior proves to be highly informative. Different initial projectile

12.4 Further study 343

speeds will produce different kinds of behavior [hol91]. Since the atoms have small
initial thermal velocities, repeated runs with the same parameters, except for the
random number seed, will lead to different results.

12.4 Further study
12.1 There exists a method for introducing orientation-dependent forces without

resorting to multiple interaction sites; it is based on generalizing the LJ inter-
action to allow both σ and ε to depend on relative molecular alignment (the
molecules are treated as rigid bodies) [gay81, sar93]. Ellipsoidal molecules
used in the study of liquid crystals can be modeled in this way; examine
the spatial and orientational order that occurs in such systems and the ex-
pected transitions between the liquid, nematic (orientationally ordered) and
crystalline states.

12.2 Examine the collision process as a function of projectile size and velocity,
and replace the disk by other shapes; vary the interaction parameters to make
the projectile harder and remove the attractive part of the force between
projectile and target (to prevent impact welding).

12.3 Study how the collision results are affected if the embedded-atom potential
is replaced by, for example, the LJ potential.

12.4 The embedded-atom approach has been used in simulating fracture [hol95];
examine the technical details involved in computations of this kind and, in
particular, how suitable boundary conditions can be incorporated.

13

Long-range interactions

13.1 Introduction

The systems examined so far have been based on interactions whose range is
comparatively short. Short-range forces exclude a very important group of prob-
lems involving electric charges and dipoles; in systems of this type the central
role of the long-range forces cannot be neglected. Long-range interactions, which,
by definition, are not truncated and therefore extend over the entire system, in-
herently require O(N 2

m) computational effort. This requirement clearly precludes
the treatment of large systems directly and has lead to the development of alter-
native approaches that are able to deal with the problem efficiently while reduc-
ing or avoiding truncation artifacts. In this chapter we introduce some of these
techniques.

The first of the methods is based on the Ewald resummation technique familiar
from condensed matter physics. By reorganizing the interaction sums over periodic
images of the system, the Ewald method is able to incorporate periodic boundaries
in a manner that avoids explicit truncation.

The other two methods involve subdividing the simulation region into a hierar-
chy of cells. At each level in the hierarchy, each of the cells has associated with it a
reduced representation of the atoms that it contains, for example, the total charge of
the atoms and the position of their center of charge, or, to extend this idea further,
several coefficients of the multipole expansion of the charges in the cell relative to
the cell center. At ascending levels in the hierarchy – as the cells become larger –
this information provides an increasingly coarse representation of the cell contents,
but this is compensated by the fact that the information from larger cells will only
be used in computing the interactions with more distant atoms.

The simpler of the hierarchical methods considered is an adaptive tree tech-
nique, in which subdivision of each cell is repeated until occupancy reaches unity,

344

13.2 Ewald method 345

but only the center of charge is evaluated for each cell. The other method employs
a fixed number of cell subdivisions, but several terms of the multipole expansion
of each cell’s occupants are generated; this can be carried out efficiently because of
relations that exist between the expansions for smaller and larger cells. The goal
of both approaches is that the interaction computations should require, asymptoti-
cally, O(Nm) computational effort. Note that the cell grids used in these methods
are for organizational purposes only, unlike other particle–grid methods [hoc88]
where the particles experience fields evaluated (from the particle positions) at the
sites of a discrete grid.

13.2 Ewald method

Interaction resummation

In the study of ionic crystals, where long-range electrostatic interactions dominate,
the Ewald method [zim72] is able to take advantage of the periodic lattice struc-
ture to rearrange the expression for the total energy into a form that can be readily
evaluated. The same idea can be applied in simulating charged and dipolar fluids
with periodic boundaries, where, because the long-range force cannot be truncated
without incurring serious error, it continues to act between the periodic replicas of
the system as well. The Ewald technique thus eliminates the discontinuity arising
from truncated long-range forces, although there are more subtle problems con-
nected with how the properties are affected by the choice of boundary conditions
[neu83, del86]. The computational effort depends to some extent on the degree of
accuracy required but it grows considerably less rapidly than the all-pairs O(N 2

m)

rate.
Consider a system of Nm atoms, each of which now carries a charge (for more on

Coulomb systems see [han86a]). A periodic array of replicated systems is created,
in the spirit of the periodic boundary conditions used previously, but now, because
of the long-range nature of the interactions, the energy of the replicated system
includes contributions from all replicas since no truncation is imposed. The total
interaction energy is

Uqq = 1
2

∑
n

′ Nm∑
i=1

Nm∑
j=1

qi q j

|ri j + Ln| (13.2.1)

where qi is the charge on atom i and L is the edge length (a cubic region is as-
sumed). The sum is over all integer vectors n, and the prime indicates that terms
with i = j are omitted when |n| = 0 – self-interaction is prevented but atoms do
interact with their replica images.

346 13 Long-range interactions

The Ewald formula is based on reorganizing this replica sum into sums over
concentric spherical shells, assuming charge neutrality

∑
j q j = 0,

Uqq =
∑

i≤i< j≤Nm

qi q j

[∑
n

′ erfc
(
α|ri j + Ln|)

|ri j + Ln|

+ 1

π L

∑
n �=0

1

n2
exp
(
−π2n2

α2L2
+ 2π i

L
n · ri j

)]

+ 1
2

[∑
n �=0

(
erfc(αLn)

Ln
+ 1

π Ln2
exp
(
−π2n2

α2L2

))
− 2α√

π

] Nm∑
j=1

q2
j

+ 2π

3L3

∣∣∣∣
Nm∑
j=1

q j r j

∣∣∣∣
2

(13.2.2)

where

erfc(x) = 2√
π

∫ ∞

x
e−t2

dt (13.2.3)

is the complementary error function†. There are various derivations of (13.2.2);
one approach [del80] involves the introduction of a convergence factor into a series
that is otherwise only conditionally convergent, followed by a Jacobi theta-function
transformation, and then the extraction of the leading order asymptotic terms as the
convergence factor tends to zero.

The rearranged sums include a parameter α, whose value must be determined
(as shown later) to maximize numerical accuracy; α can be chosen to ensure that
terms of order exp(−α2L2) are negligible, so that (13.2.2) becomes

Uqq =
∑

1≤i< j≤Nm

qi q j erfc(αri j)

ri j
− α√

π

Nm∑
j=1

q2
j

+ 1

2π L

∑
n �=0

[
1

n2
exp
(
−π2n2

L2α2

) ∣∣∣∣
Nm∑
j=1

q j exp
(2π i

L
n · r j

)∣∣∣∣
2] (13.2.4)

The real-space terms in (13.2.4) are now short-ranged, so a spherical cutoff (with
range rc < L/2) can be used together with periodic boundaries. The sum over
Fourier space,

∑
n, will also prove amenable to truncation after only a limited

number of terms. The squared dipole moment sum in (13.2.2) has been dropped

† Note that for x � 1, erfc(x) ∼ e−x2
.

13.2 Ewald method 347

from the result; the physical implication of doing this is that the outermost replica
shell is effectively surrounded by a conducting medium, whereas including this
term would amount to placing the system in a vacuum [del80, del86].

A typical value for the free parameter is α = 5/L , though the results turn out
to be relatively insensitive to the choice, provided there are sufficient terms in

∑
n.

A spherical cutoff is imposed on this sum, so that n ≡ |n| ≤ nc; typically nc is
about 5. The accuracy of the Ewald result with the chosen parameters is readily
checked numerically [kol92]. The invariance under the transformation n → −n
can be used to halve the number of terms in

∑
n by considering nz ≥ 0 only; the

computational work can be reduced even further by restricting the sum to a single
octant and calculating the contributions of the four octants (±nx ,±ny,+nz) at the
same time.

Imposing a cutoff on the real-space sum at rc leads to an error of order
exp(−α2r2

c); truncating the Fourier space sum at nc produces an error of order
exp(−π2n2

c/α
2L2). Therefore, to obtain similarly sized errors in both the real and

Fourier contributions to Uqq , simply set

nc = α2rc L/π (13.2.5)

For the case rc = L/2, if α = 5/L we obtain the very modest number

nc = 25/2π ≈ 4 (13.2.6)

The actual number of terms in the sum (before halving) is roughly 4πn3
c/3. For

large systems it can be shown [per88] that if the optimal α is chosen for a specified
numerical accuracy, then the computational effort grows as N 3/2

m ; this represents a
considerable saving over the original N 2

m dependence and, of course, there are no
longer any errors due to interaction cutoff.

Dipolar systems can be treated in a similar fashion. Even though the interaction
energy of a pair of dipoles falls off with distance as 1/r3, this is still sufficiently
slow in three dimensions for the sum over replica systems to remain condition-
ally convergent, so that the use of a cutoff is not possible; thus the same careful
consideration given to the charge problem is required for dipoles as well.

The interaction of a pair of dipoles of strength µ is

−µ2(si · ∇)(s j · ∇)

(
1

ri j

)
(13.2.7)

where si is a unit vector along the direction of the dipole. This differential oper-
ator can be applied to (13.2.2) to obtain the potential energy of a dipole system

348 13 Long-range interactions

[ada76, del80],

Udd = µ2
∑

1≤i< j≤Nm

[(
erfc(αri j)

r3
i j

+ 2α exp(−α2r2
i j)√

πr2
i j

)
(si · s j)

−
(

3 erfc(αri j)

r5
i j

+
(

2α2 + 3

r2
i j

)2α exp(−α2r2
i j)√

πr2
i j

)
(si · ri j)(s j · ri j)

]

+ 2πµ2

L3

∑
n �=0

[
1

n2
exp
(
−π2n2

L2α2

) ∣∣∣∣
Nm∑
j=1

(n · s j) exp
(2π i

L
n · r j

)∣∣∣∣
2]

− 2α3µ2 Nm

3
√

π
+ 2πµ2

3L3

∣∣∣∣
Nm∑
j=1

s j

∣∣∣∣
2

(13.2.8)

The derivation of (13.2.8) makes use of the results

∇(s · r) = s (13.2.9)

d

dx
erfc(αx) = − 2α√

π
e−α2x2

(13.2.10)

Terms of order exp(−α2L2) will be dropped because α can be chosen to ensure
their extreme smallness, and since the system is again assumed to be surrounded
by a conducting medium the squared sum over s j is also dropped. The energy
(13.2.8) can then be written concisely as

Udd = µ2
∑

1≤i< j≤Nm

[
a1(ri j)(si · s j) − a2(ri j)(si · ri j)(s j · ri j)

]

+ 2πµ2

L3

∑
n �=0

e(n)
[
C(n)2 + S(n)2

]− 2α3µ2 Nm

3
√

π

(13.2.11)

where several new functions have been introduced,

an(r) =

⎧⎪⎨
⎪⎩

erfc(αr)

r3
+ 2α exp(−α2r2)√

πr2
n = 1

−1

r

d

dr
an−1(r) n = 2, 3

(13.2.12)

e(n) = 1

n2
exp
(−π2n2

L2α2

)
(13.2.13)

{
C

S

}
(n) =

Nm∑
j=1

(n · s j)

{
cos

sin

}(2π

L
n · r j

)
(13.2.14)

13.2 Ewald method 349

In the limit α → 0, (13.2.11) reduces to the simple dipole result

Udd = µ2
∑
i< j

1

r3
i j

[
si · s j − 3

r2
i j

(si · ri j)(s j · ri j)
]

(13.2.15)

Dynamics
The MD model used in this case study deals with dipoles that are attached to soft-
sphere atoms; if the LJ potential is used for this problem instead [mai81], the in-
teraction is known as the Stockmayer potential. The Lagrange equations of motion
for translation involve the usual soft-sphere interaction together with a contribution
from the force produced by the dipolar interactions. The latter is obtained by eval-
uating −∇ri Udd , and consists of a sum over atoms truncated at the cutoff range rc,
together with a Fourier space sum truncated at nc. The dipole contribution to the
force on a single atom is thus

fi = µ2
∑
j (�=i)

[(
a2(ri j)(si · s j) − a3(ri j)(si · ri j)(s j · ri j)

)
ri j

+ a2(ri j)
(
(s j · ri j)si + (si · ri j)s j

)]
(13.2.16)

+ 8π2µ2

L4

∑
n �=0

e(n)(n · si)n
[
C(n) sin

(2π

L
n · ri

)
− S(n) cos

(2π

L
n · ri

)]

The equation of motion for the dipole vector si is just the rotation equation for a
linear rigid molecule given in §8.2,

s̈i = I −1 gi − (I −1(si · gi) + ṡ2
i

)
si (13.2.17)

where gi = −∇si Udd also can be expressed as two sums,

gi = µ2
∑
j (�=i)

[−a1(ri j)s j + a2(ri j)(s j · ri j)ri j] (13.2.18)

− 4πµ2

L3

∑
n �=0

e(n)n
[
C(n) cos

(2π

L
n · ri

)
+ S(n) sin

(2π

L
n · ri

)]

In (13.2.17) we demonstrate the use of the second-order form of the rotational
equation of motion; there is also an alternative method based on a pair of first-
order equations for each dipole (see §8.2).

The real-space contributions to each of the force terms fi and gi , and to the po-
tential energy, are evaluated♠ by the following function; a cubic simulation region
is assumed throughout, with the cutoff at rc = L/2.

♠ pr_13_1

350 13 Long-range interactions

void ComputeForcesDipoleR ()

{

VecR dr, w;

real a1, a2, a3, alpha2, d, irPi, rr, rrCut, rri, sr1, sr2, ss, t;

int j1, j2, n; 5

rrCut = Sqr (0.5 * region.x);

irPi = 1. / sqrt (M_PI);

alpha2 = Sqr (alpha);

DO_MOL VZero (mol[n].sa); 10

for (j1 = 0; j1 < nMol - 1; j1 ++) {

for (j2 = j1 + 1; j2 < nMol; j2 ++) {

VSub (dr, mol[j1].r, mol[j2].r);

VWrapAll (dr);

rr = VLenSq (dr); 15

if (rr < rrCut) {

d = sqrt (rr);

rri = 1. / rr;

t = 2. * dipoleInt * alpha * exp (- alpha2 * rr) * rri * irPi;

a1 = dipoleInt * erfc (alpha * d) * rri / d + t; 20

a2 = 3. * a1 * rri + 2. * alpha2 * t;

a3 = 5. * a2 * rri + 4. * Sqr (alpha2) * t;

ss = VDot (mol[j1].s, mol[j2].s);

sr1 = VDot (mol[j1].s, dr);

sr2 = VDot (mol[j2].s, dr); 25

VSSAdd (w, sr2, mol[j1].s, sr1, mol[j2].s);

t = (a2 * ss - a3 * sr1 * sr2);

VSSAdd (w, t, dr, a2, w);

VVAdd (mol[j1].ra, w);

VVSub (mol[j2].ra, w); 30

VVSAdd (mol[j1].sa, - a1, mol[j2].s);

VVSAdd (mol[j1].sa, a2 * sr2, dr);

VVSAdd (mol[j2].sa, - a1, mol[j1].s);

VVSAdd (mol[j2].sa, a2 * sr1, dr);

uSum += a1 * ss - a2 * sr1 * sr2; 35

}

}

}

uSum -= 2. * dipoleInt * Cube (alpha) * nMol * irPi / 3.;

} 40

The version of the structure Mol used here has the additional elements

VecR s, sv, sa, sa1, sa2, so, svo;

The next function handles the Fourier space part of the interactions. Here there
is a choice between versions that either do or do not take advantage of the full
symmetries in the sum over n. The latter is more concise, the former more efficient

13.2 Ewald method 351

but even more tedious to read. We will leave the faster version as an exercise for the
concerned reader and discuss the shorter form that only makes use of the shortcut
provided by the ±n symmetry. In the computation, the sines and cosines of the dot
products are each expanded as triple-product sums

sin(x + y + z) = sin x cos y cos z + . . . (13.2.19)

and the trigonometric functions are tabulated by EvalSinCos prior to the calcula-
tion using multiple-angle recursion relations, as in §5.4.

void ComputeForcesDipoleF ()

{

VecR vc, vn, vs;

real fMult, gr, gs, gu, pc, ps, sumC, sumS, t, w;

int n, nvv, nx, ny, nz; 5

gu = 2. * M_PI * dipoleInt / Cube (region.x);

gr = 4. * M_PI * gu / region.x;

gs = 2. * gu;

EvalSinCos (); 10

w = Sqr (M_PI / (region.x * alpha));

for (nz = 0; nz <= fSpaceLimit; nz ++) {

for (ny = - fSpaceLimit; ny <= fSpaceLimit; ny ++) {

for (nx = - fSpaceLimit; nx <= fSpaceLimit; nx ++) {

VSet (vn, nx, ny, nz); 15

nvv = VLenSq (vn);

if (nvv == 0 || nvv > Sqr (fSpaceLimit)) continue;

fMult = 2. * exp (- w * nvv) / nvv;

if (nz == 0) fMult *= 0.5;

sumC = 0.; 20

sumS = 0.;

DO_MOL {

VSet (vc, tCos[abs (nx)][n].x, tCos[abs (ny)][n].y,

tCos[nz][n].z);

VSet (vs, tSin[abs (nx)][n].x, tSin[abs (ny)][n].y, 25

tSin[nz][n].z);

if (nx < 0) vs.x = - vs.x;

if (ny < 0) vs.y = - vs.y;

pc = vc.x * vc.y * vc.z - vc.x * vs.y * vs.z -

vs.x * vc.y * vs.z - vs.x * vs.y * vc.z; 30

ps = vs.x * vc.y * vc.z + vc.x * vs.y * vc.z +

vc.x * vc.y * vs.z - vs.x * vs.y * vs.z;

sumC += VDot (vn, mol[n].s) * pc;

sumS += VDot (vn, mol[n].s) * ps;

} 35

DO_MOL {

VSet (vc, tCos[abs (nx)][n].x, tCos[abs (ny)][n].y,

tCos[nz][n].z);

VSet (vs, tSin[abs (nx)][n].x, tSin[abs (ny)][n].y,

352 13 Long-range interactions

tSin[nz][n].z); 40

if (nx < 0) vs.x = - vs.x;

if (ny < 0) vs.y = - vs.y;

pc = vc.x * vc.y * vc.z - vc.x * vs.y * vs.z -

vs.x * vc.y * vs.z - vs.x * vs.y * vc.z;

ps = vs.x * vc.y * vc.z + vc.x * vs.y * vc.z + 45

vc.x * vc.y * vs.z - vs.x * vs.y * vs.z;

t = gr * fMult * VDot (vn, mol[n].s) *

(sumC * ps - sumS * pc);

VVSAdd (mol[n].ra, t, vn);

t = gs * fMult * (sumC * pc + sumS * ps); 50

VVSAdd (mol[n].sa, - t, vn);

}

uSum += gu * fMult * (Sqr (sumC) + Sqr (sumS));

}

} 55

}

}

Here, fSpaceLimit corresponds to nc. The function that fills the sine and cosine
arrays is

void EvalSinCos ()

{

VecR t, tt, u, w;

int j, n;

5

VSetAll (t, 2. * M_PI);

VDiv (t, t, region);

DO_MOL {

VMul (tt, t, mol[n].r);

VSetAll (tCos[0][n], 1.); 10

VSetAll (tSin[0][n], 0.);

VSet (tCos[1][n], cos (tt.x), cos (tt.y), cos (tt.z));

VSet (tSin[1][n], sin (tt.x), sin (tt.y), sin (tt.z));

VSCopy (u, 2., tCos[1][n]);

VMul (tCos[2][n], u, tCos[1][n]); 15

VMul (tSin[2][n], u, tSin[1][n]);

VSetAll (tt, 1.);

VVSub (tCos[2][n], tt);

for (j = 3; j <= fSpaceLimit; j ++) {

VMul (w, u, tCos[j - 1][n]); 20

VSub (tCos[j][n], w, tCos[j - 2][n]);

VMul (w, u, tSin[j - 1][n]);

VSub (tSin[j][n], w, tSin[j - 2][n]);

}

} 25

}

13.2 Ewald method 353

The right-hand sides of the equations of motion (13.2.17) are computed by the
following function; prior to calling the function, the variables mol[].sa contain
the values of gi .

void ComputeDipoleAccel ()

{

real t;

int n;

5

DO_MOL {

t = VDot (mol[n].sa, mol[n].s) + mInert * VLenSq (mol[n].sv);

VVSAdd (mol[n].sa, - t, mol[n].s);

VScale (mol[n].sa, 1. / mInert);

} 10

}

New variables appearing in this program are

VecR **tCos, **tSin;

real alpha, dipoleInt, mInert, vvsSum;

int fSpaceLimit, stepAdjustTemp;

where dipoleInt corresponds to µ2; input data include

NameR (alpha),

NameR (dipoleInt),

NameI (fSpaceLimit),

NameR (mInert),

NameI (stepAdjustTemp), 5

and the extra array allocations (AllocArrays) are

AllocMem2 (tCos, fSpaceLimit + 1, nMol, VecR);

AllocMem2 (tSin, fSpaceLimit + 1, nMol, VecR);

Initialization (SetupJob) requires

InitAngCoords ();

InitAngVels ();

InitAngAccels ();

where, assuming the dipoles are initially aligned, these functions are

void InitAngCoords ()

{

int n;

354 13 Long-range interactions

DO_MOL VSet (mol[n].s, 0., 0., 1.); 5

}

void InitAngVels ()

{

real ang, angvFac; 10

int n;

angvFac = velMag / sqrt (1.5 * mInert);

DO_MOL {

ang = 2. * M_PI * RandR (); 15

VSet (mol[n].sv, cos (ang), sin (ang), 0.);

VScale (mol[n].sv, angvFac);

}

}

and InitAngAccels is based on the PC version of InitAccels (§3.6). The initial
values ensure that ṡi = ωi × si , and the factor of 1.5 in InitAngVels arises from
the fact that each molecule has only two rotational degrees of freedom.

The sequence of function calls in SingleStep is the following:

PredictorStep ();

PredictorStepS ();

ComputeForces ();

ComputeForcesDipoleR ();

ComputeForcesDipoleF (); 5

ComputeDipoleAccel ();

ApplyThermostat ();

CorrectorStep ();

CorrectorStepS ();

AdjustDipole (); 10

ApplyBoundaryCond ();

EvalProps ();

if (stepCount % stepAdjustTemp == 0) AdjustTemp ();

The integration functions PredictorStepS and CorrectorStepS for the
rotational motion are the same as the corresponding (three-dimensional) transla-
tional functions – simply change the variable names. Calculations of kinetic en-
ergy, the Lagrange multiplier used for the thermostat, and the temperature adjust-
ment, must all allow for the rotational motion, as described in §8.2. The function
AdjustDipole is needed to restore the s vectors to unit length because of the small
numerical drift,

void AdjustDipole ()

{

real sFac;

int n;

13.2 Ewald method 355

5

DO_MOL {

sFac = VLen (mol[n].s);

VScale (mol[n].s, 1. / sFac);

}

} 10

Properties

In addition to the spatial correlations present in the fluid, the fact that each molecule
has a dipole moment means that orientational order can be studied as well. The
magnitude of the dipole directional order parameter

M = 1

Nm

∣∣∣∣
Nm∑
i=1

si

∣∣∣∣ (13.2.20)

is evaluated by an addition to EvalProps,

VecR w;

...

VZero (w);

DO_MOL VVAdd (w, mol[n].s);

dipoleOrder.val = VLen (w) / nMol; 5

The variable used in computing 〈M〉 and its fluctuations – the latter are related to
the dielectric constant [del86, han86b] – is

Prop dipoleOrder;

and the additions to AccumProps for this calculation are

if (icode == 0) {

...

PropZero (dipoleOrder);

} else if (icode == 1) {

... 5

PropAccum (dipoleOrder);

} else if (icode == 2) {

...

PropAvg (dipoleOrder, stepAvg);

} 10

The order parameter M is a measure of long-range orientational order, but the
local dipole alignment is a separate issue. The liquid state is characterized by short-
range structural order, so that for a dipolar fluid it becomes possible to examine cer-
tain combinations of positional and orientational order to determine, for example,

356 13 Long-range interactions

how the average relative orientation of the dipoles in the neighborhood of a given
dipole depends on range. To be more specific, given the definition of some orienta-
tional quantity, compute its average values over the atoms in a series of concentric
spherical shells centered on the atom of interest; this amounts to an extension of
the RDF computation in §4.3 where only shell occupancy was considered.

The two quantities of interest here [del86, han86b] are the relative orientation
of the dipole vectors, si · s j , and the angular part of the dipole energy (13.2.15),
namely, 3(si · r̂i j)(s j · r̂i j) − si · s j . The principal change to EvalRdf, apart from
having to initialize and later normalize three sets of data rather than one, just as in
the case of rigid molecules (§8.4), is the addition

real sr1, sr2, ss;

...

if (rr < Sqr (rangeRdf)) {

ss = VDot (mol[j1].s, mol[j2].s);

sr1 = VDot (mol[j1].s, dr); 5

sr2 = VDot (mol[j2].s, dr);

n = sqrt (rr) / deltaR;

++ histRdf[0][n];

histRdf[1][n] += ss;

histRdf[2][n] += 3. * sr1 * sr2 / rr - ss; 10

}

Measurements
We begin with a test♠ that provides some idea of the accuracy of the Ewald method
for dipole systems. The computations use a set of 216 dipoles that are randomly
positioned and oriented in a cube of edge L = 10. In order to prevent the results
from being dominated by a few very close pairs, instead of using completely ran-
dom coordinates, the dipoles are placed at the sites of a simple cubic lattice and
then each coordinate component is randomly shifted in either direction by up to a
quarter of the lattice spacing. The dipole energy and the sum of the absolute values
of the force components (per dipole and with µ = 1) are then computed for various
values of α and nc. The results of the force calculations are shown in Figure 13.1;
even with nc = 5 there is no problem in obtaining forces with relative error of
order 10−4 and energies (not shown) with error 10−3.

The MD run described here – compare [pol80, kus90] which use slightly differ-
ent potentials – is carried out for Nm = 108, with input data

alpha 5.5

deltaT 0.0025

density 0.8

♠ pr_ewaldtest

13.2 Ewald method 357

4 5 6 7
522.8

522.9

523.0

523.1

523.2

alpha * length

fo
rc

e
su

m

Fig. 13.1. Sum of force components for a random dipole system as a function of the
parameter α, for nc = 5, 6 and 7.

dipoleInt 4.

fSpaceLimit 5

initUcell 3 3 3

limitRdf 250

mInert 0.025

rangeRdf 2.5

sizeHistRdf 125

stepAdjustTemp 1000

stepAvg 200

stepEquil 1000

stepLimit 86000

stepRdf 20

temperature 1.35

The initial state is an FCC lattice with parallel dipoles. We use constant-temperature
dynamics, PC integration and a timestep whose value is influenced by the moment
of inertia; the temperature drift over 1000 timesteps is typically 0.5% (there is also
a very slight drift in the center of mass momentum due to the way the forces are
evaluated, which must also be corrected).

The results for g(r) and the two functions used to measure short-range orienta-
tional order are shown in Figure 13.2. The function h110(r) measures the distance
dependence of 〈si · s j 〉 and h112(r) does the same for 〈3(si · r̂i j)(s j · r̂i j) − si · s j 〉.
Equilibration tends to be relatively slow for this system, so measurements made
during the first 50 000 timesteps are ignored and the rest are averaged.

358 13 Long-range interactions

0.5 1.0 1.5 2.0 2.5
-1

0

1

2

3

distance

ra
di

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Fig. 13.2. Radial distribution function (solid curve) for the dipole fluid, together with the
correlation functions h112(r) (short dashes) and h110(r) (long dashes).

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

time

or
de

r
pa

ra
m

et
er

Fig. 13.3. Time dependence of the order parameter for two different runs.

Properties associated with the presence of long-range order, in particular the
dielectric constant, are more difficult to evaluate reliably [kus90]. One reason for
this is the very long fluctuation timescale. Figure 13.3 shows how M varies over
the course of two separate runs, with different values of randSeed used for the
initial state as in §2.5 (see also [pay93]). Attempting to estimate a mean value from

13.3 Tree-code approach 359

data that is subject to relatively large fluctuations over long time intervals is risky
at best; while the results indicate 〈M〉 = 0.62, a block variance analysis (§4.2)
designed to obtain σ

(〈M〉) shows no hint of convergence. In order to arrive at a
reliable estimate – not the goal of this pedagogical demonstration – substantially
longer runs are required. The question of the nature of the surrounding medium
alluded to earlier, as well as the possible size dependence of the results, must also
be addressed.

13.3 Tree-code approach

Design considerations

The adaptive approach to handling long-range interactions [mak89, pfa94] can be
described as follows. Subdivide the entire region into eight cells (for the case of
three dimensions, four cells in two dimensions); repeat the subdivision for each of
the cells that contains more than a single atom, and continue this recursive process
until no cells are multiply occupied. The interaction computation then considers
each atom in turn and pairs it with all cells, beginning with the cells at the top level
in the subdivision hierarchy. If the center of the cell is sufficiently distant from the
atom – the distance criterion is chosen to be proportional to the size of the cell
under examination, so the relevant quantity is the angle subtended by the cell at
the atom position – then its total charge, positioned at the center of charge, is used
to represent the entire contents of the cell. If this criterion is not met, each of the
occupied descendant cells must be examined in a similar manner. This process may
need to continue until a singly-occupied cell is eventually reached, at which stage
the pair of atoms can be treated without approximation.

The accuracy of the interaction calculation depends on the minimal range at
which a cell is no longer required to undergo further subdivision; the greater the
range, the higher the accuracy. Since the computation speed drops as the range is
increased, a compromise between accuracy and performance must be established
empirically. A similar issue is encountered in the fast-multipole method described
in the next section. Clearly, a certain minimal number of atoms is required for
this technique to be more efficient computationally than the much simpler all-pairs
approach.

Tree construction

The most natural way of structuring the data used to organize the atoms into a
hierarchical set of cells is the ‘oct-tree’, a tree structure [knu68, knu73] in which

360 13 Long-range interactions

each node represents a cell†, and – assuming the cell contains more than one atom –
includes pointers to the nodes at the next level in the tree representing the cells into
which it is divided. The C structure associated with each cell node is♠

typedef struct {

VecR cm, midPt;

int atomPtr, nOcc, nSub, subPtr;

} TCell;

It contains the coordinates of the cell’s center of charge cm and midpoint midPt. A
singly-occupied cell uses atomPtr to identify the atom involved; during the subdi-
vision phase atomPtr is employed as the start of a temporary linked list of atoms
belonging to the cell that have yet to be assigned to smaller cells at the next level
in the subdivision. Other elements are the number of atoms in the cell nOcc, the
number of occupied descendant cells nSub and a pointer subPtr showing where
the first of the occupied descendant cells at the next lower level is stored; additional
descendants will be stored consecutively – indeed all occupied cells at a given level
are stored consecutively – and cells found to be empty are ignored.

The tree is constructed (at each timestep) by successively subdividing occupied
cells, one level of the hierarchy at a time, until no multiple occupancies remain;
the process is detailed below. Additional information, required to complete the
description of each level in the hierarchy and assist in the processing, is placed in
the structure

typedef struct {

VecR coordSum;

int cCur, cLast, fCell, lCell;

} TLevel;

The roles of these quantities will become apparent in due course. Additionally, the
Mol structure associated with each atom includes a pointer next, used for building
the linked lists of atoms associated with the cells during tree construction (the list
whose header is stored in atomPtr).

The interaction computations involve a backtracking algorithm that traverses the
oct-tree, level by level, starting from the top level; each cell is accessed in turn,
and a decision is made whether it is sufficiently far from the atom under consid-
eration that its center of charge coordinates can be used to evaluate the forces, or
whether further subdivision is required‡. Computing the centers of charge of the
cell contents uses a similar scheme. While there are, of course, a variety of ways

† These cells are distinct from the cells used elsewhere for short-range interactions.
♠ pr_13_2
‡ Recursion is not used explicitly in the program – in the sense that functions repeatedly call themselves – to

avoid the computational overhead involved; instead, an equivalent iterative approach is used.

13.3 Tree-code approach 361

of organizing both the computation and the supporting data structures, the method
used here has been chosen for its simplicity; efficiency is unlikely to be impacted
significantly on account of this choice.

The individual functions required for the force computation are called from
ComputeForces,

void ComputeForces ()

{

BuildIntTree ();

LocateIntTreeCellCm ();

ScanIntTree (); 5

}

Since this approach does not attempt to address the interaction truncation issue, pe-
riodic boundaries are not used and the system will have hard-wall boundaries (note
that due to wall collisions total momentum is not conserved in this case). Clearly,
a large region size is required if finite-size effects are to be kept to a minimum; if
the system is energetically bound, placing the walls at a sufficiently large distance
could produce an effectively open system, provided no atoms manage to travel far
enough to encounter the walls.

The function BuildIntTree constructs the tree structure. The subdivision pro-
cess continues until cells contain only a single atom; limits (assumed to be ade-
quately large) have been set on the numbers of levels and cells allowed, but these
restrictions could be relaxed.

void BuildIntTree ()

{

VecR cEdge;

int c, cFree, m, mm, n, nOccMax, nv, p, pp;

5

nv = 0;

cFree = 1;

tLevel[nv].fCell = 0;

tLevel[nv].lCell = 0;

tCell[0].nOcc = nMol; 10

VZero (tCell[0].midPt);

tCell[0].atomPtr = 0;

DO_MOL mol[n].next = n + 1;

mol[nMol - 1].next = -1;

nOccMax = nMol; 15

cEdge = region;

while (nOccMax > 1) {

++ nv;

if (nv > maxLevel) ErrExit (ERR_TOO_MANY_LEVELS);

VScale (cEdge, 0.5); 20

tLevel[nv].fCell = cFree;

362 13 Long-range interactions

nOccMax = 1;

for (c = tLevel[nv - 1].fCell; c <= tLevel[nv - 1].lCell; c ++) {

if (tCell[c].nOcc > 1) {

tCell[c].subPtr = cFree; 25

if (cFree + 8 >= maxCells) ErrExit (ERR_TOO_MANY_CELLS);

for (m = 0; m < 8; m ++) {

tCell[cFree + m].nOcc = 0;

tCell[cFree + m].atomPtr = -1;

} 30

for (p = tCell[c].atomPtr; p >= 0; p = pp) {

m = ((mol[p].r.x >= tCell[c].midPt.x) ? 1 : 0) +

((mol[p].r.y >= tCell[c].midPt.y) ? 2 : 0) +

((mol[p].r.z >= tCell[c].midPt.z) ? 4 : 0);

pp = mol[p].next; 35

mol[p].next = tCell[cFree + m].atomPtr;

tCell[cFree + m].atomPtr = p;

++ tCell[cFree + m].nOcc;

}

mm = 0; 40

for (m = 0; m < 8; m ++) {

if (tCell[cFree + m].nOcc > 0) {

tCell[cFree + mm].atomPtr = tCell[cFree + m].atomPtr;

tCell[cFree + mm].nOcc = tCell[cFree + m].nOcc;

nOccMax = Max (nOccMax, tCell[cFree + mm].nOcc); 45

VSAdd (tCell[cFree + mm].midPt, tCell[c].midPt,

-0.5, cEdge);

if (m & 1) tCell[cFree + mm].midPt.x += cEdge.x;

if (m & 2) tCell[cFree + mm].midPt.y += cEdge.y;

if (m & 4) tCell[cFree + mm].midPt.z += cEdge.z; 50

++ mm;

}

}

tCell[c].nSub = mm;

cFree += mm; 55

}

}

tLevel[nv].lCell = cFree - 1;

}

tLevel[nv + 1].lCell = -1; 60

}

After the cell assignment, the centers of charge of the cell occupants are com-
puted using a backtracking algorithm to traverse the tree. In this example all atoms
are assumed to have identical (unit) charge, so the centers of charge and mass co-
incide; this is easily changed to handle the more general case.

void LocateIntTreeCellCm ()

{

int nv, p;

13.3 Tree-code approach 363

nv = 0; 5

tLevel[nv].cCur = 0;

tLevel[nv].cLast = tCell[0].nSub;

VZero (tLevel[nv].coordSum);

do {

if (tLevel[nv].cCur < tLevel[nv].cLast) { 10

if (tCell[tLevel[nv].cCur].nOcc == 1) {

p = tCell[tLevel[nv].cCur].atomPtr;

tCell[tLevel[nv].cCur].cm = mol[p].r;

VVAdd (tLevel[nv].coordSum, mol[p].r);

++ tLevel[nv].cCur; 15

} else {

++ nv;

tLevel[nv].cCur = tCell[tLevel[nv - 1].cCur].subPtr;

tLevel[nv].cLast = tLevel[nv].cCur +

tCell[tLevel[nv - 1].cCur].nSub; 20

VZero (tLevel[nv].coordSum);

}

} else {

VVAdd (tLevel[nv - 1].coordSum, tLevel[nv].coordSum);

VSCopy (tCell[tLevel[nv - 1].cCur].cm, 25

1. / tCell[tLevel[nv - 1].cCur].nOcc, tLevel[nv].coordSum);

-- nv;

++ tLevel[nv].cCur;

}

} while (nv > 0); 30

}

New variables introduced for this computation are

TLevel *tLevel;

TCell *tCell;

real distFac;

int maxCells, maxLevel, nPair;

and the required memory allocation (in AllocArrays)

AllocMem (tLevel, maxLevel, TLevel);

AllocMem (tCell, maxCells, TCell);

with maxLevel supplied as input data, and the rather arbitrary limit (in SetParams)

maxCells = 2 * nMol;

364 13 Long-range interactions

Interaction computations

The interactions are evaluated by ScanIntTree, again using a backtracking ap-
proach. This function considers each atom in turn and pairs it with the averaged
contents of all the cells at suitable levels in hierarchy. The level at which each cell
is utilized depends on its distance from the atom, the further away it is, the larger
the cell can be (in other words, it can be at a higher level in the tree) while main-
taining a specified degree of accuracy. Note that Newton’s third law is not used
here; indeed, because of the way the atoms contribute to the combined cell sums,
the interaction of atom i on j and that of j on i at a given instant can differ, so that
the total momentum is not strictly conserved (even without the effects of the hard
walls).

void ScanIntTree ()

{

VecR dr;

real b, edgeLen, rr, rri;

int n, nv, p; 5

DO_MOL VZero (mol[n].ra);

uSum = 0.;

nPair = 0;

DO_MOL { 10

nv = 0;

edgeLen = region.x;

tLevel[nv].cCur = 0;

tLevel[nv].cLast = tCell[0].nSub;

do { 15

if (tLevel[nv].cCur < tLevel[nv].cLast) {

VSub (dr, mol[n].r, tCell[tLevel[nv].cCur].cm);

rr = VLenSq (dr);

if (rr > Sqr (distFac * edgeLen)) {

rri = 1. / rr; 20

b = tCell[tLevel[nv].cCur].nOcc * sqrt (rri);

VVSAdd (mol[n].ra, b * rri, dr);

uSum += b;

++ nPair;

++ tLevel[nv].cCur; 25

} else {

if (tCell[tLevel[nv].cCur].nOcc == 1) {

p = tCell[tLevel[nv].cCur].atomPtr;

if (p != n) {

VSub (dr, mol[n].r, mol[p].r); 30

rri = 1. / VLenSq (dr);

b = sqrt (rri);

VVSAdd (mol[n].ra, b * rri, dr);

uSum += b;

++ nPair; 35

}

13.4 Fast-multipole method 365

++ tLevel[nv].cCur;

} else {

++ nv;

tLevel[nv].cCur = tCell[tLevel[nv - 1].cCur].subPtr; 40

tLevel[nv].cLast = tLevel[nv].cCur +

tCell[tLevel[nv - 1].cCur].nSub;

edgeLen *= 0.5;

}

} 45

} else {

-- nv;

++ tLevel[nv].cCur;

edgeLen *= 2.;

} 50

} while (nv > 0);

}

}

The overall accuracy of the calculation is determined by the parameter distFac.
When multiplied by the cell size edgeLen at the level of subdivision being tested,
it specifies the minimum distance from the atom at which a (multiply occupied)
cell of that particular size can be used without further subdivision. The variable
nPair counts how many interaction terms are computed. Filling in the remaining
details of the calculation is left as an exercise for the reader.

13.4 Fast-multipole method

Background

The tree-code approach regards all the charged particles in each cell as being posi-
tioned at a single point; in terms of multipole expansions, this amounts to ignoring
all but the lowest-order monopole term. Accuracy can be improved by extending
the expansions to higher order; furthermore, once it is realized that there are ways
of transforming the coefficients of the multipole expansions that allow evaluation
of cell contributions at the different levels of the hierarchy without having to re-
compute the expansions in their entirety, the computations involved can be carried
out very efficiently [gre88, gre89a, whi94]. The discussion begins with a review of
multipole expansions from a computational perspective.

Multipole expansions

The familiar multipole expansion of electrostatics – involving one large distance
variable and one small – can be written as

1

|r − r ′| =
∑
l≥0

∑
|m|≤l

r ′l

r l+1

(l − m)!
(l + m)! Pm

l (cos θ) Pm
l (cos θ ′) eim(φ−φ′) (13.4.1)

366 13 Long-range interactions

for r > r ′, where r = (r, θ, φ) and r ′ = (r ′, θ ′, φ′) in spherical coordinates; the
functions Pm

l (u), where m ≤ l, are associated Legendre functions† [abr68]

Pm
l (u) = (−1)m

2l l! (1 − u2)m/2 dl+m

dxl+m
(u2 − 1)l (13.4.2)

The expansion (13.4.1) can be expressed more compactly as

1

|r − r ′| =
∑
l≥0

∑
|m|≤l

Mlm(r) Llm(r ′) (13.4.3)

where

Mlm(r) = (l − m)!
rl+1

Pm
l (cos θ) eimφ (13.4.4)

Llm(r) = rl

(l + m)! Pm
l (cos θ) e−imφ (13.4.5)

Note that both Mlm and Llm satisfy

Ml,−m(r) = (−1)m M∗
lm(r) (13.4.6)

Mlm(−r) = (−1)l Mlm(r) (13.4.7)

For computational work it is convenient to treat the real and imaginary parts of
these quantities separately [per96]. Let

Mlm(r) = Mc
lm(r) + i Ms

lm(r) (13.4.8)

Llm(r) = Lc
lm(r) − i Ls

lm(r) (13.4.9)

then

1

|r − r ′| =
∑
l≥0

l∑
m=0

(2 − δm0) [Mc
lm(r) Lc

lm(r ′) + Ms
lm(r) Ls

lm(r ′)] (13.4.10)

where all the coefficients Mc,s
lm and Lc,s

lm can be evaluated by recursion relations, as
described below; from (13.4.6), Mc,s

lm and Lc,s
lm both satisfy

Mc
l,−m(r) = (−1)m Mc

lm(r) (13.4.11)

Ms
l,−m(r) = (−1)m+1 Ms

lm(r) (13.4.12)

A two-center multipole expansion exists that generalizes (13.4.1) to the case of
one large and two small variables. It appears in various forms in the literature,
originally in [car50], and can be expressed compactly [whi94] (omitting obvious
summation limits) as

1

|c − (a + b)| =
∑
lm

∑
l ′m′

Llm(a) Ml+l ′,m+m′(c) Ll ′m′(b) (13.4.13)

† There is more than one definition of Pm
l (u) to be found in the literature.

13.4 Fast-multipole method 367

This expansion is convergent for |a| + |b| < (
√

2 − 1)|c|.

Recursion relations and derivatives

The associated Legendre functions can be evaluated with the aid of recursion rela-
tions [pre92], starting from P0

0 = 1,

Pm
m = −(2m − 1)(1 − u2)1/2 Pm−1

m−1 (13.4.14)

Pm
l = 1

l − m
[(2l − 1)u Pm

l−1 − (l + m − 1)Pm
l−2] (13.4.15)

The corresponding relations for Mc,s
lm (r) and Lc,s

lm (r), where r = (x, y, z), are to be
found in [per96] (allowing for notation changes); starting with

Mc
00 = 1

r
, Ms

00 = 0, Lc
00 = 0, Ls

00 = 0 (13.4.16)

the coefficients with identical indices (m = l) are generated by

Mc
mm = −2m − 1

r2
[x Mc

m−1,m−1 − yMs
m−1,m−1] (13.4.17)

Ms
mm = −2m − 1

r2
[yMc

m−1,m−1 + x Ms
m−1,m−1] (13.4.18)

Lc
mm = − 1

2m
[x Lc

m−1,m−1 − yLs
m−1,m−1] (13.4.19)

Ls
mm = − 1

2m
[yLc

m−1,m−1 + x Ls
m−1,m−1] (13.4.20)

while the remaining (m < l) coefficients satisfy (the same expressions apply for
both the c and s superscripts)

Mc,s
lm = 1

r2
[(2l − 1)zMc,s

l−1,m − (l − 1 + m)(l − 1 − m)Mc,s
l−2,m] (13.4.21)

Lc,s
lm = 1

(l + m)(l − m)
[(2l − 1)zLc,s

l−1,m − r2Lc,s
l−2,m] (13.4.22)

The force calculations will require evaluation of the x , y and z derivatives of
Llm ; these can be derived with the aid of the formula [hob31]

∂ m
± ∂ l−m

z

(
1

r

)
= (−1)l−m (l − m)!

rl+1
Pm

l (cos θ) e±imφ (13.4.23)

where the partial derivatives are

∂± ≡ ∂

∂x
± i

∂

∂y
, ∂z ≡ ∂

∂z
(13.4.24)

368 13 Long-range interactions

From (13.4.5) and (13.4.23) we obtain

Llm = (−1)l−mr2l+1

(l + m)! (l − m)! ∂ m
− ∂ l−m

z

(
1

r

)
(13.4.25)

The derivatives ∂±Llm and ∂z Llm can be evaluated by using

∂+∂− = −∂2
z (13.4.26)

together with

∂±r2l+1 = (2l + 1)r2l sin θ e±iφ (13.4.27)

∂zr
2l+1 = (2l + 1)r2l cos θ (13.4.28)

Then apply two of the standard recursion relations for Pm
l (cos θ), namely,

(2l + 1) sin θ Pm
l = Pm+1

l−1 − Pm+1
l+1 (13.4.29)

= (l − m + 1)(l − m + 2)Pm−1
l+1

− (l + m)(l + m − 1)Pm−1
l−1 (13.4.30)

to obtain

∂±Llm = ∓Ll−1,m∓1 (13.4.31)

∂z Llm = Ll−1,m (13.4.32)

The derivatives of the real and imaginary components follow immediately,

∂

∂x
Lc,s

lm = 1

2
[Lc,s

l−1,m+1 − Lc,s
l−1,m−1] (13.4.33)

∂

∂y
Lc,s

lm = ±1

2
[Ls,c

l−1,m+1 + Ls,c
l−1,m−1] (13.4.34)

∂

∂z
Lc,s

lm = Lc,s
l−1,m (13.4.35)

where, in (13.4.34), ∂Lc/∂y depends on Ls and vice versa, and the minus sign
applies to Ls .

Hierarchical subdivision

The goal of the method is to use multipole expansions to reduce the computational
effort from O(N 2

m) to O(Nm). As with the tree-code approach, this is accomplished
by means of a hierarchical subdivision of the region into cells, with the cell size at
each level being half that of the level above. Interactions between atoms in neigh-
boring cells at the lowest level are computed directly, but for atoms in more distant

13.4 Fast-multipole method 369

cells, evaluating the interactions involves the use of multipole expansions to repre-
sent the cell occupants. The coefficients of the multipole expansions for the atoms
in each of the cells at the lowest level are computed; this information is then trans-
ferred, in ways to be specified below, both up and down the hierarchy, and between
cells at the same level of the hierarchy.

Depending on the order at which the multipole expansions are truncated, and the
maximum distance between directly treated neighboring cells, any desired degree
of accuracy can be achieved, although the computational cost increases with accu-
racy. The amount of work grows linearly with Nm , but the system size at which the
method becomes more efficient than the all-pairs approach depends on the required
accuracy [whi94, ess95].

The present treatment assumes a fixed level of subdivision; the method can be
extended to allow the level of subdivision to adapt locally according to the density
(in a manner reminiscent of the tree-code method), a useful approach for problems
where significant spatial inhomogeneity occurs. Since each level in the hierarchy
contains eight times as many cells as the level above (in three dimensions), not
too many levels are required; the total number of levels, starting with a single cell
for the entire region at the top level, need not exceed �log Nm/ log 8�. Periodic
boundaries are not taken into account here, but the method can be extended to
incorporate them [cha97].

Operations on multipole expansions

The fast-multipole method [gre88, whi94] relies on the fact that when the origin
of the multipole expansion (13.4.1) is changed, the coefficients of the original and
shifted expansions can be related using (13.4.13). Furthermore, (13.4.1) can be
converted into a local power series around a distant origin, and the origin of this
new expansion can itself be changed; in both instances the expansion coefficients
can be related, again with the aid of (13.4.13). In each of the three cases considered
below, it is assumed that the distances involved are chosen to ensure the expansion
converges – conditions that are indeed satisfied when the expansions are applied.

In order to shift the origin of a multipole expansion, rewrite (13.4.3) as

1

|r − d − (r ′ − d)| =
∑

l

∑
m

Llm(r ′ − d) Mlm(r − d) (13.4.36)

By making the replacements

a → r ′ , b → −d , c → r − d (13.4.37)

in (13.4.13) and then matching the terms with those of (13.4.36) we obtain new

370 13 Long-range interactions

expansion coefficients

Llm(r ′ − d) =
∑
l ′m′

Ll ′m′(r ′) Ll−l ′,m−m′(−d) (13.4.38)

Insofar as the terms of (13.4.38) are concerned, the set of coefficients Ll ′m′(r ′) are
already known and the Ll−l ′,m−m′(−d) need only be computed once for a given
shift vector d. The l ′ sum in (13.4.38) is over the range [0, l], whereas the limits
of the m ′ sum must satisfy both |m ′| ≤ l ′ and |m − m ′| ≤ l − l ′, or equivalently,

max
(−l ′, m − (l − l ′)

) ≤ m ′ ≤ min
(
l ′, m + (l − l ′)

)
(13.4.39)

For computational purposes, the coefficients (13.4.38) of the shifted expansion are
readily expressed in terms of their real and imaginary components; each product
can be written schematically as

(Lc
1 − i Ls

1)(Lc
2 − i Ls

2) = Lc
1Lc

2 − Ls
1Ls

2 − i(Lc
1Ls

2 + Ls
1Lc

2)

≡ Lc
3 − i Ls

3 (13.4.40)

and the components then summed separately.
The multipole expansion (13.4.3) can also be converted into a local expansion

about a distant origin. Replacing

a → r − d , b → −r ′ , c → −d (13.4.41)

in (13.4.13), and then applying (13.4.7) to Ll ′m′(−r ′), we obtain

Mlm(r ′ − d) =
∑
l ′m′

(−1)l ′ Ll ′m′(r ′) Ml+l ′,m+m′(−d) (13.4.42)

in which the coefficients Ll ′m′(r ′) are known and the Ml+l ′,m+m′(−d) can be com-
puted. The l ′ sum in (13.4.42) is over the range [0, lmax − l], where lmax is the
maximum expansion order retained; the limits of the m ′ sum must satisfy both
|m ′| ≤ l ′ and |m + m ′| ≤ l + l ′, or

max
(−l ′, −m − (l + l ′)

) ≤ m ′ ≤ min
(
l ′, −m + (l + l ′)

)
(13.4.43)

The products appearing in (13.4.42) can, once again, be expressed in terms of real
and imaginary components,

(Lc
1 − i Ls

1)(Mc
2 + i Ms

2) = Lc
1 Mc

2 + Ls
1 Ms

2 + i(Lc
1 Ms

2 − Ls
1 Mc

2)

≡ Mc
3 + i Ms

3 (13.4.44)

The origin of a local expansion can be shifted. Substitute

a → r − d , b → d , c → r ′ (13.4.45)

13.4 Fast-multipole method 371

in (13.4.13) to obtain

Mlm(r ′ − d) =
∑
l ′m′

Ml+l ′,m+m′(r ′) Ll ′m′(d) (13.4.46)

in which the Ml+l ′,m+m′(r ′) are known and the Ll ′m′(d) can be computed. Here,
too, the m ′ sum limits are given by (13.4.43).

The relations (13.4.38), (13.4.42) and (13.4.46) are used to convert the expan-
sions when transferring the information they represent among different cells in the
hierarchy. Each cell i at the lowest (nth) level has associated with it a set Lni of L
coefficients describing a multipole expansion about its midpoint for all the atoms
in the cell. If cell i contains a set of atoms denoted by {qs, rs}, where, for each atom
s, qs is the charge and rs the position, and if ρni is the position of the cell midpoint,
then the multipole expansion for the entire cell is obtained by replacing Llm(r ′) in
the original expansion (13.4.3) by a sum over cell occupants∑

s

qs Llm(rs) (13.4.47)

where rs in (13.4.47) and r in (13.4.3) are expressed relative to ρni . Thus, Lni ac-
tually denotes the set of sums (13.4.47) for all l and m; the various transformations
described above are then applied to these sums in their entirety.

Traversing the cell hierarchy

The first part of the algorithm [gre88, gre89a] (after evaluating Lni for the lowest
level) entails ascending through the cell hierarchy, and for each cell at level l, sum-
ming the L coefficients of cells at the next lower level l+1, after shifting each of the
expansions to the midpoint of the current cell with the aid of (13.4.38); these sets
of cumulative L coefficients, denoted by Lli , can be used in evaluating multipole
expansions associated with cells at the lth level in the hierarchy. The second part of
the algorithm is a descent through the cell hierarchy, during which two computa-
tions are made. The first is to consider all non-neighbor cells i ′ (soon to be defined)
whose parent cells are neighbors of the parent of the current cell i , convert their Lli

coefficient sets to M coefficients of a local expansion about the midpoint of cell
i ′ using (13.4.42), and denote their sum, together with the contribution received
from the parent cell in level l − 1, by Mli . The second computation propagates the
Mli to the descendants of the cell at level l + 1 (except when l = n), by shifting
the local expansions to the midpoints of each of these cells using (13.4.46). Later,
when computing the interactions, it will be the Mni coefficient sets that concisely
describe the interactions with all other atoms, apart from those in neighboring cells.

Cells that are not neighbors are referred to as well-separated – see Figure 13.4.
The minimum number of intervening cells between well-separated cells nw is a

372 13 Long-range interactions

Fig. 13.4. Two levels in the cell hierarchy (two-dimensional version) showing the different
cell categories (neighbors, neighbor parents, well-separated) for the case nw = 1.

parameter of the calculation, with a larger value of nw requiring a smaller value of
lmax for similar accuracy. The smallest value of nw is unity, meaning that well-
separated cells do not touch, even at their corners; nw = 2 implies that well-
separated cells are separated by at least two intermediaries; larger values are un-
likely to be needed. The computational tradeoff is related to the fact that while
the operations on multipole and local expansions scale as O(l4

max), the number of
pairs of atoms whose interactions must be evaluated directly depends on n3

w and the
number of cells whose L coefficients must be converted to M coefficients depends
on (4nw + 2)3 − (2nw + 1)3; for nw = 1,2 the values of the latter are 189 and 875,
respectively.

The full algorithm can be summarized as follows (note that the top two levels in
the subdivision hierarchy need not be considered, since there are no well-separated
cells):

• Expansion coefficients: Evaluate Lni for all cells i at the lowest (nth) level in
the hierarchy (i = 1, . . . 8n).

• Upward pass: For levels l = n − 1, . . . 2, and for all cells i (i = 1, . . . 8l) at
level l, zero the set of coefficients Lli and then use Lli to accumulate the shifted
Ll+1,i ′ from the descendants i ′ of i at level l + 1.

• Downward pass: Zero M2,i (i = 1, . . . 64). Then, for levels l = 2, . . . n, for all
cells i at level l, and for each cell i ′ at level l that is well-separated from i but
whose parent and that of i are not well-separated, convert Lli ′ to M coefficients

13.5 Implementing the fast-multipole method 373

for use in an expansion about the midpoint of cell i and accumulate in Mli .
Next, if l < n, for all descendants i ′′ of i at level l + 1, shift Mli and use to
initialize Ml+1,i ′′ .

• Far interactions: For all cells i at the nth level and for each atom in cell i , use
Mni to compute the interaction contribution.

• Near interactions: For all pairs of cells at the nth level that are not well-separated,
compute the interactions between all pairs of atoms in the cells.

The software in the next section implements this algorithm.

13.5 Implementing the fast-multipole method

Data organization

Define two C structures

typedef struct {

real c[I(MAX_MPEX_ORD, MAX_MPEX_ORD) + 1],

s[I(MAX_MPEX_ORD, MAX_MPEX_ORD) + 1];

} MpTerms;

5

typedef struct {

MpTerms le, me;

int occ;

} MpCell;

that will contain, respectively, a set of multipole or local expansion coefficients,
and the accumulated multipole and local expansions for a cell together with an
indication of whether the cell is occupied. It is assumed, for programming♠ con-
venience, that the multipole and local expansions are to be carried out to a certain
order not exceeding a limit MAX_MPEX_ORD that is compiled into the program; the
value actually used is maxOrd which, after a certain amount of experimentation to
determine the preferred value, is likely to be set equal to MAX_MPEX_ORD (or vice
versa). The required storage increases as the square of this value. Although the ex-
pansion coefficients have two indices, since |m| ≤ l they only occupy a triangular
array; storage is saved by introducing

#define I(i, j) ((i) * ((i) + 1) / 2 + (j))

as a convenient way of combining the array indices, and for readability

#define c(i, j) c[I(i, j)]

#define s(i, j) s[I(i, j)]

♠ pr_13_3

374 13 Long-range interactions

Generating expansion coefficients

The following two functions implement (13.4.16)–(13.4.22) in order to generate
full sets of coefficients Mc,s

lm (r) and Lc,s
lm (r) up to the specified order, where v is a

pointer to r†.

void EvalMpM (MpTerms *me, VecR *v, int maxOrd)

{

real a, a1, a2, rri;

int j, k;

5

rri = 1./ VLenSq (*v);

me->c(0, 0) = sqrt (rri);

me->s(0, 0) = 0.;

for (j = 1; j <= maxOrd; j ++) {

k = j; 10

a = - (2 * k - 1) * rri;

me->c(j, k) = a * (v->x * me->c(j - 1, k - 1) -

v->y * me->s(j - 1, k - 1));

me->s(j, k) = a * (v->y * me->c(j - 1, k - 1) +

v->x * me->s(j - 1, k - 1)); 15

for (k = j - 1; k >= 0; k --) {

a1 = (2 * j - 1) * v->z * rri;

a2 = (j - 1 + k) * (j - 1 - k) * rri;

me->c(j, k) = a1 * me->c(j - 1, k);

me->s(j, k) = a1 * me->s(j - 1, k); 20

if (k < j - 1) {

me->c(j, k) -= a2 * me->c(j - 2, k);

me->s(j, k) -= a2 * me->s(j - 2, k);

}

} 25

}

}

void EvalMpL (MpTerms *le, VecR *v, int maxOrd)

{ 30

real a, a1, a2, rr;

int j, k;

rr = VLenSq (*v);

le->c(0, 0) = 1.; 35

le->s(0, 0) = 0.;

for (j = 1; j <= maxOrd; j ++) {

k = j;

a = - 1. / (2 * k);

le->c(j, k) = a * (v->x * le->c(j - 1, k - 1) - 40

v->y * le->s(j - 1, k - 1));

le->s(j, k) = a * (v->y * le->c(j - 1, k - 1) +

v->x * le->s(j - 1, k - 1));

† Indices l and m are represented here by variables j and k for readability; similarly in later functions.

13.5 Implementing the fast-multipole method 375

for (k = j - 1; k >= 0; k --) {

a = 1. / ((j + k) * (j - k)); 45

a1 = (2 * j - 1) * v->z * a;

a2 = rr * a;

le->c(j, k) = a1 * le->c(j - 1, k);

le->s(j, k) = a1 * le->s(j - 1, k);

if (k < j - 1) { 50

le->c(j, k) -= a2 * le->c(j - 2, k);

le->s(j, k) -= a2 * le->s(j - 2, k);

}

}

} 55

}

Products of expansion coefficients

At various points in the computation – when shifting or converting the expansions –
sums of products of expansion coefficients must be evaluated. The two functions
listed below are used for this task; both contain quadruply nested loops that give
the overall calculation its O(l4

max) behavior.
The product sum in (13.4.38), organized into separate real and imaginary parts

as indicated by (13.4.40), is computed as follows. The limits of what corresponds
to the sum over m ′ satisfy (13.4.39).

void EvalMpProdLL (MpTerms *le1, MpTerms *le2, MpTerms *le3,

int maxOrd)

{

real s2, s3, vlc2, vlc3, vls2, vls3;

int j1, j2, j3, k1, k2, k3; 5

for (j1 = 0; j1 <= maxOrd; j1 ++) {

for (k1 = 0; k1 <= j1; k1 ++) {

le1->c(j1, k1) = 0.;

le1->s(j1, k1) = 0.; 10

for (j2 = 0; j2 <= j1; j2 ++) {

j3 = j1 - j2;

for (k2 = Max (- j2, k1 - j3);

k2 <= Min (j2, k1 + j3); k2 ++) {

k3 = k1 - k2; 15

vlc2 = le2->c(j2, abs (k2));

vls2 = le2->s(j2, abs (k2));

if (k2 < 0) vls2 = - vls2;

vlc3 = le3->c(j3, abs (k3));

vls3 = le3->s(j3, abs (k3)); 20

if (k3 < 0) vls3 = - vls3;

s2 = (k2 < 0 && IsOdd (k2)) ? -1. : 1.;

s3 = (k3 < 0 && IsOdd (k3)) ? -1. : 1.;

le1->c(j1, k1) += s2 * s3 * (vlc2 * vlc3 - vls2 * vls3);

376 13 Long-range interactions

le1->s(j1, k1) += s2 * s3 * (vls2 * vlc3 + vlc2 * vls3); 25

}

}

}

}

} 30

Here, IsOdd (§18.2) is unity if its argument is odd and zero otherwise.
The other form of product sum appears in both (13.4.42) and (13.4.46); its com-

putation follows. The limits of the sum over m ′ satisfy (13.4.43).

void EvalMpProdLM (MpTerms *me1, MpTerms *le2, MpTerms *me3,

int maxOrd)

{

real s2, s3, vlc2, vls2, vmc3, vms3;

int j1, j2, j3, k1, k2, k3; 5

for (j1 = 0; j1 <= maxOrd; j1 ++) {

for (k1 = 0; k1 <= j1; k1 ++) {

me1->c(j1, k1) = 0.;

me1->s(j1, k1) = 0.; 10

for (j2 = 0; j2 <= maxOrd - j1; j2 ++) {

j3 = j1 + j2;

for (k2 = Max (- j2, - k1 - j3);

k2 <= Min (j2, - k1 + j3); k2 ++) {

k3 = k1 + k2; 15

vlc2 = le2->c(j2, abs (k2));

vls2 = le2->s(j2, abs (k2));

if (k2 < 0) vls2 = - vls2;

vmc3 = me3->c(j3, abs (k3));

vms3 = me3->s(j3, abs (k3)); 20

if (k3 < 0) vms3 = - vms3;

s2 = (k2 < 0 && IsOdd (k2)) ? -1. : 1.;

s3 = (k3 < 0 && IsOdd (k3)) ? -1. : 1.;

me1->c(j1, k1) += s2 * s3 * (vlc2 * vmc3 + vls2 * vms3);

me1->s(j1, k1) += s2 * s3 * (vlc2 * vms3 - vls2 * vmc3); 25

}

}

}

}

} 30

Multipole force evaluation

The function MultipoleCalc is responsible for the long-range force evaluation.
After computing the multipole coefficients at the lowest level in the cell hierarchy,
it proceeds upward through the levels, combining the shifted expansions to pro-
duce expansions for progressively larger cells. This is followed by the downward

13.5 Implementing the fast-multipole method 377

pass in which local expansions are evaluated by merging the contributions of well-
separated cells. The interaction contributions from well-separated cells are evalu-
ated using these expansions, while contributions of nearby pairs are evaluated by
treating the atoms directly. The functions called here are listed subsequently.

void MultipoleCalc ()

{

int j, k, m1;

VSetAll (mpCells, maxCellsEdge); 5

AssignMpCells ();

VDiv (cellWid, region, mpCells);

EvalMpCell ();

curCellsEdge = maxCellsEdge;

for (curLevel = maxLevel - 1; curLevel >= 2; curLevel --) { 10

curCellsEdge /= 2;

VSetAll (mpCells, curCellsEdge);

VDiv (cellWid, region, mpCells);

CombineMpCell ();

} 15

for (m1 = 0; m1 < 64; m1 ++) {

for (j = 0; j <= maxOrd; j ++) {

for (k = 0; k <= j; k ++) {

mpCell[2][m1].me.c(j, k) = 0.;

mpCell[2][m1].me.s(j, k) = 0.; 20

}

}

}

curCellsEdge = 2;

for (curLevel = 2; curLevel <= maxLevel; curLevel ++) { 25

curCellsEdge *= 2;

VSetAll (mpCells, curCellsEdge);

VDiv (cellWid, region, mpCells);

GatherWellSepLo ();

if (curLevel < maxLevel) PropagateCellLo (); 30

}

ComputeFarCellInt ();

ComputeNearCellInt ();

}

The arrays referenced in the multipole calculations are declared as

MpCell **mpCell;

int *mpCellList;

and are allocated (AllocArrays) by

AllocMem (mpCell, maxLevel + 1, MpCell *);

maxCellsEdge = 2;

378 13 Long-range interactions

for (n = 2; n <= maxLevel; n ++) {

maxCellsEdge *= 2;

VSetAll (mpCells, maxCellsEdge); 5

AllocMem (mpCell[n], VProd (mpCells), MpCell);

}

AllocMem (mpCellList, nMol + VProd (mpCells), int);

The function AssignMpCells uses the same cell assignment as for short-range
interactions (§3.4), except that mpCells and mpCellList are now the relevant
quantities. Once this has been done, the sets of multipole coefficients Lni repre-
senting the combined contributions of the atoms in the cells at the lowest level in
the hierarchy are evaluated as follows. The charge of each atom is represented by
an additional element chg in the Mol structure.

void EvalMpCell ()

{

MpTerms le;

VecR cMid, dr;

VecI m1v; 5

int j, j1, k, m1, m1x, m1y, m1z;

for (m1z = 0; m1z < mpCells.z; m1z ++) {

for (m1y = 0; m1y < mpCells.y; m1y ++) {

for (m1x = 0; m1x < mpCells.x; m1x ++) { 10

VSet (m1v, m1x, m1y, m1z);

m1 = VLinear (m1v, mpCells);

mpCell[maxLevel][m1].occ = 0;

for (j = 0; j <= maxOrd; j ++) {

for (k = 0; k <= j; k ++) { 15

mpCell[maxLevel][m1].le.c(j, k) = 0.;

mpCell[maxLevel][m1].le.s(j, k) = 0.;

}

}

if (mpCellList[m1 + nMol] >= 0) { 20

VAddCon (cMid, m1v, 0.5);

VMul (cMid, cMid, cellWid);

VVSAdd (cMid, - 0.5, region);

DO_MP_CELL (j1, m1) {

++ mpCell[maxLevel][m1].occ; 25

VSub (dr, mol[j1].r, cMid);

EvalMpL (&le, &dr, maxOrd);

for (j = 0; j <= maxOrd; j ++) {

for (k = 0; k <= j; k ++) {

mpCell[maxLevel][m1].le.c(j, k) += 30

mol[j1].chg * le.c(j, k);

mpCell[maxLevel][m1].le.s(j, k) +=

mol[j1].chg * le.s(j, k);

}

} 35

13.5 Implementing the fast-multipole method 379

}

}

}

}

} 40

}

For brevity,

#define DO_MP_CELL(j, m) \

for (j = mpCellList[m + nMol]; j >= 0; j = mpCellList[j])

Shifting and combining the multipole expansions at each level are carried out by
the following function. The shift vector is the offset of the midpoints of the cells
when moving between two adjacent levels, and its direction depends on whether
it is the upward pass (in this function) or the downward pass (treated later) that is
being carried out. This function makes use of (13.4.38) and the shifted expansion
coefficients are evaluated by EvalMpProdLL which appeared earlier.

void CombineMpCell ()

{

MpTerms le, le2;

VecR rShift;

VecI m1v, m2v, mpCellsN; 5

int iDir, j, k, m1, m1x, m1y, m1z, m2;

VSCopy (mpCellsN, 2, mpCells);

for (m1z = 0; m1z < mpCells.z; m1z ++) {

for (m1y = 0; m1y < mpCells.y; m1y ++) { 10

for (m1x = 0; m1x < mpCells.x; m1x ++) {

VSet (m1v, m1x, m1y, m1z);

m1 = VLinear (m1v, mpCells);

for (j = 0; j <= maxOrd; j ++) {

for (k = 0; k <= j; k ++) { 15

mpCell[curLevel][m1].le.c(j, k) = 0.;

mpCell[curLevel][m1].le.s(j, k) = 0.;

}

}

mpCell[curLevel][m1].occ = 0; 20

for (iDir = 0; iDir < 8; iDir ++) {

VSCopy (m2v, 2, m1v);

VSCopy (rShift, -0.25, cellWid);

if (IsOdd (iDir)) {

++ m2v.x; 25

rShift.x *= -1.;

}

if (IsOdd (iDir / 2)) {

++ m2v.y;

rShift.y *= -1.; 30

380 13 Long-range interactions

}

if (IsOdd (iDir / 4)) {

++ m2v.z;

rShift.z *= -1.;

} 35

m2 = VLinear (m2v, mpCellsN);

if (mpCell[curLevel + 1][m2].occ == 0) continue;

mpCell[curLevel][m1].occ += mpCell[curLevel + 1][m2].occ;

EvalMpL (&le2, &rShift, maxOrd);

EvalMpProdLL (&le, &mpCell[curLevel + 1][m2].le, &le2, 40

maxOrd);

for (j = 0; j <= maxOrd; j ++) {

for (k = 0; k <= j; k ++) {

mpCell[curLevel][m1].le.c(j, k) += le.c(j, k);

mpCell[curLevel][m1].le.s(j, k) += le.s(j, k); 45

}

}

}

}

} 50

}

}

At each level, the contributions from well-separated cells are gathered by the
following function, and these form part of the local expansion for each cell. This
function (and functions it calls) is where most of the computational effort is usu-
ally expended; wellSep corresponds to nw. Conversion from multipole to local
expansions using (13.4.42) is carried out by EvalMpProdLM.

void GatherWellSepLo ()

{

MpTerms le, me, me2;

VecR rShift;

VecI m1v, m2v; 5

real s;

int j, k, m1, m1x, m1y, m1z, m2, m2x, m2y, m2z;

for (m1z = 0; m1z < mpCells.z; m1z ++) {

for (m1y = 0; m1y < mpCells.y; m1y ++) { 10

for (m1x = 0; m1x < mpCells.x; m1x ++) {

VSet (m1v, m1x, m1y, m1z);

m1 = VLinear (m1v, mpCells);

if (mpCell[curLevel][m1].occ == 0) continue;

for (m2z = LoLim (z); m2z <= HiLim (z); m2z ++) { 15

for (m2y = LoLim (y); m2y <= HiLim (y); m2y ++) {

for (m2x = LoLim (x); m2x <= HiLim (x); m2x ++) {

VSet (m2v, m2x, m2y, m2z);

if (m2v.x < 0 || m2v.x >= mpCells.x ||

m2v.y < 0 || m2v.y >= mpCells.y || 20

13.5 Implementing the fast-multipole method 381

m2v.z < 0 || m2v.z >= mpCells.z) continue;

if (abs (m2v.x - m1v.x) <= wellSep &&

abs (m2v.y - m1v.y) <= wellSep &&

abs (m2v.z - m1v.z) <= wellSep) continue;

m2 = VLinear (m2v, mpCells); 25

if (mpCell[curLevel][m2].occ == 0) continue;

for (j = 0; j <= maxOrd; j ++) {

s = (IsOdd (j)) ? -1. : 1.;

for (k = 0; k <= j; k ++) {

le.c(j, k) = s * mpCell[curLevel][m2].le.c(j, k); 30

le.s(j, k) = s * mpCell[curLevel][m2].le.s(j, k);

}

}

VSub (rShift, m2v, m1v);

VMul (rShift, rShift, cellWid); 35

EvalMpM (&me2, &rShift, maxOrd);

EvalMpProdLM (&me, &le, &me2, maxOrd);

for (j = 0; j <= maxOrd; j ++) {

for (k = 0; k <= j; k ++) {

mpCell[curLevel][m1].me.c(j, k) += me.c(j, k); 40

mpCell[curLevel][m1].me.s(j, k) += me.s(j, k);

}

}

}

} 45

}

}

}

}

} 50

Here,

#define HiLim(t) IsEven (m1v.t) + 2 * wellSep + 1

#define LoLim(t) IsEven (m1v.t) - 2 * wellSep

and IsEven (§18.2) is the converse of IsOdd.
The local expansions are then shifted and propagated down to the cells at the

next level in the hierarchy; use is made of (13.4.46) and the shifted expansion
coefficients are evaluated by EvalMpProdLM.

void PropagateCellLo ()

{

MpTerms le;

VecR rShift;

VecI m1v, m2v, mpCellsN; 5

int iDir, m1, m1x, m1y, m1z, m2;

VSCopy (mpCellsN, 2, mpCells);

382 13 Long-range interactions

for (m1z = 0; m1z < mpCells.z; m1z ++) {

for (m1y = 0; m1y < mpCells.y; m1y ++) { 10

for (m1x = 0; m1x < mpCells.x; m1x ++) {

VSet (m1v, m1x, m1y, m1z);

m1 = VLinear (m1v, mpCells);

if (mpCell[curLevel][m1].occ == 0) continue;

for (iDir = 0; iDir < 8; iDir ++) { 15

VSCopy (m2v, 2, m1v);

VSCopy (rShift, -0.25, cellWid);

if (IsOdd (iDir)) {

++ m2v.x;

rShift.x *= -1.; 20

}

if (IsOdd (iDir / 2)) {

++ m2v.y;

rShift.y *= -1.;

} 25

if (IsOdd (iDir / 4)) {

++ m2v.z;

rShift.z *= -1.;

}

m2 = VLinear (m2v, mpCellsN); 30

EvalMpL (&le, &rShift, maxOrd);

EvalMpProdLM (&mpCell[curLevel + 1][m2].me, &le,

&mpCell[curLevel][m1].me, maxOrd);

}

} 35

}

}

}

Interaction contributions from well-separated cells are computed as follows†.

void ComputeFarCellInt ()

{

MpTerms le;

VecR cMid, dr, f;

VecI m1v; 5

real u;

int j1, m1, m1x, m1y, m1z;

for (m1z = 0; m1z < mpCells.z; m1z ++) {

for (m1y = 0; m1y < mpCells.y; m1y ++) { 10

for (m1x = 0; m1x < mpCells.x; m1x ++) {

VSet (m1v, m1x, m1y, m1z);

m1 = VLinear (m1v, mpCells);

if (mpCell[maxLevel][m1].occ == 0) continue;

VAddCon (cMid, m1v, 0.5); 15

† As with the tree-code method (§13.3), Newton’s third law does not appear in this part of the calculation; it is
used in the direct pair evaluations later.

13.5 Implementing the fast-multipole method 383

VMul (cMid, cMid, cellWid);

VVSAdd (cMid, -0.5, region);

DO_MP_CELL (j1, m1) {

VSub (dr, mol[j1].r, cMid);

EvalMpL (&le, &dr, maxOrd); 20

EvalMpForce (&f, &u, &mpCell[maxLevel][m1].me, &le, maxOrd);

VVSAdd (mol[j1].ra, - mol[j1].chg, f);

uSum += 0.5 * mol[j1].chg * u;

}

} 25

}

}

}

The function EvalMpForce evaluates the multipole contribution to the force using
(13.4.33)–(13.4.35) and the interaction energy using (13.4.10).

void EvalMpForce (VecR *f, real *u, MpTerms *me, MpTerms *le,

int maxOrd)

{

VecR fc, fs;

real a; 5

int j, k;

VZero (*f);

for (j = 1; j <= maxOrd; j ++) {

for (k = 0; k <= j; k ++) { 10

if (k < j - 1) {

fc.x = le->c(j - 1, k + 1);

fc.y = le->s(j - 1, k + 1);

fs.x = le->s(j - 1, k + 1);

fs.y = - le->c(j - 1, k + 1); 15

} else {

fc.x = 0.;

fc.y = 0.;

fs.x = 0.;

fs.y = 0.; 20

}

if (k < j) {

fc.z = le->c(j - 1, k);

fs.z = le->s(j - 1, k);

} else { 25

fc.z = 0.;

fs.z = 0.;

}

if (k > 0) {

fc.x -= le->c(j - 1, k - 1); 30

fc.y += le->s(j - 1, k - 1);

fc.z *= 2.;

fs.x -= le->s(j - 1, k - 1);

384 13 Long-range interactions

fs.y -= le->c(j - 1, k - 1);

fs.z *= 2.; 35

}

VVSAdd (*f, me->c(j, k), fc);

VVSAdd (*f, me->s(j, k), fs);

}

} 40

*u = 0.;

for (j = 0; j <= maxOrd; j ++) {

for (k = 0; k <= j; k ++) {

a = me->c(j, k) * le->c(j, k) + me->s(j, k) * le->s(j, k);

if (k > 0) a *= 2.; 45

*u += a;

}

}

}

Direct evaluation of the interactions is required for pairs of atoms in the same and
nearby (more precisely, not well-separated) cells; this represents the other heavy
part of the calculation since, even for nw = 1, each cell has 189 neighbor cells of
this kind.

void ComputeNearCellInt ()

{

VecR dr, ft;

VecI m1v, m2v;

real qq, ri; 5

int j1, j2, m1, m1x, m1y, m1z, m2, m2x, m2xLo, m2y, m2yLo, m2z;

for (m1z = 0; m1z < mpCells.z; m1z ++) {

for (m1y = 0; m1y < mpCells.y; m1y ++) {

for (m1x = 0; m1x < mpCells.x; m1x ++) { 10

VSet (m1v, m1x, m1y, m1z);

m1 = VLinear (m1v, mpCells);

if (mpCell[maxLevel][m1].occ == 0) continue;

for (m2z = m1z; m2z <= HiLimI (z); m2z ++) {

m2yLo = (m2z == m1z) ? m1y : Max (m1y - wellSep, 0); 15

for (m2y = m2yLo; m2y <= HiLimI (y); m2y ++) {

m2xLo = (m2z == m1z && m2y == m1y) ?

m1x : Max (m1x - wellSep, 0);

for (m2x = m2xLo; m2x <= HiLimI (x); m2x ++) {

VSet (m2v, m2x, m2y, m2z); 20

m2 = VLinear (m2v, mpCells);

if (mpCell[maxLevel][m2].occ == 0) continue;

DO_MP_CELL (j1, m1) {

DO_MP_CELL (j2, m2) {

if (m1 != m2 || j2 < j1) { 25

VSub (dr, mol[j1].r, mol[j2].r);

ri = 1. / VLen (dr);

13.5 Implementing the fast-multipole method 385

qq = mol[j1].chg * mol[j2].chg;

VSCopy (ft, qq * Cube (ri), dr);

VVAdd (mol[j1].ra, ft); 30

VVSub (mol[j2].ra, ft);

uSum += qq * ri;

}

}

} 35

}

}

}

}

} 40

}

}

Here,

#define HiLimI(t) Min (m1v.t + wellSep, mpCells.t - 1)

Since both positive and negative charges are present, soft-sphere interactions
are also included in the simulation in order to prevent oppositely charged atoms
approaching too closely. The function SingleStep calls ComputeForces (§3.4)
to evaluate these forces, using the neighbor-list method; the acceleration values are
initialized there. The charges of the atoms are randomly assigned by

void InitCharges ()

{

int n;

DO_MOL mol[n].chg = (RandR () > 0.5) ? chargeMag : - chargeMag; 5

}

Other variables and input data are

VecR cellWid;

VecI mpCells;

real chargeMag;

int curCellsEdge, curLevel, maxCellsEdge, maxLevel, maxOrd, wellSep;

5

NameR (chargeMag),

NameI (maxLevel),

NameI (wellSep),

386 13 Long-range interactions

Table 13.1. Estimates of relative error in the energy and force calculations for random
charge configurations, with Nm = 8000 and a tree depth of three.

lmax energy force

2 1.25e-04 1.00e-03
4 3.92e-06 5.64e-04

10 2.61e-07 4.13e-06

13.6 Results

Accuracy and performance

The accuracy of the fast-multipole method is readily demonstrated: simply com-
pute♠ the interaction energy and forces for random charge distributions and then
compare the estimates with the exact values obtained by considering all pairs of
charges. Table 13.1 shows the average error over five different distributions for
nw = 1 and three values of the expansion order lmax . Theoretical estimates are also
available from an analysis of the terms omitted when the multipole expansions are
truncated. (The worst-case error is not considered here, but it can be estimated
numerically by positioning the charges near the cell boundaries.)

Timing measurements demonstrate how the various parameters impact perfor-
mance†. Example values for a single set of interaction calculations (with nw = 1),
together with comparisons with the all-pairs approach for the smaller systems, ap-
pear in Table 13.2. It is apparent that the optimal tree depth depends on Nm , that
the choice of lmax has a strong effect on the performance and that the all-pairs ap-
proach is much slower even for moderately sized systems. The parameter nw also
influences the performance (not shown), since it determines how many pairs of
atoms must be treated directly rather than by means of the cell expansions.

Radial distribution function

The case study considered here deals with a fluid of charged, soft-sphere atoms; it
begins with an initial state arranged on a simple cubic lattice and uses hard walls
in order to avoid those issues that the Ewald method addresses. The neighbor-list
method is used for the soft-sphere interactions, together with leapfrog integration
and constant-temperature dynamics. The RDF is evaluated, but contributions from
atom pairs with charges of the same and opposite signs are accumulated separately
in order to examine the tendency of the charged atoms to surround themselves with

♠ pr_mpoletest
† As always, times depend on processor, compiler and optimization level.

13.6 Results 387

Table 13.2. Times (s) for a single set of interaction calculations.

Nm depth lmax time all pairs

8 000 3 2 0.2 2.7
8 000 3 4 0.4
8 000 3 8 1.8

32 000 3 2 2.6 44.0
32 000 4 2 1.2
32 000 5 2 4.1

128 000 3 2 39.3
128 000 4 2 6.4
128 000 5 2 8.9

512 000 4 2 97.5
512 000 5 2 20.0
512 000 6 2 59.4

neighbors of opposite sign. The cumulative numbers of neighbors as a function of
separation cumRdf are also evaluated.

The function for evaluating the RDF is a modified form of EvalRdf in §4.3.

void EvalRdf ()

{

...

if (countRdf == 0) {

for (n = 0; n < sizeHistRdf; n ++) { 5

histRdf[0][n] = 0.;

histRdf[1][n] = 0.;

}

}

deltaR = rangeRdf / sizeHistRdf; 10

for (j1 = 0; j1 < nMol - 1; j1 ++) {

for (j2 = j1 + 1; j2 < nMol; j2 ++) {

VSub (dr, mol[j1].r, mol[j2].r);

rr = VLenSq (dr);

if (rr < Sqr (rangeRdf)) { 15

n = sqrt (rr) / deltaR;

k = (mol[j1].chg * mol[j2].chg > 0.);

++ histRdf[k][n];

}

} 20

}

++ countRdf;

if (countRdf == limitRdf) {

388 13 Long-range interactions

normFac = VProd (region) / (2. * M_PI * Cube (deltaR) *

Sqr (nMol) * countRdf); 25

for (k = 0; k < 2; k ++) {

cumRdf[k][0] = 0.;

for (n = 1; n < sizeHistRdf; n ++)

cumRdf[k][n] = cumRdf[k][n - 1] + histRdf[k][n];

for (n = 0; n < sizeHistRdf; n ++) { 30

histRdf[k][n] *= normFac / Sqr (n - 0.5);

cumRdf[k][n] /= nMol;

}

}

... 35

}

}

The new arrays require

real **histRdf, **cumRdf;

AllocMem2 (histRdf, 2, sizeHistRdf, real);

AllocMem2 (cumRdf, 2, sizeHistRdf, real);

The run includes the following data:

chargeMag 4.

density 0.8

initUcell 20 20 20

limitRdf 50

maxLevel 3

rangeRdf 6.

sizeHistRdf 200

stepEquil 2000

stepInitlzTemp 200

stepLimit 8000

stepRdf 20

temperature 1.

wellSep 1

The resulting distributions, averaged over the last 1000 timesteps, appear in
Figure 13.5; cumulative values are shown in Table 13.3. The most conspicuous
feature of these results is – not surprisingly – the strong preference for oppositely
charged neighbors at close range; because of overall charge neutrality this effect is
limited to relatively short distances.

13.7 Further study 389

Table 13.3. Cumulative distributions of unlike and like charges as functions of distance d.

d unlike like

0.82 0.00 0.00
1.00 1.11 0.08
1.18 4.43 1.18
1.36 5.75 2.89
1.54 6.66 4.91
1.72 7.77 7.28
1.90 9.77 10.34
2.08 13.38 14.29
2.26 18.13 18.04
2.44 23.13 21.57
2.62 28.20 25.73

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

distance

ra
di

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Fig. 13.5. Radial distribution functions for atoms with unlike (solid curve) and like
(dashed curve) charges; the functions drop below the expected 0.5 at large distances due to
hard-wall boundaries.

13.7 Further study

13.1 Compute the dielectric constant for a fluid of dipoles [kus90]; consider how
to account for the surrounding medium.

13.2 Investigate how the adaptive subdivision and fast-multipole approaches can
be combined.

390 13 Long-range interactions

13.3 Introduce Ewald summation into the fast-multipole method to handle peri-
odic boundaries.

13.4 An example of an entirely different approach is the reaction-field method, in
which interactions are considered in full up to a certain range, and beyond
this a mean-field approximation is used [fri75]; explore the benefits and
disadvantages of methods of this kind.

14

Step potentials

14.1 Introduction

Practically all the case studies in this book involve systems whose interactions
are expressed in terms of continuous potentials. As a consequence, the dynamical
equations can be solved numerically with constant-timestep integration methods.
If one is prepared to dispense with this continuity another route is available that
offers several advantages, although it has its weak points as well. The alternative
method is based on step potentials; hard spheres are the simplest example, but the
method can be extended to include potentials that have the shape of square wells
or barriers, and even flexible ‘molecules’ can be built. Quantitative comparisons
with specific real substances are obviously not the goal here, although compar-
isons with simple analytical models are possible. In fact, the earliest MD simula-
tions [ald58, ald59, ald62] were of this kind, motivated by a desire to test basic
theory.

A limitation of the methods used for continuous potentials, all of which involve
a constant timestep �t , is that they require the changes in interactions over each
timestep to be small, otherwise uncontrolled numerical errors can suddenly appear.
While this does not usually affect equilibrium studies, because �t can be made
sufficiently (but not too) small that for a particular simulation (namely, a given
potential function, temperature and density) the results are predictably stable, sys-
tems that are inhomogeneous because of, for example, a large imposed tempera-
ture gradient, may prove problematic unless �t is made unacceptably small. As
will become apparent in due course, the step-potential method is unaware of this
problem because it advances the system by a series of discrete events. The need for
explicit numerical integration is avoided by employing impulsive collisions when-
ever atoms interact, and between such collisions each atom follows its own linear
trajectory. There is no numerical integration error, because trajectories are evalu-
ated to the full precision of the computer hardware.

391

392 14 Step potentials

The use of step potentials introduces its own problems. First, there is the in-
creased complexity of the algorithm, since dealing with large numbers of collision
events in an efficient manner requires careful attention to the question of data orga-
nization. The second problem is memory; storing the information describing events
in a manner that is readily accessible and alterable tends to demand a good deal of
extra memory.

The case study described here deals with the most basic kind of event-driven MD
simulation, namely a hard-sphere fluid subject to periodic boundary conditions.
Extensions of the basic method are discussed in §14.5 and appear in a case study
in §15.3.

14.2 Computational approach

Dynamics

The physically interesting dynamics of the hard-sphere system is embodied in the
collision rules; between collisions nothing of note happens and the atoms (as the
spheres will subsequently be called) move in straight lines. Consider two identical
atoms i and j currently separated by a distance r = ri − r j and having a relative
velocity v = vi −v j . These atoms will collide if and when their separation becomes
equal to the atomic diameter σ ; if this happens, it will occur at some time τ in the
future, where τ is the smaller positive solution of

|r + vτ | = σ (14.2.1)

The solution, if it exists, is

τ = −b −√b2 − v2(r2 − σ 2)

v2
(14.2.2)

where

b = r · v (14.2.3)

In order for a solution to exist, b must be negative and the argument of the square
root positive. Solutions come in pairs; the larger positive solution reflects the fact
that the separation σ occurs twice if the trajectories are extended beyond the col-
lision point, although this is irrelevant for hard spheres. A negative solution cor-
responds to trajectories that (apparently) intersected in the past. The outcome of a
collision between atoms is a simple change of velocities that preserves energy and
momentum, namely,

�vi = −�v j = − b

σ 2
r (14.2.4)

14.2 Computational approach 393

If the analysis is extended to atoms that consist of a hard repulsive core sur-
rounded by an attractive square well [ald59], then the generalized ‘collision’ cor-
responds to one of several kinds of event:

• a collision between the hard cores, as above;
• two atoms either entering or leaving their mutual potential well;
• two atoms bound together in a well bouncing as the well boundary is reached.

We will discuss this extension briefly, although it is not part of the case study.
If σc and σw are the core and well diameters, then the most general expression

for when a collision might occur is

τ = −b + s
√

b2 − v2(r2 − σ 2)

v2
(14.2.5)

For a core collision, only possible for atoms already inside their mutual well, s =
−1 and σ = σc, as in (14.2.2). If the future event is to be either a bounce within a
well or an exit from it – this depends on whether there is sufficient kinetic energy –
s = 1 and σ = σw. Finally, when a well is about to be entered, s = −1 and
σ = σw.

The velocity changes when the generalized collision occurs are

�vi = −�v j = φr (14.2.6)

where

φ = −b + s
√

b2 − 4r2�u/m

2r2
(14.2.7)

In (14.2.7), �u denotes the potential energy change and m is the mass. For a core
collision �u = 0, so that φ = −b/σ 2

c as in (14.2.4). For well entry �u = −w,
where w is the well depth, and s = −1. For well bounce and exit events, if b2 <

4σ 2
ww/m the event is a bounce, so φ = −b/σ 2

w, otherwise it is an exit, with �u =
+w and s = 1. In order to obtain a true bound state, a third atom is required
to remove the excess kinetic energy from a pair of atoms whose separation has
dropped below σw, otherwise, because their combined energy is positive, they are
not bound together; similarly, a bound pair can only escape from the well if the
missing energy is provided by a third atom.

Cell subdivision

The simulation progresses by means of a time ordered sequence of collision events
[erp77]. Assuming that all possible future collisions have been examined, it is a
simple matter to determine which collision will occur first and advance all the
atoms to that point in time. Such a scheme is correct in principle; in practice, the

394 14 Step potentials

fact that determining the next collision of a given atom requires O(Nm) work,
because all atoms must be considered potential collision partners, rules out this
simple approach. As in the case of soft-sphere MD, the use of cells (as well as a
selective record of possible future collisions that have already been examined – see
further) provides the means for reducing the number of atoms examined following
a collision to a small value independent of Nm .

Assuming that the simulation region has been divided into cells whose edge
length exceeds the sphere diameter σ , it is clear that collisions can only occur be-
tween atoms in the same and adjacent cells. By using relatively small cells, the
average occupancy can be reduced to just one atom, or even less, per cell – the
lower bound depends on density – so the gain in computational efficiency is ap-
parent. All that is needed is to keep track of which atoms belong to which cells,
and, since it is hardly appropriate to recompute this information after each colli-
sion, the way this is done is to introduce a new kind of event that occurs whenever
an atom moves from one cell to another. Determining which cell face an atom
will cross next, and when this is due to occur, are simple computational prob-
lems that are solved in the program listing later on. It is true the cell crossing
events introduce additional work, but the overall reduction in effort more than com-
pensates for this. Periodic boundaries are readily incorporated into the cell-based
computations.

Another labor saving device is the use of a local time variable associated with
each atom (or, alternatively, with each cell). When a collision occurs, only atoms
in the immediate neighborhood are of concern and there is no point in updating
the coordinates of atoms much further away. The use of a ‘personal’ time for each
atom provides a record of when its coordinates were last updated, so that one of
the few occasions when an update of the entire system is really necessary is prior
to recording a snapshot of the system configuration.

Event calendar
We have tacitly assumed that the system always knows when the next event is due,
whether it is a collision or a cell crossing and the atom(s) involved. This implies
the existence of an event calendar. Such a calendar must not only produce the next
event but must also be easily modifiable: the calendar will include many future
events and, as collisions occur, changes must be made to its contents, both to in-
corporate newly predicted collisions and to remove previously predicted collisions
that are no longer relevant because a participant has in the meantime undergone a
different collision. Once the effort has been made to find a possible future collision,
this information should be retained for as long as it is potentially useful, but it must
be recognized that if the calendar includes a few collision events involving each
atom, it is likely that most of this information will become obsolete before it has a

14.2 Computational approach 395

chance to be used. Thus the calendar organization is central to the viability of this
method; we will discuss its implementation in §14.3.

When two atoms collide their velocities are changed, so that any information
stored in the calendar regarding future events involving these atoms ceases to be
valid. Such events will have to be erased from the calendar and replaced by what-
ever new events are predicted. The potential collisions that must be examined to
determine these new events are between each of the colliding atoms and all other
atoms in the neighboring cells, including the cell that the atom presently occupies.
Similarly, when an atom crosses a cell boundary, the newly adjacent cells also
contain potential collision partners that must be considered; in this case, however,
existing calendar entries are still relevant and are retained. Following both kinds
of event it is necessary to determine the next cell crossing event for the atom(s)
involved. If these details are taken care of correctly there is no way in which a
collision can be overlooked.

Program details

At this point we describe those parts of the program♠ that deal with the collisions
and cell crossings. The handling of the event calendar will be discussed separately.
Unlike the previous case studies that were built upon one another’s programs, the
hard-sphere simulation is organized completely differently and so, with the excep-
tion of certain common utility functions, a separate program will be constructed.
The reduced MD units used in this simulation are defined so that the atoms have
unit mass and diameter. Much of the program is equally suitable for spheres in
three dimensions (as in this chapter) and disks in two (see §15.3); the differences
between the three- and two-dimensional versions are relatively minor.

The description begins with the main program.

int main (int argc, char **argv)

{

GetNameList (argc, argv);

PrintNameList (stdout);

SetParams (); 5

SetupJob ();

moreCycles = 1;

eventCount = 0;

while (moreCycles) {

SingleEvent (); 10

++ eventCount;

if (eventCount >= limitEventCount) moreCycles = 0;

}

}

♠ pr_14_1

396 14 Step potentials

Job initialization requires

void SetupJob ()

{

AllocArrays ();

InitCoords ();

InitVels (); 5

timeNow = 0.;

nextSumTime = 0.;

collCount = 0.;

crossCount = 0.;

StartRun (); 10

ScheduleEvent (0, MOL_LIMIT + 6, nextSumTime);

}

where MOL_LIMIT is a constant that exceeds the maximum possible number of
atoms in the system.

The function responsible for processing a single event is

void SingleEvent ()

{

real vvSum;

int n;

5

NextEvent ();

if (evIdB < MOL_LIMIT) {

ProcessCollision ();

++ collCount;

} else if (evIdB >= MOL_LIMIT + 100) { 10

ProcessCellCrossing ();

++ crossCount;

} else if (evIdB == MOL_LIMIT + 6) {

UpdateSystem ();

nextSumTime += intervalSum; 15

ScheduleEvent (0, MOL_LIMIT + 6, nextSumTime);

VZero (vSum);

vvSum = 0.;

DO_MOL {

VVAdd (vSum, mol[n].rv); 20

vvSum += VLenSq (mol[n].rv);

}

kinEnVal = vvSum * 0.5 / nMol;

PrintSummary (stdout);

} 25

}

The call to NextEvent obtains the details of the next event; these include the
two values evIdA and evIdB, that are examined to determine the event type and
atom(s) involved. If the event is a collision, recognizable because evIdB is less

14.2 Computational approach 397

than MOL_LIMIT, the two values identify the colliding atoms. For a cell crossing,
signaled by a value of evIdB not less than MOL_LIMIT+100, evIdA is the atom
and evIdB describes the cell face crossed. The only other kind of event expected
here, corresponding to the value MOL_LIMIT+6, is one which outputs a summary
of the properties of the system. Other event classes are readily accommodated (see
§15.3).

The structure Mol used in this program has the form

typedef struct {

VecR r, rv;

real time;

VecI inCell;

} Mol; 5

and the following variables (those requiring explanation will receive it in due
course) are used,

Mol *mol;

EvTree *evTree;

VecR region, vSum;

VecI cellRange[2], cells, initUcell;

real collCount, crossCount, density, intervalSum, kinEnVal, 5

nextSumTime, temperature, timeNow, velMag;

int *cellList, eventCount, eventMult, evIdA, evIdB, limitEventCount,

moreCycles, nMol, poolSize;

The list of input data items for the program is

NameList nameList[] = {

NameR (density),

NameI (eventMult),

NameI (initUcell),

NameR (intervalSum), 5

NameI (limitEventCount),

NameR (temperature),

};

The function ProcessCollision is used to process a single collision event.
The hard-sphere collision dynamics are as described in (14.2.4). A new array
cellRange appears here; its values are used to determine which of the neigh-
boring cells, out of the total of 27 in three dimensions, should be examined for
future collision events. Collisions between atoms on opposite sides of the periodic
boundaries are treated correctly by pretending that the collision is with one of the
periodic replica atoms.

398 14 Step potentials

void ProcessCollision ()

{

VecR dr, dv;

real fac;

5

UpdateMol (evIdA);

UpdateMol (evIdB);

VSetAll (cellRange[0], -1);

VSetAll (cellRange[1], 1);

VSub (dr, mol[evIdA].r, mol[evIdB].r); 10

VWrapAll (dr);

VSub (dv, mol[evIdA].rv, mol[evIdB].rv);

fac = - VDot (dr, dv) / VLenSq (dr);

VVSAdd (mol[evIdA].rv, fac, dr);

VVSAdd (mol[evIdB].rv, - fac, dr); 15

PredictEvent (evIdA, -1);

PredictEvent (evIdB, evIdA);

}

The function ProcessCellCrossing deals with a single cell boundary crossing
event. Linked lists are used to record the atoms belonging to each cell; the atom
concerned is removed from the list of the cell just exited and added to that of
the newly entered cell. Periodic wraparound is applied where necessary and the
values in cellRange are used here to limit the cells examined for possible future
collisions to the newly adjacent cells only.

#define VWrapEv(t) \

if (mol[evIdA].rv.t > 0.) { \

cellRange[0].t = 1; \

++ mol[evIdA].inCell.t; \

if (mol[evIdA].inCell.t == cells.t) { \ 5

mol[evIdA].inCell.t = 0; \

mol[evIdA].r.t = -0.5 * region.t; \

} \

} else { \

cellRange[1].t = -1; \ 10

-- mol[evIdA].inCell.t; \

if (mol[evIdA].inCell.t == -1) { \

mol[evIdA].inCell.t = cells.t - 1; \

mol[evIdA].r.t = 0.5 * region.t; \

} \ 15

}

void ProcessCellCrossing ()

{

int n; 20

UpdateMol (evIdA);

n = VLinear (mol[evIdA].inCell, cells) + nMol;

14.2 Computational approach 399

while (cellList[n] != evIdA) n = cellList[n];

cellList[n] = cellList[evIdA]; 25

VSetAll (cellRange[0], -1);

VSetAll (cellRange[1], 1);

switch (evIdB - MOL_LIMIT - 100) {

case 0:

VWrapEv (x); 30

break;

case 1:

VWrapEv (y);

break;

case 2: 35

VWrapEv (z);

break;

}

PredictEvent (evIdA, evIdB);

n = VLinear (mol[evIdA].inCell, cells) + nMol; 40

cellList[evIdA] = cellList[n];

cellList[n] = evIdA;

}

Predicting future events after a collision or cell crossing is carried out by the
function PredictEvent. The first part of this function looks at possible cell bound-
ary crossings in all directions and schedules the earliest one. The second part ex-
amines every atom in the cells that must be scanned for potential collisions and
determines whether a collision is possible using (14.2.2). Much of the code han-
dles the special requirements of periodic boundaries. The reason why two argu-
ments are needed by this function (the first is an atom number, the second either
an atom number or a code with values –1 or –2) should be apparent from the
listing.

#define WhenCross(t) \

tm.t = (mol[na].rv.t != 0.) ? w.t / mol[na].rv.t : 1e12;

#define VWrapEvC(t) \

m2v.t = mol[na].inCell.t + m1v.t; \

shift.t = 0.; \ 5

if (m2v.t == -1) { \

m2v.t = cells.t - 1; \

shift.t = - region.t; \

} else if (m2v.t == cells.t) { \

m2v.t = 0; \ 10

shift.t = region.t; \

}

void PredictEvent (int na, int nb)

{ 15

VecR dr, dv, rs, shift, tm, w;

VecI m1v, m2v;

400 14 Step potentials

real b, d, t, tInt, vv;

int dir, evCode, m1x, m1y, m1z, n;

20

VCopy (w, mol[na].inCell);

if (mol[na].rv.x > 0.) ++ w.x;

if (mol[na].rv.y > 0.) ++ w.y;

if (mol[na].rv.z > 0.) ++ w.z;

VMul (w, w, region); 25

VDiv (w, w, cells);

VSAdd (rs, mol[na].r, 0.5, region);

VVSub (w, rs);

WhenCross (x);

WhenCross (y); 30

WhenCross (z);

if (tm.y < tm.z) dir = (tm.x < tm.y) ? 0 : 1;

else dir = (tm.x < tm.z) ? 0 : 2;

evCode = 100 + dir;

ScheduleEvent (na, MOL_LIMIT + evCode, timeNow + VComp (tm, dir)); 35

for (m1z = cellRange[0].z; m1z <= cellRange[1].z; m1z ++) {

m1v.z = m1z;

VWrapEvC (z);

for (m1y = cellRange[0].y; m1y <= cellRange[1].y; m1y ++) {

m1v.y = m1y; 40

VWrapEvC (y);

for (m1x = cellRange[0].x; m1x <= cellRange[1].x; m1x ++) {

m1v.x = m1x;

VWrapEvC (x);

n = VLinear (m2v, cells) + nMol; 45

for (n = cellList[n]; n >= 0; n = cellList[n]) {

if (n != na && n != nb && (nb >= -1 || n < na)) {

tInt = timeNow - mol[n].time;

VSub (dr, mol[na].r, mol[n].r);

VVSAdd (dr, - tInt, mol[n].rv); 50

VVSub (dr, shift);

VSub (dv, mol[na].rv, mol[n].rv);

b = VDot (dr, dv);

if (b < 0.) {

vv = VLenSq (dv); 55

d = Sqr (b) - vv * (VLenSq (dr) - 1.);

if (d >= 0.) {

t = - (sqrt (d) + b) / vv;

ScheduleEvent (na, n, timeNow + t);

} 60

}

}

}

}

} 65

}

}

14.2 Computational approach 401

The macro VCopy (§18.2) copies vector components while allowing for a change
of component type.

The following function is called at the start of the computation to create the cell
lists and produce the initial event calendar.

void StartRun ()

{

VecR rs;

int j, n;

5

for (j = 0; j < VProd (cells) + nMol; j ++) cellList[j] = -1;

DO_MOL {

mol[n].time = timeNow;

VSAdd (rs, mol[n].r, 0.5, region);

VMul (rs, rs, cells); 10

VDiv (mol[n].inCell, rs, region);

j = VLinear (mol[n].inCell, cells) + nMol;

cellList[n] = cellList[j];

cellList[j] = n;

} 15

InitEventList ();

VSetAll (cellRange[0], -1);

VSetAll (cellRange[1], 1);

DO_MOL PredictEvent (n, -2);

} 20

The function that updates an atom’s coordinates and time variable is

void UpdateMol (int id)

{

real tInt;

tInt = timeNow - mol[id].time; 5

VVSAdd (mol[id].r, tInt, mol[id].rv);

mol[id].time = timeNow;

}

and the entire system can be updated by

void UpdateSystem ()

{

int n;

DO_MOL UpdateMol (n); 5

}

The only other kind of event included in this version of the program simply outputs

402 14 Step potentials

the measured energy and momentum of the system, as well as a report on the
number of events that have occurred so far. The output function is

void PrintSummary (FILE *fp)

{

fprintf (fp, "%.2f %.10g %.10g %.3f %.3f\n",

timeNow, collCount, crossCount, VCSum (vSum) / nMol),

kinEnVal); 5

}

Additional quantities that are set in SetParams are

poolSize = eventMult * nMol;

VCopy (cells, region);

The variable poolSize determines how much space will be allocated for the event
calendar. The size of the cell array assumes that the smallest possible cell is wanted
(recall that the atoms have unit diameter). Memory allocation in AllocArrays

includes, in addition to the usual mol and cellList arrays,

AllocMem (evTree, poolSize, EvTree);

an array that appears only in the event processing functions described in §14.3. The
initial state is defined in the same way as for soft spheres (§3.6).

Properties

Equilibrium and transport properties for models based on impulsive interactions
can be defined in an analogous way to the continuous case. The only difference
occurs in those quantities that depend directly on the interactions, such as the pres-
sure. The virial expression (2.3.8) must be replaced [erp77] by its impulsive limit,
namely, a sum over the collisions occurring during the measurement period tm ,

PV = 1
3

[〈∑
i

v2
i

〉
+ 1

tm

∑
c

ric jc · �vic

]
(14.2.8)

where ic and jc are the atoms involved in a particular collision c; the separation
at collision ric jc – where |ric jc | = σ – allows for periodic wraparound. Transport
properties follow a similar approach [ald70a].

Computation of the RDF is the same as for soft spheres (§4.3); the only differ-
ence is that, instead of the measurement being performed at fixed multiples of the
timestep, a new class of measurement event is required. New variables, in addition
to those needed for the RDF computation, and input data are

14.3 Event management 403

real intervalRdf, nextRdfTime;

NameR (intervalRdf),

and the initialization (in SetupJob) requires

nextRdfTime = 0.;

ScheduleEvent (0, MOL_LIMIT + 7, nextRdfTime);

countRdf = 0;

The event processing (in SingleEvent) now includes a test for the new event type,

} else if (evIdB == MOL_LIMIT + 7) {

UpdateSystem ();

EvalRdf ();

nextRdfTime += intervalRdf;

ScheduleEvent (0, MOL_LIMIT + 7, nextRdfTime); 5

} else ...

14.3 Event management

Calendar design

We have already alluded to the central role played by the event calendar. The cal-
endar contains a list of future collisions and cell crossings, as well as events corre-
sponding to measurements of various kinds conducted at fixed time intervals. For a
large system, the calendar will hold a great deal of information and it is imperative
that it be managed in an efficient way. Efficiency focuses principally on execution
time, but space requirements are not neglected.

The scheme we describe here [rap80] is based on a binary tree data structure
[knu68, knu73]. The binary tree is a generalization of the linked list† to the case
where each node (or list member) has pointers to two successors rather than just
one; the analogy with an inverted tree is obvious, hence the name. Other data struc-
tures could serve the purpose, but the binary tree is relatively straightforward to
implement. More significantly, its performance in situations relevant to MD can be
analyzed theoretically and, to within a constant factor, can be shown to be optimal.

Each scheduled event is represented by a node in the tree. The information con-
tained within the node identifies the time at which the event is scheduled to occur
and the event details: if the event is a collision, then the atoms involved are speci-
fied; if it is a cell crossing, then the atom is specified, together with an indication

† The oct-tree in §13.3 was another of these generalizations, although it used an entirely different approach to
storage and was not designed to be modified.

404 14 Step potentials

of which cell boundary is crossed; for other event types, typically measurement
events, the details are given by a suitable numerical code. The operations that are
performed on the tree data are the following:

• retrieve the earliest event;
• add a new event;
• delete an existing event;
• initialize the tree contents.

After retrieving an event the node containing its description must be deleted from
the tree and, whenever a collision occurs, all other event nodes involving either
of the participants must also be deleted. A ‘pool’ of spare nodes exists from which
withdrawals are made when events are added to the calendar and to which the nodes
are returned once no longer needed; this pool must never be allowed to become
empty.

Three pointers are used to link event nodes into the tree; these point to the left
and right descendant nodes and to the parent node. The time ordering is such that all
the left-hand descendants are events scheduled to occur before the event at the cur-
rent node, while those on the right are due to occur after it. The pointer to the parent
is not essential, but its presence simplifies algorithms for navigating the tree. The
actual tree representation of a given set of events is far from unique and depends
on the order in which the event nodes are added.

To support rapid deletion of related event nodes, the storage for each event pro-
vides additional pointers needed for linking the node into two circular lists [knu68],
one list for each of the atoms involved if the event is a collision, two distinct lists
for the same atom if the event is a cell crossing (the explanation follows); these
pointers are unused in other cases. The reason for two linked lists per atom is again
one of convenience: for a given atom j there is one list joining all collision nodes
in which j appears as the first partner in the pair and another for those in which
j is the second partner. The pointers belonging to the cell crossing node associ-
ated with atom j (there is always exactly one such node) are used to access these
two lists. To improve performance even further, the circular lists are doubly linked,
each having pointers that traverse the list in both directions.

Theoretical performance
The amount of work required to perform certain elementary operations on the data
in the binary tree can be estimated theoretically [knu73]; these operations lie at
the heart of the calendar management functions to be described shortly. Here we
summarize the relevant results.

Consider a binary tree with N nodes. If the tree is balanced, in the sense that all
paths from the root (the node from which all others descend) to the nodes at the

14.3 Event management 405

ends of all the branches are essentially the same length, then it can be shown that
an average of 1.39 log N nodes must be tested to find the correct insertion point for
a new node (assuming that the value determining the node position – the scheduled
time in the case of MD – is randomly chosen). This represents the optimal value.
In circumstances more relevant to MD, namely that the entire tree is constructed
from a series of events whose scheduled times are (from the tree’s point of view)
randomly distributed, the average number of tests increases to 2 log N , a value still
not too far from optimal. Measurements using actual MD simulations confirm this
result [rap80] and lay to rest any concern that the tree might degenerate into a near-
linear list (for which average insertion time is proportional to N) over the duration
of the run.

Another theoretical result deals with the average number of cycles in a search
loop required to relink the neighbors of a particular node after that node is deleted.
While this could also have shown a certain amount of N dependence, in actual fact
the value is a constant less than 0.5, and is thus completely independent of tree
size.

Program details

We have already introduced the pointers associated with the event nodes: there
are three pointers for linking each node into the tree, and every node (except for
measurement events) also belongs to two circular lists, each of which is doubly
linked. Thus the total number of pointers per node is seven, and these, together
with the two values specifying what the event actually is, and the scheduled time
of the event, are stored in the structure

typedef struct {

real time;

int left, right, up, circAL, circAR, circBL, circBR, idA, idB;

} EvTree;

The first three integer values are used as pointers for traversing the tree. The next
four are associated with the two circular lists to which each collision and cell cross-
ing event node belongs; the two lists are denoted A and B, and the two pointers for
each list L and R. The final two values describe the event, as explained previously.
An array evTree of structures of this type constitutes the event tree.

The tree fluctuates in size over the course of the simulation as nodes are added
and removed. A pool of spare nodes is provided to accommodate these size vari-
ations. The first node of evTree is not used to hold events, but serves as a fixed
root from which the rest of the tree grows; one of its pointers is used to access the
pool, the nodes of which are joined into a linked list (using the pointer circAR).

406 14 Step potentials

Fig. 14.1. A hand-crafted miniature event tree (the real one is much larger) – the tree
links are shown, but for clarity the circular lists are omitted and the four pointer values are
shown instead (on either side of the node). Each node includes the event time, the atom(s)
involved, and the cell face crossed (if relevant); the value beneath the node is its ‘address’
in the tree.

The nodes corresponding to cell crossings also occupy reserved locations, the Nm

nodes immediately following the root, since there is always one such event sched-
uled per atom; these nodes also serve as anchors for the circular lists associated
with each atom. The remaining nodes are dynamically assigned to collisions and
other events as necessary. Figure 14.1 shows an example of a very small event tree.

14.3 Event management 407

The functions for scheduling an event, determining the next event and deleting
events follow. The list and tree manipulations are entirely standard [knu73] and,
with just a little effort, it should be possible to follow the logic of the algorithms.

The first of these functions inserts an event node at the correct location in the
tree and then links it into the two circular lists; the node is taken from the pool,
with a check being made to ensure that the pool is not empty. The tests (here
and subsequently) to determine event type make provision for event types that are
not included in the present case study, in particular, collisions with impenetrable
boundary walls – see §15.3 – which, from the point of view of event management,
combine features of both collisions and cell crossings.

void ScheduleEvent (int idA, int idB, real tEvent)

{

int id, idNew, more;

id = 0; 5

if (idB < MOL_LIMIT || idB >= MOL_LIMIT + 2 * NDIM &&

idB < MOL_LIMIT + 100) {

if (evTree[0].idA < 0) ErrExit (ERR_EMPTY_EVPOOL);

idNew = evTree[0].idA;

evTree[0].idA = evTree[evTree[0].idA].circAR; 10

} else idNew = idA + 1;

if (evTree[id].right < 0) evTree[id].right = idNew;

else {

more = 1;

id = evTree[id].right; 15

while (more) {

if (tEvent < evTree[id].time) {

if (evTree[id].left >= 0) id = evTree[id].left;

else {

more = 0; 20

evTree[id].left = idNew;

}

} else {

if (evTree[id].right >= 0) id = evTree[id].right;

else { 25

more = 0;

evTree[id].right = idNew;

}

}

} 30

}

if (idB < MOL_LIMIT) {

evTree[idNew].circAR = evTree[idA + 1].circAR;

evTree[idNew].circAL = idA + 1;

evTree[evTree[idA + 1].circAR].circAL = idNew; 35

evTree[idA + 1].circAR = idNew;

evTree[idNew].circBR = evTree[idB + 1].circBR;

408 14 Step potentials

evTree[idNew].circBL = idB + 1;

evTree[evTree[idB + 1].circBR].circBL = idNew;

evTree[idB + 1].circBR = idNew; 40

}

evTree[idNew].time = tEvent;

evTree[idNew].idA = idA;

evTree[idNew].idB = idB;

evTree[idNew].left = evTree[idNew].right = -1; 45

evTree[idNew].up = id;

}

We mentioned earlier that the average number of times the loop in this function is
executed grows logarithmically with tree size.

The second function determines the next event about to occur, removes it from
the tree and ensures that other, now invalid, events are also removed; nodes re-
moved are returned to the pool.

void NextEvent ()

{

int idNow;

idNow = evTree[0].right; 5

while (evTree[idNow].left >= 0) idNow = evTree[idNow].left;

timeNow = evTree[idNow].time;

evIdA = evTree[idNow].idA;

evIdB = evTree[idNow].idB;

if (evIdB < MOL_LIMIT + 2 * NDIM) { 10

DeleteAllMolEvents (evIdA);

if (evIdB < MOL_LIMIT) DeleteAllMolEvents (evIdB);

} else {

DeleteEvent (idNow);

if (evIdB < MOL_LIMIT + 100) { 15

evTree[idNow].circAR = evTree[0].idA;

evTree[0].idA = idNow;

}

}

} 20

The third function does the deletions required following a collision event; it
removes all other scheduled events involving the affected atoms from the tree (and
returns them to the pool) by traversing all four circular lists to which the atoms
belong.

void DeleteAllMolEvents (int id)

{

int idd;

++ id; 5

14.3 Event management 409

Fig. 14.2. The various kinds of pointer rearrangements that can occur following node
removal from the tree; d is the deleted node, a pointer is added from p to s, and other
pointers may need alteration.

DeleteEvent (id);

for (idd = evTree[id].circAL; idd != id; idd = evTree[idd].circAL) {

evTree[evTree[idd].circBL].circBR = evTree[idd].circBR;

evTree[evTree[idd].circBR].circBL = evTree[idd].circBL;

DeleteEvent (idd); 10

}

evTree[evTree[id].circAL].circAR = evTree[0].idA;

evTree[0].idA = evTree[id].circAR;

evTree[id].circAL = evTree[id].circAR = id;

for (idd = evTree[id].circBL; idd != id; idd = evTree[idd].circBL) { 15

evTree[evTree[idd].circAL].circAR = evTree[idd].circAR;

evTree[evTree[idd].circAR].circAL = evTree[idd].circAL;

DeleteEvent (idd);

evTree[idd].circAR = evTree[0].idA;

evTree[0].idA = idd; 20

}

evTree[id].circBL = evTree[id].circBR = id;

}

The last of these functions rearranges the tree pointers following the removal
of a node. All possible eventualities are handled and, as indicated previously, the
average number of times the short loop in this function is executed is less than
unity. The operations involved are illustrated in Figure 14.2.

void DeleteEvent (int id)

{

int idp, idq, idr;

410 14 Step potentials

idr = evTree[id].right; 5

if (idr < 0) idq = evTree[id].left;

else {

if (evTree[id].left < 0) idq = idr;

else {

if (evTree[idr].left < 0) idq = idr; 10

else {

idq = evTree[idr].left;

while (evTree[idq].left >= 0) {

idr = idq;

idq = evTree[idr].left; 15

}

evTree[idr].left = evTree[idq].right;

evTree[evTree[idq].right].up = idr;

evTree[idq].right = evTree[id].right;

evTree[evTree[id].right].up = idq; 20

}

evTree[evTree[id].left].up = idq;

evTree[idq].left = evTree[id].left;

}

} 25

idp = evTree[id].up;

evTree[idq].up = idp;

if (evTree[idp].right != id) evTree[idp].left = idq;

else evTree[idp].right = idq;

} 30

One further function is required for initializing the data structures. All nodes are
placed in the pool, and all circular lists are constructed so that each contains just
the one node associated with the cell crossing for the particular atom.

void InitEventList ()

{

int id;

evTree[0].left = evTree[0].right = -1; 5

evTree[0].idA = nMol + 1;

for (id = evTree[0].idA; id < poolSize - 1; id ++)

evTree[id].circAR = id + 1;

evTree[poolSize].circAR = -1;

for (id = 1; id < nMol + 1; id ++) { 10

evTree[id].circAL = evTree[id].circBL = id;

evTree[id].circAR = evTree[id].circBR = id;

}

}

14.4 Properties 411

0 1 2 3 4
0

1

2

3

4

distance

ra
di

al
 d

is
tr

ib
ut

io
n

fu
nc

tio
n

Fig. 14.3. Radial distribution functions for hard- and soft-sphere fluids.

14.4 Properties

Radial distribution function

The hard-sphere RDF is obtained from a run using input data

density 0.8

eventMult 4

initUcell 8 8 8

intervalRdf 0.25

intervalSum 5.

limitEventCount 1500000

limitRdf 100

rangeRdf 4.

sizeHistRdf 200

temperature 1.

The initial state is an FCC lattice, so that Nm = 2048; the conditions are the same
as those used in §4.3 for measuring the soft-sphere RDF.

With these input values, a set of RDF results is produced roughly every 6 × 105

collisions. The first set is discarded, the second is shown in Figure 14.3. The soft-
sphere RDF is included for comparison; apart from the sharp first peak in the case
of hard spheres the two curves are practically identical.

412 14 Step potentials

Free-path distribution

The distribution of path lengths between collisions is a characteristic that can only
be studied within the hard-sphere framework, since, for continuous potentials, the
notion of a collision event is not precisely defined. The average of this distribution
is just the familiar mean free path. The new variables required for this analysis♠ are

real *histFreePath, rangeFreePath;

int countFreePath, limitFreePath, sizeHistFreePath;

an addition to structure Mol,

VecR rCol;

together with input data items, an additional array allocation (in AllocArrays)
and initialization (in SetupJob),

NameI (limitFreePath),

NameR (rangeFreePath),

NameI (sizeHistFreePath),

AllocMem (histFreePath, sizeHistFreePath, real); 5

InitFreePath ();

After processing each collision, a call is made to the function that calculates the
path lengths while taking into account the periodic boundaries.

void EvalFreePath ()

{

VecR dr;

int j, n;

5

for (n = evIdA; n <= evIdB; n += evIdB - evIdA) {

if (countFreePath == 0) {

for (j = 0; j < sizeHistFreePath; j ++) histFreePath[j] = 0.;

}

VSub (dr, mol[n].r, mol[n].rCol); 10

VWrapAll (dr);

mol[n].rCol = mol[n].r;

j = VLen (dr) * sizeHistFreePath / rangeFreePath;

++ histFreePath[Min (j, sizeHistFreePath - 1)];

++ countFreePath; 15

if (countFreePath == limitFreePath) {

for (j = 0; j < sizeHistFreePath; j ++)

♠ pr_14_2

14.4 Properties 413

0 5 10 15 20
0.00

0.04

0.08

0.12

path length

pr
ob

ab
ili

ty

Fig. 14.4. Free-path distributions for hard spheres at densities 0.025, 0.05, 0.1 and 0.2.

histFreePath[j] /= countFreePath;

PrintFreePath (stdout);

countFreePath = 0; 20

}

}

}

The output function PrintFreePath (not shown) just prints the path distribution
histogram; the initialization function is

void InitFreePath ()

{

int n;

countFreePath = 0; 5

DO_MOL mol[n].rCol = mol[n].r;

}

The runs are for Nm = 2048 and include input data

limitFreePath 20000

rangeFreePath 20.

sizeHistFreePath 100

with density values ranging from 0.025 to 0.2. The results from the first 50 000
(approximately) collisions are discarded and those for the next 20 000 are shown
in Figure 14.4. The distributions all decrease with path length (ignoring noise);

414 14 Step potentials

if each is scaled by the mean free path at the corresponding density, all should
collapse onto a single curve [ein68].

Efficiency

Any comparison between the computational efficiency of hard- and soft-sphere
systems requires some way of quantifying equivalent amounts of computation. One
could, for example, measure the computational effort needed to determine pressure
to a given degree of accuracy. The results will certainly depend on the density, with
soft spheres having the advantage at high density (where the hard-sphere collision
rate is high) and the hard spheres at low density (where the mean free path is
relatively long). The whole question is often irrelevant, however, because the nature
of the problem may dictate which approach is required†.

14.5 Generalizations

Outline

In this section we deal briefly with two useful extensions of the hard-sphere ap-
proach: the construction of polymer chains and the way in which both rotational
motion and inelasticity can be added (the latter intended for use in a macroscopic
context only). In the first example the additions involve procedural details, so the
program modifications are shown; in the second the changes are in the collision dy-
namics and so we concentrate on the mathematical details. Two further extensions,
namely, the addition of a gravitational field and the use of hard-wall boundaries,
are described in §15.3.

Hard-sphere polymer chains

Flexible polymer chains – reminiscent of a bead necklace – can be constructed by
placing each pair of chain neighbors in a potential well with infinitely high walls
and a width corresponding to the maximum bond elongation [rap79]. While this
kind of model lacks the refinement of the alkane model considered in Chapter 10,
it allows polymer studies to benefit from the advantages of event-driven MD.

We assume that the atoms still have unit diameter and define the maximum bond
elongation to be bondStretch. Cell sizes will now be determined by this value,
so that the collision event occurring when a bond becomes fully stretched will
also be detected by the usual scan across cells. The initial state must be properly

† If there is a choice, the actual relative efficiency could well depend on the kind of processor used; for this
reason we will forgo timing details.

14.5 Generalizations 415

constructed and we will also assume that all chain atoms are numbered consec-
utively. The only additional change needed is in PredictEvent, to ensure that
when predicting collisions for chain neighbors, both normal and stretched bond
collisions are examined, and the appropriate choice made.

int collCode;

real rr;

...

for (n = cellList[n]; n >= 0; n = cellList[n]) {

if (n != na && n != nb && (nb >= -1 || n < na)) { 5

tInt = timeNow - mol[n].time;

VSub (dr, mol[na].r, mol[n].r);

VVSAdd (dr, - tInt, mol[n].rv);

VVSub (dr, shift);

VSub (dv, mol[na].rv, mol[n].rv); 10

collCode = 0;

if (abs (n - na) > 1 || n / chainLen != na / chainLen) {

b = VDot (dr, dv);

if (b < 0.) {

vv = VLenSq (dv); 15

d = Sqr (b) - vv * (VLenSq (dr) - 1.);

if (d >= 0.) collCode = 1;

}

} else if (nb < MOL_LIMIT + 2 * NDIM) {

collCode = 2; 20

b = VDot (dr, dv);

rr = VLenSq (dr);

vv = VLenSq (dv);

if (b < 0.) {

d = Sqr (b) - vv * (rr - 1.); 25

if (d >= 0.) collCode = 1;

}

}

if (collCode > 0) {

if (collCode == 1) t = - (sqrt (d) + b) / vv; 30

else {

d = Sqr (b) - vv * (rr - Sqr (bondStretch));

t = (sqrt (d) - b) / vv;

}

ScheduleEvent ... 35

}

}

}

The fact that chain neighbors are never more than one cell apart removes the need
to search for new collisions of this type after a cell crossing. The role of collCode
is to distinguish between the two types of collision event that are now possible; the
formula used for the stretched bond collision is a particular instance of (14.2.5).

416 14 Step potentials

Rotation and inelasticity

Rotational motion is a feature that is readily added to the hard-sphere model [ber77].
The surfaces of the spheres are assumed to be rough, so that when a collision oc-
curs not only is there a change in translational motion but the spins of the spheres
also change.

It is a simple exercise in kinematics to show that the relative velocity at the point
of impact (we now include the possibility that the spheres have different sizes and
masses) is

g = vi j − (σiωi + σ jω j) × ri j/2σ̄ (14.5.1)

where σ̄ = (σi + σ j)/2. If the impulse is b, the velocity and angular velocity
changes required to conserve linear and angular momentum are given by

mi�vi = −m j�v j = b (14.5.2)

miσi�ωi = m jσ j�ω j = −ri j × b/2κσ̄ (14.5.3)

where κ is the numerical factor in the moment of inertia I = κmσ 2; κ = 1/10 for
solid spheres, 1/8 for disks.

The impulse can be expressed in terms of the components of g parallel and
perpendicular to ri j ,

b = m̄
[
g′‖ − g‖ + κ1

(
g′⊥ − g⊥)] (14.5.4)

where the primes denote values after the collision, κ1 = 1/(1 + 1/4κ), and the
reduced mass is

m̄ = mi m j

mi + m j
(14.5.5)

The change in kinetic energy can also be written in terms of these components,

�EK = 1
2 m̄
[
g′‖2 − g‖2 + κ1

(
g′⊥2 − g⊥2)]

(14.5.6)

Since �EK = 0 for an elastic collision,

g′‖ = −g‖ , g′⊥ = ±g⊥ (14.5.7)

with the negative solution being applicable for rough surfaces; the positive solution
is for smooth surfaces, in which case ri j × b = 0 and the spins do not change.

Another feature that can be incorporated into the hard-sphere model is inelastic-
ity. While not relevant in the molecular context, the same general MD approach can
be used for modeling granular materials, and here energy dissipation by means of
highly inelastic collisions is a key element in the dynamics†. For inelastic collisions,

† Soft-particle granular models are discussed in Chapter 16.

14.6 Further study 417

a coefficient of restitution ε is introduced, with 0 ≤ ε ≤ 1, and the relative veloci-
ties before and after collision are related by g′ = −εg, assuming, for convenience,
that the same ε applies to both components. Expressions for b and �EK follow
immediately from (14.5.4) and (14.5.6).

14.6 Further study
14.1 Compare the thermodynamic properties of square-well and LJ fluids.
14.2 Study the equation of state of the hard-sphere fluid [erp84].
14.3 Examine trajectory sensitivity to small perturbations; here, unlike the corre-

sponding soft-sphere treatment of this problem (§3.8), there is no numerical
integration error.

14.4 Construct polymer chains using linked hard spheres and compare the effec-
tiveness of the approach with the soft-sphere chains described in §9.2.

14.5 Measure the diffusion coefficient directly and by using the velocity autocor-
relation function [erp85].

14.6 Add rotational motion and examine its effect on diffusion.
14.7 Nonspherical particles can be handled by checking for overlaps and then

using an iterative method to determine the instant of collision [kus76, reb77,
all89]; explore this approach.

15

Time-dependent phenomena

15.1 Introduction

Practically all the simulations described so far have involved systems that are ei-
ther in equilibrium or in some time-independent stationary state; while individual
results are subject to fluctuation, it is the well-defined averages over sufficiently
long time intervals that are of interest. In this chapter we extend the MD approach
to a class of problem in which the behavior is not only time dependent, but the
properties themselves are also spatially dependent in ways that are not always pre-
dictable. The analysis of the behavior of such systems cannot be carried out follow-
ing the methods described earlier, which were generally based on the evaluation of
system-wide averages or correlations, and one is therefore compelled to resort to
graphical methods. Here we focus on MD applications in fluid dynamics, a sub-
ject in which atomic matter is conventionally replaced by a continuous medium
for practical purposes; recovering the atomic basis is part of trying to understand
more complex fluid behavior of the type studied in rheology. For more on the mi-
croscopic approach to hydrodynamics see [mar92].

15.2 Open systems

Most current MD applications deal with closed systems; this implies either total
isolation from the outside world, or coupling to the environment in a way described
by one of the ensembles of statistical mechanics. The coupling can occur, for ex-
ample, with the aid of a thermostat (§6.3), in which case the equilibrium properties
are those of the canonical ensemble. Extending MD to open systems, where cou-
pling to the external world is of a more general kind, introduces new problems,
some of which will be encountered here. Not only are open systems out of thermo-
dynamic equilibrium, but in many cases they are also spatially inhomogeneous and

418

15.2 Open systems 419

time dependent†. In some situations, the presence of physical walls – as opposed
to periodic boundaries – is essential to obtain the desired behavior.

Two examples of open systems will be treated here, both from the realm of fluid
dynamics. One of the problems is a study of convective flow driven by a temper-
ature gradient, the other involves the flow of a fluid past a rigid obstacle. These
represent examples of attempts to bridge the gap between the atomistic picture of
the microscopic world, so ably captured by MD, and the more conventional world
of fluid dynamics. Although the existence of atoms is generally irrelevant in the
continuum picture, and is ignored by the equations of continuum fluid dynamics,
in order to learn what the molecular constituents of a fluid really do while the fluid
is flowing around the obstacle and exhibiting a range of quite complex behavior, it
is necessary to return to the roots, and this implies MD simulation. These examples
also benefit from the fact that the phenomena are primarily two-dimensional; three-
dimensional simulations of the required size require a much heavier computational
effort.

A flow problem of considerable importance is thermal convection [tri88]: a hor-
izontal layer of fluid is heated from below and the resulting interplay between the
upward flow produced by heating and the downward flow due to gravity leads to
the formation of structured flow patterns in the shape of rolls and various other
forms, either stationary or time dependent. In a wide variety of situations the en-
tire description of a flow experiment can be condensed into a single dimensionless
quantity; in this case it is the Rayleigh number

Ra = αgd3�T

νκ
(15.2.1)

that determines the behavior, where α is the thermal expansion coefficient of the
fluid, ν (= η/ρ) the kinematic viscosity, κ (= λ/ρCP) the thermal diffusivity,
d the layer height and �T the temperature difference. (To complete the story, a
second dimensionless quantity, the Prandtl number Pr = ν/κ , is also involved;
this partly determines the nature of the convective motion.)

The problem of flow past a rigid obstacle [tri88] is another extensively studied
problem in fluid dynamics. Here, the behavior is governed by the Reynolds number

Re = dv

ν
(15.2.2)

where d is a characteristic length scale, namely, the diameter of a cylindrical ob-
stacle oriented perpendicular to the flow, and v is the flow speed. Irrespective of
the obstacle size, the flow speed and whether the fluid is a liquid or a gas, the flow

† The system considered in §12.3 was also in this category.

420 15 Time-dependent phenomena

patterns depend only on Re; this kind of scaling behavior, as with the previous ex-
ample, is known as dynamic similarity. At small Re values the flow is laminar (as
opposed to turbulent), but the flow can be either stationary or time varying, with a
pair of fixed eddies or a highly structured set of traveling vortices forming in the
wake of the obstacle.

In setting up MD simulations of these systems it is important to ensure parameter
combinations that produce the correct values of the dimensionless numbers such
as Ra and Re; if they are too small nothing interesting should be expected, since
in each case there exist threshold values for the onset of the instability responsible
for the flow patterns. Even if the threshold is exceeded, there is no guarantee that a
microscopically small MD system will resemble its macroscopic counterpart: there
must exist a minimum region size – measurable in atomic diameters or mean free
paths (whichever is the larger) – below which the characteristic fluid flow patterns
cannot develop†. In addition to the size requirements, the duration of the simulation
must be long enough to allow observation of any time-dependent behavior. The
pessimist will also point out the use of highly exaggerated temperature gradients or
shear rates – which must be many orders of magnitude larger than their real-world
counterparts in order to overcome the inherent thermal fluctuations and compensate
for the small system size – and question whether the concept of dynamic similarity
has not been stretched a little too far.

15.3 Thermal convection

Motion in a gravitational field
Extending♠ the hard-sphere method of §14.2 to include the effect of a uniform grav-
itational field is a relatively simple exercise. The collision prediction process is not
affected at all because the same uniform acceleration is experienced by all atoms,
so that the computation for determining the existence of a collision and when it oc-
curs is independent of the field. Between collisions atoms follow parabolic rather
than linear trajectories.

It is only the prediction of cell crossings that calls for special attention, because
parabolic motion means that it is possible for an atom to leave a cell through the
face (or edge) of entry. The resulting changes to PredictEvent follow, where
the gravitational field gravField is assumed to act in the negative y direction;
the algebraic problem solved here is locating the intersection of a parabola with a
straight line. This version of the function is intended for use in two dimensions, but
is readily extended to three.

† Remember that the edge length of a square region containing 105 atoms at liquid density is only a mere
1000 Å; in three dimensions the corresponding size is even smaller.

♠ pr_15_1

15.3 Thermal convection 421

VecI signDir;

real h, h1, h2;

...

VCopy (w, mol[na].inCell);

if (mol[na].rv.x > 0.) ++ w.x; 5

signDir.x = (mol[na].rv.x < 0.);

if (gravField.y == 0. && mol[na].rv.y > 0.) ++ w.y;

VMul (w, w, region);

VDiv (w, w, cells);

VSAdd (rs, mol[na].r, 0.5, region); 10

VVSub (w, rs);

WhenCross (x);

if (gravField.y != 0.) {

h1 = Sqr (mol[na].rv.y) + 2. * gravField.y * w.y;

if (mol[na].rv.y > 0.) { 15

h2 = h1 + 2. * gravField.y * region.y / cells.y;

if (h2 > 0.) {

h = - sqrt (h2);

signDir.y = 0;

} else { 20

h = sqrt (h1);

signDir.y = 1;

}

} else {

h = sqrt (h1); 25

signDir.y = 1;

}

tm.y = - (mol[na].rv.y + h) / gravField.y;

} else {

WhenCross (y); 30

signDir.y = (mol[na].rv.y < 0.);

}

The role of signDir will become clear shortly when we continue with the discus-
sion of changes to PredictEvent.

The function UpdateMol for updating positions must be modified to allow for
parabolic trajectories, with the velocity also being updated,

void UpdateMol (int id)

{

real tInt;

tInt = timeNow - mol[id].time; 5

VVSAdd (mol[id].r, tInt, mol[id].rv);

VVSAdd (mol[id].r, 0.5 * Sqr (tInt), gravField);

VVSAdd (mol[id].rv, tInt, gravField);

mol[id].time = timeNow;

} 10

422 15 Time-dependent phenomena

Because local time variables are associated with each atom, a similar modification
is required in PredictEvent for the collision prediction,

VVSAdd (dr, -0.5 * Sqr (tInt), gravField);

VVSAdd (dv, - tInt, gravField);

When checking for energy conservation, allowance should be made for the gravi-
tational potential energy contribution.

Hard-wall boundaries

The boundaries used in this study are all rigid, although the side walls could be
replaced by periodic boundaries. These hard walls can be smooth, in which case
collisions with the walls are energy-conserving, specular collisions, but in most sit-
uations the walls will be rough, so that after undergoing a collision an atom loses all
memory of its prior velocity. Simply randomizing the velocity direction (and pos-
sibly magnitude) will achieve this effect, as in §7.3, but here we will demonstrate
an alternative approach in which the random element is absent.

Each wall is divided into a series of narrow strips with width typically equal to
the atom diameter; when an atom collides with the wall the outcome alternates be-
tween specular collisions and velocity reversals, depending on the strip involved –
a kind of corrugation effect. If the wall is also attached to a thermal reservoir held
at constant temperature, as is the case for the top and bottom walls, the velocity
magnitude can be changed to the required value (as in §7.3).

Modifications to the program described in §14.2 to incorporate these effects fol-
low. All of the reference to periodic boundaries must be removed. Additional vari-
ables are required for the gravitational field (regarded as a vector quantity), the
width of the wall corrugations, the wall temperatures and the selection of the pair
of opposite walls that act as thermal reservoirs,

VecR gravField, roughWid;

real wallTemp[2];

int thermalWall[NDIM];

and there is additional input data,

NameR (gravField),

NameI (thermalWall),

NameR (wallTemp),

Collisions with the hard walls require a new form of processing, so an additional
class of cell boundary event is introduced; in SingleEvent, all cell events are now

15.3 Thermal convection 423

identified by the modified test

if (evIdB < MOL_LIMIT + NDIM * 2 || evIdB >= MOL_LIMIT + 100)

The usual cell events are covered by the latter part of the test, while the former,
together with evIdB ≥ MOL_LIMIT, accounts for the wall collisions.

The function ProcessCellCrossing is modified to handle wall collisions as
well as regular cell crossings.

VecR rs;

VecI irs;

real vFac, vv;

int j, jj;

... 5

j = evIdB - MOL_LIMIT;

if (j >= 100) {

jj = j - 100;

... (same as before) ...

} else { 10

jj = j / 2;

VComp (cellRange[j % 2], jj) = 0;

VComp (mol[evIdA].rv, jj) *= -1.;

VSAdd (rs, mol[evIdA].r, 0.5, region);

VDiv (rs, rs, roughWid); 15

VCopy (irs, rs);

if (jj != 0 && irs.x % 2 == 0) mol[evIdA].rv.x *= -1.;

if (jj != 1 && irs.y % 2 == 0) mol[evIdA].rv.y *= -1.;

if (thermalWall[jj]) {

vv = VLenSq (mol[evIdA].rv); 20

vFac = sqrt (NDIM * wallTemp[j % 2] / vv);

VScale (mol[evIdA].rv, vFac);

}

}

... 25

In PredictEvent, changes are required in determining the identity of the cell
event about to be scheduled and the range of cells that must be examined.

#define LimitCells(t) \

if (mol[na].inCell.t + cellRangeT[0].t == -1) \

cellRangeT[0].t = 0; \

if (mol[na].inCell.t + cellRangeT[1].t == cells.t) \

cellRangeT[1].t = 0; 5

VecI cellRangeT[2];

...

dir = (tm.x < tm.y) ? 0 : 1;

evCode = 100 + dir; 10

if (VComp (mol[na].inCell, dir) == 0 &&

424 15 Time-dependent phenomena

VComp (signDir, dir) == 1) evCode = 2 * dir;

else if (VComp (mol[na].inCell, dir) == VComp (cells, dir) - 1 &&

VComp (signDir, dir) == 0) evCode = 2 * dir + 1;

ScheduleEvent (na, MOL_LIMIT + evCode, timeNow + VComp (tm, dir)); 15

cellRangeT[0] = cellRange[0];

cellRangeT[1] = cellRange[1];

LimitCells (x);

LimitCells (y);

for (m1y = cellRangeT[0].y; m1y <= cellRangeT[1].y; m1y ++) { 20

...

Here, cellRangeT replaces cellRange for the limits of the nested x and y cell
loops.

As formulated above, an atom is deemed to collide with the wall when its center
reaches the wall position. While not affecting the results here, it is more sensi-
ble (and necessary if atoms of mixed sizes are involved) if the collision occurs
when the wall–atom distance equals the atom radius. In the present case the only
changes needed are to enlarge the region slightly and shift the initial coordinates;
in SetParams add

VAddCon (region, region, 1.);

and in InitCoords (§2.4)

VecR offset;

...

VAddCon (gap, region, -1.);

VDiv (gap, gap, initUcell);

VSetAll (offset, 0.5); 5

...

VSet (c, nx + 0.5, ny + 0.5);

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

VVAdd (c, offset); 10

The width of the wall ‘corrugation’ is also specified in SetParams,

VecI iw;

...

VCopy (iw, region);

VDiv (roughWid, region, iw);

15.3 Thermal convection 425

Flow analysis

The flow is analyzed using the grid method of §7.3. Data collection uses the same
function GridAverage, after removing any reference to the z component of ve-
locity. The grid measurements are recorded at fixed time intervals intervalGrid;
to do this, an additional event category similar to those used previously for other
measurements is introduced.

Whenever the specified number of grid samples have been collected the results
are appended to a file that stores the grid measurements, or ‘snapshots’, for the
entire run. This is the task of the function PutGridAverage. Data are output in
binary form, after scaling the values so that they can be stored as short (16-bit)
integers in order to reduce file size. Enough information accompanies the grid data
to permit reconstruction of the original values, albeit with reduced precision. The
parameter NHIST has the value 4, with the four quantities treated in GridAverage

being the density, the square of the velocity and the two velocity components; each
quantity is computed for all atoms in every cell at a given instant, and the cell
results are averaged over time. The serial number of each set of data is stored in
snapNumber.

#define SCALE_FAC 32767.

void PutGridAverage ()

{

real histMax[NHIST], w; 5

int blockSize, fOk, hSize, j, n;

short *hI;

FILE *fp;

hSize = VProd (sizeHistGrid); 10

for (j = 0; j < NHIST; j ++) {

histMax[j] = 0.;

for (n = 0; n < hSize; n ++) {

w = fabs (histGrid[j][n]);

histMax[j] = Max (histMax[j], w); 15

}

if (histMax[j] == 0.) histMax[j] = 1.;

}

fOk = 1;

blockSize = (NHIST + 1) * sizeof (real) + sizeof (VecR) + 20

(NDIM + 3) * sizeof (int) + NHIST * hSize * sizeof (short);

if ((fp = fopen (fileName[FL_SNAP], "a")) != 0) {

WriteF (blockSize);

WriteF (histMax);

WriteF (region); 25

WriteF (runId);

WriteF (sizeHistGrid);

426 15 Time-dependent phenomena

WriteF (snapNumber);

WriteF (timeNow);

AllocMem (hI, hSize, short); 30

for (j = 0; j < NHIST; j ++) {

for (n = 0; n < hSize; n ++)

hI[n] = SCALE_FAC * histGrid[j][n] / histMax[j];

WriteFN (hI, hSize);

} 35

free (hI);

if (ferror (fp)) fOk = 0;

fclose (fp);

} else fOk = 0;

if (! fOk) ErrExit (ERR_SNAP_WRITE); 40

}

The file output operations have been simplified by defining

#define WriteF(x) fwrite (&x, sizeof (x), 1, fp)

#define WriteFN(x, n) fwrite (x, sizeof (x[0]), n, fp)

More on the subject of file usage appears in §18.6 and §18.7.
An analysis program♠, only part of which is shown here, would read this file,

one snapshot at a time, using the function GetGridAverage (the complement of
PutGridAverage). For the initial call, the variable blockNum is given the value
–1 (as in GetConfig in §18.6) to ensure the necessary storage is allocated.

int GetGridAverage ()

{

int fOk, n, j, k;

short *hI;

FILE *fp; 5

fOk = 1;

fp = fopen (fName, "r");

if (blockNum == -1) {

if (! fp) fOk = 0; 10

} else {

fseek (fp, blockNum * blockSize, 0);

++ blockNum;

}

if (fOk) { 15

ReadF (blockSize);

...

ReadF (timeNow);

if (feof (fp)) return (0);

if (blockNum == -1) { 20

AllocMem2 (histGrid, NHIST, VProd (sizeHistGrid), real);

♠ pr_angridflow

15.3 Thermal convection 427

AllocMem (streamFun, VProd (sizeHistGrid), real);

blockNum = 1;

}

AllocMem (hI, VProd (sizeHistGrid), short); 25

for (j = 0; j < NHIST; j ++) {

ReadFN (hI, VProd (sizeHistGrid));

for (n = 0; n < VProd (sizeHistGrid); n ++)

histGrid[j][n] = hI[n] * histMax[j] / SCALE_FAC;

} 30

free (hI);

if (ferror (fp)) fOk = 0;

fclose (fp);

}

if (! fOk) ErrExit (ERR_SNAP_READ); 35

return (1);

}

The array streamFun is to be used in evaluating (15.3.1) and

#define ReadF(x) fread (&x, sizeof (x), 1, fp)

#define ReadFN(x, n) fread (x, sizeof (x[0]), n, fp)

simplify the file input operations.
The size of the grid cells used for the analysis and the number of samples that

contribute to a single time-averaged snapshot have yet to be specified. Ideally, both
should allow the smallest spatial structures and the most rapid changes in the flow
to be resolved. Opposing this goal is the sampling issue, since the smaller the num-
ber of atoms participating in the average for a single cell the larger the fluctuations.
Compromise is necessary, and a typical (although very much a problem depen-
dent) tradeoff for a square system with Nm = 105 might involve a 50 × 50 grid,
with measurements collected at time intervals of between 0.1 and 1 (there is no
benefit in having them too closely spaced) and a snapshot after every 100–500
measurements.

There is no shortage of methods for displaying the results of the flow analy-
sis. Here we have chosen to plot the flow streamlines. This amounts to evaluating
the stream function at each grid point and then constructing a contour plot of the
function†. The stream function [tri88] is defined as the line integral

ψ(r) =
∫

ρ(vy dlx − vx dly) (15.3.1)

evaluated along an arbitrary path from the origin to the point r . The following
approach to computing the stream function is based on (15.3.1), and could form

† An alternative way of exhibiting the flow results is to use arrow plots to show the grid-averaged flow direction.

428 15 Time-dependent phenomena

the basis for an analysis or display program.

VecR w;

real *streamFun, sFirst;

...

VDiv (w, region, sizeHistGrid);

sFirst = 0.; 5

for (iy = 0; iy < sizeHistGrid.y; iy ++) {

for (ix = 0; ix < sizeHistGrid.x; ix ++) {

n = iy * sizeHistGrid.x + ix;

if (ix == 0) {

sFirst -= histGrid[0][n] * histGrid[2][n] * w.y; 10

streamFun[n] = sFirst;

} else streamFun[n] = streamFun[n - 1] +

histGrid[0][n] * histGrid[3][n] * w.x;

}

} 15

Contour plots of local scalar properties such as density and temperature are also
readily produced. Successive plots can be combined to produce an animated se-
quence that will clearly reveal any time-dependent behavior. We avoid discussing
the details of how to produce different kinds of graphic output since standard soft-
ware packages are generally available for this kind of work.

Results
The results shown here are for a hard-disk run using input data

density 0.4

eventMult 4

gravField 0. -0.15

initUcell 400 100

intervalGrid 1.

intervalSum 1.

limitEventCount 600000000

limitGrid 100

runId 1

sizeHistGrid 120 30

temperature 1.

thermalWall 0 1

wallTemp 20. 1.

The system contains a total of Nm = 40 000 disks, the walls are hard and rough,
the lower boundary is hot and the upper cold, and the gravitational field acts in the
downward direction. There is no temperature gradient in the initial state.

In Figure 15.1 we show the convective flow that has become firmly established
by t = 1800, corresponding to approximately 2.4 × 108 collisions. Temperature

15.4 Obstructed flow 429

Fig. 15.1. Streamlines showing four convection rolls.

Fig. 15.2. Temperature contour plot.

is subject to both vertical and horizontal variations that are correlated with the
flow, as can be seen in Figure 15.2; the simple vertical profile used in §7.3 would
have concealed this information. Density (not shown) is found to be practically
constant, except at the cold wall. The value of Ra can only be estimated very
roughly [puh89, rap91c], but it turns out to be consistent with what is expected
from continuum fluid dynamics based on the observed behavior.

In simulations of this kind there is normally an initial transient phase, during
which the system gradually evolves into a final state appropriate to the choice of
parameters [rap92]. How to identify the point at which the system may be said to
have reached this final state is not always obvious. A steady state is easily detected,
but slow periodic oscillations or completely random behavior are less readily iden-
tifiable as ‘final states’. There is also the possibility of long-lived metastable states
preceding the true final state. In short, there are few general rules.

15.4 Obstructed flow

Boundaries and driving force

There are two kinds of boundary that must be considered in this problem – the
region boundaries and the obstacle perimeter. Region boundaries can be made pe-
riodic so that the flow recirculates, provided that any memory of nonuniform flow is
erased by, for example, periodically randomizing the velocities of all atoms located

430 15 Time-dependent phenomena

very close to either end of the system. The obstacle boundary should be rough to
ensure that the adjacent fluid layer is at rest, corresponding to the nonslip bound-
ary that occurs experimentally. There are various ways of accomplishing this; a
particularly simple approach for two-dimensional flow around a circular obsta-
cle is to represent the obstacle as a ring of fixed atoms identical to those in the
fluid.

The flow is driven by superimposing a velocity bias in the flow direction when
carrying out the velocity randomization; a constant external field could have been
used instead, exactly as in the case of Poiseuille flow (§7.3). Heat will be generated
as a result of the sheared flow near the obstacle, but now there are no walls that can
be used to remove the excess heat; a simple method of overcoming this problem is
to cool the atoms while randomizing the velocities of atoms near the ends of the
system.

Program details

The program♠ used in this case study is an extension of the basic soft-disk MD
program using either cells or neighbor lists to assist the interaction calculations
(because of the flow, some of the performance gain of the neighbor-list method
might be lost). Leapfrog integration is used. Features that must be added to the
program include the obstacle and the mechanism for driving the flow. The new
variables appearing in this problem are

VecR obsPos;

real bdyStripWidth, flowSpeed, obsSize;

int nFixedMol, nFreeMol, stepDrive;

and the Mol structure contains an additional element fixed. The input data are

NameR (bdyStripWidth),

NameR (flowSpeed),

NameR (obsPos),

NameR (obsSize),

NameI (stepDrive), 5

Given that the circular region occupied by the obstacle is devoid of atoms, ini-
tialization of the run begins by determining the precise number of atoms in the
system. The atoms of the fluid initially occupy the sites of a square lattice; the
atoms used to form the obstacle boundary are evenly spaced around the perimeter
with separation ≈ rc. The obstacle size and position are specified relative to the

♠ pr_15_2

15.4 Obstructed flow 431

region size.

void EvalMolCount ()

{

VecR c, gap;

int nx, ny;

5

nFixedMol = M_PI * obsSize * region.y / rCut;

VDiv (gap, region, initUcell);

nFreeMol = 0;

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) { 10

VSet (c, nx + 0.5, ny + 0.5);

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

if (OutsideObs (&c)) ++ nFreeMol;

} 15

}

nMol = nFixedMol + nFreeMol;

}

int OutsideObs (VecR *p) 20

{

int outside;

outside = (Sqr (p->x - obsPos.x * region.x) +

Sqr (p->y - obsPos.y * region.y) > 25

Sqr (0.5 * obsSize * region.y + rCut));

return (outside);

}

This test is easily modified for obstacles with other shapes. Atoms making up the
obstacle boundary are distinguished from those of the fluid by mol[].fixed; these
are set by

void SetMolType ()

{

int n;

for (n = 0; n < nFixedMol; n ++) mol[n].fixed = 1; 5

for (n = nFixedMol; n < nMol; n ++) mol[n].fixed = 0;

}

The initial state can now be prepared; flow will be in the positive x direction.

void InitCoords ()

{

VecR c, gap, w;

real ang;

432 15 Time-dependent phenomena

int n, nx, ny; 5

VDiv (gap, region, initUcell);

VMul (w, obsPos, region);

for (n = 0; n < nFixedMol; n ++) {

ang = 2. * M_PI * n / nFixedMol; 10

VSet (c, cos (ang), sin (ang));

VSAdd (mol[n].r, w, 0.5 * obsSize * region.y, c);

}

n = nFixedMol;

for (ny = 0; ny < initUcell.y; ny ++) { 15

for (nx = 0; nx < initUcell.x; nx ++) {

VSet (c, nx + 0.5, ny + 0.5);

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

if (OutsideObs (&c)) { 20

mol[n].r = c;

++ n;

}

}

} 25

}

void InitVels ()

{

int n; 30

VZero (vSum);

DO_MOL {

if (! mol[n].fixed) {

VRand (&mol[n].rv); 35

VScale (mol[n].rv, velMag);

VVAdd (vSum, mol[n].rv);

} else VZero (mol[n].rv);

}

DO_MOL { 40

if (! mol[n].fixed) {

VVSAdd (mol[n].rv, - 1. / nFreeMol, vSum);

mol[n].rv.x += flowSpeed;

}

} 45

}

The threefold task of maintaining fluid motion, removing excess heat and erasing
the flow pattern is achieved by the following call from SingleStep,

if (stepCount % stepDrive == 0) DriveFlow ();

15.4 Obstructed flow 433

and the function that does the work is

void DriveFlow ()

{

int n;

DO_MOL { 5

if (! mol[n].fixed &&

fabs (mol[n].r.x) > 0.5 * region.x - bdyStripWidth) {

VRand (&mol[n].rv);

VScale (mol[n].rv, velMag);

mol[n].rv.x += flowSpeed; 10

}

}

}

The following test must be added to the loops of LeapfrogStep to prevent atoms
belonging to the obstacle boundary from moving,

if (mol[n].fixed) continue;

Data collection is again based on the grid method, with the fixed atoms forming
the obstacle boundary excluded.

Results

The results demonstrated here use a soft-disk simulation with the following input
data; there are Nm = 125 000 atoms – relatively large systems are required in order
to allow the flow patterns to develop properly [rap87].

bdyStripWidth 3.

deltaT 0.005

density 0.8

flowSpeed 2.

initUcell 500 250

limitGrid 200

nebrTabFac 8

obsPos -0.25 0.

obsSize 0.2

rNebrShell 0.4

runId 1

sizeHistGrid 120 60

stepAvg 100

stepDrive 40

stepEquil 0

stepGrid 20

stepLimit 100000

temperature 1.

434 15 Time-dependent phenomena

Fig. 15.3. Streamline plot showing the vortices that form early in the run.

Fig. 15.4. An example of the oscillating flow pattern.

Two examples of the flow streamlines are shown here. Figure 15.3 illustrates
the transient phase, here at t = 100, in which a pair of counter-rotating eddies
have formed at the downstream edge of the obstacle. The flow eventually develops
oscillatory behavior (which corresponds to vortex shedding, although the present
system is barely large enough to see this effect); Figure 15.4 shows a snapshot at
t = 400 that is typical of the behavior observed. Note that the contours are not
evenly spaced; they are closer together in the area that is most strongly affected by
the obstacle in order to reveal the flow patterns in greater detail.

15.5 Further study 435

15.5 Further study
15.1 The thermal convection problem can also be treated using a soft-disk fluid

(an extension of the case study in §7.3); explore.
15.2 Flow studies of this kind can also be carried out in three dimensions. In the

case of Taylor–Couette flow in a rotating cylinder, a problem thoroughly ex-
plored by continuum methods, MD simulation leads to quantitatively correct
behavior [hir98, hir00]. More extensive MD study of this and other rotating
fluid problems could be carried out.

15.3 Other examples of flow problems exhibiting space and/or time dependence
that call for more detailed analysis include pipe flow of immiscible fluids
[kop89, tho89], stick–slip flow [tho91] and the flow of chain molecules
[edb87, rap94]; these are examples of fluids that are not adequately de-
scribed by continuum means, so that there is considerable scope for research
using the MD approach.

16

Granular dynamics

16.1 Introduction
The importance of understanding the processes governing the transport of granular
materials [jae96] has long been recognized, particularly because of its industrial
relevance. Methods analogous to MD modeling turn out to be appropriate for the
study of granular matter, although the constituent particles are, of course, no longer
the atoms and molecules of MD.

Mere inspection reveals the complexity of granular matter. The grains them-
selves are irregularly shaped, often covered with asperities, and are normally poly-
disperse. Grain collisions are highly inelastic and friction is important for forming
heaps. The wear and tear of collisions can alter the shape of the grains to some
extent; electrostatic forces, moisture, adhesion and the presence of air can all affect
the behavior. Which of these, and other, characteristics must be incorporated into
the model to reproduce the key features of the behavior can only be established
empirically.

The goal of this brief departure from simulation at the molecular scale is to
demonstrate the wider applicability of the approach, but not to provide a survey
of either granular dynamics simulation techniques or applications; reviews of the
subject include [bar94, her95]. The discussion of this chapter deals with methods
based on soft-particle MD and, while there are many fascinating granular systems
to choose from, the examples here deal with vibrating layers [biz98, rap98], mainly
because of the visual impact of the results. The methods are readily extended to
other kinds of problem.

16.2 Granular models

Background

Unlike the molecular scale applications of MD, where the interactions are based
on well-founded experimental and theoretical considerations, much remains to be

436

16.2 Granular models 437

done in order to achieve a detailed understanding of the nature of the interactions
between granular particles. In particular, a simplified representation of the salient
features of the grain structure and interactions is a prerequisite for simulation, with
detailed comparisons between simulation and experiment used to establish how
good an approximation has been achieved [sch96].

The models presently in widespread use tend to be based on inelastically col-
liding hard or soft spheres (or disks in the case of two-dimensional simulations),
more often the latter [cun79, wal83, wal92]; rotational motion of the particles may
or may not be included in the dynamics. Normal and tangential velocity-dependent
(‘viscous’) damping forces are used to represent the inelasticity of the interactions.
Static friction is difficult to model, but its effect can at least be partially emulated
by a force that opposes any sliding motion while particles are in contact (which,
for a soft-particle model, means within interaction range). In all cases energy is no
longer a conserved quantity.

More complex models utilize nonspherical particles; examples include rigid
[gal93] and flexible [pos93] assemblies of spheres, as well as more complex struc-
tures formed of elastic triangles and deformable damped beams [pos95]. As the
level of detail increases so does the computational effort, and it is important to
have some way of assessing which of the features of the models are actually re-
sponsible for the observed behavior. An example of this is the relative impor-
tance of friction and particle geometry [pos93] where, to some extent, noncon-
vex particles can compensate for a lack of static friction since they can mutually
interlock.

Particle interactions

Consider a pair of spherical, granular particles i and j , with diameters σi and σ j .
The repulsive force between the particles can be expressed as

fv =

⎧⎪⎨
⎪⎩

48

ri j

[(
σi j

ri j

)12

− 1
2

(
σi j

ri j

)6
]

r̂i j ri j < 21/6σi j

0 ri j ≥ 21/6σi j

(16.2.1)

where σi j = (σi + σ j)/2 is the effective mean particle diameter; this is a slightly
generalized form of the soft-sphere interaction (2.2.4) and it acts whenever overlap
occurs, namely, when ri j < 21/6σi j . Alternatives to the overlap force (16.2.1) that
are also in routine use include functions that depend on the overlap σi j − ri j , either
linearly or to the 3/2-power, the latter a result due to Hertz, but the choice of func-
tion is often of little consequence as far as the overall behavior is concerned. Note

438 16 Granular dynamics

that because of the slight degree of softness the particle diameter is not precisely
defined in these models.

What distinguishes the interactions used for granular media from those in MD
studies of molecular systems is the presence of dissipative forces that act over the
duration of each collision. The first of these is a normal damping force

fd = −γn(r̂i j · vi j)r̂i j (16.2.2)

which depends on the component of the relative velocity of the particles vi j =
vi − v j along the direction between particle centers. The factor γn is the normal
damping coefficient and it is assumed to be the same for all particles. The total
force in the direction of r̂i j is

fn = fv + fd (16.2.3)

Frictional damping acts in a plane normal to r̂i j at the point of contact of the par-
ticles. The relative transverse velocity of the particle surfaces at this point, allowing
for particle rotation, is

vs
i j = vi j − (r̂i j · vi j)r̂i j −

(
σiωi + σ jω j

σi + σ j

)
× ri j (16.2.4)

Sliding friction has the form

fs = − min
(
γs |vs

i j |, µ| fn|
)
v̂s

i j (16.2.5)

where γs is the sliding friction coefficient and the static friction coefficient µ sets
an upper bound proportional to | fn|. Despite the simplifications, empirical models
similar to this – possibly with some minor variations – have proved quite suc-
cessful for a wide range of problems. The need for an easily described model is
essential, because it is often necessary to simulate relatively large systems over
long periods of time to capture both the space and time dependence of the
behavior.

The translational and rotational accelerations of the particles, ai and αi , depend
on sums of the above forces for all interacting pairs. The contribution of each pair is
included by adding its value of fn + fs to the total mi ai , subtracting the same quan-
tity from m j a j , and also subtracting r̂i j × fs/2κ from both miσiαi and m jσ jα j ,
where mi = σ 3

i is the particle mass and κ the numerical factor in the moment of
inertia.

16.3 Vibrating granular layer 439

16.3 Vibrating granular layer

Two-dimensional version

The model described here represents a horizontal layer of grains in a container
whose base oscillates sinusoidally in the vertical direction. The container sides
are assumed periodic (hard walls are an alternative) while the top boundary –
which plays a very minor role in the calculation – is elastically reflecting. The
computations♠ use the neighbor-list method for interaction processing and leapfrog
integration.

The details of each particle are contained in the structure

typedef struct {

VecR r, rv, ra;

real wv, wa, diam;

} Mol;

where wv and wa are the (scalar) angular velocity and acceleration, and diam the
particle diameter (NDIM must be set to 2 for this two-dimensional simulation).

The force computations are carried out by the following version of the function
ComputeForces which includes evaluation of the velocity-dependent forces and
makes provision for particles of different sizes.

void ComputeForces ()

{

VecR dr, dv;

real aMass, dFac, drv, fcVal, ft, ftLim, rr, rri, rri3, rSep, vRel,

ws, wt; 5

int j1, j2, n;

DO_MOL {

VZero (mol[n].ra);

mol[n].wa = 0.; 10

}

for (n = 0; n < nebrTabLen; n ++) {

j1 = nebrTab[2 * n];

j2 = nebrTab[2 * n + 1];

dFac = 0.5 * (mol[j1].diam + mol[j2].diam); 15

VSub (dr, mol[j1].r, mol[j2].r);

VWrap (dr, x);

rr = VLenSq (dr);

if (rr < Sqr (rCut * dFac)) {

rSep = sqrt (rr); 20

rri = Sqr (dFac) / rr;

rri3 = Cube (rri);

fcVal = 48. * rri3 * (rri3 - 0.5) / rr;

♠ pr_16_1

440 16 Granular dynamics

VSub (dv, mol[j1].rv, mol[j2].rv);

drv = VDot (dr, dv); 25

fcVal -= fricDyn * drv / rr;

VVSAdd (mol[j1].ra, fcVal, dr);

VVSAdd (mol[j2].ra, - fcVal, dr);

VVSAdd (dv, - drv / rr, dr);

ws = (mol[j1].diam * mol[j1].wv + mol[j2].diam * mol[j2].wv) / 30

(mol[j1].diam + mol[j2].diam);

dv.x += ws * dr.y;

dv.y -= ws * dr.x;

vRel = VLen (dv);

ftLim = fricStat * fabs (fcVal) * rSep / vRel; 35

ft = - Min (ftLim, fricDyn);

VVSAdd (mol[j1].ra, ft, dv);

VVSAdd (mol[j2].ra, - ft, dv);

wt = ft * vRel;

if (VCross (dr, dv) > 0.) wt = - wt; 40

mol[j1].wa += wt;

mol[j2].wa += wt;

}

}

ComputeBdyForces (); 45

DO_MOL {

aMass = Sqr (mol[n].diam);

VScale (mol[n].ra, 1. / aMass);

mol[n].wa /= 2. * inertiaK * aMass * mol[n].diam;

mol[n].ra.y -= gravField; 50

}

}

The damping coefficient γs and the static friction constant µ are represented by
fricDyn and fricStat, respectively. Gravitational acceleration is also taken into
account; the boundary interactions are handled by ComputeBdyForces below.

Construction of the neighbor list (BuildNebrList) is done in the usual manner,
with a few minor changes since the cells must be sized to accommodate the largest
of the particles (here this is not a problem since σi ≤ 1) and the system is only
periodic in the x direction. The following modification allows for different particle
sizes when examining pairs:

dFac = 0.5 * (mol[j1].diam + mol[j2].diam);

if (VLenSq (dr) < Sqr (rCut * dFac + rNebrShell)) {

Interactions with the vibrating base and the top of the container are treated as
follows; interaction with the base involves the normal force component only (the
tangential part, as above, is optional).

void ComputeBdyForces ()

16.3 Vibrating granular layer 441

{

VecR dr;

real dFac, drv, fcVal, rr, rri, rri3;

int n; 5

DO_MOL {

dFac = 0.5 * (mol[n].diam + 1.);

dr.y = mol[n].r.y - basePos;

if (fabs (dr.y) < rCut * dFac) { 10

rr = Sqr (dr.y);

rri = Sqr (dFac) / rr;

rri3 = Cube (rri);

fcVal = 48. * rri3 * (rri3 - 0.5) / rr;

drv = dr.y * (mol[n].rv.y - baseVel); 15

fcVal -= fricDyn * drv / rr;

mol[n].ra.y += fcVal * dr.y;

}

dr.y = mol[n].r.y - 0.5 * region.y;

... (as above, but without velocity damping) ... 20

}

}

The base vibration is governed by two parameters, the amplitude vibAmp and
the frequency vibFreq. The current base position basePos and velocity baseVel

are determined at each timestep by

void SetBase ()

{

nBaseCycle = vibFreq * stepCount * deltaT;

curPhase = vibFreq * stepCount * deltaT - nBaseCycle;

basePos = - 0.5 * region.y + vibAmp * 5

(1. - cos (2. * M_PI * curPhase));

baseVel = 2. * M_PI * vibFreq * vibAmp * sin (2. * M_PI * curPhase);

}

The function LeapfrogStep includes half-timestep updates of the angular ve-
locities; there is no need to evaluate angular coordinates as they are not required
by the simulation (since they do not appear explicitly in the interactions they can
be omitted entirely, unless there is interest in examining the rotational motion); the
fact that the velocities used in the interactions are evaluated at times shifted by a
half timestep from the coordinates should not cause problems (alternatively, a ten-
tative full-timestep update could be used, as in §11.6). In EvalProps the rotational
motion must be included in the kinetic energy calculation,

vvSum += Sqr (mol[n].diam) * (vv + inertiaK * Sqr (mol[n].diam) *

Sqr (mol[n].wv));

442 16 Granular dynamics

The initial particle positions form a closely spaced array positioned just above
the base,

void InitCoords ()

{

VecR c, gap;

int n, nx, ny;

5

SetBase ();

VDiv (gap, region, initUcell);

gap.y = rCut;

n = 0;

for (ny = 0; ny < initUcell.y; ny ++) { 10

c.y = ny * gap.y + basePos + 1.;

for (nx = 0; nx < initUcell.x; nx ++) {

c.x = (nx + 0.5) * gap.x - 0.5 * region.x;

mol[n].r = c;

++ n; 15

}

}

}

with randomly directed initial velocities of magnitude velMag and zero angular
velocities. Particle sizes are chosen randomly over a narrow range, bounded above
by unity (the reason for not using a single size is simply to avoid lattice-like packing
artifacts),

void SetMolSizes ()

{

int n;

DO_MOL mol[n].diam = 1. - 0.15 * RandR (); 5

}

New variables and input data items are

real basePos, baseVel, curPhase, fricDyn, fricStat, gravField,

inertiaK, vibAmp, vibFreq;

int nBaseCycle;

NameR (fricDyn), 5

NameR (gravField),

NameR (vibAmp),

NameR (vibFreq),

and the values that are set in SetParams

region.x = initUcell.x / 0.95;

region.y = region.x;

16.4 Wave patterns 443

fricStat = 0.5;

inertiaK = 0.125;

velMag = 1.; 5

Three-dimensional version
The extension to three dimensions♠ requires only a minimum of changes. The gran-
ular particles have become spheres instead of disks, mol[].wv and mol[].wa are
of type VecR, and the vertical direction is now z. Modification of the various func-
tions to handle these changes is straightforward. Changes to ComputeForces re-
flect the fact that rotation now involves vectors rather than scalars:

DO_MOL {

...

VZero (mol[n].wa);

}

for (n = 0; n < nebrTabLen; n ++) { 5

...

VWrap (dr, y);

...

if (rr < Sqr (rCut * dFac)) {

... 10

VSSAdd (ws, mol[j1].diam, mol[j1].wv, mol[j2].diam, mol[j2].wv);

VScale (ws, 1. / (mol[j1].diam + mol[j2].diam));

VCross (wt, ws, dr);

VVSub (dv, wt);

... 15

VCross (wt, dr, dv);

VScale (wt, - ft / rSep);

VVAdd (mol[j1].wa, wt);

VVAdd (mol[j2].wa, wt);

} 20

}

...

DO_MOL {

aMass = Cube (mol[n].diam);

... 25

VScale (mol[n].wa, ...);

...

}

16.4 Wave patterns
The analysis of this category of problem, as with several other of the case stud-
ies, relies heavily on the ability to directly visualize the system as the simulation
progresses. We will not deal with quantitative issues but will simply show two

♠ pr_16_3

444 16 Granular dynamics

Fig. 16.1. Standing waves in a two-dimensional vibrated granular layer.

Fig. 16.2. A typical wave pattern occurring in a thin, three-dimensional vibrated layer.
The view is from above (the container outline is shown in perspective); darker regions
correspond to the wave peaks.

computer-generated images for particular parameter choices that display the kind
of behavior typical of the two- and three-dimensional simulations. Snapshots of
the particle coordinates are stored during the run, using suitably modified versions
of the function PutConfig (§18.6); graphics programs for generating the imagery
are not discussed here.

16.5 Further study 445

Both examples involve periodic side boundaries. In two dimensions, the data for
the comparatively small system shown here include

deltaT 0.004

fricDyn 5.

gravField 8.

initUcell 70 10

stepSnap 25

vibAmp 2.

vibFreq 0.4

and the changes for the three-dimensional case, involving a container with a square
base and a layer of less than half the thickness, are

gravField 6.

initUcell 60 60 4

Snapshots of typical standing wave patterns are shown in Figures 16.1 and 16.2.
In both cases there appear to be preferred wavelengths; this can be established with
greater certainty by considering larger systems. In three dimensions the waves are
seen to form a roughly square pattern; since the system is periodic the alignment
of the entire pattern can rotate to help achieve the preferred wavelength (other
patterns, such as hexagons, can also appear).

16.5 Further study
16.1 Examine which characteristics of the particle interactions are needed to ob-

tain the waves and which play only a minor role.
16.2 Explore how the wave patterns depend on the parameters defining the prob-

lem.
16.3 Study particle motion within the waves.
16.4 Instead of using continuous potentials, model these systems with the event-

driven approach of Chapter 14 [hon92, biz98].
16.5 Phenomena involving granular segregation are especially fascinating and

simulations of the kind described here have succeeded in reproducing some
of these effects, for example [rap02b]; investigate.

17

Algorithms for supercomputers

17.1 Introduction
The previous chapters concentrated on translating physical problems into practical
simulations. Computational efficiency, beyond the use of cells and neighbor lists
(as well as hierarchical subdivision when appropriate), received little attention. For
‘conventional’ computers, there is not a great deal more that the average user can
do in this respect, assuming that a reasonably effective programming style has been
adopted. This attitude is no longer adequate when modern, high performance, mul-
tiprocessor machines are to serve as the platforms for large-scale simulation.

In this chapter we focus on ways of adapting the basic MD approach to take ad-
vantage of advanced computer architectures; since enhanced performance comes
not only from a faster processor clock cycle, but also from a number of funda-
mental changes in the way computers process data, this is a subject that cannot
be ignored. The subject is also a relatively complex one and, at best, only periph-
eral to the goals of the practicing simulator. We will therefore not delve too deeply
into the issues involved, but will merely focus on three examples, all of which
can be valuable for large-scale MD simulation; the first employs message-passing
parallelism, the second involves parallelism achieved by the use of computational
threads and shared memory, and the third demonstrates how to rearrange data to
achieve effective vector processing†.

17.2 The quest for performance
It comes as no surprise to learn that spreading a computational task over several
processors is a way to complete the job sooner. Multiprocessor systems benefit
from an economy of scale, and high performance computers now almost always

† The vectorizeable program can be run on a nonvector machine in its present form (although this would only
be done only for development purposes), and the parallel programs can also be run on a uniprocessor system
(also just for testing) if the necessary supporting software is available.

446

17.3 Techniques for parallel processing 447

consist of at least a few processing units, if not more; the number of processors per
machine begins at two and extends into the thousands, and there is apparently no
limit in sight. The ideal kind of problem for such a machine – assuming that each
processor, or each small group of processors, has its own private memory – is one
that can be partitioned into a number of smaller computations that are carried out in
parallel on all the processors, without too much data having to be shared between
them. Molecular dynamics systems with short-range forces fall comfortably into
this category.

Another means of extracting higher performance from computer hardware is to
resort to vector processing. This entails pipelining the computations in assembly-
line fashion. The constraint placed on a computation, if it is to be effectively vec-
torized, is that data items should be organized into relatively long vectors in such a
way that all items can be processed independently, without fear that the processing
of one item will affect a later one. This condition is not always easily satisfied.

Needless to say, both these architectural features are increasingly likely to be
encountered†. The price of utilizing them effectively is increased algorithm and
software complexity. Unlike ‘simple’ computers, where optimizing compilers can
take a typical program and massage it to achieve reasonable performance, the needs
of parallel and vector processing cannot always be resolved in this way, because
it is not always obvious – assuming that it is possible at all – how to automate
the process of optimally mapping an intrinsically serial computation onto the more
‘complex’ computer architectures. In addition to actually producing a working par-
allel and/or vectorized program, the efficiency of the end result must be consid-
ered: a parallel computation with large interprocessor communication overheads is
doomed to failure, as is a vectorized computation that either uses the vector capa-
bility inefficiently because the vectors are too short, or spends a disproportionate
amount of time rearranging data into vectorizeable form.

17.3 Techniques for parallel processing

Living with multiprocessor computers

The taxonomy of multiprocessing is far from simple. Among the factors to be taken
into account are whether individual processors all carry out the same operation
during each cycle, or whether they are able to act independently; whether each

† Beyond these two most visible features of many modern computers, there are a number of more subtle and
less adequately documented processor features that can have a significant impact on performance. Just to
name some of them: the internal processor registers, primary and secondary (and sometimes even tertiary)
caches, address space mapping and memory interleaving. An algorithm that in some way conflicts with certain
engineering design assumptions, for example, in its pattern of memory accesses, can experience a drastic
performance drop. Beyond drawing the attention of the reader to the existence of such potential pitfalls, there
is little more that can be said without addressing each computer model individually.

448 17 Algorithms for supercomputers

processor has its own private memory, or all share a common memory, or both;
whether processors communicate with one another by passing messages across a
communication network, or through common memory; the nature and topology of
the communication network, if any. Some of these features can influence the way
in which software ought to be organized.

We will avoid becoming involved in these issues here by assuming a particu-
lar generic architecture, one that is in fact widespread because it is the simplest
to implement. The assumption is that there are several independent processors,
each with private memory, communicating over a network – the message-passing
approach. Systems of this kind are easily assembled by simply linking modest per-
sonal computers using standard (or above standard) network hardware; depending
on the nature of the computation, the performance may or may not be satisfac-
tory, but the same general approach is often found embedded in more customized
hardware designs.

In order for the message-passing scheme to work efficiently, it is vital that the
communication overheads be kept low compared with the time a processor spends
computing; the ideal application consists of a lot of calculation with small amounts
of data being transferred from time to time. The communication overhead is com-
posed of two parts: the time to initiate a message transfer, typically a constant
value, and a transfer time that is roughly proportional to the message length. There
is also the issue of load balancing; obviously if all processors can be kept busy
doing useful computing the overall system utilization will be optimal, but if some
processors have more work to do than others, overall effectiveness is reduced.

Algorithm organization
There are different ways to partition an MD computation among multiple proces-
sors. The act of partitioning can focus on the computations, on the atoms involved,
or on the simulation region. While all three elements are part of every scheme, the
emphasis differs; this has a considerable impact on the memory and communica-
tion requirements of each method.

If it is just the computations that are partitioned, then all information about the
system resides in the memory of each processor, but each only carries out the in-
teraction computations for certain atom pairs. The information about the forces on
each atom is then combined. This approach is extremely wasteful in terms of mem-
ory and is best suited to small computations only (and, perhaps, shared-memory
computers).

The second partitioning scheme is based on the atoms themselves, and assigns
each atom to a particular processor for the duration of the simulation, irrespec-
tive of its spatial location [rai89]. While conceptually simple, large amounts of

17.3 Techniques for parallel processing 449

Fig. 17.1. The portion of the simulation region (for a two-dimensional subdivision) rep-
resented by the square outline is handled by a single processor; it contains shaded areas
denoting subregions whose atoms interact with atoms in adjacent processors, and is sur-
rounded by shaded areas denoting subregions from adjacent processors whose interactions
must be taken into account; arrows indicate the flow of data between processors.

communication are required to handle interactions between atoms assigned to dif-
ferent processors. For long-range interactions this may not be a problem, but for
the short-range case the third choice turns out to be far more efficient.

The third scheme subdivides space and assigns each processor a particular sub-
region [rap91b]. All the atoms that are in a given subregion at some moment in time
reside in the processor responsible and when an atom moves between subregions
all the associated variables are explicitly transferred from one processor to another.
Thus there is economy insofar as memory is concerned, and also in the communi-
cation required to allow atoms to transfer between processors, since comparatively
few atoms make such a move during a single timestep. More importantly, assum-
ing there are some 104 or more atoms per subregion (in three dimensions) and a
relatively short-ranged potential, most of the interactions will occur among atoms
in the subregion and relatively few between atoms in adjacent subregions – see
Figure 17.1. In order to accommodate the latter, copies of the coordinates of atoms
close to any subregion boundary are transferred to the processor handling the ad-
jacent subregion prior to the interaction computation. This transfer also involves
only a small fraction of the atoms.

It is this third scheme that will be described here. The only requirement is that
communication be reasonably efficient, with the associated system overheads –

450 17 Algorithms for supercomputers

both hardware and software – kept to a low level in comparison with the amount
of computation involved. Under these circumstances, both computation speed and
memory requirements scale in the expected linear way with the numbers of atoms
and processors†.

17.4 Distributed computation

Overview
The program described here is based on the three-dimensional soft-sphere compu-
tation described in §3.4 that uses both cells and neighbor lists. Some parts of the
original program can be used unchanged, but wherever atoms become aware of the
existence of subregions the computations must take this into account. While con-
ceptually straightforward, the distributed computation involves numerous details
that must be treated with care.

The functions handling tasks related to communications are referenced in a
generic form that does not assume any particular message-passing software pack-
age. The text describes what each of these functions is supposed to do and, in
practice, since all such software must provide similar functionality, a simple series
of macro substitutions may be all that is required to produce a working program;
an actual implementation concludes the section.

In addition to the interaction calculations, integration of the equations of motion,
initialization and measurements, each of which is modified to a lesser or greater de-
gree for the distributed implementation, it is also necessary to specify which pro-
cessor is responsible for each spatial subregion, to identify the atoms participating
in each data transfer and to carry out the transfers. Several kinds of data transfer
are used:

• for interaction calculations it is necessary to copy information about the coor-
dinates of atoms close to subregion boundaries;

• when atoms move between subregions their entire descriptions are transferred;
• while making measurements, the values computed separately in each processor

must be combined to produce an overall result.

Basic computations
The program description♠ begins with the neighbor-list construction, on the as-
sumption that the atoms are already in the correct processors and that copies of the
coordinates of atoms in adjacent subregions have been made available. These tasks

† In practice, the performance depends on the details of the processor architecture, communication infrastructure
and operating system; performance that grows linearly with the number of processors is not always achievable.

♠ pr_17_1

17.4 Distributed computation 451

will be described later. Two new variables play an important role here; nMolMe is
the number of atoms currently in the subregion and nMolCopy is the number of ad-
ditional atoms from adjacent subregions (processors) whose coordinates have been
copied to this processor because they are potential interaction candidates. Given
the additional information, this version of BuildNebrList (and the other func-
tions that follow) can be executed independently on each processor.

#define OFFSET_LIST \

{{7}, {7,8,9}, {9}, {6,7,13}, {5,6,7,8,9,10,11,12,13}, \

{9,10,11}, {13}, {11,12,13}, {11}, {2,7}, \

{2,3,4,7,8,9}, {4,9}, {1,2,6,7,13}, \

{0,1,2,3,4,5,6,7,8,9,10,11,12,13}, {4,9,10,11}, {13}, \ 5

{11,12,13}, {11}}

#define OFFSET_LEN \

{1,3,1,3,9,3,1,3,1,2,6,2,5,14,4,1,3,1}

void BuildNebrList () 10

{

VecR cellBase, dr, invWid, rs, t1, t2;

VecI cc, m1v, m2v, vOff[] = OFFSET_VALS;

real rrNebr;

int c, indx, j1, j2, m1, m1x, m1y, m1z, m2, n, offset, tOffset, 15

vOffList[][N_OFFSET] = OFFSET_LIST, vOffTableLen[] = OFFSET_LEN;

VAddCon (t1, cells, -2.);

VSub (t2, subRegionHi, subRegionLo);

VDiv (invWid, t1, t2); 20

VSetAll (t1, 1.);

VDiv (t1, t1, invWid);

VSub (cellBase, subRegionLo, t1);

rrNebr = Sqr (rCut + rNebrShell);

for (n = nMolMe + nMolCopy; n < nMolMe + nMolCopy + VProd (cells); 25

n ++) cellList[n] = -1;

for (n = 0; n < nMolMe + nMolCopy; n ++) {

VSub (rs, mol[n].r, cellBase);

VMul (cc, rs, invWid);

c = VLinear (cc, cells) + nMolMe + nMolCopy; 30

cellList[n] = cellList[c];

cellList[c] = n;

}

nebrTabLen = 0;

for (m1z = 0; m1z < cells.z - 1; m1z ++) { 35

for (m1y = 0; m1y < cells.y; m1y ++) {

for (m1x = 0; m1x < cells.x; m1x ++) {

VSet (m1v, m1x, m1y, m1z);

tOffset = 13;

if (m1z == 0) tOffset -= 9; 40

if (m1y == 0) tOffset -= 3;

else if (m1y == cells.y - 1) tOffset += 3;

452 17 Algorithms for supercomputers

if (m1x == 0) tOffset -= 1;

else if (m1x == cells.x - 1) tOffset += 1;

m1 = VLinear (m1v, cells) + nMolMe + nMolCopy; 45

for (offset = 0; offset < vOffTableLen[tOffset]; offset ++) {

indx = vOffList[tOffset][offset];

VAdd (m2v, m1v, vOff[indx]);

m2 = VLinear (m2v, cells) + nMolMe + nMolCopy;

DO_CELL (j1, m1) { 50

DO_CELL (j2, m2) {

if (m1 != m2 || j2 < j1) {

VSub (dr, mol[j1].r, mol[j2].r);

... (identical to standard version) ...

} 55

Several points should be noted†. The cell array is defined separately for each
subregion and includes an additional layer of cells that completely surrounds the
subregion; it is here that all the atoms copied from adjacent subregions are located.
Periodic boundaries are not mentioned at this stage of the computation because,
as will be shown later, they are treated during the copying operation. The vector
variables subRegionLo and subRegionHi contain the spatial limits of the subre-
gion handled by each processor. Because periodic boundaries are handled by other
means, the range of adjacent cells scanned during neighbor-list construction de-
pends on the cell location; for cells that are located on a subregion face, edge or
corner, fewer adjacent cells need be examined – the data in vOffList makes pro-
vision for all 18 distinct cases and the way it is used together with vOffTableLen

should be apparent from the listing.
Only minor changes are needed in the force calculation. The principal reason

for the changes is in order to evaluate accumulated properties such as the potential
energy and virial sum. The force computation does not distinguish between atoms
that really belong to the subregion and those that are merely copies from an adja-
cent subregion, since the force contributions associated with the latter are simply
discarded afterwards. Energy and virial sums are treated in a manner that ensures
the correct contributions from atom pairs that interact across a subregion boundary.
Once again, no mention of periodic wraparound is needed.

void ComputeForces ()

{

...

for (n = 0; n < nMolMe + nMolCopy; n ++) VZero (mol[n].ra);

for (n = 0; n < nebrTabLen; n ++) { 5

j1 = nebrTab[2 * n];

j2 = nebrTab[2 * n + 1];

VSub (dr, mol[j1].r, mol[j2].r);

† The reader new to distributed processing should bear in mind that all variables are local to each processor; the
concept of a global variable does not exist in a message-passing environment.

17.4 Distributed computation 453

rr = VLenSq (dr);

if (rr < rrCut) { 10

... (identical to standard version) ...

if (j1 < nMolMe) {

uSum += uVal;

virSum += fcVal * rr;

} 15

if (j2 < nMolMe) {

uSum += uVal;

virSum += fcVal * rr;

}

} 20

}

uSum *= 0.5;

virSum *= 0.5;

}

Integration uses the leapfrog method. The only change to LeapfrogStep is the
use of nMolMe for the number of atoms to be processed. The atoms whose coordi-
nates were copied from adjacent subregions are readily excluded from this calcula-
tion since they appear in the mol array after the first nMolMe entries corresponding
to atoms in the subregion.

In establishing the initial state we encounter communication† for the first time,
albeit still in a very minor role. All the initialization has been combined into a
single function InitState that is executed concurrently on all processors, with
each processor determining which atoms belong to its subregion. Since a particular
atom is no longer associated with a fixed memory location, unlike the uniprocessor
version of the program, each atom is labeled with a unique identifier mol[].id.
Although not really needed in this particular example, it is sometimes necessary to
be able to distinguish individual atoms (a polymer fluid would be one such exam-
ple). A simple cubic lattice is used for the initial state. The macros VGe and VLt

(§18.2) compare vector components.

void InitState ()

{

VecR vSumL;

VecR c, gap;

int n, np, nx, ny, nz; 5

ValList msg1[] = {

ValR (vSumL)

};

ValList msg2[] = {

† The distributed environment makes its presence felt both during algorithm development and at the program-
ming stage; any features that are added to the simulation must take this extra software overhead into account.
Much of the communication processing is hidden away from the application, as indeed it should be. It is a pity
that even the few details included here have to be mentioned at all, but this situation will persist until some
standardized method (or language) for programming parallel computers achieves widespread acceptance.

454 17 Algorithms for supercomputers

ValR (vSum) 10

};

VDiv (gap, region, initUcell);

VZero (vSumL);

nMol = 0; 15

nMolMe = 0;

for (nz = 0; nz < initUcell.z; nz ++) {

for (ny = 0; ny < initUcell.y; ny ++) {

for (nx = 0; nx < initUcell.x; nx ++) {

VSet (c, nx + 0.25, ny + 0.25, nz + 0.25); 20

VMul (c, c, gap);

VVSAdd (c, -0.5, region);

VRand (&mol[nMolMe].rv);

if (VGe (c, subRegionLo) && VLt (c, subRegionHi)) {

mol[nMolMe].r = c; 25

VScale (mol[nMolMe].rv, velMag);

VVAdd (vSumL, mol[nMolMe].rv);

mol[nMolMe].id = nMol;

++ nMolMe;

if (nMolMe > nMolMeMax) { 30

errCode = ERR_TOO_MANY_MOLS;

-- nMolMe;

}

}

++ nMol; 35

}

}

}

if (ME_BOSS) {

vSum = vSumL; 40

DO_SLAVES {

MsgRecvUnpack (np, 121, msg1);

VVAdd (vSum, vSumL);

}

VScale (vSum, 1. / nMol); 45

MsgBcPackSend (122, msg2);

} else {

MsgPackSend (0, 121, msg1);

MsgBcRecvUnpack (122, msg2);

} 50

DO_MOL_ME {

VVSub (mol[n].rv, vSum);

VZero (mol[n].ra);

}

} 55

The latter part of InitState includes several communication operations and
a summary of what occurs here is as follows. There is a macro ME_BOSS that is
able to distinguish one processor from all the others; the mission of the processor

17.4 Distributed computation 455

having the status of ‘boss’ is to collect the values of the array vSum from all the
other ‘slave’ processors after each has computed its local values, evaluate the total
sums, compute the values that each processor must subtract from all its atoms’
velocities to ensure a zero center of mass velocity and, finally, broadcast these
values to each of the slave processors. The slaves perform the complementary task;
they accumulate vSum, send it to the boss and wait for the necessary values to be
returned. Although one particular processor has been designated the boss and the
remainder slaves, this should not detract from the fact that, with a couple of minor
exceptions, all processors perform completely equivalent tasks and are mutually
synchronized by the data transfers that occur throughout the calculation.

The function MsgRecvUnpack waits for, and accepts, the message specified in
the ValList argument (see §18.5) from a designated processor; the numerical ar-
gument appearing here and in other communication functions is an arbitrary value
used by the message software to distinguish between different kinds of message†.
This function also processes the received message, by storing its contents sequen-
tially in the indicated locations. MsgPackSend performs the complementary oper-
ation, by collecting the specified values into the message body and then sending
it to the designated processor. There is also a broadcast capability; the function
MsgBcPackSend is used by the boss processor to broadcast an identical message
to all the slaves, and each slave processor will use MsgBcRecvUnpack to receive
this message. Other communication functions will appear in due course as needed.

Another function that must retrieve a small amount of information from each
processor is EvalProps. The copy of EvalProps running on the boss processor
produces the same final results as the uniprocessor version, but it must first collect
the partial results from the slaves.

void EvalProps ()

{

VecR vSumL;

real uSumL, virSumL, vv, vvMax, vvMaxL, vvSumL;

int errCodeL, n, np; 5

ValList msg[] = {

ValI (errCodeL),

ValR (uSumL),

ValR (virSumL),

ValR (vSumL), 10

ValR (vvMaxL),

ValR (vvSumL)

};

VZero (vSumL); 15

† This feature is not used here, but it is especially helpful during development for ensuring that messages sent
and received correspond to one another.

456 17 Algorithms for supercomputers

vvSumL = 0.;

vvMaxL = 0.;

DO_MOL_ME {

VVAdd (vSumL, mol[n].rv);

vv = VLenSq (mol[n].rv); 20

vvSumL += vv;

vvMaxL = Max (vvMaxL, vv);

}

if (ME_BOSS) {

vSum = vSumL; 25

vvSum = vvSumL;

vvMax = vvMaxL;

DO_SLAVES {

MsgRecvUnpack (np, 161, msg);

if (errCodeL != ERR_NONE) errCode = errCodeL; 30

vvMax = Max (vvMax, vvMaxL);

vvSum += vvSumL;

VVAdd (vSum, vSumL);

uSum += uSumL;

virSum += virSumL; 35

}

dispHi += sqrt (vvMax) * deltaT;

if (dispHi > 0.5 * rNebrShell) nebrNow = 1;

kinEnergy.val = 0.5 * vvSum / nMol;

totEnergy.val = kinEnergy.val + uSum / nMol; 40

pressure.val = density * (vvSum + virSum) / (nMol * NDIM);

} else {

errCodeL = errCode;

uSumL = uSum;

virSumL = virSum; 45

MsgPackSend (0, 161, msg);

}

}

Finally, the appropriately modified version of the function SingleStep is

void SingleStep ()

{

ValList msg[] = {

ValI (moreCycles),

ValI (nebrNow) 5

};

++ stepCount;

timeNow = stepCount * deltaT;

LeapfrogStep (1); 10

if (nebrNow > 0) DoParlMove ();

DoParlCopy ();

if (nebrNow > 0) {

nebrNow = 0;

if (ME_BOSS) dispHi = 0.; 15

17.4 Distributed computation 457

BuildNebrList ();

}

ComputeForces ();

LeapfrogStep (2);

EvalProps (); 20

if (ME_BOSS) {

MsgBcPackSend (151, msg);

} else MsgBcRecvUnpack (151, msg);

if (ME_BOSS) {

if (stepCount >= stepEquil) { 25

AccumProps (1);

if (stepCount > stepEquil &&

(stepCount - stepEquil) % stepAvg == 0) {

AccumProps (2);

PrintSummary (stdout); 30

AccumProps (0);

}

}

}

} 35

The boss processor is responsible for collecting the results and handling the out-
put. The communication operations appearing here provide each processor with
the current value of nebrNow informing it whether an update of the neighbor
list is due. The functions DoParlMove and DoParlCopy, described below, deal
with the interprocessor data transfers needed for interaction calculations and atom
movements.

An important detail should be apparent from the way communications in the
above functions are organized. Obviously, there must be a one-to-one correspon-
dence between messages sent and messages received. Equally significant, however,
is the fact that these message transfer operations are used to synchronize the pro-
cessors†. When writing parallel software based on a message-passing paradigm,
it is important to plan the communications carefully, otherwise deadlock and race
conditions can occur that are difficult to diagnose.

Message-passing operations

We now turn to the functions where the majority of the interprocessor communica-
tion occurs, namely, the movement of atoms between subregions and the copying
of coordinate data prior to the interaction calculations.

The functions responsible for deciding which atoms should be moved, and then
actually doing the work, including coordinate adjustment for periodic wraparound,
are as follows. There are six directions (in three dimensions) to be considered,

† None of the additional capabilities found in parallel software systems for explicit synchronization, such as
creating a barrier that no processor can pass until it receives permission, are required here.

458 17 Algorithms for supercomputers

and each is treated in turn; atoms can of course participate in more than one such
transfer. The special case that a processor is its own neighbor, which occurs when
no subdivision of the region is made in a particular direction, is also taken into
account. Once all the moves are complete, each processor compresses its own data
to eliminate gaps in the arrays.

#define OutsideProc(b) \

(sDir == 0 && VComp (mol[n].r, dir) < \

VComp (subRegionLo, dir) + b || \

sDir == 1 && VComp (mol[n].r, dir) >= \

VComp (subRegionHi, dir) - b) 5

#define NWORD_MOVE (2 * NDIM + 1)

void DoParlMove ()

{

int dir, n, nIn, nt, sDir; 10

for (dir = 0; dir < NDIM; dir ++) {

for (sDir = 0; sDir < 2; sDir ++) {

nt = 0;

DO_MOL_ME { 15

if (mol[n].id >= 0) {

if (OutsideProc (0.)) {

trPtr[sDir][trBuffMax * dir + nt] = n;

++ nt;

if (NWORD_MOVE * nt > NDIM * trBuffMax) { 20

errCode = ERR_COPY_BUFF_FULL;

-- nt;

}

}

} 25

}

nOut[sDir][dir] = nt;

}

for (sDir = 0; sDir < 2; sDir ++) {

nt = nOut[sDir][dir]; 30

PackMovedData (dir, sDir, &trPtr[sDir][trBuffMax * dir], nt);

if (VComp (procArraySize, dir) > 1) {

MsgSendInit ();

MsgPackI (&nt, 1);

MsgPackR (trBuff, NWORD_MOVE * nt); 35

if (sDir == 1) MsgSendRecv (VComp (procNebrLo, dir),

VComp (procNebrHi, dir), 140 + 2 * dir + 1);

else MsgSendRecv (VComp (procNebrHi, dir),

VComp (procNebrLo, dir), 140 + 2 * dir);

MsgRecvInit (); 40

MsgUnpackI (&nIn, 1);

MsgUnpackR (trBuff, NWORD_MOVE * nIn);

} else nIn = nt;

if (nMolMe + nIn > nMolMeMax) {

17.4 Distributed computation 459

errCode = ERR_TOO_MANY_MOVES; 45

nIn = 0;

}

UnpackMovedData (nIn);

}

} 50

RepackMolArray ();

}

The only new communication function appearing here is MsgSendRecv, which
both transmits data to a neighboring processor and receives data from the opposite
neighbor; in some message-passing systems a function of this kind can be used
to achieve overlapped data transfers. Several functions for packing and unpacking
messages also make an appearance here (such as MsgPackR and MsgUnpackI)
and these will be discussed later. The size of the multiprocessor configuration
and the way the simulation region is subdivided – for example, into slices span-
ning the entire region, or into smaller boxes as in Figure 17.1 – are specified
by procArraySize, while the location of each processor in the (up to three-
dimensional) multiprocessor array is specified by procArrayMe†.

Message packing and unpacking are two-stage processes; the work that is spe-
cific to the application data (shown below) is kept separate from the actual filling
or emptying of message buffers (in DoParlMove above). The periodic boundaries
are addressed at this stage.

void PackMovedData (int dir, int sDir, int *trPtr, int nt)

{

real rShift;

int j;

5

rShift = 0.;

if (sDir == 1 &&

VComp (procArrayMe, dir) == VComp (procArraySize, dir) - 1)

rShift = - VComp (region, dir);

else if (sDir == 0 && VComp (procArrayMe, dir) == 0) 10

rShift = VComp (region, dir);

for (j = 0; j < nt; j ++) {

VToLin (trBuff, NWORD_MOVE * j, mol[trPtr[j]].r);

trBuff[NWORD_MOVE * j + dir] += rShift;

VToLin (trBuff, NWORD_MOVE * j + NDIM, mol[trPtr[j]].rv); 15

trBuff[NWORD_MOVE * j + 2 * NDIM] = mol[trPtr[j]].id;

mol[trPtr[j]].id = -1;

}

}

20

† Note the checks – here and subsequently – to ensure storage arrays are not overfilled; such safety measures
should always be present whenever unpredictable amounts of data are involved.

460 17 Algorithms for supercomputers

void UnpackMovedData (int nIn)

{

int j;

for (j = 0; j < nIn; j ++) { 25

VFromLin (mol[nMolMe + j].r, trBuff, NWORD_MOVE * j);

VFromLin (mol[nMolMe + j].rv, trBuff, NWORD_MOVE * j + NDIM);

mol[nMolMe + j].id = trBuff[NWORD_MOVE * j + 2 * NDIM];

}

nMolMe += nIn; 30

}

Repacking is required to remove gaps due to atoms that have moved out,

void RepackMolArray ()

{

int j, n;

j = 0; 5

DO_MOL_ME {

if (mol[n].id >= 0) {

mol[j] = mol[n];

++ j;

} 10

}

nMolMe = j;

}

The functions for copying the coordinates of atoms close to subregion bound-
aries to adjacent processors (prior to the interaction calculations) are very similar;
the sets of atoms involved are updated only when the neighbor list is about to be
rebuilt.

#define NWORD_COPY (NDIM + 1)

void DoParlCopy ()

{

real rCutExt; 5

int dir, n, nIn, nt, sDir;

rCutExt = rCut + rNebrShell;

nMolCopy = 0;

for (dir = 0; dir < NDIM; dir ++) { 10

if (nebrNow > 0) {

for (sDir = 0; sDir < 2; sDir ++) {

nt = 0;

for (n = 0; n < nMolMe + nMolCopy; n ++) {

if (OutsideProc (rCutExt)) { 15

trPtr[sDir][trBuffMax * dir + nt] = n;

17.4 Distributed computation 461

++ nt;

if (NWORD_COPY * nt > NDIM * trBuffMax) {

errCode = ERR_COPY_BUFF_FULL;

-- nt; 20

}

}

}

nOut[sDir][dir] = nt;

} 25

}

for (sDir = 0; sDir < 2; sDir ++) {

nt = nOut[sDir][dir];

PackCopiedData (dir, sDir, &trPtr[sDir][trBuffMax * dir], nt);

if (VComp (procArraySize, dir) > 1) { 30

MsgSendInit ();

MsgPackI (&nt, 1);

MsgPackR (trBuff, NWORD_COPY * nt);

if (sDir == 1) MsgSendRecv (VComp (procNebrLo, dir),

VComp (procNebrHi, dir), 130 + 2 * dir + 1); 35

else MsgSendRecv (VComp (procNebrHi, dir),

VComp (procNebrLo, dir), 130 + 2 * dir);

MsgRecvInit ();

MsgUnpackI (&nIn, 1);

MsgUnpackR (trBuff, NWORD_COPY * nIn); 40

} else nIn = nt;

if (nMolMe + nMolCopy + nIn > nMolMeMax) {

errCode = ERR_TOO_MANY_COPIES;

nIn = 0;

} 45

UnpackCopiedData (nIn);

}

}

}

50

void PackCopiedData (int dir, int sDir, int *trPtr, int nt)

{

real rShift;

int j;

55

rShift = 0.;

if (sDir == 1 &&

VComp (procArrayMe, dir) == VComp (procArraySize, dir) - 1)

rShift = - VComp (region, dir);

else if (sDir == 0 && VComp (procArrayMe, dir) == 0) 60

rShift = VComp (region, dir);

for (j = 0; j < nt; j ++) {

VToLin (trBuff, NWORD_COPY * j, mol[trPtr[j]].r);

trBuff[NWORD_COPY * j + dir] += rShift;

trBuff[NWORD_COPY * j + NDIM] = mol[trPtr[j]].id; 65

}

}

462 17 Algorithms for supercomputers

void UnpackCopiedData (int nIn)

{ 70

int j;

for (j = 0; j < nIn; j ++) {

VFromLin (mol[nMolMe + nMolCopy + j].r, trBuff, NWORD_COPY * j);

mol[nMolMe + nMolCopy + j].id = trBuff[NWORD_COPY * j + NDIM]; 75

}

nMolCopy += nIn;

}

The main program and initialization function for the distributed computation are
as follows.

int main (int argc, char **argv)

{

MsgStartup ();

if (ME_BOSS) {

GetNameList (argc, argv); 5

PrintNameList (stdout);

}

InitSlaves ();

NebrParlProcs ();

SetParams (); 10

SetupJob ();

moreCycles = 1;

while (moreCycles) {

SingleStep ();

if (stepCount == stepLimit) moreCycles = 0; 15

}

MsgExit ();

}

void SetupJob () 20

{

AllocArrays ();

InitRand (randSeed);

stepCount = 0;

InitState (); 25

nebrNow = 1;

if (ME_BOSS) AccumProps (0);

}

We have glossed over two details that are intimately associated with the message-
passing software, namely, how to ensure that all the processors run copies of the
same program and how each processor obtains its distinct identity procMe (which
determines, among other things, who is the boss). The former may be automatic,

17.4 Distributed computation 463

or require some user action either before or while running the program; the latter
may be as simple as a function call†.

New variables introduced in this program are

VecR subRegionHi, subRegionLo;

VecI procArrayMe, procArraySize, procNebrHi, procNebrLo;

real *trBuff;

int **trPtr, nOut[2][NDIM], errCode, nMolCopy, nMolMe, nMolMeMax,

nProc, procMe, trBuffMax; 5

There are new input data items specifying the maximum number of atoms a pro-
cessor can hold (including copies), the number of processors and the way the sim-
ulation region is subdivided, and the size of the buffers used for collecting data to
be transferred,

NameI (nMolMeMax),

NameI (procArraySize),

NameI (trBuffMax),

In SetParams, the subregion limits are established and the cell array size (with an
extra cell at each end) is determined from the size of the subregion,

VecR w;

...

nebrTabMax = nebrTabFac * nMolMeMax;

VDiv (w, region, procArraySize);

VMul (subRegionLo, procArrayMe, w); 5

VVSAdd (subRegionLo, -0.5, region);

VAdd (subRegionHi, subRegionLo, w);

VScale (w, 1. / (rCut + rNebrShell));

VAddCon (cells, w, 2.);

Memory allocation differs from the standard case,

void AllocArrays ()

{

int k;

AllocMem (mol, nMolMeMax, Mol); 5

AllocMem (cellList, VProd (cells) + nMolMeMax, int);

AllocMem (nebrTab, 2 * nebrTabMax, int);

AllocMem (trBuff, NDIM * trBuffMax, real);

AllocMem2 (trPtr, 2, NDIM * trBuffMax, int);

} 10

† Examination of the software documentation will resolve these questions.

464 17 Algorithms for supercomputers

Finally, each processor discovers who its neighbors are, based on the value of its
own individual copy of procMe,

void NebrParlProcs ()

{

VecI t;

int k;

5

nProc = VProd (procArraySize);

procArrayMe.x = procMe % procArraySize.x;

procArrayMe.y = (procMe / procArraySize.x) % procArraySize.y;

procArrayMe.z = procMe / (procArraySize.x * procArraySize.y);

for (k = 0; k < NDIM; k ++) { 10

t = procArrayMe;

VComp (t, k) = (VComp (t, k) +

VComp (procArraySize, k) - 1) % VComp (procArraySize, k);

VComp (procNebrLo, k) = VLinear (t, procArraySize);

t = procArrayMe; 15

VComp (t, k) = (VComp (t, k) + 1) % VComp (procArraySize, k);

VComp (procNebrHi, k) = VLinear (t, procArraySize);

}

}

and the boss processor, the only one with access to the input data file, distributes
its contents to all the other processors,

void InitSlaves ()

{

ValList initVals[] = {

ValR (deltaT),

ValR (density), 5

ValI (initUcell),

ValI (nebrTabFac),

ValI (nMolMeMax),

ValI (procArraySize),

ValI (randSeed), 10

ValR (rNebrShell),

ValI (stepEquil),

ValI (stepLimit),

ValR (temperature),

ValI (trBuffMax) 15

};

if (ME_BOSS) {

MsgBcPackSend (111, initVals);

} else MsgBcRecvUnpack (111, initVals); 20

}

17.4 Distributed computation 465

Additional details

In order to complete the distributed MD demonstration, we provide the extra infor-
mation needed to produce a working program for use with MPI, a message passing
software standard [gro96] on which several widely available software packages are
based. The two missing details are:

• initialize the computation and let each processor know its identity;
• express the generic communication functions as actual MPI functions.
The following is required by main to initialize the MPI system, allocate buffer

storage, and obtain the values of nProc and procMe. We assume the reader is
familiar with the MPI functions (all prefixed with MPI_) used here†.

#define MsgStartup() \

MPI_Init (&argc, &argv), \

MPI_Comm_size (MPI_COMM_WORLD, &nProc), \

MPI_Comm_rank (MPI_COMM_WORLD, &procMe), \

AllocMem (buffSend, BUFF_LEN, real), \ 5

AllocMem (buffRecv,BUFF_LEN, real)

We also require

#define BUFF_LEN 64000

MPI_Status mpiStatus;

real *buffRecv, *buffSend;

int buffWords, mpiNp; 5

The replacement of the generic communication functions, either by calls to their
MPI equivalents, or by other function calls or operations, is accomplished with the
following macro definitions:

#define MsgSend(to, id) \

MPI_Send (buffSend, buffWords, MPI_MY_REAL, to, id, \

MPI_COMM_WORLD)

#define MsgRecv(from, id) \

MPI_Recv (buffRecv, BUFF_LEN, MPI_MY_REAL, from, id, \ 5

MPI_COMM_WORLD, &mpiStatus)

#define MsgSendRecv(from, to, id) \

MPI_Sendrecv (buffSend, buffWords, MPI_MY_REAL, to, id, \

buffRecv, BUFF_LEN, MPI_MY_REAL, from, id, \

MPI_COMM_WORLD, &mpiStatus) 10

† MPI typically requires the value of nProc to be entered on the command line, so it must agree with the value
obtained from procArraySize which specifies the ‘shape’ of the subdivision. The appropriate MPI runtime
software, with the necessary include files and libraries, must of course be installed on the computer in order
to use this program. Information on how to compile and run programs based on MPI is to be found in the
appropriate user documentation. (The first edition used the alternative PVM [gei94] package.)

466 17 Algorithms for supercomputers

#define MsgBcSend(id) \

for (mpiNp = 1; mpiNp < nProc; mpiNp ++) \

MsgSend (mpiNp, id)

#define MsgBcRecv(id) MsgRecv (0, id)

#define MsgExit() MPI_Finalize (); exit (0) 15

#define MsgSendInit() buffWords = 0

#define MsgRecvInit() buffWords = 0

#define MsgPackR(v, nv) DoPackReal (v, nv)

#define MsgPackI(v, nv) DoPackInt (v, nv)

#define MsgUnpackR(v, nv) DoUnpackReal (v, nv) 20

#define MsgUnpackI(v, nv) DoUnpackInt (v, nv)

Further useful definitions are

#define MsgRecvUnpack(from, id, ms) \

{MsgRecv (from, id); \

MsgRecvInit (); \

UnpackValList (ms, sizeof (ms));}

#define MsgPackSend(to, id, ms) \ 5

{MsgSendInit (); \

PackValList (ms, sizeof (ms)); \

MsgSend (to, id);}

#define MsgBcRecvUnpack(id, ms) \

{MsgBcRecv (id); \ 10

MsgRecvInit (); \

UnpackValList (ms, sizeof (ms));}

#define MsgBcPackSend(id, ms) \

if (nProc > 1) { \

MsgSendInit (); \ 15

PackValList (ms, sizeof (ms)); \

MsgBcSend (id); \

}

#define ME_BOSS (procMe == 0)

#define MPI_MY_REAL MPI_DOUBLE 20

#define DO_MOL_ME for (n = 0; n < nMolMe; n ++)

#define DO_SLAVES for (np = 1; np < nProc; np ++)

The packing and unpacking operations for blocks of data are

void DoPackReal (real *w, int nw)

{

int n;

if (buffWords + nw >= BUFF_LEN) errCode = ERR_MSG_BUFF_FULL; 5

else {

for (n = 0; n < nw; n ++) buffSend[buffWords + n] = w[n];

buffWords += nw;

}

} 10

17.5 Shared-memory parallelism 467

void DoUnpackReal (real *w, int nw)

{

int n;

15

for (n = 0; n < nw; n ++) w[n] = buffRecv[buffWords + n];

buffWords += nw;

}

together with analogous functions DoPackInt and DoUnpackInt. Finally, packing
of ValList arrays is carried out by

void PackValList (ValList *list, int size)

{

int k;

for (k = 0; k < size / sizeof (ValList); k ++) { 5

switch (list[k].vType) {

case N_I:

MsgPackI (list[k].vPtr, list[k].vLen);

break;

case N_R: 10

MsgPackR (list[k].vPtr, list[k].vLen);

break;

}

}

} 15

and there is a complementary function UnpackValList.
This approach is preferable to embedding actual MPI calls in the body of the

program from the point of view of portability; note also that only a subset of the
available MPI functionality is utilized, for the same reason.

17.5 Shared-memory parallelism

Overview
In the case of several processors sharing access to a common memory there are two
approaches available. One is to use the same scheme for message passing described
previously; depending on the computer and operating system, it is possible that this
will run faster than if the processors have to communicate across a network – even
a fast one – because of specialized functions for internal communication. The al-
ternative is to use an approach based on threads (or ‘lightweight’ processes); these
are basically replica copies of the computational process that access a common
region of memory and are supposed to have a relatively low computational over-
head associated with their use. This turns out to be a much simpler approach than
message passing; it does, however, require care to ensure that data are accessed
in a consistent manner by the different threads and, of course, it cannot be used

468 17 Algorithms for supercomputers

when processors do not share common memory. The overall efficiency depends on
the processor architecture and the nature of the problem, and it is quite possible
that performance will not scale as efficiently with the number of processors as the
message-passing approach†.

Use of computational threads

The example used here♠ is, once again, a simple soft-sphere MD simulation. We
will show how threads can be introduced into two key parts of the program. The
first is the leapfrog integrator, included on account of its simplicity rather than be-
cause of its heavy computational requirements. The second involves the neighbor-
list construction and force evaluation procedures, which is where most of the com-
putation time is spent and which, therefore, stand to benefit most from thread usage.
Several macro definitions are used to conceal programming details.

The leapfrog integration function is changed so that now it calls another function
LeapfrogStepT. There will be one such call for each thread and it is this new
function that does the real work.

void LeapfrogStep (int part)

{

int ip;

THREAD_PROC_LOOP (LeapfrogStepT, part); 5

}

void *LeapfrogStepT (void *tr)

{

int ip, n; 10

QUERY_THREAD ();

switch (QUERY_STAGE) {

case 1:

THREAD_SPLIT_LOOP (n, nMol) { 15

VVSAdd (mol[n].rv, 0.5 * deltaT, mol[n].ra);

VVSAdd (mol[n].r, deltaT, mol[n].rv);

}

break;

case 2: 20

THREAD_SPLIT_LOOP (n, nMol)

VVSAdd (mol[n].rv, 0.5 * deltaT, mol[n].ra);

break;

}

return (NULL); 25

}

† Parallel compilers can, in principle, produce the kind of code described here, although it is often simpler and
more efficient (and sometimes essential) to introduce the changes into the MD code manually.

♠ pr_17_2

17.5 Shared-memory parallelism 469

The above functions need explanation. When LeapfrogStep is called, it spawns
several threads that can execute concurrently on separate processors. It does this by
running through a loop that starts each one of nThread processes separately. This is
carried out by THREAD_PROC_LOOP. The first argument is the name of the function
(here LeapfrogStepT) to be executed by the thread, the second (part) is a value
to be passed across to the thread. The function LeapfrogStep returns only after
all the threads have completed their work.

The function LeapfrogStepT is executed by each of the threads and, since the
threads execute in parallel and in a totally unsynchronized manner, care is required
to ensure that data are handled properly; in particular, any data written by one
thread should not be accessed (either for reading or for writing) by another con-
current thread. The form of the function header and the return statement are a
requirement of the thread functions.

The reference to the macro QUERY_THREAD produces the serial number of the
thread, a value between 0 and nThread-1, which is placed in ip. It is used in
THREAD_SPLIT_LOOP, which is a loop over a subset of the atoms defined as

#define THREAD_SPLIT_LOOP(j, jMax) \

for (j = ip * jMax / nThread; \

j < (ip + 1) * jMax / nThread; j ++)

The value of the argument part is supplied by the macro QUERY_STAGE. The out-
come of executing all the threads is that the leapfrog update is applied to all atoms.
A similar approach can be used, for example, in ApplyBoundaryCond, although
functions that are responsible for only a small fraction of the overall workload may
not warrant conversion to use threads.

The force computation is a little more intricate. It requires multiple neighbor
lists, one for each thread, containing distinct subsets of atom pairs; individual atoms
will generally appear in more than one of these lists. It also requires additional
storage for acceleration and potential energy values that are computed separately
for each of the lists and subsequently combined to produce the correct values. Note
that allowing the different threads to update a common array of acceleration values
would violate the restrictions on what threads are permitted to do with data and
would be guaranteed to produce incorrect results.

Replacing the function BuildNebrList of §3.4 involves the following
alterations:

void BuildNebrList ()

{

int ip, n;

for (n = nMol; n < nMol + VProd (cells); n ++) cellList[n] = -1; 5

THREAD_PROC_LOOP (BuildNebrListT, 1);

470 17 Algorithms for supercomputers

THREAD_PROC_LOOP (BuildNebrListT, 2);

}

void *BuildNebrListT (void *tr) 10

{

...

int ip;

QUERY_THREAD (); 15

switch (QUERY_STAGE) {

case 1:

VDiv (invWid, cells, region);

DO_MOL {

VSAdd (rs, mol[n].r, 0.5, region); 20

VMul (cc, rs, invWid);

if (cc.z % nThread == ip) {

c = VLinear (cc, cells) + nMol;

...

} 25

}

break;

case 2:

rrNebr = Sqr (rCut + rNebrShell);

nebrTabLenP[ip] = 0; 30

THREAD_SPLIT_LOOP (m1z, cells.z) {

for (m1y = 0 ...

...

if (VLenSq (dr) < rrNebr) {

if (nebrTabLenP[ip] * nThread >= nebrTabMax) 35

ErrExit (ERR_TOO_MANY_NEBRS);

nebrTabP[ip][2 * nebrTabLenP[ip]] = j1;

nebrTabP[ip][2 * nebrTabLenP[ip] + 1] = j2;

++ nebrTabLenP[ip];

} 40

...

}

break;

}

return (NULL); 45

}

Here, during the first call to BuildNebrListT (the first stage), each thread is re-
sponsible for constructing the linked lists of cell occupants for only a fraction of
the cells, based on their z coordinates. During the second call, each thread pro-
duces a separate portion of the neighbor list, stored in the array nebrTabP[ip][],
involving pairs of atoms for which the first member of the pair lies in a cell being
handled by that thread. Thus, while the atoms themselves typically appear in more
than one of the neighbor lists, the pairs themselves appear only once.

17.5 Shared-memory parallelism 471

The corresponding function ComputeForces becomes

void ComputeForces ()

{

int ip, iq;

THREAD_PROC_LOOP (ComputeForcesT, 1); 5

THREAD_PROC_LOOP (ComputeForcesT, 2);

uSum = 0.;

THREAD_LOOP uSum += uSumP[iq];

}

10

void *ComputeForcesT (void *tr)

{

...

int ip, iq;

15

QUERY_THREAD ();

switch (QUERY_STAGE) {

case 1:

rrCut = Sqr (rCut);

DO_MOL VZero (raP[ip][n]); 20

uSumP[ip] = 0.;

for (n = 0; n < nebrTabLenP[ip]; n ++) {

j1 = nebrTabP[ip][2 * n];

j2 = nebrTabP[ip][2 * n + 1];

... 25

if (rr < rrCut) {

...

VVSAdd (raP[ip][j1], fcVal, dr);

VVSAdd (raP[ip][j2], - fcVal, dr);

uSumP[ip] += uVal; 30

}

}

break;

case 2:

THREAD_SPLIT_LOOP (n, nMol) { 35

VZero (mol[n].ra);

THREAD_LOOP VVAdd (mol[n].ra, raP[iq][n]);

}

break;

} 40

return (NULL);

}

In the first call to ComputeForcesT, the particular neighbor list associated with
thread ip is processed, with acceleration values being stored in array raP[ip][]

and potential energies in uSumP[ip]. The second call accumulates these separate

472 17 Algorithms for supercomputers

contributions, where, for brevity,

#define THREAD_LOOP \

for (iq = 0; iq < nThread; iq ++)

Additional quantities declared here are

pthread_t *pThread;

VecR **raP;

real *uSumP;

int **nebrTabP, *nebrTabLenP, funcStage, nThread;

where the elements pThread are required by the thread processing; the necessary
array allocations (in AllocArrays – the usual nebrTab is not required, having
been replaced by corresponding arrays nebrTabP private to each thread) and input
data item are

AllocMem (pThread, nThread, pthread_t);

AllocMem (uSumP, nThread, real);

AllocMem (nebrTabLenP, nThread, int);

AllocMem2 (raP, nThread, nMol, VecR);

AllocMem2 (nebrTabP, nThread, 2 * nebrTabMax / nThread, int); 5

NameI (nThread),

Finally, the remaining definitions used in the program are

#define QUERY_THREAD() ip = (int) tr

#define QUERY_STAGE funcStage

#define THREAD_PROC_LOOP(tProc, fStage) \

funcStage = fStage; \

for (ip = 1; ip < nThread; ip ++) \ 5

pthread_create (&pThread[ip], NULL, tProc, \

(void *) ip); \

tProc ((void *) 0); \

for (ip = 1; ip < nThread; ip ++) \

pthread_join (pThread[ip], NULL); 10

Further information about the functions prefixed with pthread_ can be found in
the documentation of the thread library functions. It is left to the reader to explore
the performance benefits that can be obtained by this approach (a prerequisite being
a computer with multiple processors and shared memory).

17.6 Techniques for vector processing 473

17.6 Techniques for vector processing

Pipelined computation

When supercomputers first appeared, their performance derived from two princi-
pal features: a fast processor clock and the use of pipelined vector processing. With
the appearance of comparatively cheap microprocessors, and their employment in
parallel computers, the role of vector processing temporarily diminished. However,
the reader may rest assured that it is returning once again to boost microprocessor
performance. Some pipelining is already to be found in these chips (as well as mul-
tiple instruction units), but the need for application software to take its existence
into account is less of an issue than when ‘serious’ vector processing is crucial to
performance. There are still mainframe supercomputers that rely heavily on vector
processing.

We will again concentrate on the soft-sphere simulation; this turns out to be the
most difficult to vectorize effectively. For longer-range forces the number of in-
teracting neighbors of each atom is large, and since a slightly modified form of
the all-pairs version of the interaction function can then be used (provided there
are not too many atoms) the compiler is able to handle the vectorization automati-
cally [bro86]. Likewise for small systems with only short-range forces, where the
loss of efficiency due to using the all-pairs method is adequately compensated by
the vectorization speedup. But for bigger systems (beyond several hundred atoms)
with short-range forces, for which cells are essential and neighbor lists advisable
if the memory is available, compilers are unable to rearrange the conventional MD
program so that it may be vectorized effectively. The problem must be solved the
hard way – by rearranging the computation into a more suitable form [rap91a].

A specific computer architecture will not be invoked here. Instead, the computa-
tions will be expressed in a form that any processor with certain common hardware
features – to be enumerated later – and an effective compiler will be able to exe-
cute relatively efficiently. The approach differs from previous sections, where we
spelled out the communication and thread functions to be used; a similar approach
could have been used here as well, but since the result of reformulating the algo-
rithm is a program that can be vectorized automatically, there is little point in doing
the work manually (by calling an assortment of vector functions directly).

Effective vector processing requires long sequences of data items (the vectors)
that can be processed independently in pipeline fashion. Because of the overhead
in filling these pipes initially, there is an advantage to using long vectors, although
the minimum useful length depends on the specific machine. Vector computers em-
phasize floating-point performance, but in recognition of the fact that most prob-
lems are not organized in precisely the form needed, the machines are also able
to carry out certain kinds of data rearrangement at high speed. More precisely, the

474 17 Algorithms for supercomputers

capability exists to gather randomly distributed data items speedily into a single
array based on a vector of addresses, as well as the converse scatter operation; the
MD code below relies heavily on such operations.

Layer method
The problem with the cell method, which makes it impossible to vectorize effec-
tively, is its use of linked lists to identify the atoms in each cell. The method we
describe here takes the same cell occupancy data and rearranges it into a form
more suitable for vector processing. The approach can also be extended to produce
neighbor lists [gre89b] organized in a way that can be automatically vectorized.

In the original, cell-based version of ComputeForces in §3.4 there are several
nested loops; the outermost is over cells and within this there is a loop over the
offsets to neighboring cells; two further inner loops consider all pairs of cell oc-
cupants. We will now proceed to rearrange these loops. If the cell occupants are
assumed to be ordered in some (arbitrary) way, then the role of the two outermost
loops in the revised version is to produce all valid pairings of the i th and j th oc-
cupants of whatever pair of cells happens to be under consideration by the inner
loops (the case where both cells are the same is also covered). Within these two
outer loops there is a loop over possible relative offsets between cell pairs. Finally,
the innermost loop is over all cells, with the second cell of the pair obtained using
the known cell offset. If the number of cells is close to the number of atoms, the
innermost loop will fulfill the principal requirement of effective vectorization – a
large repetition count. Of course this is not the whole story, because it is the details
of the processing carried out by the innermost loop that determine performance
and, in addition, the work needed to rearrange the data for this computation must
be taken into account.

The reordered cell occupancy data are stored in ‘layers’ [rap91a], as shown in
Figure 17.2. Each layer consists of one storage element per cell, and there are as
many layers as the maximum cell occupancy. The first atom in a cell (the order has
no special significance) is placed in the first layer, and so on; the first layer will be
practically full, but later layers will be less densely populated. Since the two outer
loops scan all pairs of layers and the number of cycles of the inner loops is in-
dependent of cell occupancy, it follows that computation time varies quadratically
with the number of layers. Thus the method is most effective for relatively dense
systems, where cell occupancy does not vary too widely.

The presence of periodic boundaries complicates the algorithm, so they are elim-
inated by a process of replication (§3.4), reminiscent of the copying operation
used earlier in the distributed approach. Before beginning the interaction compu-
tation (ComputeForces), all atoms close to any boundary are duplicated so that
they appear just beyond the opposite boundary. These replicas are used for all

17.6 Techniques for vector processing 475

Fig. 17.2. The reorganization of the cell contents into layers for efficient vector
processing.

interactions that would otherwise extend across one or more boundaries. The cell
array must be enlarged to provide a shell of thickness rc (the interaction cutoff
range) surrounding the region.

The replication function♠ follows. Each spatial dimension is treated in turn and
atoms near edges or corners may be replicated more than once. A check for array
overflow is included†.

void ReplicateMols ()

{

int k, n, na;

nMolRep = nMol; 5

for (k = 0; k < NDIM; k ++) {

na = nMolRep;

for (n = 0; n < nMolRep; n ++) {

if (fabs (VComp (mol[n].r, k)) >= 0.5 * VComp (region, k) -

rCut) { 10

mol[na].r = mol[n].r;

if (VComp (mol[na].r, k) > 0.)

VComp (mol[na].r, k) -= VComp (region, k);

else VComp (mol[na].r, k) += VComp (region, k);

++ na; 15

}

}

nMolRep = na;

if (nMolRep >= nMolMax) ErrExit (ERR_TOO_MANY_REPLICAS);

} 20

}

♠ pr_17_3
† To vectorize the loops in this function it may be necessary to divide each loop over atoms into two parts: the

first loop identifies the atoms to be replicated and stores their indices in a separate array; the second does the
replication using this index array.

476 17 Algorithms for supercomputers

The interactions are computed in several stages. The first stage determines the
cell occupied by each atom. Next the layers are constructed by a method to be dis-
cussed below. Then come the multiply-nested loops: the outer two loops select all
possible layer pairs, within them is the loop over cell offsets and inside this are four
successive loops where all the interactions are computed. The first of the innermost
loops considers all cell pairings involving the chosen layers and the specified off-
set, determines whether a valid pair of atoms is to be found there and, if so, adds
this information to a list. The second loop processes the listed atom pairs and com-
putes their interactions. The final two loops add these newly computed terms to the
accumulated interactions of the respective atoms.

The structure Mol used here has the form

typedef struct {

VecR r, rv, ra;

real u;

int inCell;

} Mol; 5

where u is the potential energy of the individual atom and is required in order to
achieve vectorization; the new variables appearing in the program are

Mol *mol;

VecR *raL;

real *uL;

int **layerMol, **molPtr, *inside, *molId, bdyOffset, nLayerMax,

nMolMax, nMolRep; 5

The arrays are allocated by

void AllocArrays ()

{

int k;

AllocMem (mol, nMolMax, Mol); 5

AllocMem (molId, nMolMax, int);

AllocMem (raL, VProd (cells), VecR);

AllocMem (uL, VProd (cells), real);

AllocMem (inside, 2 * bdyOffset + VProd (cells), int);

AllocMem2 (molPtr, 2, VProd (cells), int); 10

AllocMem2 (layerMol, nLayerMax, 2 * bdyOffset + VProd (cells), int);

}

The variable nMolMax is the maximum number of atoms, including replicas, for
which storage is available, nLayerMax is the number of available layers and the
constant bdyOffset is used to avoid any problems with negative array indices

17.6 Techniques for vector processing 477

when shifted layers are paired (see later). The meaning of the other variables
will become clear in due course. If more than a few layers are needed the array
layerMol will dominate the storage requirements of the program.

The interaction calculation follows.

#define OFFSET_VALS \

{{-1,-1,-1}, {0,-1,-1}, {1,-1,-1}, {-1,0,-1}, {0,0,-1}, \

{1,0,-1}, {-1,1,-1}, {0,1,-1}, {1,1,-1}, {-1,-1,0}, \

{0,-1,0}, {1,-1,0}, {-1,0,0}, {0,0,0}, {1,0,0}, \

{-1,1,0}, {0,1,0}, {1,1,0}, {-1,-1,1}, {0,-1,1}, \ 5

{1,-1,1}, {-1,0,1}, {0,0,1}, {1,0,1}, {-1,1,1}, \

{0,1,1}, {1,1,1}}

void ComputeForces ()

{ 10

VecR dr, invWid, regionEx, rs, t;

VecI cc, vOff[] = OFFSET_VALS;

real fcVal, rr, rrCut, rri, rri3;

int ic, layer1, layer2, m1, m2, n, na, nat, nLayer, nPair,

offset, offsetLo; 15

VCopy (t, cells);

VAddCon (t, t, -2.);

VDiv (invWid, t, region);

VSetAll (t, 2.); 20

VDiv (t, t, invWid);

VAdd (regionEx, region, t);

for (n = 0; n < nMolRep; n ++) {

VSAdd (rs, mol[n].r, 0.5, regionEx);

VMul (cc, rs, invWid); 25

mol[n].inCell = VLinear (cc, cells);

molId[n] = n;

}

nLayer = 0;

for (na = nMolRep; na > 0; na = nat) { 30

if (nLayer >= nLayerMax) ErrExit (ERR_TOO_MANY_LAYERS);

for (ic = 0; ic < VProd (cells); ic ++)

layerMol[nLayer][bdyOffset + ic] = -1;

for (n = 0; n < na; n ++)

layerMol[nLayer][bdyOffset + mol[molId[n]].inCell] = molId[n]; 35

for (ic = 0; ic < VProd (cells); ic ++) {

n = layerMol[nLayer][bdyOffset + ic];

if (n >= 0) mol[n].inCell = -1;

}

nat = 0; 40

for (n = 0; n < na; n ++) {

if (mol[molId[n]].inCell >= 0) molId[nat ++] = molId[n];

}

++ nLayer;

} 45

478 17 Algorithms for supercomputers

for (n = 0; n < nMolRep; n ++) {

VZero (mol[n].ra);

mol[n].u = 0.;

}

rrCut = Sqr (rCut); 50

for (layer1 = 0; layer1 < nLayer; layer1 ++) {

for (layer2 = layer1; layer2 < nLayer; layer2 ++) {

offsetLo = (layer2 == layer1) ? 14 : 0;

for (offset = offsetLo; offset < 27; offset ++) {

nPair = 0; 55

m2 = bdyOffset + VLinear (vOff[offset], cells);

for (m1 = bdyOffset; m1 < bdyOffset + VProd (cells); m1 ++) {

if ((inside[m1] || inside[m2]) &&

layerMol[layer1][m1] >= 0 && layerMol[layer2][m2] >= 0) {

molPtr[0][nPair] = layerMol[layer1][m1]; 60

molPtr[1][nPair] = layerMol[layer2][m2];

++ nPair;

}

++ m2;

} 65

for (n = 0; n < nPair; n ++) {

VSub (dr, mol[molPtr[0][n]].r, mol[molPtr[1][n]].r);

rr = VLenSq (dr);

if (rr < rrCut) {

rri = 1. / rr; 70

rri3 = Cube (rri);

fcVal = 48. * rri3 * (rri3 - 0.5) * rri;

VSCopy (raL[n], fcVal, dr);

uL[n] = 4. * rri3 * (rri3 - 1.) + 1.;

} else { 75

VZero (raL[n]);

uL[n] = 0.;

}

}

for (n = 0; n < nPair; n ++) { 80

VVAdd (mol[molPtr[0][n]].ra, raL[n]);

mol[molPtr[0][n]].u += uL[n];

}

for (n = 0; n < nPair; n ++) {

VVSub (mol[molPtr[1][n]].ra, raL[n]); 85

mol[molPtr[1][n]].u += uL[n];

}

}

}

} 90

uSum = 0.;

DO_MOL uSum += mol[n].u;

uSum *= 0.5;

}

17.6 Techniques for vector processing 479

Each of the innermost loops can be shown to satisfy the basic requirement of
vectorization, namely, that each item processed is independent of all others†. The
other characteristic of the loops is that, at least for the earliest layers, the vectors
processed are of length proportional to Nm .

The one slightly subtle detail in this computation is the assignment of atoms to
layers. The way this is done is to make several iterations over the set of atoms,
one such cycle for each layer, each iteration assigning whichever atoms happen to
be in each cell to the layer being filled. Thus several atoms may be assigned to the
same position in a layer (in the array layerMol), but all atoms except the last one
encountered in each cell will be overwritten. A check is made after each cycle to
see which atoms were recorded in the layer; these are removed from the set before
proceeding to the next layer, by zeroing the values of inCell for these atoms and
compressing the identities of the remaining atoms held in molId. This process
is repeated until no unassigned atoms remain. Clearly such a scheme would be
wasteful in terms of computation, were it not for the fact that it can be vectorized.

Other comments about the above function are the following. Computation of
the cell size ignores the outermost cells, because these are outside the simulation
region. The array inside is used to distinguish quickly cells that are within the
simulation region from those adjoining the boundary; this is preferable to a test
based on the three indices needed to specify cell position. When a layer is paired
with itself, only positive cell offsets need be considered.

Changes to SetParams are

VecI t;

...

VAddCon (cells, cells, 2);

t = initUcell;

VAddCon (t, t, 2); 5

nMolMax = 4 * VProd (t);

bdyOffset = cells.x * (cells.y + 1) + 1;

and nLayerMax must be added to the input data. Initialization also requires

void SetupLayers ()

{

int n, nLayer, nx, ny, nz;

for (n = 0; n < 2 * bdyOffset + VProd (cells); n ++) inside[n] = 0; 5

for (nz = 1; nz < cells.z - 1; nz ++) {

for (ny = 1; ny < cells.y - 1; ny ++) {

† Supplementary, system-specific compiler directives may have to be used to inform the compiler of this fact,
since it is not at all obvious from just reading the program without understanding the underlying organization.

480 17 Algorithms for supercomputers

for (nx = 1; nx < cells.x - 1; nx ++) {

inside[bdyOffset + (nz * cells.y + ny) * cells.x + nx] = 1;

} 10

}

}

for (nLayer = 0; nLayer < nLayerMax; nLayer ++) {

for (n = 0; n < 2 * bdyOffset + VProd (cells); n ++)

layerMol[nLayer][n] = -1; 15

}

}

The rest of the program is unchanged.

17.7 Further study
17.1 Implement the distributed MD computation on your favorite multiproces-

sor computer and measure the communication overheads. How does perfor-
mance vary with system size and number of processors?

17.2 Examine the performance of the threaded approach on a shared-memory
computer.

17.3 Extend the vectorized layer method to include neighbor lists.

18

More about software

18.1 Introduction
This chapter includes a summary of the definitions of various structures and macros
used in the programs listed in the book, descriptions of some general-purpose math-
ematical functions and discussion of software topics such as file and data handling
needed in the case studies.

18.2 Structures and macro definitions
The use of structures to represent cartesian vectors in two and three dimensions,
together with a set of macro definitions that describe frequently used vector oper-
ations, leads to more concise programs that not only are less susceptible to typing
and similar errors, but that are also more readable. Here, for the convenience of the
reader, all the definitions associated with vectors, and other quantities, that are to
be found scattered throughout the text, are gathered together in one place.

We begin with the structures and definitions required for three-dimensional vec-
tors. The floating-point and integer vector structures are

typedef struct {

real x, y, z;

} VecR;

typedef struct { 5

int x, y, z;

} VecI;

A series of basic vector arithmetic definitions follow.

#define VSet(v, sx, sy, sz) \

(v).x = sx, \

(v).y = sy, \

481

482 18 More about software

(v).z = sz

#define VCopy(v1, v2) \ 5

(v1).x = (v2).x, \

... (ditto for other components) ...

#define VScale(v, s) \

(v).x *= s, \

... 10

#define VSCopy(v2, s1, v1) \

(v2).x = (s1) * (v1).x, \

...

#define VAdd(v1, v2, v3) \

(v1).x = (v2).x + (v3).x, \ 15

...

#define VSub(v1, v2, v3) \

(v1).x = (v2).x - (v3).x, \

...

#define VSAdd(v1, v2, s3, v3) \ 20

(v1).x = (v2).x + (s3) * (v3).x, \

...

#define VSSAdd(v1, s2, v2, s3, v3) \

(v1).x = (s2) * (v2).x + (s3) * (v3).x, \

... 25

#define VMul(v1, v2, v3) \

(v1).x = (v2).x * (v3).x, \

...

#define VDiv(v1, v2, v3) \

(v1).x = (v2).x / (v3).x, \ 30

...

Product operations, including the scalar and vector products, are

#define VDot(v1, v2) \

((v1).x * (v2).x + (v1).y * (v2).y + (v1).z * (v2).z)

#define VCross(v1, v2, v3) \

(v1).x = (v2).y * (v3).z - (v2).z * (v3).y, \

(v1).y = (v2).z * (v3).x - (v2).x * (v3).z, \ 5

(v1).z = (v2).x * (v3).y - (v2).y * (v3).x

#define VWDot(v1, v2, v3) \

((v1).x * (v2).x * (v3).x + (v1).y * (v2).y * (v3).y + \

(v1).z * (v2).z * (v3).z)

Matrix–vector products (for both the matrix and its transpose) are

#define MVMul(v1, m, v2) \

(v1).x = (m)[0] * (v2).x + (m)[3] * (v2).y + (m)[6] * (v2).z, \

(v1).y = (m)[1] * (v2).x + (m)[4] * (v2).y + (m)[7] * (v2).z, \

(v1).z = (m)[2] * (v2).x + (m)[5] * (v2).y + (m)[8] * (v2).z

#define MVMulT(v1, m, v2) \ 5

(v1).x = (m)[0] * (v2).x + (m)[1] * (v2).y + (m)[2] * (v2).z, \

18.2 Structures and macro definitions 483

(v1).y = (m)[3] * (v2).x + (m)[4] * (v2).y + (m)[5] * (v2).z, \

(v1).z = (m)[6] * (v2).x + (m)[7] * (v2).y + (m)[8] * (v2).z

Other useful operations include

#define VSetAll(v, s) \

VSet (v, s, s, s)

#define VAddCon(v1, v2, s) \

(v1).x = (v2).x + (s), \

... 5

#define VProd(v) \

((v).x * (v).y * (v).z)

#define VGe(v1, v2) \

((v1).x >= (v2).x && (v1).y >= (v2).y && \

(v1).z >= (v2).z) 10

#define VLt(v1, v2) \

((v1).x < (v2).x && (v1).y < (v2).y && \

(v1).z < (v2).z)

#define VLinear(p, s) \

(((p).z * (s).y + (p).y) * (s).x + (p).x) 15

#define VCSum(v) \

((v).x + (v).y + (v).z)

#define VComp(v, k) \

*((k == 0) ? &(v).x : ((k == 1) ? &(v).y : &(v).z))

together with two operations for converting between vectors and array elements,

#define VToLin(a, n, v) \

a[(n) + 0] = (v).x, \

a[(n) + 1] = (v).y, \

a[(n) + 2] = (v).z

#define VFromLin(v, a, n) \ 5

VSet (v, a[(n) + 0], a[(n) + 1], a[(n) + 2])

The two-dimensional equivalents are not shown, except for the cross product, which
is regarded as a scalar and defined as

#define VCross(v1, v2) \

((v1).x * (v2).y - (v1).y * (v2).x)

The choice of whether to use two- or three-dimensional vectors in a program can
be made to depend on the value of NDIM by using conditional compilation,

#if NDIM == 3

#define VSet...

...

#elif NDIM == 2

484 18 More about software

#define VSet... 5

...

#endif

Additional vector operations that do not explicitly depend on NDIM are

#define VZero(v) VSetAll (v, 0)

#define VLenSq(v) VDot (v, v)

#define VWLenSq(v1, v2) VWDot(v1, v2, v2)

#define VLen(v) sqrt (VDot (v, v))

#define VVAdd(v1, v2) VAdd (v1, v1, v2) 5

#define VVSub(v1, v2) VSub (v1, v1, v2)

#define VVSAdd(v1, s2, v2) VSAdd (v1, v1, s2, v2)

#define VInterp(v1, s2, v2, v3) \

VSSAdd (v1, s2, v2, 1. - (s2), v3)

Quaternions are handled in a corresponding manner,

typedef struct {

real u1, u2, u3, u4;

} Quat;

#define QSet(q, s1, s2, s3, s4) \ 5

(q).u1 = s1, \

(q).u2 = s2, \

(q).u3 = s3, \

(q).u4 = s4

#define QZero(q) \ 10

QSet (q, 0, 0, 0, 0)

#define QScale(q, s) \

(q).u1 *= s, \

...

#define QSAdd(q1, q2, s3, q3) \ 15

(q1).u1 = (q2).u1 + (s3) * (q3).u1, \

...

#define QLenSq(q) \

(Sqr ((q).u1) + Sqr ((q).u2) + Sqr ((q).u3) +

Sqr ((q).u4)) 20

#define QMul(q1, q2, q3) \

(q1).u1 = (q2).u4 * (q3).u1 - (q2).u3 * (q3).u2 + \

(q2).u2 * (q3).u3 + (q2).u1 * (q3).u4, \

(q1).u2 = (q2).u3 * (q3).u1 + (q2).u4 * (q3).u2 - \

(q2).u1 * (q3).u3 + (q2).u2 * (q3).u4, \ 25

(q1).u3 = - (q2).u2 * (q3).u1 + (q2).u1 * (q3).u2 + \

(q2).u4 * (q3).u3 + (q2).u3 * (q3).u4, \

(q1).u4 = - (q2).u1 * (q3).u1 - (q2).u2 * (q3).u2 - \

(q2).u3 * (q3).u3 + (q2).u4 * (q3).u4

18.2 Structures and macro definitions 485

as are complex variables,

typedef struct {

real R, I;

} Cmplx;

#define CSet(a, x, y) \ 5

a.R = x, \

a.I = y

#define CAdd(a, b, c) \

a.R = b.R + c.R, \

a.I = b.I + c.I 10

#define CSub(a, b, c) \

a.R = b.R - c.R, \

a.I = b.I - c.I

#define CMul(a, b, c) \

a.R = b.R * c.R - b.I * c.I, \ 15

a.I = b.R * c.I + b.I * c.R

Other macro definitions used are

#define Sqr(x) ((x) * (x))

#define Cube(x) ((x) * (x) * (x))

#define Sgn(x, y) (((y) >= 0) ? (x) : (- (x)))

#define IsEven(x) ((x) & ~1)

#define IsOdd(x) ((x) & 1) 5

#define Nint(x) \

(((x) < 0.) ? (- (int) (0.5 - (x))): ((int) (0.5 + (x))))

#define Min(x1, x2) \

(((x1) < (x2)) ? (x1) : (x2))

#define Max(x1, x2) \ 10

(((x1) > (x2)) ? (x1) : (x2))

#define Min3(x1, x2, x3) \

(((x1) < (x2)) ? (((x1) < (x3)) ? (x1) : (x3)) : \

(((x2) < (x3)) ? (x2) : (x3)))

#define Max3(x1, x2, x3) \ 15

(((x1) > (x2)) ? (((x1) > (x3)) ? (x1) : (x3)) : \

(((x2) > (x3)) ? (x2) : (x3)))

#define Clamp(x, lo, hi) \

(((x) >= (lo) && (x) <= (hi)) ? (x) : (((x) < (lo)) ? \

(lo) : (hi))) 20

Macros are introduced to help deal with periodic boundary conditions,

#define VWrap(v, t) \

if (v.t >= 0.5 * region.t) v.t -= region.t; \

else if (v.t < -0.5 * region.t) v.t += region.t

#define VShift(v, t) \

if (v.t >= 0.5 * region.t) shift.t -= region.t; \ 5

else if (v.t < -0.5 * region.t) shift.t += region.t

486 18 More about software

#define VShiftWrap(v, t) \

if (v.t >= 0.5 * region.t) { \

shift.t -= region.t; \

v.t -= region.t; \ 10

} else if (v.t < -0.5 * region.t) { \

shift.t += region.t; \

v.t += region.t; \

}

#define VCellWrap(t) \ 15

if (m2v.t >= cells.t) { \

m2v.t = 0; \

shift.t = region.t; \

} else if (m2v.t < 0) { \

m2v.t = cells.t - 1; \ 20

shift.t = - region.t; \

}

and, since these tend to be repeated for each of the vector components, the follow-
ing are also used (here in three-dimensional form),

#define VWrapAll(v) \

{VWrap (v, x); \

VWrap (v, y); \

VWrap (v, z);}

#define VShiftAll(v) \ 5

{VShift (v, x); \

VShift (v, y); \

VShift (v, z);}

#define VCellWrapAll() \

{VCellWrap (x); \ 10

VCellWrap (y); \

VCellWrap (z);}

The cell offsets used for interaction and neighbor-list computations (with standard
periodic boundaries) are, in three dimensions,

#define OFFSET_VALS \

{{0,0,0}, {1,0,0}, {1,1,0}, {0,1,0}, {-1,1,0}, \

{0,0,1}, {1,0,1}, {1,1,1}, {0,1,1}, {-1,1,1}, \

{-1,0,1}, {-1,-1,1}, {0,-1,1}, {1,-1,1}}

#define N_OFFSET 14 5

and in two dimensions,

#define OFFSET_VALS \

{{0,0}, {1,0}, {1,1}, {0,1}, {-1,1}}

#define N_OFFSET 5

18.3 Allocating arrays 487

Some of the measurements make use of

typedef struct {

real val, sum, sum2;

} Prop;

#define PropZero(v) \ 5

v.sum = 0., \

v.sum2 = 0.

#define PropAccum(v) \

v.sum += v.val, \

v.sum2 += Sqr (v.val) 10

#define PropAvg(v, n) \

v.sum /= n, \

v.sum2 = sqrt (Max (v.sum2 / n - Sqr (v.sum), 0.))

#define PropEst(v) \

v.sum, v.sum2 15

Several macros are introduced to help with reading and writing files (by concealing
the standard Unix file functions),

#define ReadF(x) fread (&x, sizeof (x), 1, fp)

#define ReadFN(x, n) fread (x, sizeof (x[0]), n, fp)

#define WriteF(x) fwrite (&x, sizeof (x), 1, fp)

#define WriteFN(x, n) fwrite (x, sizeof (x[0]), n, fp)

Text characters used in some programs are defined as

#define CHAR_MINUS ’-’

#define CHAR_ZERO ’0’

Finally, the following shorthand is employed for frequently appearing loops:

#define DO_MOL \

for (n = 0; n < nMol; n ++)

#define DO_CELL(j, m) \

for (j = cellList[m]; j >= 0; j = cellList[j])

18.3 Allocating arrays

One particularly useful feature of C and other modern programming languages is
the ability to allocate storage for arrays dynamically, with the amount of storage
being determined at runtime (as opposed to fixed-size arrays whose dimensions
are specified in the program source). All arrays used in the programs whose sizes
depend on the input parameters are allocated dynamically. As a consequence, there
are no preset size limits built into the C implementations of the programs.

488 18 More about software

The following pair of macro definitions handles the allocations of one- and two-
dimensional arrays of any kind of variable or structure,

#define AllocMem(a, n, t) \

a = (t *) malloc ((n) * sizeof (t))

#define AllocMem2(a, n1, n2, t) \

AllocMem (a, n1, t *); \

AllocMem (a[0], (n1) * (n2), t); \ 5

for (k = 1; k < n1; k ++) a[k] = a[k - 1] + n2;

If reducing computation time is a serious issue, then there may be more to mem-
ory usage than is apparent here, and the concerned user will have to take into ac-
count various hardware architectural features when going about the task. Consid-
erations such as localizing memory access, the actual number of array dimensions,
minimizing address computation and avoiding cache conflicts are typical examples
of the factors influencing efficiency. Disregarding such details can sometimes lead
to computation times several times (very occasionally, even an order of magnitude)
longer than is really necessary. Determining whether near-optimal performance has
been achieved is not always a simple task.

18.4 Utility functions

Mathematical functions

Several standard computational functions are required in a few of the case studies.
They are all to be found in [pre92], as well as in various widely available math-
ematical function libraries. In the interest of completeness, we include listings of
the customized versions of these functions used in the case studies.

Matrix multiplication (§8.5, §11.5) uses the function

void MulMat (real *a, real *b, real *c, int n)

{

int i, j, k;

for (i = 0; i < n; i ++) { 5

for (j = 0; j < n; j ++) {

Mn (a, i, j) = 0.;

for (k = 0; k < n; k ++)

Mn (a, i, j) += Mn (b, i, k) * Mn (c, k, j);

} 10

}

}

where

#define MAT(a, n, i, j) (a)[(i) + n * (j)]

#define Mn(a, i, j) MAT (a, n, i, j)

18.4 Utility functions 489

are introduced to aid readability by hiding the fact that matrices are stored as singly-
indexed arrays. The function for multiplying a matrix by a vector (§11.5) is

void MulMatVec (real *a, real *b, real *c, int n)

{

int i, k;

DO (i, n) { 5

a[i] = 0.;

DO (k, n) a[i] += Mn (b, i, k) * c[k];

}

}

The function needed for solving a set of linear equations efficiently (§10.3,
§11.5), based on the Crout version of the LU method, is as follows [ral78]; the
matrix a is stored as a one-dimensional array in column order, and the vector on
the right-hand side of the equation is stored in x and overwritten by the solution.

#define A(i, j) MAT (a, n, i, j)

#define Swap(a, b) v = a, a = b, b = v

#define N_MAX 100

void SolveLineq (real *a, real *x, int n) 5

{

real vMaxI[N_MAX], v, vMax;

int ptrMax[N_MAX], i, j, k, m;

if (n > N_MAX) exit (0); 10

for (i = 0; i < n; i ++) {

vMax = 0.;

for (j = 0; j < n; j ++) {

if ((v = fabs (A(i, j))) > vMax) vMax = v;

} 15

vMaxI[i] = 1. / vMax;

}

for (m = 0; m < n; m ++) {

vMax = 0.;

for (i = m; i < n; i ++) { 20

for (k = 0; k < m; k ++) A(i, m) -= A(i, k) * A(k, m);

if ((v = fabs (A(i, m)) * vMaxI[i]) > vMax) {

vMax = v;

ptrMax[m] = i;

} 25

}

if (m != ptrMax[m]) {

for (k = 0; k < n ; k ++) Swap (A(m, k), A(ptrMax[m], k));

vMaxI[ptrMax[m]] = vMaxI[m];

} 30

for (j = m + 1; j < n; j ++) {

for (k = 0; k < m; k ++) A(m, j) -= A(m, k) * A(k, j);

490 18 More about software

A(m, j) /= A(m, m);

}

} 35

for (i = 0; i < n; i ++) {

Swap (x[ptrMax[i]], x[i]);

for (j = 0; j < i; j ++) x[i] -= A(i, j) * x[j];

x[i] /= A(i, i);

} 40

for (i = n - 2; i >= 0; i --) {

for (j = i + 1; j < n; j ++) x[i] -= A(i, j) * x[j];

}

}

The function (§5.4) for fast (in place, forward direction) Fourier transformation
[hig76] of complex data arrays of size 2n is

void FftComplex (Cmplx *a, int size)

{

Cmplx t, w, wo;

real theta;

int i, j, k, n; 5

k = 0;

for (i = 0; i < size; i ++) {

if (i < k) {

t = a[i]; 10

a[i] = a[k];

a[k] = t;

}

n = size / 2;

while (n >= 1 && k >= n) { 15

k -= n;

n /= 2;

}

k += n;

} 20

for (n = 1; n < size; n *= 2) {

theta = M_PI / n;

CSet (wo, cos (theta) - 1., sin (theta));

CSet (w, 1., 0.);

for (k = 0; k < n; k ++) { 25

for (i = k; i < size; i += 2 * n) {

j = i + n;

CMul (t, w, a[j]);

CSub (a[j], a[i], t);

CAdd (a[i], a[i], t); 30

}

CMul (t, w, wo);

CAdd (w, w, t);

}

18.4 Utility functions 491

} 35

}

Numerical integration (§5.3) is based on the simplest trapezoidal rule and as-
sumes unit spacing of the points,

real Integrate (real *f, int nf)

{

real s;

int i;

5

s = 0.5 * (f[0] + f[nf - 1]);

for (i = 1; i < nf - 1; i ++) s += f[i];

return (s);

}

The solution of a cubic equation (§9.4), assuming all roots are real and the cubic
term has a coefficient of unity, is given by

void SolveCubic (real *g, real *a)

{

real q1, q2, t;

q1 = sqrt (Sqr (a[0]) - 3. * a[1]) / 3.; 5

q2 = (a[0] * (2. * Sqr (a[0]) - 9. * a[1]) + 27. * a[2]) / 54.;

t = acos (q2 / (q1 * q1 * q1));

g[0] = -2. * q1 * cos (t / 3.) - a[0] / 3.;

g[1] = -2. * q1 * cos ((t + 2. * M_PI) / 3.) - a[0] / 3.;

g[2] = -2. * q1 * cos ((t + 4. * M_PI) / 3.) - a[0] / 3.; 10

}

with the roots being returned in the array g.

Random number generation

Random numbers generally play only a minor part in MD simulations and the need
to ensure ‘high-quality’ values is far less important than in Monte Carlo work.
Molecular chaos will tend to eradicate all but the most egregious irregularities in
whatever random numbers are generated. We have therefore (out of habit) used a
simple, but adequate, method† for producing uniformly distributed values in (0, 1),
the origins of which are shrouded in antiquity!

#define IADD 453806245

#define IMUL 314159269

† Readers wanting well-documented procedures should check what is available on the local computer, or turn
to the literature [knu69, jam90, pre92].

492 18 More about software

#define MASK 2147483647

#define SCALE 0.4656612873e-9

5

int randSeedP = 17;

real RandR ()

{

randSeedP = (randSeedP * IMUL + IADD) & MASK; 10

return (randSeedP * SCALE);

}

The variable randSeed is optionally supplied by the user as input data. Initializa-
tion of the random number sequence uses this value to set randSeedP (in which
case the run will be reproducible), or, if zero, a (difficult to reproduce) value based
on the system clock is chosen,

void InitRand (int randSeedI)

{

struct timeval tv;

if (randSeedI != 0) randSeedP = randSeedI; 5

else {

gettimeofday (&tv, 0);

randSeedP = tv.tv_usec;

}

} 10

Random vectors are also required. The following function produces unit vectors
in three dimensions with uniformly distributed random orientation, using a rejec-
tion method [mar72].

void VRand (VecR *p)

{

real s, x, y;

s = 2.; 5

while (s > 1.) {

x = 2. * RandR () - 1.;

y = 2. * RandR () - 1.;

s = Sqr (x) + Sqr (y);

} 10

p->z = 1. - 2. * s;

s = 2. * sqrt (1. - s);

p->x = s * x;

p->y = s * y;

} 15

18.4 Utility functions 493

The average success rate at each attempt is π/4 (76%). If the vectors are two-
dimensional use

void VRand (VecR *p)

{

real s;

s = 2. * M_PI * RandR (); 5

p->x = cos (s);

p->y = sin (s);

}

Other functions
A sorting function is required (§4.4). This version shows the Heapsort method
[knu73]; the data are not rearranged, but the correctly ordered (ascending) indices
are returned in seq.

void Sort (real *a, int *seq, int n)

{

real q;

int i, ir, ixt, j, k;

5

for (j = 0; j < n; j ++) seq[j] = j;

if (n > 1) {

k = n / 2;

ir = n - 1;

while (1) { 10

if (k > 0) {

-- k;

ixt = seq[k];

q = a[ixt];

} else { 15

ixt = seq[ir];

q = a[ixt];

seq[ir] = seq[0];

-- ir;

if (ir == 0) { 20

seq[0] = ixt;

break;

}

}

i = k; 25

j = 2 * k + 1;

while (j <= ir) {

if (j < ir && a[seq[j]] < a[seq[j + 1]]) ++ j;

if (q < a[seq[j]]) {

seq[i] = seq[j]; 30

494 18 More about software

i = j;

j = 2 * j + 1;

} else j = ir + 1;

}

seq[i] = ixt; 35

}

}

}

Error reporting is done with a minimum of fuss and errors will generally just
terminate the job:

void ErrExit (int code)

{

printf ("Error: %s\n", errorMsg[code]);

exit (0);

} 5

where the error codes and messages used by the programs are

enum {ERR_NONE, ERR_BOND_SNAPPED, ERR_CHECKPT_READ, ERR_CHECKPT_WRITE,

ERR_COPY_BUFF_FULL, ERR_EMPTY_EVPOOL, ERR_MSG_BUFF_FULL,

ERR_OUTSIDE_REGION, ERR_SNAP_READ, ERR_SNAP_WRITE,

ERR_SUBDIV_UNFIN, ERR_TOO_MANY_CELLS, ERR_TOO_MANY_COPIES,

ERR_TOO_MANY_LAYERS, ERR_TOO_MANY_LEVELS, ERR_TOO_MANY_MOLS, 5

ERR_TOO_MANY_MOVES, ERR_TOO_MANY_NEBRS, ERR_TOO_MANY_REPLICAS};

char *errorMsg[] = {"", "bond snapped", "read checkpoint data",

"write checkpoint data", "copy buffer full", "empty event pool",

"message buffer full", "outside region", "read snap data", 10

"write snap data", "subdivision unfinished", "too many cells",

"too many copied mols", "too many layers", "too many levels",

"too many mols", "too many moved mols", "too many neighbors",

"too many replicas"};

The variable moreCycles determines when a run should terminate. Orderly ter-
mination can occur as a result of the number of timesteps reaching a limit, the
execution time exceeding some preset value, or a decision by the user. It is possi-
ble (in some environments) to send a signal to the program manually telling it to
stop (after writing its checkpoint file); in Unix, making provision for such a signal†

requires inserting the call

SetupInterrupt ();

† There is a user command kill for sending any desired signal (here the signal used is SIGUSR1) to an executing
job.

18.5 Organizing input data 495

near the start of main and adding the functions

void ProcInterrupt ()

{

moreCycles = 0;

}

5

void SetupInterrupt ()

{

signal (SIGUSR1, ProcInterrupt);

}

18.5 Organizing input data

Very little attention has been paid to the subject of input data for the programs,
beyond simply listing the necessary data items. The reason we were able to do
this is because all that a program requires is the file containing a list of variable
names and their input values; the processing, completeness checks and even an
annotated printout of the values are all handled transparently. While such a service
is standard in Fortran – the ‘namelist’ feature – there is no corresponding facility in
C. We have therefore had to roll our own; here it is for the curious, starting with the
data structure and macro definitions that must be included in any program using
the feature.

typedef enum {N_I, N_R} VType;

typedef struct {

char *vName;

void *vPtr; 5

VType vType;

int vLen, vStatus;

} NameList;

#define NameI(x) {#x, &x, N_I, sizeof (x) / sizeof (int)} 10

#define NameR(x) {#x, &x, N_R, sizeof (x) / sizeof (real)}

The way the NameList structure is used is typically

NameList nameList[] = {

NameI (intVariable),

NameR (realVector),

};

and the data input function GetNameList that is called from main employs this
information to process the input data file; the return code can be used to check for

496 18 More about software

errors. The name of the input file is taken from the name of the program and the
extension ‘.in’ is appended†.

#define NP_I ((int *) (nameList[k].vPtr) + j)

#define NP_R ((real *) (nameList[k].vPtr) + j)

int GetNameList (int argc, char **argv)

{ 5

int id, j, k, match, ok;

char buff[80], *token;

FILE *fp;

strcpy (buff, argv[0]); 10

strcat (buff, ".in");

if ((fp = fopen (buff, "r")) == 0) return (0);

for (k = 0; k < sizeof (nameList) / sizeof (NameList); k ++)

nameList[k].vStatus = 0;

ok = 1; 15

while (1) {

fgets (buff, 80, fp);

if (feof (fp)) break;

token = strtok (buff, " \t\n");

if (! token) break; 20

match = 0;

for (k = 0; k < sizeof (nameList) / sizeof (NameList); k ++) {

if (strcmp (token, nameList[k].vName) == 0) {

match = 1;

if (nameList[k].vStatus == 0) { 25

nameList[k].vStatus = 1;

for (j = 0; j < nameList[k].vLen; j ++) {

token = strtok (NULL, ", \t\n");

if (token) {

switch (nameList[k].vType) { 30

case N_I:

*NP_I = atol (token);

break;

case N_R:

*NP_R = atof (token); 35

break;

}

} else {

nameList[k].vStatus = 2;

ok = 0; 40

}

}

token = strtok (NULL, ", \t\n");

if (token) {

nameList[k].vStatus = 3; 45

† Several standard file and character-string functions from the C library are used here; details are in the appro-
priate documentation.

18.5 Organizing input data 497

ok = 0;

}

break;

} else {

nameList[k].vStatus = 4; 50

ok = 0;

}

}

}

if (! match) ok = 0; 55

}

fclose (fp);

for (k = 0; k < sizeof (nameList) / sizeof (NameList); k ++) {

if (nameList[k].vStatus != 1) ok = 0;

} 60

return (ok);

}

The function for printing an annotated record of the input data is

void PrintNameList (FILE *fp)

{

int j, k;

fprintf (fp, "NameList -- data\n"); 5

for (k = 0; k < sizeof (nameList) / sizeof (NameList); k ++) {

fprintf (fp, "%s\t", nameList[k].vName);

if (strlen (nameList[k].vName) < 8) fprintf (fp, "\t");

if (nameList[k].vStatus > 0) {

for (j = 0; j < nameList[k].vLen; j ++) { 10

switch (nameList[k].vType) {

case N_I:

fprintf (fp, "%d ", *NP_I);

break;

case N_R: 15

fprintf (fp, "%#g ", *NP_R);

break;

}

}

} 20

switch (nameList[k].vStatus) {

case 0:

fprintf (fp, "** no data");

break;

case 1: 25

break;

case 2:

fprintf (fp, "** missing data");

break;

case 3: 30

fprintf (fp, "** extra data");

498 18 More about software

break;

case 4:

fprintf (fp, "** multiply defined");

break; 35

}

fprintf (fp, "\n");

}

fprintf (fp, "----\n");

} 40

The macro NameVal is used by analysis programs (an example is shown in §5.4) to
locate individual data items at the start of the output file written by PrintNameList,

#define NameVal(x) \

if (! strncmp (bp, #x, strlen (#x))) { \

bp += strlen (#x); \

x = strtod (bp, &bp); \

} 5

The ValList structure used in §17.4 is a simplified version of NameList. The
structure and its associated macros are

typedef struct {

void *vPtr;

VType vType;

int vLen;

} ValList; 5

#define ValI(x) {&x, N_I, sizeof (x) / sizeof (int)}

#define ValR(x) {&x, N_R, sizeof (x) / sizeof (real)}

18.6 Configuration snapshot files

Snapshots of the system configuration are stored on disk by the following function;
the details will vary, depending on the problem.

#define SCALE_FAC 32767.

void PutConfig ()

{

VecR w; 5

int blockSize, fOk, n;

short *rI;

FILE *fp;

fOk = 1; 10

blockSize = (NDIM + 1) * sizeof (real) + 3 * sizeof (int) +

18.6 Configuration snapshot files 499

nMol * NDIM * sizeof (short);

if ((fp = fopen (fileName[FL_SNAP], "a")) != 0) {

WriteF (blockSize);

WriteF (nMol); 15

WriteF (region);

WriteF (stepCount);

WriteF (timeNow);

AllocMem (rI, NDIM * nMol, short);

DO_MOL { 20

VDiv (w, mol[n].r, region);

VAddCon (w, w, 0.5);

VScale (w, SCALE_FAC);

VToLin (rI, NDIM * n, w);

} 25

WriteFN (rI, NDIM * nMol);

free (rI);

if (ferror (fp)) fOk = 0;

fclose (fp);

} else fOk = 0; 30

if (! fOk) ErrExit (ERR_SNAP_WRITE);

}

Note the use of binary data as opposed to human-readable text; this reduces
the storage requirements substantially although, when in this form, data files may
not be readily transportable between different kinds of computers and operating
systems. To reduce storage further, the coordinate data are scaled to fit into a two-
byte word, rather than the eight (or four) bytes used for floating-point variables
in the MD code; the consequent loss of precision is acceptable for the kinds of
analysis that we carry out on the data. The variable blockSize is set to the total
number of bytes written per snapshot, allowing more flexibility in the applications
that process the data later. The name of the output file is stored as one of the entries
in the character array fileName and the function SetupFiles must be called at
the start of the job to handle file related matters – details appear later.

Reading the data into an analysis program uses the following function; the vari-
able blockNum indicates which set of configuration data from the file is to be read,
in effect allowing random access.

int GetConfig ()

{

VecR w;

int fOk, n;

short *rI; 5

fOk = 1;

if (blockNum == -1) {

if ((fp = fopen (fileName[FL_SNAP], "r")) == 0) fOk = 0;

} else { 10

500 18 More about software

fseek (fp, blockNum * blockSize, 0);

++ blockNum;

}

if (fOk) {

ReadF (blockSize); 15

if (feof (fp)) return (0);

ReadF (nMol);

ReadF (region);

ReadF (stepCount);

ReadF (timeNow); 20

if (blockNum == -1) {

SetCellSize ();

AllocArrays ();

blockNum = 1;

} 25

AllocMem (rI, NDIM * nMol, short);

ReadFN (rI, NDIM * nMol);

DO_MOL {

VFromLin (w, rI, NDIM * n);

VScale (w, 1. / SCALE_FAC); 30

VAddCon (w, w, -0.5);

VMul (mol[n].r, w, region);

}

free (rI);

if (ferror (fp)) fOk = 0; 35

}

if (! fOk) ErrExit (ERR_SNAP_READ);

return (1);

}

The first time GetConfig is called, blockNum should have the value –1; during
the initial call AllocArrays is used to allocate the necessary storage and, if cells
are needed in the analysis, SetCellSize must be called just prior to this.

18.7 Managing extensive computations

Computations short enough to run to completion without fear of interruption are
often inadequate for serious work. A production program may need to be equipped
with the means to save its present state on disk and be able to resume computation
from this saved state – the checkpoint/restart mechanism. Since there is no gen-
erally available procedure for this task, responsibility falls on the user. Here we
provide a demonstration♠ of how this can be accomplished.

Everything that the program is unable to reconstruct quickly from available in-
formation must be included in the checkpoint file. We will assume that the program
has access to the original input data, so that this need not be included (a minor

♠ pr_18_1

18.7 Managing extensive computations 501

detail). For added security, two copies of the checkpoint file will be maintained
and they will be updated alternately; thus if the job aborts while writing the file
(the usual reason being a lack of file space) the previous copy will still be avail-
able. The newer version can be identified in various ways, one of which is to have
yet another file just for this purpose (if file modification times are accessible they
could be used instead).

The file used for recording either grid averages or sets of atomic configurations
(snapshots) for later analysis or graphics work is also introduced at this point. Here
is a sample set of files that might be used; the xxnn prefix in each file name is re-
placed by the two-letter program mnemonic progId and a two-digit serial number
runId identifying the run†.

enum {FL_CHECKA, FL_CHECKB, FL_CKLAST, FL_SNAP};

char *fileNameR[] = {"xxnnchecka.data", "xxnncheckb.data",

"xxnncklast.data", "xxnnsnap.data"}, fileName[5][20];

char *progId = "md";

int runId; 5

All necessary files are created at the beginning of what is generally a series of
continued runs by the following function (CHAR_ZERO denotes the character ‘0’).
The variable doCheckpoint indicates whether checkpointing is activated, newRun
is used to determine whether this is the first run of the series and another input
variable recordSnap specifies whether configuration snapshot files are required;
alternatively, the unwanted parts of this function could be omitted.

void SetupFiles ()

{

FILE *fp;

int k;

5

for (k = 0; k < sizeof (fileNameR) / sizeof (fileNameR[0]); k ++) {

strcpy (fileName[k], fileNameR[k]);

fileName[k][0] = progId[0];

fileName[k][1] = progId[1];

fileName[k][2] = runId / 10 + CHAR_ZERO; 10

fileName[k][3] = runId % 10 + CHAR_ZERO;

}

if (! doCheckpoint) {

newRun = 1;

} else if ((fp = fopen (fileName[FL_CKLAST], "r")) != 0) { 15

newRun = 0;

fclose (fp);

} else {

newRun = 1;

† Note the distinction between fileNameR, which is usually represented by read-only character strings, and
fileName, into which these strings are copied and then modified.

502 18 More about software

fp = fopen (fileName[FL_CHECKA], "w"); 20

fclose (fp);

fp = fopen (fileName[FL_CHECKB], "w");

fclose (fp);

fp = fopen (fileName[FL_CKLAST], "w");

fputc (CHAR_ZERO + FL_CHECKA, fp); 25

fclose (fp);

}

if (newRun && recordSnap) {

fp = fopen (fileName[FL_SNAP], "w");

fclose (fp); 30

}

}

A simpler form of this function, for use in programs that read configuration files
(by calls to GetConfig), is

void SetupFiles ()

{

strcpy (fileName[FL_SNAP], fileNameR[FL_SNAP]);

fileName[FL_SNAP][0] = progId[0];

fileName[FL_SNAP][1] = progId[1]; 5

fileName[FL_SNAP][2] = runId / 10 + CHAR_ZERO;

fileName[FL_SNAP][3] = runId % 10 + CHAR_ZERO;

}

The functions used to access the checkpoint files follow; the data are stored on
disk in binary form. The details of the actual data to be read or written are specific
to the problem; here, as an example, the data for a basic soft-sphere simulation
using the leapfrog method are recorded; acceleration values are included (they are
part of the mol structures) because of the two-step nature of the leapfrog method.
Two copies of the checkpoint file are kept and they are written alternately.

void PutCheckpoint ()

{

int fOk, fVal;

FILE *fp;

5

fOk = 0;

if ((fp = fopen (fileName[FL_CKLAST], "r+")) != 0) {

fVal = FL_CHECKA + FL_CHECKB - (fgetc (fp) - CHAR_ZERO);

rewind (fp);

fputc (CHAR_ZERO + fVal, fp); 10

fclose (fp);

fOk = 1;

}

if (fOk && (fp = fopen (fileName[fVal], "w")) != 0) {

WriteF (kinEnergy); 15

18.7 Managing extensive computations 503

WriteF (stepCount);

WriteF (timeNow);

WriteF (totEnergy);

WriteFN (mol, nMol);

if (ferror (fp)) fOk = 0; 20

fclose (fp);

} else fOk = 0;

if (! fOk) ErrExit (ERR_CHECKPT_WRITE);

}

25

void GetCheckpoint ()

{

int fOk, fVal;

FILE *fp;

30

fOk = 0;

if ((fp = fopen (fileName[FL_CKLAST], "r")) != 0) {

fVal = fgetc (fp) - CHAR_ZERO;

fclose (fp);

fOk = 1; 35

}

if (fOk && (fp = fopen (fileName[fVal], "r")) != 0) {

ReadF (kinEnergy);

ReadF (stepCount);

ReadF (timeNow); 40

ReadF (totEnergy);

ReadFN (mol, nMol);

if (ferror (fp)) fOk = 0;

fclose (fp);

} else fOk = 0; 45

if (! fOk) ErrExit (ERR_CHECKPT_READ);

}

To use these capabilities add the following to main,

while (moreCycles) {

...

if (doCheckpoint && stepCount % stepCheckpoint == 0)

PutCheckpoint ();

} 5

if (doCheckpoint) PutCheckpoint ();

and SetupJob must include

SetupFiles ();

if (newRun) {

printf ("new run\n");

InitCoords ();

... 5

if (doCheckpoint) {

504 18 More about software

PutCheckpoint ();

PutCheckpoint ();

}

} else { 10

printf ("continued run\n");

GetCheckpoint ();

}

18.8 Header files
The simulation programs all share a common header file mddefs.h that is included
during compilation. This file contains the definitions appearing in this chapter as
well as all the function prototypes (these are essential for functions returning non-
integer results and optional – though recommended – in other cases). It also ensures
that several standard C header files – the actual list may vary slightly depending
on the operating system – are included and defines the floating-point type. The file
typically begins with

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <signal.h> 5

#include <sys/time.h>

typedef double real;

19

The future

19.1 Role of simulation

Computer simulation in general, and molecular dynamics in particular, represent a
new scientific methodology. Instead of adopting the traditional theoretical practice
of constructing layer upon layer of assumption and approximation, this modern al-
ternative attacks the original problem in all its detail. Unfortunately, phenomena
that are primarily quantum mechanical in nature still present conceptual and tech-
nical obstacles, but, insofar as classical problems are concerned, the simulational
approach is advancing as rapidly as computer technology permits. For this class of
problem, the limits of what can be achieved remain well beyond the horizon.

Theoretical breakthroughs involve both new concepts and the mathematical tools
with which to develop them. Most of the major theoretical advances of the just-
finished twentieth century rest upon mathematical foundations developed during
the preceding century, if not earlier. Whether still undeveloped mathematical tools
and new concepts will ever replace the information presently only obtainable by
computer simulation, or whether the simulation is the solution, is something only
the future can tell. Whether computer modeling will become an integral part of
theoretical science, or whether it will continue to exist independently, is also a big
unknown. After all, theory, as we know it, has not been around for very long.

To what extent can simulation replace experiment? In the more general sense,
this is already happening in engineering fields, where models are routinely con-
structed from well-established foundations. Many MD applications are still at the
stage of attempting to solve the inverse problem, working backwards from experi-
mental data to elucidate the invisible microscopic details; this is not done directly,
however, but over the course of time the models gradually evolve until they are ca-
pable of yielding quantitatively correct behavior. To use MD as a predictive tool de-
mands a high degree of confidence in the model and the methodology; this implies
a thorough understanding of the effects of finite system size, limited timescales,

505

506 19 The future

numerical integration and the consequences of using approximate (classical) po-
tential functions.

The systems studied by MD are normally many orders of magnitude smaller
than the corresponding systems in nature. With increasing computer speed and
memory this gap can be reduced, but never eliminated – only in two dimensions
are the largest MD calculations similar in size to the mesoscopic systems studied
experimentally. The same is true for timescales as well. The great success of the
MD approach is due to the fact that these two limitations are, in many instances,
irrelevant: the phenomena MD is used to study can often be exhaustively explored
despite these limitations, because the lengths and times involved fall within the
regime that MD can handle.

While one of the aims of MD is reproducing experiment, it also offers the op-
portunity for probing behavior at a much more detailed level than is obtainable
by thermodynamic, mechanical, or spectroscopic techniques. While such ‘numer-
ical’ measurements cannot be confirmed in the laboratory in a direct fashion, they
sometimes have implications that can be tested experimentally; if these predictions
are substantiated they can lead to improved understanding of the systems under
study. The wealth of detail potentially available is what makes MD such a useful
and important method, the question only being what data to examine and how to
convert them into manageable form. Complete trajectories represent one extreme,
thermodynamic averages the other.

19.2 Limits of growth
The MD field is still comparatively young; it has grown but remains tied to the
advance of computer technology. Remarkable results have been obtained from
what could be thought of as extremely small systems: that a few hundred to a
few thousand model atoms not only permit studies of structure and dynamics, but
also yield quantitative results in good agreement with experiment, is now a fa-
miliar fact of life. Of course life is not always so idyllic, and there are phenom-
ena requiring length and time scales that exceed the capabilities of even the most
powerful of computers. But if one is permitted to extrapolate from past rates of
computer performance growth, the severity of these limitations should gradually
diminish.

MD simulation has been a direct beneficiary of the rapid growth in computing
power and the even greater improvement in the cost–performance ratio. Efficient
compilers can help to a certain extent, but there is no substitute for a well-tuned
algorithm, especially as the system size increases. Even when the performance of
individual processors stops growing at the present rate and distributed comput-
ing becomes unavoidable, the nature of MD, with its computations often based on

19.3 Visualization and interactivity 507

highly localized information, makes the distributed environment ideal for large-
scale problem solving.

It is important to be aware of the way MD computations scale in order to appre-
ciate the kinds of problems that might be approachable in the foreseeable future.
The amount of computation grows at least linearly with the number of particles
and so too will the processing time (for a fixed number of processing nodes in
one’s parallel computer). But this is not the whole story, because the time over
which a simulated system must be observed in order to examine a particular class
of phenomenon can also increase with system size. Propagating disturbances such
as sound waves cross a system in a time proportional to its linear size L , but any
process governed by diffusion requires a time of order L2. Processes involving,
for example, large polymer molecules, occur on timescales that are truly macro-
scopic, representing an extreme situation beyond the capability of any (presently)
conceivable computer. Thus the prognosis is mixed.

19.3 Visualization and interactivity
Computation is no longer merely number crunching. Along with ready access to
high performance computing comes the ability to observe the system being sim-
ulated. The MD practitioner need no longer be content with graphs of P plotted
as a function of T , or some correlation as a function of time, but is now able to
observe a system as it freezes, allowing the eye to capture some of the more subtle
cooperative effects as the molecules reorganize. The systems that can be examined
in this fashion are already of a size that, only a few years ago, were considered
clients for the supercomputers of the day. Given that the human eye is without peer
for many kinds of information reduction, it is obvious that the visual approach is
an important one – the computational equivalent of the optical microscope.

Visualization takes many forms. In representing the results of discrete-particle
simulations one has the choice of directly observing the particles themselves, or a
display, typically involving scalar or vector fields, of suitably averaged quantities
such as velocity, vorticity, temperature, concentration and stress, to name but a few.
Data can be represented by means of arrow, contour and surface plots, as well as
in less conventional, but visually rich forms, including the extensive use of color
and animation. A number of examples (regrettably without the color) appeared at
various points in the book.

Once it becomes possible to observe the system as it develops, the next step is
to introduce a certain amount of interactivity into the simulation by allowing the
user to control both the parameters of the simulation and the way the results are
displayed. Realtime visualization can prove invaluable while developing models
and computational techniques, in debugging, demonstration, comparison of models

508 19 The future

and selecting parameters. There are few general rules for adding an interactive
capability to a simulation since the approach is at least partly determined by the
software environment; the one critical requirement is responsiveness – if the user
fails to receive rapid feedback interactivity is of little value. An example of a simple
user interface of this kind was shown in Figure 2.6.

19.4 Coda
In retrospect, one can do no better than to borrow from Anatole France: ‘Si les
plats que je vous offre sont mal préparés, c’est moins la faute de mon cuisinier que
celle de la chimie, qui est encore dans l’enfance.’ Quoted apologetically in a text
on quantum mechanics [mes64], it is no less appropriate for this volume of recipes,
despite the entirely classical foundations.

Appendix

List of variables

An alphabetical listing of the global variables used in the MD programs follows;
variables used in the separate analysis programs are omitted (as are local variables).

The first part of the listing shows the elements that can belong to the various
structures used in the programs (excluding those listed in §18.2); in some cases,
especially Mol, only subsets of these elements are required.

Mol – atom or molecule:
chg charge
diam σi
en ei
fixed fixed atom
id atom label
inCell cell occupied by atom
inChain part of chain
inClust cluster membership
inObj part of object
logRho log ρi
next link between atom data
nBond number of bonds formed
q,qv,qa,... quaternion components, derivatives, etc.
rCol coordinates of latest collision
rf

∑
j ri j x fi j y

rMatT rotation matrix
r,rv,ra,... coordinates, velocities, etc.
s,sv,sa,... si for linear molecule, derivatives, etc.
time last coordinate update
torq ni
typeA atom type
u interaction energy
wv,wa ωi , ω̇i (vector or scalar)

509

510 Appendix

Site – site in molecule:
f force
r coordinates

MSite – site in molecule (reference state):
r site coordinates
typeF site type
typeRdf site type for RDF

Cons – constraint:
bLenSq r2

ik jk
distSq b2

ik jk
site1/2 atoms ik and jk
vec constraint vector sk

TBuf – buffer for time-dependent measurement:
acf... autocorrelation values
count number of measurements in set
ddDiffuse squared dipole displacements
org... origin values
rrDiffuse squared displacements
rTrue ‘true’ coordinates

Clust – cluster:
head first in cluster
next next in cluster
size cluster size

Poly – linked chain:
L link array
nLink number of links
ra,wa acceleration of site zero

Link – link in chain:
bV,cV,hV bk , ck , ĥk
fV,gV,xV,yV Fe

k , Gk , Xk , Yk
inertiaM Ik
mass mk
omega,omegah ωk
r,rv site coordinates, velocity
rMatT RT

k
s,sv,svh,sa,... θk and derivatives
torq nk

TLevel – tree-code subdivision level:
cCur,cLast cell indices used in scanning tree
fCell,lCell cell range
coordSum coordinate sum

Appendix 511

TCell – tree-code cell:
cm,midPt center of charge, midpoint
atomPtr,subPtr pointers to atoms, cells
nOcc,nSub numbers of atoms, occupied descendants

MpCell – multipole cell:
le,me multipole and local expansions
occ cell occupied

MpTerms – multipole or local expansion:
c,s sets of coefficients

EvTree – node in event tree:
circAL/R,circBL/R circular list pointers
idA/B event identifiers
left,right,up tree pointers
time event time

Global variables are as follows:
alpha α
avAcf... autocorrelation averages
basePos/Vel base position, velocity
bbDistSq average bond length squared
bdyOffset array offset
bdySlide offset across sliding boundary
bdyStripWidth size of flow adjustment region
blockNum/Size used with snapshot files
bondAng/Len bond angle, length
bondLim limit of bond stretch
boundPairEng energy threshold
cellList pointers used by cell method
cellRange cells examined after collision
cells cell array size
cellWid cell width
chainHead monomers in chain head
chainLen monomers in chain
chargeMag charge magnitude
coll/crossCount event counters
consDevA/L constraint deviations
consPrec constraint accuracy
consVec used in solving constraint equations
count... measurement counters
cumRdf cumulative RDF
curCellsEdge cells per region edge
curLevel level in cell hierarchy
curPhase vibration phase
ddDiffuseAv angular diffusion mean
deltaT �t
density ρ

512 Appendix

dihedAngCorr/Org used in dihedral angle correlations
dilateRate/1/2 current and previous γ

dipoleInt µ2

dipoleOrder 〈M〉 (and average)
diskInitPos/Vel initial projectile position, speed
dispHi accumulated maximum displacement
distFac minimum distance criterion
dvirSum1/2 used in computing dilateRate

eeDistSq 〈R2〉
embedWt χ
enTransSum accumulated kinetic energy transfer
errCode error code
errorMsg error messages
eventCount event counter
eventMult used to specify poolSize
evIdA/B event identifiers
extPressure external P
farSiteDist distance to furthest site in molecule
fileName file names
flowSpeed nominal flow speed
fricDyn/Stat friction coefficients
fSpaceLimit nc
g1Sum/g2Sum G1, G2
gMomRatio1/2 〈g2/g1〉, 〈g3/g1〉
gravField force driving flow, gravity
heatForce fictitious force
helixOrder order parameter S
helixPeriod atoms in single helix turn
hFunction H-function
histGrid accumulated coarse-grained measurements
hist... histograms used in measuring distributions
inertiaK κ
initSep initial spacing
initUcell/chain size of unit cell array for initial state
inside identifies boundary and interior cells
intAcf... integrated autocorrelation function
interval... measurement interval
intType interaction type
kinEnergy EK (and average)
kinEnInitSum accumulated EK for setting initial T
kinEnVal current EK
latticeCorr |ρ(k)|
layerMol storage for layer contents
limit... upper limit of counter
lMat constraint matrix L
massS/V Ms , Mv

maxCells maximum number of cells
maxEdgeCells maximum size of cell array
maxLevel levels in cell hierarchy
maxOrd multipole expansion order

Appendix 513

max/minPairEng range of pair energies
mInert I , or Ix , etc.
mMat constraint matrix M
molId atom labels
molPtr atom pointers
moreCycles controls program execution
mpCells size of cell array
mpCellList pointers used with cells
nBaseCycle base cycle count
nBuff... number of data collection buffers
nCellEdge number of cells in each direction
nChain number of chains
nCons number of constraints
nCycleR/V constraint iteration count
nDihedAng number of dihedral angles
nDof number of degrees of freedom
nebrNow neighbor-list refresh due
nebrTab storage for neighbor list
nebrTabFac used to determine nebrTabMax
nebrTabLen neighbor-list length
nebrTabMax maximum neighbor-list length
nebrTabPtr pointers used with neighbor list
next...Time time of next measurement event
nFixed/FreeMol numbers of fixed and mobile atoms
nFunCorr number of k values used for correlation functions
nLayerMax maximum number of layers
nMol Nm
nMolCopy number of copied atoms
nMolDisk/Wall object sizes
nMolMax maximum number of atoms
nMolMe actual number of atoms in processor
nMolMeMax maximum number of atoms per processor
nMolRep number of replica atoms
nOut number of atoms requiring transfer
nPressCycle pressure correction cycle count
nProc number of processors
nSite total number of interaction sites
nThread number of threads
nVal... number of values in measurement
obsPos/Size obstacle position and size
pertTrajDev velocity perturbation
poolSize size of event pool
pressure P (and average)
procArrayMe location in parallel processor array
procArraySize size of parallel processor array
procMe processor identity
procNebrHi/Lo neighbor processors
profileT/V T , v profiles
progId program identifier
pTensorXZ Pxz

514 Appendix

pThread used in thread processing
radGyrSq 〈S2〉
raL/uL acceleration and energy for each atom
randSeed random number seed
range... upper limit of distribution measurement
rCut/A rc
region region size
regionVol region volume
rNebrShell rn
roughWid wall corrugation width
rrDiffuseAv diffusion mean
rSwitch rs
runId job identifier
shearRate γ
shearVisc η (and average)
sitesMol number of interaction sites in molecule
sizeHistGrid size of histGrid
sizeHist... size of hist...
siteSep tetrahedral molecule size
snapNumber serial number of snapshot data
solConc solvent concentration
splineA2/3 a2, a3
stepCount timestep counter
stepLimit total run length
step... timesteps between measurements or other activities
streamFun stream function evaluated on grid
subRegionHi/Lo subregion limits
tCos/tSin tabulated trigonometric functions
temperature T
tempFinal/Init temperature ranges
tempReduceFac temperature factor
thermalCond λ (and average)
thermalWall specifies wall attached to heat bath
timeNow current time
tolPressure tolerance for pressure correction
totEnergy E (and average)
totEnVal current E
trBuff buffer for interprocessor transfers
trBuffMax size of trBuff
trPtr pointers to atoms requiring transfer
twistAng θ ′
uCon torsion parameter
uSum total interaction energy
valST used for space–time correlation measurements
valTrajDev trajectory deviation
varL,... region size variables
varS,... temperature feedback variables
varV,... volume feedback variables
velMag initial velocity value
vibAmp/Freq vibration amplitude, frequency

Appendix 515

virSum virial sum
vSum velocity sum
vv...Sum velocity-squared sums
wallTemp/Hi/Lo thermal wall temperatures
wellSep nw

Case study software

The programs in the software package available for use with the book are listed be-
low. The simulation programs are labeled numerically, corresponding to the chap-
ters in which they are introduced. Programs used to analyze results (and do other
things) are also listed here; the more complex of these programs are described in
the book, while other, simpler programs are included for completeness but are not
discussed.

2. Basic molecular dynamics
pr_02_1 all pairs, two dimensions
pr_02_2 velocity distribution

3. Simulating simple systems
pr_03_1 cells and leapfrog
pr_03_2 neighbor list and leapfrog
pr_03_3 cells and PC
pr_03_4 neighbor list and PC
pr_03_5 trajectory separation

4. Equilibrium properties of simple fluids
pr_04_1 thermodynamics, soft spheres
pr_04_2 thermodynamics, LJ
pr_04_3 RDF, soft spheres
pr_04_4 long-range order
pr_04_5 configuration snapshots
pr_anblockavg block-averaged variance
pr_anclust cluster analysis
pr_anvorpol Voronoi polyhedra analysis

5. Dynamical properties of simple fluids
pr_05_1 diffusion
pr_05_2 velocity autocorrelation function
pr_05_3 transport coefficients
pr_05_4 space–time correlations
pr_andiffus diffusion analysis
pr_anspcor space–time correlation analysis
pr_antransp transport coefficient analysis

6. Alternative ensembles
pr_06_1 feedback PT

516 Appendix

pr_06_2 constrained T
pr_06_3 constrained PT

7. Nonequilibrium dynamics
pr_07_1 pipe flow
pr_07_2 heat flow
pr_07_3 homogeneous shear flow
pr_07_4 homogeneous heat flow

8. Rigid molecules
pr_08_1 water, quaternions, RDF
pr_08_2 water, diffusion
pr_08_3 water, H-bonds
pr_08_4 water, rotation matrices
pr_08_5 tetrahedral molecules
pr_anrdf RDF analysis

9. Flexible molecules
pr_09_1 flexible chain
pr_09_2 surfactant model
pr_anchprops polymer analysis

10. Geometrically constrained molecules
pr_10_1 bond/angle constraints, RDF
pr_10_2 bond/angle constraints, angle distribution
pr_10_3 bond constraints, angle distributions
pr_10_4 dihedral angle correlation

11. Internal coordinates
pr_11_1 chain equilibrium
pr_11_2 chain collapse

12. Many-body interactions
pr_12_1 silicon, RDF
pr_12_2 embedded-atom potential, RDF
pr_12_3 embedded-atom potential, collisions

13. Long-range interactions
pr_13_1 dipolar soft-sphere fluid
pr_13_2 tree-code method
pr_13_3 fast-multipole method
pr_ewaldtest test Ewald sums
pr_mpoletest test fast-multipole sums

14. Step potentials
pr_14_1 hard spheres, RDF
pr_14_2 hard spheres, free-path distribution

15. Time-dependent phenomena
pr_15_1 hard-disk thermal convection

Appendix 517

pr_15_2 soft-disk obstructed flow
pr_angridflow process flow snapshots

16. Granular dynamics
pr_16_1 two-dimensional vibrating layer
pr_16_2 three-dimensional vibrating layer

17. Algorithms for supercomputers
pr_17_1 distributed processing
pr_17_2 parallel processing using threads
pr_17_3 vector processing

18. More about software
pr_18_1 checkpoints

Using the software
Program compilation uses a command such as

gcc -O -o mdprog mdprog.c -lm

where gcc is the compile command for systems using the GNU C compiler, -O
requests optimization, -o mdprog specifies the name of the executable program,
mdprog.c is the program source file and -lm requests the C mathematical function
library. Various levels of code optimization are available (such as -O3), although
the details depend on the system†.

The program source files and the corresponding input data files are to be found,
respectively, in the directories src and data of the software distribution. The shell
script crun.sh, shown below, combines the operations needed to compile and run
any of the simulations. For example, typing

crun.sh 01 1

will compile program src/pr_01_1.c, and then run it using data contained in
the file data/pr_01_1.in. The output is displayed and is also saved as the file
pr_01_1.out. The listing of crun.sh is‡

#! /bin/tcsh

set f=src/pr_$1_$2

set b=‘basename $f .c‘

† The case study of §17.4 requires special treatment not covered here, and §17.5 may require an additional
library for the thread functions. The reader should note that not all compilers optimize equally well and – at
least in the past – some compilers have been reported to cause problems if too high a level of optimization is
requested.

‡ This requires just a minimal acquaintance with Unix shell programming.

518 Appendix

gcc -O -I./src -o $b src/$b.c -lm

cp data/$b.in $b.in

$b | tee $b.out

Multiple runs with minor variations in the input data are most readily handled
using shell scripts. For example, if the aim is to cover a series of temperature values,
the following script will run a program pr_01_1 for each of the required values,
leaving all the output in the file pr_01_1.out.

#! /bin/tcsh

foreach t (0.4 0.6 0.8 1.0)

cat > pr_01_1.in << EOD

deltaT 0.005

...

stepLimit 10000

temperature $t

EOD

pr_01_1 >> pr_01_1.out

end

References

[abr68] Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, Dover,
New York, 1968.

[abr86] Abraham, F. F., Computational statistical mechanics: Methodology, applications
and supercomputing, Adv. Phys. 35 (1986) 1.

[abr89] Abraham, F. F., Rudge, W. E., and Plischke, M., Molecular dynamics of tethered
membranes, Phys. Rev. Lett. 62 (1989) 1757.

[ada76] Adams, D. J. and McDonald, I., Thermodynamic and dielectric properties of
polar lattices, Mol. Phys. 32 (1976) 931.

[ada80] Adams, D. J., Periodic, truncated-octahedral boundary conditions, in Ceperley,
D., ed., The Problem of Long-Range Forces in the Computer Simulation
of Condensed Media, Lawrence Berkeley Lab. Rept. LBL-10634, 1980,
p. 13.

[ald57] Alder, B. J. and Wainwright, T. E., Phase transition for a hard sphere system, J.
Chem. Phys. 27 (1957) 1208.

[ald58] Alder, B. J. and Wainwright, T. E., Molecular dynamics by electronic computers,
in Prigogine, I., ed., Transport Processes in Statistical Mechanics, Interscience
Publishers, New York, 1958, p. 97.

[ald59] Alder, B. J. and Wainwright, T. E., Studies in molecular dynamics. I. General
method, J. Chem. Phys. 31 (1959) 459.

[ald62] Alder, B. J. and Wainwright, T. E., Phase transition in elastic disks, Phys. Rev.
127 (1962) 359.

[ald67] Alder, B. J. and Wainwright, T. E., Velocity autocorrelation for hard spheres,
Phys. Rev. Lett. 18 (1967) 988.

[ald70a] Alder, B. J., Gass, D. M., and Wainwright, T. E., Studies in molecular dynamics.
VIII. The transport coefficients for a hard-sphere fluid, J. Chem. Phys. 53 (1970)
3813.

[ald70b] Alder, B. J. and Wainwright, T. E., Decay of the velocity autocorrelation func-
tion, Phys. Rev. A 1 (1970) 18.

[all83] Alley, W. E., Alder, B. J., and Yip, S., The neutron scattering function for hard
spheres, Phys. Rev. A 27 (1983) 3174.

[all87] Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Oxford
University Press, Oxford, 1987.

519

520 References

[all89] Allen, M. P., Frenkel, D., and Talbot, J., Molecular dynamics simulation using
hard particles, Comp. Phys. Repts. 9 (1989) 301.

[all93a] Allen, M. P. and Masters, A. J., Some notes on Einstein relationships, Mol. Phys.
79 (1993) 435.

[all93b] Allen, M. P. and Tildesley, D. J., eds., Computer Simulation in Chemical Physics,
Kluwer Academic Publishers, Dordrecht, 1993.

[and80] Anderson, H. C., Molecular dynamics simulations at constant pressure and/or
temperature, J. Chem. Phys. 72 (1980) 2384.

[and83] Anderson, H. C., Rattle: A ‘velocity’ version of the Shake algorithm for molec-
ular dynamics calculations, J. Comp. Phys. 52 (1983) 24.

[ash75] Ashurst, W. T. and Hoover, W. G., Dense-fluid shear viscosity via nonequilib-
rium molecular dynamics, Phys. Rev. A 11 (1975) 658.

[bar71] Barker, J. A., Fisher, R. A., and Watts, R. O., Liquid argon: Monte Carlo and
molecular dynamics calculations, Mol. Phys. 21 (1971) 657.

[bar88] Barrat, J.-L., Hansen, J. P., and Pastore, G., On the equilibrium structure of
dense fluids: Triplet correlations, integral equations and freezing, Mol. Phys. 63
(1988) 747.

[bar94] Barker, G. C., Computer simulation of granular materials, in Mehta, A., ed.,
Granular Matter: An Interdisciplinary Approach, Springer, New York, 1994,
p. 35.

[bee66] Beeler Jr, J. R., The techniques of high-speed computer experiments, in Meeron,
E., ed., Physics of Many-Particle Systems: Methods and Problems, Gordon and
Breach, New York, 1966, p. 1.

[bee76] Beeman, D., Some multistep methods for use in molecular dynamics calcula-
tions, J. Comp. Phys. 20 (1976) 130.

[ber77] Berne, B. J., Molecular dynamics of the rough sphere fluid. II. Kinetic models
of partially sticky spheres, structured spheres, and rough screwballs, J. Chem.
Phys. 66 (1977) 2821.

[ber86a] Berendsen, H. J. C., Biological molecules and membranes, in [cic86a], p. 496.
[ber86b] Berendsen, H. J. C. and van Gunsteren, W. F., Practical algorithms for dynamic

simulations, in [cic86a], p. 43.
[ber86c] Berne, B. J. and Thirumalai, D., On the simulation of quantum systems: Path

integral methods, Ann. Rev. Phys. Chem. 37 (1986) 401.
[ber98] Bertsch, R. A., Vaidehi, N., Chan, S. L., and Goddard III, W. A., Kinetic steps

for α-helix formation, Proteins 33 (1998) 343.
[bil94] Billeter, S. R., King, P. M., and van Gunsteren, W. F., Can the density maximum

of water be found by computer simulation?, J. Chem. Phys. 100 (1994) 6692.
[bin92] Binder, K., ed., Monte Carlo Methods in Condensed Matter Physics, Springer,

Berlin, 1992.
[bin95] Binder, K., ed., Monte Carlo and Molecular Dynamics Simulations in Polymer

Science, Oxford University Press, Oxford, 1995.
[bir94] Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows,

Oxford University Press, Oxford, 1994.
[biz98] Bizon, C., Shattuck, M. D., Swift, J. B., McCormick, W. D., and Swinnney,

H. L., Patterns in 3D vertically oscillated granular layers: Simulation and exper-
iment, Phys. Rev. Lett. 80 (1998) 57.

References 521

[boo91] Boon, J.-P. and Yip, S., Molecular Hydrodynamics, Dover, New York, 1991.
[bro78] Brostow, W., Dussault, J.-P., and Fox, B. L., Construction of Voronoi polyhedra,

J. Comp. Phys. 29 (1978) 81.
[bro84] Brown, D. and Clark, J. H. R., A comparison of constant energy, constant tem-

perature and constant pressure ensembles in molecular dynamics simulations of
atomic liquids, Mol. Phys. 51 (1984) 1243.

[bro86] Brode, S. and Ahlrichs, R., An optimized molecular dynamics program for the
vector computer Cyber 205, Comp. Phys. Comm. 42 (1986) 51.

[bro88] Brooks, III, C. L., Karplus, M., and Pettit, B. M., Proteins: A Theoretical
Perspective of Dynamics, Structure, and Thermodynamics, Wiley, New York,
1988.

[bro90a] Brooks, III, C. L., Molecular simulations of protein structure, dynamics and
thermodynamics, in [cat90], p. 289.

[bro90b] Brown, D. and Clark, J. H. R., A direct method of studying reaction rates by
equilibrium molecular dynamics: Application to the kinetics of isomerization in
liquid n-butane, J. Chem. Phys. 92 (1990) 3062.

[cap81] Cape, J. N., Finney, J. L., and Woodcock, L. V., An analysis of crystallization
by homogeneous nucleation in a 4000-atom soft-sphere model, J. Chem. Phys.
75 (1981) 2366.

[car50] Carlson, B. C. and Rushbrooke, G. S., On the expansion of a Coulomb potential
in spherical harmonics, Proc. Camb. Phil. Soc. 46 (1950) 626.

[cat90] Catlow, C. R. A., Parker, S. C., and Allen, M. P., eds., Computer Model-
ing of Fluids, Polymers and Solids, Kluwer Academic Publishers, Dordrecht,
1990.

[cha97] Challacombe, M., White, C., and Head-Gordon, M., Periodic boundary condi-
tions and the fast multipole method, J. Chem. Phys. 107 (1997) 10131.

[cic82] Ciccotti, G., Ferrario, M., and Ryckaert, J.-P., Molecular dynamics of rigid
systems in cartesian coordinates: A general formulation, Mol. Phys. 47 (1982)
1253.

[cic86a] Ciccotti, G. and Hoover, W. G., eds., Molecular Dynamics Simulation of Statis-
tical Mechanical Systems, North-Holland, Amsterdam, 1986.

[cic86b] Ciccotti, G. and Ryckaert, J.-P., Molecular dynamics simulation of rigid
molecules, Comp. Phys. Repts. 4 (1986) 345.

[cic87] Ciccotti, G., Frenkel, D., and McDonald, I. R., eds., Simulation of Liquids and
Solids. Molecular Dynamics and Monte Carlo Methods in Statistical Mechanics,
North-Holland, Amsterdam, 1987.

[cla90] Clark, J. H. R., Molecular dynamics of chain molecules, in [cat90], p. 203.
[cor60] Corben, H. C. and Stehle, P., Classical Mechanics, Wiley, New York, 2nd

edition, 1960.
[cun79] Cundall, P. A. and Strack, O. D. L., A discrete numerical model for granular

assemblies, Géotechnique 29 (1979) 47.
[daw84] Daw, M. S. and Baskes, M. I., Embedded-atom method: Derivation and applica-

tion to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984)
6443.

[del51] de Laplace P. S., A Philosophical Essay on Probabilities, (transl.) Dover, New
York, 1951.

522 References

[del80] de Leeuw, S. W., Perram, J. W., and Smith, E. R., Simulation of electrostatic sys-
tems in periodic boundary conditions. I. Lattice sums and dielectric constants,
Proc. R. Soc. Lond. A 373 (1980) 27.

[del86] de Leeuw, S. W., Perram, J. W., and Smith, E. R., Computer simulation of the
static dielectric constant of systems with permanent electric dipoles, Ann. Rev.
Phys. Chem. 37 (1986) 245.

[des88] de Schepper, I. M., Cohen, E. G. D., Bruin, C., van Rijs, J. C., Montfrooij, W.,
and de Graaf, L. A., Hydrodynamic time correlation functions for a Lennard-
Jones fluid, Phys. Rev. A 38 (1988) 271.

[doo91] Doolen, G. D., ed., Lattice Gas Methods for PDEs, North-Holland, Amsterdam,
1991.

[dua98] Duan, Y. and Kollman, P. A., Pathways to a protein folding intermediate ob-
served in a 1-microsecond simulation in aqueous solution, Science 282 (1998)
740.

[dul97] Dullweber, A., Leimkuhler, B., and McLachlan, R., Symplectic splitting meth-
ods for rigid body molecular dynamics, J. Chem. Phys. 107 (1997) 5840.

[dun92] Dunn, J. H., Lambrakos, S. G., Moore, P. G., and Nagumo, M., An algorithm
for calculating intramolecular angle-dependent forces on vector computers, J.
Comp. Phys. 100 (1992) 17.

[dun93] Dünweg, B. and Kremer, K., Molecular dynamics simulation of a polymer chain
in solution, J. Chem. Phys. 99 (1993) 6983.

[edb86] Edberg, R., Evans, D. J., and Morriss, G. P., Constrained molecular dynamics:
Simulations of liquid alkanes with a new algorithm, J. Chem. Phys. 84 (1986)
6933.

[edb87] Edberg, R., Morriss, G. P., and Evans, D. J., Rheology of n-alkanes by nonequi-
librium molecular dynamics, J. Chem. Phys. 86 (1987) 4555.

[ein68] Einwohner, T. and Alder, B. J., Molecular dynamics. VI. Free-path distributions
and collision rates for hard-sphere and square-well molecules, J. Chem. Phys.
49 (1968) 1458.

[erm80] Ermak, D. L. and Buckholz, H., Numerical integration of the Langevin equation:
Monte Carlo simulation, J. Comp. Phys. 35 (1980) 169.

[erp77] Erpenbeck, J. J. and Wood, W. W., Molecular dynamics techniques for hard-
core systems, in Berne, B. J., ed., Modern Theoretical Chemistry, Plenum, New
York, 1977, vol. 6B, p. 1.

[erp84] Erpenbeck, J. J. and Wood, W. W., Molecular dynamics calculations of the
hard-sphere equation of state, J. Stat. Phys. 35 (1984) 321.

[erp85] Erpenbeck, J. J. and Wood, W. W., Molecular dynamics calculations of the
velocity autocorrelation function: Hard-sphere results, Phys. Rev. A 32 (1985)
412.

[erp88] Erpenbeck, J. J., Shear viscosity of the Lennard-Jones fluid near the triple point:
Green–Kubo results, Phys. Rev. A 38 (1988) 6255.

[ess94] Esselink, K., Hilbers, P. A. J., van Os, N. M., Smit, B., and Karaborni, S., Molec-
ular dynamics simulations of model oil/water/surfactant systems, Colloids and
Surfaces A 91 (1994) 155.

[ess95] Esselink, K., A comparison of algorithms for long-range interactions, J. Comp.
Phys. 87 (1995) 375.

References 523

[eva77a] Evans, D. J., On the representation of orientation space, Mol. Phys. 34 (1977)
317.

[eva77b] Evans, D. J. and Murad, S., Singularity free algorithm for molecular dynamics
simulation of rigid polyatomics, Mol. Phys. 34 (1977) 327.

[eva82] Evans, D. J., Homogeneous NEMD algorithm for thermal conductivity – appli-
cation of noncanonical linear response theory, Phys. Lett. 91A (1982) 45.

[eva83a] Evans, D. J., Computer ‘experiment’ for nonlinear thermodynamics of Couette
flow, J. Chem. Phys. 78 (1983) 3297.

[eva83b] Evans, D. J., Hoover, W. G., Failor, B. H., Moran, B., and Ladd, A. J. C.,
Nonequilibrium molecular dynamics via Gauss’s principle of least constraint,
Phys. Rev. A 28 (1983) 1016.

[eva84] Evans, D. J. and Morriss, G. P., Non-Newtonian molecular dynamics, Comp.
Phys. Repts. 1 (1984) 297.

[eva86] Evans, D. J. and Morriss, G. P., Shear thickening and turbulence in simple fluids,
Phys. Rev. Lett. 56 (1986) 2172.

[eva90] Evans, D. J. and Morriss, G. P., Statistical Mechanics of Nonequilibrium Liq-
uids, Academic Press, London, 1990.

[fer91] Ferrario, M., Ciccotti, G., Holian, B. L., and Ryckaert, J.-P., Shear-rate depen-
dence of the viscosity of the Lennard-Jones liquid at the triple point, Phys. Rev.
A 44 (1991) 6936.

[fey63] Feynman, R. P., Leighton, R. B., and Sands, M., The Feynman Lectures on
Physics, vol. 1, Addison-Wesley, Reading, 1963.

[fin79] Finney, J. L., A procedure for the construction of Voronoi polyhedra, J. Comp.
Phys. 32 (1979) 137.

[fin93] Fincham, D., Leapfrog rotational algorithms for linear molecules, Mol. Simula-
tion 11 (1993) 79.

[fly89] Flyvberg, H. and Petersen, H. G., Error estimates on averages of correlated data,
J. Chem. Phys. 91 (1989) 461.

[fri75] Friedman, H. L., Image approximation to the reaction field, Mol. Phys. 29
(1975) 1533.

[gal93] Gallas, J. A. C. and Sokolowski, S., Grain nonsphericity effects on the angle of
repose of granular material, Int. J. Mod. Phys. B 7 (1993) 2037.

[gay81] Gay, J. G. and Berne, B. J., Modification of the overlap potential to mimic a
linear site–site potential, J. Chem. Phys. 74 (1981) 3316.

[gea71] Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equa-
tions, Prentice-Hall, Englewood Cliffs, NJ, 1971.

[gei79] Geiger, A., Stillinger, F. H., and Rahman, A., Aspects of the percolation process
for hydrogen-bond networks in water, J. Chem. Phys. 70 (1979) 4185.

[gei94] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam,
V., PVM3 User’s Guide and Reference Manual, Oak Ridge National Laboratory
Technical Report ORNL/TM-12187, 1994.

[gel94] Gelbart, W. M., Ben-Shaul, A., and Roux, D., eds., Micelles, Membranes, Mi-
croemulsions, and Monolayers, Springer, New York, 1994.

[gib60] Gibson, J. B., Goland, A. N., Milgram, M., and Vineyard, G. H., Dynamics of
radiation damage, Phys. Rev. 120 (1960) 1229.

524 References

[gil83] Gillan, M. J. and Dixon, M., The calculation of thermal conductivities by per-
turbed molecular dynamics simulation, J. Phys. C 16 (1983) 869.

[gil90] Gillan, M. J., The path-integral simulation of quantum systems, in [cat90],
p. 155.

[gol80] Goldstein, H., Classical Mechanics, Addison-Wesley, Reading, MA, 2nd edition,
1980.

[gra84] Gray, C. G. and Gubbins, K. E., Theory of Molecular Fluids, vol. 1, Clarendon
Press, Oxford, 1984.

[gre88] Greengard, L., The Rapid Evaluation of Potential Fields in Particle Systems,
MIT Press, Cambridge, MA, 1988.

[gre89a] Greengard, L. and Rokhlin, V., On the evaluation of electrostatic interactions in
molecular modeling, Chem. Scripta 29A (1989) 139.

[gre89b] Grest, G. S., Dünweg, B., and Kremer, K., Vectorized linked cell Fortran code
for molecular dynamics simulations for a large number of particles, Comp. Phys.
Comm. 55 (1989) 269.

[gre94] Grest, G. S., Structure of many-arm star polymers in solvents of varying quality:
A molecular dynamics study, Macromolecules 27 (1994) 3493.

[gro96] Gropp, W., Lusk, E., Doss, N., and Skjellum, A., A high-performance, portable
implementation of the MPI message passing interface standard, Parallel Com-
puting 22 (1996) 789.

[han86a] Hansen, J.-P., Molecular dynamics simulation of Coulomb systems in two and
three dimensions, in [cic86a], p. 89.

[han86b] Hansen, J.-P. and McDonald, I. R., Theory of Simple Liquids, Academic Press,
London, 2nd edition, 1986.

[han94] Hansen, D. P. and Evans, D. J., A generalized heat flow algorithm, Mol. Phys.
81 (1994) 767.

[hel60] Helfand, E., Transport coefficients from dissipation in a canonical ensemble,
Phys. Rev. 119 (1960) 1.

[hel79] Helfand, E., Flexible vs rigid constraints in statistical mechanics, J. Chem. Phys.
71 (1979) 5000.

[her95] Herrmann, H. J., Simulating granular media on the computer, in Garrido, P. L.
and Marro, J., eds., 3rd Granada Lectures in Computational Physics, Springer,
Heidelberg, 1995, p. 67.

[hey89] Heyes, D. M. and Melrose, J. R., Continuum percolation of 2D Lennard-Jones
and square-well phases, Mol. Phys. 68 (1989) 359.

[hig76] Higgins, R. J., Bulk viscosity of model fluids. A comparison of equilibrium and
nonequilibrium molecular dynamics results, Am. J. Phys. 44 (1976) 772.

[hir54] Hirschfelder, J. O., Curtis, C. F., and Bird, R. B., Molecular Theory of Gases
and Liquids, Wiley, New York, 1954.

[hir98] Hirshfeld, D. and Rapaport, D. C., Molecular dynamics simulation of Taylor–
Couette vortex formation, Phys. Rev. Lett. 80 (1998) 5337.

[hir00] Hirshfeld, D. and Rapaport, D. C., Growth of Taylor vortices: A molecular
dynamics study, Phys. Rev. E 61 (2000) R21.

[hob31] Hobson, E. W., The Theory of Spherical and Ellipsoidal Harmonics, Cambridge
University Press, Cambridge, 1931.

References 525

[hoc74] Hockney, R. W., Goel, S. P., and Eastwood, J. W., Quiet high-resolution com-
puter models of a plasma, J. Comp. Phys. 14 (1974) 148.

[hoc88] Hockney, R. W. and Eastwood, J. W., Computer Simulation Using Particles,
Adam Hilger, Bristol, 1988.

[hol91] Holian, B. L., Voter, A. F., Wagner, N. J., Ravelo, R. J., Chen, S. P., Hoover,
W. G., Hoover, C. G., Hammerberg, J. E., and Dontje, T. D., Effects of pairwise
versus many-body forces on high-stress plastic deformation, Phys. Rev. A 43
(1991) 2655.

[hol95] Holian, B. L. and Ravelo, R. J., Fracture simulations using large-scale molecular
dynamics, Phys. Rev. B 51 (1995) 11275.

[hon92] Hong, D. C. and McLennan, J. A., Molecular-dynamics simulations of hard-
sphere granular particles, Physica 187 (1992) 159.

[hoo82] Hoover, W. G., Ladd, A. J. C., and Moran, B., High-strain-rate plastic flow stud-
ied via nonequilibrium molecular dynamics, Phys. Rev. Lett. 48 (1982)
1818.

[hoo85] Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions,
Phys. Rev. A 31 (1985) 1695.

[hoo91] Hoover, W. G., Computational Statistical Mechanics, Elsevier, Amsterdam,
1991.

[hsu79] Hsu, C. S. and Rahman, A., Interaction potentials and their effect on crystal
nucleation and symmetry, J. Chem. Phys. 71 (1979) 4974.

[hua63] Huang, K., Statistical Mechanics, Wiley, New York, 1963.

[jae96] Jaeger, H. M., Nagel, S. R., and Behringer, R. P., Granular solids, liquids, and
gases, Rev. Mod. Phys. 68 (1996) 1259.

[jai91] Jain, A., Unified formulation of dynamics for serial rigid multibody systems,
J. Guid. Control Dyn. 14 (1991) 531.

[jai93] Jain, A., Vaidehi, N., and Rodriguez, G., A fast recursive algorithm for molecu-
lar dynamics simulation, J. Comp. Phys. 106 (1993) 258.

[jai95] Jain, A. and Rodriguez, G., Base-invariant symmetric dynamics of free-flying
manipulators, IEEE Trans. Rob. Autom. 11 (1995) 585.

[jam90] James, F., A review of pseudorandom number generators, Comp. Phys. Comm.
60 (1990) 329.

[jor83] Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein,
M. L., Comparison of simple potential functions for simulating liquid water,
J. Chem. Phys. 79 (1983) 926.

[kar94] Karaborni, S., Esselink, K., Hilbers, P. A. J., Smit, B., Karthäuser, J., van Os,
N. M., and Zana, R., Simulating the self-assembly of gemini (dimeric) surfac-
tants, Science 266 (1994) 254.

[kar96] Karaborni, S. and Smit, B., Computer simulations of surfactant structures, Cur-
rent Opinion in Colloid and Interface Science 1 (1996) 411.

[kle86] Klein, M. L., Structure and dynamics of molecular crystals, in [cic86a], p. 424.

[knu68] Knuth, D. E., Fundamental Algorithms, vol. 1 of The Art of Computer Program-
ming, Addison-Wesley, Reading, MA, 1968.

[knu69] Knuth, D. E., Seminumerical Algorithms, vol. 2 of The Art of Computer Pro-
gramming, Addison-Wesley, Reading, MA, 1969.

526 References

[knu73] Knuth, D. E., Sorting and Searching, vol. 3 of The Art of Computer Program-
ming, Addison-Wesley, Reading, MA, 1973.

[kol92] Kolafa, J. and Perram, J. W., Cutoff errors in the Ewald summation formulae for
point charge systems, Mol. Simulation 9 (1992) 351.

[kop89] Koplik, J., Banavar, J. R., and Willemsen, J. F., Molecular dynamics of fluid
flow at solid surfaces, Phys. Fluids A 1 (1989) 781.

[kre88] Kremer, K. and Binder, K., Monte Carlo simulations of lattice models for macro-
molecules, Comp. Phys. Repts. 7 (1988) 259.

[kre92] Kremer, K. and Grest, G. S., Simulations of structural and dynamic properties
of dense polymer systems, J. Chem. Soc. Faraday Trans. 88 (1992) 1707.

[kus76] Kushick, J. and Berne, B. J., Computer simulation of anisotropic molecular
fluids, J. Chem. Phys. 64 (1976) 1362.

[kus90] Kusalik, P. G., Computer simulation results for the dielectric properties of a
highly polar fluid, J. Chem. Phys. 93 (1990) 3520.

[lan59] Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Pergamon Press, Oxford,
1959.

[lan00] Landau, D. P. and Binder, K., A Guide to Monte Carlo Simulations in Statistical
Physics, Cambridge University Press, Cambridge, 2000.

[leb67] Lebowitz, J. L., Percus, J. K., and Verlet, L., Ensemble dependence of fluctua-
tions with application to machine computations, Phys. Rev. 153 (1967)
250.

[lee72] Lees, A. W. and Edwards, S. F., The computer study of transport processes
under extreme conditions, J. Phys. C 5 (1972) 1921.

[lev73] Levesque, D., Verlet, L., and Kürkijarvi, J., Computer ‘experiments’ on classical
fluids. IV. Transport properties and time-correlation functions of the Lennard-
Jones fluid near its triple point, Phys. Rev. A 7 (1973) 1690.

[lev84] Levesque, D., Weis, J. J., and Hansen, J.-P., Recent developments in the sim-
ulation of classical fluids, in Binder, K., ed., Applications of the Monte Carlo
Method in Statistical Physics, Springer, Berlin, 1984, p. 37.

[lev87] Levesque, D. and Verlet, L., Molecular dynamics calculations of transport coef-
ficients, Mol. Phys. 61 (1987) 143.

[lev92] Levesque, D. and Weis, J. J., Recent progress in the simulation of classical
fluids, in [bin92], p. 121.

[lev93] Levesque, D. and Verlet, L., Molecular dynamics and time reversibility, J. Stat.
Phys. 72 (1993) 519.

[lie92] Liem, S. Y., Brown, D., and Clarke, J. H. R., Investigation of the homogeneous-
shear and nonequilibrium molecular dynamics methods, Phys. Rev. A 45 (1992)
3706.

[loo92] Loose, W. and Ciccotti, G., Temperature and temperature control in nonequilib-
rium molecular dynamics simulations of the shear flow of dense liquids, Phys.
Rev. A 45 (1992) 3859.

[mai81] Maitland, G. C., Rigby, M., Smith, E. B., and Wakeham, W. A., Intermolecular
Forces, Clarendon Press, Oxford, 1981.

[mak89] Makino, J. and Hut, P., Gravitational N-body algorithms: A comparison between
supercomputers and a highly parallel computer, Comp. Phys. Repts. 9 (1989)
199.

References 527

[mar72] Marsaglia, G., Choosing a point from the surface of a sphere, Ann. Math. Stat.
43 (1972) 645.

[mar92] Mareschal, M. and Holian, B. L., eds., Microscopic Simulation of Complex
Hydrodynamic Phenomena, Plenum Press, New York, 1992.

[mck92] McKechnie, J. I., Brown, D., and Clarke, J. H. R., Methods for generating dense
relaxed amorphous polymer samples for use in dynamic simulations, Macro-
molecules 25 (1992) 1562.

[mcq76] McQuarrie, D. A., Statistical Mechanics, Harper and Row, New York, 1976.

[med90] Medvedev, N. N., Geiger, A., and Brostow, W., Distinguishing liquids from
amorphous solids: Percolation analysis of the Voronoi network, J. Chem. Phys.
93 (1990) 8337.

[mes64] Messiah, A., Quantum Mechanics, North-Holland, Amsterdam, 1964.

[mor85] Morriss, G. P. and Evans, D. J., Isothermal response theory, Mol. Phys. 54 (1985)
629.

[mor91] Morriss, G. P. and Evans, D. J., A constraint algorithm for the computer simu-
lation of complex molecular liquids, Comp. Phys. Comm. 62 (1991) 267.

[mye88] Myers, D., Surfactant Science and Technology, VCH Publishers, New York,
1988.

[neu83] Neumann, M., Dipole moment fluctuation formulas in computer simulations of
polar systems, Mol. Phys. 50 (1983) 841.

[nic79] Nicolas, J. J., Gubbins, K. E., Streett, W. B., and Tildesley, D. J., Equation of
state for the Lennard-Jones fluid, Mol. Phys. 37 (1979) 1429.

[nos83] Nosé, S. and Klein, M. L., Constant pressure molecular dynamics for molecular
systems, Mol. Phys. 50 (1983) 1055.

[nos84a] Nosé, S., A molecular dynamics method for simulations in the canonical en-
semble, Mol. Phys. 52 (1984) 255.

[nos84b] Nosé, S., A unified formulation of the constant temperature molecular dynamics
methods, J. Chem. Phys. 81 (1984) 511.

[orb67] Orban, J. and Bellemans, A., Velocity inversion and irreversibility in a dilute
gas of hard disks, Phys. Lett. A 24 (1967) 620.

[par80] Parrinello, M. and Rahman, A., Crystal structure and pair potentials: A molec-
ular dynamics study, Phys. Rev. Lett. 45 (1980) 1196.

[par81] Parrinello, M. and Rahman, A., Polymorphic transitions in single crystals: A
new molecular dynamics method, J. Appl. Phys. 52 (1981) 7182.

[pay93] Payne, V. A., Forsyth, M., Kolafa, J., Ratner, M. A., and de Leeuw, S. W., Dipole
time correlation functions of Stockmayer fluid in the microcanonical and canon-
ical ensembles, J. Phys. Chem. 97 (1993) 10478.

[pea79] Pear, M. R. and Weiner, J. H., Brownian dynamics study of a polymer chain of
linked rigid bodies, J. Chem. Phys. 71 (1979) 212.

[per88] Perram, J. W., Petersen, H. G., and de Leeuw, S. W., An algorithm for the
simulation of condensed matter which grows as the 3/2 power of the number of
particles, Mol. Phys. 65 (1988) 875.

[per96] Pérez-Jordá, J. M. and Yang, W., A concise redefinition of the solid spherical
harmonics and its use in fast multipole methods, J. Chem. Phys. 104 (1996)
8003.

528 References

[pfa94] Pfalzner, S. and Gibbon, P., A 3D hierarchical tree code for dense plasma sim-
ulation, Comp. Phys. Comm. 79 (1994) 24.

[pie92] Pierleoni, C. and Ryckaert, J.-P., Molecular dynamics investigation of dynamic
scaling for dilute polymer solutions in good solvent conditions, J. Chem. Phys.
96 (1992) 8539.

[pol80] Pollock, E. L. and Alder, B. J., Static dielectric properties of Stockmayer fluids,
Physica 102A (1980) 1.

[pos93] Pöschel, T. and Buchholz, V., Static friction phenomena in granular materials:
Coulomb law versus particle geometry, Phys. Rev. Lett. 71 (1993) 3963.

[pos95] Pöschel, T. and Buchholz, V., Molecular dynamics of arbitrarily shaped granular
particles, J. Phys. I France 5 (1995) 1431.

[pow79] Powles, J. G., Evans, W. A. B., McGrath, E., Gubbins, K. E., and Murad, S., A
computer simulation for a simple model of liquid hydrogen chloride, Mol. Phys.
38 (1979) 893.

[pre92] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. R., Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University Press,
Cambridge, 2nd edition, 1992.

[pri84] Price, S. L., Stone, A. J., and Alderton, M., Explicit formulae for the electrostatic
energy, forces and torques between a pair of molecules of arbitrary symmetry,
Mol. Phys. 52 (1984) 987.

[puh89] Puhl, A., Mansour, M. M., and Mareschal, M., Quantitative comparison of
molecular dynamics with hydrodynamics in Rayleigh–Bénard convection, Phys.
Rev. A 40 (1989) 1999.

[que73] Quentrec, B. and Brot, C., New method for searching for neighbors in molecular
dynamics computations, J. Comp. Phys. 13 (1973) 430.

[rah64] Rahman, A., Correlation of motion of atoms in liquid argon, Phys. Rev. 136A
(1964) 405.

[rah71] Rahman, A. and Stillinger, F. H., Molecular dynamics study of liquid water, J.
Chem. Phys. 55 (1971) 3336.

[rah73] Rahman, A. and Stillinger, F. H., Hydrogen-bond patterns in liquid water, J. Am.
Chem. Soc. 95 (1973) 7943.

[rai89] Raine, A. R. C., Fincham, D., and Smith, W., Systolic loop methods for molec-
ular dynamics simulation using multiple transputers, Comp. Phys. Comm. 55
(1989) 13.

[ral78] Ralston, A. and Rabinowitz, P., A First Course in Numerical Analysis, McGraw-
Hill, New York, 2nd edition, 1978.

[rap79] Rapaport, D. C., Molecular dynamics study of a polymer chain in solution, J.
Chem. Phys. 71 (1979) 3299.

[rap80] Rapaport, D. C., The event scheduling problem in molecular dynamics simula-
tion, J. Comp. Phys. 34 (1980) 184.

[rap83] Rapaport, D. C., Density fluctuations and hydrogen bonding in supercooled
water, Mol. Phys. 48 (1983) 23.

[rap85] Rapaport, D. C., Molecular dynamics simulation using quaternions, J. Comp.
Phys. 60 (1985) 306.

[rap87] Rapaport, D. C., Microscale hydrodynamics: Discrete particle simulations of
evolving flow patterns, Phys. Rev. A 36 (1987) 3288.

References 529

[rap91a] Rapaport, D. C., Multi-million particle molecular dynamics I: Design consider-
ations for vector processing, Comp. Phys. Comm. 62 (1991) 198.

[rap91b] Rapaport, D. C., Multi-million particle molecular dynamics II: Design consid-
erations for distributed processing, Comp. Phys. Comm. 62 (1991) 217.

[rap91c] Rapaport, D. C., Time-dependent patterns in atomistically simulated convection,
Phys. Rev. A 43 (1991) 7046.

[rap92] Rapaport, D. C., Atomistic simulation of heat and mass transfer near the con-
vection threshold, Phys. Rev. A 46 (1992) R6150.

[rap94] Rapaport, D. C., Shear-induced order and rotation in pipe flow of short-chain
molecules, Europhys. Lett. 26 (1994) 401.

[rap97] Rapaport, D. C., An introduction to interactive molecular dynamics simulations,
Computers in Physics 11 (1997) 337.

[rap98] Rapaport, D. C., Subharmonic surface waves in vibrated granular media, Phys-
ica A 249 (1998) 232.

[rap02a] Rapaport, D. C., Molecular dynamics simulation of polymer helix formation
using rigid-link methods, Phys. Rev. E 66 (2002) 011906.

[rap02b] Rapaport, D. C., Simulational studies of axial granular segregation in a rotating
cylinder, Phys. Rev. E 65 (2002) 061306.

[ray72] Ray, J. R., Nonholonomic constraints and Gauss’s principle of least constraint,
Am. J. Phys. 40 (1972) 179.

[ray91] Ray, J. R. and Graben, H. W., Small systems have non-Maxwellian momentum
distributions in the microcanonical ensemble, Phys. Rev. A 44 (1991) 6905.

[reb77] Rebertus, D. W. and Sando, K. M., Molecular dynamics simulation of a fluid of
hard spherocylinders, J. Chem. Phys. 67 (1977) 2585.

[rem90] Remler, D. K. and Madden, P. A., Molecular dynamics without effective poten-
tials via the Car–Parrinello approach, Mol. Phys. 70 (1990) 921.

[rod92] Rodriguez, G. and Kreutz-Delgado, K., Spatial operator factorization and in-
version of the manipulator mass matrix, IEEE Trans. Rob. Autom. 8 (1992)
65.

[ryc77] Ryckaert, J.-P., Ciccotti, G., and Berendsen, H. J. C., Numerical integration
of the cartesian equations of motion for a system with constraints: Molecular
dynamics of n-alkanes, J. Comp. Phys. 23 (1977) 327.

[ryc78] Ryckaert, J.-P. and Bellemans, A., Molecular dynamics of liquid alkanes, Fara-
day Disc. Chem. Soc. 66 (1978) 95.

[ryc90] Ryckaert, J.-P., The method of constraints: Application to a simple n-alkane
model, in [cat90], p. 189.

[sar93] Sarman, S. and Evans, D. J., Self-diffusion and heat flow in isotropic and liquid
crystal phases of the Gay–Berne fluid, J. Chem. Phys. 99 (1993) 620.

[sch73] Schofield, P., Computer simulation studies of the liquid state, Comp. Phys.
Comm. 5 (1973) 17.

[sch85] Schoen, M. and Hoheisel, C., The shear viscosity of a Lennard-Jones fluid
calculated by equilibrium molecular dynamics, Mol. Phys. 56 (1985) 653.

[sch86] Schoen, M., Vogelsang, R., and Hoheisel, C., Computation and analysis of the
dynamics structure factor for small wave vectors. A molecular dynamics study
for a Lennard-Jones fluid, Mol. Phys. 57 (1986) 445.

530 References

[sch92] Schmidt, K. E. and Ceperley, D., Monte Carlo techniques for quantum fluids,
solids and droplets, in [bin92], p. 205.

[sch96] Schäfer, J., Dippel, S., and Wolf, D. E., Force schemes in simulations of granular
materials, J. Phys. I France 6 (1996) 5.

[smi91] Smit, B., Hilbers, P. A. J., Esselink, K., Rupert, L. A. M., van Os, N. M., and
Schlijper, A. G., Structure of a water/oil interface in the presence of micelles: A
computer simulation, J. Phys. Chem. 95 (1991) 6361.

[smi92] Smith, W. and Rapaport, D. C., Molecular dynamics simulation of linear poly-
mers in a solvent, Mol. Simulation 9 (1992) 25.

[smi94] Smith, P. E. and van Gunsteren, W. F., Consistent dielectric properties of the
simple point charge and extended point charge water models at 277 and 300 K,
J. Chem. Phys. 100 (1994) 3169.

[spr88] Sprik, M. and Klein, M. L., A polarizable model for water using distributed
charge sites, J. Chem. Phys. 89 (1988) 7556.

[spr91] Sprik, M., Hydrogen bonding and the static dielectric constant in liquid water,
J. Chem. Phys. 95 (1991) 6762.

[sta92] Stauffer, D. and Aharony, A., Introduction to Percolation Theory, Taylor and
Francis, London, 2nd edition, 1992.

[sti72] Stillinger, F. H. and Rahman, A., Molecular dynamics study of temperature
effects on water structure and kinetics, J. Chem. Phys. 57 (1972) 1281.

[sti74] Stillinger, F. H. and Rahman, A., Improved simulation of liquid water by molec-
ular dynamics, J. Chem. Phys. 60 (1974) 1545.

[sti85] Stillinger, F. H. and Weber, T. A., Computer simulation of local order in con-
densed phases of silicon, Phys. Rev. B 31 (1985) 5262.

[str78] Streett, W. B., Tildesley, D. J., and Saville, G., Multiple timestep methods in
molecular dynamics, Mol. Phys. 35 (1978) 639.

[tan83] Tanemura, M., Ogawa, T., and Ogita, N., A new algorithm for three-dimensional
Voronoi tessellation, J. Comp. Phys. 51 (1983) 191.

[ten82] Tenenbaum, A., Ciccotti, G., and Gallico, R., Stationary nonequilibrium states
by molecular dynamics. Fourier’s law, Phys. Rev. A 25 (1982) 2778.

[tho89] Thompson, P. A. and Robbins, M. O., Simulations of contact-line motion: Slip
and the dynamic contact angle, Phys. Rev. Lett. 63 (1989) 766.

[tho90] Thompson, P. A. and Robbins, M. O., Shear flow near solids: Epitaxial order
and flow boundary conditions, Phys. Rev. A 41 (1990) 6830.

[tho91] Thompson, P. A. and Grest, G. S., Granular flow: Friction and the dilatancy
transition, Phys. Rev. Lett. 67 (1991) 1751.

[tox88] Toxvaerd, S., Molecular dynamics of liquid butane, J. Chem. Phys. 89 (1988)
3808.

[tri88] Tritton, D. J., Physical Fluid Dynamics, Oxford University Press, Oxford, 2nd
edition, 1988.

[tro84] Trozzi, C. and Ciccotti, G., Stationary nonequilibrium states by molecular dy-
namics. II. Newton’s law, Phys. Rev. A 29 (1984) 916.

[tuc94] Tuckerman, M. E. and Parrinello, M., Integrating the Car–Parrinello equations.
1. Basic integration techniques, J. Chem. Phys. 101 (1994) 1302.

References 531

[van82] van Gunsteren, W. F. and Karplus, M., Effect of constraints on the dynamics of
macromolecules, Macromolecules 15 (1982) 1528.

[ver67] Verlet, L., Computer ‘experiments’ on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules, Phys. Rev. 159 (1967) 98.

[ver68] Verlet, L., Computer ‘experiments’ on classical fluids. II. Equilibrium correla-
tion functions, Phys. Rev. 165 (1968) 201.

[vog84] Vogelsang, R. and Hoheisel, C., Structure and dynamics of supercritical fluid in
comparison with a liquid. A computer simulation study, Mol. Phys. 53 (1984)
1355.

[vog85] Vogelsang, R. and Hoheisel, C., Computation of low pressures by molecular
dynamics based on Lennard-Jones potentials, Mol. Phys. 55 (1985) 1339.

[vog87] Vogelsang, R., Hoheisel, C., and Ciccotti, G., Thermal conductivity of the
Lennard-Jones liquid by molecular dynamics calculations, J. Chem. Phys. 86
(1987) 6371.

[vog88] Vogelsang, R. and Hoheisel, C., Thermal transport coefficients including the
Soret coefficient for various liquid Lennard-Jone mixtures, Phys. Rev. A 38
(1988) 6296.

[wal83] Walton, O. R., Particle-dynamics calculations of shear flow, in Jenkins, J. T. and
Satake, M., eds., Mechanics of Granular Materials, Elsevier, Amsterdam, 1983,
p. 327.

[wal92] Walton, O. R., Numerical simulation of inelastic, frictional particle-particle
interactions, in Rocco, M. C., ed., Particulate Two-Phase Flow, Butterworth-
Heineman, Boston, 1992, p. 884.

[whi94] White, C. A. and Head-Gordon, M., Derivation and efficient implementation of
the fast multipole method, J. Chem. Phys. 101 (1994) 6593.

[wig60] Wigner, E. P., The unreasonable effectiveness of mathematics in the natural
sciences, Comm. Pure App. Math. 13 (1960) 1.

[woo76] Wood, W. W. and Erpenbeck, J. J., Molecular dynamics and Monte Carlo cal-
culations in statistical mechanics, Ann. Rev. Phys. Chem. 27 (1976) 319.

[zim72] Ziman, J. M., Principles of the Theory of Solids, Cambridge University Press,
Cambridge, 2nd edition, 1972.

Function index

[The references are to section numbers.]

AccumBondAngDistn, 10.5
AccumDiffusion, 5.3, 8.4
AccumDihedAngDistn, 10.5
AccumProps, 2.4, 7.3, 7.4, 11.6, 13.2
AccumSpacetimeCorr, 5.4
AccumVacf, 5.3
AddBondedPair, 4.5
AdjustDipole, 13.2
AdjustInitTemp, 3.6
AdjustLinkAngles, 11.6
AdjustPressure, 6.3
AdjustQuat, 8.2
AdjustTemp, 3.6, 6.3, 8.2, 8.5, 11.6
AllocArrays, 2.4, 3.4, 3.8, 4.3, 4.4, 4.5, 5.3, 5.4,

6.2, 7.3, 8.3, 8.4, 10.3, 11.6, 12.2, 13.2, 13.3,
13.5, 14.2, 14.4, 17.4, 17.5, 17.6

AnalClusterSize, 4.5
AnalVorPoly, 4.4
AnlzConstraintDevs, 10.3
ApplyBarostat, 6.3
ApplyBoundaryCond, 2.4, 6.2, 7.3, 7.4
ApplyThermostat, 6.3, 7.4, 8.2, 8.5
ApplyWallBoundaryCond, 12.3
AssignToChain, 9.3

BisectPlane, 4.4
BuildClusters, 4.5, 9.6
BuildConstraintMatrix, 10.3
BuildIntTree, 13.3
BuildLinkInertiaMats, 11.5
BuildLinkMmat, 11.5
BuildLinkPhimatT, 11.5
BuildLinkRotmatT, 11.5
BuildLinkXYvecs, 11.5
BuildNebrList, 3.4, 3.8, 7.3, 8.5, 9.3, 9.6, 10.4,

12.2, 16.3, 17.4, 17.5
BuildNebrListT, 17.5
BuildRotMatrix, 8.2
BuildStepRmatT, 8.5

CombineMpCell, 13.5
CompressClusters, 4.5
ComputeAccelsQ, 8.2
ComputeAngVel, 8.2
ComputeBdyForces, 16.3
ComputeChainAngleForces, 10.4
ComputeChainBondForces, 9.3
ComputeChainTorsionForces, 10.4
ComputeConstraints, 10.3
ComputeDerivsPT, 6.2
ComputeDipoleAccel, 13.2
ComputeExternalForce, 7.3
ComputeFarCellInt, 13.5
ComputeForces, 2.4, 3.4, 5.3, 6.3, 7.4, 9.6, 12.2,

12.3, 13.3, 16.3, 17.4, 17.5, 17.6
ComputeForcesDipoleF, 13.2
ComputeForcesDipoleR, 13.2
ComputeForcesT, 17.5
ComputeLinkAccels, 11.5
ComputeLinkCoordsVels, 11.5
ComputeLinkForces, 11.5
ComputeNearCellInt, 13.5
ComputeSiteForces, 8.3, 8.4, 11.6
ComputeThermalForce, 7.4
ComputeTorqs, 8.2, 8.5
ComputeWallForces, 8.5
CoordInRegion, 12.3
CorrectorStep, 3.5
CorrectorStepBox, 6.3
CorrectorStepF, 8.2
CorrectorStepPT, 6.2
CorrectorStepQ, 8.2

DefineMol, 8.3, 8.4, 8.5
DeleteAllMolEvents, 14.3
DeleteEvent, 14.3
DoPackInt, 17.4
DoPackReal, 17.4
DoParlCopy, 17.4
DoParlMove, 17.4

532

Function index 533

DoUnpackInt, 17.4
DoUnpackReal, 17.4
DriveFlow, 15.4

ErrExit, 18.4
EulerToQuat, 8.2
EvalChainProps, 9.4
EvalDiffusion, 5.3, 8.4
EvalDihedAngCorr, 10.5
EvalEamParams, 12.3
EvalFreePath, 14.4
EvalHelixOrder, 11.6
EvalLatticeCorr, 4.3
EvalMolCount, 12.3, 15.4
EvalMpCell, 13.5
EvalMpForce, 13.5
EvalMpL, 13.5
EvalMpM, 13.5
EvalMpProdLL, 13.5
EvalMpProdLM, 13.5
EvalProfile, 7.3
EvalProps, 2.4, 3.4, 6.2, 6.3, 7.3, 7.4, 8.2, 8.5,

11.6, 13.2, 16.3, 17.4
EvalRdf, 4.3, 8.4, 10.5, 13.2, 13.6
EvalSinCos, 13.2
EvalSpacetimeCorr, 5.4
EvalVacf, 5.3
EvalVelDist, 2.5

FftComplex, 18.4
FindDistVerts, 4.4
FindTestSites, 4.4

GatherWellSepLo, 13.5
GenSiteCoords, 8.2, 8.5
GetCheckpoint, 18.7
GetConfig, 18.6
GetGridAverage, 15.3
GetNameList, 18.5
GridAverage, 7.3

InitAccels, 2.4, 3.6
InitAngAccels, 8.2, 8.5
InitAngCoords, 8.2, 8.5, 13.2
InitAngVels, 8.2, 8.5, 13.2
InitBoxVars, 6.3
InitCharges, 13.5
InitClusters, 4.5
InitCoords, 2.4, 3.6, 3.8, 9.3, 9.6, 10.5, 12.3, 15.3,

15.4, 16.3
InitCoordsWalls, 8.5
InitDiffusion, 5.3
InitEventList, 14.3
InitFeedbackVars, 6.2
InitFreePath, 14.4
InitLinkState, 11.6
InitPairEng, 8.4

InitRand, 18.4
InitSlaves, 17.4
InitSpacetimeCorr, 5.4
InitState, 17.4
InitVacf, 5.3
InitVels, 2.4, 3.8, 7.4, 12.3, 15.4
InitVorPoly, 4.4
Integrate, 18.4

LeapfrogStep, 2.4, 8.5, 15.4, 17.5
LeapfrogStepLinks, 11.6
LeapfrogStepT, 17.5
LocateIntTreeCellCm, 13.3

main, 2.4, 4.4, 4.5, 5.4, 14.2, 17.4, 18.4, 18.7
MeasureTrajDev, 3.8
MulMat, 18.4
MulMatVec, 18.4
MultipoleCalc, 13.5

NebrParlProcs, 17.4
NextEvent, 14.3

OutsideObs, 15.4

PackCopiedData, 17.4
PackMovedData, 17.4
PackValList, 17.4
PerturbTrajDev, 3.8
PolyGeometry, 4.4
PolySize, 4.4
PredictEvent, 14.2, 14.5, 15.3
PredictorStep, 3.5
PredictorStepBox, 6.3
PredictorStepF, 8.2
PredictorStepPT, 6.2
PredictorStepQ, 8.2
PrintDiffusion, 5.3
PrintHelp, 5.4
PrintNameList, 18.5
PrintPairEng, 8.4
PrintProfile, 7.3
PrintRdf, 4.3
PrintSpacetimeCorr, 5.4
PrintSummary, 2.4, 10.4, 10.5, 14.2
PrintTrajDev, 3.8
PrintVacf, 5.3
PrintVelDist, 2.5
ProcCutEdges, 4.4
ProcCutFaces, 4.4
ProcDelVerts, 4.4
ProcessCellCrossing, 14.2, 15.3
ProcessCollision, 14.2
ProcInterrupt, 18.4
ProcNewFace, 4.4
ProcNewVert, 4.4
PropagateCellLo, 13.5
PutCheckpoint, 18.7

534 Function index

PutConfig, 9.7, 18.6
PutGridAverage, 15.3

RandR, 18.4
RemoveOld, 4.4
RepackMolArray, 17.4
ReplicateMols, 17.6
RestoreConstraints, 10.3

ScaleCoords, 6.2
ScanIntTree, 13.3
ScheduleEvent, 14.3
SetBase, 16.3
SetCellSize, 4.4
SetMolSizes, 16.3
SetMolType, 15.4
SetParams, 2.4, 3.4, 3.6, 6.2, 8.3, 8.5, 9.3, 10.5,

11.6, 12.3, 13.3, 14.2, 15.3, 16.3, 17.4, 17.6
SetupFiles, 18.7
SetupInterrupt, 18.4
SetupJob, 2.4, 2.5, 3.4, 4.3, 5.3, 5.4, 6.2, 6.3, 7.3,

8.5, 10.5, 13.2, 14.2, 14.4, 17.4, 18.7

SetupLayers, 17.6
SingleEvent, 14.2, 15.3
SingleStep, 2.4, 2.5, 3.4, 3.5, 3.6, 3.8, 4.3, 5.3,

5.4, 6.2, 6.3, 7.3, 7.4, 8.3, 8.4, 8.5, 9.4, 10.4,
10.5, 11.6, 11.7, 13.2, 15.4, 17.4

SolveCubic, 18.4
SolveLineq, 18.4
Sort, 18.4
StartRun, 14.2

UnpackCopiedData, 17.4
UnpackMovedData, 17.4
UpdateCellSize, 6.2
UpdateMol, 14.2, 15.3
UpdateSystem, 14.2

VRand, 18.4

ZeroDiffusion, 5.3, 8.4
ZeroFixedAccels, 12.3
ZeroSpacetimeCorr, 5.4
ZeroVacf, 5.3

Index

acceleration, 18
angular, 214, 232
initial, 28
link, 314

accuracy, 59, 60, 156, 269, 275, 346, 359, 365, 369,
372

algorithm
backtracking, 360, 362, 364
cell method, 50
tree, 407
tree navigation, 404

alkane, 246, 267, 282, 284, 414
all-pairs method, 13, 49, 52, 55, 216, 219, 345, 359,

369, 386, 473
angular momentum, 204, 211

conservation, 34, 210, 416
approximation

classical, 47
mean-field, 390
united atom, 267

argon, 15, 47, 152, 199
potential, 11

atom, 13
C structure, 23
index, 260, 264, 268, 269, 453
nonbonded, 247
overlap, 67, 248, 251, 307, 437
packing, 96, 328
pointer, 51, 53
replicated, 59, 397, 474–476
spherical particle, 11, 199
tethered layer, 178
unit cell, 28, 67
vibration, 17, 41

atomistic
picture, 134, 419
world, 136

autocorrelation function, 86, 131, 177
decay, 152
dihedral angle, 290, 293
dipole, 226
heat current, 124, 148

integral, 121, 133, 148, 189, 198
measurement, 148
pressure tensor, 123, 148
reproducibility, 146
truncated integral, 149
velocity, 145–148
velocity, negative, 146
velocity, related to diffusion coefficient, 128

behavior
collective, 256
long-range, 137
many-body, 44
time-dependent, 113, 418, 428

biopolymer, 222, 246, 295
block average, 86, 89, 195, 255, 359
Boltzmann

H-function, 39
constant, 5

bond
constrained length, 271
elongation, 414
interaction, 248
length, 248, 267, 296, 308
length variation, 247, 255
mass, 308
snapped, 248
spring force, 256
stretched, 414, 415
vector, 297

bond angle, 267, 279, 296–298, 307, 308, 322, 327,
328

constraint, 287
distribution, 289, 292, 293
potential, 284

boundary
conditions, 15
crossing, 158, 191, 192
hard-wall, 15, 53, 88, 154, 176–179, 185, 189,

236–238, 341, 361, 364, 386, 407, 414, 422,
439

nonslip, 430

535

536 Index

boundary (cont.)
periodic, 16, 17, 24, 25, 27, 34, 41, 51, 53, 54, 58,

59, 66, 80, 88, 91, 104, 123, 125, 137, 158,
177, 191, 196, 238, 249, 264, 344, 345,
397–399, 402, 429, 452, 459, 474, 485

periodic ambiguity, 17
periodic wraparound effect, 16, 17, 41, 50, 122,

126, 136, 255
periodic, distance offset, 191
periodic, limits interaction range, 17
rigid, 15
rough, 430
sliding, 190

bulk viscosity, 120, 123, 152
butane, 285, 287, 292

carbon, 267
case study

format, 8
software, 515

cell
array size, 51
assignment, 51
distance criterion, 359
hierarchy, 371
interaction calculation, 51
mean occupancy, 51
method, 49, 50, 54, 55, 77, 91, 158, 170, 191,

216, 317, 474
midpoint offset, 379
neighbor, 53, 191, 384
non-neighbor, 371
number adjustment, 158
offset, 53, 191, 479, 486
parent, 371
pointer, 360
size, 49, 55, 112, 114, 159, 161, 365, 368, 479
subdivision, 49, 344, 359, 394
well-separated, 371, 372, 377, 380, 382, 384

chain, see also polymer
amphiphilic, 256
collapse, 321, 322
configuration, 297
connectivity, 264
cooling, 322
entanglement, 321
folding pathway, 323
helical state, 322
helix, 249, 307, 321
hydrophilic head, 256
hydrophobic tail, 256
in vacuum, 246
index, 298
initial state, 320
member, 263, 264
overlap, 259
packing, 249
properties, convergence, 266
zigzag configuration, 249, 320

chain link
degree of freedom, 296

initial, 309, 310
rotation matrix, 310, 312
site coordinates, 310
virtual, 309

charge, 345, 385, 388
adjustable parameter, 217
center of, 359
distribution, 386
interaction, 217
reduced unit, 218

checkpoint, 23
file access, 502
restart mechanism, 500

classical mechanics, 44
closed-form solution, 2, 176, 177
cluster

analysis, 117, 257, 261, 263
construction algorithm, 112, 114
formation, 112
initial, 263
isolated, 210
member, 114
network topology, 117
properties, 116
properties, soft-sphere fluid, 117
size distribution, 116

coefficient of restitution, 417
collision

cross section, 6
dissipative force, 438
dynamics, 392, 414
elastic, 416
extended bodies, 338
fragmentation, 342
future, 392
generalized, 393
impact welding, 343
impulse, 416
impulsive, 391
inelastic, 342, 416, 436, 437
interval, 122
molecular beam studies, 47
outcome, 392
potential, 395
prediction, 420
rate, 414
rotation, 416
spallation, 338
specular, 422
time, 60, 135
velocity change, 392
wall, 361, 407, 422

combinatorial explosion, 9
compiler, 473

conditional compilation, 483
efficient, 506
optimization, 34, 447, 517
parallel processing, 447
vector processing, 447
vectorization, 473, 479

complementary error function, 346

Index 537

complex variable, 490
C structure, 485

computation
efficiency, 77, 84, 244, 359, 394, 414, 473
effort, 13, 49, 98, 216, 303, 334, 344, 345, 368,

380, 414, 419, 437
computational geometry, 98
computational thread, 446, 467–470

force computation, 471
leapfrog integration, 468
low overhead, 467
neighbor-list construction, 469

computer
animation, 257, 428, 507
architecture, 54, 77, 446–448, 450, 468, 473
Babbage, 1
cache conflict, 488
cost–performance ratio, 506
experiment, 85
graphics, 257, 264
hardware, 1, 7, 13, 23, 59, 391, 447, 450, 473, 488
high performance, 446, 447
multiprocessor, 446, 447, 459, 480
multiprocessor, economy of scale, 446
Pentium, 77
private memory, 447, 448
programming, 3
shared memory, 446, 448, 467, 472
software, 23, 41, 447, 448, 450, 515
supercomputer, 473, 507
taxonomy, 447
vector processor, 447, 473

computer simulation, 47, 505
Brownian dynamics, 7
cellular automata, 3, 6
density-function theory and molecular dynamics,

3
educational role, 3
lattice–Boltzmann, 3
lattice-based, 6, 246, 266
Monte Carlo, 3, 6, 67, 84, 245, 266, 491
numerical experiment, 3
particle–grid method, 345
path-integral Monte Carlo, 3
quantum Monte Carlo, 3
relation to theory, 2
unexpected results, 3
virtual laboratory, 3

concentration
chain, 259
gradient, 121
local, 121
relative, 263

configuration
animated sequence, 264
average, 268
input, 111, 113, 502
space, 84

conservation
law, 34
matter, 134

constraint, 45
algorithm, 291
bond-angle, 270, 292
bond-length, 270, 287, 292
constant-pressure, 168
constant-temperature, 167, 168, 190, 212,

242
correction, 275
deviation, 270
drift, 273
effect on temperature, 268
effective force, 269
equation, 166, 268, 270
geometrical, 268
holonomic, 45, 267
index, 270
iterative relaxation, 269, 270
justification, 267
matrix method, 270–272
mechanical, 154, 165, 168
nonholonomic, 165
numerical error, 270
numerical treatment, 4
penalty function, 270
planarity, 268, 295
preservation, 292
relaxation method, 275, 292
restoration, 276
‘shake’ method, 275, 276
statistical mechanics, 268
tolerance, 276–278, 292

coordinate frame
body-fixed, 202, 204, 205, 207, 299
principal-axes, 233
space-fixed, 204, 207, 232–234, 238, 299, 308,

309
transformation, 207, 297

coordinates
angular, 200
cartesian, 45, 200, 307
center of charge, 360
chronological listing, 83
constraint adjustment, 269, 275
generalized, 45
initial, 67
integration, 18
internal, 296
periodic wraparound adjustment, 17, 457
physical, 158
rescaling, 156, 161
scaled, 156, 158, 164, 168, 264
spherical, 366
transformation, 164
update, 394, 401

correlation
angular, 328
decay, 124
short-range, 227
structural, 84, 90
time, 86
unwanted, 71

538 Index

correlation function, 136, 151
current, 137
density, 137
space–time, 134, 149
three-body, 84
van Hove, 134, 137

critical
phenomena, 246
point, 89, 153

Crout method, 489
cubic

equation, 491
spline polynomial, 48, 333

current
longitudinal, 136, 137
momentum, 136
particle, 136
particle, Fourier transform, 136
transverse, 136, 137
vector, 136

damping
coefficient, 438, 440
frictional, 438

degree of freedom, 296, 302, 309
dihedral angle, 298
internal, 298, 307
joint, 303
rotation, 296, 298, 309
torsion, 296
translation, 298
vibration, 267

density, 48, 88, 93, 414
chain, 246
coarse-grained, 137
correlation, 134
Fourier transform, 135, 137
gradient, 121
local, 95, 121, 134, 136, 333, 334
local fluctuation, 134
number, 134
packing, 50
solvent, 255
variation, 185

dielectric constant, 244, 355, 358, 389
diffusion, 83, 226

chain, 246
measurement, 125
measurement buffer, 125
measurement buffer, C structure, 128
measurements converge, 124
polymer, 8
rotational, 222, 225, 226
self, 121
true displacement, 122

diffusion coefficient, 120, 121, 125, 131
convergence, 147
Einstein expression, 122–124
Green–Kubo expression, 122
macroscopic, 41
measurement, 147

dihedral angle, 310, 322
computation, 279
definition, 278, 309
degree of freedom, 296
distribution, 287, 292, 293
potential, 279
rotation, 297
torque, 279
value, 307

dilation
equation, 169
rate, 168, 171

dimensionless
number, 419, 420
units, see reduced units

dipole
adjustment, 354
alignment, 355
attached to soft sphere, 349
Ewald method, 356
interaction, 347
molecular, 225
moment, 355
orientation, 356

distributed computation, see parallel processing
DOF, see degree of freedom
dynamic similarity, 420
dynamics

constant-temperature, 190
Newtonian, 62
non-Newtonian, 177, 267

electron
cloud overlap, 12, 47
local density, 332

electrostatics, 365
energy

bulk cohesive, 335
conservation, 18, 19, 34, 48, 60, 67, 75, 210, 232,

243, 292, 322, 422
dissipation, 416
drift, 40, 72, 149, 292, 322
fluctuation, 74
measurement, 74, 86
vacancy formation, 333, 335

ensemble
alternatives, 153
average, 5
canonical, 5, 6, 87, 90, 153, 155, 166, 418
changing, 154
constant-temperature, 6
isothermal–isobaric, 153, 156, 158, 170
microcanonical, 6, 84, 87, 153
statistical mechanical, 8

enthalpy, 124
equation of motion, 14, 154, 165, 168, 195, 197, 271

constrained, 166, 271
dipole vector, 349
first-order, 46, 63, 191, 211, 349
linked chain, 303
numerical solution, 4

Index 539

quaternion, 204
rotation matrix, 232
second-order, 63, 160, 209, 211, 349
thermostatted, 190

equation of state, 88
equilibration, 18, 35, 71, 73, 76, 81, 128, 243, 357
equilibrium, 153, 165, 176, 195

average, 5, 158, 170
convergence, 76
relaxation, 35
slow relaxation, 8
thermal, 1, 19, 35, 83, 121

ergodic hypothesis, 5, 83
error

analytical evaluation, 94
correlated samples, 85
estimate, 255
finite-size effects, 85
interaction cutoff, 85
local, 18, 60, 62
numerical, 19, 40, 60, 72, 210, 211, 391
phase space sampling, 85
software, 34
statistical, 85
truncation, 61, 122, 275, 345, 347

Euler, 4
angles, 199–202
angles, ambiguous, 201
angles, numerically unstable, 203
equation, 204, 212

event, 401, 403, 422, 425
calendar, 394, 395, 401–404
cell crossing, 394, 395, 398, 399, 403, 404, 423
collision, 392–394, 397, 399, 403, 404, 408, 414
collision type, 393, 415
discrete, 391
future, 393, 394, 398
initialization, 410
measurement, 402–404
next, 408
node, 404, 407
prediction, 399
processing, 396
random, 405
rare, 3
type, 396
wall collision, 423

Ewald method, 344, 345, 386
accuracy, 347, 356
charges, 346
computational effort, 347
conditional convergence, 346, 347
convergence factor, 346
dipoles, 347
invariance, 347
sum over octant, 347
surrounding medium, 347
vacuum, 347

expansion
local, 370, 372, 373, 380, 381

multipole, 47, 344, 345, 365, 368–370, 372, 373,
379, 380, 386

multipole, convergence, 367, 369
multipole, monopole term, 365
Taylor, 61, 62
truncated multipole, 369
two-center multipole, 366

experimental design, 85
extended system

variable region shape, 164
variable timescale, 155
variable volume, 168

fast-multipole method, 365
accuracy, 386
C structures, 373
cell traversal, 371
coefficient generation, 374
coefficient transformation, 365
expansion conversion, 370
force evaluation, 376
operations, 369
product expansions, 375
shift origin, 369, 370
summary of algorithm, 372
timing, 386
triangular coefficient array, 373

feedback
control, 165
equation, 160
mechanism, 153
negative, 156
pressure control, 156, 160
temperature control, 154–156
timescale, 162

FFT, see Fourier, fast transform
Fick’s law, 121
field

fictitious, 195
scalar, 134, 507
vector, 134, 507

file
binary, 425, 499, 502
checkpoint, 494, 500
header, 504
input data, 33, 34, 517
naming convention, 501
output data, 142, 498, 499
program source, 20, 487, 517
random access, 499
snapshot configuration, 98

finite-size
dependence, 89, 359
effects, 7, 17, 89, 361
system, 96, 122

flow
analysis, 180, 425
analytic results, 178
analytic results, fit, 185
boundary layer, 8
coarse-grained averaging, 190

540 Index

flow (cont.)
convection, 419, 428
cooling, 430
Couette, 177, 189
display, 427
drive mechanism, 430
driving field, 179
eddies, 420, 434
fluctuation, 190
heat, 177, 185, 196
instability onset, 420
laminar, 8, 420
local, 190, 191, 193
mass, 121, 177
no overall, 18
nonslip, 178
obstructed, 419, 429
pattern, 419, 433, 434
pipe, 435
Poiseuille, 177, 178, 188, 430
polymer, 435
rate, 179
recirculating, 429
sheared, 189–191, 430
sheared, initial impulse, 190
steady, 184
stick–slip, 435
stream function, line integral, 427
streamline, 427, 434
Taylor–Couette, 435
transient, 429, 434
turbulent, 420
velocity measurement, 184
viscous, 177
vortex shedding, 434
vorticity, 507

fluctuation
enhanced, 7, 39
equilibrium, 77
individual results, 418
limits, 76
magnitude, 8
order parameter, 355
reduced by averaging, 35
regulated size, 153
sample, 427
statistical, 78, 85
thermal, 420
thermodynamic, 87
timescale, 358

fluid
binary, 152
continuum dynamics, 120, 121, 136, 190, 419,

429, 435
dipolar, 345, 355
immiscible, 435
isotropic, 90, 136
layer, 177, 419, 430
Lennard-Jones, 89
molecular, 216
monatomic, 44, 93

non-Newtonian, 8
polymer, 453
soft-disk, 34
soft-sphere, 74
three-component, 256

force
across joint, 298
applied, 177, 189
bond angle, 283
bond torsion, 278
bonded atoms, 247
computation, 23, 24, 26, 27, 50, 51, 58, 59, 77,

219, 284, 313, 330, 336, 349, 351, 439, 440,
443, 452, 477

conservative system, 45
constraint, 270
continuous, 13
damping, 437, 438
dihedral angle, 279
dipole, 349
driving, 121, 177, 179, 198
embedded-atom potential, 335
fast-multipole computation, 377
generalized, 46
interatomic, 11
intermolecular, 222, 245, 269, 326
internal, 45
intramolecular, 245, 326
Lennard-Jones, 12
long-range, 17, 344
medium-range, 59
multipole contribution, 383
normal component, 438, 440
orientation-dependent, 47, 343
short-range, 13, 236, 344, 447
soft-sphere, 247
surfactant solution, 256
tangential component, 440
three-body, 327
truncation, 48, 88, 118, 244, 344, 345
velocity-dependent, 437, 439
wall, 237, 238

Fourier
analysis, 134
fast transform, 143, 490
space, 346, 347, 349
transform, 90, 95, 121, 136, 137, 142
transform, windowing function, 142
truncated sum, 346, 347

Fourier’s law, 121, 123, 185
fracture, 343
friction

sign of coefficient, 155
static, 437, 440

frozen mode, 268

Gauss’s principle of least constraint, 165
granular material, 416, 436

asperity, 436
friction, 436
hard sphere, 437

Index 541

Hertz, 437
interaction, 437, 438
model, 437
nonspherical particle, 437
polydispersity, 436
segregation, 445
soft disk, 437
soft sphere, 437
spherical particle, 437

gravity, 178, 419, 420, 422, 440
grid

average, 180
coarse-grained, 137
discrete, 264
flow analysis, 425
profile computation, 182
spacing, 137
subdivision, 180

Hamilton, 4
equation, 44
variational principle, 44, 45, 165

Hamiltonian, 46, 188
conservation, 156, 158
drift, 162
perturbed, 188
physical significance, 156

hard disks, 428
hard nonspherical particles, 417
hard spheres, 78, 146, 392, 397, 411, 420

free-path distribution, 412
gravitational field, 414
inelasticity, 416
polymer chain, 414
rotation, 416
rough, 416

Heapsort method, 493
heat

bath, constant-temperature, 154
conduction equation, 178
current, 131
transfer measurement, 186

hierarchy
cells, 359
method, 344
subdivision, 368

histogram
bin, 91
bond number, 229
computation, 36
dihedral angle, 287
output, 37
pair energy, 228
pair separation, 91
path distribution, 413
velocity, 36, 39

hydrodynamics, microscopic, 418
hydrogen, 267
hydrogen bond, 227, 228

average number, 231
definition, 227, 231

distribution, 231
network, 222

ice
floating, 244
structure, 227

initial lattice
BCC, 69, 249, 250, 286, 291
diamond, 69, 227, 327, 332
FCC, 67, 69, 81, 86, 93, 95, 146, 162, 195, 337,

357, 411
simple cubic, 67, 68, 74, 255, 259, 356, 386, 453
square, 28, 34, 67
triangular, 67, 70, 339

initial state, 7, 9, 240, 248, 259, 266, 286, 323, 358,
414, 428, 431, 453

consistent definition, 211
effect on results, 18, 67, 72, 76
lattice arrangement, 68
preparation, 27
rotational variables, 214
specified by unit cells, 27
stationary center of mass, 18
temperature, 40

initialization, 22, 37, 72, 396
integration method

accuracy compared, 74
Adams–Bashforth, 62
Adams–Moulton, 63
adaptive, 60
Delambre, 61
energy drift, 75
leapfrog, 18, 19, 27, 34, 40, 60, 61, 67, 72, 74, 77,

78, 149, 166, 200, 232, 233, 235, 242, 307,
453, 468

leapfrog, for linked chain, 317
leapfrog, for rotation matrix, 232
multiple-timestep, 59
multistep, 62
Nordsieck, 62
order, 18, 60, 62
predictor–corrector, 60, 62–64, 67, 72, 74, 158,

160, 166, 171, 173, 205, 209, 211, 214
predictor–corrector coefficients, 63, 64
Runge–Kutta, 60, 72
time-reversible, 67, 233
timestep, 4, 15, 18, 19, 21, 25, 34, 35, 54, 55, 60,

62, 74, 122, 180, 221, 232, 236, 268, 269,
307, 357, 391, 449, 494

Verlet, 60, 275
interaction, see also potential

computation, 49
Coulomb, 59, 216, 217, 219, 345
cutoff, 12, 48, 86, 169, 216, 219, 221, 258, 327,

328, 334, 346, 347, 349, 475
cutoff error, 94
electrostatic, 345
four-body, 267
Lennard-Jones, 4, 13, 14, 44, 47, 48, 59, 60, 86,

94, 169, 217, 219, 256, 285, 327, 332, 333,
349

542 Index

interaction (cont.)
long-range, 8, 449
many-body, 326, 332
pair, 47
pair, limitation, 326
range, 17, 48, 49, 53, 54, 164, 259, 334
repulsive part, 48
short-range, 8, 48, 344, 449, 473
spring, 47
stiff, 268, 292, 293
strongly divergent, 67
tetrahedral angle, 328
three-body, 267, 326, 327
two-body, 327
van der Waals, 12

interaction site, 47, 206
C structure, 207
coordinates, 208, 218
force, 206, 217, 219
potential, 216
type, 208
water, 216

interactive
feedback, 508
simulation, 3, 41, 508
visualization, 264

intermediate scattering function, 135, 151
interpolation, 59, 264
ion, 222, 333

Jacobi theta-function, 346

kinematic viscosity, 419
kinematics, 300, 416
kinetic energy, 14, 34, 76, 154, 157, 162, 165, 168,

189, 210, 212, 268, 308, 393, 416
fluctuation, 156

Lagrange, 4
equation, 45, 46, 154, 157, 165, 349
formulation, 44
multiplier, 46, 166, 168, 189, 190, 212, 213, 269,

275
Lagrangian, 45, 154, 155, 157, 164, 168
Langevin equation, 7
Laplacian view, 1, 78
layer method, 474

atom assignment, 479
cells, 452
layer construction, 476
neighbor list, 480
number of layers, 477
reordered data, 474

Legendre function, 366, 367
Lennard-Jones interaction, see interaction,

Lennard-Jones
limit

hydrodynamic, 134
long wavelength, 121

linear response theory, 121, 177, 188, 189
constant-temperature, 190

linked list, 50, 114, 360, 403–405, 470, 474
circular, 101, 404–408, 410
pointer, 50, 114, 360

Liouville
equation, 188
theorem, 188

listing
global variables, 511
structure elements, 509

LJ, see interaction, Lennard-Jones
long wavelength mode, 134
long-range

force, 59
interaction, 359
order, 41, 93, 94, 96, 358
order, measurement, 96

LU decomposition method, 272, 316, 489

macroscopic
context, 414
ensemble choice, 153
resemblance, 420
timescale, 507
world, 136

main program
basic form, 21
cluster analysis, 117
distributed computation, 462
hard-sphere simulation, 395
space–time correlation, 143
Voronoi analysis, 111

many-body problem, 1
mass matrix, 301

inversion, 303
matrix

antisymmetric, 299
block diagonal, 302
columnwise storage, 271
diagonalization, 252
inertia, 308, 312
inverse, 202
inversion, Woodbury formula, 304
product, 235, 488
sparse, 303
symmetric product, 233
triangular, 302
vector product, 209, 312, 482, 489

Maxwell distribution, 35, 39, 71
MD, see molecular dynamics
mean free path, 135, 412, 414, 420
measurement, 405

accuracy, 7
coarse-grained, 185
correlated, 85, 89
error, 20
experimental similarity, 84
grid, 425
laboratory, 153, 222, 506
mean and standard deviation, 32
numerical, 506
overlapped, 125, 126, 137

Index 543

period, 86
reproducible, 4, 77
spatial resolution, 185
spectroscopic, 134, 506
structure, 337
thermodynamic, 19, 31, 39, 84, 506
time-dependent behavior, 120, 126, 257, 420
timing, 77

mechanical joint, 296
membrane, 245
metal, 332, 338
micelle, 8, 256, 257, 261, 263, 264
molecular chaos, 7, 491

microscopic basis, 78
molecular crystal, 200
molecular dynamics, 1, 4, 5, 22, 46, 90, 136, 153,

326, 446, 505, 506
applications, 7, 8
applied to granular material, 416, 436
challenges, 8, 295
classical nature, 7
classification of problems, 8
constant-energy, 189
constant-pressure, 168
constant-temperature, 165, 166, 189, 214, 224,

255, 332, 357, 386
earliest, 391
event-driven, 392, 414, 445
experimental similarity, 84
limitations, 7, 295, 506
nonequilibrium, 176, 195, 198
relation to real world, 8
units, see reduced units

molecule
adjustable size, 239
C structure, 23
center of mass separation, 206, 222
ellipsoidal, 343
flexible, 245, 246, 256, 414
linear, 199, 210
linear, length adjustment, 211
monatomic, 13, 199
nonlinear, 200, 212
orientation, 60, 206, 214, 231, 298, 326
partially rigid, 45, 327
reference orientation, 208, 209
rigid, 199, 200
rodlike, 200
self-assembly, 256
spherical, 48
spherical oil, 256
spherical water, 256
structured, 199
tetrahedral, 200, 236, 239

moment of inertia, 224, 232, 236, 239, 299, 308,
357, 416

momentum, 6, 88, 123, 191, 308, 357, 392
conservation, 15, 31, 34, 84, 154, 166, 196, 210,

287, 361, 364, 416
monomer, 246, 257–259, 262, 266, 269, 270, 296,

309, 317, 319

multipole
coefficient, 376, 378
expansion, see expansion, multipole
moment, 217

namelist, 37, 495
input, 33, 495
macro definition, 495
output, 33, 497

Navier–Stokes equation, 121, 122, 178
neighbor list

cell size, 258
interaction computation, 58
interaction type, 258
method, 54, 55, 66, 77, 179, 216, 237, 258, 262,

285, 385, 386, 430, 439, 450, 452, 468, 486
overflow, 59
pointer, 328
refresh, 56, 57, 77
representation, 55, 328
shell size, 77
storage, 56

Newton, 4
second law, 13, 44, 45
third law, 13, 364

Newton–Raphson method, 170, 172
node

C structure, 405
cell crossing event, 405
circular list, 404
collision event, 405
deletion, 404, 408
descendant, 404
event, 404, 407
insertion, 407
parent, 404
pointer, 360, 403–405
pool, 404, 405, 407, 410
tree, 360

numerical
double precision, 23
instability, 35, 75
precision, 23, 61, 74, 78, 264, 391, 425, 499
single precision, 23

obstacle, 419, 430, 434
boundary, 430, 433
region, 430
shape, 431
sheared flow, 430

Occam’s razor, 2, 3
oct-tree, 359, 360
orientational order, 355

concentric shells, 356
long-range, 118, 355
short-range, 355, 357

oxygen, 216

pair distribution function, 90
parallel processing, 446, 447, 450

adjacent subregion, 450

544 Index

parallel processing (cont.)
barrier, 457
boss processor, 455
broadcast communication, 455
communication, 453
communication functions, 450, 465, 467
communication functions, generic, 465
communication network, 448
communication network topology, 448
communication organization, 457
communication overhead, 447–449
copying atom data, 451
data buffer, 463
data repacking, 460
deadlock, 457
message buffer, 459
message packing, 459
message passing, 446, 448, 452, 457, 459, 467
message unpacking, 459
message-passing software, 450, 462
message-passing software, MPI, 465
message-passing software, PVM, 465
message-passing software, standard, 465
moving atom data, 449, 450
MPI functions, 465, 467
MPI initialization, 465
neighboring processor, 459
network hardware, 448
operations, 454
overlapped data transfer, 459
partitioning, 447, 448
processor responsible for subregion, 450
slave processor, 455
subregion, 449, 450, 452, 453, 457, 460
subregion limits, 463
synchronization, 455, 457
unsynchronized, 469

partition function, 2, 90, 155, 174
PC, see integration method, predictor–corrector
peak

Brillouin, 136
Rayleigh, 136

percolation theory, 118, 119
performance

benefits, 472
compromise, 359
computer, 506
floating-point, 473
impact on, 386, 447, 474
improvement, 27, 59, 77, 404
linear scaling, 450
near-optimal, 488
satisfactory, 448
scaling, 468
supercomputer, 473
theoretical, 77, 403

perturbation, 4, 7, 121, 188, 189, 417
phase space, 6

distribution function, 188
integral, 5, 6
sampling, 18

phase transition, 7, 48, 164
melting, 118, 175, 327

plot
arrow, 507
contour, 265, 427, 428, 507
isosurface, 264
surface, 507

polymer, 8, 245
alkane model, 267
basic models, 246
bead necklace, 414
branched, 295
chain, 116, 246, 247, 251, 278, 296
configuration, 246, 251
connectivity, 278
constraint, 267
crankshaft motion, 278
eigenvalue ratios, 252
end-to-end distance, 251, 252
entanglement, 246
excluded volume, 246
hard-sphere chain, 414
initial state, 255
internal motion, 267
labeling, 278
liquid, 266
mass distribution, 251
mass distribution eigenvalue, 252
nonspherical mass distribution, 252
properties, 246, 253, 255
radius of gyration, 251, 252
reptation, 266
ring, 269, 295
stiffness, 247
timescale, 246, 507
topology, 245, 270
tree, 269

potential, see also interaction
barrier, 282, 391
barrier, crossing, 295
bond angle, 268, 284
bond length, 268
characteristics, 11
classical, 506
continuous, 8, 122, 391
discontinuous, 48
effective, 47, 326
embedded-atom, 326, 333, 335, 337, 338
embedded-atom, weighting function, 333, 334
generic, 47
pair, density-independent, 332
soft-sphere, 12
square-well, 391, 393, 414
step, 8, 391, 392
Stockmayer, 349
strongly repulsive, 122
tabulated, 59
torsion, 279, 281, 307, 320

potential energy, 5, 12, 14, 24, 35, 45, 84, 94, 313,
323, 347, 452, 469

Prandtl number, 419

Index 545

pressure
adjustment, 172
controlled, 156, 164
difference, 179
drift, 170, 174
external, 164
feedback mechanism, 157
feedback, piston mass, 157
fluctuation, 88
measurement, 88, 162
tensor, 131, 165, 190
virial, 19, 88
wave, 157

programming
argument, 21, 29, 33
array allocation, 21, 22, 30, 50, 56, 111, 116, 128,

131, 132, 141, 274, 320, 330, 353, 363, 377,
402, 463, 472, 476, 487, 488

array overflow, 99, 111, 475
array pointer, 30
C language, 20
C structure, 30
clamped index, 229
compiler, 30
data error, 496
data scaling, 425
debugging, 507
documentation, 33, 496
efficiency, 20, 53, 329, 361, 403, 446, 447, 468,

488
error, 34, 100, 481
error code, 57, 494
error reporting, 494
floating-point computation, 59
floating-point rounding, 78
floating-point variable, 23, 499, 504
Fortran, 20, 33
Fortran namelist, 495
function library, 33, 496, 517
global variable, 22, 29, 110, 452, 511
GNU, 549
GNU C compiler, 77, 517
header file, 504
input data, 9, 21, 34, 495, 497
library functions, 143
Linux, 549
local variable, 20, 452
macro definition, 20, 24, 33, 450, 465, 481
nested loops, 54, 375, 474, 476
no namelist in C, 495
numerical overflow, 327
obfuscated code, 20
optimization, 77
organization, 21
output data, 9, 33, 34
pointer, 374
portability, 467
postprocessing, 98
private array, 472
program format, 20
real variable, 23, 504

rounding error, 32
run termination, 23, 494
safe, 23, 25, 57, 75, 100, 101, 111, 173, 248, 278,

459
shell script, 517, 518
signal, 494
storage limitation, 60
style, 20, 23, 446
thread function library, 472
type casting, 30
typing error, 26
Unix, 21, 487, 494, 517
user interface, 41, 508
utility functions, 488
variables, naming convention, 20
vectorization, 446, 447, 473, 474, 480
vectorized gather and scatter, 474

projectile, 338, 340, 342
protein, 295

folding, 8, 246
proton, 216

quantum mechanics, 1, 5, 11, 12, 46, 47, 199, 227,
267, 268, 327, 505, 508

quaternion, 202, 203, 214, 232, 243
acceleration, 204, 206
benefits, 202
C structure, 205, 484
equation of motion, 204, 213
formal treatment, 202
Hamilton, 199
normalization, 201, 210
relation to Euler angles, 201

radial distribution function, 90, 91, 94, 96, 356
butane, 292
chain fluid, 287
charge fluid, 386
concentric shells of atoms, 93
cumulative distribution, 388
dipole fluid, 357
discretized histogram, 91
embedded-atom fluid, 337
hard-sphere, 402, 411
peaks, 93
range, 91, 225
related to structure factor, 90
silicon, 332
site–site, 222
soft-sphere, 93, 411
water, 225

random
arrangement, 67
array, 97
charge, 385
coordinates, 71
displacement, 84
event, 405
initial seed, 37, 323, 343, 492
location, 259
number, 37

546 Index

random (cont.)
number generation, 491
orientation, 214, 356
position, 356
uniformly distributed values, 71
unit vector, 28, 71, 492
velocity, 178, 340, 422, 429

Rayleigh number, 419
RDF, see radial distribution function
reaction-field method, 390
reciprocal lattice vector, 95
recursion relation

linked chain, 301, 306, 314
multiple-angle, 138, 351
multipole coefficients, 366, 367
multipole force coefficients, 367

reduced units, 15, 134, 335, 395
alkane, 287
argon, 15
length, mass, energy, 13
Lennard-Jones, 13
reasons for use, 13
silicon, 327
temperature, 15
water, 218, 219, 221

region
complex shape, 17
convex, 17
cube, 137, 159
hexagon, 17
mapped to torus, 16
sheared cube, 17
size fluctuation, 162
space-filling copies, 16
square, 420
truncated octahedron, 17

relativity, 5
Reynolds number, 419
rheology, 8, 120, 246, 418
rigid body

coordinate frame, 299
dynamics, 199, 202
linear, 210
motion, 200
rotation, 204
rotation matrix representation, 232

robot, 302
dynamics, 296

rotation matrix, 200, 202, 207, 225, 232–234, 236,
241–243, 297, 309

equation of motion, 232, 233, 317
noncommuting, 233

roughness, 178

sample
correlation, 124
overlapping, 124, 128
uncorrelated, 84

scattering
neutron, 134
x-ray, 90, 94

semiclassical correction, 5

shear viscosity, 120, 122, 131, 176, 179, 190
Green–Kubo expression, 123
measurement, 184, 195
Newtonian definition, 121

shear wave, 151
silicon, 332

crystalline state, 327
potential, 327

simulation region, 49, 59, 91, 156, 164, 179, 344,
394, 459

snapshot
clusters, 113
configuration, 394
configuration file, 98, 111, 263, 264, 426, 498,

501
coordinates, 444
flow, 434
grid measurement, 425
helical chain, 323
interval, 98
size, 499
surfactant structure, 257
time-averaged, 427
wave pattern, 445

soft disks, 48
system, 430, 433

soft spheres, 48
atom, 349
potential, 12, 14, 74, 86, 169, 237, 246, 256, 307,

386, 437
simulation, 450
solvent, 246
system, 12, 77, 183, 468, 473

solar system, 1
solidification, 96
solute, 260, 266
solvent, 249, 255, 260, 285, 286, 307
sorting, 100, 493
sound wave, 152, 507

attenuated, 17
spatial operator, 302
spatial organization, 97
spatial vector, 300, 302

six-component, 299
specific heat, 87
spherical average, 90, 137
state

closely packed solid, 327
crystalline, 97, 164, 343
glassy, 8
hexatic phase, 118
liquid, 7, 95, 227, 244, 355
metastable, 76, 429
nematic, 343

statistical analysis, 85
statistical mechanics, 1, 5, 39, 78, 83, 84, 121, 153,

176, 418
stress, 175, 507
structure

formation, 263
local, 94, 96
spatial, 256, 263, 427

Index 547

structure factor
dynamic, 135, 136, 151
static, 90, 135

surfactant, 245, 256, 257, 262, 264
susceptibility, generalized, 121
system

finite, 15
homogeneous, 16, 90, 177, 196
inhomogeneous, 84, 177, 188, 391, 418
isolated, 8, 418
isotropic, 90, 137
macroscopic, 15
mesoscopic, 506
microscopic, 153, 420
nonequilibrium, 121, 177
nonstationary, 84
open, 8, 418
replicated, 191, 345, 347

target, 338, 340
temperature, 5, 18, 28, 34, 35, 39, 40, 72, 156, 178,

185, 190, 193, 319, 321, 323
adjustment, 72, 172, 214, 242, 354
average, 72
controlled, 154
drift, 73, 167, 224, 357
flow velocity removed, 157, 190
fluctuation, 40, 86, 156
gradient, 391, 419
measurement, 184, 187
microscopic definition, 190
profile, 178
unit, 14

tensor
inertia, 204, 252, 308
metric, 164
stress, 123

thermal
boundary layer, 188
conduction, 123
convection, 123, 419, 435
diffusivity, 136, 419
expansion coefficient, 419
gradient, 121

thermal conductivity, 120, 124, 131, 176, 179, 185,
195

Green–Kubo expression, 124
measurement, 184, 198

thermostat, 165, 166, 178, 189, 190, 193, 196, 198,
242, 295, 418

time
associated with atom, 394
integral, 45
offset, 138
rescaling, 154
scaled, 154, 157
transformation, 155

torque, 200, 204–206, 210, 233, 238, 299, 302, 307,
313

across joint, 298
trajectory

accuracy, 60, 122

atomic, 44
average, 83
ballistic, 41
display, 41
divergence, 81
linear, 391
Newtonian, 177
parabolic, 420
perturbation, 79
phase space, 44
sensitivity, 34, 72, 78, 146
unstable, 4
wealth of detail, 83

transport coefficient, 120–122, 124, 129, 149, 177,
185, 189

hard-sphere, 402
macroscopic, 121
reduced units, 152

trapezoidal integration, 130, 491
tree, 360, 362, 386, 404, 405, 407, 408

adaptive technique, 344
balanced, 404
binary, 403
binary, theoretical performance, 404
construction, 361
pointer rearrangement, 409
structure, 297

tree-code, 365, 368
trigonometric function, 202, 234, 351

variance, 85, 86, 89
convergence, 89, 359
plateau, 86
underestimated, 85

vector
algebra, 24, 279, 307
C structure, 24, 26, 481, 483
C structure, array conversion, 311
cross product, 110, 299, 482, 483
floating-point, C structure, 23, 481
integer, C structure, 481
quantity, 23
scalar product, 25, 482

velocity
adjustment, 18, 72
adjustment, stochastic mechanism, 154
angular, 202, 214, 232
autocorrelation function integral, 122,

128
correlation, 122
distribution, 35, 37
generalized, 45
gradient, 120
initial, 28, 71
initial adjustment, 18, 28, 320
initial distribution, 38
initial random, 18, 28
integration, 18
maximum, 55
perturbation, 81
profile, 178
rescaling, 35, 40, 72, 161, 167

548 Index

velocity (cont.)
scaled, 162, 320, 341
transverse, 438

vibrating layer, 436
amplitude, 441
frequency, 441
preferred wavelength, 445
wave pattern, 445

virial, 19, 51, 88, 222, 452
computation, 26
impulsive limit, 402

visualization, 42, 257, 264, 342, 443,
507

volume
isotropic change, 156, 165
variable, 156

Voronoi analysis, 111, 117
algorithm, 99
bisecting plane, 98, 103
Dirichlet, 97
geometrical properties, 97
initial tetrahedron, 98, 101
initialization, 101
polyhedron construction, 98, 99
polyhedron geometrical properties, 108
polyhedron volume, 109
random points, 112
soft-sphere system, 112

subdivision, 97, 98
volume check, 112

wall
atom arrangement, 178
collision, 424
constant-temperature, 186
corrugation, 422, 424
interaction, 237
rough, 177, 178, 422
sliding, 191, 198
slip, 185
smooth, 422
stochastic, 178
structure, 198
temperature, 178, 180, 185
thermal reservoir, 422

water, 199, 216, 222, 236, 327
density maximum, 244
diffusion, 227
dipole autocorrelation, 227
hydrogen bond, 227
pair-energy distribution, 228, 230
polarizability, 244
potential energy, 219
radial distribution function, 225
tetrahedral structure, 225
TIP4P model, 216

