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Preface

The objective of this text is easy to state, and it is to investigate ways to use
a computer to solve various mathematical problems. One of the challenges
for those learning this material is that it involves a nonlinear combination of
mathematical analysis and nitty-gritty computer programming. Texts vary
considerably in how they balance these two aspects of the subject. You can see
this in the brief history of the subject given in Figure 1 (which is an example
of what is called an ngram plot). According to this plot, the earlier books
concentrated more on the analysis (theory). In the early 1970s this changed,
and there was more of an emphasis on methods (which generally means much
less theory), and these continue to dominate the area today. However, the
1980s saw the advent of scientific computing books, which combine theory
and programming, and you can see a subsequent decline in the other two
types of books when this occurred. This text falls within this latter group.
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Figure 1 Historical record according to Google. The values are the number of in-
stances that the expression appeared in a published book in the respective year,
expressed as a percentage for that year, times 105 [Michel et al., 2011].
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There are two important threads running through the text. One concerns
understanding the mathematical problem that is being solved. As an exam-
ple, when using Newton’s method to solve f(z) = 0, the usual statement
is that it will work if you guess a starting value close to the solution. It is
important to know how to determine good starting points and, perhaps even
more importantly, whether the problem being solved even has a solution.
Consequently, when deriving Newton’s method, and others like it, an effort
is made to explain how to fairly easily answer these questions.

The second theme is the importance in scientific computing of having a
solid grasp of the theory underlying the methods being used. A computer
has the unfortunate ability to produce answers even if the methods used
to find the solution are completely wrong. Consequently, it is essential to
have an understanding of how the method works and how the error in the
computation depends on the method being used.

Needless to say, it is also important to be able to code these methods and
in the process be able to adapt them to the particular problem being solved.
There is considerable room for interpretation on what this means. To explain,
in terms of computing languages, the current favorites are MATLAB and
Python. Using the commands they provide, a text such as this one becomes
more of a user’s manual, reducing the entire book down to a few commands.
For example, with MATLAB, this book (as well as most others in this area)
can be replaced with the following commands:

Chapter 1: eps

Chapter 2: fzero(@f,x0)
Chapter 3: A\b

Chapter 4: eig(4)

Chapter 5: polyfit(x,y,n)
Chapter 6: integral(@f,a,b)
Chapter 7:  ode45(@f,tspan,y0)
Chapter 8: fminsearch(@fun,x0)
Chapter 9:  svd(A)

Certainly this statement qualifies as hyperbole, and, as an example, Chap-
ters 4 and 5 should probably have two commands listed. The other extreme
is to write all of the methods from scratch, something that was expected of
students in the early days of computing. In the end, the level of coding de-
pends on what the learning outcomes are for the course and the background
and computing prerequisites required for the course.

Many of the topics included are typical of what are found in an upper-
division scientific computing course. There are also notable additions. This
includes material related to data analysis, as well as variational methods
and derivative-free minimization methods. Moreover, there are differences
related to emphasis. An example here concerns the preeminent role matrix
factorizations play in numerical linear algebra, and this is made evident in
the development of the material.
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Figure 2 The number of references in this book, after 1950, as a function of the year
they were published.

The coverage of any particular topic is not exhaustive, but intended to
introduce the basic ideas. For this reason, numerous references are provided
for those who might be interested in further study, and many of these are
from the current research literature. To quantify this statement, a code was
written that reads the tez.bbl file containing the references for this text and
then uses MATLAB to plot the number as a function of the year published.
The result is Figure 2, and it shows that approximately half of the references
were published in the last ten years. By the way, in terms of data generation
and plotting, Figure 1 was produced by writing a code which reads the html
source code for the ngram web page and then uses MATLAB to produce the
plot.

The MATLAB codes used to produce almost every figure, and table with
numerical output, in this text are available from the author’s web site as
well as from SpringerLink. In other words, the MATLAB codes for all of the
methods considered, and the examples used, are available. These can be used
as a learning tool. This also goes to the importance in computational-based
research, and education, of providing open source to guarantee the correctness
and reproducibility of the work. Some interesting comments on this can be
found in Morin et al. [2012] and Peng [2011].

The prerequisites depend on which chapters are covered, but the typical
two-year lower-division mathematics program (consisting of calculus, matrix
algebra, and differential equations) should be sufficient for the entire text.
However, one topic plays an oversized role in this subject, and this is Taylor’s
theorem. This also tends to be the topic that students had the most trouble
with in calculus. For this reason, an appendix is included that reviews some
of the more pertinent aspects of Taylor’s theorem. It should also be pointed
out that there are numerous theorems in the text, as well as an outline of
the proof for many of them. These should be read with care because they
contain information that is useful when testing the code that implements the
respective method (i.e., they provide one of the essential ways we will have
to make sure the computed results are actually correct).
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Chapter 1
Introduction to Scientific Computing

This chapter provides a brief introduction to the floating-point number
system used in most scientific and engineering applications. A few examples
are given in the next section illustrating some of the challenges using finite
precision arithmetic, but it is worth quoting Donald Knuth to get things
started. If you are unfamiliar with him, he was instrumental in the develop-
ment of the analysis of algorithms, and is the creator of TeX. Anyway, here
are the relevant quotes [Knuth, 1997]:

“We don’t know how much of the computer’s answers to believe. Novice com-
puter users solve this problem by implicitly trusting in the computer as an
infallible authority; they tend to believe that all digits of a printed answer
are significant. Disillusioned computer users have just the opposite approach;
they are constantly afraid that their answers are almost meaningless.”

“every well-rounded programmer ought to have a knowledge of what goes on
during the elementary steps of floating point arithmetic. This subject is not
at all as trivial as most people think, and it involves a surprising amount of
interesting information.”

One of the objectives in what follows is to help you from becoming disil-
lusioned by identifying where problems can occur, and also to provide an
appreciation for the difficulty of floating-point computation.

1.1 Unexpected Results

What follows are examples where the computed results are not what is exp-
ected. The reason for the problem is the same for each example. Namely,
the finite precision arithmetic use by the computer generates errors that are

(© Springer International Publishing Switzerland 2016 1
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,

Texts in Computational Science and Engineering 13,

DOI 10.1007/978-3-319-30256-0 1



2 1 Introduction to Scientific Computing

significant enough that they affect the final result. Note that the calculations
to follow are from MATLAB, but the same, or similar, results are expected for
any system using double precision arithmetic (this is defined in Section 1.2).

Example 1

Consider adding a series from largest to smallest

1 1 1
Sn)=1 1.1
() =1+, + L+ (1)

s(n)=+ —|—~-~+;+1. (1.2)

According to the usual rules of arithmetic these are equal. However, this
does not necessarily happen when the sums are calculated with a computer.
If one calculates s(n) and S(n), and then calculates the difference S(n)—s(n),
the values given in Table 1.1 are obtained. It is evident that for larger values
of n, the two sums differ. The first question is why this happens, but there
are other questions as well. For example, assuming both are incorrect, is it
possible to determine which sum is closer to the exact result? H

Example 2

Consider the function
y=(z—1)>% (1.3)

If one expands this, the following is obtained

y=a® — 8z +282° — 562° 4 702" — 562° + 282 — 8x + 1. (1.4)
n S(n) — s(n)
10 0
100 —8.88e—16
1,000 2.66e—15
10,000 —3.73e—14
100,000 —7.28e—14

1,000,000 —7.83e—13

Table 1.1 Difference in partial sums for the harmonic series considered in Example 1.
Note that —8.9e—16 = —8.9 x 10~ 16.
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Figure 1.1 Plots of (1.4) and (1.3). Upper graph: the interval is 0.9 < z < 1.1, and
the two functions are so close that the curves are indistinguishable. Lower graph: the
interval is 0.98 < 2 < 1.02, and now they are not so close.

The expressions in (1.4) and (1.3) are equal and, given a value of z, either
should be able to be used to evaluate the function. However, when evaluat-
ing them with a computer they do not necessarily produce the same values
and that is shown in Figure 1.1. In the upper graph they do appear to agree,
but that is certainly not true in the lower graph. The situation is even worse
than the fact that the graphs differ. First, according to (1.3), y is never neg-
ative but according to the computer (1.4) violates this condition. Second,
according to (1.3), y is symmetric about = 1 but the computer claims (1.4)
is not. A

Example 3

As a third example, consider the function

164+k—4
_ V16 k -4 (1.5)
k
This is plotted in Figure 1.2. According to I’Hospital’s rule
I 1
iy =g

The computer agrees with this result for k& down to about 10~'2 but for
smaller values of k there is a problem. First, the function starts to oscillate
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Figure 1.2 Plot of (1.5).

and then, after k drops a little below 1074, the computer decides that y = 0.
It is also worth pointing out that ratios as in (1.5) arise in formulas for the
numerical evaluation of derivatives, and this is the subject of Section 7.2. In
particular, (1.5) comes from an approximation used to evaluate f/(0), where
flx)=v16+2z. 1

Example 4

The final example concerns evaluating trigonometric functions, specifically,
sin(x). It is well-known that if n is an integer, then sin(nm) = 0. The integers
of interest here are of the form n = 2¥ + 1, where k is a positive integer.
Using MATLAB one finds that if & = 52 then sin(nm) = —0.3021, while if
k = 53, then sin(nm) = —0.8926. Obviously, neither value is close to zero. To
investigate this further, the absolute value of y = sin((2* + 1)7) is plotted
as a function of k in Figure 1.3. Interestingly, the error grows almost mono-
tonically, eventually getting close to one. It is also worth pointing out that
this result is not limited to MATLAB and as an example, the same curve is
obtained if the valves are computed with Python. B

10°

10716 i L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Figure 1.3 The absolute value of y = sin(nw), where n = 2¥ + 1, as computed by
MATLAB.
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1.2 Floating-Point Number System

The problems illustrated in the above examples are minor compared to the
difficulties that arose in the early days of computing. It was not unusual to
get irreproducible results, in the sense that two different computers would
calculate different answers to the same formula. To help eliminate this, a set
of standards was established that computer manufactures were expected to
comply with. The one of interest here concerns the floating-point system, and
it is based on the IEEE-754 standard set in 1985. It consists of normal floats
(described below), along with zero, + Inf, and NaN.

1.2.1 Normal Floats

Normal (or normalized) floating-point numbers are real numbers that the
computer has the exact value for. The form they are written in is determined
by the binary nature of computer systems. Specifically, they have the form

zp = (+)m x 2%, (1.6)
where b . .
1 2 N—1
m=1+4, + 0t t oy (1.7)

In this representation m, E, and the b;’s have the following properties:

e m: This is the mantissa. The b;’s are either zero or one, and for this reason
1 <m < 2 (see Exercise 1.19).

e [E: This is the exponent and it is an integer that satisfies E,, < E < E);.
For example, for double precision, —1022 < E < 1023. In general, accord-
ing to the IEEE requirements, F,, = —FEyp+1 and Ey = 2M=1_1 where
M is a positive integer.

As defined, a floating-point system requires specification of the two integers
N and M, and from this the normal floats can be determined using (1.6)
and (1.7). Some of the standard choices are listed in Table 1.2. The one of
particular importance for scientific computing is double precision, for which
N =53 and M = 11.

Examples

1
1.3—2+1_(1+2>><2
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In this case, £ = 1, by = 1, and the other b;’s are zero. This means that
x = 3 is a floating-point number. l

1 3
2. —10_—8—2_—<1+22>><2

In this case, £ = 3, by = 1, and the other b;’s are zero. This means that
x = —10 is a floating-point number. l

3. An irrational number is not a normal float. B

It is worth looking at the values of m coming from (1.7). The smallest value
occurs when all of the b;’s are zero, which gives m = 1. The next largest value
occurs when by_1 = 1 and all of the other b;’s are zero. In other words, the
next largest is m = 1 + €, where

1

€= ono1- (1.8)
The next largest value of m occurs when by_o = 1 and all of the other b;’s
are zero, which gives us m = 1+ 1/2¥~2 = 1 4 2¢. This pattern continues,
and one ends up concluding that m = 1,1 +¢,1 4+ 26,1 4+ 3¢,---,1 + Ke,
where K = 2V~1 — 1. If you are curious how the value of K is determined,
you should look at Exercise 1.19. Also, the number ¢ defined above plays
a special role in the floating-point number system and it is called machine
epsilon.

Examples

1. x = 1 is a floating-point number (take m = 1 and E = 0) and the floating-
point number just to the right of x = 1 is 2y = 1 4 ¢, where ¢ is given
in (1.8). W

2. What is the floating-point number just to the left of x =17

Answer: Between z = 1/2 and z = 1 the floats have the form m x 271.
We need the largest value of m, which is m = 1 + Ke. Noticing that
K =¢71 — 1, then the float just to the left of x = 1 is

zp=(1+E"1-1)e)x27!
=(2-¢g)x27!

1
=1—2£. [ |
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Given any nonzero real number, the computer will attempt to approximate
its value with the closest normal float. This requires a rule for rounding, which
is explained in Section 1.2.3, and rules for what happens if the number is too
big or very close to zero, which are explained in Section 1.2.4.

It is possible to have computer programs use multiple floating-point sys-
tems at the same time. For example, in C and FORTRAN you can declare
variables to be either single or double precision (see Table 1.2). However, the
default assumption in scientific computing is that double precision is used
(this is what MATLAB uses).

1.2.2 Machine Epsilon

One floating-point number that plays a critical role in this textbook is known
as machine epsilon. This is designated as ¢, and it is given as

1
€= -1
In the case of double precision, € ~ 2 x 10716, Because of its importance,
most computer systems have a special variable set aside for . For example,
in MATLAB machine epsilon is designated as eps.

Why is € so important? The primary reason is that it is used to determine
the relative accurately of a floating-point number, and this will be explained
below. A related reason is that € can be used to determine the spacing of the
floating-point numbers. To explain, recall that the values for the mantissa are
m=1,1+¢,14+2¢,143¢,---,1+ Ke. As defined in (1.6), the floating-point
numbers between 2 = 1 and = 2 have the form m x 2F, where E = 0.
This means they are a distance € apart. Similarly, the floating-point numbers
between x = 2 and x = 22 are a distance of € x 2 apart, and between x = 22
and x = 23 they are a distance of ¢ x 22 apart. One consequence of this is
that for large values of x the distance between the floats can be huge. For
example, between 210 ~ 1030 and 2'°! ~ 2 x 1030 they are a distance of
e x 2190 ~ 2.8 x 10! apart. The fact that they are so far apart can have
dire consequences for some calculations, and a particular example will be
considered in Section 1.2.6.

There are other normal floats that are occasionally useful enough that they
should be mentioned.

o largest positive: This is s = (1 — ;) x 2Fnm+L
In MATLAB this is denoted as realmax.

o smallest positive: This is x,, = 2Fm.
In MATLAB this is denoted as realmin.
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1.2.3 Rounding

Assuming z is a real number satisfying x,, < |z| < xps then in the computer
this is rounded to a normal float x¢, and the relative error satisfies

o—afl _ e
o] =2

To do this it uses a “round to nearest” rule, which means xs is the closest
float to x. So, for example, in Figure 1.4 if 1 — § < 2 < 1+ 5 (Region II)
then 2y =1, whileif 1+ 5 <2 <1+ % (Region III) then zy = 1 +e¢. In the
case of a tie, it uses a “round to even” rule, where it picks the nearest float
with an even least significant digit.

1.2.4 Nonnormal Floats

To complete the floating-point system, a few additional terms are needed.
The ones most relevant to our objective of numerical computing are described
below.

Zero

It is not possible to represent zero using (1.6), and so it must be included as
a special case. Correspondingly, there is an interval —xg < & < x¢ where any
number in this interval is rounded to x; = 0. The fact that a nonzero number
is rounded to zero is the cause of many problems in numerical computing. For
example, when this is done, an expression such as 1/x has no meaning. The
exact value of xg is not of particular importance, although for MATLAB,
zo ~ 3 x 107324, The reason zo < z,, is that there are additional floats
between zy and x,,, what are called subnormal floats, that are to help reduce
the divide by zero problem.

II 111

| : >
1-¢  1-& 1 1+¢ 1+2¢ T

Figure 1.4 The two floating-point numbers just to the left and right of z = 1. The
dashed lines are located half-way between the floats and any real number between
them is rounded to the floating-point number in that subinterval.
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Inf and NaN

Positive numbers larger than xj; are either rounded to z), if close enough,
or assigned the value of Inf. The latter is a situation known as positive over-
flow. A similar situation occurs for very negative numbers, something called
negative overflow and it produces the value of —Inf. For these situations
when the calculated value is ill-defined, such as 0/0, the floating-point sys-
tem assigns it a value of NaN (Not a Number). Needless-to-say, if you get a
NaN then the calculation must be modified in some way.

Integers

Integers play an important role in programming, and examples include the
counter used in a for or do loop, as well as the indices of a vector or ma-
trix. Not all integers are part of the floating-point system and round-off in
such cases is a problem. To avoid this, most computer systems have a way to
treat integers as integers, where addition and subtraction are done exactly as
long as the integers are not too big. For example, in C you can use the type
declaration int to identify a variable as an integer while in FORTRAN it is
understood that any variable beginning with the letters ¢, j, k, [, m, n is an
integer. MATLAB does the typing automatically and will do integer arith-
metic exactly whenever possible. It is able to do this as long as the values
are less, in absolute value, than about 2°3.

There are aspects of the floating-point system that are not particularly
important for developing the numerical algorithms considered in this text.
For example, a number of textbooks describe the machine representation
of a float, while others consider how the rules for arithmetic are affected
using floats. As examples, if x + y = z then you might wonder if it is
true that xy 4+ yy = zy, or you might wonder if it is always true that
zf+(yr+z5) = (xy+yg)+2zs. For the record, the former is true while the lat-
ter is not. It is interesting to note that the non-associativity of floating-point
addition has generated some difficulty in adapting algorithms to multicore
processors. This is because the order of the numerical operations are affected
by the way the problem is distributed between the cores, which means you
can get different answers depending on how many cores you use. As you might
expect, getting irreproducible results has generated considerable consterna-
tion [Shure, 2009]. To get some insight into how this problem is being solved,
Demmel and Nguyen [2013] or Collange et al. [2015] should be consulted.
For those interested in more detail related to floating-point arithmetic, they
should consult ANSI/IEEE [1985], Goldberg [1991], Overton [2001], or Muller
et al. [2010].
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1.2.5 Flops

All numerical algorithms are judged by their accuracy and how long it takes
to compute the answer. As one estimate of the time, an old favorite is to
determine the flop count, where flop is an acronym for floating-point opera-
tion. To use this, it is necessary to have an appreciation of how long various
operations take. In principle these are easy to determine. As an example, to
determine the computing time for an addition one just writes a code where
this is done N times, where IV is a large integer, and then divides the total
computing time by N. The outcomes of such tests are shown in Table 1.3,
where the times are scaled by how long it takes to do an addition. Note that
the actual times here are very short, with an addition taking approximately
6 x 10~ '%sec. So, a program that involves 1.7 billion additions and multipli-
cation should take less than a second. Because of this, even though z = 3/2
might take five times longer to compute than z = 0.5 % 3, it’s really not
necessary to worry about this (at least in the problems considered in this
text).

A couple of comments need to be made about Table 1.3. First, using these
numbers to accurately predict how long a calculation involving combinations
of floats will take is difficult. Some systems have specialized instruction sets
where certain operations are done in parallel. This includes simple combi-
nations such as a multiply and addition, as well as dot products. A second
comment is more of a question, and it relates to a problem in numerical
computing. Namely, even though a computer provides values for functions
like e” and sinx, just how accurate are these values? Most people who use
computers pay little, if any, attention to this but, as will be explained next,
this is something that is worth knowing about.

Operation MATLAB Time FORTRAN Time
Addition or Subtraction 1 1
Multiplication 1 1
Division 5 12
VT 24 18
sinx 25 33
Inz 50 18
e’ 19 19

z™, for n = 5,10, or 100 134 15, 18, 28

Table 1.3 Approximate relative computing times for various floating-point opera-
tions in MATLAB (R2016a) and FORTRAN (gfortran v5.1.0). Note that they are
normalized by the time it takes to do an addition.
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1.2.6 Functions

Any computer system designed for scientific computing has routines to eval-
uate well-known or often used functions. This includes elementary functions
like v/, transcendental functions like sin(x), e*, and In(x), and special func-
tions like erf(z) and J,(x). To discuss how these fit into a floating-point sys-
tem, these will be written in the generic form of y = f(z). The ideal goal is
that, letting ¥ denote the computed value and assuming that z,,, < |y| <z,

ly — yyl <C.
lyl 2

Unfortunately, this does not apply to the current implementations of the
floating-point system. It turns out that even for the elementary functions,
guaranteeing correct rounding is difficult [Hanrot et al., 2007]. It is so diffi-
cult that it was intentionally left out of the IEEE-754 standard. The revised
standard, TEEE-754 (2008) does consider this problem and makes recommen-
dations for some of the elementary and transcendental functions. Note these
are recommendations, or suggestions, and not requirements.

To illustrate how difficult it is to implement the IEEE-754 (2008) rec-
ommendations, suppose we want to evaluate sin(z) for larger values of z,
say for 2°% < x < 254, In this interval, using double precision, the distance
between the floating-point numbers is €2°% = 2. This means that given z,
the closest floating-point number the computer has for 2 is some number z ¢
in the interval [z — 1,z + 1]. It is very unlikely that the value of sin(xy) is
anywhere near the value of sin(x). This is the reason for the problem seen
in Figure 1.3. To repeat the earlier example, using MATLAB one finds that
sin((2%2 +1)m) = —0.3021, and sin((2%% + 1)7) = —0.8926. This type of error
should be expected with any floating-point system (using double precision).

As illustrated in the above example, the low density of floating-point
numbers for larger values of x makes it very difficult to accurately evalu-
ate functions that oscillate over shorter distances. Fortunately, the situa-
tion for functions which are monotonic, such as exp(z) and In(z), is much
better. Those you might want to investigate some of the challenges related
to accurate function evaluation should consult de Dinechin et al. [2004]
or Muller [2005].

1.3 Arbitrary-Precision Arithmetic

Some applications, such as cryptography, require exact manipulation of ex-
tremely large integers. Because of their length, these integers are not repre-
sentable using double, or even quadruple, precision. This has given rise to
the idea of arbitrary-precision arithmetic, where the limitation is determined
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by the available memory for the computer. The price paid for this is that the
computations are slower, with the computing time increasing fairly quickly
as the size of the integers is increased.

As an example of the type of problem arbitrary-precision arithmetic is used
for, there is the Great Internet Mersenne Prime Search (GIMPS). A Mersenne
prime has the form 2™ — 1, and considerable computing resources have been
invested into finding them. The largest one currently known, which took 39
days to compute, has n = 57,885,161, which results in a prime number with
17,425,170 digits [GIMPS, 2015]. Just printing this number, with 3,100 digits
per page, would take more than twelve times the pages in this text.

There are multiple computational challenges finding large prime numbers.
One example is simply the difficulty of quickly multiplying large integers,
and an illustration of how their binary representations can be used for this
is touched on in Exercise 1.18. Those interested in the computational, and
theoretical, underpinnings of computing primes should consult Crandall and
Pomerance [2010].

1.4 Explaining, and Possibly Fixing,
the Unexpected Results

The problem identified in Example 4, in Section 1.1, was discussed in Sec-
tion 1.2.6. It is also analyzed in more depth in Exercise 1.17. What follows is
a discussion related to the other examples that were presented in Section 1.1.

Example 1

The differences in the two sums are not unexpected when using double pre-
cision arithmetic. Also, the order of the error is consistent with the accuracy

101 ¢ T . .

1012}

1013 L
a:

101 L

0
10.15- i M | i MR | i el i MR

10* 10° 108 107 108
Number of Terms

Error

Figure 1.5 The error in computing the partial sum of the harmonic series using (1.1)
and (1.2).
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n E(n) — c(n) E(n) — s(n)
104 0 3.55 x 10~15
10° 0 1.95 x 10— 14
108 1.78 x 10715 4.97 x 10—14
107 3,55 x 10715 1.10 x 10—13
108 0 4.51 x 10—13

Table 1.4 Comparison between compensated summation, as given in (1.9), and reg-
ular summation. Note FE(n) is the exact result, ¢(n) is the value using compensated
summation, and s(n) is given in (1.2).

obtained for double precision. The question was asked about which sum might
produce the more accurate result. One can argue that it is better to add from
small to big. The reason being that if one starts with the larger terms, and
the sum gets big enough, then the smaller terms are less able to have an affect
on the answer. To check on this, it is necessary to know the exact value, or at
least have an accurate approximate value. This can be found using something
called the digamma function, from which one can show that for larger values
of n,

| 1 1
=1 1 -
I;k n(n+ 1)+ 2(n+1)+0(n2),

where v = 0.5772- - is Euler’s constant. To investigate the accuracy of the
two sums, the errors are shown in Figure 1.5. It is evident that for the most
part, s(n) serves as a more accurate approximation than S(n). It is also seen
that there is also a slow increase in the error for both, but this is not unusual
when such a large number of floating-point calculations are involved (see
Exercise 1.14).

Given the importance of summation in computing, it should not be surpris-
ing that numerous schemes have been devised to produce an accurate sum.
A particularly interesting example is something called compensated summa-
tion. To explain how it works, consider the problem of calculating » " | ;.
The compensated summation procedure is as follows:

let: sum =0 and err =0
loop: for i=1,2,3,---,n
z=x; +err
q = sum (1.9)
sum=gq-+ =z
err =z — (sum — q)

end
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Operation  Floating-Point Result Comments
mantissas for a and b
a, b are aligned for the addition
sf=(a+Db)y due to the fixed number of digits, b2 is lost

sf—a a is removed from the sum

In removing b, the part that

(sf —a)—0 I remains is —bo

Table 1.5 Steps explaining how the error in floating-point addition is estimated for
compensated summation. Adapted from Higham [1993].

The error in computing s(n) when using this procedure, versus just adding
the terms recursively, is given in Table 1.4. The improvement in the accuracy
is dramatic. This happens because the method is based on an estimate of
the error in a floating-point addition, and then compensates for this in the
calculation. To explain, suppose we have two positive real numbers a and b,
with a > b. The sequence of steps involved illustrating how the method works
is given in Table 1.5. What it shows is that the part of b that is dropped in
the addition can be approximated with b — (sy — a). In the loop in (1.9), the
x;’s are added to produce the value of sum. In connection with Table 1.4,
a=sum,b=ux,;, and b—(sy —a) = err. So err is the missing part of z;, and
it’s added back in during the next iteration. This is the reason for setting
z = x; + err. There are variations on this procedure, and also limitations
on its usefulness. Those interested in reading more about this should consult
Demmel and Hida [2004] or Rump et al. [2008]. B

Example 2

The first thing to notice is that the values of the function in the lower plot in
Figure 1.2 are close to machine epsilon. The expanded version of the polyno-
mial is required to take values z = 1 and combine them to produce a value
close to zero. The errors seen here are consistent with arithmetic using dou-
ble precision, and the fact that the values are sometimes negative also is not
surprising.

It is natural to ask, given the expanded version of the polynomial (1.4),
whether it is possible to find an algorithm for it that is not so sensitive to
round-off error. There are procedures for the efficient evaluation of a polyno-
mial, and two examples are Horner’s method and Estrin’s method. To explain
how these work, Horner’s method is based on the following observations:
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asx? + a1z + ag = ag + (a1 + asx)z,
azz® + ax? + a1z + ag = ao + (a1 + (az + azz)x)z,

agzt + azz® + apx? + a1z + ag = ao + (a1 + (a2 + (a3 + ayz)x)T)2.

Higher order polynomials can be factored in a similar manner, and the re-
sulting algorithm for evaluating the nth degree polynomial p(x) = ag+ a1+
ot apx™ is

let: p=an,
loop: for i=1,2,3,---,n
P=CQp—; +P*x
end

This procedure is said to be optimal because it uses the minimum number
of flops to compute p,(x). In particular, it requires 2n adds and multiplies,
while the direct method requires about 3n.

Because of the reduced computing cost, Horner’s method is often used in
library programs for evaluating polynomials. For example, the library rou-
tines that are used by some computers to evaluate tan(z) and atan(z) involve
polynomials of degree 15 and 22 [Harrison et al., 1999], and having this done
as quickly as possible is an important consideration. However, because addi-
tions and multiplications take only 6 x 10710 sec, the speedup using Horner
is not noticeable unless you are evaluating the polynomial at a huge number
of points. The advantage using Horner is that it tends to be less sensitive
to round-off error. To illustrate, using Horner to evaluate the polynomial
n (1.4), the curve shown in Figure 1.6 is obtained. It clearly suffers the same
oscillatory behavior the direct method has, which is shown in Figure 1.1.
However, the amplitude of the oscillations is about half of what is obtained
using the direct method. B

4 X 1014

y-axis

-2 1 1
0.98 0.99 1 1.01 1.02
X-axis

Figure 1.6 Plot of (1.4) when evaluated using Horner’s method, solid (red) curve,
and using (1.3), the dashed (blue) curve.
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Figure 1.7 Plot of (1.10).

Example 3

The function considered was

16+k—4
y= vi6+ , (1.10)
k
and this is replotted in Figure 1.7. The reason for the problems seen in the
graph is the value the computer assigns v/16 + k for small values of k. To
explain, assuming k is small then from Taylor’s theorem

1
V16 4k =4+ 16k+0(k2). (1.11)

In other words, the exact value of /16 4 k is a little larger than 4. The
floating-point numbers just to the right of x = 4 are shown in Figure 1.8.
These are the values the computer has to pick from in this region. So, if
the exact value of v/16 + k falls in Region II, then the computer rounds the
value to 4(1 + ¢). We will concentrate on Region I, which is the interval
4 <z <4(1+ je). In this case the computer will claim that v/16 + k = 4. It
then takes this value, evaluates the numerator in (1.11) and concludes that
y = 0. It is possible to estimate the value of k where the computer starts
claiming that y = 0. This happens when /16 + k = 4(1 + és) From this
and (1.11), we have that k ~ 32e. For double precision, ¢ ~ 2.2 x 10716,
and so the zero solution is produced for k < 7 x 107!%. Note that it is also

II 111
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A(1+3e) T

Figure 1.8 The floating-point numbers just to the right of x = 4. The dashed lines
are located half-way between the floats and any real number between them is rounded
to the floating-point number in that subinterval.
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possible to explain the oscillations in the graph. The vertical drops in the
curve in the vicinity of 107'4 come from the jumps in the computed value of
v/16 + k. For example, the jump just to the right of 1074 occurs because the
value of v/16 + k passes from Region III into Region II (see Figure 1.8). This
means that the computer stops claiming that v/16 + k = 4(1 4 2¢) and starts
claiming that v/16 + k = 4(1 +¢). In Region II, the computer’s evaluation of

y yields
4e

Y= E
As a function of k this produces a hyperbolic curve, and this can be seen in
Figure 1.7 (it is the curve in the immediate vicinity of k = 1071%).

As in the earlier examples, the question arises as to whether it is possible
to evaluate this function and avoid the problems seen in Figure 1.7. It is, and
one possibility is to transform the function by setting z = /16 + &, so (1.10)
becomes

B z—4
Y= 216
1
= . 1.12
z+4 ( )

Using this expression, one obtains y = 0.1250--- no matter how small one
makes k. B

1.5 Error and Accuracy

One of the most important words used in this text is error (and it is used
a lot). There are different types of error that we will often make use of. For
example, if z. is a computed value, and z is the exact value, then

1. | — x| is the error,

= |$|xc| is the relative error (assuming z # 0).
Because the relative error measures the difference relative to the size of z, it
is a better measure of how many significant digits have been computed. To
explain, if |x —xz.|/|z| = 107P, where p is a positive integer, then z. should be
correct to approximately p significant digits. The following examples illustrate
the situation:
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Examples

1. = 1,000,000, z. = 1,000,001
In this case, |z — x| = 1 and |z — z.|/|z| = 107°. Note that the relative
error is reflective of the fact that the computed value agrees to 6 places
with the exact value. B

2. x=10"6, ., =10"% 41010
In this case, | — 2] = 1071 and |z — z.|/|z| = 10~%. Similar to the
last example, the relative error shows that the computed value agrees to
4 places with the exact value. B

Note that the error, as defined above, has a significant flaw, which is that
you need to know the exact solution to calculate it. For this reason, it will
play an important role in the derivation of the numerical methods, and a less
direct role in the implementation of the methods.

One of the problems of not knowing the error is that it can be difficult to
know when to stop a computation. As an example, consider the problem of
calculating the value of

— 7
§=8— Z gn "
n=1

Letting .
7
sk:8—§:gﬂ (1.13)
n=1

one obtains the values shown in Table 1.6. A pattern is developing in the
si’s related to those digits that stop changing as more terms are added. For
example, it appears that s, is correct to 2 digits, s3 is correct to 3 digits, etc.
It is possible to introduce a measure for the improvement in the value seen
in this pattern by using the following:

1. |sg — sk—1]| is the dterative error,

|sk — sk—1]

2.
|5k

is the relative iterative error (assuming si # 0).

The values for these quantities are given in Table 1.6. Similar to before, the
relative iterative error is a more reflective measure for the number of correct
digits in the computed answer.

The iterative error is easily computable, and used extensively in scientific
computing. However, it too has a flaw, which is that just because s; and sg_1
are close together, it does not necessarily follow that s is close to the exact
value. There are various ways you can increase your confidence that sy, is close
to the exact value, and an example would be to require that the computation
continue until the condition that |sy — sk—1] < tol is satisfied for three or
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k Sk Isk — sk—1] |sk — sk—1l/|sl
1 7.125000000000000

2 7.015625000000000 1.1e—01 1.6e—02

3 7.001953125000000 1.4e—02 2.0e—03

4 7.000244140625000 1.7e—03 2.4e—04

5 7.000030517578125 2.1e—04 3.1e—05

6  7.000003814697266 2.7e—05 3.8e—06

Table 1.6 Values of si, which are given in (1.13), as they approach the exact value
of s = 7. Also given are the iterative error and the relative iterative error.

four successive values of k. However, in the end, without some other piece
of information, most numerical solutions have a certain level of uncertainty
related to whether they have produced an accurate value for the solution. It
is because of this that the theoretical underpinning of the method plays an
important role in computing, because it can provide valuable insights into
how the method should work. A consequence of this is that the theory can
provide a tool for checking on whether the method has been implemented
correctly.

1.5.1 Test Cases

The question that comes up with almost any computer code is, how do you
know it is calculating the right answer? A good response to this is: well, we
ran some tests and it worked just great. This requires the ability to find test
cases you know the answer to, and which test the limits of your code. For
some types of problems there are whole libraries of test problems, ones that
are known to be rather difficult. For more run of the mill problems, the usual
approach is to pick a solution and then find what problem it satisfies. It is
that problem you then try your computer code on.

Examples

1. Matrix Equation
Suppose you have written a code to solve matrix equations of the form
Ax = b. In this case, to test if it works, you pick a matrix A, and solution
x, calculate b = Ax, and then use your code to solve Ax = b using this
particular A and b. It is then as easy matter to compare the exact solution
with what the code computes. B
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2. Differential Equation
Suppose you have written a code to solve y”"+y'+y = f(t), where y(0) = a
and y'(0) = b. Instead of trying to find examples by solving the prob-
lem by hand, just pick a smooth function y(t). With this choice, then
f@&) =v"+vy +y,a=1y(0) and b = y'(0). Using this f(t), a, and b in your
code, you then can compare the computed values with the exact result. B

Some care is needed when selecting test problems to make sure they are
computable. As a case in point, for the matrix equation example above, the
matrix should be well conditioned (this is explained in Chapter 3). In the
case of nonlinear problems it is often the case that the solution is not unique,
and it is possible to conclude that your numerical method has failed even
though it has correctly computed a solution you were not aware of.

1.5.2 Over-Computing?

In using a numerical method, the question comes up as to how accurately
to compute the answer. For example, numerical methods are used to solve
problems in mechanics, and one often compares the computed values with
data obtained experimentally. This begs the question, if the data are correct
to only two or three digits, is it really necessary to obtain a numerical solution
that is correct to 15 or 16 digits (the limit for double precision)? It is true
that in many situations you do not need the accuracy provided using double
precision, but this depends on the problem being solved. For example, in
Chapter 3 it will be seen that when solving the matrix equation Ax = b it
is easily possible that 15 or 16 digits are needed just to guarantee that the
computed solution is correct to one or two digits. This loss of accuracy is
associated with what is called an ill-conditioned problem, which means that
the problem tends to magnify small errors. On the other hand, some methods
that will be considered actually try to take advantage of not over-computing
the solution. A particular example is a search method used to find a minimum
of a function, and this is explained in Section 8.7.2.

Exercises

1.1. Find nonzero numbers for « and y so MATLAB calculates z/y to be the
stated result. Also, provide a short explanation why your example does this.
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1.2. Have MATLAB evaluate the following, and provide a plausible explana-

tion for the answer.
(a) 10 * NaN and 0« NaN

(a) What is the minimum possible distance between x and y¢?

(b) What is the maximum possible distance between z; and y?

(¢) How many double precision numbers lie between two consecutive single
precision numbers? You can assume the single precision numbers are both
positive.

1.4. In double precision, what is the distance from 32 to the next largest

floating-point number?

1.5.

(a) Find the largest open interval about x = 16 so all real numbers from the
interval are rounded to zy = 16. That is, find the smallest value of L
and largest value of R with L < 16 < R so any number from the interval
(L, R) is rounded to the floating-point number z; = 16. Assume double
precision is used.

(b) Redo part (a) for = 50, that is, find the interval (L, R) that rounds to
the floating-point number

11 .
rp=50= (14, + ) x2°

1.6. Using compound interest, if an amount «a is invested at an annual interest
r and compounded n times per year then the amount A at the end of one
year is

A:a(l-l—:;)n

It’s not hard to show that the larger the value of n, the larger the amount
at the end of the year. Assume that a = 100 and the interest rate is 1% so
r = 0.01. Also assume there are 365 days in a year. Using MATLAB calculate
A for the following cases:

(a) compounding every hour (so, n = 365 * 24),

(b) compounding every second,

(¢) compounding every millisecond,
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(d) compounding every nanosecond,

(e) compounding every picosecond.

(f) You should find that the values computed in (d) and (e) are incorrect.
The question is why, that is, what causes the floating-point calculation
to produce an incorrect value? Based on this, given a value of r (with
0 < r < 1), at what value of n would you expect an incorrect result to
be computed by MATLAB?

1.7. Consider the ratio

nn—2)(n—4)---2

R= D =3)n—5)---1

where n is even. It is known that if n = 100 then R ~ 12.5645 and if n = 400

then R = 25.0820.

(a) The commands below will, in theory, compute R. Try them and show
that they work if n = 100 but not if n = 400 (for the latter, the first line
must be changed). Explain why this happens.

n = 100

T=1;
fori=2:2:n

T =T %1

end

B =1,
fori=1:2:n-1
B=Bxi;

end

R=T/B

(b) How can R be rewritten so MATLAB can be used to calculate R when
n = 4007 Prove it works by computing the result with MATLAB. Also,
compute R for n = 4,000,000.

1.8. Compute the following. If you must modify the sum(s) in any way to
obtain the answer, explain what you did and why.

1000 g

(a) Y k
P 1+e
1000

cosh(k)
(b) Z 1 + sinh(k)

k=0
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1000 1000
(c) Z V3+ek— Z\/l—l—e”
k=0 n=0
1000 g
e
d k=0
i e

1000

() ; k[sin (w(klo + i)) _sin (w(klo - i))]

1.9. Homer Simpson, in the 1998 episode “The Wizard of Evergreen Ter-

race,” claimed he had a counterexample to Fermat’s Last Theorem, and it

was that 398712 +4365'2 = 44722, This exercise considers whether it is pos-

sible to prove numerically that Homer is correct. Note that another (false)

counterexample appeared in the 1995 episode “Treehouse of Horror VI.”

(a) Calculate 398712 + 436512 — 4472'2. If Homer is right, what should the
answer be?

(b) Calculate (39872 + 4365'2)
the answer be?

(c) Calculate

Y12 4479 1f Homer is right, what should

3987'2 4 4365'7
447212
If Homer is right, what should the answer be?

12
(d) Calculate [(398712 + 4365'2) 1/12} — 447212 If Homer is right, what

should the answer be?

(e) One argument that Homer could make is that (c) is the correct result and
(a) and (b) can be ignored because if they are correct then you should not
get a discrepancy between (a) and (d). Explain why MATLAB cannot
be used to prove whether Homer is right or wrong.

Note: Homer’s blackboard containing the stated formula, along with a
few other gems, can be found in Singh [2013]. It also explains why Homer
appears to have an interest in mathematics and physics.

1.10. The graph of the function

_\/1+:E2—1
- 2

fay="1"

is shown in Figure 1.9 where the values of f(x) were computed using MAT-

LAB.

(a) Approximate v/1 4 22 with a third degree Taylor polynomial expanded
about = 0. Using this approximation, show that

lim f(z) = !

x—0 2 '
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08 T T T T T

X-axis x107

Figure 1.9 A plot of f(z) for Exercise 1.10.

(b) What’s causing the problem in MATLAB and why does the problem
occur for the specific values of x shown. Also, why does MATLAB state
that f(x) = 0 for small values of x?

1.11. The graph of the function

is shown in Figure 1.10.
(a) Approximate e — 1 with a third degree Taylor polynomial expanded
about x = 0. Using this approximation, show that

lim f() =1.

(b) From Figure 1.10 one would conclude that the limit in part (a) is zero.
This is incorrect and what’s causing the problem in MATLAB? Explain
your reasoning and also state why the values of the function drop to zero
near 10716 and not, say, near 4 x 10716,

|
?

X-axis %1018

Figure 1.10 A plot of f(z) for Exercise 1.11.
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k-axis

Figure 1.11 A plot of f(z) for Exercise 1.12.

(c) The curve has jumps in the vicinity of 107¢ and 3 x 107!6. Between
these points what is the equation of the curve seen in Figure 1.10, and
where do the jumps actually take place?

(d) Why are the jumps for x < 0 closer together that those for > 07

1.12. The graph of the function

1 — cos(x)
f(x) = .IQ 9
shown in Figure 1.11, was obtained using MATLAB. It is known that
lim,_o f(z) = 1/2. Why does MATLAB claim the value of this limit is
zero? Also, why does MATLAB start claiming that the value is zero for = at
about 1078

1.13. Let

(a) Approximate In(1 — z) with a third degree Taylor polynomial expanded
about x = 0 Using this approximation, what value should you assign to
£(0)?

(b) Using MATLAB, plot f(z) for =107 < 2 < 107!5. What value does
MATLAB assign to f(x) for « very near zero? The interval where the
function is zero is not symmetric about x = 0. Why? Also, does this also
explain why there are more oscillations on the right (z > 0) than on the
left (x < 0)?

(c) Using MATLAB, plot In(1—x) for —=5x107* < x < 5x107*® . The graph
should resemble steps with the step containing x = 0 corresponding to
the value of In(1) = 0. As z increases from = = 0, what determines the
value of the first nonzero step? How do these steps explain the oscillations
seen in the plot for part (b)?
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1.14. This problem considers the following algorithm

z =12

s=0

for i =1,2,3,--- ,N
s=s+x

end

y=x—s/N

It is assumed N is a prescribed (positive) integer.

(a) What is the exact value for y?

(b) Using MATLAB, if N = 10%, one gets that y ~ 1.4 x 10713 if N = 108,
one gets that y ~ 2.2x107?, and if N = 10!, one gets that y ~ 1.3x1076.
Why is the error getting worse as IV increases? Is there any correlation
between the value of N and the value of y?

(¢) Use compensated summation to compute this result and compare the
values with those given in part (b).

1.15. The polynomial p,(z) = ag+a1x+- - -+ a,z" can be separated into the
sum of two polynomials, one which contains even powers of x and the other
involving odd powers. This problem explores the computational benefits of
this. To make things simple, you can assume n is even, so n = 2m, where m
is a positive integer.

(a) Setting z = 22, find f(2) and g(z) so that p,(z) = f(2) + xg(2).

(b) What is the minimum flop count to compute the expression in part (a)?
Also, explain why it is about half-way between the flop count for the
direct method and the count using Horner’s method.

(c) Evaluate (1.4) using the formula in part (a), and then plot the values
for 0.98 < z < 1.02 (use 1000 points in this interval). In comparison to
the plot obtained using the direct method, does the reduced flop count
reduce the error in the calculation?

1.16. This problem considers the consequences of rounding using double pre-

cision. Assume the “round to nearest” rule is used, and if there is a tie then

the smaller value is picked (this rule for ties is used to make the problem

easier).

(a) For what real numbers z will the computer claim the inequalities 1 <
x < 2 hold?

(b) For what real numbers = will the computer claim z = 47

(c) Suppose it is stated that there is a floating-point number x, that is the
exact solution of 22 — 2 = 0. Why is this not possible? Also, suppose 7 ¢
and zy are the floats to the left and right of V2, respectively. What does
ff — Ty equal?
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1.17. This problem considers the error when evaluating sin z, and the prob-

lem seen in Figure 1.3. It is assumed that x is a given real number that is not

a floating-point number, and zy is its floating-point approximation. Also, £

is the integer so that 28 < z < 2FF! and 2F <z, < 28+L

(a) Use Taylor’s theorem to show that |sinz —sinxy| < |z — zy|.

(b) The point x is between two floating-point numbers Z; and Zs, and either
xy =Ty or &y = Ty. Explain why |z — x| < |Zf — Zr|/2.

(c) Using parts (a) and (b) show that |sinz —sinzy| < 28~

(d) Use the result in part (c) to show that if |x| < L then

1
|sinz —sinzy| < 45L.

(e) When the computer evaluates sinz; it produces a floating-point number
sf. Assuming that |sinzy — sy| < e, show that

1
[sina —ss| < 45(L—|—4).

(f) When using double precision, what interval —L < z < L can you use
and be able to guarantee that |sinz — s¢| < 10787 How does this value
of L compare with the corresponding result obtained from Figure 1.37

1.18. This problem considers ways to compute z™, where n is a positive
integer. This problem arose from trying to explain MATLAB'’s rather large

flop time in Table 1.3 for integer powers.
(a) Compare the total number of flops between computing ™ = x*x - - -xx,

and computing

g Y RY kY if n is even
T lzxyxyx---xy if nis odd,

where y = 22. As examples of the last formula, 2% = y % y * y, while
=z xy*y.

(b) Suppose n = 28. Show that 28 = 24 + 23 + 22 and

2% = <((:1:2)2)2> (@) 5 @)

What is the minimum number of flops required using this formula? Also
explain why 2% + 23 + 22 is the floating-point representation of 28. Note
that this procedure is a version of the square-and-multiply algorithm.

(c) Suppose n = 100, so its floating-point representation is (1+ 5 + ,; ) x 25.
Explain how to use the idea in part (b) to calculate z!%°. How does the
flop count compare with the two methods in part (a)?

(d) Another approach, assuming z is positive, is to write " = e"™?. Based
on the values in Table 1.3, what is the approximate flop time for this?
How does it compare with the flop times found in parts (b) and (c)?

2
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1.19. This problem considers how to determine the largest value of the man-
tissa.

(a) What values of the b;’s in (1.7) produce the largest value of m?

(b) Assuming x # 1, show that

InJrl

=l+a+a>+-+a"+ .
1-2z 1—2z
(c) Use the result from part (b) to show that the value of m from part (a)
can be written as m = 2 — . From this show that the largest value of
the mantissa is m = 1 + K¢, where K =2N-1 — 1.
(d) Use part (c) to explain why the float just to the left of z = 2 is 2 — e.
Also, explain why the float just to the right of © = 2 is 2(1 + ¢).



Chapter 2
Solving A Nonlinear Equation

In this chapter one of the more common mathematical problems is studied,
which is to find the solution, or solutions, of an equation of the form f(z) = 0.
To illustrate the situation, we begin with a few examples.

2.1 Examples

The examples below are separated into physical and mathematical. The
physical ones are typical in the sense that there are multiple parameters
in the problem, and the variable to solve for is not x. It is also not clear if
the parameters in the problem can mess things up, and either cause there to
be no solution or possibly many solutions of the equation. The mathemat-
ical examples, on the other hand, are relatively simple, and the variable to
solve for is always x. The objective in this case is to illustrate some of the
mathematical complications that can arise when solving nonlinear equations.

2.1.1 Physical

1. A sphere falling through the air reaches a terminal velocity v, which is
determined by a balance in the force of gravity and air resistance. From
Newton’s second law, it is possible to show that

2 _ 2myg

v (2.1)

- pAcp’

where A = 7d?/4. In this expression, p is the density of air, m and d are
the mass and diameter of the sphere, and g is the gravitational acceleration
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constant. The term cp is the drag coeflicient, and it accounts for air resis-
tance. It is known by anyone who sticks their arm out of a car window, the
faster you go the greater the air resistance. In other words, c¢p depends
on v. For spheres, from experimental data the following formula has been
proposed [White, 2005]

24 6 2

+ + 2, 2.2
Re 1++vRe 5 (22)

Cp =

where Re = puvd/p is known as the Reynolds number and pu is the (dy-
namic) viscosity of air. If this is substituted into (2.1), you end up with a
rather complicated nonlinear equation to solve to determine the terminal
velocity. One of the goals of this chapter is to derive methods to solve such
equations. For those who might be interested, these methods are used to
calculate the terminal velocity in Exercise 2.19. B

2. The Michaelis-Menten model in biochemistry describes how an enzyme
binds to a substrate and from this forms a new product molecule. The steps
are illustrated in Figure 2.1. Using the law of mass action, and something
called the quasi-steady-state approximation, one finds that the amount of
the substrate S present at time t satisfies the differential equation

dsS U S
= — 2.
dt Ky+S’ (2:3)

where v, and Kj; are positive constants. Solving this, one obtains
Ky ID(S/SQ) + S =8¢ — vmt,

where Sj is the amount at the beginning. So, determining how much of the
substance S is present at any given value of ¢ comes down to solving the
above nonlinear equation for S. This is known as an implicit solution, and
they are very common. Most of the more interesting problems that arise
in science and engineering involve nonlinear differential equations. When
it is possible to find solutions to such problems they are almost always in
implicit form. How the methods developed in this chapter can be used to
find S are explored in Exercise 2.17. B

=
= =>

® @

Figure 2.1 The steps in the Michaelis-Menten mechanism, where an enzyme, E,
assists S in transforming into P [Holmes, 2009].
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Figure 2.2 Plot of the function for Example 1.

2.1.2 Mathematical

1. Solve z® + 2z +2=0.

Setting y = 2% + 2z + 2, then the plot of vy is shown in Figure 2.2. It is
seen that there is a solution of y = 0 between x = —1 and z = —0.5. B

2. Solve 4z = 3 cos(2mx).

It is not hard to sketch y = 4z and y = 3 cos(2wz), and this is done in
Figure 2.3. The solutions of the equation correspond to where these curves
intersect, and it shows that there are three solutions. B

3. Solve z = z® — 2% + 1.

Setting y = 2® — 2* + 1 — z, then the plot of y is shown in Figure 2.4.
What is distinctive about this example is that the solution at = 1 is dif-
ferent than the others considered so far. In particular, the x = 1 solution
is one-sided in the sense that the curve does not change sign as x passes
though z = 1, which is what happens at the solution at x = —1. As will
be seen, our numerical methods will assume the solution is not one-sided. B

4 T T T T T T T
e
. -
2+ 7 -
o -
X 0 -
© -
g L- \/
26 |z —— 3cos(27x) -
. - - - 4x
-4 I L I I I I I
-2 -15 -1 -0.5 0 0.5 1 15 2
x-axis

Figure 2.3 Plot of the two functions for Example 2.
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y-axis
o

X-axis

Figure 2.4 Plot of the function for Example 3.

4. Find where the function F(z) = ze~ attains its maximum value.

This function is plotted in Figure 2.5(upper), and it’s apparent the max-
imum is attained between x = 0.5 and x = 1. There are numerical meth-
ods for finding the location of the maximum (see Chapter 8), but the
approach here is to simply find the points where F’'(x) = 0. The graph of
f(x) = F'(x) is also shown in Figure 2.5. Not unexpectedly, the solutions
of f(x) = 0 include the maximum location but they also include the loca-
tion of the minimum. W

0-5 T T T T T T T
@2
§ o -
w
_0.5 1 1 1 1 1 1 1
- -1.5 -1 -0.5 0 0.5 1 1.5 2
1 T T T T T T
P 0.5+ E
=3
T
-0
-0.5\11/ 1 1 1 \||/
- -1.5 -1 -0.5 0 0.5 1 1.5 2
X-axis

Figure 2.5 Plot of the functions for Example 4. Upper: plot of F(z). Lower: plot of

f(z) = F' ().
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Figure 2.6 Plot of function for Example 4.

5. Solve f(xz) =0, where f(z) is plotted in Figure 2.6.

This function has a couple of complications we will avoid. First, every
point in the interval —1 < z < 0 is a solution. In contrast, there are only
a finite number of solutions in the other examples. Second, the function is
not continuous. To explain why this is a problem, note that the function is
negative at x = 0.5 and is positive at x = 1.5. If the function is continuous,
then we would be guaranteed that there is at least one point in the interval
—0.5 < x < 1.5 where f(x) = 0. For a non-continuous function, like the
one in Figure 2.6, there is no such guarantee. B

2.2 The Problem to Solve

In this chapter we will describe methods for finding a solution & of the equa-
tion f(x) = 0, where f(z) is continuous. Two of the methods considered,
Newton and secant, will include additional assumptions about f(x).

2.3 Bisection Method

The easiest way to explain the steps in the bisection method is to consider
an example, and so suppose we want to solve x> + 2z 4+ 2 = 0. The function
f(z) = 23 + 22 + 2 is plotted in Figure 2.2. The bisection method is based
on a simple observation, which is that if f(a) and f(b) have opposite sign
(so one is positive and the other is negative), then there must be a solution
of f(z) = 0 in the interval @ < x < b. What the bisection method does
is prescribe a systematic method for finding smaller and smaller trapping
intervals.

Step 0: To get things started it is necessary to determine an interval that
contains the solution. In looking at Figure 2.2, we could take —2 < x < 0,
or -1 < x <0,or —2 <z < 2. It doesn’t make much difference which
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one is used, but it is essential that if the interval is ag < z < by then
f(ao)f(bo) < 0. From the Intermediate Value Theorem, this guarantees
that there is at least one solution in the interval. This is illustrated in
Figure 2.7 with —2 <2 <0

y-axis
o

-2 1 |
-2 -1 0
X-axis

Figure 2.7 Graph of the function in Figure 2.2. Using bisection, the first interval
—2 < x < 0 is cut in half and it is determined that the solution is in the right half
-1<z<0.

Step 1: Cut the interval ag < x < by in half and determine which half con-
tains the solution. For example, if our initial interval is —2 < x < 0 then
the midpoint is = —1. Because f(—1)f(0) < 0 it must be that the solu-
tion is in the interval —1 < = < 0 (see Figure 2.8). So, this step has taken
our previous interval (ag,by) and produced a new interval (a1,by) that is
half the length and still contains the solution. To be specific, the length of
this subinterval is ¢; = (by — ao)/2.

2
x L
g0 )
>

1
-2 -1 -5.0 0
x-axis

Figure 2.8 The interval —1 < x < 0 is cut in half and it is determined that the
solution is in the left half —1 < z < —1/2.

Step 2: Cut the interval a; < x < by in half and determine which half contains
the solution. The midpoint of the interval is ¢; = (a1 + b1)/2, and the
half containing the solution is the one in which f(z) changes sign. In
particular, if f(a1)f(c1) < 0 then the new interval is as < x < bs, where
as = a; and b = ¢;. Similarly, if f(b1)f(c1) < 0 then the new interval
is as < x© < be, where ag = c¢; and by = by. In either case, this step has
taken the previous interval (a1,b1) and produced a new interval (ag,bs)
that is half the length and still contains the solution. The length in this
case is fo = £1/2 = (bg — ag)/22. For the example being considered, as
illustrated in Figure 2.9, ¢; = —1/2, and this means that the new interval
is—1l<z<—1/2.
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Figure 2.9 The interval —1 < z < —0.5 is cut in half and it is determined that the
solution is in the left half —1 < x < —0.75.

The next steps continue in a similar manner. Note that in each step it is
possible that the midpoint turns out to be the exact solution, in which case
the calculation is stopped. To summarize the resulting procedure, assuming
the interval (a;—1,b;—1) is known,

letting ¢;—1 = (ai_l + bi_l)/Q
if f(Cifl) = 0, then StOp
else if f(aifl)f(cifl) < 0, then a; = a;—1, bi =ci1 (24)

else a; = Cj—1, bl = bi—l

The length of the new subinterval is ¢; = b; — a;, and given that this is half
of the previous one, it follows that

1
61' = 21. (b - a),
where (a,b) is the initial interval specified in Step 0.

Given that we are trying to find the solution of f(z) = 0, what point do we
use from the subinterval (a;, b;) as the approximation for the solution Z? The
solution could be anywhere in this interval, so the best choice for an approx-
imation for Z is the interval’s midpoint ¢; = (a; + b;)/2 (see Exercise 2.12).
Making this choice, then the error in the approximation satisfies

1

Note that this is a worst-case result, and the actual error will be somewhat
smaller than ééi.

An algorithm for the bisection method is given in Table 2.1. It differs
slightly from the procedure in (2.4) in that the endpoints are not indexed.
Instead, the values of @ and b are simply replaced with the newest values as
the procedure proceeds.

Summarizing the above discussion, we have the following result:



38 2 Solving A Nonlinear Equation

Theorem 2.1. If f € Cla,b], with f(a)f(b) < 0, then the midpoints co,
c1, ca, -+ computed using the bisection method converge to a solution T of
f(z) =0, and the error satisfies

e — 7| < (b—a). (2.6)

- 2'L+1

This theorem is a rarity in scientific computing for two reasons. One, it states
that the method always works as long as f(a)f(b) < 0. Second, it provides an
explicit formula for the error. The latter is useful as it is possible to predict
how many subintervals need to be computed even before the calculation is
undertaken. Specifically, if one wants an error of no more than §, then we
need to take i large enough so that

1

2i+1(b—a)§5.

Solving for 7, the conclusion is that

In((b — a)/3) o)

p > —1
t= + In2

The price paid for the guarantee that the method always works is that it is
slow compared to other methods we will consider. To explain, suppose we
have computed ¢; and the error in this approximation is 1072. If we would
like to improve this and have an error of 1072, we would have to continue

pick: a < b with f(a)f(b) <0
tol >0
let: err=(b—a)/2
loop:  while err > tol
c=(a+b)/2
if f(c) =0, then stop
else if f(a)f(c) <0, thenb=c

else a=c
end
err = (b—a)/2
end

answer: ¢ = (a+b)/2

Table 2.1 Algorithm for solving f(z) = 0 using the bisection method.
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i ¢ lei — |

0 -1 2.29e—01
1 —0.500000000000000 2.71e—01
2 —0.750000000000000 2.09e—02
3 —0.875000000000000 1.04e—01
4 —0.812500000000000 4.16e—02

20 —0.770916938781738 5.83e—08
21 —0.770917415618896 4.19e—07

49 —0.770916997059247 6.66e—16
50 —0.770916997059248 2.22e—16

Table 2.2 Solving 22 + 2z + 2 = 0 using the bisection method given in (2.4). Note
that 2.29e—01 = 2.29 x 107 1.

four more steps and compute c¢;44. The reason is that the error is reduced
by a factor of 2 at each step, so we need to make four additional subdivision
steps to reduce the error by at least a factor of 10. In contrast, for Newton’s
method, which is considered next, it is very possible that in just one step the
error can go from 1072 to 10™%, and in the next step drop to 1078.

Example

If f(x) = 23422 +2, and the initial interval is (—2,0), then the output using
the bisection is shown in Table 2.2. What is also given is the error ¢; = |¢;— |,
where 7 is the exact solution. The latter is also plotted in Figure 2.10. It is no
surprise that the method works, because this is guaranteed by Theorem 2.1.
Also, to have an error of no more than 10715, then according to (2.7) we need
to take ¢ > 50, which is consistent with the results shown in Table 2.1. What
might not be expected is the fact that the error does not necessarily improve
with each step. However, this is easy to explain and it’s due to our using the
midpoint as the approximation. So, sometimes the exact solution is closer to
the midpoint while other times it is farther away. However, overall the error
follows an «/2% decrease as the method proceeds, and to make this evident
the curve y = |c¢; — #|/2% is also plotted in Figure 2.10. B
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Figure 2.10 The solid (red) curve is the error |¢; — Z|, from Table 2.2, and the
dashed (blue) curve is the function /2%, where o = |c1 — Z|.

2.4 Newton’s Method

We will now consider what is known as Newton’s method, although you might
also call it the tangent line method. It is easiest to introduce the ideas using
an example, and we will again consider solving #® + 2z + 2 = 0. When we
solved this with the bisection method the only information we used about
the function is whether it was positive or negative. In Newton’s method more
information about the function is used.

The essential tool, as is often the case in numerical computing, is Taylor’s
theorem. What we are going to do is use Taylor’s theorem to obtain a lin-
ear approximation of f(z), for x near xg. This is given in Appendix A, in
equation (A.6), and from this we have that

f(@) = f(wo) + f'(x0)(x — wo). (2.8)

We are going to replace the equation f(x) = 0 with the equation f(zo) +
f(zo)(x — x0) = 0. Solving this we get the solution

20

10 -

y-axis

L
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
X-axis

Figure 2.11 First step using Newton’s method. The solid curve is y = z3 + 2z + 2
and the dashed line is the line tangent to the curve at x¢.
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Figure 2.12 Second step using Newton’s method. The solid curve is y = 23 + 2z +2
and the dashed line is the line tangent to the curve at x;.

f(zo)
f'(xo)

A picture of this situation is shown in Figure 2.11. Since f(z) = 2° + 2z + 2,
then f/(x) = 322+ 2. Also, recall from calculus that the equation for the line
tangent to the curve at xg is y = f(zo) + f'(z0)(x — o). This line is nothing
more than the approximation we used in (2.8), and it is shown in Figure 2.11
in the case of when zg = 1.5. Where this line intersects the z-axis determines
x1, and from (2.9) we find that 21 = 0.5429 - - -.

What we see in Figure 2.11 is that, starting with xg, we have produced a
point x; that is closer to the solution. We should be able to get even closer
by doing this again, which means we approximate f(z) for x near x; as
f(z) = f(x1) + f'(x1)(x — z1). Using this approximation, and solving for z
we get the solution

Tr1 = Ty —

(2.9)

flx1)
f'(@1)
A picture of this situation is shown in Figure 2.12.

To summarize the resulting procedure, assuming the point x; is known,
the next point is calculated using the formula

f(z:)
f'(zi)

This formula is Newton’s method, and to use it to solve f(z) = 0 requires a
start value xg.

An algorithm for Newton’s method is given in Table 2.3. It differs slightly
from the procedure in (2.10) in that the values of x are not indexed.
Instead, the value of = is overwritten as the procedure proceeds. Note that
the stopping condition is based on the iteration error |z| = |z;41 — a4l
Assuming the solution is nonzero, one could instead use the relative iteration

To = T1 —

 fori=0,1,2,3,---. (2.10)

Tit1 = Ti —
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pick:
tol >0
let: err =3 xtol
loop: while err > tol
z= f(z)/f (z)
err = abs(z)
r=x—2z

end

Table 2.3 First version of algorithm for solving f(z) = 0 using Newton’s method.
The procedure stops when |z;+1 — z;| < tol.

error |(zi+1 — ®;)/xit+1|- This version of the algorithm does not account for
the various ways Newton’s method can fail, and how this can be done will be
considered later (see Table 2.5).

Example

If f(z) =2 + 22 + 2, then (2.10) becomes

‘T?fl +2x,1+2

for i =1,2,3,-. 2.11
3:'[;?71_"_2 ) or 1 =Y =D ( )

Ti = Ti—1 —

To determine the number and approximate locations of the solutions of
f(x) = 0, we rewrite the equation as 23 = —2z — 2. The left and right
hand sides of this equation are plotted in Figure 2.13. It is apparent that
there is only one solution, and it’s in the interval —1 < x < 0. Consequently,

a reasonable starting point is xg = —1/2. With this, and (2.11), it follows
that
1 7/8
Xrp =—_ —
2 11/4
_ 9
o
~ —0.81818.

The remaining values are computed using MATLAB, and the results are given
in Table 2.4. What is also given is the error e; = |z; — Z|, where T is the exact
solution. The error is also plotted in Figure 2.14. It is clear that the method
works, and it is notable how fast the error decreases when compared to the
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Figure 2.14 The error |z; — Z|, from Table 2.4.

bisection method. The other observation to be made about the error is that
once it gets down to about 107! it stops improving. This is as accurate as
can be expected using double precision arithmetic. Bl

i i |lz: — Z| 5

0 —0.50000000000000 2.71e—01

1 —0.81818181818182 4.73e—02

2 —0.77225866916589 1.34e—03 2.1671
3 —0.77091809703576 1.10e—06 2.0745
4 —0.77091699705999 7.40e—13 2.0359
5 —0.77091699705925 1.1le—16 1.3152
6 —0.77091699705925 1.11le—16 1.0000

Table 2.4 Solving 23 +2z+2 = 0 using the Newton’s method formula given in (2.11).
Also given is the error e; = |z; — Z|, and the approximate order of convergence v as

determined from (2.15).
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Example: Implicit Functions

The mathematical problem to be considered is to determine the value of a
function y(z) from an equation of the form F(x,y) = 0. Examples of this are

Yy’ +a=Iny,
and

y+x=e"""Y (2.12)
The Michaelis-Menten equation (2.3) is another example, where it’s necessary
to solve an equation of the form F(¢,S) = 0 to find the solution S. It is
relatively easy to use Newton’s method to solve F(z,y) = 0 if it understood

that z is fixed, or given, and we are solving the equation for y. The resulting
iteration scheme is: after picking yg, then

F(Iayj)
Fy(xvyj),

where F), is the partial derivative of F' with respect to y. As an example,
for (2.12) we get that

Yjr1r = Yj — (2.13)

Yj +x— etV

Lt e (2.14)

Yj+1 = Yj
To use this, it is necessary to have a reasonable guess for the initial point
yo. To find such a value, the left and right hand sides of (2.12) are sketched
in Figure 2.15 as a function of y (assuming that z > 0). Also shown are the
values of the functions at y = 0. It is seen that the intersection point ¢, which
is the solution of the equation, is in the interval 0 < § < A. The value of A
is determined by solving e*~4 = z, from which we get that A = 2 — In(z).
With this, 0 < § < 2 — In(x). A reasonable starting point is the midpoint
of this interval, which means yo = %(,T — In(z)). For example, if 2 = 3, then
yo = (3 —1n3)/2 ~ 0.95. Using (2.14), after 6 iteration steps, one finds that
y = 1.496--- with a relative iterative error on the order of machine ¢.

y-axis

Figure 2.15 The functions Y = y + z, dashed (blue) line, and Y = e*~¥, the solid
(red) curve, sketched as a function of y.
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The method for finding A is useful enough that it is worth making an
additional comment about it. Instead of using the solid (red) curve, we could
have used the dashed (blue) curve. This produces a point B (see Figure 2.15),
and it corresponds to when B + x = e”. In other words, B = e* — x. This
was not mentioned earlier because the interval 0 < § < A provides a better
approximation than 0 < § < B in the case of when x = 3. However, for
values of z close to zero, B provides a better approximation. For example,
when £ = 0, A = 0o, and B = 1. The point being made here is that both A
and B should be considered, and the smaller of the two used in determining
yo. M

2.4.1 Order of Convergence

Inspecting the error in Table 2.4, it appears that except at the start and end,
the error at step ¢ + 1 is approximately the square of the error at step 1.
To investigate this, our observation implies that e;11 ~ Ce], where v ~ 2.
To see if this is true, we take the log of this expression to obtain lne; 11 =
vIne; + InC. The closer the error gets to zero, the less important the term
In C contributes to this equation, and it can be dropped. In this case, we have
that Ine; 11 =~ vIne;. Solving for v, we obtain

In €i4+1

2.15
Ine; ( )

Based on what we see in Table 2.4, it is expected that v ~ 2. To check on
this, the computed value of Ine;;1/Ine; is given in Table 2.4 and it does
indeed appear that v ~ 2, or at least it is approaching this value as x; gets
close to the exact solution.

The formula in (2.15) is based on a heuristic argument that came from obs-
erving what is computed using the method. Our observation, from Table 2.4,
that the computed value for 7 looks to be converging to 2 means that the
method is second-order. However, it is impossible to prove this numerically
because double precision arithmetic limits the resolution of the computation.
The theoretical underpinning of this observation is developed in Section 2.4.3.

2.4.2 Failure

It is important to be aware that Newton’s method might not work. For exa-
mple, it is evident in (2.10) that if we ever get f'(x;—1) = 0 then the method
fails. There are other potential problems, and one is illustrated in the next
example.
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Figure 2.16 First step using Newton’s method. The solid curve is y = /(1 + x?),
and the dashed line is the tangent line used by Newton’s method when xo = 2.

Example

Suppose we use Newton’s method to solve

x
1+22 0

The graph of the function is shown in Figure 2.16, as well as the tangent line
when you take xp = 2. In this case the next point x; is father away from
the solution. In fact, if you keep using Newton’s method you would find that
x; — 00. Also note that Newton’s method can be used to solve this equation,
it is just that you need to pick z near the solution. For example, if g = 1/2
then the method will work just fine. B

Other examples of how, or when, Newton’s method fails are given in
Exercises 2.24 and 2.25.

The algorithm for Newton’s method should be revised so the calculation is
stopped if the runaway situation shown in Figure 2.16 occurs. One way to do
this is to put a bound on the value of x;. For example, one picks a relatively
large value M and if it ever happens that |z;| > M then it is assumed that
runaway is occurring and the calculation is stopped. Another possibility is
to simply limit the number of iteration steps to a number I. Note that when
Newton’s method does work it converges very quickly, so I does not need
to be very large (e.g., I = 20). A revised algorithm for Newton’s method
incorporating these changes is given in Table 2.5.

2.4.3 Some Theory

To guarantee that Newton’s method works you need to pick a starting point
near the solution and you also need to require that f'(z) # 0. It is possible to
state this more formally, and this is done next. In doing this, recall that Z is
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an exact solution of f(x) = 0. Also, it is always possible to get lucky and have
x; = &, at which point the equation is solved and the iteration stopped. When
this happens, we will say that x¢ possess the finite termination property (see
Exercise 2.23).

Theorem 2.2. Assume f € C?(a,b), with a < T < b and f'(z) # 0 for
a < x <b. In this case, for xo chosen close to T, Newton’s method, as given
in (2.10), will converge to T. Moreover, if f"(Z ) # 0, and xo does not have
the finite termination property, then

|zip1 — 2| = Cilw; — T2, (2.16)
where, as i — o0,
f/l ff
C; — ‘2f’ (2.17)

Outline of Proof: The requirement that xg is close to Z, and Taylor’s theorem,
are the keys to proving this. Although the discussion to follow contains many
of the steps of the proof, the objective is to explain how (2.17) is obtained.

pick:
tol >0
M>0
I1>0
let: err =3 xtol
i=0
loop: while err > tol
= f(=)/ 1 (x)
err = abs(z)
r=x—2
t=14+1
if abs(xz) > M or I < i, then stop

end

Table 2.5 Revised algorithm for solving f(z) = 0 using Newton’s method. The
procedure stops when |z;41 — ;| < tol, or the method appears to fail.

Setting e; = x; — T, then from (2.10) we have that e;11 = e; — f(x:)/f'(z;).
Since x; = T + e;, then using Taylor’s theorem (twice) we have that

Flw) = 1@+ e) = f(@) + e @)+ L@+
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and
flla)=Ff(@+e)=f@)+ef' @+ .
In these expansions we are assuming that e; is small, and this is based on

the stated hypothesis that xo is close to Z. Since f(Z) = 0, and setting
z= f"(z)/f (%), we have that

flag) _ eif' () + pelf"(x) +
Flla) — f'(@) +ef"(@) +
1+ éeiz + -
=¢ 2.18
c 1+ez+--- ( )
Note that, by assumption, z # 0 (what happens if it is zero is explained
below). Recalling that if y is close to zero, then (see Section A.1)

1

=1—gyd+yZ2 3.
14y yry -y

This applies to the denominator in (2.18) with y = e;z+---, and so

1
() =ei(l+ 2€iZ+"')(1—€iZ+-..)
1
=iyt (2.19)

With this, e;41 = e;— f(x;)/f'(x;) can be rewritten as ;11 = ézef—l—- -+. This
shows that as the method converges to the solution, the limiting expression
is ejy1 = %ze%, and this is where the conclusion in (2.17) comes from. O

Although it’s certainly important to know that the method converges,
the more useful piece of information in the above theorem is that, once the
method starts to get close to the solution, then

|zip1 — 2| = Cla; — 2, (2.20)

where C' is the positive constant given in (2.17). It’s also possible to show
that, in this case,
|I1‘+1 - {EZ| ~ O|I1 — $i71|2- (221)

Knowing that the error, as given in (2.20), or the iterative error, as given
in (2.21), should decrease quadratically is useful in checking that the algo-
rithm is behaving as it should. This also means that our observation in Sec-
tion 2.4.3 that e;11 ~ Ce] is correct. In particular, it means that -, which is
the order of convergence for Newton’s method, is indeed 2.
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To obtain (2.16) and (2.17) it was assumed f”(Z) # 0. In the case of when
it is zero, Newton’s method will converge faster than second-order. How this
happens in explained in Exercise 2.27, but this is not typical, and for most
problems the convergence is second-order.

One of the disappointing aspects of Theorem 2.2 is that it states that if
you start close enough then the method works. There is little indication of
what this means, and so you can end up simply guessing a starting value z,
hoping it works. One way to avoid this uncertainty is to sketch the functions
in the equation, and from this find to well-positioned starting points. This
approach is used in many of the exercises at the end of the chapter.

Example

When using Newton’s method it can be unpredictable what solution it will
find. This is illustrated in Figure 2.17. In the lower graph the function is
plotted, and it shows that there are four solutions of f(z) = 0. The upper
graph gives the value of the root calculated using Newton’s method as a
function of the starting location. For example, taking a starting value of
x = 5 the method converges to the root between 4 and 6. In fact, there are a
wide range of starting values near « = 5 for which Newton’s method produces
the same result. The same is true for starting values near the other roots.
Where the method appears to produce more unpredictable results is when
the staring points are near the local max and min points of the function. As
an example, for a starting points near x = —1 it is possible to have Newton’s
method converge to the root near x = 2 or the one between 4 and 6. B

Example

Newton’s method can be used to derive algorithms for calculating mathemat-
ical expressions using more elementary operations. As an example, Newton’s
method can be used to perform division using only subtraction and multipli-
cation. To explain, given a > 0, suppose we want to compute 1/«. In other
words, we want to find the value of x which satisfies 2 = 1/« (without act-
ually doing division). One might try rewriting the equation as ax —1 = 0,
or as a?x? — 1 = 0, but neither works. For example, using f(r) = o222 — 1,

then (2.10) becomes
1 1
Titl = o Ti —

202x;

and this requires a division. A choice that does work is to rewrite the equation
as o= 1/x,s0 f(zr) = a — 1/x. In this case (2.10) becomes

Ti+1 = $1(2 — ozxi),
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Figure 2.17 Lower: Plot of f(z). Upper: Solution of f(z) = 0 obtained using
Newton’s method as a function of the starting value.

which consists of two multiplications and one subtraction (per iteration).
This procedure has been used by more than one computer system to perform
floating-point division. It is also possible to use Newton to compute /o using
addition, subtraction, multiplication, and division (Exercise 2.6), and to do
something similar for a!/3 (Exercise 2.7). B

2.5 Secant Method

One of the complications with using Newton’s method is that it requires
computing the first derivative. For a function like f(x) = 2 + 2z + 2 this is
rather simple, but this is often not the case in applications. In such situations
there is an alternative known as the secant method. This idea comes directly
from calculus, where a secant line is used to introduce the idea of a tangent
line to a curve. Namely, given xg, one picks a nearby point x; and then
draws the line passing through (xo, f(z0)) and (z1, f(z1)). This is illustrated
in Figure 2.18. The formula for the secant line in this case is

y = f(zo) +mo(x — 20), (2.22)

where the slope is

1 — To
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Figure 2.18 First step using the secant method. The solid curve is y = x3 + 22 + 2

and the dashed line is the secant line using o = 1.5 and z; = 0.5.

In comparing this to the tangent line, shown in Figure 2.11, it is evident that
they are fairly close. Using a similar approach as in Newton’s method, we

now replace f(x) =0 with f(x¢) + mo(x — x0) = 0, and solve to find

i
x2:x0_f( 0)7
mo

or equivalently
f(@o)(z1 — o)
f(a1) = flzo)

To = Ty —

It is now possible to construct a new secant line using z; and x5, and then

determine the next approximation x3. It is found that

f(@1) (w2 — 1)

f(@2) = f(21)

Generalizing this formula we have that

f@im1) (@i — xi1)
f@i) = f(ziz1)

It is not hard to show that this can be rewritten as

f(@i)(zi — xi1)
f(!Ez') - f(ivi—l)

r3 = T1 —

Tit1 = Tj—1 —

Tit1l = Ti —

 fori=1,2,

(2.24)

This formula is known as the secant method. To use it, it is necessary to

provide two starting values: xg and x;.

An algorithm for the secant method is given in Table 2.6. It differs slightly
from (2.24) in that the values of x are not indexed. Instead, as the procedure
proceeds X = x;_1 and x = x;. Note that the stopping condition is based on
the iteration error |z| = |z;41 — x;|. Assuming the solution is nonzero, one
could instead use the relative iteration error |(x;4+1 — x;)/®i+1|. Also, as with
Newton’s method, the constants M and I are used to stop the procedure if

the method appears to be failing.
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pick: x and X
tol > 0
M >0
I1>0
let: err =3 xtol
i=0
loop: while err > tol
z = f(z)(z — X)/(f(z) - f(X))

err = abs(z)

X ==x
rT=x—2
t=14+1

if abs(xz) > M or I < i, then stop

end

Table 2.6 Algorithm for solving f(z) = 0 using the secant method. The procedure
stops when |z;41 — z;| < tol, or the method appears to fail.

Example

If f(z) =2 + 22 + 2, then (2.24) becomes

(@ + 22 +2)(w; — i)

(@3 422 +2) — (23] + 2221 + 2)
xf’ +2x; +2

2w ol 427

(2.25)

LTit1 = T —

(2.26)

:xi

From Figure 2.13, there is only one solution and it is in the interval —1 <
x < 0. So, it’s reasonable to take o = —1/3 and z; = —2/3. From (2.26),

2 10/27
Lo = — —
3 25/9
_4
5
—0.8.

The remaining values are computed using MATLAB, and the results are
given in Table 2.7. In addition, the values for error e; = |z; — Z|, where T is
the exact solution, are given. The latter is also plotted in Figure 2.19. Not
surprisingly, when comparing this with Table 2.2, the secant method is much



2.5 Secant Method 53

i i |z; — Z| 5

0 —0.33333333333333 4.38e—01

1 —0.66666666666667 1.04e—01

2 —0.80000000000000 2.91e—02

3 —0.76904176904177 1.88e—03 1.7749
4 —0.77088382152809 3.32¢—05 1.6426
5 —0.77091703510617 3.80e—08 1.6565
6 —0.77091699705848 7.7le—13 1.6325
7 —0.77091699705925 1.1le—16 1.3172

8 —0.77091699705925 1.1le—16 1.0000

Table 2.7 Solving x2 + 2z + 2 = 0 using the secant method formula given in (2.25).
Also given is the error e; = |z; — Z|, and the approximate order of convergence v as
determined from (2.15).

faster than bisection. In comparison to Newton’s method, also shown in Fig-
ure 2.19, the secant method is slower but not significantly slower. To calculate
the order of convergence we can use (2.15), and the values for this are given
in Table 2.7. It appears that it is approaching a value of approximately 1.6,
before it reaches the resolution of double precision. As will be stated below,
the value determined from the theory is v = (14 +/5)/2 ~ 1.6180. You might
recognize that this is the golden ratio. How this could arise as the order of
convergence can be explained by looking at the powers in the error values in
Table 2.7. Specifically, the powers are increasing like a Fibonacci sequence,
and the ratio of successive terms of a Fibonacci sequence approaches the
golden ratio (this was proved by Kepler). This ratio is nothing more than
the ratio given in (2.15) used to determine . The formal proof that it is the
golden ratio is a bit more involved and it is outlined in Exercise 2.26. B

2.5.1 Some Theory

Similar to what occurs with Newton’s method, to guarantee that the secant
method works you need to pick starting points near the solution. To state
the result more formally, recall that Z is an exact solution of f(z) = 0. Also,
if it ever occurs that z; = Z, then the equation is solved and the iteration
stopped. When this happens, it is said that the starting points possess the
finite termination property.
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Theorem 2.3. Assume f € C?(a,b), with a < T < b and f'(z) # 0 for
a < x < b. In this case, for xo and x1 chosen close to T, the secant method,
as gwen in (2.24), will converge to T. Moreover, if f"(Z) # 0, and xo and x1
do not have the finite termination property, then

|=Ti+1 — Li'| = DZ|JJ1 - !fp, (227)
where v = (1 ++/5)/2, and as i — oo,

f"()
2f'(z)

v—1

D; — (2.28)

An outline of the proof, which explains where this particular value of vy comes
from, is provided in Exercise 2.26. Because the rate of convergence is better
than linear, which corresponds to v = 1, but not as fast as quadratic, which
corresponds to v = 2, the secant method is said to be superlinear.

2.6 Other Ideas

The problem of solving f(z) = 0 is so old, and so simple to state, that
many methods have been derived for solving it. For those curious about
other possibilities, Traub [1982] discusses over 40 different methods. What
is somewhat surprising is that research papers are still being published in
this area, and those interested in this should consult Wilkins and Gu [2013]
or Cordero et al. [2015]. One method of recent vintage that is particularly
interesting uses what is called Chebyshev interpolation. The idea is to replace
f(z) with an interpolation polynomial (see Section 5.5.4), and then find its
roots by solving an eigenvalue problem (see Chapter 4). In contrast to the
methods considered in this chapter, the Chebyshev interpolation approach
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Figure 2.19 The error |z; — Z|, from Table 2.7, for the secant method. For compar-
ison, the curve for Newton’s method is also given.



2.6 Other Ideas 55

has the capability of simultaneously determining all of the roots in a given
interval. More about this can be found in Boyd [2014].

Those who write general purpose codes tend to use a hybrid approach,
which means they use a combination of methods. As an example, one could
start with the bisection method to get close to the root, and then switch to
the secant or Newton’s method to speed things up. A well-known variation of
this is the Van Wijngaarden—Dekker—Brent method, which is what MATLAB
uses for the fzero command.

There is also the question of how do you solve problems with more than
one equation. The easiest to extend is Newton’s method, which uses the
multi-dimensional version of Taylor’s theorem, and this will be considered
in Section 3.10. The bisection method is more difficult to extend because
the idea of a trapping interval does not work in multi-dimensions. However,
there are methods for multi-dimensional problems that have a lot in common
with bisection, and one example is the Nelder-Mead algorithm described in
Section 8.8. There is also a multi-dimensional analogue for the secant method
and it is known as Broyden’s method [Dennis and Schnabel, 1996].

2.6.1 Is Newton’s Method Really Newton’s Method?

Given that the quintessential numerical procedure is Newton’s method, it
is worth knowing if the name is appropriate. To set the stage, in the late
1600s one of the central research problems concerned computing the roots of
polynomials. An example used by Newton is the equation 2% — 22 — 5 = 0.
Knowing the solution is near z = 2, the approach was to write z = 2 + z,
and then consider (2 + 2)3 —2(2 4+ 2) — 5 = 0. Assuming z is small, so
the 23 and 22 terms can be dropped, the conclusion is z ~ 1/10. How to
improve this approximation was the problem considered at the time. Newton’s
idea, which was published in 1685, was to write z = 0.1 + u, substitute
this into the equation for z, and then repeat the earlier argument to find
u. Another proposal, made by Joseph Raphson in about 1690, was to write
x = 2.14wu and then substitute this into the original equation for = [Raphson,
1690]. Mathematically, these methods are equivalent, and one gets the same
value for u. However, because using the original equation is easier, it allowed
Raphson to make a critical observation, which is that his method for solving
23 — 22 — 5 = 0 can be written as

y?—2y—5
3y2—2

T=1y

where y is the previously calculated value for x. This is exactly what Newton’s
method, as given in (2.10), states should be done, where o = 2. However, the
calculus had not yet been developed, and as far as Raphson was concerned this
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was simply an algebraic approximation that worked. For this reason, he never
extended the method to non-polynomial equations, even after the calculus
was known [Kollerstrom, 1992; Ypma, 1995]. This has caused some historians
to look elsewhere for the person responsible for (2.10). One candidate is
Thomas Simpson, who published a book entitled “Essays on Several Curious
and Useful Subjects in Speculative and Mix’d Mathematicks, Ilustrated by
a Variety of Examples” in which (2.10) does indeed appear. The case for
Simpson is made very strongly by Kollerstrom [1992]. However, Simpson’s
book was published in 1740, which means it took over 40 years to make
this connection. This is a long time, particularly for someone of Newton’s
capability. One argument made in support of Newton is that he used (2.10)
to solve Kepler’s equation x — esinz = M before 1713 (when it appeared
in the second edition of the Principia). Also, there are one or more letters,
which were written in 1692, in which he discusses derivatives of equations
[Wallis, 1699]. However, the Kepler solution can be obtained without using
calculus [Ypma, 1995], and the letters are lost [Kollerstrom, 1992]. In the
end, the real reason it is referred to as Newton’s method is attributed to
Fourier [1831], who simply said it was Newton’s method (even if it might not
be exclusively Newton’s method).

Exercises

2.1. True or False: If Newton’s method converges to a solution z for a par-
ticular choice of g, then it will converge to T for any starting point between
T and xg.

2.2. The problem involves using the bisection method on some of the exam-

ples at the beginning of the chapter.

(a) In Figure 2.3, what solution will the bisection method converge to if
ap = —1.5 and by = 1?7 What if ag = —2 and by = 1.57

(b) In Figure 2.4, what solution will the bisection method converge to if
agp = —2 and by = 27 What if a9 = —2 and by = 47 Also, explain how it
is possible for the bisection method to find the solution x = 1.

2.3. The following questions concern the bisection method. You should as-

sume that the method does not get lucky and ends up with f(¢;) = 0.

(a) How sensitive is the bisection method to the width of the initial interval?
For example, in Table 2.2, if the initial interval is cut in half, what is the
expected reduction in the number of iterations?

(b) Both fi(z) = 2% — 2 and fa(z) = e — 5sin(23) — 3 cos(x) have one zero
in the interval 0 < = < 2. If the bisection takes 34 iterations to solve
fi(xz) = 0, how many will it likely take to solve fa(z) = 07
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A z2—-1=¢€* forz>0
B sinz=1-22 forz>0

Cc 22+2r=1/(1+22) forz>0

E Inz=2-22
F sinz =2sin(z+7/4) for0<z <

Table 2.8 Equations used in Exercise 2.4.

2.4. Each of the equations in Table 2.8 has one solution. Select an equation,

and then do the following:

(a) Sketch the functions to determine the approximate location of the solu-
tion.

(b) For the bisection method, provide an initial interval that can be used to
find the solution, and provide an explanation why it works. With this
calculate, by hand, ¢y and ¢;.

(¢) What is Newton’s iteration formula (2.10) for this equation? Also, provide
a starting point x( for the solution, providing an explanation of why it is
a good choice. With this calculate, by hand, ;.

(d) What is the secant iteration formula (2.24) for this equation? Also, pro-
vide starting points zy and x; for the solution, providing an explanation
of why they are a good choice. With this calculate, by hand, 2.

(e) Compute the solution of the equation. Your answer should be correct to
at least four significant digits. Make sure to state which numerical method
was used, why you made this choice, and what error condition you used
to stop the calculation.

2.5. This exercise concerns an implicitly defined function y(x), defined through

an equation of the form F(z,y) = 0. For the equations in Table 2.9, select

one and then do the following:

(a) Sketch the functions as a function of y, and use this to show that for each
x, there is one solution y.

(b) Use the sketch in part (a) to find a bounded interval for y that contains
the solution (note the interval will possibly depend on z).

(¢) What is Newton’s iteration formula (2.10) for this equation? Also, provide
a starting point yo for the solution, providing an explanation of why it is
a good choice.

(d) What is the secant iteration formula (2.24) for this equation? Also, pro-
vide starting points yo and y; for the solution, providing an explanation
of why they are a good choice.
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A yYd=z—y forxz>0
B 1/(z*+y*) =y forz>0
C In(z+y)=-y3 forz>1
D e =2z forz>0
E z(1-y*) =,y forz>0

Table 2.9 Equations used in Exercise 2.5.

(e) Compute y(2). Your answer should be correct to at least four signifi-
cant digits. Make sure to state which numerical method was used, why
you made this choice, and what error condition you used to stop the
calculation.

(f) Plot y(x) for 2 < z < 10. You should also provide an explanation of the
algorithm you used to do this.

2.6. This problem examines how to use an iterative method to calculate the
square root of a positive number «. In other words, the algorithm calculates
v/a. The procedure can only contain the four elementary arithmetic opera-
tions (addition, subtraction, multiplication, and division). Also, you do not
need to actually calculate anything, you just need to describe how to do this
with the respective method.

(a) How can this be done using the bisection method?

(b) How can this be done using the Newton’s method?

2.7. Show how to use Newton’s method to evaluate 2'/3. Your procedure, or
formula, should only contain additions, subtractions, multiplications, and/or
divisions.

2.8. The values for the solution of f(x) = 0 in Table 2.10 were computed
using MATLAB. What method was most likely used (bisection, Newton,
secant)? Make sure to explain why it is the method you claim.

2.9. This exercise explores how to use Newton’s method to evaluate an inverse

function. To explain, given y = g¢(z), then the inverse function satisfies

x = g~ !(y). The problem is, given y, what is the value of x?

(a) Assuming y is given, and setting f(x) = y — g(z), show that Newton’s
method (2.10) gives

y—g(x)

, fori=0,1,2,3,---
g'(x;)

Tiy1 =T+
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Iteration Computed Solution

1 1.250000000000000
2 1.025000000000000
3 1.000304878048780
4 1.000000046461147
5 1.000000000000001

Table 2.10 Values for Exercise 2.8.

(b) Use the result from part (a) to evaluate e? and e~ using the In(x)
function.

(c) Use the result from part (a) to evaluate arccos(1/2) and arccos(1/3).

(d) The error function is defined as

2 e
erf(z) = \/77/0 e % ds.

The inverse error function is denoted as erf~!(z). Use the result from
part (a) to evaluate erf~1(1/2) and erf~1(1/3). In doing this, you can use
MATLAB’s erf command to evaluate the error function.

(e) The complete elliptic integral of the first kind is defined as

1 1
K(z) = /0 s ™

The inverse function is denoted as K~!(z). Use the result from part (a)
to evaluate K=1(2) and K=1(4). It is useful to know that

2z(1 — x)

where E(x) is the complete elliptic integral of the second kind. In doing
this, you can use MATLAB’s ellipke command to evaluate K and E.

2.10. Four different methods were used to solve f(x) = 0, and the computed

values for x1, x9, x3, --- are shown in Table 2.11.

(a) One of them is Newton’s method. Which of the four is most likely
Newton’s method, and why?

(b) One of them is the bisection method. Which of the four is most likely the
bisection method, and why?

(c) Suppose someone claimed they computed the solution using the secant
method, and they obtained the results given for Method 3. Why would
you tell them that they are most likely mistaken (i.e., they are wrong)?
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Method 1
1.10000000000000
1.01000000000000
1.00010000000000
1.00000001000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000

Method 2
1.02000000000000
1.00400000000000
1.00080000000000
1.00016000000000
1.00003200000000
1.00000640000000
1.00000128000000
1.00000025600000
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Method 3
1.05000000000000
1.02500000000000
1.01250000000000
1.00625000000000
1.00312500000000
1.00156250000000
1.00078125000000
1.00039062500000

Method 4
1.03162277660168
1.00562341325190
1.00042169650343
1.00000865964323
1.00000002548297
1.00000000000407
1.00000000000000
1.00000000000000

Table 2.11 Values for Exercise 2.10.

2.11.(a) Suppose to solve f(xz) = 0 one finds Newton’s method takes 20
iterations and the secant method takes 30. When is it possible that the
secant method takes less computing time? Make sure to explain your
answer.

(b) Which of the curves in Figure 2.20 corresponds to Newton’s method and
which one to the bisection method? Make sure to justify your answers.

2.12. The exercise examines various choices that can be made for the app-

roximate solution using the bisection method. Assume that the subinter-

val (a;,b;) has just been calculated, and the goal is to now determine what

point ¢; should be selected from this subinterval as the approximation for the

solution Z.

(a) Whatever choice is made, the error is ¢ — Z. Sketch this as a function
of z, for a; < & < b;. Explain why the minimum error occurs when
b; — ¢ = ¢ — a;, and from this conclude that ¢; = (b; 4+ a;)/2. In other
words, one should select the midpoint of the subinterval.
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Figure 2.20 Graph for Exercise 2.11(b).
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(b) Suppose one instead uses the relative error (¢; — )/z. This requires a
nonzero solution, so it is assumed here that 0 < a; < b;. By sketching
(¢; — &)/z, for a; < T < b;, explain why the minimum error occurs when
C; = 2aibi/(bi + ai).

(c) Does it make much difference which choice is made for ¢;? In answering
this, assume that the stopping condition for the loop in Table 2.1 is the
same irrespective of the choice for ¢;.

2.13. In this problem assume that f(z) satisfies the conditions of Theo-

rems 2.2 and 2.3.
(a) Suppose it is claimed that the values in Table 2.2 were produced using

Newton’s method. What argument can you make to refute this claim?
(b) Suppose it is claimed that the values in Table 2.7 were produced using the
bisection method. What argument can you make to show this is unlikely?
(c) When using the secant method, does it make any difference which point
is labeled xy and which is labeled x;? In particular, what happens to x;
and x3 if you switch which point is labeled xg and =17

2.14. This problem concerns the configuration shown in Figure 2.21. There
are four straight sides, of fixed length, that are free to rotate at the vertices.
The bottom side, of length a, does not move. What is of interest is how the
angle ¢ changes as 6 changes. This is a situation that arises in kinematics,
and it has been found that the two angles are related through the equation

Acosf — Beosp+ C = cos(f — ), (2.29)

where A =a/b, B=a/d, and C = (a® +b* — ¢* + d?)/(2bd). In textbooks on

the kinematics of machines this is known as the Freudenstein equation.

(a) If & = 0 then a triangle is produced. In this case, using the law of cosines,
find ¢ and show that this is the same result obtained from (2.29).

In the rest of the problem let a = 3/2,b=+/3, c=1, and d = 1/2.

(b) Taking 6 = 0, plot the left and right hand sides of (2.29) for 0 < ¢ < 27
and show that there are two solutions. Explain geometrically why there
are two, and identify which one corresponds to the configuration shown
in Figure 2.21.

Figure 2.21 Figure for Exercise 2.14.

(c) Assuming Newton’s method is used to find ¢, what is (2.10) when applied
to (2.29)7 Use this to calculate ¢ for § = /6 and 6 = 7/3. Your values
should be correct to six significant digits.
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w

Figure 2.22 Figure for Exercise 2.15.

(d) As 6 increases from 6 = 0 to § = 2, the vertex connecting side b and ¢
traces out a portion of a circle. Explain why, and find the maximum and
minimum values of ¢ that determine this circular arc.

2.15. The crossing ladders problem is the following: Two ladders of length a
and b, with a < b, are leaning across an alleyway between two buildings as
shown in Figure 2.22. If they cross at a height h, what is the width w of the
alleyway?
(a) Using similar triangles and the Pythagorean theorem show that A% +w? =
a?, B2 + w? = b%, and
1 1 1
h- AT B
In these formulas, A and B are the vertical heights of the two ladders.
From this show that the problem reduces to solving the following equation
for A:
h2A% = (A — h)2(b® — a® + A?).

(b) Explain why h < A < a. Also, by sketching the functions in the equation
from part (a), show that there are two positive solutions for A (assuming
that a < b). Note that you might find it easier to first rewrite the equation
before doing the sketch.

(c) Newton’s method is going to be used to find A. What does (2.10) reduce
to in this case? Based on part (b), what would be a good choice for the
starting point in this case? Make sure to explain why.

(d) The exact solution is easy to determine in the case of when a = b. For
this case, picking a value for b and h, use Newton’s method to find A,
and show that it gives the correct result.

(e) Taking a = 20, b = 30, and h = 8, use Newton’s method to compute A
and from this determine w. Your answers should be correct to at least
eight significant digits. Also, state what you used for a starting value, and
explain why you made this choice.

2.16. This problem considers finding « so the line y = ax is tangent to the
curve y = cos(27x). You can assume that o > 0, and the tangency points
occur for x > 0.
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(a) By sketching y = ax and y = cos(27x), explain why there are an inf-
inite number of solutions for a. Also, use this sketch to determine the
approximate locations where tangency occurs.

(b) Calculate the largest value of a. Make sure to explain what mathematical
problem you solve to find «, as well as which numerical method you used,
why you made this choice, and what error condition was used to stop the
calculation.

2.17. From the Michaelis-Menten model for an enzyme-catalyzed reaction,
the amount of the substrate S present at time ¢ satisfies the differential
equation

ds U S

dt ~ Ky +S’

where v, and Kj; are positive constants. Solving this, one obtains
K]u ID(S/S()) + S = So - ’Umt, (230)

where Sy is the (nonzero) amount at the beginning. To find S, for any given

value of t, it is necessary to solve this nonlinear equation, and how this might

be done is considered in this exercise. How to find the numerical solution of

this differential equation is considered in Exercise 7.20.

(a) As afunction of S, sketch the two functions Ky In(S/Sy) and So—v,t—S.
Do this for ¢ = 0 and for ¢ > 0. Use this to explain why there is only one
solution of (2.30).

(b) Use part (a) to explain why the solution satisfies 0 < S < Sp.

(¢) Suppose (2.30) is to be solved using Newton’s method. What does (2.10)
reduce to in this case? Based on parts (a) and (b), what would be a good
choice for the starting point in this case? Make sure to explain why.

(d) Based on parts (a) and (b), what would be a good choice for a starting
interval when using the bisection method to solve (2.30)? Make sure to
explain why.

(e) Suppose (2.30) is to be solved using the secant method. What does (2.24)
reduce to in this case? Based on parts (a) and (b), what would be a good
choice for the two starting points in this case? Make sure to explain why.

(f) It is found that for sucrose, v, = 0.76 mM/min and K, = 16.7 mM
[Johnson and Goody, 2011]. Also, assume that Sp = 100 mM. Use one of
the above methods from (c)—(e) to find the value of S at ¢ = 1 min, at
t = 10 min, and at ¢ = 100 min. Your answers should be correct to at
least four significant digits. Make sure to state which method was used,
why you made this choice, and what error condition you used to stop the
calculation.

(g) Using the parameter values given in part (f), and one of the above num-
erical methods from (c)—(e), plot S for 0 < ¢ < 1000.

(h) Explain how it is possible to produce the plot in part (g), from (2.30),
without having to use a numerical solver to find S.
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2.18. According to the Colebrook equation, the friction factor f for turbulent
flow in a pipe is found by solving

wlf = 2oz (O‘ " ff) ’

where o and [ are constants that satisfy 0 < o« < 1 and 0 < 8 < 1. By
setting x = 1/+/f, this equation can be rewritten as

z = —2logyo(a + Bz), (2.31)

where 0 < z < oo.

(a) Sketch the two functions in (2.31) for 0 < z < oo. Use this to explain
why there is only one solution, and that it is in the interval 0 < z <
2log;o(1/a).

In the rest of the problem assume that o = 1072 and 8 = 104, which
are typical values for these constants.

(b) What does (2.10) reduce to for (2.31)? Based on part (a), what would be
a good choice for zy? Make sure to explain why.

(c) Based on part (a), what would be a good choice for ag and by when using
the bisection method to solve (2.31)? Make sure to explain why.

(d) Based on part (a), what would be a good choice for 2y and 1 when using
the secant method to solve (2.31)? Make sure to explain why.

(e) Use one of the methods from (b)—(d) to solve (2.31), and from this de-
termine the value of f. Make sure to state which method was used, why
you made this choice, and what error condition you used to stop the
calculation.

2.19. The terminal velocity v of a sphere falling through the air satisfies

2
w2 = pgi , (2.32)

where A = 7d?/4. In this expression, p is the density of air, m and d are
the mass and diameter of the sphere, and ¢ is the gravitational acceleration
constant. The term cp is known as the drag coefficient, and from experimental
data the following formula has been proposed [White, 2005]:

24 6 2

+ + _, 2.33
Re 1++Re 5 ( )

Cp =

where Re = pvd/p is known as the Reynolds number and p is the (dynamic)

viscosity of air. In this problem, (2.32) is rewritten in terms of Re, and it is

then solved for Re. After this, the value of v is computed. Also, note that the

velocity is positive.

(a) Show that it is possible to rewrite (2.32) as (Re)?cp = «, where a does
not depend on v or Re. After substituting (2.33) into this equation, the
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Figure 2.23 A baseball
is going to get dropped.
Whether you should try
to catch it is considered in
Exercise 2.19.

problem is rewritten so Re is the variable to solve for. Write down the
resulting equation. Assuming the value of Re has been computed, explain
how the velocity is calculated.

(b) Write the equation in part (a) as ¢cpRe = «/Re, where cp is given
in (2.33). Sketch the left and right hand sides of this equation as a func-
tion of Re. From this show that there is one solution and it is in the
interval 0 < Re < a/24.

(¢) Assuming Newton’s method is used to find Re, what is (2.10) when app-
lied to the equation in part (a)? Based on your results from part (b),
what would be a good choice for a starting point? Make sure to explain
why.

(d) Write down the iteration formula if the secant method is used to find Re.
Based on your results from part (b), what would be a good choice for the
two starting points? Make sure to explain why.

(e) For air, u = 1.8 x 1075, p = 1.2, ¢ = 9.8, and for a baseball, d = 0.075
and m = 0.14 (using kg, m, s units). What is the terminal velocity of
a baseball (assuming it is a perfect sphere)? Make sure to state which
method was used, why you made this choice, and what error condition
you used to stop the calculation. Also, how does this velocity compare
to what is considered the velocity of a typical fastball in professional
baseball?

(f) Is it possible to make a baseball out of something so its terminal velocity
is approximately the speed of sound?



66 2 Solving A Nonlinear Equation

2.20. The ideal gas law states that pv = nRT, where p is the pressure, v
is the volume, n is the amount of the substance (in moles), R is the gas
constant, and T is the temperature (in Kelvin). An improved version of this
is the van der Waals equation of state, and it is given as

<p + ij) (v — nb) = nRT, (2.34)

where a and b are positive constants. Also, p and v are positive.

(a) Explain why there is one solution for v. Note, one way to do this is to
rewrite (2.34) as p + n?a/v? = nRT/(v — nb), and then sketch the left
and right hand sides as functions of v.

(b) Using the sketch from part (a), explain why the solution satisfies nb <
v < nb+nRT/p.

(¢) Assuming Newton’s method is used to find v, what is (2.10) when applied
to (2.34)? Based on parts (a) and (b), what would be a good choice for a
starting point? Make sure to explain why.

(d) Write down the iteration formula if the secant method is used to find v.
Based on parts (a) and (b), what would be a good choice for the two
starting points? Make sure to explain why.

(e) Assume that p = 1 atm, n = 1 mol, and recall that R = 0.08205746 L
atm/(K mol). Also, for oxygen, which is the gas considered here, a =
1.382 and b = 0.0319. Note that the values for R, a and b are the exact
values given in the 2012 CRC Handbook of Chemistry and Physics. Using
either (c) or (d), determine v at room temperature (you can assume this
is 25° C). In your write-up, state why you picked the solver you used, and
give your reason(s) for what value you selected for the error tolerance used
to stop the solver. Also, explain why it isn’t necessary to run the solver
to the point that the error in the solution is on the order of machine ¢.

(f) Using the values given in part (e), plot v as a function of T', for 0°C <
T < 50°C. In your write-up explain how you used your solver to do this.

2.21. It is not unusual to have to solve a problem involving a composite
function, and such a situation is considered in this exercise. Suppose one
wants to find the value(s) of x where f = 0. However, f is given in terms of
a variable y, and there is a second equation that determines the value of y
for any given value of x. In this exercise, let f = y3 + 3y + 1, where

y+az=e %,

So, given z, to evaluate f one first solves the above equation for y and then

substitutes this into the formula for f. Although this might appear to an

artificially complex question, as will be explained in Section 9.5, it is a fairly

common question that arises in applications.

(a) Describe how to use the bisection method to find the value of x where
f = 0. Make sure to explain how you find the initial interval.
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(b) Writing f as f(y(x)), explain how to use Newton’s method to find the
value of x where f = 0.
(c) Using MATLAB, find the value of x where f = 0.

2.22. In the derivation of Newton’s method, to determine the formula for
x;y1, the function f(x) is approximated using a first-order Taylor approxi-
mation centered at z;. This problem investigates what happens when you try
to use a second-order Taylor approximation.

(a) Approximating f(z) using a second-order Taylor approximation centered
at x;, what is the resulting formula for x;417 Note your formula will have
a &£ in it.

(b) In theory, a second-order Taylor approximation should be more accurate
than a first-order Taylor approximation (at least when you are close to
the solution). However, the formula in part (a) has several unpleasant
complications that Newton’s method doesn’t have. Identify two of them.

(c) Given that z;11 is close to x;, what choice should be made for the + in
part (a)?

(d) One way to avoid the complications considered in part (b) is to note
that the Taylor approximation used in part (a) contains a term of the
form (x;11 — x;)?. Explain why this can be approximated with —(z; ;1 —
x;) f(x;)/f (x;). If this is done, what is the resulting formula for z;;1?
Note that the formula you are deriving is known as Halley’s method, and
it is an example of a third-order method.

2.23. This exercise considers Newton’s method and the finite termination

property. The equation to solve is f(x) = 0, where f(z) = z(2? — 1).

(a) Sketch f(z) and locate the three solutions.

(b) Suppose Newton’s method is to be used to locate the solution x = 1.
What does zg need to be so the problem is solved exactly in one step?
Assume here that xo # 1.

(c) Using your sketch in part (a), and the result from part (b), explain where
xo should be located (approximately) so the solution = 1 is found in
exactly two steps.

2.24. This problem considers solving f(z) = 0, where
3
f(z) = 3cos(x) + 5 + mV/3.

(a) Sketch f(z) for 0 < x < 2. How many solutions of f(z) = 0 are there in
this interval?

(b) Using Newton’s method, take zp = 27/3 and calculate x1 (by hand).
After this, calculate x5 (by hand).

(c) Sketch the tangent lines for ¢ and 1. Based on this, determine what the
others z; values will be.

(d) Explain why Newton’s method will not converge for this problem.
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2.25. This exercise considers solving f(x) = 0, where

1— 6—101

f(I)— 1+6_101 .

This function is shown in Figure 2.24.

(a) Show that f/(x) > 0 for all .

(b) Describe what happens if one uses Newton’s method with z¢o = 1. Also,
explain why essentially the same thing happens if you use o = —1.

(c) Experiment with Newton’s method, and find the largest (positive) value of
2o that will result in Newton’s method converging to the correct solution.
You only need to find zy to two significant digits. Also, give the corre-
sponding value of 1. Note that keeping track of what happens to z; will
be helpful for part (d).

(d) Explain why the value of zy you found in part (c¢) can be found by finding
the positive solution of 2z f'(z) = f(x). What exactly is the relationship
between x¢ and x; that gives rise to this equation?

2.26. This problem provides an outline of the proof of Theorem 2.3, using
the ideas developed for the outline of the proof for Theorem 2.2.

(a) Setting e; = z; — T, show that e;11 = e; — f(a;)(z; — xi—1)/f' ().

(b) Writing x; = T + e;, show that

f(zi) (@i — 1) e+ pefz o

flei) = flwicn) 1+ (ei+eim)z+-

where z = f(Z)/f'(Z). You can assume that z # 0.
(c) Using the results from (a) and (b), show that ;11 = jzeje;—1 +---.

(d) To solve |ei41] = jlzeiei—1], let E; = In(Je;]). Show that the equation
becomes E;y1 = Z + E; + FE;_1, where Z = In(]z|/2). Also, show that
E,=-7Z —i—Ari—i—Bri, solves this equation, where r4 are the two solutions

of 2 —r —1=0, and A and B are arbitrary constants.

-1 I I 1 I I I I i

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
X-axis

Figure 2.24 Plot of function for Exercise 2.25.
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(e) Using the solution from part (d), explain why, as i increases, E; =
(2/|2]) exp(Ar?).

(f) Find the value of v so that |e;y1|/|e;]” — D, and from this derive the
result in (2.28).

2.27. This problem explores when Newton’s method converges either faster
or slower than stated in Theorem 2.2.
(a) Suppose f"”(z) = 0 but f"'(z) # 0. Show that (2.19) is replaced with

;/((Zl)) — e — 1e3w+... ,

where w = f"'(z)/f'(Z). Explain why, in this case, Newton’s method is
third-order.

(b) Suppose the assumption that f/'(z) # 0 for a < x < b is replaced with
f'(x) # 0 for a < x < b except f/(Z) = 0. Show that (2.19) is replaced
with

flxi) _ 161._’_.”
fr@s) 2

Explain why, in this case, Newton’s method is first-order.

2.28. This problem explores how to use the floating-point representation to
obtain a good starting point for Newton’s method. To illustrate this idea,
the equation to solve is 22 — a = 0, where a > 0, which is used to evaluate
x =+/a.

(a) Show that the formula for Newton’s method is

1 a
$i+1:2 xi+$' .

(b) The floating-point approximation of a has the form af = m x 2¥ where

b1 | be bn-1
m=1+, + 5+t gy

Also, recall that for 0 <y < 1,

11, 1
y— Yy

Vity=T+,y— i+ g

Assuming E is even, and by or by are nonzero, use the above information
to show that

1 1
\/af ~ (1 + 4b1 + 8b2) X 2E/2.

In what follows it is assumed that this formula is used to determine x.
Note that this expression only involves additions and multiplications (and
not a square root).
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(c) What does the approximation in part (b) reduce to for a = 28 = (1 +
1/2 4+ 1/22) x 24? How close does z¢ come to /28?7

(d) Modify the derivation in part (b) to find a starting value in the case of
when a = 50 = (1+1/2+ 1/2%) x 25. Make sure to compare zo with the
exact value. Also, you can assume the value of V2 is known.

(e) Write a MATLAB program that uses this idea to calculate /a, for
any given a > 1. The stopping condition for Newton’s method should
be |41 — x|/ < 1078 With this, compute /1.5, /33, v/1001,
and V0.1



Chapter 3
Matrix Equations

This chapter concentrates on solving the matrix equation Ax = b, and the
chapter to follow investigates various ways to compute the eigenvalues of a
matrix A. Together, they are central components of what is called numer-
ical linear algebra. What will be evident from reading this material is the
prominent role matrix factorizations play in the subject. To explain what
this involves, given a matrix A, one factors it as A = BC or A = BCD. The
factors, B, C, and D, are matrices with nice, easy to compute with, prop-
erties. The time-consuming computational step is finding the factorization.
There are many useful factorizations, and a listing of some considered in this
text can be found in the index.

To help bring out the importance of matrix factorization, the first three
sections of this chapter are written in reverse order, at least compared to most
numerical textbooks. What is done here is to start with the final result, which
is the description of the numerical method, then afterwards explain where
or how one would come up with such an idea. There are several reasons for
reversing the order, one being that the derivation of the method (Section 3.3)
is useful mostly for showing where the idea comes from. Once you realize how
the method works you also realize there is a more direct method to get the
result (Section 3.2). Finally, there is the constructive component, where you
actually solve problems with the method, and this is where we start.

3.1 An Example

Consider the following system of equations

20 —4dy =2
x + 7y = 10.
(© Springer International Publishing Switzerland 2016 71
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This can be written in matrix form as

G0 -(5)

or equivalently as Ax = b, where

() ) el

The goal of this chapter is to examine how matrix equations like the one
above can be solved using a computer. The centerpiece of this is something
called the LU factorization method. To show how this works, we will factor
the matrix A so that

A =1LU, (3.1)

where L is a lower triangular matrix and U is an upper triangular matrix.
It is not obvious how to do this, and it is also not clear why you would want
to do this in the first place. In the next sections we will derive the above
result and discuss some of its benefits and limitations. The purpose here is
to provide an early example of how this result is used.

The most computationally expensive part of the method is to find the
factorization. For this example we will simply state the result, which is that

G- )
) e o-(0)

Solving Ax = b comes by noticing that the equation can now be written as

Consequently,

L(Ux) = b.
Looking at this for a moment you will see that if we set y = Ux, then the
equation can be broken down into two equations:

1. First: find the vector y that is the solution of Ly = b

2. Second: find the vector x that is the solution of Ux =y

The two equations listed above are much easier to solve than the original.
To demonstrate this procedure, consider our earlier example. The Ly = b
equation is
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2 0\[u B 2
1 3/\v)  \10)°
where y = (u,v)”. In component form,

2u =2
u~+ 3v = 10.

The lower triangular form of this matrix means we simply start at the top
and solve for the various components of y (which is sometimes called forward
substitution). In particular, u = 1 and v = 3. The Ux =y equation is now

-0

r—2y=1
3y=3

or, in component form

The upper triangular form of this matrix means we simply start at the bottom
and solve for the various components of x (which is sometimes called back
substitution), and one finds that y = 1 and « = 3.

It is hard to overstate the importance of the LU method in numerical
computing. At the same time, for those who are seeing it for the first time, it
looks strange. Also, those who take linear algebra are taught to solve matrix
equations using Gaussian elimination, and the LU method looks to be some-
thing completely different. Actually, as we will see in Section 3.3, it comes
directly from Gaussian elimination.

A comment is in order about the transpose notation used earlier. In stating

that y = (u,v)T it is meant that
u
y= .
v

It is perhaps more consistent to write y = (u v)7, but the comma is used to
help clarify the separation between the components of the vector.

3.2 Finding L and U

Once you realize that an LU factorization might be possible, finding it inv-
olves a fairly straightforward calculation. Basically, you simply assume the
matrix can be factored and then attempt to find L and U. To illustrate, using
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the earlier example we will assume that it is possible to write A = LU, which
means we assume that

2 —4 B fi1 0 Ul U2
1 7 N lo1 loo 0 u '

Multiplying this out we have

2 -4\  [laun liiuaz
1 7 lorurr Larurs + laguss |’

or in component form

liiun =2 liiuig = —4

lorui =1 La1uig + loougy = 17.

The first thing to notice is that we have 4 equations and 6 unknowns, and so
the LU factorization is not unique. We should pick two values and it does not
make much difference what choice is made, other than being nonzero. Two
possibilities, that are used frequently enough that they are given names, are
the following:

e Doolittle factorization: choose £17 = lo5 =1
e C(Crout factorization: choose ui; = ugy = 1.

To reproduce the factorization in (3.2) we pick 17 = 2 and fo5 = 3. From
this one finds that Uil = 1, U2 = —2, 621 = 1, and U292 = 3.

A few questions arise from the above calculation. First, since the LU factor-
ization is not unique you might wonder if the solution is unique. In particular,
you might expect that if you use a different factorization that you will get
a different solution. The answer is no, the non-uniqueness of the factoriza-
tion does not mean the solution is non-unique. As a simple test, you might
try a Doolittle or Crout factorization in the above example to demonstrate
that you still get the same solution. A second question is, can you factor any
square matrix, and the answer to this is given next.

3.2.1 What Matrices Have an LU Factorization?

Another question which arises is, is it possible for there not to be an LU
factorization? To answer this we will try to factor a general 2 x 2 matrix
using a Doolittle factorization. So, we consider the equation

ab710u11U12
Cd_ézll O'UJ22,
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which in component form is

Uil =a ’U,lgzb

luin =c lo1u12 + uge = d.

Assuming, for the moment, that a # 0, then w1 = a, u1a = b, €1 = ¢/a,
and ugze = d — be/a. If a = 0, then the above equations can still be solved
if ¢ = 0. In this case, any value for ¢5; works. For example, taking ¢5; = 0,
then w12 = b and use = d.

The remaining case to consider is @ = 0 and ¢ # 0. To explain what to do,
note that the associated matrix equation is

(00 -(0)

The component form of the above equation is

by = bl
cx + dy = bs.
This can be rewritten as
cx +dy = by
by = bl.

Note that interchanging rows in this way is known as pivoting. The resulting

matrix equation is
c d\fz B bo
0 b)\y) \b/°

Because c is nonzero, using the result in the previous paragraph, we know
that the above coefficient matrix has an LU factorization.

We have shown that any linear system involving two equations can be
rearranged so the coefficient matrix has an LU factorization. This result is
true for all square matrices and this is stated in the next result.

Theorem 3.1. Fvery linear n X n system can be rearranged, using pivoting,
so the coefficient matriz has an LU factorization.

It is also worth knowing which matrix equations can be solved without
requiring pivoting. One can prove that pivoting is not necessary if the matrix
is strictly diagonally dominant, or if it is symmetric and positive definite.
These properties are defined in Section 3.7, while the proof of this statement,
as well as the proof of the above theorem, can be found in Bjéurck [2015].
Certain tri-diagonal matrices are also known to be solvable without pivoting,
and this is explained in Section 3.8. These non-pivoting cases come with a
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caveat concerning the floating point approximation of the matrix, and this is
explained in Section 3.11.1. Finally, if you pick a random square matrix, using
MATLAB’s rand command, it is almost impossible to produce a matrix that
requires pivoting. The reason is that pivoting is only needed when the entries
of the matrix satisfy specific equations. As an example, for the 2 x 2 matrix
considered above, pivoting is only required when a = 0. The probability of
producing exactly this value for a using the rand command is very small.

3.2.2 Factoring n X n Matrices

The method used to find an LU factorization for a general square matrix is
the same as for the 2 x 2 case. Namely, you just assume it’s possible and
then calculate what’s necessary. In the case of a Doolittle factorization, this
means we assume that

ailr a2 -+ Qip 10 -+ 0\ fuir ui2 -+ Uiy
a1 G2 - Gop by 1 -+ 0 0 uzp -+ u2p
Anpl Ap2 -+ QAnpnp énl én2 R 0 0 s Unpn

It is necessary to multiply the two matrices on the right and then equate the
result with the matrix on the left. As an example, equating the first column
on the left with the one on the right, we have that

a1l Uil
a21 fa1u11
an1 Criun
From this it follows that Uil = ai, 621 = CL21/CL11, tey gnl = anl/au. This

requires that a;; # 0. If it is zero, and at least one of the other a;1’s is
nonzero, then we would first need to use pivoting to get a nonzero entry in
the (1, 1)-position. There is also the possibility that all the entries in the first
column are zero, a situation equivalent in the 2 x 2 case of when a = ¢ = 0,
and it can be handled in a similar manner. However, this situation will not
arise if the matrix is invertible.

Once this step is complete, one then equates the second column, then the
third, etc. The resulting algorithm for finding the nonzero entries in L and
U, when no pivoting is needed, is given in Table 3.1.
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3.2.3 Pivoting Strategies

In the above derivation, to deal with the case of when a1; = 0, one looks for a
row with a nonzero entry in the first column and then interchanges that row
with the first row. This operation is known as pivoting. Also, even though
it was not demonstrated explicitly in the above derivation, each column has

for j=1,2,---,n

1(3,5) =1

for 1=1,2,---,j
u(i, ) = a(i, 5)
for k=1,2,---,i—1
end

end

fori=454+1,7+2,---,n
Ui, 7) = a(i, )
fork=1,2,---,7—1
end
Ui, 5) = U3, 5)/u(d, )

end

end

Table 3.1 Algorithm for finding a Doolittle factorization of A, assuming pivoting is
not needed. It is understood that any loop with a larger starting value than ending
value is skipped.

the potential for a zero divisor and so pivoting might be necessary multiple
times in the calculation.

There are numerous variations on how to pivot, some worth considering
and some which are a waste of time. As an example of the former, one could
have a situation where a1; # 0 but aq; is so close to zero that dividing by
it can cause numerical difficulties. In this case, even though a;; is nonzero,
pivoting is necessary. Another variation concerns which row to pivot with.
As described above, one looks for the first row with a nonzero entry and
then performs the interchange. Instead, one looks at all of the rows in the
first column and picks the one with the largest entry, in absolute value. This
is known as partial pivoting. It is also possible to pivot using the columns
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of the matrix, although this requires reordering the entries in the solution
vector. For those interested in exploring the various pivoting strategies that
have been proposed, Golub and Van Loan [2013] should be consulted.

3.3 LU and Gaussian Elimination

One of the conventional methods for solving a linear system is Gaussian
elimination. To do this one forms the augmented matrix and then row reduces
to find the answer. The general form of this procedure, for Ax = b, is

[Alb] = [Uly] = [I]|z],

where U is an upper triangular matrix and I is the identity matrix. From
this, the solution is x = z. As an example, consider solving

1 1 1 T 1
2 4 1||ly]l=10]. (3.3)
5 -1 —-1/\z 2

The steps in the reduction are given in Table 3.2. The row operation used in
each step is given in the second column. For example, —2R;+ Rs — Ro means
the first row is multiplied by —2, added to the second row, and the result put
into the second row. The third column expresses the result in matrix form,
using elementary matrices. For example,

100
E,=(-210],
001
and it is easy to verify that
1 1 1
E/;A=10 2 -1
5 -1 -1
The other two elementary matrices are
100 100
E; = 010 and Es;=[0 10
-5 01 031

The conclusion we make from this calculation is that

E;E.E A = U,
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Augmented Form Row Operation Matrix Form
1 1 1|1
2 4 110 Ax=Db
5 —1 —1| 2
1 1 1 1 2R1 4+ Rs — R2
— 0 2 -1 =2 ElAX = Elb
5 —1 —1 2
1 1 1 1 5R1 4+ Rs — R3
— 0 2 —1| =2 EQElAX = E2E1b
0 -6 —6| —3
3R> + Rs — R3
1 1 1 1
— 0 2 1] =2 E3E2E1AX = E3E2E1b
0o 0 -9 -9

Table 3.2 Summary of the steps when using an augmented matrix to solve (3.3).

where U is the upper triangular matrix given in the augmented matrix in
the last step in Table 3.2. From this we conclude that

A =E['E;'E;'U,
in other words, A = LU, where

L=E'E;'E;". (3.4)
To complete the derivation we need some useful results from matrix algebra:

e If E is invertible and lower triangular, then E~! is lower triangular.
e If L; and Ly are lower triangular, then L;L, is lower triangular.

Therefore, the matrix L in (3.4) is lower triangular.

The above discussion involved a particular 3 x 3 matrix but the conclusion
is the same for the general n x n case. Namely, by keeping track of the
steps involved with Gaussian elimination one effectively constructs an LU
factorization of the original matrix, and uses this to solve the equation. This
also provides the motivation for looking for the LU factorization in the first
place. However, once you know that you can factor the matrix in this way,
the augmented matrix approach is not needed to find the factorization.
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3.4 LU Method: Summary

In what follows it is assumed that A is an n X n non-singular matrix, and x
and b are n-vectors. Also, U is an upper triangular matrix and L is a lower
triangular matrix (and both are n x n).

To solve Ax = b using the LU method, the following steps are taken:

1. Calculate factorization: A = LU
2. Solve for y: Ly =b
3. Solve for x: Ux =y

102
—G-- 4 Cores k
100 - —¥k— 1 Core o=
qE, —-—- Theory S
F 102 |
10-4 =T — : : : : 1
102 103 104

Figure 3.1 Computing time, in seconds, to find the LU factorization of an n x n
matrix using MATLAB with a quad core, and with a single core, processor.

It is sometimes necessary to interchange rows to find the factorization (a pro-
cess known as pivoting). Also, the factorization is not unique. This gives rise
to certain choices for the diagonals in the factorization, and the two most
commonly used are:

e Doolittle factorization: choose €11 = fog = -+ = £y, = 1. In this case, L is
said to be a unit lower triangular matrix.

o (Crout factorization: choose u1; = ug2 = +++ = Upy = 1. In this case, U is
said to be a unit upper triangular matrix.

When solving an equation, only one of these is used when finding a factor-
ization (i.e., you should not use both at the same time).

The number of flops (i.e., the additions, subtractions, multiplications, and
divisions) needed to solve the problem is:

1. finding L and U: (n(n—1)(4n+1) = 2n® — Jn? + O(n)
2. solving Ly = b and Ux =y: 2n? + O(n)

Therefore, for large matrices, a solution obtained using LU takes on the order
of gn?’ flops. In comparison, solving the problem by first finding A~! and then
calculating A~'b takes on the order of 2n? flops.
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Note that the gn?’ flop count means that if the size of the matrix is doubled
then the flops increase by a factor of about 8. To investigate this, the average
computing times that MATLAB’s LU command takes using a randomly gen-
erated n X n matrix are shown in Figure 3.1. The calculations were done first
allowing MATLAB access to all four cores of the processor, and then again
using only one core. The theory line in the plot is simply the curve t = gngto,
for a given value of ty. What should happen, if the calculation follows the §n3
rule, is that the curve for the computing time turns out to be parallel to the
theory curve. This holds for the single core calculation, but not unexpectedly
for the quad core curve. The computing times for the latter are, for the larger
values of n, about a factor of 3 smaller than what is obtained for the single
core calculation. The speedup for the multicore calculation is due to recent
implementations of the LU factorization algorithm that take advantage of
the hardware available, including memory hierarchy and multiple cores.

Note that for very large matrices, an important factor that can slow down
the algorithm is the communication time. This is simply the time needed to
move the data that is being used by the computer between memory locations,
or between processors. With the current interest in solving physically realistic
problems, and the very large matrices this can produce, research has been
invested into how to redesign algorithms to reduce the communication time,
perhaps at the expense of increasing the flops, to be able to reduce the overall
computational time. Those interested in how this can affect the LU method
should consult Ballard et al. [2011] or Yamazaki and Li [2012].

Example 1

Solve

rT—y=2
3xr+2y=3

using an LU factorization. We will use a Doolittle factorization, and so we set
1 -1 . 1 0 U1 U12
3 2 N o1 1 0w
. U1 U2
lorury lorurs +uga )

From this it follows that Uil = 1, Ui = —1, 621 = 3/U11 = 3, and Ugo =
2 — lo1u12 = 5. The next step is to solve Ly = b, which is

+5)0)-C)
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The solution is u = 2 and v = —3. Lastly, we solve Ux =y, which is
1 —-1\(=z B 2
0 5/\y) \-=3)°
From this it follows that the solution of the problem is y = —3/5 and
x=7/51
Example 2

Use the LU method to solve

210 0\ /= 0
1210([a]| [0
012 1|las]| |O
001 2)\ay 5

The matrix is tri-diagonal, which means that only nonzero entries are on the
diagonal and on the super- and sub-diagonals. It is a type of matrix that
is very common in applications. Normally, finding the LU factorization of a
4 x 4 matrix by hand is a bit tedious, but for a tri-diagonal matrix it isn’t
so bad. This is because L and U are also tri-diagonal. In particular, using a
Doolittle factorization, we assume that

2100 1 0O 0 O\ /ui1 u O 0
1210 B by 1 0 0 0 wuoy wugz O
0121 |0 ¢5 1 0 0 0 w33 usa
0012 0 0 fu3 1 0 0 0  ugq
u11 U2 0 0
| laruar Loruas + uae u23 0
B 0 L3222 l32u23 + u33 U34
0 0 la3uss L4334 + Ugq

Starting with the first row, we conclude that u;; = 2 and u12 = 1. Dropping
to the second row one finds that £1; = 1/u17 = 1/2. Finishing the second row
and then continuing one finds that

uip uiz 0 0 21 00
U= 0 U22 U223 0 _ 0 3 1 0

0 0 UuU33 U34 00 g 1 ’

0 0 0 wugy 000 2
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and
1 0 0 0 1000
Lo |t 1 0 of_ 5y 100
0 f3 1 0 0210
0 0 fy3 1 00 %1
The next step is to solve Ly = b, which is
1 00 0\/[/n 0
5 1.0 0fly2| |oO
0 2 1 0flws] |0
00 % 1)\ 5

One finds that y; = yo = y3 = 0 and y4 = 5. It remains to solve Ux =y,
which is

21 0 0\ /= 0
05 1 0|fzz| [0
00 5 1)fzs| |0
00 O Z T4 5
The solution in this case is x4 =4, 3 = —3, o =2, and ;1 = —1. &

Example 3

We will now consider the n x n version of the above example, and the equa-
tion is

2 1
121 0
1 21
S x=b, (3.5)
0 1
1 2
where the vector b is selected so that x = (1,1,---,1)7 is the exact solution.

The matrix equation is going to be solved using the LU method, specifi-
cally a version that is specialized to tri-diagonal matrices as described in
Section 3.8. The question considered here is how accurately we are able to
compute the solution using double precision arithmetic. In other words, we are
interested in how the exact solution x compares to the computed solution x..
To determine this we will compute the largest number, in absolute value, in
the vector x — x.. This number will be denoted as ||x — X¢||oo- The results of
the calculation are given in Table 3.3. For the smaller values of n the solution
is as accurate as can be expected using double precision. For the larger values
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of n there is some loss of accuracy but the answer is still reasonably accurate.
Note, for those who might be interested in just how long it takes a computer
to solve a 160000 x 160000 matrix equation using the LU method, it is about
1072 sec. However, the method takes maximum advantage of the tri-diagonal
structure of this matrix. H

I1x = xcloo

6.66e—16
1.33e—15
12 1.78e—15
16 1.33e—15
160 6.26e—14

1600 1.35e—12
16000 4.97e—11
160000 3.01e—09

Table 3.3 Difference between the exact and computed solution in Example 3. Note
that 6.66e—16 = 6.66 x 10716,

Example 4

The equation to be solved is

1 1 1 1
1 1/2 (1/2)% ... (1/2)"!

1 1/3 (1/3)2 ... (1/3)" ! |x=b.

1 1/n (1/n)? ... (1/n)"1

The vector b is selected so that x = (1,1,---,1)7 is the exact solution. Note
that the matrix in this example is known as the Vandermonde matriz, and we
will see it again in Chapters 5 and 8. As in Example 3, to compare the exact
solution x to the computed solution x, we will compute the largest number,
in absolute value, in the vector x — xX.. Also, as before, this number will be
denoted as ||x — X¢||oo- The results of the calculation are given in Table 3.4.
The results are dramatically different than what were obtained in Example 3.
Namely, although the accuracy is reasonable when n = 4, when n = 16 it is
horrible, and it is not even defined when n = 160. B
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3

I1x = xcl[oo
4 2.00e—15
8 4.23e—09
12 5.28—03
16 25.6

160 NaN

Table 3.4 Difference between the exact and computed solution in Example 4.

What the last two examples show is that for some matrices the LU method
works just great, but for others it is terrible. The reason is that solving matrix
equations can be very sensitive to round-off error, whether one uses LU or
some other method. What is required is to invest some effort in analyzing
the error and how it depends on the properties of the matrix.

3.5 Vector and Matrix Norms

We need to be able to measure the size of vectors and matrices, and this
will be done using the concept of a vector norm. Given x € R"”, its norm is
designated as ||x||. To qualify to be a norm, it must have the following three
properties:

L lax]| = |af ||x]
2. |+ yll < x|+ Iyl
3. If ||x|] = 0, then x =0

It is required that these hold for all n-vectors x and y, and numbers
(scalars) a. It should be pointed out that the definition for a norm for a gen-
eral vector space has additional requirements. For x € R" these additional
conditions are satisfied automatically, and this is considered in Exercise 3.13.

An example is the usual Euclidean definition of length, which is defined as

||x||25\/x%+x§+---+x%. (3.6)

This is known as the Euclidean norm or the 2-norm. Another norm we will
often use is

|[%]|oo = max{ |z1], [z2], -, [za] }, (3.7)
which is known as the co-norm. A third norm that is used in scientific com-
puting is

[x|[1 = |z1| + |z2| + - + [zn], (3.8)
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(X115
x5

4]

Figure 3.2 Components of the three vector norms in R2.

and this is known as the I-norm. Note that norms are dimensionally consis-
tent with the vectors considered. For example, if x is a position vector, so the
entries have the dimension of length, then the norm of x has the dimension
of length.

Examples

1. Ifx = (2, —=1)7, then ||x|]2 = V5, ||X||oc = 2, and |[x|[; = 3. W

2. Ifx e R® withx = (1,1, 1, ---, 1)T, then ||x|]2 = v/n, ||X||cc = 1, and
[1x][1 =n. W

3. To show that ||x||s is a vector norm, note that

llox[|oo = max{ |ax1], |owa], - -, [oan| }
= max{ o [z1], [af [z2], - - o] [2n] }
= | max{ |21, [zal, - s [2n] } = |af [[X]|oo -

Also, let j be the value where ||x + y||co = |2; + y;|. Because |z; + y;| <
|25 + 1y;] < [[x[loc +[¥]loo, it follows that [|x + ¥lloo < [[X[[cc + [[¥]]co-
Finally, it is clear that if ||x||cc = 0 then x =0. B

If you are wondering how the norms compare, the answer can be inferred
from the previous examples. Another way, for x € R?, can be obtained from
Figure 3.2 using the usual relationship between the lengths of the sides of a
right triangle. Namely, max{ |21|, |za| } < /2% + 23 < |z1] + |z2|. In other
words,

oo < [x[[2 < [[x]]1 -

As demonstrated in the above example, for large vectors (big n), the three
vector norms can produce significantly different values.

A natural question to ask is, why consider different vector norms, what’s
so bad for the old standard, which is the Euclidean norm given in (3.6)? In
numerical computing, vector norms are often used to determine when to stop
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a calculation. To explain, many numerical methods produce a sequence of
approximations xj, X3, X3, --- that converge to the desired solution. The
usual way it is decided when to stop computing is through a requirement
of the form ||X;m41 — Xm|| < tol, where tol is a given error tolerance. One
should pick a vector norm that best achieves this goal. For example, using
the co-norm one is requiring that every element of x,,,+1 — Xy, is smaller than
tol (in absolute value). This is a reasonable requirement, and does not take
long to compute. The other norms are certainly used, and as an example
the 1-norm is a natural way to measure error when approximating functions
(see Exercise 6.25).

3.5.1 Matrix Norms

Each of the vector norms can be used to define a norm of a matrix. This is
done by comparing the size of Ax to the size of x. The definition is

|| Ax]|

Il (3.9)

[|A|| = max
x#0

Because matrices have the property that A(ax) = aAx, and norms have the

property that ||ax|| = |a| - [|x]|], this definition can be rewritten as
[|A|] = max ||Ax]|. (3.10)
[1x[|=1

Using the above formulas, the vector norm ||x||« gives rise to the matrix
norm ||A ||, and similarly for the other vector norms we have considered.

The definition in (3.9), or the version given in (3.10), is useful for the
more theoretical aspects of the subject, but they are not particularly useful
for calculating a matrix norm. Fortunately, it is possible to derive easier to use
formulas for ||Al|o and ||A]|1. In particular, one can show that the co-norm
of a matrix reduces to

n n n
|Alloo = max ¢ > ay,l, Y lagjl,-+ Y lang]
i=1 j=1 j=1

1<i<n 4
j=

max Z'aij|' (3.11)
1

In other words, the co-norm is determined by the largest row sum (of absolute
values). In contrast, the 1-norm of a matrix is
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n n n
||A||1—IH&X{§ |a’i1|7 E |ai2|;"' 5 E |azn|}

=1 =1 =1

n

= max Z laij] (3.12)

1<j<n
SIS

which means that the 1-norm is determined by the largest column sum (of
absolute values). One way to remember these two formulas is that oo is
horizontal (rows), while 1 is vertical (columns). Also, unfortunately, there is
no tidy little formula for the 2-norm of a matrix that is easy to calculate
for large matrices. It is possible to connect the 2-norm with what are called
singular values of the matrix, and this is considered in Section 4.5.3.

Example
If
1 2 -3
A= 4 5 6],

-7 8 9

then
|Alloo = max{1 +2+3,44+5+6,7+8+9}
= max{6, 15,24} = 24,

and

|Al; =max{14+4+7,2+5+8,3+6+9}
— max{12,15,18} = 18. W

As a final comment, matrix norms that are derived from a vector norm,
which is the case in (3.9), are called natural matriz norms. There are matrix
norms that are not derivable from a vector norm, what might be called unn-
atural norms, but they are not needed in what follows.

Basic Properties of a Matrix Norm

1. If T is the identity matrix, then ||I|| = 1.
2. ||Ax|| < [[A[] - [[x]]
3. [[AB| < [[A][-[[B]]

Proof: The first follows directly from (3.9). The second holds if x = 0, and
when x # 0, the inequality follows from (3.9). As for the third, given that
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(AB)x = A(Bx), then using Property 2 (twice), ||(AB)x]|| < ||A[ - ||Bx]|| <
[|A]l-|B]] - [|x|]- Assuming x # 0, and rewriting the last inequality as,

I(AB)x]|

< [[A[[-]IB]],
1|

then the result follows from (3.9). O

3.6 Error and Residual

Letting x be the exact solution and x. the computed solution:

e The error vector e is defined as
e=X— X
e The residual vector r is defined as
r=b - Ax,

Although having zero error is desired, the reality is that when using floating
point numbers the best we can expect are relative errors on the order of
machine €. Another complication is that for most problems we don’t know x
and are therefore not able to calculate e. The residual, however, is something
we can calculate. Everything that follows is based on the goal of using the
residual to determine, or estimate, the error in the calculated solution. The
first step is to realize that these two vectors are related through the formula

r = Ae,

or equivalently
e=A"'r.

We would like to be able to state that if r is small then so is e. However, as
the above formula shows, it might happen that the multiplication by A~!
takes a small r and produces a large e. How to relate these two vectors is
given next.

Theorem 3.2. Assuming A is non-singular and b is nonzero, then

el el
MESANE (3.13)

where K(A) is the condition number of A and is defined as

K(A) = ||A[] - [|ATH].
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Proof: First note that since b is nonzero, then x is nonzero. The conclusion
of the theorem is a consequence of two inequalities. First, since Ax = b then

[Ib]| = ||Ax|| < ||A]| - ||x]|- From this we have the first inequality,
LAl
Il = [[bl|

As for the second inequality, since e = A~'r, then ||e|| < [|[A7!||-||r||. The
theorem follows by simply combining the two inequalities. [J

Note that
(3.14)

is the error relative to the value of the solution, while

[Ir|
[Ib]]

is the residual relative to the right-hand side of the matrix equation. So,
the above theorem is useful because it states that if the relative residual
is small then the relative error is small. The requirement needed to make
this conclusion is that the condition number is not very big. Matrices with
large condition numbers are said to be ill-conditioned. Because condition
numbers are one or greater (this is proved below), the requirement that A is
ill-conditioned can be written as 1 < k(A). Just how much bigger than one
depends on the precision of the floating point system used and this will be
explained in Section 3.6.3.

3.6.1 Significant Digits

It was explained in Section 1.5 how the relative error can be used to determine
(approximately) the number of correct significant digits of a computed scalar
quantity. For vectors, the relative error as given in (3.14) does not have such a
straightforward connection with correct digits. To illustrate, suppose the ex-
act value is x = (100, 1,0)7 and the computed value is x. = (100.1,1.1,0.1)T.
Using the co-norm, the relative error is

1% — %elfoo

[¢lloo

=103,

While it is true that the first entry in x. is correct to three digits, the second
entry is correct to only one digit, and the concept of significant digits is not
even applicable to the third entry. So, when dealing with a nonzero vector
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X, the connection of the relative error with the number of correct significant
digits is guaranteed to only apply to the largest entry, in absolute value, of x.
This is also assuming that the co-norm is used.

3.6.2 The Condition Number

As illustrated in the above theorem, the condition number plays a central
role in determining how accurately the matrix equation can be solved. We are
using & to designate this number but another common notation is cond(A).
Also, some like to indicate which norm they are using and, as an example,
will use koo (A) or conds (A) if they are using the co-norm. This will be done
here as well. Specifically, if the formula applies for any norm, then there will
be no subscript, while if the result depends on the norm used then a subscript
will be employed.

Example 1

If

then

1 d —b
Al = . 3.15
ad — be (—c a) ( )
This assumes, of course, that ad — bc # 0. With this
1A oo = max{[a| + [0], [c] + |d] },

and

A7 oo = max{ |d| + [b], |¢] + |a] }.

1
lad — be|

1 2
A:
(3 4)

then ||A]|oo = 7 and ||A7!||o = 3. Consequently, koo (A) =21. B

So, for example, if

Example 2

Suppose
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What is shown in Figure 3.3 is what the matrix A does to the circle 22 +y? = 1
for various choices for d. To explain, given a point x on the circle, then Ax
is a point on the respective ellipse. The specific values are

a) d =1: In this case koo (A) =3
b) d =5 : In this case koo (A) =6
¢) d=20: In this case koo (A) = 21

The important observation here is that for smaller values of the condition
number, A does not distort the circle very much. However, for larger val-
ues the distortion becomes significant. As we will see below, it is easy to
find matrices with very large condition numbers, such as 10'° and 102°. The

20
15
10

(3]

y-axis

-10 0 10
Xx-axis Xx-axis

Xx-axis

Figure 3.3 The dashed curve is the circle 22 + y2 = 1, and the solid curve is what
the matrix A from Example 2 transforms the circle into. The condition number used
here is Koo

resulting ellipse in such a situation is so distorted that any plot of the ellipse
would look like a straight line. Why this is relevant to solving Ax = b is
discussed in Section 3.11.3.

Example 3

Suppose A is a diagonal matrix 3 x 3, which means it can be written as

d 0 0
A=110 d» O
0 0 ds
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In this case, ||A|lcc = max{|d1],|dz|, |ds| }. Also, assuming the diagonals are
nonzero, then

1/dy 0 0
A'=| 0 1/dy 0
0 0 1/ds

From this it follows that

1

A7 Y| = max{ [1/d1],[1/da|,[1/d5| } = . '
A7 o = maxf 1/l el ol =

Therefore,
max{ |d1],|dz|, |ds] }

min{ |dy|, |dz|, |d3| }

This shows that for this matrix the condition number is not affected so much
by how large or small the d;’s are but rather how different they are. For
example, if d; = dy = d3 = 10719 or if d; = dy = d3 = 10, then ko (A) =1
and we have a well-conditioned matrix. However, if d; = ds = 10719 and
dz = 1019 then ko (A) = 10%° and we have an ill-conditioned matrix. Bl

Koo(A) =

The condition number has several useful properties. Some of them are
listed below, and they hold for any matrix norm.

Basic Properties of the Condition Number
Assuming that A and P are invertible, then the following hold.

1. k(I) = 1, where I is the identity matrix

2. 1<k(A) <

3. For any nonzero number ¢, k(aA) = k(A)
4. k(A) = k(AT

5. k(PA) < k(P)k(A)

Proof: Note that Property 1 holds because I"! = I and |[I|| = 1. As for
Property 2, since AA~! =1, it follows that ||I|| < ||A][| - ||[A~!||. Property 3
holds because ||aA|| = |a|-||A]| and ||(«A) || = |a|~1||A ||, and Property
4 is an immediate consequence of the definition of the condition number.
Finally, for Property 5, given that ||PA]| - [[(PA)~1]| = ||PA]| - ||[A~P Y],
it follows that |[PA]| - [|(PA)~| < |[P[|- |A]|-[|A=]| - [[P~"[|. O
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3.6.3 A Heuristic

A rule of thumb has been developed that relates the condition number to the
accuracy of the computed solution [Golub and Van Loan, 2013]. The heuristic
is that

~ er(A). (3.16)
In other words, if ¢ &~ 1077 and x(A) = 10%, then x. is probably correct to

no more than about p— ¢ digits. As an example, when using double precision,
this difference is 16 — ¢q. Note that when this difference is negative then the

n X —xcllc Roo(A)  erc(A) [IXx=Xc[lo  Roo(A)  erco(A)
6.66e—16 12 2.7e—15 2.00e—15 1.5e+03  3.4e—13
1.33e—15 40 8.9e—15 4.23e—09 4.5e+08  1.0e—07

12 1.78e—15 84 1.9e—14 5.28¢—03 l.le+15 2.3e—01

16 1.33e—15 144 3.2e—14 25.6 1.6e+18  3.5e+02

160 6.26e—14 1.3e404  2.9e—12 NaN Inf Inf

1600 1.35e—12 1.3e+06  2.9e—10
16000 4.97e—11

Table 3.5 Error when computing solution in Example 3, on left, and in Example 4,
on right, from Section 3.4. Because ||x||oo = 1, according to the heuristic, ekoo (A) is
an estimate of the error.

heuristic and probably the computed solution have no meaning. Also, as
explained in Section 3.6.1, to make the connection with significant digits, it
is appropriate to use the co-norm when using the heuristic.

The explanation of how (3.16) is arrived at involves a worst-case analysis
applied to (3.13). Namely, even though you might solve the equation to the
accuracy allowed using float-point arithmetic, so the relative error in the
residual is on the order of machine e, the relative error in the solution is as
bad as permitted in (3.13).

Example

The table from Example 3 in Section 3.4, which was computed for a tri-
diagonal matrix, is repeated in Table 3.5 (left side) but two columns are
added, one giving the condition number and the other giving the value of
€Koo(A). Note the oo-norm is used here, in which case ||x||oc = 1. Similarly,
the table from Example 4, which was computed for the Vandermonde matrix,
is repeated in Table 3.5 (right side). These results show that the heuristic is
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a bit pessimistic in the sense that the actual error is better than what is
predicted by the heuristic. It is also clear that the Vandermonde matrix is
ill-conditioned except for very small values of n. The tri-diagonal matrix in
contrast is reasonably well-conditioned. ll

Note that the heuristic was not computed in the last row in Table 3.5.
Although it is possible to let the computer run for possibly hours and even-
tually compute this number, this was not done to make a point. Computing
the condition number for a large matrix is very time consuming. However, the
information one can derive from knowing the condition number is important
enough that considerable research has been invested into how to obtain an
estimate of it relatively quickly, even for large matrices. An introduction to
the various ways this can be done can be found in Higham [2002] and Golub
and Van Loan [2013].

3.7 Positive Definite Matrices

One of the more common numerical problems that arises in continuum mec-
hanics or electrodynamics involves solving equations with matrices such as

4 -1 0 -1 0 O

2 -1 0 0 1 4 -1 0 -1 0
1 2 -1 0 0 -1 4 -1 0 -1
0 -1 2 -1 or 1 0 -1 4 -1 0
0 0 -1 2 0 -1 0 -1 4 -1

0 0 -1 0 -1 4

These matrices have several properties that have a significant impact on the
numerical methods that can be used. The two that are of interest here are
that they are symmetric and positive definite. For those who are unfamiliar
with the latter property, its definition is given next.

Definition 3.1. If A is an n x n symmetric matrix, then A is positive definite
if either of the following holds:

1.xTAx >0, Vx #0, or

2. A has only positive eigenvalues.

To put this definition on solid ground, it is necessary to prove that any sym-
metric matrix that satisfies the first condition also satisfies the second condi-
tion (and vice versa). This is easy to do, and to illustrate, given an eigenvalue
A, and a corresponding eigenvector x, then x is nonzero and Ax = Ax. With
this, xT Ax = Ax - x. Since x-x > 0, and if it is true that xT Ax > 0, it then
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follows that A > 0. The proof of the other direction requires a result from lin-
ear algebra about the eigenvalues for a symmetric matrix (see Theorem 4.1)
and is left as an exercise.

The fact is that the above definition is not particularly useful even though
the idea being defined is very important. It turns out that there are some
easy to use tests for determining whether or not a matrix is positive definite.
We begin with the negative results, namely ways to determine if a matrix
does not have this property.

Theorem 3.3. Assume A is a symmetric n X n matric.

1. A is not positive definite if any diagonal entry is negative or zero.

2. A is not positive definite if the largest number in A, in absolute value, is
off the diagonal.

3. A is not positive definite if det(A) < 0.

Proof: In regard to the first statement, suppose a;; < 0. Taking x = e;, where
e, is the ith coordinate vector, then x” Ax = a;;. The latter number is not
positive and so A is not positive definite. The second statement is proved in
a similar manner, but using x = e; —e; and x = e; +e;. The third statement
follows from the result from linear algebra which states that if Ay, Ag, -+,
An are the eigenvalues of A then det(A) = A1 Aa - -+ A,. Since the eigenvalues
of a symmetric positive definite matrix are positive, then the product of the
eigenvalues must be positive. [

The first two conditions are easy to use even on very large matrices, while the
usefulness of the third condition is limited to smaller or very simple matrices.

Examples

1. Because of the —4, the following matrix is not positive definite. One can
also make this conclusion by showing that det(A) < 0.

A=l )

2. Because of the 4’s off the diagonal, the following matrices are not positive
definite because they violate the second condition.

1 4 1 4
A1:<4 2) and A2:<4 4)

It should be pointed out that even though a four does appear on the
diagonal in Ay, the theorem states that it cannot appear anywhere else if
the matrix is positive definite. B
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3. The theorem does not provide any insight about the following two sym-
metric matrices:

43 3 1 -2 -5
A;=[3 13| and Ay=]-2 1 5
331 -5 5 8

Both matrices only have positive numbers on their diagonals, and the
largest number only appears on the diagonal. Also, det(As) = 4 and
det(A4) = 26. However, neither of them is positive definite. This is because
the eigenvalues for Az are —2, 4 —3+/2, and 4+ 3/2, while the eigenvalues
for A4 are —1, —2, and 13. &

There is a simple test to prove a matrix is positive definite and it concerns
the size of the numbers on the diagonal compared to the other numbers in
their respective rows. The property needed is defined next.

Definition 3.2. A matrix A is strictly diagonal dominant if, for every row,
n
laiil > > laij] -
Jj=1
J#i
It is diagonally dominant if the above condition holds with > instead of >.

Theorem 3.4. A symmetric matriz A is positive definite if the diagonals are
all positive and 1t is strictly diagonal dominant.

Those interested in the proof of this theorem, or interested in other properties
of positive definite matrices, should consult Siili and Mayers [2003].
Examples

1. Using the above theorem, the following matrices are easily shown to be
positive definite.

2 -1 0
41
A= A=|-1 3 —-1]. |
1 4
0 -1 2

2. Although the matrix below is symmetric, because of the second row the
matrix is not strictly diagonally dominant. In other words, the above the-
orem does not apply.
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2 -1 0
A=|-1 2 -1
0 -1 2

It is possible to prove the matrix is positive definite by calculating the
eigenvalues, and this is considered in Exercise 3.22. B

As a final comment, a question that often comes up is where the idea of
being positive definite comes from and why is it considered important. Many
of the matrices that arise in applications come from approximations of dif-
ferential equations. This includes Maxwell’s equations in electrodynamics, or
Navier-Stokes equations in fluid dynamics, or the heat equation in thermo-
dynamics. The spatial terms in these equations often have a property known
as ellipticity, and this helps guarantee that the solution is unique or the po-
tential energy in the system behaves in a physically realistic manner. Saying
something has ellipticity is a fancy way of saying it is positive definite. The
matrices that come from these applications are simply inheriting the prop-
erty from the original problem. What we are doing here is deriving numerical
methods that take advantage of this property.

3.7.1 Cholesky Factorization

In the case of when the matrix is symmetric and positive definite, it is possible
to find an LU factorization of the form

A =U"U, (3.17)

where the diagonals of U are positive. This is known as the Cholesky factor-
ization. Because this avoids having to calculate L, the flop count is about half
of the usual LU count. In other words, when using a Cholesky factorization
the flop count is approximately én?’. Also note that the procedure for solving
the matrix equation is the same as before, it is just that now L = U7

In addition to a reduced flop count, a symmetric and positive definite
matrix is always nonsingular. Moreover, the factorization can be carried out
without having to use pivoting. These are some of the nice properties referred
to earlier. What is not avoided, however, is the possibility that the matrix
is ill-conditioned. The diagonal matrix used in Example 2 in Section 3.6.2
is positive definite as long as the diagonals are positive. As demonstrated
in that example, the matrix can be either ill-conditioned or well-conditioned
depending on the relative values of the diagonals.
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Example

Use the Cholesky factorization to solve

4 1\(/xz\ (-2

1 4)\y) \ 7))
It was earlier shown that the matrix is positive definite, and so the first step
is to find the factorization. This is done by assuming that

4 1 uip 0 Uil u12
1 4) U1z U9 0 w2
[ ud wiun
uzuir ufy +udy )
First, note that we need u?; = 4, and so u;; = 2. The negative root is
not considered because a Cholesky factorization requires the diagonals to be

positive. With this one then finds that uis = %, and ugs = %\/15. The next
step is to solve UTy = b, which is

(¢ )= 5

The solution is u = —1 and v = v/15. Lastly, we solve Ux =y, which is

2 5\ [z -1
0 W15 )\y) \Vi5)°
From this it follows that the solution of the problem is y =2 and z = —1. B

It is interesting how Theorem 3.3 is used by MATLAB. When given the
command A\b, MATLAB makes a series of tests to decide how to solve the
problem. If it finds that the matrix is symmetric, contains only real numbers,
and has positive diagonals, it will attempt a Cholesky factorization. It also
knows that it is very possible that the matrix is not positive definite so
there are built-in contingencies for what to do if the Cholesky factorization
fails. What MATLAB is doing is not unreasonable because symmetric and
positive definite matrices are so common in applications that having positive
diagonals increases the likelihood that the matrix is positive definite to the
point that the Cholesky factorization is worth trying.
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3.8 Tri-Diagonal Matrices

Another type of matrix that often occurs in applications are those that are
tri-diagonal. A standard LU factorization can be used on a tri-diagonal matrix
and the procedure can be greatly simplified if one uses the fact that there are
so many zeros in the matrix. To explain, a tri-diagonal matrix has the form:

The factorization of such a matrix involves tri-diagonal matrices. In particu-

ayp €1
b2 ag C2 O
by az c3
0 Cpn—1
bn an

lar, the factorization has the form

ay ¢
by az c2
b3 a3 c3

An example of this is given in Section 3.4. Keeping track of what is, or is
not, zero, the entire LU method reduces to the algorithm given in Table 3.6.
This is known as the Thomas algorithm. In comparison with a full LU, it

Table 3.6 Algorithm for solving Ax = z when A is the tri-diagonal matrix given

in (3.18).

%1
Loy Lo
l30 33

zZ1
Set: w=a1, 1 =
w
For i =2,3,...,n
Ci—1
Vi =
w

w = a; — bﬂ}i
2i —bixzi—1
Ty =
w

End

For j=n—-1,n—-2,...,1
Tj =T —Vi+1%5+41

End

3 Matrix Equations

Uil U12
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requires only 8n — 7 flops! Moreover, it is only necessary to store the tri-
diagonal portion of the matrix and so the entire method requires storage
that amounts to approximately six n-vectors.

Note that tri-diagonal matrices can suffer the same problems more gen-
eral matrices have. In particular, they can be singular and they can be ill-
conditioned. This is evident in the algorithm given in Table 3.6 with the
variable w. If w is zero, or nearly zero, then the algorithm will fail. In certain
cases it is possible to determine very easily when w # 0, and this is given
next.

Theorem 3.5. The tri-diagonal matriz A in (3.18) is invertible, and the
algorithm in Table 3.6 can be used to solve Ax = z, if either one of the
following holds:

1. A is strictly diagonally dominant, or

2. A s diagonally dominant, c¢; # 0 Vi, and |b,| < |ay].

Outline of Proof: The only operation of concern in the algorithm is the
division by w, and so the majority of the proof consists of showing this
cannot be zero. For the second set of conditions, note that when ¢ = 2,
|va| = |e1/a1] < 1, where the inequality holds because the matrix is diago-
nally dominant. With this |w| = |ag — bava| > |aa| — |bava| > |az| — |b2] > 0,
where the last inequality holds because the matrix is diagonally dominant and
c2 # 0. Continuing this argument, using induction, it is not hard to show that
|v;] <1 and |w| > |a;| — |b;| > 0. As before, the last inequality holds, except
for the last row of the matrix, because we are assuming |a;| > |b;| + |¢;| and
¢; # 0. The fact that it holds for ¢ = n is because we have explicitly assumed
that |b,| < |an|. Showing that w is nonzero when A is strictly diagonally
dominant follows a similar induction proof. What remains is to prove that
the vector computed by the algorithm is the solution of the equation, and
this is left as an exercise. [J

Examples

1. The matrix

2 -1
A=[1 2 -1
0 1
is diagonally dominant, ¢; = ¢o = —1, and |bs| < |ag|. Therefore, according

to the above theorem, it is invertible and the algorithm in Table 3.6 can
be used with it. B

2. Let
2 — 0 2 -1 0 2 - 0
Ai=11 1 -1, As=|1 20|, Az=1]1 1 -1
0o 1 2 0 1 2 0o 2 2
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These do not satisfy the conditions because: A; is not diagonally dominant
(because of the second row), A, violates the ¢; # 0 Vi condition, and Aj
violates |b3| < |as|. W

3.9 Sparse Matrices

Another type of matrix that often arises is one containing mostly zeros. These
are said to be sparse. Although there is not a precise definition of what it
means to be sparse, as a rule of thumb, a large n X n matrix is sparse if there
are on the order of n nonzero entries. As an example, a large tri-diagonal
matrix is sparse, and the reason is that there are no more than 3n nonzero
entries in such a matrix. It is worth pointing out that matrices with few zero
entries are said to be dense, which is another way of saying that the matrix
is not sparse.

The question arises when solving a problem with a sparse matrix if it
is possible to avoid having to store all those zero entries, and if it is pos-
sible to avoid calculations with them. There are such methods, but they
usually require knowing something else about the matrix. For example, if
the matrix is also symmetric and positive definite, then something called the
sparse Cholesky factorization can be used. Another approach is to use a mul-
tifrontal method, which involves partitioning the matrix into smaller blocks
[Liu, 1992]. It is also possible to use the conjugate gradient method, and this
will be described in Section 8.6.

3.10 Nonlinear Systems

We now consider the problem of how to solve a nonlinear system of equations
numerically. An example of this type of problem is to find the value(s) of z
and y that satisfy

x4y =1, (3.19)
42?4+ y* = 1. (3.20)
Each of these equations defines a curve, and they are plotted in Figure 3.4. It
is evident there are four solutions. We will use Newton’s method to calculate

these solutions, and it will make it easier if we first write the problem in the
more general form of solving

flx,y) =0, (3.21)
g(z,y) =0. (3.22)
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Figure 3.4 Curves coming from the equations in (3.19) and (3.20).

As usual with Newton, it’s assumed that an initial guess (z,yo) of the sol-
ution is provided. We then approximate the above functions for (z,y) near
(0, yo) using Taylor’s theorem, which yields

f(z,y) = f(xo,y0) + (x — 20) fz(20,%0) + (y
9(z,y) = g(x0,Y0) + (z — 0)gx (0, yo) + (¥

Y0) fy (0, yo),
yo)gy(fﬂo, Y0)-

Note that both of these are the two variable versions of (2.8). As was done
for the one variable case, we now replace (3.21) and (3.22) with

f(wo,y0) + (x — w0) fu (0, y0) + (¥ — y0) [y (0, ¥0) = 0,
9(x0,90) + (z — 20)g2 (20, %0) + (¥ — ¥0)gy (o, y0) = 0.

Rearranging the terms in these equations, we obtain

zfz(x0,Y0) + yfy(zo,y0) = —f(x0,Y0) + o fz(x0, Yo) + Yo fy(zo, o),
29 (o, o) + y9y(z0,Y0) = —9(z0, Yo) + 09z (%0, Yo) + Yogy (2o, yo)-

This can be written in matrix form as
Jox1 = —fo + Joxo,

or equivalently as

x; = xg — Jy o, (3.23)
where
Jo = (fm(fcoayo !EO,yo > (3'24)
9ax (9507 yo !an yo

o) =) o= ()
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The formula in (3.23) is the multi-variable version of (2.9). The matrix
in (3.24) is the Jacobian for the problem, evaluated at xq.

Continuing this procedure, we obtain the general formula for Newton’s
method, which is that

Xiy1 =% — I, fori=0,1,2,3, - (3.25)

where

3, - (fz(fl?i,yi) fy(fl?uyz‘)> 7 (3.26)

9 (T3, yi) gy(xivyi)

X; = (x) £ (f(x“yl)) (3.27)
Yi 9(@i, yi)
The formula in (3.25) is the multi-variable version of (2.10). Also, the ear-
lier requirement that f’(x) is nonzero now becomes the condition that the
Jacobian J is nonsingular.
For numerical reasons it is better to rewrite (3.25) to reduce the flop count.
First note that it can be written as J;x;+1 = J;x; —f;, and this can be written

as J;(x;+1 — x;) = —f;. Therefore, (3.25) can be broken into two steps, first
one solves
and then

Xi+1 = X; T+ 2. (329)

With this we have avoided having to determine Ji_1 and then calculating
Ji_lfl-. As a final comment, the above expressions were derived for the two-
variable problem in (3.21) and (3.22). However, they apply to the more gen-
eral problem of n nonlinear equations in n unknowns. In this case, J is the
n X n Jacobian matrix, while x; and z are n-vectors.

Example

For the equations in (3.19) and (3.20), f(z,y) = 2 + 4y*> — 1 and g(x,y) =
422 + y? — 1. The Jacobian is therefore

J_ 2z 8y '
8z 2y

Setting z = (u,v)”, then (3.28) becomes

22; Sy \ [ u z?+4y? -1
Y — (TR (3.30)
8x; 2y; J\ v 4 +y; — 1
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After solving this, usi

ng (3.29),

($i+1
Yi+1

)=

7 T; Yi Error

0 1 1

1 0.6000000000 0.6000000000 4.00e—01
2 0.4666666667 0.4666666667 1.33e—01
3 0.4476190476 0.4476190476 1.90e—02
4 0.4472137791 0.4472137791 4.05e—04
5 0.4472135955 0.4472135955 1.84e—07
6 0.4472135955 0.4472135955 3.77e—14

105

(3.31)

Table 3.7 Solving (3.19) and (3.20) using the Newton’s method formula given
in (3.30) and (3.31). Also given is the iterative error e; = ||x; — Xi—1]|oo-

The values obtained using this procedure are shown in Table 3.7. As expected
when using Newton’s method, the error shows that the method is second or-
der. This is because once the method starts to get close to the solution, the
error at step 7 is approximately the square of the error at step i — 1. B

Newton’s method, as given in (3.28) and (3.29), is relatively easy to derive.
We also saw that when it works, the error shows the second-order conver-
gence that is the hallmark of the method. The fact is, however, that solving
nonlinear equations with multiple variables using Newton’s method, or any
method for that matter, is challenging. One reason is that Newton’s method
requires a good guess for the solution, and these can be difficult to come by. It
is natural to ask if there is a bisection type method that can be used to help
locate good guesses. There is a method that has some similarity to bisection,
but it requires the problem to be reformulated as a minimum problem. This
is not hard to do, and as an example, one can rewrite (3.21) and (3.22) as
follows: find the values of x and y that minimize

F(z,y) = f(z,y)* + g(z,y).

The various numerical methods you can use to solve this are investigated in
Chapter 8.
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3.11 Some Additional Ideas

3.11.1 Yogi Berra and Perturbation Theory

Yogi Berra, an insightful baseball personality, once said “In theory there is
no difference between theory and practice. In practice there is.” This has par-
ticular applicability to computing. As an example, it was stated earlier that
pivoting is not needed when finding an LU factorization of a symmetric pos-
itive definite matrix. Yet, it is possible to find a symmetric positive definite
matrix that, when attempting to compute its factorization, the procedure
fails (without pivoting). The reason is that it can happen that the floating
point approximation of a matrix does not have the same properties as the
original. As a case in point, it is possible to find a symmetric positive defi-
nite matrix whose floating point approximation, although symmetric, is not
positive definite. Situations similar to this are considered in Exercise 3.15.

This helps explain the interest in what is called matrix perturbation theory.
The idea here is that the original matrix A and its floating point approxi-
mation Ay are related through an equation of the form Ay = A + P. The
entries of P are proportional to machine €, and are generally, although not
always, much smaller than the entries in A. In the vernacular of the subject,
P is called a perturbation matrix. The question is, if A has a certain prop-
erty, under what conditions, if any, will A; have that same property? As an
example, one can prove that if A is invertible, then Ay is invertible if the
perturbation matrix is small enough that

Pl _ 1
1Al = (A)

In other words, an invertible matrix will remain invertible if perturbed by
a small enough amount that it satisfies the above inequality. The limitation
of this statement is that, when computing, you do not know if the precision
you are using is enough to guarantee that such an inequality is satisfied.
Nevertheless, matrix perturbation theory plays a prominent role in the anal-
ysis of matrix algorithms, and more can be learned about this in Golub and
Van Loan [2013] and Higham [2002].

3.11.2 Fixing an Ill-Conditioned Matrix

When stuck with having to solve a problem with an ill-conditioned matrix
it is natural to try to modify the equation to improve the situation. For
example, one might think that by multiplying the problem by a well-chosen
constant « that the condition number can be lowered. However, as explained
in Section 3.6.2, k(aA) = k(A), so that idea will not work. Not giving up,
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the next attempt would be to multiply each equation making up the system
by a different constant (e.g., the first equation by dj, the second by da, etc).
This can be expressed in matrix form by stating that the matrix equation is
going to be multiplied by a diagonal matrix D. In fact, if we are going to do
this why not use the most general version and multiply by a matrix P that
is not limited to being diagonal? Doing this, the problem becomes Cx = d,
where C = PA and d = Pb. The matrix P is called a pre-conditioner, and it
is chosen so the new matrix C is not ill-conditioned. Note that it is possible to
find a pre-conditioner so that x(C) = 1, which is the smallest value possible
for the condition number. Namely, one can just take P = A~!. Obviously,
this is not a viable possibility because we do not know A~!. However, it
does provide some idea of what one might look for, which is an easy to find
approximation for A~!. Considerable research has been invested in how to
do this and Benzi [2002] should be consulted to learn about this.

3.11.3 Insightful Observations About
the Condition Number

As stated earlier, the condition number plays a central role in determining
how accurately a matrix equation can be solved. The heuristic described in
Section 3.6.3 helps to quantify its role in affecting the accuracy. However,
there are other, more qualitative, ways to interpret its role. This means they
are not particularly useful for evaluating it but they do provide insight into
the impact of the condition number on the accuracy.

1. It is sometimes said that the condition number is a measure of the distor-
tion associated with the matrix. This comment comes from the formula
max||x||=1 || Ax||

k(A) = | .
( ) mlonH:1||Ax||

This expression was derived in Section 3.6.2 in the special case that the
matrix is diagonal (also see Exercise 3.21). It shows that the larger the con-
dition number the greater the distortion. To explain, the matrix norm is
determined by what the matrix does to the vectors which satisfy ||x|| = 1.
This is illustrated in Figure 3.3. If the transformed curve is close to a cir-
cle, then the max and min values of ||Ax|| are not too far apart and the
condition number is not very big. However, if this transformed curve looks
like an elongated ellipse, then the condition number gets a lot bigger. The
greater the distortion, the larger x becomes.

A natural question to ask is, what does this distortion have to do with
solving matrix equations accurately. To explain, consider the example in
Section 3.6.2, where
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Figure 3.5 Left: The floating point approximation of b is located within a small
circle centered at b. Right: The ellipse consists of those points that produce the circle

on the left when evaluating Ax. The solid dot is the location of the exact solution.

(1)

When solving Ax = b numerically, b is replaced with its floating point
approximation, which is located somewhere in a small circle centered at b.
The radius of this circle is determined by machine epsilon, and this is
illustrated in the left graph in Figure 3.5. In this example, b = (1,1)7,
r =107% and d = —1.9 (it is assumed for demonstration purposes that
machine epsilon is on the order of 107%). The ellipse on the right is made
up of those points that produce the circle on the left. In other words, if x
is a point on the ellipse, then Ax is a point on the circle. This is significant
because given the floating point vector by, the solution of Ax = by will
be somewhere inside the ellipse. When the ellipse is very distorted, which
happens when the condition number is large, and the computed solution
Xy is towards one of the far ends of the ellipse, then x; will be far away
from the actual solution. For example, the target circle on the right in
Figure 3.5 has r = 1075, but the major axis of the ellipse is approximately
7 x 1072, So, the accuracy in the solution does not match the accuracy
in the floating point approximation for b. The situation gets worse as the
condition number increases. To illustrate, if d = —1.999999 and r is the
same as before, then the major axis of the ellipse is approximately 7, and
Koo(A) =~ 107. In this case it could happen that the computed solution
is not correct to any significant digit. Also, note that this conclusion is
consistent with the heuristic described in Section 3.6.3.

. Another often made comment is that the condition number is a measure
of how close the matrix is to being singular (non-invertible). For example,
MATLAB will issue the response “Warning: Matrix is close to singular or
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badly scaled” in alarming orange text when given a matrix with a large
condition number. The reason for this is the formula

1 A-B
H(A) :min{H A l :Bis singular}.

To decipher this, recall that the distance between two vectors can be writ-
ten as ||x —y||. In the same way the distance between two matrices can be
written as ||A — B||. Also recall how one calculates the distance between
a point and an object such as a sphere. Namely, if x is the point, then the
distance to the object is the smallest distance between x and the points
making up the object. In other words, if .S is the object, then the distance
between x and S is min{||x — y|| : y € S}. Based on this observation, the
right-hand side of the above formula is the normalized distance between
A and the set of singular matrices. What the formula shows is that the
larger the condition number the closer the matrix is to the set of singular
matrices.

3.11.4 Faster than LU?

As explained in Section 3.4, using LU takes approximately §n3 flops. This
is better than calculating A~'b, which takes approximately 2n3 flops. The
important observation for this discussion is that both methods are O(n?).
This raises the question as to whether there are sub-cubic methods, in other
words, can you find a method that requires O(n*) flops, where w < 3? Con-
siderable research has been invested in this question, and the usual approach
to answering it is to change the question. It can be proved that if you can
multiply two n X n matrices using O(n*) flops then you can solve Ax = b
using O(n*) flops [Bunch and Hopcroft, 1974]. The usual method for multi-
plying two matrices requires n® multiplications and n® —n? additions, in other
words, O(n?) flops. The cubic barrier for matrix multiplication was first bro-
ken by Strassen, who was able to produce an algorithm that uses O(n*) flops,
where w = log, 7 = 2.8 [Strassen, 1969]. Others have worked on improving
this, and the current best result is w ~ 2.3727 [Williams, 2012]. You might be
wondering if anyone actually uses these methods to solve matrix equations.
The answer is that these are mostly theoretical results, and the methods are
rarely used in practice. The exception is Strassen’s method, although it is
not straightforward to implement [Bailey et al., 1991; Huss-Lederman et al.,
1996]. Those who might be interested in this topic should consult Higham
[2002].
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3.11.5 Historical Comparisons

Although this discussion is going to be similar to when parents tell their
children how hard it was “back in the day,” it is worth knowing what early
researchers in the area said about solving matrix problems. The particular
individual is William Kahan, who was awarded the A.M. Turning Prize for his
contributions in floating-point computations and his dedication to “making
the world safe for numerical computations.” Anyway, in Kahan [1966], when
commenting about the difficulty of solving Ax = b stated “On our computer
(an IBM 7094-1T at the University of Toronto) the solution of 100 linear
equations in 100 unknowns can be calculated in about 7 seconds”. This is
where you are supposed to point out that we are now able to do this in less
than 10™* sec, which is no surprise. His next comment is more interesting,
and he states that “This calculation costs about a dollar.” Computers were
treated like taxi-cabs, but instead of charging by the mile (or kilometer) they
charged by the second. Fortunately, the introduction of UNIX ended this
particular practice at most universities. He goes on to say, “to solve 10000
linear equations would take more than two months.” Again, this is where it is
necessary to comment that on current machines this takes about 1 sec. One
might think the reason is the improvement in the speed of the processors,
which is partly true. The more significant reason is memory. They were unable
to store everything in active memory (RAM) and were forced into using
what Kahan calls “bulk storage units, like magnetic tapes or disks.” This
eventually became known as the “swap to disk” problem, and as you would
expect, the time required to transfer data back and forth to tape means you
will be measuring computing time not with a stop-watch but with a calendar.
Also, when a code can take months (or even days) a factor of two is actually
significant. This forced them into using every possible trick available, like
writing 0.5 * = instead of z/2.

The fact is that many of the concerns Kahan talks about are still with
us, only the scale has changed. It is true that for most people, the capability
of computers today is more than sufficient. However, for those working to
solve the large multi-dimensional problems associated with physically realistic
models that arise in many applications, the processing power is still not
adequate. This is why they are in the process of building exascale computers,
so they will be able to solve problems with trillions of unknowns. As often
stated, these will be about 30 to 100 times faster than what we now have
and will possibility be available in five years [Peckham, 2013]. To give Kahan
the last word about these new computer systems, as he stated in 1966, “The
time might come down to a day or so when machines 100 times faster than
ours are produced, but such machines are just now being developed, and are
most unlikely to be in widespread use within the next five years.”
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Exercises

3.1. The following are true or false. If true, provide an explanation why it is

true, and if it is false provide an example demonstrating this along with an

explanation why it shows the statement is incorrect.

(a) If A is strictly diagonally dominant, then A7 is strictly diagonally dom-
inant.

(b) If A is strictly diagonally dominant, then @A, where a is a nonzero
number, is strictly diagonally dominant.

(c) If A is symmetric, then ||Allcc = ||A[]1.

(d) If a nonzero vector x can be found so Ax = 0, where A is symmetric,
then A is not positive definite.

(e) If A is positive definite, and symmetric, then A only has positive entries.

(f) If A is the 2 x 2 zero matrix and A = LU, then either L or U is the zero
matrix.

(g) Because ||X||oo < ||x]||1 then it must be that ||Alle < ||A]l1.

(h) Assuming A is 2 x 2, if A is symmetric and positive definite, then A~!
is symmetric and positive definite.

(i) A symmetric and positive definite matrix must be strictly diagonally dom-
inant.

(j) An ill-conditioned matrix can be made well conditioned using pivoting
(you can assume that the matrix is 2 x 2).

3.2. Using a Doolittle factorization, solve the following equations (by hand).
Also, calculate koo (A).

(a)

r+y=1
r+4y="1.
(b)
z—2y=0
—r+4y =1.
(c)
—2rz+y=3
4z — 6y = —14.
(d)
r+z=1
r+y=-1

y+2z=0.
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3.3. Find the Doolittle factorization of the following matrices:
)

(a

1 0
A=(0 -2 2
0 2 -1
(b)
111
A=[122
123
(c)
1001
0100
A=lo o1 0
1001

3.4. In this problem « is a small positive number. Sketch the two lines in the
x,y-plane, and describe how they change, including the point of intersection,
as a approaches zero. Also, calculate the condition number for the matrix,
and describe how it changes as a approaches zero.

(a)

r—y=—1
—z+(1+a)y=1

20 +4y =1
(1—a)z+2y=-1.

3.5. Consider the matrix

1 -1 -1
A=|1 -4 0
0 1 0

It is useful, but not essential, to know that this is a unimodular matrix.
(a) Find A~1.

(b) Find koo (A).

(c) Find the Doolittle factorization of A.

3.6. Consider the matrix
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It is useful, but not essential, to know that this is a normal matrix.

(a) Find AL,

(b) Find koo (A).

(c) Find the Doolittle factorization of A.

3.7. For each of the following matrices, explain why it is positive definite and
then find the Cholesky factorization.

(a)

(b)

100
A=[(0 21
015

(c)
4 6 0
A=[6 25 0
0 0 16

3.8. In this problem,

(a) Find a vector x so that ||AxX||ecc = ||A]]co-

(b) Find a vector x so that ||Ax]||1 = [|A]]:.

(c) One can show that |[A]lz = 9 + 4v/5. Find a vector x so that
|Ax]]2 = [|A]l2.

3.9. In this problem assume that A is a 2 x 2 matrix

(a) Suppose the Doolittle and Crout factorizations produce the same result.
This means, for example, that the lower triangular matrix found for each
factorization is the same. What can you say about the entries in the
matrix A?

(b) Suppose the Doolittle, Crout and Cholesky factorizations produce the
same result. What can you say about the entries in the matrix A?

3.10. This problem considers the question, why not use UL instead of LU?

You can assume that A is a 2 x 2 matrix.

(a) Find a Doolittle version of the factorization A = UL, where L is a unit
lower triangular matrix and U is upper triangular. You can assume piv-
oting is not necessary.

(b) Describe the resulting algorithm for solving Ax = b.

(c) Is there any connection between the Doolittle factorization of AT and the
one you found in part (a)?
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(d) Aside from an alphabetic advantage, is there any reason to prefer LU over
UL?

3.11. A matrix often used to test the effectiveness of algorithms used to
calculate eigenvalues is the Rosser matrix, which is given as

611 196 —192 407 -8 =52 —49 29
196 899 113 -—-192 —-71 —43 -8 -4
—-192 113 899 196 61 49 8 52
407 —-192 196 611 8 44 59 =23
-8 71 61 8§ 411 =599 208 208
—-52 —43 49 44 =599 411 208 208
—49 -8 8 59 208 208 99 —-911
29 -4 52 =23 208 208 -911 99

Answer the following questions without using a computer.
(a) Is R symmetric?
(b) Is R positive definite? You must explain how you come to this conclusion.

3.12. This problem concerns the equation Ax = b, where
A= -1 1
N 0 o
and a > 0.

(a) For what values of « is this matrix ill-conditioned? Make sure to identify
what norm you are using.

(b) Suppose the residual r is small (but nonzero). For what values of «, if
any, will the error e = x — x. be large? Note x is the exact solution and
X is the computed solution.

(c) Suppose the error e is small (but nonzero). For what values of a, if any,
will the residual be large?

3.13. Use the three defining properties of a vector norm for the following.
(a) Show that if x = 0, then ||x|| = 0.

(b) Show that for any x, ||x|| > 0.

(c) Show that ||x]||1 is a vector norm.

3.14. Assuming pivoting is not necessary, then a symmetric matrix A can be
factored as A = LDLT, where L is a lower triangular matrix with ones on
its diagonal and D is a diagonal matrix.

(a) Find the LDLT factorization of the matrix

(1)
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(b) In Section 3.1, it was shown how an LU factorization results in solving
two matrix equations (for y and x). Explain how an LDL? results in
solving three matrix equations. Use this to solve

—dx+y=2
z+y=1.

(c) Explain why the flop count for solving Ax = b, where A is a symmetric
n x n matrix, using an LDL” factorization is approximately half of the
flop count when using an LU factorization.

3.15. In this exercise, A is a 2 x 2 matrix, and Ay is its floating point

approximation (using double precision).

(a) Give an example of an invertible matrix A where Ay is the zero matrix.
Your example should also have x(A) = 1.

(b) Give an example of a symmetric and positive definite matrix A where
A, is symmetric but not positive definite.

(c) Give an example of a strictly diagonally dominant matrix A where A is
not strictly diagonally dominant.

(d) Is it possible for A to be symmetric but Ay not symmetric?

3.16. This problem considers two ways to solve Ax = b, where A is an

n x n magic matrix and the exact solution is x = (1,1,---,1)7. The matrix

A should be calculated in MATLAB using the magic(n) command, and

calculate b using the formula b = Ax. In what follows x,; designates the

solution computed using the MATLAB backslash operator, and x; is the
solution computed using the inverse formula x; = A~'b. Use MATLAB to
fill out Table 3.8 and then answer the following questions (note that r =

b — Axj)y). Also, the entries in the table only need to include two significant

digits, and the norms refer to the infinity norm.

(a) Do you see any substantial differences between the two solution methods
when they are compared using the relative error?

(b) Does a small residual indicate an accurate solution? Your answer should
include a comment on the value of the condition number. What about
any dependence on the size n of the matrix?

(c) How well does the last column predict the relative error?

3.17. This problem considers two ways to solve Ax = b, where A = 3P and
P is the nxn Pascal matrix. Also, the exact solution is x = (1,1,---,1)T. The
matrix A should be calculated in MATLAB using the pascal(n) command,
and calculate b using the formula b = Ax. In what follows x,; designates
the solution computed using the MATLAB backslash operator, and x; is the
solution computed using the inverse formula x; = A~'b. Use MATLAB to
fill out Table 3.9 and then answer the following questions (note that r =
b — Axjy). Also, the entries in the table only need to include two significant
digits, and the norms refer to the infinity norm.
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I =xael] [l = x|
Il r(A)  er(A)
|1 |1
3
6
9
12

Table 3.8 Table for Exercise 3.16.

(a) Do you see any substantial differences between the two solution methods
when they are compared using the relative error?

(b) Does a small residual indicate an accurate solution? Your answer should
include a comment on the value of the condition number. What about
any dependence on the size n of the matrix?

(c) How well does the last column predict the relative error?

3.18. This exercise considers the following three versions of the same prob-
lem:

ax + by = by cx + dy = by by +axr =0
cx+dy=by, ar+by=0by, dy-+cr=bs.

Here a, b, ¢, d, as well as by and bs, are assumed known. Note that each
version differs only in the order the equations are written down. A property
of this problem is said to be fragile if it holds for one of the versions but not
all of them.

(a) Is symmetry of the coefficient matrix a fragile property?

(b) Is uniqueness of the solution a fragile property?

(¢) Is ill-conditionedness of the coefficient matrix a fragile property?

(d) Is invertibility of the coefficient matrix a fragile property?

3.19. This problem considers whether a Cholesky type factorization can be
used on a matrix which is not positive definite. The assumption is that given
an invertible symmetric matrix A, then A = CTC where C is upper tri-
angular with possibly complex-valued entries. In this problem this will be
referred to as a generalized Cholesky factorization. What will be shown is
that a generalized Cholesky factorization is possible as long as the leading
principal minors of A are nonzero. Note that a method that avoids the use
of complex-valued factors is considered in Exercise 3.14.
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I =xael] [l = x|
Il r(A)  er(A)
|1 |1
4
8
12
16

Table 3.9 Table for Exercise 3.17.

(a) The following matrix is invertible and symmetric but not positive definite.
Find a matrix C satisfying the stated assumption.

-4 1
A =
()
(b) Using the factorization found in part (a), solve
—dx+y=2
z+y=1.

Do you obtain the same answer you would get if you did not use the
factorization?

(c) What conditions must be imposed on the entries of the following symmet-
ric matrix so it is invertible and has a generalized Cholesky factorization.

a b
A= .
(d) Answer the question posed in part (c) for a symmetric 3 x 3 matrix.

3.20. This exercise looks at some of the theorems about symmetric and pos-
itive definite matrices in the case of when

a b
A= .
(5 2)
As will be established in part (a), this matrix is positive definite if, and only
if, @ > 0 and ac — b?> > 0. This result is then used to prove the various

theorems we had about positive definite matrices.
(a) Show that the eigenvalues of the matrix are

Ay = ;[a—l—c:l:\/(a—i—c)?—él(ac—b?)}.
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Explain why the eigenvalues are positive if, and only if, a + ¢ > 0 and
ac — b? > 0. Also explain why these two conditions can be replaced with
the requirements that a > 0 and ac — b > 0.

(b) Use the result from part (a) to prove that A is not positive definite if any
diagonal entry is negative or zero.

(c) Use the result from part (a) to prove that if A is positive definite, then the
largest number in A, in absolute value, can only appear on the diagonal.

(d) Use the result from part (a) to prove that if A is positive definite, then
det(A) > 0.

(e) Use the result from part (a) to prove that A is positive definite if the
diagonals are all positive and it is strictly diagonal dominant..

(f) What are the three equations for the u;;’s that come from the Cholesky
factorization? Explain why the assumption that A is positive definite
is exactly what is needed to guarantee that you can find a real-valued
solution to these equations.

3.21. This exercise shows that the formulas derived in Example 3 of Sec-
tion 3.6.2 apply to any vector norm. Assume D is a diagonal n X n matrix,
with diagonal entries dy, do, - -, d.

(a) Show that ||Al||cc = max{|d1],|dz2]|, - ,|dn]| }-

(b) Assuming the d;’s are not zero, ShOW that

1
A Y= )
] I min{ |di|, |da|,-- -, |dn]| }
(¢) Show that
max{ |d;| }
Fioo(A) min{ |d;| }

3.22. This problem considers the following n x n tri-diagonal matrix:

a cC

b a c 0
b a ¢

A=
0 b

a c
b a
It is possible to show that the eigenvalues of this matrix are
i = a + 2Vbecos o , for i=1,2,...,n
n+1

Also, assume that n > 3.

(a) What is ||A||s, and what is ||A|[1?

(b) In the case that A is symmetric (so, ¢ = b), what inequality must be
satisfied to guarantee that A is strictly diagonal dominant?
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(¢) Assuming the matrix is symmetric and a is positive with 2|b| < a, explain
why A is positive definite.

3.23. Consider the following nonlinear system of equations:

$2+y2:4,

y = 3.

(a) Sketch the two curves and explain where (approximately) the solutions
are located.

(b) What is J and f, as given in (3.28), for this problem?

(c) What would be good starting values for the solutions you identified in
part (a)? Make sure to provide an explanation for your choices.

3.24. Consider the following nonlinear system of equations:

422 + % = 16,
3y = 2.

(a) Sketch the two curves and explain where (approximately) the solutions
are located.

(b) What is J and f, as given in (3.28), for this problem?

(c) What would be good starting values for the solutions you identified in
part (a)? Make sure to provide an explanation for your choices.

3.25. This problem considers the situation of when the matrix is tri-diagonal,

symmetric and positive definite. The equation to solve is Ax = z, where A is

given in (3.18). Because the matrix is symmetric and positive definite, a; > 0

and bl =Ci—1-

(a) Show that the elements of the Cholesky factorization can be determined
using an algorithm of the form

dy = v/ay

fori=2:n
Vi—1 =
diZ

end

where d(i) = u(i,i) and v(i) = u(é,7 + 1). Note that instead of working
with the matrix U, only the diagonal and upper diagonal entries are
computed (since all the other entries are zero).

(b) Assuming the Cholesky factorization has been determined, show that the
algorithm for solving the equation can be written as
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ylzzl/dl

fori=2:n
Yi =

end

xn:yn/dn

fori=n—-1,n—-2,---,1
x; =

end

(¢) Use your algorithm from parts (a) and (b) to solve the matrix equation in
the case of when a; = 3, b; = ¢; = 1, and n =100,000. Also, take z = Ax,
where x = (1,1,---,1)T. It is only necessary to report the values of (1)
and z(2) (to 16 digits). Also, report the computed value of ||r||o and

lel]oo-
(d) Using the same matrix as in part (c), use your algorithm to solve the
matrix equation when x = (1,—1,1,—1,---,—1)T. It is only necessary

to report the values of z(1) and x(2) (to 16 digits). Moreover, you must
give a compelling explanation of why you believe you answer is correct
(within the limits of double precision).

3.26. This problem considers solving a matrix equation using the Crout

factorization.

(a) The algorithm for finding a Doolittle factorization of A, assuming pivot-
ing is not needed, is given in Table 3.1. Find a similar algorithm for the
Crout factorization.

(b) Use your algorithm from part (a) to solve the matrix equation in the case
of when A has diagonal entries a;; = 2 and off-diagonal entries a;; = 1.
Also, n = 1000 and take z = Ax, where x = (1,1,---,1)T. It is only
necessary to report the values of (1) and x(2) (to 16 digits). Also, report
the computed value of ||r||ec and ||€]]co-

(c) Using the same matrix as in part (b), use your algorithm to solve the
matrix equation when x = (1,—1,1,—1,---,—1)T. It is only necessary
to report the values of (1) and x(2) (to 16 digits). Moreover, you must
give a compelling explanation of why you believe you answer is correct
(within the limits of double precision).



Chapter 4
Eigenvalue Problems

The problem considered in this chapter is: given an n X n matrix A, find the
number(s) A and nonzero vectors x that satisfy

Ax = x. (4.1)

This is an eigenvalue problem, where X is an eigenvalue and x is an eigen-
vector. There are a couple of observations worth making about this problem.
First, x = 0 is always a solution of (4.1), and so what is of interest are the
nonzero solutions. Second, if x is a solution, then ax, for any number «, is
also a solution.

In linear algebra the procedure used to solve the eigenvalue problem con-
sists of two steps:

1. Solve
det(A — A\I) =0, (4.2)

where I is the identity matrix. This is known as the characteristic equa-
tion, and the left-hand side of this equation is an nth degree polynomial
in A

2. For each eigenvalue A, solve

(A — \)x = 0. (4.3)

Note that Step 2 provides a way to determine an eigenvector once the eigen-
value is known. For some of the numerical methods used to solve (4.1), the
eigenvectors are determined first. It is possible to determine the associated
eigenvalue by multiplying both sides of (4.1) by an eigenvector x. This yields
the formula

x - Ax
A= , (4.4)
XX
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“o»

which is known as Rayleigh’s quotient. Also note that the appear-
ing in this expression designates a dot product. As a reminder, if x =
(1,22, ,2,)T andy = (y1,y2, -+ ,yn)T, then the dot product is defined as

Xy =T1Y1 +T2y2 + -+ TplYn.

Examples

1. Consider the eigenvalue problem

()G =6) 6

The characteristic equation (4.2) is A2 —4A+3 = 0, and so the eigenvalues
are Ay = 3 and Ao = 1. For Ay, (4.3) takes the form

-1 1\/z\ [0
1 -1 )\y) \o/°
From this it follows that the eigenvectors associated with this eigenvalue
have the form x = ax;, where « is an arbitrary nonzero constant and

o= ()

For \s, one finds that the eigenvectors have the form x = $xs, where (3 is
an arbitrary nonzero constant and

o

2. Consider the eigenvalue problem

b 3)G)=6) o

The characteristic equation is (A — 3)? = 0, and so the only eigenvalue is
A1 = 3. In this case, (4.3) takes the form

£90-()
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All values of z and y satisfy this equation. It is possible to write this as
X = axi1 + Ox2, where a and 3 are arbitrary nonzero constants,

1 0
x1—<0>, and x2—<1>. [ |

3. Consider the eigenvalue problem

1 2
()66
- 1/\y Y
The characteristic equation is A2 — 2\ +2 = 0, and so the eigenvalues are
A=1l+4+diand A=1—4. 1

2 1\/x x
=
0 2/\y Y
has only one eigenvalue A = 2, and only one independent eigenvector. An
n X n matrix that has fewer than n independent eigenvectors is said to be

defective. So, the matrix of this example is defective, while the matrices
for the three previous examples are not defective. B

4. The eigenvalue problem

An important observation is that the first two matrices in the above
examples are symmetric. They illustrate a result from linear algebra, which
is stated next.

Theorem 4.1. If A is a symmetric n x n matriz, then the following hold:
1. Its eigenvalues are real numbers.
2. If x; and x; are eigenvectors for different eigenvalues, then x; - x; = 0.

3. It is possible to find a set of orthonormal basis vectors ui, ug, -+, Uy,
where each w; is an eigenvector for A.

In the last statement, for the vectors to be orthonormal it is required that
w-u; =0ifi#jand u;-uy = 1.

Example: Chain of Oscillators

Several applications involving eigenvalues and related ideas are considered
in this chapter, including vibrating strings (Section 4.4.1), networks (Sec-
tion 4.4.2), and image compression (Section 4.5.3). The particular example
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Figure 4.1 Chain of masses and springs.

described here involves a chain of oscillators as illustrated in Figure 4.1. What
is shown in this figure are masses that are connected by springs, and each
mass is also attached to its own spring (the other end of these springs is as-
sumed to be held fixed). Letting y; () be the position of the ith mass, relative
to its equilibrium location, then the resulting equation of motion is

my; + kyi = ke(yiv1 — 2yi + yi—1), fori =1,2,3,--- ,n (4.7)

where yo = yn+1 = 0.

Although configuring masses and springs in this way looks like some com-
plicated child’s toy, this arises in numerous applications and has various
names. A recent example is its use in the study of a chain of atoms that
are subject to nearest neighbor interactions [looss and James, 2005]. How-
ever, the problem goes back centuries, to at least Bernoulli [1728], and has
been used in a wide spectrum of applications, including the interactions of
stars [Voglis, 2003] and the modeling of swarming motion [Erdmann et al.,
2005]. It is also the basis of what is known as the Fermi-Pasta-Ulam (FPU)
chain, which is used to study solitary waves [Ford, 1992; Berman and Izrailev,
2005].

The question considered here is, what are the time periodic solutions of
this chain, what are called the normal modes of the system. This is answered
by assuming y;(t) = z; exp(Iwt), where I = y/—1. Substituting this into (4.7),
and writing the problem in matrix form, we obtain the eigenvalue equation
Ax = \x, where

a —1
-1 a -1 0
—1 a —1
A= L ; (4.8)
0 -1

-1 a

a=2+k/k. and A\ = mw?/k.. Using the formula from Exercise 3.22, the
eigenvalues of this matrix are

)\i_a+2cos< o ), for i=1,2,...,n. (4.9)
n+1
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Figure 4.2 Eigenvalues of an oscillator chain in the case of when n = 30.

The values obtained from this formula in the case of when k =1, k. = 1/10,
and n = 30 are shown in Figure 4.2. In the applications mentioned earlier,
n is usually quite large, and as an example n = 3000 in James et al. [2013].
The eigenvalues in this case follow the curve seen in Figure 4.2, but they
are much closer together. As will be explained later, this has a detrimental
effect on how fast the eigenvalue solvers considered in this chapter are able
to compute the eigenvalues. B

We are now going to begin considering how to compute the solution of an
eigenvalue problem. To be honest, depending on how many eigenvalues are
going to be computed, this is not an easy task. The characteristic equation,
as given in (4.2), involves a determinant, and these require on the order of
O(n®) flops to compute. This is significant because the roots of (4.2) can
be very sensitive to round-off error, and an illustration of this is given in
Figure 1.1. What this means is that unless n is very small, we will not use
(4.2) to determine the eigenvalues.

All of the numerical methods to be considered require, to prove they work,
that the matrix is not defective. As you might recall, this means that the nxn
matrix has n linearly independent eigenvectors. For some of the methods it
is also necessary to include the additional requirement that the eigenvec-
tors are orthogonal. According to Theorem 4.1, symmetric matrices satisfy
this requirement. Symmetric matrices also have the benefit of being easy to
determine, and they are also very common in applications. In comparison,
defective matrices are rare.

4.1 Power Method

This method will provide a procedure for calculating what is known as the
dominant eigenvalue. It comes from a simple observation. If you multiply
Ax = \x by A, you get A’x = MAx = A\2x. Multiplying by A again gives
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A3x = M\3x, and in general A*x = A\*x. The observation is that as k increases
the right-hand side will be dominated by the largest eigenvalue, or more
precisely the one that is largest in absolute value. To illustrate how to take
advantage of this we consider an example.

For the eigenvalue problem in (4.2), the matrix is

A (2. 0

To use the power method to find the largest eigenvalue A\; = 3, it’s necessary
to guess a nonzero starting vector yo. We found earlier that two linearly
independent eigenvectors for this matrix are

an() mone()

These can be used as a basis, which means that for any choice of yyq, it is
possible to find a; and as so that

Yo = a1X1 + a2Xa. (4.11)
With this,

y1 = Ayo
= a1 Ax1 + asAxo
= a1 A\1X1 + aaAoXa,

and y2 = Ay; = a1 A¥x; + aaA3xa. At the kth step,

Vi = Ayk-1
= 041/\le1 + az)\gxz
= AT (11 + aowbxs) (4.12)

where w = A\y/A; = 1/3. After calculating yj, we can use the Rayleigh quo-
tient in (4.4) to obtain an approximation vy, of the corresponding eigenvalue.
The result is

Yk Ay

YRR

o (041X1 + OéQOJkXQ) . (041)\1}(1 + agwk)\QXQ)
kxs)

U,

(a1x1 + aswkxs) - (a1x1 + asw
1+ a2w2k+1

=\ 1+ a2w2k

(4.13)
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Pick: random y
tol >0
Let: z= Ay
vo=(y-2z)/y-y
Loop For k=1,2,3,---

y = z/||zl|2

z= Ay

V=Y -2

If v, — vE—1|/|vk| < tol then stop
End

Table 4.1 Power method for calculating the dominant eigenvalue of A. Note that
v is the computed value for the eigenvalue.

where o = as/a;. Because w < 1, then w?* — 0 as k — co. Therefore, from
(4.13) we conclude that vy, — A1 as k — co.

The formula in (4.13) has some useful information related to how fast the
method converges. To explain, we have that

2k

— A =cA .
U= AL =eAy o o

where ¢ = a?(w — 1). This means that as k increases,

Uk~ A1 ~ cw?t, (4.14)
A1

Since this also means that vg_1 — A ~ cAiw?®* D it then follows that
Vi — )\1 ~ wz(vk_l — )\1). (4.15)

This is a particularly useful result because it states that once vy starts to get
close to A1, the error |vy — \1| is approximately a factor of [A\a/A1|? smaller
than the previous error |vg—1 — A1|. Moreover, using the same approximation
used to derive (4.15), it is possible to show that

Uk — Vh—1 ~ W (Vp_1 — Vk_2). (4.16)
So, the iterative error |vx —vy_1| is approximately a factor of |A2/A1|? smaller
than the previous error |vg_1 — vk—2|. In comparison, the convergence of the
eigenvector is slower. In (4.12), the reduction of the xo contribution decreases
by a factor of |A2/A1| with each iteration step.
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Although the method can be used to find A1, there is a potential numerical
problem with the formula for yj in (4.12) because the term A¥ becomes very
large as k increases. This can be avoided by scaling the vectors. Specifically, at
the kth step, one first computes z; = Ayy_1, and then lets yi = z/||zx||2,
where ||zx||2 = \/zk - zZ,. What this does is effectively removes the A} co-
efficient in (4.12). The resulting algorithm is given in Table 4.1. Note that
the values of y and z are not indexed, but are overwritten as the procedure
proceeds.

Example
As determined earlier, the eigenvalues of
21
A =
1 2

are A\; = 3 and Ay = 1. Applying the power method to A, as given in
Table 4.1, let yo = (—3,2)T. In this case,

w=an=(1,)(5) = ()

: 14
= Yo% _ % 10769,

Yo-yo 13

To improve on this, we calculate the following
o YA - 1 (—4)
i VZo-zo 17T\ 1)’
1 /=7
7z = A_ = )
1 Y1 \/ 17 <_2>

26
V1 =Y1°'21 = 17 ~ 1.5294.

and

Vo

The next steps are calculated using MATLAB, with the results given in
Table 4.2. It is evident that vy is approaching the dominant eigenvalue
A1 = 3. According to (4.15), as the iteration proceeds, the error should
decrease by a factor [Aa/A1|? = 1/9 ~ 0.1111. The same is true, accord-
ing to (4.16), for the iterative error. To verify this, the ratios for these two
error measures are also given in Table 4.2. Finally, the method also produces
an eigenvector for A1, and from the MATLAB calculation it is found that
y7 = (—0.7087, —0.7055)T. The exact result is a multiple of x;, but the ent-
ries in y7 only agree to two digits. The error for the eigenvalue approximation
v7, in contrast, is about 3 x 1076, The reason for the poorer approximation
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Uk — A1 Vg — Vgp—1

k Vg

Vp—1 — A1 Vp_1 — Vk—2

0 1.076923076923

1 1.529411764706 7.65e—01

2 2.528301886792 3.21e—01 2.21e+00
3 2.933687002653 1.41e—01 4.06e—01
4 2.992408138476 1.14e—01 1.45e—01
5 2.999153603954 1.11e—01 1.15e—01
6 2.999905920605 1.11e—-01 1.12e—-01
7 2.999989546297 1.11e—01 1.11e—01

Table 4.2 vy is the value for the dominant eigenvalue computed using the power
method applied to (4.10). The exact value is A1 = 3. Also given are the error ratios
given (4.15) and (4.16), both of which approach |A2/A1]? = 1/9 ~ 0.1111.

for the eigenvector can be found in (4.12). When going from k to k + 1, the
contribution of x» is removed by another factor of w. The eigenvalue improve-
ment, according to (4.14), is by a factor of w?. B

As shown in (4.14), the speed at which the method converges depends on
the ratio A2/A;1. To investigate this observation, suppose we want the relative
error in the eigenvalue to satisfy vy — A1|/|A1] < 1074, From (4.14) this will
happen if, approximately,

lcw? | <1074,

where w = A\y/\; < 1. First, note that ¢ = (w — 1)(a2/a1)?, where oy and
ag are the coefficients in (4.11). This shows that if you unfortunately pick
a starting vector yo with a small contribution from x;, so a7 is small, then
the power method will take a large number of iterations to converge. The
exact number depends on the ratio A2/A;. To illustrate the sensitivity of the
number on this ratio, suppose ¢ ~ 1, so from the above inequality we get that

k>— 2 .

~ logw

Since w = 1/3, this means k > 4. This is a small number of iteration steps,
but this happens because the two eigenvalues are relatively far apart. As an
example of when this is not the case, if Ay = 1000 and Ay = 1001, then
w = 1000/1001 and we need k > 4607. This observation that the speed at
which the method converges slows down if the eigenvalues are relatively close
together will apply to all of the methods we will consider.
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To conclude the introduction of the power method, it should be pointed
out that there is a complication concerning what eigenvector the method
produces. To explain, suppose A\; = —3 and Ay = 1. We still obtain (4.12),
but because of the minus sign, the coefficient of yj switches sign as k changes.
This also happens for the normalized version of the method given in Table 4.1.
In this case, the sequences yq, y2, ¥4, --- and yi1, y3, ¥5, --- are both
converging to an eigenvector for A\;, but the vectors they converge to differ by
a minus sign. This annoying + problem only arises if the dominant eigenvalue
is negative.

4.1.1 General Formulation

The derivation of the power method was illustrated using a specific 2 x 2
matrix, and to use it on general n x n matrices it is necessary to know what
conditions are necessary so it will work. First, in (4.13) and (4.15) we used
the inequality |A2/A1] < 1 to be able to conclude that w* — 0 as k — oo. For
a more general matrix, suppose A1, Ao, - -+, A, are the eigenvalues of A, and
they are labeled so that |A1] > [A2] > -+ > |A,|. This gives us the following
definition.

Definition 4.1. )\; is the dominant eigenvalue of A if |A\1]| > |Az.

The strict inequality in this definition is what enables us to guarantee that

IAi/A1|F — 0 as k — oo for i = 2,3,---  n. Also note that because absolute
values are used here, the dominant eigenvalue is not necessarily the largest
eigenvalue.

The second thing we needed was that the eigenvectors of A can be used
as a basis. In the n x n case this means that there are n linearly independent
eigenvectors. According to Theorem 4.1, this is guaranteed if A is symmetric.

The third, and final, requirement is that «; # 0 in (4.12). In other words,
the initial guess yo must include a part of the eigenvector for the dominant
eigenvalue.

To summarize the above discussion, we have the following theorem for the
power method given in Table 4.1.

Theorem 4.2. Assume that A is a nonzero symmetric n X n matriz, with a
dominant eigenvalue \1. If the initial guess for y includes some part of an
eigenvector for A1, then the vg’s converge to 1. Moreover, if the initial guess
contains some portion of an eigenvector for Ao, then the error decreases as
follows:

|’Uk —)\1| :w,%h)k,l —A1|7 (417)

and
|og — Vp_1| = Wilvgp_1 — vr_2l, (4.18)
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where as k — oo, both wy and wy approach
A2

. 4.19
: (4.19)

The error in the associated eigenvector decreases as O(wy).

By using a random number (vector) generator to produce the initial guess for
y, as prescribed in Table 4.1, it is almost certain that it contains some part
of an eigenvector for A;, as well as some portion of an eigenvector for A2. To

explain, if x; = (a1, a2, -+ ,a,)7 is an eigenvector, and yo = (11,79, -+ ,7n)7,
then yg contains no contribution from x; when yg - x; = 0. This means that
the randomly chosen numbers r1, 79, - -+, 7, must be such that

riayr +reas + -+ +rpa, = 0.

The probability of picking n random numbers that sum to zero in this way
is extremely low. However, in the very unlikely case of when yg contains
no contribution from an eigenvector for Ao, but does contain a component
from an eigenvector for Az, then the limiting value in (4.19) is replaced with
[A3/A1]. Similar modifications are necessary for the other possible situations.
In what follows, when discussing the convergence of the power method, it is
assumed that (4.19) holds.

As stated earlier, (4.17) is an important result because it states that once
vy, starts to get close to A1, the error |uy — 1| is approximately a factor of
[A2/A1]? smaller than the previous error |vg_1 — A1]. The iterative error also
decreases in this manner, and this is because of (4.18). A consequence of this
is that the power method can converge very quickly if |A2| < [A1], but it can
also be very slow if |A\2] is not much different than |\].

The above theorem holds in the more general case of when A is an n X n
matrix, with n linearly independent eigenvectors. The requirement is that the
eigenvalue A; with the largest magnitude is real-valued and —A; is not also an
eigenvalue. However, without the assumption of symmetry, the error in (4.17)
and (4.18) is guaranteed to decrease as O(wy) rather than the stated O(w3).
It is also possible to use shifting (which is explained in the next section) so
the power method will work on any symmetric matrix (see Exercise 4.8).

Example

Suppose A is the n x n matrix
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Vg — A1 Vg — Vk—1

k Vg

Vp—1 — A1 Vk—1 — Vk—2

0  3.000300728189

1 3.000633149675 1.00e+00

2 3.001168862204 9.99e—01 1.61e+00
3 3.002095543148 9.99e—01 1.73e+-00
4 3.003727977465 9.98e—01 1.76e+-00
22 3.991584072355 5.66e—01 5.73e—01
23 3.995248545996 5.65e—01 5.68e—01
34 3.999991483933 5.63e—01 5.63e—01
35 3.999995209694 5.63e—01 5.63e—01

Table 4.3 Dominant eigenvalue A1 = 4 of (4.20) as computed using the power
method. Also shown are the error ratios obtained from (4.17) and (4.18), both of
which approach [A2/\1|? & 0.5625.

A= . (4.20)

1 a

Specifically, if a;; denotes the entries in A, then a;; = 0 except that a;; = a
and a,1 = a1, = 1. The eigenvalues of A are a, a + 1, and a — 1 (see
Exercise 4.12). Taking a = 3, n = 200, and a random starting vector yg, the
power method produces the results given in Table 4.3. For this matrix, the
dominant eigenvalue is A\; = 4. The convergence is not as fast as in Table 4.2,
and the reason is that Ay = 3, and A2/\; = 3/4. According to (4.19), once the
method starts to get close to the exact solution, the error should be reduced
by a factor of (3/4)% ~ 0.56 at each step. This reduction holds for the error
ratio coming from (4.17), given in the third column, and for the iterative
error ratio coming from (4.18), given in the fourth column. W

There are numerous variations of the power method, and one of the more
interesting involves using probabilistic measures of the error, and this is dis-
cussed more in Kuczyniski and Wozniakowski [1992].
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4.2 Extensions of the Power Method

It is relatively easy to modify the power method to find some of the other
eigenvalues and eigenvectors. This requires knowing the right formulas from
linear algebra, and two we will now need are the following.

Theorem 4.3. Suppose the eigenvalues of an n X n matrix A are A, Ag,
e )\n

1. Setting B = A — wl, where w is a constant, then the eigenvalues of B
are A\ —w, Ay —w, -, \p —w. Also, if x; is an eigenvector for A that
corresponds to \;, then x; is an eigenvector for B that corresponds to
)\1‘ — Ww.

2. If A is invertible, then the eigenvalues of A=% are 1/A1, 1/, -+, 1/ .
Also, if x; is an eigenvector for A that corresponds to X\;, then x; is an
eigenvector for A=1 that corresponds to 1/\;.

4.2.1 Inverse Power Method

To find the smallest eigenvalue of A, in absolute value, one can use the power
method with A~!. The explanation why involves Statement 2 in Theorem 4.3.
Suppose that the eigenvalues of A are A1, Az, --+, An—1, A\ and they satisfy

A1l > A2 > - > [Aua] > [An] > 0.

With this, the eigenvalues of A~! are )\1_1, )\2_1, R )\;il, A1, and they
satisfy

1 - 1 S 1

)\n )\nfl - - )\1 '

Consequently, |1/, | is the dominant eigenvalue of A~! and it is determined
by the eigenvalue of A that is closest to zero.

To use the power method with A~!, the two lines in Table 4.1 that state
z = Ay take the form z = A~'y. It is possible to avoid having to calculate
the inverse matrix by realizing that one can find z by solving Az = y. In
this way, the LU factorization method can be used, and A only needs to
be factored once. Also, in terms of the speed of convergence, according to
(4.17)—(4.19), the error for a symmetric matrix is reduced each iteration step
by a factor of about w?, where w = A\, /Ap_1.
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Set: B=A —ul
Pick: random y

tol >0
Find: B=LU
Bz=y

Let: vo=(y-2z)/y"-y
Loop For k=1,2,3,---
y = z/l|z[|2
Bz=y
Vg =Yy Z
If |vp — vk —1|/|vk| < tol then stop
End

Table 4.4 Inverse iteration for calculating the eigenvalue of A closest to u. At com-
pletion the eigenvalue is A = p + 1/vy. Note that Bz = y means that the equation is
solved, using the known LU factorization, for z.

4.2.2 Inverse Iteration

The method that is going to be described next is based on the following
question: if we have an approximation for an eigenvalue, can we use this to
speed up the convergence of the method used to compute the exact value? To
answer this, it is assumed that the eigenvalues of A are A1, Ao, -+, A,. Also,
suppose we know that eigenvalue \; is approximately p. More specifically,
it is assumed that p is closest to A;, and so |A; — pu| < |A; — pl, for j # i.
This means, according to Statement 1 in Theorem 4.3, that the eigenvalue of
B = A—plI that is closest to zero is A; —u. Adapting the inverse power method
described above to B we get the algorithm given in Table 4.4. The vy’s in
this case are converging to 1/(\; — p), so at completion A\; = p + 1/vg. As
for the speed of convergence, suppose that the second closest eigenvalue to u
is A;. According to (4.17)—(4.19), the error for a symmetric matrix is reduced
each iteration step by a factor of about w?, where w = (A, — u)/(A; — ).
Consequently, if the approximation is good enough that |\, — p| < |A; — pl,
then the method will be speeded up considerably.

One of the reasons for the popularity of inverse iteration is because there
are efficient methods for finding eigenvalues that are not so efficient for finding
eigenvectors (one of these will be considered in Section 4.3.3). With good
approximations for the eigenvalues, inverse iteration provides a very good
method for finding the eigenvectors.
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Example

The eigenvalues of

A () ay

are A\; = 3 and A = 1. Inverse iteration will be used to compute A2 = 1 by
starting with the approximation of y = 1/2. The shifted matrix is then

B:A_;I:(?){Q 3}2)'

Taking yo = (1,0)7, and solving Bzo = yo, one finds that

With this vo = (y0 - 20)/(¥o - Yo) = 6/5, and this leads to the approximation
4
MAp+1/vg= 3 ~ 1.3333.

To improve on this, we calculate
Z1 1 ( 3>
y = =
Tzl Vi3 \-2

k Ao Error

0 1.333333333333 3.33e—01
1 1.015873015873 1.59e—02
2 1.000639795266 6.40e—04
3 1.000025599672  2.56e—05
4 1.000001023999 1.02e—06
5 1.000000040960 4.10e—08
6 1.000000001638 1.64e—09
7 1.000000000066 6.55e—11
8 1.000000000003 2.62e—12

Table 4.5 Result of using inverse iteration to calculate the eigenvalue Ao = 1 of
(4.21), along with the corresponding error.
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and, from solving Bz; =y,

. - 2V/13( 13
YToes \-12)°

With this vy = (y1-21)/(y1-y1) = 126/65, and this leads to the approximation
A~ p+1/v; =64/63 =~ 1.01587.

The remaining approximations are calculated using MATLAB, with the
results given in Table 4.5. B

Example

The eigenvalues of the n X n matrix given in (4.20) are a, a — 1, and a + 1.
Taking a = 3, and n = 200, the resulting values computed using the inverse
iteration method are given in Table 4.6. Two shifts were tried, one was y = 4.8
and the second was p = 4.4. Comparing these to the values computed using
the power method, which are given in Table 4.3, it is evident that shifting
does indeed reduce the number of iteration steps. It is also evident that the
better the shift the faster the method works. B

kA with p=4.8 Error A1 with p=4.4 Error
0 3.023084747050 3.016681187905

1 3.106937685868 8.93e—01  3.176228115668 8.24e—01
2 3.377432051969 6.23e—01  3.724004514014 2.76e—01
3 3.754250014560 2.46e—01  3.969823111025 3.02e—02
4 3.939532257759 6.05e—02  3.997466432162 2.53e—03
5  3.987446631422 1.26e—02  3.999792697636 2.07e—04

3.997495089407  2.50e—03  3.999983074187  1.69e—05

~N O

3.999504206314  4.96e—04  3.999998618281 1.38e—06
8  3.999902026471  9.80e—05  3.999999887207 1.13e—07
9 3.999980645683 1.94e—05  3.999999990792  9.21e—09

10 3.999996176866  3.82e—06  3.999999999248  7.52e—10

Table 4.6 Dominant eigenvalue A1 = 4 of (4.20) as computed using the inverse
iteration method given in Table 4.4, using two different shifts.
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One of the interesting aspects of inverse iteration is that you could reason-
ably expect that it will fail if you have a very good estimate of the eigenvalue.
The reason is that the better the guess, the more ill-conditioned the matrix
B = A — ul becomes. In fact, at one time it was actually advised not to
use an accurate shift to avoid producing an ill-conditioned matrix. However,
good shifts do not cause the method to fail, and an explanation can be found
in Peters and Wilkinson [1979].

4.2.3 Rayleigh Quotient Iteration

A second reason why inverse iteration is important is because of a method
derived from it. This modification involves improving the shift as the iteration
proceeds. To explain, let yo be a starting vector. Using the Rayleigh’s quotient
(4.4), an approximate eigenvalue is

_ Yo-Ayo
Yo - Yo

Mo

This provides the first shift, and we take By = A — pol, and from this
one finds zg by solving Bpzg = yo. As usual, this is normalized to produce
Y1 = Zo/||Zo||2- This enables us to find a somewhat better approximation for
the eigenvalue, which is
y1- Ayl
yi-yr o
This brings us to the better shifted matrix By = A — p1I. This process
of using inverse iteration, but improving the approximation for the shift, is
known as Rayleigh quotient iteration, and it is summarized in Table 4.7.
The usual criticism of the Rayleigh quotient iteration is that a new LU fac-
torization is needed at each iteration step to find z. In contrast, the shift in
the inverse iteration method does not change, so only one LU is required.
Although this is potentially a drawback, as will be demonstrated in the
example below, Rayleigh converges so quickly that this is often not a partic-
ular issue.

H1 =

Example

The eigenvalues of the n X n matrix given in (4.20) are a, a — 1, and a + 1.
Taking a = 3, and n = 200, the resulting values computed using the Rayleigh
quotient iteration are shown in Table 4.8. The contrast between this and what
is obtained using the power method on the same matrix, which is given in
Table 4.3, is striking. It is also much faster than the inverse iteration results
given in Table 4.6. It is possible to prove that the order of convergence, which
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Pick: random y with ||y|l2 =1
tol >0
Let: vo =y Ay
Loop For k=1,2,3,---
B=A—v,_4l
Bz=y
y = 2/llzll2
vy =Yy -2
If v, — vE—1|/|vk| < tol then stop
End

Table 4.7 Rayleigh quotient iteration for calculating an eigenvalue of A. Note that
Bz = y means that the equation is solved for z.

is explained in Section 2.4.1, is v = 3. This means that if the error at step
k is 107™, then at the next step you should expect the error will be about
107%™, The computed values for v, using (2.15), are given in Table 4.8. The
difficulty with this is that the convergence is so fast that you quickly reach
the resolution possible with double precision. The consequence is that you
get the predicted value at k = 2, but after that improvement in the answer is
not possible and the computed values for v are approximately equal to one. B

As seen in the above example, the Rayleigh quotient iteration can be third
order. The proof of this requires the assumption that the matrix is symmetric
or normal [Parlett, 1998]. There has been an effort to extend the method to

k Vi v — Al Y

0 0.050740429652

1 3.000515277178 5.15e—04 —7.42e—01
2 3.000000000139 1.39e—10  3.00e+00
3 3.000000000000 2.66e—15  1.48e+00
4 3.000000000000 1.78e—15 1.01e4-00

Table 4.8 Eigenvalue computed using Rayleigh quotient iteration for matrix (4.20),
with a = 3. Also shown are the error and the computed value for the order of
convergence.
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nonnormal matrices [Parlett, 1974], but it is known that the method can fail
if the matrix is not symmetric [Batterson and Smillie, 1989).

Also, nothing has been said about which eigenvalue the Rayleigh quotient
iteration converges to. In the above example, it converged to the middle
eigenvalue, versus the dominant one or the one closest to zero. Presumably,
the one that appears depends on the eigenvalue representation in the starting
vector, and which eigenvalue the approximate shifts are closest to as the
iteration proceeds. Those interested in pursuing this question should consult
Beattie and Fox [1989] and Pantazis and Szyld [1995].

4.3 Calculating Multiple Eigenvalues

Having derived methods for finding particular eigenvalues, we now consider
how to calculate several of them at the same time. In this discussion it is
assumed A is a symmetric n X n matrix, so Theorem 4.1 applies. It is also
assumed that if A is a nonzero eigenvalue, then —\ is not an eigenvalue.
Suppose the power method has been used to calculate the dominant eigen-

value A1, and an associated eigenvector x;. The question arises if it is possible
to calculate A in a similar way. It is, and to explain how, consider the exam-
ple used to introduce the power method in Section 4.1. We begin, as before,
and guess a nonzero starting vector yo. Also, as in (4.11), it is possible to
write yo = a1X1 + aeXa, where, because the eigenvectors are orthogonal,

X1-°Yo X2 Yo

] = and ag = .

X1 X1 X2 X2
If we use the power method without modification, then the x; part of y will
grow and eventually lead us to the dominant eigenvalue. The modification
we will make to prevent this is to remove this term from yq by taking wy =
yo — a1x1. The next step is as before,

y1 = Awg

= QQAQXQ.

By subtracting out the x; components of the vectors we will produce a power
method that will converge to Ao. More precisely, it will converge to Ao for this
example. The qualification is needed because for some matrices it produces a
different result. To illustrate, for the eigenvalue equation in (4.6) there is one
eigenvalue and two linearly independent eigenvectors. The first application
of the power method will produce the eigenvalue A\ = 3 and an associated
eigenvector. The second application, using the above modification, will pro-
duce the same eigenvalue but it will now produce a second eigenvector that
is perpendicular to the first.
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In principle, the method used to find Ay can be generalized to compute
all of the eigenvalues of a symmetric n X n matrix, one at a time. There are
problems with doing this because round-off error for the first eigenvalues can
significantly affect the accuracy when calculating the last few eigenvalues.
How to fix this problem is considered next.

4.3.1 Orthogonal Iteration

It is possible to modify the power method and calculate all, or just a few,
of the eigenvalues simultaneously. To use our earlier example, which is given
in (4.5), to find A; and Ay, we need start-off guesses yo (for A1) and zg (for
A2). Individually, the power method would then calculate y; = Ay, and
z1 = Azy. These can be calculated together by writing

B, = AB,, (4.22)

where B; = (y1 21) is the matrix with column vectors y; and z;, and
By = (yo zo) with column vectors yo and zg. We also know that we need to
subtract out the x; contribution to zg. Unlike before, we do not know x; but
we do know that as the method proceeds the first column of By = (yr 2zx)
will converge to x; (or a multiple of it). We would also like the second column
to converge to a multiple of x5. To help make this happen, we will force the
columns of By, to have the same properties as the eigenvectors, which is that
they are orthonormal. So, given yo and zg, we calculate orthogonal vectors
e; and ey as follows:

€1 =Yo,
Zy- €

€y = Zo — e1- €1 er. (423)

In the power method we normalized the iteration vectors, and we will do the
same here. In other words, we do the following:

q1 = e;/|le1]|,
q2 = ez/|[ez]].

The procedure used to turn yo and zg into qg and q; is known as the Gram-
Schmidt method for orthonormalizing a set of vectors (this is described in
more detail later). Having done this, then instead of (4.22), we have that

Bl = AQ07 (424)

where Qo = (qo qi1) and By = (y1 2z1). Now Gram-Schmidt must be applied
to y1 and z; to find Q;. Once this is done, then By = AQ;. The other steps
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Pick: random Bg

Qo = GS(Bo)
Loop For k=1,2,3, -
Br = AQk-1
Qr = GS(Bg)
End

Table 4.9 Orthogonal iteration for finding the eigenvalues of a symmetric matrix
A. Note Qi = GS(Bj) means that Gram-Schmidt is applied to the columns of By
to produce Qj. Also, Bg is an n X m matrix, where 1 < m < n.

in the iteration are computed in a similar manner, and the procedure we have
derived is known as orthogonal iteration.

The algorithm for orthogonal iteration, for an n x n symmetric matrix A,
is given in Table 4.9. To guarantee that the method works, it is required that
if A\; is a nonzero eigenvalue then —); is not an eigenvalue, and the columns of
By must be independent. As the method converges, the columns of Qj serve
as approximations for the eigenvectors for A, and the corresponding eigen-
values can be determined using Rayleigh’s quotient (4.4). Note that given
the ¢th and ¢ + 1st column vectors of Qp, the associated eigenvalues sat-
isfy |Ait1] < |Ai|. Also, this procedure has the same annoying + eigenvector
property that the power method has. Namely, for any negative eigenvalue,
the associated column in Qy, contains a (—1)*, and so it alternates between
positive and negative.

It’s important to point out that it’s not required that By have n column
vectors. If By has m column vectors, with 1 < m < n, then Q has m column
vectors. Therefore, orthogonal iteration provides a way to compute some, or
all, of the eigenvalues of a symmetric matrix.

Example

To use orthogonal iteration to calculate the eigenvalues of

A=)
m= (T3 )

take as a starting matrix
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k A1 A2

0 1.40000000 2.60000000
1 2.38461538 1.61538462
2 290588235 1.09411765
3 2.98908595 1.01091405
4 2.99878142 1.00121858
5 2.99986453 1.00013547
6 2.99998495 1.00001505
7 2.99999833 1.00000167
8 2.99999981 1.00000019

Table 4.10 Calculation of the eigenvalues A1 = 3 and Ao = 1 of (4.5) using the
orthogonal iteration given in Table 4.9.

To apply Gram-Schmidt to the columns of this matrix, we use (4.23) and set

a=(T3) mae=(2)+3(3) =10

Normalizing these vectors we obtain the orthogonal matrix Qo = (q1 q2),

where
ol ) a0 (0)
= an = .
D= 0\ 3 L= soln

The corresponding approximations for the eigenvalues are

7
)\1"&‘(11A(]_1:5:14

and 13
)\gmqg-Aqu 5 =2.6

The next step is to compute B; = AQq, and then repeat what was done
above. These steps are calculated using MATLAB, with the results given in
Table 4.10. As expected, once the answer gets close to the solution, the error
for A1 drops by a factor of about |A2/A1]|? = 1/9 with each iteration step. B

Example

The eigenvalues of the n X n matrix in (4.20) are a, a+1 and a—1 (for n > 3).
Moreover, there are n — 2 linearly independent eigenvectors for a. Therefore,



4.3 Calculating Multiple Eigenvalues 143

k A1 A2 A2 A3

1 1.45774533 1.00017912 1.00039921 4.93e—32
2 1.77151254 1.00012718 1.00022273 2.47e—32
3 1.93106506 1.00004630 1.00007248 1.23e—32
4 1.98182668 1.00001287 1.00001947 2.94e—33
5 1.99539389 1.00000331 1.00000496 1.14e—34
6 1.99884448 1.00000083 1.00000124 1.23e—32

7 1.99971087 1.00000021 1.00000031 1.23e—32

Table 4.11 Calculation of the eigenvalues of (4.20), when a = 1 and n = 10 using
orthogonal iteration. Note the exact values are A1 = 2, A2 = 1, and A3 = 0.

taking a = 1, then the first column of Qj converges to an eigenvector for
A1 = 2, the next n — 2 columns converge to eigenvectors for Ao = 1, and the
last column converges to an eigenvector for A3 = 0. The resulting values for
the eigenvalues computed using the Rayleigh quotient, in the case of when
n = 10, are given in Table 4.11. The value for A5 in the third column is com-
puted using the second column of Qg and the A2 in column four is computed
using the seventh column of Q. Similar values for A\, are obtained for the
other six columns. B

The most challenging step using orthogonal iteration is calculating the
Qg’s. As introduced, these can be determined using the Gram-Schmidt pro-
cess and this is discussed in more depth below. There is another method for
finding these matrices, using what is known as a QR factorization. This is
explained in the section following this one.

4.3.1.1 Regular and Modified Gram-Schmidt

To use orthogonal iteration, as given in Table 4.9, it is necessary to use
the Gram-Schmidt process. To write down this procedure, assume B has m
linearly independent column vectors c1, ¢, - -+, Cpp, Where 1 < m < n. The
first step is to construct m orthogonal vectors from the c¢;’s, and this is done
as follows:
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e =C
Co - €1
€2 = C2 — €
€1 -e
C3 - €1 C3 - €2
€3 = C3 — e; — (S} (425)
€1 -€e; €2 - €

m—1

Ch €
€y = Cyy — E €e; .
e; - e;

i=1

The vectors are now normalized by setting q; = e;/||e;||, and from this we
have that GP(B) = Q, where Q = (q1 g2 -+ dm).

The formulas in (4.25) are referred to as regular Gram-Schmidt, and they
are what is usually given in a linear algebra course. In terms of computing,
however, the procedure can be sensitive to round-off error for larger values of
n. To explain, due to round-off, es will not be exactly perpendicular to e;.
Since ey appears in all of the subsequent formulas, this error affects the ort-
hogonality for the remaining e;’s. The same can be said for the consequences
of round-off error made with every e;.

An alternative is to use what is known as modified Gram-Schmidt, which
reduces, but does not eliminate, the sensitivity. To explain how this is done,
(4.25) calculates e; using the following steps (for j > 1):

Set e; = c;

Fork=1,2,---,7—1
r=c;-ey/e;-eg
ej =e; —reg

End
For the modified Gram-Schmidt method, one instead does the following;:

Set e; = c;

Fork=1,2,---,7—1
r=ej-ey/e;- e
€; =€; —Teg

End

Note that when using exact arithmetic, these two procedures produce the
same result. However, in the regular version, orthogonality is obtained by
removing the parts of ¢; coming from the earlier computed ey’s. In the mod-
ified version, orthogonality is obtained by removing e; from the currently
computed value of e;.
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n GS Error MGS Error x(B)
Random
2 1.67e—16 1.67e—16  3.25e+00
4 1.72e—15 1.22e—15 1.86e+01
8 6.6de—15 9.44e—16  5.33e+01
32 9.21e—13  2.30e—14  4.14e+403
128 1.60e—11  1.90e—13  1.40e+04
512 8.26e—11  1.43e—12  1.07e+405
1024  3.85e—10 1.47e—12  1.02e+05
Vander
2 4.44e—16  4.44e—16  8.00e+00
4 2.90e—13  2.05e—14  1.55e+03
8 8.36e—02  2.90e—09  4.52e+408
12 1.00e+00 1.31le—02 1.06e+15

16 1.00e4-00  6.19e—01  2.55e+18

Table 4.12 Values of the dot product error for the Gram-Schmidt (GS) and modified
Gram-Schmidt (MGS) on two different matrices.

Example

It is of interest to see just what sort of improvement is obtained when using
modified Gram-Schmidt, and a comparison is given in Table 4.12. To explain
how the error is computed, given an n x n matrix B, Gram-Schmidt is applied
to its columns to compute Q. After this, the dot products q;-qi, where q; and
qy are the columns of Q with j # k, are computed. If exact arithmetic is done,
then these should all be zero. What is reported in Table 4.12 is the largest
value of the dot products in absolute value. The same thing was done using
the modified Gram-Schmidt procedure. Also, two matrices were tried, one was
obtained using random numbers while the second is the Vandermonde matrix.
The conclusion drawn from this is that the two methods produce similar
results for the matrix that is well conditioned. On the badly conditioned
matrix, both fail but the modified Gram-Schmidt procedure does not fail
as quickly as the condition number increases. It is possible to find better
modifications of Gram-Schmidt, and those interested in this should consult
Giraud et al. [2005]. W
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4.3.2 QR Factorization

It is worth reconsidering the relationship between B and Q in orthogonal
iteration (see Table 4.9). It’s assumed, to get things started, that B is an
n X n matrix with independent column vectors. Although it was not stated
earlier, it is possible to write

B =QR, (4.26)

where R is an upper triangular matrix. As an example, suppose

()

Applying Gram-Schmidt to the columns of this matrix, one finds that

- L (! 2
V5 \2 —1)°
To find R, we solve (4.26) to obtain

R=Q 'B

_ x}5 (g g). (4.27)

The verification that R is, in general, upper triangular is easy to show using
the triangular form of the equations involved with Gram-Schmidt, as given
in (4.25).

Nothing was said about R earlier because it was not needed in the deriva-
tion of the orthogonal iteration method. However, the formula in (4.26) is
significant, and it is an example of what is called a QR factorization. 1t is
reminiscent of the LU factorization used to solve a matrix equation. However,
the matrix Q is not necessarily lower triangular, and instead it has the prop-
erty of being an orthogonal matrix. To make this clear, we have the following
definition.

Definition 4.2. An orthogonal matriz is a square matrix whose columns are
orthonormal vectors.

Some of the more important properties of an orthogonal matrix are listed in
the next theorem.

Theorem 4.4. Suppose Q is an n X n matric.
1. Q is an orthogonal matriz if and only if Q' = Q7.
2. Q is an orthogonal matrix if and only if its rows are orthonormal vectors.

3. If Q is an orthogonal matriz, then |det(Q)| = 1.
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The above theorem is useful when computing a QR factorization. To ex-
plain, once Q is determined, then R is computed using the formula

R = Q"B.

This follows, because if B = QR, then R = Q7 'B = Q”B. It is not difficult
to show that R is an upper triangular matrix.

For us, an important question is, given B, how do you compute Q?
Assuming the matrix has independent columns, the straightforward approach
is to apply Gram-Schmidt to the columns as described in the previous sec-
tion. There are other possibilities, and the more prominent is a method us-
ing what are called Householder transformations, and another method using
Givens rotations [Golub and Van Loan, 2013; Higham, 2002]. Both of these
methods have the advantage that they work even if the matrix does not have
n independent column vectors. However, finding a computationally efficient
method requires some unique challenges and this is discussed at the end of
the next section.

It is possible to find those who recommend using the QR factorization
to solve matrix equations, as compared to the LU method considered in
Chapter 3 [Trefethen and Bau, 1997]. One of the reasons used to argue against
doing this is that QR requires approximately twice the flops LU takes. To
investigate this, the computing times for these factorizations are given in
Table 4.13 using MATLAB’s commands for these factorizations (using version
R2016a). Included in this comparison is another factorization known as the
SVD, which is explained in Section 4.5. The fact that QR takes longer than
the expected factor of two probably has to do with the need to manipulate
large matrices using QR, and this adds to the computational overhead needed
to carry out the method.

n LU (sec) QR SVD
200 0.0003 26 234
400 0.0009 29 279
600 0.0025 29 241
800 0.0050 2.8 235
1000 0.0094 28 231

2000 0.1067 1.8 24.1

4000  0.4107 3.3 34.7

Table 4.13 Computing time for an LU, QR, and SVD factorization of a random
n X n matrix using MATLAB. The times for QR and SVD are in terms of multiples
of the time the LU takes for that value of n.
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As a final comment, the QR factorization is not limited to square matrices.
It is straightforward to generalize the factorization to any matrix which has
more rows than columns. This makes it useful for the orthogonal iteration
method described earlier. It is also useful for certain least squares problems,
and this is discussed in more detail in Section 8.3.2.2. Those interested in
a more expanded discussion of the QR factorization should consult Bjourck
[2004] or Higham [2002].

4.3.3 The QR Method

In the case of when it is necessary to compute all of the eigenvalues of a
symmetric matrix, the following procedure can be used:

Set Cp = A
For k= 0,1,2,---
QxR = Gy % find Qk and Ry,
Cri1 = ReQu % calculate Cjyq
End

This is a strange looking result in that it states after factoring Cy, you then
multiply the factors in reverse order to calculate Cg41. Although it is not
obvious, it is possible to prove that if the method converges, then Cj app-
roaches a diagonal matrix, and the diagonals are the eigenvalues of A. The
eigenvalues will appear on the diagonal according to how many independent
eigenvectors they have (i.e., their geometric multiplicity). To guarantee that
the QR method converges, it is required that for any nonzero eigenvalue A, —\
is not also an eigenvalue. This procedure is called the QR method. A proof of
convergence, including the extension of the method to nonsymmetric matri-
ces, can be found in Watkins [2008] and Golub and Van Loan [2013]. However,
some insight into how the method works is given in Exercise 4.17.

Example

Consider the eigenvalue problem in (4.5), where

)

Applying Gram-Schmidt to the columns of Cy = A, as given in (4.25),
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=) i o=()10) 32D

Normalizing these vectors we obtain
1 /2 -1
W= s (1 2) '

1 /5 4
a3 )

From this we have that

and

1/14 3
C1—R0Qo—5(3 6>'

The remaining Cj matrices are calculated using MATLAB, with the result
that

(29756 0.21951 (29973 Te—02
T (0.21951 1.0244) 5 <7e—02 1.0027)
c (2.9997 2e—02> c. _ (3.0000 8e—03)
2e—02 1.0003 8¢—03 1.0000
3.0000 3e—03 3.0000 9e—04

Ce = Cr =
<3e—03 1.0000> (9e—04 1.0000)
_(3.0000 3e—04 _(3.0000 le—04
° (3e—04 1.0000) T (1e—04 1.0000)

It is seen that the off-diagonal entries are converging to zero, while the dia-
gonal entries are approaching the eigenvalues Ay = 3 and Ay = 1. A more
expansive list of the computed values for the two eigenvalues is given in
Table 4.14. As with orthogonal iteration, once the answer gets close to the
solution, the error in A\; = 3 drops by a factor of about [A\a/\1]? = 1/9 with
each iteration step. B

It is worth comparing the QR and orthogonal iteration methods. Both
require finding Q, and the QR method also requires finding R. As is evi-
dent in comparing Tables 4.11 and 4.10, they have the same rate of converge.
There are some significant differences. First, for the QR method the Cy’s con-
verge to a matrix containing the eigenvalues, while the By’s for orthogonal
iteration contain the eigenvectors. For QR, once the eigenvalues are com-
puted then the associated eigenvectors can be computed easily using inverse
iteration (Section 4.2.2). For orthogonal iteration, once the eigenvectors are
known, Rayleigh’s quotient (4.4) can be used to compute the eigenvalues.
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Other differences include the observation that orthogonal iteration can be
used to compute a few or all of the eigenvalues, while the QR method com-
putes all of them. Also, the QR method is required to start with Cqg = A,
while orthogonal iteration can be used with an initial matrix with m columns,
where 1 < m <n.

One property that the QR method and orthogonal method have in common
is that they are computationally intensive. In both algorithms, to calculate
all of the eigenvalues of the matrix, each step requires O(n?®) flops, and the
improvement in the eigenvalue approximations at each step depends on ratios
of the form |\;/)\;]?, where |\;| < |);|. Consequently, if two of the eigenval-
ues are close together, it can take a large number of iterations to compute
them accurately. This has given rise to the development of more efficient
implementations for the QR method than the simple factor and re-multiply
version given earlier. The one most often used in practice uses what is called
the implicitly shifted QR method, which is also known as a bulge-chasing
method. A nice explanation of this can be found in Watkins [2008]. Another
method that is used for larger symmetric matrices, and potentially faster
than QR, involves a divide and conquer procedure. Implementing this idea
efficiently is challenging and more can be learned about this in Demmel [1997]
and Nakatsukasa and Higham [2013].

As a final comment, the QR method has been stated to be one of the “10
algorithms with the greatest influence on the development and practice of
science and engineering in the 20th century” [Dongarra and Sullivan, 2000].
What is interesting is that John Francis, who was responsible for deriving
and then naming it the QR method, was completely unaware, and amazed,
of how significant his work had become. He missed this because shortly after

k A1 A2

1 2.8 1.2

2 2.97560975609756 1.02439024390244
3 2.9972602739726  1.0027397260274
4 2.99969521487351 1.00030478512649
5 2.99996613039797 1.00003386960203
6 2.99999623665423 1.00000376334577
7 2.99999958184977 1.00000041815023
8 2.99999995353885 1.00000004646114
9 2.99999999483765 1.00000000516235

Table 4.14 Calculation of the eigenvalues of (4.5) using the QR method. The exact

values are A1 = 3 and A2 = 1.
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deriving the method he went to work designing and building industrial com-
puter systems. As he recalled, “there had been no reaction, none whatsoever”
when his papers appeared [Golub and Uhlig, 2009].

4.3.4 Are the Computed Values Correct?

For many real word applications it is often not known whether the matrix has
the required properties for the eigenvalue solver to work, and in such cases
one usually simply tries it and sees what happens. What is considered here
are simple tests that can be used to check on the correctness, or accuracy, of
the computed values.

The principal test will involve the trace of the matrix, and what this is
defined next.

Definition 4.3. If A is an n x n matrix with entries a;;, then the trace tr(A)
is defined as

n
tI‘(A) = Z Qi -
i=1
In other words, the trace is the sum of the diagonal entries of the matrix.

The second piece of information that is needed comes from a theorem in
linear algebra, which is stated next.

Theorem 4.5. Let A be an n X n matriz, with eigenvalues A1, Az, -+, An
(listed according to their algebraic multiplicities), then

tr(A) = i /\i,
i=1

tr(A*) = Z AP,
i=1

where k is a positive integer.

To demonstrate how the formulas in this theorem are used, we consider a few
examples.

Examples

1. For the matrix
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it was determined earlier that the eigenvalues are A\; = 3 and Ay = 1. Also,
tr(A) = 2+ 2 =4, and this does indeed equal A\; + A;. B

A= o)

has the one eigenvalue A\; = 3, but it has two linearly independent eigenvec-
tors. Because of this, it has an algebraic multiplicity of two, and so the sum
to be considered is A\; + A1 = 6, It is easy to check that this equals tr(A). B

2. The matrix

3. The (non-symmetric) matrix

12
()
_21

has eigenvalues \; = 144 and A\ = 1 — 4. It is easy to verify that
tI‘(A) = Al + )\2. |

The above theorem is useful when computing all of the eigenvalues of a
matrix, which includes using the QR method and a full matrix with ort-
hogonal iteration. Once these methods are finished, then the values can be
checked by comparing their sum with the value for the trace of the matrix
(which is very easy to compute). In Section 4.4.2, this test will be used to
help determine which of two answers is correct.

There are numerous other ways to check on the accuracy of the computed
eigenvalues. One possibility is to use what are called Gershgorin circles [Siili
and Mayers, 2003; Varga, 2004]. These provide bounds for the eigenvalues,
although they are of limited use for determining the accuracy of a numerical
computation. Another possibility is to use shifting. This is very effective at
eliminating the possibility that the eigenvalues appear as £ pairs, and this
will be demonstrated in Section 4.4.2.

4.4 Applications

Two examples are presented below that illustrate how eigenvalue problems
arise in applications. One is from mechanics and the second is from network
theory.
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4.4.1 Natural Frequencies

Mechanical systems like a mass and spring, and an elastic string, are capable
of free vibrations. The frequencies of these vibrations are called natural fre-
quencies, and they play an important role in determining the motion of the
system. Finding these frequencies reduces to solving an eigenvalue problem,
and this will be illustrated for an elastic string. An explanation of how the
elastic string problem can be reduced to a matrix eigenvalue problem is given
in the next paragraph. This can be skipped, if desired, and instead you can
jump to the subsequent paragraph, where the resulting matrix problem is
given.

It is assumed that the string is held at its ends, which are located at x = 0
and x = £. If u(z,t) denotes the vertical displacement of the string, then the

equation of motion is

Pu 0%

= C )

ot? Ox?
where c¢ is a positive constant. The natural frequencies w are found by as-
suming that u(z,t) = v(z) exp(lwt), where I = y/—1. Substituting this into
the above partial differential equation, one obtains the ordinary differential
equation

d?v
2 2
c = —w. 4.28

Because the ends are fixed, the solution is required to satisfy v(0) = v(¢) = 0.
As with all eigenvalue problems, v = 0 is a solution. Consequently, the ques-
tion is, what values of w will result in a nonzero solution? These can be
computed by replacing the second derivative with the numerical approxima-
tion derived in Section 7.2.3. In doing this, the spatial interval 0 < z < £ is
subdivided into n + 1 subintervals, as illustrated in Figure 4.3. The function
v(x) is then replaced with the vector consisting of its values at the grid points
T1, T2, -+, Tp. This yields v = (vi,va, -+ ,v,)T, where v; is the numerical
approximation of v(z;).

Using the approximations discussed in the previous paragraph, finding
the natural frequencies of an elastic string reduces to solving the eigenvalue
problem

——+—t —t—+—+p
:L‘1:172$3 xnfgj

Figure 4.3 Deflection v(z) of string, and the spatial points at which it is computed.
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Av =)v, (4.29)
where
2 -1
-1 2 -1 0
-1 2 -1
A= o . (4.30)
0 ~1
-1 2

Note that A is an n x n symmetric tri-diagonal matrix. Once the eigenvalues
A are computed, then the corresponding natural frequencies of the string are
given as w = (n + 1)evV/A /L.

In most applications, one is often only interested in the lower natural
frequencies. Based on this, we want to find the first m eigenvalues of A that
are closest to zero. One way to do this is to use orthogonal iteration with
A~!. The algorithm, which comes from using A~! in the procedure given
in Table 4.9, is given in Table 4.15. Since we are interested in finding the
first m eigenvalues, we will take B to be an n x m matrix. The results of
the computation are given in Table 4.16. The stopping condition used in the
calculation was |vg —vg_1|/|vk| < 107%, which resulted in the method taking
18 iteration steps. Also, the exact frequencies for the string are w = iwe,
where i = 1,2,3,---. Since w = (n 4+ 1)/, then the exact values can be
written as

. 2
_ i .
/\i_(n—l—l) , fori=1,2,3,---. (4.31)

The relative difference between these values and the computed values is given
in Table 4.16.

Pick: random B
Q=GS(B)
A=LU

Loop For k=1,2,3, -

AB =Q
Q=GS(B)
End

Table 4.15 Inverse orthogonal iteration used to calculate the m eigenvalues of A
closest to zero. Note Q = G'S(B) means that Gram-Schmidt is applied to the columns
of B to find Q, and AB = Q means that the equation is solved for B using the LU
factorization. Also, B is an n X m matrix.
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% Ai [Xi — Xil/ Il
1 1.566558555547e—04 1.31e—-05
2 6.265988811618e—04 5.22e—05
3 1.409755457697e—03 1.17e—04
4 2.506004005922e—03 2.08e—04

5 3.915169058548e—03 3.26e—04

Table 4.16 Calculation of the five smallest eigenvalues of (4.30) when n = 250 using
inverse orthogonal iteration. Also given is the relative error |[A; — X;|/|Ail.

There are two somewhat subtle questions that should be considered before
leaving this example. The first is, what needs to be done to obtain more accu-
rate values for the natural frequencies of the string? The stopping condition
using orthogonal iteration was |vx, — vk—1|/|vr| < 1075, yet the relative error
for the natural frequencies, as given in Table 4.16, is only about 10~%. To
answer this, the eigenvalue equation in (4.29) is an approximation of the
problem in (4.28). If we want better approximations to the natural frequen-
cies, then we need to make (4.29) a better approximation of (4.28), and this
is accomplished by making n bigger. As an example, to have the relative
error of all five eigenvalues no more than 10~°, one can take, approximately,
n = 1500.

The second question comes from the observation that the matrix in (4.30)
looks similar to the one for the oscillator chain in (4.8). This is a concern
because the eigenvalues for (4.8) get very close together as n increases, which
causes our eigenvalue solvers to converge very slowly. This does not seem to
happen for the string problem, and the question is, why not? The answer
comes from the formula for the eigenvalues for both matrices, which is given
in (4.9). The speed of convergence of our eigenvalue solvers depends on the
ratios

Aic1 a4+ 2cos((z —1)0)

= fori=2,3,4,--- 4.32
)\i G/+2COS(7;9) , 10T 7 )y y 1, ( )

where 0 = 7/(n + 1). It is also worth noting that the higher frequencies
correspond to small values of i, and the lower frequencies come from the
larger values of i. The values of (4.32) are given in Figure 4.4 for the oscillator
chain, where ¢ = 2.1, and for the string, where a = 2. What is seen is that the
ratios for the oscillator chain are close to one, particularly for the larger value
of n. For the string, the ratios are close to one for the higher frequencies, but
not for the lowest frequencies. Because we limited the calculation to the first
five frequencies for the string, our inverse orthogonal iteration procedure had
no trouble converging relatively quickly.
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4.4.2 Graphs and Networks

A network, or graph, consists of nodes and lines connecting them. Two exa-
mples are shown in Figure 4.5. The lines in this case indicate the connec-
tions between the respective nodes. For example, the nodes could identify
computers and the lines identifying how they are connected. Other possi-
bilities are that the nodes are cities and the lines are airline routes (see
Exercise 4.25), or that the nodes are atoms and the lines indicate their bonds
(see Exercise 4.26).

Eigenvalues provide useful information about the properties of the net-
work, and this is done using what is called an adjacency matriz. This matrix
for the network on the left in Figure 4.5 is

01000
10000
A=(000 11 (4.33)
00101
00110

To explain how this is determined, first note that if there are n nodes, then
the adjacency matrix is n x n. The entries of A are zero except when node
i is connected to node j, in which case a;; = aj; = 1. For example, for the

T T T
1-ee y
0000000000000000.3"‘°‘°°°°

0.8 - Qggggo‘)ooo—
@ 0.6 - *

0.4 o0 Chain n=40 *

* String .
0.2 | | | | | | |
0 5 10 15 20 25 30 35 40
i-axis
1 — m s -

0.8+ J
)
©
o 0.6 -

0.4 — = Chain n =250

—— String
0.2 L 1 1 1
0 50 100 150 200 250
i-axis

Figure 4.4 Eigenvalue ratios (4.32) for the oscillator chain and for the string, when
n =40 and n = 250.
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Figure 4.5 Examples of two networks with five nodes.

graph on the left in Figure 4.5, the third and fifth nodes are connected, so
aszs = asz = 1. Also, since the first and fifth nodes are not connected, then
a5 = as1 = 0.

We are considering what is known as an undirected graph, or network,
which means that if a;; = 1 then a;; = 1. In other words, the adjacency
matrix is symmetric. The eigenvalues of the adjacency matrix play an impor-
tant role in determining the properties of a network. As an example, suppose
the eigenvalues for the adjacency matrix are Ay, As, --+, An. If Py, is the
number of paths through the graph that take m steps and end up back at
the node they started at, it is possible to show that

Pp=Y A (4.34)

As an example, for the network on the left in Figure 4.5, the paths consisting
of two steps are 1 - 2 — 1,2 - 1 — 2,5 — 4 — 5, etc. Using the
terminology of graph theory, these are called closed paths of length two. There
are a total of eight closed paths of length two, so Py = A3 + - + A2 = 8.

In our example, we will assume there are n nodes, with node 1 connected
to node 2. For the others, node 7 is connected to node ¢ + 1, except that
node n is connected to node 3. Such a network for n = 5 is shown on the left
in Figure 4.5, and the resulting adjacency matrix is given in (4.33). To test
our eigenvalue solvers we will take n = 10. The eigenvalues computed using
orthogonal iteration, as outlined in Table 4.9, are

~1.8262
—0.54037
—0.24545
—0.16485
9.2445¢ 33
V=] 3.6978¢e—32 | - (4.35)
0.18969
0.22062
0.54037

1.8262
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Although all seems fine, there is a potentially serious problem with this result.
The first and last two eigenvalues appear to be negatives of each other, and
this is the one situation that orthogonal iteration likely fails. It is possible
to check on whether the computation is correct by using shifting. To check,
orthogonal iteration is going to be applied to B = A — 3I. If the result in
(4.35) is correct, then the eigenvalues of B should not have + pairs. Doing
this, and then shifting back, one gets the eigenvalues

—2
—1.4142
—1.4142

-1

0
v = 0 ) (4.36)

1
1.4142
1.4142

2

This shows that applying orthogonal iteration directly to A is even worse than
we originally thought because the above solution shows that every nonzero
eigenvalue appears as a + pair.

The above situation is interesting because two different answers are com-
puted and it is necessary to determine which, if any, is correct. The question
is, how do you know which one to pick. This is where the theory plays an im-
portant role. From Section 4.3.4, we know that trA = Ay + o+ -+ -+ A1g. We
also know, from (4.34), that for an adjacency matrix, P, = Y A\7*. Although
we might know the exact value of the P,,’s, we do know that they are positive
integers. Using the values computed using orthogonal iteration, from (4.35),

P, =12.317,  P3=0.13494,

while, from (4.36),
P,=18, Py =50.

According to this, (4.36) is the correct answer.

If theoretical checks are not possible, then one could run some numerical
tests. For example, use orthogonal iteration with different shifts to see if one
continues to obtain (4.36).

4.5 Singular Value Decomposition

One of the more significant results in linear algebra is the spectral decompo-
sition theorem. For those who might not remember this, it is given next.
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Theorem 4.6. If A is a symmetric matriz, then it is possible to factor A as
A =QDQ7, (4.37)

where D is a diagonal matriz and Q is an orthogonal matriz.

The definition and basic properties of an orthogonal matrix are given in
Section 4.3.2.

To explain where the matrices in this theorem come from, let u;, us, - - -,
u,, be orthonormal eigenvectors for A, with corresponding eigenvalues Aq,
A2, -+, A\n (see Theorem 4.1). In this case, D is the diagonal matrix

A

An

and the ith column of Q is u;. Diagrammatically, the factorization in (4.37)
can be written as

A1 —u —
1 T Ao — uy —
A=|uu - u, .
G { :
An —u, —
Example

For the matrix A in (4.5) we found that A\; = 3, with u; = (1,1)7/v/2, and
A2 = 1, with uz = (1, —1)T/v/2. Accordingly, the factorization in the above
theorem is

2 1\ (1/vV2 1/v2\/3 0\[(1/v2 1/V2
(1 2)_ 1/V2 —1/V2 (0 1) 1/vV2 —1/v2)

Given that it is possible to carry out such a factorization, the next question
is, why do this? One answer is that this shows that it is possible to change
the basis so the matrix is diagonal, and diagonal matrices are very easy to
work with. For example, it is much easier to solve Dx = b than it is to
solve Ax = b, where A is a full n x n matrix. The limitation is that the
above theorem requires the matrix to be symmetric. What we are going
to consider is how it might be possible to derive a similar result for non-
symmetric matrices, and even for matrices that are not n x n. It needs to be
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pointed out that the resulting factorization will have some distinct differences
from (4.37), even in the case of when the matrix is symmetric. What these
are will be explained once the factorization has been derived.

4.5.1 Deriwation of the Singular Value Decomposition

The way we will approach finding a factorization is the same method we used
to find the LU factorization, namely we will simply assume it’s possible and
see if we can make it work. The assumption here is that A is m x n, with
n < m. The hypothesis is that there is a factorization of the form

A=UxVT, (4.38)

where U is an m x m orthogonal matrix, V is an n x n orthogonal matrix,
and X is an m X n matrix that has the form

> ((S)) , (4.39)

where S is a diagonal n X n matrix of the form

01
02

S = , : (4.40)
On

and O is an (m—n) x n matrix containing only zeros. The key step for finding
these matrices is to consider AT A and AAT. It should be pointed out that
it is possible to prove that a factorization is possible in a short paragraph
[Golub and Van Loan, 2013]. The approach used here is more constructive,
albeit longer, with the objective of being able to show how the three matrices
in the factorization can be determined.
It is not hard to show that AT A is an n x n symmetric matrix. So, from
(4.37) we have that
ATA =Q;D.Q7, (4.41)

where Dy, is a diagonal matrix formed from the eigenvalues for AT A, and
Q_ is an orthogonal matrix (and both are n x n). On the other hand, if the
factorization is (4.38) is possible, then
ATA = (Uzvh)Tuzv”
= (vTuhuzv?
=VDy VT, (4.42)
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where Dy = 373 is an n x n diagonal matrix given as

ot
o3
Dy = i . (4.43)
o
In comparing (4.41) and (4.42) we come to the conclusion that for the fac-
torization in (4.38) we can take V = Q. It also means that Dy = Dy, and
so the diagonals in Dy are the eigenvalues for AT A. More specifically, in
(4.40), 0; = /A;, where ); is an eigenvalue for ATA.
In a similar vein, given that AAT is an m x m symmetric matrix, then

AAT = QrDrQE, (4.44)

where Dg is a diagonal matrix formed from the eigenvalues for AAT, and
Qr is an orthogonal matrix (and both are m x m). According to (4.38),
AAT = UDy U7, and for this to agree with (4.44) we take U = Qg, and
Dy = X7 is an m x m diagonal matrix of the form

01

Dy = n . (4.45)

Moreover, this matrix must equal D g, which means the diagonals in Dy are
the eigenvalues for AAT.

We now know how to determine the orthogonal matrices U and V in
(4.38). However, the o;’s in (4.40) are connected to both the eigenvalues of
AT A, as expressed in (4.43), and to the eigenvalues of AAT as expressed in
(4.45). To ensure that these conditions do not contradict each other we need
the following information.

Lemma 1 Assuming A is an m x n matriz, with n < m, then:
1. ATA and AAT are symmetric with non-negative eigenvalues.

2. If X is an eigenvalue of AAT, with eigenvector u, then either X\ is an
eigenvalue for AT A with eigenvector ATu, or else A = 0 and ATu = 0.

The proofs of these statements are not particularly difficult and are left as an
exercise. From the first statement, it follows that o; > 0 in (4.43) and (4.45).
From the second statement, AA” and AT A share nonzero eigenvalues, and
the additional eigenvalues of AA” are just zero, hence the extra zeros on the
diagonal in (4.45).
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The final detail concerns getting the sign correct. Everything we have
ascertained about the factorization comes from considering AA” and ATA.
These products are the same for A and —A, and there is nothing in the
derivation to account for the difference in sign. To do this, suppose v; is
the eigenvector that is going to be used in the jth column in V, and it has
corresponding eigenvalue A;. Also note that, being an eigenvector, we could
just as well pick —v;. Letting u; be the eigenvector to be used in the jth
column of U, then from (4.38) we have

AVj :O'jUj, forj:1,2,-~- ,n.

By assumption, the singular values are non-negative, so o; = \/A;. This
means we pick the signs for the eigenvectors for V and U to be consistent
with the above equation.

4.5.2 Summary of the Singular Value Decomposition

Assuming A is a nonzero m x n matrix, with n < m, then the singular value
decomposition (SVD) of A has the form

A =UxVT, (4.46)

where the matrices appearing here are

U: This is an m x m orthogonal matrix of the form

T T
U= u; uz - Um ’
U 1

where the column vectors u; are orthonormal eigenvectors for AA”.

V: This is an n X n orthogonal matrix of the form

T )
V=]|vivy --- v |,
14 {

where the column vectors v; are orthonormal eigenvectors for ATA.

3: This is an m X n matrix of the form
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o1
02

Y= On

0 0

0 0

This can be written in more compact form as

5 - ((S)) , (4.47)

where S is a diagonal n X n matrix of the form

01
02

S = ' : (4.48)
On

and o1 > 09 > -+ > 0, > 0. The g;’s are called the singular values for
A, and they are given as ; = v/\;, where ); is an eigenvalue for ATA.
Also, the columns of U and V are consistent with the ordering of the o;’s.
In particular, Av; = oju; for j = 1,2,--- ,n. Finally, O in (4.47) is an
(m — n) X n matrix containing only zeros.

Although the factorization resembles the one in (4.37), and it certainly
uses that result in its derivation, there are differences. The most obvious one
is that the factorization in (4.46) works on matrices that are not square. How-
ever, consider the case of when A is symmetric (and therefore square). The
diagonals of D are the eigenvalues of A, and they can be positive, negative,
or zero. The singular values listed in S, on the other hand, are non-negative.
One might guess that the singular values in this case are just the absolute
values of the nonzero eigenvalues of A, and this is correct. However, this con-
clusion is limited to symmetric matrices, and as will be shown in an example
below, it does not need to hold for square but non-symmetric matrices.

Examples

1. Suppose
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In this case
TA 6 —3
ata (88,

The eigenvalues of this matrix are Ay = 9 and Ay = 3, with corresponding
orthonormal eigenvectors vi = (—v/2/2,v/2/2)" and vy = (v/2/2,v2/2)".

Consequently,
_l\/2 1\/2
— 2 2
v=("1 1Va)-

Similarly, the matrix

5 1 —4
AAT = 12 1
-4 1 5

has eigenvalues Ay = 9, Ay = 3 and A3 = 0. The corresponding orthonormal
eigenvectors are u; = (—/2/2,0, \/2/2)T7 uy = (\/6/6, \/6/3, V6/6)T, and
us = (v/3/3,—v3/3,v3/3)T. Consequently,
N AN W,
U= 0 3vV6 —iv3
1 1 T
e tve 1
The resulting SVD is

3 0
A=U|0 v3|VT.
0 0
The singular values for A in this case are 01 = 3 and 09 = V3.
2 —1
A= (1)

A= U(3 O)VT,

2. In the case of when

one finds that

01

where

U_@g _%ﬁ) and V—(—%\g %Y/;)
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The singular values for A in this case are 0; = 3 and o3 = 1. In com-
parison, the eigenvalues of A are A\; = V3 and A2 = —v/3. Note that the
singular values of A are not the absolute values of its eigenvalues. B

There are some useful facts about the SVD that should be stated explicitly,
so they can be referred to later. The first concerns the SVD for a symmetric
matrix, which was discussed earlier.

Theorem 4.7. If A is symmetric, then its singular values are the absolute
value of its eigenvalues. For its SVD, if u; is the ith column of U, then the ith
column of V is +u;, where the — is used if the corresponding eigenvalue is
negative, otherwise the + is used.

This result is a direct consequence of the fact that for a symmetric matrix,
AAT = ATA = A2

The second useful fact involves the rank of a matrix. As you might recall
from linear algebra, the number of independent rows in a matrix is equal to
the number of independent columns, and this number is defined as the rank
r of the matrix.

Theorem 4.8. The matrix A has rank r if, and only if, A has exactly r
nonzero singular values.

This follows from a result in linear algebra which states the rank of a diagonal
matrix equals the number of nonzero diagonals, from which it can be shown
that the rank of A equals the rank of X.

4.5.2.1 Computing a SVD

It is more than apparent how much work is needed to find the SVD for a
matrix. Using a direct approach, it is necessary to calculate AA” and AT A,
then find the eigenvalues and eigenvectors for each of these matrices. All of
these steps are doable using one or more of the methods described earlier in
this chapter. However, more efficient procedures have been developed, and the
standard approach is to use what is known as the Golub-Reinsch algorithm,
which involves transforming the problem to make it more amenable to a
computational solution [Cline and Dhillon, 2007]. The number of flops for
a square matrix is, according to Golub and Van Loan [2013], approximately
21n3. Said another way, the flops for the SVD is about a factor of 31 more than
for the LU. In looking at the times in Table 4.13, it appears the algorithm used
by MATLAB is a bit better than this, at least for the smaller matrices. Even
though it does take significantly longer than the LU calculation, the actual
computing time is not intolerable. For example, an SVD factorization for a
4000 x 4000 matrix takes less than 30 seconds. It is also apparent that the time
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increases quickly as the size of the matrix increases, and this has generated
interest in finding efficient algorithms for computing an approximate SVD
for very large matrices. More information about this can be found in Halko
et al. [2011].

4.5.3 Application: Image Compression

One application for the SVD is image compression. To explain, the grayscale
image shown in Figure 4.6 consists of a 1528 x 1225 array of integers, each
with a value from 0 to 255. This number represents the intensity of gray for
that pixel, with 0 corresponding to black and 255 corresponding to white.
The SVD is going to be applied to this array, but before doing this note that
the SVD factorization in (4.46) can be multiplied out and written as

A=) oW, (4.49)
i—1
where
) ) )
W, = | viiu; vpu; - v
{ { {

The sum in (4.49) includes only the nonzero singular values, and it is assumed
that o, is the smallest nonzero singular value for A. Also, W; is an m X n
matrix with its columns determined using the ith column of U and the ith
column of V. This is often written as an outer product, which in this case
takes the form W; = u;v?. What is important in (4.49) is what is not there.
Namely, even though there are m column vectors in U, only the first r of
them make a nonzero contribution to A.

The idea underlying image compression using the SVD is to consider if it
is necessary to include all r terms in (4.49). In particular, is it possible to use
an approximation of the form

k
i=1

where k < r? To answer this, note that the entries in the W, matrices satisfy
—1 < w < 1. Consequently, the contributions of the terms in the above sum
are mostly determined by the size of the respective singular value ;. The
singular values for this image are plotted in Figure 4.7. Certainly given how
large the first few singular values are, it would be expected that they need
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Figure 4.6 Grayscale image of pansies, before being compressed using the SVD.
They don’t look to be too excited about being compressed.

to be included. However, the singular values decrease, and presumably their
respective contributions to the image also decrease. The question is, just how
many do we need to get an acceptable reproduction of the original image. To
investigate this, the resulting images when using A1g, Ass, Asg, and Aqgg are
shown in Figure 4.8. Although the first two (on the top row) are not great,
the one on the bottom left, which corresponds to k = 50, is not bad. The one
on lower right, which is the k£ = 100 case, is even better. These observations
are consistent with the singular values plotted in Figure 4.7. Namely, there is
a dramatic change in the singular values as k increases, up to about k = 40,

L L L L L L L ]
0 200 400 600 800 1000 1200 1400
i-axis

Figure 4.7 Singular values o; for the image in Figure 4.6.
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after which their values more slowly decrease. What we are seeing here is
that the improvements in the image follow a similar pattern, and this is why
there are more noticeable differences between k = 25 and k = 50 than there
are between k = 50 and k£ = 100.

Figure 4.8 Resulting image when using (4.50) to approximate the original image:
for k =10, k = 25, k£ = 50, and k = 100.
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10°
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10 0 200 400 600 800 1000 1200 1400
k-axis
Figure 4.9 Relative error (4.51) when using Ay, given in (4.50), to approximate A

for the pansy picture.

4.5.3.1 Eckart-Young Theorem and Error

It is possible to provide a mathematical explanation for the improvement in
the images in Figure 4.7 as k increases. This requires the next result, which
is known as the Eckart-Young theorem.

Theorem 4.9. Assuming A is an m x n matriz, with A = UXVT, then
|A]]z = o1,

and
[|A — Aglla = ok,

where Ay is given in (4.50), and 1 <k <.

The proof of this can be found in Golub and Van Loan [2013]. Also, when
matrix norms were introduced in Section 3.5.1 we only considered square
matrices. The definition, given in (3.9) or (3.9), applies without change to
m X n matrices, with the understanding that x is an n-vector.

The usefulness of the above theorem for us is that it shows that the relative
error in using A to approximate a nonzero matrix A is

1A = A2
E(k) =
A2
_ Ok+1
= e (4.51)

The resulting graph for E for the pansy picture is shown in Figure 4.9.
This verifies our earlier conclusion, which is that the approximation improves
quickly as k increases up to about 50, after which the improvement slows.
For example, using the first 50 terms, the error is approximately 1.4 x 1072,
and adding an additional 50 terms drops the error to just 7 x 1073.

What benefits, in terms of storage, are achieved by using this type of
compression? Well, the full image requires storing 1,871,800 integers, while



170 4 Eigenvalue Problems

the ith term in (4.49) requires storage of an m-vector and an n-vector, which
in this case means 2,753 floating point numbers. So, for A1¢g, the W; matrices
require storage of 275,300 floating point numbers. This is a factor of about
0.15 smaller than the original. This is certainly an improvement, but note
that using the SVD in this way produces a “lossy” compression because
information is lost in the approximation. To its credit, however, the SVD
method has an adjustable parameter, k, that allows for various resolutions of
the image.

Exercises

4.1. The symmetric matrix

2 2
(5 )
has eigenvectors x; = (2,1)7 and xo = (1,-2)7.
(a) Is this matrix positive definite?
(b) What are the corresponding eigenvalues?
(c) Assuming the starting vector yo = (1, 1), what eigenvalue will the power
method converge to and what will be the resulting eigenvector?

(d) Assuming the calculation in part (c) is finished, explain how to use shifting
to compute the other eigenvalue.

A= (5 )

has eigenvectors x; = (1, —2)7 and xp = (—2,1)7.

(a) Is this matrix positive definite?

(b) What are the corresponding eigenvalues?

(c) Assuming the starting vector yo = (1,—1)7, what eigenvalue will the
power method converge to?

(d) Assuming the calculation in part (c) is finished, explain how to use shifting
to compute the other eigenvalue.

4.2. The symmetric matrix

4.3. The symmetric matrix

11 7 -4
A= 7 11 4
-4 4 -10

has eigenvectors x; = (1,1,0)7, xo = (1,0,2)7, and x3 = (0, —2,1)7.
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(a) Is this matrix positive definite?

(b) What are the corresponding eigenvalues?

(c) Assuming the starting vector yo = (1,1,1)7, what eigenvalue will the
power method converge to and what will be the resulting eigenvector?

4.4. The symmetric matrix

47 32 8
A=132 -1 -16
8§ —16 59

has eigenvectors x; = (2,1,0)7, xo = (1,-2,10)T, and x3 = (2, -4, —1)7.

(a) Is this matrix positive definite?

(b) What are the corresponding eigenvalues?

(c) Assuming the starting vector yo = (1,1,1)T, what eigenvalue will the
power method converge to and what will be the resulting eigenvector?

4.5. Suppose A is a symmetric 5 X 5 matrix with eigenvalues —2, —1, 0, 1, 2.

(a) Explain why the power method will likely fail with this matrix.

(b) Explain how shifting can be used so the power method can be used to
calculate the £2 eigenvalues of A.

(c) Explain why the power method applied to B = A + 10*I can be used
to find the largest eigenvalue of A, but it is a poor choice to, say, using
B=A+10I

4.6. Consider the symmetric matrix
2 2
A= (2 _1) |

(a) Assuming By = A, using orthogonal iteration, what are the k = 0 ap-
proximations for the eigenvalues?

(b) Continuing part (a), find B; when using orthogonal iteration and the
resulting approximations for the eigenvalues.

(¢) Assuming Cy = A, find C; when using the QR method.

(d) When using the QR method, what matrix does the Cj, matrices converge
to?

4.7. Consider the symmetric matrix
-7 —6
A=),

(a) Assuming By = A, using orthogonal iteration, what are the k = 0 ap-
proximations for the eigenvalues?
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(b) Continuing part (a), find B; when using orthogonal iteration and the
resulting approximations for the eigenvalues.

(c) Assuming Cy = A, find C; when using the QR method.

(d) When using the QR method, what matrix does the Cj matrices
converge to?

4.8. Consider the symmetric matrix
-2 0
A= < 2 2) |

(a) What are the eigenvalues for this matrix? Explain why this matrix does
not have a dominant eigenvalue.

(b) Suppose the power method is applied to A. What does (4.13) reduce to?
Explain why the method does not converge.

(¢) Let B = A — ul. Explain why the power method, when applied to B, will
converge for any nonzero value for p. Also, explain how to pick values for
1 to compute the two eigenvalues for A using the power method for each.

4.9. This exercise explores how to use the results from the power method to

estimate |Az).

(a) Explain how to use the computed values for v and the iteration error in
Table 4.2 to estimate |Az].

(b) The power method was used on a positive definite 3 x 3 matrix and the
results are given in Table 4.17. What is, approximately, the second largest
eigenvalue?

(c) Explain how the result from part (b), and the inverse power method, can
be used to compute As.

k Vg [k — vi—1]
1 1.050490429082

2 2.923452914041 1.87e+4-00
3  3.351559013702 4.28e—01
4 3.396446378825  4.49e—02
5 3.408195210234 1.17e—02
6 3.412146406763 3.95e—03
7 3.413503657073 1.36e—03
8  3.413969884337 4.66e—04
9 3.414129935923 1.60e—04
10 3.414184865200 5.49e—05

Table 4.17 Data for Exercise 4.9.
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4.10. Suppose A; and A; are symmetric and positive definite 100 x 100
matrices with the following eigenvalues:

All )\1 = 100, )\2 :99, )\3 :98, ceey )\100 =1
As: A1 =100, Ao =10, A3 =1, -+, A\jgo = 10797

(a) Will the power method most likely converge faster for A; or As?

(b) Assume that A is a symmetric positive definite n x n matrix with eigen-
values A1 > Ay > -+ > A\, > 0. If \; is known, explain why, in theory, A,
can be computed by applying the power method to B = A — \;1.

(¢) To compute Ajgo for Aj, one can use the method from part (b) or the
inverse power method. Which will most likely converge faster?

(d) Explain why the method in part (b) will likely fail when applied to As.

(e) Show that, in theory, the method in part (b) converges faster than the
inverse power method if \y < A\p—1 + An.

4.11. For the symmetric matrices in (4.5), (4.6), and (4.20), the dominant
eigenvalue turns out to equal ||Al|s. Is this always true for a symmetric
matrix?

4.12. By writing out the equation Ax = Ax in component form, show that
the eigenvalues of (4.20) are a, a + 1, and a — 1. What are the corresponding
eigenvectors?

4.13. Suppose A is a symmetric 3 X 3 matrix with eigenvalues A1, A2, and
Az, with [As] < [A2] < |A1]. Suppose the starting vector for the power method
contains a portion of an eigenvector for A;. Write out what happens to (4.12)
and (4.13) in this 3 x 3 case. Also, what happens to the error (4.15) and the
iterative error (4.16) formulas?

4.14. Suppose the eigenvalues of a symmetric matrix A satisfy Ay > Ay >
- > Ap—1 > An > 0. To calculate A1, the power method is going to be
applied to the shifted matrix B = A — wL.
(a) What condition(s) must be imposed on w so the method will converge
to /\1.
(b) Explain why the choice w = (A2 + Ap,)/2 will result in the fastest conver-
gence of the power method.

4.15. This problem concerns what is known as the Rosser matrix, which is
given as

611 196 —192 407 -8 =52 —49 29
196 899 113 -—-192 —-71 —43 -8 -4
=192 113 899 196 61 49 8 52
407 —-192 196 611 8 44 59 =23
-8 71 61 8§ 411 =599 208 208
—-52 —43 49 44 =599 411 208 208
—49 -8 8 59 208 208 99 -911
29 -4 52 =23 208 208 -911 99
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The eigenvalues of R are: 0, 1000, 1020, +10+/10405, 510 4= 100v/26 [Rosser
et al., 1951]. Note that the eigenvalue A = 1000 has two linearly independent
eigenvectors. Also, R is symmetric but it’s not positive-definite.

(a) Show that four of the eigenvalues, in magnitude, are very close (although
unequal).

(b) Explain why the power method will likely fail on this matrix.

(c) One can try shifting, and let B = A —wI. If w = —1, what eigenvalue of B
will the power method converge to, and what is the associated eigenvalue
of A?

(d) Using the shift from part (c), according to Theorem 4.2, by what factor
is the error reduced by at each iteration step? How many iteration steps
are needed to reduce the error by a factor of 107

(e) The power method is to be applied to the shifted matrix B = A — wl.
What conditions need to be imposed on w so it converges to 101/10405—w?

4.16. In this problem the QR method for computing eigenvalues is consid-
ered. Select one of the following matrices and then answer the questions that

follow.
-1 1 2 2 2 -1
) S ) R Gy

(a) Find C;.
(b) Find Cs.
(c) What matrix does the Cy’s converge to?

4.17. This exercise explores the connections between the QR method and the
matrices in the factorization A = QDQ? (see Theorem 4.6). It’s assumed
that A is symmetric.

(a) In the QR method, show that C; = QT AQ;, C2 = Q¥ QTAQ;Qy, and
in general, Cy = PfAPk7 where P, = Q1Qs - - - Q. Note that Py is an
orthogonal matrix (you do not need to show this).

(b) Assuming that Cj converges to a diagonal matrix, explain why the QR
method is a procedure for computing the matrix D in Theorem 4.6. Also
explain how two lines of code can be added to the QR algorithm given
in Section 4.3.3 so that, when finished, you have a matrix containing the
eigenvectors.

4.18. Consider the matrix

(a) Find a SVD for A.
(b) Find the expansion for A given in (4.49).
(c) Find a SVD for AT,
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(d) Find a SVD for 2A.
(e) Find a SVD for —A.
(f) Find [|A]l2.

4.19. Consider the symmetric matrix
4 4
a-(t )

(a) Find a factorization as given in (4.38).
(b) Find a SVD for A.

(c) Find the expansion for A given in (4.49).
(d) Find [|A]]>

4.20. Pick one of the following matrices, and then find the requested quan-
tities.

i) A=

o O O
O N =

12
i) A={0 1 iii) A =
10

o = O
===

Find a SVD for A.
Find the expansion for A given in (4.49).

a)
b)
¢) Find a SVD for 3A.
d)
)

(
(
(
(d) Find a SVD for —A.
(e) Find [|A]]2.

4.21. The pixel values for different images are given in Table 4.18 (they each

contain 4 pixels). Select one of them and then answer the questions that

follow.

(a) What is the SVD of the corresponding matrix?

(b) Find W, and Wy, as defined in (4.49).

(c) Suppose the approximation A a2 A is used, where A; = oy W;. Find A,
and determine the relative error is using this matrix to approximate A.

4.22. This problem considers the following n x m symmetric tri-diagonal
matrix:

A) B) C)

Table 4.18 Data for Exercise 4.21.
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0 C1

Cn—2 0 Cn—1
Cn—1 0
where )
i

V(2i—1)(2i+1)

The eigenvalues, and eigenvectors, of this matrix play a role in Gaussian

quadrature (see Section 6.4.4).

(a) Taking n = 2, use orthogonal iteration to calculate the eigenvalues of
A. The relative iteration error for the nonzero eigenvalues should be less
than 1072, Also, calculate the eigenvalues by hand to make sure your
computed answers are correct. Comment on any modifications of the or-
thogonal iteration procedure you make to compute the correct result.

(b) Let q1 = (q11,¢12)” and q2 = (g21,q22)T be the orthonormal eigenvectors
calculated in part (a). As explained in Section 6.4.2, when n = 2 one
should have 2¢?; = 1 and 2¢3; = 1. How close does your result come to
satisfying these conditions?

(c) Taking n = 10, use orthogonal iteration to calculate the eigenvalues of
A. The relative iteration error for the nonzero eigenvalues should be less
than 10712, Explain why you are confident that the values are correct.

(d) Assume that the orthonormal eigenvectors are qi1, qz, - - -, 9y, where q; is
the eigenvector for eigenvalue \;. If q; = (gj1, gj2, ** ,qjn)?T, calculate the
quantity w; = 2q]21 for each eigenvalue. Although this looks a little odd,
the w;’s are used to determine the weights in the Gaussian quadrature
formula.

C; =

4.23. The equation for a string on an elastic foundation is

0%u 0?
=2 v ku,
ot? ox?
where ¢ and k are positive constants. The problem for finding the natural
frequencies of the string can be reduced to solving Ax = Ax, where

a —1
-1 a —1 0
-1 a -1
A= S
0 -1

-1 a

Note that A is an n X n symmetric tri-diagonal matrix, and
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k

=2 .
“ +02(n—|—1)2

Also, by solving the string equation one finds that the exact values for the
N's are 9/ vo
N = kjc ) ri=1.2.3....

2(n+1)2

(a) Explain why A is positive definite.

(b) Use inverse orthogonal iteration to compute the five smallest eigenvalues
of A. To do this take n = 250 and ¢ = k = 1. Also, compute the relative
error as in Table 4.16.

(c) The exact eigenvalues of A are \; = a + 2cos(if), for i = 1,2,...,n,
where = 7/(n + 1). Taking n = 250 and ¢ = k = 1, as in Figure 4.4,
plot the ratios A\;—1/A; and use this to explain why inverse orthogonal
iteration should converge relatively quickly when computing the smaller
eigenvalues.

4.24. This exercise involves finding the natural frequencies for the coupled
oscillators in Figure 4.10. The equation of motion in this case is y” + Ky = 0,
where y = (y1(t), y2(t), y3(t))" and

14 k1o + k13 —k12 —ki3
K= —k12 1 + k12 + k23 _k23
—k13 —kos3 1+ k13 + ka3

In the above matrix, k;; is the spring constant for the spring connecting the

ith and jth oscillator, and it is positive (these are the three smaller springs

shown in Figure 4.10). Assuming y = xe!*!, where I = /-1, then the

problem reduces to solving Kx = \x, where A = w?.

(a) Show that K is positive definite.

(b) Using orthogonal iteration, compute the eigenvalues of K in the case of
when k;; = 1/10. Also, state what stopping condition you used, and how

many iteration steps were required.

Figure 4.10 Three oscillators that are coupled by springs, as an example of the
problem considered in Exercise 4.24.
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[

NIFIHAU

KAHO OLAWE

Figure 4.11 Six air routes, and five cities, used to construct the adjacency matrix
in Exercise 4.25.

(c) What is the eigenvalue for K when the oscillators are uncoupled? Note
that this means that the k;;’s are zero.

(d) Using orthogonal iteration, compute the eigenvalues of K in the case of
when k;; = 1/1000. You should use the same stopping condition as in part
(b). How many iteration steps were required, and if significantly different
than the number for part (b), explain why.

4.25. The routes for a small airline are shown in Figure 4.11. In terms of a
network, the five cities are the vertices or nodes, and the six air routes are
the connections, in a similar manner to those shown in Figure 4.11.

(a) Number the cities from 1 to 5, and from this write down the corresponding
adjacency matrix.

(b) Compute the eigenvalues of the matrix you found in part (a). Also, it can
be proved that if you sum up the eigenvalues of an adjacency matrix, you
get zero (see Section 4.3.4). Do your values satisfy this condition? If not,
provide a reason why.

(¢) Number the cities in a different order than you used in part (a) and
compute the eigenvalues of the resulting adjacency matrix. How do these
differ from what you computed in part (b)?

Figure 4.12 Diagrammatic representations of benzene. The representation on the
right is the one used to construct the adjacency matrix in Exercise 4.26.
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Figure 4.13 Diagrammatic representations of naphthalene. The representation on
the right is the one used to construct the adjacency matrix in Exercise 4.26.

4.26. Adjacency matrices arise in quantum chemistry in the form of what are
called Hiickel Hamiltonian matrices. To illustrate, the atomic configuration
for benzene is shown in Figure 4.12. The atoms are located at the vertices,
and they are connected by nearest neighbor bonds (which form the edges of
the polygon). The Hiickel Hamiltonian matrix for benzene is nothing more
than the adjacency matrix for this graph. In this context, the eigenvalues
are associated with the energy states of the system, and the eigenvectors
provide information about the corresponding orbital structure for that par-
ticular energy.

(a) Using the representation on the right in Figure 4.12, number the atoms
(vertices) from 1 to 6 and write down the corresponding adjacency matrix
for benzene. The double lines in this graph should be treated the same
as the single line connections.

(b) Compute the eigenvalues of the matrix you found in part (a). Also, it can
be proved that if you sum up the eigenvalues of an adjacency matrix, you
get zero (see Section 4.3.4). Do your values satisfy this condition? If not,
provide a reason why.

(¢) The atomic configuration for naphthalene is shown in Figure 4.13. Number
the atoms (vertices) from 1 to 10 and write down the corresponding adj-
acency matrix. From this compute the eigenvalues of the matrix. Also, it
can be proved that if you sum up the eigenvalues of an adjacency matrix,
you get zero. Do your values satisfy this condition? If not, provide a
reason why.

4.27. This problem considers finding the eigenvalues of an n x n symmetric
matrix A whose entries are given as
aij = e D"

where a = 20/(n — 1). In this problem, take n = 100.

(a) By computing the needed quantities in Theorem 3.4, show the matrix is
positive definite. Also, explain why the matrix is symmetric.

(b) Use the power method to calculate the dominant eigenvalue to four sig-
nificant digits. Make sure to state your stopping condition, and how many
iterations it took to find the eigenvalue.
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(c) Explain how to use the iterative error in part (b) to estimate the second
largest eigenvalue Ao. Using this estimate, and shifting, calculate A9 to
four significant digits. Make sure to state your stopping condition, and
how many iterations it took to find the eigenvalue.

(d) Compute the smallest eigenvalue of A to four significant digits. Make
sure to state the method you used, the stopping condition, and how many
iterations it took to find the eigenvalue.

4.28. This problem considers finding the eigenvalues of an n x n symmetric

matrix A whose entries are given as a;; = |i — j|.

(a) Write out the matrix in the case of when n = 5, and explain why the
matrix is not positive definite.

(b) Taking n = 1000, use the power method, and shifting if necessary, to cal-
culate the largest and the smallest eigenvalue of A. You should calculate
each eigenvalue to four significant digits. Also, explain why you know you
have calculated the correct eigenvalues.

(c) Taking n = 1000, calculate the eigenvalue of A that is closest to zero.
You should calculate the eigenvalue to four significant digits. Also, explain
why you know you have calculated the correct eigenvalue.

4.29. An often used age-structured model of a population divides the number
of females into age groups g1, g2, -+, gn. Here g1 is the number in the
youngest group, go is the number in the second youngest group, etc. It is
assumed that after a given time interval, s;g; of those in g; survive and move
to age group g;+1. Also, over the same time interval, the females in g; produce
b;g; female babies. Setting g = (g1, 92, -+ ,gn)?, with gx being the value at
time step ¢ and ggy1 being the value at time step tgy1, then gr+1 = Agg,
where

by by by by
s$10 0 0
0 s90 0
A =
0 - Spo 0 0
0 -+ 0 8,10

This is known as a Leslie matrix. It is assumed that the s;’s are positive, by

and b,, are non-negative, and the other b;’s are positive. In this case, the dom-

inant eigenvalue A\; of A is positive. If \; > 1, then the population increases,
and it decreases if \; < 1. Also, note that this matrix is not symmetric, but
it has n linearly independent eigenvectors.

(a) Deer can survive up to 20 years in the wild. Taking n = 20, and assuming
their survivability deceases with age, let s; = exp(—i/100). Also, assuming
3/4 of the females in each age group have one offspring each year, with
equal probability of being male or female, then b; = (3/4)(1/2) = 3/8.
The exception is the youngest group, and for this assume that b; = 0.
Does the population increase or decrease?
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(b) If Ay = 1, then the population approaches a constant value as time inc-
reases. For the deer in part (a), assuming by = 0 and bs = b3 =---=b, =
b, what does b have to be so this happens? The value you find should be
correct to six significant digits.

4.30. An important factorization in mechanics is the polar decomposition.

For an n x n matrix A with a positive determinant, the factorization is

A = QP, where Q is an orthogonal matrix and P is a symmetric positive

definite matrix.

(a) Assuming the SVD of A has been computed, explain how this can be
used to compute Q and P. Make sure to explain why the formulas you
derive for Q and P guarantee that they have their required properties.

(b) According to Theorem 4.4, det(Q) = £1. An orthogonal matrix with
det(Q) = —1 corresponds to a reflection, and these are considered to
be unphysical. For this reason, in mechanics one is interested in having
det(Q) = 1, which corresponds to what is known as a proper orthogo-
nal matrix and physically they correspond to rotations. Explain how to
modify, if necessary, your algorithm or formulas in part (a) so that Q is
a proper orthogonal matrix.

4.31. This problem considers the following n x n tri-diagonal matrix:

a ¢
b a c 0
b a ¢
A= S
0 b

S e
Q O

It is assumed that bc > 0 and n > 3.
(a) Assuming ¢ = b, the eigenvalues of A are \; = a + 2|b| cos(if), for i =
1,2,...,n, where § = 7/(n + 1). Show that

x; = (sin(e),sin(2¢),sin(3¢), - - - , sin(np))”

is an eigenvector for \;, where ¢ = 6.

(b) The matrix in part (a) is symmetric. Explain why it is positive definite if
a > 2|b|.

(c) For the eigenvectors in part (a), show that x; - x; = 0 if ¢ # j, and
x;-x;=(n+1)/2.

(d) The eigenvalues of A are \; = a + 2v/bccos(if), for i = 1,2, ..., n, where
6 =m/(n+ 1). Show that

x; = (ksin(¢), K2 sin(26), x> sin(3¢), - - - , k" sin(ng))”

is an eigenvector for \;, where ¢ = i6 and k = \/b/c.



Chapter 5
Interpolation

5.1 Information from Data

The topic of this chapter is interpolation, which relates to passing a curve
through a set of data points. To put this in context, extracting information
from data is one of the central objectives in science and engineering and
exactly what or how this is done depends on the particular setting. Two
examples are shown in Figure 5.1. Figure 5.1(L) contains data obtained from
measurements of high redshift type supernovae. As is often the case with
computerized testing systems, there are many data points and there is some
scatter in the values obtained. Because of this one would not be interested
in finding a function that passes through all of these points, but rather a
function that behaves in a qualitatively similar manner as the data. In this
case one uses a fitting method, like least squares, to make the connection
more quantitative. Exactly how this might be done will be considered in
Chapter 8.

In comparison, the data in Figure 5.1(R) have a well-defined shape and for
this reason are more amenable to interpolation. This is also true for the data
shown in Figure 5.2. The hand data is typical of what arises in CAD applica-
tions, while the data on the right relates to a more mathematical application.
To explain, the data points are obtained by evaluating the function

oo

flz) = ;’ +> 22731733 cos(nmz) (5.1)
n=1

at 10 points from the interval —1 < x < 1. What is seen is that the above
relatively complicated function does not have a correspondingly complicated
graph. This raises the question if we might be able to replace the function with
a much simpler expression that would serve as a respectable approximation
of the original.

(© Springer International Publishing Switzerland 2016 183
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Figure 5.1 Left: data related to a supernovae redshift [Astier et al., 2006]. Right:
data for nanopores in a supercapacitor [Kondrat et al., 2012].
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Figure 5.2 Left: geometric representation of a hand using interpolation [Burkardt,
2015]. Right: values of (5.1) at selected points in interval —1 < z < 1.

One of the better ways to test how well an interpolation method works is
to try it out on different data sets. In what follows we will use the sets shown
in Figure 5.3. Each consists of 12 equally spaced points over the interval
—1 < z < 1. The top two were generated using functions; the one in the
upper left comes from the 5th order polynomial

y(x) = (x +0.9)(z +0.1)*(z — 0.2)(z — 0.8),

while the one on the upper right consists of points that lie on the circle 22 +
y? = 1. The lower two are used to mimic or resemble a periodic function and
one with jumps. It is recommend that you spend a moment or two and sketch
in what you think would be an acceptable interpolation function for each data
set. This will help later when we see what the standard interpolation methods
produce.

It is of interest to know that many of the interpolation methods derived
in this chapter are summarized in Appendix C, Table C.1.
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Figure 5.3 Data sets that are used to test the various interpolation methods.

5.2 Global Polynomial Interpolation

If one wants to find a function to connect two data points, the easiest choice
is to use a straight line, in other words a linear function. Similarly, given three
data points one would likely use a quadratic. To generalize this idea, suppose
there are n + 1 points and they are (z1,41), (z2,92), -+, (Tnt1, Yn+1), Where
1 < g < -++ < Tpg1. We are going to find a single nth degree polynomial
pn(x) that passes through each and every point. This is not particularly diffi-
cult and there are several ways to find the interpolation polynomial. However,
as is often the case in numerical computing, some methods are much more
sensitive to round-off error than other methods.

5.2.1 Direct Approach

Taking the direct approach, the simplest choice is to take
pn(x) = a0+ a1z + -+ apz™. (5.2)

The interpolation requirement is that p,(z1) = y1, pu(x2) = y2, -,
DPn(Tnt+1) = Ynt1. Using the above polynomial this produces the equations
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ap+a1x1 + -+ anxl =y

ap + a1xe + - 4 apTy = Yo

ag + a1 Tpy1 + o+ AT ) = Yntl

This can be rewritten in matrix form as Va = y, where a = (ag, a1, -+ ,an)?
Yy = (y17y27 e 7yn+1)T7 and

)

1z a3 ... o}
1z a3 ... af
v=|. . (5.3)
1 2 n
Tn+1 ZZ?nJrl N :Z?nJrl

This is a Vandermonde matriz. Given that it has a name you should not be
surprised that it plays an important role in interpolation, but as will be seen
shortly not all of its contributions are good.

Example

Each of the test data sets in Figure 5.3 contains 12 points. Fitting pi1(z)
to each set produces the curves shown in Figure 5.4. The top two look to
be reasonable fits to the data while the bottom two are not. The over- and
under-shoots seen in the bottom two curves often appear with higher degree
polynomials and one of the drawbacks of using a global polynomial with
larger data sets. W

1 L
@2
% 0.5}
>
0 L
-1 -0.5 0 0.5 1
1t
0 L
1t
21
" " " " -3 " " " " "
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X-axis x-axis

Figure 5.4 Using a global polynomial p11(z), as given in (5.2), for the data in
Figure 5.3.
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The pervious example indicates that there are concerns about using a
global polynomial, particularly when you have a large number of data points.
In fact, there are significant problems not evident in the example related to
the condition number of the Vandermonde matrix. As shown in Section 3.4,
V can be ill-conditioned for even small values of n. It is possible in some
cases to rescale the data to improve the condition number, and an example
of this is given in Exercise 5.28. However, it is possible to avoid this particular
problem altogether, and this will be considered next. Even so, be warned that
there is a second problem with a large number of equally spaced data points
and this is discussed in Section 5.2.3.

5.2.2 Lagrange Approach

The easiest way to explain how to avoid using the Vandermonde matrix is to
examine what happens with linear and quadratic functions. So, suppose the
data points are (z1,y1) and (z2,y2), where 1 # 3. The global polynomial
in this case is linear and it can be written as

_ Y2—Yr,
pi(z) =y + oy — a1 (z — 1)
Xr — Tg xr — T
:yl

Y2
Xr1 — T2 To — X1
= y1l1(z) + y2la(v),

where
Xr — T2
6 =
1() 21—y
and
xr — T
Y4 = .
2(7) Ty — 11

The functions ¢1(x) and ¢2(x) are examples of linear Lagrange interpolation
functions and they have the properties that ¢1(z1) = la(z2) = 1, £1(x2) =0,
and f3(z1) = 0. In other words, each £;(z) is linear, equal to one when z = z;
and equal to zero at the other x; data point.

It is relatively easy to generalize this idea and write down the quadratic
Lagrange interpolation functions. Namely, if the data points are (x1,y1),
(z2,y2), and (z3,ys) then

 (r—z2)(r —23)
hiw) = (z1 — 22)(21 — 23)
(x —x1)(x — x3)
62(:17) - (1'2 _ 551)(&62 _ 1'3) )
(x — x1)(x — x2)
falo) = (x5 — 1) (23 — T2)
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By design, each ¢;(x) is quadratic, equal to one when x = z; and equal to
zero at the other z; data points. Using these functions the corresponding
quadratic interpolation polynomial is

p2(z) = y1li(x) + yala(z) + yals(z). (5.4)

For this to be well-defined it is required that the x;’s are distinct, which
means that x1 # x2, T1 # x3, and 3 # x3. Also, although it looks different,
(5.4) produces the same function as given in (5.2) in the case of when n = 2.
Generalizing the above results we have that given data points (x1, 1),
(x2,92), -+, (Tnt1, Ynt1), with the z;’s distinct, the interpolation polynomial
can be written as
n+1

pn(z) = Z yili(z), (5.5)
i=1
where the Lagrange interpolation functions are defined as

(@ —z1)(@ —22) - (@ — i) (€ — @ig1) - (@ — Tppa)

li(w) = (r; —x1) (@ — @) -+ (g — xim1) (@ — Tig1) -+ (T — Tpy1) (56)
n+1 )
_ U ;:Zgj . (5.7)
i

In a similar manner, as in the linear and quadratic examples, each ¢;(z) is
an nth degree polynomial, it is equal to one when x = x;, and it equals zero
when 2 = x; for j #i.

Example

To find the global polynomial that interpolates the data in Table 5.1, first note
that the data is (z1,y1) = (0,1), (v2,y2) = (1/2,-1), and (z1,31) = (1,2).
Consequently, the polynomial is

p2(7) = y1l1(x) + y2l2(x) + y3la(x)
= fl (ac) — fg(l’) + 2(3(,@),

v.vhere l(z) =2(x—1/2)(x—1), l2(x) = —4x(x—1), and l3(z) = 2x(x—1/2).

Table 5.1 Data for example.
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The Lagrange interpolation formulas in (5.5) and (5.7) have an advantage
over the direct formula, given in (5.2), in that the Vandermonde matrix is
avoided. There is still a potential computational problem related to overflow,
particularly for (5.6). This is the same problem explored in Exercise 1.7. It
can help to rescale the data, and this is explained in Exercise 5.28. However,
writing the formula in factored form as in (5.7) significantly reduces the
possibility of overflow.

The price paid for avoiding the Vandermonde matrix is the effort needed
to evaluate the ¢;’s, and this is often stated to be a drawback of the method.
For a large number of data points, evaluating ¢;(x) can require about 2n?
flops. To translate this into computing time, if you use 20 data points and
2,000 evaluation points, the computing time is about 1msec. Similarly, if
you use 200 data points and 20,000 evaluation points, the computing time
is about 1sec. In other words, the computational time is not particularly
significant unless you are working with a large data set. In such cases there
are more efficient ways to write the interpolation formulas, using something
called barycentric weights, and these are explored in Exercise 5.29. However,
there is a more significant problem with this method and this is explained
next.

5.2.3 Runge’s Function

Now that the ill-conditioned matrix problem has been avoided it is time to
explain the other problem with using a global interpolation polynomial. For
this we can use the top two plots in Figure 5.4. It is seen that with the 10
data points we have obtained a fairly accurate approximation of the original
functions. Always trying to improve things, one might think that by adding
data points that the approximation will be even better. For many functions
this does indeed happen but there are functions where it does not (and you
would think it should). The example many use to demonstrate this is

1

T 1425227 (5:8)

f(x)
and this is known as Runge’s function. This is plotted in Figure 5.5, along
with p4(z) and p12(z). The interpolation polynomials are constructed using
equally spaced data points. It is seen that in the center of the interval the
approximation improves but it gets worse towards the endpoints. Increasing
the number of data points makes the situation worse in the sense that the
magnitude of |p, ()| near the endpoints increases. For example, when n = 40
the maximum in [p, ()| is about 10%, while for n = 100 the maximum in
|pn ()| is about 10*4. Moreover, this behavior is not limited to equally spaced
points. If you take the points randomly from the interval, the maximum in
|pn ()] is often even larger.
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Figure 5.5 The Runge function (5.8) along with two interpolating polynomials.

The conclusion from the above discussion is that using a global interpola-
tion polynomial works well for small data sets but has limited value as the
number of data points increases. One solution for larger data sets is to break
them into small groups, use interpolation on the subgroups, and then connect
the information into a coherent whole. This is considered in the next section.
If you are set on using a global polynomial then you need to consider where
the x;’s are placed in the interval, and this is considered in Section 5.5.4.

5.3 Piecewise Linear Interpolation

We will consider using linear interpolation between adjacent data points. This
is effectively what is done in a child’s connect the dots puzzle. An example
is shown in Figure 5.6 where the line between (z1,y1) and (216, y16) is pre-
drawn in the puzzle.

|
e e \'5 o5
4e el4
C@
6* LIF)
7@ 8 I

|.o *
)

Figure 5.6 A typical
child’s puzzle of connect
the dots.
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Figure 5.7 Intervals and functions used for piecewise linear interpolation.

To be able to write down the mathematical formula used for piecewise
linear interpolation, assume that the data points are (x1,y1), (z2,¥y2), -+ ,
(Tnt1,Ynt1), where 21 < g < -+ < Zp41. The linear function connecting
adjacent data points is given as

gi(z) =y + Yir1 — Y (x —x;), fora; <ax<xip. (5.9)
Tit1 — T4
Assembling these into a complete description of the interpolation function
we get

gi(z)  ifx <z <y

g(z) = g:Q(x) o = ‘T = (5.10)

gn(z) iz, <z <xpiq.

An illustration of this is given in Figure 5.7.

It is possible to write g(x) is a form that can be easier to use, and looks a lot
simpler than the expression in (5.10). To do this we introduce the piecewise
linear function G;(z), with G(z;) = 1 and G(z;) = 0 if j # i. The formula
for this function is

0 if S Ti—1,

T —Ti—1 .
if zi <z <ay,

Gi(z) = &1~ L1 (5.11)

T —Ti+1 .

L g <z <mig,
Tj — Ti41
0 if Ti+1 S Z,

Ti-g Tyl Tit1 Zi42

Figure 5.8 The piecewise linear function G;(x) defined in (5.11).
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and a sketch of this is given in Figure 5.8. In the case of when the points
are equally spaced, so x;+1 — x; = h, this can be written in a more compact
form as

Gi(z) = G<x2x> (5.12)
where

1—|z| if |z| <1
G(x) = g ) = <1 (5.13)
0 it 1< |zl

Note that the defining properties of G;(x) are very similar to the proper-
ties that were used to define the Lagrange interpolation functions ¢;(x) in
Section 5.2.2.

With this, the piecewise linear interpolation function (5.10) can be

written as
n+1

9(@) = 3 uiGi(x). (5.14)

Just so it’s clear, this expression produces the same interpolation function as
the expanded version given in (5.10). Also, because of its shape, G;(z) has a
variety of names, and they include the hat function and the chapeau function.

As a final comment, to define G it is necessary to introduce xp, with
g < 1, and for G,,+1 we need to add in x,12, with x, 11 < T,42. Exactly
where these two points are located in not important because they have no
affect on the interpolation function over the interval 1 <z < x,41.
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Figure 5.9 Using a piecewise linear function to fit the data in Figure 5.3.
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Example

Using a piecewise linear function to fit the data in Figure 5.9 produces the
curves shown in Figure 5.9. These curves are not bad fits but they are also not
great. They are not bad because they do not contain the over- and under-
shoots seen in Figure 5.9. However, they are not great because they are
jagged. Note that in some applications, such as the one in Figure 5.6, jagged
is what is desired but in many applications this is something one wants to
avoid.

Example

Find the piecewise linear function that interpolates the data in Table 5.2.
Note that in this case, 1 = 0, zo = 1/2, and x2 = 1.

Method 1: Using (5.10),

B () f0<x<1/2
9(x) = {g;(x) if1/2<z<1,

where
_ Y2—Y1,
gi(z) =y + g — 1 (x — 1)
=1—4z,
and
. Yys —y _
p@) =+ PP @ —w)
=—446x

Method 2: Using (5.14),

9(7) = y1G1(x) + y2G2(7) + y3G3(2)
= Gl (117) - GQ(I) + 2G3(I),

Table 5.2 Data for example.
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where
1+22x if —1/2<2<0,
Gi(z)=¢1—-2z if 0<x<1/2,
0 otherwise,
2x if 0<a<1/2,
Go(z)=¢2—-2¢ if 1/2<x<1,
0 otherwise,
and

—1+42z if 1/2<2 <1,
Gs(z)=¢3—-2z if 1<x<3/2,
0 otherwise. |

5.4 Piecewise Cubic Interpolation

The principal criticism of piecewise linear interpolation is that the approx-
imation function has corners. One method that is often used to avoid this
is to replace the linear functions with cubics. Instead of (5.10), we have a
interpolation function of the form (see Figure 5.10)

s1(x) ifz; <z <29

s2() if 1o <z <3
s(x) = ) ) (5.15)

sp(x)  a, <zx<xpi,
where in the ith interval the function is
si(x) = a;+bi(x — ;) + ¢;(x — xi)2 +di(x— xi)3, for z; <z < x;y1. (5.16)
To satisfy the interpolation conditions it is required that

si(xi) =i, si(xiy1) = Yip1, fori=1,2,--- ,n. (5.17)

This will determine two of the four constants in s;. We will also require that
the transition between intervals is as smooth as possible. First, the slopes
must match and this means that

S/i(I’H’l) = S{i+1(xi+1)a for i = 15 27 e, — L. (518)
Second we will require that the second derivatives also match, and so

s (@iq1) = siyq(@ip1), fori=1,2,--- n—1 (5.19)
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Conditions (5.17)—(5.19) are the basic requirements for s(z) to be a cubic
spline. However, s(z) has 4n coefficients that we need to determine, and
these conditions produce 4n — 2 equations. In other words, we are short two
conditions. What is usually done is to specify conditions at the left and right
ends of the data interval. Some of the commonly made choices are as follows:

e Natural Spline: s{(x1) =0 and s/ (xp11) =0

This produces a spline with an interesting property related to curvature,
and this will be explained later.

o Clamped Spline: sy (x1) =y} and s;,(Tp41) = Yniq

This requires knowing the value of the derivative at the endpoints, some-
thing that is not usually available.

Si41
Si-1 s

1 1 1 1
T T

Ti-1 &y Ti+1 Li+4+2

Figure 5.10 Intervals and functions used for piecewise cubic interpolation.

e Not-a-Knot Spline: s’ (x2) = s4'(x2) and s, (x,) = s (2y)

This is the default choice in MATLAB.

Whichever choice is made, the resulting function s(z) provides a smooth
interpolation of the given data points.

Example

To find the natural cubic spline that interpolates the data in Table 5.3, we
use (5.15) and write

si(z) if0<xz<1/2
S(x)_{si(x) if1/2<z<1,

where
s1(2) = a1 + b1z + c12® + dq2°,

and
s9(x) = ag + ba(x — 1/2) + co(x — 1/2)? + do(x — 1/2)3.
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Table 5.3 Data for example.

From the interpolation conditions (5.17),

81(0):12 a1=1,
81(1/2)2—1: a1+%b1+}101+§d1=—1,
s2(1/2) = —1: as = —1,

82(1):2: a2+éb2+162+éd2:2.

Also, from (5.18) and (5.19)

s1(1/2) = s5(1/2) 1 bi+e1+ §di = by,
s7(1/2) = s4(1/2) : 2¢1 + 3dy = 2¢s.

Finally, to qualify to be a natural cubic spline it is required that

s7(0)=0: ¢ =0,
0 2¢c9 + 3dy = 0.

It is now a matter of solving the above equations, and after doing this one

finds that 13
si(z)=1- o T + 1023,

and

sp(x) = =1+ (x —1/2) +15(x — 1/2)2 = 10(z — 1/2)*>. W

To find s(z) it remains to solve 4n equations with 4n unknowns. It is pos-
sible to just solve the resulting matrix equation for the unknowns, but there
are better ways to find the coefficients. One possibility is to mathematically
simplify the equations, and reduce the problem to solving a system with n
unknowns. Another approach is to use cubic B-splines. This will also reduce
the problem down to having to solve for (approximately) n unknowns. The
advantage of B-splines is that they are easier to code. They are also very use-
ful for least squares fitting of data (see Exercise 8.32), as well when solving
differential equations numerically [Holmes, 2007].
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5.4.1 Cubic B-Splines

The idea is to write the interpolation function in the form

s(z) = Z a; B;(x). (5.20)

The functions B;(x) are called cubic B-splines, and a sketch of a typical
B-spline is given in Figure 5.11. The above expression has a passing similar-
ity to the expressions used for Lagrange interpolation and piecewise linear
interpolation. However, one important difference is that the coefficient a; in
the above sum is not necessarily equal to the data value y;.

The derivation of (5.20) consists of two steps. The first is the construction
of the cubic B-splines B;(x). This only has to be done once, which means
that these functions do not need to be rederived if the data set is changed.
Once this is complete, then the problem used to find the a;’s is determined.
The values of the a;’s do depend on the data, and so this problem must be
solved each time the data set is changed.

Finding the B;’s

Each B;(z) is a piecewise cubic function and has the form

0 if =z S Ti—2,
Gi—2(z) i mi_g <z <,
- if 1 <x<ux
Bi(z)={" 1(@) Lot (5.21)
Gir1(x) i z; <o <aiy,
Giy2(x) if 2 <2 < @i,
0 if Ti42 S Z,

where ¢j(z) = Aj + Bj(z —x;) + Cj(x — z;)? + Dj(z — z;)3. We will assume
that the x;’s are equally spaced, with h = x; 1 — x;, so the function B;(z) is
symmetric about = x;. Note that one consequence of the symmetry is that
Bl(z;) = 0.

Y41

B-Spline

i1 i i+1 Xis2

Figure 5.11 Sketch of the various components of a cubic B-spline.
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The coefficients of the ¢;’s in (5.21) are determined from the requirement
that B; € C?(—o0, 00). This is accomplished by requiring the following:

T = Ti_o —o(mi—2) =0, ¢_5(wi—2) =0, and ¢} 5(x;—2) =0

T=zi-10 Gi—2(®i-1) = ¢i-1(@i-1), ¢_o(®i-1) = ¢j_1(2i-1), and
;- 2( Ti-1) = ¢;_1(Ti-1)

r=xi  gioa(w) = qz‘+1($z‘ » @i1(xi) = ¢j14 (i), and

)
i1 (i) = i ()

with similar conditions at * = z;41 and * = x;42. From the conditions

at ¥ = x;_o one easily concludes that ¢; 2(x) = D; o(x — 2;_2)3. In a
similar way, it is found that g;12(z) = Dii2(x — 2442)3, where from the
symmetry, D;yo = —D;_s. From the smoothness requirements at z;_;, and

the requirement that B’(x;) = 0, one finds that
qifl(I) = Di,Q [h3 + 3h2(17 — Iifl) + 3h($ - Ii,1)2 — 3($ — .Ii,l)g] .

A similar equation can be derived for ¢;1(x). This leaves one undetermined
constant and the convention is to take B;(z;) = 2/3, which means that
D;_5 = 1/(6h3). With this, B;(z) is completely defined and the functions in

(5.21) are
Gale) =

o (T~ 7i2)’,

11 1 , 1 ;
gi—1(w) = (15 + o (= ziz1) + 2}112(1 P
qit1(z) = 6 2h(x —Tit1) + o2 (z — 2i41)” + o3 (z — 2it1)?,

1
Giv2(z) = ~6ns (z — wig2)’.

By factoring the above polynomials it is possible to show that

Bi(z) = B(I ;Lx) , (5.22)

where ) )
—221— |zl ) if |z <1,
i) 2
B(z) = (2= I’ i 1< 2] <2,
0 it 2< |af.

A plot of the resulting function is shown in Figure 5.12. At ;1 and x;11 the
curve makes such a smooth transition across the respective data point that
you would not know that the cubics change there. The same is true at x;_o
and x; 1o where the function makes a smooth transition to zero.
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Finding the a;’s
The cubic spline interpolation function can now be written as

n+2

s(z) =Y a;Bi(x). (5.23)
1=0

Just so it is clear, this function satisfies the smoothness conditions in (5.18)
and (5.19), but does not yet satisfy the interpolation conditions in (5.17) or
the specific end conditions (clamped, natural, etc.). Also, the sum is over
all possible B;’s that are nonzero on the interval ; < z < x,41. This has
required us to include the ¢ = 0 and ¢ = n + 2 terms even though there is no
T_1, T, Tnt2, OF Tnts in the original data set. We will deal with this shortly.
First note that at z; only B;_1, B;, and B;;1 are nonzero. In particular,
using the values given in Table 5.4,

s(x;) = ai—1Bi—1(x;) + @i Bi(x;) + ai1 Big1(x;)

1
= 6(%‘—1 +4a; + aiy1).

Because of the interpolation requirement (5.17) we have that
;-1 —|—4CL1'—|—CL1'+1 :6y1, for i = 1,2,"' ,n—|—1 (524)

To use this we need to know ag and a,,+2, and this is where the two additional
conditions are used. We will use a natural spline, and for this note that

§" (i) = ai1 By (xi) + ai B (x:) + aiy1Biy (x:)
1

=2 (@i—1 — 2a; + ajy1).
Solving s”(x1) = 0 we get that ap = 2a7 — a9, and at the other end
one finds that any2 = 2an41 — an. In (5.24), when ¢ = 1 one finds that
a1 = y; and at the other end one gets that ap,y1 = yns1. The rem-
2/3F T T T T T ]
o
£
u‘l%1/3— 1
m
0
X2 X1 X; Xis1 Xis2

Figure 5.12 Plot of the cubic B-spline B;(z) defined in (5.22).
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Ti—1 €X; Tit1 Ty for j £d,i+1
1 2 1
B; 6 3 6 0
/ 1 1
Bi g 0 oh 0
1 2 1
Bz{/ h2 T h2 h2 0

Table 5.4 Values of the B-spline B;(z), as defined in (5.21), at the grid points used
in its construction.

T

)

aining a;’s are found by solving Aa = z where a = (a2, a3, - ,ap)
z = (6y2 — y1,693, ,6Un_1,6Un — Yns1)?, and A is the (n — 1) x (n — 1)
tridiagonal matrix

0 1
1 4

This positive definite and tridiagonal matrix equation can be solved using the
Thomas algorithm (see Section 3.8). This procedure is very fast, and requires
minimal storage, which means finding the coefficients for a cubic spline is
fairly easy even for a large number of interpolation points.

As a final comment, for a clamped spline it is also necessary to solve an
equation of the form Aa = z, where A and z are given in Exercise 5.30.

Example

Using a natural cubic spline to fit the data in Figure 5.3 produces the solid
(blue) curves shown in Figure 5.13. For comparison, the curves obtained
using a not-a~knot spline are also shown. The interpolation of the top two
data sets is as good as what was obtained using the global polynomial, and
there are few minor differences between the two spline functions. Moreover,
both splines give a better representation than a global polynomial for the
lower two data sets. For the lower right data set some small over- and under-
shoots are present in the spline functions, but they are not as pronounced as
those in Figure 5.4. It is also evident that there are also differences between
the two spline functions, although these occur primarily in the regions close
to the endpoints.
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Figure 5.13 Using a natural cubic spline function, the solid (blue) curves, and a
Not-a-Knot spline, the dashed (black) curves, to fit the data in Figure 5.3.

Example

To find the natural cubic spline that interpolates the data in Table 5.1, we
use (5.23) and write

s(z) = agBo(z) + a1 B1(x) + aaBa () + a3Bs(x) + ay Ba(x),

where zg = —1/2, x4 = 3/2, and B;(x) = B(2(z — x;)). The interpolation
requirements are

(0)21: ag + 4a1 + ags = 6,
)=-1: a1 +4az+ a3 =—6,
s(1)=2: ag+4as+aq =12,

and the natural spline end conditions are

s"(0)=0: ag—2a1+a2 =0,
s"(1)=0: as—2as+ay4 =0.

Solving these equations it is found that

s(@) = | Bo(x) + Ba(a) — | Bo(a) + 2Bs(a) + ) Ba(x). W

The question arises as to why the natural cubic spline works so well. There
is a partial answer to this and it involves curvature. Recall that for a curve
y = f(x), the curvature at a point is defined as
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1 (@)
(L (2

Assuming the curve is not particularly steep, one can approximate the cur-
vature as k & |f”(x)|. This is brought up because of the next result due to
Holladay [1957].

Theorem 5.1. If ¢ € C?[a, b] interpolates the same data points that the nat-
ural cubic spline function (5.15) interpolates, then

/ (@) < / @)

In these integrals, a = x1 and b = xp41.

What this theorem states is that out of all smooth functions that interpolate
the data, the natural cubic spline produces the interpolation function with
the smallest total curvature (squared). This helps explain why the spline
interpolations in Figure 5.13 do not suffer the significant under- and over-
shoots seen in Figure 5.4.

5.5 Function Interpolation

In using the data sets to test out the various interpolation methods we have
been using a qualitative, or visual, determination of how well they do. We
are now going to make the test more quantitative and this will restrict the
applications. In particular, it is assumed that the data comes from the eval-
uation of a given function f(x) and we are going to investigate how well the
interpolation function approximates f(x) between the data points.

In what follows the data points are (z1,y1), (z2,92), ", (Tnt1,Ynt1),
where y; = f(x;). Also, unless stated explicitly to the contrary, the step
size h = x;41 — x; is assumed constant (so the x;’s are equally spaced), with
a =x1 and b = x,+1. What is of interest is whether the approximation gets
better as the step size h gets smaller. In particular, does the error go to zero
as h goes to zero?

5.5.1 Global Polynomial Interpolation

We begin with a global interpolation polynomial p,(z). As explained in Sec-
tion 5.2.3, p,(x) can fail to provide a good approximation of a function if a
large number of equally spaced points are used. However, it is effective for a



5.5 Function Interpolation 203

small number of points, as long as they are not too far apart. In fact, such
approximations are central to several of the methods considered later in the
text. The critical result needed to determine the error when using p,(z) is
given in the following theorem:

Theorem 5.2. If f € C""[a,b], then

(n+1)
f(x) =pnlz) + f(ni 1()77,) Gny1(z), fora<ax<b, (5.25)

where
Gnt1(z) = (x — 1) (x — @2) -+ (& = Tnt1), (5.26)

and n is a point in (a,b).

Outline of Proof: To explain how this is proved, we will consider the case of
when n = 1. In this case, g2(x) = (z — a)(x — b). The formula in (5.25) holds
when z = a or x = b, so assume that a < x < b. The key step is a trick,
which consists of introducing the function

f(@) = pr(2)

F() =) -me)+ 0

q2(2).

Given the way it is defined, F'(a) =0, F(z) = 0, and F(b) = 0. According to
Rolle’s theorem, there must be a point z1, where a < z; < z and F'(21) =0,
and there must be a point 2o, where x < 29 < b and F’(z3) = 0. Using Rolle’s
theorem again, there must be a point 1, where z1 < 7 < 29 and F”(n) = 0.
From the above formula for F'(z), one finds that F”(n) = 0 reduces to (5.25).
The case of when n > 1 is similar, except one uses Rolle’s theorem n + 1
times (instead of twice). O

An immediate consequence of this theorem is the following:

Theorem 5.3. If f € C""l]a,b], then the global interpolation polynomial
pn(x) satisfies

1 n
|f(x) = pn(z)| < (n+ 1),Ilf( loollgnsilloe, fora<a <,
where
17Dl = mag 17 (a),
and

l|gn+1loo = argggqunH(wﬂ-

It should be pointed out that the above two theorems hold in the case of
when the z;’s are not equally spaced (this fact is used in Section 5.5.4).
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To make use of Theorem 5.3, we need to determine ||¢n+1]||oo- This is not
hard to do for small values of n, and to illustrate this, consider the case of
when n = 2. For this, ¢2(z) = (z — 21)(x — z2), where 22 = 21 + h. The
maximum, and minimum, of this function occur either at the endpoints or
at a critical point inside the interval. First note that ga(z1) = g2(x2) = 0.
As for the critical points, solving ¢j(z) = 0, one finds that z = x; + éh.
From this it follows that ||g2||c = ;A% Similarly, if n = 3, then g3(z) =
(x — z1)(x — x2)(x — x3), where 29 = 21 + h and 23 = x1 + 2h. Solving
gs(z) = 0, one finds two solutions, z = zy + h &+ $hv/3. From this it follows
that ||gs||sc = 2h*V/3. Continuing this, the values in Table 5.5 are obtained.

n llgn+1lloo

1 Lh?

2 2V/3h?

3 =

4 4 (V145 —1)v/150 + 10v/145 1°
5 2o (V7 + 10)h8

Table 5.5 Value of ||gn+1||co, which appears in the error formula in Theorem 5.3.

Example

Suppose that f(z) = cos(27z) and we use the interpolation polynomial ps(x),
with points x1, o = 1 + h, and x3 = 21 + 2h. According to Theorem 5.3,
how small does h need to be to guarantee an error of 1079, irrespective of the
choice for #1? To answer this, since " = —(27)3sin(27x), then |||/ <
(2m)3. With this we have that

L leellaslloo < v3(2R)
6 [e'e) 3lloc > 3

Consequently we will achieve the require error bound if v/3(27h/3)% < 1076,
which means h < 3%/6/(2007) ~ 0.0040. H

Finding ||gn+1||co for larger values of n is difficult, and the usual approach
is to find an upper bound on this number. One that is not hard to derive is
(see Exercise 5.31)

1
lansalloe < A", (5.27)
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Using this, the inequality in Theorem 5.3 can be written as

1

(n+1) thrl
eIl

If this is used in the above example, the conclusion is that it is necessary to
have h < (3/2)'/3/(1007) ~ 0.0036. The fact that this is smaller than the

requirement given in the example is a reflection of the inequality in (5.27).

5.5.2 Piecewise Linear Interpolation

The next easiest method to analyze is piecewise linear interpolation. An
example is shown in Figure 5.14, where f(x) = cos(2nz) is approximated
using 6 points over the interval 0 < x < 1. How well the linear functions
approximate f(z) depends on the subinterval. This is why in the analysis for
the general case in the next paragraph we first determine what happens over
each subinterval z; <z < x;4;.

To determine how well f(x) is approximated by g¢;(x), given in (5.9), over
the subinterval z; < & < x;4+1 we can use Theorem 5.3. In this case, n = 1
and ¢z2(x) = (z — z;)(xr — z441). Consequently,

1
o < "
f@) =@l <, max |f/@] max )
1
= P max |f"(a)

8 zi<z<zipr

1
h2 " .
NGl

IN

This applies to each subinterval, which gives the next result.

Theorem 5.4. If f € C?[a,b] then the piccewise linear interpolation function
(5.9) satisfies

F@) ~ ()| < (Nf e fora<a<b,

where || f"]|oo = maxa<o<p [f ()]

This means that the piecewise linear interpolation function converges to the
original function and the error is second order (because of the h?). Conse-
quently, if the number of interpolation points is doubled, the error in the
approximation should decrease by about a factor of 1/4.
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Figure 5.14 Piecewise linear interpolation of f(z) = cos(27z).

Examples

1. Piecewise linear interpolation is used to approximate f(x) = cos(2mx) in
Figure 5.14. According to Theorem 5.4, what is the error bound for this
approximation?

The interval in this case is 0 < x < 1. Since f(z) = cos(2mx), then
f"(x) = —47? cos(2mz) and from this it follows that || || = 47%. Given
that h = 1/5, the error bound is | f(z) — g(z)| < 7%/50, where 72 /50 ~ 0.2.
|

2. For f(z) = cos(2mz), where 0 < x < 1, how many interpolation points are
needed to guarantee an error of 10747

Since || f”||oo = 472, then we want 72h%/2 < 10~%. This gives
h<V2x107%/x.

If n is the number of interpolation points, then h = 1/(n — 1), and com-
bining our results, n > 1 + V212 x 102 =~ 1396.8. Therefore, we need to
take n >1397. N

3. According to Theorem 5.4, for what functions will there be zero error using
piecewise linear interpolation, no matter what the interpolation interval?

This requires ||f”||oc = 0, which means that f”(z) = 0 for a < z < b.
Therefore, to have zero error it must be that f(z) = a 4 Sz, i.e., it must
be a linear function in this interval. W
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5.5.3 Cubic Splines

This brings us to the question of how well the cubic splines do when inter-
polating a function. The answer depends on what type of spline function is
used (natural, clamped, or not-a-knot). To illustrate, in Figure 5.15 the func-
tion f(x) = cos(2mx) is approximated using both a natural and a clamped
cubic spline. The clamped spline provides a somewhat better approximation
but this is not surprising because it has the advantage of using the deriva-
tive information at the endpoints. It is possible to determine the error for
the clamped spline, but because this requires some effort to derive only the
result will be stated (see Hall and Meyer 1976 for the proof).

Q.
1‘ ~ T T T T T T T T T = 9
—

~ ~ -
0.5 x — — Exact = 4
2 —— Natural
% O0f i
>
-0.5- -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1A T T T T T T T ')
0.5kF — — Exact
L) —— Clamped
x 0+ _
©
>

_1 1 1 1 1 1 1 1 1

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

Figure 5.15 Natural and clamped cubic spline interpolation of f(z) = cos(27x).

Theorem 5.5. If f € C*[a,b] then the clamped cubic spline interpolation
function (5.15) satisfies

)
F@) = 5@ < g2 W loes fora<w <D,

where || f""||co = maxg<z<p | [ (x)|. Moreover, for a < x <b,

1
£(@) =S @] < B o

1
[f7(@) = " (@) < P21 F" |loo:

This is an amazing result because it states that the clamped cubic spline
can be used to approximate f(z) and its first two derivatives. Moreover,
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the error in approximating f(z) is fourth-order (because of the h*). As an
example, if the number of interpolation points is increased by a factor of 10,
the error bound decreases by about a factor of 10%. In comparison, according
to Theorem 5.4, the error for piecewise linear interpolation decreases by a
factor of 102.

Examples

1. A clamped cubic spline is used to approximate f(z) = cos(27x) in
Figure 5.15. According to Theorem 5.5, what is the error bound for this
approximation?

The interval is 0 < z < 1. Since f(z) = cos(2mz), then f"'(x) =
(2m)* cos(2mz) and || f"||s = (2m)%. Given that h = 1/5, the error bound
is |f(x) — g(z)| < ©*/3000, where 7*/3000 ~ 0.03. H

2. For f(z) = cos(2mz), where 0 < 2 < 1, how many interpolation points are
needed to guarantee an error of 10~ when using a clamped spline?

Since ||f""||so = (27)*, then we want

5

49\4 < 10-4.
384h (2m)* <10

This can be rewritten as h < (384/5)%/4/(20x). If n is the number of
interpolation points, then h = 1/(n — 1), and combining our results,
n > 1+ 20m(5/384)1/4 ~ 22.2. Therefore, we need to take n > 23. W

3. According to Theorem 5.5, for what functions will there be zero error using
a clamped spline, no matter what the interpolation interval?

This requires ||f""||cc = 0, which means that f”(z) =0 for a < 2 < b.
Therefore, to have zero error it must be that f(x) is a cubic function. W

The major drawback in the above theorem is that it requires the clamped
end conditions and for many problems f’(z1) and f’(xy,4+1) are not known. It
is possible to obtain the same level of accuracy with a natural cubic spline,
except near the endpoints, as long as enough points are used. This is seen
in Figure 5.15, where the natural spline does almost as well approximating
the function except over the subintervals next to the boundary points. The
exact statement of the result is given next (see [Kershaw, 1971] for the proof).

Theorem 5.6. If f € C*[a,b] then for the natural cubic spline interpolation
function s(x):
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1. 1f(z) — s(z)] < K1h?, for a <z < b, where K1 is a positive constant.

2. For large n, there are points xy and x,, with a < xy < x < b, so that
|f((E) - S(.’L’)| < K2h47 fO’f’ v <z < 1w,

where Ko is a positive constant. Moreover, xy — a and x, — b as n — 00.
What this theorem states is that the error for a natural cubic spline is at
least second-order. It also states that the error is actually fourth-order except

near the endpoints. Moreover, the regions near the endpoints where it is not
fourth-order shrink as n increases.

5.5.4 Chebyshev Interpolation

We saw earlier that the polynomial that interpolates all of the data points

can be written as n+l
pal(@) =Y yili(x), (5.29)
i=1
where n+1
T —x;
li(x) = 7 5.30
@=11,_7 (5.30)
Jj=1
J#i

Given that we are now considering function interpolation, it is assumed that
y; = f(z;). One thing to note is that this does not require that the a;’s
are equally spaced. Also, we know that when n is large, and the points are
equally spaced, the above polynomial should not be used for interpolation.
The question we examine now is, is it possible to pick the locations of the
x;’s so pyn(x) is capable of producing an accurate interpolation function. It is
possible, and to explain how, we need Theorem 5.2. What is of interest here
is the error term, which is

(n+1)
f(n + 1(;7') qn+1 (l’),

where g,11(x) is given in (5.26). In Figure 5.5 we saw that the values of
this can be huge. We want to prevent this from happening. For a given data
set, so n is given, the assumption that f € C™*1[a,b] means that there is
a positive constant M,, 1 so that |f(”+1)(33)| < M, 4+1. So, the part of the
error function that we need to concentrate on is ¢n+1(z), and what we are
specifically interested in is the value of

@ = max |gns1(2)] (5.31)

This brings us to the following question: given n, how do we position the x;’s
in the interval a < x < b to minimize Q.
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The answer is easy to state, but deriving it requires some work. The result
is given below, and afterwards the derivation is outlined.

Theorem 5.7. The x;’s that produce the smallest value of Q are
1
xi=2[a+b+(b—a)zi],fori=1,2,---,n+1, (5.32)
where

zi = 005(2?;+11)7r> . (5.33)
The x;’s in the above theorem are called the Chebyshev points because they
correspond to the zeros of the (n 4+ 1)th Chebyshev polynomial. Note that
the Chebyshev polynomials are usually defined for —1 < z < 1, and when
using a < x < b they are referred to as the Chebyshev polynomials for the
general interval. This distinction is not made in what follows.

There is a simple geometric interpretation for how the x;’s are positioned in
the interval that comes from (5.33). Placing a semi-circle over the interval, as
in Figure 5.16, consider the n+ 1 points on the semi-circle that are a constant
angle /n apart, with the first one (on the far right) at an angle 7/(2n). Their
x coordinates are given in (5.32) and they are the corresponding Chebyshev
points. This figure also shows why the Chebyshev points are closer together
at the endpoints of the interval, as compared to their placement towards the
center.

In the proof of Theorem 5.7, the following result is also obtained:

Theorem 5.8. With the x;’s given in (5.32), then the global interpolation
polynomial py,(x) given in (5.5) satisfies

1

£@) = pa@) < gy g

b—a n+1 .
)y( 9 ) NF ", fora<az<b,
where || f0 ) ||oo = maxa<o<y | f ().

The fact that 2" (n + 1)! grows rapidly with n means that the error with
Chebyshev interpolation can be quite small. To get an estimate of just how
small, according to Stirling’s formula, for large values of n,

n! & \/27Tn(n)n. (5.34)

e

Using this approximation for the factorial, the inequality in Theorem 5.8 can
be replaced with (see Exercise 5.31)

@) —pal) <) 2 RO, Braze<h (639)
nm
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Figure 5.16 The Chebyshev points, which are the red dots along the z-axis, are
determined by equally spaced points on the circumscribed semi-circle. In the top
graph, n = 5, while in the bottom graph, n = 11.

where > )
—a)e
R= . 5.36
4(n+1) (5-36)
Consequently, if n is large enough that R < 1, then R"*! approaches zero
exponentially fast. Whether this means that the error for Chebyshev inter-

polation approaches zero exponentially fast, however, depends on how the

y-axis

X-axis

Figure 5.17 The Runge function (5.8) and the Chebyshev interpolation polynomial
with n = 12.
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@+ term depends on n. This issue is considered in the examples to follow.
Also, it’s worth noting that the error using piecewise linear or cubic splines is
not exponential, and the error in each case approaches zero as a fixed power
of h=(b—a)/(n—1).

Examples

1. Using the Chebyshev points with n = 12 to fit Runge’s function in (5.8),
the interpolation function shown in Figure 5.17 is obtained. The improve-
ment over using equally spaced points, which is shown in Figure 5.5, is
dramatic. Also shown in Figure 5.17, by small horizontal bars, are the
locations of the x;’s. This shows the non-uniform spacing of the interpo-
lation points, and they get closer together as you approach either of the
endpoints of the interval. l

2. For f(z) = cos(2mx), where 0 < z < 1, according to Theorem 5.8, how
many interpolation points are needed to guarantee an error of 10™* when
using Chebyshev interpolation?

Since ||f" V|| = (2m)**!, then we want 7"F1/(2"(n + 1)!) < 1074
From this one finds that n > 9. In comparison, earlier we found that
piecewise linear requires n > 1397, while a clamped cubic spline requires
n > 23. It is also interesting to note that if the number of points is dou-
bled to n = 18, that according to Theorem 5.8, the error bound is about
10714, and if doubled again to n = 36, the error bound is an astonishing
10735, In contrast, for a clamped cubic spline, doubling the number of
points decreases the error bound by a factor of 27% ~ 6 x 10~2. This is
a clear demonstration of the benefits of an exponentially converging ap-
proximation, but as we will see shortly, exponential convergence is limited
to certain types of functions. B

Chebyshev Polynomials

To explain how the x;’s are determined, it is assumed that a = —1 and b = 1.
We begin with a definition.

Definition 5.1. The Chebyshev polynomials T}, (z) are defined using the fol-
lowing recursion formula:

Tni1(x) = 22T, (x) — Tr—1(x), forn=1,2,3, -, (5.37)
where To(x) =1 and Ty (z) = =.

Using this definition, the first few Chebyshev polynomials are
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To(x) = 222 — 1,

Ts(z) = 42 — 3,

Ti(z) = 82* — 8% + 1,
Ts(z) = 162° — 202> + 5z

As is seen in the above expressions, T, (z) is an nth degree polynomial and
the leading coefficient is 27~ 1.

Two of the key results needed for finding the x;’s are contained in the
following result:

Theorem 5.9.
1. If Po(x) = 2™ + by_12" L + -+« + by, where n > 1, then

max |P,(z)| > 27",
—1<x<1

2. If P,(z) = 2'""T,(x), then

max |P,(z)| = 27",
—1<x<1

The usual proof of the first statement involves contradiction, and using the
oscillatory properties of a polynomial. An illustration of how it is possible to
prove it directly is given in Exercise 5.32.

Note that the g,11(x) in (5.26) is an example of the function P,11(x)
appearing in the above theorem. The first result in the theorem states that
no matter what we pick for the x;’s, the @ in (5.31) satisfies Q > 27™.
What the second result states is that if we pick g,41(z) = 27T, 41(x), then
Q = 27" i.e., it achieves the stated minimum value. Therefore, we should
pick the z;’s so that

27" T (2) = (x — 1) (@ — @2) -+ (T — Tg)
In other words, the x;’s are the zeros of T, 41(x).
We need an easy way to find the zeros of T, 41(z), and this is given in the
next result.
Theorem 5.10.
T, (z) = cos(ncos™ ), forn=0,1,2,3,---.

This is a strange looking equation because the right-hand side does not look
to be a polynomial. Nevertheless, the proof is rather simple, and basically
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involves using trig identities to show that the right-hand side satisfies (5.37).
With this it is easy to find the zeros of T, +1(z), and they are the values of =
that satisfy

(n+1)cos~ 'z = 2(22'—1), fori=1,2,3,--,n+1.

The values given in (5.32) are the resulting positions when the above result
is transformed from -1 <z <1ltoa <z <b.

5.5.5 Chebyshev Versus Cubic Splines

We saw that Chebyshev interpolation has the potential to have an error that
approaches zero exponentially fast as n increases. It also has the distinction
that it produces the smallest @, as explained in Theorem 5.7. The natural cu-
bic splines, on the other hand, produce the smallest total curvature squared,
as defined in Theorem 5.1. What this means is that we have two interpola-
tion methods that can claim to be optimal. Given this, it is of interest to
compare Chebyshev and cubic spline interpolation on some more challenging
examples.

Example 1

We begin with the Runge’s function in (5.8), and assume 13 data points are
used. The resulting Chebyshev interpolation function is shown in Figure 5.17.
For comparison, the corresponding natural cubic spline is shown in Figure 5.18.
In comparing the two figures, it is clear that the spline provides a better app-
roximation function. To have a more quantitative comparison, suppose g(x)

X-axis

Figure 5.18 The function (5.8) and the natural cubic spline using 13 equally spaced
points. The two curves are indistinguishable.
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Figure 5.19 The error, as determined by the area integral in (5.38), when approxi-
mating Runge’s function with a natural cubic spline, and with a Chebyshev interpo-
lation function.

is an interpolation function of a given function f(z). The error is using g(z) to
approximate f(z) will be determined using the area between the two curves,
which means

b
E= / (@) - g(a)|da. (5.38)

The value of this integral is given in Figure 5.19, when g(z) is the natu-
ral cubic spline, and when it is the Chebyshev interpolation function. It is
seen that the spline produces a more accurate approximation when using up
to about 60 interpolation points. The reason the spline does better is that
[|f"*V)|| grows rapidly with n, which effectively eliminates the exponen-
tial convergence for Chebyshev interpolation. For example, when n = 13,
[ f™ Y| = 5 x 1020, while 27(n 4+ 1)! ~ 3 x 10™. It is not until n is
rather large that the exponential convergence kicks in and Chebyshev begins
to produce a better approximation than the spline. B

Example 2

Suppose the function is f(z) = tanh(100z—30), and the interval is 0 < z < 1.
Using 25 interpolation points, the resulting interpolation functions are shown
in Figure 5.20. In this case, both have some difficulty with the rapid rise
in the function. However, the under- and over-shoots in the spline function
die out much faster than those for the Chebyshev function. The associated
error for each interpolation function, as determined using (5.38), is shown in
Figure 5.21. As in the last example, it is not until n is rather large that the
exponential convergence enables Chebyshev to produce a better approxima-
tion than the spline. B

It is evident from the examples that Chebyshev interpolation is capable of
producing a more accurate approximation than cubic splines. However, this
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Figure 5.20 The function f(z) = tanh(100z — 30), along with Chebyshev and cubic
spline interpolation functions using 25 data points.
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Figure 5.21 The error, as determined by the area integral in (5.38), when approx-
imating f(z) = tanh(100z — 30) with a natural cubic spline, and with a Chebyshev
interpolation function.

is based on the stipulation that the contribution of the f(**1) () term in the
error is not too large, and it can be difficult to know if this holds. This limits
its usefulness, but it does not dampen the enthusiasm that some have for the
method. To get insight into why they think this way, Trefethen [2012] should
be consulted.

5.5.6 Other Ideas

There are a variety ways of modifying the interpolation procedure. For exam-
ple, given a function f(x) one can construct a piecewise cubic that interpo-
lates f(xz1), f(z2), -, f(znt1) as well as the derivative values f'(z1), f'(z2),

-, f/(zp+1). This is known as Hermite interpolation and it produces an app-
roximation with an error that is O(h*). This puts it in the same category as
the clamped cubic spline discussed earlier.

There is also the idea of being monotone. The objective here is that if the
data appear to describe a monotonically increasing (or decreasing) function
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over an interval then the interpolation function should behave the same way
over that interval. As seen in the lower right data set in Figures 5.4 and 5.13,
the global and spline functions fail at this while the piecewise linear function
in Figure 5.9 works. However, for the latter there is the usual problem with
corners. So, the goal is to find a method that does well at preserving mono-
tonicity and is also smooth. This comes under the more general heading of
finding a smooth shape preserving interpolation function. A review of such
methods, such as the Akima algorithm and the Fritsch-Butland procedure,
can be found in Huynh [1993]. It is also worth noting that shape preserving
interpolation is of particular interest in the mathematical finance commu-
nity, and those interested in this application should consult Hagan and West
[2006].

5.6 Questions and Additional Comments

Below are some random questions and comments about interpolation.

1. To fix the corner problem that arises with piecewise linear interpolation, we
used piecewise cubic interpolation. What’s wrong with piecewise quadrat-
ics?

Answer: They have a couple of drawbacks. To explain, quadratics can inter-
polate the data and have a continuous first derivative (see Exercise 5.33).
In comparison, cubic splines have continuous second derivatives, and so
they are smoother. Another issue with quadratics is that they can pro-
duce what can best be described as bumpy curves, and this is illustrated
in Exercise 5.33(d). However, it is possible to adjust the interpolation pro-
cedure to improve the situation and those interested might want to consult
Marsden [1974] or Grasselli and Pelinovsky [2008].

2. The cubic B-spline B;(x) is nonzero for z;_o < x < z;12. Why not use the
smaller interval z;_1 <z < 2,417

Answer: It simply won’t work (try it).

3. Can the interpolation methods be used to solve the puzzle in Figure 5.67

Answer: Yes, but if you want to draw something that looks like a flower
then you will need to rewrite the problem because our methods are based
on interpolating a function. Possible solutions would be to break the
data points into sections that can each be described as a function, or to
use parametric coordinates. These ideas can be generalized, which leads
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naturally to something called Bezier curves and surfaces, and geometric
modeling. Those interested might consider looking at Salomon [2006] and
Mortenson [1997].

4. If just one of the y;’s is changed, what happens to the interpolation
function?

Answer: It depends on what method you are using. For piecewise linear, the

—— Cheb
— — Spline

y-axis

|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 5.22 Interpolation using Chebyshev and cubic spline interpolation functions
with 15 data points, with all values zero except for the one near 0.8.

interpolation function is only affected over the interval ;1 < = < x;41.
If you are using cubic splines or Chebyshev, then the interpolation func-
tion over the entire interval a < x < b is affected. To get an idea of what
happens, if all of the y;’s are zero then the interpolation function is zero
everywhere, irrespective of whether or not you are using a natural cubic
spline or Chebyshev interpolation. Now, suppose one data point is changed
and it is now nonzero. This situation is shown in Figure 5.22 using a nat-
ural cubic spline and Chebyshev interpolation, where the nonzero point
is the one close to 0.8 (the exact point differs between the two methods
due to how they position the points). In both cases, the changes in the
interpolation function over the entire interval are less than the change at
the given data point. In other words, if the data value is changed by a
small amount, then the interpolation function over the interval is changed
by no more than this value. However, it is also apparent that the changes
in the Chebyshev function are more widespread than for the cubic spline.

5. In the early days of spline research, they used the cubic spline version of the
piece linear hat functions G;(z). These functions were usually designated
as L;(x) and they were defined as the cubic splines that satisfied L;(z;) = 1
and L;(z;) = 0 for j # i (see, e.g., de Boor and Schoenberg 1976). These
were called the fundamental functions, and one is shown in Figure 5.23.
The reason for introducing them is that they have the nice property that
the spline interpolation function is simply
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Figure 5.23 A fundamental function for (clamped) cubic splines. Shown is L7 (z).

n+1

s(z) = Z yiLi(z).

However, this hides all the work needed to determine the spline. In par-
ticular, finding the L;’s requires the solution of n 4+ 1 matrix equations.

Exercises

5.1. In this problem the data are: (z1,y1) = (0,0), (z2,y2) = (1,1), and
(3,y3) = (2,3).

(a) Find the global interpolation polynomial that fits these data.

(b) Find the piecewise linear interpolation function that fits these data.

(c) Find the natural cubic spline that fits these data.

5.2. This problem concerns the data in Table 5.6.
(a) Find the piecewise linear interpolation function g(«) that fits these data.
(b) Find the global interpolation polynomial p3(x) that fits these data.

5.3. Use a Lagrange interpolating polynomial of degree 1 to find an approx-
imate value for the following. Not all of the data points are needed, and you
should explain which ones you use and why.

(a) f(2.4)if f(2.1) =1, f(2.3) =1.2, f(2.6) = 1.3, f(2.7) =2

(b) f(=0.1) if f(0.1) =2, f(0) =0.1, f(-0.2) = —0.1, f(0.4) = —0.5

(c) f(1)if f(0.5) = —1, f(0.8) = —0.5, f(1.1) = 0.5, f(1.2) =1

5.4. Redo the previous problem but use a Lagrange interpolating polynomial
of degree 2.

5.5.If f(0) = sind, then f(0) = 0, f(x/4) = v/2/2, and f(7/2) = 1. Use
these data points to answer the following questions. Note that the error that
is asked for is the absolute value of the difference between the exact value
f(m/8) = V2 - V/2/2 and the estimated value.
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Figure 5.24 Graph used in Exercise 5.6.

Table 5.6 Data for Exercise 5.2.

(a) Using piecewise linear interpolation, what is the estimated value of
f(7/8)7 What is the error in this estimate?

(b) Using a global interpolation polynomial, what is the estimated value of
f(m/8)? What is the error in this estimate?

(c) Using natural cubic spline interpolation, what is the estimated value of
f(w/8)? What is the error in this estimate?

(d) Using the additional information that f’(0) = 1 and f'(7/2) = 0, use
clamped cubic spline interpolation to find an estimated value of f(7/8).
What is the error in this estimate?

(e) Suppose Chebyshev interpolation is used. Determine the three Chebyshev
points in the interval, and evaluate f(f) at these points. What is the
resulting estimated value of f(7w/8)? What is the error in this estimate?

5.6. A function f(z) is going to be approximated using an interpolation func-

tion for 0 < x < 3. The second, f”(x), and fourth, f"”(x), derivatives of the

function are plotted in Figure 5.24.

(a) How many data points for piecewise linear interpolation are needed to
guarantee the error is less than 10787

(b) How many data points for a clamped cubic spline are needed to guarantee
the error is less than 10787

5.7. The function y = log;, « is going to be approximated using an interpo-

lation function for 1 < z < 10.

(a) How many data points for piecewise linear interpolation are needed to
guarantee the error is less than 10767
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(b) How many data points for a clamped cubic spline are needed to guarantee
the error is less than 10767

(c) How many data points are needed when using Chebyshev interpolation
to guarantee the error is less than 10767

5.8. For the following functions, determine a step size h that will guarantee
that the error is less than 1076 using piecewise linear interpolation.

(a) f(x) =219 for -1 <z < 1.

(b) f(z) =In(z), for 1 < < 2.

(¢) f(x) = 2sin(3x) + 3sin(2z), for 0 < z < 7.

5.9. Redo the previous problem but use a clamped cubic spline.

5.10. The Bessel function of order zero can be written as

Jo(z) = 1/ cos(x sin s)ds.
0

s

(a) Show that |Jo(x)| < 1, |Ji(z)| < 1, |J{(z)] < 1, and in fact, for any
positive integer k,
dk

dk <1.

Jo()

In what follows, determine how many interpolation points over the inter-
val 0 < z < 10 are needed so the error is no more than 1076.

(b) Using piecewise linear interpolation.

(c) Using a clamped cubic spline.

(d) Using Chebyshev interpolation.

(e) The Bessel function of order m can be defined as

1 s
Im () = 7T/O cos(zsin s — ms)ds.

How do your answers in parts (b)—(d) change for this function?
5.11. This problem considers the function

() = 243224+ if —1<2<0,
I =V 24822 — 2%  if 0<ax<l1.

(a) For what values of a and g, if any, is g(z) a cubic spline for —1 < x < 17?
These values are to be used in the remainder of this problem.

(b) What were the data points that gave rise to this cubic spline?

(c) For what values of @ and S is g(x) a natural cubic spline?

(d) For what values of « and § is g(x) a clamped cubic spline?
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5.12. This problem considers the function

(z) = 20+ 12 +5(x+1)—- 13z if —1<z<0,
I =201 —2)3 +92+5(1—2) if 0<z<l.

(a) Show that this is a cubic spline, and determine the data values used in
its construction.

(b) Is this a natural cubic spline?

(c) Is this a clamped cubic spline?

5.13. Consider the function

() 23— 1 if 0<z<1,
I =) a3 4622 —6x+1 if 1<z<2

Is g(x) a cubic spline for 0 < a < 27 If it is, is it natural, clamped, or neither?
Make sure to justify your answers.

5.14. The data considered here are the population of a country for the years
x1 = 1900, zo = 1910, x3 = 1920, z4 = 1930, ---, x12 = 2010. The y;’s are
the corresponding population values, and they should be given per million.
For example, the population of the USA is given in Table 5.7, and this is
from the Wikipedia page Demographics of the United States.

(a) Fit this data with: i) a global polynomial using Lagrange interpolation,
and ii) a natural cubic spline. Plot these two curves and the data on the
same axis. Make sure to include a legend in your plot.

(b) What do each of the two interpolation functions give as the population
in 20057

(c) What do each of the two interpolation functions predict the population
will be in 20157

5.15. The data considered here are the temperatures over a 24 hour period,

in two hour increments. So, z1 = 0, o = 2, 3 = 4, 14 = 6, ---, T13 = 24.

The y;’s are the corresponding temperatures. For example, the temperatures

in Troy, NY on June 21 are given in Table 5.8 (in °F).

(a) Fit this data with: i) a global polynomial using Lagrange interpolation,
and ii) a natural cubic spline. Plot these two curves and the data on the
same axis. Make sure to include a legend in your plot.

z 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
y 76.21 92.23 106.0 123.2 132.2 151.3 179.3 203.3 226.5 248.8 281.4 308.7

Table 5.7 Sample population data for Exercises 5.14, 5.28, and 6.9.
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(b) What do each of the two interpolation functions give as the temperature
at 11 AM?

(c) What do the two interpolation functions predict the temperature will be
at 1 AM the next day?

(d) What do the two interpolation functions predict the temperature will be
at 9 AM the next day? Explain why the spline predicts the value it does.

5.16. The data below describe a cross-section of an airfoil where the points
(X,Y,) define the upper surface and the points (X,Yy) describe the lower
surface.

X = [0, 0.005, 0.0075, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0]

Y, = [0, 0.0102, 0.0134, 0.017, 0.025, 0.0376, 0.0563, 0.0812, 0.0962, 0.1035,
0.1033, 0.095, 0.0802, 0.0597, 0.034, 0]

Y, = [0, —0.0052, —0.0064, —0.0063, —0.0064, —0.006, —0.0045, —0.0016,

0.001, 0.0036, 0.007, 0.0121, 0.017, 0.0199, 0.0178, 0]
(a) Draw the airfoil by fitting cubic splines separately to the upper and lower

surfaces, and then plotting the results as a single figure. To make it look
like an airfoil you will probably need to resize the plot window.
(b) Redo (a) but use global polynomial interpolation instead of splines.

5.17. This problem considers some of the difficulties interpolating the func-

tion f(z) = /.

(a) If the interpolation interval is 1 < z < 10, how many data points are
needed for piecewise linear interpolation to guarantee that the error is
less than 10767

(b) Explain why Theorem 5.4 is not so useful if the interval is 0 < z < 1.

(c) One way to deal with the singularity at z = 0 is to break the interval into
two segments, one is 0 < z < § and the other is § < x < 1, where J is a
small positive number. On the interval 0 < x < § the function is going to
be interpolated with a single line. What is the equation for this line, and
how small does § need to be to guarantee that the approximation error
is 10767

(d) Assuming that ¢ is known, how many data points over the interval 6 <
x < 1 are needed for piecewise linear interpolation to guarantee that the
error is less than 10767

5.18. The function f(x) = 1/(1 + 2?) is to be approximated using a piece-
wise linear function g(z) over the interval 0 < x < co. The requirement is
that |f(z) — g(x)] < 107* for 0 < z < oo. Explain how to determine the
spacing of the x;’s used in the construction of g(z), and how you handle the
approximation over the intervals z,, < z < x,41 and z,41 < ¢ < 00, where
ZTp41 is the largest node you use.

5.19. This problem concerns interpolating the function f(x) = sinmz over
the interval 1 < x < 3, using three data points, with 1 = 1, 2o = 2, and
T3 = 3.
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z 0 2 4 6 8 10 12 14 16 18 20 22 24
y 59 56 53 54 60 67 72 74 75 74 70 65 61

Table 5.8 Sample temperature data for Exercise 5.15. Note x = 0 and =z = 24
correspond to midnight.

(a) Find the global interpolation polynomial that fits this data.

(b) Find the piecewise linear interpolation function that fits this data.

(c) Find the natural cubic spline that fits this data.

(d) Find the clamped cubic spline that fits this data.

(e) Chebyshev interpolation cannot use the stated x;’s. What are the three
Chebyshev interpolation points for this interval, and what is the resulting
interpolation function?

5.20. In this problem z; =4, for i = 1,2, 3,4, and
s(x) = Bo(z) — Bi(z) + Ba(z) — Bs(x) + Bs(x) — Bs(),

forl1 <z <4.

(a) What data points (z;,y;) were used to produce this cubic spline?
(b) Is this a natural cubic spline?

(c) Is it a clamped cubic spline?

5.21. In this problem z; =4, for i = 1,2, 3,4, and
s(z) = Ba(x) + 5By(x),

for 1 <z <4.

(a) What data points (z;,y;) were used to produce this cubic spline?
(b) Is this a natural cubic spline?

(c) Is it a clamped cubic spline?

5.22. Given a data set (z1,91), (z2,%2), -+, (Z101,Y101) suppose one of the

following interpolation methods is to be used: Lagrange interpolation, piece-

wise linear interpolation, cubic spline interpolation using cubic B-splines.

(a) Order them by the number of flops needed to determine the interpolation
function. Make sure to explain how you arrive at your answer. Assume
the Thomas algorithm is used for the cubic spline (see Section 3.8).

(b) Order the methods by the number of flops needed to evaluate them at a
given point (assume this point isn’t in the data set). Make sure to explain
how you arrive at your answer.

5.23. Suppose Chebyshev interpolation is applied to a function f(x) using
eight interpolation points. Also, suppose that no matter what interpolation
interval is used, the error for the Chebyshev interpolation is zero. What
conclusion can you make about the original function f(z)?
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5.24. Given three points x;_1, x;, and x;y1, this problem considers the
quadratic interpolation formula

p2(z) = yi1bi-1(z) + yili(®) + yir1liy1 ().

It is assumed here that ; —x;_1 = h and z;41 — z; = h.
(a) Show that the above interpolation formula can be rewritten as

1 1
+ 2h(yi+l —yi—1)(x — ;) + B2 (yir1 — 2y + yi1)(z — m)°.

(b) Calculate p(x) and pj(z).

(¢c) Suppose po(x) interpolates f(z) at x;—1, x;, and x; 41, s0 y;—1 = f(xi—1),
yi = f(x;), and y;41 = f(wi41). Setting © = x; + ah, expand f(z) and
p2(x) about h = 0 and show that

p2(7) =y

1 22(22 _ hz)fllll((Ei) 4. ,

F(2) = pala) + g2(2 = W) ) +

where z = — x;.
(d) How does the result in part (c) compare to the result in Theorem 5.2 in
the case of when a = x; — h, b=x; + h, and n = 27

5.25. It is possible when solving for the coefficients for a cubic spline that one
of the s;’s turns out to a linear function (versus a full cubic). This exercise
explores this situation. Suppose there are three data points, with x; = 0,
xo =1, and z3 = 2 and let

() = a+ bz if 0<z<1,
S\ = az +bo(z —1)+colr —1)2+do(z—1)3 if 1<z<2

(a) To be a cubic spline it is required that s € C?(0,2). What conditions
must be imposed on the coefficients so this happens?
(b) Under what conditions, if any, is this a natural cubic spline?

5.26. This exercise explores some of the differences between a cubic poly-
nomial and a cubic spline. In this problem the data are: (x1,y1) = (0,0),
($27y2) = (17 1), ($37y3) = (270)7 and (z4,y4) = (37 1).

(a) Find the global interpolation polynomial that fits this data, and then
evaluate this function at z = 1/2.

(b) Find the natural cubic spline that fits this data, and then evaluate this
function at z = 1/2.

(c) The cubic in part (a) satisfies the interpolation and smoothness conditions
required of a spline, yet it produces a different result than the cubic spline
in part (b). Why?

(d) What boundary conditions should be used so the cubic spline produces
the cubic in part (a)?
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5.27. The objective of this problem is to find a method that can evaluate
f(z) = cosz, for 0 < z < 27, with an error of no more than 1076, In doing
this, the interpolation points are restricted to those x;’s for which the exact
value of cosx; is known. It is useful to know that, by considering the angles
in a polygon, it is possible to determine the exact values of cosz and sinz
for x = 7/10, w/12, w/15, etc. (these are given on the Wikipedia page Ezact
trigonometric constants).

(a) Show that if the values of cosz and sinz are known for = 7/k, then
they are known at @ = mn/k, for m =2,3,4,---.

(b) For a given value of k, let h = w/k and suppose that the interpolation
points are x; = (i — 1)h, for i = 1,2,--- ,n+ 1. Find n in terms of k.

(¢) According to Theorem 5.4, how small must & be so the error using piece-
wise linear interpolation with f(x) = cos is no more than 10757 What
is the smallest value of k so that w/k < h?

(d) According to Theorem 5.6, how small must h be so the error using a
clamped cubic spline with f(z) = cosz is no more than 1075? What is
the smallest value of k so that 7/k < h?

(e) For a given value of z, describe a procedure that uses the exact values of
cosz and/or sinz to evaluate f(z) = cosz, for 0 < x < 27, with an error
of less than 1075.

(f) Write a MATLAB program that implements your algorithm in part (e)
and compares the computed values with MATTLAB’s built in cosine func-
tion, for x = 1,2, 5.

5.28. This problem explores how to scale the data to help improve the com-
putability of the interpolation polynomial. We consider the direct approach
to determine p,(z), and as usual the data points are (z1,y1), (z2,¥2), -,
(Tnt1,Yn+t1), where 21 < @3 < -+ < xp41. The  values are going to be
scaled by letting

where a and 8 are given numbers with S > 0. The data point (z;,y;) in
this case changes to (z;,y;), where z; = (z; — «@)/8. Also, the interpolation
polynomial also changes to

pn(2) =ap + a1z + -+ apz™.

(a) The original data interval is 1 < < x,11. What is the data interval
when using z? What matrix equation must be solved to find the a;’s in
the above formula for p,(2)?

(b) The values for o and § are going to be selected so the z data interval is
—1 <z < 1. What are o and 3 in this case?

(¢) Using the population data from Exercise 5.14, plot the interpolation func-
tion using the direct approach on the original x; data set. Also compute
the condition number for V.
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(d) Using the population data from Exercise 5.14, scale the data based on the
result from part (b), and then find the coeflicients for p,(z). What is the
condition number of the matrix in this case? Once the a;’s are computed
then in terms of the original x variable,

2 n
pn(x)_a0+al<x—a>+a2<x—a) +"'+an(x_a> .
B B B

Plot this function and compare the result with what you found in part (c).

5.29. This problem concerns a method to reduce the computational effort to
evaluate the Lagrange interpolation function given in (5.5).

(a) What is the flop count to evaluate (5.5) for a given value of z?

(b) Assuming that x # x;, for any ¢, show that (5.5) can be written as

n+1
o) = £(x) > wiyi/ (@ — x5),

i=1
where ((z) = H?;rll(:zr — x;) and

n+1

wi =1/ [[ (@i — ;).

j=1

i
This is known as the first form of the barycentric interpolation formula,
and w;’s are called barycentric weights.

(¢) Suppose the formula in part (b) is used to interpolate the constant func-
tion f(x) = 1. Use this to show that

n+1
{(x) Zwl/(:v —x;)=1.
i=1
(d) Use the result from part (c) to show that
E?:Jrll wiyi/(x — i)
St wif(x - a)

This is called the second (true) form of the barycentric formula.
(e) What is the flop count to evaluate the formula for p,, () given in part (d)?

pn(x) =

5.30. The cubic spline interpolation function is

n+2

s(z) = Z a; B;(x).
i=0
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For a natural spline we found the a;’s by solving a matrix equation Aa = z.
The purpose of this exercise is to find what this equation is for a clamped
spline. Recall that for a clamped spline it is required that s'(x1) = y] and
'(Tn41) = Yj41, where yi and y/,,; are given. Show a = (a1, a2, ,an41)7,
z = (6y1+2hy},6y2, -, 6Yn, 6Ypnt1—2hyl, )7, and A is the nxn tridiagonal
matrix

4 2
1 4 1 0
1 4 1
A:
0 1 4 1

2 4

Also, once a is determined, then ag = az — 2hy; and a, 42 = a, + 2hy;, ;.

5.31. This problem concerns some of the inequalities arising for function

interpolation.

(a) For ¢n41, given in (5.26), assume x is not one of the z;’s. So, there is an
x; so that z; < © < x;4;. With this, it is possible to write

i—1 n+1
i1 (@) = (& — 2:) (@ — i) [[(@ = 2) ] (@—2)).
j=1 j=it2

Show that |(z — 2;)(z — zi41)| < ;h2. Also show that | [['_;(z — 2;)| <
ilh*=! and | H;Lillﬁ(x —z;)| < (n+1—14)!h""% From this, derive (5.27).
Make sure to comment about the case of when x equals one of the z;’s.
(b) Tt is possible to prove that for every positive integer n [Sandor and Deb-

nath, 2000],
n n
< nl.
V2rn (e) <n

Use this, and Theorem 5.8, to derive (5.35).

5.32. This problem considers a direct proof of Theorem 5.9, at least for the
case of when n = 1. This will help demonstrate how this result is independent
of the coefficients of the polynomial.

(a) If Py(z) = = + bo, explain why

max | Py(x)] = max{ |1+ bol,| — 1+ bo| }

—1<x<1

(b) Sketch the two absolute values in part (a) as a function of by. Use this
to explain why max_1<z<1 |Pi(z)| = 14 |bo|. From this derive the result
stated in the theorem.
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5.33. This problem derives the formulas for a piecewise quadratic interpola-
tion function. This function is written as

w1 (z) if g <2<y
wa(x) if 10 <z <3
w(z) =

wy(z)  ifz, <z <apq,
where
wi(x) = a; + bi(x — ;) + ¢i(x — x;)?, for x; < x < a4

The interpolation requirements are w;(x;) = y; and w;(z;4+1) = yit1. Also,
w'(x) is required to be continuous, which means that wj(z;y1) = wi,(®i11)
fori=1,2,---,n—1.

(a) Explain why the stated requirements are not enough, and it is necessary
to impose one additional condition. In this problem, it is assumed that
b1 is specified. Explain why this is the same as specifying the value of the
slope w’(z1).

(b) From the stated requirements, deduce that a; = y; fori=1,2,--- ;n+1.
AlSO, bz = —bi,1 + 2(yz - yzfl)/h for i = 2,3, e, N, and C; = (yl’Jrl -
yi — hby)/h? fori=1,2,--- n.

(c) Explain why the results from parts (a) and (b) mean that one can deter-
mine the coefficients for wy, then determine the coefficients for ws, then
for ws, etc.

(d) Use w(z) to interpolate f(x) = cos(6mz), over the interval 0 < z < 1.
Plot w(x) and f(x) for the following cases: i) n = 5, ii) n = 10, iii)
n =15, and iv) n = 30. Comment on how well the interpolation method
works for this particular function.



Chapter 6
Numerical Integration

6.1 Introduction

The objective of this chapter is to derive and then test methods that can be
used to evaluate the definite integral

/abf(a:)dz.

In most calculus textbooks the examples and problems dedicated to integra-
tion are not particularly complicated, although some require a clever combi-
nation of methods to carry out the integration. In the real world the situation
is much worse. As an example, to find the deformation of an elastic body when
compressed by a rigid punch it is necessary to evaluate [Gladwell, 1980)

¢ .
2asinh(z) — 2z .
-1 dz. 1
/0 (1 + a? + 22 4 2 cosh(z) )sm()\:c) v (6.1)

Moreover, it is relatively easy to find integrals even worse than the one above.
To illustrate, in the study of the emissions from a pulsar it is necessary to
evaluate [Gwinn et al., 2012]

! 1—x Vea + Brx + yia? as + B3z
5 5 Ko exp dx,
0o Qo+ Box + Yox? + Sox s + Pox ay + Pax
where K5 is the modified Bessel function. The point here is that effective
numerical methods for evaluating integrals are needed, and our objective is
to determine what they are.

It is of interest to know that many of the integration methods derived in
this chapter are summarized in Appendix C, Table C.2.
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6.2 The Definition from Calculus

The definition of a definite integral introduced in calculus serves as the basis
of most numerical integration methods. To review this definition, one first
subdivides the interval as shown in Figure 6.1. In this case, 71 < 25 < --- <
ZTp+1, where a = x1 and b = x,41. The reason for this is the additive property
of areas, which for an integral can be written as

/abf(:v)d:v:/:zf(:v)d:v—i—/: f(x)dx+---+/:n“ F(w)da

= o f(z)dx. (6.2)

Out of each subinterval [z;, x;+1] one picks a point ¢; and then approximates
the area with the quantity f(c;)(z;41 — 2;). This is illustrated in Figure 6.2.
According to the definition, the value of the integral is approached as the
number of subdivisions increases. In other words,

b n
/ f(z)de = lim > fle)(@iva — ).
a i=1

This is useful because given any particular subdivision we have the approxi-
mation

b n
[ f@ide = 3 fe)ain - o).
a =1

Moreover, we are free to pick ¢; from the subinterval [z;, z;+1] any way we
want, so we are able to produce different numerical methods depending on
how we make this choice.

The examples usually considered in calculus often involve picking one of
the endpoints, namely either ¢; = x; or ¢; = x;41. Another is the midpoint
c = ;(33Z + x;41). Given that we are on the verge of generating several
different algorithms to calculate the integral we need some way to determine

v A

1131 ZEQ 333 T 4 .135 .736 T

Figure 6.1 Subdivision of the interval of integration in the case of when n = 5.
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>
¢ Ti4q

Figure 6.2 Rectangular region used as an approximation of the area over the subin-
terval.

how well they work. To be specific, whatever choice is made the resulting
integration rule over each subinterval is

/%i+1 f(@)dz = f(ci)(wit1 — m4). (6.3)

i

In what follows it is assumed that the grid points are equally spaced, so
Zzi+1 — x; = h. Taylor’s theorem, as usual, can be used to determine the
accuracy of the approximation. First, expanding about = = ¢; we get

fl@) = f(ei) + (z — i) f'(ci) + ;(l’ — ) fe) + oo (6.4)

With this

/Ii+1 flz)de = /mih[f(cl-) + (@ — ) f'(ei) + ;(x =)’ f"(ei) + - ]da

i 7

! h(1222 + W) f"(ci) +-- -,

= f(ci)h +2hzi f'(c;) + 04

where z; = z; + Z — ¢;. Therefore, when using the approximation in (6.3),
the error in the approximation is

! R(1222 + h%) f" (ci) + -+ (6.5)

w = 2hzi f'(c;

So, if we take ¢; = x;, then z; = h/2 and 7, = O(h?). Similarly, if ¢; = 7,41,
then z; = —h/2 and 7. = O(h?). In other words, by picking one of the
endpoints the error is O(h?). To get a better error we need to pick ¢; so that
z; = 0, and this means we pick ¢; = z; + ’2‘ The error in this case is O(h?). In
fact, the midpoint is the only choice in the above equation that guarantees
an error that is O(h3) independently of the particular function f(z).
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6.2.1 Midpoint Rule

It is worth examining the ¢; = z; + g choice in more detail. We have just
shown that

Tit1 h
/ Flada = f(zi + )b+ O(h). (6.6)
This gives rise to what is known as the midpoint rule. When this is put into
the formula for the definite integral (6.2) we get

/abf(:v)dx - [f(:cl + ;L)th O(h3)] + [f(xg + ;L)th O(h3)]

oot {f(a:n + ;)h+0(h3)}

=h(fig12 + foyry2 + -+ fag12) + nO(h?)

where
In = h(f1+1/2+f2+1/2+"'+fn+1/2) (6.8)

and fi11/2 = f(z; + ). The expression in (6.8) is known as the composite
midpoint rule. Note that the error for the composite rule is a factor of h
smaller than the integration rule (6.6). This happens with the other integra-
tion rules we study and to explain why, in (6.7) the term n O(h?®) turned
into O(h?). This is because h = (b — a)/n, so n = O(1/h).

It is possible to modify the result in (6.5) to obtain a more explicit bound
on the error and this is contained in the next result.

Theorem 6.1. If f € C?[a,b], then the composite midpoint rule (6.8)
satisfies
b

b J—
R E S T

where || f"||co = maxq<z<p | (z)].

Examples

1. Suppose the composite midpoint rule is used to approximate the value of

1
/ e d. (6.9)
0

Using three subintervals, the approximation shown in Figure 6.3 is ob-
tained. In this case, h = 1/3, and the midpoints are Tip12 = 1/6,
Toy1/2 = 1/2, and w34,/ = 5/6. With this, (6.8) becomes
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20
15+ e
8] > o
flé 10+ I ]
>
I
St r~ - - =—=—"----- | ]
e o o  —— 1
o 1 1 1 1 1
0 1/6 1/3 1/2 2/3 5/6 1

X-axis

Figure 6.3 Composite midpoint rule used with f(z) = 3% for 3 subintervals. The
area of the dashed (red) boxes is used as the approximate area for the area under the
curve.

Iy = :1))(61/24—63/24—65/2)
~6.1043. A

2. According to Theorem 6.1, how many subintervals are necessary to guar-

antee an error of 10~% if the composite midpoint rule is used to evaluate
(6.9)?
Answer: Since

" . 3z
1 oo = (ax 9e
= 963,

then we want ), h%e3 < 1075, This gives us h < 2 x 107*,/2e~3/3. Given
that h = (b —a)/n = 1/n, then we want
1 4
n>, x10 V/3e3/2
~ 27,444.6.

Therefore, according to Theorem 6.1, we should use at least 27,445 subin-
tervals so the error is no more than 10~8. To check on this, the computed
values are given in Table 6.1, along with the value of the error

Ey =

b
/ f(@)dz — IM| : (6.10)

What is seen is that the desired error of 1078 is obtained using a smaller
number of subintervals than the predicted value of 27,445. This is not
surprising, since the inequality in Theorem 6.1 is based on a worst-case
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n Iy En
1000 6.36184325537107  2.39e—06
2000 6.36184504463955  5.96e—07
4000 6.36184549195681 1.49e—07
8000 6.36184560378610  3.73e—08
16000 6.36184563174344  9.32e—09

32000 6.36184563873278  2.33e—09

Table 6.1 Values of (6.9) when computed using the composite midpoint rule Iz,
and the resulting error Epy.

assumption. As a final comment, although using 16,000 or 32,000 subin-
tervals might sound large, the computing time is minimal, taking less than
1072 sec. B

The reason the midpoint rule works as well as it does is evident in
Figure 6.3. Each box splits the curve in such a way that the (unsigned)
area it misses on the right is about the same as the (unsigned) area it misses
on the left. This balancing act is why the first term in the error, given in
(6.5), is zero. Also, it is conventional to report computational results using
tables, as is done in Table 6.1. However, it can be more informative to plot
the results, particularly the error, and this is done in Figure 6.4. It is seen
that if the number of subintervals increases by a factor of, say, 10, then the
error drops by about a factor of 102. According to Theorem 6.1 this is exactly
what should happen.

Examples

1. According to Theorem 6.1, what functions will the composite midpoint
rule integrate exactly, no matter what the value of h?

100 : — : —_—
10° 104 10°
n-axis

Figure 6.4 Values of the error E); for the composite midpoint rule as given in
Table 6.1.
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This requires ||f”||oc = 0, which means that f”(z) = 0 for a < x < b.
Therefore, to have zero error it must be that f(xz) = a + Sz, i.e., it must
be a linear function in this interval. W

2. Suppose that the error when using the composite midpoint rule is 10~# if
n = 100. What is the approximate error if n = 2007

To answer this it is necessary to make an assumption about the error.
Specifically, even though Theorem 6.1 cannot be used to determine the
exact value of the error, it can be used to predict how the error depends
on h. The assumption is that the error decreases as O(h?). This is true for
the above example, and to verify this the values in Table 6.1 are plotted
in Figure 6.4. In this plot it is seen that when doubling of the number of
subintervals, the error decreases by a factor of 4. So, in response to what
happens when using n = 200, the guess is that the error will be approxi-
mately } x 1071 W

As a final note, the explanation for the error formula in Theorem 6.1
used the Taylor series in (6.4). Using the series in this way gives rise to
what is known as the asymptotic form of the error, and this is explained
in Appendix C. A formal proof of the theorem can be obtained using the
remainder form of the Taylor series and knowing certain inequalities involving
integrals. This approach, using the series rather than the remainder version
of a Taylor series to derive the formula for the error, is often used in this
chapter. In each case, for those so inclined, a more rigorous proof can be
obtained using similar modifications to the argument given.

6.3 Methods Based on Polynomial Interpolation

With the composite midpoint rule we have an O(h?) method that requires
n function evaluations. This begs the question of whether we can do better
and find methods that are, say, O(h%). The answer is definitely yes, and
our approach to answering this question will use the ideas employed in the
definition. As before, we will subdivide the interval. In the definition, the
function is approximated with the constant f(c;), as shown in Figure 6.2,
and this was then integrated exactly to produce the integration rule. To
improve on this we simply use a better approximation for f(z), one that can
be integrated exactly, and for this we will use polynomial interpolation.
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>
i $i+1

Figure 6.5 To derive the trapezoidal rule the function is approximated using linear
interpolation.

6.3.1 Trapezoidal Rule

Instead of a constant we will use a linear approximation of f(z) over x; <
x < xj41. In particular, we will use the linear function that interpolates the
function at the endpoints (see Figure 6.5). From the point-slope formula, we
have that

Gi@) = fit ) (fivr = Fi = z2).

By expanding f(z;+1) using Taylor’s Theorem, it is easy to show that

F(@) = gu(e) + ) (0 = 22) (@ — o) ")

Therefore,

/Ii+1 flx)de = /Mﬂ[gi(:v) + ;(UC —z)(x — zig1) [ (@) + - Jda

= ;(fm +fi) — 112h3f”(:zri) o (6.11)

This gives rise to what is known as the trapezoidal rule. When this is put into
the formula for the definite integral (6.2) we get

b
/ f(z)dx = It + O(h?),

where ) )
IT—h<2f1+f2+f3+"'+fn+2fn+1>- (6.12)

The expression in (6.12) is known as the composite trapezoidal rule.

Note that we have not done better than the composite midpoint rule in
the sense that the error in both cases is O(h?). In fact, one might argue that
the midpoint rule has a slight advantage over the trapezoidal rule because of
the next result.



6.3 Methods Based on Polynomial Interpolation 239

20
b
//
15+ /// 1
@ L2
;;107 Lz 1
> _ Z
50 === i
e— 1
I
0 1 1
0 1/3 2/3 1

X-axis

Figure 6.6 Composite trapezoidal rule used with f(x) = 3% for 3 subintervals. The
area of the dashed (red) trapezoids is used as the approximate area for the area under
the curve.

Theorem 6.2. If f € C?[a,b] then the composite trapezoidal rule (6.12)
satisfies

b p—
[t - m| < R

where || f"]|oc = Maxa<o<p [f ()]

The proof of this comes from using Taylor’s theorem with remainder, in a
manner similar to how (6.11) was derived.

Examples

1. Suppose the composite trapezoidal rule is used to approximate the value of

1
/ e dz. (6.13)
0

Using three subintervals, the approximation shown in Figure 6.6 is ob-
tained. In this case, h = 1/3, and (6.12) becomes

3 2
~6.8834. N

1/1 1
Iy = (2+61+e2+ e3>

2. According to Theorem 6.2, how many subintervals are necessary to guar-
antee an error of 1078 if the composite trapezoidal rule is used to evaluate
(6.13)?

Answer: It was shown earlier that ||f”||o = 9¢3. So, to satisfy the inequal-
ity in the theorem, we want h%e® < 107, Since h = 1/n, it is required
that n > é\/?)e?’ x 10* ~ 38,812.6. Therefore, according to Theorem 6.2,
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n It Er
1000 6.36185041244607  4.77e—06
2000 6.36184683390857  1.19e—06
4000 6.36184593927407  2.98e—07
8000 6.36184571561544  7.46e—08
16000 6.36184565970077  1.86e—08

32000 6.36184564572208  4.66e—09

Table 6.2 Values of (6.13) when computed using the composite midpoint rule I,
as well as the error Er.

we should use at least 38,813 subintervals so the error is no more than
10~8. To check on this, the computed values are given in Table 6.2, along
with the value of the error

b
ET = / f(:E)d:E —IT . (614)

What is seen is that the desired error of 10~% is obtained using a some-
what smaller number of subintervals than the predicted value of 38,813.
As pointed out for the midpoint rule, this is not surprising, since the in-
equality in Theorem 6.2 is based on a worst-case assumption. ll

It is worth comparing Figures 6.3 and 6.6. Although the piecewise linear
approximation of the function is certainly better than the piecewise constant
approximation, the midpoint rule produces a slightly better approximation of
the integral. Although improving the approximation of f(x) did not produce
a better result, the idea is still worth pursuing as demonstrated next.

y-axis
o

— p,(x)
- — f(x)

| | |
0 0.25 0.5 0.75 1
X-axis

Figure 6.7 Example of the piecewise quadratic approximation ps(x) used in the

derivation of Simpson’s rule. One quadratic is used for 0 < x < ; and another for
; <z<l
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6.3.2 Stimpson’s Rule

The next step is to try a quadratic approximation for f(z), and for this we
need three data points. One option is to use x;, x;+1, and some point within
the subinterval. Another option is to pair up the subintervals and use an
approximation over 1 < x < x3, another one over x3 < x < x5, etc. We will
use the latter option although this will require n to be even. From (5.4), the
quadratic that interpolates f(x) over the interval x;_1 <z < x;41 is

p2(x) = fi—1li—1(2) + fili(®) + fir1lita (). (6.15)

An example of the resulting approximation is shown in Figure 6.7 in the case
when n = 4. There are two quadratics in this case, one used for 0 < x < é
and another for % <z < 1. If you look closely, you will notice that over each
subinterval the quadratic is above the function on one half, and below the
function on the other half. This is also what happened for the midpoint rule,
as seen in Figure 6.3, and it will result in the integration rule being more
accurate than might be expected.

In deriving the resulting integration rule we are also interested in the error.

Using Taylor’s theorem (see Exercise 5.24(c)) one can show that

1 22(22 —h,2)f””($i)+"' ,

1 2 AW
f(@) = p2() + 6z(z — R " (2;) + o

where z =  — z;. Integrating both sides of this expression, one finds that

Tit1 Tiy1 P 22
/ f(ilf)da: = / [pz(x) + 6(22 _ h2) i/// + 24(22 _ h2) i//// + .. ']d:Z?
Ti—1 Ti—1

Tit1
= / po(x)dz

i—1

h 2
[ R R A
—h

1
(fict +4fi + firr) — L POF + o (6.16)

_h
3 90

This gives rise to what is known as Simpson’s rule, which is that

/ - f(z)dx = Z(fi—l +4fi + fir1)-

i—1

It remains to recombine the subintervals, and the result is

b
/ F(@)dz = Is + O(hY),
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where
h
Is = 3 (fitdfo+2fs+dfa+2fs+-+4fn+ frt1)- (6.17)

The expression in (6.17) is known as the composite Simpson’s rule. By keeping
careful track of the approximation errors made with this rule one can prove
the following.

Theorem 6.3. If f € C%[a,b], then the composite Simpson’s rule (6.17)
satisfies
h—

S ah4||f””||oo

b
/a f(z)dx —Ig 90

where || f""]|oo = maxa<a<p [f" ()]

This is an impressive result, and it is clearly better than what was achieved
with the midpoint or trapezoidal rule. In fact, it is the “gold standard” in the
sense that when new integration rules are derived they are almost invariably
compared to Simpson’s rule.

Example

According to Theorem 6.3, how many subintervals are necessary to guarantee
an error of 1078 if the composite Simpson’s rule is used to evaluate

1
/ 3 dx? (6.18)
0

Since ||f"||oc = 81€3, then we want [ h*e® < 1075, This gives us h <
(10e=3/9)1/% x 10~2. Recall that h = (b—a)/n = 1/n. Combining our results,
we require n > (9¢3/10)1/4 x 10% ~ 206.0. So, according to Theorem 6.3, we

n Is Es

10 6.36212888551990  2.83e—04
20 6.36186348593954  1.78e—05
40 6.36184675860732  1.12e—06
80 6.36184571094418  6.99e—08
160 6.36184564543071  4.37e—09

Table 6.3 Values of (6.18) when computed using the composite Simpson’s rule Ig,
as well as the error Fg.
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Figure 6.8 The errors Eps, Er, and Eg for the composite midpoint, trapezoidal,
and Simpson’s rules, respectively, as a function of the number n of subintervals used
to evaluate (6.18).

should use at least 207 subintervals so the error is no more than 10~8. To
check on this, the computed values are given in Table 6.3, along with the
value of the error

b
ES: / f(:E)d:E—IS . (619)

What is seen is that the desired error of 1078 is obtained using a somewhat
smaller number of subintervals than the predicted value of 207. It is also
informative to plot the error Eg as a function of the number of subintervals,
and to compare this with the midpoint error Ej;, and the trapezoidal error
Ep. This is done in Figure 6.8. As expected, Ej; and Ep are very similar,
decreasing in the predicted O(h?) manner. It is also evident how much better
Simpson’s rule does compared to the other two methods. B

Examples

1. According to Theorem 6.3, what functions will the composite Simpson rule
integrate exactly, no matter what the value of h?

This requires ||f”"||cc = 0, which means that f""(z) = 0 for a < z <b.
Therefore, the composite Simpson rule will integrate cubics exactly. W

2. Suppose that the error when using the composite midpoint rule is 10~# if
n = 100. What is the approximate error if n = 2007

Assuming the error decreases as O(h*), then for n = 200 the error will be
approximately 274 x 1074 ~ 6 x 1076, H
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6.3.3 Cubic Splines

One of the best interpolation methods considered in Chapter 5 used cubic
splines, and this makes it a intriguing method for numerical integration. One
difference with the other interpolation based methods we have considered,
the cubic spline interpolation formula applies to the whole interval. A conse-
quence of this is that we will obtain the composite rule directly, without first
deriving the formula over the subintervals which are then added to produce
a composite rule.

As explained in Section 5.4.1, the cubic spline interpolation formula can

be written as
n+2

s(z) = Z a; B;(x),
i=0
where the B;’s are cubic B-splines and are defined in (5.22). Using the inte-
gration formulas given in Appendix B, one finds that

n+2

b b
s(x)dx = a; | Bi(z)dx
J e
n+1 1 1 1 1
=D fit g (a2 —a0) = fi = (aniz2 = an) = fatr | . (6:20)
i=1

To go any further we need to specify which type of spline is going to be
used, and we will use a clamped spline. This means that s(x) satisfies

S@)=f(a)  and  s(wesn) = 0.
Given that

s'(vi) = ai—1Bj_y (xi) + aiB{(w;) + aiy1Bi 4 (2:)

- 2haz—1 2haz+lu

then ag = az — 2hf'(a) and any2 = an, + 2hf’(b). Substituting these into
(6.20) yields

b n
/ s(x)dx = h(;(fl +fn+1)+2fi+ 1]12(][{ —f7/1+1)> )

=2

where f| = f'(a) and f},; = f'(b). From Theorem 5.5 we know that f(z) =
s(z) + O(h*), and we therefore have that

/b F@)dz = I + O(hY), (6.21)
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where
1 1 19/ /
In=hl fithotfst ot hut forn )+ 0 (fi = frea) - (6:22)

This is known as the composite Hermite rule or the corrected trapezoidal rule.
It gets the latter name because

1
Iy =Ir + 12h2 (f1 = fria) - (6.23)

This is interesting because it shows that the composite trapezoidal rule I,

given in (6.12), can be adjusted so it has the same order of error as Simpson’s

rule. As for calling it the Hermite rule, it gets this name because you also

obtain (6.22) by integrating something called the cubic Hermite interpolation

function. A more extended discussion of this can be found in Holmes [2014].
The following theorem states the error for this method.

Theorem 6.4. If f € C%a,b], then the composite Hermite rule (6.22)
satisfies
b

< - ah4||f////||oo

b
/af(x)daj—IH < 7o0

where || f""||oo = maxa<a<p [f"(2)].

This result is not particularly surprising given the error using a clamped cubic
spline, as given in Theorem 5.5.

Example

According to Theorem 6.4, how many subintervals are necessary to guarantee
an error of 1078 if the composite Hermite rule is used to evaluate

1
/ e dx? (6.24)
0

Since ||f"||oc = 81€3, then we want g h%e® < 1075, This gives us h <
(80e=3/9)1/* x 1072. Since h = (b — a)/n = 1/n, then we require n >
(9¢3/80)1/4 x 10? ~ 122.6. So, according to Theorem 6.4, we should use
at least 123 subintervals so the error is no more than 10~8. To check on this,
the computed values are given in Table 6.4, along with the value of the error

b
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n Iy En

10 6.36177422332073  7.14e—05
20 6.36184117028484  4.47e—06
40 6.36184536152670  2.80e—07
80 6.36184562358981 1.75e—08
160 6.36184563997048  1.09e—09

Table 6.4 Values of (6.24) when computed using the composite Hermite rule I, as
well as the error Fg.

What is seen is that the desired error of 1078 is obtained using a somewhat
smaller number of subintervals than the predicted value of 26. B

It is interesting that Hermite has a slightly better error than Simpson,
although it requires a bit more information about the function. Also, because
of (6.23), it shows that the trapezoidal rule can be more accurate than Simp-
son for functions which satisfy f/(a) = f’(b). It needs to be stated however
that most functions do not satisfy this condition, and for this reason Simpson
is expected to produce a more accurate approximation than the trapezoidal
method. The most noteworthy exception to this arises with periodic func-
tions, where having f’(a) = f/(b) is not uncommon.

6.3.4 Other Interpolation Ideas

As pointed out earlier, (6.22) is known as the corrected trapezoidal rule. It
turns out that there is also a corrected midpoint rule, and it states that

b
[ $@de =1 = (5 = i) + O(R)

The error term in this case is (b — a) Kh*||f""||co, where K = 7/5760. This
makes it competitive with both Simpson’s rule and the corrected trapezoidal
rule. More information about this idea of correcting, or improving, an inte-
gration rule using information at the endpoints can be found in Nenad and
Roberts [2008].

One might think that the next step is to use higher order polynomial
approximations and see what sort of integration rule results. Although there
are people with a lot of time on their hands that do this sort of thing, it
is not worth the effort. Instead, it is worth comparing the formulas for the
composite trapezoidal and Simpson rules. If you add up the f;’s with the
coefficients in (6.12), you get an approximation for the integral, but if you
add up the f;’s with the coefficients is (6.17) you get a better approximation.
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This raises the question as to whether there are coefficients that can be used
that will produce an even better approximation. This idea is pursued in the
next section.

6.4 Methods Based on Precision

The next family of methods we are going to consider are based on two obs-
ervations that come from the rules we derived using interpolation. The first
is the observation that most of the integration rules have the form

Tit1
| @t s o) bt b b G, (020
ers
where the z;’s are from the interval z; < x < z;41. The z;’s are called
the nodes, and the w;’s are the weights. So, the midpoint rule in (6.6) has
one node z; = xz; + g, with corresponding weight w; = h. Similarly, the
trapezoidal rule given in (6.11) has two nodes, z; = x; and 23 = x;41, with
weights w; = we = h/2. It should also be noted that (6.26) does not include
derivative terms that arose with the Hermite rule, and how these can be
incorporated into the procedure is explored in Exercise 6.23.

The second observation concerns the error. To explain, in deriving the
midpoint rule it is found that

1

UL (6.27)

Tit1 h
[ f@xdo = sms b+

2
where 7 is located somewhere in the interval (x;,z;4+1). The proof of this
statement is similar to the derivation used to obtain (6.5). Because of (6.27)
the midpoint rule has zero error (i.e., it is exact) if f(z) =1 or f(x) =  and
the reason is that for both of these functions f”(z) = 0. However, it is not
necessarily exact when f(z) = 22 and because of this the midpoint rule is
said to have precision one. Similarly, as stated in Theorem 6.3, the error of
the composite Simpson’s rule is bounded by ’ #h*|| f”"'||o. Consequently, it
has zero error if f(z) =1, f(z) = =, f(z) = 22, or f(x) = 23, but it is not

necessarily zero if f(z) = x?. For this reason it has precision three.
Before continuing to use this word it is best to define what it means.

Definition 6.1. The precision of an integration rule is the largest value of m
for which the rule is exact for the functions f(x) = z*, for k = 0,1,2,--- ,m.

This definition is used to derive integration rules, and to do this, it is necessary
to know the exact value of integrals of the form

Ti41
/ 2Fdx. (6.28)

The values, up to k = 5, are given in Table 6.5.
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Eof@ [ e

i

5 10 5 1
5 z° hzb+ “zth+ alh?+ "2k +aht + RS
2 3 2 6
Table 6.5 Values of (6.28) for various values of k.

We are now going to derive integration rules that have maximum precision,
and these fall under the general category of Gaussian rules.

6.4.1 1-Point Gaussian Rule

We start with a question: what integration rule gives the maximum precision
using one point from the subinterval? The assumption is that the general
form of the rule is

/ " f@)de ~ wn f(2),

where z; < z; < x;+1. To find the value of w; and z; that maximize the
precision, we want to find the largest value of k so that

Tiq1
/ aFdr = w 2F, (6.29)

and this generates the following list.

1. k = 0: From (6.29) we require that fg“ dx = wy, and from this it follows
that
h = w1q.

2. k = 1: Putting f =z in (6.29), and using Table 6.5, it is required that

1
h<{EZ + 2h> = wiZ21.

Given that wy = h, we obtain z; = x; + %h.
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3. k = 2: Using Table 6.5, it is required that
2 Lo Lo

It is not possible for this to hold for nonzero h, and so this rule does not
integrate this function exactly.

Therefore, the 1-point Gaussian quadrature rule is the midpoint rule. This
is worth knowing but it is disappointing because the new idea of maximizing

the precision has not produced a new method. As demonstrated next, this
changes when we use more points.

6.4.2 2-Point Gaussian Rule
The general form of the rule in this case is

/ h f(x)dz = w1 f(z1) + waf(22).

7

Our goal is to find the values of the w;’s and z;’s that maximize the precision.
So, we want to find the largest value of k so that

R k k
/ ridr = wi 2] + wazy.
Tg

As was done for the 1-point rule, we make a list using Table 6.5.

1. k=0:
h =wi + ws
2. k=1 )
h(:vi—i— 2h) = w121 + Wa29.
3. k=2 )
h(w? + hz; + 3h2) = w12? 4+ wy 22
4. k=3 5 )
h(xf’ + 2h:1712 + h2z; + 4h3) = wlzi)’ —|—’LUQZS
5. k=4

1 1
h<x? + ;x?h+ 303;fh2+ ;I?h3+$ih4+ 6h5> = w2} + w2y (6.31)
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We have four unknowns so we will consider the first four equations from the
above list. The fact that three of them are nonlinear makes the problem of
solving them a bit challenging. One approach to help simplify things is to
anticipate where the points z; and 2o are located relative to each other in
the interval. For the midpoint rule, z; ended up being symmetrically located
in the interval (i.e., at the midpoint). Given that z; and 2o appear in a
symmetric manner in the integration rule, it is not unreasonable to expect
them to also end up being placed symmetrically in the interval. In other
words, they have the form z; = %(fEi-ﬂ,—l +x;)+qand z9 = ;($i+1 + ;) —q,
where we need to find the value of ¢. Assuming this, then from the f(z) =1
and f(z) = x conditions one finds that w; = wy = Jh. With this and the
f(z) = 2? condition one finds that ¢> = ,h% The remaining tasks are to
show that this solution satisfies the f(x) = 2% condition but not the one for
f(x) = 2*. Both of these are left as exercises.
The resulting integration rule is

[ f@dex JhlpG + 1G] (6.32)
where
zi:x-+1hi Lo (6.33)
Foait h ) b .

This is the 2-point Gaussian quadrature rule, and it has precision 3. As will
be explained in the next section, a Gaussian rule with precision m has an
error that is O(h™*2). Consequently, the error for the above rule has an error
that is O(h®), which is the same order as obtained for Simpson’s rule. Also
note that the Gaussian points z; and z:r are symmetrically placed in the
subinterval but they do not split the interval into thirds (see Figure 6.9).

6.4.3 Error Formulas

Now that we have derived a new method for numerical integration we turn
our attention to the error. We begin with the theorem which provides the
needed formula.

Theorem 6.5. If f € C*[x;,1;11], then the error Eg using the {-point rule
in (6.26) is

. I >
T.

) zz'+1

X
X

Figure 6.9 Location of the Gaussian points z; and z;L in the subinterval.
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Eg = Kn** 29 (),

where
_ (en?
k= 20+ 1)[(20)13° (6.34)

and z; <n < Tiq1.

The proof of this theorem can be found in Isaacson and Keller [1994]. The

significance of this result is that it shows that a Gaussian rule with precision

m has an error that is O(h™*2). We will make use of this in a couple of ways.

The first will follow what we did with the other rules, where we combine the

subintervals into a composite formula. For the second way, subintervals will

not be used, and the formula will be applied to the entire interval.
Applying the above theorem to the 2-point rule (6.32),

[ e = JhlpG + 1E0) + K )

where K = 1/4320. The resulting composite rule is

b
/ f(z)dz = Ig + O(RY),

where "
ho= (T + [+ 17 +fF++f0 + 1) (6.35)

In the above expression, f= = f(zF) denotes the values of f(z) at the two
Gaussian points within the ith subinterval as given in (6.33). The correspond-
ing error using this composite rule is given in the following theorem.

Theorem 6.6. If f € C*[a,b], then the composite 2-point rule satisfies

b—a
< h4||f////||OO7

b
/af(x)dw—fm < 4390

where ||| = maxazo<o |77 (@)].

The denominator in the above expression is much larger than what we have
obtained with the other composite rules. However, this is not as impressive
as might be assumed at first glance. When using n subintervals, Simpson’s
rule uses n + 1 function evaluations while the above Gaussian rule uses 2n.
To make a fair comparison one should use approximately the same number
of function evaluations. So, for the Gaussian rule one should use approxi-
mately n/2 subintervals, which means the grid spacing should be 2h. If this
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Figure 6.10 Error in using the composite Simpson’s rule, the Hermite rule, and the
composite 2-point Gaussian rule to evaluate (6.36).

is done, then the multiplicative factor changes from 43120 to 2%0. Given that
the corresponding factor for Simpson is 910 then the 2-point Gaussian rule
does produce a better error but the improvement is approximately :1,, and not

a factor of 418 as might be inferred from Theorem 6.6.

Examples

1. Suppose the composite 2-point rule is used to approximate the value of

1
/ e3dz. (6.36)
0

Using two subintervals, then the Gaussian points in the first interval are
2f = 1(1£1/+/3), and for the second interval 2z = 1(3+1/v/3). In this
case, (6.35) becomes

L = i(esz; LB 4B e3z;)
~6.3549. W

2. The error using the composite versions of the Simpson, Hermite, and
2-point Gaussian rules are shown Figure 6.10 for the integral (6.36). The
error is shown as a function of the number of function evaluations needed
to calculate the integration rule. Assuming there are n subintervals, and n
is even, then the number of function evaluations for Simpson is n 4 1, for
Hermite it is n 4 3, and for 2-point Gaussian it is 2n. The curves all show
the expected O(h*) rate of convergence. Also, as expected the Hermite rule
produces the best approximation although the differences between these
three methods are relatively minor. B
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6.4.4 General Case

The general version of the ¢-point Gaussian quadrature rule given in (6.26)
results in an integration rule with precision 2¢ — 1. This is interesting because
it allows for the possibility of reducing the number of subintervals, but inc-
reasing the number of Gaussian points in each subinterval to achieve the req-
uired accuracy. This can be very effective, and to illustrate, consider the
integral in (6.36). Not using any subintervals, then the Gaussian points are
positioned over the interval of integration ¢ < x < b. To demonstrate just
how effective this can be, the error involved with computing (6.36) is given in
Table 6.6 as a function of the number of Gaussian points used. For compar-
ison, the value obtained using the composite Simpson’s rule is given, using
the corresponding number of interpolation points. The improvement of the
Gaussian value is impressive, easily besting the results obtained using the
composite Simpson’s rule. Moreover, given the results in Figure 6.10, it is also
significantly better than Hermite or the composite 2-point Gaussian rule.

An explanation of why it does so well can be found in the error formula
given in Theorem 6.5. Before stating the result, note that we are not using
subintervals, and so the integration rule is

b
/ f(z)dx = wyf(z1) +waf(z2) + -+ wef(ze), (6.37)
with error
Eg = K(b—a)™"? " (p), (6.38)

and precision m = 2¢ — 1. The rather unwieldy expression given in Theo-
rem 6.5 for the factor K can be simplified using the Stirling approximation
(5.34). After doing this, it is found that

(67

Vi

where || f*9]] = maxa<o<y [P (2)], @ = (b~ a)y//4, and

B¢l <, R*||f®]|, (6.39)

(b—a)e

R= 8 (6.40)
Consequently, if ¢ is large enough that R < 1, then R?* approaches zero
exponentially fast as ¢ increases. Whether this means that the error using
Gaussian quadrature approaches zero exponentially fast depends on the con-
tribution of the f(2) term in the error formula. This is the same situation
we encountered with Chebyshev interpolation in Section 5.5.4. In fact, the
examples used in Section 5.5.5 can be used to demonstrate that both the
composite Simpson’s and Hermite rules are competitive with, if not better
than, Gaussian quadrature (on those examples).
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¢ Ea Es

1 1.88

2 9.18e—02

3  1.74e—03 1.40e—01
4  1.75e—05

5 1.09e—07 1.05e—02
6 4.66e—10

7 1.4b5e—12  2.14e—03
8 8.88e—16

9 7.11le—15 6.87e—04

Table 6.6 Error Fg evaluating (6.36) using ¢-point Gaussian quadrature, and the
error F'g using composite Simpson’s rule. For the latter, ¢ designates the number of
function evaluations.

Something not mentioned in the above discussion is how the nodes and
weights in (6.37) are determined. As it turns out, the locations of the nodes
correspond to the roots of the ¢th order Legendre polynomial. Assuming that
¢ > 2, and using the recursive properties of these polynomials, finding the
nodes and weights can be reduced to an eigenvalue problem involving an ¢ x £
tridiagonal matrix. This problem is given in Exercise 4.22. Letting A; denote
the jth eigenvalue, then in (6.37) the corresponding node is given as

b+a b—a
BT T
and the weight is w; = 3 (b—a)w;, where w; is defined in Exercise 4.22. This is
the basis for what is known as the Golub-Welsch algorithm, and more about
this can be found in Golub and Welsch [1969] and Davis and Rabinowitz
[2007].

The values for the Gaussian quadrature rules are listed in most handbooks
or compilations of mathematical formulas (e.g., the values for the 80-point
rule are listed in Olver et al. 2010). For those with a more extreme interest
in this should also consult Love [1966], which considers up to 200 nodes, or
Bogaert [2014], who discusses cases with millions of nodes. For the latter,
the nodes near the endpoints of the interval are so close that they are not
resolvable using double precision. The need of such a large number of nodes
is not clear, and for the moment the result is mostly of theoretical interest.

There are numerous variations of the Gaussian rule given in (6.37). To
describe one of particular note, recall that in Section 5.5.4 we found that
to obtain the best interpolation polynomial, the z;’s should be chosen to
be the Chebyshev points. It would seem that these would be a good choice
for the nodes in (6.37). However, there is evidence that it is actually better
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to use the extrema points of the Chebyshev polynomial from the interval
a < x < b rather than the points where it is zero. The respective weights are
determined, as usual, by maximizing the precision. This gives rise to what
is known as Clenshaw-Curtis quadrature. Assuming there are ¢ nodes, this
method has precision ¢ — 1, while the Gaussian rule has precision 2¢ — 1.
Even so, there are situations where Clenshaw-Curtis might be preferable to
Gaussian quadrature, and this is discussed in Trefethen [2008].

6.5 Romberg Integration

An interesting idea on how to improve the accuracy of numerical integration
is based on an observation for the error. To illustrate, the composite midpoint
rule (6.7) states that

b
/ f(x)dz = Iy + O(h?).
This can be written as
b
/ f(z)dx = Ins(n) + ah® + R +yh* 4 -+ - . (6.41)

In the above expression, Ips(n) is written to make it explicit how many
subintervals are used, and the various terms making up the error are written
out. It is also worth recalling that » = (b—a)/n. Because of this, if the number
of subintervals is increased from n to 2n, then the width of the subintervals
changes from h to h/2. Consequently,

1

b
1 1
/a f(z)dx = Iy (2n) + 4ah2 + 86h3 + 16

where h is the value of the width when using n subintervals. It is possible
to combine the two approximations and in the process eliminate the O(h?)
term. Multiplying the second equation by 4 and subtracting the first equation
we obtain

b
3/ f(x)dx = 41y (2n) — Ins(n) — ;ﬁ}ﬁ L
In other words,
b 4 ] .

This idea of increasing the number of subintervals and then combining the
two results to get a better approximation is known as Romberg integration.
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The formula in (6.42) is due entirely to the form of the error in (6.41), and
it can be applied to any composite rule with this type of error. For example,
the composite trapezoidal rule has this form, and so the Romberg formula
for it is

b 4 1 5
/ Fla)dr = | Fr(2n) — Tr(n) + O(h°). (6.43)

It can also be easily extended to composite rules with other forms for the
error. An example is Simpson’s rule, and the Romberg procedure applied to
it produces

/bf( )d - Yre L O(h® 6.44
S v = Is(2n) = Is(n) + O(h%). (6.44)

The derivation of this result, as well as other Romberg formulas, can be found
in Exercise 6.20.

6.5.1 Computing Using Romberg

The question arises when computing an integral of how many subdivisions
to use. For most of the methods considered in this chapter, theorems were
given that provided bounds on the error, and these were used to predict
how many subintervals are need to guarantee a certain error. In real world
situations, these often are not useful because calculating || f”||ec or || f""||0c is
either not possible or too difficult to be practical. For this reason, integration
methods are used in a similar manner as Newton’s method or the secant
method. Namely, you use the method to generate a sequence of approximate

Pick: n
tol > 0
A(l) =I(n)
R(1) = A(1)
Loop: For k=2,3,4,---
n=2n
A(k) = I(n)
R(k) = (16A(k) — A(k —1))/15
if |R(k) — R(k — 1)| < tol, then stop

end

Table 6.7 Algorithm for evaluating an integral numerically using Romberg integra-
tion applied to a composite integration rule that has error O(h?*).
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Figure 6.11 The error when evaluating (6.45). Shown is the error Eg using the
composite Simpson’s rule, and the error Er obtained using Romberg integration (the
latter are from Table 6.8).

values for the integral. Unlike Newton’s method where you are not sure it will
converge, the theorems for the numerical integration methods guarantee they
will work as long as the function you are computing with is smooth enough.
The basic procedure is to keep doubling the number of subintervals, using
one of the Romberg rules to compute the integral, and then stopping when
the desired accuracy is achieved. Such an algorithm using Simpson’s rule is
given in Table 6.7. The formula for R(k) in this case comes from (6.44).

Example

To demonstrate the usefulness of Romberg integration we consider evaluating
the integral

1
/ e d. (6.45)
0

n Is Ir Er
1.71831884192175
1.71828415469990  1.71828184221844  1.376e—08
16 1.71828197405189  1.71828182867536  2.163e—10
32 1.71828183756177  1.71828182846243  3.385e—12
64  1.71828182902802  1.71828182845910  5.240e—14

T W N =

Table 6.8 Values of (6.45) when using Romberg integration with Simpson’s rule as
given in the algorithm in Table 6.7. Also given is the error Er = |Ir(n) — I|, where
IR is the value using Romberg integration and I is the exact value. The stopping
error used is tol = 10710,
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Figure 6.12 Example of a function that shows significant variation over the interval
of integration.

Using the procedure given in Table 6.7, the values given in Table 6.8 are obt-
ained. To make it more evident that the error for Romberg has the predicted
O(h%) decrease, the errors are plotted in Figure 6.11. B

6.6 Adaptive Quadrature

Consider the problem of integrating the function f(z) = cos(23)?°? over the
interval 0 < x < 3, which is shown in Figure 6.12. If Simpson’s rule is used,
and an error of less than 107° is desired, then according to Theorem 6.3
it is necessary to use about 19,200 equally spaced subintervals. This large
number is necessary to accurately calculate the area under the sharp peaks
near z = 3. However, such small subintervals are not necessary to accurately
compute the area over the interval 0 < x < 1. The way to deal with this is
simple, namely you just use smaller subintervals in the regions with peaks,
and larger subintervals in the flatter regions. What you do not want to do
is to manually decide how to break up the interval, but instead design a
procedure that progressively refines the subdivisions in the peak regions until
the required accuracy is attained. This is the essence of what is called adaptive
quadrature.

To explain the basic idea underlying adaptive quadrature, consider evalu-
ating the integral

4
/ f(z)dx, (6.46)
0
where f(z) is the shifted Lorentzian function

1 w

f(x):1+7r(x_$0)2+w27

where 29 = 3 and w = 1/(27). The graph of f(x) is shown in Figure 6.13. The
version of adaptive quadrature described here uses Simpson’s rule. According
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to Theorem 6.3 it is necessary to use about 960 equally spaced subintervals to
have an error of no more than 10~8, while if the Simpson-Romberg integration
rule is used then the number drops to about 200 subintervals. To derive
an adaptive method it is necessary to know how the error is affected as
the number of subintervals increases, something similar to what was used
to derive for Romberg integration. The needed formulas are derived in the
next paragraph for the general case using Simpson’s rule, and after that the
method will be applied to the above example.

To determine the improvement as the number of subintervals is increased,
we first rewrite (6.16) as

Tit1
/ f(z)dr = S2(xi—1,Tiv1) + Ea, (6.47)
Ti1
where
h
So(xi—1, Ziy1) = 3 (ficr +4fi + fitr),
and
1
E = — h5 n .
2= g

The subscript 2 is used to indicate how many subintervals are used. If we use
four subintervals, instead of two, then

/z m F2)da = / m F(@)de + / + F(@)do

7

= S2($i71; Il) — 910 (h/2)5fm/($i — h/2) 4+

+ SQ(.IZ', :Z:»L'Jrl) — 910 (h/2)5fm/(Ii + h,/2) .

y-axis
—
(3]
T

1.5 2 2.5
X-axis

0 !
0 0.5

W ——— — — — — — — =

O —

3.5 4

Figure 6.13 Function used in the integral (6.46), and the initial subdivisions used
for Simpson’s rule.
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From Taylor’s theorem, " (x; +h/2) = f""(x;) £ (h/2) f®)(x;) + - - -. With
this, we have that

Tit1
/ f(z)dr = Sy(xi—1,7iv1) + Eu, (6.48)
Ti—1
where Sy(zi—1,2i41) = So(wi—1,2:) + So(ws,2i41) and Ey = [(Ea + ---.
Since (6.47) and (6.48) are supposed to produce the same result, we equate
the right-hand sides and conclude that

1

E4f-?: 15

[S4(£L‘i_1, $i+1) — Sg(i[:i_l, $i+1)] . (649)

What this result states is that the error in approximating the integral with
S4(x;—1,xi+1) can be estimated using the computed values for Sy(z;—1,z;11)
and So(x;—1,%;+1). The remaining question is, how small do we want |FEy4|?
Assuming the requirement is that the error in the computed value for the

entire integral
b
[ s

is no more than tol, then we will require
tol . (6.50)

The coeflicient of tol in the above expression is so the errors from the subin-
tervals add up to tol.

We return to the original problem of evaluating (6.46). The method will
produce levels of subdivision, and it is worth labeling them as the refinement
proceeds. It is also assumed that tol is a prescribed error tolerance.

Level 1: Taking two subintervals, so h = (b — a)/2 = 2 (which are the
solid vertical blue lines in Figure 6.13), the first approximation is

52(0,4) = - [7(0) +47(2) + f(4)

R 4.1684 .

Doubling the number of subintervals, then h = 1 and the subintervals now
include the dashed blue lines in Figure 6.13. In this case,

54(0,4) = L[7(0) +47(1) + F(2)] + ,[F2) +4(3) + (4]

~6.7347 .

Using (6.49), this means that the error in approximating the integral using
84 is
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Figure 6.14 Function used in the integral (6.46), and the subdivisions used in Level
2 of the adaptive procedure.

1
15
If this satisfies (6.50), which means that |E4| < tol, then you are finished
and the computed value is Sy. If not, then more subdivisions are needed
and you proceed to Level 2.

E, (Ss — S3) ~ 0.1711 .

Level 2: If the error condition is not satisfied, then the method splits the
interval in half and writes

/O4f(x)d:c = /Ozf(:v)d;v—i—/;f(x)dm, (6.51)

and then applies the approximations used in Level 1 to each integral. The
resulting subintervals are shown in Figure 6.14. For example, for f02 f(x)dx
it calculates

$3(0,2) = 4 [(0) +47(1) + f(2)]

~ 2.0351,

and

§4(0,2) = ([£(0) +4£(05) + J(V] + ([F(1) + 4/ (15) + (2]
~ 2.0336 .

The error in this case is

1
Ey=__(S4—S2)~—10"".
4= s (84— S2)
If this satisfies (6.50), which means that |Ey| < tol/2, then computing the
integral over the interval 0 < z < 2 is done. If not, then this integral is
passed to Level 3. A similar calculation is done for f24 f(z)dz.
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Level 3, 4, ---: The method keeps subdividing the subintervals that are
transferred from the previous level, until it finally obtains a value for each
that satisfies the error condition.

In the above description, the value of Sy is used as the computed value of
the integral over the subinterval. Given the way the number of subintervals
are doubled in this procedure, it is possible to compute the final value using
Romberg integration. So, instead of S, a more accurate value for the subin-
terval is obtained by using

1
(1654 — ).

Ra= o5

Letting the procedure run, the final subdivision is shown in Figure 6.15.
The error condition used to decide when to stop subdividing is that the error
for the integral is no more than tol = 107°. This resulted in the need for
8 levels, and a total of 89 evaluations of the function f(x). In comparison,
it takes approximately 960 equally spaced subdivisions to achieve the same
error, and this is also the approximate number of function evaluations needed.

As another example, for the function shown in Figure 6.13, 19,200 equally
spaced subintervals are needed to achieve an error of 1079, and this is also
the approximate number of function evaluations required. In contrast, us-
ing the adaptive Simpson method, this error is achieved using 849 function
evaluations (and 14 levels).

There are numerous variations on the idea of adaptive integration. For
example, instead of using Simpson’s rule, the 2-point Gaussian rule is a pos-
sibility and it has an error comparable with Simpson. The drawback is that
when subdividing the intervals, the nodes zf for the larger interval are not
shared with the smaller subintervals. This means that a completely new set of
function evaluations are required for each level, with a corresponding increase
in computing time. There are some clever ways to avoid this difficulty, and

X-axis

Figure 6.15 Function used in the integral (6.46), and the final subdivisions used for
adaptive Simpson’s rule.
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Figure 6.16 Upper right curves: Composite midpoint rule with and without com-
pensated summation. Lower left curves: Composite Simpson’s rule with and without
compensated summation.

one of the more well-known gives rise to what are called Gauss-Kronrod rules.
Recent reviews, or discussions, of this can be found in Gander and Gautschi
[2000] and Gonnet [2012].

6.7 Other Ideas

In Section 1.4 the idea of compensated summation was introduced and its
benefits are illustrated in Table 1.4. Given the potentially large number of
additions that can arise with numerical integration, the question arises as
to whether compensated summation is worth using. To investigate this, we
return to evaluating the integral
1
/ e3%dx.
0

The error in computing this integral using the composite midpoint and
Simpson’s rules, with and without compensated summation, is shown in
Figure 6.16. What it shows is that for Simpson’s rule compensated sum-
mation does help once the error gets close to machine epsilon. In fact, the
missing data values when using compensated summation, like the value when
n = 10, means the error is zero. In comparison, because the midpoint rule
requires a significantly larger number of subintervals, compensated summa-
tion starts to make a noticeable improvement at a larger error level.

6.8 Epilogue

This chapter is guilty of overkill in the sense that several methods were der-
ived that basically do the same thing. This is done, partly, because there is
no “best” method. It is certainly true that the Gaussian rule has the distinct



264 6 Numerical Integration

advantage of having exponential convergence, assuming the function being
integrated is smooth enough. The reason for wanting exponential convergence
is evident in Table 6.6. There are limitations to using Gaussian quadrature,
and one is that it requires access to an efficient eigenvalue problem solver.
Also, as explained in Section 6.5.1, integration is often an iterative process,
and unlike most of the other methods discussed in this chapter, the Gaussian
rule cannot make use, in an obvious way, of the function evaluations made
in earlier steps of the iteration. Finally, there is the actual computing time
needed to evaluate the integral. Even a function as complicated as the one in
(6.1) takes only about 10~7 seconds to evaluate. So, evaluating the integral
using Simpson-Romberg or adaptive Simpson requires about 10~2 seconds,
while using Gaussian quadrature requires about 3 x 10~* seconds. In other
words, for such an integral, the differences between the three methods are
effectively imperceptible.

Which rule to consider does depend on the application. For example, if the
function is experimentally determined, and you only have data points, then
the Hermite and Gaussian rules are difficult to use and the default would be
Simpson. This assumes of course that the grid points are equally spaced. If
not, then one might consider either the midpoint or trapezoidal rules, which
are easily adapted to uneven grid points. Another situation worth mentioning
is when f(z) is periodic. In such cases the composite midpoint and trapezoidal
methods can be very effective, giving rise to exponential convergence. An
explanation of why, and what this is, can be found in Weideman [2002],
Waldvogel [2011], and Trefethen and Weideman [2014]. A related, but more
difficult situation, arises when f(z) is an oscillatory function and it oscillates
rapidly. These can arise, for example, when you use a Fourier transform to
solve a differential equation. Some of the ideas on how to integrate such
functions can be found in Evans and Webster [1999] and Iserles et al. [2006].

Exercises

6.1. This problem concerns using numerical methods to calculate the integral

I= /12 In(x)dz.

Note that the exact value is, I = 24/2 — 1.

(a) Using the composite trapezoidal rule, and 4 subintervals, find an approx-
imate value for the integral. What is the error?

(b) Using the composite Simpson’s rule, and 4 subintervals, find an approx-
imate value for the integral. What is the error?

(c) Using the composite Hermite rule, and 4 subintervals, find an approxi-
mate value for the integral. What is the error?
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zr 0 2 4 6 8
F 0 1 5 17 37
Table 6.9 Values for Exercise 6.3.

(d) Using the composite trapezoidal rule, how small does the step size h have
to be to guarantee that the numerical error is less than 1077

(e) Using the composite Simpson’s rule, how small does the step size h have
to be to guarantee that the numerical error is less than 10767

(f) Using the composite Hermite rule, how small does the step size h have
to be to guarantee that the numerical error is less than 10767

6.2. This problem concerns using numerical methods to calculate the integral

1
I:/ e 2% dx.
—1

Note that the exact value is, I = (e? — e2)/2.

(a) Using the composite trapezoidal rule, and 4 subintervals, find an approx-
imate value for the integral. What is the error?

(b) Using the composite Simpson’s rule, and 4 subintervals, find an approx-
imate value for the integral. What is the error?

(¢) Using the composite Hermite rule, and 4 subintervals, find an approxi-
mate value for the integral. What is the error?

(d) Using the composite trapezoidal rule, how small does the step size h have
to be to guarantee that the numerical error is less than 10767

(e) Using the composite Simpson’s rule, how small does the step size h have
to be to guarantee that the numerical error is less than 1077

(f) Using the composite Hermite rule, how small does the step size h have
to be to guarantee that the numerical error is less than 10767

6.3. The measured values of a force F(x) as a function of the displacement
are given in Table 6.9. The object of this exercise is to calculate the work W.

(a) Use the trapezoidal rule to find the value of W(x) at z = 2,4,6,8. You
can assume that W(0) = 0.

(b) Use the composite midpoint rule to calculate W(8).

(c) Use the composite Simpson rule to calculate W (8).

(d) Use Romberg integration with the composite trapezoidal rule to
calculate W (8).

6.4. For a linearly elastic material, the stress T'(z) is given as

T=F
dz’
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where u(z) is the displacement of the material and F is a positive constant
known as the Young’s modulus. The question considered here is, how to
determine u from measurements of 7', as given in Table 6.10.

(a) Show that

u(z) = u(0) + ; /OI T(s)ds.

In the following you can assume that 4(0) = 0 and E = 4.

(b) Use the trapezoidal rule to find the value of u(x) at = 1/4,1/2,3/4,1.

(c) Use the composite midpoint rule to calculate u(1).

(d) Use the composite Simpson rule to calculate u(1).

(e) Use Romberg integration with the composite trapezoidal rule to
calculate u(1).

6.5. True or False. In the following a claim is made about the value of the
integral. Using one of the integration rules considered in this chapter provide
a compelling reason why you believe the value is correct or why it is an error.
Make sure to explain which integration method you used, including the error
condition(s).

(a)

/2 s 2 1
/ T = I3 +2v2)
o sinz+cosx 24/2

(b) P
/ 1 de = " /3
o

cos? z + 3sin? z)3 12

/1 tan_l(\/2+x2)d 570
€Xr =
o (14 22)v2+ a2 96

/”/2 1 cos i 5>
cos x =
0 14+ 2cosz 24

/1x””3d:v—1— PR
o 42 0 104 135

()

6.6. The second, f”(z), and fourth, " (z), derivatives of a function f(x) are
plotted in Figure 6.17. This question concerns evaluating f03 f(z)dz.

z 0 1/4 1/2 3/4 1
T 1 -1 2 3 4
Table 6.10 Values for Exercise 6.4.
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(a) How large must n be to guarantee the error using the composite trape-
zoidal rule is less than 10787

(b) How large must n be to guarantee the error using the composite Simpson
rule is less than 10787

6.7. This problem considers how well the integration methods do when ap-
plied to a periodic function. The particular integral is

1
/ sin(27x)dzx.
0

(a) What is the exact value?

(b) Determine (by hand) the value of I when n = 3,4,5,6. For each n,
sketch sin(27z), and the corresponding piecewise linear approximation
used in the trapezoidal method, and use this to explain why the method
works as well as it does.

(c) Determine (by hand) the value of Ij; when n = 3,4,5,6. For each n,
sketch sin(27z), and the corresponding piecewise constant approximation
used in the midpoint method, and use this to explain why the method
works as well as it does.

6.8. The error function is defined as

erf(x) = \/27T/0 e 5 ds.

(a) Suppose the composite trapezoidal rule is used to evaluate erf(2).
According to Theorem 6.2, what value for h is needed so that the error
is no more than 1076,

(b) Using MATLAB and the composite trapezoidal rule, find a value of h
so the computed error is approximately 1076, and explain the difference
between this value and the one found in part (a). Also, note that erf(2) =
0.995322265 - - -

— — Second
—— Fourth |

y-axis

|
0 0.5 1 1.5 2 25 3
X-axis

Figure 6.17 Graph used in Exercise 6.6.
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n Method 1 Method 2 Method 3 Method 4

1.002780193 0.650243328 1.016909995 1.168601449
10 1.000180902 0.909422388 1.001089055 1.044881435
20 1.000011420 0.977151912 1.000068578 1.011398343
40 1.000000716 0.994275128 1.000004294 1.002860826
80 1.000000045 0.998567977 1.000000269 1.000715911
160 1.000000003 0.999641944 1.000000017 1.000179022

Table 6.11 Values for Exercise 6.10.

(¢) Redo part (a) but use the composite Simpson rule. Note that it will help
if you plot f""(s).

(d) Redo part (b) but use the composite Simpson rule (and compare with
the answer from part (c)).

6.9. Letting P(t) be the population of a country at time ¢t (measured in
years), consider the integral
2010
/ P(t)dt.
1

930

It is assumed that P(t) is known at 1930, 1940, - - -, 2010 (as an example, the

values for the USA are given in Table 5.7).

(a) Use the composite midpoint rule to evaluate the integral.

(b) Use the composite trapezoidal rule to evaluate the integral.

(c) Use the composite Simpson rule to evaluate the integral.

(d) Use Romberg integration with the composite midpoint rule to evaluate
the integral.

6.10. For a given function f(z), four of the composite integration rules listed
in Table C.2, in Appendix C, were used to compute

/0 1 F(z)dz.

The computed values are given in Table 6.11 as a function of the number n of
subintervals used. Determine the name of each of the four methods, making
sure to explain your reasoning.

6.11. According to Planck’s law of blackbody radiation, the spectral energy
density is
8mhe

Ed()\) = )\5(60‘/)‘ _ 1) )
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where ) is the wavelength and o = he/(kgT'). Also, T is absolute tempera-
ture, kp is the Boltzmann constant, h is Planck’s constant, and c is the speed
of light. The energy emitted in the wavelength band A\; < A < Ay is

A2
EQu ) = [ Ea(\dx
A1

In this problem assume 7" = 7000 K, so that & = 2 um. Note that in this case

the wavelength A is measured in pm.

(a) Plot E4(\) for 0.01 < X < 4.

(b) Using the composite Simpson’s rule, calculate £(0.01,0.4). Your answer
should be correct to at least six significant digits.

6.12. Find the area of the region enclosed by the curve z* 4+ 2y* = 1. Make
sure to state which integration method you used, what integral it was used
to evaluate, and how you selected your error tolerance.

6.13. Find the arc length of the curve (z,y) = (t5,3), for 0 <t < 4. Make
sure to state which integration method you used, what integral it was used
to evaluate, and how you selected your error tolerance.

6.14. The Mooney-Rivlin law, often used for elastic polymers, states that the
stress T'(z) in a material is given as

=)

where A, known as the stretch, is given as

A=1+ g

The function wu(z) is the displacement of the material, and « and 3 are
positive constants. The objective of this exercise is, for a material which
occupies the interval 0 < x < £, to determine u from measured (known)
values of T'. This will be done by first finding A from 7', and then determining
u from A. Also, note that the stretch is positive.

(a) Write down an algorithm that uses either Newton’s method or the secant

method, for finding the value of A for a given value of T.
(b) Show that

u(z) = u(0) —x + /01 A(s)ds.

(¢) Suppose the interval 0 < x < ¢ contains n equally spaced points z;, where
x1 = 0 and x,, = £. Also, suppose that the value of \ is known at each of
these points, and designate these values as A;, for ¢ = 1,2,---  n. Write
down an algorithm that uses the trapezoidal rule, which can be used to
determine the wu; values from the \; values.
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(d) Suppose that the values for the T;’s are given as
Ti = 2?[a(l + 22) + B](2 + 22) /(1 + 22)?, fori=1,2,--- ,n.

Using your algorithms from parts (a) and (c), compute the u;’s in the
case of when n = 20 and ¢ = 1, and then plot the values (z;,u;). In this
calculation assume that u(0) = 0, and take a = 20 and 8 = 10, which
are typical values for an elastomer.

(e) Note that the exact solution at © = 1 is u = 1/3. For your algorithm
in part (d), what value for n do you need to take so the error in your
computed answer at = 1 is no more than 1076?

6.15. The position y(t), velocity v(t), and acceleration a(t) are related
through the equations: a(t) = v/(¢) and v(¢t) = ¥/(¢). In this problem it is
assumed that v(0) = 0 and y(0) = 0. In this case,

v(t) = /Ot a(r)dr and y(t) = /Otv(r)dr.

It is also assumed that a(t) is known, and the objective of this exercise is to
compute the velocity and position from this information.

(a) Given a subinterval ¢; < t < t;41, then a; = a(t;) and a;41 = a(tit1)
are known. Assuming v; and y; have already been computed, use the
trapezoidal rule to obtain the following expressions

1
Vit+1 = U; + 2h(ai + ait1),

and )
Yi+1 = Yi + 2h(vi + Vig1).

(b) Suppose the interval 0 < ¢ < 3 is subdivided into n equally spaced
subintervals. So, ¢; = (i — 1)h, where i = 1,2,3,--- ,n+ 1 and h = 3/n.
Assuming that a(t) = sin(t*), plot y as a function of ¢, for n = 10, 20, 40.
The three curves should be on the same axis.

(c¢) An accurately computed value for the position at ¢ = 3 is y(3) =
0.72732289075 . .... What is the difference between this value and what
you compute for y(3) at n = 10,20,407 How large does n need to be
so that this value and what you compute for y(3) is less than 107% in
absolute value?

6.16. This problem considers a way to compute velocity and position that
differs from the one considered in Exercise 6.15. You will find that the value
of n in part (c) is a factor of about 0.07 smaller than the corresponding value
from Exercise 6.15(c).

(a) Suppose the interval 0 < ¢ < 3 is subdivided into n equally spaced subin-
tervals. So, t; = (¢ — 1)h, where i = 1,2,3,--- ,n+ 1 and h = 3/n.
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Explain how the Hermite rule can be used to obtain the following

expressions
— 1h 1 h2 / /
Vit1 = V; + 9 (ai +aip1) + 19 (@ — a;q)
and 1
Yi+1 = Yi + 2h(vi +vit1) + 12h2(ai —ait1)

(b) Assuming that a(t) = sin(¢*), plot, on the same axis, y as a function of
t, for n = 10, 20, 40.

(c¢) An accurately computed value for the position at ¢ = 3 is y(3) =
0.72732289075 . .... What is the difference between this value and what
you compute for y(3) at n = 10,20,407 How large does n need to be
so that this value and what you compute for y(3) is less than 1078 in
absolute value?

6.17. In this exercise you are to evaluate

/0 o

where y(t) is determined by solving y +t = e~ Y.

(a) Pick one of the numerical integration methods in Table C.2 and explain
how it can be used to evaluate the integral. Also explain why you picked
the particular integration rule.

(b) Evaluate the integral and also explain how you determined the number
of subintervals to use. Make sure to turn in your m-file for this.

6.18. This exercise explores some connections between Simpson’s rule and
some of the other methods that were derived. In this exercise, I(n) designates
a composite rule that uses n subintervals. Assume here that n is even.

(a) Show that Is(n) = 3Ir(n) + 31 (n/2).

(b) Show that Is(n) = 3Ir(n) — 3 I7(n/2).

6.19. Occasionally you will see someone try to adjust their data in an attempt
to use Simpson’s rule. To explain, the goal is to evaluate the integral

Assume that the value of f(z) is known at x;_; and z;11 but not at z;. The

question is, can you use the data to find an approximation for f(x;) that will

enable you to use Simpson’s rule, and in the process get a better result than

you would get using the trapezoidal rule?

(a) What approximation of the integral is obtained using the trapezoidal
rule?
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(b) One possibility for approximating f(x;) is to use piecewise linear inter-
polation using the two data points (z;—-1, fi—1) and (211, fi+1). Doing
this, and inserting the resulting approximation for f; into Simpson’s rule,
what results? How does this differ from your answer in part (a)?

(c) Suppose one just assumes that there are constants A and B so that
fi=Afi—1+ Bfit1. With this, Simpson’s rule reduces to an integration
rule of the form

Tit1
/ f(x)dz = wy fi—1 + wa fiya.
Ti-1

What do w; and ws have to be to maximize the precision? How does this
differ from your answer in part (a)?

6.20. In this exercise Romberg rules are derived. Assume that I(n) is an

integration rule that uses n subintervals and h is the corresponding width of

each subinterval.

(a) It is known that the error term for the composite Simpson’s rule involves
even powers of h. In particular,

b
/ f(z)dz = Is(n) + ah® + SRS + yh® +
Show that the integration rule

In= 11 _ [1675(2n) — Is(n)]

has an error that is O(hS).
(b) Suppose

/f I(n) + ah?® + Bh3 + vh* +

Show that the integration rule

In= 211 321 (4n) — 121(2n) + I(n)]

has an error that is O(h?).
(¢) Suppose

/f I(n) + ah® 4 Bh® 4+ yh* +

Show that the integration rule

Ir = 27I(3n) — 161(2n) 4+ I(n)]

12[

has an error that is O(h?).
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6.21. Suppose the integration rule has the form

/mi+1 f(x)dr ~ wy f(z;) + w2 f(2)

7

This is an example of what is called Radau quadrature, or Gauss-Radau

quadrature, which means that one, and only one, of the points used is an

endpoint.

(a) Find the values of wy, wa, and z that maximize the precision. [Hint: let
z = x; + ah and find o]

(b) The error is known to have the form

/ U f@)de = w fla) +waf(2) + KR ()

where, as usual, 7 is a point somewhere in the interval [x;, 2;11]. Find K.
6.22. The purpose of this exercise is to use the idea of precision to derive the
error formula for Simpson’s rule.

(a) Using the formulas in Table 6.5, show that Simpson’s rule has precision 3.
(b) Use f(x) = 2* to derive the formula for the error for Simpson’s rule.

6.23. Suppose the integration rule has the form

/Ii+1 f(@)de =~ wi f(z1) + bif' (wr)

(a) Find the values of w1, 21, b1, and w; that maximize the precision. [Hint:
let z = x; + ah and find «]

(b) The error is known to have the form

/ i+1 flx)dz = wy f(xi) + bif (wi) + Kh* " (1)

where, as usual, 7 is a point somewhere in the interval [z;, z;41]. Find K.

6.24. This problem considers what is known as Lobatto quadrature, or
Gauss-Lobatto quadrature. It differs from Gaussian quadrature in that it as-
sumes that the integration rule includes both endpoints, and possibly other
points within the interval.
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(a) The assumed form using two points is

/Ii+1 f(x)dr = wy f(z;) +wa f(wig1).

k3

Find the values of w; and wy that maximize the precision.
(b) The assumed form using three points is

/_ h f(x)dz = wi f(z:) + wa f(2) + ws f(wig1)-

Find the values of wy, wy, ws, and z that maximize the precision.

(¢) The assumed form using four points is

/v h f(@)dz = wi f(z:) + waf(21) + w3 f(22) + waf(Tis1).

Show that the values of wi, ws, ws, wyg, 21, and 2o that maximize the
precision are: w; = wy = h/12, we = wy = 5h/12, and ¢ = h/(2V/5).
In deriving this result you can assume that z; = z; + ;h —qand z9 =
T; + éh + g. Also note that the error has the same form as given in
Theorem 6.5, but K = —1/1,512,000 and m = 5 (you do not need to
show this).

6.25. Suppose you want to determine how well a function g(x) approximates
another function f(x), over an interval a < z < b. One way to do this is to
calculate the area of the region between them, which is determined by the
value of the integral

b
A= [ 1) - gw)lda.

To compute an approximate value of this, you can use n + 1 equally spaced
points over the interval, with 1 = a and x,4+1 = b. Letting f and g be the
vectors determined from the n + 1 values of f(x) and g(z) at these points,
show that

Ax T gl [15(a)  gla)| + 1F2) — 9] ).



Chapter 7
Initial Value Problems

In this chapter we derive numerical methods to solve the first-order differential
equation
dy

g ft,y), for 0<t, (7.1)

where
y(0) = a. (7.2)

This is known as an initial value problem (IVP), and it consists of the dif-
ferential equation (7.1) along with the initial condition in (7.2). Numerical
methods for solving this problem are first derived for the case of when there is
one differential equation. Afterwards, the methods are extended to problems
involving multiple equations.

It is of interest to know that several of the methods derived in this chapter
are summarized in Appendix C, Table C.4.

7.1 Examples of IVPs

7.1.1 Radioactive Decay

According to the law of radioactive decay, the mass of a radioactive substance
decays at a rate that is proportional to the amount present. To express this
in mathematical terms, let y(t) designate the amount present at time ¢. In
this case the decay law can be expressed as

d
- —ry, for 0<t. (7.3)
dt
(© Springer International Publishing Switzerland 2016 275
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If we start out with an amount « of the substance then the corresponding
initial condition is

y(0) = a. (7.4)
In the decay law (7.3), r is the proportionally constant and it is assumed to
be positive. Because f(t,y) = —ry is a linear function of y the IVP is said to

be linear. One consequence of this is that it is possible to find the solution
using an integrating factor or using the method of separation of variables.
What one finds is

y(t) = ae™ . (7.5)

Consequently, the solution starts at a and decays exponentially to zero as
time increases.

To put a slightly different spin on this, recall that y =Y is a steady-state
solution of (7.1) if it is constant and satisfies f(¢,Y) = 0. Also, a steady-state
Y is stable if any solution that starts near Y stays near it. If, in addition,
initial conditions starting near Y actually result in the solution converging
to Y as t — oo, then y = Y is said to be asymptotically stable. With the
solution in (7.5) we conclude that y = 0 is an asymptotically stable steady-
state solution for (7.3).

7.1.2 Logistic Equation

In the study of populations limited by the supply of food, one obtains the
logistic equation, which is

dy

P ry(l1 —y), for 0<t, (7.6)

where
y(0) = a. (7.7)

It is assumed that r and « are positive. For this problem, f(¢,y) = ry — ry?
is a nonlinear function of y and therefore the IVP is nonlinear. It is possible
to find the solution using separation of variables, and the result is

«

0= 1 e (7.8)

Also, the steady-state solutions for this equation are the constants that satisfy
ry(l —y) = 0, which means that y = 1 or y = 0. Because r > 0, the
solution in (7.8) approaches y = 1 as ¢ increases. Consequently, y = 1 is an
asymptotically stable steady-state solution, whereas y = 0 is not.
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7.2 Numerical Differentiation

There are many ways to solve an IVP like the one in (7.1), (7.2) and we
will begin with the direct approach. This means we will need to be able to
compute the derivative. So, before attempting to solve the IVP we need to
derive formulas for calculating derivatives.

Just as with integration, the definition of a derivative from calculus is the
starting point for our approximations. Although there are different ways to
state the definition, the one used here is the following:

Consequently, for small values of k, we have the approximation

o Yt + k) —y(t)
y'(t) = 1 -

As will be explained in more detail later, we will compute the solution of
the IVP at equally spaced time points tg,%1,t2,...,ts, where t; = jk, for
7 =0,1,2,..., M. With this, the above approximation can be written as

)~ YR —ylts)

/
t.
y(] k

To be useful as a computing tool, it is essential to know the error for this
approximation. For this we rely, as usual, on Taylor’s theorem. Given that

1
y(t; + k) = y(t;) + ky'(t;) + 2/€2y"(tj) 4+

then
y(t;+k) —y(ty) _ ly(ty) +ky'(t) + 2k (85) + -] = u(ty)
k k
_ Ry () + ok () +
B k

1
=y (t) + (1)

In other words,

t. — y(t:
y/(tj) _ y( J+1)k y( ]) —I—Tj, (7'9)
where )
T :—2ky//(tj)+"' . (710)

Note that 7; is the called the truncation error, and because it is O(k), the
resulting approximation is first-order. The expression in (7.9) is listed in
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Table 7.1 as a forward-difference formula. It is forward because it uses in-
formation at a future time, t;11, to construct the approximation. Also the
formula for 7; in the table looks different than the one given in (7.10). They
are equivalent in the sense that the one in the table comes from the remainder
term in Taylor’s theorem, while (7.10) is the series expansion for 7;.

A criticism of (7.9) is that it is only first-order, and we are interested in
having higher-order approximations. To do this, note that (7.9) uses ¢; and
t;+1 to obtain the approximation. In what follows, we will investigate how it
is possible to find approximations that use other time points. For example,
we will look to see if it is possible to find an approximation that uses t;_; and
tj+1. One outcome of this is that we will find higher-order approximations
for the derivative, as well as approximations for the other derivatives of y(t).

7.2.1 Using tji2, tj11, and t;

The assumption is that we can find A, B, and C so that
y'(t;) = Ay(tj2) + By(tj+1) + Cy(ty).
Using Taylor’s theorem,
y(tjr2) = y(t; + 2k)
=y(t;) + 2ky'(t;) + 2Ky (t;) + §k3y’”(tj) 4+ (7.11)

Also, we know that

1 1
y(tjr) = ylty) + ky'(t;) + 2/€2y"(tj) + Gkgyl'/(fj) LR (7.12)

This means, we want
y'(tj) = Ay(tjt2) + By(tj+1) + Cy(t;)

4
=A {y(tj) +2ky' () + 2k>y" (t;) + 3/€3y'"(fj) + - ]

B0t + 1 1) + R 1) + R e) + -] + Oute)
= (A4 B+ Q)y(t;) + (2A+ B)ky'(t)

1 1
+ (A4 BIRY () + ((BA+ B (1)) +---. (7.13)

This is suppose to hold for any (smooth) function y(t), which means that A,
B, and C' do not depend on y. Consequently, equating the left and right sides
we conclude that
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A+B+C=0,
(24 + B)k = 1.

The error in the resulting approximation is given in (7.13). Given that we
have three unknowns, we are able to impose one more condition. With the
goal of achieving the best error possible we will remove the O(k?) term, and
this means that

4A+ B =0.

Solving the resulting three equations one finds that A = —1/(2k), B = 2/k,
and C = —3/(2k). Therefore, our approximation is

J(t) = —y(tj+2) + 4y2(]:j+1) —3y(ty) | - (7.14)

where
1
Ty == Ry E)

This is listed in Table 7.1 as a one-sided difference formula, because of where
the time points are located. It is also an example of a forward difference
formula.

7.2.2 Using tj;1 and t;_4

This means, we want
y'(t;) = Ay(tje1) + By(tj-1)
= AUt + B 0+ ) + R )
+B {y(tj) — ky/(t;) + ;ka”(tj) - ék%”’(tj) +- }
= (A+ B)y(t;) + (A = B)ky'(t))
+ ;(A + B)k*y"(t;) + é(A — B)E* " (t;) + - . (7.15)
Equating the left and right sides we conclude that

A+B=0,
(A—B)k = 1.

Solving the resulting two equations one finds that A = 1/(2k) and B = —2/k.
Therefore, our approximation is

y/(tj) _ y(tj+1)2_ky(tj*1) + 75 (716)
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where )
T = —6k2y”’(tj)+~~. (7.17)

This is listed in Table 7.1 as a centered difference formula. It is centered
because it uses time points that are symmetrically placed around ¢;. Also, it
produces a second-order approximation because the error is O(k?).

Example

Suppose y(t) = v/t, and we use the above formulas to calculate 3/(1). Taking
t; =1 and tj41 = 1 £ k then the forward approximation is

y'(1) ~ y(tj+1)k_ y(tj) _ V1 +kk -1 : (7.18)

and the centered approximation is

y(1) ~ y(tj+1)2—ky(tj71) _ Vit k2_k\/1 —k (7.19)

The exact value is y'(1) = é, and the computed values obtained from the

above two approximations are shown in Figure 7.1 for decreasing values of k.

0.75
o
2 05}
T
2
B
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100 —e—¢ T T . 1
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1

1020 1071 10710 10° 10°
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Figure 7.1 Upper graph: Values obtained from (7.18) and (7.19) for y’(1) = ; when
y(t) = V/t. Lower graph: Error in each approximation.
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In the upper graph, both look to be doing well down to about k = 10~'# but
show problems at k = 1071°. To examine this, the error for (7.18) is

Vi+k—1
yl(l)_ k )

with a similar error formula for (7.19). The values of these errors are shown in
the lower graph in Figure 7.1. According to (7.10), the error for (7.18) should
decrease as O(k), while from (7.17) the error for (7.19) should decrease as
O(k?). Starting at k = 1, they both behave as expected. Namely, the error
in the forward approximation (7.18) decreases as a first-order method should
(i.e., decreasing k by a factor of 10 decreases the error by the same factor)
and the centered approximation decreases as a second-order method should.
However, for both approximations, there is a value for & where the error
starts to increase, and continues to increase (mostly) for smaller values of
k. As explained in Section 7.7, this is due to round-off. This is a common
problem with numerical differentiation, and it limits the usefulness of these
formulas. There are ways to avoid this, and one possibility is to rewrite the
formula. As an example, one can rewrite (7.19) as

1

v~ Vit k+V1-k

Unfortunately, it is not possible to do this in the general case. Another possi-
bility is to use a complex valued time step, something called a complex Taylor
series expansion, and this will be explained in Section 7.7. However, in the
end, with numerical differentiation and solving IVPs, we are stuck with the
situation shown in Figure 7.1. This gives rise to what is known as the optimal
step size, which is the step size where the error is minimized. It is possible,
using the ideas discussed in Section 1.4, to derive formulas for the optimal
step size, but they are not really needed when solving IVPs. The reason is
that the better IVP solvers do not usually require very small values of k& to
produce accurate solutions of an IVP. B

7.2.3 Higher Derivatives

It is relatively easy to use the procedure to derive approximations for higher
derivatives. For example, if you intend on using t;41, t;, and t;_; to obtain
an approximation for y”(¢;), then
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y"(t;) = Ay(tj1) + By(t;) + Cy(tj-1)
= (A4 B+ Clylts) + (A~ O)ky/ (1) + (A + Ry (1)
+ é(A - Oy (t;) + 214 (A+ OV (tj) + -
Equating the left and right sides we conclude that
A+B+C=0,
A-C=0,
;(A +O)k? = 1.

Solving these, one obtains

o (t) = y(ti+1) = 2y(t;) +y(tj-1)

12 + 75, (7.20)

where .
T R2yM (g
Tj 12 y"( J) +

This is listed in Table 7.1 as a centered difference approximation.

Type Difference Approximation Truncation Term

Forward y'(t;) ~ ul ]-HL y(ts) Tj = _éky”(nj)

() —y(t-1)

Backward  ¢/(t;) 4 5 = oky" (1)
Centered  y'(t;) =~ y(thrl)Q_ky(tjil) T = —ékzy”’(nj)
One-sided 3//(t;) ~ _y(tj+2)+4gégj +1)=3y(ty) = k%" (1)
One-sided ¥/(t;) ~ 3y(tj)_4y(t2j,;1)+y(tj_2) = 3k (1)

ti+1)—2y(t;)+y(tj-
Centered  y"(t;) =~ y(tj+1) y]g(2j)+y( j—1)

— 1 7.2, 1
Tj = _12k Y (77j)
Table 7.1 Numerical differentiation formulas. The exact relationships between the
approximation and the derivative are illustrated in (7.9), (7.14), (7.16), and (7.20).
Also, these formulas assume equally spaced points with step size k = t; 41 — t;, and
the point 7; is located between the left- and rightmost points used in the formula.
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7.2.4 Interpolation

It is possible to use some of the interpolation methods from Chapter 5 to
produce approximations for the derivative of a function. For example, the
forward and backward difference approximations can be obtained by differ-
entiating the formula for piecewise linear interpolation (5.9). Similarly, the
centered difference approximation as well as the one for y”(¢;) can be de-
rived from the piecewise quadratic interpolation formula (see Exercise 5.24).
The drawback with this approach is that the corresponding error formulas
do not, necessarily, come from differentiating the interpolation error given in
Theorem 5.2. Why this is the case, and how to determine the appropriate
error formulas, is discussed in Siili and Mayers [2003]. The exception to this
occurs with cubic splines, and this is explained in Section 5.5.3.

7.3 IVP Methods Using Numerical Differentiation

The task we now undertake is to approximate the differential equation, and
its accompanying initial condition, with a problem we can solve using a com-
puter. To explain how this is done, consider the problem of solving

dy

g ft,y), for 0<t, (7.21)

where
y(0) = a. (7.22)

The function f(t,y) is assumed to be given. For example, with radioactive
decay f(t,y) = —ry and for the logistic problem f(¢,y) = ry(1 — y). The
question is, can we accurately compute the solution directly from the problem
without first finding an analytical solution? As it turns out, most realistic
mathematical models of physical and biological systems cannot be solved by
hand, so having the ability to find accurate numerical solutions directly from
the original equations is an invaluable tool.

7.3.1 The Five Steps

To explain how we will construct a numerical algorithm that can be used to
solve (7.21) it should be noted that the variables in this problem, ¢ and y,
are continuous. Our objective is to replace these with discrete variables so
that the resulting problem is algebraic and therefore solvable using standard
numerical methods. Great care must be taken in making this replacement,
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———————————>
t

Figure 7.2 Grid system used to derive a finite difference approximation of the initial
value problem. The points are equally spaced and tpr = T'.

because the computed solution must accurately approximate the solution of
the original IVP. The approach we take proceeds in a sequence of five steps.

One point to make before beginning is that the computer cannot run
forever. Therefore, it is necessary to specify the time interval 0 < ¢ < T over
which the solution will be computed.

Step 1: Grid

We first introduce the time points at which we will compute the solution.
These points are labeled sequentially as tg,t1,t2,...,tp and a schematic
drawing indicating their location along the time axis is shown in Figure 7.2.
We confine our attention to a uniform grid with step size k, so, the formula
for the time points is

t; =jk, for j=0,1,2,..., M. (7.23)

Because the time interval is 0 < ¢t < T, we require tj; = T. Therefore, £ and
M are connected through the equation

k= (7.24)

T
M
Step 2: Evaluation

Evaluate the differential equation at the time point ¢ = ¢; to obtain

Y (t5) = f(tjy(ty)). (7.25)
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Step 3: Finite Difference Formula

Replace the derivative term in STEP 2 with a finite difference formula using
the values of y at one or more of the grid points in a neighborhood of ¢;. This
is where things get a bit interesting, because numerous choices can be made,
a few of which are listed in Table 7.1. Different choices result in different
numerical procedures, and as it turns out, not all choices will work. To start,
we take the first entry listed in the table, which means we use the following
expression for the first derivative:

y/(t_]) — y( J"l‘l)k y( ]) + Tj7 (726)
where %
7= = oy () (7.27)

and 7; is a point between t; and ¢;41. Introducing this into (7.25) we obtain

y(tiv1) — y(ty)

k +75 = f(t5,9(t5)), (7.28)

or equivalently,
y(tjea) —y(ty) + k= kf (45, y(t5))- (7.29)

An important point to make here concerns the term 7;. As it appears in (7.28),
7; represents how well we have approximated the differential equation. For
this reason it is the truncation error for the method, and from (7.27) it is
seen that it is O(k). It is essential that whatever approximations we use,
the truncation error goes to zero as k goes to zero. This means that, at
least in theory, we can approximate the original problem as accurately as we
wish by making the time step k small enough. It is said in this case that
the approximation is consistent. Unfortunately, as we demonstrate shortly,
consistency is not enough to guarantee an accurate numerical solution.

Step 4: Finite Difference Approximation

Drop the term containing the truncation error. This is the step where we go
from an exact problem to one that is, hopefully, an accurate approximation
of the original. After dropping 7; in (7.29) the resulting equation is

Yit1 — Y = kf(t5,y5) (7.30)
or equivalently,

Yi+1 = Y5 + kf(tj,yj), for j7=0,1,2,...,. M — 1. (731)
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From the initial condition (7.22) we have that the starting value is
Yo = Q. (7.32)

The finite difference equation (7.31) is known as Fuler’s method for solving
(7.21). It is a recursive algorithm in which one starts with j = 0 and then uses
(7.31) to determine the solution at j = 1, then j = 2, then j = 3, etc. Because
(7.31) gives the unknown y;41 explicitly in terms of known quantities, it is
an explicit method.

Example

Let’s see how well Euler’s method does with the logistic equation (7.6). Specif-
ically, suppose the IVP is

dy

dt 10y(1 —y), for 0<t, (7.33)

where
y(0) = 0.01. (7.34)

We will use the Euler method to calculate the solution for 0 < ¢ < 1. In this
case, using (7.24), k and M are connected through the equation

1
k=, (7.35)

For this example, the finite difference equation in (7.31) takes the form

~OCE
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Figure 7.3 Solution of the logistic equation (7.33) using the Euler method (7.36) for
three values of M. Also shown is the exact solution. The symbols are the computed
values, and the dashed lines are drawn by the plotting program simply to connect
the values.
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it yty) Yj Y; y(t) -y ¥ —Y;

0 0 5 100 0.01 0 0

1l (1+99e73/3)7h 58 2.6500e—02 2.43e—02 —3.47e—18
2 L (1+99e-10/3)Th  ssser 6.9496e—02 1.5le—01 —1.39e—17
31 (1+99%75)7! ey 1.TT27e—01  4.23e—01  —2.78e—17

Table 7.2 The first few time steps in solving the logistic equation (7.33) using the
Euler method. Note that y(t;) is the exact solution of logistic equation, y; is the
exact value from (7.36), and y; is the computed value from (7.36).

yj+1 :yj—l—l()kyj(l—yj), fOI‘ j:O,1,2,...,M—1. (736)

Taking M = 6, so k = é, the first few steps using the Euler method are
shown in Table 7.2. For a more graphical picture of the situation, the exact
solution, given in (7.8), and the computed solutions, are shown in Figure 7.3
using successively smaller values of the time step k£ or, equivalently, larger
values of M. It is seen that the numerical solution with M = 4 is not so
good, but the situation improves considerably as more time points are used.
In fact, it would appear that if we keep increasing the number of time points
that the numerical solution converges to the exact solution. B

Step 5: Stability

For a finite difference method to work, two requirements must be satisfied.
One is that the approximation is consistent. This was mentioned in Step
3 and will be discussed again later. The second requirement is that it is
stable, which means, roughly, that the approximation produces a solution
with properties similar to those of the exact solution. As an example, the
simplest IVP is ¢ = 0, where y(0) = 1, and the exact solution is y = 1. The
requirement for what is known as 0O-stability is that the numerical method
applied to ¥’ = 0 produces a solution that is at least bounded. There is a
stronger form of stability, which is more useful for many of the problems
which arise in applications, and it is known as A-stability. This is determined
by using the method to solve the radioactive decay equation

dy

g =Y (7.37)
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where
y(0) = 1. (7.38)

The exact solution is y(t) = e~ ", and, assuming that r > 0, this function

approaches zero as t increases. It is required that the solution y; of the finite
difference problem also approaches zero, and this is the basis for the following
definition:

Definition 7.1. If a numerical method, when applied to (7.37) and (7.38),
produces a solution with the property that y; — 0 as j — oo, irrespective
of the (positive) value of r and k, then the method is said to be A-stable. If
the zero limit occurs only when k is small (with & and r positive), then the
method is conditionally A-stable. Otherwise, the method is unstable.

Let’s apply this definition to Euler’s method. For the equation in (7.37),
Euler’s method (7.31) reduces to y;4+1 = (1 — rk)y;. This can be written as

Yj+1 = KYj,

where k = 1 — rk is called the amplification factor for Euler’s method. The
above equation arises for many of the methods we will consider, and this
means that the following result will be useful:

Theorem 7.1. If yo = 1 then the solution of
Yiji+1 = RYjy, fO’f’j:O,l,27"' ) (739)

is y; = 7. Therefore, y; — 0 as j — oo if and only if the amplification factor
K satisfies || < 1.

The proof of this is straightforward, and is left as an exercise. Since the
amplification factor for Euler’s method is kK = 1 — rk, then according to the
theorem, Euler’s method is A-stable only as long as

1 —rk| < 1.

From this we conclude that the step size must satisfy the condition k < 2/r.
Therefore, the Euler method is conditionally A-stable.

Wonder what an unstable solution might look like? In Figure 7.4, four
solutions of the logistic equation obtained using the Euler method are shown.
The top two graphs show an unstable situation, with the solution growing
with ¢. For example, when kr = 4, the method finds that y(5) ~ —10'8. The
graph at the bottom, where rk = 1, corresponds to a stable case. Comparing
the curves in this lower graph for 0 < t < 1 it is evident that satisfying the
stability condition does not necessarily mean that the error is small.
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Figure 7.4 Solution of the logistic equation (7.33) using the Euler method (7.36)
for four values of kr, where r = 10. Also shown in each graph, with the solid (red)
curve, is the exact solution.

As a final comment, it might be puzzling why the radioactive decay equa-
tion is the arbiter for stability. The reason comes from the desire that if the
differential equation has an asymptotically stable steady-state y = a, then
y = a is also an asymptotically stable steady-state for the approximating
difference equation. Finding a condition that ensures this for the general
problem is not particularly easy, but it is possible to derive a condition for
differential equations of the form y' = g(y). Writing y(t) = a + Y (¢), and us-
ing Taylor’s theorem, one can show that the equation for Y is approximately
Y’ = —rY, where r = ¢’(a). In other words, near y = a, and assuming that
r # 0, the original differential equation can be approximated with the ra-
dioactive decay equation. The requirement of A-stability ensures that the nu-
merical method produces a solution that, like the actual solution, approaches
the steady-state. However, there are situations where A-stability is either not
enough or not relevant. This is why other types of stability have been defined,
and these include L-stability, B-stability, and BN-stability. Those interested
in this should consult Butcher [2008].
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7.3.2 Error

It is essential to examine the requirements needed to guarantee a numerical
IVP solver will work. This, as usual, will require us to consider the error. As
illustrated in Table 7.2, at each time point we have three different solutions,
and they are

y(t;) = exact solution of the IVP at ¢ = t;; (7.40)
y; = exact solution of finite difference equation at t = t;; (7.41)
y; = solution of difference equation at t = t; calculated

by the computer. (7.42)

We are interested in the difference between the exact solution of the IVP and
the values we actually end up computing using our algorithm. Therefore, we
are interested in the error e; = [y(t;) — y;|. To help make it more apparent
what is contributing to the error we rewrite it as follows:

ej = lyt;) —yj +y; —y;l- (7.43)

From this, the error can be considered as coming from the following two
sources:

y(tj) —y;:  This is the approzimation error at t = t;. This corresponds to
the difference between the exact solution of the IVP and the exact solution
of the problem we use as its approximation. As occurs in Table 7.2, this
should be the major contributor to the error until £ is small enough that
this difference gets down to approximately that of the round-off.

yj —y;:  This is the computational error at t = t;. This originates from
round-off when using floating-point calculations to compute the solution,
and if the method is implicit then this also includes the possible iteration
error. The last column of Table 7.2 gives the values of this error for the
first few time points. Getting values of 10~!® or smaller, as occur in this
calculation, is about as good as can be expected using double precision.

The question we are going to ask is, if we increase the number of time
steps in the time interval 0 < ¢t < T, will the error decrease to zero or at
least decrease down to the level of the round-off? We want the answer to
this question to be yes and, moreover, that it is true no matter what choice
we make for T'. If this holds, then the method is convergent. It is possible to
prove that if a method is consistent, and A-stable or conditionally A-stable,
then the method is convergent.

In terms of computing the solution, knowing the method will work is
important, but it is just as important to know how well it works. More
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Figure 7.5 The difference between the exact and computed solutions, as a function
of the number of time steps, M, used in solving the logistic equation (7.33) with the
Euler method (7.36). Shown is the error |y(T) —y,,| at t = 1 as well as the maximum
error as determined using (7.44).

specifically, how does the error decrease as we reduce the time step? This
is illustrated in the next example.

Example

The error ey = |y(T) — yyy| from the Euler method is plotted in Figure 7.5
as a function of the number of time points used to reach T' = 1. It is seen that
the error decreases linearly in the log-log plot in such a way that increasing
M by a factor of 10 decreases the error by the same factor. In other words,
the error decreases as k™, with n = 1. It is not a coincidence that this is the
same order as for the truncation error (7.27). At first glance, because the term
that is neglected in (7.29) is km; = O(k?), one might expect that the error
in Figure 7.5 would decrease as k?. However, k7; is the error we generate at
each time step. To get to T we take M = 1/k time steps so the accumulated
error we generate in getting to 7" is reduced by a factor of k. Therefore, with
a convergent method the order of the truncation error determines the order
of the error. B

We are using the error at ¢ = T to help determine how the approxima-
tion improves as the number of time steps increases. In many applications,
however, one is interested in how well the numerical solution approximates
the solution throughout the entire interval 0 < ¢ < T. For this it is more
appropriate to consider using a vector norm to define the error. For example,
using the maximum norm the error function takes the form

eoo = _max  y(t;) —y;l

1y = ¥l (7.44)
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where y = (y(t())a y(tl)v T ay(tM))T and y = (y07y1a T ayM)T' To indicate
how this differs from the error at t = T, (7.44) is plotted in Figure 7.5 for
the logistic equation example. As expected, e, is larger but its dependence
on M is still O(k).

7.3.3 Additional Difference Methods

The steps used to derive the Fuler method can be employed to obtain a host
of other finite difference approximations. The point in the derivation that
separates one method from another is STEP 3, where one makes a choice
for the difference formula. A few possibilities are given in Table 7.1. It is
interesting to see what sort of numerical methods can be derived using these
expressions, and a couple of the possibilities are discussed below.

Backward Euler

If one uses the backward difference formula in Table 7.1, then in place of
(7.26), we get
y(t;) —y(tj-1)

y'(t;) = f + 75, (7.45)

where %
7= oy (1))- (7.46)

Introducing this into (7.29), we obtain
y(t;) —y(tj—1) + b7y = kf (b5, y(t;))- (7.47)

Dropping the truncation error 7;, the resulting finite difference approxima-
tion is
Y :yj_1+kf(tj,yj), for j=1,2,..., M. (748)

From the initial condition (7.22) we have that the starting value is
Yo = Q. (7.49)

The difference equation in (7.48) is the backward Euler method. It has the
same order of truncation error as the Euler method. However, because of the
f(t;,y;) term this method is implicit. This is both good and bad. It is good
because it helps make the method A-stable (see below). However, it is bad
because it can make finding y; computationally difficult. Unless the problem
is simple enough that the difference equation can be solved by hand, it is
necessary to use something like Newton’s method to solve (7.48), and this
must be done at each time step.
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As for stability (STEP 5), for the radioactive decay equation (7.37) one
finds that (7.48) reduces to (7.39), with the amplification factor

1

ﬁzl—l—rk'

Since || < 1, then from Theorem 7.1, this method is A-stable.

Example

A numerical comparison between backward Euler and some of the other meth-
ods we consider is made in Section 7.4 (see Figure 7.6). The objective of this
example is to explain the difference between explicit and implicit methods,
and this is done by solving

dy 3
= 6y(1 —
g = (=),
where y(0) = 2. Using Euler’s method, which is explicit, the finite difference
equation is

yJ+1:yJ+6kyJ(1_yJ3)a for j2071527"'7
where yg = 2. Assuming k = é, then it is a simple matter to evaluate the
above formula to find that y; = —26. In comparison, using the backward
Euler method (7.48), the finite difference equation is

Y1 =y; + 6ky (1 —yy,), for j=0,1,2,..., (7.50)
where yo = 2. Assuming k = é, then from the above formula we have that

y1 =2+ 2y1(1 —yi).

It is necessary to solve this nonlinear equation to determine y;. Consequently,
a computer program that uses the backward Euler method will have to include
a nonlinear equation solver, like Newton’s method, to compute y;4; from
(7.50). This is true for all implicit methods. As will be explored in some of
the exercises, the stopping error used for the solver has the potential to affect
the accuracy of the computed solution. B

The difference between an explicit and implicit method made in the above
example is important enough that it should be discussed in more detail. In
many applications it is necessary to solve large systems of nonlinear differen-
tial equations. In such cases, implicit methods are avoided if possible because
using a solver like Newton’s method is computationally expensive. The one
advantage implicit methods have is that they usually have better stability
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properties, which means you can use larger step sizes. This is only partially
true because Newton’s method requires an initial guess that is close to the
solution, and this can limit the step size used by an implicit method. To use
an explicit method for these types of problems, the usual choice is to use
an adaptive time step. What this means is that the size of the time step is
adjusted based on the properties of the solution. This allows for small steps
if the solution is undergoing a rapid change, and larger step sizes in regions
where the solution is slowing varying. The trick is to have ways to determine
when this is happening, and those interested in learning about this should
consult Lambert [1991] and Griffiths and Higham [2010]. Nevertheless, there
are problems where implicit methods do play an important role, and they
are referred to as being “stiff.” The key tool for these types of problems is
what are called BDF (backward difference formula) methods, and backward
Euler is an example of such a method. More information about stiff problems
can be found in Hairer and Wanner [2002]. A key component of most stiff
solvers is a way to avoid the direct use of Newton’s method. One way to do
this is to use what are called Newton-Krylov methods, and a review of the
recent work on this can be found in Knoll and Keyes [2004] and Loffeld and
Tokman [2013].

Leapfrog Method

It is natural to expect that a more accurate approximation of the derivative
will improve the accuracy of the computed solution. In looking over Table 7.1,
the centered difference formula would appear to be a good choice for such an
improvement because it has quadratic error (versus linear for the first two
formulas listed). Introducing this into (7.21) we obtain

Y(tj+1) —y(tj—1) + 2kt = 2k f(t;,y(t))), (7.51)

where 7; = O(k?). Dropping the 2k7; term, the resulting finite difference
approximation is

Yir1 = yj—1 +2kf(t;,y;), for j=1,2,...,M —1. (7.52)

This is known as the leapfrog, or explicit midpoint, method. Because this
equation uses information from two previous time steps it is an example of
a two-step method. In contrast, both Euler methods use information from a
single time step back, so they are one-step methods. What this means is that
the initial condition (7.22) is not enough information to get leapfrog started,
because we also need y;. This is a relatively minor inconvenience compared
to the problem this method has with stability. To explain, applying (7.52)
to the radioactive decay equation (7.37) yields y,;41 = y;—1 — 2rky,. This
second-order difference equation can be solved by assuming a solution of the
form y; = s7. By doing this, it is found that the general solution has the form
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yj = aosﬂ_ + ais’, where sy = —kr £ v/1+ k2r2 and ag, a1 are arbitrary
constants. Because |s_| > 1, it is impossible to find a step size k to satisfy
the stability condition. Therefore, the leapfrog method is unstable.

7.3.4 Extensions

The method developed here is easily applied to almost any differential equa-
tion. Basically, the procedure involves evaluating the differential equation at
a generic grid point t;, picking one or more formulas from Table 7.1, and
then writing down the resulting finite difference equation. An illustration of
the procedure is given in the next example.

Example

The Duffing equation is the nonlinear second-order differential equation
y" +y+y* = cos(wt).

Evaluating this at ¢; gives us y”(¢;) +y(t;) +v>(t;) = cos(wt;). There is only
one choice for the second derivative in Table 7.1, and using it we obtain

Yj+1 — 295 T Yj—1

2 +y; + ng = cos(wt;).

The truncation error is O(k?), and so this is a consistent approximation of
the original differential equation. l

So the method provides an easy way to obtain a consistent approximation of
an IVP. By consistent it is meant that the error in the approximation goes to
zero as the step size k approaches zero. However, as we saw with the leapfrog
method, consistently is not enough to guarantee that the method will work.
There is an additional requirement, which is that the method is also stable.
Stability theory for approximating a problem involving something like the
Duffing equation is beyond the scope of this text, and those interested in
learning about this should consult Stuart and Humphries [1998] or Ascher
and Petzold [1998].

7.4 IVP Methods Using Numerical Integration

Another approach to deriving a finite difference approximation of an IVP is
to integrate the differential equation and then use a numerical integration
rule. This is a very useful idea that is best explained by working through an
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example. To get started, a time grid must be introduced, and so STEP 1 is
the same as before. However, STEP 2 and STEP 3 differ from what we did
earlier.

STEP 2. Integrate the differential equation between two time points. We will
take t; and t;41, and so from (7.21) we have

tit1 ( [ZES
/t dz;dt:/t F(t,y(t))dt. (7.53)

3J J

Using the Fundamental Theorem of Calculus we obtain

y(tin) — y(t;) = / " p (). (7.54)

J

STEP 3. Replace the integral in STEP 2 with a finite difference approximation.
There are numerous choices, and they produce different numerical procedures.
A few possibilities are listed in Table 7.3. We will use the trapezoidal rule,
and introducing this into (7.54) yields

W(t50) — (1) = b Fsn,(t0) + F(t,u)] + O, (7.55)

STEP 4. Drop the big-O term. After dropping the O(k?) term in (7.55) the
resulting equation is

k .
yJ+1:yJ+ 2(fj+1+f])7 for ]20517255M_15 (756)

Rule Integration Formula
Right Box f:jﬂ'“ f(x)de = kf(tj 1) + O(k?)

Left Box [/ f(z)dz = kf(t;) + O(k?)

Midpoint  [,**! f(x)dw = 2kf(t;) + % f" ()

Trapezoidal [;"*" f(x)dw = §(f(t;) + f(tjs1) = 5, /" (n))

Simpson [ f(@)dw = E(F(ti1) +4F () + F(t5-1) = ko £ ()

Table 7.3 Numerical integration formulas. The points t¢1,t2,t3,... are equally
spaced with step size k = t;41 — t;. The point 7; is located within the interval
of integration.
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where f; = f(tj,y;). From the initial condition (7.22) we have that the
starting value is
Yo = o (7.57)

The finite difference equation (7.56) is known as the trapezoidal method for
solving (7.21). Because of the f;y1 term this method is implicit, and it is not
hard to show that its amplification factor is

1—rk/2
K= .
14 rk/2

Since |k| < 1, it follows from Theorem 7.1 that the method is A-stable. To
determine the truncation error for the method note that in (7.55) the error at
each time step is O(k?). In taking M time steps to reach ¢t = T the resulting
error is therefore M x O(k3) = O(k?). In other words, the truncation error
is T; = O(k2)

One of the attractive features of the quadrature approach is that it involves
multiple decision points that can be varied to produce different numerical
methods. For example, the integration interval can be changed to, say, t;_1 <
t < tj11 and then Simpson’s rule used on the resulting integral. Another
option is to not use a quadrature rule but instead replace the function f in
the integral in (7.54) with an approximation that can be integrated exactly.
Ideas such as this are explored more fully in Holmes [2007].

Example

We have derived several methods for solving IVPs, including the Euler, back-
ward Fuler, leapfrog, and trapezoidal methods. It is worth taking them out
for a test drive to see how they compare, and the logistic equation (7.6) is a
good candidate for this. The equation that is solved is

d
d‘z = 10y(1 —y), for 0<t, (7.58)

where y(0) = 0.1. As before, we take T' = 1, so the time points are determined
from the expression ¢t; = jk, for j = 0,1,2,...,M and k = 1/M. Because
f(t,y) = 10y(1 — y) our methods reduce to the finite difference equations
listed below:

Euler: yj+1 = y; + 10ky;(1 — y;),
Backward Euler: y;y1 = y; + 10ky41(1 — y,11),
Leapfrog: y;+1 = y;—1 + 20ky;(1 — y;),
Trapezoidal: y;41 = y; + 5k [y; (1 — y;) + yj+1(1 — yj41)] -
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The initial condition is yg = 0.1, and for the leapfrog method it is assumed
that y1 = y(k) (i.e., the exact value at t = t; is used). Just how well these
four expressions do is shown in Figure 7.6 for the case M = 10. The first
thing one notices is just how badly the leapfrog method does (it had to be
given its own graph because it behaves so badly). This is not unexpected,
because we know that the method is not A-stable. The other three solution
curves also behave as expected. In particular, the two Euler methods are
not as accurate as the trapezoidal method and are approximately equal in
how far each differs from the exact solution. To quantify just how accurately
each method does in solving the problem, in Figure 7.7 the error is plotted
as a function of the number of grid points used to reach T. As predicted,
all decrease according to their respective truncation errors. Specifically, the
trapezoidal method decreases as O(k?) and the two Euler methods as O(k).
|

7.5 Runge—Kutta Methods

An extraordinarily successful family of numerical approximations for IVPs
comes under the general classification of Runge-Kutta (RK) methods. The
derivation is based on the following question: is it possible to determine an
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Figure 7.6 Solution of the logistic equation (7.58) using different numerical schemes.
The leapfrog method is shown in the lower plot, and the two Euler schemes and the
trapezoidal method are in the upper graph.
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Figure 7.7 Error at t = 1 as a function of the number of time steps used to solve
the logistic equation (7.58). Each curve decreases as O(k™), where n is determined
from the truncation error for the method.

explicit method for finding y;11 that only uses the value of the solution at ¢;
and has a predetermined truncation error. The secret in getting this to work
is making a good guess as to what such a formula might look like.

7.5.1 RK2

To demonstrate how RK methods are derived, the best one-step explicit
method we have so far is Euler’s method, and this has a truncation error
of O(k). The RK question is, can we find an explicit one-step method that
is O(k?)? We have been able to derive an implicit scheme with this error,
and this is the trapezoidal method (7.56). The reason it is implicit is the
term f(t;41,Yy;+1). Suppose we experiment a little and use Euler’s method
to approximate y;11 in this term with y; +kf;. The resulting finite difference
approximation is

g F@,y5) + f(t5 + K,y + kfj)]-

. (7.59)

Yir1 = Y5+
This is explicit but it is not clear whether it has the desired truncation error.
However, it is useful because it provides insight into what a O(k?) explicit
might look like.
Based on (7.59), the Runge-Kutta assumption for a O(k?) method is that
the difference equation has the form

Yirr = y; + klaf(t;, y;) + bf(t; + ak, y; + Bk f;)]. (7.60)
The constants a, b, a, and 8 are determined from the requirement that the
method has a O(k?) truncation error. Finding their values is fairly straight-
forward but for most RK methods this can be messy and rather tedious.
To explain, the truncation error is determined by how well the difference
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equation approximates the original differential equation. To determine this,
the exact solution y(t) is substituted into (7.60) and then everything is ex-
panded based on the assumption that k is small. For example, y;41 is replace
with y(t; + k), and then one expands to find that

(ty + B) = (o) + by (05) + LR (15) +
=y+kf+ ;kQ(ft'i‘fyf)-i-O(kg). (7.61)

The functions y and f in the last expression are evaluated at ¢;. Also note
that the last step used the fact that ¢’ = f and ¥ = f, + f,f. In a similar
manner one finds that the right-hand side of (7.60) becomes

y+klaf +bf(t; + ak,y + BEf)]
=y+kaf +kb(f+akfi+Bkff,)+ -
=y+k(a+b)f+k*(af+ Bff,) + OK?). (7.62)

Equating the last expression with (7.61) one concludes that

a+b=1,
2ab = 1, (7.63)
208b = 1.

These three equations are called the order conditions for the RK2 methods,
and interestingly, the solution is not unique. Some example solutions for the
order conditions are listed below.

1. a:bzé,azﬁzlz

B ) + Fltian s+ kE)] (7.64)

Yi+1 = Y5 + 9

This is known as Heun’s method. It is also the method, given in (7.59),
that we derived by combining the trapezoidal and Euler methods.

2.a=0,b=1,a=8=1:

k k
Yir1 = Yj + kf<tj + o Yi + 2fj> . (7.65)
This is known as the midpoint method.

_1 3 _3 _n_ 2,
3.a=,,b=y a=p=73:

1 9 9
Yit1 = yj + 4k[f(tj,yj) +3f<tj + Ryt 3kfj>} : (7.66)
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This choice has a slightly better error coefficient for certain equations than
the other RK2 methods. Why this happens is explained in Exercise 7.11.

Whichever solution of the order conditions is selected, the truncation error is
O(k?). The reason is because (7.61) and (7.62) both hold to terms that are
O(Kk3), and as explained in Section 7.4, this means that the truncation error
for the method is O(k?).

Example

As usual, we will test our new methods using the logistic equation. Specifi-
cally, we solve

dy

dt
where y(0) = 0.1. The error in the computed solution at ¢ = 1 is shown in
Figure 7.8 as a function of the number of grid points used to reach ¢t = 1. The
curves are for Heun’s method given in (7.64), the method in (7.66), and the
trapezoidal method. These curves are parallel because all three methods are
O(k?). Also, even though the trapezoidal method does slightly better than
the two RK2 methods, it requires more work to compute. B

10y(1 —y), for 0 <t (7.67)

7.5.2 RK4

The one method from the Runge-Kutta family that deserves special attention
is RK4. This is used in so many computer codes that it has become the

10'3L~ 1
B. T ~o —G- Trap
~~I%~o —0- Heun
| \3::\\ —% RK2-E| |
) I
E \\\&::\\5
10° TS Itsal ]
10-12 el el . N L ‘\‘\H\;$
10! 102 10° 104 105

Number of Time Points

Figure 7.8 Error at ¢t = 1 as a function of the number of time steps used to solve
the logistic equation (7.67). The RK2-E curve comes from (7.66), and Heun comes
from (7.64).
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workhorse of IVP solvers. The derivation of RK4 uses a generalization of the
assumption in (7.60) and it is that

Yi+1 = Yj + Clkl + CQkQ + Cgkg + C4I€4, (768)
where
ki =kf(tj, ;) (7.69)
ko = kf(t; + ok, y; + Ba1k1), (7.70)
ks = kf(t; + ask,y; + Baiki + Ps2ks), (7.71)
ke =kf(t; +k,y; + Baki + Bazka + Basks). (7.72)

There are 12 constants in the above assumption, and after plugging the exact
solution into (7.68) one finds 11 order conditions. For the mildly curious, these
are listed in Section 7.7.1. Any choice of the constants that satisfies the order
conditions will produce a method with a truncation error that is O(k*).

Based on the above discussion, one of the parameters in (7.68)—(7.72) is
arbitrary. There is a standard choice for this constant, and to explain where
it comes from suppose the differential equation is y’ = f(t). Integrating this
as in (7.54) and then using Simpson’s rule yields

Y(tg0) —ylts) = [7(05) + 470+ 0.58) + f(t501)] + O(K?)

= ’g [f(tj) + 2f(tj + ’;) + 2f(tj + ];) + f(tj+1)] +O(K).

If we want our RK method to reproduce this result then we should take
c = é. The resulting RK method is

1
Yit1 = Y5 + o (R + 2k + 2ks + ka), (7.73)
where

kl = kf(tjvyj)u

k 1
ko =kf(t; + _,y5 + k1),
2 2
k 1
kg = kf(tj =+ 9 Yj + 2I€2), (774)

k4 = kf(tj+1,yj + kg)

This is often referred to as the RK4 method, or as the classic RK4 method.
However, as is evident in the above discussion, there are other RK methods
with a O(k?) truncation error. It is worth noting that the one in (7.73) does
not have the best error out of all the possible RK4 methods, but it does have
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the significant property of providing a relative simple formula. A comparison
between the classic RK4 and a minimum error version is given in Section 7.7.1.

Example

For the logistic example considered earlier, the RK4 formulas given above are

kl) )
kQ) )

The resulting numerical accuracy of the method is shown in Figure 7.9. RK4
is clearly superior to the trapezoidal method, to the point that it achieves an
error on the order of machine ¢ far ahead of the others we have considered.
Given this, you might wonder why the other methods are even discussed,
much less used by anyone. Well, there are several reasons for considering other
methods, and one relates to stability (which is discussed shortly). Another
reason is that RK4 does not do well in preserving certain properties of the
solution, and an example is energy. In problems where energy conservation is
important, other methods, called symplectic methods, are usually used. An
example of such a method is introduced in Section 7.6.3. B

kl = 10kyj(1 — yj)v

1
kg = 1Ok<yJ + 2]€1>(1 — Y —

1
kg = 1Ok<yJ + 2]€2>(1 _yj —

ky = 10k(y; + k3)(1 —y; — k3).

1
2
1
2

1073

i::“*~\\ —&-- Trap
106 \\\\ O~ ___ —& - RK4 .
S ool Ton IR |
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~~_ _
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Figure 7.9 Error at t = 1 as a function of the number of time steps used to solve
the logistic equation (7.67) using the RK4 and the trapezoidal methods.
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7.5.3 Stability

The entire derivation of the RK methods centered on the truncation error.
What is missing is the Step 5 question, which is whether the methods are
A-stable. As it turns out, all explicit Runge-Kutta methods are condition-
ally A-stable. As an example, given the order conditions in (7.63), the RK2
method in (7.60) is conditionally A-stable and the requirement is k < 2/r.
This is the same inequality we obtained for Euler’s method, and so RK2 and
Euler have the same stability requirement. As for RK4, the requirement is
k < A/r where A ~ 2.785. This means that the stability region for RK4 is
slightly larger that it is for RK2 or Euler.

7.5.4 RK-n

The ideas developed here can be generalized to produce higher-order RK
methods, although the complexity of the derivation can be enormous. For
example, in celestial mechanics you occasionally see people use twelfth-order
RK methods. Such a scheme is not easy to derive, because it results in 5972
order conditions, and, as occurred earlier, these form an underdetermined
nonlinear system. This situation is further complicated by the somewhat
unexpected problem that Runge-Kutta methods that are O(k?) for the scalar
equation ¥’ = f(t,y) are not necessarily O(k?) for the system y'(t) = f(¢,y)
if p > 5. In other words, to derive a higher-order Runge-Kutta method for
systems you are not able to simply use a scalar equation and then convert the
variables to vectors when you are done (this idea is used in the next section).
Those interested in deriving higher-order methods, or in a more systematic
derivation of RK4, should consult the texts by Butcher [2008] and Lambert
[1991].

7.6 Solving Systems of IVPs

Most applications involving IVPs have multiple equations. In such cases the
mathematical problem then has the form

dy

i = f(t,y), for 0<t, (7.75)

where
y(0) = a. (7.76)
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In the above, y = (yl(t)ayQ(t)v T 7yn(t))T7 f = (f15f27 T afn)Tv and a =
(a1, a2, ,a,)T are n-vectors. In component form, the IVP can be written
as

y; = f’i(tvylava"' ayn)v for i = 1527"' y 1y
where y;(0) = o.

7.6.1 Examples

Before discussing numerical solutions we begin with a couple of typical ex-
amples.

7.6.1.1 Law of Mass Action

An often occurring situation involves one or more species combining, or trans-
forming, to form new or additional species. This is what happens when hy-
drogen and oxygen combine to form water. It also can be applied to a dis-
ease moving through a population. One example is the Kermack-McKendrick
model for epidemics. This assumes the population can be separated into three
groups. One is the population S(¢) of those susceptible to the disease, another
is the population I(t) that is ill (as well as infectious), and the third is the
population R(t) of individuals that have recovered. Using the law of mass
action one can derive a model that accounts for the susceptible group getting
sick, the subsequent increase in the ill population, and the eventual increase
in the recovered population [Holmes, 2009]. The result is the following set of
equations:

dsS

= —aST
dt @5
dI

= —bl +aSI
dt tass,
dR

=5l
dt ’

where S(0) = Sy, I(0) = Iy, and R(0) = Ry. In the above equations a and b
are rate constants. Given the three groups, and the letters used to designate
them, this is an example of what is known as a SIR model in mathematical
epidemiology.

7.6.1.2 Newton’s Second Law
According to Newton’s second, F' = ma. Letting y(t) designate position, then

this law takes the form

d*y ’
M = F(t,y,y"), for 0<t. (7.77)
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Assuming that the initial position and velocity are specified, then the initial
conditions for this problem are

y(0) = a and 3'(0) = . (7.78)

It is possible to write the problem as a first-order system by introducing the
velocity v = y'. Using the original differential equation (7.77), we obtain the
following:

- TRt :
= (t,y,v)

Introducing the vector y(t), defined as

y - I
v
then the IVP can be written as

y'(t) =f(t,y), for 0<t, (7.79)

where the initial conditions (7.78) take the form

0-(3)

The function f(¢,y) appearing in (7.79) is

f(t,y) = (;lF(:,y,v))

What is significant is that the change of variables has transformed the second-
order problem for y(t) into a first-order problem for y(¢). Like the original,
(7.79) is nonlinear if F' depends nonlinearly on either y or v.

7.6.2 Simple Approach

Writing down a numerical method to solve (7.75) is easy because all of the
formulas we have derived for single equations apply to the vector case. For
example, the approximation y'(¢;) ~ (y(tj+1) — y(t;))/k becomes

V() ~ y(tj+1)k_ y(tj) ,
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and the error is still O(k). Note that the error is now a vector, and stating
that it is O(k) means that each element of the error vector is O(k).

What this means is that every method listed in Table C.4 in Appendix C
works with vector functions. So, for example, the trapezoidal method becomes

k
(£ +£511). (7.80)

Yi+1 =Y; + 9

where f; = f(t;,y;) and f;11 = £(¢j41,¥;+1). Similarly, the RK4 method
takes the form

1
Yi+1 =Y; + 6(1(1 + 2k + 2k3 + k4), (781)

whereky = kf(t;,y;), ko = kf(t;+5,y;+ k1), ks = kf(t;+ 5, y;+ 2ks), and
ks = kf(t;j41,y; + ks). Moreover, the stated properties, like being A-stable,
are still the same. This is where a comment needs to be made about implicit
methods. For single equations, an implicit method is a little more difficult to
use than an explicit method, but for systems of IVPs an implicit method can
be a lot more difficult. The reason is that at each time step it is necessary
to solve a large system of nonlinear equations, and this usually means using
Newton’s method. As explained in Section 3.10, this requires calculation of
a Jacobian and solving multiple matrix equations at each time step. Because
of this, most IVP solvers use explicit methods whenever possible.

Example

The equation for the angular deflection of a pendulum is
L = —gsin(h), (7.82)

where the initial angle #(0) and the initial angular velocity ¢’(0) are assumed
to be given. Also, ¢ is the length of the pendulum and g is the gravitational
acceleration constant. Introducing the angular velocity v = 6’ then the equa-
tion can be written as the first-order system

0 = v, (7.83)
v’ = —asin(f), (7.84)

where a = g/{. In regard to (7.75), y = (6,v)T and f = (v, —asin())T. The
numerical solution using the RK4 method in (7.81) is shown in Figure 7.10,
with @ = 1, 6(0) = 7/4, and #'(0) = 0. Two time intervals are shown, one
at the beginning and another much later. The pendulum is doing what pen-
dulums do, which is oscillate back and forth in a periodic manner. However,
as seen in the figure on the right, the amplitude in the numerical solution
has decreased substantially. It is possible to prove that the solution of the
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Figure 7.10 Solution of the pendulum equation (7.82) using the RK4 method (7.81).
On the left is the computed solution at the beginning, and on the right is the computed
solution for t close to 10,000.

pendulum problem does not decay, and the amplitude in the figure on the
right should be 7 /4. The fact that the numerical solution decays is not partic-
ularly surprising. It is possible to reduce the decay by simply taking a smaller
time step, but there is another way to do this, and this will be considered
next. W

7.6.3 Component Approach and Symplectic Methods

A consequence of a vector version of the RK4 method, as given in (7.81), is
that every component of y is being approximated the same way. There are
sometimes benefits of not doing this and to explain, consider the problem of
solving my” = F(y). This can be written in component form as

y =, (7.85)
o = ;F(y), (7.86)

where we have introduced the velocity v = y'. If the vector version of the
trapezoidal method is applied to this system, one obtains

k

Yi+1 = Yj o (Ui +05), (7.87)
k

U1 =V, [F(yj+1) + F(y;)]-

As is always the case with the trapezoidal method, the resulting equations
are implicit. The question therefore arises as to whether it might be possible
to tweak the above equations so they are explicit, similar to what we did to
discover the RK2 methods. With this in mind, note that one of the culprits
for the implicitness is the v;+1 term in (7.87). Can we find an approximation
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for this term that uses information at earlier time steps? One possibility is to
use the Euler method (7.86), which gives us v;41 = v;+ * F(y;). Introducing
this into (7.87) yields

1
Yir1 = yj + kv; + 2m/€2F(yj)= (7.88)

vit1 = v+ o [F(yj+1) + F(y))] . (7.89)

k
2m
Assuming we first use (7.88) to calculate y;41 and then use (7.89) to find
vj+1, the procedure is explicit. It is known as the wvelocity Verlet method for
solving (7.85) and (7.86), and we will try it using our earlier example.

Example

The solution of the pendulum problem in (7.82) using the velocity Verlet
method is given in Figure 7.11. This shows the same two time intervals shown
for RK4 in Figure 7.10 as well as uses the same time step k. Unlike the RK4
solution shown in Figure 7.10, the amplitude decay is not evident in the ve-
locity Verlet solution. B

The result in Figure 7.11 is surprising. It’s possible to prove that the
velocity Verlet method is O(k?), yet it has produced a better solution than
the O(k*) RK4 method. Although it is always possible for a O(k?) method
to produce a better answer than a O(k?*) method on a particular problem,
the reason here is more profound. What is happening is that velocity Verlet
does a better job in approximating the energy in the system over a longer
time interval than RK4. To investigate this, the equation for the energy can
be obtained by multiplying (7.82) by the velocity ¢’ and integrating. From
this, it is found that

/4 /4
©
Go 0
j
-ni/4 j i i -ni/4 i
0 10 20 30 40 9060 9080 10000
t-axis t-axis

Figure 7.11 Solution of the pendulum equation (7.82) using the velocity Verlet
method (7.88) and (7.89) over the same two time intervals shown in Figure 7.10.
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Figure 7.12 The energy (7.90) as computed using RK4 and the velocity Verlet
method for the pendulum equation (7.82). On the left are the curves for 0 < t <
10,000, while on the right the curves are shown over a small time interval near t =
10,000.

H(0,0') = ;K(G’)Q + g(1 — cos ) (7.90)

is constant. The function H is a Hamiltonian (or, more precisely, a Hamilto-
nian per unit mass) for the pendulum. With the initial conditions 6(0) = 7 /4
and ¢'(0) = 0, it then follows that H(6,60") = g(1 — v/2/2). The computed
values for H, assuming g = 1, using the two numerical methods are plotted
in Figure 7.12. For comparison, the exact value is also shown. The decay in
the RK4 value is clearly seen, while the computed energy from velocity Verlet
method oscillates, but the values stay very near the exact value. Note that
these oscillations are the reason for the solid (red) bar in the left plot in the
figure. The reason that velocity Verlet does so well is that it is an example of
what is known as a symplectic method. However, even though velocity Ver-
let does well computing the energy, it does not do as well with the phase.
For the example in Figure 7.12, using velocity Verlet the computed value of
the period is about 6.47, while the exact value is about 6.53. Although the
difference is small, given the large number of oscillations, the difference be-
tween the exact and computed value of the angular position 6(t) grows. This
difference can be reduced, but not eliminated, by taking a smaller value for
the step size k. More about this, and symplectic methods in general, can be
found in Holmes [2007], Stuart and Humphries [1998], or Hairer et al. [2003].

7.7 Some Additional Questions and Ideas

1. Round-off error can be a problem for the finite difference formulas in Ta-
ble 7.1 (see Figure 7.1). What do you do if you want an accurate numerical
derivative for very small step sizes?

Answer: Well, one option is to transform the formula, as discussed in
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Section 7.2. Another way is to use a complex Taylor series expansion
(CTSE), what is sometimes called the complex-step derivative approxima-
tion method. The standard example used for this is the centered difference

formula (t11) ) 1
Y(tj+1) — Yltj—1
y'(ty)=""" T K)o (7.91)
2k 6
Although this has an error that is O(k?), as shown in Figure 7.1, it can
have a problem when £ is small. A way to avoid this is to use an imaginary

step size. To explain, note, using Taylor’s theorem, that
- - / 1 2, 11 1 27,2, 111
y(t+ k) = y(t) + iky'(t) — K7y (t;) — (kYT () + -

where, as usual, i = v/—1. Taking the imaginary part of this equation, and
rearranging, we have that

I t+ ik 1
y(t) = m[y(k“ by Y+ (7.92)
This gives us a O(k?) approximation for the first derivative that does
not have the round-off problems that arise with (7.91). To compare, the
example for Figure 7.1 is redone in Figure 7.13 using (7.19) and the cor-
responding approximation coming from (7.92). The latter is

1
YO~ Im[Vy(t+ik)] . (7.93)
The approximation in (7.93) is actually better than indicated in Fig-
ure 7.13, because for values of k smaller than 10~7, the error is zero (using
double precision). This very interesting idea does have limitations, such
as how the function is defined when using a complex argument, and more

discussion of this can be found in Martins et al. [2003] and Lai and Cras-
sidis [2008].

2. The problem with numerical differentiation seen in Figure 7.1 did not seem
to be an issue when solving IVPs, why not?

Answer: The better IVP solvers do not require a small step size to pro-
duce an accurate solution, and because of this they avoid the numerical
differentiation problem. As seen in Figure 7.7, to achieve an error of 1072,
RK4 uses only 100 points and the trapezoidal method uses about 5000
points. Neither are close to the step sizes causing problems in Figure 7.1.
As for the less accurate methods, like the two Euler methods, the number
of time points needed to cause a problem is so large that most would not
consider them viable options. As an example, for the Euler method to start
to have trouble with numerical differentiation it is necessary to use 10° or
more time points when solving the logistic equation (7.58). The solution
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Figure 7.13 Error when using a numerical approximation of y’(1), when y(t) = V/t,
using the centered difference (7.19), and the CTSE approximation is (7.93). Note that
the CTSE error is zero for k < 1077.
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Figure 7.14 Solution of the logistic equation (7.33) using RK4. Also shown is the
exact solution and the clamped cubic spline fitted to the RK4 values (these two curves
are almost indistinguishable from each other).

accuracy in this case is no better than what would be obtained using 102
points with RK4 or about 10® points with the trapezoidal method.

3. It’s nice that RK4 can find an accurate solution using just a few points
scattered across the time interval, but I want a smooth curve. What do I
do?

Answer: The easy solution is to just use more points. However, a better
solution is to use interpolation. It’s possible in this case to use a clamped
cubic spline because we know, or have a computed value for, 3y at the
endpoints. In particular, y'(0) = f(0,«) and y/'(T) = f(T,yn). To illus-
trate how well this works, the solution of the logistic equation (7.33), with
y(0) = 0.1, is shown in Figure 7.14. With this it is possible to obtain an
accurate value for the solution anywhere in the time interval. An example
of how this can be used in data fitting is explained in Section 9.5.

4. Tt is often stated that a physical system must satisfy causality, which,
roughly speaking, means that the future does not affect the past. Doesn’t
a forward-difference approximation violate causality?
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Answer: It does. In fact, all but two of the difference formulas in Table 7.1
violate causality. What is interesting is that the one method that is based
on a causal approximation, which is backward Euler, is unconditionally
stable. The non-causal approximations, in comparison, produce only con-
ditionally stable methods. It is unclear what connections there might be
between these two properties, but apparently there might be. For those
who might be interested in computations and the connections with some
of the basic laws of physics, the collection of articles in Zenil [2012] might
be consulted.

7.7.1 RK4: Why Use Stmpson’s Rule?

The RK4 method was derived using Simpson’s rule, and the question is why.
To consider this, the general form of the RK4 assumption is
Yj+1 = Y;j + ciky + caka + c3kz + caky, (7.94)

where

ki =kf(t;,y5),

ko = kf(t; + ok, y; + Ba1k1),

ks = kf(t; + ask,y; + Ba1k1 + Ba2ka),

ky =kf(t; + k,y; + Barkr + Bazka + Basks).

It is assumed that 0 < as < 1 and 0 < ag < 1. The order conditions resulting
from the above assumption are listed in Table 7.4. There are 11 equations
and 12 unknowns, and the solutions are given in Ralston [1962]. Just so it’s
clear, every solution results in an IVP solver with an error that is O(k*).
To decide on which solution of the order equations to pick, we considered
the problem of solving ' = f(t). Applying (7.94) to this equation we get that

Yir1 = Yj +aakf(t;) + ok f(t; + aok) + cskf(t; + ask) + cak f(t; + k),

On the other hand, integrating the equation we get that

y(tj1) = y(t)) +/m f(t)dt.

tj

Combing these two equations, it must be that

tj+1
/ f(t)dt ~ Clkf(tj) + Czkf(tj + 042]{3) + Cgkf(tj + Oégk) + C4kf(tj + k)
tj
(7.95)
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In other words, the solution of the order equations is associated with an
integration rule. This is where Simpson’s rule was used. The reason for picking
Simpson is that its error is O(k%), and this is required to produce an IVP
solver with a truncation error that is O(k*) (i.e., it is consistent with the
error being sought for the RK4 method). However, is there a better choice?
Asked a different way, are there choices for the ¢;’s and «a;’s in the above
expression that produce a better error?

The question asked about the ¢;’s and «;’s is the same question asked in the
derivation of the Gaussian integration rules. The difference with (7.95) is that
the endpoints are being used to determine the integration rule. This variation
is known as Lobatto quadrature, and this is explained in Exercise 6.24. Using
the result of Exercise 6.24(c), the Lobatto rule that produces the maximum
precision has ¢; = 1/12. This gives a RK4 method of the form

1
Yi+1 = Yj + o (k14 Ska + 5ks + ka) (7.96)

ci+c+tce3+tey=1
521 = Q2
B31 + B32 = a3
Bar + Baz + Paz =1
1
CoQug + C3tis +C4 = 9
1
czag + C3a§ +cq = 3
1
czag + C3a§ +cq = 4
1
c32 32 + ca(afas + asfag) = 6
1
c3asf32 + ca(afaz + asfaz) = 8
1
30332 + ca(a3 Bz + a3 Bu3) = 12
1
ca0ia 332843 = 94

Table 7.4 Order conditions for a general RK4 method [Ralston, 1962].
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Figure 7.15 Comparison in the error for the classic RK4 and the Labatto RK4
method (7.96).

where

) ()

<1+ \}5> » = _210(5+3\/5), P32 = i(3+\/5),
1
4

a3 =

1

Bur=— (1-5V5), B = A

1
(5+3V5), Puz= 55— V5).
Note that as an integration rule the error for Labatto is O(k”), while for

Simpson’s rule it’s O(k®).

Example
The solution of the IVP
y =1y — 2te' sin(t?), for 0 < t < 3,

where y(0) = 1, is y = e’ cos(t?). The error in solving this problem using the
classic RK4 method and the Labatto RK4 method is shown in Figure 7.15.
Both curves show the expected O(k?*) decrease, with the Labatto version
giving a better error because of its more accurate quadrature approximation.

Exercises

7.1. This exercise concerns deriving finite difference approximations of deriva-

tives.

(a) Derive a O(k?) approximation of y'(t;) that uses y(¢;), y(t;—1), and
y(tjv2)-
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z 0 1/3 2/3 1
v 1 0 -1 1
Table 7.5 Values for Exercise 7.4.

(b) Derive a O(k?) approximation of y/(t;) that uses y(t;), y(tj+1), and
Y(tjr2).

(c) Derive a O(k?) approximation of y/(t;) that uses y(t;), y(tj—1), and
y(tj—2). Also, explain how your answer can also be obtained from one of
the formulas in Table 7.1.

7.2. In the following, a claim is made about an approximation for the first
derivative. Explain why the claim is wrong.
(a) A O(k) approximation of y/(t;) is

(b) A O(k?) approximation of y'(t;) is

vy Y(ti2) —y(t—2)
y(ty) e DT T

(c) A O(k) approximation of y'(t;) is

y(tj+1) = 3y(ts) + 2y(tj-1)
y(ty) Y1) = B 20

7.3. In this exercise, difference approximations are derived that make use of
derivative information.

(a) Find a O(k?) approximation of y”(¢;11) and uses y/(¢;4+1) and y/(tj_1).
(b) Find a O(k?) approximation of ¥/ (¢;4+1) and uses y(t;), y(t;+1), and ¥/ (¢;).
(c) Find a O(k*) approximation of y/(¢;11) and uses y(t;_1), y(tj+1), ¥'(¢;),

and y/(tjfl).

7.4. For a linearly elastic material, the stress T'(z) is given as

du
T=F
dx’
where u(z) is the displacement of the material and F is a positive constant
known as the Young’s modulus. You can assume the material is steel, so
E = 200, and you should also assume that u(0) = 0 Using second-order
approximations for «/(x), and the data in Table 7.5, find T at « = 0, 1/3,

2/3, 1.
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7.5. For a power law fluid, the shear stress S(z) is given as

dv\”
5= a<d:v) ’

where v(z) is the shear velocity, and a and ~ are positive constants. You can
assume the fluid is ketchup at room temperature, so v = 1/4 and a = 20.
Using second-order approximations for v’(z), and the data in Table 7.6, find
Satx=0,1/3,2/3, 1.

7.6. The Bernoulli equation is

y+yt= "

(a) If the Euler method is used to solve this equation, what is the resulting
finite difference equation?

(b) If the trapezoidal method is used to solve this equation, what is the
resulting finite difference equation?

(c) If Heun’s method is used to solve this equation, what is the resulting
finite difference equation?

(d) If the RK4 method is used to solve this equation, what is the resulting
finite difference equation?

7.7. The Michaelis-Menten equation is
ds U S

dt  Kuy+S’

where v, and K); are positive constants.

(a) If the Euler method is used to solve this equation, what is the resulting
finite difference equation?

(b) If the trapezoidal method is used to solve this equation, what is the
resulting finite difference equation?

(c) If Heun’s method is used to solve this equation, what is the resulting
finite difference equation?

(d) If the RK4 method is used to solve this equation, what is the resulting
finite difference equation?

7.8. An IVP is solved using an explicit method using M time steps to reach
t = 1. The value computed for yps is given in Table 7.7 as a function of the
time steps used in the calculation. Which explicit IVP solver was most likely
used in this calculation? Make sure to explain why.

x 0 1/3 2/3 1
v 0 2 4 0
Table 7.6 Values for Exercise 7.5.
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7.9. To solve y' = f(¢,y) one can use one of the following finite difference
equations. Determine if the method is A-stable, conditionally A-stable, or
unstable. If it is conditionally stable, make sure to state what the condition
is.

(a) yj+1 = yj + 5 [F(t,95) + 2F (tj51, 9j41)]

(b) yj1 = y; + 5 5, y5) = F(t41,9511)]

(c) + 5 [=2f () + Tt yi0)]

7.10. The IVP for a mass-spring-dashpot system is

Yj+1 = Y; +

d’y | dy
M 2 +Cdt +ky=F(t), fort >0

where y(0) = a and 3/(0) = b. In this problem m, ¢, k, a, b are given numbers

and F(t) is a given forcing function.

(a) Using finite difference approximations for y” and y’, derive a finite dif-
ference approximation for the differential equation that has truncation
error that is O(k?).

(b) Convert the initial conditions so they apply to the finite difference ap-
proximation. Your approximation of y'(0) = b must have a truncation
error that is O(k?).

(c) Setting v = ¢/, find a first-order system for y and v.

(d) Write down a numerical method for solving the problem in part (c) that
has a truncation error that is O(k?).

7.11.(a) The integration rule of the form

/t " p@ydt = af(t) + asf (),

J

which has the maximum precision is a1 = k/4, az = 3k/4, and z =
t; +2k/3. Explain how this gives rise to the RK2 method given in (7.66).

M YM

16 1.062500000
32 1.031250000
64  1.015625000
128  1.007812500
256  1.003906250
512 1.001953125
1024 1.000976562

Table 7.7 Values for Exercise 7.8.
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(b) What condition must be satisfied for the RK2 method given in (7.66) to
be A-stable?

7.12. This problem explores a RK1 method. Assume the method has the
form

Yit1 = yj +akf(t;,y;).

Find the constant a using the same procedure used to derive the RK2 method.
What is the truncation error?

7.13. This problem explores the stability condition for RK2.

(a) What does the RK2 method in (7.60) reduce to for the equation y' =
—ry? Assume the constants satisfy the order conditions (7.63).

(b) Show that the amplification factor for RK2 can be written as k = 1 —
z+ 522, where z = rk.

(c) Using the result from part (b), show that the RK2 method is conditionally
A-stable and that the stability condition is rk < 2.

7.14. What condition must be satisfied for the (classic) RK4 method to be
A-stable?

7.15. This problem concerns the differential equation y" = f(t,y). In

Figure 7.16, lines are shown which represent the absolute error as a func-

tion of the number of mesh points for several different methods.

(a) Which line, if any, should correspond to a RK2 method (e.g., Heun’s
method)?

(b) Which line, if any, should correspond to the trapezoidal method?

(c) Which line, if any, should correspond to Euler’s method? Make sure to
justify your answers. Also, a line may be used more than once.

102

10°

-2

5 10
=

w 10

106

108
10! 102 103
Number of Time Points

Figure 7.16 Graph used in Exercises 7.15 and 7.18.

7.16. To solve the differential equation y" = f(¢,y) one can use the finite
difference equation

Yjir1 =yj +E[0f; + (1 = 0)fi51],
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where 6 is a number that satisfies 0 < # < 1 (one first picks € from this

interval and then uses the above formula to calculate the solution).

(a) For what value(s) of 6 is the method explicit, and for which value(s) of
0 is it implicit?

(b) For what value(s) of 0 is the method A-stable?

(c) For what value(s) of 6 is this method second-order accurate? What is its
order of accuracy for the other values of 67

7.17. In deriving the trapezoidal method for solving the differential equation

y' = f(t,y) we integrated the equation over the interval ¢; < ¢ < t;41. In this

problem you are to integrate the equation over the interval t;_; <t <t¢;4;.

(a) What numerical method is obtained if Simpson’s rule is used on the
resulting integral? What is the truncation error for this rule?

(b) What numerical method is obtained if the midpoint rule is used on the
resulting integral? What is the truncation error for this rule?

7.18. This problem concerns the differential equation y’ = f(¢,y) where

y(0) = a.
(a) From the differentiation formula

(t+2k) — y(t — 2k)

2
m + O(k*)

y()="
derive a difference equation that can be used to numerically solve the
differential equation.
(b) One of the curves in Figure 7.16 gives the error as a function of the
number of grid points for the method you derived in part (a). Which one
is it? Make sure to justify your answer.

7.19. Suppose you want to compute the solution of y/ = e ¥+t for0 <t <1
using 100 time steps (so, k = 0.01). The methods to be tried are (i) the Euler
method, (ii) the backward Euler method, (iii) the trapezoidal method, (iv)
Heun, and (v) the RK4 method.

(a) Which one would you expect to complete the calculation the fastest?

Why?
(b) Which one would you expect to be the most accurate? Why?
(c) If stability is a concern which method would be best? Why?

7.20. This problem concerns the Michaelis-Menten equation

ds U S

dt ~ Ky+S’

where v,, and K are positive constants. The initial condition is S(0) = Sp.
The biochemical applications of this equation, and how to solve it, were
considered in Section 2.1.1 and in Exercise 2.17. In this exercise you are to
solve this problem using the trapezoidal and RK4 methods.



Exercises 321
(a) Solving this problem, one finds that the exact solution satisfies
KMlD(S/S()) + S = SO - ’Umt.

Verify that if S satisfies the above equation, then it is a solution of the
IVP.
In the following questions, assume that v, = 0.76 mM/min, K, = 16.7
mM, and Sy = 100 mM.

(b) Plot S for 0 < ¢ < 500. An easy way to do this is to rewrite the equation
in part (a) as

t= 1 [So— KnIn(S/So) — 5] .

Picking values S, with 0 < §; < Sp, the above equation can be used to
find the corresponding ¢;. With this, the requested plot can be obtained
by plotting the values for the (¢;,5;)’s.

(c) On the same axes, plot the exact and the two numerical solutions for
0 <t <500 in the case of when M = 20.

(d) Redo (c¢) for M =5, M = 10, and M = 40 (there should be one graph
for each M).

(e) Plot the max error e, defined in (7.44), as a function of M for each
method, using M = 10, 20, 40, 80. The two curves should be in the same
log-log plot.

(f) Compare the two methods based on your results from parts (c)—(e). This
includes ease of use, speed of calculation, accuracy of results, and appar-
ent stability.

7.21. This problem concerns the IVP involving the Bernoulli equation

Y

/ 3 _
vty a4+t

, for t>0,
where y(0) = 1. You are to solve this problem using the trapezoidal and RK4

methods.
(a) Verify that the exact solution is

Y= a+t
\/ﬁ+§(a+t)3

Also, determine the value of £ from the initial condition.

(b) Assuming a = 0.01, on the same axes plot the exact and the two numer-
ical solutions for 0 < ¢ < 3 in the case of when M = 80.

(c) Redo (b) for M = 20, M = 40, and M = 160 (there should be one graph
for each M). If one of the methods is unstable you can exclude it from the
plot (for that value of M) but make sure to state this in your write-up.

(d) Plot the max error e, defined in (7.44), as a function of M for each
method, using M = 40, 80, 160, 320, 640. The two curves should be in the
same log-log plot.
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(e) Compare the two methods based on your results from parts (b)—(d).
This includes ease of use, speed of calculation, accuracy of results, and
apparent stability.

7.22. The equation for the height y(t) of a projectile is

d? R?
dtg =— (Rg—|— )2 for 0 < t,

where g is the gravitational acceleration constant and R is the radius of the

Earth. Also, y(t) is the vertical distance from the surface of the Earth.

(a) Write this as a first-order system using the height y and the velocity
v=y

(b) If y(0) = 0 and v(0) = 100m/s, find the time, to at least three significant
digits, that it takes until the object hits the ground. Make sure to state
what method you use to solve the IVP, why you picked the method, and
how you used the solver to answer the question. In addition, you should
plot y as a function of ¢, for 0 < ¢t < T, where T is your answer. It is
advised that when you think you have found 7' that you double M to
make sure that your solution does not change significantly.

(c) If y(0) = 0, then what does v(0) have to be so the object stays airborne
for 2 hours? In other words, if T = 2hr, then what does v(0) have to
be so that y(T) = 0. You should calculate v(0) to six significant digits.
In addition, you should plot y as a function of ¢, for 0 < ¢t < T'. Make
sure to state what method you use to solve the IVP, why you picked the
method, and how you used the solver to answer the question.

7.23. Using polar coordinates in the orbital plane, the position of an object
orbiting the sun is (r(t),0(t)). From Newton’s laws, to find the position it is
necessary to solve

o7
where o = 6/(0)r(0)? is constant, and y is the gravitational parameter of the
sun. Note that u = 1.327 x 10! km® /sec?.

(a) Write the above differential equation as a first-order system using the
radial position r and radial velocity v = 7.

(b) The approximate values for Mars are: r(0) = 2.244 x 10%km, r/(0) = 0,
and ¢(0) = 9.513 x 10~ radians/sec. If one instead uses astronom-
ical units (au), then 7(0) = 1.5au and /(0) = 0. Also, measuring
time in terms of a terrestrial year (where 1 ty = 365 days), then
0’(0) = 3radians/ty. Explain why it is better to use the au, ty values
rather than the km, sec values when computing the solution.

(c) Using the initial conditions from part (b), find r(¢), to at least three sig-
nificant digits, after one terrestrial year. Make sure to state what method
you used to solve the problem, why you picked that method, and how
you know that the solution is correct to three significant digits.
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Figure 7.17 Three oscillators that are coupled by springs, as an example of the
problem considered in Exercise 7.24.

(d) The angular coordinate of the object is determined using the following

formulas:
o(t) = 6(0) +a/0 T2d(88> .

Assuming that 6(0) = 0, use your results from part (c) to find the angular
coordinate for the object after one terrestrial year.

7.24. This exercise involves finding the solution of the problem for the cou-
pled oscillators shown in Figure 7.17. The equation of motion in this case is
y” + Ky = 0, where

14 k1o + k13 —k12 —ki3
K= —k12 1+ k12 + ko3 —ka3
—ki3 —ka3 1+ ki3 + ko3

In the above matrix, k;; is the spring constant for the spring connecting the

ith and jth oscillator, and it is positive (these are the three smaller springs

shown in Figure 7.17). The initial conditions are y(0) = (—1,0,2)7 and

y/(O) = (Oa 0, O)T

(a) Assuming y(t) = (y1(t),y2(t),y3(t))T, introduce the velocity v;(t) =
y;(t). Letting z(t) = (y1(t), v1(t), y2(t), v2(t), ys(t), v3(t))", show that the
oscillator problem can be rewritten as z’ = Az. What is z(0)?

(b) If Euler’s method is used to solve the equation in part (a), what is the
resulting finite difference equation? Your answer should be written in
terms of z; and z;41.

(c) If the trapezoidal method is used to solve the equation in part (a), what
is the resulting finite difference equation? Your answer should be written
in terms of z; and z;1.

(d) If the RK4 method is used to solve the equation in part (a), what is
the resulting finite difference equation? Your answer should be written
in terms of z; and z;41.

(e) Using one of the methods from (b)—(d), on the same axis, plot y1, yo,
y3 for 0 < ¢t < 10. Assume that k12 = k13 = ko3 = 1/2. Make sure to
state what method you used to solve the problem and why you picked
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that method. Also, explain why you believe your solutions are accurate
approximations of the exact solutions.

7.25. This exercise explores the differences between a symplectic method and
a method which conserves energy exactly. Recall that the equation my"’ =
F(y) can be written as the first-order system given in (7.85) and (7.86). A
Hamiltonian for this system is

1 y
H(y,v) = 2mv2 —/0 F(s)ds.

Also recall that H corresponds to the total energy of the system.

(a) It is assumed that the trapezoidal method given in (7.87) can be modified
to produce a method that conserves energy. In particular, it is assumed
that one can be found of the form

Yir1 = Y5 + . (Vi1 +v5),

2
k
Vjy1 = vj + mW(ijrhyj)-
Using the above formula for the Hamiltonian, show that
H(yj+1,v541) — H(y;,v5)

= ];(Uj +vj41) (W(yj+1,yj) - ! /yj+1 F(S)d5> .

Yir1 — Y Jy;

From this, conclude that the method is conservative if

1 Yjt1
W(yj+1,95) = / F(s)ds.
Yi+1 — Y5 Sy,

It is possible to show that the resulting method is se