
Mark H. Holmes

Introduction
to Scientifi c
Computing and
Data Analysis

Editorial Board
T. J. Barth

M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

13

Texts in Computational
Science and Engineering 13
Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

More information about this series at http://www.springer.com/series/5151

http://www.springer.com/series/5151

Mark H. Holmes

Introduction to Scientific
Computing and Data
Analysis

123

Mark H. Holmes
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, NY, USA

ISSN 1611-0994 ISSN 2197-179X (electronic)
Texts in Computational Science and Engineering
ISBN 978-3-319-30254-6 ISBN 978-3-319-30256-0 (eBook)
DOI 10.1007/978-3-319-30256-0

Library of Congress Control Number: 2016935931

Mathematics Subject Classification (2010): 65-01, 15-01, 49Mxx, 49Sxx, 65D05, 65D07, 65D25,
65D30, 65D32, 65Fxx, 65Hxx, 65K10, 65L05, 65L12, 65Zxx

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The objective of this text is easy to state, and it is to investigate ways to use
a computer to solve various mathematical problems. One of the challenges
for those learning this material is that it involves a nonlinear combination of
mathematical analysis and nitty-gritty computer programming. Texts vary
considerably in how they balance these two aspects of the subject. You can see
this in the brief history of the subject given in Figure 1 (which is an example
of what is called an ngram plot). According to this plot, the earlier books
concentrated more on the analysis (theory). In the early 1970s this changed,
and there was more of an emphasis on methods (which generally means much
less theory), and these continue to dominate the area today. However, the
1980s saw the advent of scientific computing books, which combine theory
and programming, and you can see a subsequent decline in the other two
types of books when this occurred. This text falls within this latter group.

Year
1950 1960 1970 1980 1990 2000 2010

P
er

ce
n

ta
g

e

0

1

2

3

Numerical Methods
Scientific Computing
Numerical Analysis

Figure 1 Historical record according to Google. The values are the number of in-
stances that the expression appeared in a published book in the respective year,
expressed as a percentage for that year, times 105 [Michel et al., 2011].

v

vi Preface

There are two important threads running through the text. One concerns
understanding the mathematical problem that is being solved. As an exam-
ple, when using Newton’s method to solve f(x) = 0, the usual statement
is that it will work if you guess a starting value close to the solution. It is
important to know how to determine good starting points and, perhaps even
more importantly, whether the problem being solved even has a solution.
Consequently, when deriving Newton’s method, and others like it, an effort
is made to explain how to fairly easily answer these questions.

The second theme is the importance in scientific computing of having a
solid grasp of the theory underlying the methods being used. A computer
has the unfortunate ability to produce answers even if the methods used
to find the solution are completely wrong. Consequently, it is essential to
have an understanding of how the method works and how the error in the
computation depends on the method being used.

Needless to say, it is also important to be able to code these methods and
in the process be able to adapt them to the particular problem being solved.
There is considerable room for interpretation on what this means. To explain,
in terms of computing languages, the current favorites are MATLAB and
Python. Using the commands they provide, a text such as this one becomes
more of a user’s manual, reducing the entire book down to a few commands.
For example, with MATLAB, this book (as well as most others in this area)
can be replaced with the following commands:

Chapter 1: eps

Chapter 2: fzero(@f,x0)

Chapter 3: A\b
Chapter 4: eig(A)

Chapter 5: polyfit(x,y,n)

Chapter 6: integral(@f,a,b)

Chapter 7: ode45(@f,tspan,y0)

Chapter 8: fminsearch(@fun,x0)

Chapter 9: svd(A)

Certainly this statement qualifies as hyperbole, and, as an example, Chap-
ters 4 and 5 should probably have two commands listed. The other extreme
is to write all of the methods from scratch, something that was expected of
students in the early days of computing. In the end, the level of coding de-
pends on what the learning outcomes are for the course and the background
and computing prerequisites required for the course.

Many of the topics included are typical of what are found in an upper-
division scientific computing course. There are also notable additions. This
includes material related to data analysis, as well as variational methods
and derivative-free minimization methods. Moreover, there are differences
related to emphasis. An example here concerns the preeminent role matrix
factorizations play in numerical linear algebra, and this is made evident in
the development of the material.

Preface vii

1950 1960 1970 1980 1990 2000 2010 2020
Year

0

5

10

15
N

u
m

b
er

Median = 2006
Mean = 2002

Figure 2 The number of references in this book, after 1950, as a function of the year
they were published.

The coverage of any particular topic is not exhaustive, but intended to
introduce the basic ideas. For this reason, numerous references are provided
for those who might be interested in further study, and many of these are
from the current research literature. To quantify this statement, a code was
written that reads the tex.bbl file containing the references for this text and
then uses MATLAB to plot the number as a function of the year published.
The result is Figure 2, and it shows that approximately half of the references
were published in the last ten years. By the way, in terms of data generation
and plotting, Figure 1 was produced by writing a code which reads the html
source code for the ngram web page and then uses MATLAB to produce the
plot.

The MATLAB codes used to produce almost every figure, and table with
numerical output, in this text are available from the author’s web site as
well as from SpringerLink. In other words, the MATLAB codes for all of the
methods considered, and the examples used, are available. These can be used
as a learning tool. This also goes to the importance in computational-based
research, and education, of providing open source to guarantee the correctness
and reproducibility of the work. Some interesting comments on this can be
found in Morin et al. [2012] and Peng [2011].

The prerequisites depend on which chapters are covered, but the typical
two-year lower-division mathematics program (consisting of calculus, matrix
algebra, and differential equations) should be sufficient for the entire text.
However, one topic plays an oversized role in this subject, and this is Taylor’s
theorem. This also tends to be the topic that students had the most trouble
with in calculus. For this reason, an appendix is included that reviews some
of the more pertinent aspects of Taylor’s theorem. It should also be pointed
out that there are numerous theorems in the text, as well as an outline of
the proof for many of them. These should be read with care because they
contain information that is useful when testing the code that implements the
respective method (i.e., they provide one of the essential ways we will have
to make sure the computed results are actually correct).

viii Preface

I would like to thank the reviewers of an early draft of the book, who made
several very constructive suggestions to improve the text. Also, as usual, I
would like to thank those who developed and have maintained TeXShop, a
free and very good TeX previewer.

Troy, NY, USA Mark H. Holmes
January 2016

Contents

Preface . v

1 Introduction to Scientific Computing . 1
1.1 Unexpected Results . 1
1.2 Floating-Point Number System . 5

1.2.1 Normal Floats . 5
1.2.2 Machine Epsilon . 7
1.2.3 Rounding . 9
1.2.4 Nonnormal Floats . 9
1.2.5 Flops . 11
1.2.6 Functions . 12

1.3 Arbitrary-Precision Arithmetic . 12
1.4 Explaining, and Possibly Fixing, the Unexpected Results 13
1.5 Error and Accuracy . 18

1.5.1 Test Cases . 20
1.5.2 Over-Computing? . 21

2 Solving A Nonlinear Equation . 31
2.1 Examples . 31

2.1.1 Physical . 31
2.1.2 Mathematical . 33

2.2 The Problem to Solve . 35
2.3 Bisection Method . 35
2.4 Newton’s Method . 40

2.4.1 Order of Convergence . 45
2.4.2 Failure . 45
2.4.3 Some Theory . 46

2.5 Secant Method . 50
2.5.1 Some Theory . 53

ix

x Contents

2.6 Other Ideas . 54
2.6.1 Is Newton’s Method Really Newton’s Method? 55

3 Matrix Equations . 71
3.1 An Example . 71
3.2 Finding L and U . 73

3.2.1 What Matrices Have an LU Factorization? 74
3.2.2 Factoring n× n Matrices . 76
3.2.3 Pivoting Strategies . 77

3.3 LU and Gaussian Elimination . 78
3.4 LU Method: Summary . 80
3.5 Vector and Matrix Norms . 85

3.5.1 Matrix Norms . 87
3.6 Error and Residual . 89

3.6.1 Significant Digits . 90
3.6.2 The Condition Number . 91
3.6.3 A Heuristic . 94

3.7 Positive Definite Matrices . 95
3.7.1 Cholesky Factorization . 98

3.8 Tri-Diagonal Matrices . 100
3.9 Sparse Matrices . 102
3.10 Nonlinear Systems . 102
3.11 Some Additional Ideas . 106

3.11.1 Yogi Berra and Perturbation Theory 106
3.11.2 Fixing an Ill-Conditioned Matrix 106
3.11.3 Insightful Observations About the Condition Number . 107
3.11.4 Faster than LU? . 109
3.11.5 Historical Comparisons . 110

4 Eigenvalue Problems . 121
4.1 Power Method . 125

4.1.1 General Formulation . 130
4.2 Extensions of the Power Method . 133

4.2.1 Inverse Power Method . 133
4.2.2 Inverse Iteration . 134
4.2.3 Rayleigh Quotient Iteration . 137

4.3 Calculating Multiple Eigenvalues . 139
4.3.1 Orthogonal Iteration . 140
4.3.2 QR Factorization . 146
4.3.3 The QR Method . 148
4.3.4 Are the Computed Values Correct? 151

4.4 Applications . 152
4.4.1 Natural Frequencies . 153
4.4.2 Graphs and Networks . 156

Contents xi

4.5 Singular Value Decomposition . 158
4.5.1 Derivation of the Singular Value Decomposition 160
4.5.2 Summary of the Singular Value Decomposition 162
4.5.3 Application: Image Compression 166

5 Interpolation . 183
5.1 Information from Data . 183
5.2 Global Polynomial Interpolation . 185

5.2.1 Direct Approach . 185
5.2.2 Lagrange Approach . 187
5.2.3 Runge’s Function . 189

5.3 Piecewise Linear Interpolation . 190
5.4 Piecewise Cubic Interpolation . 194

5.4.1 Cubic B-Splines . 197
5.5 Function Interpolation . 202

5.5.1 Global Polynomial Interpolation . 202
5.5.2 Piecewise Linear Interpolation . 205
5.5.3 Cubic Splines . 207
5.5.4 Chebyshev Interpolation . 209
5.5.5 Chebyshev Versus Cubic Splines . 214
5.5.6 Other Ideas . 216

5.6 Questions and Additional Comments . 217

6 Numerical Integration . 231
6.1 Introduction . 231
6.2 The Definition from Calculus . 232

6.2.1 Midpoint Rule . 234
6.3 Methods Based on Polynomial Interpolation 237

6.3.1 Trapezoidal Rule . 238
6.3.2 Simpson’s Rule . 241
6.3.3 Cubic Splines . 244
6.3.4 Other Interpolation Ideas . 246

6.4 Methods Based on Precision . 247
6.4.1 1-Point Gaussian Rule . 248
6.4.2 2-Point Gaussian Rule . 249
6.4.3 Error Formulas . 250
6.4.4 General Case . 253

6.5 Romberg Integration . 255
6.5.1 Computing Using Romberg . 256

6.6 Adaptive Quadrature . 258
6.7 Other Ideas . 263
6.8 Epilogue . 263

xii Contents

7 Initial Value Problems . 275
7.1 Examples of IVPs . 275

7.1.1 Radioactive Decay . 275
7.1.2 Logistic Equation . 276

7.2 Numerical Differentiation . 277
7.2.1 Using tj+2, tj+1, and tj . 278
7.2.2 Using tj+1 and tj−1 . 279
7.2.3 Higher Derivatives . 281
7.2.4 Interpolation. 283

7.3 IVP Methods Using Numerical Differentiation 283
7.3.1 The Five Steps . 283
7.3.2 Error . 290
7.3.3 Additional Difference Methods . 292
7.3.4 Extensions . 295

7.4 IVP Methods Using Numerical Integration 295
7.5 Runge–Kutta Methods . 298

7.5.1 RK2 . 299
7.5.2 RK4 . 301
7.5.3 Stability . 304
7.5.4 RK-n . 304

7.6 Solving Systems of IVPs . 304
7.6.1 Examples . 305
7.6.2 Simple Approach . 306
7.6.3 Component Approach and Symplectic Methods 308

7.7 Some Additional Questions and Ideas . 310
7.7.1 RK4: Why Use Simpson’s Rule? . 313

8 Optimization . 327
8.1 Introduction . 327
8.2 Regression: Introduction . 331

8.2.1 Model Function . 331
8.2.2 Error Function . 332

8.3 Linear Least Squares . 335
8.3.1 Two Parameters . 335
8.3.2 General Case . 337
8.3.3 Other Error Functions . 340

8.4 Nonlinear Regression . 344
8.4.1 Transforming to Linear Regression 345

8.5 Descent Methods: Introduction . 347
8.5.1 Descent Directions . 349

8.6 Solving Linear Systems . 350
8.6.1 Basic Descent Algorithm for Av = b 351
8.6.2 Method of Steepest Descents for Av = b 352
8.6.3 Conjugate Gradient Method for Av = b 354

Contents xiii

8.7 Descent Methods: General Nonlinear Problem 360
8.7.1 Descent Direction . 360
8.7.2 Line Search Problem . 361
8.7.3 Examples . 363

8.8 Minimization Without Differentiation . 367
8.8.1 Examples . 369

8.9 Variational Problems. 372
8.9.1 Example: Minimum Potential Energy 372
8.9.2 Example: Brachistochrone Problem 375
8.9.3 Parting Comments . 378

8.10 Global Minimum . 379

9 Data Analysis . 397
9.1 Introduction . 397
9.2 Principal Component Analysis . 397

9.2.1 Example: Word Length . 398
9.2.2 Principal Component Decomposition 402
9.2.3 Scaling Factors . 409
9.2.4 Application: Crime Data . 410
9.2.5 Geometry and Data . 414
9.2.6 Error . 415
9.2.7 Parting Comments . 417

9.3 Independent Component Analysis . 418
9.3.1 Derivation of Method . 420
9.3.2 Reduced Problem . 423
9.3.3 Contrast Function . 424
9.3.4 Summary of ICA . 429
9.3.5 Application: Image Separation . 430

9.4 Modal Data Analysis . 432
9.4.1 Application: Google’s Flu Data . 434
9.4.2 Propagation Modes . 435
9.4.3 Parting Comments . 438

9.5 Fitting IVPs to Data . 439
9.5.1 Logistic Equation . 439
9.5.2 FitzHugh-Nagumo Equations . 442
9.5.3 Mass-Spring-Dashpot System . 442
9.5.4 Parting Comments . 445

A Taylor’s Theorem . 453
A.1 Useful Taylor Series for x Near Zero . 455
A.2 Order Symbol and Truncation Error . 456

xiv Contents

B B-Splines . 459
B.1 Definition . 459
B.2 Plot . 460
B.3 Particular Values . 460
B.4 Derivatives . 461
B.5 Integrals . 461

C Summary Tables . 463
Interpolation Methods . 464
Integration Methods . 465
Methods for IVPs . 466
Gradient Decent Methods . 467

References . 469

Index . 483

Chapter 1

Introduction to Scientific Computing

This chapter provides a brief introduction to the floating-point number
system used in most scientific and engineering applications. A few examples
are given in the next section illustrating some of the challenges using finite
precision arithmetic, but it is worth quoting Donald Knuth to get things
started. If you are unfamiliar with him, he was instrumental in the develop-
ment of the analysis of algorithms, and is the creator of TeX. Anyway, here
are the relevant quotes [Knuth, 1997]:

“We don’t know how much of the computer’s answers to believe. Novice com-
puter users solve this problem by implicitly trusting in the computer as an
infallible authority; they tend to believe that all digits of a printed answer
are significant. Disillusioned computer users have just the opposite approach;
they are constantly afraid that their answers are almost meaningless.”

“every well-rounded programmer ought to have a knowledge of what goes on
during the elementary steps of floating point arithmetic. This subject is not
at all as trivial as most people think, and it involves a surprising amount of
interesting information.”

One of the objectives in what follows is to help you from becoming disil-
lusioned by identifying where problems can occur, and also to provide an
appreciation for the difficulty of floating-point computation.

1.1 Unexpected Results

What follows are examples where the computed results are not what is exp-
ected. The reason for the problem is the same for each example. Namely,
the finite precision arithmetic use by the computer generates errors that are

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0 1

1

2 1 Introduction to Scientific Computing

significant enough that they affect the final result. Note that the calculations
to follow are fromMATLAB, but the same, or similar, results are expected for
any system using double precision arithmetic (this is defined in Section 1.2).

Example 1

Consider adding a series from largest to smallest

S(n) = 1 +
1

2
+ · · ·+ 1

n− 1
+

1

n
, (1.1)

and the same series added from smallest to largest

s(n) =
1

n
+

1

n− 1
+ · · ·+ 1

2
+ 1. (1.2)

According to the usual rules of arithmetic these are equal. However, this
does not necessarily happen when the sums are calculated with a computer.
If one calculates s(n) and S(n), and then calculates the difference S(n)−s(n),
the values given in Table 1.1 are obtained. It is evident that for larger values
of n, the two sums differ. The first question is why this happens, but there
are other questions as well. For example, assuming both are incorrect, is it
possible to determine which sum is closer to the exact result? �

Example 2

Consider the function
y = (x− 1)8. (1.3)

If one expands this, the following is obtained

y = x8 − 8x7 + 28x6 − 56x5 + 70x4 − 56x3 + 28x2 − 8x+ 1. (1.4)

n S(n)− s(n)

10 0

100 −8.88e−16

1,000 2.66e−15

10,000 −3.73e−14

100,000 −7.28e−14

1,000,000 −7.83e−13

Table 1.1 Difference in partial sums for the harmonic series considered in Example 1.
Note that −8.9e−16 = −8.9 × 10−16.

1.1 Unexpected Results 3

0.9 0.95 1 1.05 1.1

y-
ax

is
×10-9

10-14

0

5

10
 (1.3)
 (1.4)

x-axis
0.98 0.99 1 1.01 1.02

y-
ax

is

×

-2

0

2

4

Figure 1.1 Plots of (1.4) and (1.3). Upper graph: the interval is 0.9 ≤ x ≤ 1.1, and
the two functions are so close that the curves are indistinguishable. Lower graph: the
interval is 0.98 ≤ x ≤ 1.02, and now they are not so close.

The expressions in (1.4) and (1.3) are equal and, given a value of x, either
should be able to be used to evaluate the function. However, when evaluat-
ing them with a computer they do not necessarily produce the same values
and that is shown in Figure 1.1. In the upper graph they do appear to agree,
but that is certainly not true in the lower graph. The situation is even worse
than the fact that the graphs differ. First, according to (1.3), y is never neg-
ative but according to the computer (1.4) violates this condition. Second,
according to (1.3), y is symmetric about x = 1 but the computer claims (1.4)
is not. �

Example 3

As a third example, consider the function

y =

√
16 + k − 4

k
. (1.5)

This is plotted in Figure 1.2. According to l’Hospital’s rule

lim
k→0

y =
1

8
.

The computer agrees with this result for k down to about 10−12 but for
smaller values of k there is a problem. First, the function starts to oscillate

4 1 Introduction to Scientific Computing

k-axis
10-18 10-14 10-10 10-6 10-2

y-
ax

is

0

1/16

1/8

3/16

Figure 1.2 Plot of (1.5).

and then, after k drops a little below 10−14, the computer decides that y = 0.
It is also worth pointing out that ratios as in (1.5) arise in formulas for the
numerical evaluation of derivatives, and this is the subject of Section 7.2. In
particular, (1.5) comes from an approximation used to evaluate f ′(0), where
f(x) =

√
16 + x. �

Example 4

The final example concerns evaluating trigonometric functions, specifically,
sin(x). It is well-known that if n is an integer, then sin(nπ) = 0. The integers
of interest here are of the form n = 2k + 1, where k is a positive integer.
Using MATLAB one finds that if k = 52 then sin(nπ) = −0.3021, while if
k = 53, then sin(nπ) = −0.8926. Obviously, neither value is close to zero. To
investigate this further, the absolute value of y = sin((2k + 1)π) is plotted
as a function of k in Figure 1.3. Interestingly, the error grows almost mono-
tonically, eventually getting close to one. It is also worth pointing out that
this result is not limited to MATLAB and as an example, the same curve is
obtained if the valves are computed with Python. �

0 5 10 15 20 25 30 35 40 45 50
k-axis

10-16

10-12

10-8

10-4

100

|y
|

Figure 1.3 The absolute value of y = sin(nπ), where n = 2k + 1, as computed by
MATLAB.

1.2 Floating-Point Number System 5

1.2 Floating-Point Number System

The problems illustrated in the above examples are minor compared to the
difficulties that arose in the early days of computing. It was not unusual to
get irreproducible results, in the sense that two different computers would
calculate different answers to the same formula. To help eliminate this, a set
of standards was established that computer manufactures were expected to
comply with. The one of interest here concerns the floating-point system, and
it is based on the IEEE-754 standard set in 1985. It consists of normal floats
(described below), along with zero, ± Inf, and NaN.

1.2.1 Normal Floats

Normal (or normalized) floating-point numbers are real numbers that the
computer has the exact value for. The form they are written in is determined
by the binary nature of computer systems. Specifically, they have the form

xf = (±)m× 2E , (1.6)

where

m = 1 +
b1
2

+
b2
22

+ · · ·+ bN−1

2N−1
. (1.7)

In this representation m, E, and the bi’s have the following properties:

• m: This is the mantissa. The bi’s are either zero or one, and for this reason
1 ≤ m < 2 (see Exercise 1.19).

• E: This is the exponent and it is an integer that satisfies Em ≤ E ≤ EM .
For example, for double precision, −1022 ≤ E ≤ 1023. In general, accord-
ing to the IEEE requirements, Em = −EM +1 and EM = 2M−1−1, where
M is a positive integer.

As defined, a floating-point system requires specification of the two integers
N and M , and from this the normal floats can be determined using (1.6)
and (1.7). Some of the standard choices are listed in Table 1.2. The one of
particular importance for scientific computing is double precision, for which
N = 53 and M = 11.

Examples

1. 3 = 2 + 1 =

(
1 +

1

2

)
× 2

6 1 Introduction to Scientific Computing

In this case, E = 1, b1 = 1, and the other bi’s are zero. This means that
x = 3 is a floating-point number. �

2. −10 = −8− 2 = −
(
1 +

1

22

)
× 23

In this case, E = 3, b2 = 1, and the other bi’s are zero. This means that
x = −10 is a floating-point number. �

3. An irrational number is not a normal float. �

It is worth looking at the values ofm coming from (1.7). The smallest value
occurs when all of the bi’s are zero, which gives m = 1. The next largest value
occurs when bN−1 = 1 and all of the other bi’s are zero. In other words, the
next largest is m = 1 + ε, where

ε =
1

2N−1
. (1.8)

The next largest value of m occurs when bN−2 = 1 and all of the other bi’s
are zero, which gives us m = 1 + 1/2N−2 = 1 + 2ε. This pattern continues,
and one ends up concluding that m = 1, 1 + ε, 1 + 2ε, 1 + 3ε, · · · , 1 + Kε,
where K = 2N−1 − 1. If you are curious how the value of K is determined,
you should look at Exercise 1.19. Also, the number ε defined above plays
a special role in the floating-point number system and it is called machine
epsilon.

Examples

1. x = 1 is a floating-point number (take m = 1 and E = 0) and the floating-
point number just to the right of x = 1 is xf = 1 + ε, where ε is given
in (1.8). �

2. What is the floating-point number just to the left of x = 1?

Answer: Between x = 1/2 and x = 1 the floats have the form m × 2−1.
We need the largest value of m, which is m = 1 + Kε. Noticing that
K = ε−1 − 1, then the float just to the left of x = 1 is

xf = (1 + (ε−1 − 1)ε)× 2−1

= (2− ε)× 2−1

= 1− 1

2
ε. �

1.2 Floating-Point Number System 7

Given any nonzero real number, the computer will attempt to approximate
its value with the closest normal float. This requires a rule for rounding, which
is explained in Section 1.2.3, and rules for what happens if the number is too
big or very close to zero, which are explained in Section 1.2.4.

It is possible to have computer programs use multiple floating-point sys-
tems at the same time. For example, in C and FORTRAN you can declare
variables to be either single or double precision (see Table 1.2). However, the
default assumption in scientific computing is that double precision is used
(this is what MATLAB uses).

1.2.2 Machine Epsilon

One floating-point number that plays a critical role in this textbook is known
as machine epsilon. This is designated as ε, and it is given as

ε =
1

2N−1
.

In the case of double precision, ε ≈ 2 × 10−16. Because of its importance,
most computer systems have a special variable set aside for ε. For example,
in MATLAB machine epsilon is designated as eps.

Why is ε so important? The primary reason is that it is used to determine
the relative accurately of a floating-point number, and this will be explained
below. A related reason is that ε can be used to determine the spacing of the
floating-point numbers. To explain, recall that the values for the mantissa are
m = 1, 1+ ε, 1+2ε, 1+3ε, · · · , 1+Kε. As defined in (1.6), the floating-point
numbers between x = 1 and x = 2 have the form m × 2E , where E = 0.
This means they are a distance ε apart. Similarly, the floating-point numbers
between x = 2 and x = 22 are a distance of ε× 2 apart, and between x = 22

and x = 23 they are a distance of ε × 22 apart. One consequence of this is
that for large values of x the distance between the floats can be huge. For
example, between 2100 ≈ 1030 and 2101 ≈ 2 × 1030 they are a distance of
ε × 2100 ≈ 2.8 × 1014 apart. The fact that they are so far apart can have
dire consequences for some calculations, and a particular example will be
considered in Section 1.2.6.

There are other normal floats that are occasionally useful enough that they
should be mentioned.

• largest positive: This is xM =
(
1− ε

2

)× 2EM+1.

In MATLAB this is denoted as realmax.

• smallest positive: This is xm = 2Em .

In MATLAB this is denoted as realmin.

8 1 Introduction to Scientific Computing

P
r
e
c
is
io
n

N
M

E
m

E
M

S
m

a
ll
e
st

P
o
si
ti
v
e
(x

m
)

L
a
r
g
e
st

P
o
si
ti
v
e
(x

M
)

ε
D
e
c
im

a
l
D
ig
it
s

S
in

g
le

2
4

8
−1

2
6

1
2
7

1
.2

×
1
0
−

3
8

3
.4

×
1
0
3
8

1
0
−

7
7

D
o
u
b
le

5
3

1
1

−1
0
2
2

1
0
2
3

2
.2

×
1
0
−

3
0
8

1
.8

×
1
0
3
0
8

2
×

1
0
−

1
6

1
6

Q
u
a
d
r
u
p
le

1
1
3

1
5

−1
6
3
8
2

1
6
3
8
3

3
.4

×
1
0
−

4
9
3
2

1
0
4
9
3
2

1
0
−

3
4

3
4

T
a
b
le

1
.2

V
a
lu
es

fo
r
v
a
ri
o
u
s
fl
o
a
ti
n
g
-p
o
in
t
sy
st
em

s
sp

ec
ifi
ed

b
y
IE

E
E
-7
5
4
a
n
d
it
s
ex

te
n
si
o
n
s.

T
h
e
v
a
lu
es

fo
r
th

e
sm

a
ll
es
t
p
o
si
ti
v
e,

la
rg
es
t

p
o
si
ti
v
e,

a
n
d
m
a
ch

in
e
ep

si
lo
n
a
re

o
n
ly

g
iv
en

to
o
n
e
o
r
tw

o
si
g
n
ifi
ca
n
t
d
ig
it
s.

S
im

il
a
rl
y,

th
e
n
u
m
b
er

o
f
d
ec
im

a
l
d
ig
it
s
is

a
p
p
ro
x
im

a
te

a
n
d
is

d
et
er
m
in
ed

fr
o
m

th
e
ex

p
re
ss
io
n
N

lo
g
1
0
2
.
A
ls
o
n
o
te

th
a
t
d
o
u
b
le

p
re
ci
si
o
n
is

th
e
d
ef
a
u
lt

fo
r
sc
ie
n
ti
fi
c
co
m
p
u
ti
n
g
.

1.2 Floating-Point Number System 9

1.2.3 Rounding

Assuming x is a real number satisfying xm ≤ |x| ≤ xM then in the computer
this is rounded to a normal float xf , and the relative error satisfies

|x− xf |
|x| ≤ ε

2
.

To do this it uses a “round to nearest” rule, which means xf is the closest
float to x. So, for example, in Figure 1.4 if 1 − ε

4 < x < 1 + ε
2 (Region II)

then xf = 1, while if 1 + ε
2 < x < 1+ 3ε

2 (Region III) then xf = 1+ ε. In the
case of a tie, it uses a “round to even” rule, where it picks the nearest float
with an even least significant digit.

1.2.4 Nonnormal Floats

To complete the floating-point system, a few additional terms are needed.
The ones most relevant to our objective of numerical computing are described
below.

Zero

It is not possible to represent zero using (1.6), and so it must be included as
a special case. Correspondingly, there is an interval −x0 < x < x0 where any
number in this interval is rounded to xf = 0. The fact that a nonzero number
is rounded to zero is the cause of many problems in numerical computing. For
example, when this is done, an expression such as 1/x has no meaning. The
exact value of x0 is not of particular importance, although for MATLAB,
x0 ≈ 3 × 10−324. The reason x0 < xm is that there are additional floats
between x0 and xm, what are called subnormal floats, that are to help reduce
the divide by zero problem.

Figure 1.4 The two floating-point numbers just to the left and right of x = 1. The
dashed lines are located half-way between the floats and any real number between
them is rounded to the floating-point number in that subinterval.

10 1 Introduction to Scientific Computing

Inf and NaN

Positive numbers larger than xM are either rounded to xM , if close enough,
or assigned the value of Inf. The latter is a situation known as positive over-
flow. A similar situation occurs for very negative numbers, something called
negative overflow and it produces the value of −Inf. For these situations
when the calculated value is ill-defined, such as 0/0, the floating-point sys-
tem assigns it a value of NaN (Not a Number). Needless-to-say, if you get a
NaN then the calculation must be modified in some way.

Integers

Integers play an important role in programming, and examples include the
counter used in a for or do loop, as well as the indices of a vector or ma-
trix. Not all integers are part of the floating-point system and round-off in
such cases is a problem. To avoid this, most computer systems have a way to
treat integers as integers, where addition and subtraction are done exactly as
long as the integers are not too big. For example, in C you can use the type
declaration int to identify a variable as an integer while in FORTRAN it is
understood that any variable beginning with the letters i, j, k, l, m, n is an
integer. MATLAB does the typing automatically and will do integer arith-
metic exactly whenever possible. It is able to do this as long as the values
are less, in absolute value, than about 253.

There are aspects of the floating-point system that are not particularly
important for developing the numerical algorithms considered in this text.
For example, a number of textbooks describe the machine representation
of a float, while others consider how the rules for arithmetic are affected
using floats. As examples, if x + y = z then you might wonder if it is
true that xf + yf = zf , or you might wonder if it is always true that
xf+(yf+zf) = (xf+yf)+zf . For the record, the former is true while the lat-
ter is not. It is interesting to note that the non-associativity of floating-point
addition has generated some difficulty in adapting algorithms to multicore
processors. This is because the order of the numerical operations are affected
by the way the problem is distributed between the cores, which means you
can get different answers depending on how many cores you use. As you might
expect, getting irreproducible results has generated considerable consterna-
tion [Shure, 2009]. To get some insight into how this problem is being solved,
Demmel and Nguyen [2013] or Collange et al. [2015] should be consulted.
For those interested in more detail related to floating-point arithmetic, they
should consult ANSI/IEEE [1985], Goldberg [1991], Overton [2001], or Muller
et al. [2010].

1.2 Floating-Point Number System 11

1.2.5 Flops

All numerical algorithms are judged by their accuracy and how long it takes
to compute the answer. As one estimate of the time, an old favorite is to
determine the flop count, where flop is an acronym for floating-point opera-
tion. To use this, it is necessary to have an appreciation of how long various
operations take. In principle these are easy to determine. As an example, to
determine the computing time for an addition one just writes a code where
this is done N times, where N is a large integer, and then divides the total
computing time by N . The outcomes of such tests are shown in Table 1.3,
where the times are scaled by how long it takes to do an addition. Note that
the actual times here are very short, with an addition taking approximately
6× 10−10 sec. So, a program that involves 1.7 billion additions and multipli-
cation should take less than a second. Because of this, even though x = 3/2
might take five times longer to compute than x = 0.5 ∗ 3, it’s really not
necessary to worry about this (at least in the problems considered in this
text).

A couple of comments need to be made about Table 1.3. First, using these
numbers to accurately predict how long a calculation involving combinations
of floats will take is difficult. Some systems have specialized instruction sets
where certain operations are done in parallel. This includes simple combi-
nations such as a multiply and addition, as well as dot products. A second
comment is more of a question, and it relates to a problem in numerical
computing. Namely, even though a computer provides values for functions
like ex and sinx, just how accurate are these values? Most people who use
computers pay little, if any, attention to this but, as will be explained next,
this is something that is worth knowing about.

Operation MATLAB Time FORTRAN Time

Addition or Subtraction 1 1

Multiplication 1 1

Division 5 12
√
x 24 18

sinx 25 33

lnx 50 18

ex 19 19

xn, for n = 5, 10, or 100 134 15, 18, 28

Table 1.3 Approximate relative computing times for various floating-point opera-
tions in MATLAB (R2016a) and FORTRAN (gfortran v5.1.0). Note that they are
normalized by the time it takes to do an addition.

12 1 Introduction to Scientific Computing

1.2.6 Functions

Any computer system designed for scientific computing has routines to eval-
uate well-known or often used functions. This includes elementary functions
like

√
x, transcendental functions like sin(x), ex, and ln(x), and special func-

tions like erf(x) and Jν(x). To discuss how these fit into a floating-point sys-
tem, these will be written in the generic form of y = f(x). The ideal goal is
that, letting yf denote the computed value and assuming that xm ≤ |y| ≤ xM ,

|y − yf |
|y| ≤ ε

2
.

Unfortunately, this does not apply to the current implementations of the
floating-point system. It turns out that even for the elementary functions,
guaranteeing correct rounding is difficult [Hanrot et al., 2007]. It is so diffi-
cult that it was intentionally left out of the IEEE-754 standard. The revised
standard, IEEE-754 (2008) does consider this problem and makes recommen-
dations for some of the elementary and transcendental functions. Note these
are recommendations, or suggestions, and not requirements.

To illustrate how difficult it is to implement the IEEE-754 (2008) rec-
ommendations, suppose we want to evaluate sin(x) for larger values of x,
say for 253 < x < 254. In this interval, using double precision, the distance
between the floating-point numbers is ε253 = 2. This means that given x,
the closest floating-point number the computer has for x is some number xf

in the interval [x − 1, x + 1]. It is very unlikely that the value of sin(xf) is
anywhere near the value of sin(x). This is the reason for the problem seen
in Figure 1.3. To repeat the earlier example, using MATLAB one finds that
sin((252 +1)π) = −0.3021, and sin((253 +1)π) = −0.8926. This type of error
should be expected with any floating-point system (using double precision).

As illustrated in the above example, the low density of floating-point
numbers for larger values of x makes it very difficult to accurately evalu-
ate functions that oscillate over shorter distances. Fortunately, the situa-
tion for functions which are monotonic, such as exp(x) and ln(x), is much
better. Those you might want to investigate some of the challenges related
to accurate function evaluation should consult de Dinechin et al. [2004]
or Muller [2005].

1.3 Arbitrary-Precision Arithmetic

Some applications, such as cryptography, require exact manipulation of ex-
tremely large integers. Because of their length, these integers are not repre-
sentable using double, or even quadruple, precision. This has given rise to
the idea of arbitrary-precision arithmetic, where the limitation is determined

1.4 Explaining, and Possibly Fixing, the Unexpected Results 13

by the available memory for the computer. The price paid for this is that the
computations are slower, with the computing time increasing fairly quickly
as the size of the integers is increased.

As an example of the type of problem arbitrary-precision arithmetic is used
for, there is the Great Internet Mersenne Prime Search (GIMPS). A Mersenne
prime has the form 2n − 1, and considerable computing resources have been
invested into finding them. The largest one currently known, which took 39
days to compute, has n = 57,885,161, which results in a prime number with
17,425,170 digits [GIMPS, 2015]. Just printing this number, with 3,100 digits
per page, would take more than twelve times the pages in this text.

There are multiple computational challenges finding large prime numbers.
One example is simply the difficulty of quickly multiplying large integers,
and an illustration of how their binary representations can be used for this
is touched on in Exercise 1.18. Those interested in the computational, and
theoretical, underpinnings of computing primes should consult Crandall and
Pomerance [2010].

1.4 Explaining, and Possibly Fixing,
the Unexpected Results

The problem identified in Example 4, in Section 1.1, was discussed in Sec-
tion 1.2.6. It is also analyzed in more depth in Exercise 1.17. What follows is
a discussion related to the other examples that were presented in Section 1.1.

Example 1

The differences in the two sums are not unexpected when using double pre-
cision arithmetic. Also, the order of the error is consistent with the accuracy

Number of Terms
104 105 106 107 108

E
rr

o
r

10-15

10-14

10-13

10-12

10-11

S
s

Figure 1.5 The error in computing the partial sum of the harmonic series using (1.1)
and (1.2).

14 1 Introduction to Scientific Computing

n E(n) − c(n) E(n)− s(n)

104 0 3.55 × 10−15

105 0 1.95 × 10−14

106 1.78 × 10−15 4.97 × 10−14

107 3.55 × 10−15 1.10 × 10−13

108 0 4.51 × 10−13

Table 1.4 Comparison between compensated summation, as given in (1.9), and reg-
ular summation. Note E(n) is the exact result, c(n) is the value using compensated
summation, and s(n) is given in (1.2).

obtained for double precision. The question was asked about which sum might
produce the more accurate result. One can argue that it is better to add from
small to big. The reason being that if one starts with the larger terms, and
the sum gets big enough, then the smaller terms are less able to have an affect
on the answer. To check on this, it is necessary to know the exact value, or at
least have an accurate approximate value. This can be found using something
called the digamma function, from which one can show that for larger values
of n,

n∑
k=1

1

k
= ln(n+ 1) + γ − 1

2(n+ 1)
+O

(
1

n2

)
,

where γ = 0.5772 · · · is Euler’s constant. To investigate the accuracy of the
two sums, the errors are shown in Figure 1.5. It is evident that for the most
part, s(n) serves as a more accurate approximation than S(n). It is also seen
that there is also a slow increase in the error for both, but this is not unusual
when such a large number of floating-point calculations are involved (see
Exercise 1.14).

Given the importance of summation in computing, it should not be surpris-
ing that numerous schemes have been devised to produce an accurate sum.
A particularly interesting example is something called compensated summa-
tion. To explain how it works, consider the problem of calculating

∑n
i=1 xi.

The compensated summation procedure is as follows:

let: sum = 0 and err = 0

loop: for i = 1, 2, 3, · · · , n
z = xi + err

q = sum (1.9)

sum = q + z

err = z − (sum− q)

end

1.4 Explaining, and Possibly Fixing, the Unexpected Results 15

Operation Floating-Point Result Comments

a, b

mantissas for a and b
are aligned for the addition

sf = (a+ b)f due to the fixed number of digits, b2 is lost

sf − a a is removed from the sum

(sf − a)− b

In removing b, the part that
remains is −b2

Table 1.5 Steps explaining how the error in floating-point addition is estimated for
compensated summation. Adapted from Higham [1993].

The error in computing s(n) when using this procedure, versus just adding
the terms recursively, is given in Table 1.4. The improvement in the accuracy
is dramatic. This happens because the method is based on an estimate of
the error in a floating-point addition, and then compensates for this in the
calculation. To explain, suppose we have two positive real numbers a and b,
with a > b. The sequence of steps involved illustrating how the method works
is given in Table 1.5. What it shows is that the part of b that is dropped in
the addition can be approximated with b− (sf − a). In the loop in (1.9), the
xi’s are added to produce the value of sum. In connection with Table 1.4,
a = sum, b = xi, and b− (sf −a) = err. So err is the missing part of xi, and
it’s added back in during the next iteration. This is the reason for setting
z = xi + err. There are variations on this procedure, and also limitations
on its usefulness. Those interested in reading more about this should consult
Demmel and Hida [2004] or Rump et al. [2008]. �

Example 2

The first thing to notice is that the values of the function in the lower plot in
Figure 1.2 are close to machine epsilon. The expanded version of the polyno-
mial is required to take values x = 1 and combine them to produce a value
close to zero. The errors seen here are consistent with arithmetic using dou-
ble precision, and the fact that the values are sometimes negative also is not
surprising.

It is natural to ask, given the expanded version of the polynomial (1.4),
whether it is possible to find an algorithm for it that is not so sensitive to
round-off error. There are procedures for the efficient evaluation of a polyno-
mial, and two examples are Horner’s method and Estrin’s method. To explain
how these work, Horner’s method is based on the following observations:

16 1 Introduction to Scientific Computing

a2x
2 + a1x+ a0 = a0 + (a1 + a2x)x,

a3x
3 + a2x

2 + a1x+ a0 = a0 + (a1 + (a2 + a3x)x)x,

a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = a0 + (a1 + (a2 + (a3 + a4x)x)x)x.

Higher order polynomials can be factored in a similar manner, and the re-
sulting algorithm for evaluating the nth degree polynomial p(x) = a0+a1x+
· · ·+ anx

n is

let: p = an

loop: for i = 1, 2, 3, · · · , n
p = an−i + p ∗ x

end

This procedure is said to be optimal because it uses the minimum number
of flops to compute pn(x). In particular, it requires 2n adds and multiplies,
while the direct method requires about 3n.

Because of the reduced computing cost, Horner’s method is often used in
library programs for evaluating polynomials. For example, the library rou-
tines that are used by some computers to evaluate tan(x) and atan(x) involve
polynomials of degree 15 and 22 [Harrison et al., 1999], and having this done
as quickly as possible is an important consideration. However, because addi-
tions and multiplications take only 6 × 10−10 sec, the speedup using Horner
is not noticeable unless you are evaluating the polynomial at a huge number
of points. The advantage using Horner is that it tends to be less sensitive
to round-off error. To illustrate, using Horner to evaluate the polynomial
in (1.4), the curve shown in Figure 1.6 is obtained. It clearly suffers the same
oscillatory behavior the direct method has, which is shown in Figure 1.1.
However, the amplitude of the oscillations is about half of what is obtained
using the direct method. �

x-axis
0.98 0.99 1 1.01 1.02

y-
ax

is

×10-14

-2

0

2

4

Figure 1.6 Plot of (1.4) when evaluated using Horner’s method, solid (red) curve,
and using (1.3), the dashed (blue) curve.

1.4 Explaining, and Possibly Fixing, the Unexpected Results 17

k-axis
10-18 10-14 10-10 10-6 10-2

y-
ax

is

0

1/16

1/8

3/16

Figure 1.7 Plot of (1.10).

Example 3

The function considered was

y =

√
16 + k − 4

k
, (1.10)

and this is replotted in Figure 1.7. The reason for the problems seen in the
graph is the value the computer assigns

√
16 + k for small values of k. To

explain, assuming k is small then from Taylor’s theorem

√
16 + k = 4 +

1

16
k +O(k2). (1.11)

In other words, the exact value of
√
16 + k is a little larger than 4. The

floating-point numbers just to the right of x = 4 are shown in Figure 1.8.
These are the values the computer has to pick from in this region. So, if
the exact value of

√
16 + k falls in Region II, then the computer rounds the

value to 4(1 + ε). We will concentrate on Region I, which is the interval
4 < x < 4(1 + 1

2ε). In this case the computer will claim that
√
16 + k = 4. It

then takes this value, evaluates the numerator in (1.11) and concludes that
y = 0. It is possible to estimate the value of k where the computer starts
claiming that y = 0. This happens when

√
16 + k = 4(1 + 1

2ε). From this
and (1.11), we have that k ≈ 32ε. For double precision, ε ≈ 2.2 × 10−16,
and so the zero solution is produced for k < 7 × 10−15. Note that it is also

Figure 1.8 The floating-point numbers just to the right of x = 4. The dashed lines
are located half-way between the floats and any real number between them is rounded
to the floating-point number in that subinterval.

18 1 Introduction to Scientific Computing

possible to explain the oscillations in the graph. The vertical drops in the
curve in the vicinity of 10−14 come from the jumps in the computed value of√
16 + k. For example, the jump just to the right of 10−14 occurs because the

value of
√
16 + k passes from Region III into Region II (see Figure 1.8). This

means that the computer stops claiming that
√
16 + k = 4(1+2ε) and starts

claiming that
√
16 + k = 4(1+ ε). In Region II, the computer’s evaluation of

y yields

y =
4ε

k
.

As a function of k this produces a hyperbolic curve, and this can be seen in
Figure 1.7 (it is the curve in the immediate vicinity of k = 10−14).

As in the earlier examples, the question arises as to whether it is possible
to evaluate this function and avoid the problems seen in Figure 1.7. It is, and
one possibility is to transform the function by setting z =

√
16 + k, so (1.10)

becomes

y =
z − 4

z2 − 16

=
1

z + 4
. (1.12)

Using this expression, one obtains y = 0.1250 · · · no matter how small one
makes k. �

1.5 Error and Accuracy

One of the most important words used in this text is error (and it is used
a lot). There are different types of error that we will often make use of. For
example, if xc is a computed value, and x is the exact value, then

1. |x− xc| is the error,

2.
|x− xc|

|x| is the relative error (assuming x �= 0).

Because the relative error measures the difference relative to the size of x, it
is a better measure of how many significant digits have been computed. To
explain, if |x−xc|/|x| ≈ 10−p, where p is a positive integer, then xc should be
correct to approximately p significant digits. The following examples illustrate
the situation:

1.5 Error and Accuracy 19

Examples

1. x = 1,000,000, xc = 1,000,001
In this case, |x − xc| = 1 and |x − xc|/|x| = 10−6. Note that the relative
error is reflective of the fact that the computed value agrees to 6 places
with the exact value. �

2. x = 10−6, xc = 10−6 + 10−10

In this case, |x − xc| = 10−10 and |x − xc|/|x| = 10−4. Similar to the
last example, the relative error shows that the computed value agrees to
4 places with the exact value. �

Note that the error, as defined above, has a significant flaw, which is that
you need to know the exact solution to calculate it. For this reason, it will
play an important role in the derivation of the numerical methods, and a less
direct role in the implementation of the methods.

One of the problems of not knowing the error is that it can be difficult to
know when to stop a computation. As an example, consider the problem of
calculating the value of

s = 8−
∞∑
n=1

7

8n
.

Letting

sk = 8−
k∑

n=1

7

8n
, (1.13)

one obtains the values shown in Table 1.6. A pattern is developing in the
sk’s related to those digits that stop changing as more terms are added. For
example, it appears that s2 is correct to 2 digits, s3 is correct to 3 digits, etc.
It is possible to introduce a measure for the improvement in the value seen
in this pattern by using the following:

1. |sk − sk−1| is the iterative error,

2.
|sk − sk−1|

|sk| is the relative iterative error (assuming sk �= 0).

The values for these quantities are given in Table 1.6. Similar to before, the
relative iterative error is a more reflective measure for the number of correct
digits in the computed answer.

The iterative error is easily computable, and used extensively in scientific
computing. However, it too has a flaw, which is that just because sk and sk−1

are close together, it does not necessarily follow that sk is close to the exact
value. There are various ways you can increase your confidence that sk is close
to the exact value, and an example would be to require that the computation
continue until the condition that |sk − sk−1| < tol is satisfied for three or

20 1 Introduction to Scientific Computing

k sk |sk − sk−1| |sk − sk−1|/|sk|
1 7.125000000000000

2 7.015625000000000 1.1e−01 1.6e−02

3 7.001953125000000 1.4e−02 2.0e−03

4 7.000244140625000 1.7e−03 2.4e−04

5 7.000030517578125 2.1e−04 3.1e−05

6 7.000003814697266 2.7e−05 3.8e−06

Table 1.6 Values of sk, which are given in (1.13), as they approach the exact value
of s = 7. Also given are the iterative error and the relative iterative error.

four successive values of k. However, in the end, without some other piece
of information, most numerical solutions have a certain level of uncertainty
related to whether they have produced an accurate value for the solution. It
is because of this that the theoretical underpinning of the method plays an
important role in computing, because it can provide valuable insights into
how the method should work. A consequence of this is that the theory can
provide a tool for checking on whether the method has been implemented
correctly.

1.5.1 Test Cases

The question that comes up with almost any computer code is, how do you
know it is calculating the right answer? A good response to this is: well, we
ran some tests and it worked just great. This requires the ability to find test
cases you know the answer to, and which test the limits of your code. For
some types of problems there are whole libraries of test problems, ones that
are known to be rather difficult. For more run of the mill problems, the usual
approach is to pick a solution and then find what problem it satisfies. It is
that problem you then try your computer code on.

Examples

1. Matrix Equation

Suppose you have written a code to solve matrix equations of the form
Ax = b. In this case, to test if it works, you pick a matrix A, and solution
x, calculate b = Ax, and then use your code to solve Ax = b using this
particularA and b. It is then as easy matter to compare the exact solution
with what the code computes. �

Exercises 21

2. Differential Equation

Suppose you have written a code to solve y′′+y′+y = f(t), where y(0) = a
and y′(0) = b. Instead of trying to find examples by solving the prob-
lem by hand, just pick a smooth function y(t). With this choice, then
f(t) = y′′+y′+y, a = y(0) and b = y′(0). Using this f(t), a, and b in your
code, you then can compare the computed values with the exact result. �

Some care is needed when selecting test problems to make sure they are
computable. As a case in point, for the matrix equation example above, the
matrix should be well conditioned (this is explained in Chapter 3). In the
case of nonlinear problems it is often the case that the solution is not unique,
and it is possible to conclude that your numerical method has failed even
though it has correctly computed a solution you were not aware of.

1.5.2 Over-Computing?

In using a numerical method, the question comes up as to how accurately
to compute the answer. For example, numerical methods are used to solve
problems in mechanics, and one often compares the computed values with
data obtained experimentally. This begs the question, if the data are correct
to only two or three digits, is it really necessary to obtain a numerical solution
that is correct to 15 or 16 digits (the limit for double precision)? It is true
that in many situations you do not need the accuracy provided using double
precision, but this depends on the problem being solved. For example, in
Chapter 3 it will be seen that when solving the matrix equation Ax = b it
is easily possible that 15 or 16 digits are needed just to guarantee that the
computed solution is correct to one or two digits. This loss of accuracy is
associated with what is called an ill-conditioned problem, which means that
the problem tends to magnify small errors. On the other hand, some methods
that will be considered actually try to take advantage of not over-computing
the solution. A particular example is a search method used to find a minimum
of a function, and this is explained in Section 8.7.2.

Exercises

1.1. Find nonzero numbers for x and y so MATLAB calculates x/y to be the
stated result. Also, provide a short explanation why your example does this.

(a) Inf
(b) NaN
(c) 0
(d) 1 (with x �= y)

22 1 Introduction to Scientific Computing

1.2. Have MATLAB evaluate the following, and provide a plausible explana-
tion for the answer.
(a) 10 ∗NaN and 0 ∗NaN
(b) NaN/NaN
(c) Inf/Inf
(d) Inf ∗ 0
(e) 0Inf and (Inf)0

(f) 1Inf

(g) e−Inf and eInf

1.3. Let xf and yf be adjacent floating-point numbers. You can assume they
are positive and normal floats.
(a) What is the minimum possible distance between xf and yf?
(b) What is the maximum possible distance between xf and yf?
(c) How many double precision numbers lie between two consecutive single

precision numbers? You can assume the single precision numbers are both
positive.

1.4. In double precision, what is the distance from 32 to the next largest
floating-point number?

1.5.
(a) Find the largest open interval about x = 16 so all real numbers from the

interval are rounded to xf = 16. That is, find the smallest value of L
and largest value of R with L < 16 < R so any number from the interval
(L,R) is rounded to the floating-point number xf = 16. Assume double
precision is used.

(b) Redo part (a) for x = 50, that is, find the interval (L,R) that rounds to
the floating-point number

xf = 50 =

(
1 +

1

2
+

1

24

)
× 25.

1.6. Using compound interest, if an amount a is invested at an annual interest
r and compounded n times per year then the amount A at the end of one
year is

A = a
(
1 +

r

n

)n
.

It’s not hard to show that the larger the value of n, the larger the amount
at the end of the year. Assume that a = 100 and the interest rate is 1% so
r = 0.01. Also assume there are 365 days in a year. Using MATLAB calculate
A for the following cases:
(a) compounding every hour (so, n = 365 ∗ 24),
(b) compounding every second,
(c) compounding every millisecond,

Exercises 23

(d) compounding every nanosecond,
(e) compounding every picosecond.
(f) You should find that the values computed in (d) and (e) are incorrect.

The question is why, that is, what causes the floating-point calculation
to produce an incorrect value? Based on this, given a value of r (with
0 < r < 1), at what value of n would you expect an incorrect result to
be computed by MATLAB?

1.7. Consider the ratio

R =
n(n− 2)(n− 4) · · · 2

(n− 1)(n− 3)(n− 5) · · · 1 ,

where n is even. It is known that if n = 100 then R ≈ 12.5645 and if n = 400
then R ≈ 25.0820.
(a) The commands below will, in theory, compute R. Try them and show

that they work if n = 100 but not if n = 400 (for the latter, the first line
must be changed). Explain why this happens.

n = 100

T = 1;

for i = 2 : 2 : n

T = T ∗ i;
end

B = 1;

for i = 1 : 2 : n− 1

B = B ∗ i;
end

R = T/B

(b) How can R be rewritten so MATLAB can be used to calculate R when
n = 400? Prove it works by computing the result with MATLAB. Also,
compute R for n = 4,000,000.

1.8. Compute the following. If you must modify the sum(s) in any way to
obtain the answer, explain what you did and why.

(a)

1000∑
k=0

ek

1 + ek

(b)

1000∑
k=0

cosh(k)

1 + sinh(k)

24 1 Introduction to Scientific Computing

(c)
1000∑
k=0

√
3 + ek −

1000∑
n=0

√
1 + en

(d)

∑1000
k=0 ek∑1000
n=0 ne

n

(e)

1000∑
k=1

k

[
sin

(
π(k10 +

1

k
)

)
− sin

(
π(k10 − 1

k
)

)]

1.9. Homer Simpson, in the 1998 episode “The Wizard of Evergreen Ter-
race,” claimed he had a counterexample to Fermat’s Last Theorem, and it
was that 398712+436512 = 447212. This exercise considers whether it is pos-
sible to prove numerically that Homer is correct. Note that another (false)
counterexample appeared in the 1995 episode “Treehouse of Horror VI.”
(a) Calculate 398712 + 436512 − 447212. If Homer is right, what should the

answer be?
(b) Calculate

(
398712 + 436512

)1/12 − 4472. If Homer is right, what should
the answer be?

(c) Calculate
398712 + 436512

447212
.

If Homer is right, what should the answer be?

(d) Calculate
[(
398712 + 436512

)1/12]12 − 447212. If Homer is right, what

should the answer be?
(e) One argument that Homer could make is that (c) is the correct result and

(a) and (b) can be ignored because if they are correct then you should not
get a discrepancy between (a) and (d). Explain why MATLAB cannot
be used to prove whether Homer is right or wrong.
Note: Homer’s blackboard containing the stated formula, along with a
few other gems, can be found in Singh [2013]. It also explains why Homer
appears to have an interest in mathematics and physics.

1.10. The graph of the function

f(x) =

√
1 + x2 − 1

x2

is shown in Figure 1.9 where the values of f(x) were computed using MAT-
LAB.
(a) Approximate

√
1 + x2 with a third degree Taylor polynomial expanded

about x = 0. Using this approximation, show that

lim
x→0

f(x) =
1

2
.

Exercises 25

x-axis ×10-7
-3 -2 -1 0 1 2 3

y-
ax

is

0

0.2

0.4

0.6

0.8

Figure 1.9 A plot of f(x) for Exercise 1.10.

(b) What’s causing the problem in MATLAB and why does the problem
occur for the specific values of x shown. Also, why does MATLAB state
that f(x) = 0 for small values of x?

1.11. The graph of the function

f(x) =
ex − 1

x

is shown in Figure 1.10.
(a) Approximate ex − 1 with a third degree Taylor polynomial expanded

about x = 0. Using this approximation, show that

lim
x→0

f(x) = 1 .

(b) From Figure 1.10 one would conclude that the limit in part (a) is zero.
This is incorrect and what’s causing the problem in MATLAB? Explain
your reasoning and also state why the values of the function drop to zero
near 10−16 and not, say, near 4× 10−16.

x-axis ×10-15
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y-
ax

is

0

0.5

1

1.5

2

Figure 1.10 A plot of f(x) for Exercise 1.11.

26 1 Introduction to Scientific Computing

k-axis
10-9 10-8 10-7

y-
ax

is

0

0.5

1

Figure 1.11 A plot of f(x) for Exercise 1.12.

(c) The curve has jumps in the vicinity of 10−16 and 3 × 10−16. Between
these points what is the equation of the curve seen in Figure 1.10, and
where do the jumps actually take place?

(d) Why are the jumps for x < 0 closer together that those for x > 0?

1.12. The graph of the function

f(x) =
1− cos(x)

x2
,

shown in Figure 1.11, was obtained using MATLAB. It is known that
limx→0 f(x) = 1/2. Why does MATLAB claim the value of this limit is
zero? Also, why does MATLAB start claiming that the value is zero for x at
about 10−8

1.13. Let

f(x) =
ln(1 − x)

x
.

(a) Approximate ln(1 − x) with a third degree Taylor polynomial expanded
about x = 0 Using this approximation, what value should you assign to
f(0)?

(b) Using MATLAB, plot f(x) for −10−15 ≤ x ≤ 10−15. What value does
MATLAB assign to f(x) for x very near zero? The interval where the
function is zero is not symmetric about x = 0. Why? Also, does this also
explain why there are more oscillations on the right (x > 0) than on the
left (x < 0)?

(c) Using MATLAB, plot ln(1−x) for−5×10−15 ≤ x ≤ 5×10−15 . The graph
should resemble steps with the step containing x = 0 corresponding to
the value of ln(1) = 0. As x increases from x = 0, what determines the
value of the first nonzero step? How do these steps explain the oscillations
seen in the plot for part (b)?

Exercises 27

1.14. This problem considers the following algorithm

x =
√
2

s = 0

for i = 1, 2, 3, · · · , N
s = s+ x

end

y = x− s/N

It is assumed N is a prescribed (positive) integer.
(a) What is the exact value for y?
(b) Using MATLAB, if N = 104, one gets that y ≈ 1.4× 10−13, if N = 108,

one gets that y ≈ 2.2×10−9, and ifN = 1011, one gets that y ≈ 1.3×10−6.
Why is the error getting worse as N increases? Is there any correlation
between the value of N and the value of y?

(c) Use compensated summation to compute this result and compare the
values with those given in part (b).

1.15. The polynomial pn(x) = a0+a1x+ · · ·+anx
n can be separated into the

sum of two polynomials, one which contains even powers of x and the other
involving odd powers. This problem explores the computational benefits of
this. To make things simple, you can assume n is even, so n = 2m, where m
is a positive integer.
(a) Setting z = x2, find f(z) and g(z) so that pn(x) = f(z) + xg(z).
(b) What is the minimum flop count to compute the expression in part (a)?

Also, explain why it is about half-way between the flop count for the
direct method and the count using Horner’s method.

(c) Evaluate (1.4) using the formula in part (a), and then plot the values
for 0.98 ≤ x ≤ 1.02 (use 1000 points in this interval). In comparison to
the plot obtained using the direct method, does the reduced flop count
reduce the error in the calculation?

1.16. This problem considers the consequences of rounding using double pre-
cision. Assume the “round to nearest” rule is used, and if there is a tie then
the smaller value is picked (this rule for ties is used to make the problem
easier).
(a) For what real numbers x will the computer claim the inequalities 1 <

x < 2 hold?
(b) For what real numbers x will the computer claim x = 4?
(c) Suppose it is stated that there is a floating-point number xf that is the

exact solution of x2 − 2 = 0. Why is this not possible? Also, suppose x̄f

and ¯̄xf are the floats to the left and right of
√
2, respectively. What does

¯̄xf − x̄f equal?

28 1 Introduction to Scientific Computing

1.17. This problem considers the error when evaluating sinx, and the prob-
lem seen in Figure 1.3. It is assumed that x is a given real number that is not
a floating-point number, and xf is its floating-point approximation. Also, E
is the integer so that 2E < x < 2E+1 and 2E ≤ xf ≤ 2E+1.
(a) Use Taylor’s theorem to show that | sinx− sinxf | ≤ |x− xf |.
(b) The point x is between two floating-point numbers x̄f and ¯̄xf , and either

xf = x̄f or xf = ¯̄xf . Explain why |x− xf | ≤ |¯̄xf − x̄f |/2.
(c) Using parts (a) and (b) show that | sinx− sinxf | ≤ ε2E−1.
(d) Use the result in part (c) to show that if |x| ≤ L then

| sinx− sinxf | ≤ 1

4
εL.

(e) When the computer evaluates sinxf it produces a floating-point number
sf . Assuming that | sinxf − sf | ≤ ε, show that

| sinx− sf | ≤ 1

4
ε(L+ 4).

(f) When using double precision, what interval −L ≤ x ≤ L can you use
and be able to guarantee that | sinx − sf | ≤ 10−8? How does this value
of L compare with the corresponding result obtained from Figure 1.3?

1.18. This problem considers ways to compute xn, where n is a positive
integer. This problem arose from trying to explain MATLAB’s rather large
flop time in Table 1.3 for integer powers.
(a) Compare the total number of flops between computing xn = x∗x∗· · ·∗x,

and computing

xn =

{
y ∗ y ∗ · · · ∗ y if n is even
x ∗ y ∗ y ∗ · · · ∗ y if n is odd,

where y = x2. As examples of the last formula, x6 = y ∗ y ∗ y, while
x5 = x ∗ y ∗ y.

(b) Suppose n = 28. Show that 28 = 24 + 23 + 22, and

x28 =

(((
x2
)2)2)2

∗
((

x2
)2)2 ∗ (x2

)2
.

What is the minimum number of flops required using this formula? Also
explain why 24 + 23 + 22 is the floating-point representation of 28. Note
that this procedure is a version of the square-and-multiply algorithm.

(c) Suppose n = 100, so its floating-point representation is (1+ 1
2 +

1
24)× 26.

Explain how to use the idea in part (b) to calculate x100. How does the
flop count compare with the two methods in part (a)?

(d) Another approach, assuming x is positive, is to write xn = en ln x. Based
on the values in Table 1.3, what is the approximate flop time for this?
How does it compare with the flop times found in parts (b) and (c)?

Exercises 29

1.19. This problem considers how to determine the largest value of the man-
tissa.
(a) What values of the bj’s in (1.7) produce the largest value of m?
(b) Assuming x �= 1, show that

1

1− x
= 1 + x+ x2 + · · ·+ xn +

xn+1

1− x
.

(c) Use the result from part (b) to show that the value of m from part (a)
can be written as m = 2 − ε. From this show that the largest value of
the mantissa is m = 1 +Kε, where K = 2N−1 − 1.

(d) Use part (c) to explain why the float just to the left of x = 2 is 2 − ε.
Also, explain why the float just to the right of x = 2 is 2(1 + ε).

Chapter 2

Solving A Nonlinear Equation

In this chapter one of the more common mathematical problems is studied,
which is to find the solution, or solutions, of an equation of the form f(x) = 0.
To illustrate the situation, we begin with a few examples.

2.1 Examples

The examples below are separated into physical and mathematical. The
physical ones are typical in the sense that there are multiple parameters
in the problem, and the variable to solve for is not x. It is also not clear if
the parameters in the problem can mess things up, and either cause there to
be no solution or possibly many solutions of the equation. The mathemat-
ical examples, on the other hand, are relatively simple, and the variable to
solve for is always x. The objective in this case is to illustrate some of the
mathematical complications that can arise when solving nonlinear equations.

2.1.1 Physical

1. A sphere falling through the air reaches a terminal velocity v, which is
determined by a balance in the force of gravity and air resistance. From
Newton’s second law, it is possible to show that

v2 =
2mg

ρAcD
, (2.1)

where A = πd2/4. In this expression, ρ is the density of air, m and d are
the mass and diameter of the sphere, and g is the gravitational acceleration

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0 2

31

32 2 Solving A Nonlinear Equation

constant. The term cD is the drag coefficient, and it accounts for air resis-
tance. It is known by anyone who sticks their arm out of a car window, the
faster you go the greater the air resistance. In other words, cD depends
on v. For spheres, from experimental data the following formula has been
proposed [White, 2005]

cD =
24

Re
+

6

1 +
√
Re

+
2

5
, (2.2)

where Re = ρvd/μ is known as the Reynolds number and μ is the (dy-
namic) viscosity of air. If this is substituted into (2.1), you end up with a
rather complicated nonlinear equation to solve to determine the terminal
velocity. One of the goals of this chapter is to derive methods to solve such
equations. For those who might be interested, these methods are used to
calculate the terminal velocity in Exercise 2.19. �

2. The Michaelis-Menten model in biochemistry describes how an enzyme
binds to a substrate and from this forms a new product molecule. The steps
are illustrated in Figure 2.1. Using the law of mass action, and something
called the quasi-steady-state approximation, one finds that the amount of
the substrate S present at time t satisfies the differential equation

dS

dt
= − vmS

KM + S
, (2.3)

where vm and KM are positive constants. Solving this, one obtains

KM ln(S/S0) + S = S0 − vmt ,

where S0 is the amount at the beginning. So, determining how much of the
substance S is present at any given value of t comes down to solving the
above nonlinear equation for S. This is known as an implicit solution, and
they are very common. Most of the more interesting problems that arise
in science and engineering involve nonlinear differential equations. When
it is possible to find solutions to such problems they are almost always in
implicit form. How the methods developed in this chapter can be used to
find S are explored in Exercise 2.17. �

Figure 2.1 The steps in the Michaelis-Menten mechanism, where an enzyme, E,
assists S in transforming into P [Holmes, 2009].

2.1 Examples 33

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x-axis

-10

-5

0

5

10

15

20
y-

ax
is

Figure 2.2 Plot of the function for Example 1.

2.1.2 Mathematical

1. Solve x3 + 2x+ 2 = 0.

Setting y = x3 + 2x + 2, then the plot of y is shown in Figure 2.2. It is
seen that there is a solution of y = 0 between x = −1 and x = −0.5. �

2. Solve 4x = 3 cos(2πx).

It is not hard to sketch y = 4x and y = 3 cos(2πx), and this is done in
Figure 2.3. The solutions of the equation correspond to where these curves
intersect, and it shows that there are three solutions. �

3. Solve x = x5 − x4 + 1.

Setting y = x5 − x4 + 1 − x, then the plot of y is shown in Figure 2.4.
What is distinctive about this example is that the solution at x = 1 is dif-
ferent than the others considered so far. In particular, the x = 1 solution
is one-sided in the sense that the curve does not change sign as x passes
though x = 1, which is what happens at the solution at x = −1. As will
be seen, our numerical methods will assume the solution is not one-sided.�

x-axis
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y-
ax

is

-4

-2

0

2

4

3cos(2πx)

4x

Figure 2.3 Plot of the two functions for Example 2.

34 2 Solving A Nonlinear Equation

x-axis
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y-
ax

is

-2

-1

0

1

2

Figure 2.4 Plot of the function for Example 3.

4. Find where the function F (x) = xe−x2

attains its maximum value.

This function is plotted in Figure 2.5(upper), and it’s apparent the max-
imum is attained between x = 0.5 and x = 1. There are numerical meth-
ods for finding the location of the maximum (see Chapter 8), but the
approach here is to simply find the points where F ′(x) = 0. The graph of
f(x) = F ′(x) is also shown in Figure 2.5. Not unexpectedly, the solutions
of f(x) = 0 include the maximum location but they also include the loca-
tion of the minimum. �

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

F
-a

xi
s

-0.5

0

0.5

x-axis
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f-
ax

is

-0.5

0

0.5

1

Figure 2.5 Plot of the functions for Example 4. Upper: plot of F (x). Lower: plot of
f(x) = F ′(x).

2.3 Bisection Method 35

x-axis
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y-
ax

is

-2

-1

0

1

2

Figure 2.6 Plot of function for Example 4.

5. Solve f(x) = 0, where f(x) is plotted in Figure 2.6.

This function has a couple of complications we will avoid. First, every
point in the interval −1 ≤ x < 0 is a solution. In contrast, there are only
a finite number of solutions in the other examples. Second, the function is
not continuous. To explain why this is a problem, note that the function is
negative at x = 0.5 and is positive at x = 1.5. If the function is continuous,
then we would be guaranteed that there is at least one point in the interval
−0.5 < x < 1.5 where f(x) = 0. For a non-continuous function, like the
one in Figure 2.6, there is no such guarantee. �

2.2 The Problem to Solve

In this chapter we will describe methods for finding a solution x̄ of the equa-
tion f(x) = 0, where f(x) is continuous. Two of the methods considered,
Newton and secant, will include additional assumptions about f(x).

2.3 Bisection Method

The easiest way to explain the steps in the bisection method is to consider
an example, and so suppose we want to solve x3 + 2x+ 2 = 0. The function
f(x) = x3 + 2x + 2 is plotted in Figure 2.2. The bisection method is based
on a simple observation, which is that if f(a) and f(b) have opposite sign
(so one is positive and the other is negative), then there must be a solution
of f(x) = 0 in the interval a < x < b. What the bisection method does
is prescribe a systematic method for finding smaller and smaller trapping
intervals.

Step 0: To get things started it is necessary to determine an interval that
contains the solution. In looking at Figure 2.2, we could take −2 < x < 0,
or −1 < x < 0, or −2 < x < 2. It doesn’t make much difference which

36 2 Solving A Nonlinear Equation

one is used, but it is essential that if the interval is a0 < x < b0 then
f(a0)f(b0) < 0. From the Intermediate Value Theorem, this guarantees
that there is at least one solution in the interval. This is illustrated in
Figure 2.7 with −2 < x < 0

x-axis
0-1

y-
ax

is

-2
-2

0

2

[]

Figure 2.7 Graph of the function in Figure 2.2. Using bisection, the first interval
−2 < x < 0 is cut in half and it is determined that the solution is in the right half
−1 < x < 0.

Step 1: Cut the interval a0 < x < b0 in half and determine which half con-
tains the solution. For example, if our initial interval is −2 < x < 0 then
the midpoint is x = −1. Because f(−1)f(0) < 0 it must be that the solu-
tion is in the interval −1 < x < 0 (see Figure 2.8). So, this step has taken
our previous interval (a0, b0) and produced a new interval (a1, b1) that is
half the length and still contains the solution. To be specific, the length of
this subinterval is �1 = (b0 − a0)/2.

x-axis
0-5.0-1-2

y-
ax

is

-2

0

2

][

Figure 2.8 The interval −1 < x < 0 is cut in half and it is determined that the
solution is in the left half −1 < x < −1/2.

Step 2: Cut the interval a1 < x < b1 in half and determine which half contains
the solution. The midpoint of the interval is c1 = (a1 + b1)/2, and the
half containing the solution is the one in which f(x) changes sign. In
particular, if f(a1)f(c1) < 0 then the new interval is a2 < x < b2, where
a2 = a1 and b2 = c1. Similarly, if f(b1)f(c1) < 0 then the new interval
is a2 < x < b2, where a2 = c1 and b2 = b1. In either case, this step has
taken the previous interval (a1, b1) and produced a new interval (a2, b2)
that is half the length and still contains the solution. The length in this
case is �2 = �1/2 = (b0 − a0)/2

2. For the example being considered, as
illustrated in Figure 2.9, c1 = −1/2, and this means that the new interval
is −1 < x < −1/2.

2.3 Bisection Method 37

x-axis
0-0.5-0.75-1-2

y-
ax

is

-2

0

2

[]

Figure 2.9 The interval −1 < x < −0.5 is cut in half and it is determined that the
solution is in the left half −1 < x < −0.75.

The next steps continue in a similar manner. Note that in each step it is
possible that the midpoint turns out to be the exact solution, in which case
the calculation is stopped. To summarize the resulting procedure, assuming
the interval (ai−1, bi−1) is known,

letting ci−1 = (ai−1 + bi−1)/2

if f(ci−1) = 0, then stop

else if f(ai−1)f(ci−1) < 0, then ai = ai−1, bi = ci−1 (2.4)

else ai = ci−1, bi = bi−1

The length of the new subinterval is �i = bi − ai, and given that this is half
of the previous one, it follows that

�i =
1

2i
(b − a),

where (a, b) is the initial interval specified in Step 0.
Given that we are trying to find the solution of f(x) = 0, what point do we

use from the subinterval (ai, bi) as the approximation for the solution x̄? The
solution could be anywhere in this interval, so the best choice for an approx-
imation for x̄ is the interval’s midpoint ci = (ai + bi)/2 (see Exercise 2.12).
Making this choice, then the error in the approximation satisfies

|ci − x̄| ≤ 1

2
�i. (2.5)

Note that this is a worst-case result, and the actual error will be somewhat
smaller than 1

2�i.
An algorithm for the bisection method is given in Table 2.1. It differs

slightly from the procedure in (2.4) in that the endpoints are not indexed.
Instead, the values of a and b are simply replaced with the newest values as
the procedure proceeds.

Summarizing the above discussion, we have the following result:

38 2 Solving A Nonlinear Equation

Theorem 2.1. If f ∈ C[a, b], with f(a)f(b) < 0, then the midpoints c0,
c1, c2, · · · computed using the bisection method converge to a solution x̄ of
f(x) = 0, and the error satisfies

|ci − x̄| ≤ 1

2i+1
(b − a). (2.6)

This theorem is a rarity in scientific computing for two reasons. One, it states
that the method always works as long as f(a)f(b) < 0. Second, it provides an
explicit formula for the error. The latter is useful as it is possible to predict
how many subintervals need to be computed even before the calculation is
undertaken. Specifically, if one wants an error of no more than δ, then we
need to take i large enough so that

1

2i+1
(b− a) ≤ δ.

Solving for i, the conclusion is that

i ≥ −1 +
ln((b − a)/δ)

ln 2
. (2.7)

The price paid for the guarantee that the method always works is that it is
slow compared to other methods we will consider. To explain, suppose we
have computed ci and the error in this approximation is 10−2. If we would
like to improve this and have an error of 10−3, we would have to continue

pick: a < b with f(a)f(b) < 0

tol > 0

let: err = (b− a)/2

loop: while err > tol

c = (a+ b)/2

if f(c) = 0, then stop

else if f(a)f(c) < 0, then b = c

else a = c

end

err = (b− a)/2

end

answer: c = (a+ b)/2

Table 2.1 Algorithm for solving f(x) = 0 using the bisection method.

2.3 Bisection Method 39

i ci |ci − x̄|
0 −1 2.29e−01

1 −0.500000000000000 2.71e−01

2 −0.750000000000000 2.09e−02

3 −0.875000000000000 1.04e−01

4 −0.812500000000000 4.16e−02

...
...

...

20 −0.770916938781738 5.83e−08

21 −0.770917415618896 4.19e−07

...
...

...

49 −0.770916997059247 6.66e−16

50 −0.770916997059248 2.22e−16

Table 2.2 Solving x3 + 2x + 2 = 0 using the bisection method given in (2.4). Note
that 2.29e−01 = 2.29 × 10−1.

four more steps and compute ci+4. The reason is that the error is reduced
by a factor of 2 at each step, so we need to make four additional subdivision
steps to reduce the error by at least a factor of 10. In contrast, for Newton’s
method, which is considered next, it is very possible that in just one step the
error can go from 10−2 to 10−4, and in the next step drop to 10−8.

Example

If f(x) = x3+2x+2, and the initial interval is (−2, 0), then the output using
the bisection is shown in Table 2.2. What is also given is the error ei = |ci−x̄|,
where x̄ is the exact solution. The latter is also plotted in Figure 2.10. It is no
surprise that the method works, because this is guaranteed by Theorem 2.1.
Also, to have an error of no more than 10−15, then according to (2.7) we need
to take i ≥ 50, which is consistent with the results shown in Table 2.1. What
might not be expected is the fact that the error does not necessarily improve
with each step. However, this is easy to explain and it’s due to our using the
midpoint as the approximation. So, sometimes the exact solution is closer to
the midpoint while other times it is farther away. However, overall the error
follows an α/2i decrease as the method proceeds, and to make this evident
the curve y = |c1 − x̄|/2i is also plotted in Figure 2.10. �

40 2 Solving A Nonlinear Equation

0 5 10 15 20 25 30 35 40 45 50
Iteration Step

10-16

10-12

10-8

10-4

100
E

rr
o

r

Figure 2.10 The solid (red) curve is the error |ci − x̄|, from Table 2.2, and the
dashed (blue) curve is the function α/2i, where α = |c1 − x̄|.

2.4 Newton’s Method

We will now consider what is known as Newton’s method, although you might
also call it the tangent line method. It is easiest to introduce the ideas using
an example, and we will again consider solving x3 + 2x + 2 = 0. When we
solved this with the bisection method the only information we used about
the function is whether it was positive or negative. In Newton’s method more
information about the function is used.

The essential tool, as is often the case in numerical computing, is Taylor’s
theorem. What we are going to do is use Taylor’s theorem to obtain a lin-
ear approximation of f(x), for x near x0. This is given in Appendix A, in
equation (A.6), and from this we have that

f(x) ≈ f(x0) + f ′(x0)(x− x0). (2.8)

We are going to replace the equation f(x) = 0 with the equation f(x0) +
f ′(x0)(x − x0) = 0. Solving this we get the solution

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x-axis

-10

0

10

20

y-
ax

is

xx
01

Figure 2.11 First step using Newton’s method. The solid curve is y = x3 + 2x + 2
and the dashed line is the line tangent to the curve at x0.

2.4 Newton’s Method 41

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x-axis

-10

0

10

20
y-

ax
is

x
0

x
1

x
2

Figure 2.12 Second step using Newton’s method. The solid curve is y = x3+2x+2
and the dashed line is the line tangent to the curve at x1.

x1 = x0 − f(x0)

f ′(x0)
. (2.9)

A picture of this situation is shown in Figure 2.11. Since f(x) = x3 +2x+2,
then f ′(x) = 3x2+2. Also, recall from calculus that the equation for the line
tangent to the curve at x0 is y = f(x0) + f ′(x0)(x− x0). This line is nothing
more than the approximation we used in (2.8), and it is shown in Figure 2.11
in the case of when x0 = 1.5. Where this line intersects the x-axis determines
x1, and from (2.9) we find that x1 = 0.5429 · · · .

What we see in Figure 2.11 is that, starting with x0, we have produced a
point x1 that is closer to the solution. We should be able to get even closer
by doing this again, which means we approximate f(x) for x near x1 as
f(x) ≈ f(x1) + f ′(x1)(x − x1). Using this approximation, and solving for x
we get the solution

x2 = x1 − f(x1)

f ′(x1)
.

A picture of this situation is shown in Figure 2.12.
To summarize the resulting procedure, assuming the point xi is known,

the next point is calculated using the formula

xi+1 = xi − f(xi)

f ′(xi)
, for i = 0, 1, 2, 3, · · · . (2.10)

This formula is Newton’s method, and to use it to solve f(x) = 0 requires a
start value x0.

An algorithm for Newton’s method is given in Table 2.3. It differs slightly
from the procedure in (2.10) in that the values of x are not indexed.
Instead, the value of x is overwritten as the procedure proceeds. Note that
the stopping condition is based on the iteration error |z| = |xi+1 − xi|.
Assuming the solution is nonzero, one could instead use the relative iteration

42 2 Solving A Nonlinear Equation

pick: x

tol > 0

let: err = 3 ∗ tol

loop: while err > tol

z = f(x)/f ′(x)

err = abs(z)

x = x− z

end

Table 2.3 First version of algorithm for solving f(x) = 0 using Newton’s method.
The procedure stops when |xi+1 − xi| < tol.

error |(xi+1 − xi)/xi+1|. This version of the algorithm does not account for
the various ways Newton’s method can fail, and how this can be done will be
considered later (see Table 2.5).

Example

If f(x) = x3 + 2x+ 2, then (2.10) becomes

xi = xi−1 −
x3
i−1 + 2xi−1 + 2

3x2
i−1 + 2

, for i = 1, 2, 3, · · · . (2.11)

To determine the number and approximate locations of the solutions of
f(x) = 0, we rewrite the equation as x3 = −2x − 2. The left and right
hand sides of this equation are plotted in Figure 2.13. It is apparent that
there is only one solution, and it’s in the interval −1 < x < 0. Consequently,
a reasonable starting point is x0 = −1/2. With this, and (2.11), it follows
that

x1 = −1

2
− 7/8

11/4

= − 9

11
≈ −0.81818.

The remaining values are computed using MATLAB, and the results are given
in Table 2.4. What is also given is the error ei = |xi− x̄|, where x̄ is the exact
solution. The error is also plotted in Figure 2.14. It is clear that the method
works, and it is notable how fast the error decreases when compared to the

2.4 Newton’s Method 43

10-1-2
x-axis

-4

-2

0

2
y-

ax
is

Figure 2.13 The functions y = −2x − 2, dashed (blue) line, and y = x3, the solid
(red) curve.

0 1 2 3 4 5 6 7 8 9 10
Iteration Step

10-16

10-12

10-8

10-4

100

E
rr

o
r

Figure 2.14 The error |xi − x̄|, from Table 2.4.

bisection method. The other observation to be made about the error is that
once it gets down to about 10−16 it stops improving. This is as accurate as
can be expected using double precision arithmetic. �

i xi |xi − x̄| γ

0 −0.50000000000000 2.71e−01

1 −0.81818181818182 4.73e−02

2 −0.77225866916589 1.34e−03 2.1671

3 −0.77091809703576 1.10e−06 2.0745

4 −0.77091699705999 7.40e−13 2.0359

5 −0.77091699705925 1.11e−16 1.3152

6 −0.77091699705925 1.11e−16 1.0000

Table 2.4 Solving x3+2x+2 = 0 using the Newton’s method formula given in (2.11).
Also given is the error ei = |xi − x̄|, and the approximate order of convergence γ as
determined from (2.15).

44 2 Solving A Nonlinear Equation

Example: Implicit Functions

The mathematical problem to be considered is to determine the value of a
function y(x) from an equation of the form F (x, y) = 0. Examples of this are

y3 + x = ln y,

and
y + x = ex−y. (2.12)

The Michaelis-Menten equation (2.3) is another example, where it’s necessary
to solve an equation of the form F (t, S) = 0 to find the solution S. It is
relatively easy to use Newton’s method to solve F (x, y) = 0 if it understood
that x is fixed, or given, and we are solving the equation for y. The resulting
iteration scheme is: after picking y0, then

yj+1 = yj − F (x, yj)

Fy(x, yj)
, (2.13)

where Fy is the partial derivative of F with respect to y. As an example,
for (2.12) we get that

yj+1 = yj − yj + x− ex−yj

1 + ex−yj
. (2.14)

To use this, it is necessary to have a reasonable guess for the initial point
y0. To find such a value, the left and right hand sides of (2.12) are sketched
in Figure 2.15 as a function of y (assuming that x > 0). Also shown are the
values of the functions at y = 0. It is seen that the intersection point ȳ, which
is the solution of the equation, is in the interval 0 < ȳ < A. The value of A
is determined by solving ex−A = x, from which we get that A = x − ln(x).
With this, 0 < ȳ < x − ln(x). A reasonable starting point is the midpoint
of this interval, which means y0 = 1

2 (x − ln(x)). For example, if x = 3, then
y0 = (3 − ln 3)/2 ≈ 0.95. Using (2.14), after 6 iteration steps, one finds that
y = 1.496 · · · with a relative iterative error on the order of machine ε.

BA0
y-axis

0

x

ex

Figure 2.15 The functions Y = y + x, dashed (blue) line, and Y = ex−y, the solid
(red) curve, sketched as a function of y.

2.4 Newton’s Method 45

The method for finding A is useful enough that it is worth making an
additional comment about it. Instead of using the solid (red) curve, we could
have used the dashed (blue) curve. This produces a point B (see Figure 2.15),
and it corresponds to when B + x = ex. In other words, B = ex − x. This
was not mentioned earlier because the interval 0 < ȳ < A provides a better
approximation than 0 < ȳ < B in the case of when x = 3. However, for
values of x close to zero, B provides a better approximation. For example,
when x = 0, A = ∞, and B = 1. The point being made here is that both A
and B should be considered, and the smaller of the two used in determining
y0. �

2.4.1 Order of Convergence

Inspecting the error in Table 2.4, it appears that except at the start and end,
the error at step i + 1 is approximately the square of the error at step i.
To investigate this, our observation implies that ei+1 ≈ Ceγi , where γ ≈ 2.
To see if this is true, we take the log of this expression to obtain ln ei+1 ≈
γ ln ei + lnC. The closer the error gets to zero, the less important the term
lnC contributes to this equation, and it can be dropped. In this case, we have
that ln ei+1 ≈ γ ln ei. Solving for γ, we obtain

γ ≈ ln ei+1

ln ei
. (2.15)

Based on what we see in Table 2.4, it is expected that γ ≈ 2. To check on
this, the computed value of ln ei+1/ ln ei is given in Table 2.4 and it does
indeed appear that γ ≈ 2, or at least it is approaching this value as xi gets
close to the exact solution.

The formula in (2.15) is based on a heuristic argument that came from obs-
erving what is computed using the method. Our observation, from Table 2.4,
that the computed value for γ looks to be converging to 2 means that the
method is second-order. However, it is impossible to prove this numerically
because double precision arithmetic limits the resolution of the computation.
The theoretical underpinning of this observation is developed in Section 2.4.3.

2.4.2 Failure

It is important to be aware that Newton’s method might not work. For exa-
mple, it is evident in (2.10) that if we ever get f ′(xi−1) = 0 then the method
fails. There are other potential problems, and one is illustrated in the next
example.

46 2 Solving A Nonlinear Equation

-1 0 1 2 3 4 5 6 7 8
x-axis

-0.4

-0.2

0

0.2

0.4

0.6
y-

ax
is

x
0

x
1

Figure 2.16 First step using Newton’s method. The solid curve is y = x/(1 + x2),
and the dashed line is the tangent line used by Newton’s method when x0 = 2.

Example

Suppose we use Newton’s method to solve

x

1 + x2
= 0.

The graph of the function is shown in Figure 2.16, as well as the tangent line
when you take x0 = 2. In this case the next point x1 is father away from
the solution. In fact, if you keep using Newton’s method you would find that
xi → ∞. Also note that Newton’s method can be used to solve this equation,
it is just that you need to pick x0 near the solution. For example, if x0 = 1/2
then the method will work just fine. �

Other examples of how, or when, Newton’s method fails are given in
Exercises 2.24 and 2.25.

The algorithm for Newton’s method should be revised so the calculation is
stopped if the runaway situation shown in Figure 2.16 occurs. One way to do
this is to put a bound on the value of xi. For example, one picks a relatively
large value M and if it ever happens that |xi| > M then it is assumed that
runaway is occurring and the calculation is stopped. Another possibility is
to simply limit the number of iteration steps to a number I. Note that when
Newton’s method does work it converges very quickly, so I does not need
to be very large (e.g., I = 20). A revised algorithm for Newton’s method
incorporating these changes is given in Table 2.5.

2.4.3 Some Theory

To guarantee that Newton’s method works you need to pick a starting point
near the solution and you also need to require that f ′(x̄) �= 0. It is possible to
state this more formally, and this is done next. In doing this, recall that x̄ is

2.4 Newton’s Method 47

an exact solution of f(x) = 0. Also, it is always possible to get lucky and have
xi = x̄, at which point the equation is solved and the iteration stopped. When
this happens, we will say that x0 possess the finite termination property (see
Exercise 2.23).

Theorem 2.2. Assume f ∈ C2(a, b), with a < x̄ < b and f ′(x) �= 0 for
a < x < b. In this case, for x0 chosen close to x̄, Newton’s method, as given
in (2.10), will converge to x̄. Moreover, if f ′′(x̄) �= 0, and x0 does not have
the finite termination property, then

|xi+1 − x̄| = Ci|xi − x̄|2, (2.16)

where, as i → ∞,

Ci →
∣∣∣∣ f

′′(x̄)
2f ′(x̄)

∣∣∣∣ . (2.17)

Outline of Proof: The requirement that x0 is close to x̄, and Taylor’s theorem,
are the keys to proving this. Although the discussion to follow contains many
of the steps of the proof, the objective is to explain how (2.17) is obtained.

pick: x

tol > 0

M > 0

I > 0

let: err = 3 ∗ tol

i = 0

loop: while err > tol

z = f(x)/f ′(x)

err = abs(z)

x = x− z

i = i+ 1

if abs(x) > M or I < i, then stop

end

Table 2.5 Revised algorithm for solving f(x) = 0 using Newton’s method. The
procedure stops when |xi+1 − xi| < tol, or the method appears to fail.

Setting ei = xi − x̄, then from (2.10) we have that ei+1 = ei − f(xi)/f
′(xi).

Since xi = x̄+ ei, then using Taylor’s theorem (twice) we have that

f(xi) = f(x̄+ ei) = f(x̄) + eif
′(x̄) +

1

2
e2i f

′′(x̄) + · · · ,

48 2 Solving A Nonlinear Equation

and
f ′(xi) = f ′(x̄ + ei) = f ′(x̄) + eif

′′(x̄) + · · · .
In these expansions we are assuming that ei is small, and this is based on
the stated hypothesis that x0 is close to x̄. Since f(x̄) = 0, and setting
z = f ′′(x̄)/f ′(x̄), we have that

f(xi)

f ′(xi)
=

eif
′(x̄) + 1

2e
2
i f

′′(x̄) + · · ·
f ′(x̄) + eif ′′(x̄) + · · ·

= ei
1 + 1

2eiz + · · ·
1 + eiz + · · · (2.18)

Note that, by assumption, z �= 0 (what happens if it is zero is explained
below). Recalling that if y is close to zero, then (see Section A.1)

1

1 + y
= 1− y + y2 − y3 + · · · .

This applies to the denominator in (2.18) with y = eiz + · · · , and so

f(xi)

f ′(xi)
= ei(1 +

1

2
eiz + · · ·)(1− eiz + · · ·)

= ei − 1

2
e2i z + · · · . (2.19)

With this, ei+1 = ei−f(xi)/f
′(xi) can be rewritten as ei+1 = 1

2ze
2
i+· · · . This

shows that as the method converges to the solution, the limiting expression
is ei+1 = 1

2ze
2
i , and this is where the conclusion in (2.17) comes from. �

Although it’s certainly important to know that the method converges,
the more useful piece of information in the above theorem is that, once the
method starts to get close to the solution, then

|xi+1 − x̄| ≈ C|xi − x̄|2, (2.20)

where C is the positive constant given in (2.17). It’s also possible to show
that, in this case,

|xi+1 − xi| ≈ C|xi − xi−1|2. (2.21)

Knowing that the error, as given in (2.20), or the iterative error, as given
in (2.21), should decrease quadratically is useful in checking that the algo-
rithm is behaving as it should. This also means that our observation in Sec-
tion 2.4.3 that ei+1 ≈ Ceγi is correct. In particular, it means that γ, which is
the order of convergence for Newton’s method, is indeed 2.

2.4 Newton’s Method 49

To obtain (2.16) and (2.17) it was assumed f ′′(x̄) �= 0. In the case of when
it is zero, Newton’s method will converge faster than second-order. How this
happens in explained in Exercise 2.27, but this is not typical, and for most
problems the convergence is second-order.

One of the disappointing aspects of Theorem 2.2 is that it states that if
you start close enough then the method works. There is little indication of
what this means, and so you can end up simply guessing a starting value x0,
hoping it works. One way to avoid this uncertainty is to sketch the functions
in the equation, and from this find to well-positioned starting points. This
approach is used in many of the exercises at the end of the chapter.

Example

When using Newton’s method it can be unpredictable what solution it will
find. This is illustrated in Figure 2.17. In the lower graph the function is
plotted, and it shows that there are four solutions of f(x) = 0. The upper
graph gives the value of the root calculated using Newton’s method as a
function of the starting location. For example, taking a starting value of
x = 5 the method converges to the root between 4 and 6. In fact, there are a
wide range of starting values near x = 5 for which Newton’s method produces
the same result. The same is true for starting values near the other roots.
Where the method appears to produce more unpredictable results is when
the staring points are near the local max and min points of the function. As
an example, for a starting points near x = −1 it is possible to have Newton’s
method converge to the root near x = 2 or the one between 4 and 6. �

Example

Newton’s method can be used to derive algorithms for calculating mathemat-
ical expressions using more elementary operations. As an example, Newton’s
method can be used to perform division using only subtraction and multipli-
cation. To explain, given α > 0, suppose we want to compute 1/α. In other
words, we want to find the value of x which satisfies x = 1/α (without act-
ually doing division). One might try rewriting the equation as αx − 1 = 0,
or as α2x2 − 1 = 0, but neither works. For example, using f(x) = α2x2 − 1,
then (2.10) becomes

xi+1 =
1

2
xi − 1

2α2xi
,

and this requires a division. A choice that does work is to rewrite the equation
as α = 1/x, so f(x) = α− 1/x. In this case (2.10) becomes

xi+1 = xi(2 − αxi),

50 2 Solving A Nonlinear Equation

-3 -2 -1 0 1 2 3 4 5 6

-2

0

2

4

6
S

o
lu

ti
o

n

-3 -2 -1 0 1 2 3 4 5 6
x-axis

-4

-2

0

2

4

F
u

n
ct

io
n

Figure 2.17 Lower: Plot of f(x). Upper: Solution of f(x) = 0 obtained using
Newton’s method as a function of the starting value.

which consists of two multiplications and one subtraction (per iteration).
This procedure has been used by more than one computer system to perform
floating-point division. It is also possible to use Newton to compute

√
α using

addition, subtraction, multiplication, and division (Exercise 2.6), and to do
something similar for α1/3 (Exercise 2.7). �

2.5 Secant Method

One of the complications with using Newton’s method is that it requires
computing the first derivative. For a function like f(x) = x3 + 2x+ 2 this is
rather simple, but this is often not the case in applications. In such situations
there is an alternative known as the secant method. This idea comes directly
from calculus, where a secant line is used to introduce the idea of a tangent
line to a curve. Namely, given x0, one picks a nearby point x1 and then
draws the line passing through (x0, f(x0)) and (x1, f(x1)). This is illustrated
in Figure 2.18. The formula for the secant line in this case is

y = f(x0) +m0(x− x0), (2.22)

where the slope is

m0 =
f(x1)− f(x0)

x1 − x0
. (2.23)

2.5 Secant Method 51

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x-axis

-10

0

10

20
y-

ax
is

x
0

x
1

x
2

Figure 2.18 First step using the secant method. The solid curve is y = x3 + 2x+ 2
and the dashed line is the secant line using x0 = 1.5 and x1 = 0.5.

In comparing this to the tangent line, shown in Figure 2.11, it is evident that
they are fairly close. Using a similar approach as in Newton’s method, we
now replace f(x) = 0 with f(x0) +m0(x− x0) = 0, and solve to find

x2 = x0 − f(x0)

m0
,

or equivalently

x2 = x0 − f(x0)(x1 − x0)

f(x1)− f(x0)
.

It is now possible to construct a new secant line using x1 and x2, and then
determine the next approximation x3. It is found that

x3 = x1 − f(x1)(x2 − x1)

f(x2)− f(x1)
.

Generalizing this formula we have that

xi+1 = xi−1 − f(xi−1)(xi − xi−1)

f(xi)− f(xi−1)
.

It is not hard to show that this can be rewritten as

xi+1 = xi − f(xi)(xi − xi−1)

f(xi)− f(xi−1)
, for i = 1, 2, · · · . (2.24)

This formula is known as the secant method. To use it, it is necessary to
provide two starting values: x0 and x1.

An algorithm for the secant method is given in Table 2.6. It differs slightly
from (2.24) in that the values of x are not indexed. Instead, as the procedure
proceeds X = xi−1 and x = xi. Note that the stopping condition is based on
the iteration error |z| = |xi+1 − xi|. Assuming the solution is nonzero, one
could instead use the relative iteration error |(xi+1 −xi)/xi+1|. Also, as with
Newton’s method, the constants M and I are used to stop the procedure if
the method appears to be failing.

52 2 Solving A Nonlinear Equation

pick: x and X

tol > 0

M > 0

I > 0

let: err = 3 ∗ tol

i = 0

loop: while err > tol

z = f(x)(x−X)/(f(x)− f(X))

err = abs(z)

X = x

x = x− z

i = i+ 1

if abs(x) > M or I < i, then stop

end

Table 2.6 Algorithm for solving f(x) = 0 using the secant method. The procedure
stops when |xi+1 − xi| < tol, or the method appears to fail.

Example

If f(x) = x3 + 2x+ 2, then (2.24) becomes

xi+1 = xi − (x3
i + 2xi + 2)(xi − xi−1)

(x3
i + 2xi + 2)− (x3

i−1 + 2xi−1 + 2)
(2.25)

= xi − x3
i + 2xi + 2

x2
i + xixi−1 + x2

i−1 + 2
. (2.26)

From Figure 2.13, there is only one solution and it is in the interval −1 <
x < 0. So, it’s reasonable to take x0 = −1/3 and x1 = −2/3. From (2.26),

x2 = −2

3
− 10/27

25/9

= −4

5
= −0.8.

The remaining values are computed using MATLAB, and the results are
given in Table 2.7. In addition, the values for error ei = |xi − x̄|, where x̄ is
the exact solution, are given. The latter is also plotted in Figure 2.19. Not
surprisingly, when comparing this with Table 2.2, the secant method is much

2.5 Secant Method 53

i xi |xi − x̄| γ

0 −0.33333333333333 4.38e−01

1 −0.66666666666667 1.04e−01

2 −0.80000000000000 2.91e−02

3 −0.76904176904177 1.88e−03 1.7749

4 −0.77088382152809 3.32e−05 1.6426

5 −0.77091703510617 3.80e−08 1.6565

6 −0.77091699705848 7.71e−13 1.6325

7 −0.77091699705925 1.11e−16 1.3172

8 −0.77091699705925 1.11e−16 1.0000

Table 2.7 Solving x3 +2x+2 = 0 using the secant method formula given in (2.25).
Also given is the error ei = |xi − x̄|, and the approximate order of convergence γ as
determined from (2.15).

faster than bisection. In comparison to Newton’s method, also shown in Fig-
ure 2.19, the secant method is slower but not significantly slower. To calculate
the order of convergence we can use (2.15), and the values for this are given
in Table 2.7. It appears that it is approaching a value of approximately 1.6,
before it reaches the resolution of double precision. As will be stated below,
the value determined from the theory is γ = (1+

√
5)/2 ≈ 1.6180. You might

recognize that this is the golden ratio. How this could arise as the order of
convergence can be explained by looking at the powers in the error values in
Table 2.7. Specifically, the powers are increasing like a Fibonacci sequence,
and the ratio of successive terms of a Fibonacci sequence approaches the
golden ratio (this was proved by Kepler). This ratio is nothing more than
the ratio given in (2.15) used to determine γ. The formal proof that it is the
golden ratio is a bit more involved and it is outlined in Exercise 2.26. �

2.5.1 Some Theory

Similar to what occurs with Newton’s method, to guarantee that the secant
method works you need to pick starting points near the solution. To state
the result more formally, recall that x̄ is an exact solution of f(x) = 0. Also,
if it ever occurs that xi = x̄, then the equation is solved and the iteration
stopped. When this happens, it is said that the starting points possess the
finite termination property.

54 2 Solving A Nonlinear Equation

Theorem 2.3. Assume f ∈ C2(a, b), with a < x̄ < b and f ′(x) �= 0 for
a < x < b. In this case, for x0 and x1 chosen close to x̄, the secant method,
as given in (2.24), will converge to x̄. Moreover, if f ′′(x̄) �= 0, and x0 and x1

do not have the finite termination property, then

|xi+1 − x̄| = Di|xi − x̄|γ , (2.27)

where γ = (1 +
√
5)/2, and as i → ∞,

Di →
∣∣∣∣ f

′′(x̄)
2f ′(x̄)

∣∣∣∣
γ−1

. (2.28)

An outline of the proof, which explains where this particular value of γ comes
from, is provided in Exercise 2.26. Because the rate of convergence is better
than linear, which corresponds to γ = 1, but not as fast as quadratic, which
corresponds to γ = 2, the secant method is said to be superlinear.

2.6 Other Ideas

The problem of solving f(x) = 0 is so old, and so simple to state, that
many methods have been derived for solving it. For those curious about
other possibilities, Traub [1982] discusses over 40 different methods. What
is somewhat surprising is that research papers are still being published in
this area, and those interested in this should consult Wilkins and Gu [2013]
or Cordero et al. [2015]. One method of recent vintage that is particularly
interesting uses what is called Chebyshev interpolation. The idea is to replace
f(x) with an interpolation polynomial (see Section 5.5.4), and then find its
roots by solving an eigenvalue problem (see Chapter 4). In contrast to the
methods considered in this chapter, the Chebyshev interpolation approach

0 1 2 3 4 5 6 7 8 9 10
Iteration Step

10-16

10-12

10-8

10-4

100

E
rr

o
r

Secant
Newton

Figure 2.19 The error |xi − x̄|, from Table 2.7, for the secant method. For compar-
ison, the curve for Newton’s method is also given.

2.6 Other Ideas 55

has the capability of simultaneously determining all of the roots in a given
interval. More about this can be found in Boyd [2014].

Those who write general purpose codes tend to use a hybrid approach,
which means they use a combination of methods. As an example, one could
start with the bisection method to get close to the root, and then switch to
the secant or Newton’s method to speed things up. A well-known variation of
this is the Van Wijngaarden–Dekker–Brent method, which is what MATLAB
uses for the fzero command.

There is also the question of how do you solve problems with more than
one equation. The easiest to extend is Newton’s method, which uses the
multi-dimensional version of Taylor’s theorem, and this will be considered
in Section 3.10. The bisection method is more difficult to extend because
the idea of a trapping interval does not work in multi-dimensions. However,
there are methods for multi-dimensional problems that have a lot in common
with bisection, and one example is the Nelder-Mead algorithm described in
Section 8.8. There is also a multi-dimensional analogue for the secant method
and it is known as Broyden’s method [Dennis and Schnabel, 1996].

2.6.1 Is Newton’s Method Really Newton’s Method?

Given that the quintessential numerical procedure is Newton’s method, it
is worth knowing if the name is appropriate. To set the stage, in the late
1600s one of the central research problems concerned computing the roots of
polynomials. An example used by Newton is the equation x3 − 2x − 5 = 0.
Knowing the solution is near x = 2, the approach was to write x = 2 + z,
and then consider (2 + z)3 − 2(2 + z) − 5 = 0. Assuming z is small, so
the z3 and z2 terms can be dropped, the conclusion is z ≈ 1/10. How to
improve this approximation was the problem considered at the time. Newton’s
idea, which was published in 1685, was to write z = 0.1 + u, substitute
this into the equation for z, and then repeat the earlier argument to find
u. Another proposal, made by Joseph Raphson in about 1690, was to write
x = 2.1+u and then substitute this into the original equation for x [Raphson,
1690]. Mathematically, these methods are equivalent, and one gets the same
value for u. However, because using the original equation is easier, it allowed
Raphson to make a critical observation, which is that his method for solving
x3 − 2x− 5 = 0 can be written as

x = y − y3 − 2y − 5

3y2 − 2
,

where y is the previously calculated value for x. This is exactly what Newton’s
method, as given in (2.10), states should be done, where x0 = 2. However, the
calculus had not yet been developed, and as far as Raphson was concerned this

56 2 Solving A Nonlinear Equation

was simply an algebraic approximation that worked. For this reason, he never
extended the method to non-polynomial equations, even after the calculus
was known [Kollerstrom, 1992; Ypma, 1995]. This has caused some historians
to look elsewhere for the person responsible for (2.10). One candidate is
Thomas Simpson, who published a book entitled “Essays on Several Curious
and Useful Subjects in Speculative and Mix’d Mathematicks, Illustrated by
a Variety of Examples” in which (2.10) does indeed appear. The case for
Simpson is made very strongly by Kollerstrom [1992]. However, Simpson’s
book was published in 1740, which means it took over 40 years to make
this connection. This is a long time, particularly for someone of Newton’s
capability. One argument made in support of Newton is that he used (2.10)
to solve Kepler’s equation x − e sinx = M before 1713 (when it appeared
in the second edition of the Principia). Also, there are one or more letters,
which were written in 1692, in which he discusses derivatives of equations
[Wallis, 1699]. However, the Kepler solution can be obtained without using
calculus [Ypma, 1995], and the letters are lost [Kollerstrom, 1992]. In the
end, the real reason it is referred to as Newton’s method is attributed to
Fourier [1831], who simply said it was Newton’s method (even if it might not
be exclusively Newton’s method).

Exercises

2.1. True or False: If Newton’s method converges to a solution x̄ for a par-
ticular choice of x0, then it will converge to x̄ for any starting point between
x̄ and x0.

2.2. The problem involves using the bisection method on some of the exam-
ples at the beginning of the chapter.
(a) In Figure 2.3, what solution will the bisection method converge to if

a0 = −1.5 and b0 = 1? What if a0 = −2 and b0 = 1.5?
(b) In Figure 2.4, what solution will the bisection method converge to if

a0 = −2 and b0 = 2? What if a0 = −2 and b0 = 4? Also, explain how it
is possible for the bisection method to find the solution x = 1.

2.3. The following questions concern the bisection method. You should as-
sume that the method does not get lucky and ends up with f(ci) = 0.
(a) How sensitive is the bisection method to the width of the initial interval?

For example, in Table 2.2, if the initial interval is cut in half, what is the
expected reduction in the number of iterations?

(b) Both f1(x) = x3 − 2 and f2(x) = ex − 5 sin(x3) − 3 cos(x) have one zero
in the interval 0 < x < 2. If the bisection takes 34 iterations to solve
f1(x) = 0, how many will it likely take to solve f2(x) = 0?

Exercises 57

A x2 − 1 = ex for x ≥ 0

B sinx = 1− x2 for x ≥ 0

C x2 + 2x = 1/(1 + x2) for x ≥ 0

D e−x = x3

E lnx = 2− x2

F sinx = 2 sin(x+ π/4) for 0 ≤ x ≤ π

Table 2.8 Equations used in Exercise 2.4.

2.4. Each of the equations in Table 2.8 has one solution. Select an equation,
and then do the following:
(a) Sketch the functions to determine the approximate location of the solu-

tion.
(b) For the bisection method, provide an initial interval that can be used to

find the solution, and provide an explanation why it works. With this
calculate, by hand, c0 and c1.

(c) What is Newton’s iteration formula (2.10) for this equation? Also, provide
a starting point x0 for the solution, providing an explanation of why it is
a good choice. With this calculate, by hand, x1.

(d) What is the secant iteration formula (2.24) for this equation? Also, pro-
vide starting points x0 and x1 for the solution, providing an explanation
of why they are a good choice. With this calculate, by hand, x2.

(e) Compute the solution of the equation. Your answer should be correct to
at least four significant digits. Make sure to state which numerical method
was used, why you made this choice, and what error condition you used
to stop the calculation.

2.5. This exercise concerns an implicitly defined function y(x), defined through
an equation of the form F (x, y) = 0. For the equations in Table 2.9, select
one and then do the following:
(a) Sketch the functions as a function of y, and use this to show that for each

x, there is one solution y.
(b) Use the sketch in part (a) to find a bounded interval for y that contains

the solution (note the interval will possibly depend on x).
(c) What is Newton’s iteration formula (2.10) for this equation? Also, provide

a starting point y0 for the solution, providing an explanation of why it is
a good choice.

(d) What is the secant iteration formula (2.24) for this equation? Also, pro-
vide starting points y0 and y1 for the solution, providing an explanation
of why they are a good choice.

58 2 Solving A Nonlinear Equation

A y3 = x− y for x > 0

B 1/(x2 + y2) = y for x > 0

C ln(x+ y) = −y3 for x > 1

D y3e2y = x for x > 0

E x(1 − y2) =
√
y for x > 0

Table 2.9 Equations used in Exercise 2.5.

(e) Compute y(2). Your answer should be correct to at least four signifi-
cant digits. Make sure to state which numerical method was used, why
you made this choice, and what error condition you used to stop the
calculation.

(f) Plot y(x) for 2 ≤ x ≤ 10. You should also provide an explanation of the
algorithm you used to do this.

2.6. This problem examines how to use an iterative method to calculate the
square root of a positive number α. In other words, the algorithm calculates√
α. The procedure can only contain the four elementary arithmetic opera-

tions (addition, subtraction, multiplication, and division). Also, you do not
need to actually calculate anything, you just need to describe how to do this
with the respective method.
(a) How can this be done using the bisection method?
(b) How can this be done using the Newton’s method?

2.7. Show how to use Newton’s method to evaluate 21/3. Your procedure, or
formula, should only contain additions, subtractions, multiplications, and/or
divisions.

2.8. The values for the solution of f(x) = 0 in Table 2.10 were computed
using MATLAB. What method was most likely used (bisection, Newton,
secant)? Make sure to explain why it is the method you claim.

2.9. This exercise explores how to use Newton’s method to evaluate an inverse
function. To explain, given y = g(x), then the inverse function satisfies
x = g−1(y). The problem is, given y, what is the value of x?
(a) Assuming y is given, and setting f(x) = y − g(x), show that Newton’s

method (2.10) gives

xi+1 = xi +
y − g(xi)

g′(xi)
, for i = 0, 1, 2, 3, · · ·

Exercises 59

Iteration Computed Solution

1 1.250000000000000

2 1.025000000000000

3 1.000304878048780

4 1.000000046461147

5 1.000000000000001

Table 2.10 Values for Exercise 2.8.

(b) Use the result from part (a) to evaluate e2 and e−3 using the ln(x)
function.

(c) Use the result from part (a) to evaluate arccos(1/2) and arccos(1/3).
(d) The error function is defined as

erf(x) =
2√
π

∫ x

0

e−s2ds.

The inverse error function is denoted as erf−1(x). Use the result from
part (a) to evaluate erf−1(1/2) and erf−1(1/3). In doing this, you can use
MATLAB’s erf command to evaluate the error function.

(e) The complete elliptic integral of the first kind is defined as

K(x) =

∫ 1

0

1√
(1− s2)(1− xs2)

ds.

The inverse function is denoted as K−1(x). Use the result from part (a)
to evaluate K−1(2) and K−1(4). It is useful to know that

K ′(x) =
E(x)− (1− x)K(x)

2x(1− x)
,

where E(x) is the complete elliptic integral of the second kind. In doing
this, you can use MATLAB’s ellipke command to evaluate K and E.

2.10. Four different methods were used to solve f(x) = 0, and the computed
values for x1, x2, x3, · · · are shown in Table 2.11.
(a) One of them is Newton’s method. Which of the four is most likely

Newton’s method, and why?
(b) One of them is the bisection method. Which of the four is most likely the

bisection method, and why?
(c) Suppose someone claimed they computed the solution using the secant

method, and they obtained the results given for Method 3. Why would
you tell them that they are most likely mistaken (i.e., they are wrong)?

60 2 Solving A Nonlinear Equation

i Method 1 Method 2 Method 3 Method 4

1 1.10000000000000 1.02000000000000 1.05000000000000 1.03162277660168

2 1.01000000000000 1.00400000000000 1.02500000000000 1.00562341325190

3 1.00010000000000 1.00080000000000 1.01250000000000 1.00042169650343

4 1.00000001000000 1.00016000000000 1.00625000000000 1.00000865964323

5 1.00000000000000 1.00003200000000 1.00312500000000 1.00000002548297

6 1.00000000000000 1.00000640000000 1.00156250000000 1.00000000000407

7 1.00000000000000 1.00000128000000 1.00078125000000 1.00000000000000

8 1.00000000000000 1.00000025600000 1.00039062500000 1.00000000000000

Table 2.11 Values for Exercise 2.10.

2.11.(a) Suppose to solve f(x) = 0 one finds Newton’s method takes 20
iterations and the secant method takes 30. When is it possible that the
secant method takes less computing time? Make sure to explain your
answer.

(b) Which of the curves in Figure 2.20 corresponds to Newton’s method and
which one to the bisection method? Make sure to justify your answers.

2.12. The exercise examines various choices that can be made for the app-
roximate solution using the bisection method. Assume that the subinter-
val (ai, bi) has just been calculated, and the goal is to now determine what
point c̄i should be selected from this subinterval as the approximation for the
solution x̄.
(a) Whatever choice is made, the error is c̄i − x̄. Sketch this as a function

of x̄, for ai ≤ x̄ ≤ bi. Explain why the minimum error occurs when
bi − c̄i = c̄i − ai, and from this conclude that c̄i = (bi + ai)/2. In other
words, one should select the midpoint of the subinterval.

Iteration Step
1 2 3 4 5 6 7 8 9 10

E
rr

o
r

10-16

10-13

10-10

10-7

10-4

10-1

Figure 2.20 Graph for Exercise 2.11(b).

Exercises 61

(b) Suppose one instead uses the relative error (c̄i − x̄)/x̄. This requires a
nonzero solution, so it is assumed here that 0 < ai < bi. By sketching
(c̄i − x̄)/x̄, for ai ≤ x̄ ≤ bi, explain why the minimum error occurs when
c̄i = 2aibi/(bi + ai).

(c) Does it make much difference which choice is made for c̄i? In answering
this, assume that the stopping condition for the loop in Table 2.1 is the
same irrespective of the choice for c̄i.

2.13. In this problem assume that f(x) satisfies the conditions of Theo-
rems 2.2 and 2.3.
(a) Suppose it is claimed that the values in Table 2.2 were produced using

Newton’s method. What argument can you make to refute this claim?
(b) Suppose it is claimed that the values in Table 2.7 were produced using the

bisection method. What argument can you make to show this is unlikely?
(c) When using the secant method, does it make any difference which point

is labeled x0 and which is labeled x1? In particular, what happens to x2

and x3 if you switch which point is labeled x0 and x1?

2.14. This problem concerns the configuration shown in Figure 2.21. There
are four straight sides, of fixed length, that are free to rotate at the vertices.
The bottom side, of length a, does not move. What is of interest is how the
angle ϕ changes as θ changes. This is a situation that arises in kinematics,
and it has been found that the two angles are related through the equation

A cos θ −B cosϕ+ C = cos(θ − ϕ), (2.29)

where A = a/b, B = a/d, and C = (a2 + b2− c2+ d2)/(2bd). In textbooks on
the kinematics of machines this is known as the Freudenstein equation.
(a) If θ = 0 then a triangle is produced. In this case, using the law of cosines,

find ϕ and show that this is the same result obtained from (2.29).
In the rest of the problem let a = 3/2, b =

√
3, c = 1, and d = 1/2.

(b) Taking θ = 0, plot the left and right hand sides of (2.29) for 0 ≤ ϕ ≤ 2π
and show that there are two solutions. Explain geometrically why there
are two, and identify which one corresponds to the configuration shown
in Figure 2.21.

θϕ

Figure 2.21 Figure for Exercise 2.14.

(c) Assuming Newton’s method is used to find ϕ, what is (2.10) when applied
to (2.29)? Use this to calculate ϕ for θ = π/6 and θ = π/3. Your values
should be correct to six significant digits.

62 2 Solving A Nonlinear Equation

Figure 2.22 Figure for Exercise 2.15.

(d) As θ increases from θ = 0 to θ = 2π, the vertex connecting side b and c
traces out a portion of a circle. Explain why, and find the maximum and
minimum values of ϕ that determine this circular arc.

2.15. The crossing ladders problem is the following: Two ladders of length a
and b, with a ≤ b, are leaning across an alleyway between two buildings as
shown in Figure 2.22. If they cross at a height h, what is the width w of the
alleyway?
(a) Using similar triangles and the Pythagorean theorem show that A2+w2 =

a2, B2 + w2 = b2, and

1

h
=

1

A
+

1

B
.

In these formulas, A and B are the vertical heights of the two ladders.
From this show that the problem reduces to solving the following equation
for A:

h2A2 = (A− h)2(b2 − a2 +A2).

(b) Explain why h ≤ A ≤ a. Also, by sketching the functions in the equation
from part (a), show that there are two positive solutions for A (assuming
that a < b). Note that you might find it easier to first rewrite the equation
before doing the sketch.

(c) Newton’s method is going to be used to find A. What does (2.10) reduce
to in this case? Based on part (b), what would be a good choice for the
starting point in this case? Make sure to explain why.

(d) The exact solution is easy to determine in the case of when a = b. For
this case, picking a value for b and h, use Newton’s method to find A,
and show that it gives the correct result.

(e) Taking a = 20, b = 30, and h = 8, use Newton’s method to compute A
and from this determine w. Your answers should be correct to at least
eight significant digits. Also, state what you used for a starting value, and
explain why you made this choice.

2.16. This problem considers finding α so the line y = αx is tangent to the
curve y = cos(2πx). You can assume that α > 0, and the tangency points
occur for x > 0.

Exercises 63

(a) By sketching y = αx and y = cos(2πx), explain why there are an inf-
inite number of solutions for α. Also, use this sketch to determine the
approximate locations where tangency occurs.

(b) Calculate the largest value of α. Make sure to explain what mathematical
problem you solve to find α, as well as which numerical method you used,
why you made this choice, and what error condition was used to stop the
calculation.

2.17. From the Michaelis-Menten model for an enzyme-catalyzed reaction,
the amount of the substrate S present at time t satisfies the differential
equation

dS

dt
= − vmS

KM + S
,

where vm and KM are positive constants. Solving this, one obtains

KM ln(S/S0) + S = S0 − vmt , (2.30)

where S0 is the (nonzero) amount at the beginning. To find S, for any given
value of t, it is necessary to solve this nonlinear equation, and how this might
be done is considered in this exercise. How to find the numerical solution of
this differential equation is considered in Exercise 7.20.
(a) As a function of S, sketch the two functionsKM ln(S/S0) and S0−vmt−S.

Do this for t = 0 and for t > 0. Use this to explain why there is only one
solution of (2.30).

(b) Use part (a) to explain why the solution satisfies 0 < S ≤ S0.
(c) Suppose (2.30) is to be solved using Newton’s method. What does (2.10)

reduce to in this case? Based on parts (a) and (b), what would be a good
choice for the starting point in this case? Make sure to explain why.

(d) Based on parts (a) and (b), what would be a good choice for a starting
interval when using the bisection method to solve (2.30)? Make sure to
explain why.

(e) Suppose (2.30) is to be solved using the secant method. What does (2.24)
reduce to in this case? Based on parts (a) and (b), what would be a good
choice for the two starting points in this case? Make sure to explain why.

(f) It is found that for sucrose, vm = 0.76 mM/min and KM = 16.7 mM
[Johnson and Goody, 2011]. Also, assume that S0 = 100 mM. Use one of
the above methods from (c)–(e) to find the value of S at t = 1 min, at
t = 10 min, and at t = 100 min. Your answers should be correct to at
least four significant digits. Make sure to state which method was used,
why you made this choice, and what error condition you used to stop the
calculation.

(g) Using the parameter values given in part (f), and one of the above num-
erical methods from (c)–(e), plot S for 0 ≤ t ≤ 1000.

(h) Explain how it is possible to produce the plot in part (g), from (2.30),
without having to use a numerical solver to find S.

64 2 Solving A Nonlinear Equation

2.18. According to the Colebrook equation, the friction factor f for turbulent
flow in a pipe is found by solving

1√
f
= −2 log10

(
α+

β√
f

)
,

where α and β are constants that satisfy 0 < α < 1 and 0 < β < 1. By
setting x = 1/

√
f , this equation can be rewritten as

x = −2 log10(α+ βx) , (2.31)

where 0 < x < ∞.
(a) Sketch the two functions in (2.31) for 0 < x < ∞. Use this to explain

why there is only one solution, and that it is in the interval 0 < x <
2 log10(1/α).
In the rest of the problem assume that α = 10−2 and β = 10−4, which
are typical values for these constants.

(b) What does (2.10) reduce to for (2.31)? Based on part (a), what would be
a good choice for x0? Make sure to explain why.

(c) Based on part (a), what would be a good choice for a0 and b0 when using
the bisection method to solve (2.31)? Make sure to explain why.

(d) Based on part (a), what would be a good choice for x0 and x1 when using
the secant method to solve (2.31)? Make sure to explain why.

(e) Use one of the methods from (b)–(d) to solve (2.31), and from this de-
termine the value of f . Make sure to state which method was used, why
you made this choice, and what error condition you used to stop the
calculation.

2.19. The terminal velocity v of a sphere falling through the air satisfies

v2 =
2mg

ρAcD
, (2.32)

where A = πd2/4. In this expression, ρ is the density of air, m and d are
the mass and diameter of the sphere, and g is the gravitational acceleration
constant. The term cD is known as the drag coefficient, and from experimental
data the following formula has been proposed [White, 2005]:

cD =
24

Re
+

6

1 +
√
Re

+
2

5
, (2.33)

where Re = ρvd/μ is known as the Reynolds number and μ is the (dynamic)
viscosity of air. In this problem, (2.32) is rewritten in terms of Re, and it is
then solved for Re. After this, the value of v is computed. Also, note that the
velocity is positive.
(a) Show that it is possible to rewrite (2.32) as (Re)2cD = α, where α does

not depend on v or Re. After substituting (2.33) into this equation, the

Exercises 65

Figure 2.23 A baseball
is going to get dropped.
Whether you should try
to catch it is considered in
Exercise 2.19.

problem is rewritten so Re is the variable to solve for. Write down the
resulting equation. Assuming the value of Re has been computed, explain
how the velocity is calculated.

(b) Write the equation in part (a) as cDRe = α/Re, where cD is given
in (2.33). Sketch the left and right hand sides of this equation as a func-
tion of Re. From this show that there is one solution and it is in the
interval 0 < Re < α/24.

(c) Assuming Newton’s method is used to find Re, what is (2.10) when app-
lied to the equation in part (a)? Based on your results from part (b),
what would be a good choice for a starting point? Make sure to explain
why.

(d) Write down the iteration formula if the secant method is used to find Re.
Based on your results from part (b), what would be a good choice for the
two starting points? Make sure to explain why.

(e) For air, μ = 1.8 × 10−5, ρ = 1.2, g = 9.8, and for a baseball, d = 0.075
and m = 0.14 (using kg, m, s units). What is the terminal velocity of
a baseball (assuming it is a perfect sphere)? Make sure to state which
method was used, why you made this choice, and what error condition
you used to stop the calculation. Also, how does this velocity compare
to what is considered the velocity of a typical fastball in professional
baseball?

(f) Is it possible to make a baseball out of something so its terminal velocity
is approximately the speed of sound?

66 2 Solving A Nonlinear Equation

2.20. The ideal gas law states that pv = nRT , where p is the pressure, v
is the volume, n is the amount of the substance (in moles), R is the gas
constant, and T is the temperature (in Kelvin). An improved version of this
is the van der Waals equation of state, and it is given as

(
p+

n2a

v2

)
(v − nb) = nRT, (2.34)

where a and b are positive constants. Also, p and v are positive.
(a) Explain why there is one solution for v. Note, one way to do this is to

rewrite (2.34) as p + n2a/v2 = nRT/(v − nb), and then sketch the left
and right hand sides as functions of v.

(b) Using the sketch from part (a), explain why the solution satisfies nb <
v < nb+ nRT/p.

(c) Assuming Newton’s method is used to find v, what is (2.10) when applied
to (2.34)? Based on parts (a) and (b), what would be a good choice for a
starting point? Make sure to explain why.

(d) Write down the iteration formula if the secant method is used to find v.
Based on parts (a) and (b), what would be a good choice for the two
starting points? Make sure to explain why.

(e) Assume that p = 1 atm, n = 1 mol, and recall that R = 0.08205746 L
atm/(K mol). Also, for oxygen, which is the gas considered here, a =
1.382 and b = 0.0319. Note that the values for R, a and b are the exact
values given in the 2012 CRC Handbook of Chemistry and Physics. Using
either (c) or (d), determine v at room temperature (you can assume this
is 25◦ C). In your write-up, state why you picked the solver you used, and
give your reason(s) for what value you selected for the error tolerance used
to stop the solver. Also, explain why it isn’t necessary to run the solver
to the point that the error in the solution is on the order of machine ε.

(f) Using the values given in part (e), plot v as a function of T , for 0◦C ≤
T ≤ 50◦C. In your write-up explain how you used your solver to do this.

2.21. It is not unusual to have to solve a problem involving a composite
function, and such a situation is considered in this exercise. Suppose one
wants to find the value(s) of x where f = 0. However, f is given in terms of
a variable y, and there is a second equation that determines the value of y
for any given value of x. In this exercise, let f = y3 + 3y + 1, where

y + x = e−6y.

So, given x, to evaluate f one first solves the above equation for y and then
substitutes this into the formula for f . Although this might appear to an
artificially complex question, as will be explained in Section 9.5, it is a fairly
common question that arises in applications.
(a) Describe how to use the bisection method to find the value of x where

f = 0. Make sure to explain how you find the initial interval.

Exercises 67

(b) Writing f as f(y(x)), explain how to use Newton’s method to find the
value of x where f = 0.

(c) Using MATLAB, find the value of x where f = 0.

2.22. In the derivation of Newton’s method, to determine the formula for
xi+1, the function f(x) is approximated using a first-order Taylor approxi-
mation centered at xi. This problem investigates what happens when you try
to use a second-order Taylor approximation.
(a) Approximating f(x) using a second-order Taylor approximation centered

at xi, what is the resulting formula for xi+1? Note your formula will have
a ± in it.

(b) In theory, a second-order Taylor approximation should be more accurate
than a first-order Taylor approximation (at least when you are close to
the solution). However, the formula in part (a) has several unpleasant
complications that Newton’s method doesn’t have. Identify two of them.

(c) Given that xi+1 is close to xi, what choice should be made for the ± in
part (a)?

(d) One way to avoid the complications considered in part (b) is to note
that the Taylor approximation used in part (a) contains a term of the
form (xi+1 − xi)

2. Explain why this can be approximated with −(xi+1 −
xi)f(xi)/f

′(xi). If this is done, what is the resulting formula for xi+1?
Note that the formula you are deriving is known as Halley’s method, and
it is an example of a third-order method.

2.23. This exercise considers Newton’s method and the finite termination
property. The equation to solve is f(x) = 0, where f(x) = x(x2 − 1).
(a) Sketch f(x) and locate the three solutions.
(b) Suppose Newton’s method is to be used to locate the solution x = 1.

What does x0 need to be so the problem is solved exactly in one step?
Assume here that x0 �= 1.

(c) Using your sketch in part (a), and the result from part (b), explain where
x0 should be located (approximately) so the solution x = 1 is found in
exactly two steps.

2.24. This problem considers solving f(x) = 0, where

f(x) = 3 cos(x) +
3

2
+ π

√
3.

(a) Sketch f(x) for 0 ≤ x ≤ 2π. How many solutions of f(x) = 0 are there in
this interval?

(b) Using Newton’s method, take x0 = 2π/3 and calculate x1 (by hand).
After this, calculate x2 (by hand).

(c) Sketch the tangent lines for x0 and x1. Based on this, determine what the
others xi values will be.

(d) Explain why Newton’s method will not converge for this problem.

68 2 Solving A Nonlinear Equation

2.25. This exercise considers solving f(x) = 0, where

f(x) =
1− e−10x

1 + e−10x
.

This function is shown in Figure 2.24.
(a) Show that f ′(x) > 0 for all x.
(b) Describe what happens if one uses Newton’s method with x0 = 1. Also,

explain why essentially the same thing happens if you use x0 = −1.
(c) Experiment with Newton’s method, and find the largest (positive) value of

x0 that will result in Newton’s method converging to the correct solution.
You only need to find x0 to two significant digits. Also, give the corre-
sponding value of x1. Note that keeping track of what happens to x1 will
be helpful for part (d).

(d) Explain why the value of x0 you found in part (c) can be found by finding
the positive solution of 2xf ′(x) = f(x). What exactly is the relationship
between x0 and x1 that gives rise to this equation?

2.26. This problem provides an outline of the proof of Theorem 2.3, using
the ideas developed for the outline of the proof for Theorem 2.2.
(a) Setting ei = xi − x̄, show that ei+1 = ei − f(xi)(xi − xi−1)/f

′(xi).
(b) Writing xi = x̄+ ei, show that

f(xi)(xi − xi−1)

f(xi)− f(xi−1)
=

ei +
1
2e

2
i z + · · ·

1 + 1
2 (ei + ei−1)z + · · · ,

where z = f ′′(x̄)/f ′(x̄). You can assume that z �= 0.
(c) Using the results from (a) and (b), show that ei+1 = 1

2zeiei−1 + · · · .
(d) To solve |ei+1| = 1

2 |zeiei−1|, let Ei = ln(|ei|). Show that the equation
becomes Ei+1 = Z + Ei + Ei−1, where Z = ln(|z|/2). Also, show that
Ei = −Z+Ari++Bri−, solves this equation, where r± are the two solutions
of r2 − r − 1 = 0, and A and B are arbitrary constants.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x-axis

-1

-0.5

0

0.5

1

y-
ax

is

Figure 2.24 Plot of function for Exercise 2.25.

Exercises 69

(e) Using the solution from part (d), explain why, as i increases, Ei ≈
(2/|z|) exp(Ari+).

(f) Find the value of γ so that |ei+1|/|ei|γ → D, and from this derive the
result in (2.28).

2.27. This problem explores when Newton’s method converges either faster
or slower than stated in Theorem 2.2.
(a) Suppose f ′′(x̄) = 0 but f ′′′(x̄) �= 0. Show that (2.19) is replaced with

f(xi)

f ′(xi)
= ei − 1

3
e3iw + · · · ,

where w = f ′′′(x̄)/f ′(x̄). Explain why, in this case, Newton’s method is
third-order.

(b) Suppose the assumption that f ′(x) �= 0 for a ≤ x ≤ b is replaced with
f ′(x) �= 0 for a ≤ x ≤ b except f ′(x̄) = 0. Show that (2.19) is replaced
with

f(xi)

f ′(xi)
=

1

2
ei + · · · .

Explain why, in this case, Newton’s method is first-order.

2.28. This problem explores how to use the floating-point representation to
obtain a good starting point for Newton’s method. To illustrate this idea,
the equation to solve is x2 − a = 0, where a > 0, which is used to evaluate
x =

√
a.

(a) Show that the formula for Newton’s method is

xi+1 =
1

2

(
xi +

a

xi

)
.

(b) The floating-point approximation of a has the form af = m× 2E, where

m = 1 +
b1
2

+
b2
22

+ · · ·+ bN−1

2N−1
.

Also, recall that for 0 ≤ y < 1,

√
1 + y = 1 +

1

2
y − 1

8
y2 +

1

16
y3 + · · · .

Assuming E is even, and b1 or b2 are nonzero, use the above information
to show that

√
af ≈

(
1 +

1

4
b1 +

1

8
b2

)
× 2E/2.

In what follows it is assumed that this formula is used to determine x0.
Note that this expression only involves additions and multiplications (and
not a square root).

70 2 Solving A Nonlinear Equation

(c) What does the approximation in part (b) reduce to for a = 28 = (1 +
1/2 + 1/22)× 24? How close does x0 come to

√
28?

(d) Modify the derivation in part (b) to find a starting value in the case of
when a = 50 =

(
1 + 1/2 + 1/24

)× 25. Make sure to compare x0 with the

exact value. Also, you can assume the value of
√
2 is known.

(e) Write a MATLAB program that uses this idea to calculate
√
a, for

any given a > 1. The stopping condition for Newton’s method should
be |xi+1 − xi|/|xi+1| ≤ 10−8. With this, compute

√
1.5,

√
33,

√
1001,

and
√
0.1.

Chapter 3

Matrix Equations

This chapter concentrates on solving the matrix equation Ax = b, and the
chapter to follow investigates various ways to compute the eigenvalues of a
matrix A. Together, they are central components of what is called numer-
ical linear algebra. What will be evident from reading this material is the
prominent role matrix factorizations play in the subject. To explain what
this involves, given a matrix A, one factors it as A = BC or A = BCD. The
factors, B, C, and D, are matrices with nice, easy to compute with, prop-
erties. The time-consuming computational step is finding the factorization.
There are many useful factorizations, and a listing of some considered in this
text can be found in the index.

To help bring out the importance of matrix factorization, the first three
sections of this chapter are written in reverse order, at least compared to most
numerical textbooks. What is done here is to start with the final result, which
is the description of the numerical method, then afterwards explain where
or how one would come up with such an idea. There are several reasons for
reversing the order, one being that the derivation of the method (Section 3.3)
is useful mostly for showing where the idea comes from. Once you realize how
the method works you also realize there is a more direct method to get the
result (Section 3.2). Finally, there is the constructive component, where you
actually solve problems with the method, and this is where we start.

3.1 An Example

Consider the following system of equations

2x− 4y = 2

x+ 7y = 10.

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0 3

71

72 3 Matrix Equations

This can be written in matrix form as(
2 −4

1 7

)(
x

y

)
=

(
2

10

)
,

or equivalently as Ax = b, where

A =

(
2 −4

1 7

)
, x =

(
x

y

)
, and b =

(
2

10

)
.

The goal of this chapter is to examine how matrix equations like the one
above can be solved using a computer. The centerpiece of this is something
called the LU factorization method. To show how this works, we will factor
the matrix A so that

A = LU, (3.1)

where L is a lower triangular matrix and U is an upper triangular matrix.
It is not obvious how to do this, and it is also not clear why you would want
to do this in the first place. In the next sections we will derive the above
result and discuss some of its benefits and limitations. The purpose here is
to provide an early example of how this result is used.

The most computationally expensive part of the method is to find the
factorization. For this example we will simply state the result, which is that

(
2 −4

1 7

)
=

(
2 0

1 3

)(
1 −2

0 3

)
. (3.2)

Consequently,

L =

(
2 0

1 3

)
and U =

(
1 −2

0 3

)
.

Solving Ax = b comes by noticing that the equation can now be written as

L(Ux) = b.

Looking at this for a moment you will see that if we set y = Ux, then the
equation can be broken down into two equations:

1. First: find the vector y that is the solution of Ly = b

2. Second: find the vector x that is the solution of Ux = y

The two equations listed above are much easier to solve than the original.
To demonstrate this procedure, consider our earlier example. The Ly = b

equation is

3.2 Finding L and U 73

(
2 0

1 3

)(
u

v

)
=

(
2

10

)
,

where y = (u, v)T . In component form,

2u = 2

u+ 3v = 10.

The lower triangular form of this matrix means we simply start at the top
and solve for the various components of y (which is sometimes called forward
substitution). In particular, u = 1 and v = 3. The Ux = y equation is now

(
1 −2

0 3

)(
x

y

)
=

(
1

3

)

or, in component form

x− 2y = 1

3y = 3

The upper triangular form of this matrix means we simply start at the bottom
and solve for the various components of x (which is sometimes called back
substitution), and one finds that y = 1 and x = 3.

It is hard to overstate the importance of the LU method in numerical
computing. At the same time, for those who are seeing it for the first time, it
looks strange. Also, those who take linear algebra are taught to solve matrix
equations using Gaussian elimination, and the LU method looks to be some-
thing completely different. Actually, as we will see in Section 3.3, it comes
directly from Gaussian elimination.

A comment is in order about the transpose notation used earlier. In stating
that y = (u, v)T it is meant that

y =

(
u

v

)
.

It is perhaps more consistent to write y = (u v)T , but the comma is used to
help clarify the separation between the components of the vector.

3.2 Finding L and U

Once you realize that an LU factorization might be possible, finding it inv-
olves a fairly straightforward calculation. Basically, you simply assume the
matrix can be factored and then attempt to find L and U. To illustrate, using

74 3 Matrix Equations

the earlier example we will assume that it is possible to write A = LU, which
means we assume that(

2 −4

1 7

)
=

(
�11 0

�21 �22

)(
u11 u12

0 u22

)
.

Multiplying this out we have

(
2 −4

1 7

)
=

(
�11u11 �11u12

�21u11 �21u12 + �22u22

)
,

or in component form

�11u11 =2 �11u12 = −4

�21u11 =1 �21u12 + �22u22 = 7.

The first thing to notice is that we have 4 equations and 6 unknowns, and so
the LU factorization is not unique. We should pick two values and it does not
make much difference what choice is made, other than being nonzero. Two
possibilities, that are used frequently enough that they are given names, are
the following:

• Doolittle factorization: choose �11 = �22 = 1

• Crout factorization: choose u11 = u22 = 1.

To reproduce the factorization in (3.2) we pick �11 = 2 and �22 = 3. From
this one finds that u11 = 1, u12 = −2, �21 = 1, and u22 = 3.

A few questions arise from the above calculation. First, since the LU factor-
ization is not unique you might wonder if the solution is unique. In particular,
you might expect that if you use a different factorization that you will get
a different solution. The answer is no, the non-uniqueness of the factoriza-
tion does not mean the solution is non-unique. As a simple test, you might
try a Doolittle or Crout factorization in the above example to demonstrate
that you still get the same solution. A second question is, can you factor any
square matrix, and the answer to this is given next.

3.2.1 What Matrices Have an LU Factorization?

Another question which arises is, is it possible for there not to be an LU
factorization? To answer this we will try to factor a general 2 × 2 matrix
using a Doolittle factorization. So, we consider the equation

(
a b

c d

)
=

(
1 0

�21 1

)(
u11 u12

0 u22

)
,

3.2 Finding L and U 75

which in component form is

u11 = a u12 = b

�21u11 = c �21u12 + u22 = d.

Assuming, for the moment, that a �= 0, then u11 = a, u12 = b, �21 = c/a,
and u22 = d − bc/a. If a = 0, then the above equations can still be solved
if c = 0. In this case, any value for �21 works. For example, taking �21 = 0,
then u12 = b and u22 = d.

The remaining case to consider is a = 0 and c �= 0. To explain what to do,
note that the associated matrix equation is

(
0 b

c d

)(
x

y

)
=

(
b1

b2

)
.

The component form of the above equation is

by = b1

cx+ dy = b2.

This can be rewritten as

cx+ dy = b2

by = b1.

Note that interchanging rows in this way is known as pivoting. The resulting
matrix equation is (

c d

0 b

)(
x

y

)
=

(
b2

b1

)
.

Because c is nonzero, using the result in the previous paragraph, we know
that the above coefficient matrix has an LU factorization.

We have shown that any linear system involving two equations can be
rearranged so the coefficient matrix has an LU factorization. This result is
true for all square matrices and this is stated in the next result.

Theorem 3.1. Every linear n× n system can be rearranged, using pivoting,
so the coefficient matrix has an LU factorization.

It is also worth knowing which matrix equations can be solved without
requiring pivoting. One can prove that pivoting is not necessary if the matrix
is strictly diagonally dominant, or if it is symmetric and positive definite.
These properties are defined in Section 3.7, while the proof of this statement,
as well as the proof of the above theorem, can be found in Bjöurck [2015].
Certain tri-diagonal matrices are also known to be solvable without pivoting,
and this is explained in Section 3.8. These non-pivoting cases come with a

76 3 Matrix Equations

caveat concerning the floating point approximation of the matrix, and this is
explained in Section 3.11.1. Finally, if you pick a random square matrix, using
MATLAB’s rand command, it is almost impossible to produce a matrix that
requires pivoting. The reason is that pivoting is only needed when the entries
of the matrix satisfy specific equations. As an example, for the 2× 2 matrix
considered above, pivoting is only required when a = 0. The probability of
producing exactly this value for a using the rand command is very small.

3.2.2 Factoring n × n Matrices

The method used to find an LU factorization for a general square matrix is
the same as for the 2 × 2 case. Namely, you just assume it’s possible and
then calculate what’s necessary. In the case of a Doolittle factorization, this
means we assume that⎛

⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 · · · 0
�21 1 · · · 0
...

... · · · ...
�n1 �n2 · · · 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
u11 u12 · · · u1n

0 u22 · · · u2n

...
... · · · ...

0 0 · · · unn

⎞
⎟⎟⎟⎠ .

It is necessary to multiply the two matrices on the right and then equate the
result with the matrix on the left. As an example, equating the first column
on the left with the one on the right, we have that

⎛
⎜⎜⎜⎝
a11
a21
...

an1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u11

�21u11

...
�n1u11

⎞
⎟⎟⎟⎠ .

From this it follows that u11 = a11, �21 = a21/a11, · · · , �n1 = an1/a11. This
requires that a11 �= 0. If it is zero, and at least one of the other ai1’s is
nonzero, then we would first need to use pivoting to get a nonzero entry in
the (1, 1)-position. There is also the possibility that all the entries in the first
column are zero, a situation equivalent in the 2× 2 case of when a = c = 0,
and it can be handled in a similar manner. However, this situation will not
arise if the matrix is invertible.

Once this step is complete, one then equates the second column, then the
third, etc. The resulting algorithm for finding the nonzero entries in L and
U, when no pivoting is needed, is given in Table 3.1.

3.2 Finding L and U 77

3.2.3 Pivoting Strategies

In the above derivation, to deal with the case of when a11 = 0, one looks for a
row with a nonzero entry in the first column and then interchanges that row
with the first row. This operation is known as pivoting. Also, even though
it was not demonstrated explicitly in the above derivation, each column has

for j = 1, 2, · · · , n
l(j, j) = 1

for i = 1, 2, · · · , j
u(i, j) = a(i, j)

for k = 1, 2, · · · , i− 1

u(i, j) = u(i, j) − l(i, k)u(k, j)

end

end

for i = j + 1, j + 2, · · · , n
l(i, j) = a(i, j)

for k = 1, 2, · · · , j − 1

l(i, j) = l(i, j)− l(i, k)u(k, j)

end

l(i, j) = l(i, j)/u(j, j)

end

end

Table 3.1 Algorithm for finding a Doolittle factorization of A, assuming pivoting is
not needed. It is understood that any loop with a larger starting value than ending
value is skipped.

the potential for a zero divisor and so pivoting might be necessary multiple
times in the calculation.

There are numerous variations on how to pivot, some worth considering
and some which are a waste of time. As an example of the former, one could
have a situation where a11 �= 0 but a11 is so close to zero that dividing by
it can cause numerical difficulties. In this case, even though a11 is nonzero,
pivoting is necessary. Another variation concerns which row to pivot with.
As described above, one looks for the first row with a nonzero entry and
then performs the interchange. Instead, one looks at all of the rows in the
first column and picks the one with the largest entry, in absolute value. This
is known as partial pivoting. It is also possible to pivot using the columns

78 3 Matrix Equations

of the matrix, although this requires reordering the entries in the solution
vector. For those interested in exploring the various pivoting strategies that
have been proposed, Golub and Van Loan [2013] should be consulted.

3.3 LU and Gaussian Elimination

One of the conventional methods for solving a linear system is Gaussian
elimination. To do this one forms the augmented matrix and then row reduces
to find the answer. The general form of this procedure, for Ax = b, is

[A | b] → [U | y] → [I | z] ,

where U is an upper triangular matrix and I is the identity matrix. From
this, the solution is x = z. As an example, consider solving

⎛
⎝1 1 1

2 4 1
5 −1 −1

⎞
⎠
⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝1
0
2

⎞
⎠ . (3.3)

The steps in the reduction are given in Table 3.2. The row operation used in
each step is given in the second column. For example, −2R1+R2 → R2 means
the first row is multiplied by −2, added to the second row, and the result put
into the second row. The third column expresses the result in matrix form,
using elementary matrices. For example,

E1 =

⎛
⎝ 1 0 0
−2 1 0
0 0 1

⎞
⎠ ,

and it is easy to verify that

E1A =

⎛
⎝1 1 1
0 2 −1
5 −1 −1

⎞
⎠ .

The other two elementary matrices are

E2 =

⎛
⎝ 1 0 0

0 1 0
−5 0 1

⎞
⎠ and E3 =

⎛
⎝1 0 0
0 1 0
0 3 1

⎞
⎠ .

The conclusion we make from this calculation is that

E3E2E1A = U,

3.3 LU and Gaussian Elimination 79

Augmented Form Row Operation Matrix Form

⎡
⎣
1 1 1
2 4 1
5 −1 −1

∣∣∣∣∣∣
1
0
2

⎤
⎦ Ax = b

→
⎡
⎣
1 1 1
0 2 −1
5 −1 −1

∣∣∣∣∣∣
1

−2
2

⎤
⎦

−2R1+R2 → R2

E1Ax = E1b

→
⎡
⎣
1 1 1
0 2 −1
0 −6 −6

∣∣∣∣∣∣
1

−2
−3

⎤
⎦

−5R1+R3 → R3

E2E1Ax = E2E1b

→
⎡
⎣
1 1 1
0 2 −1
0 0 −9

∣∣∣∣∣∣
1

−2
−9

⎤
⎦

3R2 +R3 → R3

E3E2E1Ax = E3E2E1b

Table 3.2 Summary of the steps when using an augmented matrix to solve (3.3).

where U is the upper triangular matrix given in the augmented matrix in
the last step in Table 3.2. From this we conclude that

A = E−1
1 E−1

2 E−1
3 U,

in other words, A = LU, where

L = E−1
1 E−1

2 E−1
3 . (3.4)

To complete the derivation we need some useful results from matrix algebra:

• If E is invertible and lower triangular, then E−1 is lower triangular.

• If L1 and L2 are lower triangular, then L1L2 is lower triangular.

Therefore, the matrix L in (3.4) is lower triangular.
The above discussion involved a particular 3×3 matrix but the conclusion

is the same for the general n × n case. Namely, by keeping track of the
steps involved with Gaussian elimination one effectively constructs an LU
factorization of the original matrix, and uses this to solve the equation. This
also provides the motivation for looking for the LU factorization in the first
place. However, once you know that you can factor the matrix in this way,
the augmented matrix approach is not needed to find the factorization.

80 3 Matrix Equations

3.4 LU Method: Summary

In what follows it is assumed that A is an n× n non-singular matrix, and x
and b are n-vectors. Also, U is an upper triangular matrix and L is a lower
triangular matrix (and both are n× n).

To solve Ax = b using the LU method, the following steps are taken:

1. Calculate factorization: A = LU

2. Solve for y: Ly = b

3. Solve for x: Ux = y

102 103 104

n-axis

10-4

10-2

100

102

T
im

e

4 Cores
1 Core
Theory

Figure 3.1 Computing time, in seconds, to find the LU factorization of an n × n
matrix using MATLAB with a quad core, and with a single core, processor.

It is sometimes necessary to interchange rows to find the factorization (a pro-
cess known as pivoting). Also, the factorization is not unique. This gives rise
to certain choices for the diagonals in the factorization, and the two most
commonly used are:

• Doolittle factorization: choose �11 = �22 = · · · = �nn = 1. In this case, L is
said to be a unit lower triangular matrix.

• Crout factorization: choose u11 = u22 = · · · = unn = 1. In this case, U is
said to be a unit upper triangular matrix.

When solving an equation, only one of these is used when finding a factor-
ization (i.e., you should not use both at the same time).

The number of flops (i.e., the additions, subtractions, multiplications, and
divisions) needed to solve the problem is:

1. finding L and U: 1
6n(n− 1)(4n+ 1) = 2

3n
3 − 1

2n
2 +O(n)

2. solving Ly = b and Ux = y: 2n2 +O(n)

Therefore, for large matrices, a solution obtained using LU takes on the order
of 2

3n
3 flops. In comparison, solving the problem by first findingA−1 and then

calculating A−1b takes on the order of 2n3 flops.

3.4 LU Method: Summary 81

Note that the 2
3n

3 flop count means that if the size of the matrix is doubled
then the flops increase by a factor of about 8. To investigate this, the average
computing times that MATLAB’s LU command takes using a randomly gen-
erated n×n matrix are shown in Figure 3.1. The calculations were done first
allowing MATLAB access to all four cores of the processor, and then again
using only one core. The theory line in the plot is simply the curve t = 2

3n
3t0,

for a given value of t0. What should happen, if the calculation follows the 2
3n

3

rule, is that the curve for the computing time turns out to be parallel to the
theory curve. This holds for the single core calculation, but not unexpectedly
for the quad core curve. The computing times for the latter are, for the larger
values of n, about a factor of 3 smaller than what is obtained for the single
core calculation. The speedup for the multicore calculation is due to recent
implementations of the LU factorization algorithm that take advantage of
the hardware available, including memory hierarchy and multiple cores.

Note that for very large matrices, an important factor that can slow down
the algorithm is the communication time. This is simply the time needed to
move the data that is being used by the computer between memory locations,
or between processors. With the current interest in solving physically realistic
problems, and the very large matrices this can produce, research has been
invested into how to redesign algorithms to reduce the communication time,
perhaps at the expense of increasing the flops, to be able to reduce the overall
computational time. Those interested in how this can affect the LU method
should consult Ballard et al. [2011] or Yamazaki and Li [2012].

Example 1

Solve

x− y = 2

3x+ 2y = 3

using an LU factorization. We will use a Doolittle factorization, and so we set

(
1 −1

3 2

)
=

(
1 0

�21 1

)(
u11 u12

0 u22

)

=

(
u11 u12

�21u11 �21u12 + u22

)
.

From this it follows that u11 = 1, u12 = −1, �21 = 3/u11 = 3, and u22 =
2− �21u12 = 5. The next step is to solve Ly = b, which is

(
1 0

3 1

)(
u

v

)
=

(
2

3

)
.

82 3 Matrix Equations

The solution is u = 2 and v = −3. Lastly, we solve Ux = y, which is

(
1 −1

0 5

)(
x

y

)
=

(
2

−3

)
.

From this it follows that the solution of the problem is y = −3/5 and
x = 7/5. �

Example 2

Use the LU method to solve⎛
⎜⎜⎜⎝

2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

0

5

⎞
⎟⎟⎟⎠ .

The matrix is tri-diagonal, which means that only nonzero entries are on the
diagonal and on the super- and sub-diagonals. It is a type of matrix that
is very common in applications. Normally, finding the LU factorization of a
4 × 4 matrix by hand is a bit tedious, but for a tri-diagonal matrix it isn’t
so bad. This is because L and U are also tri-diagonal. In particular, using a
Doolittle factorization, we assume that

⎛
⎜⎜⎜⎝
2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 0 0

�21 1 0 0

0 �32 1 0

0 0 �43 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
u11 u12 0 0

0 u22 u23 0

0 0 u33 u34

0 0 0 u44

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

u11 u12 0 0

�21u11 �21u12 + u22 u23 0

0 �32u22 �32u23 + u33 u34

0 0 �43u33 �43u34 + u44

⎞
⎟⎟⎟⎠ .

Starting with the first row, we conclude that u11 = 2 and u12 = 1. Dropping
to the second row one finds that �11 = 1/u11 = 1/2. Finishing the second row
and then continuing one finds that

U =

⎛
⎜⎜⎜⎝
u11 u12 0 0

0 u22 u23 0

0 0 u33 u34

0 0 0 u44

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
2 1 0 0

0 3
2 1 0

0 0 4
3 1

0 0 0 5
4

⎞
⎟⎟⎟⎠ ,

3.4 LU Method: Summary 83

and

L =

⎛
⎜⎜⎜⎝

1 0 0 0

�21 1 0 0

0 �32 1 0

0 0 �43 1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
1 0 0 0
1
2 1 0 0

0 2
3 1 0

0 0 3
4 1

⎞
⎟⎟⎟⎠ .

The next step is to solve Ly = b, which is

⎛
⎜⎜⎜⎝
1 0 0 0
1
2 1 0 0

0 2
3 1 0

0 0 3
4 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
y1

y2

y3

y4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

0

5

⎞
⎟⎟⎟⎠ .

One finds that y1 = y2 = y3 = 0 and y4 = 5. It remains to solve Ux = y,
which is ⎛

⎜⎜⎜⎝
2 1 0 0

0 3
2 1 0

0 0 4
3 1

0 0 0 5
4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

0

5

⎞
⎟⎟⎟⎠ .

The solution in this case is x4 = 4, x3 = −3, x2 = 2, and x1 = −1. �

Example 3

We will now consider the n× n version of the above example, and the equa-
tion is ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2 1

1 2 1 0
1 2 1

. . .
. . .

. . .

0 1
1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
x = b, (3.5)

where the vector b is selected so that x = (1, 1, · · · , 1)T is the exact solution.
The matrix equation is going to be solved using the LU method, specifi-
cally a version that is specialized to tri-diagonal matrices as described in
Section 3.8. The question considered here is how accurately we are able to
compute the solution using double precision arithmetic. In other words, we are
interested in how the exact solution x compares to the computed solution xc.
To determine this we will compute the largest number, in absolute value, in
the vector x− xc. This number will be denoted as ||x−xc||∞. The results of
the calculation are given in Table 3.3. For the smaller values of n the solution
is as accurate as can be expected using double precision. For the larger values

84 3 Matrix Equations

of n there is some loss of accuracy but the answer is still reasonably accurate.
Note, for those who might be interested in just how long it takes a computer
to solve a 160000× 160000 matrix equation using the LU method, it is about
10−2 sec. However, the method takes maximum advantage of the tri-diagonal
structure of this matrix. �

n ||x− xc||∞
4 6.66e−16

8 1.33e−15

12 1.78e−15

16 1.33e−15

160 6.26e−14

1600 1.35e−12

16000 4.97e−11

160000 3.01e−09

Table 3.3 Difference between the exact and computed solution in Example 3. Note
that 6.66e−16 = 6.66 × 10−16.

Example 4

The equation to be solved is

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 1/2 (1/2)2 . . . (1/2)n−1

1 1/3 (1/3)2 . . . (1/3)n−1

...
...

...
...

1 1/n (1/n)2 . . . (1/n)n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
x = b.

The vector b is selected so that x = (1, 1, · · · , 1)T is the exact solution. Note
that the matrix in this example is known as the Vandermonde matrix, and we
will see it again in Chapters 5 and 8. As in Example 3, to compare the exact
solution x to the computed solution xc we will compute the largest number,
in absolute value, in the vector x − xc. Also, as before, this number will be
denoted as ||x− xc||∞. The results of the calculation are given in Table 3.4.
The results are dramatically different than what were obtained in Example 3.
Namely, although the accuracy is reasonable when n = 4, when n = 16 it is
horrible, and it is not even defined when n = 160. �

3.5 Vector and Matrix Norms 85

n ||x− xc||∞
4 2.00e−15

8 4.23e−09

12 5.28e−03

16 25.6

160 NaN

Table 3.4 Difference between the exact and computed solution in Example 4.

What the last two examples show is that for some matrices the LU method
works just great, but for others it is terrible. The reason is that solving matrix
equations can be very sensitive to round-off error, whether one uses LU or
some other method. What is required is to invest some effort in analyzing
the error and how it depends on the properties of the matrix.

3.5 Vector and Matrix Norms

We need to be able to measure the size of vectors and matrices, and this
will be done using the concept of a vector norm. Given x ∈ R

n, its norm is
designated as ||x||. To qualify to be a norm, it must have the following three
properties:

1. ||αx|| = |α| ||x||
2. ||x+ y|| ≤ ||x||+ ||y||
3. If ||x|| = 0, then x = 0

It is required that these hold for all n-vectors x and y, and numbers
(scalars) α. It should be pointed out that the definition for a norm for a gen-
eral vector space has additional requirements. For x ∈ R

n these additional
conditions are satisfied automatically, and this is considered in Exercise 3.13.

An example is the usual Euclidean definition of length, which is defined as

||x||2 ≡
√
x2
1 + x2

2 + · · ·+ x2
n . (3.6)

This is known as the Euclidean norm or the 2-norm. Another norm we will
often use is

||x||∞ ≡ max{ |x1|, |x2|, · · · , |xn| } , (3.7)

which is known as the ∞-norm. A third norm that is used in scientific com-
puting is

||x||1 ≡ |x1|+ |x2|+ · · ·+ |xn| , (3.8)

86 3 Matrix Equations

Figure 3.2 Components of the three vector norms in R2.

and this is known as the 1-norm. Note that norms are dimensionally consis-
tent with the vectors considered. For example, if x is a position vector, so the
entries have the dimension of length, then the norm of x has the dimension
of length.

Examples

1. If x = (2 , −1)T , then ||x||2 =
√
5, ||x||∞ = 2, and ||x||1 = 3. �

2. If x ∈ R
n with x = (1 , 1 , 1 , · · · , 1)T , then ||x||2 =

√
n, ||x||∞ = 1, and

||x||1 = n. �

3. To show that ||x||∞ is a vector norm, note that

||αx||∞ = max{ |αx1|, |αx2|, · · · , |αxn| }
= max{ |α| |x1|, |α| |x2|, · · · , |α| |xn| }
= |α| max{ |x1|, |x2|, · · · , |xn| } = |α| ||x||∞ .

Also, let j be the value where ||x+ y||∞ = |xj + yj|. Because |xj + yj | ≤
|xj | + |yj | ≤ ||x||∞ + ||y||∞, it follows that ||x + y||∞ ≤ ||x||∞ + ||y||∞.
Finally, it is clear that if ||x||∞ = 0 then x = 0. �

If you are wondering how the norms compare, the answer can be inferred
from the previous examples. Another way, for x ∈ R

2, can be obtained from
Figure 3.2 using the usual relationship between the lengths of the sides of a
right triangle. Namely, max{ |x1|, |x2| } ≤ √x2

1 + x2
2 ≤ |x1| + |x2|. In other

words,
||x||∞ ≤ ||x||2 ≤ ||x||1 .

As demonstrated in the above example, for large vectors (big n), the three
vector norms can produce significantly different values.

A natural question to ask is, why consider different vector norms, what’s
so bad for the old standard, which is the Euclidean norm given in (3.6)? In
numerical computing, vector norms are often used to determine when to stop

3.5 Vector and Matrix Norms 87

a calculation. To explain, many numerical methods produce a sequence of
approximations x1, x2, x3, · · · that converge to the desired solution. The
usual way it is decided when to stop computing is through a requirement
of the form ||xm+1 − xm|| ≤ tol, where tol is a given error tolerance. One
should pick a vector norm that best achieves this goal. For example, using
the ∞-norm one is requiring that every element of xm+1−xm is smaller than
tol (in absolute value). This is a reasonable requirement, and does not take
long to compute. The other norms are certainly used, and as an example
the 1-norm is a natural way to measure error when approximating functions
(see Exercise 6.25).

3.5.1 Matrix Norms

Each of the vector norms can be used to define a norm of a matrix. This is
done by comparing the size of Ax to the size of x. The definition is

||A|| ≡ max
x �=0

||Ax||
||x|| . (3.9)

Because matrices have the property that A(αx) = αAx, and norms have the
property that ||αx|| = |α| · ||x||, this definition can be rewritten as

||A|| = max
||x||=1

||Ax|| . (3.10)

Using the above formulas, the vector norm ||x||∞ gives rise to the matrix
norm ||A||∞, and similarly for the other vector norms we have considered.

The definition in (3.9), or the version given in (3.10), is useful for the
more theoretical aspects of the subject, but they are not particularly useful
for calculating a matrix norm. Fortunately, it is possible to derive easier to use
formulas for ||A||∞ and ||A||1. In particular, one can show that the ∞-norm
of a matrix reduces to

||A||∞ = max

⎧⎨
⎩

n∑
j=1

|a1j |,
n∑

j=1

|a2j |, · · · ,
n∑

j=1

|anj |
⎫⎬
⎭

= max
1≤i≤n

n∑
j=1

|aij | . (3.11)

In other words, the∞-norm is determined by the largest row sum (of absolute
values). In contrast, the 1-norm of a matrix is

88 3 Matrix Equations

||A||1 = max

{
n∑

i=1

|ai1|,
n∑

i=1

|ai2|, · · · ,
n∑

i=1

|ain|
}

= max
1≤j≤n

n∑
i=1

|aij | , (3.12)

which means that the 1-norm is determined by the largest column sum (of
absolute values). One way to remember these two formulas is that ∞ is
horizontal (rows), while 1 is vertical (columns). Also, unfortunately, there is
no tidy little formula for the 2-norm of a matrix that is easy to calculate
for large matrices. It is possible to connect the 2-norm with what are called
singular values of the matrix, and this is considered in Section 4.5.3.

Example

If

A =

⎛
⎝ 1 2 −3

4 −5 6
−7 8 9

⎞
⎠ ,

then

||A||∞ = max{1 + 2 + 3 , 4 + 5 + 6 , 7 + 8 + 9}
= max{6, 15, 24} = 24,

and

||A||1 = max{1 + 4 + 7 , 2 + 5 + 8 , 3 + 6 + 9}
= max{12, 15, 18} = 18. �

As a final comment, matrix norms that are derived from a vector norm,
which is the case in (3.9), are called natural matrix norms. There are matrix
norms that are not derivable from a vector norm, what might be called unn-
atural norms, but they are not needed in what follows.

Basic Properties of a Matrix Norm

1. If I is the identity matrix, then ||I|| = 1.

2. ||Ax|| ≤ ||A|| · ||x||
3. ||AB|| ≤ ||A|| · ||B||

Proof: The first follows directly from (3.9). The second holds if x = 0, and
when x �= 0, the inequality follows from (3.9). As for the third, given that

3.6 Error and Residual 89

(AB)x = A(Bx), then using Property 2 (twice), ||(AB)x|| ≤ ||A|| · ||Bx|| ≤
||A|| · ||B|| · ||x||. Assuming x �= 0, and rewriting the last inequality as,

||(AB)x||
||x|| ≤ ||A|| · ||B|| ,

then the result follows from (3.9). �

3.6 Error and Residual

Letting x be the exact solution and xc the computed solution:

• The error vector e is defined as

e ≡ x− xc

• The residual vector r is defined as

r ≡ b−Axc

Although having zero error is desired, the reality is that when using floating
point numbers the best we can expect are relative errors on the order of
machine ε. Another complication is that for most problems we don’t know x
and are therefore not able to calculate e. The residual, however, is something
we can calculate. Everything that follows is based on the goal of using the
residual to determine, or estimate, the error in the calculated solution. The
first step is to realize that these two vectors are related through the formula

r = Ae,

or equivalently
e = A−1r.

We would like to be able to state that if r is small then so is e. However, as
the above formula shows, it might happen that the multiplication by A−1

takes a small r and produces a large e. How to relate these two vectors is
given next.

Theorem 3.2. Assuming A is non-singular and b is nonzero, then

||e||
||x|| ≤ κ(A)

||r||
||b|| , (3.13)

where κ(A) is the condition number of A and is defined as

κ(A) ≡ ||A|| · ||A−1|| .

90 3 Matrix Equations

Proof: First note that since b is nonzero, then x is nonzero. The conclusion
of the theorem is a consequence of two inequalities. First, since Ax = b then
||b|| = ||Ax|| ≤ ||A|| · ||x||. From this we have the first inequality,

1

||x|| ≤
||A||
||b|| .

As for the second inequality, since e = A−1r, then ||e|| ≤ ||A−1|| · ||r||. The
theorem follows by simply combining the two inequalities. �

Note that ||e||
||x|| (3.14)

is the error relative to the value of the solution, while

||r||
||b||

is the residual relative to the right-hand side of the matrix equation. So,
the above theorem is useful because it states that if the relative residual
is small then the relative error is small. The requirement needed to make
this conclusion is that the condition number is not very big. Matrices with
large condition numbers are said to be ill-conditioned. Because condition
numbers are one or greater (this is proved below), the requirement that A is
ill-conditioned can be written as 1 � κ(A). Just how much bigger than one
depends on the precision of the floating point system used and this will be
explained in Section 3.6.3.

3.6.1 Significant Digits

It was explained in Section 1.5 how the relative error can be used to determine
(approximately) the number of correct significant digits of a computed scalar
quantity. For vectors, the relative error as given in (3.14) does not have such a
straightforward connection with correct digits. To illustrate, suppose the ex-
act value is x = (100, 1, 0)T and the computed value is xc = (100.1, 1.1, 0.1)T .
Using the ∞-norm, the relative error is

||x− xc||∞
||x||∞ = 10−3.

While it is true that the first entry in xc is correct to three digits, the second
entry is correct to only one digit, and the concept of significant digits is not
even applicable to the third entry. So, when dealing with a nonzero vector

3.6 Error and Residual 91

x, the connection of the relative error with the number of correct significant
digits is guaranteed to only apply to the largest entry, in absolute value, of x.
This is also assuming that the ∞-norm is used.

3.6.2 The Condition Number

As illustrated in the above theorem, the condition number plays a central
role in determining how accurately the matrix equation can be solved. We are
using κ to designate this number but another common notation is cond(A).
Also, some like to indicate which norm they are using and, as an example,
will use κ∞(A) or cond∞(A) if they are using the ∞-norm. This will be done
here as well. Specifically, if the formula applies for any norm, then there will
be no subscript, while if the result depends on the norm used then a subscript
will be employed.

Example 1

If

A =

(
a b

c d

)
,

then

A−1 =
1

ad− bc

(
d −b

−c a

)
. (3.15)

This assumes, of course, that ad− bc �= 0. With this

||A||∞ = max{ |a|+ |b|, |c|+ |d| },

and

||A−1||∞ =
1

|ad− bc| max{ |d|+ |b|, |c|+ |a| }.

So, for example, if

A =

(
1 2

3 4

)
,

then ||A||∞ = 7 and ||A−1||∞ = 3. Consequently, κ∞(A) = 21. �

Example 2

Suppose

A =

(
1 2

−1 d

)
.

92 3 Matrix Equations

What is shown in Figure 3.3 is what the matrixA does to the circle x2+y2 = 1
for various choices for d. To explain, given a point x on the circle, then Ax
is a point on the respective ellipse. The specific values are

a) d = 1 : In this case κ∞(A) = 3
b) d = 5 : In this case κ∞(A) = 6
c) d = 20 : In this case κ∞(A) = 21

The important observation here is that for smaller values of the condition
number, A does not distort the circle very much. However, for larger val-
ues the distortion becomes significant. As we will see below, it is easy to
find matrices with very large condition numbers, such as 1010 and 1020. The

x-axis
-2 0 2

y-
ax

is

-3

-2

-1

0

1

2

3

κ = 3

x-axis
-2 0 2

-5

0

5

κ = 6

x-axis
-10 0 10

-20

-15

-10

-5

0

5

10

15

20

κ = 21

Figure 3.3 The dashed curve is the circle x2 + y2 = 1, and the solid curve is what
the matrix A from Example 2 transforms the circle into. The condition number used
here is κ∞.

resulting ellipse in such a situation is so distorted that any plot of the ellipse
would look like a straight line. Why this is relevant to solving Ax = b is
discussed in Section 3.11.3. �

Example 3

Suppose A is a diagonal matrix 3× 3, which means it can be written as

A =

⎛
⎜⎝

d1 0 0

0 d2 0

0 0 d3

⎞
⎟⎠ .

3.6 Error and Residual 93

In this case, ||A||∞ = max{ |d1|, |d2|, |d3| }. Also, assuming the diagonals are
nonzero, then

A−1 =

⎛
⎜⎝

1/d1 0 0

0 1/d2 0

0 0 1/d3

⎞
⎟⎠ .

From this it follows that

||A−1||∞ = max{ |1/d1|, |1/d2|, |1/d3| } =
1

min{ |d1|, |d2|, |d3| } .

Therefore,

κ∞(A) =
max{ |d1|, |d2|, |d3| }
min{ |d1|, |d2|, |d3| } .

This shows that for this matrix the condition number is not affected so much
by how large or small the di’s are but rather how different they are. For
example, if d1 = d2 = d3 = 10−10 or if d1 = d2 = d3 = 1010, then κ∞(A) = 1
and we have a well-conditioned matrix. However, if d1 = d2 = 10−10 and
d3 = 1010, then κ∞(A) = 1020 and we have an ill-conditioned matrix. �

The condition number has several useful properties. Some of them are
listed below, and they hold for any matrix norm.

Basic Properties of the Condition Number

Assuming that A and P are invertible, then the following hold.

1. κ(I) = 1, where I is the identity matrix

2. 1 ≤ κ(A) < ∞
3. For any nonzero number α, κ(αA) = κ(A)

4. κ(A) = κ(A−1)

5. κ(PA) ≤ κ(P)κ(A)

Proof: Note that Property 1 holds because I−1 = I and ||I|| = 1. As for
Property 2, since AA−1 = I, it follows that ||I|| ≤ ||A|| · ||A−1||. Property 3
holds because ||αA|| = |α|·||A|| and ||(αA)−1|| = |α|−1·||A−1||, and Property
4 is an immediate consequence of the definition of the condition number.
Finally, for Property 5, given that ||PA|| · ||(PA)−1|| = ||PA|| · ||A−1P−1||,
it follows that ||PA|| · ||(PA)−1|| ≤ ||P|| · ||A|| · ||A−1|| · ||P−1||. �

94 3 Matrix Equations

3.6.3 A Heuristic

A rule of thumb has been developed that relates the condition number to the
accuracy of the computed solution [Golub and Van Loan, 2013]. The heuristic
is that

||x− xc||
||x|| ≈ εκ(A). (3.16)

In other words, if ε ≈ 10−p and κ(A) ≈ 10q, then xc is probably correct to
no more than about p−q digits. As an example, when using double precision,
this difference is 16 − q. Note that when this difference is negative then the

n ||x− xc||∞ κ∞(A) εκ∞(A) ||x− xc||∞ κ∞(A) εκ∞(A)

4 6.66e−16 12 2.7e−15 2.00e−15 1.5e+03 3.4e−13

8 1.33e−15 40 8.9e−15 4.23e−09 4.5e+08 1.0e−07

12 1.78e−15 84 1.9e−14 5.28e−03 1.1e+15 2.3e−01

16 1.33e−15 144 3.2e−14 25.6 1.6e+18 3.5e+02

160 6.26e−14 1.3e+04 2.9e−12 NaN Inf Inf

1600 1.35e−12 1.3e+06 2.9e−10

16000 4.97e−11

Table 3.5 Error when computing solution in Example 3, on left, and in Example 4,
on right, from Section 3.4. Because ||x||∞ = 1, according to the heuristic, εκ∞(A) is
an estimate of the error.

heuristic and probably the computed solution have no meaning. Also, as
explained in Section 3.6.1, to make the connection with significant digits, it
is appropriate to use the ∞-norm when using the heuristic.

The explanation of how (3.16) is arrived at involves a worst-case analysis
applied to (3.13). Namely, even though you might solve the equation to the
accuracy allowed using float-point arithmetic, so the relative error in the
residual is on the order of machine ε, the relative error in the solution is as
bad as permitted in (3.13).

Example

The table from Example 3 in Section 3.4, which was computed for a tri-
diagonal matrix, is repeated in Table 3.5 (left side) but two columns are
added, one giving the condition number and the other giving the value of
εκ∞(A). Note the ∞-norm is used here, in which case ||x||∞ = 1. Similarly,
the table from Example 4, which was computed for the Vandermonde matrix,
is repeated in Table 3.5 (right side). These results show that the heuristic is

3.7 Positive Definite Matrices 95

a bit pessimistic in the sense that the actual error is better than what is
predicted by the heuristic. It is also clear that the Vandermonde matrix is
ill-conditioned except for very small values of n. The tri-diagonal matrix in
contrast is reasonably well-conditioned. �

Note that the heuristic was not computed in the last row in Table 3.5.
Although it is possible to let the computer run for possibly hours and even-
tually compute this number, this was not done to make a point. Computing
the condition number for a large matrix is very time consuming. However, the
information one can derive from knowing the condition number is important
enough that considerable research has been invested into how to obtain an
estimate of it relatively quickly, even for large matrices. An introduction to
the various ways this can be done can be found in Higham [2002] and Golub
and Van Loan [2013].

3.7 Positive Definite Matrices

One of the more common numerical problems that arises in continuum mec-
hanics or electrodynamics involves solving equations with matrices such as

⎛
⎜⎜⎝

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎞
⎟⎟⎠ or

⎛
⎜⎜⎜⎜⎜⎜⎝

4 −1 0 −1 0 0
−1 4 −1 0 −1 0
0 −1 4 −1 0 −1

−1 0 −1 4 −1 0
0 −1 0 −1 4 −1
0 0 −1 0 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

These matrices have several properties that have a significant impact on the
numerical methods that can be used. The two that are of interest here are
that they are symmetric and positive definite. For those who are unfamiliar
with the latter property, its definition is given next.

Definition 3.1. IfA is an n×n symmetric matrix, then A is positive definite
if either of the following holds:

1. xTAx > 0, ∀ x �= 0, or

2. A has only positive eigenvalues.

To put this definition on solid ground, it is necessary to prove that any sym-
metric matrix that satisfies the first condition also satisfies the second condi-
tion (and vice versa). This is easy to do, and to illustrate, given an eigenvalue
λ, and a corresponding eigenvector x, then x is nonzero and Ax = λx. With
this, xTAx = λx · x. Since x ·x > 0, and if it is true that xTAx > 0, it then

96 3 Matrix Equations

follows that λ > 0. The proof of the other direction requires a result from lin-
ear algebra about the eigenvalues for a symmetric matrix (see Theorem 4.1)
and is left as an exercise.

The fact is that the above definition is not particularly useful even though
the idea being defined is very important. It turns out that there are some
easy to use tests for determining whether or not a matrix is positive definite.
We begin with the negative results, namely ways to determine if a matrix
does not have this property.

Theorem 3.3. Assume A is a symmetric n× n matrix.

1. A is not positive definite if any diagonal entry is negative or zero.

2. A is not positive definite if the largest number in A, in absolute value, is
off the diagonal.

3. A is not positive definite if det(A) ≤ 0.

Proof : In regard to the first statement, suppose aii ≤ 0. Taking x = ei, where
ei is the ith coordinate vector, then xTAx = aii. The latter number is not
positive and so A is not positive definite. The second statement is proved in
a similar manner, but using x = ei−ej and x = ei+ej. The third statement
follows from the result from linear algebra which states that if λ1, λ2, · · · ,
λn are the eigenvalues of A then det(A) = λ1λ2 · · ·λn. Since the eigenvalues
of a symmetric positive definite matrix are positive, then the product of the
eigenvalues must be positive. �

The first two conditions are easy to use even on very large matrices, while the
usefulness of the third condition is limited to smaller or very simple matrices.

Examples

1. Because of the −4, the following matrix is not positive definite. One can
also make this conclusion by showing that det(A) < 0.

A =

(
4 1

1 −4

)
. �

2. Because of the 4’s off the diagonal, the following matrices are not positive
definite because they violate the second condition.

A1 =

(
1 4

4 2

)
and A2 =

(
1 4

4 4

)
.

It should be pointed out that even though a four does appear on the
diagonal in A2, the theorem states that it cannot appear anywhere else if
the matrix is positive definite. �

3.7 Positive Definite Matrices 97

3. The theorem does not provide any insight about the following two sym-
metric matrices:

A3 =

⎛
⎜⎝

4 3 3

3 1 3

3 3 1

⎞
⎟⎠ and A4 =

⎛
⎜⎝

1 −2 −5

−2 1 5

−5 5 8

⎞
⎟⎠ .

Both matrices only have positive numbers on their diagonals, and the
largest number only appears on the diagonal. Also, det(A3) = 4 and
det(A4) = 26. However, neither of them is positive definite. This is because
the eigenvalues for A3 are −2, 4−3

√
2, and 4+3

√
2, while the eigenvalues

for A4 are −1, −2, and 13. �

There is a simple test to prove a matrix is positive definite and it concerns
the size of the numbers on the diagonal compared to the other numbers in
their respective rows. The property needed is defined next.

Definition 3.2. A matrix A is strictly diagonal dominant if, for every row,

|aii| >
n∑

j=1
j �=i

|aij | .

It is diagonally dominant if the above condition holds with ≥ instead of >.

Theorem 3.4. A symmetric matrix A is positive definite if the diagonals are
all positive and it is strictly diagonal dominant.

Those interested in the proof of this theorem, or interested in other properties
of positive definite matrices, should consult Süli and Mayers [2003].

Examples

1. Using the above theorem, the following matrices are easily shown to be
positive definite.

A =

(
4 1

1 4

)
A =

⎛
⎜⎝

2 −1 0

−1 3 −1

0 −1 2

⎞
⎟⎠ . �

2. Although the matrix below is symmetric, because of the second row the
matrix is not strictly diagonally dominant. In other words, the above the-
orem does not apply.

98 3 Matrix Equations

A =

⎛
⎜⎝

2 −1 0

−1 2 −1

0 −1 2

⎞
⎟⎠

It is possible to prove the matrix is positive definite by calculating the
eigenvalues, and this is considered in Exercise 3.22. �

As a final comment, a question that often comes up is where the idea of
being positive definite comes from and why is it considered important. Many
of the matrices that arise in applications come from approximations of dif-
ferential equations. This includes Maxwell’s equations in electrodynamics, or
Navier-Stokes equations in fluid dynamics, or the heat equation in thermo-
dynamics. The spatial terms in these equations often have a property known
as ellipticity, and this helps guarantee that the solution is unique or the po-
tential energy in the system behaves in a physically realistic manner. Saying
something has ellipticity is a fancy way of saying it is positive definite. The
matrices that come from these applications are simply inheriting the prop-
erty from the original problem. What we are doing here is deriving numerical
methods that take advantage of this property.

3.7.1 Cholesky Factorization

In the case of when the matrix is symmetric and positive definite, it is possible
to find an LU factorization of the form

A = UTU, (3.17)

where the diagonals of U are positive. This is known as the Cholesky factor-
ization. Because this avoids having to calculate L, the flop count is about half
of the usual LU count. In other words, when using a Cholesky factorization
the flop count is approximately 1

3n
3. Also note that the procedure for solving

the matrix equation is the same as before, it is just that now L = UT .
In addition to a reduced flop count, a symmetric and positive definite

matrix is always nonsingular. Moreover, the factorization can be carried out
without having to use pivoting. These are some of the nice properties referred
to earlier. What is not avoided, however, is the possibility that the matrix
is ill-conditioned. The diagonal matrix used in Example 2 in Section 3.6.2
is positive definite as long as the diagonals are positive. As demonstrated
in that example, the matrix can be either ill-conditioned or well-conditioned
depending on the relative values of the diagonals.

3.7 Positive Definite Matrices 99

Example

Use the Cholesky factorization to solve

(
4 1

1 4

)(
x

y

)
=

(−2

7

)
.

It was earlier shown that the matrix is positive definite, and so the first step
is to find the factorization. This is done by assuming that

(
4 1

1 4

)
=

(
u11 0

u12 u22

)(
u11 u12

0 u22

)

=

(
u2
11 u12u11

u12u11 u2
12 + u2

22

)
.

First, note that we need u2
11 = 4, and so u11 = 2. The negative root is

not considered because a Cholesky factorization requires the diagonals to be
positive. With this one then finds that u12 = 1

2 , and u22 = 1
2

√
15. The next

step is to solve UTy = b, which is

(
2 0
1
2

1
2

√
15

)(
u

v

)
=

(−2

7

)
.

The solution is u = −1 and v =
√
15. Lastly, we solve Ux = y, which is

(
2 1

2

0 1
2

√
15

)(
x

y

)
=

(
−1√
15

)
.

From this it follows that the solution of the problem is y = 2 and x = −1. �

It is interesting how Theorem 3.3 is used by MATLAB. When given the
command A\b, MATLAB makes a series of tests to decide how to solve the
problem. If it finds that the matrix is symmetric, contains only real numbers,
and has positive diagonals, it will attempt a Cholesky factorization. It also
knows that it is very possible that the matrix is not positive definite so
there are built-in contingencies for what to do if the Cholesky factorization
fails. What MATLAB is doing is not unreasonable because symmetric and
positive definite matrices are so common in applications that having positive
diagonals increases the likelihood that the matrix is positive definite to the
point that the Cholesky factorization is worth trying.

100 3 Matrix Equations

3.8 Tri-Diagonal Matrices

Another type of matrix that often occurs in applications are those that are
tri-diagonal. A standard LU factorization can be used on a tri-diagonal matrix
and the procedure can be greatly simplified if one uses the fact that there are
so many zeros in the matrix. To explain, a tri-diagonal matrix has the form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 c1
b2 a2 c2 0

b3 a3 c3
. . .

. . .
. . .

0 cn−1

bn an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.18)

The factorization of such a matrix involves tri-diagonal matrices. In particu-
lar, the factorization has the form

⎛
⎜⎜⎜⎝

a1 c1
b2 a2 c2

b3 a3 c3
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

�11
�21 �22

�32 �33
. . .

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u11 u12

u22 u23

u33 u34

. . .
. . .

⎞
⎟⎟⎟⎠ .

An example of this is given in Section 3.4. Keeping track of what is, or is
not, zero, the entire LU method reduces to the algorithm given in Table 3.6.
This is known as the Thomas algorithm. In comparison with a full LU, it

Set: w = a1, x1 =
z1

w
For i = 2, 3, . . . , n

vi =
ci−1

w
w = ai − bivi

xi =
zi − bixi−1

w
End

For j = n− 1, n− 2, . . . , 1

xj = xj − vj+1xj+1

End

Table 3.6 Algorithm for solving Ax = z when A is the tri-diagonal matrix given
in (3.18).

3.8 Tri-Diagonal Matrices 101

requires only 8n − 7 flops! Moreover, it is only necessary to store the tri-
diagonal portion of the matrix and so the entire method requires storage
that amounts to approximately six n-vectors.

Note that tri-diagonal matrices can suffer the same problems more gen-
eral matrices have. In particular, they can be singular and they can be ill-
conditioned. This is evident in the algorithm given in Table 3.6 with the
variable w. If w is zero, or nearly zero, then the algorithm will fail. In certain
cases it is possible to determine very easily when w �= 0, and this is given
next.

Theorem 3.5. The tri-diagonal matrix A in (3.18) is invertible, and the
algorithm in Table 3.6 can be used to solve Ax = z, if either one of the
following holds:
1. A is strictly diagonally dominant, or
2. A is diagonally dominant, ci �= 0 ∀i, and |bn| < |an|.
Outline of Proof: The only operation of concern in the algorithm is the
division by w, and so the majority of the proof consists of showing this
cannot be zero. For the second set of conditions, note that when i = 2,
|v2| = |c1/a1| ≤ 1, where the inequality holds because the matrix is diago-
nally dominant. With this |w| = |a2 − b2v2| ≥ |a2| − |b2v2| ≥ |a2| − |b2| > 0,
where the last inequality holds because the matrix is diagonally dominant and
c2 �= 0. Continuing this argument, using induction, it is not hard to show that
|vi| ≤ 1 and |w| ≥ |ai| − |bi| > 0. As before, the last inequality holds, except
for the last row of the matrix, because we are assuming |ai| ≥ |bi|+ |ci| and
ci �= 0. The fact that it holds for i = n is because we have explicitly assumed
that |bn| < |an|. Showing that w is nonzero when A is strictly diagonally
dominant follows a similar induction proof. What remains is to prove that
the vector computed by the algorithm is the solution of the equation, and
this is left as an exercise. �

Examples

1. The matrix

A =

⎛
⎝ 2 −1 0

1 2 −1
0 1 2

⎞
⎠

is diagonally dominant, c1 = c2 = −1, and |b3| < |a3|. Therefore, according
to the above theorem, it is invertible and the algorithm in Table 3.6 can
be used with it. �

2. Let

A1 =

⎛
⎝2 −1 0

1 1 −1
0 1 2

⎞
⎠ , A2 =

⎛
⎝2 −1 0

1 2 0
0 1 2

⎞
⎠ , A3 =

⎛
⎝2 −1 0

1 1 −1
0 2 2

⎞
⎠ .

102 3 Matrix Equations

These do not satisfy the conditions because: A1 is not diagonally dominant
(because of the second row), A2 violates the ci �= 0 ∀i condition, and A3

violates |b3| < |a3|. �

3.9 Sparse Matrices

Another type of matrix that often arises is one containing mostly zeros. These
are said to be sparse. Although there is not a precise definition of what it
means to be sparse, as a rule of thumb, a large n×n matrix is sparse if there
are on the order of n nonzero entries. As an example, a large tri-diagonal
matrix is sparse, and the reason is that there are no more than 3n nonzero
entries in such a matrix. It is worth pointing out that matrices with few zero
entries are said to be dense, which is another way of saying that the matrix
is not sparse.

The question arises when solving a problem with a sparse matrix if it
is possible to avoid having to store all those zero entries, and if it is pos-
sible to avoid calculations with them. There are such methods, but they
usually require knowing something else about the matrix. For example, if
the matrix is also symmetric and positive definite, then something called the
sparse Cholesky factorization can be used. Another approach is to use a mul-
tifrontal method, which involves partitioning the matrix into smaller blocks
[Liu, 1992]. It is also possible to use the conjugate gradient method, and this
will be described in Section 8.6.

3.10 Nonlinear Systems

We now consider the problem of how to solve a nonlinear system of equations
numerically. An example of this type of problem is to find the value(s) of x
and y that satisfy

x2 + 4y2 = 1, (3.19)

4x2 + y2 = 1. (3.20)

Each of these equations defines a curve, and they are plotted in Figure 3.4. It
is evident there are four solutions. We will use Newton’s method to calculate
these solutions, and it will make it easier if we first write the problem in the
more general form of solving

f(x, y) = 0, (3.21)

g(x, y) = 0. (3.22)

3.10 Nonlinear Systems 103

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

-0.5

0

0.5

1

Figure 3.4 Curves coming from the equations in (3.19) and (3.20).

As usual with Newton, it’s assumed that an initial guess (x0, y0) of the sol-
ution is provided. We then approximate the above functions for (x, y) near
(x0, y0) using Taylor’s theorem, which yields

f(x, y) ≈ f(x0, y0) + (x− x0)fx(x0, y0) + (y − y0)fy(x0, y0),

g(x, y) ≈ g(x0, y0) + (x− x0)gx(x0, y0) + (y − y0)gy(x0, y0).

Note that both of these are the two variable versions of (2.8). As was done
for the one variable case, we now replace (3.21) and (3.22) with

f(x0, y0) + (x− x0)fx(x0, y0) + (y − y0)fy(x0, y0) = 0,

g(x0, y0) + (x− x0)gx(x0, y0) + (y − y0)gy(x0, y0) = 0.

Rearranging the terms in these equations, we obtain

xfx(x0, y0) + yfy(x0, y0) = −f(x0, y0) + x0fx(x0, y0) + y0fy(x0, y0),

xgx(x0, y0) + ygy(x0, y0) = −g(x0, y0) + x0gx(x0, y0) + y0gy(x0, y0).

This can be written in matrix form as

J0x1 = −f0 + J0x0,

or equivalently as
x1 = x0 − J−1

0 f0, (3.23)

where

J0 =

(
fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

)
, (3.24)

x0 =

(
x0

y0

)
, x1 =

(
x1

y1

)
, f0 =

(
f(x0, y0)

g(x0, y0)

)
.

104 3 Matrix Equations

The formula in (3.23) is the multi-variable version of (2.9). The matrix
in (3.24) is the Jacobian for the problem, evaluated at x0.

Continuing this procedure, we obtain the general formula for Newton’s
method, which is that

xi+1 = xi − J−1
i fi , for i = 0, 1, 2, 3, · · · (3.25)

where

Ji =

(
fx(xi, yi) fy(xi, yi)

gx(xi, yi) gy(xi, yi)

)
, (3.26)

xi =

(
xi

yi

)
, fi =

(
f(xi, yi)

g(xi, yi)

)
. (3.27)

The formula in (3.25) is the multi-variable version of (2.10). Also, the ear-
lier requirement that f ′(x) is nonzero now becomes the condition that the
Jacobian J is nonsingular.

For numerical reasons it is better to rewrite (3.25) to reduce the flop count.
First note that it can be written as Jixi+1 = Jixi−fi, and this can be written
as Ji(xi+1 − xi) = −fi. Therefore, (3.25) can be broken into two steps, first
one solves

Jiz = − fi , (3.28)

and then
xi+1 = xi + z . (3.29)

With this we have avoided having to determine J−1
i and then calculating

J−1
i fi. As a final comment, the above expressions were derived for the two-

variable problem in (3.21) and (3.22). However, they apply to the more gen-
eral problem of n nonlinear equations in n unknowns. In this case, J is the
n× n Jacobian matrix, while xi and z are n-vectors.

Example

For the equations in (3.19) and (3.20), f(x, y) = x2 + 4y2 − 1 and g(x, y) =
4x2 + y2 − 1. The Jacobian is therefore

J =

(
2x 8y

8x 2y

)
.

Setting z = (u, v)T , then (3.28) becomes

(
2xi 8yi

8xi 2yi

)(
u

v

)
= −

(
x2
i + 4y2i − 1

4x2
i + y2i − 1

)
. (3.30)

3.10 Nonlinear Systems 105

After solving this, using (3.29),

(
xi+1

yi+1

)
=

(
xi + u

yi + v

)
. (3.31)

i xi yi Error

0 1 1

1 0.6000000000 0.6000000000 4.00e−01

2 0.4666666667 0.4666666667 1.33e−01

3 0.4476190476 0.4476190476 1.90e−02

4 0.4472137791 0.4472137791 4.05e−04

5 0.4472135955 0.4472135955 1.84e−07

6 0.4472135955 0.4472135955 3.77e−14

Table 3.7 Solving (3.19) and (3.20) using the Newton’s method formula given
in (3.30) and (3.31). Also given is the iterative error ei = ||xi − xi−1||∞.

The values obtained using this procedure are shown in Table 3.7. As expected
when using Newton’s method, the error shows that the method is second or-
der. This is because once the method starts to get close to the solution, the
error at step i is approximately the square of the error at step i− 1. �

Newton’s method, as given in (3.28) and (3.29), is relatively easy to derive.
We also saw that when it works, the error shows the second-order conver-
gence that is the hallmark of the method. The fact is, however, that solving
nonlinear equations with multiple variables using Newton’s method, or any
method for that matter, is challenging. One reason is that Newton’s method
requires a good guess for the solution, and these can be difficult to come by. It
is natural to ask if there is a bisection type method that can be used to help
locate good guesses. There is a method that has some similarity to bisection,
but it requires the problem to be reformulated as a minimum problem. This
is not hard to do, and as an example, one can rewrite (3.21) and (3.22) as
follows: find the values of x and y that minimize

F (x, y) = f(x, y)2 + g(x, y)2.

The various numerical methods you can use to solve this are investigated in
Chapter 8.

106 3 Matrix Equations

3.11 Some Additional Ideas

3.11.1 Yogi Berra and Perturbation Theory

Yogi Berra, an insightful baseball personality, once said “In theory there is
no difference between theory and practice. In practice there is.” This has par-
ticular applicability to computing. As an example, it was stated earlier that
pivoting is not needed when finding an LU factorization of a symmetric pos-
itive definite matrix. Yet, it is possible to find a symmetric positive definite
matrix that, when attempting to compute its factorization, the procedure
fails (without pivoting). The reason is that it can happen that the floating
point approximation of a matrix does not have the same properties as the
original. As a case in point, it is possible to find a symmetric positive defi-
nite matrix whose floating point approximation, although symmetric, is not
positive definite. Situations similar to this are considered in Exercise 3.15.

This helps explain the interest in what is called matrix perturbation theory.
The idea here is that the original matrix A and its floating point approxi-
mation Af are related through an equation of the form Af = A + P. The
entries of P are proportional to machine ε, and are generally, although not
always, much smaller than the entries in A. In the vernacular of the subject,
P is called a perturbation matrix. The question is, if A has a certain prop-
erty, under what conditions, if any, will Af have that same property? As an
example, one can prove that if A is invertible, then Af is invertible if the
perturbation matrix is small enough that

||P||
||A|| <

1

κ(A)
.

In other words, an invertible matrix will remain invertible if perturbed by
a small enough amount that it satisfies the above inequality. The limitation
of this statement is that, when computing, you do not know if the precision
you are using is enough to guarantee that such an inequality is satisfied.
Nevertheless, matrix perturbation theory plays a prominent role in the anal-
ysis of matrix algorithms, and more can be learned about this in Golub and
Van Loan [2013] and Higham [2002].

3.11.2 Fixing an Ill-Conditioned Matrix

When stuck with having to solve a problem with an ill-conditioned matrix
it is natural to try to modify the equation to improve the situation. For
example, one might think that by multiplying the problem by a well-chosen
constant α that the condition number can be lowered. However, as explained
in Section 3.6.2, κ(αA) = κ(A), so that idea will not work. Not giving up,

3.11 Some Additional Ideas 107

the next attempt would be to multiply each equation making up the system
by a different constant (e.g., the first equation by d1, the second by d2, etc).
This can be expressed in matrix form by stating that the matrix equation is
going to be multiplied by a diagonal matrix D. In fact, if we are going to do
this why not use the most general version and multiply by a matrix P that
is not limited to being diagonal? Doing this, the problem becomes Cx = d,
where C = PA and d = Pb. The matrix P is called a pre-conditioner, and it
is chosen so the new matrix C is not ill-conditioned. Note that it is possible to
find a pre-conditioner so that κ(C) = 1, which is the smallest value possible
for the condition number. Namely, one can just take P = A−1. Obviously,
this is not a viable possibility because we do not know A−1. However, it
does provide some idea of what one might look for, which is an easy to find
approximation for A−1. Considerable research has been invested in how to
do this and Benzi [2002] should be consulted to learn about this.

3.11.3 Insightful Observations About
the Condition Number

As stated earlier, the condition number plays a central role in determining
how accurately a matrix equation can be solved. The heuristic described in
Section 3.6.3 helps to quantify its role in affecting the accuracy. However,
there are other, more qualitative, ways to interpret its role. This means they
are not particularly useful for evaluating it but they do provide insight into
the impact of the condition number on the accuracy.

1. It is sometimes said that the condition number is a measure of the distor-
tion associated with the matrix. This comment comes from the formula

κ(A) =
max||x||=1 ||Ax||
min||x||=1 ||Ax|| .

This expression was derived in Section 3.6.2 in the special case that the
matrix is diagonal (also see Exercise 3.21). It shows that the larger the con-
dition number the greater the distortion. To explain, the matrix norm is
determined by what the matrix does to the vectors which satisfy ||x|| = 1.
This is illustrated in Figure 3.3. If the transformed curve is close to a cir-
cle, then the max and min values of ||Ax|| are not too far apart and the
condition number is not very big. However, if this transformed curve looks
like an elongated ellipse, then the condition number gets a lot bigger. The
greater the distortion, the larger κ becomes.

A natural question to ask is, what does this distortion have to do with
solving matrix equations accurately. To explain, consider the example in
Section 3.6.2, where

108 3 Matrix Equations

1-r 1+r
b-Plane

1-r

1+r

xm xM

x-Plane

ym

yM

Figure 3.5 Left: The floating point approximation of b is located within a small
circle centered at b. Right: The ellipse consists of those points that produce the circle
on the left when evaluating Ax. The solid dot is the location of the exact solution.

A =

(
1 2

−1 d

)
.

When solving Ax = b numerically, b is replaced with its floating point
approximation, which is located somewhere in a small circle centered at b.
The radius of this circle is determined by machine epsilon, and this is
illustrated in the left graph in Figure 3.5. In this example, b = (1, 1)T ,
r = 10−6, and d = −1.9 (it is assumed for demonstration purposes that
machine epsilon is on the order of 10−6). The ellipse on the right is made
up of those points that produce the circle on the left. In other words, if x
is a point on the ellipse, then Ax is a point on the circle. This is significant
because given the floating point vector bf , the solution of Ax = bf will
be somewhere inside the ellipse. When the ellipse is very distorted, which
happens when the condition number is large, and the computed solution
xf is towards one of the far ends of the ellipse, then xf will be far away
from the actual solution. For example, the target circle on the right in
Figure 3.5 has r = 10−6, but the major axis of the ellipse is approximately
7 × 10−5. So, the accuracy in the solution does not match the accuracy
in the floating point approximation for b. The situation gets worse as the
condition number increases. To illustrate, if d = −1.999999 and r is the
same as before, then the major axis of the ellipse is approximately 7, and
κ∞(A) ≈ 107. In this case it could happen that the computed solution
is not correct to any significant digit. Also, note that this conclusion is
consistent with the heuristic described in Section 3.6.3.

2. Another often made comment is that the condition number is a measure
of how close the matrix is to being singular (non-invertible). For example,
MATLAB will issue the response “Warning: Matrix is close to singular or

3.11 Some Additional Ideas 109

badly scaled” in alarming orange text when given a matrix with a large
condition number. The reason for this is the formula

1

κ(A)
= min

{ ||A−B||
||A|| : B is singular

}
.

To decipher this, recall that the distance between two vectors can be writ-
ten as ||x−y||. In the same way the distance between two matrices can be
written as ||A−B||. Also recall how one calculates the distance between
a point and an object such as a sphere. Namely, if x is the point, then the
distance to the object is the smallest distance between x and the points
making up the object. In other words, if S is the object, then the distance
between x and S is min{||x− y|| : y ∈ S}. Based on this observation, the
right-hand side of the above formula is the normalized distance between
A and the set of singular matrices. What the formula shows is that the
larger the condition number the closer the matrix is to the set of singular
matrices.

3.11.4 Faster than LU?

As explained in Section 3.4, using LU takes approximately 2
3n

3 flops. This
is better than calculating A−1b, which takes approximately 2n3 flops. The
important observation for this discussion is that both methods are O(n3).
This raises the question as to whether there are sub-cubic methods, in other
words, can you find a method that requires O(nω) flops, where ω < 3? Con-
siderable research has been invested in this question, and the usual approach
to answering it is to change the question. It can be proved that if you can
multiply two n × n matrices using O(nω) flops then you can solve Ax = b
using O(nω) flops [Bunch and Hopcroft, 1974]. The usual method for multi-
plying two matrices requires n3 multiplications and n3−n2 additions, in other
words, O(n3) flops. The cubic barrier for matrix multiplication was first bro-
ken by Strassen, who was able to produce an algorithm that uses O(nω) flops,
where ω = log2 7 ≈ 2.8 [Strassen, 1969]. Others have worked on improving
this, and the current best result is ω ≈ 2.3727 [Williams, 2012]. You might be
wondering if anyone actually uses these methods to solve matrix equations.
The answer is that these are mostly theoretical results, and the methods are
rarely used in practice. The exception is Strassen’s method, although it is
not straightforward to implement [Bailey et al., 1991; Huss-Lederman et al.,
1996]. Those who might be interested in this topic should consult Higham
[2002].

110 3 Matrix Equations

3.11.5 Historical Comparisons

Although this discussion is going to be similar to when parents tell their
children how hard it was “back in the day,” it is worth knowing what early
researchers in the area said about solving matrix problems. The particular
individual is William Kahan, who was awarded the A.M. Turning Prize for his
contributions in floating-point computations and his dedication to “making
the world safe for numerical computations.” Anyway, in Kahan [1966], when
commenting about the difficulty of solving Ax = b stated “On our computer
(an IBM 7094-II at the University of Toronto) the solution of 100 linear
equations in 100 unknowns can be calculated in about 7 seconds”. This is
where you are supposed to point out that we are now able to do this in less
than 10−4 sec, which is no surprise. His next comment is more interesting,
and he states that “This calculation costs about a dollar.” Computers were
treated like taxi-cabs, but instead of charging by the mile (or kilometer) they
charged by the second. Fortunately, the introduction of UNIX ended this
particular practice at most universities. He goes on to say, “to solve 10000
linear equations would take more than two months.” Again, this is where it is
necessary to comment that on current machines this takes about 1 sec. One
might think the reason is the improvement in the speed of the processors,
which is partly true. The more significant reason is memory. They were unable
to store everything in active memory (RAM) and were forced into using
what Kahan calls “bulk storage units, like magnetic tapes or disks.” This
eventually became known as the “swap to disk” problem, and as you would
expect, the time required to transfer data back and forth to tape means you
will be measuring computing time not with a stop-watch but with a calendar.
Also, when a code can take months (or even days) a factor of two is actually
significant. This forced them into using every possible trick available, like
writing 0.5 ∗ x instead of x/2.

The fact is that many of the concerns Kahan talks about are still with
us, only the scale has changed. It is true that for most people, the capability
of computers today is more than sufficient. However, for those working to
solve the large multi-dimensional problems associated with physically realistic
models that arise in many applications, the processing power is still not
adequate. This is why they are in the process of building exascale computers,
so they will be able to solve problems with trillions of unknowns. As often
stated, these will be about 30 to 100 times faster than what we now have
and will possibility be available in five years [Peckham, 2013]. To give Kahan
the last word about these new computer systems, as he stated in 1966, “The
time might come down to a day or so when machines 100 times faster than
ours are produced, but such machines are just now being developed, and are
most unlikely to be in widespread use within the next five years.”

Exercises 111

Exercises

3.1. The following are true or false. If true, provide an explanation why it is
true, and if it is false provide an example demonstrating this along with an
explanation why it shows the statement is incorrect.
(a) If A is strictly diagonally dominant, then AT is strictly diagonally dom-

inant.
(b) If A is strictly diagonally dominant, then αA, where α is a nonzero

number, is strictly diagonally dominant.
(c) If A is symmetric, then ||A||∞ = ||A||1.
(d) If a nonzero vector x can be found so Ax = 0, where A is symmetric,

then A is not positive definite.
(e) If A is positive definite, and symmetric, then A only has positive entries.
(f) If A is the 2× 2 zero matrix and A = LU, then either L or U is the zero

matrix.
(g) Because ||x||∞ ≤ ||x||1 then it must be that ||A||∞ ≤ ||A||1.
(h) Assuming A is 2 × 2, if A is symmetric and positive definite, then A−1

is symmetric and positive definite.
(i) A symmetric and positive definite matrix must be strictly diagonally dom-

inant.
(j) An ill-conditioned matrix can be made well conditioned using pivoting

(you can assume that the matrix is 2× 2).

3.2. Using a Doolittle factorization, solve the following equations (by hand).
Also, calculate κ∞(A).
(a)

x+ y = 1

x+ 4y = 7.

(b)

x− 2y = 0

−x+ 4y = 1.

(c)

−2x+ y = 3

4x− 6y = −14.

(d)

x+ z = 1

x+ y = −1

y + z = 0.

112 3 Matrix Equations

3.3. Find the Doolittle factorization of the following matrices:
(a)

A =

⎛
⎝1 0 0

0 −2 2
0 2 −1

⎞
⎠ .

(b)

A =

⎛
⎝1 1 1

1 2 2
1 2 3

⎞
⎠ .

(c)

A =

⎛
⎜⎜⎝

1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎠ .

3.4. In this problem α is a small positive number. Sketch the two lines in the
x, y-plane, and describe how they change, including the point of intersection,
as α approaches zero. Also, calculate the condition number for the matrix,
and describe how it changes as α approaches zero.
(a)

x− y = −1

−x+ (1 + α)y = 1.

(b)

2x+ 4y = 1

(1− α)x + 2y = −1.

3.5. Consider the matrix

A =

⎛
⎝1 −1 −1

1 −4 0
0 1 0

⎞
⎠ .

It is useful, but not essential, to know that this is a unimodular matrix.
(a) Find A−1.
(b) Find κ∞(A).
(c) Find the Doolittle factorization of A.

3.6. Consider the matrix

A =

⎛
⎝1 1 0

0 1 1
1 0 1

⎞
⎠ .

Exercises 113

It is useful, but not essential, to know that this is a normal matrix.
(a) Find A−1.
(b) Find κ∞(A).
(c) Find the Doolittle factorization of A.

3.7. For each of the following matrices, explain why it is positive definite and
then find the Cholesky factorization.

(a)

A =

(
1 1

1 4

)
.

(b)

A =

⎛
⎝1 0 0

0 2 1
0 1 5

⎞
⎠ .

(c)

A =

⎛
⎝4 6 0

6 25 0
0 0 16

⎞
⎠ .

3.8. In this problem,

A =

(
1 −2

−2 3

)
.

(a) Find a vector x so that ||Ax||∞ = ||A||∞.
(b) Find a vector x so that ||Ax||1 = ||A||1.
(c) One can show that ||A||2 = 9 + 4

√
5. Find a vector x so that

||Ax||2 = ||A||2.
3.9. In this problem assume that A is a 2× 2 matrix
(a) Suppose the Doolittle and Crout factorizations produce the same result.

This means, for example, that the lower triangular matrix found for each
factorization is the same. What can you say about the entries in the
matrix A?

(b) Suppose the Doolittle, Crout and Cholesky factorizations produce the
same result. What can you say about the entries in the matrix A?

3.10. This problem considers the question, why not use UL instead of LU?
You can assume that A is a 2× 2 matrix.
(a) Find a Doolittle version of the factorization A = UL, where L is a unit

lower triangular matrix and U is upper triangular. You can assume piv-
oting is not necessary.

(b) Describe the resulting algorithm for solving Ax = b.
(c) Is there any connection between the Doolittle factorization of AT and the

one you found in part (a)?

114 3 Matrix Equations

(d) Aside from an alphabetic advantage, is there any reason to prefer LU over
UL?

3.11. A matrix often used to test the effectiveness of algorithms used to
calculate eigenvalues is the Rosser matrix, which is given as

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

611 196 −192 407 −8 −52 −49 29
196 899 113 −192 −71 −43 −8 −44

−192 113 899 196 61 49 8 52
407 −192 196 611 8 44 59 −23
−8 −71 61 8 411 −599 208 208
−52 −43 49 44 −599 411 208 208
−49 −8 8 59 208 208 99 −911
29 −44 52 −23 208 208 −911 99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Answer the following questions without using a computer.
(a) Is R symmetric?
(b) Is R positive definite? You must explain how you come to this conclusion.

3.12. This problem concerns the equation Ax = b, where

A =

(−1 1

0 α

)

and α > 0.
(a) For what values of α is this matrix ill-conditioned? Make sure to identify

what norm you are using.
(b) Suppose the residual r is small (but nonzero). For what values of α, if

any, will the error e = x− xc be large? Note x is the exact solution and
xc is the computed solution.

(c) Suppose the error e is small (but nonzero). For what values of α, if any,
will the residual be large?

3.13. Use the three defining properties of a vector norm for the following.
(a) Show that if x = 0, then ||x|| = 0.
(b) Show that for any x, ||x|| ≥ 0.
(c) Show that ||x||1 is a vector norm.

3.14. Assuming pivoting is not necessary, then a symmetric matrix A can be
factored as A = LDLT , where L is a lower triangular matrix with ones on
its diagonal and D is a diagonal matrix.
(a) Find the LDLT factorization of the matrix

A =

(−4 1

1 1

)
.

Exercises 115

(b) In Section 3.1, it was shown how an LU factorization results in solving
two matrix equations (for y and x). Explain how an LDLT results in
solving three matrix equations. Use this to solve

−4x+ y = 2

x+ y = 1.

(c) Explain why the flop count for solving Ax = b, where A is a symmetric
n × n matrix, using an LDLT factorization is approximately half of the
flop count when using an LU factorization.

3.15. In this exercise, A is a 2 × 2 matrix, and Af is its floating point
approximation (using double precision).
(a) Give an example of an invertible matrix A where Af is the zero matrix.

Your example should also have κ(A) = 1.
(b) Give an example of a symmetric and positive definite matrix A where

Af is symmetric but not positive definite.
(c) Give an example of a strictly diagonally dominant matrix A where Af is

not strictly diagonally dominant.
(d) Is it possible for A to be symmetric but Af not symmetric?

3.16. This problem considers two ways to solve Ax = b, where A is an
n× n magic matrix and the exact solution is x = (1, 1, · · · , 1)T . The matrix
A should be calculated in MATLAB using the magic(n) command, and
calculate b using the formula b = Ax. In what follows xM designates the
solution computed using the MATLAB backslash operator, and xI is the
solution computed using the inverse formula xI = A−1b. Use MATLAB to
fill out Table 3.8 and then answer the following questions (note that r =
b−AxM). Also, the entries in the table only need to include two significant
digits, and the norms refer to the infinity norm.
(a) Do you see any substantial differences between the two solution methods

when they are compared using the relative error?
(b) Does a small residual indicate an accurate solution? Your answer should

include a comment on the value of the condition number. What about
any dependence on the size n of the matrix?

(c) How well does the last column predict the relative error?

3.17. This problem considers two ways to solve Ax = b, where A = 3P and
P is the n×n Pascal matrix. Also, the exact solution is x = (1, 1, · · · , 1)T . The
matrix A should be calculated in MATLAB using the pascal(n) command,
and calculate b using the formula b = Ax. In what follows xM designates
the solution computed using the MATLAB backslash operator, and xI is the
solution computed using the inverse formula xI = A−1b. Use MATLAB to
fill out Table 3.9 and then answer the following questions (note that r =
b−AxM). Also, the entries in the table only need to include two significant
digits, and the norms refer to the infinity norm.

116 3 Matrix Equations

n
||x− xM ||

||x||
||x− xI ||

||x|| ||r|| κ(A) εκ(A)

3

6

9

12

Table 3.8 Table for Exercise 3.16.

(a) Do you see any substantial differences between the two solution methods
when they are compared using the relative error?

(b) Does a small residual indicate an accurate solution? Your answer should
include a comment on the value of the condition number. What about
any dependence on the size n of the matrix?

(c) How well does the last column predict the relative error?

3.18. This exercise considers the following three versions of the same prob-
lem:

ax+ by = b1 cx+ dy = b2 by + ax = b1

cx+ dy = b2 , ax+ by = b1 , dy + cx = b2.

Here a, b, c, d, as well as b1 and b2, are assumed known. Note that each
version differs only in the order the equations are written down. A property
of this problem is said to be fragile if it holds for one of the versions but not
all of them.
(a) Is symmetry of the coefficient matrix a fragile property?
(b) Is uniqueness of the solution a fragile property?
(c) Is ill-conditionedness of the coefficient matrix a fragile property?
(d) Is invertibility of the coefficient matrix a fragile property?

3.19. This problem considers whether a Cholesky type factorization can be
used on a matrix which is not positive definite. The assumption is that given
an invertible symmetric matrix A, then A = CTC where C is upper tri-
angular with possibly complex-valued entries. In this problem this will be
referred to as a generalized Cholesky factorization. What will be shown is
that a generalized Cholesky factorization is possible as long as the leading
principal minors of A are nonzero. Note that a method that avoids the use
of complex-valued factors is considered in Exercise 3.14.

Exercises 117

n
||x− xM ||

||x||
||x− xI ||

||x|| ||r|| κ(A) εκ(A)

4

8

12

16

Table 3.9 Table for Exercise 3.17.

(a) The following matrix is invertible and symmetric but not positive definite.
Find a matrix C satisfying the stated assumption.

A =

(−4 1

1 1

)

(b) Using the factorization found in part (a), solve

−4x+ y = 2

x+ y = 1.

Do you obtain the same answer you would get if you did not use the
factorization?

(c) What conditions must be imposed on the entries of the following symmet-
ric matrix so it is invertible and has a generalized Cholesky factorization.

A =

(
a b

b c

)
.

(d) Answer the question posed in part (c) for a symmetric 3× 3 matrix.

3.20. This exercise looks at some of the theorems about symmetric and pos-
itive definite matrices in the case of when

A =

(
a b

b c

)
.

As will be established in part (a), this matrix is positive definite if, and only
if, a > 0 and ac − b2 > 0. This result is then used to prove the various
theorems we had about positive definite matrices.
(a) Show that the eigenvalues of the matrix are

λ± =
1

2

[
a+ c±

√
(a+ c)2 − 4(ac− b2)

]
.

118 3 Matrix Equations

Explain why the eigenvalues are positive if, and only if, a + c > 0 and
ac− b2 > 0. Also explain why these two conditions can be replaced with
the requirements that a > 0 and ac− b2 > 0.

(b) Use the result from part (a) to prove that A is not positive definite if any
diagonal entry is negative or zero.

(c) Use the result from part (a) to prove that ifA is positive definite, then the
largest number in A, in absolute value, can only appear on the diagonal.

(d) Use the result from part (a) to prove that if A is positive definite, then
det(A) > 0.

(e) Use the result from part (a) to prove that A is positive definite if the
diagonals are all positive and it is strictly diagonal dominant..

(f) What are the three equations for the uij ’s that come from the Cholesky
factorization? Explain why the assumption that A is positive definite
is exactly what is needed to guarantee that you can find a real-valued
solution to these equations.

3.21. This exercise shows that the formulas derived in Example 3 of Sec-
tion 3.6.2 apply to any vector norm. Assume D is a diagonal n × n matrix,
with diagonal entries d1, d2, · · · , dn.
(a) Show that ||A||∞ = max{ |d1|, |d2|, · · · , |dn| }.
(b) Assuming the di’s are not zero, show that

||A−1||∞ =
1

min{ |d1|, |d2|, · · · , |dn| } .

(c) Show that

κ∞(A) =
max{ |di| }
min{ |di| } .

3.22. This problem considers the following n× n tri-diagonal matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a c

b a c 0
b a c

. . .
. . .

. . .

0 b a c
b a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

It is possible to show that the eigenvalues of this matrix are

λi = a+ 2
√
bc cos

(
iπ

n+ 1

)
, for i = 1, 2, . . . , n.

Also, assume that n ≥ 3.
(a) What is ||A||∞, and what is ||A||1?
(b) In the case that A is symmetric (so, c = b), what inequality must be

satisfied to guarantee that A is strictly diagonal dominant?

Exercises 119

(c) Assuming the matrix is symmetric and a is positive with 2|b| ≤ a, explain
why A is positive definite.

3.23. Consider the following nonlinear system of equations:

x2 + y2 = 4,

y = x3.

(a) Sketch the two curves and explain where (approximately) the solutions
are located.

(b) What is J and f, as given in (3.28), for this problem?
(c) What would be good starting values for the solutions you identified in

part (a)? Make sure to provide an explanation for your choices.

3.24. Consider the following nonlinear system of equations:

4x2 + y2 = 16,

x3y = 2.

(a) Sketch the two curves and explain where (approximately) the solutions
are located.

(b) What is J and f, as given in (3.28), for this problem?
(c) What would be good starting values for the solutions you identified in

part (a)? Make sure to provide an explanation for your choices.

3.25. This problem considers the situation of when the matrix is tri-diagonal,
symmetric and positive definite. The equation to solve is Ax = z, where A is
given in (3.18). Because the matrix is symmetric and positive definite, ai > 0
and bi = ci−1.
(a) Show that the elements of the Cholesky factorization can be determined

using an algorithm of the form

d1 =
√
a1

for i = 2 : n

vi−1 =

di =

end

where d(i) = u(i, i) and v(i) = u(i, i + 1). Note that instead of working
with the matrix U, only the diagonal and upper diagonal entries are
computed (since all the other entries are zero).

(b) Assuming the Cholesky factorization has been determined, show that the
algorithm for solving the equation can be written as

120 3 Matrix Equations

y1 = z1/d1

for i = 2 : n

yi =

end

xn = yn/dn

for i = n− 1, n− 2, · · · , 1
xi =

end

(c) Use your algorithm from parts (a) and (b) to solve the matrix equation in
the case of when ai = 3, bi = ci = 1, and n =100,000. Also, take z = Ax,
where x = (1, 1, · · · , 1)T . It is only necessary to report the values of x(1)
and x(2) (to 16 digits). Also, report the computed value of ||r||∞ and
||e||∞.

(d) Using the same matrix as in part (c), use your algorithm to solve the
matrix equation when x = (1,−1, 1,−1, · · · ,−1)T . It is only necessary
to report the values of x(1) and x(2) (to 16 digits). Moreover, you must
give a compelling explanation of why you believe you answer is correct
(within the limits of double precision).

3.26. This problem considers solving a matrix equation using the Crout
factorization.
(a) The algorithm for finding a Doolittle factorization of A, assuming pivot-

ing is not needed, is given in Table 3.1. Find a similar algorithm for the
Crout factorization.

(b) Use your algorithm from part (a) to solve the matrix equation in the case
of when A has diagonal entries aii = 2 and off-diagonal entries aij = 1.
Also, n = 1000 and take z = Ax, where x = (1, 1, · · · , 1)T . It is only
necessary to report the values of x(1) and x(2) (to 16 digits). Also, report
the computed value of ||r||∞ and ||e||∞.

(c) Using the same matrix as in part (b), use your algorithm to solve the
matrix equation when x = (1,−1, 1,−1, · · · ,−1)T . It is only necessary
to report the values of x(1) and x(2) (to 16 digits). Moreover, you must
give a compelling explanation of why you believe you answer is correct
(within the limits of double precision).

Chapter 4

Eigenvalue Problems

The problem considered in this chapter is: given an n×n matrix A, find the
number(s) λ and nonzero vectors x that satisfy

Ax = λx. (4.1)

This is an eigenvalue problem, where λ is an eigenvalue and x is an eigen-
vector. There are a couple of observations worth making about this problem.
First, x = 0 is always a solution of (4.1), and so what is of interest are the
nonzero solutions. Second, if x is a solution, then αx, for any number α, is
also a solution.

In linear algebra the procedure used to solve the eigenvalue problem con-
sists of two steps:

1. Solve
det(A− λI) = 0, (4.2)

where I is the identity matrix. This is known as the characteristic equa-
tion, and the left-hand side of this equation is an nth degree polynomial
in λ.

2. For each eigenvalue λ, solve

(A− λI)x = 0. (4.3)

Note that Step 2 provides a way to determine an eigenvector once the eigen-
value is known. For some of the numerical methods used to solve (4.1), the
eigenvectors are determined first. It is possible to determine the associated
eigenvalue by multiplying both sides of (4.1) by an eigenvector x. This yields
the formula

λ =
x ·Ax

x · x , (4.4)

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0 4

121

122 4 Eigenvalue Problems

which is known as Rayleigh’s quotient. Also note that the “ · ” appear-
ing in this expression designates a dot product. As a reminder, if x =
(x1, x2, · · · , xn)

T and y = (y1, y2, · · · , yn)T , then the dot product is defined as

x · y ≡ x1y1 + x2y2 + · · ·+ xnyn.

Examples

1. Consider the eigenvalue problem

(
2 1

1 2

)(
x

y

)
= λ

(
x

y

)
. (4.5)

The characteristic equation (4.2) is λ2−4λ+3 = 0, and so the eigenvalues
are λ1 = 3 and λ2 = 1. For λ1, (4.3) takes the form

(−1 1

1 −1

)(
x

y

)
=

(
0

0

)
.

From this it follows that the eigenvectors associated with this eigenvalue
have the form x = αx1, where α is an arbitrary nonzero constant and

x1 =

(
1

1

)
.

For λ2, one finds that the eigenvectors have the form x = βx2, where β is
an arbitrary nonzero constant and

x2 =

(
1

−1

)
. �

2. Consider the eigenvalue problem

(
3 0

0 3

)(
x

y

)
= λ

(
x

y

)
. (4.6)

The characteristic equation is (λ − 3)2 = 0, and so the only eigenvalue is
λ1 = 3. In this case, (4.3) takes the form

(
0 0

0 0

)(
x

y

)
=

(
0

0

)
.

4 Eigenvalue Problems 123

All values of x and y satisfy this equation. It is possible to write this as
x = αx1 + βx2, where α and β are arbitrary nonzero constants,

x1 =

(
1

0

)
, and x2 =

(
0

1

)
. �

3. Consider the eigenvalue problem

(
1 2

− 1
2 1

)(
x

y

)
= λ

(
x

y

)
.

The characteristic equation is λ2 − 2λ+ 2 = 0, and so the eigenvalues are
λ = 1 + i and λ = 1− i. �

4. The eigenvalue problem

(
2 1

0 2

)(
x

y

)
= λ

(
x

y

)

has only one eigenvalue λ = 2, and only one independent eigenvector. An
n× n matrix that has fewer than n independent eigenvectors is said to be
defective. So, the matrix of this example is defective, while the matrices
for the three previous examples are not defective. �

An important observation is that the first two matrices in the above
examples are symmetric. They illustrate a result from linear algebra, which
is stated next.

Theorem 4.1. If A is a symmetric n× n matrix, then the following hold:

1. Its eigenvalues are real numbers.

2. If xi and xj are eigenvectors for different eigenvalues, then xi · xj = 0.

3. It is possible to find a set of orthonormal basis vectors u1, u2, · · · , un,
where each ui is an eigenvector for A.

In the last statement, for the vectors to be orthonormal it is required that
ui · uj = 0 if i �= j and ui · ui = 1.

Example: Chain of Oscillators

Several applications involving eigenvalues and related ideas are considered
in this chapter, including vibrating strings (Section 4.4.1), networks (Sec-
tion 4.4.2), and image compression (Section 4.5.3). The particular example

124 4 Eigenvalue Problems

Figure 4.1 Chain of masses and springs.

described here involves a chain of oscillators as illustrated in Figure 4.1. What
is shown in this figure are masses that are connected by springs, and each
mass is also attached to its own spring (the other end of these springs is as-
sumed to be held fixed). Letting yi(t) be the position of the ith mass, relative
to its equilibrium location, then the resulting equation of motion is

my′′i + kyi = kc(yi+1 − 2yi + yi−1), for i = 1, 2, 3, · · · , n (4.7)

where y0 = yn+1 = 0.
Although configuring masses and springs in this way looks like some com-

plicated child’s toy, this arises in numerous applications and has various
names. A recent example is its use in the study of a chain of atoms that
are subject to nearest neighbor interactions [Iooss and James, 2005]. How-
ever, the problem goes back centuries, to at least Bernoulli [1728], and has
been used in a wide spectrum of applications, including the interactions of
stars [Voglis, 2003] and the modeling of swarming motion [Erdmann et al.,
2005]. It is also the basis of what is known as the Fermi-Pasta-Ulam (FPU)
chain, which is used to study solitary waves [Ford, 1992; Berman and Izrailev,
2005].

The question considered here is, what are the time periodic solutions of
this chain, what are called the normal modes of the system. This is answered
by assuming yi(t) = xi exp(Iωt), where I =

√−1. Substituting this into (4.7),
and writing the problem in matrix form, we obtain the eigenvalue equation
Ax = λx, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a −1

−1 a −1 0
−1 a −1

. . .
. . .

. . .

0 −1
−1 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.8)

a = 2 + k/kc and λ = mω2/kc. Using the formula from Exercise 3.22, the
eigenvalues of this matrix are

λi = a+ 2 cos

(
iπ

n+ 1

)
, for i = 1, 2, . . . , n. (4.9)

4.1 Power Method 125

0 5 10 15 20 25 30
i-axis

0

1

2

3

4

5
E

ig
en

va
lu

e

Figure 4.2 Eigenvalues of an oscillator chain in the case of when n = 30.

The values obtained from this formula in the case of when k = 1, kc = 1/10,
and n = 30 are shown in Figure 4.2. In the applications mentioned earlier,
n is usually quite large, and as an example n = 3000 in James et al. [2013].
The eigenvalues in this case follow the curve seen in Figure 4.2, but they
are much closer together. As will be explained later, this has a detrimental
effect on how fast the eigenvalue solvers considered in this chapter are able
to compute the eigenvalues. �

We are now going to begin considering how to compute the solution of an
eigenvalue problem. To be honest, depending on how many eigenvalues are
going to be computed, this is not an easy task. The characteristic equation,
as given in (4.2), involves a determinant, and these require on the order of
O(n3) flops to compute. This is significant because the roots of (4.2) can
be very sensitive to round-off error, and an illustration of this is given in
Figure 1.1. What this means is that unless n is very small, we will not use
(4.2) to determine the eigenvalues.

All of the numerical methods to be considered require, to prove they work,
that the matrix is not defective. As you might recall, this means that the n×n
matrix has n linearly independent eigenvectors. For some of the methods it
is also necessary to include the additional requirement that the eigenvec-
tors are orthogonal. According to Theorem 4.1, symmetric matrices satisfy
this requirement. Symmetric matrices also have the benefit of being easy to
determine, and they are also very common in applications. In comparison,
defective matrices are rare.

4.1 Power Method

This method will provide a procedure for calculating what is known as the
dominant eigenvalue. It comes from a simple observation. If you multiply
Ax = λx by A, you get A2x = λAx = λ2x. Multiplying by A again gives

126 4 Eigenvalue Problems

A3x = λ3x, and in generalAkx = λkx. The observation is that as k increases
the right-hand side will be dominated by the largest eigenvalue, or more
precisely the one that is largest in absolute value. To illustrate how to take
advantage of this we consider an example.

For the eigenvalue problem in (4.2), the matrix is

A =

(
2 1

1 2

)
. (4.10)

To use the power method to find the largest eigenvalue λ1 = 3, it’s necessary
to guess a nonzero starting vector y0. We found earlier that two linearly
independent eigenvectors for this matrix are

x1 =

(
1

1

)
and x2 =

(
1

−1

)
.

These can be used as a basis, which means that for any choice of y0, it is
possible to find α1 and α2 so that

y0 = α1x1 + α2x2. (4.11)

With this,

y1 = Ay0

= α1Ax1 + α2Ax2

= α1λ1x1 + α2λ2x2,

and y2 = Ay1 = α1λ
2
1x1 + α2λ

2
2x2. At the kth step,

yk = Ayk−1

= α1λ
k
1x1 + α2λ

k
2x2

= λk
1

(
α1x1 + α2ω

kx2

)
, (4.12)

where ω = λ2/λ1 = 1/3. After calculating yk, we can use the Rayleigh quo-
tient in (4.4) to obtain an approximation vk of the corresponding eigenvalue.
The result is

vk =
yk ·Ayk

yk · yk

=
(α1x1 + α2ω

kx2) · (α1λ1x1 + α2ω
kλ2x2)

(α1x1 + α2ωkx2) · (α1x1 + α2ωkx2)

= λ1
1 + α2ω2k+1

1 + α2ω2k
, (4.13)

4.1 Power Method 127

Pick: random y

tol > 0

Let: z = Ay

v0 = (y · z)/y · y
Loop For k = 1, 2, 3, · · ·

y = z/||z||2
z = Ay

vk = y · z
If |vk − vk−1|/|vk| < tol then stop

End

Table 4.1 Power method for calculating the dominant eigenvalue of A. Note that
vk is the computed value for the eigenvalue.

where α = α2/α1. Because ω < 1, then ω2k → 0 as k → ∞. Therefore, from
(4.13) we conclude that vk → λ1 as k → ∞.

The formula in (4.13) has some useful information related to how fast the
method converges. To explain, we have that

vk − λ1 = cλ1
ω2k

1 + α2ω2k
.

where c = α2(ω − 1). This means that as k increases,

vk − λ1

λ1
≈ c ω2k. (4.14)

Since this also means that vk−1 − λ1 ≈ cλ1ω
2(k−1), it then follows that

vk − λ1 ≈ ω2(vk−1 − λ1). (4.15)

This is a particularly useful result because it states that once vk starts to get
close to λ1, the error |vk − λ1| is approximately a factor of |λ2/λ1|2 smaller
than the previous error |vk−1 −λ1|. Moreover, using the same approximation
used to derive (4.15), it is possible to show that

vk − vk−1 ≈ ω2(vk−1 − vk−2). (4.16)

So, the iterative error |vk−vk−1| is approximately a factor of |λ2/λ1|2 smaller
than the previous error |vk−1 − vk−2|. In comparison, the convergence of the
eigenvector is slower. In (4.12), the reduction of the x2 contribution decreases
by a factor of |λ2/λ1| with each iteration step.

128 4 Eigenvalue Problems

Although the method can be used to find λ1, there is a potential numerical
problem with the formula for yk in (4.12) because the term λk

1 becomes very
large as k increases. This can be avoided by scaling the vectors. Specifically, at
the kth step, one first computes zk = Ayk−1, and then lets yk = zk/||zk||2,
where ||zk||2 =

√
zk · zk. What this does is effectively removes the λk

1 co-
efficient in (4.12). The resulting algorithm is given in Table 4.1. Note that
the values of y and z are not indexed, but are overwritten as the procedure
proceeds.

Example

As determined earlier, the eigenvalues of

A =

(
2 1

1 2

)

are λ1 = 3 and λ2 = 1. Applying the power method to A, as given in
Table 4.1, let y0 = (−3, 2)T . In this case,

z0 = Ay0 =

(
2 1

1 2

)(−3

2

)
=

(−4

1

)

and

v0 =
y0 · z0
y0 · y0

=
14

13
≈ 1.0769.

To improve on this, we calculate the following

y1 =
z0√
z0 · z0 =

1√
17

(−4

1

)
,

z1 = Ay1 =
1√
17

(−7

−2

)
,

v1 = y1 · z1 =
26

17
≈ 1.5294.

The next steps are calculated using MATLAB, with the results given in
Table 4.2. It is evident that vk is approaching the dominant eigenvalue
λ1 = 3. According to (4.15), as the iteration proceeds, the error should
decrease by a factor |λ2/λ1|2 = 1/9 ≈ 0.1111. The same is true, accord-
ing to (4.16), for the iterative error. To verify this, the ratios for these two
error measures are also given in Table 4.2. Finally, the method also produces
an eigenvector for λ1, and from the MATLAB calculation it is found that
y7 = (−0.7087,−0.7055)T . The exact result is a multiple of x1, but the ent-
ries in y7 only agree to two digits. The error for the eigenvalue approximation
v7, in contrast, is about 3× 10−6. The reason for the poorer approximation

4.1 Power Method 129

k vk

∣∣∣∣
vk − λ1

vk−1 − λ1

∣∣∣∣
∣∣∣∣

vk − vk−1

vk−1 − vk−2

∣∣∣∣
0 1.076923076923

1 1.529411764706 7.65e−01

2 2.528301886792 3.21e−01 2.21e+00

3 2.933687002653 1.41e−01 4.06e−01

4 2.992408138476 1.14e−01 1.45e−01

5 2.999153603954 1.11e−01 1.15e−01

6 2.999905920605 1.11e−01 1.12e−01

7 2.999989546297 1.11e−01 1.11e−01

Table 4.2 vk is the value for the dominant eigenvalue computed using the power
method applied to (4.10). The exact value is λ1 = 3. Also given are the error ratios
given (4.15) and (4.16), both of which approach |λ2/λ1|2 = 1/9 ≈ 0.1111.

for the eigenvector can be found in (4.12). When going from k to k + 1, the
contribution of x2 is removed by another factor of ω. The eigenvalue improve-
ment, according to (4.14), is by a factor of ω2. �

As shown in (4.14), the speed at which the method converges depends on
the ratio λ2/λ1. To investigate this observation, suppose we want the relative
error in the eigenvalue to satisfy |vk − λ1|/|λ1| ≤ 10−4. From (4.14) this will
happen if, approximately,

|c ω2k| ≤ 10−4,

where ω = λ2/λ1 < 1. First, note that c = (ω − 1)(α2/α1)
2, where α1 and

α2 are the coefficients in (4.11). This shows that if you unfortunately pick
a starting vector y0 with a small contribution from x1, so α1 is small, then
the power method will take a large number of iterations to converge. The
exact number depends on the ratio λ2/λ1. To illustrate the sensitivity of the
number on this ratio, suppose c ≈ 1, so from the above inequality we get that

k ≥ − 2

logω
.

Since ω = 1/3, this means k > 4. This is a small number of iteration steps,
but this happens because the two eigenvalues are relatively far apart. As an
example of when this is not the case, if λ1 = 1000 and λ2 = 1001, then
ω = 1000/1001 and we need k > 4607. This observation that the speed at
which the method converges slows down if the eigenvalues are relatively close
together will apply to all of the methods we will consider.

130 4 Eigenvalue Problems

To conclude the introduction of the power method, it should be pointed
out that there is a complication concerning what eigenvector the method
produces. To explain, suppose λ1 = −3 and λ2 = 1. We still obtain (4.12),
but because of the minus sign, the coefficient of yk switches sign as k changes.
This also happens for the normalized version of the method given in Table 4.1.
In this case, the sequences y0, y2, y4, · · · and y1, y3, y5, · · · are both
converging to an eigenvector for λ1, but the vectors they converge to differ by
a minus sign. This annoying ± problem only arises if the dominant eigenvalue
is negative.

4.1.1 General Formulation

The derivation of the power method was illustrated using a specific 2 × 2
matrix, and to use it on general n× n matrices it is necessary to know what
conditions are necessary so it will work. First, in (4.13) and (4.15) we used
the inequality |λ2/λ1| < 1 to be able to conclude that ωk → 0 as k → ∞. For
a more general matrix, suppose λ1, λ2, · · · , λn are the eigenvalues of A, and
they are labeled so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. This gives us the following
definition.

Definition 4.1. λ1 is the dominant eigenvalue of A if |λ1| > |λ2|.
The strict inequality in this definition is what enables us to guarantee that
|λi/λ1|k → 0 as k → ∞ for i = 2, 3, · · · , n. Also note that because absolute
values are used here, the dominant eigenvalue is not necessarily the largest
eigenvalue.

The second thing we needed was that the eigenvectors of A can be used
as a basis. In the n×n case this means that there are n linearly independent
eigenvectors. According to Theorem 4.1, this is guaranteed if A is symmetric.

The third, and final, requirement is that α1 �= 0 in (4.12). In other words,
the initial guess y0 must include a part of the eigenvector for the dominant
eigenvalue.

To summarize the above discussion, we have the following theorem for the
power method given in Table 4.1.

Theorem 4.2. Assume that A is a nonzero symmetric n× n matrix, with a
dominant eigenvalue λ1. If the initial guess for y includes some part of an
eigenvector for λ1, then the vk’s converge to λ1. Moreover, if the initial guess
contains some portion of an eigenvector for λ2, then the error decreases as
follows:

|vk − λ1| = ω2
k|vk−1 − λ1|, (4.17)

and
|vk − vk−1| = ω2

k|vk−1 − vk−2|, (4.18)

4.1 Power Method 131

where as k → ∞, both ωk and ωk approach

∣∣∣∣λ2

λ1

∣∣∣∣ . (4.19)

The error in the associated eigenvector decreases as O(ωk).

By using a random number (vector) generator to produce the initial guess for
y, as prescribed in Table 4.1, it is almost certain that it contains some part
of an eigenvector for λ1, as well as some portion of an eigenvector for λ2. To
explain, if xi = (a1, a2, · · · , an)T is an eigenvector, and y0 = (r1, r2, · · · , rn)T ,
then y0 contains no contribution from xi when y0 · xi = 0. This means that
the randomly chosen numbers r1, r2, · · · , rn must be such that

r1a1 + r2a2 + · · ·+ rnan = 0.

The probability of picking n random numbers that sum to zero in this way
is extremely low. However, in the very unlikely case of when y0 contains
no contribution from an eigenvector for λ2, but does contain a component
from an eigenvector for λ3, then the limiting value in (4.19) is replaced with
|λ3/λ1|. Similar modifications are necessary for the other possible situations.
In what follows, when discussing the convergence of the power method, it is
assumed that (4.19) holds.

As stated earlier, (4.17) is an important result because it states that once
vk starts to get close to λ1, the error |vk − λ1| is approximately a factor of
|λ2/λ1|2 smaller than the previous error |vk−1 − λ1|. The iterative error also
decreases in this manner, and this is because of (4.18). A consequence of this
is that the power method can converge very quickly if |λ2| � |λ1|, but it can
also be very slow if |λ2| is not much different than |λ1|.

The above theorem holds in the more general case of when A is an n× n
matrix, with n linearly independent eigenvectors. The requirement is that the
eigenvalue λ1 with the largest magnitude is real-valued and −λ1 is not also an
eigenvalue. However, without the assumption of symmetry, the error in (4.17)
and (4.18) is guaranteed to decrease as O(ωk) rather than the stated O(ω2

k).
It is also possible to use shifting (which is explained in the next section) so
the power method will work on any symmetric matrix (see Exercise 4.8).

Example

Suppose A is the n× n matrix

132 4 Eigenvalue Problems

k vk

∣∣∣∣
vk − λ1

vk−1 − λ1

∣∣∣∣
∣∣∣∣

vk − vk−1

vk−1 − vk−2

∣∣∣∣
0 3.000300728189

1 3.000633149675 1.00e+00

2 3.001168862204 9.99e−01 1.61e+00

3 3.002095543148 9.99e−01 1.73e+00

4 3.003727977465 9.98e−01 1.76e+00

...
...

...
...

22 3.991584072355 5.66e−01 5.73e−01

23 3.995248545996 5.65e−01 5.68e−01

...
...

...
...

34 3.999991483933 5.63e−01 5.63e−01

35 3.999995209694 5.63e−01 5.63e−01

Table 4.3 Dominant eigenvalue λ1 = 4 of (4.20) as computed using the power
method. Also shown are the error ratios obtained from (4.17) and (4.18), both of
which approach |λ2/λ1|2 ≈ 0.5625.

A =

⎛
⎜⎜⎜⎜⎜⎝

a 1
a

. . .

a
1 a

⎞
⎟⎟⎟⎟⎟⎠

. (4.20)

Specifically, if aij denotes the entries in A, then aij = 0 except that aii = a
and an1 = a1n = 1. The eigenvalues of A are a, a + 1, and a − 1 (see
Exercise 4.12). Taking a = 3, n = 200, and a random starting vector y0, the
power method produces the results given in Table 4.3. For this matrix, the
dominant eigenvalue is λ1 = 4. The convergence is not as fast as in Table 4.2,
and the reason is that λ2 = 3, and λ2/λ1 = 3/4. According to (4.19), once the
method starts to get close to the exact solution, the error should be reduced
by a factor of (3/4)2 ≈ 0.56 at each step. This reduction holds for the error
ratio coming from (4.17), given in the third column, and for the iterative
error ratio coming from (4.18), given in the fourth column. �

There are numerous variations of the power method, and one of the more
interesting involves using probabilistic measures of the error, and this is dis-
cussed more in Kuczyński and Woźniakowski [1992].

4.2 Extensions of the Power Method 133

4.2 Extensions of the Power Method

It is relatively easy to modify the power method to find some of the other
eigenvalues and eigenvectors. This requires knowing the right formulas from
linear algebra, and two we will now need are the following.

Theorem 4.3. Suppose the eigenvalues of an n × n matrix A are λ1, λ2,
· · · , λn.

1. Setting B = A − ωI, where ω is a constant, then the eigenvalues of B
are λ1 − ω, λ2 − ω, · · · , λn − ω. Also, if xi is an eigenvector for A that
corresponds to λi, then xi is an eigenvector for B that corresponds to
λi − ω.

2. If A is invertible, then the eigenvalues of A−1 are 1/λ1, 1/λ2, · · · , 1/λn.
Also, if xi is an eigenvector for A that corresponds to λi, then xi is an
eigenvector for A−1 that corresponds to 1/λi.

4.2.1 Inverse Power Method

To find the smallest eigenvalue of A, in absolute value, one can use the power
method withA−1. The explanation why involves Statement 2 in Theorem 4.3.
Suppose that the eigenvalues of A are λ1, λ2, · · · , λn−1, λn and they satisfy

|λ1| ≥ |λ2| ≥ · · · ≥ |λn−1| > |λn| > 0.

With this, the eigenvalues of A−1 are λ−1
1 , λ−1

2 , · · · , λ−1
n−1, λ

−1
n , and they

satisfy ∣∣∣∣ 1λn

∣∣∣∣ >
∣∣∣∣ 1

λn−1

∣∣∣∣ ≥ · · · ≥
∣∣∣∣ 1λ1

∣∣∣∣ .
Consequently, |1/λn| is the dominant eigenvalue of A−1 and it is determined
by the eigenvalue of A that is closest to zero.

To use the power method with A−1, the two lines in Table 4.1 that state
z = Ay take the form z = A−1y. It is possible to avoid having to calculate
the inverse matrix by realizing that one can find z by solving Az = y. In
this way, the LU factorization method can be used, and A only needs to
be factored once. Also, in terms of the speed of convergence, according to
(4.17)–(4.19), the error for a symmetric matrix is reduced each iteration step
by a factor of about ω2, where ω = λn/λn−1.

134 4 Eigenvalue Problems

Set: B = A− μI

Pick: random y

tol > 0

Find: B = LU

Bz = y

Let: v0 = (y · z)/y · y
Loop For k = 1, 2, 3, · · ·

y = z/||z||2
Bz = y

vk = y · z
If |vk − vk−1|/|vk| < tol then stop

End

Table 4.4 Inverse iteration for calculating the eigenvalue of A closest to μ. At com-
pletion the eigenvalue is λ = μ+1/vk. Note that Bz = y means that the equation is
solved, using the known LU factorization, for z.

4.2.2 Inverse Iteration

The method that is going to be described next is based on the following
question: if we have an approximation for an eigenvalue, can we use this to
speed up the convergence of the method used to compute the exact value? To
answer this, it is assumed that the eigenvalues of A are λ1, λ2, · · · , λn. Also,
suppose we know that eigenvalue λi is approximately μ. More specifically,
it is assumed that μ is closest to λi, and so |λi − μ| < |λj − μ|, for j �= i.
This means, according to Statement 1 in Theorem 4.3, that the eigenvalue of
B = A−μI that is closest to zero is λi−μ. Adapting the inverse power method
described above to B we get the algorithm given in Table 4.4. The vk’s in
this case are converging to 1/(λi − μ), so at completion λi = μ + 1/vk. As
for the speed of convergence, suppose that the second closest eigenvalue to μ
is λj . According to (4.17)–(4.19), the error for a symmetric matrix is reduced
each iteration step by a factor of about ω2, where ω = (λi − μ)/(λj − μ).
Consequently, if the approximation is good enough that |λi − μ| � |λj − μ|,
then the method will be speeded up considerably.

One of the reasons for the popularity of inverse iteration is because there
are efficient methods for finding eigenvalues that are not so efficient for finding
eigenvectors (one of these will be considered in Section 4.3.3). With good
approximations for the eigenvalues, inverse iteration provides a very good
method for finding the eigenvectors.

4.2 Extensions of the Power Method 135

Example

The eigenvalues of

A =

(
2 1

1 2

)
(4.21)

are λ1 = 3 and λ2 = 1. Inverse iteration will be used to compute λ2 = 1 by
starting with the approximation of μ = 1/2. The shifted matrix is then

B = A− 1

2
I =

(
3/2 1

1 3/2

)
.

Taking y0 = (1, 0)T , and solving Bz0 = y0, one finds that

z0 =
2

5

(
3

−2

)
.

With this v0 = (y0 · z0)/(y0 · y0) = 6/5, and this leads to the approximation

λ1 ≈ μ+ 1/v0 =
4

3
≈ 1.3333.

To improve on this, we calculate

y1 =
z1

||z1||2 =
1√
13

(
3

−2

)

k λ2 Error

0 1.333333333333 3.33e−01

1 1.015873015873 1.59e−02

2 1.000639795266 6.40e−04

3 1.000025599672 2.56e−05

4 1.000001023999 1.02e−06

5 1.000000040960 4.10e−08

6 1.000000001638 1.64e−09

7 1.000000000066 6.55e−11

8 1.000000000003 2.62e−12

Table 4.5 Result of using inverse iteration to calculate the eigenvalue λ2 = 1 of
(4.21), along with the corresponding error.

136 4 Eigenvalue Problems

and, from solving Bz1 = y1,

z1 =
2
√
13

65

(
13

−12

)
.

With this v1 = (y1·z1)/(y1·y1) = 126/65, and this leads to the approximation

λ1 ≈ μ+ 1/v1 = 64/63 ≈ 1.01587.

The remaining approximations are calculated using MATLAB, with the
results given in Table 4.5. �

Example

The eigenvalues of the n× n matrix given in (4.20) are a, a− 1, and a + 1.
Taking a = 3, and n = 200, the resulting values computed using the inverse
iteration method are given in Table 4.6. Two shifts were tried, one was μ = 4.8
and the second was μ = 4.4. Comparing these to the values computed using
the power method, which are given in Table 4.3, it is evident that shifting
does indeed reduce the number of iteration steps. It is also evident that the
better the shift the faster the method works. �

k λ1 with μ = 4.8 Error λ1 with μ = 4.4 Error

0 3.023084747050 3.016681187905

1 3.106937685868 8.93e−01 3.176228115668 8.24e−01

2 3.377432051969 6.23e−01 3.724004514014 2.76e−01

3 3.754250014560 2.46e−01 3.969823111025 3.02e−02

4 3.939532257759 6.05e−02 3.997466432162 2.53e−03

5 3.987446631422 1.26e−02 3.999792697636 2.07e−04

6 3.997495089407 2.50e−03 3.999983074187 1.69e−05

7 3.999504206314 4.96e−04 3.999998618281 1.38e−06

8 3.999902026471 9.80e−05 3.999999887207 1.13e−07

9 3.999980645683 1.94e−05 3.999999990792 9.21e−09

10 3.999996176866 3.82e−06 3.999999999248 7.52e−10

Table 4.6 Dominant eigenvalue λ1 = 4 of (4.20) as computed using the inverse
iteration method given in Table 4.4, using two different shifts.

4.2 Extensions of the Power Method 137

One of the interesting aspects of inverse iteration is that you could reason-
ably expect that it will fail if you have a very good estimate of the eigenvalue.
The reason is that the better the guess, the more ill-conditioned the matrix
B = A − μI becomes. In fact, at one time it was actually advised not to
use an accurate shift to avoid producing an ill-conditioned matrix. However,
good shifts do not cause the method to fail, and an explanation can be found
in Peters and Wilkinson [1979].

4.2.3 Rayleigh Quotient Iteration

A second reason why inverse iteration is important is because of a method
derived from it. This modification involves improving the shift as the iteration
proceeds. To explain, let y0 be a starting vector. Using the Rayleigh’s quotient
(4.4), an approximate eigenvalue is

μ0 =
y0 ·Ay0

y0 · y0
.

This provides the first shift, and we take B0 = A − μ0I, and from this
one finds z0 by solving B0z0 = y0. As usual, this is normalized to produce
y1 = z0/||z0||2. This enables us to find a somewhat better approximation for
the eigenvalue, which is

μ1 =
y1 ·Ay1

y1 · y1
.

This brings us to the better shifted matrix B1 = A − μ1I. This process
of using inverse iteration, but improving the approximation for the shift, is
known as Rayleigh quotient iteration, and it is summarized in Table 4.7.

The usual criticism of the Rayleigh quotient iteration is that a new LU fac-
torization is needed at each iteration step to find z. In contrast, the shift in
the inverse iteration method does not change, so only one LU is required.
Although this is potentially a drawback, as will be demonstrated in the
example below, Rayleigh converges so quickly that this is often not a partic-
ular issue.

Example

The eigenvalues of the n× n matrix given in (4.20) are a, a− 1, and a + 1.
Taking a = 3, and n = 200, the resulting values computed using the Rayleigh
quotient iteration are shown in Table 4.8. The contrast between this and what
is obtained using the power method on the same matrix, which is given in
Table 4.3, is striking. It is also much faster than the inverse iteration results
given in Table 4.6. It is possible to prove that the order of convergence, which

138 4 Eigenvalue Problems

Pick: random y with ||y||2 = 1

tol > 0

Let: v0 = y ·Ay

Loop For k = 1, 2, 3, · · ·
B = A− vk−1I

Bz = y

y = z/||z||2
vk = y · z
If |vk − vk−1|/|vk| < tol then stop

End

Table 4.7 Rayleigh quotient iteration for calculating an eigenvalue of A. Note that
Bz = y means that the equation is solved for z.

is explained in Section 2.4.1, is γ = 3. This means that if the error at step
k is 10−m, then at the next step you should expect the error will be about
10−3m. The computed values for γ, using (2.15), are given in Table 4.8. The
difficulty with this is that the convergence is so fast that you quickly reach
the resolution possible with double precision. The consequence is that you
get the predicted value at k = 2, but after that improvement in the answer is
not possible and the computed values for γ are approximately equal to one. �

As seen in the above example, the Rayleigh quotient iteration can be third
order. The proof of this requires the assumption that the matrix is symmetric
or normal [Parlett, 1998]. There has been an effort to extend the method to

k vk |vk − λ| γ

0 0.050740429652

1 3.000515277178 5.15e−04 −7.42e−01

2 3.000000000139 1.39e−10 3.00e+00

3 3.000000000000 2.66e−15 1.48e+00

4 3.000000000000 1.78e−15 1.01e+00

Table 4.8 Eigenvalue computed using Rayleigh quotient iteration for matrix (4.20),
with a = 3. Also shown are the error and the computed value for the order of
convergence.

4.3 Calculating Multiple Eigenvalues 139

nonnormal matrices [Parlett, 1974], but it is known that the method can fail
if the matrix is not symmetric [Batterson and Smillie, 1989].

Also, nothing has been said about which eigenvalue the Rayleigh quotient
iteration converges to. In the above example, it converged to the middle
eigenvalue, versus the dominant one or the one closest to zero. Presumably,
the one that appears depends on the eigenvalue representation in the starting
vector, and which eigenvalue the approximate shifts are closest to as the
iteration proceeds. Those interested in pursuing this question should consult
Beattie and Fox [1989] and Pantazis and Szyld [1995].

4.3 Calculating Multiple Eigenvalues

Having derived methods for finding particular eigenvalues, we now consider
how to calculate several of them at the same time. In this discussion it is
assumed A is a symmetric n × n matrix, so Theorem 4.1 applies. It is also
assumed that if λ is a nonzero eigenvalue, then −λ is not an eigenvalue.

Suppose the power method has been used to calculate the dominant eigen-
value λ1, and an associated eigenvector x1. The question arises if it is possible
to calculate λ2 in a similar way. It is, and to explain how, consider the exam-
ple used to introduce the power method in Section 4.1. We begin, as before,
and guess a nonzero starting vector y0. Also, as in (4.11), it is possible to
write y0 = α1x1 + α2x2, where, because the eigenvectors are orthogonal,

α1 =
x1 · y0

x1 · x1
and α2 =

x2 · y0

x2 · x2
.

If we use the power method without modification, then the x1 part of y0 will
grow and eventually lead us to the dominant eigenvalue. The modification
we will make to prevent this is to remove this term from y0 by taking w0 =
y0 − α1x1. The next step is as before,

y1 = Aw0

= α2λ2x2.

By subtracting out the x1 components of the vectors we will produce a power
method that will converge to λ2. More precisely, it will converge to λ2 for this
example. The qualification is needed because for some matrices it produces a
different result. To illustrate, for the eigenvalue equation in (4.6) there is one
eigenvalue and two linearly independent eigenvectors. The first application
of the power method will produce the eigenvalue λ = 3 and an associated
eigenvector. The second application, using the above modification, will pro-
duce the same eigenvalue but it will now produce a second eigenvector that
is perpendicular to the first.

140 4 Eigenvalue Problems

In principle, the method used to find λ2 can be generalized to compute
all of the eigenvalues of a symmetric n× n matrix, one at a time. There are
problems with doing this because round-off error for the first eigenvalues can
significantly affect the accuracy when calculating the last few eigenvalues.
How to fix this problem is considered next.

4.3.1 Orthogonal Iteration

It is possible to modify the power method and calculate all, or just a few,
of the eigenvalues simultaneously. To use our earlier example, which is given
in (4.5), to find λ1 and λ2, we need start-off guesses y0 (for λ1) and z0 (for
λ2). Individually, the power method would then calculate y1 = Ay0 and
z1 = Az0. These can be calculated together by writing

B1 = AB0, (4.22)

where B1 = (y1 z1) is the matrix with column vectors y1 and z1, and
B0 = (y0 z0) with column vectors y0 and z0. We also know that we need to
subtract out the x1 contribution to z0. Unlike before, we do not know x1 but
we do know that as the method proceeds the first column of Bk = (yk zk)
will converge to x1 (or a multiple of it). We would also like the second column
to converge to a multiple of x2. To help make this happen, we will force the
columns of Bk to have the same properties as the eigenvectors, which is that
they are orthonormal. So, given y0 and z0, we calculate orthogonal vectors
e1 and e2 as follows:

e1 = y0,

e2 = z0 − z0 · e1
e1 · e1 e1. (4.23)

In the power method we normalized the iteration vectors, and we will do the
same here. In other words, we do the following:

q1 = e1/||e1||,
q2 = e2/||e2||.

The procedure used to turn y0 and z0 into q0 and q1 is known as the Gram-
Schmidt method for orthonormalizing a set of vectors (this is described in
more detail later). Having done this, then instead of (4.22), we have that

B1 = AQ0, (4.24)

whereQ0 = (q0 q1) andB1 = (y1 z1). Now Gram-Schmidt must be applied
to y1 and z1 to find Q1. Once this is done, then B2 = AQ1. The other steps

4.3 Calculating Multiple Eigenvalues 141

Pick: random B0

Q0 = GS(B0)

Loop For k = 1, 2, 3, · · ·
Bk = AQk−1

Qk = GS(Bk)

End

Table 4.9 Orthogonal iteration for finding the eigenvalues of a symmetric matrix
A. Note Qk = GS(Bk) means that Gram-Schmidt is applied to the columns of Bk

to produce Qk. Also, B0 is an n ×m matrix, where 1 ≤ m ≤ n.

in the iteration are computed in a similar manner, and the procedure we have
derived is known as orthogonal iteration.

The algorithm for orthogonal iteration, for an n×n symmetric matrix A,
is given in Table 4.9. To guarantee that the method works, it is required that
if λi is a nonzero eigenvalue then −λi is not an eigenvalue, and the columns of
B0 must be independent. As the method converges, the columns of Qk serve
as approximations for the eigenvectors for A, and the corresponding eigen-
values can be determined using Rayleigh’s quotient (4.4). Note that given
the ith and i + 1st column vectors of Qk, the associated eigenvalues sat-
isfy |λi+1| ≤ |λi|. Also, this procedure has the same annoying ± eigenvector
property that the power method has. Namely, for any negative eigenvalue,
the associated column in Qk contains a (−1)k, and so it alternates between
positive and negative.

It’s important to point out that it’s not required that B0 have n column
vectors. If B0 has m column vectors, with 1 ≤ m ≤ n, then Qk has m column
vectors. Therefore, orthogonal iteration provides a way to compute some, or
all, of the eigenvalues of a symmetric matrix.

Example

To use orthogonal iteration to calculate the eigenvalues of

A =

(
2 1

1 2

)

take as a starting matrix

B0 =

(−1 2

3 −1

)
.

142 4 Eigenvalue Problems

k λ1 λ2

0 1.40000000 2.60000000

1 2.38461538 1.61538462

2 2.90588235 1.09411765

3 2.98908595 1.01091405

4 2.99878142 1.00121858

5 2.99986453 1.00013547

6 2.99998495 1.00001505

7 2.99999833 1.00000167

8 2.99999981 1.00000019

Table 4.10 Calculation of the eigenvalues λ1 = 3 and λ2 = 1 of (4.5) using the
orthogonal iteration given in Table 4.9.

To apply Gram-Schmidt to the columns of this matrix, we use (4.23) and set

e1 =

(−1

3

)
and e2 =

(
2

−1

)
+

1

2

(−1

3

)
=

1

2

(
3

1

)
.

Normalizing these vectors we obtain the orthogonal matrix Q0 = (q1 q2),
where

q1 =
1√
10

(−1

3

)
and q2 =

1√
10

(
3

1

)
.

The corresponding approximations for the eigenvalues are

λ1 ≈ q1 ·Aq1 =
7

5
= 1.4

and

λ2 ≈ q2 ·Aq2 =
13

5
= 2.6

The next step is to compute B1 = AQ0, and then repeat what was done
above. These steps are calculated using MATLAB, with the results given in
Table 4.10. As expected, once the answer gets close to the solution, the error
for λ1 drops by a factor of about |λ2/λ1|2 = 1/9 with each iteration step. �

Example

The eigenvalues of the n×n matrix in (4.20) are a, a+1 and a−1 (for n ≥ 3).
Moreover, there are n− 2 linearly independent eigenvectors for a. Therefore,

4.3 Calculating Multiple Eigenvalues 143

k λ1 λ2 λ2 λ3

1 1.45774533 1.00017912 1.00039921 4.93e−32

2 1.77151254 1.00012718 1.00022273 2.47e−32

3 1.93106506 1.00004630 1.00007248 1.23e−32

4 1.98182668 1.00001287 1.00001947 2.94e−33

5 1.99539389 1.00000331 1.00000496 1.14e−34

6 1.99884448 1.00000083 1.00000124 1.23e−32

7 1.99971087 1.00000021 1.00000031 1.23e−32

Table 4.11 Calculation of the eigenvalues of (4.20), when a = 1 and n = 10 using
orthogonal iteration. Note the exact values are λ1 = 2, λ2 = 1, and λ3 = 0.

taking a = 1, then the first column of Qk converges to an eigenvector for
λ1 = 2, the next n− 2 columns converge to eigenvectors for λ2 = 1, and the
last column converges to an eigenvector for λ3 = 0. The resulting values for
the eigenvalues computed using the Rayleigh quotient, in the case of when
n = 10, are given in Table 4.11. The value for λ2 in the third column is com-
puted using the second column of Qk and the λ2 in column four is computed
using the seventh column of Qk. Similar values for λ2 are obtained for the
other six columns. �

The most challenging step using orthogonal iteration is calculating the
Qk’s. As introduced, these can be determined using the Gram-Schmidt pro-
cess and this is discussed in more depth below. There is another method for
finding these matrices, using what is known as a QR factorization. This is
explained in the section following this one.

4.3.1.1 Regular and Modified Gram-Schmidt

To use orthogonal iteration, as given in Table 4.9, it is necessary to use
the Gram-Schmidt process. To write down this procedure, assume B has m
linearly independent column vectors c1, c2, · · · , cm, where 1 ≤ m ≤ n. The
first step is to construct m orthogonal vectors from the ci’s, and this is done
as follows:

144 4 Eigenvalue Problems

e1 = c1

e2 = c2 − c2 · e1
e1 · e1 e1

e3 = c3 − c3 · e1
e1 · e1 e1 − c3 · e2

e2 · e2 e2 (4.25)

...

em = cm −
m−1∑
i=1

cm · ei
ei · ei ei .

The vectors are now normalized by setting qi = ei/||ei||, and from this we
have that GP (B) = Q, where Q = (q1 q2 · · · qm).

The formulas in (4.25) are referred to as regular Gram-Schmidt, and they
are what is usually given in a linear algebra course. In terms of computing,
however, the procedure can be sensitive to round-off error for larger values of
n. To explain, due to round-off, e2 will not be exactly perpendicular to e1.
Since e2 appears in all of the subsequent formulas, this error affects the ort-
hogonality for the remaining ej’s. The same can be said for the consequences
of round-off error made with every ej .

An alternative is to use what is known as modified Gram-Schmidt, which
reduces, but does not eliminate, the sensitivity. To explain how this is done,
(4.25) calculates ej using the following steps (for j > 1):

Set ej = cj

For k = 1, 2, · · · , j − 1

r = cj · ek/ek · ek
ej = ej − rek

End

For the modified Gram-Schmidt method, one instead does the following:

Set ej = cj

For k = 1, 2, · · · , j − 1

r = ej · ek/ek · ek
ej = ej − rek

End

Note that when using exact arithmetic, these two procedures produce the
same result. However, in the regular version, orthogonality is obtained by
removing the parts of cj coming from the earlier computed ek’s. In the mod-
ified version, orthogonality is obtained by removing ek from the currently
computed value of ej .

4.3 Calculating Multiple Eigenvalues 145

n GS Error MGS Error κ(B)

Random

2 1.67e−16 1.67e−16 3.25e+00

4 1.72e−15 1.22e−15 1.86e+01

8 6.64e−15 9.44e−16 5.33e+01

32 9.21e−13 2.30e−14 4.14e+03

128 1.60e−11 1.90e−13 1.40e+04

512 8.26e−11 1.43e−12 1.07e+05

1024 3.85e−10 1.47e−12 1.02e+05

Vander

2 4.44e−16 4.44e−16 8.00e+00

4 2.90e−13 2.05e−14 1.55e+03

8 8.36e−02 2.90e−09 4.52e+08

12 1.00e+00 1.31e−02 1.06e+15

16 1.00e+00 6.19e−01 2.55e+18

Table 4.12 Values of the dot product error for the Gram-Schmidt (GS) and modified
Gram-Schmidt (MGS) on two different matrices.

Example

It is of interest to see just what sort of improvement is obtained when using
modified Gram-Schmidt, and a comparison is given in Table 4.12. To explain
how the error is computed, given an n×nmatrixB, Gram-Schmidt is applied
to its columns to computeQ. After this, the dot products qj ·qk, where qj and
qk are the columns ofQ with j �= k, are computed. If exact arithmetic is done,
then these should all be zero. What is reported in Table 4.12 is the largest
value of the dot products in absolute value. The same thing was done using
the modified Gram-Schmidt procedure. Also, two matrices were tried, one was
obtained using random numbers while the second is the Vandermonde matrix.
The conclusion drawn from this is that the two methods produce similar
results for the matrix that is well conditioned. On the badly conditioned
matrix, both fail but the modified Gram-Schmidt procedure does not fail
as quickly as the condition number increases. It is possible to find better
modifications of Gram-Schmidt, and those interested in this should consult
Giraud et al. [2005]. �

146 4 Eigenvalue Problems

4.3.2 QR Factorization

It is worth reconsidering the relationship between B and Q in orthogonal
iteration (see Table 4.9). It’s assumed, to get things started, that B is an
n × n matrix with independent column vectors. Although it was not stated
earlier, it is possible to write

B = QR, (4.26)

where R is an upper triangular matrix. As an example, suppose

B =

(
1 2

2 1

)
.

Applying Gram-Schmidt to the columns of this matrix, one finds that

Q =
1√
5

(
1 2

2 −1

)
.

To find R, we solve (4.26) to obtain

R = Q−1B

=
1√
5

(
5 4

0 3

)
. (4.27)

The verification that R is, in general, upper triangular is easy to show using
the triangular form of the equations involved with Gram-Schmidt, as given
in (4.25).

Nothing was said about R earlier because it was not needed in the deriva-
tion of the orthogonal iteration method. However, the formula in (4.26) is
significant, and it is an example of what is called a QR factorization. It is
reminiscent of the LU factorization used to solve a matrix equation. However,
the matrix Q is not necessarily lower triangular, and instead it has the prop-
erty of being an orthogonal matrix. To make this clear, we have the following
definition.

Definition 4.2. An orthogonal matrix is a square matrix whose columns are
orthonormal vectors.

Some of the more important properties of an orthogonal matrix are listed in
the next theorem.

Theorem 4.4. Suppose Q is an n× n matrix.

1. Q is an orthogonal matrix if and only if Q−1 = QT .

2. Q is an orthogonal matrix if and only if its rows are orthonormal vectors.

3. If Q is an orthogonal matrix, then |det(Q)| = 1.

4.3 Calculating Multiple Eigenvalues 147

The above theorem is useful when computing a QR factorization. To ex-
plain, once Q is determined, then R is computed using the formula

R = QTB.

This follows, because if B = QR, then R = Q−1B = QTB. It is not difficult
to show that R is an upper triangular matrix.

For us, an important question is, given B, how do you compute Q?
Assuming the matrix has independent columns, the straightforward approach
is to apply Gram-Schmidt to the columns as described in the previous sec-
tion. There are other possibilities, and the more prominent is a method us-
ing what are called Householder transformations, and another method using
Givens rotations [Golub and Van Loan, 2013; Higham, 2002]. Both of these
methods have the advantage that they work even if the matrix does not have
n independent column vectors. However, finding a computationally efficient
method requires some unique challenges and this is discussed at the end of
the next section.

It is possible to find those who recommend using the QR factorization
to solve matrix equations, as compared to the LU method considered in
Chapter 3 [Trefethen and Bau, 1997]. One of the reasons used to argue against
doing this is that QR requires approximately twice the flops LU takes. To
investigate this, the computing times for these factorizations are given in
Table 4.13 using MATLAB’s commands for these factorizations (using version
R2016a). Included in this comparison is another factorization known as the
SVD, which is explained in Section 4.5. The fact that QR takes longer than
the expected factor of two probably has to do with the need to manipulate
large matrices using QR, and this adds to the computational overhead needed
to carry out the method.

n LU (sec) QR SVD

200 0.0003 2.6 23.4

400 0.0009 2.9 27.9

600 0.0025 2.9 24.1

800 0.0050 2.8 23.5

1000 0.0094 2.8 23.1

2000 0.1067 1.8 24.1

4000 0.4107 3.3 34.7

Table 4.13 Computing time for an LU, QR, and SVD factorization of a random
n× n matrix using MATLAB. The times for QR and SVD are in terms of multiples
of the time the LU takes for that value of n.

148 4 Eigenvalue Problems

As a final comment, the QR factorization is not limited to square matrices.
It is straightforward to generalize the factorization to any matrix which has
more rows than columns. This makes it useful for the orthogonal iteration
method described earlier. It is also useful for certain least squares problems,
and this is discussed in more detail in Section 8.3.2.2. Those interested in
a more expanded discussion of the QR factorization should consult Bjöurck
[2004] or Higham [2002].

4.3.3 The QR Method

In the case of when it is necessary to compute all of the eigenvalues of a
symmetric matrix, the following procedure can be used:

Set C0 = A

For k = 0, 1, 2, · · ·
QkRk = Ck % find Qk and Rk

Ck+1 = RkQk % calculate Ck+1

End

This is a strange looking result in that it states after factoring Ck, you then
multiply the factors in reverse order to calculate Ck+1. Although it is not
obvious, it is possible to prove that if the method converges, then Ck app-
roaches a diagonal matrix, and the diagonals are the eigenvalues of A. The
eigenvalues will appear on the diagonal according to how many independent
eigenvectors they have (i.e., their geometric multiplicity). To guarantee that
the QR method converges, it is required that for any nonzero eigenvalue λ, −λ
is not also an eigenvalue. This procedure is called the QR method. A proof of
convergence, including the extension of the method to nonsymmetric matri-
ces, can be found in Watkins [2008] and Golub and Van Loan [2013]. However,
some insight into how the method works is given in Exercise 4.17.

Example

Consider the eigenvalue problem in (4.5), where

A =

(
2 1

1 2

)
.

Applying Gram-Schmidt to the columns of C0 = A, as given in (4.25),

4.3 Calculating Multiple Eigenvalues 149

e1 =

(
2

1

)
and e2 =

(
1

2

)
− 4

5

(
2

1

)
=

3

5

(−1

2

)
.

Normalizing these vectors we obtain

Q0 =
1√
5

(
2 −1

1 2

)
.

From this we have that

R0 = QT
0 C0 =

1√
5

(
5 4

0 3

)
,

and

C1 = R0Q0 =
1

5

(
14 3

3 6

)
.

The remaining Ck matrices are calculated using MATLAB, with the result
that

C2 =

(
2.9756 0.21951

0.21951 1.0244

)
C3 =

(
2.9973 7e−02

7e−02 1.0027

)

C4 =

(
2.9997 2e−02

2e−02 1.0003

)
C5 =

(
3.0000 8e−03

8e−03 1.0000

)

C6 =

(
3.0000 3e−03

3e−03 1.0000

)
C7 =

(
3.0000 9e−04

9e−04 1.0000

)

C8 =

(
3.0000 3e−04

3e−04 1.0000

)
C9 =

(
3.0000 1e−04

1e−04 1.0000

)

It is seen that the off-diagonal entries are converging to zero, while the dia-
gonal entries are approaching the eigenvalues λ1 = 3 and λ2 = 1. A more
expansive list of the computed values for the two eigenvalues is given in
Table 4.14. As with orthogonal iteration, once the answer gets close to the
solution, the error in λ1 = 3 drops by a factor of about |λ2/λ1|2 = 1/9 with
each iteration step. �

It is worth comparing the QR and orthogonal iteration methods. Both
require finding Q, and the QR method also requires finding R. As is evi-
dent in comparing Tables 4.11 and 4.10, they have the same rate of converge.
There are some significant differences. First, for the QR method the Ck’s con-
verge to a matrix containing the eigenvalues, while the Bk’s for orthogonal
iteration contain the eigenvectors. For QR, once the eigenvalues are com-
puted then the associated eigenvectors can be computed easily using inverse
iteration (Section 4.2.2). For orthogonal iteration, once the eigenvectors are
known, Rayleigh’s quotient (4.4) can be used to compute the eigenvalues.

150 4 Eigenvalue Problems

Other differences include the observation that orthogonal iteration can be
used to compute a few or all of the eigenvalues, while the QR method com-
putes all of them. Also, the QR method is required to start with C0 = A,
while orthogonal iteration can be used with an initial matrix with m columns,
where 1 ≤ m ≤ n.

One property that the QR method and orthogonal method have in common
is that they are computationally intensive. In both algorithms, to calculate
all of the eigenvalues of the matrix, each step requires O(n3) flops, and the
improvement in the eigenvalue approximations at each step depends on ratios
of the form |λi/λj |2, where |λi| < |λj |. Consequently, if two of the eigenval-
ues are close together, it can take a large number of iterations to compute
them accurately. This has given rise to the development of more efficient
implementations for the QR method than the simple factor and re-multiply
version given earlier. The one most often used in practice uses what is called
the implicitly shifted QR method, which is also known as a bulge-chasing
method. A nice explanation of this can be found in Watkins [2008]. Another
method that is used for larger symmetric matrices, and potentially faster
than QR, involves a divide and conquer procedure. Implementing this idea
efficiently is challenging and more can be learned about this in Demmel [1997]
and Nakatsukasa and Higham [2013].

As a final comment, the QR method has been stated to be one of the “10
algorithms with the greatest influence on the development and practice of
science and engineering in the 20th century” [Dongarra and Sullivan, 2000].
What is interesting is that John Francis, who was responsible for deriving
and then naming it the QR method, was completely unaware, and amazed,
of how significant his work had become. He missed this because shortly after

k λ1 λ2

1 2.8 1.2

2 2.97560975609756 1.02439024390244

3 2.9972602739726 1.0027397260274

4 2.99969521487351 1.00030478512649

5 2.99996613039797 1.00003386960203

6 2.99999623665423 1.00000376334577

7 2.99999958184977 1.00000041815023

8 2.99999995353885 1.00000004646114

9 2.99999999483765 1.00000000516235

Table 4.14 Calculation of the eigenvalues of (4.5) using the QR method. The exact
values are λ1 = 3 and λ2 = 1.

4.3 Calculating Multiple Eigenvalues 151

deriving the method he went to work designing and building industrial com-
puter systems. As he recalled, “there had been no reaction, none whatsoever”
when his papers appeared [Golub and Uhlig, 2009].

4.3.4 Are the Computed Values Correct?

For many real word applications it is often not known whether the matrix has
the required properties for the eigenvalue solver to work, and in such cases
one usually simply tries it and sees what happens. What is considered here
are simple tests that can be used to check on the correctness, or accuracy, of
the computed values.

The principal test will involve the trace of the matrix, and what this is
defined next.

Definition 4.3. If A is an n×n matrix with entries aij , then the trace tr(A)
is defined as

tr(A) =

n∑
i=1

aii.

In other words, the trace is the sum of the diagonal entries of the matrix.

The second piece of information that is needed comes from a theorem in
linear algebra, which is stated next.

Theorem 4.5. Let A be an n × n matrix, with eigenvalues λ1, λ2, · · · , λn

(listed according to their algebraic multiplicities), then

tr(A) =

n∑
i=1

λi,

tr(Ak) =

n∑
i=1

λk
i ,

where k is a positive integer.

To demonstrate how the formulas in this theorem are used, we consider a few
examples.

Examples

1. For the matrix

A =

(
2 1

1 2

)
,

152 4 Eigenvalue Problems

it was determined earlier that the eigenvalues are λ1 = 3 and λ2 = 1. Also,
tr(A) = 2 + 2 = 4, and this does indeed equal λ1 + λ2. �

2. The matrix

A =

(
3 0

0 3

)

has the one eigenvalue λ1 = 3, but it has two linearly independent eigenvec-
tors. Because of this, it has an algebraic multiplicity of two, and so the sum
to be considered is λ1+λ1 = 6, It is easy to check that this equals tr(A). �

3. The (non-symmetric) matrix

A =

(
1 2

− 1
2 1

)

has eigenvalues λ1 = 1 + i and λ2 = 1 − i. It is easy to verify that
tr(A) = λ1 + λ2. �

The above theorem is useful when computing all of the eigenvalues of a
matrix, which includes using the QR method and a full matrix with ort-
hogonal iteration. Once these methods are finished, then the values can be
checked by comparing their sum with the value for the trace of the matrix
(which is very easy to compute). In Section 4.4.2, this test will be used to
help determine which of two answers is correct.

There are numerous other ways to check on the accuracy of the computed
eigenvalues. One possibility is to use what are called Gershgorin circles [Süli
and Mayers, 2003; Varga, 2004]. These provide bounds for the eigenvalues,
although they are of limited use for determining the accuracy of a numerical
computation. Another possibility is to use shifting. This is very effective at
eliminating the possibility that the eigenvalues appear as ± pairs, and this
will be demonstrated in Section 4.4.2.

4.4 Applications

Two examples are presented below that illustrate how eigenvalue problems
arise in applications. One is from mechanics and the second is from network
theory.

4.4 Applications 153

4.4.1 Natural Frequencies

Mechanical systems like a mass and spring, and an elastic string, are capable
of free vibrations. The frequencies of these vibrations are called natural fre-
quencies, and they play an important role in determining the motion of the
system. Finding these frequencies reduces to solving an eigenvalue problem,
and this will be illustrated for an elastic string. An explanation of how the
elastic string problem can be reduced to a matrix eigenvalue problem is given
in the next paragraph. This can be skipped, if desired, and instead you can
jump to the subsequent paragraph, where the resulting matrix problem is
given.

It is assumed that the string is held at its ends, which are located at x = 0
and x = �. If u(x, t) denotes the vertical displacement of the string, then the
equation of motion is

∂2u

∂t2
= c2

∂2u

∂x2
,

where c is a positive constant. The natural frequencies ω are found by as-
suming that u(x, t) = v(x) exp(Iωt), where I =

√−1. Substituting this into
the above partial differential equation, one obtains the ordinary differential
equation

c2
d2v

dx2
= −ω2v. (4.28)

Because the ends are fixed, the solution is required to satisfy v(0) = v(�) = 0.
As with all eigenvalue problems, v ≡ 0 is a solution. Consequently, the ques-
tion is, what values of ω will result in a nonzero solution? These can be
computed by replacing the second derivative with the numerical approxima-
tion derived in Section 7.2.3. In doing this, the spatial interval 0 ≤ x ≤ � is
subdivided into n+ 1 subintervals, as illustrated in Figure 4.3. The function
v(x) is then replaced with the vector consisting of its values at the grid points
x1, x2, · · · , xn. This yields v = (v1, v2, · · · , vn)T , where vi is the numerical
approximation of v(xi).

Using the approximations discussed in the previous paragraph, finding
the natural frequencies of an elastic string reduces to solving the eigenvalue
problem

Figure 4.3 Deflection v(x) of string, and the spatial points at which it is computed.

154 4 Eigenvalue Problems

Av = λv, (4.29)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1

−1 2 −1 0
−1 2 −1

. . .
. . .

. . .

0 −1
−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.30)

Note that A is an n×n symmetric tri-diagonal matrix. Once the eigenvalues
λ are computed, then the corresponding natural frequencies of the string are
given as ω = (n+ 1)c

√
λ/�.

In most applications, one is often only interested in the lower natural
frequencies. Based on this, we want to find the first m eigenvalues of A that
are closest to zero. One way to do this is to use orthogonal iteration with
A−1. The algorithm, which comes from using A−1 in the procedure given
in Table 4.9, is given in Table 4.15. Since we are interested in finding the
first m eigenvalues, we will take B to be an n × m matrix. The results of
the computation are given in Table 4.16. The stopping condition used in the
calculation was |vk − vk−1|/|vk| < 10−6, which resulted in the method taking
18 iteration steps. Also, the exact frequencies for the string are ω = iπc,
where i = 1, 2, 3, · · · . Since ω = (n + 1)c

√
λ, then the exact values can be

written as

λ̄i =

(
iπ

n+ 1

)2

, for i = 1, 2, 3, · · · . (4.31)

The relative difference between these values and the computed values is given
in Table 4.16.

Pick: random B

Q = GS(B)

A = LU

Loop For k = 1, 2, 3, · · ·
AB = Q

Q = GS(B)

End

Table 4.15 Inverse orthogonal iteration used to calculate the m eigenvalues of A
closest to zero. Note Q = GS(B) means that Gram-Schmidt is applied to the columns
of B to find Q, and AB = Q means that the equation is solved for B using the LU
factorization. Also, B is an n×m matrix.

4.4 Applications 155

i λi |λi − λ̄i|/|λ̄i|
1 1.566558555547e−04 1.31e−05

2 6.265988811618e−04 5.22e−05

3 1.409755457697e−03 1.17e−04

4 2.506004005922e−03 2.08e−04

5 3.915169058548e−03 3.26e−04

Table 4.16 Calculation of the five smallest eigenvalues of (4.30) when n = 250 using
inverse orthogonal iteration. Also given is the relative error |λi − λ̄i|/|λ̄i|.

There are two somewhat subtle questions that should be considered before
leaving this example. The first is, what needs to be done to obtain more accu-
rate values for the natural frequencies of the string? The stopping condition
using orthogonal iteration was |vk − vk−1|/|vk| < 10−6, yet the relative error
for the natural frequencies, as given in Table 4.16, is only about 10−4. To
answer this, the eigenvalue equation in (4.29) is an approximation of the
problem in (4.28). If we want better approximations to the natural frequen-
cies, then we need to make (4.29) a better approximation of (4.28), and this
is accomplished by making n bigger. As an example, to have the relative
error of all five eigenvalues no more than 10−5, one can take, approximately,
n = 1500.

The second question comes from the observation that the matrix in (4.30)
looks similar to the one for the oscillator chain in (4.8). This is a concern
because the eigenvalues for (4.8) get very close together as n increases, which
causes our eigenvalue solvers to converge very slowly. This does not seem to
happen for the string problem, and the question is, why not? The answer
comes from the formula for the eigenvalues for both matrices, which is given
in (4.9). The speed of convergence of our eigenvalue solvers depends on the
ratios

λi−1

λi
=

a+ 2 cos((i − 1)θ)

a+ 2 cos(iθ)
, for i = 2, 3, 4, · · · , n, (4.32)

where θ = π/(n + 1). It is also worth noting that the higher frequencies
correspond to small values of i, and the lower frequencies come from the
larger values of i. The values of (4.32) are given in Figure 4.4 for the oscillator
chain, where a = 2.1, and for the string, where a = 2. What is seen is that the
ratios for the oscillator chain are close to one, particularly for the larger value
of n. For the string, the ratios are close to one for the higher frequencies, but
not for the lowest frequencies. Because we limited the calculation to the first
five frequencies for the string, our inverse orthogonal iteration procedure had
no trouble converging relatively quickly.

156 4 Eigenvalue Problems

4.4.2 Graphs and Networks

A network, or graph, consists of nodes and lines connecting them. Two exa-
mples are shown in Figure 4.5. The lines in this case indicate the connec-
tions between the respective nodes. For example, the nodes could identify
computers and the lines identifying how they are connected. Other possi-
bilities are that the nodes are cities and the lines are airline routes (see
Exercise 4.25), or that the nodes are atoms and the lines indicate their bonds
(see Exercise 4.26).

Eigenvalues provide useful information about the properties of the net-
work, and this is done using what is called an adjacency matrix. This matrix
for the network on the left in Figure 4.5 is

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

⎞
⎟⎟⎟⎟⎠ . (4.33)

To explain how this is determined, first note that if there are n nodes, then
the adjacency matrix is n × n. The entries of A are zero except when node
i is connected to node j, in which case aij = aji = 1. For example, for the

0 5 10 15 20 25 30 35 40
i-axis

0.2

0.4

0.6

0.8

1

R
at

io

n = 40Chain
String

0 50 100 150 200 250
i-axis

0.2

0.4

0.6

0.8

1

R
at

io

n = 250Chain
String

Figure 4.4 Eigenvalue ratios (4.32) for the oscillator chain and for the string, when
n = 40 and n = 250.

4.4 Applications 157

Figure 4.5 Examples of two networks with five nodes.

graph on the left in Figure 4.5, the third and fifth nodes are connected, so
a35 = a53 = 1. Also, since the first and fifth nodes are not connected, then
a15 = a51 = 0.

We are considering what is known as an undirected graph, or network,
which means that if aij = 1 then aji = 1. In other words, the adjacency
matrix is symmetric. The eigenvalues of the adjacency matrix play an impor-
tant role in determining the properties of a network. As an example, suppose
the eigenvalues for the adjacency matrix are λ1, λ2, · · · , λn. If Pm is the
number of paths through the graph that take m steps and end up back at
the node they started at, it is possible to show that

Pm =

n∑
i=1

λm
i . (4.34)

As an example, for the network on the left in Figure 4.5, the paths consisting
of two steps are 1 → 2 → 1, 2 → 1 → 2, 5 → 4 → 5, etc. Using the
terminology of graph theory, these are called closed paths of length two. There
are a total of eight closed paths of length two, so P2 = λ2

1 + · · ·+ λ2
5 = 8.

In our example, we will assume there are n nodes, with node 1 connected
to node 2. For the others, node i is connected to node i + 1, except that
node n is connected to node 3. Such a network for n = 5 is shown on the left
in Figure 4.5, and the resulting adjacency matrix is given in (4.33). To test
our eigenvalue solvers we will take n = 10. The eigenvalues computed using
orthogonal iteration, as outlined in Table 4.9, are

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.8262
−0.54037
−0.24545
−0.16485
9.2445e−33
3.6978e−32
0.18969
0.22062
0.54037
1.8262

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.35)

158 4 Eigenvalue Problems

Although all seems fine, there is a potentially serious problem with this result.
The first and last two eigenvalues appear to be negatives of each other, and
this is the one situation that orthogonal iteration likely fails. It is possible
to check on whether the computation is correct by using shifting. To check,
orthogonal iteration is going to be applied to B = A − 3I. If the result in
(4.35) is correct, then the eigenvalues of B should not have ± pairs. Doing
this, and then shifting back, one gets the eigenvalues

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
−1.4142
−1.4142

−1
0
0
1

1.4142
1.4142

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.36)

This shows that applying orthogonal iteration directly toA is even worse than
we originally thought because the above solution shows that every nonzero
eigenvalue appears as a ± pair.

The above situation is interesting because two different answers are com-
puted and it is necessary to determine which, if any, is correct. The question
is, how do you know which one to pick. This is where the theory plays an im-
portant role. From Section 4.3.4, we know that trA = λ1+λ2+ · · ·+λ10. We
also know, from (4.34), that for an adjacency matrix, Pm =

∑
λm
i . Although

we might know the exact value of the Pm’s, we do know that they are positive
integers. Using the values computed using orthogonal iteration, from (4.35),

P2 = 12.317, P3 = 0.13494,

while, from (4.36),
P2 = 18, P3 = 50.

According to this, (4.36) is the correct answer.
If theoretical checks are not possible, then one could run some numerical

tests. For example, use orthogonal iteration with different shifts to see if one
continues to obtain (4.36).

4.5 Singular Value Decomposition

One of the more significant results in linear algebra is the spectral decompo-
sition theorem. For those who might not remember this, it is given next.

4.5 Singular Value Decomposition 159

Theorem 4.6. If A is a symmetric matrix, then it is possible to factor A as

A = QDQT , (4.37)

where D is a diagonal matrix and Q is an orthogonal matrix.

The definition and basic properties of an orthogonal matrix are given in
Section 4.3.2.

To explain where the matrices in this theorem come from, let u1, u2, · · · ,
un be orthonormal eigenvectors for A, with corresponding eigenvalues λ1,
λ2, · · · , λn (see Theorem 4.1). In this case, D is the diagonal matrix

D =

⎛
⎜⎜⎜⎝
λ1

λ2

. . .

λn

⎞
⎟⎟⎟⎠ ,

and the ith column of Q is ui. Diagrammatically, the factorization in (4.37)
can be written as

A =

⎛
⎜⎜⎜⎜⎝

↑ ↑ ↑
u1 u2 · · · un

↓ ↓ ↓

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
λ1

λ2

. . .

λn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

← u1 →
← u2 →

...
← un →

⎞
⎟⎟⎟⎠ .

Example

For the matrix A in (4.5) we found that λ1 = 3, with u1 = (1, 1)T /
√
2, and

λ2 = 1, with u2 = (1,−1)T /
√
2. Accordingly, the factorization in the above

theorem is

(
2 1

1 2

)
=

(
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

)(
3 0

0 1

)(
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

)
. �

Given that it is possible to carry out such a factorization, the next question
is, why do this? One answer is that this shows that it is possible to change
the basis so the matrix is diagonal, and diagonal matrices are very easy to
work with. For example, it is much easier to solve Dx = b than it is to
solve Ax = b, where A is a full n × n matrix. The limitation is that the
above theorem requires the matrix to be symmetric. What we are going
to consider is how it might be possible to derive a similar result for non-
symmetric matrices, and even for matrices that are not n× n. It needs to be

160 4 Eigenvalue Problems

pointed out that the resulting factorization will have some distinct differences
from (4.37), even in the case of when the matrix is symmetric. What these
are will be explained once the factorization has been derived.

4.5.1 Derivation of the Singular Value Decomposition

The way we will approach finding a factorization is the same method we used
to find the LU factorization, namely we will simply assume it’s possible and
see if we can make it work. The assumption here is that A is m × n, with
n ≤ m. The hypothesis is that there is a factorization of the form

A = UΣVT , (4.38)

where U is an m ×m orthogonal matrix, V is an n× n orthogonal matrix,
and Σ is an m× n matrix that has the form

Σ =

(
S
O

)
, (4.39)

where S is a diagonal n× n matrix of the form

S =

⎛
⎜⎜⎜⎝
σ1

σ2

. . .

σn

⎞
⎟⎟⎟⎠ , (4.40)

and O is an (m−n)×nmatrix containing only zeros. The key step for finding
these matrices is to consider ATA and AAT . It should be pointed out that
it is possible to prove that a factorization is possible in a short paragraph
[Golub and Van Loan, 2013]. The approach used here is more constructive,
albeit longer, with the objective of being able to show how the three matrices
in the factorization can be determined.

It is not hard to show that ATA is an n× n symmetric matrix. So, from
(4.37) we have that

ATA = QLDLQ
T
L, (4.41)

where DL is a diagonal matrix formed from the eigenvalues for ATA, and
QL is an orthogonal matrix (and both are n× n). On the other hand, if the
factorization is (4.38) is possible, then

ATA = (UΣVT)TUΣVT

= (VΣTUT)UΣVT

= VDV V
T , (4.42)

4.5 Singular Value Decomposition 161

where DV = ΣTΣ is an n× n diagonal matrix given as

DV =

⎛
⎜⎜⎜⎝
σ2
1

σ2
2

. . .

σ2
n

⎞
⎟⎟⎟⎠ . (4.43)

In comparing (4.41) and (4.42) we come to the conclusion that for the fac-
torization in (4.38) we can take V = QL. It also means that DV = DL, and
so the diagonals in DV are the eigenvalues for ATA. More specifically, in
(4.40), σi =

√
λi, where λi is an eigenvalue for ATA.

In a similar vein, given that AAT is an m×m symmetric matrix, then

AAT = QRDRQ
T
R, (4.44)

where DR is a diagonal matrix formed from the eigenvalues for AAT , and
QR is an orthogonal matrix (and both are m × m). According to (4.38),
AAT = UDUU

T , and for this to agree with (4.44) we take U = QR, and
DU = ΣΣT is an m×m diagonal matrix of the form

DU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1

. . .

σ2
n

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.45)

Moreover, this matrix must equal DR, which means the diagonals in DU are
the eigenvalues for AAT .

We now know how to determine the orthogonal matrices U and V in
(4.38). However, the σi’s in (4.40) are connected to both the eigenvalues of
ATA, as expressed in (4.43), and to the eigenvalues of AAT , as expressed in
(4.45). To ensure that these conditions do not contradict each other we need
the following information.

Lemma 1 Assuming A is an m× n matrix, with n ≤ m, then:

1. ATA and AAT are symmetric with non-negative eigenvalues.

2. If λ is an eigenvalue of AAT , with eigenvector u, then either λ is an
eigenvalue for ATA with eigenvector ATu, or else λ = 0 and ATu = 0.

The proofs of these statements are not particularly difficult and are left as an
exercise. From the first statement, it follows that σi ≥ 0 in (4.43) and (4.45).
From the second statement, AAT and ATA share nonzero eigenvalues, and
the additional eigenvalues of AAT are just zero, hence the extra zeros on the
diagonal in (4.45).

162 4 Eigenvalue Problems

The final detail concerns getting the sign correct. Everything we have
ascertained about the factorization comes from considering AAT and ATA.
These products are the same for A and −A, and there is nothing in the
derivation to account for the difference in sign. To do this, suppose vj is
the eigenvector that is going to be used in the jth column in V, and it has
corresponding eigenvalue λj . Also note that, being an eigenvector, we could
just as well pick −vj . Letting uj be the eigenvector to be used in the jth
column of U, then from (4.38) we have

Avj = σjuj , for j = 1, 2, · · · , n.

By assumption, the singular values are non-negative, so σj =
√
λj . This

means we pick the signs for the eigenvectors for V and U to be consistent
with the above equation.

4.5.2 Summary of the Singular Value Decomposition

Assuming A is a nonzero m×n matrix, with n ≤ m, then the singular value
decomposition (SVD) of A has the form

A = UΣVT , (4.46)

where the matrices appearing here are

U: This is an m×m orthogonal matrix of the form

U =

⎛
⎜⎜⎜⎜⎝

↑ ↑ ↑
u1 u2 · · · um

↓ ↓ ↓

⎞
⎟⎟⎟⎟⎠ ,

where the column vectors ui are orthonormal eigenvectors for AAT .

V: This is an n× n orthogonal matrix of the form

V =

⎛
⎜⎜⎜⎜⎝

↑ ↑ ↑
v1 v2 · · · vn

↓ ↓ ↓

⎞
⎟⎟⎟⎟⎠ ,

where the column vectors vi are orthonormal eigenvectors for ATA.

Σ: This is an m× n matrix of the form

4.5 Singular Value Decomposition 163

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

σ2

. . .

σn

0 · · · 0
...

...
0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This can be written in more compact form as

Σ =

(
S
O

)
, (4.47)

where S is a diagonal n× n matrix of the form

S =

⎛
⎜⎜⎜⎝
σ1

σ2

. . .

σn

⎞
⎟⎟⎟⎠ , (4.48)

and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The σi’s are called the singular values for
A, and they are given as σi =

√
λi, where λi is an eigenvalue for ATA.

Also, the columns of U and V are consistent with the ordering of the σi’s.
In particular, Avj = σjuj for j = 1, 2, · · · , n. Finally, O in (4.47) is an
(m− n)× n matrix containing only zeros.

Although the factorization resembles the one in (4.37), and it certainly
uses that result in its derivation, there are differences. The most obvious one
is that the factorization in (4.46) works on matrices that are not square. How-
ever, consider the case of when A is symmetric (and therefore square). The
diagonals of D are the eigenvalues of A, and they can be positive, negative,
or zero. The singular values listed in S, on the other hand, are non-negative.
One might guess that the singular values in this case are just the absolute
values of the nonzero eigenvalues of A, and this is correct. However, this con-
clusion is limited to symmetric matrices, and as will be shown in an example
below, it does not need to hold for square but non-symmetric matrices.

Examples

1. Suppose

A =

⎛
⎝ 2 −1

1 1
−1 2

⎞
⎠ .

164 4 Eigenvalue Problems

In this case

ATA =

(
6 −3

−3 6

)
.

The eigenvalues of this matrix are λ1 = 9 and λ2 = 3, with corresponding
orthonormal eigenvectors v1 = (−√

2/2,
√
2/2)T and v2 = (

√
2/2,

√
2/2)T .

Consequently,

V =

(− 1
2

√
2 1

2

√
2

1
2

√
2 1

2

√
2

)
.

Similarly, the matrix

AAT =

⎛
⎝ 5 1 −4

1 2 1
−4 1 5

⎞
⎠

has eigenvalues λ1 = 9, λ2 = 3 and λ3 = 0. The corresponding orthonormal
eigenvectors are u1 = (−√

2/2, 0,
√
2/2)T , u2 = (

√
6/6,

√
6/3,

√
6/6)T , and

u3 = (
√
3/3,−√

3/3,
√
3/3)T . Consequently,

U =

⎛
⎝− 1

2

√
2 1

6

√
6 1

3

√
3

0 1
3

√
6 − 1

3

√
3

1
2

√
2 1

6

√
6 1

3

√
3

⎞
⎠ .

The resulting SVD is

A = U

⎛
⎝3 0

0
√
3

0 0

⎞
⎠VT .

The singular values for A in this case are σ1 = 3 and σ2 =
√
3. �

2. In the case of when

A =

(
2 −1
1 −2

)
,

one finds that

A = U

(
3 0
0 1

)
VT ,

where

U =

(
1
2

√
2 1

2

√
2

1
2

√
2 − 1

2

√
2

)
and V =

(
1
2

√
2 1

2

√
2

− 1
2

√
2 1

2

√
2

)
.

4.5 Singular Value Decomposition 165

The singular values for A in this case are σ1 = 3 and σ2 = 1. In com-
parison, the eigenvalues of A are λ1 =

√
3 and λ2 = −√

3. Note that the
singular values of A are not the absolute values of its eigenvalues. �

There are some useful facts about the SVD that should be stated explicitly,
so they can be referred to later. The first concerns the SVD for a symmetric
matrix, which was discussed earlier.

Theorem 4.7. If A is symmetric, then its singular values are the absolute
value of its eigenvalues. For its SVD, if ui is the ith column of U, then the ith
column of V is ±ui, where the − is used if the corresponding eigenvalue is
negative, otherwise the + is used.

This result is a direct consequence of the fact that for a symmetric matrix,
AAT = ATA = A2.

The second useful fact involves the rank of a matrix. As you might recall
from linear algebra, the number of independent rows in a matrix is equal to
the number of independent columns, and this number is defined as the rank
r of the matrix.

Theorem 4.8. The matrix A has rank r if, and only if, A has exactly r
nonzero singular values.

This follows from a result in linear algebra which states the rank of a diagonal
matrix equals the number of nonzero diagonals, from which it can be shown
that the rank of A equals the rank of Σ.

4.5.2.1 Computing a SVD

It is more than apparent how much work is needed to find the SVD for a
matrix. Using a direct approach, it is necessary to calculate AAT and ATA,
then find the eigenvalues and eigenvectors for each of these matrices. All of
these steps are doable using one or more of the methods described earlier in
this chapter. However, more efficient procedures have been developed, and the
standard approach is to use what is known as the Golub-Reinsch algorithm,
which involves transforming the problem to make it more amenable to a
computational solution [Cline and Dhillon, 2007]. The number of flops for
a square matrix is, according to Golub and Van Loan [2013], approximately
21n3. Said another way, the flops for the SVD is about a factor of 31 more than
for the LU. In looking at the times in Table 4.13, it appears the algorithm used
by MATLAB is a bit better than this, at least for the smaller matrices. Even
though it does take significantly longer than the LU calculation, the actual
computing time is not intolerable. For example, an SVD factorization for a
4000×4000matrix takes less than 30 seconds. It is also apparent that the time

166 4 Eigenvalue Problems

increases quickly as the size of the matrix increases, and this has generated
interest in finding efficient algorithms for computing an approximate SVD
for very large matrices. More information about this can be found in Halko
et al. [2011].

4.5.3 Application: Image Compression

One application for the SVD is image compression. To explain, the grayscale
image shown in Figure 4.6 consists of a 1528 × 1225 array of integers, each
with a value from 0 to 255. This number represents the intensity of gray for
that pixel, with 0 corresponding to black and 255 corresponding to white.
The SVD is going to be applied to this array, but before doing this note that
the SVD factorization in (4.46) can be multiplied out and written as

A =

r∑
i=1

σiWi, (4.49)

where

Wi =

⎛
⎜⎜⎜⎜⎝

↑ ↑ ↑
vi1ui vi2ui · · · vinui

↓ ↓ ↓

⎞
⎟⎟⎟⎟⎠ .

The sum in (4.49) includes only the nonzero singular values, and it is assumed
that σr is the smallest nonzero singular value for A. Also, Wi is an m × n
matrix with its columns determined using the ith column of U and the ith
column of V. This is often written as an outer product, which in this case
takes the form Wi = uiv

T
i . What is important in (4.49) is what is not there.

Namely, even though there are m column vectors in U, only the first r of
them make a nonzero contribution to A.

The idea underlying image compression using the SVD is to consider if it
is necessary to include all r terms in (4.49). In particular, is it possible to use
an approximation of the form

Ak =
k∑

i=1

σiWi, (4.50)

where k < r? To answer this, note that the entries in the Wi matrices satisfy
−1 ≤ w ≤ 1. Consequently, the contributions of the terms in the above sum
are mostly determined by the size of the respective singular value σi. The
singular values for this image are plotted in Figure 4.7. Certainly given how
large the first few singular values are, it would be expected that they need

4.5 Singular Value Decomposition 167

Figure 4.6 Grayscale image of pansies, before being compressed using the SVD.
They don’t look to be too excited about being compressed.

to be included. However, the singular values decrease, and presumably their
respective contributions to the image also decrease. The question is, just how
many do we need to get an acceptable reproduction of the original image. To
investigate this, the resulting images when using A10, A25, A50, and A100 are
shown in Figure 4.8. Although the first two (on the top row) are not great,
the one on the bottom left, which corresponds to k = 50, is not bad. The one
on lower right, which is the k = 100 case, is even better. These observations
are consistent with the singular values plotted in Figure 4.7. Namely, there is
a dramatic change in the singular values as k increases, up to about k = 40,

0 200 400 600 800 1000 1200 1400
i-axis

100

101

102

103

104

105

S
ig

m
a

Figure 4.7 Singular values σi for the image in Figure 4.6.

168 4 Eigenvalue Problems

after which their values more slowly decrease. What we are seeing here is
that the improvements in the image follow a similar pattern, and this is why
there are more noticeable differences between k = 25 and k = 50 than there
are between k = 50 and k = 100.

Figure 4.8 Resulting image when using (4.50) to approximate the original image:
for k = 10, k = 25, k = 50, and k = 100.

4.5 Singular Value Decomposition 169

0 200 400 600 800 1000 1200 1400
k-axis

10-5

10-4

10-3

10-2

10-1

100
E

rr
o

r

Figure 4.9 Relative error (4.51) when using Ak, given in (4.50), to approximate A
for the pansy picture.

4.5.3.1 Eckart-Young Theorem and Error

It is possible to provide a mathematical explanation for the improvement in
the images in Figure 4.7 as k increases. This requires the next result, which
is known as the Eckart-Young theorem.

Theorem 4.9. Assuming A is an m× n matrix, with A = UΣVT , then

||A||2 = σ1,

and
||A−Ak||2 = σk+1,

where Ak is given in (4.50), and 1 ≤ k < r.

The proof of this can be found in Golub and Van Loan [2013]. Also, when
matrix norms were introduced in Section 3.5.1 we only considered square
matrices. The definition, given in (3.9) or (3.9), applies without change to
m× n matrices, with the understanding that x is an n-vector.

The usefulness of the above theorem for us is that it shows that the relative
error in using Ak to approximate a nonzero matrix A is

E(k) ≡ ||A−Ak||2
||A||2

=
σk+1

σ1
. (4.51)

The resulting graph for E for the pansy picture is shown in Figure 4.9.
This verifies our earlier conclusion, which is that the approximation improves
quickly as k increases up to about 50, after which the improvement slows.
For example, using the first 50 terms, the error is approximately 1.4× 10−2,
and adding an additional 50 terms drops the error to just 7× 10−3.

What benefits, in terms of storage, are achieved by using this type of
compression? Well, the full image requires storing 1,871,800 integers, while

170 4 Eigenvalue Problems

the ith term in (4.49) requires storage of an m-vector and an n-vector, which
in this case means 2,753 floating point numbers. So, forA100, theWi matrices
require storage of 275,300 floating point numbers. This is a factor of about
0.15 smaller than the original. This is certainly an improvement, but note
that using the SVD in this way produces a “lossy” compression because
information is lost in the approximation. To its credit, however, the SVD
method has an adjustable parameter, k, that allows for various resolutions of
the image.

Exercises

4.1. The symmetric matrix

A =

(
2 2
2 −1

)

has eigenvectors x1 = (2, 1)T and x2 = (1,−2)T .
(a) Is this matrix positive definite?
(b) What are the corresponding eigenvalues?
(c) Assuming the starting vector y0 = (1, 1)T , what eigenvalue will the power

method converge to and what will be the resulting eigenvector?
(d) Assuming the calculation in part (c) is finished, explain how to use shifting

to compute the other eigenvalue.

4.2. The symmetric matrix

A =

(−7 −6
−6 2

)

has eigenvectors x1 = (1,−2)T and x2 = (−2, 1)T .
(a) Is this matrix positive definite?
(b) What are the corresponding eigenvalues?
(c) Assuming the starting vector y0 = (1,−1)T , what eigenvalue will the

power method converge to?
(d) Assuming the calculation in part (c) is finished, explain how to use shifting

to compute the other eigenvalue.

4.3. The symmetric matrix

A =

⎛
⎝ 11 7 −4

7 11 4
−4 4 −10

⎞
⎠ .

has eigenvectors x1 = (1, 1, 0)T , x2 = (1, 0, 2)T , and x3 = (0,−2, 1)T .

Exercises 171

(a) Is this matrix positive definite?
(b) What are the corresponding eigenvalues?
(c) Assuming the starting vector y0 = (1, 1, 1)T , what eigenvalue will the

power method converge to and what will be the resulting eigenvector?

4.4. The symmetric matrix

A =

⎛
⎝47 32 8

32 −1 −16
8 −16 59

⎞
⎠ .

has eigenvectors x1 = (2, 1, 0)T , x2 = (1,−2, 10)T , and x3 = (2,−4,−1)T .
(a) Is this matrix positive definite?
(b) What are the corresponding eigenvalues?
(c) Assuming the starting vector y0 = (1, 1, 1)T , what eigenvalue will the

power method converge to and what will be the resulting eigenvector?

4.5. Suppose A is a symmetric 5× 5 matrix with eigenvalues −2, −1, 0, 1, 2.

(a) Explain why the power method will likely fail with this matrix.
(b) Explain how shifting can be used so the power method can be used to

calculate the ±2 eigenvalues of A.
(c) Explain why the power method applied to B = A + 104I can be used

to find the largest eigenvalue of A, but it is a poor choice to, say, using
B = A+ 10I.

4.6. Consider the symmetric matrix

A =

(
2 2
2 −1

)
.

(a) Assuming B0 = A, using orthogonal iteration, what are the k = 0 ap-
proximations for the eigenvalues?

(b) Continuing part (a), find B1 when using orthogonal iteration and the
resulting approximations for the eigenvalues.

(c) Assuming C0 = A, find C1 when using the QR method.
(d) When using the QR method, what matrix does the Ck matrices converge

to?

4.7. Consider the symmetric matrix

A =

(−7 −6
−6 2

)
.

(a) Assuming B0 = A, using orthogonal iteration, what are the k = 0 ap-
proximations for the eigenvalues?

172 4 Eigenvalue Problems

(b) Continuing part (a), find B1 when using orthogonal iteration and the
resulting approximations for the eigenvalues.

(c) Assuming C0 = A, find C1 when using the QR method.
(d) When using the QR method, what matrix does the Ck matrices

converge to?

4.8. Consider the symmetric matrix

A =

(−2 0
0 2

)
.

(a) What are the eigenvalues for this matrix? Explain why this matrix does
not have a dominant eigenvalue.

(b) Suppose the power method is applied to A. What does (4.13) reduce to?
Explain why the method does not converge.

(c) Let B = A−μI. Explain why the power method, when applied to B, will
converge for any nonzero value for μ. Also, explain how to pick values for
μ to compute the two eigenvalues for A using the power method for each.

4.9. This exercise explores how to use the results from the power method to
estimate |λ2|.
(a) Explain how to use the computed values for vk and the iteration error in

Table 4.2 to estimate |λ2|.
(b) The power method was used on a positive definite 3 × 3 matrix and the

results are given in Table 4.17. What is, approximately, the second largest
eigenvalue?

(c) Explain how the result from part (b), and the inverse power method, can
be used to compute λ2.

k vk |vk − vk−1|
1 1.050490429082

2 2.923452914041 1.87e+00

3 3.351559013702 4.28e−01

4 3.396446378825 4.49e−02

5 3.408195210234 1.17e−02

6 3.412146406763 3.95e−03

7 3.413503657073 1.36e−03

8 3.413969884337 4.66e−04

9 3.414129935923 1.60e−04

10 3.414184865200 5.49e−05

Table 4.17 Data for Exercise 4.9.

Exercises 173

4.10. Suppose A1 and A2 are symmetric and positive definite 100 × 100
matrices with the following eigenvalues:

A1: λ1 = 100, λ2 = 99, λ3 = 98, · · · , λ100 = 1
A2: λ1 = 100, λ2 = 10, λ3 = 1, · · · , λ100 = 10−97

(a) Will the power method most likely converge faster for A1 or A2?
(b) Assume that A is a symmetric positive definite n× n matrix with eigen-

values λ1 > λ2 > · · · > λn > 0. If λ1 is known, explain why, in theory, λn

can be computed by applying the power method to B = A− λ1I.
(c) To compute λ100 for A1, one can use the method from part (b) or the

inverse power method. Which will most likely converge faster?
(d) Explain why the method in part (b) will likely fail when applied to A2.
(e) Show that, in theory, the method in part (b) converges faster than the

inverse power method if λ1 < λn−1 + λn.

4.11. For the symmetric matrices in (4.5), (4.6), and (4.20), the dominant
eigenvalue turns out to equal ||A||∞. Is this always true for a symmetric
matrix?

4.12. By writing out the equation Ax = λx in component form, show that
the eigenvalues of (4.20) are a, a+1, and a− 1. What are the corresponding
eigenvectors?

4.13. Suppose A is a symmetric 3 × 3 matrix with eigenvalues λ1, λ2, and
λ3, with |λ3| < |λ2| < |λ1|. Suppose the starting vector for the power method
contains a portion of an eigenvector for λ1. Write out what happens to (4.12)
and (4.13) in this 3× 3 case. Also, what happens to the error (4.15) and the
iterative error (4.16) formulas?

4.14. Suppose the eigenvalues of a symmetric matrix A satisfy λ1 > λ2 ≥
· · · ≥ λn−1 > λn > 0. To calculate λ1, the power method is going to be
applied to the shifted matrix B = A− ωI.
(a) What condition(s) must be imposed on ω so the method will converge

to λ1.
(b) Explain why the choice ω = (λ2 + λn)/2 will result in the fastest conver-

gence of the power method.

4.15. This problem concerns what is known as the Rosser matrix, which is
given as

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

611 196 −192 407 −8 −52 −49 29
196 899 113 −192 −71 −43 −8 −44

−192 113 899 196 61 49 8 52
407 −192 196 611 8 44 59 −23
−8 −71 61 8 411 −599 208 208
−52 −43 49 44 −599 411 208 208
−49 −8 8 59 208 208 99 −911
29 −44 52 −23 208 208 −911 99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

174 4 Eigenvalue Problems

The eigenvalues of R are: 0, 1000, 1020, ±10
√
10405, 510± 100

√
26 [Rosser

et al., 1951]. Note that the eigenvalue λ = 1000 has two linearly independent
eigenvectors. Also, R is symmetric but it’s not positive-definite.
(a) Show that four of the eigenvalues, in magnitude, are very close (although

unequal).
(b) Explain why the power method will likely fail on this matrix.
(c) One can try shifting, and let B = A−ωI. If ω = −1, what eigenvalue of B

will the power method converge to, and what is the associated eigenvalue
of A?

(d) Using the shift from part (c), according to Theorem 4.2, by what factor
is the error reduced by at each iteration step? How many iteration steps
are needed to reduce the error by a factor of 10?

(e) The power method is to be applied to the shifted matrix B = A − ωI.
What conditions need to be imposed on ω so it converges to 10

√
10405−ω?

4.16. In this problem the QR method for computing eigenvalues is consid-
ered. Select one of the following matrices and then answer the questions that
follow.

A1 =

(−1 1

1 2

)
A2 =

(
2 2

2 2

)
A3 =

(
2 −1

−1 1

)

(a) Find C1.
(b) Find C2.
(c) What matrix does the Ck’s converge to?

4.17. This exercise explores the connections between the QR method and the
matrices in the factorization A = QDQT (see Theorem 4.6). It’s assumed
that A is symmetric.
(a) In the QR method, show that C1 = QT

1 AQ1, C2 = QT
2 Q

T
1 AQ1Q2, and

in general, Ck = PT
k APk, where Pk = Q1Q2 · · ·Qk. Note that Pk is an

orthogonal matrix (you do not need to show this).
(b) Assuming that Ck converges to a diagonal matrix, explain why the QR

method is a procedure for computing the matrix D in Theorem 4.6. Also
explain how two lines of code can be added to the QR algorithm given
in Section 4.3.3 so that, when finished, you have a matrix containing the
eigenvectors.

4.18. Consider the matrix

A =

(
1 2
1 2

)
.

(a) Find a SVD for A.
(b) Find the expansion for A given in (4.49).
(c) Find a SVD for AT .

Exercises 175

(d) Find a SVD for 2A.
(e) Find a SVD for −A.
(f) Find ||A||2.
4.19. Consider the symmetric matrix

A =

(
4 4
4 −2

)
.

(a) Find a factorization as given in (4.38).
(b) Find a SVD for A.
(c) Find the expansion for A given in (4.49).
(d) Find ||A||2.
4.20. Pick one of the following matrices, and then find the requested quan-
tities.

i) A =

⎛
⎝0 1

0 2
0 0

⎞
⎠ ii) A =

⎛
⎝1 2

0 1
1 0

⎞
⎠ iii) A =

⎛
⎝0 1

1 0
0 1

⎞
⎠

(a) Find a SVD for A.
(b) Find the expansion for A given in (4.49).
(c) Find a SVD for 3A.
(d) Find a SVD for −A.
(e) Find ||A||2.

4.21. The pixel values for different images are given in Table 4.18 (they each
contain 4 pixels). Select one of them and then answer the questions that
follow.
(a) What is the SVD of the corresponding matrix?
(b) Find W1 and W2, as defined in (4.49).
(c) Suppose the approximationA ≈ A1 is used, whereA1 = σ1W1. Find A1,

and determine the relative error is using this matrix to approximate A.

4.22. This problem considers the following n × n symmetric tri-diagonal
matrix:

A)
2 1

0 1
B)

0 1

1 2
C)

1 0

1 2

Table 4.18 Data for Exercise 4.21.

176 4 Eigenvalue Problems

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 c1
c1 0 c2

c2 0 c3
. . .

. . .
. . .

cn−2 0 cn−1

cn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

ci =
i√

(2i− 1)(2i+ 1)
.

The eigenvalues, and eigenvectors, of this matrix play a role in Gaussian
quadrature (see Section 6.4.4).
(a) Taking n = 2, use orthogonal iteration to calculate the eigenvalues of

A. The relative iteration error for the nonzero eigenvalues should be less
than 10−12. Also, calculate the eigenvalues by hand to make sure your
computed answers are correct. Comment on any modifications of the or-
thogonal iteration procedure you make to compute the correct result.

(b) Let q1 = (q11, q12)
T and q2 = (q21, q22)

T be the orthonormal eigenvectors
calculated in part (a). As explained in Section 6.4.2, when n = 2 one
should have 2q211 = 1 and 2q221 = 1. How close does your result come to
satisfying these conditions?

(c) Taking n = 10, use orthogonal iteration to calculate the eigenvalues of
A. The relative iteration error for the nonzero eigenvalues should be less
than 10−12. Explain why you are confident that the values are correct.

(d) Assume that the orthonormal eigenvectors are q1, q2, · · · , qn, where qj is
the eigenvector for eigenvalue λj . If qj = (qj1, qj2, · · · , qjn)T , calculate the
quantity wj = 2q2j1 for each eigenvalue. Although this looks a little odd,
the wj ’s are used to determine the weights in the Gaussian quadrature
formula.

4.23. The equation for a string on an elastic foundation is

∂2u

∂t2
= c2

∂2u

∂x2
− ku ,

where c and k are positive constants. The problem for finding the natural
frequencies of the string can be reduced to solving Ax = λx, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a −1

−1 a −1 0
−1 a −1

. . .
. . .

. . .

0 −1
−1 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that A is an n× n symmetric tri-diagonal matrix, and

Exercises 177

a = 2 +
k

c2(n+ 1)2
.

Also, by solving the string equation one finds that the exact values for the
λ’s are

λ̄i =
k + c2(iπ)2

c2(n+ 1)2
, for i = 1, 2, 3, · · · .

(a) Explain why A is positive definite.
(b) Use inverse orthogonal iteration to compute the five smallest eigenvalues

of A. To do this take n = 250 and c = k = 1. Also, compute the relative
error as in Table 4.16.

(c) The exact eigenvalues of A are λi = a + 2 cos(iθ), for i = 1, 2, . . . , n,
where θ = π/(n + 1). Taking n = 250 and c = k = 1, as in Figure 4.4,
plot the ratios λi−1/λi and use this to explain why inverse orthogonal
iteration should converge relatively quickly when computing the smaller
eigenvalues.

4.24. This exercise involves finding the natural frequencies for the coupled
oscillators in Figure 4.10. The equation of motion in this case is y′′+Ky = 0,
where y = (y1(t), y2(t), y3(t))

T and

K =

⎛
⎜⎜⎝

1 + k12 + k13 −k12 −k13

−k12 1 + k12 + k23 −k23

−k13 −k23 1 + k13 + k23

⎞
⎟⎟⎠ .

In the above matrix, kij is the spring constant for the spring connecting the
ith and jth oscillator, and it is positive (these are the three smaller springs
shown in Figure 4.10). Assuming y = xeIωt, where I =

√−1, then the
problem reduces to solving Kx = λx, where λ = ω2.
(a) Show that K is positive definite.
(b) Using orthogonal iteration, compute the eigenvalues of K in the case of

when kij = 1/10. Also, state what stopping condition you used, and how
many iteration steps were required.

Figure 4.10 Three oscillators that are coupled by springs, as an example of the
problem considered in Exercise 4.24.

178 4 Eigenvalue Problems

Figure 4.11 Six air routes, and five cities, used to construct the adjacency matrix
in Exercise 4.25.

(c) What is the eigenvalue for K when the oscillators are uncoupled? Note
that this means that the kij ’s are zero.

(d) Using orthogonal iteration, compute the eigenvalues of K in the case of
when kij = 1/1000. You should use the same stopping condition as in part
(b). How many iteration steps were required, and if significantly different
than the number for part (b), explain why.

4.25. The routes for a small airline are shown in Figure 4.11. In terms of a
network, the five cities are the vertices or nodes, and the six air routes are
the connections, in a similar manner to those shown in Figure 4.11.
(a) Number the cities from 1 to 5, and from this write down the corresponding

adjacency matrix.
(b) Compute the eigenvalues of the matrix you found in part (a). Also, it can

be proved that if you sum up the eigenvalues of an adjacency matrix, you
get zero (see Section 4.3.4). Do your values satisfy this condition? If not,
provide a reason why.

(c) Number the cities in a different order than you used in part (a) and
compute the eigenvalues of the resulting adjacency matrix. How do these
differ from what you computed in part (b)?

Figure 4.12 Diagrammatic representations of benzene. The representation on the
right is the one used to construct the adjacency matrix in Exercise 4.26.

Exercises 179

Figure 4.13 Diagrammatic representations of naphthalene. The representation on
the right is the one used to construct the adjacency matrix in Exercise 4.26.

4.26. Adjacency matrices arise in quantum chemistry in the form of what are
called Hückel Hamiltonian matrices. To illustrate, the atomic configuration
for benzene is shown in Figure 4.12. The atoms are located at the vertices,
and they are connected by nearest neighbor bonds (which form the edges of
the polygon). The Hückel Hamiltonian matrix for benzene is nothing more
than the adjacency matrix for this graph. In this context, the eigenvalues
are associated with the energy states of the system, and the eigenvectors
provide information about the corresponding orbital structure for that par-
ticular energy.
(a) Using the representation on the right in Figure 4.12, number the atoms

(vertices) from 1 to 6 and write down the corresponding adjacency matrix
for benzene. The double lines in this graph should be treated the same
as the single line connections.

(b) Compute the eigenvalues of the matrix you found in part (a). Also, it can
be proved that if you sum up the eigenvalues of an adjacency matrix, you
get zero (see Section 4.3.4). Do your values satisfy this condition? If not,
provide a reason why.

(c) The atomic configuration for naphthalene is shown in Figure 4.13. Number
the atoms (vertices) from 1 to 10 and write down the corresponding adj-
acency matrix. From this compute the eigenvalues of the matrix. Also, it
can be proved that if you sum up the eigenvalues of an adjacency matrix,
you get zero. Do your values satisfy this condition? If not, provide a
reason why.

4.27. This problem considers finding the eigenvalues of an n× n symmetric
matrix A whose entries are given as

aij = αe−πα2(i−j)2 ,

where α = 20/(n− 1). In this problem, take n = 100.
(a) By computing the needed quantities in Theorem 3.4, show the matrix is

positive definite. Also, explain why the matrix is symmetric.
(b) Use the power method to calculate the dominant eigenvalue to four sig-

nificant digits. Make sure to state your stopping condition, and how many
iterations it took to find the eigenvalue.

180 4 Eigenvalue Problems

(c) Explain how to use the iterative error in part (b) to estimate the second
largest eigenvalue λ2. Using this estimate, and shifting, calculate λ2 to
four significant digits. Make sure to state your stopping condition, and
how many iterations it took to find the eigenvalue.

(d) Compute the smallest eigenvalue of A to four significant digits. Make
sure to state the method you used, the stopping condition, and how many
iterations it took to find the eigenvalue.

4.28. This problem considers finding the eigenvalues of an n× n symmetric
matrix A whose entries are given as aij = |i− j|.
(a) Write out the matrix in the case of when n = 5, and explain why the

matrix is not positive definite.
(b) Taking n = 1000, use the power method, and shifting if necessary, to cal-

culate the largest and the smallest eigenvalue of A. You should calculate
each eigenvalue to four significant digits. Also, explain why you know you
have calculated the correct eigenvalues.

(c) Taking n = 1000, calculate the eigenvalue of A that is closest to zero.
You should calculate the eigenvalue to four significant digits. Also, explain
why you know you have calculated the correct eigenvalue.

4.29. An often used age-structured model of a population divides the number
of females into age groups g1, g2, · · · , gn. Here g1 is the number in the
youngest group, g2 is the number in the second youngest group, etc. It is
assumed that after a given time interval, sigi of those in gi survive and move
to age group gi+1. Also, over the same time interval, the females in gi produce
bigi female babies. Setting g = (g1, g2, · · · , gn)T , with gk being the value at
time step tk and gk+1 being the value at time step tk+1, then gk+1 = Agk,
where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 b2 b3 · · · bn
s1 0 0 · · · 0
0 s2 0 · · · 0
...

. . .
...

0 · · · sn−2 0 0
0 · · · 0 sn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

This is known as a Leslie matrix. It is assumed that the si’s are positive, b1
and bn are non-negative, and the other bi’s are positive. In this case, the dom-
inant eigenvalue λ1 of A is positive. If λ1 > 1, then the population increases,
and it decreases if λ1 < 1. Also, note that this matrix is not symmetric, but
it has n linearly independent eigenvectors.
(a) Deer can survive up to 20 years in the wild. Taking n = 20, and assuming

their survivability deceases with age, let si = exp(−i/100). Also, assuming
3/4 of the females in each age group have one offspring each year, with
equal probability of being male or female, then bi = (3/4)(1/2) = 3/8.
The exception is the youngest group, and for this assume that b1 = 0.
Does the population increase or decrease?

Exercises 181

(b) If λ1 = 1, then the population approaches a constant value as time inc-
reases. For the deer in part (a), assuming b1 = 0 and b2 = b3 = · · · = bn =
b, what does b have to be so this happens? The value you find should be
correct to six significant digits.

4.30. An important factorization in mechanics is the polar decomposition.
For an n × n matrix A with a positive determinant, the factorization is
A = QP, where Q is an orthogonal matrix and P is a symmetric positive
definite matrix.
(a) Assuming the SVD of A has been computed, explain how this can be

used to compute Q and P. Make sure to explain why the formulas you
derive for Q and P guarantee that they have their required properties.

(b) According to Theorem 4.4, det(Q) = ±1. An orthogonal matrix with
det(Q) = −1 corresponds to a reflection, and these are considered to
be unphysical. For this reason, in mechanics one is interested in having
det(Q) = 1, which corresponds to what is known as a proper orthogo-
nal matrix and physically they correspond to rotations. Explain how to
modify, if necessary, your algorithm or formulas in part (a) so that Q is
a proper orthogonal matrix.

4.31. This problem considers the following n× n tri-diagonal matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a c

b a c 0
b a c

. . .
. . .

. . .

0 b a c
b a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

It is assumed that bc > 0 and n ≥ 3.
(a) Assuming c = b, the eigenvalues of A are λi = a + 2|b| cos(iθ), for i =

1, 2, . . . , n, where θ = π/(n+ 1). Show that

xi = (sin(φ), sin(2φ), sin(3φ), · · · , sin(nφ))T

is an eigenvector for λi, where φ = iθ.
(b) The matrix in part (a) is symmetric. Explain why it is positive definite if

a ≥ 2|b|.
(c) For the eigenvectors in part (a), show that xi · xj = 0 if i �= j, and

xi · xi = (n+ 1)/2.
(d) The eigenvalues of A are λi = a+ 2

√
bc cos(iθ), for i = 1, 2, . . . , n, where

θ = π/(n+ 1). Show that

xi = (κ sin(φ), κ2 sin(2φ), κ3 sin(3φ), · · · , κn sin(nφ))T

is an eigenvector for λi, where φ = iθ and κ =
√
b/c.

Chapter 5

Interpolation

5.1 Information from Data

The topic of this chapter is interpolation, which relates to passing a curve
through a set of data points. To put this in context, extracting information
from data is one of the central objectives in science and engineering and
exactly what or how this is done depends on the particular setting. Two
examples are shown in Figure 5.1. Figure 5.1(L) contains data obtained from
measurements of high redshift type supernovae. As is often the case with
computerized testing systems, there are many data points and there is some
scatter in the values obtained. Because of this one would not be interested
in finding a function that passes through all of these points, but rather a
function that behaves in a qualitatively similar manner as the data. In this
case one uses a fitting method, like least squares, to make the connection
more quantitative. Exactly how this might be done will be considered in
Chapter 8.

In comparison, the data in Figure 5.1(R) have a well-defined shape and for
this reason are more amenable to interpolation. This is also true for the data
shown in Figure 5.2. The hand data is typical of what arises in CAD applica-
tions, while the data on the right relates to a more mathematical application.
To explain, the data points are obtained by evaluating the function

f(x) =
1

3
+

∞∑
n=1

4(−1)n

n4/3π2
cos(nπx) (5.1)

at 10 points from the interval −1 ≤ x ≤ 1. What is seen is that the above
relatively complicated function does not have a correspondingly complicated
graph. This raises the question if we might be able to replace the function with
a much simpler expression that would serve as a respectable approximation
of the original.

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0 5

183

184 5 Interpolation

color
-0.2 0 0.2 0.4

μ B
 -

 5
 lo

g
10

(d
l c

-1
 H

0)
 +

 α
 ¥

 (
s-

1)

-0.5

0

0.5

Figure 5.1 Left: data related to a supernovae redshift [Astier et al., 2006]. Right:
data for nanopores in a supercapacitor [Kondrat et al., 2012].

x-axis
0.2 0.3 0.4 0.5 0.6 0.7

y-
ax

is

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

0

0.5

1

1.5

2

Figure 5.2 Left: geometric representation of a hand using interpolation [Burkardt,
2015]. Right: values of (5.1) at selected points in interval −1 ≤ x ≤ 1.

One of the better ways to test how well an interpolation method works is
to try it out on different data sets. In what follows we will use the sets shown
in Figure 5.3. Each consists of 12 equally spaced points over the interval
−1 ≤ x ≤ 1. The top two were generated using functions; the one in the
upper left comes from the 5th order polynomial

y(x) = (x + 0.9)(x+ 0.1)2(x− 0.2)(x− 0.8),

while the one on the upper right consists of points that lie on the circle x2 +
y2 = 1. The lower two are used to mimic or resemble a periodic function and
one with jumps. It is recommend that you spend a moment or two and sketch
in what you think would be an acceptable interpolation function for each data
set. This will help later when we see what the standard interpolation methods
produce.

It is of interest to know that many of the interpolation methods derived
in this chapter are summarized in Appendix C, Table C.1.

5.2 Global Polynomial Interpolation 185

x-axis
-1 -0.5 0 0.5 1

0

0.5

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

0

1

-1 -0.5 0 0.5 1

0

0.5

1

-1 -0.5 0 0.5 1

y-
ax

is

-0.2

0

0.2

0.4

Figure 5.3 Data sets that are used to test the various interpolation methods.

5.2 Global Polynomial Interpolation

If one wants to find a function to connect two data points, the easiest choice
is to use a straight line, in other words a linear function. Similarly, given three
data points one would likely use a quadratic. To generalize this idea, suppose
there are n+1 points and they are (x1, y1), (x2, y2), · · · , (xn+1, yn+1), where
x1 < x2 < · · · < xn+1. We are going to find a single nth degree polynomial
pn(x) that passes through each and every point. This is not particularly diffi-
cult and there are several ways to find the interpolation polynomial. However,
as is often the case in numerical computing, some methods are much more
sensitive to round-off error than other methods.

5.2.1 Direct Approach

Taking the direct approach, the simplest choice is to take

pn(x) = a0 + a1x+ · · ·+ anx
n. (5.2)

The interpolation requirement is that pn(x1) = y1, pn(x2) = y2, · · · ,
pn(xn+1) = yn+1. Using the above polynomial this produces the equations

186 5 Interpolation

a0 + a1x1 + · · ·+ anx
n
1 = y1

a0 + a1x2 + · · ·+ anx
n
2 = y2

...

a0 + a1xn+1 + · · ·+ anx
n
n+1 = yn+1

This can be rewritten in matrix form as Va = y, where a = (a0, a1, · · · , an)T ,
y = (y1, y2, · · · , yn+1)

T , and

V =

⎛
⎜⎜⎜⎝

1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

2
...

...
...

...
1 xn+1 x2

n+1 . . . xn
n+1

⎞
⎟⎟⎟⎠ . (5.3)

This is a Vandermonde matrix. Given that it has a name you should not be
surprised that it plays an important role in interpolation, but as will be seen
shortly not all of its contributions are good.

Example

Each of the test data sets in Figure 5.3 contains 12 points. Fitting p11(x)
to each set produces the curves shown in Figure 5.4. The top two look to
be reasonable fits to the data while the bottom two are not. The over- and
under-shoots seen in the bottom two curves often appear with higher degree
polynomials and one of the drawbacks of using a global polynomial with
larger data sets. �

x-axis
-1 -0.5 0 0.5 1

-3

-2

-1

0

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-3

-2

-1

0

1

2

3
-1 -0.5 0 0.5 1

0

0.5

1

-1 -0.5 0 0.5 1

y-
ax

is

-0.2

0

0.2

0.4

Figure 5.4 Using a global polynomial p11(x), as given in (5.2), for the data in
Figure 5.3.

5.2 Global Polynomial Interpolation 187

The pervious example indicates that there are concerns about using a
global polynomial, particularly when you have a large number of data points.
In fact, there are significant problems not evident in the example related to
the condition number of the Vandermonde matrix. As shown in Section 3.4,
V can be ill-conditioned for even small values of n. It is possible in some
cases to rescale the data to improve the condition number, and an example
of this is given in Exercise 5.28. However, it is possible to avoid this particular
problem altogether, and this will be considered next. Even so, be warned that
there is a second problem with a large number of equally spaced data points
and this is discussed in Section 5.2.3.

5.2.2 Lagrange Approach

The easiest way to explain how to avoid using the Vandermonde matrix is to
examine what happens with linear and quadratic functions. So, suppose the
data points are (x1, y1) and (x2, y2), where x1 �= x2. The global polynomial
in this case is linear and it can be written as

p1(x) = y1 +
y2 − y1
x2 − x1

(x− x1)

= y1
x− x2

x1 − x2
+ y2

x− x1

x2 − x1

= y1�1(x) + y2�2(x),

where

�1(x) =
x− x2

x1 − x2
,

and

�2(x) =
x− x1

x2 − x1
.

The functions �1(x) and �2(x) are examples of linear Lagrange interpolation
functions and they have the properties that �1(x1) = �2(x2) = 1, �1(x2) = 0,
and �2(x1) = 0. In other words, each �i(x) is linear, equal to one when x = xi

and equal to zero at the other xj data point.
It is relatively easy to generalize this idea and write down the quadratic

Lagrange interpolation functions. Namely, if the data points are (x1, y1),
(x2, y2), and (x3, y3) then

�1(x) =
(x− x2)(x − x3)

(x1 − x2)(x1 − x3)
,

�2(x) =
(x− x1)(x − x3)

(x2 − x1)(x2 − x3)
,

�3(x) =
(x− x1)(x − x2)

(x3 − x1)(x3 − x2)
.

188 5 Interpolation

By design, each �i(x) is quadratic, equal to one when x = xi and equal to
zero at the other xj data points. Using these functions the corresponding
quadratic interpolation polynomial is

p2(x) = y1�1(x) + y2�2(x) + y3�3(x). (5.4)

For this to be well-defined it is required that the xi’s are distinct, which
means that x1 �= x2, x1 �= x3, and x2 �= x3. Also, although it looks different,
(5.4) produces the same function as given in (5.2) in the case of when n = 2.

Generalizing the above results we have that given data points (x1, y1),
(x2, y2), · · · , (xn+1, yn+1), with the xi’s distinct, the interpolation polynomial
can be written as

pn(x) =

n+1∑
i=1

yi�i(x), (5.5)

where the Lagrange interpolation functions are defined as

�i(x) =
(x− x1)(x− x2) · · · (x− xi−1)(x− xi+1) · · · (x − xn+1)

(xi − x1)(xi − x2) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn+1)
(5.6)

=

n+1∏
j=1
j �=i

x− xj

xi − xj
. (5.7)

In a similar manner, as in the linear and quadratic examples, each �i(x) is
an nth degree polynomial, it is equal to one when x = xi, and it equals zero
when x = xj for j �= i.

Example

To find the global polynomial that interpolates the data in Table 5.1, first note
that the data is (x1, y1) = (0, 1), (x2, y2) = (1/2,−1), and (x1, y1) = (1, 2).
Consequently, the polynomial is

p2(x) = y1�1(x) + y2�2(x) + y3�3(x)

= �1(x) − �2(x) + 2�3(x),

where �1(x) = 2(x−1/2)(x−1), �2(x) = −4x(x−1), and �3(x) = 2x(x−1/2).
�

x 0 1/2 1

y 1 −1 2

Table 5.1 Data for example.

5.2 Global Polynomial Interpolation 189

The Lagrange interpolation formulas in (5.5) and (5.7) have an advantage
over the direct formula, given in (5.2), in that the Vandermonde matrix is
avoided. There is still a potential computational problem related to overflow,
particularly for (5.6). This is the same problem explored in Exercise 1.7. It
can help to rescale the data, and this is explained in Exercise 5.28. However,
writing the formula in factored form as in (5.7) significantly reduces the
possibility of overflow.

The price paid for avoiding the Vandermonde matrix is the effort needed
to evaluate the �i’s, and this is often stated to be a drawback of the method.
For a large number of data points, evaluating �i(x) can require about 2n2

flops. To translate this into computing time, if you use 20 data points and
2,000 evaluation points, the computing time is about 1msec. Similarly, if
you use 200 data points and 20,000 evaluation points, the computing time
is about 1 sec. In other words, the computational time is not particularly
significant unless you are working with a large data set. In such cases there
are more efficient ways to write the interpolation formulas, using something
called barycentric weights, and these are explored in Exercise 5.29. However,
there is a more significant problem with this method and this is explained
next.

5.2.3 Runge’s Function

Now that the ill-conditioned matrix problem has been avoided it is time to
explain the other problem with using a global interpolation polynomial. For
this we can use the top two plots in Figure 5.4. It is seen that with the 10
data points we have obtained a fairly accurate approximation of the original
functions. Always trying to improve things, one might think that by adding
data points that the approximation will be even better. For many functions
this does indeed happen but there are functions where it does not (and you
would think it should). The example many use to demonstrate this is

f(x) =
1

1 + 25x2
, (5.8)

and this is known as Runge’s function. This is plotted in Figure 5.5, along
with p4(x) and p12(x). The interpolation polynomials are constructed using
equally spaced data points. It is seen that in the center of the interval the
approximation improves but it gets worse towards the endpoints. Increasing
the number of data points makes the situation worse in the sense that the
magnitude of |pn(x)| near the endpoints increases. For example, when n = 40
the maximum in |pn(x)| is about 104, while for n = 100 the maximum in
|pn(x)| is about 1014. Moreover, this behavior is not limited to equally spaced
points. If you take the points randomly from the interval, the maximum in
|pn(x)| is often even larger.

190 5 Interpolation

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-4

-3

-2

-1

0

1

Runge
n = 4
n = 12

Figure 5.5 The Runge function (5.8) along with two interpolating polynomials.

The conclusion from the above discussion is that using a global interpola-
tion polynomial works well for small data sets but has limited value as the
number of data points increases. One solution for larger data sets is to break
them into small groups, use interpolation on the subgroups, and then connect
the information into a coherent whole. This is considered in the next section.
If you are set on using a global polynomial then you need to consider where
the xi’s are placed in the interval, and this is considered in Section 5.5.4.

5.3 Piecewise Linear Interpolation

We will consider using linear interpolation between adjacent data points. This
is effectively what is done in a child’s connect the dots puzzle. An example
is shown in Figure 5.6 where the line between (x1, y1) and (x16, y16) is pre-
drawn in the puzzle.

Figure 5.6 A typical
child’s puzzle of connect
the dots.

5.3 Piecewise Linear Interpolation 191

Figure 5.7 Intervals and functions used for piecewise linear interpolation.

To be able to write down the mathematical formula used for piecewise
linear interpolation, assume that the data points are (x1, y1), (x2, y2), · · · ,
(xn+1, yn+1), where x1 < x2 < · · · < xn+1. The linear function connecting
adjacent data points is given as

gi(x) = yi +
yi+1 − yi
xi+1 − xi

(x− xi), for xi ≤ x ≤ xi+1. (5.9)

Assembling these into a complete description of the interpolation function
we get

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(x) if x1 ≤ x ≤ x2

g2(x) if x2 ≤ x ≤ x3

...
...

gn(x) if xn ≤ x ≤ xn+1.

(5.10)

An illustration of this is given in Figure 5.7.
It is possible to write g(x) is a form that can be easier to use, and looks a lot

simpler than the expression in (5.10). To do this we introduce the piecewise
linear function Gi(x), with G(xi) = 1 and G(xj) = 0 if j �= i. The formula
for this function is

Gi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ xi−1,
x− xi−1

xi − xi−1
if xi−1 ≤ x ≤ xi,

x− xi+1

xi − xi+1
if xi ≤ x ≤ xi+1,

0 if xi+1 ≤ x,

(5.11)

Figure 5.8 The piecewise linear function Gi(x) defined in (5.11).

192 5 Interpolation

and a sketch of this is given in Figure 5.8. In the case of when the points
are equally spaced, so xi+1 − xi = h, this can be written in a more compact
form as

Gi(x) = G

(
x− xi

h

)
, (5.12)

where

G(x) =

{
1− |x| if |x| ≤ 1,

0 if 1 ≤ |x|. (5.13)

Note that the defining properties of Gi(x) are very similar to the proper-
ties that were used to define the Lagrange interpolation functions �i(x) in
Section 5.2.2.

With this, the piecewise linear interpolation function (5.10) can be
written as

g(x) =

n+1∑
i=1

yiGi(x). (5.14)

Just so it’s clear, this expression produces the same interpolation function as
the expanded version given in (5.10). Also, because of its shape, Gi(x) has a
variety of names, and they include the hat function and the chapeau function.

As a final comment, to define G1 it is necessary to introduce x0, with
x0 < x1, and for Gn+1 we need to add in xn+2, with xn+1 < xn+2. Exactly
where these two points are located in not important because they have no
affect on the interpolation function over the interval x1 ≤ x ≤ xn+1.

x-axis
-1 -0.5 0 0.5 1

0

0.5

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

0

1

-1 -0.5 0 0.5 1

0

0.5

1

-1 -0.5 0 0.5 1

y-
ax

is

-0.2

0

0.2

0.4

Figure 5.9 Using a piecewise linear function to fit the data in Figure 5.3.

5.3 Piecewise Linear Interpolation 193

Example

Using a piecewise linear function to fit the data in Figure 5.9 produces the
curves shown in Figure 5.9. These curves are not bad fits but they are also not
great. They are not bad because they do not contain the over- and under-
shoots seen in Figure 5.9. However, they are not great because they are
jagged. Note that in some applications, such as the one in Figure 5.6, jagged
is what is desired but in many applications this is something one wants to
avoid. �

Example

Find the piecewise linear function that interpolates the data in Table 5.2.
Note that in this case, x1 = 0, x2 = 1/2, and x2 = 1.

Method 1: Using (5.10),

g(x) =

{
g1(x) if 0 ≤ x ≤ 1/2
g2(x) if 1/2 ≤ x ≤ 1,

where

g1(x) = y1 +
y2 − y1
x2 − x1

(x− x1)

= 1− 4x,

and

g2(x) = y2 +
y3 − y2
x3 − x2

(x− x2)

= −4 + 6x.

Method 2: Using (5.14),

g(x) = y1G1(x) + y2G2(x) + y3G3(x)

= G1(x) −G2(x) + 2G3(x),

x 0 1/2 1

y 1 −1 2

Table 5.2 Data for example.

194 5 Interpolation

where

G1(x) =

⎧⎪⎨
⎪⎩
1 + 2x if − 1/2 ≤ x ≤ 0,

1− 2x if 0 ≤ x ≤ 1/2,

0 otherwise,

G2(x) =

⎧⎪⎨
⎪⎩
2x if 0 ≤ x ≤ 1/2,

2− 2x if 1/2 ≤ x ≤ 1,

0 otherwise,

and

G3(x) =

⎧⎪⎨
⎪⎩
−1 + 2x if 1/2 ≤ x ≤ 1,

3− 2x if 1 ≤ x ≤ 3/2,

0 otherwise. �

5.4 Piecewise Cubic Interpolation

The principal criticism of piecewise linear interpolation is that the approx-
imation function has corners. One method that is often used to avoid this
is to replace the linear functions with cubics. Instead of (5.10), we have a
interpolation function of the form (see Figure 5.10)

s(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1(x) if x1 ≤ x ≤ x2

s2(x) if x2 ≤ x ≤ x3

...
...

sn(x) if xn ≤ x ≤ xn+1 ,

(5.15)

where in the ith interval the function is

si(x) = ai+ bi(x−xi)+ ci(x−xi)
2+di(x−xi)

3, for xi ≤ x ≤ xi+1. (5.16)

To satisfy the interpolation conditions it is required that

si(xi) = yi, si(xi+1) = yi+1, for i = 1, 2, · · · , n. (5.17)

This will determine two of the four constants in si. We will also require that
the transition between intervals is as smooth as possible. First, the slopes
must match and this means that

s′i(xi+1) = s′i+1(xi+1), for i = 1, 2, · · · , n− 1. (5.18)

Second we will require that the second derivatives also match, and so

s′′i (xi+1) = s′′i+1(xi+1), for i = 1, 2, · · · , n− 1. (5.19)

5.4 Piecewise Cubic Interpolation 195

Conditions (5.17)–(5.19) are the basic requirements for s(x) to be a cubic
spline. However, s(x) has 4n coefficients that we need to determine, and
these conditions produce 4n− 2 equations. In other words, we are short two
conditions. What is usually done is to specify conditions at the left and right
ends of the data interval. Some of the commonly made choices are as follows:

• Natural Spline: s′′1 (x1) = 0 and s′′n(xn+1) = 0

This produces a spline with an interesting property related to curvature,
and this will be explained later.

• Clamped Spline: s′1(x1) = y′1 and s′n(xn+1) = y′n+1

This requires knowing the value of the derivative at the endpoints, some-
thing that is not usually available.

Figure 5.10 Intervals and functions used for piecewise cubic interpolation.

• Not-a-Knot Spline: s′′′1 (x2) = s′′′2 (x2) and s′′′n−1(xn) = s′′′n (xn)

This is the default choice in MATLAB.

Whichever choice is made, the resulting function s(x) provides a smooth
interpolation of the given data points.

Example

To find the natural cubic spline that interpolates the data in Table 5.3, we
use (5.15) and write

s(x) =

{
s1(x) if 0 ≤ x ≤ 1/2
s2(x) if 1/2 ≤ x ≤ 1,

where
s1(x) = a1 + b1x+ c1x

2 + d1x
3,

and
s2(x) = a2 + b2(x− 1/2) + c2(x− 1/2)2 + d2(x − 1/2)3.

196 5 Interpolation

x 0 1/2 1

y 1 −1 2

Table 5.3 Data for example.

From the interpolation conditions (5.17),

s1(0) = 1 : a1 = 1,
s1(1/2) = −1 : a1 +

1
2b1 +

1
4c1 +

1
8d1 = −1,

s2(1/2) = −1 : a2 = −1,
s2(1) = 2 : a2 +

1
2b2 +

1
4c2 +

1
8d2 = 2.

Also, from (5.18) and (5.19)

s′1(1/2) = s′2(1/2) : b1 + c1 +
3
4d1 = b2,

s′′1(1/2) = s′′2 (1/2) : 2c1 + 3d1 = 2c2.

Finally, to qualify to be a natural cubic spline it is required that

s′′1(0) = 0 : c1 = 0,
s′′2(1) = 0 : 2c2 + 3d2 = 0.

It is now a matter of solving the above equations, and after doing this one
finds that

s1(x) = 1− 13

2
x+ 10x3,

and

s2(x) = −1 + (x− 1/2) + 15(x− 1/2)2 − 10(x− 1/2)3. �

To find s(x) it remains to solve 4n equations with 4n unknowns. It is pos-
sible to just solve the resulting matrix equation for the unknowns, but there
are better ways to find the coefficients. One possibility is to mathematically
simplify the equations, and reduce the problem to solving a system with n
unknowns. Another approach is to use cubic B-splines. This will also reduce
the problem down to having to solve for (approximately) n unknowns. The
advantage of B-splines is that they are easier to code. They are also very use-
ful for least squares fitting of data (see Exercise 8.32), as well when solving
differential equations numerically [Holmes, 2007].

5.4 Piecewise Cubic Interpolation 197

5.4.1 Cubic B-Splines

The idea is to write the interpolation function in the form

s(x) =
∑

aiBi(x). (5.20)

The functions Bi(x) are called cubic B-splines, and a sketch of a typical
B-spline is given in Figure 5.11. The above expression has a passing similar-
ity to the expressions used for Lagrange interpolation and piecewise linear
interpolation. However, one important difference is that the coefficient ai in
the above sum is not necessarily equal to the data value yi.

The derivation of (5.20) consists of two steps. The first is the construction
of the cubic B-splines Bi(x). This only has to be done once, which means
that these functions do not need to be rederived if the data set is changed.
Once this is complete, then the problem used to find the ai’s is determined.
The values of the ai’s do depend on the data, and so this problem must be
solved each time the data set is changed.

Finding the Bi’s

Each Bi(x) is a piecewise cubic function and has the form

Bi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ xi−2,

qi−2(x) if xi−2 ≤ x ≤ xi−1,

qi−1(x) if xi−1 ≤ x ≤ xi,

qi+1(x) if xi ≤ x ≤ xi+1,

qi+2(x) if xi+1 ≤ x ≤ xi+2,

0 if xi+2 ≤ x,

(5.21)

where qj(x) = Aj +Bj(x− xj) +Cj(x− xj)
2 +Dj(x− xj)

3. We will assume
that the xi’s are equally spaced, with h = xi+1 − xi, so the function Bi(x) is
symmetric about x = xi. Note that one consequence of the symmetry is that
B′

i(xi) = 0.

xi–2

qi–2 qi+2

qi–1 qi+1

xi–1 xi xi+1 xi+2

B
–S

p
lin

e

Figure 5.11 Sketch of the various components of a cubic B-spline.

198 5 Interpolation

The coefficients of the qj ’s in (5.21) are determined from the requirement
that Bi ∈ C2(−∞,∞). This is accomplished by requiring the following:

x = xi−2: qi−2(xi−2) = 0, q′i−2(xi−2) = 0, and q′′i−2(xi−2) = 0

x = xi−1: qi−2(xi−1) = qi−1(xi−1), q′i−2(xi−1) = q′i−1(xi−1), and

q′′i−2(xi−1) = q′′i−1(xi−1)

x = xi: qi−1(xi) = qi+1(xi), q′i−1(xi) = q′i+1(xi), and

q′′i−1(xi) = q′′i+1(xi)

with similar conditions at x = xi+1 and x = xi+2. From the conditions
at x = xi−2 one easily concludes that qi−2(x) = Di−2(x − xi−2)

3. In a
similar way, it is found that qi+2(x) = Di+2(x − xi+2)

3, where from the
symmetry, Di+2 = −Di−2. From the smoothness requirements at xi−1, and
the requirement that B′(xi) = 0, one finds that

qi−1(x) = Di−2

[
h3 + 3h2(x− xi−1) + 3h(x− xi−1)

2 − 3(x− xi−1)
3
]
.

A similar equation can be derived for qi+1(x). This leaves one undetermined
constant and the convention is to take Bi(xi) = 2/3, which means that
Di−2 = 1/(6h3). With this, Bi(x) is completely defined and the functions in
(5.21) are

qi−2(x) =
1

6h3
(x− xi−2)

3,

qi−1(x) =
1

6
+

1

2h
(x− xi−1) +

1

2h2
(x− xi−1)

2 − 1

2h3
(x− xi−1)

3,

qi+1(x) =
1

6
− 1

2h
(x− xi+1) +

1

2h2
(x − xi+1)

2 +
1

2h3
(x− xi+1)

3,

qi+2(x) = − 1

6h3
(x− xi+2)

3.

By factoring the above polynomials it is possible to show that

Bi(x) = B

(
x− xi

h

)
, (5.22)

where

B(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

3
− x2

(
1− 1

2
|x|
)

if |x| ≤ 1,

1

6
(2− |x|)3 if 1 ≤ |x| ≤ 2,

0 if 2 ≤ |x|.

A plot of the resulting function is shown in Figure 5.12. At xi−1 and xi+1 the
curve makes such a smooth transition across the respective data point that
you would not know that the cubics change there. The same is true at xi−2

and xi+2 where the function makes a smooth transition to zero.

5.4 Piecewise Cubic Interpolation 199

Finding the ai’s

The cubic spline interpolation function can now be written as

s(x) =
n+2∑
i=0

aiBi(x). (5.23)

Just so it is clear, this function satisfies the smoothness conditions in (5.18)
and (5.19), but does not yet satisfy the interpolation conditions in (5.17) or
the specific end conditions (clamped, natural, etc.). Also, the sum is over
all possible Bi’s that are nonzero on the interval x1 ≤ x ≤ xn+1. This has
required us to include the i = 0 and i = n+ 2 terms even though there is no
x−1, x0, xn+2, or xn+3 in the original data set. We will deal with this shortly.
First note that at xi only Bi−1, Bi, and Bi+1 are nonzero. In particular,
using the values given in Table 5.4,

s(xi) = ai−1Bi−1(xi) + aiBi(xi) + ai+1Bi+1(xi)

=
1

6
(ai−1 + 4ai + ai+1).

Because of the interpolation requirement (5.17) we have that

ai−1 + 4ai + ai+1 = 6yi, for i = 1, 2, · · · , n+ 1. (5.24)

To use this we need to know a0 and an+2, and this is where the two additional
conditions are used. We will use a natural spline, and for this note that

s′′(xi) = ai−1B
′′
i−1(xi) + aiB

′′
i (xi) + ai+1B

′′
i+1(xi)

=
1

h2
(ai−1 − 2ai + ai+1).

Solving s′′(x1) = 0 we get that a0 = 2a1 − a2, and at the other end
one finds that an+2 = 2an+1 − an. In (5.24), when i = 1 one finds that
a1 = y1 and at the other end one gets that an+1 = yn+1. The rem-

xi–2

0

1/3

2/3

xi–1

B
–S

p
lin

e

xi xi+1 xi+2

Figure 5.12 Plot of the cubic B-spline Bi(x) defined in (5.22).

200 5 Interpolation

xi−1 xi xi+1 xj for j �= i, i± 1

Bi
1
6

2
3

1
6

0

B′
i

1
2h

0 − 1
2h

0

B′′
i

1
h2 − 2

h2
1
h2 0

Table 5.4 Values of the B-spline Bi(x), as defined in (5.21), at the grid points used
in its construction.

aining ai’s are found by solving Aa = z where a = (a2, a3, · · · , an)T ,
z = (6y2 − y1, 6y3, · · · , 6yn−1, 6yn − yn+1)

T , and A is the (n − 1) × (n − 1)
tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 1

1 4 1 0
1 4 1

. . .
. . .

. . .

0 1
1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

This positive definite and tridiagonal matrix equation can be solved using the
Thomas algorithm (see Section 3.8). This procedure is very fast, and requires
minimal storage, which means finding the coefficients for a cubic spline is
fairly easy even for a large number of interpolation points.

As a final comment, for a clamped spline it is also necessary to solve an
equation of the form Aa = z, where A and z are given in Exercise 5.30.

Example

Using a natural cubic spline to fit the data in Figure 5.3 produces the solid
(blue) curves shown in Figure 5.13. For comparison, the curves obtained
using a not-a-knot spline are also shown. The interpolation of the top two
data sets is as good as what was obtained using the global polynomial, and
there are few minor differences between the two spline functions. Moreover,
both splines give a better representation than a global polynomial for the
lower two data sets. For the lower right data set some small over- and under-
shoots are present in the spline functions, but they are not as pronounced as
those in Figure 5.4. It is also evident that there are also differences between
the two spline functions, although these occur primarily in the regions close
to the endpoints. �

5.4 Piecewise Cubic Interpolation 201

x-axis
-1 -0.5 0 0.5 1

0

0.5

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

0

1

-1 -0.5 0 0.5 1

0

0.5

1

-1 -0.5 0 0.5 1

y-
ax

is

-0.2

0

0.2

0.4

Figure 5.13 Using a natural cubic spline function, the solid (blue) curves, and a
Not-a-Knot spline, the dashed (black) curves, to fit the data in Figure 5.3.

Example

To find the natural cubic spline that interpolates the data in Table 5.1, we
use (5.23) and write

s(x) = a0B0(x) + a1B1(x) + a2B2(x) + a3B3(x) + a4B4(x),

where x0 = −1/2, x4 = 3/2, and Bi(x) = B(2(x− xi)). The interpolation
requirements are

s(0) = 1 : a0 + 4a1 + a2 = 6,
s(1/2) = −1 : a1 + 4a2 + a3 = −6,

s(1) = 2 : a2 + 4a3 + a4 = 12,

and the natural spline end conditions are

s′′(0) = 0 : a0 − 2a1 + a2 = 0,
s′′(1) = 0 : a2 − 2a3 + a4 = 0.

Solving these equations it is found that

s(x) =
17

4
B0(x) +B1(x)− 9

4
B2(x) + 2B3(x) +

15

4
B4(x). �

The question arises as to why the natural cubic spline works so well. There
is a partial answer to this and it involves curvature. Recall that for a curve
y = f(x), the curvature at a point is defined as

202 5 Interpolation

κ =
|f ′′(x)|

[1 + (f ′)2]3/2
.

Assuming the curve is not particularly steep, one can approximate the cur-
vature as κ ≈ |f ′′(x)|. This is brought up because of the next result due to
Holladay [1957].

Theorem 5.1. If q ∈ C2[a, b] interpolates the same data points that the nat-
ural cubic spline function (5.15) interpolates, then

∫ b

a

[s′′(x)]2dx ≤
∫ b

a

[q′′(x)]2dx.

In these integrals, a = x1 and b = xn+1.

What this theorem states is that out of all smooth functions that interpolate
the data, the natural cubic spline produces the interpolation function with
the smallest total curvature (squared). This helps explain why the spline
interpolations in Figure 5.13 do not suffer the significant under- and over-
shoots seen in Figure 5.4.

5.5 Function Interpolation

In using the data sets to test out the various interpolation methods we have
been using a qualitative, or visual, determination of how well they do. We
are now going to make the test more quantitative and this will restrict the
applications. In particular, it is assumed that the data comes from the eval-
uation of a given function f(x) and we are going to investigate how well the
interpolation function approximates f(x) between the data points.

In what follows the data points are (x1, y1), (x2, y2), · · · , (xn+1, yn+1),
where yi = f(xi). Also, unless stated explicitly to the contrary, the step
size h = xi+1 − xi is assumed constant (so the xi’s are equally spaced), with
a = x1 and b = xn+1. What is of interest is whether the approximation gets
better as the step size h gets smaller. In particular, does the error go to zero
as h goes to zero?

5.5.1 Global Polynomial Interpolation

We begin with a global interpolation polynomial pn(x). As explained in Sec-
tion 5.2.3, pn(x) can fail to provide a good approximation of a function if a
large number of equally spaced points are used. However, it is effective for a

5.5 Function Interpolation 203

small number of points, as long as they are not too far apart. In fact, such
approximations are central to several of the methods considered later in the
text. The critical result needed to determine the error when using pn(x) is
given in the following theorem:

Theorem 5.2. If f ∈ Cn+1[a, b], then

f(x) = pn(x) +
f (n+1)(η)

(n+ 1)!
qn+1(x), for a ≤ x ≤ b, (5.25)

where
qn+1(x) = (x− x1)(x− x2) · · · (x− xn+1), (5.26)

and η is a point in (a, b).

Outline of Proof: To explain how this is proved, we will consider the case of
when n = 1. In this case, q2(x) = (x− a)(x− b). The formula in (5.25) holds
when x = a or x = b, so assume that a < x < b. The key step is a trick,
which consists of introducing the function

F (z) = f(z)− p1(z) +
f(x)− p1(x)

q2(x)
q2(z).

Given the way it is defined, F (a) = 0, F (x) = 0, and F (b) = 0. According to
Rolle’s theorem, there must be a point z1, where a < z1 < x and F ′(z1) = 0,
and there must be a point z2, where x < z2 < b and F ′(z2) = 0. Using Rolle’s
theorem again, there must be a point η, where z1 < η < z2 and F ′′(η) = 0.
From the above formula for F (z), one finds that F ′′(η) = 0 reduces to (5.25).
The case of when n > 1 is similar, except one uses Rolle’s theorem n + 1
times (instead of twice). �

An immediate consequence of this theorem is the following:

Theorem 5.3. If f ∈ Cn+1[a, b], then the global interpolation polynomial
pn(x) satisfies

|f(x)− pn(x)| ≤ 1

(n+ 1)!
||f (n+1)||∞||qn+1||∞, for a ≤ x ≤ b,

where
||f (n+1)||∞ = max

a≤x≤b
|f (n+1)(x)|,

and
||qn+1||∞ = max

a≤x≤b
|qn+1(x)|.

It should be pointed out that the above two theorems hold in the case of
when the xi’s are not equally spaced (this fact is used in Section 5.5.4).

204 5 Interpolation

To make use of Theorem 5.3, we need to determine ||qn+1||∞. This is not
hard to do for small values of n, and to illustrate this, consider the case of
when n = 2. For this, q2(x) = (x − x1)(x − x2), where x2 = x1 + h. The
maximum, and minimum, of this function occur either at the endpoints or
at a critical point inside the interval. First note that q2(x1) = q2(x2) = 0.
As for the critical points, solving q′1(x) = 0, one finds that x = x1 + 1

2h.
From this it follows that ||q2||∞ = 1

4h
2. Similarly, if n = 3, then q3(x) =

(x − x1)(x − x2)(x − x3), where x2 = x1 + h and x3 = x1 + 2h. Solving
q′3(x) = 0, one finds two solutions, x = x1 + h ± 1

3h
√
3. From this it follows

that ||q3||∞ = 2
9h

3
√
3. Continuing this, the values in Table 5.5 are obtained.

n ||qn+1||∞
1 1

4
h2

2 2
9

√
3h3

3 h4

4 1
50

(√
145 − 1

)√
150 + 10

√
145 h5

5 16
27

(7
√
7 + 10)h6

Table 5.5 Value of ||qn+1||∞, which appears in the error formula in Theorem 5.3.

Example

Suppose that f(x) = cos(2πx) and we use the interpolation polynomial p2(x),
with points x1, x2 = x1 + h, and x3 = x1 + 2h. According to Theorem 5.3,
how small does h need to be to guarantee an error of 10−6, irrespective of the
choice for x1? To answer this, since f ′′′ = −(2π)3 sin(2πx), then ||f ′′′||∞ ≤
(2π)3. With this we have that

1

6
||f ′′′||∞||q3||∞ ≤

√
3

(
2π

3
h

)3

.

Consequently we will achieve the require error bound if
√
3(2πh/3)3 ≤ 10−6,

which means h ≤ 35/6/(200π) ≈ 0.0040. �

Finding ||qn+1||∞ for larger values of n is difficult, and the usual approach
is to find an upper bound on this number. One that is not hard to derive is
(see Exercise 5.31)

||qn+1||∞ ≤ 1

4
n!hn+1. (5.27)

5.5 Function Interpolation 205

Using this, the inequality in Theorem 5.3 can be written as

|f(x)− pn(x)| ≤ 1

4(n+ 1)
||f (n+1)||∞hn+1, for a ≤ x ≤ b, (5.28)

If this is used in the above example, the conclusion is that it is necessary to
have h ≤ (3/2)1/3/(100π) ≈ 0.0036. The fact that this is smaller than the
requirement given in the example is a reflection of the inequality in (5.27).

5.5.2 Piecewise Linear Interpolation

The next easiest method to analyze is piecewise linear interpolation. An
example is shown in Figure 5.14, where f(x) = cos(2πx) is approximated
using 6 points over the interval 0 ≤ x ≤ 1. How well the linear functions
approximate f(x) depends on the subinterval. This is why in the analysis for
the general case in the next paragraph we first determine what happens over
each subinterval xi ≤ x ≤ xi+1.

To determine how well f(x) is approximated by gi(x), given in (5.9), over
the subinterval xi ≤ x ≤ xi+1 we can use Theorem 5.3. In this case, n = 1
and q2(x) = (x− xi)(x − xi+1). Consequently,

|f(x)− gi(x)| ≤ 1

2
max

xi≤x≤xi+1

|f ′′(x)| max
xi≤x≤xi+1

|q2(x)|

=
1

8
h2 max

xi≤x≤xi+1

|f ′′(x)|

≤ 1

8
h2||f ′′||∞.

This applies to each subinterval, which gives the next result.

Theorem 5.4. If f ∈ C2[a, b] then the piecewise linear interpolation function
(5.9) satisfies

|f(x)− g(x)| ≤ 1

8
h2||f ′′||∞, for a ≤ x ≤ b,

where ||f ′′||∞ = maxa≤x≤b |f ′′(x)|.

This means that the piecewise linear interpolation function converges to the
original function and the error is second order (because of the h2). Conse-
quently, if the number of interpolation points is doubled, the error in the
approximation should decrease by about a factor of 1/4.

206 5 Interpolation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

-1

-0.5

0

0.5

1
y-

ax
is

Exact
P-Linear

Figure 5.14 Piecewise linear interpolation of f(x) = cos(2πx).

Examples

1. Piecewise linear interpolation is used to approximate f(x) = cos(2πx) in
Figure 5.14. According to Theorem 5.4, what is the error bound for this
approximation?

The interval in this case is 0 ≤ x ≤ 1. Since f(x) = cos(2πx), then
f ′′(x) = −4π2 cos(2πx) and from this it follows that ||f ′′||∞ = 4π2. Given
that h = 1/5, the error bound is |f(x)−g(x)| ≤ π2/50, where π2/50 ≈ 0.2.
�

2. For f(x) = cos(2πx), where 0 ≤ x ≤ 1, how many interpolation points are
needed to guarantee an error of 10−4?

Since ||f ′′||∞ = 4π2, then we want π2h2/2 ≤ 10−4. This gives

h ≤
√
2× 10−2/π.

If n is the number of interpolation points, then h = 1/(n − 1), and com-
bining our results, n ≥ 1 +

√
2π2 × 102 ≈ 1396.8. Therefore, we need to

take n ≥ 1397. �

3. According to Theorem 5.4, for what functions will there be zero error using
piecewise linear interpolation, no matter what the interpolation interval?

This requires ||f ′′||∞ = 0, which means that f ′′(x) = 0 for a ≤ x ≤ b.
Therefore, to have zero error it must be that f(x) = α+ βx, i.e., it must
be a linear function in this interval. �

5.5 Function Interpolation 207

5.5.3 Cubic Splines

This brings us to the question of how well the cubic splines do when inter-
polating a function. The answer depends on what type of spline function is
used (natural, clamped, or not-a-knot). To illustrate, in Figure 5.15 the func-
tion f(x) = cos(2πx) is approximated using both a natural and a clamped
cubic spline. The clamped spline provides a somewhat better approximation
but this is not surprising because it has the advantage of using the deriva-
tive information at the endpoints. It is possible to determine the error for
the clamped spline, but because this requires some effort to derive only the
result will be stated (see Hall and Meyer 1976 for the proof).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y-
ax

is

-1

-0.5

0

0.5

1

Exact
Natural

x-axis
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y-
ax

is

-1

-0.5

0

0.5

1

Exact
Clamped

Figure 5.15 Natural and clamped cubic spline interpolation of f(x) = cos(2πx).

Theorem 5.5. If f ∈ C4[a, b] then the clamped cubic spline interpolation
function (5.15) satisfies

|f(x)− s(x)| ≤ 5

384
h4||f ′′′′||∞, for a ≤ x ≤ b,

where ||f ′′′′||∞ = maxa≤x≤b |f ′′′′(x)|. Moreover, for a ≤ x ≤ b,

|f ′(x)− s′(x)| ≤ 1

24
h3||f ′′′′||∞,

|f ′′(x)− s′′(x)| ≤ 1

3
h2||f ′′′′||∞.

This is an amazing result because it states that the clamped cubic spline
can be used to approximate f(x) and its first two derivatives. Moreover,

208 5 Interpolation

the error in approximating f(x) is fourth-order (because of the h4). As an
example, if the number of interpolation points is increased by a factor of 10,
the error bound decreases by about a factor of 104. In comparison, according
to Theorem 5.4, the error for piecewise linear interpolation decreases by a
factor of 102.

Examples

1. A clamped cubic spline is used to approximate f(x) = cos(2πx) in
Figure 5.15. According to Theorem 5.5, what is the error bound for this
approximation?

The interval is 0 ≤ x ≤ 1. Since f(x) = cos(2πx), then f ′′′′(x) =
(2π)4 cos(2πx) and ||f ′′′′||∞ = (2π)4. Given that h = 1/5, the error bound
is |f(x)− g(x)| ≤ π4/3000, where π4/3000 ≈ 0.03. �

2. For f(x) = cos(2πx), where 0 ≤ x ≤ 1, how many interpolation points are
needed to guarantee an error of 10−4 when using a clamped spline?

Since ||f ′′′′||∞ = (2π)4, then we want

5

384
h4(2π)4 ≤ 10−4.

This can be rewritten as h ≤ (384/5)1/4/(20π). If n is the number of
interpolation points, then h = 1/(n − 1), and combining our results,
n ≥ 1 + 20π(5/384)1/4 ≈ 22.2. Therefore, we need to take n ≥ 23. �

3. According to Theorem 5.5, for what functions will there be zero error using
a clamped spline, no matter what the interpolation interval?

This requires ||f ′′′′||∞ = 0, which means that f ′′′′(x) = 0 for a ≤ x ≤ b.
Therefore, to have zero error it must be that f(x) is a cubic function. �

The major drawback in the above theorem is that it requires the clamped
end conditions and for many problems f ′(x1) and f ′(xn+1) are not known. It
is possible to obtain the same level of accuracy with a natural cubic spline,
except near the endpoints, as long as enough points are used. This is seen
in Figure 5.15, where the natural spline does almost as well approximating
the function except over the subintervals next to the boundary points. The
exact statement of the result is given next (see [Kershaw, 1971] for the proof).

Theorem 5.6. If f ∈ C4[a, b] then for the natural cubic spline interpolation
function s(x):

5.5 Function Interpolation 209

1. |f(x)− s(x)| ≤ K1h
2, for a ≤ x ≤ b, where K1 is a positive constant.

2. For large n, there are points x� and xr, with a ≤ x� < xr ≤ b, so that

|f(x) − s(x)| ≤ K2h
4, for x� ≤ x ≤ xr,

where K2 is a positive constant. Moreover, x� → a and xr → b as n → ∞.

What this theorem states is that the error for a natural cubic spline is at
least second-order. It also states that the error is actually fourth-order except
near the endpoints. Moreover, the regions near the endpoints where it is not
fourth-order shrink as n increases.

5.5.4 Chebyshev Interpolation

We saw earlier that the polynomial that interpolates all of the data points
can be written as

pn(x) =
n+1∑
i=1

yi�i(x), (5.29)

where

�i(x) =

n+1∏
j=1
j �=i

x− xj

xi − xj
. (5.30)

Given that we are now considering function interpolation, it is assumed that
yi = f(xi). One thing to note is that this does not require that the xi’s
are equally spaced. Also, we know that when n is large, and the points are
equally spaced, the above polynomial should not be used for interpolation.
The question we examine now is, is it possible to pick the locations of the
xi’s so pn(x) is capable of producing an accurate interpolation function. It is
possible, and to explain how, we need Theorem 5.2. What is of interest here
is the error term, which is

f (n+1)(η)

(n+ 1)!
qn+1(x),

where qn+1(x) is given in (5.26). In Figure 5.5 we saw that the values of
this can be huge. We want to prevent this from happening. For a given data
set, so n is given, the assumption that f ∈ Cn+1[a, b] means that there is
a positive constant Mn+1 so that |f (n+1)(x)| ≤ Mn+1. So, the part of the
error function that we need to concentrate on is qn+1(x), and what we are
specifically interested in is the value of

Q = max
a≤x≤b

|qn+1(x)|. (5.31)

This brings us to the following question: given n, how do we position the xi’s
in the interval a ≤ x ≤ b to minimize Q.

210 5 Interpolation

The answer is easy to state, but deriving it requires some work. The result
is given below, and afterwards the derivation is outlined.

Theorem 5.7. The xi’s that produce the smallest value of Q are

xi =
1

2
[a+ b+ (b − a)zi] , for i = 1, 2, · · · , n+ 1, (5.32)

where

zi = cos

(
2i− 1

2(n+ 1)
π

)
. (5.33)

The xi’s in the above theorem are called the Chebyshev points because they
correspond to the zeros of the (n + 1)th Chebyshev polynomial. Note that
the Chebyshev polynomials are usually defined for −1 ≤ x ≤ 1, and when
using a ≤ x ≤ b they are referred to as the Chebyshev polynomials for the
general interval. This distinction is not made in what follows.

There is a simple geometric interpretation for how the xi’s are positioned in
the interval that comes from (5.33). Placing a semi-circle over the interval, as
in Figure 5.16, consider the n+1 points on the semi-circle that are a constant
angle π/n apart, with the first one (on the far right) at an angle π/(2n). Their
x coordinates are given in (5.32) and they are the corresponding Chebyshev
points. This figure also shows why the Chebyshev points are closer together
at the endpoints of the interval, as compared to their placement towards the
center.

In the proof of Theorem 5.7, the following result is also obtained:

Theorem 5.8. With the xi’s given in (5.32), then the global interpolation
polynomial pn(x) given in (5.5) satisfies

|f(x)− pn(x)| ≤ 1

2n(n+ 1)!

(
b− a

2

)n+1

||f (n+1)||∞, for a ≤ x ≤ b,

where ||f (n+1)||∞ = maxa≤x≤b |f (n+1)(x)|.

The fact that 2n(n + 1)! grows rapidly with n means that the error with
Chebyshev interpolation can be quite small. To get an estimate of just how
small, according to Stirling’s formula, for large values of n,

n! ≈
√
2πn

(n
e

)n
. (5.34)

Using this approximation for the factorial, the inequality in Theorem 5.8 can
be replaced with (see Exercise 5.31)

|f(x)− pn(x)| ≤
√

2

nπ
Rn+1||f (n+1)||∞, for a ≤ x ≤ b, (5.35)

5.5 Function Interpolation 211

a (a+b)/2 b

a (a+b)/2 b
x-axis

x-axis

y
-

ax
is

y
-

ax
is

Figure 5.16 The Chebyshev points, which are the red dots along the x-axis, are
determined by equally spaced points on the circumscribed semi-circle. In the top
graph, n = 5, while in the bottom graph, n = 11.

where

R =
(b − a)e

4(n+ 1)
. (5.36)

Consequently, if n is large enough that R < 1, then Rn+1 approaches zero
exponentially fast. Whether this means that the error for Chebyshev inter-
polation approaches zero exponentially fast, however, depends on how the

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x-axis

0

1

y-
ax

is

Runge
Cheb

Figure 5.17 The Runge function (5.8) and the Chebyshev interpolation polynomial
with n = 12.

212 5 Interpolation

f (n+1) term depends on n. This issue is considered in the examples to follow.
Also, it’s worth noting that the error using piecewise linear or cubic splines is
not exponential, and the error in each case approaches zero as a fixed power
of h = (b− a)/(n− 1).

Examples

1. Using the Chebyshev points with n = 12 to fit Runge’s function in (5.8),
the interpolation function shown in Figure 5.17 is obtained. The improve-
ment over using equally spaced points, which is shown in Figure 5.5, is
dramatic. Also shown in Figure 5.17, by small horizontal bars, are the
locations of the xi’s. This shows the non-uniform spacing of the interpo-
lation points, and they get closer together as you approach either of the
endpoints of the interval. �

2. For f(x) = cos(2πx), where 0 ≤ x ≤ 1, according to Theorem 5.8, how
many interpolation points are needed to guarantee an error of 10−4 when
using Chebyshev interpolation?

Since ||f (n+1)||∞ = (2π)n+1, then we want πn+1/(2n(n + 1)!) ≤ 10−4.
From this one finds that n ≥ 9. In comparison, earlier we found that
piecewise linear requires n ≥ 1397, while a clamped cubic spline requires
n ≥ 23. It is also interesting to note that if the number of points is dou-
bled to n = 18, that according to Theorem 5.8, the error bound is about
10−14, and if doubled again to n = 36, the error bound is an astonishing
10−36. In contrast, for a clamped cubic spline, doubling the number of
points decreases the error bound by a factor of 2−4 ≈ 6 × 10−2. This is
a clear demonstration of the benefits of an exponentially converging ap-
proximation, but as we will see shortly, exponential convergence is limited
to certain types of functions. �

Chebyshev Polynomials

To explain how the xi’s are determined, it is assumed that a = −1 and b = 1.
We begin with a definition.

Definition 5.1. The Chebyshev polynomials Tn(x) are defined using the fol-
lowing recursion formula:

Tn+1(x) = 2xTn(x) − Tn−1(x), for n = 1, 2, 3, · · · , (5.37)

where T0(x) = 1 and T1(x) = x.

Using this definition, the first few Chebyshev polynomials are

5.5 Function Interpolation 213

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x.

As is seen in the above expressions, Tn(x) is an nth degree polynomial and
the leading coefficient is 2n−1.

Two of the key results needed for finding the xi’s are contained in the
following result:

Theorem 5.9.

1. If Pn(x) = xn + bn−1x
n−1 + · · ·+ b0, where n ≥ 1, then

max
−1≤x≤1

|Pn(x)| ≥ 21−n.

2. If Pn(x) = 21−nTn(x), then

max
−1≤x≤1

|Pn(x)| = 21−n.

The usual proof of the first statement involves contradiction, and using the
oscillatory properties of a polynomial. An illustration of how it is possible to
prove it directly is given in Exercise 5.32.

Note that the qn+1(x) in (5.26) is an example of the function Pn+1(x)
appearing in the above theorem. The first result in the theorem states that
no matter what we pick for the xi’s, the Q in (5.31) satisfies Q ≥ 2−n.
What the second result states is that if we pick qn+1(x) = 2−nTn+1(x), then
Q = 2−n, i.e., it achieves the stated minimum value. Therefore, we should
pick the xi’s so that

2−nTn+1(x) = (x− x1)(x− x2) · · · (x− xn+1).

In other words, the xi’s are the zeros of Tn+1(x).
We need an easy way to find the zeros of Tn+1(x), and this is given in the

next result.

Theorem 5.10.

Tn(x) = cos(n cos−1 x), for n = 0, 1, 2, 3, · · · .

This is a strange looking equation because the right-hand side does not look
to be a polynomial. Nevertheless, the proof is rather simple, and basically

214 5 Interpolation

involves using trig identities to show that the right-hand side satisfies (5.37).
With this it is easy to find the zeros of Tn+1(x), and they are the values of x
that satisfy

(n+ 1) cos−1 x =
π

2
(2i− 1), for i = 1, 2, 3, · · · , n+ 1.

The values given in (5.32) are the resulting positions when the above result
is transformed from −1 ≤ x ≤ 1 to a ≤ x ≤ b.

5.5.5 Chebyshev Versus Cubic Splines

We saw that Chebyshev interpolation has the potential to have an error that
approaches zero exponentially fast as n increases. It also has the distinction
that it produces the smallest Q, as explained in Theorem 5.7. The natural cu-
bic splines, on the other hand, produce the smallest total curvature squared,
as defined in Theorem 5.1. What this means is that we have two interpola-
tion methods that can claim to be optimal. Given this, it is of interest to
compare Chebyshev and cubic spline interpolation on some more challenging
examples.

Example 1

We begin with the Runge’s function in (5.8), and assume 13 data points are
used. The resulting Chebyshev interpolation function is shown in Figure 5.17.
For comparison, the corresponding natural cubic spline is shown in Figure 5.18.
In comparing the two figures, it is clear that the spline provides a better app-
roximation function. To have a more quantitative comparison, suppose g(x)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x-axis

0

1

Runge
Spline

Figure 5.18 The function (5.8) and the natural cubic spline using 13 equally spaced
points. The two curves are indistinguishable.

5.5 Function Interpolation 215

100 101 102 103

n-axis

10-16

10-12

10-8

10-4

100
E

rr
o

r

Spline
Cheb

Figure 5.19 The error, as determined by the area integral in (5.38), when approxi-
mating Runge’s function with a natural cubic spline, and with a Chebyshev interpo-
lation function.

is an interpolation function of a given function f(x). The error is using g(x) to
approximate f(x) will be determined using the area between the two curves,
which means

E =

∫ b

a

|f(x)− g(x)|dx. (5.38)

The value of this integral is given in Figure 5.19, when g(x) is the natu-
ral cubic spline, and when it is the Chebyshev interpolation function. It is
seen that the spline produces a more accurate approximation when using up
to about 60 interpolation points. The reason the spline does better is that
||f (n+1)||∞ grows rapidly with n, which effectively eliminates the exponen-
tial convergence for Chebyshev interpolation. For example, when n = 13,
||f (n+1)||∞ ≈ 5 × 1020, while 2n(n + 1)! ≈ 3 × 1013. It is not until n is
rather large that the exponential convergence kicks in and Chebyshev begins
to produce a better approximation than the spline. �

Example 2

Suppose the function is f(x) = tanh(100x−30), and the interval is 0 ≤ x ≤ 1.
Using 25 interpolation points, the resulting interpolation functions are shown
in Figure 5.20. In this case, both have some difficulty with the rapid rise
in the function. However, the under- and over-shoots in the spline function
die out much faster than those for the Chebyshev function. The associated
error for each interpolation function, as determined using (5.38), is shown in
Figure 5.21. As in the last example, it is not until n is rather large that the
exponential convergence enables Chebyshev to produce a better approxima-
tion than the spline. �

It is evident from the examples that Chebyshev interpolation is capable of
producing a more accurate approximation than cubic splines. However, this

216 5 Interpolation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

-1

0

1
y-

ax
is

Exact
Cheb
Spline

Figure 5.20 The function f(x) = tanh(100x−30), along with Chebyshev and cubic
spline interpolation functions using 25 data points.

100 101 102 103

n-axis

10-9

10-6

10-3

100

E
rr

o
r

Spline
Cheb

Figure 5.21 The error, as determined by the area integral in (5.38), when approx-
imating f(x) = tanh(100x − 30) with a natural cubic spline, and with a Chebyshev
interpolation function.

is based on the stipulation that the contribution of the f (n+1)(η) term in the
error is not too large, and it can be difficult to know if this holds. This limits
its usefulness, but it does not dampen the enthusiasm that some have for the
method. To get insight into why they think this way, Trefethen [2012] should
be consulted.

5.5.6 Other Ideas

There are a variety ways of modifying the interpolation procedure. For exam-
ple, given a function f(x) one can construct a piecewise cubic that interpo-
lates f(x1), f(x2), · · · , f(xn+1) as well as the derivative values f

′(x1), f
′(x2),

· · · , f ′(xn+1). This is known as Hermite interpolation and it produces an app-
roximation with an error that is O(h4). This puts it in the same category as
the clamped cubic spline discussed earlier.

There is also the idea of being monotone. The objective here is that if the
data appear to describe a monotonically increasing (or decreasing) function

5.6 Questions and Additional Comments 217

over an interval then the interpolation function should behave the same way
over that interval. As seen in the lower right data set in Figures 5.4 and 5.13,
the global and spline functions fail at this while the piecewise linear function
in Figure 5.9 works. However, for the latter there is the usual problem with
corners. So, the goal is to find a method that does well at preserving mono-
tonicity and is also smooth. This comes under the more general heading of
finding a smooth shape preserving interpolation function. A review of such
methods, such as the Akima algorithm and the Fritsch-Butland procedure,
can be found in Huynh [1993]. It is also worth noting that shape preserving
interpolation is of particular interest in the mathematical finance commu-
nity, and those interested in this application should consult Hagan and West
[2006].

5.6 Questions and Additional Comments

Below are some random questions and comments about interpolation.

1. To fix the corner problem that arises with piecewise linear interpolation, we
used piecewise cubic interpolation. What’s wrong with piecewise quadrat-
ics?

Answer: They have a couple of drawbacks. To explain, quadratics can inter-
polate the data and have a continuous first derivative (see Exercise 5.33).
In comparison, cubic splines have continuous second derivatives, and so
they are smoother. Another issue with quadratics is that they can pro-
duce what can best be described as bumpy curves, and this is illustrated
in Exercise 5.33(d). However, it is possible to adjust the interpolation pro-
cedure to improve the situation and those interested might want to consult
Marsden [1974] or Grasselli and Pelinovsky [2008].

2. The cubic B-spline Bi(x) is nonzero for xi−2 ≤ x ≤ xi+2. Why not use the
smaller interval xi−1 ≤ x ≤ xi+1?

Answer: It simply won’t work (try it).

3. Can the interpolation methods be used to solve the puzzle in Figure 5.6?

Answer: Yes, but if you want to draw something that looks like a flower
then you will need to rewrite the problem because our methods are based
on interpolating a function. Possible solutions would be to break the
data points into sections that can each be described as a function, or to
use parametric coordinates. These ideas can be generalized, which leads

218 5 Interpolation

naturally to something called Bezier curves and surfaces, and geometric
modeling. Those interested might consider looking at Salomon [2006] and
Mortenson [1997].

4. If just one of the yi’s is changed, what happens to the interpolation
function?

Answer: It depends on what method you are using. For piecewise linear, the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

0

1

y-
ax

is

Cheb
Spline

Figure 5.22 Interpolation using Chebyshev and cubic spline interpolation functions
with 15 data points, with all values zero except for the one near 0.8.

interpolation function is only affected over the interval xi−1 < x < xi+1.
If you are using cubic splines or Chebyshev, then the interpolation func-
tion over the entire interval a < x < b is affected. To get an idea of what
happens, if all of the yi’s are zero then the interpolation function is zero
everywhere, irrespective of whether or not you are using a natural cubic
spline or Chebyshev interpolation. Now, suppose one data point is changed
and it is now nonzero. This situation is shown in Figure 5.22 using a nat-
ural cubic spline and Chebyshev interpolation, where the nonzero point
is the one close to 0.8 (the exact point differs between the two methods
due to how they position the points). In both cases, the changes in the
interpolation function over the entire interval are less than the change at
the given data point. In other words, if the data value is changed by a
small amount, then the interpolation function over the interval is changed
by no more than this value. However, it is also apparent that the changes
in the Chebyshev function are more widespread than for the cubic spline.

5. In the early days of spline research, they used the cubic spline version of the
piece linear hat functions Gi(x). These functions were usually designated
as Li(x) and they were defined as the cubic splines that satisfied Li(xi) = 1
and Li(xj) = 0 for j �= i (see, e.g., de Boor and Schoenberg 1976). These
were called the fundamental functions, and one is shown in Figure 5.23.
The reason for introducing them is that they have the nice property that
the spline interpolation function is simply

Exercises 219

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x-axis

0

1
y-

ax
is

Figure 5.23 A fundamental function for (clamped) cubic splines. Shown is L7(x).

s(x) =

n+1∑
i=1

yiLi(x).

However, this hides all the work needed to determine the spline. In par-
ticular, finding the Li’s requires the solution of n+ 1 matrix equations.

Exercises

5.1. In this problem the data are: (x1, y1) = (0, 0), (x2, y2) = (1, 1), and
(x3, y3) = (2, 3).
(a) Find the global interpolation polynomial that fits these data.
(b) Find the piecewise linear interpolation function that fits these data.
(c) Find the natural cubic spline that fits these data.

5.2. This problem concerns the data in Table 5.6.
(a) Find the piecewise linear interpolation function g(x) that fits these data.
(b) Find the global interpolation polynomial p3(x) that fits these data.

5.3. Use a Lagrange interpolating polynomial of degree 1 to find an approx-
imate value for the following. Not all of the data points are needed, and you
should explain which ones you use and why.
(a) f(2.4) if f(2.1) = 1, f(2.3) = 1.2, f(2.6) = 1.3, f(2.7) = 2
(b) f(−0.1) if f(0.1) = 2, f(0) = 0.1, f(−0.2) = −0.1, f(0.4) = −0.5
(c) f(1) if f(0.5) = −1, f(0.8) = −0.5, f(1.1) = 0.5, f(1.2) = 1

5.4. Redo the previous problem but use a Lagrange interpolating polynomial
of degree 2.

5.5. If f(θ) = sin θ, then f(0) = 0, f(π/4) =
√
2/2, and f(π/2) = 1. Use

these data points to answer the following questions. Note that the error that
is asked for is the absolute value of the difference between the exact value
f(π/8) =

√
2−√

2/2 and the estimated value.

220 5 Interpolation

0 0.5 1 1.5 2 2.5 3
x-axis

-2

-1

0

1

2

3
y-

ax
is

Second
Fourth

Figure 5.24 Graph used in Exercise 5.6.

x −1 0 1 2

y 0 1 1 0

Table 5.6 Data for Exercise 5.2.

(a) Using piecewise linear interpolation, what is the estimated value of
f(π/8)? What is the error in this estimate?

(b) Using a global interpolation polynomial, what is the estimated value of
f(π/8)? What is the error in this estimate?

(c) Using natural cubic spline interpolation, what is the estimated value of
f(π/8)? What is the error in this estimate?

(d) Using the additional information that f ′(0) = 1 and f ′(π/2) = 0, use
clamped cubic spline interpolation to find an estimated value of f(π/8).
What is the error in this estimate?

(e) Suppose Chebyshev interpolation is used. Determine the three Chebyshev
points in the interval, and evaluate f(θ) at these points. What is the
resulting estimated value of f(π/8)? What is the error in this estimate?

5.6. A function f(x) is going to be approximated using an interpolation func-
tion for 0 ≤ x ≤ 3. The second, f ′′(x), and fourth, f ′′′′(x), derivatives of the
function are plotted in Figure 5.24.
(a) How many data points for piecewise linear interpolation are needed to

guarantee the error is less than 10−8?
(b) How many data points for a clamped cubic spline are needed to guarantee

the error is less than 10−8?

5.7. The function y = log10 x is going to be approximated using an interpo-
lation function for 1 ≤ x ≤ 10.
(a) How many data points for piecewise linear interpolation are needed to

guarantee the error is less than 10−6?

Exercises 221

(b) How many data points for a clamped cubic spline are needed to guarantee
the error is less than 10−6?

(c) How many data points are needed when using Chebyshev interpolation
to guarantee the error is less than 10−6?

5.8. For the following functions, determine a step size h that will guarantee
that the error is less than 10−6 using piecewise linear interpolation.
(a) f(x) = x10, for −1 ≤ x ≤ 1.
(b) f(x) = ln(x), for 1 ≤ x ≤ 2.
(c) f(x) = 2 sin(3x) + 3 sin(2x), for 0 ≤ x ≤ π.

5.9. Redo the previous problem but use a clamped cubic spline.

5.10. The Bessel function of order zero can be written as

J0(x) =
1

π

∫ π

0

cos(x sin s)ds.

(a) Show that |J0(x)| ≤ 1, |J ′
0(x)| ≤ 1, |J ′′

0 (x)| ≤ 1, and in fact, for any
positive integer k, ∣∣∣∣ d

k

dxk
J0(x)

∣∣∣∣ ≤ 1.

In what follows, determine how many interpolation points over the inter-
val 0 ≤ x ≤ 10 are needed so the error is no more than 10−6.

(b) Using piecewise linear interpolation.
(c) Using a clamped cubic spline.
(d) Using Chebyshev interpolation.
(e) The Bessel function of order m can be defined as

Jm(x) =
1

π

∫ π

0

cos(x sin s−ms)ds.

How do your answers in parts (b)–(d) change for this function?

5.11. This problem considers the function

g(x) =

{
2 + 3x2 + αx3 if − 1 ≤ x ≤ 0,
2 + βx2 − x3 if 0 ≤ x ≤ 1.

(a) For what values of α and β, if any, is g(x) a cubic spline for −1 ≤ x ≤ 1?
These values are to be used in the remainder of this problem.

(b) What were the data points that gave rise to this cubic spline?
(c) For what values of α and β is g(x) a natural cubic spline?
(d) For what values of α and β is g(x) a clamped cubic spline?

222 5 Interpolation

5.12. This problem considers the function

g(x) =

{
2(x+ 1)3 + 5(x+ 1)− 13x if − 1 ≤ x ≤ 0,
2(1− x)3 + 9x+ 5(1− x) if 0 ≤ x ≤ 1.

(a) Show that this is a cubic spline, and determine the data values used in
its construction.

(b) Is this a natural cubic spline?
(c) Is this a clamped cubic spline?

5.13. Consider the function

g(x) =

{
x3 − 1 if 0 ≤ x ≤ 1,
−x3 + 6x2 − 6x+ 1 if 1 ≤ x ≤ 2.

Is g(x) a cubic spline for 0 ≤ x ≤ 2? If it is, is it natural, clamped, or neither?
Make sure to justify your answers.

5.14. The data considered here are the population of a country for the years
x1 = 1900, x2 = 1910, x3 = 1920, x4 = 1930, · · · , x12 = 2010. The yi’s are
the corresponding population values, and they should be given per million.
For example, the population of the USA is given in Table 5.7, and this is
from the Wikipedia page Demographics of the United States.
(a) Fit this data with: i) a global polynomial using Lagrange interpolation,

and ii) a natural cubic spline. Plot these two curves and the data on the
same axis. Make sure to include a legend in your plot.

(b) What do each of the two interpolation functions give as the population
in 2005?

(c) What do each of the two interpolation functions predict the population
will be in 2015?

5.15. The data considered here are the temperatures over a 24 hour period,
in two hour increments. So, x1 = 0, x2 = 2, x3 = 4, x4 = 6, · · · , x13 = 24.
The yi’s are the corresponding temperatures. For example, the temperatures
in Troy, NY on June 21 are given in Table 5.8 (in oF).
(a) Fit this data with: i) a global polynomial using Lagrange interpolation,

and ii) a natural cubic spline. Plot these two curves and the data on the
same axis. Make sure to include a legend in your plot.

x 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

y 76.21 92.23 106.0 123.2 132.2 151.3 179.3 203.3 226.5 248.8 281.4 308.7

Table 5.7 Sample population data for Exercises 5.14, 5.28, and 6.9.

Exercises 223

(b) What do each of the two interpolation functions give as the temperature
at 11 AM?

(c) What do the two interpolation functions predict the temperature will be
at 1 AM the next day?

(d) What do the two interpolation functions predict the temperature will be
at 9 AM the next day? Explain why the spline predicts the value it does.

5.16. The data below describe a cross-section of an airfoil where the points
(X,Yu) define the upper surface and the points (X,Y�) describe the lower
surface.
X = [0, 0.005, 0.0075, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0]
Yu = [0, 0.0102, 0.0134, 0.017, 0.025, 0.0376, 0.0563, 0.0812, 0.0962, 0.1035,
0.1033, 0.095, 0.0802, 0.0597, 0.034, 0]
Y� = [0, −0.0052, −0.0064, −0.0063, −0.0064, −0.006, −0.0045, −0.0016,
0.001, 0.0036, 0.007, 0.0121, 0.017, 0.0199, 0.0178, 0]
(a) Draw the airfoil by fitting cubic splines separately to the upper and lower

surfaces, and then plotting the results as a single figure. To make it look
like an airfoil you will probably need to resize the plot window.

(b) Redo (a) but use global polynomial interpolation instead of splines.

5.17. This problem considers some of the difficulties interpolating the func-
tion f(x) =

√
x.

(a) If the interpolation interval is 1 ≤ x ≤ 10, how many data points are
needed for piecewise linear interpolation to guarantee that the error is
less than 10−6?

(b) Explain why Theorem 5.4 is not so useful if the interval is 0 ≤ x ≤ 1.
(c) One way to deal with the singularity at x = 0 is to break the interval into

two segments, one is 0 ≤ x ≤ δ and the other is δ ≤ x ≤ 1, where δ is a
small positive number. On the interval 0 ≤ x ≤ δ the function is going to
be interpolated with a single line. What is the equation for this line, and
how small does δ need to be to guarantee that the approximation error
is 10−6?

(d) Assuming that δ is known, how many data points over the interval δ ≤
x ≤ 1 are needed for piecewise linear interpolation to guarantee that the
error is less than 10−6?

5.18. The function f(x) = 1/(1 + x2) is to be approximated using a piece-
wise linear function g(x) over the interval 0 ≤ x < ∞. The requirement is
that |f(x) − g(x)| ≤ 10−4 for 0 ≤ x < ∞. Explain how to determine the
spacing of the xi’s used in the construction of g(x), and how you handle the
approximation over the intervals xn ≤ x ≤ xn+1 and xn+1 ≤ x < ∞, where
xn+1 is the largest node you use.

5.19. This problem concerns interpolating the function f(x) = sinπx over
the interval 1 ≤ x ≤ 3, using three data points, with x1 = 1, x2 = 2, and
x3 = 3.

224 5 Interpolation

x 0 2 4 6 8 10 12 14 16 18 20 22 24

y 59 56 53 54 60 67 72 74 75 74 70 65 61

Table 5.8 Sample temperature data for Exercise 5.15. Note x = 0 and x = 24
correspond to midnight.

(a) Find the global interpolation polynomial that fits this data.
(b) Find the piecewise linear interpolation function that fits this data.
(c) Find the natural cubic spline that fits this data.
(d) Find the clamped cubic spline that fits this data.
(e) Chebyshev interpolation cannot use the stated xi’s. What are the three

Chebyshev interpolation points for this interval, and what is the resulting
interpolation function?

5.20. In this problem xi = i, for i = 1, 2, 3, 4, and

s(x) = B0(x)−B1(x) +B2(x) −B3(x) +B4(x) −B5(x),

for 1 ≤ x ≤ 4.
(a) What data points (xi, yi) were used to produce this cubic spline?
(b) Is this a natural cubic spline?
(c) Is it a clamped cubic spline?

5.21. In this problem xi = i, for i = 1, 2, 3, 4, and

s(x) = B2(x) + 5B4(x),

for 1 ≤ x ≤ 4.
(a) What data points (xi, yi) were used to produce this cubic spline?
(b) Is this a natural cubic spline?
(c) Is it a clamped cubic spline?

5.22. Given a data set (x1, y1), (x2, y2), · · · , (x101, y101) suppose one of the
following interpolation methods is to be used: Lagrange interpolation, piece-
wise linear interpolation, cubic spline interpolation using cubic B-splines.
(a) Order them by the number of flops needed to determine the interpolation

function. Make sure to explain how you arrive at your answer. Assume
the Thomas algorithm is used for the cubic spline (see Section 3.8).

(b) Order the methods by the number of flops needed to evaluate them at a
given point (assume this point isn’t in the data set). Make sure to explain
how you arrive at your answer.

5.23. Suppose Chebyshev interpolation is applied to a function f(x) using
eight interpolation points. Also, suppose that no matter what interpolation
interval is used, the error for the Chebyshev interpolation is zero. What
conclusion can you make about the original function f(x)?

Exercises 225

5.24. Given three points xi−1, xi, and xi+1, this problem considers the
quadratic interpolation formula

p2(x) = yi−1�i−1(x) + yi�i(x) + yi+1�i+1(x).

It is assumed here that xi − xi−1 = h and xi+1 − xi = h.
(a) Show that the above interpolation formula can be rewritten as

p2(x) = yi +
1

2h
(yi+1 − yi−1)(x − xi) +

1

2h2
(yi+1 − 2yi + yi−1)(x− xi)

2.

(b) Calculate p′2(x) and p′′2(x).
(c) Suppose p2(x) interpolates f(x) at xi−1, xi, and xi+1, so yi−1 = f(xi−1),

yi = f(xi), and yi+1 = f(xi+1). Setting x = xi + αh, expand f(x) and
p2(x) about h = 0 and show that

f(x) = p2(x) +
1

6
z(z2 − h2)f ′′′(xi) +

1

24
z2(z2 − h2)f ′′′′(xi) + · · · ,

where z = x− xi.
(d) How does the result in part (c) compare to the result in Theorem 5.2 in

the case of when a = xi − h, b = xi + h, and n = 2?

5.25. It is possible when solving for the coefficients for a cubic spline that one
of the si’s turns out to a linear function (versus a full cubic). This exercise
explores this situation. Suppose there are three data points, with x1 = 0,
x2 = 1, and x3 = 2 and let

s(x) =

{
a+ bx if 0 ≤ x ≤ 1,
a2 + b2(x− 1) + c2(x− 1)2 + d2(x− 1)3 if 1 ≤ x ≤ 2.

(a) To be a cubic spline it is required that s ∈ C2(0, 2). What conditions
must be imposed on the coefficients so this happens?

(b) Under what conditions, if any, is this a natural cubic spline?

5.26. This exercise explores some of the differences between a cubic poly-
nomial and a cubic spline. In this problem the data are: (x1, y1) = (0, 0),
(x2, y2) = (1, 1), (x3, y3) = (2, 0), and (x4, y4) = (3, 1).
(a) Find the global interpolation polynomial that fits this data, and then

evaluate this function at x = 1/2.
(b) Find the natural cubic spline that fits this data, and then evaluate this

function at x = 1/2.
(c) The cubic in part (a) satisfies the interpolation and smoothness conditions

required of a spline, yet it produces a different result than the cubic spline
in part (b). Why?

(d) What boundary conditions should be used so the cubic spline produces
the cubic in part (a)?

226 5 Interpolation

5.27. The objective of this problem is to find a method that can evaluate
f(x) = cosx, for 0 ≤ x ≤ 2π, with an error of no more than 10−6. In doing
this, the interpolation points are restricted to those xi’s for which the exact
value of cosxi is known. It is useful to know that, by considering the angles
in a polygon, it is possible to determine the exact values of cosx and sinx
for x = π/10, π/12, π/15, etc. (these are given on the Wikipedia page Exact
trigonometric constants).
(a) Show that if the values of cosx and sinx are known for x = π/k, then

they are known at x = mπ/k, for m = 2, 3, 4, · · · .
(b) For a given value of k, let h = π/k and suppose that the interpolation

points are xi = (i− 1)h, for i = 1, 2, · · · , n+ 1. Find n in terms of k.
(c) According to Theorem 5.4, how small must h be so the error using piece-

wise linear interpolation with f(x) = cosx is no more than 10−6? What
is the smallest value of k so that π/k ≤ h?

(d) According to Theorem 5.6, how small must h be so the error using a
clamped cubic spline with f(x) = cosx is no more than 10−6? What is
the smallest value of k so that π/k ≤ h?

(e) For a given value of x, describe a procedure that uses the exact values of
cosx and/or sinx to evaluate f(x) = cosx, for 0 ≤ x ≤ 2π, with an error
of less than 10−6.

(f) Write a MATLAB program that implements your algorithm in part (e)
and compares the computed values with MATLAB’s built in cosine func-
tion, for x = 1, 2, 5.

5.28. This problem explores how to scale the data to help improve the com-
putability of the interpolation polynomial. We consider the direct approach
to determine pn(x), and as usual the data points are (x1, y1), (x2, y2), · · · ,
(xn+1, yn+1), where x1 < x2 < · · · < xn+1. The x values are going to be
scaled by letting

z =
x− α

β
,

where α and β are given numbers with β > 0. The data point (xi, yi) in
this case changes to (zi, yi), where zi = (xi − α)/β. Also, the interpolation
polynomial also changes to

pn(z) = a0 + a1z + · · ·+ anz
n.

(a) The original data interval is x1 ≤ x ≤ xn+1. What is the data interval
when using z? What matrix equation must be solved to find the ai’s in
the above formula for pn(z)?

(b) The values for α and β are going to be selected so the z data interval is
−1 ≤ z ≤ 1. What are α and β in this case?

(c) Using the population data from Exercise 5.14, plot the interpolation func-
tion using the direct approach on the original xi data set. Also compute
the condition number for V.

Exercises 227

(d) Using the population data from Exercise 5.14, scale the data based on the
result from part (b), and then find the coefficients for pn(z). What is the
condition number of the matrix in this case? Once the ai’s are computed
then in terms of the original x variable,

pn(x) = a0 + a1

(
x− α

β

)
+ a2

(
x− α

β

)2

+ · · ·+ an

(
x− α

β

)n

.

Plot this function and compare the result with what you found in part (c).

5.29. This problem concerns a method to reduce the computational effort to
evaluate the Lagrange interpolation function given in (5.5).
(a) What is the flop count to evaluate (5.5) for a given value of x?
(b) Assuming that x �= xi, for any i, show that (5.5) can be written as

pn(x) = �(x)

n+1∑
i=1

wiyi/(x− xi) ,

where �(x) =
∏n+1

j=1 (x− xj) and

wi = 1/

n+1∏
j=1
j �=i

(xi − xj) .

This is known as the first form of the barycentric interpolation formula,
and wi’s are called barycentric weights.

(c) Suppose the formula in part (b) is used to interpolate the constant func-
tion f(x) = 1. Use this to show that

�(x)

n+1∑
i=1

wi/(x− xi) = 1.

(d) Use the result from part (c) to show that

pn(x) =

∑n+1
i=1 wiyi/(x− xi)∑n+1
i=1 wi/(x− xi)

,

This is called the second (true) form of the barycentric formula.
(e) What is the flop count to evaluate the formula for pn(x) given in part (d)?

5.30. The cubic spline interpolation function is

s(x) =

n+2∑
i=0

aiBi(x).

228 5 Interpolation

For a natural spline we found the ai’s by solving a matrix equation Aa = z.
The purpose of this exercise is to find what this equation is for a clamped
spline. Recall that for a clamped spline it is required that s′(x1) = y′1 and
s′(xn+1) = y′n+1, where y

′
1 and y′n+1 are given. Show a = (a1, a2, · · · , an+1)

T ,
z = (6y1+2hy′1, 6y2, · · · , 6yn, 6yn+1−2hy′n+1)

T , andA is the n×n tridiagonal
matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 2

1 4 1 0
1 4 1

. . .
. . .

. . .

0 1 4 1
2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Also, once a is determined, then a0 = a2 − 2hy′1 and an+2 = an + 2hy′n+1.

5.31. This problem concerns some of the inequalities arising for function
interpolation.
(a) For qn+1, given in (5.26), assume x is not one of the xi’s. So, there is an

xi so that xi < x < xi+1. With this, it is possible to write

qn+1(x) = (x− xi)(x − xi+1)

i−1∏
j=1

(x− xj)

n+1∏
j=i+2

(x− xj).

Show that |(x − xi)(x− xi+1)| ≤ 1
4h

2. Also show that |∏i−1
j=1(x − xj)| ≤

i!hi−1 and |∏n+1
j=i+2(x− xj)| ≤ (n+1− i)!hn−i. From this, derive (5.27).

Make sure to comment about the case of when x equals one of the xi’s.
(b) It is possible to prove that for every positive integer n [Sandor and Deb-

nath, 2000], √
2πn

(n
e

)n
≤ n!.

Use this, and Theorem 5.8, to derive (5.35).

5.32. This problem considers a direct proof of Theorem 5.9, at least for the
case of when n = 1. This will help demonstrate how this result is independent
of the coefficients of the polynomial.
(a) If P1(x) = x+ b0, explain why

max
−1≤x≤1

|P1(x)| = max{ |1 + b0|, | − 1 + b0| }.

(b) Sketch the two absolute values in part (a) as a function of b0. Use this
to explain why max−1≤x≤1 |P1(x)| = 1+ |b0|. From this derive the result
stated in the theorem.

Exercises 229

5.33. This problem derives the formulas for a piecewise quadratic interpola-
tion function. This function is written as

w(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1(x) if x1 ≤ x ≤ x2

w2(x) if x2 ≤ x ≤ x3

...
...

wn(x) if xn ≤ x ≤ xn+1,

where

wi(x) = ai + bi(x− xi) + ci(x− xi)
2, for xi ≤ x ≤ xi+1.

The interpolation requirements are wi(xi) = yi and wi(xi+1) = yi+1. Also,
w′(x) is required to be continuous, which means that w′

i(xi+1) = w′
i+1(xi+1)

for i = 1, 2, · · · , n− 1.
(a) Explain why the stated requirements are not enough, and it is necessary

to impose one additional condition. In this problem, it is assumed that
b1 is specified. Explain why this is the same as specifying the value of the
slope w′(x1).

(b) From the stated requirements, deduce that ai = yi for i = 1, 2, · · · , n+1.
Also, bi = −bi−1 + 2(yi − yi−1)/h for i = 2, 3, · · · , n, and ci = (yi+1 −
yi − hbi)/h

2 for i = 1, 2, · · · , n.
(c) Explain why the results from parts (a) and (b) mean that one can deter-

mine the coefficients for w1, then determine the coefficients for w2, then
for w3, etc.

(d) Use w(x) to interpolate f(x) = cos(6πx), over the interval 0 ≤ x ≤ 1.
Plot w(x) and f(x) for the following cases: i) n = 5, ii) n = 10, iii)
n = 15, and iv) n = 30. Comment on how well the interpolation method
works for this particular function.

Chapter 6

Numerical Integration

6.1 Introduction

The objective of this chapter is to derive and then test methods that can be
used to evaluate the definite integral

∫ b

a

f(x)dx.

In most calculus textbooks the examples and problems dedicated to integra-
tion are not particularly complicated, although some require a clever combi-
nation of methods to carry out the integration. In the real world the situation
is much worse. As an example, to find the deformation of an elastic body when
compressed by a rigid punch it is necessary to evaluate [Gladwell, 1980]

∫ �

0

(
2α sinh(x) − 2x

1 + α2 + x2 + 2α cosh(x)
− 1

)
sin(λx)dx. (6.1)

Moreover, it is relatively easy to find integrals even worse than the one above.
To illustrate, in the study of the emissions from a pulsar it is necessary to
evaluate [Gwinn et al., 2012]

∫ 1

0

1− x

α0 + β0x+ γ0x2 + δ0x3
K2

(√
α1 + β1x+ γ1x2

α2 + β2x

)
exp

(
α3 + β3x

α4 + β4x

)
dx,

where K2 is the modified Bessel function. The point here is that effective
numerical methods for evaluating integrals are needed, and our objective is
to determine what they are.

It is of interest to know that many of the integration methods derived in
this chapter are summarized in Appendix C, Table C.2.

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0 6

231

232 6 Numerical Integration

6.2 The Definition from Calculus

The definition of a definite integral introduced in calculus serves as the basis
of most numerical integration methods. To review this definition, one first
subdivides the interval as shown in Figure 6.1. In this case, x1 < x2 < · · · <
xn+1, where a = x1 and b = xn+1. The reason for this is the additive property
of areas, which for an integral can be written as

∫ b

a

f(x)dx =

∫ x2

x1

f(x)dx +

∫ x3

x2

f(x)dx+ · · ·+
∫ xn+1

xn

f(x)dx

=
n∑

i=1

∫ xi+1

xi

f(x)dx. (6.2)

Out of each subinterval [xi, xi+1] one picks a point ci and then approximates
the area with the quantity f(ci)(xi+1 − xi). This is illustrated in Figure 6.2.
According to the definition, the value of the integral is approached as the
number of subdivisions increases. In other words,

∫ b

a

f(x)dx ≡ lim
n→∞

n∑
i=1

f(ci)(xi+1 − xi).

This is useful because given any particular subdivision we have the approxi-
mation ∫ b

a

f(x)dx ≈
n∑

i=1

f(ci)(xi+1 − xi).

Moreover, we are free to pick ci from the subinterval [xi, xi+1] any way we
want, so we are able to produce different numerical methods depending on
how we make this choice.

The examples usually considered in calculus often involve picking one of
the endpoints, namely either ci = xi or ci = xi+1. Another is the midpoint
ci = 1

2 (xi + xi+1). Given that we are on the verge of generating several
different algorithms to calculate the integral we need some way to determine

Figure 6.1 Subdivision of the interval of integration in the case of when n = 5.

6.2 The Definition from Calculus 233

Figure 6.2 Rectangular region used as an approximation of the area over the subin-
terval.

how well they work. To be specific, whatever choice is made the resulting
integration rule over each subinterval is

∫ xi+1

xi

f(x)dx ≈ f(ci)(xi+1 − xi). (6.3)

In what follows it is assumed that the grid points are equally spaced, so
xi+1 − xi = h. Taylor’s theorem, as usual, can be used to determine the
accuracy of the approximation. First, expanding about x = ci we get

f(x) = f(ci) + (x− ci)f
′(ci) +

1

2
(x− ci)

2f ′′(ci) + · · · . (6.4)

With this∫ xi+1

xi

f(x)dx =

∫ xi+1

xi

[f(ci) + (x − ci)f
′(ci) +

1

2
(x − ci)

2f ′′(ci) + · · ·]dx

= f(ci)h+ 2hzif
′(ci) +

1

24
h(12z2i + h2)f ′′(ci) + · · · ,

where zi = xi +
h
2 − ci. Therefore, when using the approximation in (6.3),

the error in the approximation is

τr = 2hzif
′(ci) +

1

24
h(12z2i + h2)f ′′(ci) + · · · . (6.5)

So, if we take ci = xi, then zi = h/2 and τr = O(h2). Similarly, if ci = xi+1,
then zi = −h/2 and τr = O(h2). In other words, by picking one of the
endpoints the error is O(h2). To get a better error we need to pick ci so that
zi = 0, and this means we pick ci = xi+

h
2 . The error in this case is O(h3). In

fact, the midpoint is the only choice in the above equation that guarantees
an error that is O(h3) independently of the particular function f(x).

234 6 Numerical Integration

6.2.1 Midpoint Rule

It is worth examining the ci = xi +
h
2 choice in more detail. We have just

shown that ∫ xi+1

xi

f(x)dx = f(xi +
h

2
)h+O(h3). (6.6)

This gives rise to what is known as the midpoint rule. When this is put into
the formula for the definite integral (6.2) we get

∫ b

a

f(x)dx =

[
f(x1 +

h

2
)h+O(h3)

]
+

[
f(x2 +

h

2
)h+O(h3)

]

+· · ·+
[
f(xn +

h

2
)h+O(h3)

]

= h(f1+1/2 + f2+1/2 + · · ·+ fn+1/2) + nO(h3)

= IM +O(h2), (6.7)

where
IM = h(f1+1/2 + f2+1/2 + · · ·+ fn+1/2) (6.8)

and fi+1/2 = f(xi +
h
2). The expression in (6.8) is known as the composite

midpoint rule. Note that the error for the composite rule is a factor of h
smaller than the integration rule (6.6). This happens with the other integra-
tion rules we study and to explain why, in (6.7) the term nO(h3) turned
into O(h2). This is because h = (b− a)/n, so n = O(1/h).

It is possible to modify the result in (6.5) to obtain a more explicit bound
on the error and this is contained in the next result.

Theorem 6.1. If f ∈ C2[a, b], then the composite midpoint rule (6.8)
satisfies ∣∣∣∣∣

∫ b

a

f(x)dx − IM

∣∣∣∣∣ ≤
b− a

24
h2||f ′′||∞

where ||f ′′||∞ = maxa≤x≤b |f ′′(x)|.

Examples

1. Suppose the composite midpoint rule is used to approximate the value of

∫ 1

0

e3xdx. (6.9)

Using three subintervals, the approximation shown in Figure 6.3 is ob-
tained. In this case, h = 1/3, and the midpoints are x1+1/2 = 1/6,
x2+1/2 = 1/2, and x3+1/2 = 5/6. With this, (6.8) becomes

6.2 The Definition from Calculus 235

0 1/6 1/3 1/2 2/3 5/6 1
x-axis

0

5

10

15

20
y-

ax
is

Figure 6.3 Composite midpoint rule used with f(x) = e3x for 3 subintervals. The
area of the dashed (red) boxes is used as the approximate area for the area under the
curve.

IM =
1

3

(
e1/2 + e3/2 + e5/2

)

≈ 6.1043. �

2. According to Theorem 6.1, how many subintervals are necessary to guar-
antee an error of 10−8 if the composite midpoint rule is used to evaluate
(6.9)?
Answer: Since

||f ′′||∞ = max
0≤x≤1

9e3x

= 9e3,

then we want 9
24h

2e3 ≤ 10−8. This gives us h ≤ 2× 10−4
√
2e−3/3. Given

that h = (b− a)/n = 1/n, then we want

n ≥ 1

2
× 104

√
3e3/2

≈ 27,444.6.

Therefore, according to Theorem 6.1, we should use at least 27,445 subin-
tervals so the error is no more than 10−8. To check on this, the computed
values are given in Table 6.1, along with the value of the error

EM =

∣∣∣∣∣
∫ b

a

f(x)dx − IM

∣∣∣∣∣ . (6.10)

What is seen is that the desired error of 10−8 is obtained using a smaller
number of subintervals than the predicted value of 27,445. This is not
surprising, since the inequality in Theorem 6.1 is based on a worst-case

236 6 Numerical Integration

n IM EM

1000 6.36184325537107 2.39e−06

2000 6.36184504463955 5.96e−07

4000 6.36184549195681 1.49e−07

8000 6.36184560378610 3.73e−08

16000 6.36184563174344 9.32e−09

32000 6.36184563873278 2.33e−09

Table 6.1 Values of (6.9) when computed using the composite midpoint rule IM ,
and the resulting error EM .

assumption. As a final comment, although using 16,000 or 32,000 subin-
tervals might sound large, the computing time is minimal, taking less than
10−2 sec. �

The reason the midpoint rule works as well as it does is evident in
Figure 6.3. Each box splits the curve in such a way that the (unsigned)
area it misses on the right is about the same as the (unsigned) area it misses
on the left. This balancing act is why the first term in the error, given in
(6.5), is zero. Also, it is conventional to report computational results using
tables, as is done in Table 6.1. However, it can be more informative to plot
the results, particularly the error, and this is done in Figure 6.4. It is seen
that if the number of subintervals increases by a factor of, say, 10, then the
error drops by about a factor of 102. According to Theorem 6.1 this is exactly
what should happen.

Examples

1. According to Theorem 6.1, what functions will the composite midpoint
rule integrate exactly, no matter what the value of h?

103 104 105

n-axis

10-9

10-8

10-7

10-6

10-5

E
rr

o
r

Figure 6.4 Values of the error EM for the composite midpoint rule as given in
Table 6.1.

6.3 Methods Based on Polynomial Interpolation 237

This requires ||f ′′||∞ = 0, which means that f ′′(x) = 0 for a ≤ x ≤ b.
Therefore, to have zero error it must be that f(x) = α+ βx, i.e., it must
be a linear function in this interval. �

2. Suppose that the error when using the composite midpoint rule is 10−4 if
n = 100. What is the approximate error if n = 200?

To answer this it is necessary to make an assumption about the error.
Specifically, even though Theorem 6.1 cannot be used to determine the
exact value of the error, it can be used to predict how the error depends
on h. The assumption is that the error decreases as O(h2). This is true for
the above example, and to verify this the values in Table 6.1 are plotted
in Figure 6.4. In this plot it is seen that when doubling of the number of
subintervals, the error decreases by a factor of 4. So, in response to what
happens when using n = 200, the guess is that the error will be approxi-
mately 1

4 × 10−4. �

As a final note, the explanation for the error formula in Theorem 6.1
used the Taylor series in (6.4). Using the series in this way gives rise to
what is known as the asymptotic form of the error, and this is explained
in Appendix C. A formal proof of the theorem can be obtained using the
remainder form of the Taylor series and knowing certain inequalities involving
integrals. This approach, using the series rather than the remainder version
of a Taylor series to derive the formula for the error, is often used in this
chapter. In each case, for those so inclined, a more rigorous proof can be
obtained using similar modifications to the argument given.

6.3 Methods Based on Polynomial Interpolation

With the composite midpoint rule we have an O(h2) method that requires
n function evaluations. This begs the question of whether we can do better
and find methods that are, say, O(h4). The answer is definitely yes, and
our approach to answering this question will use the ideas employed in the
definition. As before, we will subdivide the interval. In the definition, the
function is approximated with the constant f(ci), as shown in Figure 6.2,
and this was then integrated exactly to produce the integration rule. To
improve on this we simply use a better approximation for f(x), one that can
be integrated exactly, and for this we will use polynomial interpolation.

238 6 Numerical Integration

Figure 6.5 To derive the trapezoidal rule the function is approximated using linear
interpolation.

6.3.1 Trapezoidal Rule

Instead of a constant we will use a linear approximation of f(x) over xi ≤
x ≤ xi+1. In particular, we will use the linear function that interpolates the
function at the endpoints (see Figure 6.5). From the point-slope formula, we
have that

gi(x) = fi +
1

h
(fi+1 − fi)(x − xi).

By expanding f(xi+1) using Taylor’s Theorem, it is easy to show that

f(x) = gi(x) +
1

2
(x− xi)(x − xi+1)f

′′(xi) + · · · .

Therefore,

∫ xi+1

xi

f(x)dx =

∫ xi+1

xi

[gi(x) +
1

2
(x− xi)(x − xi+1)f

′′(xi) + · · ·]dx

=
h

2
(fi+1 + fi)− 1

12
h3f ′′(xi) + · · · . (6.11)

This gives rise to what is known as the trapezoidal rule. When this is put into
the formula for the definite integral (6.2) we get

∫ b

a

f(x)dx = IT +O(h2),

where

IT = h

(
1

2
f1 + f2 + f3 + · · ·+ fn +

1

2
fn+1

)
. (6.12)

The expression in (6.12) is known as the composite trapezoidal rule.
Note that we have not done better than the composite midpoint rule in

the sense that the error in both cases is O(h2). In fact, one might argue that
the midpoint rule has a slight advantage over the trapezoidal rule because of
the next result.

6.3 Methods Based on Polynomial Interpolation 239

11/3 2/30
x-axis

0

5

10

15

20
y-

ax
is

Figure 6.6 Composite trapezoidal rule used with f(x) = e3x for 3 subintervals. The
area of the dashed (red) trapezoids is used as the approximate area for the area under
the curve.

Theorem 6.2. If f ∈ C2[a, b] then the composite trapezoidal rule (6.12)
satisfies ∣∣∣∣∣

∫ b

a

f(x)dx− IT

∣∣∣∣∣ ≤
b− a

12
h2||f ′′||∞

where ||f ′′||∞ = maxa≤x≤b |f ′′(x)|.

The proof of this comes from using Taylor’s theorem with remainder, in a
manner similar to how (6.11) was derived.

Examples

1. Suppose the composite trapezoidal rule is used to approximate the value of

∫ 1

0

e3xdx. (6.13)

Using three subintervals, the approximation shown in Figure 6.6 is ob-
tained. In this case, h = 1/3, and (6.12) becomes

IT =
1

3

(
1

2
+ e1 + e2 +

1

2
e3
)

≈ 6.8834. �

2. According to Theorem 6.2, how many subintervals are necessary to guar-
antee an error of 10−8 if the composite trapezoidal rule is used to evaluate
(6.13)?
Answer: It was shown earlier that ||f ′′||∞ = 9e3. So, to satisfy the inequal-
ity in the theorem, we want 3

4h
2e3 ≤ 10−8. Since h = 1/n, it is required

that n ≥ 1
2

√
3e3 × 104 ≈ 38,812.6. Therefore, according to Theorem 6.2,

240 6 Numerical Integration

n IT ET

1000 6.36185041244607 4.77e−06

2000 6.36184683390857 1.19e−06

4000 6.36184593927407 2.98e−07

8000 6.36184571561544 7.46e−08

16000 6.36184565970077 1.86e−08

32000 6.36184564572208 4.66e−09

Table 6.2 Values of (6.13) when computed using the composite midpoint rule IT ,
as well as the error ET .

we should use at least 38,813 subintervals so the error is no more than
10−8. To check on this, the computed values are given in Table 6.2, along
with the value of the error

ET =

∣∣∣∣∣
∫ b

a

f(x)dx − IT

∣∣∣∣∣ . (6.14)

What is seen is that the desired error of 10−8 is obtained using a some-
what smaller number of subintervals than the predicted value of 38,813.
As pointed out for the midpoint rule, this is not surprising, since the in-
equality in Theorem 6.2 is based on a worst-case assumption. �

It is worth comparing Figures 6.3 and 6.6. Although the piecewise linear
approximation of the function is certainly better than the piecewise constant
approximation, the midpoint rule produces a slightly better approximation of
the integral. Although improving the approximation of f(x) did not produce
a better result, the idea is still worth pursuing as demonstrated next.

0 0.25 0.5 0.75 1
x-axis

-1

-0.5

0

0.5

1

y-
ax

is

p
2
(x)

f(x)

Figure 6.7 Example of the piecewise quadratic approximation p2(x) used in the
derivation of Simpson’s rule. One quadratic is used for 0 ≤ x ≤ 1

2
and another for

1
2
≤ x ≤ 1.

6.3 Methods Based on Polynomial Interpolation 241

6.3.2 Simpson’s Rule

The next step is to try a quadratic approximation for f(x), and for this we
need three data points. One option is to use xi, xi+1, and some point within
the subinterval. Another option is to pair up the subintervals and use an
approximation over x1 ≤ x ≤ x3, another one over x3 ≤ x ≤ x5, etc. We will
use the latter option although this will require n to be even. From (5.4), the
quadratic that interpolates f(x) over the interval xi−1 ≤ x ≤ xi+1 is

p2(x) = fi−1�i−1(x) + fi�i(x) + fi+1�i+1(x). (6.15)

An example of the resulting approximation is shown in Figure 6.7 in the case
when n = 4. There are two quadratics in this case, one used for 0 ≤ x ≤ 1

2
and another for 1

2 ≤ x ≤ 1. If you look closely, you will notice that over each
subinterval the quadratic is above the function on one half, and below the
function on the other half. This is also what happened for the midpoint rule,
as seen in Figure 6.3, and it will result in the integration rule being more
accurate than might be expected.

In deriving the resulting integration rule we are also interested in the error.
Using Taylor’s theorem (see Exercise 5.24(c)) one can show that

f(x) = p2(x) +
1

6
z(z2 − h2)f ′′(xi) +

1

24
z2(z2 − h2)f ′′′′(xi) + · · · ,

where z = x− xi. Integrating both sides of this expression, one finds that

∫ xi+1

xi−1

f(x)dx =

∫ xi+1

xi−1

[p2(x) +
z

6
(z2 − h2)f ′′′

i +
z2

24
(z2 − h2)f ′′′′

i + · · ·]dx

=

∫ xi+1

xi−1

p2(x)dx

+

∫ h

−h

z

6
(z2 − h2)f ′′′

i +
z2

24
(z2 − h2)f ′′′′

i + · · ·]dz

=
h

3
(fi−1 + 4fi + fi+1)− 1

90
h5f ′′′′

i + · · · . (6.16)

This gives rise to what is known as Simpson’s rule, which is that

∫ xi+1

xi−1

f(x)dx ≈ h

3
(fi−1 + 4fi + fi+1).

It remains to recombine the subintervals, and the result is

∫ b

a

f(x)dx = IS +O(h4),

242 6 Numerical Integration

where

IS =
h

3
(f1 + 4f2 + 2f3 + 4f4 + 2f5 + · · ·+ 4fn + fn+1) . (6.17)

The expression in (6.17) is known as the composite Simpson’s rule. By keeping
careful track of the approximation errors made with this rule one can prove
the following.

Theorem 6.3. If f ∈ C4[a, b], then the composite Simpson’s rule (6.17)
satisfies ∣∣∣∣∣

∫ b

a

f(x)dx− IS

∣∣∣∣∣ ≤
b− a

90
h4||f ′′′′||∞

where ||f ′′′′||∞ = maxa≤x≤b |f ′′′′(x)|.

This is an impressive result, and it is clearly better than what was achieved
with the midpoint or trapezoidal rule. In fact, it is the “gold standard” in the
sense that when new integration rules are derived they are almost invariably
compared to Simpson’s rule.

Example

According to Theorem 6.3, how many subintervals are necessary to guarantee
an error of 10−8 if the composite Simpson’s rule is used to evaluate

∫ 1

0

e3xdx? (6.18)

Since ||f ′′′′||∞ = 81e3, then we want 9
10h

4e3 ≤ 10−8. This gives us h ≤
(10e−3/9)1/4×10−2. Recall that h = (b−a)/n = 1/n. Combining our results,
we require n ≥ (9e3/10)1/4 × 102 ≈ 206.0. So, according to Theorem 6.3, we

n IS ES

10 6.36212888551990 2.83e−04

20 6.36186348593954 1.78e−05

40 6.36184675860732 1.12e−06

80 6.36184571094418 6.99e−08

160 6.36184564543071 4.37e−09

Table 6.3 Values of (6.18) when computed using the composite Simpson’s rule IS ,
as well as the error ES .

6.3 Methods Based on Polynomial Interpolation 243

101 102 103

n-axis

10-15

10-10

10-5

100
E

rr
o

r

Midpt
Trap
Simp

Figure 6.8 The errors EM , ET , and ES for the composite midpoint, trapezoidal,
and Simpson’s rules, respectively, as a function of the number n of subintervals used
to evaluate (6.18).

should use at least 207 subintervals so the error is no more than 10−8. To
check on this, the computed values are given in Table 6.3, along with the
value of the error

ES =

∣∣∣∣∣
∫ b

a

f(x)dx − IS

∣∣∣∣∣ . (6.19)

What is seen is that the desired error of 10−8 is obtained using a somewhat
smaller number of subintervals than the predicted value of 207. It is also
informative to plot the error ES as a function of the number of subintervals,
and to compare this with the midpoint error EM , and the trapezoidal error
ET . This is done in Figure 6.8. As expected, EM and ET are very similar,
decreasing in the predicted O(h2) manner. It is also evident how much better
Simpson’s rule does compared to the other two methods. �

Examples

1. According to Theorem 6.3, what functions will the composite Simpson rule
integrate exactly, no matter what the value of h?

This requires ||f ′′′′||∞ = 0, which means that f ′′′′(x) = 0 for a ≤ x ≤ b.
Therefore, the composite Simpson rule will integrate cubics exactly. �

2. Suppose that the error when using the composite midpoint rule is 10−4 if
n = 100. What is the approximate error if n = 200?

Assuming the error decreases as O(h4), then for n = 200 the error will be
approximately 2−4 × 10−4 ≈ 6× 10−6. �

244 6 Numerical Integration

6.3.3 Cubic Splines

One of the best interpolation methods considered in Chapter 5 used cubic
splines, and this makes it a intriguing method for numerical integration. One
difference with the other interpolation based methods we have considered,
the cubic spline interpolation formula applies to the whole interval. A conse-
quence of this is that we will obtain the composite rule directly, without first
deriving the formula over the subintervals which are then added to produce
a composite rule.

As explained in Section 5.4.1, the cubic spline interpolation formula can
be written as

s(x) =

n+2∑
i=0

aiBi(x),

where the Bi’s are cubic B-splines and are defined in (5.22). Using the inte-
gration formulas given in Appendix B, one finds that

∫ b

a

s(x)dx =
n+2∑
i=0

ai

∫ b

a

Bi(x)dx

= h

(
n+1∑
i=1

fi +
1

24
(a2 − a0)− 1

2
f1 − 1

24
(an+2 − an)− 1

2
fn+1

)
. (6.20)

To go any further we need to specify which type of spline is going to be
used, and we will use a clamped spline. This means that s(x) satisfies

s′(x1) = f ′(a) and s′(xn+1) = f ′(b).

Given that

s′(xi) = ai−1B
′
i−1(xi) + aiB

′
i(xi) + ai+1B

′
i+1(xi)

= − 1

2h
ai−1 +

1

2h
ai+1,

then a0 = a2 − 2hf ′(a) and an+2 = an + 2hf ′(b). Substituting these into
(6.20) yields

∫ b

a

s(x)dx = h

(
1

2
(f1 + fn+1) +

n∑
i=2

fi +
h

12
(f ′

1 − f ′
n+1)

)
,

where f ′
1 = f ′(a) and f ′

n+1 = f ′(b). From Theorem 5.5 we know that f(x) =
s(x) +O(h4), and we therefore have that

∫ b

a

f(x)dx = IH +O(h4), (6.21)

6.3 Methods Based on Polynomial Interpolation 245

where

IH = h

(
1

2
f1 + f2 + f3 + · · ·+ fn +

1

2
fn+1

)
+

1

12
h2
(
f ′
1 − f ′

n+1

)
. (6.22)

This is known as the composite Hermite rule or the corrected trapezoidal rule.
It gets the latter name because

IH = IT +
1

12
h2
(
f ′
1 − f ′

n+1

)
. (6.23)

This is interesting because it shows that the composite trapezoidal rule IT ,
given in (6.12), can be adjusted so it has the same order of error as Simpson’s
rule. As for calling it the Hermite rule, it gets this name because you also
obtain (6.22) by integrating something called the cubic Hermite interpolation
function. A more extended discussion of this can be found in Holmes [2014].

The following theorem states the error for this method.

Theorem 6.4. If f ∈ C4[a, b], then the composite Hermite rule (6.22)
satisfies ∣∣∣∣∣

∫ b

a

f(x)dx − IH

∣∣∣∣∣ ≤
b− a

720
h4||f ′′′′||∞

where ||f ′′′′||∞ = maxa≤x≤b |f ′′′′(x)|.

This result is not particularly surprising given the error using a clamped cubic
spline, as given in Theorem 5.5.

Example

According to Theorem 6.4, how many subintervals are necessary to guarantee
an error of 10−8 if the composite Hermite rule is used to evaluate

∫ 1

0

e3xdx? (6.24)

Since ||f ′′′′||∞ = 81e3, then we want 9
80h

4e3 ≤ 10−8. This gives us h ≤
(80e−3/9)1/4 × 10−2. Since h = (b − a)/n = 1/n, then we require n ≥
(9e3/80)1/4 × 102 ≈ 122.6. So, according to Theorem 6.4, we should use
at least 123 subintervals so the error is no more than 10−8. To check on this,
the computed values are given in Table 6.4, along with the value of the error

EH =

∣∣∣∣∣
∫ b

a

f(x)dx − IH

∣∣∣∣∣ . (6.25)

246 6 Numerical Integration

n IH EH

10 6.36177422332073 7.14e−05

20 6.36184117028484 4.47e−06

40 6.36184536152670 2.80e−07

80 6.36184562358981 1.75e−08

160 6.36184563997048 1.09e−09

Table 6.4 Values of (6.24) when computed using the composite Hermite rule IH , as
well as the error EH .

What is seen is that the desired error of 10−8 is obtained using a somewhat
smaller number of subintervals than the predicted value of 26. �

It is interesting that Hermite has a slightly better error than Simpson,
although it requires a bit more information about the function. Also, because
of (6.23), it shows that the trapezoidal rule can be more accurate than Simp-
son for functions which satisfy f ′(a) = f ′(b). It needs to be stated however
that most functions do not satisfy this condition, and for this reason Simpson
is expected to produce a more accurate approximation than the trapezoidal
method. The most noteworthy exception to this arises with periodic func-
tions, where having f ′(a) = f ′(b) is not uncommon.

6.3.4 Other Interpolation Ideas

As pointed out earlier, (6.22) is known as the corrected trapezoidal rule. It
turns out that there is also a corrected midpoint rule, and it states that

∫ b

a

f(x)dx = IM − 1

24
h2
(
f ′
1 − f ′

n+1

)
+O(h4).

The error term in this case is (b − a)Kh4||f ′′′′||∞, where K = 7/5760. This
makes it competitive with both Simpson’s rule and the corrected trapezoidal
rule. More information about this idea of correcting, or improving, an inte-
gration rule using information at the endpoints can be found in Nenad and
Roberts [2008].

One might think that the next step is to use higher order polynomial
approximations and see what sort of integration rule results. Although there
are people with a lot of time on their hands that do this sort of thing, it
is not worth the effort. Instead, it is worth comparing the formulas for the
composite trapezoidal and Simpson rules. If you add up the fi’s with the
coefficients in (6.12), you get an approximation for the integral, but if you
add up the fi’s with the coefficients is (6.17) you get a better approximation.

6.4 Methods Based on Precision 247

This raises the question as to whether there are coefficients that can be used
that will produce an even better approximation. This idea is pursued in the
next section.

6.4 Methods Based on Precision

The next family of methods we are going to consider are based on two obs-
ervations that come from the rules we derived using interpolation. The first
is the observation that most of the integration rules have the form∫ xi+1

xi

f(x)dx ≈ w1f(z1) + w2f(z2) + · · ·+ w�f(z�), (6.26)

where the zj ’s are from the interval xi ≤ x ≤ xi+1. The zj ’s are called
the nodes, and the wj ’s are the weights. So, the midpoint rule in (6.6) has
one node z1 = xi +

h
2 , with corresponding weight w1 = h. Similarly, the

trapezoidal rule given in (6.11) has two nodes, z1 = xi and z2 = xi+1, with
weights w1 = w2 = h/2. It should also be noted that (6.26) does not include
derivative terms that arose with the Hermite rule, and how these can be
incorporated into the procedure is explored in Exercise 6.23.

The second observation concerns the error. To explain, in deriving the
midpoint rule it is found that∫ xi+1

xi

f(x)dx = f(xi +
h

2
)h+

1

24
h3f ′′(η), (6.27)

where η is located somewhere in the interval (xi, xi+1). The proof of this
statement is similar to the derivation used to obtain (6.5). Because of (6.27)
the midpoint rule has zero error (i.e., it is exact) if f(x) = 1 or f(x) = x and
the reason is that for both of these functions f ′′(x) = 0. However, it is not
necessarily exact when f(x) = x2 and because of this the midpoint rule is
said to have precision one. Similarly, as stated in Theorem 6.3, the error of
the composite Simpson’s rule is bounded by b−a

90 h4||f ′′′′||∞. Consequently, it
has zero error if f(x) = 1, f(x) = x, f(x) = x2, or f(x) = x3, but it is not
necessarily zero if f(x) = x4. For this reason it has precision three.

Before continuing to use this word it is best to define what it means.

Definition 6.1. The precision of an integration rule is the largest value of m
for which the rule is exact for the functions f(x) = xk, for k = 0, 1, 2, · · · ,m.

This definition is used to derive integration rules, and to do this, it is necessary
to know the exact value of integrals of the form

∫ xi+1

xi

xkdx. (6.28)

The values, up to k = 5, are given in Table 6.5.

248 6 Numerical Integration

k f(x)

∫ xi+1

xi

f(x)dx

0 1 h

1 x h

(
xi +

1

2
h

)

2 x2 h

(
x2
i + hxi +

1

3
h2

)

3 x3 h

(
x3
i +

3

2
hx2

i + h2xi +
1

4
h3

)

4 x4 h

(
x4
i + 2hx3

i + 2h2x2
i + h3xi +

1

5
h4

)

5 x5 h

(
x5
i +

5

2
x4
ih+

10

3
x3
ih

2 +
5

2
x2
ih

3 + xih
4 +

1

6
h5

)

Table 6.5 Values of (6.28) for various values of k.

We are now going to derive integration rules that have maximum precision,
and these fall under the general category of Gaussian rules.

6.4.1 1-Point Gaussian Rule

We start with a question: what integration rule gives the maximum precision
using one point from the subinterval? The assumption is that the general
form of the rule is ∫ xi+1

xi

f(x)dx ≈ w1f(z1),

where xi ≤ z1 ≤ xi+1. To find the value of w1 and z1 that maximize the
precision, we want to find the largest value of k so that

∫ xi+1

xi

xkdx = w1z
k
1 , (6.29)

and this generates the following list.

1. k = 0: From (6.29) we require that
∫ xi+1

xi
dx = w1, and from this it follows

that
h = w1.

2. k = 1: Putting f = x in (6.29), and using Table 6.5, it is required that

h

(
xi +

1

2
h

)
= w1z1.

Given that w1 = h, we obtain z1 = xi +
1
2h.

6.4 Methods Based on Precision 249

3. k = 2: Using Table 6.5, it is required that

h

(
x2
i + hxi +

1

3
h2

)
= h(xi +

1

2
h)2. (6.30)

It is not possible for this to hold for nonzero h, and so this rule does not
integrate this function exactly.

Therefore, the 1-point Gaussian quadrature rule is the midpoint rule. This
is worth knowing but it is disappointing because the new idea of maximizing
the precision has not produced a new method. As demonstrated next, this
changes when we use more points.

6.4.2 2-Point Gaussian Rule

The general form of the rule in this case is

∫ xi+1

xi

f(x)dx ≈ w1f(z1) + w2f(z2).

Our goal is to find the values of the wi’s and zi’s that maximize the precision.
So, we want to find the largest value of k so that

∫ xi+1

xi

xkdx = w1z
k
1 + w2z

k
2 .

As was done for the 1-point rule, we make a list using Table 6.5.

1. k = 0:
h = w1 + w2

2. k = 1:

h

(
xi +

1

2
h

)
= w1z1 + w2z2.

3. k = 2:

h

(
x2
i + hxi +

1

3
h2

)
= w1z

2
1 + w2z

2
2

4. k = 3:

h

(
x3
i +

3

2
hx2

i + h2xi +
1

4
h3

)
= w1z

3
1 + w2z

3
2

5. k = 4:

h

(
x5
i +

5

2
x4
i h+

10

3
x3
i h

2 +
5

2
x2
i h

3 + xih
4 +

1

6
h5

)
= w1z

4
1 + w2z

4
2 (6.31)

250 6 Numerical Integration

We have four unknowns so we will consider the first four equations from the
above list. The fact that three of them are nonlinear makes the problem of
solving them a bit challenging. One approach to help simplify things is to
anticipate where the points z1 and z2 are located relative to each other in
the interval. For the midpoint rule, z1 ended up being symmetrically located
in the interval (i.e., at the midpoint). Given that z1 and z2 appear in a
symmetric manner in the integration rule, it is not unreasonable to expect
them to also end up being placed symmetrically in the interval. In other
words, they have the form z1 = 1

2 (xi+1 + xi) + q and z2 = 1
2 (xi+1 + xi)− q,

where we need to find the value of q. Assuming this, then from the f(x) = 1
and f(x) = x conditions one finds that w1 = w2 = 1

2h. With this and the
f(x) = x2 condition one finds that q2 = 1

12h
2. The remaining tasks are to

show that this solution satisfies the f(x) = x3 condition but not the one for
f(x) = x4. Both of these are left as exercises.

The resulting integration rule is

∫ xi+1

xi

f(x)dx ≈ 1

2
h
[
f(z+i) + f(z−i)

]
, (6.32)

where

z±i = xi +
1

2
h± 1

2
√
3
h. (6.33)

This is the 2-point Gaussian quadrature rule, and it has precision 3. As will
be explained in the next section, a Gaussian rule with precision m has an
error that is O(hm+2). Consequently, the error for the above rule has an error
that is O(h5), which is the same order as obtained for Simpson’s rule. Also
note that the Gaussian points z−i and z+i are symmetrically placed in the
subinterval but they do not split the interval into thirds (see Figure 6.9).

6.4.3 Error Formulas

Now that we have derived a new method for numerical integration we turn
our attention to the error. We begin with the theorem which provides the
needed formula.

Theorem 6.5. If f ∈ C2�[xi, xi+1], then the error EG using the �-point rule
in (6.26) is

Figure 6.9 Location of the Gaussian points z−i and z+i in the subinterval.

6.4 Methods Based on Precision 251

EG = Kh2�+1f (2�)(η),

where

K =
(�!)4

(2�+ 1)[(2�)!]3
, (6.34)

and xi ≤ η ≤ xi+1.

The proof of this theorem can be found in Isaacson and Keller [1994]. The
significance of this result is that it shows that a Gaussian rule with precision
m has an error that is O(hm+2). We will make use of this in a couple of ways.
The first will follow what we did with the other rules, where we combine the
subintervals into a composite formula. For the second way, subintervals will
not be used, and the formula will be applied to the entire interval.

Applying the above theorem to the 2-point rule (6.32),

∫ xi+1

xi

f(x)dx =
1

2
h
[
f(z+i) + f(z−i)

]
+Kh5f ′′′′(η).

where K = 1/4320. The resulting composite rule is

∫ b

a

f(x)dx = I2G +O(h4),

where

I2G =
h

2

(
f−
1 + f+

1 + f−
2 + f+

2 + · · ·+ f−
n + f+

n

)
. (6.35)

In the above expression, f±
i = f(z±i) denotes the values of f(x) at the two

Gaussian points within the ith subinterval as given in (6.33). The correspond-
ing error using this composite rule is given in the following theorem.

Theorem 6.6. If f ∈ C4[a, b], then the composite 2-point rule satisfies

∣∣∣∣∣
∫ b

a

f(x)dx − I2G

∣∣∣∣∣ ≤
b− a

4320
h4||f ′′′′||∞ ,

where ||f ′′′′||∞ = maxa≤x≤b |f ′′′′(x)|.

The denominator in the above expression is much larger than what we have
obtained with the other composite rules. However, this is not as impressive
as might be assumed at first glance. When using n subintervals, Simpson’s
rule uses n + 1 function evaluations while the above Gaussian rule uses 2n.
To make a fair comparison one should use approximately the same number
of function evaluations. So, for the Gaussian rule one should use approxi-
mately n/2 subintervals, which means the grid spacing should be 2h. If this

252 6 Numerical Integration

100 101 102 103

Function Evaluations

10-12

10-9

10-6

10-3

100
E

rr
o

r

Simpson
Gaussian
Hermite

Figure 6.10 Error in using the composite Simpson’s rule, the Hermite rule, and the
composite 2-point Gaussian rule to evaluate (6.36).

is done, then the multiplicative factor changes from 1
4320 to 1

270 . Given that
the corresponding factor for Simpson is 1

90 then the 2-point Gaussian rule
does produce a better error but the improvement is approximately 1

3 and not
a factor of 1

48 as might be inferred from Theorem 6.6.

Examples

1. Suppose the composite 2-point rule is used to approximate the value of

∫ 1

0

e3xdx. (6.36)

Using two subintervals, then the Gaussian points in the first interval are
z±1 = 1

4 (1± 1/
√
3), and for the second interval z±2 = 1

4 (3± 1/
√
3). In this

case, (6.35) becomes

I2G =
1

4

(
e3z

−
1 + e3z

+
1 + e3z

−
2 + e3z

+
2

)

≈ 6.3549. �

2. The error using the composite versions of the Simpson, Hermite, and
2-point Gaussian rules are shown Figure 6.10 for the integral (6.36). The
error is shown as a function of the number of function evaluations needed
to calculate the integration rule. Assuming there are n subintervals, and n
is even, then the number of function evaluations for Simpson is n+ 1, for
Hermite it is n+3, and for 2-point Gaussian it is 2n. The curves all show
the expected O(h4) rate of convergence. Also, as expected the Hermite rule
produces the best approximation although the differences between these
three methods are relatively minor. �

6.4 Methods Based on Precision 253

6.4.4 General Case

The general version of the �-point Gaussian quadrature rule given in (6.26)
results in an integration rule with precision 2�−1. This is interesting because
it allows for the possibility of reducing the number of subintervals, but inc-
reasing the number of Gaussian points in each subinterval to achieve the req-
uired accuracy. This can be very effective, and to illustrate, consider the
integral in (6.36). Not using any subintervals, then the Gaussian points are
positioned over the interval of integration a ≤ x ≤ b. To demonstrate just
how effective this can be, the error involved with computing (6.36) is given in
Table 6.6 as a function of the number of Gaussian points used. For compar-
ison, the value obtained using the composite Simpson’s rule is given, using
the corresponding number of interpolation points. The improvement of the
Gaussian value is impressive, easily besting the results obtained using the
composite Simpson’s rule. Moreover, given the results in Figure 6.10, it is also
significantly better than Hermite or the composite 2-point Gaussian rule.

An explanation of why it does so well can be found in the error formula
given in Theorem 6.5. Before stating the result, note that we are not using
subintervals, and so the integration rule is

∫ b

a

f(x)dx ≈ w1f(z1) + w2f(z2) + · · ·+ w�f(z�), (6.37)

with error
EG = K(b− a)m+2f (m+1)(η), (6.38)

and precision m = 2� − 1. The rather unwieldy expression given in Theo-
rem 6.5 for the factor K can be simplified using the Stirling approximation
(5.34). After doing this, it is found that

|EG| ≤ α√
�
R2�||f (2�)||∞, (6.39)

where ||f (2�)||∞ = maxa≤x≤b |f (2�)(x)|, α = (b− a)
√
π/4, and

R =
(b − a)e

8�
. (6.40)

Consequently, if � is large enough that R < 1, then R2� approaches zero
exponentially fast as � increases. Whether this means that the error using
Gaussian quadrature approaches zero exponentially fast depends on the con-
tribution of the f (2�) term in the error formula. This is the same situation
we encountered with Chebyshev interpolation in Section 5.5.4. In fact, the
examples used in Section 5.5.5 can be used to demonstrate that both the
composite Simpson’s and Hermite rules are competitive with, if not better
than, Gaussian quadrature (on those examples).

254 6 Numerical Integration

	 EG ES

1 1.88

2 9.18e−02

3 1.74e−03 1.40e−01

4 1.75e−05

5 1.09e−07 1.05e−02

6 4.66e−10

7 1.45e−12 2.14e−03

8 8.88e−16

9 7.11e−15 6.87e−04

Table 6.6 Error EG evaluating (6.36) using 	-point Gaussian quadrature, and the
error ES using composite Simpson’s rule. For the latter, 	 designates the number of
function evaluations.

Something not mentioned in the above discussion is how the nodes and
weights in (6.37) are determined. As it turns out, the locations of the nodes
correspond to the roots of the �th order Legendre polynomial. Assuming that
� ≥ 2, and using the recursive properties of these polynomials, finding the
nodes and weights can be reduced to an eigenvalue problem involving an �×�
tridiagonal matrix. This problem is given in Exercise 4.22. Letting λj denote
the jth eigenvalue, then in (6.37) the corresponding node is given as

zj =
b+ a

2
+

b− a

2
λj ,

and the weight is wj =
1
2 (b−a)wj , where wj is defined in Exercise 4.22. This is

the basis for what is known as the Golub-Welsch algorithm, and more about
this can be found in Golub and Welsch [1969] and Davis and Rabinowitz
[2007].

The values for the Gaussian quadrature rules are listed in most handbooks
or compilations of mathematical formulas (e.g., the values for the 80-point
rule are listed in Olver et al. 2010). For those with a more extreme interest
in this should also consult Love [1966], which considers up to 200 nodes, or
Bogaert [2014], who discusses cases with millions of nodes. For the latter,
the nodes near the endpoints of the interval are so close that they are not
resolvable using double precision. The need of such a large number of nodes
is not clear, and for the moment the result is mostly of theoretical interest.

There are numerous variations of the Gaussian rule given in (6.37). To
describe one of particular note, recall that in Section 5.5.4 we found that
to obtain the best interpolation polynomial, the xi’s should be chosen to
be the Chebyshev points. It would seem that these would be a good choice
for the nodes in (6.37). However, there is evidence that it is actually better

6.5 Romberg Integration 255

to use the extrema points of the Chebyshev polynomial from the interval
a ≤ x ≤ b rather than the points where it is zero. The respective weights are
determined, as usual, by maximizing the precision. This gives rise to what
is known as Clenshaw-Curtis quadrature. Assuming there are � nodes, this
method has precision � − 1, while the Gaussian rule has precision 2� − 1.
Even so, there are situations where Clenshaw-Curtis might be preferable to
Gaussian quadrature, and this is discussed in Trefethen [2008].

6.5 Romberg Integration

An interesting idea on how to improve the accuracy of numerical integration
is based on an observation for the error. To illustrate, the composite midpoint
rule (6.7) states that

∫ b

a

f(x)dx = IM +O(h2).

This can be written as

∫ b

a

f(x)dx = IM (n) + αh2 + βh3 + γh4 + · · · . (6.41)

In the above expression, IM (n) is written to make it explicit how many
subintervals are used, and the various terms making up the error are written
out. It is also worth recalling that h = (b−a)/n. Because of this, if the number
of subintervals is increased from n to 2n, then the width of the subintervals
changes from h to h/2. Consequently,

∫ b

a

f(x)dx = IM (2n) +
1

4
αh2 +

1

8
βh3 +

1

16
γh4 + · · · ,

where h is the value of the width when using n subintervals. It is possible
to combine the two approximations and in the process eliminate the O(h2)
term. Multiplying the second equation by 4 and subtracting the first equation
we obtain

3

∫ b

a

f(x)dx = 4IM (2n)− IM (n)− 1

2
βh3 + · · · .

In other words,

∫ b

a

f(x)dx =
4

3
IM (2n)− 1

3
IM (n) +O(h3). (6.42)

This idea of increasing the number of subintervals and then combining the
two results to get a better approximation is known as Romberg integration.

256 6 Numerical Integration

The formula in (6.42) is due entirely to the form of the error in (6.41), and
it can be applied to any composite rule with this type of error. For example,
the composite trapezoidal rule has this form, and so the Romberg formula
for it is ∫ b

a

f(x)dx =
4

3
IT (2n)− 1

3
IT (n) +O(h3). (6.43)

It can also be easily extended to composite rules with other forms for the
error. An example is Simpson’s rule, and the Romberg procedure applied to
it produces ∫ b

a

f(x)dx =
15

16
IS(2n)− 1

15
IS(n) +O(h6). (6.44)

The derivation of this result, as well as other Romberg formulas, can be found
in Exercise 6.20.

6.5.1 Computing Using Romberg

The question arises when computing an integral of how many subdivisions
to use. For most of the methods considered in this chapter, theorems were
given that provided bounds on the error, and these were used to predict
how many subintervals are need to guarantee a certain error. In real world
situations, these often are not useful because calculating ||f ′′||∞ or ||f ′′′′||∞ is
either not possible or too difficult to be practical. For this reason, integration
methods are used in a similar manner as Newton’s method or the secant
method. Namely, you use the method to generate a sequence of approximate

Pick: n

tol > 0

A(1) = I(n)

R(1) = A(1)

Loop: For k = 2, 3, 4, · · ·
n = 2n

A(k) = I(n)

R(k) = (16A(k) −A(k − 1))/15

if |R(k) −R(k − 1)| < tol, then stop

end

Table 6.7 Algorithm for evaluating an integral numerically using Romberg integra-
tion applied to a composite integration rule that has error O(h4).

6.5 Romberg Integration 257

100 101 102

n-axis

10-14

10-12

10-10

10-8

10-6

10-4
E

rr
o

r

Simp
Rom

Figure 6.11 The error when evaluating (6.45). Shown is the error ES using the
composite Simpson’s rule, and the error ER obtained using Romberg integration (the
latter are from Table 6.8).

values for the integral. Unlike Newton’s method where you are not sure it will
converge, the theorems for the numerical integration methods guarantee they
will work as long as the function you are computing with is smooth enough.

The basic procedure is to keep doubling the number of subintervals, using
one of the Romberg rules to compute the integral, and then stopping when
the desired accuracy is achieved. Such an algorithm using Simpson’s rule is
given in Table 6.7. The formula for R(k) in this case comes from (6.44).

Example

To demonstrate the usefulness of Romberg integration we consider evaluating
the integral ∫ 1

0

e3xdx. (6.45)

k n IS IR ER

1 4 1.71831884192175

2 8 1.71828415469990 1.71828184221844 1.376e−08

3 16 1.71828197405189 1.71828182867536 2.163e−10

4 32 1.71828183756177 1.71828182846243 3.385e−12

5 64 1.71828182902802 1.71828182845910 5.240e−14

Table 6.8 Values of (6.45) when using Romberg integration with Simpson’s rule as
given in the algorithm in Table 6.7. Also given is the error ER = |IR(n) − I |, where
IR is the value using Romberg integration and I is the exact value. The stopping
error used is tol = 10−10.

258 6 Numerical Integration

0 0.5 1 1.5 2 2.5 3
x-axis

0

0.2

0.4

0.6

0.8

1
y-

ax
is

Figure 6.12 Example of a function that shows significant variation over the interval
of integration.

Using the procedure given in Table 6.7, the values given in Table 6.8 are obt-
ained. To make it more evident that the error for Romberg has the predicted
O(h6) decrease, the errors are plotted in Figure 6.11. �

6.6 Adaptive Quadrature

Consider the problem of integrating the function f(x) = cos(x3)200 over the
interval 0 ≤ x ≤ 3, which is shown in Figure 6.12. If Simpson’s rule is used,
and an error of less than 10−6 is desired, then according to Theorem 6.3
it is necessary to use about 19,200 equally spaced subintervals. This large
number is necessary to accurately calculate the area under the sharp peaks
near x = 3. However, such small subintervals are not necessary to accurately
compute the area over the interval 0 ≤ x ≤ 1. The way to deal with this is
simple, namely you just use smaller subintervals in the regions with peaks,
and larger subintervals in the flatter regions. What you do not want to do
is to manually decide how to break up the interval, but instead design a
procedure that progressively refines the subdivisions in the peak regions until
the required accuracy is attained. This is the essence of what is called adaptive
quadrature.

To explain the basic idea underlying adaptive quadrature, consider evalu-
ating the integral ∫ 4

0

f(x)dx, (6.46)

where f(x) is the shifted Lorentzian function

f(x) = 1 +
1

π

ω

(x − x0)2 + ω2
,

where x0 = 3 and ω = 1/(2π). The graph of f(x) is shown in Figure 6.13. The
version of adaptive quadrature described here uses Simpson’s rule. According

6.6 Adaptive Quadrature 259

to Theorem 6.3 it is necessary to use about 960 equally spaced subintervals to
have an error of no more than 10−6, while if the Simpson-Romberg integration
rule is used then the number drops to about 200 subintervals. To derive
an adaptive method it is necessary to know how the error is affected as
the number of subintervals increases, something similar to what was used
to derive for Romberg integration. The needed formulas are derived in the
next paragraph for the general case using Simpson’s rule, and after that the
method will be applied to the above example.

To determine the improvement as the number of subintervals is increased,
we first rewrite (6.16) as

∫ xi+1

xi−1

f(x)dx = S2(xi−1, xi+1) + E2, (6.47)

where

S2(xi−1, xi+1) =
h

3
(fi−1 + 4fi + fi+1),

and

E2 = − 1

90
h5f ′′′′

i + · · · .
The subscript 2 is used to indicate how many subintervals are used. If we use
four subintervals, instead of two, then

∫ xi+1

xi−1

f(x)dx =

∫ xi

xi−1

f(x)dx+

∫ xi+1

xi

f(x)dx

= S2(xi−1, xi)− 1

90
(h/2)5f ′′′′(xi − h/2) + · · ·

+ S2(xi, xi+1)− 1

90
(h/2)5f ′′′′(xi + h/2) + · · · .

0 0.5 1 1.5 2 2.5 3 3.5 4
x-axis

0

0.5

1

1.5

2

2.5

3

y-
ax

is

Figure 6.13 Function used in the integral (6.46), and the initial subdivisions used
for Simpson’s rule.

260 6 Numerical Integration

From Taylor’s theorem, f ′′′′(xi ± h/2) = f ′′′′(xi)± (h/2)f (5)(xi) + · · · . With
this, we have that

∫ xi+1

xi−1

f(x)dx = S4(xi−1, xi+1) + E4, (6.48)

where S4(xi−1, xi+1) = S2(xi−1, xi) + S2(xi, xi+1) and E4 = 1
16E2 + · · · .

Since (6.47) and (6.48) are supposed to produce the same result, we equate
the right-hand sides and conclude that

E4 ≈ 1

15
[S4(xi−1, xi+1)− S2(xi−1, xi+1)] . (6.49)

What this result states is that the error in approximating the integral with
S4(xi−1, xi+1) can be estimated using the computed values for S4(xi−1, xi+1)
and S2(xi−1, xi+1). The remaining question is, how small do we want |E4|?
Assuming the requirement is that the error in the computed value for the
entire integral ∫ b

a

f(x)dx

is no more than tol, then we will require

|E4| ≤ xi+1 − xi−1

b− a
tol . (6.50)

The coefficient of tol in the above expression is so the errors from the subin-
tervals add up to tol.

We return to the original problem of evaluating (6.46). The method will
produce levels of subdivision, and it is worth labeling them as the refinement
proceeds. It is also assumed that tol is a prescribed error tolerance.

Level 1: Taking two subintervals, so h = (b − a)/2 = 2 (which are the
solid vertical blue lines in Figure 6.13), the first approximation is

S2(0, 4) =
2

3
[f(0) + 4f(2) + f(4)]

≈ 4.1684 .

Doubling the number of subintervals, then h = 1 and the subintervals now
include the dashed blue lines in Figure 6.13. In this case,

S4(0, 4) =
1

3
[f(0) + 4f(1) + f(2)] +

1

3
[f(2) + 4f(3) + f(4)]

≈ 6.7347 .

Using (6.49), this means that the error in approximating the integral using
S4 is

6.6 Adaptive Quadrature 261

0 0.5 1 1.5 2 2.5 3 3.5 4
x-axis

0

0.5

1

1.5

2

2.5

3
y-

ax
is

Figure 6.14 Function used in the integral (6.46), and the subdivisions used in Level
2 of the adaptive procedure.

E4 ≈ 1

15
(S4 − S2) ≈ 0.1711 .

If this satisfies (6.50), which means that |E4| ≤ tol, then you are finished
and the computed value is S4. If not, then more subdivisions are needed
and you proceed to Level 2.

Level 2: If the error condition is not satisfied, then the method splits the
interval in half and writes

∫ 4

0

f(x)dx =

∫ 2

0

f(x)dx +

∫ 4

2

f(x)dx, (6.51)

and then applies the approximations used in Level 1 to each integral. The

resulting subintervals are shown in Figure 6.14. For example, for
∫ 2

0
f(x)dx

it calculates

S2(0, 2) =
1

3
[f(0) + 4f(1) + f(2)]

≈ 2.0351 ,

and

S4(0, 2) =
1

6
[f(0) + 4f(0.5) + f(1)] +

1

6
[f(1) + 4f(1.5) + f(2)]

≈ 2.0336 .

The error in this case is

E4 =
1

15
(S4 − S2) ≈ −10−4 .

If this satisfies (6.50), which means that |E4| ≤ tol/2, then computing the
integral over the interval 0 ≤ x ≤ 2 is done. If not, then this integral is

passed to Level 3. A similar calculation is done for
∫ 4

2
f(x)dx.

262 6 Numerical Integration

Level 3, 4, · · ·: The method keeps subdividing the subintervals that are
transferred from the previous level, until it finally obtains a value for each
that satisfies the error condition.

In the above description, the value of S4 is used as the computed value of
the integral over the subinterval. Given the way the number of subintervals
are doubled in this procedure, it is possible to compute the final value using
Romberg integration. So, instead of S4, a more accurate value for the subin-
terval is obtained by using

R4 =
1

15
(16S4 − S2).

Letting the procedure run, the final subdivision is shown in Figure 6.15.
The error condition used to decide when to stop subdividing is that the error
for the integral is no more than tol = 10−6. This resulted in the need for
8 levels, and a total of 89 evaluations of the function f(x). In comparison,
it takes approximately 960 equally spaced subdivisions to achieve the same
error, and this is also the approximate number of function evaluations needed.

As another example, for the function shown in Figure 6.13, 19,200 equally
spaced subintervals are needed to achieve an error of 10−6, and this is also
the approximate number of function evaluations required. In contrast, us-
ing the adaptive Simpson method, this error is achieved using 849 function
evaluations (and 14 levels).

There are numerous variations on the idea of adaptive integration. For
example, instead of using Simpson’s rule, the 2-point Gaussian rule is a pos-
sibility and it has an error comparable with Simpson. The drawback is that
when subdividing the intervals, the nodes z±i for the larger interval are not
shared with the smaller subintervals. This means that a completely new set of
function evaluations are required for each level, with a corresponding increase
in computing time. There are some clever ways to avoid this difficulty, and

0 0.5 1 1.5 2 2.5 3 3.5 4
x-axis

0

0.5

1

1.5

2

2.5

3

y-
ax

is

Figure 6.15 Function used in the integral (6.46), and the final subdivisions used for
adaptive Simpson’s rule.

6.8 Epilogue 263

100 102 104 106 108

n-axis

10-16

10-12

10-8

10-4
E

rr
o

r
Original
Comp Sum

Figure 6.16 Upper right curves: Composite midpoint rule with and without com-
pensated summation. Lower left curves: Composite Simpson’s rule with and without
compensated summation.

one of the more well-known gives rise to what are called Gauss-Kronrod rules.
Recent reviews, or discussions, of this can be found in Gander and Gautschi
[2000] and Gonnet [2012].

6.7 Other Ideas

In Section 1.4 the idea of compensated summation was introduced and its
benefits are illustrated in Table 1.4. Given the potentially large number of
additions that can arise with numerical integration, the question arises as
to whether compensated summation is worth using. To investigate this, we
return to evaluating the integral ∫ 1

0

e3xdx.

The error in computing this integral using the composite midpoint and
Simpson’s rules, with and without compensated summation, is shown in
Figure 6.16. What it shows is that for Simpson’s rule compensated sum-
mation does help once the error gets close to machine epsilon. In fact, the
missing data values when using compensated summation, like the value when
n = 104, means the error is zero. In comparison, because the midpoint rule
requires a significantly larger number of subintervals, compensated summa-
tion starts to make a noticeable improvement at a larger error level.

6.8 Epilogue

This chapter is guilty of overkill in the sense that several methods were der-
ived that basically do the same thing. This is done, partly, because there is
no “best” method. It is certainly true that the Gaussian rule has the distinct

264 6 Numerical Integration

advantage of having exponential convergence, assuming the function being
integrated is smooth enough. The reason for wanting exponential convergence
is evident in Table 6.6. There are limitations to using Gaussian quadrature,
and one is that it requires access to an efficient eigenvalue problem solver.
Also, as explained in Section 6.5.1, integration is often an iterative process,
and unlike most of the other methods discussed in this chapter, the Gaussian
rule cannot make use, in an obvious way, of the function evaluations made
in earlier steps of the iteration. Finally, there is the actual computing time
needed to evaluate the integral. Even a function as complicated as the one in
(6.1) takes only about 10−7 seconds to evaluate. So, evaluating the integral
using Simpson-Romberg or adaptive Simpson requires about 10−3 seconds,
while using Gaussian quadrature requires about 3 × 10−4 seconds. In other
words, for such an integral, the differences between the three methods are
effectively imperceptible.

Which rule to consider does depend on the application. For example, if the
function is experimentally determined, and you only have data points, then
the Hermite and Gaussian rules are difficult to use and the default would be
Simpson. This assumes of course that the grid points are equally spaced. If
not, then one might consider either the midpoint or trapezoidal rules, which
are easily adapted to uneven grid points. Another situation worth mentioning
is when f(x) is periodic. In such cases the composite midpoint and trapezoidal
methods can be very effective, giving rise to exponential convergence. An
explanation of why, and what this is, can be found in Weideman [2002],
Waldvogel [2011], and Trefethen and Weideman [2014]. A related, but more
difficult situation, arises when f(x) is an oscillatory function and it oscillates
rapidly. These can arise, for example, when you use a Fourier transform to
solve a differential equation. Some of the ideas on how to integrate such
functions can be found in Evans and Webster [1999] and Iserles et al. [2006].

Exercises

6.1. This problem concerns using numerical methods to calculate the integral

I =

∫ 2

1

ln(x)dx.

Note that the exact value is, I = 2
√
2− 1.

(a) Using the composite trapezoidal rule, and 4 subintervals, find an approx-
imate value for the integral. What is the error?

(b) Using the composite Simpson’s rule, and 4 subintervals, find an approx-
imate value for the integral. What is the error?

(c) Using the composite Hermite rule, and 4 subintervals, find an approxi-
mate value for the integral. What is the error?

Exercises 265

x 0 2 4 6 8

F 0 1 5 17 37

Table 6.9 Values for Exercise 6.3.

(d) Using the composite trapezoidal rule, how small does the step size h have
to be to guarantee that the numerical error is less than 10−6?

(e) Using the composite Simpson’s rule, how small does the step size h have
to be to guarantee that the numerical error is less than 10−6?

(f) Using the composite Hermite rule, how small does the step size h have
to be to guarantee that the numerical error is less than 10−6?

6.2. This problem concerns using numerical methods to calculate the integral

I =

∫ 1

−1

e−2xdx.

Note that the exact value is, I = (e2 − e−2)/2.
(a) Using the composite trapezoidal rule, and 4 subintervals, find an approx-

imate value for the integral. What is the error?
(b) Using the composite Simpson’s rule, and 4 subintervals, find an approx-

imate value for the integral. What is the error?
(c) Using the composite Hermite rule, and 4 subintervals, find an approxi-

mate value for the integral. What is the error?
(d) Using the composite trapezoidal rule, how small does the step size h have

to be to guarantee that the numerical error is less than 10−6?
(e) Using the composite Simpson’s rule, how small does the step size h have

to be to guarantee that the numerical error is less than 10−6?
(f) Using the composite Hermite rule, how small does the step size h have

to be to guarantee that the numerical error is less than 10−6?

6.3. The measured values of a force F (x) as a function of the displacement x
are given in Table 6.9. The object of this exercise is to calculate the work W .

(a) Use the trapezoidal rule to find the value of W (x) at x = 2, 4, 6, 8. You
can assume that W (0) = 0.

(b) Use the composite midpoint rule to calculate W (8).
(c) Use the composite Simpson rule to calculate W (8).
(d) Use Romberg integration with the composite trapezoidal rule to

calculate W (8).

6.4. For a linearly elastic material, the stress T (x) is given as

T = E
du

dx
,

266 6 Numerical Integration

where u(x) is the displacement of the material and E is a positive constant
known as the Young’s modulus. The question considered here is, how to
determine u from measurements of T , as given in Table 6.10.
(a) Show that

u(x) = u(0) +
1

E

∫ x

0

T (s)ds.

In the following you can assume that u(0) = 0 and E = 4.
(b) Use the trapezoidal rule to find the value of u(x) at x = 1/4, 1/2, 3/4, 1.
(c) Use the composite midpoint rule to calculate u(1).
(d) Use the composite Simpson rule to calculate u(1).
(e) Use Romberg integration with the composite trapezoidal rule to

calculate u(1).

6.5. True or False. In the following a claim is made about the value of the
integral. Using one of the integration rules considered in this chapter provide
a compelling reason why you believe the value is correct or why it is an error.
Make sure to explain which integration method you used, including the error
condition(s).
(a) ∫ π/2

0

sin2 x

sinx+ cosx
dx =

1

2
√
2
ln(3 + 2

√
2)

(b) ∫ π/2

0

1

(cos2 x+ 3 sin2 x)3
dx =

π

12

√
3

(c) ∫ 1

0

tan−1(
√
2 + x2)

(1 + x2)
√
2 + x2

dx =
5π5

96

(d) ∫ π/2

0

cos−1

(
cosx

1 + 2 cosx

)
dx =

5π2

24

(e) ∫ 1

0

xx3

dx = 1− 1

42
+

1

73
− 1

104
+

1

135
− · · ·

6.6. The second, f ′′(x), and fourth, f ′′′′(x), derivatives of a function f(x) are

plotted in Figure 6.17. This question concerns evaluating
∫ 3

0
f(x)dx.

x 0 1/4 1/2 3/4 1

T 1 −1 2 3 4

Table 6.10 Values for Exercise 6.4.

Exercises 267

(a) How large must n be to guarantee the error using the composite trape-
zoidal rule is less than 10−8?

(b) How large must n be to guarantee the error using the composite Simpson
rule is less than 10−8?

6.7. This problem considers how well the integration methods do when ap-
plied to a periodic function. The particular integral is

∫ 1

0

sin(2πx)dx.

(a) What is the exact value?
(b) Determine (by hand) the value of IT when n = 3, 4, 5, 6. For each n,

sketch sin(2πx), and the corresponding piecewise linear approximation
used in the trapezoidal method, and use this to explain why the method
works as well as it does.

(c) Determine (by hand) the value of IM when n = 3, 4, 5, 6. For each n,
sketch sin(2πx), and the corresponding piecewise constant approximation
used in the midpoint method, and use this to explain why the method
works as well as it does.

6.8. The error function is defined as

erf(x) =
2√
π

∫ x

0

e−s2ds.

(a) Suppose the composite trapezoidal rule is used to evaluate erf(2).
According to Theorem 6.2, what value for h is needed so that the error
is no more than 10−6.

(b) Using MATLAB and the composite trapezoidal rule, find a value of h
so the computed error is approximately 10−6, and explain the difference
between this value and the one found in part (a). Also, note that erf(2) =
0.995322265 · · ·

0 0.5 1 1.5 2 2.5 3
x-axis

-2

-1

0

1

2

3

y-
ax

is

Second
Fourth

Figure 6.17 Graph used in Exercise 6.6.

268 6 Numerical Integration

n Method 1 Method 2 Method 3 Method 4

5 1.002780193 0.650243328 1.016909995 1.168601449

10 1.000180902 0.909422388 1.001089055 1.044881435

20 1.000011420 0.977151912 1.000068578 1.011398343

40 1.000000716 0.994275128 1.000004294 1.002860826

80 1.000000045 0.998567977 1.000000269 1.000715911

160 1.000000003 0.999641944 1.000000017 1.000179022

Table 6.11 Values for Exercise 6.10.

(c) Redo part (a) but use the composite Simpson rule. Note that it will help
if you plot f ′′′′(s).

(d) Redo part (b) but use the composite Simpson rule (and compare with
the answer from part (c)).

6.9. Letting P (t) be the population of a country at time t (measured in
years), consider the integral

∫ 2010

1930

P (t)dt.

It is assumed that P (t) is known at 1930, 1940, · · · , 2010 (as an example, the
values for the USA are given in Table 5.7).
(a) Use the composite midpoint rule to evaluate the integral.
(b) Use the composite trapezoidal rule to evaluate the integral.
(c) Use the composite Simpson rule to evaluate the integral.
(d) Use Romberg integration with the composite midpoint rule to evaluate

the integral.

6.10. For a given function f(x), four of the composite integration rules listed
in Table C.2, in Appendix C, were used to compute

∫ 1

0

f(x)dx.

The computed values are given in Table 6.11 as a function of the number n of
subintervals used. Determine the name of each of the four methods, making
sure to explain your reasoning.

6.11. According to Planck’s law of blackbody radiation, the spectral energy
density is

Ed(λ) =
8πhc

λ5(eα/λ − 1)
,

Exercises 269

where λ is the wavelength and α = hc/(kBT). Also, T is absolute tempera-
ture, kB is the Boltzmann constant, h is Planck’s constant, and c is the speed
of light. The energy emitted in the wavelength band λ1 ≤ λ ≤ λ2 is

E(λ1, λ2) =

∫ λ2

λ1

Ed(λ)dλ.

In this problem assume T = 7000K, so that α = 2μm. Note that in this case
the wavelength λ is measured in μm.
(a) Plot Ed(λ) for 0.01 ≤ λ ≤ 4.
(b) Using the composite Simpson’s rule, calculate E(0.01, 0.4). Your answer

should be correct to at least six significant digits.

6.12. Find the area of the region enclosed by the curve x4 + 2y4 = 1. Make
sure to state which integration method you used, what integral it was used
to evaluate, and how you selected your error tolerance.

6.13. Find the arc length of the curve (x, y) = (t5, t3), for 0 ≤ t ≤ 4. Make
sure to state which integration method you used, what integral it was used
to evaluate, and how you selected your error tolerance.

6.14. The Mooney-Rivlin law, often used for elastic polymers, states that the
stress T (x) in a material is given as

T =

(
α+

β

λ

)(
λ2 − 1

λ

)
,

where λ, known as the stretch, is given as

λ = 1 +
du

dx
.

The function u(x) is the displacement of the material, and α and β are
positive constants. The objective of this exercise is, for a material which
occupies the interval 0 ≤ x ≤ �, to determine u from measured (known)
values of T . This will be done by first finding λ from T , and then determining
u from λ. Also, note that the stretch is positive.
(a) Write down an algorithm that uses either Newton’s method or the secant

method, for finding the value of λ for a given value of T .
(b) Show that

u(x) = u(0)− x+

∫ x

0

λ(s)ds.

(c) Suppose the interval 0 ≤ x ≤ � contains n equally spaced points xi, where
x1 = 0 and xn = �. Also, suppose that the value of λ is known at each of
these points, and designate these values as λi, for i = 1, 2, · · · , n. Write
down an algorithm that uses the trapezoidal rule, which can be used to
determine the ui values from the λi values.

270 6 Numerical Integration

(d) Suppose that the values for the Ti’s are given as

Ti = x2
i [α(1 + x2

i) + β](2 + x2
i)/(1 + x2

i)
2, for i = 1, 2, · · · , n.

Using your algorithms from parts (a) and (c), compute the ui’s in the
case of when n = 20 and � = 1, and then plot the values (xi, ui). In this
calculation assume that u(0) = 0, and take α = 20 and β = 10, which
are typical values for an elastomer.

(e) Note that the exact solution at x = 1 is u = 1/3. For your algorithm
in part (d), what value for n do you need to take so the error in your
computed answer at x = 1 is no more than 10−6?

6.15. The position y(t), velocity v(t), and acceleration a(t) are related
through the equations: a(t) = v′(t) and v(t) = y′(t). In this problem it is
assumed that v(0) = 0 and y(0) = 0. In this case,

v(t) =

∫ t

0

a(r)dr and y(t) =

∫ t

0

v(r)dr.

It is also assumed that a(t) is known, and the objective of this exercise is to
compute the velocity and position from this information.

(a) Given a subinterval ti ≤ t ≤ ti+1, then ai = a(ti) and ai+1 = a(ti+1)
are known. Assuming vi and yi have already been computed, use the
trapezoidal rule to obtain the following expressions

vi+1 = vi +
1

2
h(ai + ai+1),

and

yi+1 = yi +
1

2
h(vi + vi+1).

(b) Suppose the interval 0 ≤ t ≤ 3 is subdivided into n equally spaced
subintervals. So, ti = (i − 1)h, where i = 1, 2, 3, · · · , n+ 1 and h = 3/n.
Assuming that a(t) = sin(t4), plot y as a function of t, for n = 10, 20, 40.
The three curves should be on the same axis.

(c) An accurately computed value for the position at t = 3 is y(3) =
0.72732289075 What is the difference between this value and what
you compute for y(3) at n = 10, 20, 40? How large does n need to be
so that this value and what you compute for y(3) is less than 10−8 in
absolute value?

6.16. This problem considers a way to compute velocity and position that
differs from the one considered in Exercise 6.15. You will find that the value
of n in part (c) is a factor of about 0.07 smaller than the corresponding value
from Exercise 6.15(c).

(a) Suppose the interval 0 ≤ t ≤ 3 is subdivided into n equally spaced subin-
tervals. So, ti = (i − 1)h, where i = 1, 2, 3, · · · , n + 1 and h = 3/n.

Exercises 271

Explain how the Hermite rule can be used to obtain the following
expressions

vi+1 = vi +
1

2
h(ai + ai+1) +

1

12
h2(a′i − a′i+1)

and

yi+1 = yi +
1

2
h(vi + vi+1) +

1

12
h2(ai − ai+1)

(b) Assuming that a(t) = sin(t4), plot, on the same axis, y as a function of
t, for n = 10, 20, 40.

(c) An accurately computed value for the position at t = 3 is y(3) =
0.72732289075 What is the difference between this value and what
you compute for y(3) at n = 10, 20, 40? How large does n need to be
so that this value and what you compute for y(3) is less than 10−8 in
absolute value?

6.17. In this exercise you are to evaluate

∫ 1

0

y(t)dt,

where y(t) is determined by solving y + t = e−y.
(a) Pick one of the numerical integration methods in Table C.2 and explain

how it can be used to evaluate the integral. Also explain why you picked
the particular integration rule.

(b) Evaluate the integral and also explain how you determined the number
of subintervals to use. Make sure to turn in your m-file for this.

6.18. This exercise explores some connections between Simpson’s rule and
some of the other methods that were derived. In this exercise, I(n) designates
a composite rule that uses n subintervals. Assume here that n is even.
(a) Show that IS(n) =

2
3IT (n) +

1
3IM (n/2).

(b) Show that IS(n) =
4
3IT (n)− 1

3IT (n/2).

6.19. Occasionally you will see someone try to adjust their data in an attempt
to use Simpson’s rule. To explain, the goal is to evaluate the integral

∫ xi+1

xi−1

f(x)dx.

Assume that the value of f(x) is known at xi−1 and xi+1 but not at xi. The
question is, can you use the data to find an approximation for f(xi) that will
enable you to use Simpson’s rule, and in the process get a better result than
you would get using the trapezoidal rule?
(a) What approximation of the integral is obtained using the trapezoidal

rule?

272 6 Numerical Integration

(b) One possibility for approximating f(xi) is to use piecewise linear inter-
polation using the two data points (xi−1, fi−1) and (xi+1, fi+1). Doing
this, and inserting the resulting approximation for fi into Simpson’s rule,
what results? How does this differ from your answer in part (a)?

(c) Suppose one just assumes that there are constants A and B so that
fi = Afi−1 +Bfi+1. With this, Simpson’s rule reduces to an integration
rule of the form ∫ xi+1

xi−1

f(x)dx = w1fi−1 + w2fi+1.

What do w1 and w2 have to be to maximize the precision? How does this
differ from your answer in part (a)?

6.20. In this exercise Romberg rules are derived. Assume that I(n) is an
integration rule that uses n subintervals and h is the corresponding width of
each subinterval.
(a) It is known that the error term for the composite Simpson’s rule involves

even powers of h. In particular,

∫ b

a

f(x)dx = IS(n) + αh4 + βh6 + γh8 + · · · .

Show that the integration rule

IR =
1

15
[16IS(2n)− IS(n)]

has an error that is O(h6).
(b) Suppose ∫ b

a

f(x)dx = I(n) + αh2 + βh3 + γh4 + · · · .

Show that the integration rule

IR =
1

21
[32I(4n)− 12I(2n) + I(n)]

has an error that is O(h4).
(c) Suppose ∫ b

a

f(x)dx = I(n) + αh2 + βh3 + γh4 + · · · .

Show that the integration rule

IR =
1

12
[27I(3n)− 16I(2n) + I(n)]

has an error that is O(h4).

Exercises 273

6.21. Suppose the integration rule has the form

∫ xi+1

xi

f(x)dx ≈ w1f(xi) + w2f(z)

This is an example of what is called Radau quadrature, or Gauss-Radau
quadrature, which means that one, and only one, of the points used is an
endpoint.
(a) Find the values of w1, w2, and z that maximize the precision. [Hint: let

z = xi + αh and find α]

(b) The error is known to have the form

∫ xi+1

xi

f(x)dx = w1f(xi) + w2f(z) +Kh4f ′′′(η)

where, as usual, η is a point somewhere in the interval [xi, xi+1]. Find K.

6.22. The purpose of this exercise is to use the idea of precision to derive the
error formula for Simpson’s rule.
(a) Using the formulas in Table 6.5, show that Simpson’s rule has precision 3.
(b) Use f(x) = x4 to derive the formula for the error for Simpson’s rule.

6.23. Suppose the integration rule has the form

∫ xi+1

xi

f(x)dx ≈ w1f(z1) + b1f
′(w1)

(a) Find the values of w1, z1, b1, and w1 that maximize the precision. [Hint:
let z = xi + αh and find α]

(b) The error is known to have the form

∫ xi+1

xi

f(x)dx = w1f(xi) + b1f
′(w1) +Kh4f ′′′(η)

where, as usual, η is a point somewhere in the interval [xi, xi+1]. Find K.

6.24. This problem considers what is known as Lobatto quadrature, or
Gauss-Lobatto quadrature. It differs from Gaussian quadrature in that it as-
sumes that the integration rule includes both endpoints, and possibly other
points within the interval.

274 6 Numerical Integration

(a) The assumed form using two points is

∫ xi+1

xi

f(x)dx ≈ w1f(xi) + w2f(xi+1).

Find the values of w1 and w2 that maximize the precision.
(b) The assumed form using three points is

∫ xi+1

xi

f(x)dx ≈ w1f(xi) + w2f(z) + w3f(xi+1).

Find the values of w1, w2, w3, and z that maximize the precision.

(c) The assumed form using four points is

∫ xi+1

xi

f(x)dx ≈ w1f(xi) + w2f(z1) + w3f(z2) + w4f(xi+1).

Show that the values of w1, w2, w3, w4, z1, and z2 that maximize the
precision are: w1 = w4 = h/12, w2 = w3 = 5h/12, and q = h/(2

√
5).

In deriving this result you can assume that z1 = xi +
1
2h − q and z2 =

xi +
1
2h + q. Also note that the error has the same form as given in

Theorem 6.5, but K = −1/1,512,000 and m = 5 (you do not need to
show this).

6.25. Suppose you want to determine how well a function g(x) approximates
another function f(x), over an interval a ≤ x ≤ b. One way to do this is to
calculate the area of the region between them, which is determined by the
value of the integral

A =

∫ b

a

|f(x)− g(x)|dx.

To compute an approximate value of this, you can use n+ 1 equally spaced
points over the interval, with x1 = a and xn+1 = b. Letting f and g be the
vectors determined from the n + 1 values of f(x) and g(x) at these points,
show that

A ≈ b− a

n
||f − g||1 − b− a

2n
[|f(a)− g(a)|+ |f(b)− g(b)|] .

Chapter 7

Initial Value Problems

In this chapter we derive numerical methods to solve the first-order differential
equation

dy

dt
= f(t, y), for 0 < t, (7.1)

where
y(0) = α. (7.2)

This is known as an initial value problem (IVP), and it consists of the dif-
ferential equation (7.1) along with the initial condition in (7.2). Numerical
methods for solving this problem are first derived for the case of when there is
one differential equation. Afterwards, the methods are extended to problems
involving multiple equations.

It is of interest to know that several of the methods derived in this chapter
are summarized in Appendix C, Table C.4.

7.1 Examples of IVPs

7.1.1 Radioactive Decay

According to the law of radioactive decay, the mass of a radioactive substance
decays at a rate that is proportional to the amount present. To express this
in mathematical terms, let y(t) designate the amount present at time t. In
this case the decay law can be expressed as

dy

dt
= −ry, for 0 < t. (7.3)

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0 7

275

276 7 Initial Value Problems

If we start out with an amount α of the substance then the corresponding
initial condition is

y(0) = α. (7.4)

In the decay law (7.3), r is the proportionally constant and it is assumed to
be positive. Because f(t, y) = −ry is a linear function of y the IVP is said to
be linear. One consequence of this is that it is possible to find the solution
using an integrating factor or using the method of separation of variables.
What one finds is

y(t) = αe−rt. (7.5)

Consequently, the solution starts at α and decays exponentially to zero as
time increases.

To put a slightly different spin on this, recall that y = Y is a steady-state
solution of (7.1) if it is constant and satisfies f(t, Y) = 0. Also, a steady-state
Y is stable if any solution that starts near Y stays near it. If, in addition,
initial conditions starting near Y actually result in the solution converging
to Y as t → ∞, then y = Y is said to be asymptotically stable. With the
solution in (7.5) we conclude that y = 0 is an asymptotically stable steady-
state solution for (7.3).

7.1.2 Logistic Equation

In the study of populations limited by the supply of food, one obtains the
logistic equation, which is

dy

dt
= ry(1 − y), for 0 < t, (7.6)

where
y(0) = α. (7.7)

It is assumed that r and α are positive. For this problem, f(t, y) = ry − ry2

is a nonlinear function of y and therefore the IVP is nonlinear. It is possible
to find the solution using separation of variables, and the result is

y(t) =
α

α+ (1 − α)e−rt
. (7.8)

Also, the steady-state solutions for this equation are the constants that satisfy
ry(1 − y) = 0, which means that y = 1 or y = 0. Because r > 0, the
solution in (7.8) approaches y = 1 as t increases. Consequently, y = 1 is an
asymptotically stable steady-state solution, whereas y = 0 is not.

7.2 Numerical Differentiation 277

7.2 Numerical Differentiation

There are many ways to solve an IVP like the one in (7.1), (7.2) and we
will begin with the direct approach. This means we will need to be able to
compute the derivative. So, before attempting to solve the IVP we need to
derive formulas for calculating derivatives.

Just as with integration, the definition of a derivative from calculus is the
starting point for our approximations. Although there are different ways to
state the definition, the one used here is the following:

y′(t) = lim
k→0

y(t+ k)− y(t)

k
.

Consequently, for small values of k, we have the approximation

y′(t) ≈ y(t+ k)− y(t)

k
.

As will be explained in more detail later, we will compute the solution of
the IVP at equally spaced time points t0, t1, t2, . . . , tM , where tj = jk, for
j = 0, 1, 2, . . . ,M . With this, the above approximation can be written as

y′(tj) ≈ y(tj + k)− y(tj)

k
.

To be useful as a computing tool, it is essential to know the error for this
approximation. For this we rely, as usual, on Taylor’s theorem. Given that

y(tj + k) = y(tj) + ky′(tj) +
1

2
k2y′′(tj) + · · · ,

then

y(tj + k)− y(tj)

k
=

[y(tj) + ky′(tj) + 1
2k

2y′′(tj) + · · ·]− y(tj)

k

=
ky′(tj) + 1

2k
2y′′(tj) + · · ·
k

= y′(tj) +
1

2
ky′′(tj) + · · · .

In other words,

y′(tj) =
y(tj+1)− y(tj)

k
+ τj , (7.9)

where

τj = −1

2
ky′′(tj) + · · · . (7.10)

Note that τj is the called the truncation error, and because it is O(k), the
resulting approximation is first-order. The expression in (7.9) is listed in

278 7 Initial Value Problems

Table 7.1 as a forward-difference formula. It is forward because it uses in-
formation at a future time, tj+1, to construct the approximation. Also the
formula for τj in the table looks different than the one given in (7.10). They
are equivalent in the sense that the one in the table comes from the remainder
term in Taylor’s theorem, while (7.10) is the series expansion for τj .

A criticism of (7.9) is that it is only first-order, and we are interested in
having higher-order approximations. To do this, note that (7.9) uses tj and
tj+1 to obtain the approximation. In what follows, we will investigate how it
is possible to find approximations that use other time points. For example,
we will look to see if it is possible to find an approximation that uses tj−1 and
tj+1. One outcome of this is that we will find higher-order approximations
for the derivative, as well as approximations for the other derivatives of y(t).

7.2.1 Using tj+2, tj+1, and tj

The assumption is that we can find A, B, and C so that

y′(tj) ≈ Ay(tj+2) +By(tj+1) + Cy(tj).

Using Taylor’s theorem,

y(tj+2) = y(tj + 2k)

= y(tj) + 2ky′(tj) + 2k2y′′(tj) +
4

3
k3y′′′(tj) + · · · . (7.11)

Also, we know that

y(tj+1) = y(tj) + ky′(tj) +
1

2
k2y′′(tj) +

1

6
k3y′′′(tj) + · · · . (7.12)

This means, we want

y′(tj) ≈ Ay(tj+2) +By(tj+1) + Cy(tj)

= A

[
y(tj) + 2ky′(tj) + 2k2y′′(tj) +

4

3
k3y′′′(tj) + · · ·

]

+B

[
y(tj) + ky′(tj) +

1

2
k2y′′(tj) +

1

6
k3y′′′(tj) + · · ·

]
+ Cy(tj)

= (A+B + C)y(tj) + (2A+B)ky′(tj)

+
1

2
(4A+B)k2y′′(tj) +

1

6
(8A+B)k3y′′′(tj) + · · · . (7.13)

This is suppose to hold for any (smooth) function y(t), which means that A,
B, and C do not depend on y. Consequently, equating the left and right sides
we conclude that

7.2 Numerical Differentiation 279

A+B + C = 0,

(2A+B)k = 1.

The error in the resulting approximation is given in (7.13). Given that we
have three unknowns, we are able to impose one more condition. With the
goal of achieving the best error possible we will remove the O(k2) term, and
this means that

4A+B = 0.

Solving the resulting three equations one finds that A = −1/(2k), B = 2/k,
and C = −3/(2k). Therefore, our approximation is

y′(tj) =
−y(tj+2) + 4y(tj+1)− 3y(tj)

2k
+ τj , (7.14)

where

τj = −1

6
k2y′′′(tj) + · · · .

This is listed in Table 7.1 as a one-sided difference formula, because of where
the time points are located. It is also an example of a forward difference
formula.

7.2.2 Using tj+1 and tj−1

This means, we want

y′(tj) ≈ Ay(tj+1) +By(tj−1)

= A

[
y(tj) + ky′(tj) +

1

2
k2y′′(tj) +

1

6
k3y′′′(tj) + · · ·

]

+B

[
y(tj)− ky′(tj) +

1

2
k2y′′(tj)− 1

6
k3y′′′(tj) + · · ·

]

= (A+B)y(tj) + (A−B)ky′(tj)

+
1

2
(A+B)k2y′′(tj) +

1

6
(A−B)k3y′′′(tj) + · · · . (7.15)

Equating the left and right sides we conclude that

A+B = 0,

(A−B)k = 1.

Solving the resulting two equations one finds that A = 1/(2k) and B = −2/k.
Therefore, our approximation is

y′(tj) =
y(tj+1)− y(tj−1)

2k
+ τj , (7.16)

280 7 Initial Value Problems

where

τj = −1

6
k2y′′′(tj) + · · · . (7.17)

This is listed in Table 7.1 as a centered difference formula. It is centered
because it uses time points that are symmetrically placed around tj . Also, it
produces a second-order approximation because the error is O(k2).

Example

Suppose y(t) =
√
t, and we use the above formulas to calculate y′(1). Taking

tj = 1 and tj±1 = 1± k then the forward approximation is

y′(1) ≈ y(tj+1)− y(tj)

k
=

√
1 + k − 1

k
, (7.18)

and the centered approximation is

y′(1) ≈ y(tj+1)− y(tj−1)

2k
=

√
1 + k −√

1− k

2k
. (7.19)

The exact value is y′(1) = 1
2 , and the computed values obtained from the

above two approximations are shown in Figure 7.1 for decreasing values of k.

D
er

iv
at

iv
e

0.25

0.5

0.75

Forward
Centered

Stepsize (k)
10-20 10-15 10-10 10-5 100

10-20 10-15 10-10 10-5 100

E
rr

o
r

10-10

10-5

100

Forward
Centered

Figure 7.1 Upper graph: Values obtained from (7.18) and (7.19) for y′(1) = 1
2
when

y(t) =
√
t. Lower graph: Error in each approximation.

7.2 Numerical Differentiation 281

In the upper graph, both look to be doing well down to about k = 10−14 but
show problems at k = 10−15. To examine this, the error for (7.18) is

∣∣∣∣y′(1)−
√
1 + k − 1

k

∣∣∣∣ ,
with a similar error formula for (7.19). The values of these errors are shown in
the lower graph in Figure 7.1. According to (7.10), the error for (7.18) should
decrease as O(k), while from (7.17) the error for (7.19) should decrease as
O(k2). Starting at k = 1, they both behave as expected. Namely, the error
in the forward approximation (7.18) decreases as a first-order method should
(i.e., decreasing k by a factor of 10 decreases the error by the same factor)
and the centered approximation decreases as a second-order method should.
However, for both approximations, there is a value for k where the error
starts to increase, and continues to increase (mostly) for smaller values of
k. As explained in Section 7.7, this is due to round-off. This is a common
problem with numerical differentiation, and it limits the usefulness of these
formulas. There are ways to avoid this, and one possibility is to rewrite the
formula. As an example, one can rewrite (7.19) as

y′(1) ≈ 1√
1 + k +

√
1− k

.

Unfortunately, it is not possible to do this in the general case. Another possi-
bility is to use a complex valued time step, something called a complex Taylor
series expansion, and this will be explained in Section 7.7. However, in the
end, with numerical differentiation and solving IVPs, we are stuck with the
situation shown in Figure 7.1. This gives rise to what is known as the optimal
step size, which is the step size where the error is minimized. It is possible,
using the ideas discussed in Section 1.4, to derive formulas for the optimal
step size, but they are not really needed when solving IVPs. The reason is
that the better IVP solvers do not usually require very small values of k to
produce accurate solutions of an IVP. �

7.2.3 Higher Derivatives

It is relatively easy to use the procedure to derive approximations for higher
derivatives. For example, if you intend on using tj+1, tj , and tj−1 to obtain
an approximation for y′′(tj), then

282 7 Initial Value Problems

y′′(tj) ≈ Ay(tj+1) +By(tj) + Cy(tj−1)

= (A+B + C)y(tj) + (A− C)ky′(tj) +
1

2
(A+ C)k2y′′(tj)

+
1

6
(A− C)k3y′′′(tj) +

1

24
(A+ C)k4y′′′′(tj) + · · · .

Equating the left and right sides we conclude that

A+B + C = 0,

A− C = 0,

1

2
(A+ C)k2 = 1.

Solving these, one obtains

y′′(tj) =
y(tj+1)− 2y(tj) + y(tj−1)

k2
+ τj , (7.20)

where

τj = − 1

12
k2y′′′′(tj) + · · · .

This is listed in Table 7.1 as a centered difference approximation.

Type Difference Approximation Truncation Term

Forward y′(tj) ≈ y(tj+1)−y(tj)
k τj = − 1

2ky
′′(ηj)

Backward y′(tj) ≈ y(tj)−y(tj−1)
k τj =

1
2ky

′′(ηj)

Centered y′(tj) ≈ y(tj+1)−y(tj−1)
2k

τj = − 1
6k

2y′′′(ηj)

One-sided y′(tj) ≈ −y(tj+2)+4y(tj+1)−3y(tj)
2k τj =

1
3k

2y′′′(ηj)

One-sided y′(tj) ≈ 3y(tj)−4y(tj−1)+y(tj−2)
2k τj =

1
3k

2y′′′(ηj)

Centered y′′(tj) ≈ y(tj+1)−2y(tj)+y(tj−1)
k2 τj = − 1

12k
2y′′′′(ηj)

Table 7.1 Numerical differentiation formulas. The exact relationships between the
approximation and the derivative are illustrated in (7.9), (7.14), (7.16), and (7.20).
Also, these formulas assume equally spaced points with step size k = tj+1 − tj , and
the point ηj is located between the left- and rightmost points used in the formula.

7.3 IVP Methods Using Numerical Differentiation 283

7.2.4 Interpolation

It is possible to use some of the interpolation methods from Chapter 5 to
produce approximations for the derivative of a function. For example, the
forward and backward difference approximations can be obtained by differ-
entiating the formula for piecewise linear interpolation (5.9). Similarly, the
centered difference approximation as well as the one for y′′(tj) can be de-
rived from the piecewise quadratic interpolation formula (see Exercise 5.24).
The drawback with this approach is that the corresponding error formulas
do not, necessarily, come from differentiating the interpolation error given in
Theorem 5.2. Why this is the case, and how to determine the appropriate
error formulas, is discussed in Süli and Mayers [2003]. The exception to this
occurs with cubic splines, and this is explained in Section 5.5.3.

7.3 IVP Methods Using Numerical Differentiation

The task we now undertake is to approximate the differential equation, and
its accompanying initial condition, with a problem we can solve using a com-
puter. To explain how this is done, consider the problem of solving

dy

dt
= f(t, y), for 0 < t, (7.21)

where
y(0) = α. (7.22)

The function f(t, y) is assumed to be given. For example, with radioactive
decay f(t, y) = −ry and for the logistic problem f(t, y) = ry(1 − y). The
question is, can we accurately compute the solution directly from the problem
without first finding an analytical solution? As it turns out, most realistic
mathematical models of physical and biological systems cannot be solved by
hand, so having the ability to find accurate numerical solutions directly from
the original equations is an invaluable tool.

7.3.1 The Five Steps

To explain how we will construct a numerical algorithm that can be used to
solve (7.21) it should be noted that the variables in this problem, t and y,
are continuous. Our objective is to replace these with discrete variables so
that the resulting problem is algebraic and therefore solvable using standard
numerical methods. Great care must be taken in making this replacement,

284 7 Initial Value Problems

α

Figure 7.2 Grid system used to derive a finite difference approximation of the initial
value problem. The points are equally spaced and tM = T .

because the computed solution must accurately approximate the solution of
the original IVP. The approach we take proceeds in a sequence of five steps.

One point to make before beginning is that the computer cannot run
forever. Therefore, it is necessary to specify the time interval 0 ≤ t ≤ T over
which the solution will be computed.

Step 1: Grid

We first introduce the time points at which we will compute the solution.
These points are labeled sequentially as t0, t1, t2, . . . , tM and a schematic
drawing indicating their location along the time axis is shown in Figure 7.2.
We confine our attention to a uniform grid with step size k, so, the formula
for the time points is

tj = jk, for j = 0, 1, 2, . . . ,M. (7.23)

Because the time interval is 0 ≤ t ≤ T , we require tM = T . Therefore, k and
M are connected through the equation

k =
T

M
. (7.24)

Step 2: Evaluation

Evaluate the differential equation at the time point t = tj to obtain

y′(tj) = f(tj , y(tj)). (7.25)

7.3 IVP Methods Using Numerical Differentiation 285

Step 3: Finite Difference Formula

Replace the derivative term in Step 2 with a finite difference formula using
the values of y at one or more of the grid points in a neighborhood of tj . This
is where things get a bit interesting, because numerous choices can be made,
a few of which are listed in Table 7.1. Different choices result in different
numerical procedures, and as it turns out, not all choices will work. To start,
we take the first entry listed in the table, which means we use the following
expression for the first derivative:

y′(tj) =
y(tj+1)− y(tj)

k
+ τj , (7.26)

where

τj = −k

2
y′′(ηj) (7.27)

and ηj is a point between tj and tj+1. Introducing this into (7.25) we obtain

y(tj+1)− y(tj)

k
+ τj = f(tj , y(tj)), (7.28)

or equivalently,
y(tj+1)− y(tj) + kτj = kf(tj , y(tj)). (7.29)

An important point to make here concerns the term τj . As it appears in (7.28),
τj represents how well we have approximated the differential equation. For
this reason it is the truncation error for the method, and from (7.27) it is
seen that it is O(k). It is essential that whatever approximations we use,
the truncation error goes to zero as k goes to zero. This means that, at
least in theory, we can approximate the original problem as accurately as we
wish by making the time step k small enough. It is said in this case that
the approximation is consistent. Unfortunately, as we demonstrate shortly,
consistency is not enough to guarantee an accurate numerical solution.

Step 4: Finite Difference Approximation

Drop the term containing the truncation error. This is the step where we go
from an exact problem to one that is, hopefully, an accurate approximation
of the original. After dropping τj in (7.29) the resulting equation is

yj+1 − yj = kf(tj , yj), (7.30)

or equivalently,

yj+1 = yj + kf(tj , yj), for j = 0, 1, 2, . . . ,M − 1. (7.31)

286 7 Initial Value Problems

From the initial condition (7.22) we have that the starting value is

y0 = α. (7.32)

The finite difference equation (7.31) is known as Euler’s method for solving
(7.21). It is a recursive algorithm in which one starts with j = 0 and then uses
(7.31) to determine the solution at j = 1, then j = 2, then j = 3, etc. Because
(7.31) gives the unknown yj+1 explicitly in terms of known quantities, it is
an explicit method.

Example

Let’s see how well Euler’s method does with the logistic equation (7.6). Specif-
ically, suppose the IVP is

dy

dt
= 10y(1− y), for 0 < t, (7.33)

where
y(0) = 0.01. (7.34)

We will use the Euler method to calculate the solution for 0 ≤ t ≤ 1. In this
case, using (7.24), k and M are connected through the equation

k =
1

M
. (7.35)

For this example, the finite difference equation in (7.31) takes the form

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t-axis

0

0.2

0.4

0.6

0.8

1

S
o

lu
ti

o
n

Exact
M = 4
M = 16
M = 64

Figure 7.3 Solution of the logistic equation (7.33) using the Euler method (7.36) for
three values of M . Also shown is the exact solution. The symbols are the computed
values, and the dashed lines are drawn by the plotting program simply to connect
the values.

7.3 IVP Methods Using Numerical Differentiation 287

j tj y(tj) yj yj y(tj)−yj yj − yj

0 0 1
100

1
100

0.01 0 0

1 1
6

(
1 + 99e−5/3

)−1 53
2000

2.6500e−02 2.43e−02 −3.47e−18

2 1
3

(
1 + 99e−10/3

)−1 55597
800000

6.9496e−02 1.51e−01 −1.39e−17

3 1
2

(
1 + 99e−5

)−1 68073133591
384000000000

1.7727e−01 4.23e−01 −2.78e−17

...
...

...
...

...
...

...

Table 7.2 The first few time steps in solving the logistic equation (7.33) using the
Euler method. Note that y(tj) is the exact solution of logistic equation, yj is the
exact value from (7.36), and yj is the computed value from (7.36).

yj+1 = yj + 10kyj(1 − yj), for j = 0, 1, 2, . . . ,M − 1. (7.36)

Taking M = 6, so k = 1
6 , the first few steps using the Euler method are

shown in Table 7.2. For a more graphical picture of the situation, the exact
solution, given in (7.8), and the computed solutions, are shown in Figure 7.3
using successively smaller values of the time step k or, equivalently, larger
values of M . It is seen that the numerical solution with M = 4 is not so
good, but the situation improves considerably as more time points are used.
In fact, it would appear that if we keep increasing the number of time points
that the numerical solution converges to the exact solution. �

Step 5: Stability

For a finite difference method to work, two requirements must be satisfied.
One is that the approximation is consistent. This was mentioned in Step
3 and will be discussed again later. The second requirement is that it is
stable, which means, roughly, that the approximation produces a solution
with properties similar to those of the exact solution. As an example, the
simplest IVP is y′ = 0, where y(0) = 1, and the exact solution is y = 1. The
requirement for what is known as 0-stability is that the numerical method
applied to y′ = 0 produces a solution that is at least bounded. There is a
stronger form of stability, which is more useful for many of the problems
which arise in applications, and it is known as A-stability. This is determined
by using the method to solve the radioactive decay equation

dy

dt
= −ry, (7.37)

288 7 Initial Value Problems

where
y(0) = 1. (7.38)

The exact solution is y(t) = e−rt, and, assuming that r > 0, this function
approaches zero as t increases. It is required that the solution yj of the finite
difference problem also approaches zero, and this is the basis for the following
definition:

Definition 7.1. If a numerical method, when applied to (7.37) and (7.38),
produces a solution with the property that yj → 0 as j → ∞, irrespective
of the (positive) value of r and k, then the method is said to be A-stable. If
the zero limit occurs only when k is small (with k and r positive), then the
method is conditionally A-stable. Otherwise, the method is unstable.

Let’s apply this definition to Euler’s method. For the equation in (7.37),
Euler’s method (7.31) reduces to yj+1 = (1− rk)yj . This can be written as

yj+1 = κyj ,

where κ = 1 − rk is called the amplification factor for Euler’s method. The
above equation arises for many of the methods we will consider, and this
means that the following result will be useful:

Theorem 7.1. If y0 = 1 then the solution of

yj+1 = κyj , for j = 0, 1, 2, · · · , (7.39)

is yj = κj. Therefore, yj → 0 as j → ∞ if and only if the amplification factor
κ satisfies |κ| < 1.

The proof of this is straightforward, and is left as an exercise. Since the
amplification factor for Euler’s method is κ = 1 − rk, then according to the
theorem, Euler’s method is A-stable only as long as

|1− rk| < 1.

From this we conclude that the step size must satisfy the condition k < 2/r.
Therefore, the Euler method is conditionally A-stable.

Wonder what an unstable solution might look like? In Figure 7.4, four
solutions of the logistic equation obtained using the Euler method are shown.
The top two graphs show an unstable situation, with the solution growing
with t. For example, when kr = 4, the method finds that y(5) ≈ −1018. The
graph at the bottom, where rk = 1, corresponds to a stable case. Comparing
the curves in this lower graph for 0 < t < 1 it is evident that satisfying the
stability condition does not necessarily mean that the error is small.

7.3 IVP Methods Using Numerical Differentiation 289

0 1 2 3 4 5

y-
ax

is

-2

0

2

kr = 4

0 1 2 3 4 5

y-
ax

is

0

0.5

1

1.5

kr = 3

0 1 2 3 4 5

y-
ax

is

0

0.5

1

1.5

kr = 2

t-axis
0 1 2 3 4 5

y-
ax

is

0

0.5

1

kr = 1

Figure 7.4 Solution of the logistic equation (7.33) using the Euler method (7.36)
for four values of kr, where r = 10. Also shown in each graph, with the solid (red)
curve, is the exact solution.

As a final comment, it might be puzzling why the radioactive decay equa-
tion is the arbiter for stability. The reason comes from the desire that if the
differential equation has an asymptotically stable steady-state y = a, then
y = a is also an asymptotically stable steady-state for the approximating
difference equation. Finding a condition that ensures this for the general
problem is not particularly easy, but it is possible to derive a condition for
differential equations of the form y′ = g(y). Writing y(t) = a+ Y (t), and us-
ing Taylor’s theorem, one can show that the equation for Y is approximately
Y ′ = −rY , where r = g′(a). In other words, near y = a, and assuming that
r �= 0, the original differential equation can be approximated with the ra-
dioactive decay equation. The requirement of A-stability ensures that the nu-
merical method produces a solution that, like the actual solution, approaches
the steady-state. However, there are situations where A-stability is either not
enough or not relevant. This is why other types of stability have been defined,
and these include L-stability, B-stability, and BN-stability. Those interested
in this should consult Butcher [2008].

290 7 Initial Value Problems

7.3.2 Error

It is essential to examine the requirements needed to guarantee a numerical
IVP solver will work. This, as usual, will require us to consider the error. As
illustrated in Table 7.2, at each time point we have three different solutions,
and they are

y(tj) ≡ exact solution of the IVP at t = tj ; (7.40)

yj ≡ exact solution of finite difference equation at t = tj ; (7.41)

yj ≡ solution of difference equation at t = tj calculated

by the computer. (7.42)

We are interested in the difference between the exact solution of the IVP and
the values we actually end up computing using our algorithm. Therefore, we
are interested in the error ej = |y(tj) − yj |. To help make it more apparent
what is contributing to the error we rewrite it as follows:

ej = |y(tj)− yj + yj − yj |. (7.43)

From this, the error can be considered as coming from the following two
sources:

y(tj)− yj : This is the approximation error at t = tj . This corresponds to
the difference between the exact solution of the IVP and the exact solution
of the problem we use as its approximation. As occurs in Table 7.2, this
should be the major contributor to the error until k is small enough that
this difference gets down to approximately that of the round-off.

yj − yj : This is the computational error at t = tj . This originates from
round-off when using floating-point calculations to compute the solution,
and if the method is implicit then this also includes the possible iteration
error. The last column of Table 7.2 gives the values of this error for the
first few time points. Getting values of 10−15 or smaller, as occur in this
calculation, is about as good as can be expected using double precision.

The question we are going to ask is, if we increase the number of time
steps in the time interval 0 ≤ t ≤ T , will the error decrease to zero or at
least decrease down to the level of the round-off? We want the answer to
this question to be yes and, moreover, that it is true no matter what choice
we make for T . If this holds, then the method is convergent. It is possible to
prove that if a method is consistent, and A-stable or conditionally A-stable,
then the method is convergent.

In terms of computing the solution, knowing the method will work is
important, but it is just as important to know how well it works. More

7.3 IVP Methods Using Numerical Differentiation 291

100 102 104 106 108

Number of Time Points

10-10

10-8

10-6

10-4

10-2

100
E

rr
o

r
Maximum Error
Error at t = 1

Figure 7.5 The difference between the exact and computed solutions, as a function
of the number of time steps, M , used in solving the logistic equation (7.33) with the
Euler method (7.36). Shown is the error |y(T)−yM | at t = 1 as well as the maximum
error as determined using (7.44).

specifically, how does the error decrease as we reduce the time step? This
is illustrated in the next example.

Example

The error eM = |y(T)− yM | from the Euler method is plotted in Figure 7.5
as a function of the number of time points used to reach T = 1. It is seen that
the error decreases linearly in the log-log plot in such a way that increasing
M by a factor of 10 decreases the error by the same factor. In other words,
the error decreases as kn, with n = 1. It is not a coincidence that this is the
same order as for the truncation error (7.27). At first glance, because the term
that is neglected in (7.29) is kτj = O(k2), one might expect that the error
in Figure 7.5 would decrease as k2. However, kτj is the error we generate at
each time step. To get to T we take M = 1/k time steps so the accumulated
error we generate in getting to T is reduced by a factor of k. Therefore, with
a convergent method the order of the truncation error determines the order
of the error. �

We are using the error at t = T to help determine how the approxima-
tion improves as the number of time steps increases. In many applications,
however, one is interested in how well the numerical solution approximates
the solution throughout the entire interval 0 ≤ t ≤ T . For this it is more
appropriate to consider using a vector norm to define the error. For example,
using the maximum norm the error function takes the form

e∞ = max
j=0,1,...,M

|y(tj)− yj |
= ||y − y||∞, (7.44)

292 7 Initial Value Problems

where y = (y(t0), y(t1), · · · , y(tM))T and y = (y0, y1, · · · , yM)T . To indicate
how this differs from the error at t = T , (7.44) is plotted in Figure 7.5 for
the logistic equation example. As expected, e∞ is larger but its dependence
on M is still O(k).

7.3.3 Additional Difference Methods

The steps used to derive the Euler method can be employed to obtain a host
of other finite difference approximations. The point in the derivation that
separates one method from another is Step 3, where one makes a choice
for the difference formula. A few possibilities are given in Table 7.1. It is
interesting to see what sort of numerical methods can be derived using these
expressions, and a couple of the possibilities are discussed below.

Backward Euler

If one uses the backward difference formula in Table 7.1, then in place of
(7.26), we get

y′(tj) =
y(tj)− y(tj−1)

k
+ τj , (7.45)

where

τj =
k

2
y′′(ηj). (7.46)

Introducing this into (7.29), we obtain

y(tj)− y(tj−1) + kτj = kf(tj, y(tj)). (7.47)

Dropping the truncation error τj , the resulting finite difference approxima-
tion is

yj = yj−1 + kf(tj, yj), for j = 1, 2, . . . ,M. (7.48)

From the initial condition (7.22) we have that the starting value is

y0 = α. (7.49)

The difference equation in (7.48) is the backward Euler method. It has the
same order of truncation error as the Euler method. However, because of the
f(tj, yj) term this method is implicit. This is both good and bad. It is good
because it helps make the method A-stable (see below). However, it is bad
because it can make finding yj computationally difficult. Unless the problem
is simple enough that the difference equation can be solved by hand, it is
necessary to use something like Newton’s method to solve (7.48), and this
must be done at each time step.

7.3 IVP Methods Using Numerical Differentiation 293

As for stability (Step 5), for the radioactive decay equation (7.37) one
finds that (7.48) reduces to (7.39), with the amplification factor

κ =
1

1 + rk
.

Since |κ| < 1, then from Theorem 7.1, this method is A-stable.

Example

A numerical comparison between backward Euler and some of the other meth-
ods we consider is made in Section 7.4 (see Figure 7.6). The objective of this
example is to explain the difference between explicit and implicit methods,
and this is done by solving

dy

dt
= 6y(1− y3),

where y(0) = 2. Using Euler’s method, which is explicit, the finite difference
equation is

yj+1 = yj + 6kyj(1− y3j), for j = 0, 1, 2, . . . ,

where y0 = 2. Assuming k = 1
3 , then it is a simple matter to evaluate the

above formula to find that y1 = −26. In comparison, using the backward
Euler method (7.48), the finite difference equation is

yj+1 = yj + 6kyj+1(1 − y3j+1), for j = 0, 1, 2, . . . , (7.50)

where y0 = 2. Assuming k = 1
3 , then from the above formula we have that

y1 = 2 + 2y1(1 − y31).

It is necessary to solve this nonlinear equation to determine y1. Consequently,
a computer program that uses the backward Euler method will have to include
a nonlinear equation solver, like Newton’s method, to compute yj+1 from
(7.50). This is true for all implicit methods. As will be explored in some of
the exercises, the stopping error used for the solver has the potential to affect
the accuracy of the computed solution. �

The difference between an explicit and implicit method made in the above
example is important enough that it should be discussed in more detail. In
many applications it is necessary to solve large systems of nonlinear differen-
tial equations. In such cases, implicit methods are avoided if possible because
using a solver like Newton’s method is computationally expensive. The one
advantage implicit methods have is that they usually have better stability

294 7 Initial Value Problems

properties, which means you can use larger step sizes. This is only partially
true because Newton’s method requires an initial guess that is close to the
solution, and this can limit the step size used by an implicit method. To use
an explicit method for these types of problems, the usual choice is to use
an adaptive time step. What this means is that the size of the time step is
adjusted based on the properties of the solution. This allows for small steps
if the solution is undergoing a rapid change, and larger step sizes in regions
where the solution is slowing varying. The trick is to have ways to determine
when this is happening, and those interested in learning about this should
consult Lambert [1991] and Griffiths and Higham [2010]. Nevertheless, there
are problems where implicit methods do play an important role, and they
are referred to as being “stiff.” The key tool for these types of problems is
what are called BDF (backward difference formula) methods, and backward
Euler is an example of such a method. More information about stiff problems
can be found in Hairer and Wanner [2002]. A key component of most stiff
solvers is a way to avoid the direct use of Newton’s method. One way to do
this is to use what are called Newton-Krylov methods, and a review of the
recent work on this can be found in Knoll and Keyes [2004] and Loffeld and
Tokman [2013].

Leapfrog Method

It is natural to expect that a more accurate approximation of the derivative
will improve the accuracy of the computed solution. In looking over Table 7.1,
the centered difference formula would appear to be a good choice for such an
improvement because it has quadratic error (versus linear for the first two
formulas listed). Introducing this into (7.21) we obtain

y(tj+1)− y(tj−1) + 2kτj = 2kf(tj, y(tj)), (7.51)

where τj = O(k2). Dropping the 2kτj term, the resulting finite difference
approximation is

yj+1 = yj−1 + 2kf(tj, yj), for j = 1, 2, . . . ,M − 1. (7.52)

This is known as the leapfrog, or explicit midpoint, method. Because this
equation uses information from two previous time steps it is an example of
a two-step method. In contrast, both Euler methods use information from a
single time step back, so they are one-step methods. What this means is that
the initial condition (7.22) is not enough information to get leapfrog started,
because we also need y1. This is a relatively minor inconvenience compared
to the problem this method has with stability. To explain, applying (7.52)
to the radioactive decay equation (7.37) yields yj+1 = yj−1 − 2rkyj . This
second-order difference equation can be solved by assuming a solution of the
form yj = sj . By doing this, it is found that the general solution has the form

7.4 IVP Methods Using Numerical Integration 295

yj = α0s
j
+ + α1s

j
−, where s± = −kr ± √

1 + k2r2 and α0, α1 are arbitrary
constants. Because |s−| > 1, it is impossible to find a step size k to satisfy
the stability condition. Therefore, the leapfrog method is unstable.

7.3.4 Extensions

The method developed here is easily applied to almost any differential equa-
tion. Basically, the procedure involves evaluating the differential equation at
a generic grid point tj , picking one or more formulas from Table 7.1, and
then writing down the resulting finite difference equation. An illustration of
the procedure is given in the next example.

Example

The Duffing equation is the nonlinear second-order differential equation

y′′ + y + y3 = cos(ωt).

Evaluating this at tj gives us y′′(tj)+ y(tj)+ y3(tj) = cos(ωtj). There is only
one choice for the second derivative in Table 7.1, and using it we obtain

yj+1 − 2yj + yj−1

k2
+ yj + y3j = cos(ωtj).

The truncation error is O(k2), and so this is a consistent approximation of
the original differential equation. �

So the method provides an easy way to obtain a consistent approximation of
an IVP. By consistent it is meant that the error in the approximation goes to
zero as the step size k approaches zero. However, as we saw with the leapfrog
method, consistently is not enough to guarantee that the method will work.
There is an additional requirement, which is that the method is also stable.
Stability theory for approximating a problem involving something like the
Duffing equation is beyond the scope of this text, and those interested in
learning about this should consult Stuart and Humphries [1998] or Ascher
and Petzold [1998].

7.4 IVP Methods Using Numerical Integration

Another approach to deriving a finite difference approximation of an IVP is
to integrate the differential equation and then use a numerical integration
rule. This is a very useful idea that is best explained by working through an

296 7 Initial Value Problems

example. To get started, a time grid must be introduced, and so Step 1 is
the same as before. However, Step 2 and Step 3 differ from what we did
earlier.

Step 2. Integrate the differential equation between two time points. We will
take tj and tj+1, and so from (7.21) we have

∫ tj+1

tj

dy

dt
dt =

∫ tj+1

tj

f(t, y(t))dt. (7.53)

Using the Fundamental Theorem of Calculus we obtain

y(tj+1)− y(tj) =

∫ tj+1

tj

f(t, y(t))dt. (7.54)

Step 3. Replace the integral in Step 2 with a finite difference approximation.
There are numerous choices, and they produce different numerical procedures.
A few possibilities are listed in Table 7.3. We will use the trapezoidal rule,
and introducing this into (7.54) yields

y(tj+1)− y(tj) =
k

2
[f(tj+1, y(tj+1)) + f(tj , y(tj))] +O(k3). (7.55)

Step 4. Drop the big-O term. After dropping the O(k3) term in (7.55) the
resulting equation is

yj+1 = yj +
k

2
(fj+1 + fj), for j = 0, 1, 2, . . . ,M − 1, (7.56)

Rule Integration Formula

Right Box
∫ tj+1

tj
f(x)dx = kf(tj+1) +O(k2)

Left Box
∫ ti+1

tj
f(x)dx = kf(tj) +O(k2)

Midpoint
∫ tj+1

tj−1
f(x)dx = 2kf(tj) +

k3

3 f ′′(ηi)

Trapezoidal
∫ tj+1

tj
f(x)dx = k

2 (f(tj) + f(tj+1))− k3

12f
′′(ηj)

Simpson
∫ tj+1

tj−1
f(x)dx = k

3 (f(tj+1) + 4f(tj) + f(tj−1))− k5

90f
′′′′(ηj)

Table 7.3 Numerical integration formulas. The points t1, t2, t3, . . . are equally
spaced with step size k = tj+1 − tj . The point ηj is located within the interval
of integration.

7.4 IVP Methods Using Numerical Integration 297

where fj = f(tj , yj). From the initial condition (7.22) we have that the
starting value is

y0 = α. (7.57)

The finite difference equation (7.56) is known as the trapezoidal method for
solving (7.21). Because of the fj+1 term this method is implicit, and it is not
hard to show that its amplification factor is

κ =
1− rk/2

1 + rk/2
.

Since |κ| < 1, it follows from Theorem 7.1 that the method is A-stable. To
determine the truncation error for the method note that in (7.55) the error at
each time step is O(k3). In taking M time steps to reach t = T the resulting
error is therefore M × O(k3) = O(k2). In other words, the truncation error
is τj = O(k2).

One of the attractive features of the quadrature approach is that it involves
multiple decision points that can be varied to produce different numerical
methods. For example, the integration interval can be changed to, say, tj−1 ≤
t ≤ tj+1 and then Simpson’s rule used on the resulting integral. Another
option is to not use a quadrature rule but instead replace the function f in
the integral in (7.54) with an approximation that can be integrated exactly.
Ideas such as this are explored more fully in Holmes [2007].

Example

We have derived several methods for solving IVPs, including the Euler, back-
ward Euler, leapfrog, and trapezoidal methods. It is worth taking them out
for a test drive to see how they compare, and the logistic equation (7.6) is a
good candidate for this. The equation that is solved is

dy

dt
= 10y(1− y), for 0 < t, (7.58)

where y(0) = 0.1. As before, we take T = 1, so the time points are determined
from the expression tj = jk, for j = 0, 1, 2, . . . ,M and k = 1/M . Because
f(t, y) = 10y(1 − y) our methods reduce to the finite difference equations
listed below:

Euler: yj+1 = yj + 10kyj(1 − yj),

Backward Euler: yj+1 = yj + 10kyj+1(1 − yj+1),

Leapfrog: yj+1 = yj−1 + 20kyj(1 − yj),

Trapezoidal: yj+1 = yj + 5k [yj(1− yj) + yj+1(1− yj+1)] .

298 7 Initial Value Problems

The initial condition is y0 = 0.1, and for the leapfrog method it is assumed
that y1 = y(k) (i.e., the exact value at t = t1 is used). Just how well these
four expressions do is shown in Figure 7.6 for the case M = 10. The first
thing one notices is just how badly the leapfrog method does (it had to be
given its own graph because it behaves so badly). This is not unexpected,
because we know that the method is not A-stable. The other three solution
curves also behave as expected. In particular, the two Euler methods are
not as accurate as the trapezoidal method and are approximately equal in
how far each differs from the exact solution. To quantify just how accurately
each method does in solving the problem, in Figure 7.7 the error is plotted
as a function of the number of grid points used to reach T . As predicted,
all decrease according to their respective truncation errors. Specifically, the
trapezoidal method decreases as O(k2) and the two Euler methods as O(k).
�

7.5 Runge–Kutta Methods

An extraordinarily successful family of numerical approximations for IVPs
comes under the general classification of Runge–Kutta (RK) methods. The
derivation is based on the following question: is it possible to determine an

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
o

lu
ti

o
n

0

0.2

0.4

0.6

0.8

1

Exact
Euler
B Euler
Trap

t-axis
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
o

lu
ti

o
n

-2

-1

0

1

2

Exact
Leap

Figure 7.6 Solution of the logistic equation (7.58) using different numerical schemes.
The leapfrog method is shown in the lower plot, and the two Euler schemes and the
trapezoidal method are in the upper graph.

7.5 Runge–Kutta Methods 299

101 102 103 104 105

Number of Time Points

10-12

10-10

10-8

10-6

10-4

10-2
E

rr
o

r

Euler
B Euler
Trap

Figure 7.7 Error at t = 1 as a function of the number of time steps used to solve
the logistic equation (7.58). Each curve decreases as O(kn), where n is determined
from the truncation error for the method.

explicit method for finding yj+1 that only uses the value of the solution at tj
and has a predetermined truncation error. The secret in getting this to work
is making a good guess as to what such a formula might look like.

7.5.1 RK2

To demonstrate how RK methods are derived, the best one-step explicit
method we have so far is Euler’s method, and this has a truncation error
of O(k). The RK question is, can we find an explicit one-step method that
is O(k2)? We have been able to derive an implicit scheme with this error,
and this is the trapezoidal method (7.56). The reason it is implicit is the
term f(tj+1, yj+1). Suppose we experiment a little and use Euler’s method
to approximate yj+1 in this term with yj+kfj . The resulting finite difference
approximation is

yj+1 = yj +
k

2
[f(tj , yj) + f(tj + k, yj + kfj)]. (7.59)

This is explicit but it is not clear whether it has the desired truncation error.
However, it is useful because it provides insight into what a O(k2) explicit
might look like.

Based on (7.59), the Runge–Kutta assumption for a O(k2) method is that
the difference equation has the form

yj+1 = yj + k[af(tj , yj) + bf(tj + αk, yj + βkfj)]. (7.60)

The constants a, b, α, and β are determined from the requirement that the
method has a O(k2) truncation error. Finding their values is fairly straight-
forward but for most RK methods this can be messy and rather tedious.
To explain, the truncation error is determined by how well the difference

300 7 Initial Value Problems

equation approximates the original differential equation. To determine this,
the exact solution y(t) is substituted into (7.60) and then everything is ex-
panded based on the assumption that k is small. For example, yj+1 is replace
with y(tj + k), and then one expands to find that

y(tj + k) = y(tj) + ky′(tj) +
1

2
k2y′′(tj) + · · ·

= y + kf +
1

2
k2(ft + fyf) +O(k3). (7.61)

The functions y and f in the last expression are evaluated at tj. Also note
that the last step used the fact that y′ = f and y′′ = ft + fyf . In a similar
manner one finds that the right-hand side of (7.60) becomes

y + k[af + bf(tj + αk, y + βkf)]

= y + kaf + kb (f + αkft + βkffy) + · · ·
= y + k(a+ b)f + k2b(αft + βffy) +O(k3). (7.62)

Equating the last expression with (7.61) one concludes that

a+ b = 1,

2αb = 1, (7.63)

2βb = 1.

These three equations are called the order conditions for the RK2 methods,
and interestingly, the solution is not unique. Some example solutions for the
order conditions are listed below.

1. a = b = 1
2 , α = β = 1:

yj+1 = yj +
k

2
[f(tj , yj) + f(tj+1, yj + kfj)]. (7.64)

This is known as Heun’s method. It is also the method, given in (7.59),
that we derived by combining the trapezoidal and Euler methods.

2. a = 0, b = 1, α = β = 1
2 :

yj+1 = yj + kf

(
tj +

k

2
, yj +

k

2
fj

)
. (7.65)

This is known as the midpoint method.

3. a = 1
4 , b =

3
4 , α = β = 2

3 :

yj+1 = yj +
1

4
k

[
f(tj, yj) + 3f

(
tj +

2

3
k, yj +

2

3
kfj

)]
. (7.66)

7.5 Runge–Kutta Methods 301

This choice has a slightly better error coefficient for certain equations than
the other RK2 methods. Why this happens is explained in Exercise 7.11.

Whichever solution of the order conditions is selected, the truncation error is
O(k2). The reason is because (7.61) and (7.62) both hold to terms that are
O(k3), and as explained in Section 7.4, this means that the truncation error
for the method is O(k2).

Example

As usual, we will test our new methods using the logistic equation. Specifi-
cally, we solve

dy

dt
= 10y(1− y), for 0 < t, (7.67)

where y(0) = 0.1. The error in the computed solution at t = 1 is shown in
Figure 7.8 as a function of the number of grid points used to reach t = 1. The
curves are for Heun’s method given in (7.64), the method in (7.66), and the
trapezoidal method. These curves are parallel because all three methods are
O(k2). Also, even though the trapezoidal method does slightly better than
the two RK2 methods, it requires more work to compute. �

7.5.2 RK4

The one method from the Runge–Kutta family that deserves special attention
is RK4. This is used in so many computer codes that it has become the

101 102 103 104 105

Number of Time Points

10-12

10-9

10-6

10-3

E
rr

o
r

Trap
Heun
RK2-E

Figure 7.8 Error at t = 1 as a function of the number of time steps used to solve
the logistic equation (7.67). The RK2-E curve comes from (7.66), and Heun comes
from (7.64).

302 7 Initial Value Problems

workhorse of IVP solvers. The derivation of RK4 uses a generalization of the
assumption in (7.60) and it is that

yj+1 = yj + c1k1 + c2k2 + c3k3 + c4k4, (7.68)

where

k1 = kf(tj , yj), (7.69)

k2 = kf(tj + α2k, yj + β21k1), (7.70)

k3 = kf(tj + α3k, yj + β31k1 + β32k2), (7.71)

k4 = kf(tj + k, yj + β41k1 + β42k2 + β43k3). (7.72)

There are 12 constants in the above assumption, and after plugging the exact
solution into (7.68) one finds 11 order conditions. For the mildly curious, these
are listed in Section 7.7.1. Any choice of the constants that satisfies the order
conditions will produce a method with a truncation error that is O(k4).

Based on the above discussion, one of the parameters in (7.68)–(7.72) is
arbitrary. There is a standard choice for this constant, and to explain where
it comes from suppose the differential equation is y′ = f(t). Integrating this
as in (7.54) and then using Simpson’s rule yields

y(tj+1)− y(tj) =
k

6
[f(tj) + 4f(tj + 0.5k) + f(tj+1)] +O(k5)

=
k

6

[
f(tj) + 2f

(
tj +

k

2

)
+ 2f

(
tj +

k

2

)
+ f(tj+1)

]
+O(k5).

If we want our RK method to reproduce this result then we should take
c1 = 1

6 . The resulting RK method is

yj+1 = yj +
1

6
(k1 + 2k2 + 2k3 + k4), (7.73)

where

k1 = kf(tj , yj),

k2 = kf(tj +
k

2
, yj +

1

2
k1),

k3 = kf(tj +
k

2
, yj +

1

2
k2), (7.74)

k4 = kf(tj+1, yj + k3).

This is often referred to as the RK4 method, or as the classic RK4 method.
However, as is evident in the above discussion, there are other RK methods
with a O(k4) truncation error. It is worth noting that the one in (7.73) does
not have the best error out of all the possible RK4 methods, but it does have

7.5 Runge–Kutta Methods 303

the significant property of providing a relative simple formula. A comparison
between the classic RK4 and a minimum error version is given in Section 7.7.1.

Example

For the logistic example considered earlier, the RK4 formulas given above are

k1 = 10kyj(1− yj),

k2 = 10k

(
yj +

1

2
k1

)(
1− yj − 1

2
k1

)
,

k3 = 10k

(
yj +

1

2
k2

)(
1− yj − 1

2
k2

)
,

k4 = 10k(yj + k3)(1 − yj − k3).

The resulting numerical accuracy of the method is shown in Figure 7.9. RK4
is clearly superior to the trapezoidal method, to the point that it achieves an
error on the order of machine ε far ahead of the others we have considered.
Given this, you might wonder why the other methods are even discussed,
much less used by anyone. Well, there are several reasons for considering other
methods, and one relates to stability (which is discussed shortly). Another
reason is that RK4 does not do well in preserving certain properties of the
solution, and an example is energy. In problems where energy conservation is
important, other methods, called symplectic methods, are usually used. An
example of such a method is introduced in Section 7.6.3. �

101 102 103 104 105

Number of Time Points

10-15

10-12

10-9

10-6

10-3

E
rr

o
r

Trap
RK4

Figure 7.9 Error at t = 1 as a function of the number of time steps used to solve
the logistic equation (7.67) using the RK4 and the trapezoidal methods.

304 7 Initial Value Problems

7.5.3 Stability

The entire derivation of the RK methods centered on the truncation error.
What is missing is the Step 5 question, which is whether the methods are
A-stable. As it turns out, all explicit Runge–Kutta methods are condition-
ally A-stable. As an example, given the order conditions in (7.63), the RK2
method in (7.60) is conditionally A-stable and the requirement is k < 2/r.
This is the same inequality we obtained for Euler’s method, and so RK2 and
Euler have the same stability requirement. As for RK4, the requirement is
k < λ/r where λ ≈ 2.785. This means that the stability region for RK4 is
slightly larger that it is for RK2 or Euler.

7.5.4 RK-n

The ideas developed here can be generalized to produce higher-order RK
methods, although the complexity of the derivation can be enormous. For
example, in celestial mechanics you occasionally see people use twelfth-order
RK methods. Such a scheme is not easy to derive, because it results in 5972
order conditions, and, as occurred earlier, these form an underdetermined
nonlinear system. This situation is further complicated by the somewhat
unexpected problem that Runge–Kutta methods that are O(kp) for the scalar
equation y′ = f(t, y) are not necessarily O(kp) for the system y′(t) = f(t,y)
if p ≥ 5. In other words, to derive a higher-order Runge–Kutta method for
systems you are not able to simply use a scalar equation and then convert the
variables to vectors when you are done (this idea is used in the next section).
Those interested in deriving higher-order methods, or in a more systematic
derivation of RK4, should consult the texts by Butcher [2008] and Lambert
[1991].

7.6 Solving Systems of IVPs

Most applications involving IVPs have multiple equations. In such cases the
mathematical problem then has the form

dy

dt
= f(t,y), for 0 < t, (7.75)

where
y(0) = α. (7.76)

7.6 Solving Systems of IVPs 305

In the above, y = (y1(t), y2(t), · · · , yn(t))T , f = (f1, f2, · · · , fn)T , and α =
(α1, α2, · · · , αn)

T are n-vectors. In component form, the IVP can be written
as

y′i = fi(t, y1, y2, · · · , yn), for i = 1, 2, · · · , n,
where yi(0) = αi.

7.6.1 Examples

Before discussing numerical solutions we begin with a couple of typical ex-
amples.

7.6.1.1 Law of Mass Action

An often occurring situation involves one or more species combining, or trans-
forming, to form new or additional species. This is what happens when hy-
drogen and oxygen combine to form water. It also can be applied to a dis-
ease moving through a population. One example is the Kermack-McKendrick
model for epidemics. This assumes the population can be separated into three
groups. One is the population S(t) of those susceptible to the disease, another
is the population I(t) that is ill (as well as infectious), and the third is the
population R(t) of individuals that have recovered. Using the law of mass
action one can derive a model that accounts for the susceptible group getting
sick, the subsequent increase in the ill population, and the eventual increase
in the recovered population [Holmes, 2009]. The result is the following set of
equations:

dS

dt
= −aSI,

dI

dt
= −bI + aSI,

dR

dt
= bI,

where S(0) = S0, I(0) = I0, and R(0) = R0. In the above equations a and b
are rate constants. Given the three groups, and the letters used to designate
them, this is an example of what is known as a SIR model in mathematical
epidemiology.

7.6.1.2 Newton’s Second Law

According to Newton’s second, F = ma. Letting y(t) designate position, then
this law takes the form

m
d2y

dt2
= F (t, y, y′), for 0 < t. (7.77)

306 7 Initial Value Problems

Assuming that the initial position and velocity are specified, then the initial
conditions for this problem are

y(0) = α and y′(0) = β. (7.78)

It is possible to write the problem as a first-order system by introducing the
velocity v = y′. Using the original differential equation (7.77), we obtain the
following:

y′ = v,

v′ =
1

m
F (t, y, v).

Introducing the vector y(t), defined as

y =

(
y

v

)
,

then the IVP can be written as

y′(t) = f(t,y), for 0 < t, (7.79)

where the initial conditions (7.78) take the form

y(0) =

(
α

β

)
.

The function f(t,y) appearing in (7.79) is

f(t,y) =

(
v

1
mF (t, y, v)

)
.

What is significant is that the change of variables has transformed the second-
order problem for y(t) into a first-order problem for y(t). Like the original,
(7.79) is nonlinear if F depends nonlinearly on either y or v.

7.6.2 Simple Approach

Writing down a numerical method to solve (7.75) is easy because all of the
formulas we have derived for single equations apply to the vector case. For
example, the approximation y′(tj) ≈ (y(tj+1)− y(tj))/k becomes

y′(tj) ≈ y(tj+1)− y(tj)

k
,

7.6 Solving Systems of IVPs 307

and the error is still O(k). Note that the error is now a vector, and stating
that it is O(k) means that each element of the error vector is O(k).

What this means is that every method listed in Table C.4 in Appendix C
works with vector functions. So, for example, the trapezoidal method becomes

yj+1 = yj +
k

2
(fj + fj+1), (7.80)

where fj = f(tj ,yj) and fj+1 = f(tj+1,yj+1). Similarly, the RK4 method
takes the form

yj+1 = yj +
1

6
(k1 + 2k2 + 2k3 + k4), (7.81)

where k1 = kf(tj ,yj), k2 = kf(tj+
k
2 ,yj+

1
2k1), k3 = kf(tj+

k
2 ,yj+

1
2k2), and

k4 = kf(tj+1,yj + k3). Moreover, the stated properties, like being A-stable,
are still the same. This is where a comment needs to be made about implicit
methods. For single equations, an implicit method is a little more difficult to
use than an explicit method, but for systems of IVPs an implicit method can
be a lot more difficult. The reason is that at each time step it is necessary
to solve a large system of nonlinear equations, and this usually means using
Newton’s method. As explained in Section 3.10, this requires calculation of
a Jacobian and solving multiple matrix equations at each time step. Because
of this, most IVP solvers use explicit methods whenever possible.

Example

The equation for the angular deflection of a pendulum is

�
d2θ

dt2
= −g sin(θ), (7.82)

where the initial angle θ(0) and the initial angular velocity θ′(0) are assumed
to be given. Also, � is the length of the pendulum and g is the gravitational
acceleration constant. Introducing the angular velocity v = θ′ then the equa-
tion can be written as the first-order system

θ′ = v, (7.83)

v′ = −α sin(θ), (7.84)

where α = g/�. In regard to (7.75), y = (θ, v)T and f = (v,−α sin(θ))T . The
numerical solution using the RK4 method in (7.81) is shown in Figure 7.10,
with α = 1, θ(0) = π/4, and θ′(0) = 0. Two time intervals are shown, one
at the beginning and another much later. The pendulum is doing what pen-
dulums do, which is oscillate back and forth in a periodic manner. However,
as seen in the figure on the right, the amplitude in the numerical solution
has decreased substantially. It is possible to prove that the solution of the

308 7 Initial Value Problems

t-axis
0 10 20 30 40

T
h

et
a

0

-π/4

π/4

t-axis
9060 9080 10000

0

-π/4

π/4

Figure 7.10 Solution of the pendulum equation (7.82) using the RK4 method (7.81).
On the left is the computed solution at the beginning, and on the right is the computed
solution for t close to 10,000.

pendulum problem does not decay, and the amplitude in the figure on the
right should be π/4. The fact that the numerical solution decays is not partic-
ularly surprising. It is possible to reduce the decay by simply taking a smaller
time step, but there is another way to do this, and this will be considered
next. �

7.6.3 Component Approach and Symplectic Methods

A consequence of a vector version of the RK4 method, as given in (7.81), is
that every component of y is being approximated the same way. There are
sometimes benefits of not doing this and to explain, consider the problem of
solving my′′ = F (y). This can be written in component form as

y′ = v, (7.85)

v′ =
1

m
F (y), (7.86)

where we have introduced the velocity v = y′. If the vector version of the
trapezoidal method is applied to this system, one obtains

yj+1 = yj +
k

2
(vj+1 + vj), (7.87)

vj+1 = vj +
k

2m
[F (yj+1) + F (yj)].

As is always the case with the trapezoidal method, the resulting equations
are implicit. The question therefore arises as to whether it might be possible
to tweak the above equations so they are explicit, similar to what we did to
discover the RK2 methods. With this in mind, note that one of the culprits
for the implicitness is the vj+1 term in (7.87). Can we find an approximation

7.6 Solving Systems of IVPs 309

for this term that uses information at earlier time steps? One possibility is to
use the Euler method (7.86), which gives us vj+1 = vj+

k
mF (yj). Introducing

this into (7.87) yields

yj+1 = yj + kvj +
1

2m
k2F (yj), (7.88)

vj+1 = vj +
k

2m
[F (yj+1) + F (yj)] . (7.89)

Assuming we first use (7.88) to calculate yj+1 and then use (7.89) to find
vj+1, the procedure is explicit. It is known as the velocity Verlet method for
solving (7.85) and (7.86), and we will try it using our earlier example.

Example

The solution of the pendulum problem in (7.82) using the velocity Verlet
method is given in Figure 7.11. This shows the same two time intervals shown
for RK4 in Figure 7.10 as well as uses the same time step k. Unlike the RK4
solution shown in Figure 7.10, the amplitude decay is not evident in the ve-
locity Verlet solution. �

The result in Figure 7.11 is surprising. It’s possible to prove that the
velocity Verlet method is O(k2), yet it has produced a better solution than
the O(k4) RK4 method. Although it is always possible for a O(k2) method
to produce a better answer than a O(k4) method on a particular problem,
the reason here is more profound. What is happening is that velocity Verlet
does a better job in approximating the energy in the system over a longer
time interval than RK4. To investigate this, the equation for the energy can
be obtained by multiplying (7.82) by the velocity θ′ and integrating. From
this, it is found that

t-axis
0 10 20 30 40

T
h

et
a

0

-π/4

π/4

t-axis
9060 9080 10000

0

-π/4

π/4

Figure 7.11 Solution of the pendulum equation (7.82) using the velocity Verlet
method (7.88) and (7.89) over the same two time intervals shown in Figure 7.10.

310 7 Initial Value Problems

0 5000 10000
t-axis

0

0.1

0.2

0.3
E

n
er

g
y RK4

Verlet
Exact

9060 9080 10000
t-axis

0

0.1

0.2

0.3

Figure 7.12 The energy (7.90) as computed using RK4 and the velocity Verlet
method for the pendulum equation (7.82). On the left are the curves for 0 ≤ t ≤
10,000, while on the right the curves are shown over a small time interval near t =
10,000.

H(θ, θ′) =
1

2
�(θ′)2 + g(1− cos θ) (7.90)

is constant. The function H is a Hamiltonian (or, more precisely, a Hamilto-
nian per unit mass) for the pendulum. With the initial conditions θ(0) = π/4
and θ′(0) = 0, it then follows that H(θ, θ′) = g(1 − √

2/2). The computed
values for H , assuming g = 1, using the two numerical methods are plotted
in Figure 7.12. For comparison, the exact value is also shown. The decay in
the RK4 value is clearly seen, while the computed energy from velocity Verlet
method oscillates, but the values stay very near the exact value. Note that
these oscillations are the reason for the solid (red) bar in the left plot in the
figure. The reason that velocity Verlet does so well is that it is an example of
what is known as a symplectic method. However, even though velocity Ver-
let does well computing the energy, it does not do as well with the phase.
For the example in Figure 7.12, using velocity Verlet the computed value of
the period is about 6.47, while the exact value is about 6.53. Although the
difference is small, given the large number of oscillations, the difference be-
tween the exact and computed value of the angular position θ(t) grows. This
difference can be reduced, but not eliminated, by taking a smaller value for
the step size k. More about this, and symplectic methods in general, can be
found in Holmes [2007], Stuart and Humphries [1998], or Hairer et al. [2003].

7.7 Some Additional Questions and Ideas

1. Round-off error can be a problem for the finite difference formulas in Ta-
ble 7.1 (see Figure 7.1). What do you do if you want an accurate numerical
derivative for very small step sizes?

Answer: Well, one option is to transform the formula, as discussed in

7.7 Some Additional Questions and Ideas 311

Section 7.2. Another way is to use a complex Taylor series expansion
(CTSE), what is sometimes called the complex-step derivative approxima-
tion method. The standard example used for this is the centered difference
formula

y′(tj) =
y(tj+1)− y(tj−1)

2k
+

1

6
k2y′′′(tj) + · · · . (7.91)

Although this has an error that is O(k2), as shown in Figure 7.1, it can
have a problem when k is small. A way to avoid this is to use an imaginary
step size. To explain, note, using Taylor’s theorem, that

y(t+ ik) = y(t) + iky′(t)− 1

2
k2y′′(tj)− 1

6
ik2y′′′(t) + · · · ,

where, as usual, i =
√−1. Taking the imaginary part of this equation, and

rearranging, we have that

y′(t) =
Im[y(t+ ik)]

k
+

1

6
k2y′′′(t) + · · · . (7.92)

This gives us a O(k2) approximation for the first derivative that does
not have the round-off problems that arise with (7.91). To compare, the
example for Figure 7.1 is redone in Figure 7.13 using (7.19) and the cor-
responding approximation coming from (7.92). The latter is

y′(t) ≈ 1

k
Im
[√

y(t+ ik)
]
. (7.93)

The approximation in (7.93) is actually better than indicated in Fig-
ure 7.13, because for values of k smaller than 10−7, the error is zero (using
double precision). This very interesting idea does have limitations, such
as how the function is defined when using a complex argument, and more
discussion of this can be found in Martins et al. [2003] and Lai and Cras-
sidis [2008].

2. The problem with numerical differentiation seen in Figure 7.1 did not seem
to be an issue when solving IVPs, why not?

Answer: The better IVP solvers do not require a small step size to pro-
duce an accurate solution, and because of this they avoid the numerical
differentiation problem. As seen in Figure 7.7, to achieve an error of 10−9,
RK4 uses only 100 points and the trapezoidal method uses about 5000
points. Neither are close to the step sizes causing problems in Figure 7.1.
As for the less accurate methods, like the two Euler methods, the number
of time points needed to cause a problem is so large that most would not
consider them viable options. As an example, for the Euler method to start
to have trouble with numerical differentiation it is necessary to use 109 or
more time points when solving the logistic equation (7.58). The solution

312 7 Initial Value Problems

10-15 10-10 10-5 100

Stepsize (k)

10-20

10-10

100
E

rr
o

r

Centered
CTSE

Figure 7.13 Error when using a numerical approximation of y′(1), when y(t) =
√
t,

using the centered difference (7.19), and the CTSE approximation is (7.93). Note that
the CTSE error is zero for k < 10−7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t-axis

0

0.2

0.4

0.6

0.8

1

S
o

lu
ti

o
n

RK4
Spline
Exact

Figure 7.14 Solution of the logistic equation (7.33) using RK4. Also shown is the
exact solution and the clamped cubic spline fitted to the RK4 values (these two curves
are almost indistinguishable from each other).

accuracy in this case is no better than what would be obtained using 102

points with RK4 or about 103 points with the trapezoidal method.

3. It’s nice that RK4 can find an accurate solution using just a few points
scattered across the time interval, but I want a smooth curve. What do I
do?

Answer: The easy solution is to just use more points. However, a better
solution is to use interpolation. It’s possible in this case to use a clamped
cubic spline because we know, or have a computed value for, y′ at the
endpoints. In particular, y′(0) = f(0, α) and y′(T) = f(T, yM). To illus-
trate how well this works, the solution of the logistic equation (7.33), with
y(0) = 0.1, is shown in Figure 7.14. With this it is possible to obtain an
accurate value for the solution anywhere in the time interval. An example
of how this can be used in data fitting is explained in Section 9.5.

4. It is often stated that a physical system must satisfy causality, which,
roughly speaking, means that the future does not affect the past. Doesn’t
a forward-difference approximation violate causality?

7.7 Some Additional Questions and Ideas 313

Answer: It does. In fact, all but two of the difference formulas in Table 7.1
violate causality. What is interesting is that the one method that is based
on a causal approximation, which is backward Euler, is unconditionally
stable. The non-causal approximations, in comparison, produce only con-
ditionally stable methods. It is unclear what connections there might be
between these two properties, but apparently there might be. For those
who might be interested in computations and the connections with some
of the basic laws of physics, the collection of articles in Zenil [2012] might
be consulted.

7.7.1 RK4: Why Use Simpson’s Rule?

The RK4 method was derived using Simpson’s rule, and the question is why.
To consider this, the general form of the RK4 assumption is

yj+1 = yj + c1k1 + c2k2 + c3k3 + c4k4, (7.94)

where

k1 = kf(tj , yj),

k2 = kf(tj + α2k, yj + β21k1),

k3 = kf(tj + α3k, yj + β31k1 + β32k2),

k4 = kf(tj + k, yj + β41k1 + β42k2 + β43k3).

It is assumed that 0 ≤ α2 ≤ 1 and 0 ≤ α3 ≤ 1. The order conditions resulting
from the above assumption are listed in Table 7.4. There are 11 equations
and 12 unknowns, and the solutions are given in Ralston [1962]. Just so it’s
clear, every solution results in an IVP solver with an error that is O(k4).

To decide on which solution of the order equations to pick, we considered
the problem of solving y′ = f(t). Applying (7.94) to this equation we get that

yj+1 = yj + c1kf(tj) + c2kf(tj + α2k) + c3kf(tj + α3k) + c4kf(tj + k),

On the other hand, integrating the equation we get that

y(tj+1) = y(tj) +

∫ tj+1

tj

f(t)dt.

Combing these two equations, it must be that

∫ tj+1

tj

f(t)dt ≈ c1kf(tj) + c2kf(tj + α2k) + c3kf(tj + α3k) + c4kf(tj + k).

(7.95)

314 7 Initial Value Problems

In other words, the solution of the order equations is associated with an
integration rule. This is where Simpson’s rule was used. The reason for picking
Simpson is that its error is O(k5), and this is required to produce an IVP
solver with a truncation error that is O(k4) (i.e., it is consistent with the
error being sought for the RK4 method). However, is there a better choice?
Asked a different way, are there choices for the ci’s and αi’s in the above
expression that produce a better error?

The question asked about the ci’s and αi’s is the same question asked in the
derivation of the Gaussian integration rules. The difference with (7.95) is that
the endpoints are being used to determine the integration rule. This variation
is known as Lobatto quadrature, and this is explained in Exercise 6.24. Using
the result of Exercise 6.24(c), the Lobatto rule that produces the maximum
precision has c1 = 1/12. This gives a RK4 method of the form

yj+1 = yj +
1

12
(k1 + 5k2 + 5k3 + k4) , (7.96)

c1 + c2 + c3 + c4 = 1

β21 = α2

β31 + β32 = α3

β41 + β42 + β43 = 1

c2α2 + c3α3 + c4 =
1

2

c2α
2
2 + c3α

2
3 + c4 =

1

3

c2α
3
2 + c3α

3
3 + c4 =

1

4

c3α2β32 + c4(α2β42 + α3β43) =
1

6

c3α2α3β32 + c4(α2β42 + α3β43) =
1

8

c3α
2
2β32 + c4(α

2
2β42 + α2

3β43) =
1

12

c4α2β32β43 =
1

24

Table 7.4 Order conditions for a general RK4 method [Ralston, 1962].

Exercises 315

101 102 103

Number of Time Points

10-8

10-6

10-4

10-2

100
E

rr
o

r
RK4
L-RK

Figure 7.15 Comparison in the error for the classic RK4 and the Labatto RK4
method (7.96).

where

α2 =
1

2

(
1− 1√

5

)
, β21 =

1

2

(
1− 1√

5

)
,

α3 =
1

2

(
1 +

1√
5

)
, β31 = − 1

20
(5 + 3

√
5), β32 =

1

4
(3 +

√
5),

β41 = −1

4
(1− 5

√
5), β42 = −1

4
(5 + 3

√
5), β43 =

1

2
(5−

√
5).

Note that as an integration rule the error for Labatto is O(k7), while for
Simpson’s rule it’s O(k5).

Example

The solution of the IVP

y′ = y − 2tet sin(t2), for 0 < t < 3,

where y(0) = 1, is y = et cos(t2). The error in solving this problem using the
classic RK4 method and the Labatto RK4 method is shown in Figure 7.15.
Both curves show the expected O(k4) decrease, with the Labatto version
giving a better error because of its more accurate quadrature approximation.

Exercises

7.1. This exercise concerns deriving finite difference approximations of deriva-
tives.
(a) Derive a O(k2) approximation of y′(tj) that uses y(tj), y(tj−1), and

y(tj+2).

316 7 Initial Value Problems

x 0 1/3 2/3 1

u 1 0 −1 1

Table 7.5 Values for Exercise 7.4.

(b) Derive a O(k2) approximation of y′(tj) that uses y(tj), y(tj+1), and
y(tj+2).

(c) Derive a O(k2) approximation of y′(tj) that uses y(tj), y(tj−1), and
y(tj−2). Also, explain how your answer can also be obtained from one of
the formulas in Table 7.1.

7.2. In the following, a claim is made about an approximation for the first
derivative. Explain why the claim is wrong.
(a) A O(k) approximation of y′(tj) is

y′(tj) ≈ 2y(tj+1)− y(tj)

k
.

(b) A O(k2) approximation of y′(tj) is

y′(tj) ≈ y(tj+2)− y(tj−2)

k
.

(c) A O(k) approximation of y′(tj) is

y′(tj) ≈ y(tj+1)− 3y(tj) + 2y(tj−1)

k
.

7.3. In this exercise, difference approximations are derived that make use of
derivative information.
(a) Find a O(k2) approximation of y′′(tj+1) and uses y′(tj+1) and y′(tj−1).
(b) Find aO(k2) approximation of y′(tj+1) and uses y(tj), y(tj+1), and y′(tj).
(c) Find a O(k4) approximation of y′(tj+1) and uses y(tj−1), y(tj+1), y

′(tj),
and y′(tj−1).

7.4. For a linearly elastic material, the stress T (x) is given as

T = E
du

dx
,

where u(x) is the displacement of the material and E is a positive constant
known as the Young’s modulus. You can assume the material is steel, so
E = 200, and you should also assume that u(0) = 0 Using second-order
approximations for u′(x), and the data in Table 7.5, find T at x = 0, 1/3,
2/3, 1.

Exercises 317

7.5. For a power law fluid, the shear stress S(x) is given as

S = α

(
dv

dx

)γ

,

where v(x) is the shear velocity, and α and γ are positive constants. You can
assume the fluid is ketchup at room temperature, so γ = 1/4 and α = 20.
Using second-order approximations for v′(x), and the data in Table 7.6, find
S at x = 0, 1/3, 2/3, 1.

7.6. The Bernoulli equation is

y′ + y3 =
y

1 + t
.

(a) If the Euler method is used to solve this equation, what is the resulting
finite difference equation?

(b) If the trapezoidal method is used to solve this equation, what is the
resulting finite difference equation?

(c) If Heun’s method is used to solve this equation, what is the resulting
finite difference equation?

(d) If the RK4 method is used to solve this equation, what is the resulting
finite difference equation?

7.7. The Michaelis-Menten equation is

dS

dt
= − vmS

KM + S
,

where vm and KM are positive constants.
(a) If the Euler method is used to solve this equation, what is the resulting

finite difference equation?
(b) If the trapezoidal method is used to solve this equation, what is the

resulting finite difference equation?
(c) If Heun’s method is used to solve this equation, what is the resulting

finite difference equation?
(d) If the RK4 method is used to solve this equation, what is the resulting

finite difference equation?

7.8. An IVP is solved using an explicit method using M time steps to reach
t = 1. The value computed for yM is given in Table 7.7 as a function of the
time steps used in the calculation. Which explicit IVP solver was most likely
used in this calculation? Make sure to explain why.

x 0 1/3 2/3 1

v 0 2 4 0

Table 7.6 Values for Exercise 7.5.

318 7 Initial Value Problems

7.9. To solve y′ = f(t, y) one can use one of the following finite difference
equations. Determine if the method is A-stable, conditionally A-stable, or
unstable. If it is conditionally stable, make sure to state what the condition
is.
(a) yj+1 = yj +

k
3 [f(tj , yj) + 2f(tj+1, yj+1)]

(b) yj+1 = yj +
k
4 [5f(tj , yj)− f(tj+1, yj+1)]

(c) yj+1 = yj +
k
5 [−2f(tj, yj) + 7f(tj+1, yj+1)]

7.10. The IVP for a mass-spring-dashpot system is

m
d2y

dt2
+ c

dy

dt
+ ky = F (t), for t > 0

where y(0) = a and y′(0) = b. In this problem m, c, k, a, b are given numbers
and F (t) is a given forcing function.
(a) Using finite difference approximations for y′′ and y′, derive a finite dif-

ference approximation for the differential equation that has truncation
error that is O(k2).

(b) Convert the initial conditions so they apply to the finite difference ap-
proximation. Your approximation of y′(0) = b must have a truncation
error that is O(k2).

(c) Setting v = y′, find a first-order system for y and v.
(d) Write down a numerical method for solving the problem in part (c) that

has a truncation error that is O(k2).

7.11.(a) The integration rule of the form

∫ tj+1

tj

f(t)dt ≈ a1f(tj) + a2f(z),

which has the maximum precision is a1 = k/4, a2 = 3k/4, and z =
tj +2k/3. Explain how this gives rise to the RK2 method given in (7.66).

M yM

16 1.062500000

32 1.031250000

64 1.015625000

128 1.007812500

256 1.003906250

512 1.001953125

1024 1.000976562

Table 7.7 Values for Exercise 7.8.

Exercises 319

(b) What condition must be satisfied for the RK2 method given in (7.66) to
be A-stable?

7.12. This problem explores a RK1 method. Assume the method has the
form

yj+1 = yj + akf(tj , yj).

Find the constant a using the same procedure used to derive the RK2 method.
What is the truncation error?

7.13. This problem explores the stability condition for RK2.
(a) What does the RK2 method in (7.60) reduce to for the equation y′ =

−ry? Assume the constants satisfy the order conditions (7.63).
(b) Show that the amplification factor for RK2 can be written as κ = 1 −

z + 1
2z

2, where z = rk.
(c) Using the result from part (b), show that the RK2 method is conditionally

A-stable and that the stability condition is rk < 2.

7.14. What condition must be satisfied for the (classic) RK4 method to be
A-stable?

7.15. This problem concerns the differential equation y′ = f(t, y). In
Figure 7.16, lines are shown which represent the absolute error as a func-
tion of the number of mesh points for several different methods.
(a) Which line, if any, should correspond to a RK2 method (e.g., Heun’s

method)?
(b) Which line, if any, should correspond to the trapezoidal method?
(c) Which line, if any, should correspond to Euler’s method? Make sure to

justify your answers. Also, a line may be used more than once.

101 102 103

Number of Time Points

10-8

10-6

10-4

10-2

100

102

E
rr

o
r

Figure 7.16 Graph used in Exercises 7.15 and 7.18.

7.16. To solve the differential equation y′ = f(t, y) one can use the finite
difference equation

yj+1 = yj + k[θfj + (1− θ)fj+1],

320 7 Initial Value Problems

where θ is a number that satisfies 0 ≤ θ ≤ 1 (one first picks θ from this
interval and then uses the above formula to calculate the solution).
(a) For what value(s) of θ is the method explicit, and for which value(s) of

θ is it implicit?
(b) For what value(s) of θ is the method A-stable?
(c) For what value(s) of θ is this method second-order accurate? What is its

order of accuracy for the other values of θ?

7.17. In deriving the trapezoidal method for solving the differential equation
y′ = f(t, y) we integrated the equation over the interval tj ≤ t ≤ tj+1. In this
problem you are to integrate the equation over the interval tj−1 ≤ t ≤ tj+1.
(a) What numerical method is obtained if Simpson’s rule is used on the

resulting integral? What is the truncation error for this rule?
(b) What numerical method is obtained if the midpoint rule is used on the

resulting integral? What is the truncation error for this rule?

7.18. This problem concerns the differential equation y′ = f(t, y) where
y(0) = a.
(a) From the differentiation formula

y′(t) =
y(t+ 2k)− y(t− 2k)

4k
+O(k2)

derive a difference equation that can be used to numerically solve the
differential equation.

(b) One of the curves in Figure 7.16 gives the error as a function of the
number of grid points for the method you derived in part (a). Which one
is it? Make sure to justify your answer.

7.19. Suppose you want to compute the solution of y′ = e−y+t5 for 0 ≤ t ≤ 1
using 100 time steps (so, k = 0.01). The methods to be tried are (i) the Euler
method, (ii) the backward Euler method, (iii) the trapezoidal method, (iv)
Heun, and (v) the RK4 method.
(a) Which one would you expect to complete the calculation the fastest?

Why?
(b) Which one would you expect to be the most accurate? Why?
(c) If stability is a concern which method would be best? Why?

7.20. This problem concerns the Michaelis-Menten equation

dS

dt
= − vmS

KM + S
,

where vm and KM are positive constants. The initial condition is S(0) = S0.
The biochemical applications of this equation, and how to solve it, were
considered in Section 2.1.1 and in Exercise 2.17. In this exercise you are to
solve this problem using the trapezoidal and RK4 methods.

Exercises 321

(a) Solving this problem, one finds that the exact solution satisfies

KM ln(S/S0) + S = S0 − vmt .

Verify that if S satisfies the above equation, then it is a solution of the
IVP.
In the following questions, assume that vm = 0.76 mM/min, KM = 16.7
mM, and S0 = 100 mM.

(b) Plot S for 0 ≤ t ≤ 500. An easy way to do this is to rewrite the equation
in part (a) as

t =
1

vm
[S0 −KM ln(S/S0)− S] .

Picking values Sj , with 0 < Sj ≤ S0, the above equation can be used to
find the corresponding tj . With this, the requested plot can be obtained
by plotting the values for the (tj , Sj)’s.

(c) On the same axes, plot the exact and the two numerical solutions for
0 ≤ t ≤ 500 in the case of when M = 20.

(d) Redo (c) for M = 5, M = 10, and M = 40 (there should be one graph
for each M).

(e) Plot the max error e∞, defined in (7.44), as a function of M for each
method, using M = 10, 20, 40, 80. The two curves should be in the same
log-log plot.

(f) Compare the two methods based on your results from parts (c)–(e). This
includes ease of use, speed of calculation, accuracy of results, and appar-
ent stability.

7.21. This problem concerns the IVP involving the Bernoulli equation

y′ + y3 =
y

a+ t
, for t > 0,

where y(0) = 1. You are to solve this problem using the trapezoidal and RK4
methods.
(a) Verify that the exact solution is

y =
a+ t√

β + 2
3 (a+ t)3

.

Also, determine the value of β from the initial condition.
(b) Assuming a = 0.01, on the same axes plot the exact and the two numer-

ical solutions for 0 ≤ t ≤ 3 in the case of when M = 80.
(c) Redo (b) for M = 20, M = 40, and M = 160 (there should be one graph

for eachM). If one of the methods is unstable you can exclude it from the
plot (for that value of M) but make sure to state this in your write-up.

(d) Plot the max error e∞, defined in (7.44), as a function of M for each
method, using M = 40, 80, 160, 320, 640. The two curves should be in the
same log-log plot.

322 7 Initial Value Problems

(e) Compare the two methods based on your results from parts (b)–(d).
This includes ease of use, speed of calculation, accuracy of results, and
apparent stability.

7.22. The equation for the height y(t) of a projectile is

d2y

dt2
= − gR2

(R+ y)2
, for 0 < t,

where g is the gravitational acceleration constant and R is the radius of the
Earth. Also, y(t) is the vertical distance from the surface of the Earth.
(a) Write this as a first-order system using the height y and the velocity

v = y′.
(b) If y(0) = 0 and v(0) = 100m/s, find the time, to at least three significant

digits, that it takes until the object hits the ground. Make sure to state
what method you use to solve the IVP, why you picked the method, and
how you used the solver to answer the question. In addition, you should
plot y as a function of t, for 0 ≤ t ≤ T , where T is your answer. It is
advised that when you think you have found T that you double M to
make sure that your solution does not change significantly.

(c) If y(0) = 0, then what does v(0) have to be so the object stays airborne
for 2 hours? In other words, if T = 2hr, then what does v(0) have to
be so that y(T) = 0. You should calculate v(0) to six significant digits.
In addition, you should plot y as a function of t, for 0 ≤ t ≤ T . Make
sure to state what method you use to solve the IVP, why you picked the
method, and how you used the solver to answer the question.

7.23. Using polar coordinates in the orbital plane, the position of an object
orbiting the sun is (r(t), θ(t)). From Newton’s laws, to find the position it is
necessary to solve

r′′ =
α2

r3
− μ

r2
,

where α = θ′(0)r(0)2 is constant, and μ is the gravitational parameter of the
sun. Note that μ = 1.327× 1011 km3/sec2.
(a) Write the above differential equation as a first-order system using the

radial position r and radial velocity v = r′.
(b) The approximate values for Mars are: r(0) = 2.244× 108 km, r′(0) = 0,

and θ′(0) = 9.513 × 10−8 radians/sec. If one instead uses astronom-
ical units (au), then r(0) = 1.5 au and r′(0) = 0. Also, measuring
time in terms of a terrestrial year (where 1 ty = 365 days), then
θ′(0) = 3 radians/ty. Explain why it is better to use the au, ty values
rather than the km, sec values when computing the solution.

(c) Using the initial conditions from part (b), find r(t), to at least three sig-
nificant digits, after one terrestrial year. Make sure to state what method
you used to solve the problem, why you picked that method, and how
you know that the solution is correct to three significant digits.

Exercises 323

Figure 7.17 Three oscillators that are coupled by springs, as an example of the
problem considered in Exercise 7.24.

(d) The angular coordinate of the object is determined using the following
formula:

θ(t) = θ(0) + α

∫ t

0

ds

r2(s)
.

Assuming that θ(0) = 0, use your results from part (c) to find the angular
coordinate for the object after one terrestrial year.

7.24. This exercise involves finding the solution of the problem for the cou-
pled oscillators shown in Figure 7.17. The equation of motion in this case is
y′′ +Ky = 0, where

K =

⎛
⎜⎜⎝

1 + k12 + k13 −k12 −k13

−k12 1 + k12 + k23 −k23

−k13 −k23 1 + k13 + k23

⎞
⎟⎟⎠ .

In the above matrix, kij is the spring constant for the spring connecting the
ith and jth oscillator, and it is positive (these are the three smaller springs
shown in Figure 7.17). The initial conditions are y(0) = (−1, 0, 2)T and
y′(0) = (0, 0, 0)T .
(a) Assuming y(t) = (y1(t), y2(t), y3(t))

T , introduce the velocity vi(t) =
y′i(t). Letting z(t) = (y1(t), v1(t), y2(t), v2(t), y3(t), v3(t))

T , show that the
oscillator problem can be rewritten as z′ = Az. What is z(0)?

(b) If Euler’s method is used to solve the equation in part (a), what is the
resulting finite difference equation? Your answer should be written in
terms of zi and zi+1.

(c) If the trapezoidal method is used to solve the equation in part (a), what
is the resulting finite difference equation? Your answer should be written
in terms of zi and zi+1.

(d) If the RK4 method is used to solve the equation in part (a), what is
the resulting finite difference equation? Your answer should be written
in terms of zi and zi+1.

(e) Using one of the methods from (b)–(d), on the same axis, plot y1, y2,
y3 for 0 ≤ t ≤ 10. Assume that k12 = k13 = k23 = 1/2. Make sure to
state what method you used to solve the problem and why you picked

324 7 Initial Value Problems

that method. Also, explain why you believe your solutions are accurate
approximations of the exact solutions.

7.25. This exercise explores the differences between a symplectic method and
a method which conserves energy exactly. Recall that the equation my′′ =
F (y) can be written as the first-order system given in (7.85) and (7.86). A
Hamiltonian for this system is

H(y, v) =
1

2
mv2 −

∫ y

0

F (s)ds.

Also recall that H corresponds to the total energy of the system.
(a) It is assumed that the trapezoidal method given in (7.87) can be modified

to produce a method that conserves energy. In particular, it is assumed
that one can be found of the form

yj+1 = yj +
k

2
(vj+1 + vj),

vj+1 = vj +
k

m
W (yj+1, yj).

Using the above formula for the Hamiltonian, show that

H(yj+1, vj+1)−H(yj , vj)

=
k

2
(vj + vj+1)

(
W (yj+1, yj)− 1

yj+1 − yj

∫ yj+1

yj

F (s)ds

)
.

From this, conclude that the method is conservative if

W (yj+1, yj) =
1

yj+1 − yj

∫ yj+1

yj

F (s)ds.

It is possible to show that the resulting method is second-order (you do
not need to prove this).

(b) What finite difference equations do you obtain when the method in part
(a) is applied to the pendulum system in (7.83), (7.84)? The resulting
method is implicit. Show that finding θj+1 and vj+1 reduces to solving
f(θj+1) = 0, where

f(θ) = θ − θj − kvj − 1

2
k2

cos θ − cos θj
θ − θj

.

It is assumed here that � = g = 1.
(c) Show that in the case of when θj+1 is close to θj , the solution of

f(θj+1) = 0 is close to θj + kvj − 1
2k

2 sin θj.
(d) Compute the solution using the method from part (b) for 0 ≤ t ≤ 10000,

using k = 1/2 and the initial conditions θ(0) = π/4, θ′(0) = 0. These are

Exercises 325

the same values used for Figures 7.10, 7.11, and 7.12. In your write-up,
state what method you used to solve f(θj+1) = 0, including the stopping
condition and what you used for the initial guess(es) for θj+1.

(e) With the computed solution from part (d), plot θ for 0 ≤ t ≤ 40 and
for 9060 ≤ t ≤ 10000. Also plot the energy H(θ, θ′) over the same time
intervals. Comment on how these compare to the results obtained using
RK4 and the velocity Verlet method. To help with this comparison, note
that the energy values for velocity Verlet seen in Figure 7.12 oscillate
between about 0.2755 and 0.2929.

(f) As stated in Section 7.6.3, using velocity Verlet the computed value of
the period is about 6.47, while the exact value is about 6.53. Determine
the period for your computed solution from part (d), and compare it to
the velocity Verlet value.

Chapter 8

Optimization

8.1 Introduction

The problem central to this chapter is easy to state: given a function F (v),
find the point vm ∈ R

n where F achieves its minimum value. This can be
written as

F (vm) = min
v∈Rn

F (v). (8.1)

The point vm is called the minimizer or optimal solution. The function F is
referred to the objective function, or the error function, or the cost function
(depending on the application). Also, because the minimization is over all of
R

n, this is a problem in unconstrained optimization.
Some examples of such problems are below.

• Av = b: Given a linear equation ax − b = 0, it is possible to rewrite this
as finding the minimum value of F (x) = |ax − b| or of F (x) = (ax − b)2.
This is illustrated in Figure 8.1 in the case of when a = 4 and b = 3. In
both cases, the minimum of F (x) is unique and corresponds to the solution
of the original equation. It is possible to use this same idea for Av = b.
Recall that a vector norm ||w|| is never negative and it has the property
that the one and only solution of ||w|| = 0 is w = 0. Because of this, the
linear system Av = b can be rewritten in the form given in (8.1) by taking

F (v) = ||Av − b||.

It is also possible to use

F (v) = ||Av − b||2.

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0 8

327

328 8 Optimization

There is a considerable degree of flexibility here as one can consider the
benefits, or drawbacks, of using the different norms that have been defined
for vectors. Some of the ramifications of this will be considered later in
this chapter.

1.510.50
x-axis

0

2

4

6

y-
ax

is

Figure 8.1 Plot of F (x) = |4x− 3|, the solid (red) line, and F (x) = (4x − 3)2, the
dashed (blue) line. Both functions have a minimum corresponding to the solution of
4x− 3 = 0.

• In Section 3.10, Newton’s method was used to solve

x2 + 4y2 = 1,

4x2 + y2 = 1.

Another way to solve it is to rewrite it as a minimization problem. This
can be done, for example, by taking

F (x, y) = (x2 + 4y2 − 1)2 + (4x2 + y2 − 1)2. (8.2)

With this, F is never negative, and it is only equal to zero when the original
equations are satisfied. The surface plot of F (x, y), and its associated con-
tour plot, is given in Figure 8.2. The four local minimum points for F (x, y)
correspond to the four intersection points seen in Figure 3.4. Although the
minima correspond exactly with the four solutions, the function F (x, y)
has multiple critical points. In particular ∇F = 0 at the four minimum
points, at the local maximum at (x, y) = (0, 0), and at the four saddle
points between the minimum points. What this means is that any method
of finding the minima that involves trying to find where ∇F = 0 will need
to be able to have a way of deciding if the point is a minimum or not.

• Traveling Salesman Problem (TSP): A simple version of this is: given a
set of points in the plane, find the path of minimum length that connects
all of the points with a closed curve (see Figure 8.3). This problem has
been studied intensely over the last few decades, and it has become the

8.1 Introduction 329

poster-child of hard problems. The reason is that it is an example of a
NP-complete problem, which means that it is thought that the solution
requires exponential time to solve. Specifically, to find the optimal solu-

0.5
0

x
-0.5-0.5

0

y

0.5

3

2.5

2

1

4

1.5

0.5

0

3.5

F
(x

,y
)

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

-0.5

0

0.5

1

Figure 8.2 Top: Function given in (8.2). Bottom: Contour curves for the function.

tion you have to go through all possible paths, and the numbers of routes
increases exponentially with the numbers of points. A more expanded dis-
cussion of the TSP can be found in Applegate et al. [2006].

• Regression: This refers to the problem of finding a function that best fits a
set of data points. Two examples of this situation are shown in Figure 8.4.
Unlike interpolation, the number of data points for regression is larger
than the number of parameters in the function used to fit the data.

330 8 Optimization

Figure 8.3 The shortest traveling salesman route going through all 13, 509 cities in
the contiguous USA with a population of at least 500 [Applegate et al., 2006]

It is assumed in what follows that the function to be minimized is con-
tinuous, and it has one or more minima. For those who like their functions
to have a unique minimum, additional assumptions are necessary. One of-
ten made is that the function is strictly convex. The function in Figure 8.2
does not have this property because it is possible to find a straight line con-
necting two points on the surface that intersects the surface other than at
the two original points. This is not possible, for example, for the surface in
Figure 8.14, and for this reason it is strictly convex. The assumption of con-
vexity is not made here because in most applications you have no idea if this
happens, and the methods considered do not require this to work.

0.5 1.0 1.5 2.0

3

4

5

6

7

8

9

Centrosome Diameter (μm)

 P0

 AB P1

 ABa P2

slope = 4.86 ± 0.2H
al

f S
pi

nd
le

 L
en

gt
h

(μ
m

)

Figure 8.4 Examples of regression fits from Greenan et al. [2010] (L) and Stadlbauer
et al. [2006] (R).

8.2 Regression: Introduction 331

8.2 Regression: Introduction

In a typical regression problem one starts out with a set of data points,
and then attempts to determine a function that has the same qualitative
behavior seen in the data. Typical examples are shown in Figure 8.4. There
are assumptions made when using regression and these will be considered in
the development. The reason is that the assumptions have an arbitrariness
to them and they can have a significant impact on the final result.

In what follows the data set will be: (x1, y1), (x2, y2), · · · , (xn, yn). It is
assumed that there are more data points than parameters in the function to
be minimized. Also, unlike the situation for interpolation, we do not assume
that the xi’s are distinct.

To carry out the regression analysis, we need to specify two functions:
the model function and the error function. With this we will then need to
determine what method should be used to calculate the minimizer.

8.2.1 Model Function

We begin with the model function, which means we specify the function that
will be fitted to the data. Examples are:

• Linear Regression

g(x) = v1 + v2x (8.3)

g(x) = v1 + v2x+ v3x
2

g(x) = v1 + v2x+ · · ·+ vmxm−1

g(x) = v1e
x + v2e

−x

• Nonlinear Regression

g(x) = v1 + v2e
v3x - asymptotic regression function (8.4)

g(x) =
v1x

v2 + x
- Michaelis-Menten function (8.5)

g(x) =
v1

1 + v2 exp(−v3x)
- logistic function (8.6)

In the above functions, the vi’s are the parameters determined by fitting
the function to the given data, and x is the variable in the problem. What
determines whether the function is linear or nonlinear is how it depends on
the vi’s. Specifically, linear regression means that the fitting function g(x) is
a linear function of the vi’s. If you are unsure what this means, a simple test
for linear regression is that for every parameter vj , the derivative

332 8 Optimization

∂g

∂vj

does not depend on any of the vi’s. If even one of the derivatives depends on
one or more of the vi’s then the function qualifies for nonlinear regression.

Exactly which g(x) to use is determined by the application. For example,
in Figure 8.4, the spindle length data looks to be approximately linear, and
so one would be inclined to use (8.3). The function also might be known
from theoretical considerations. Examples of linear relationships as in (8.3)
include Hooke’s law, Ohm’s law, and Fick’s law. The nonlinear functions
can also come from theoretical considerations, and because of this they are
often given names connected from the original problem they came from. For
example, the one in (8.5) gets its name from a fundamental enzyme catalyzed
reaction in biochemistry known as the Michaelis-Menten mechanism [Holmes,
2009]. The one in (8.6) gets its name from the fact that it is the solution of
the logistic equation given in (7.6).

8.2.2 Error Function

The next decision concerns the error, or objective, function, which is used to
fit the data. This is not a simple question and the choice can have a significant
affect on the final solution. To illustrate the situation, three data points and
a potential linear fit to these points are shown in Figure 8.5. To measure
the error, one can use the vertical distance di, as in the left figure, or the
true distances Di, as in the right figure. It is easy to determine the vertical
distance, and it is

di = |g(xi)− yi|.
The formula for the true distance depends on the model function. In what
follows we will concentrate on the linear function (8.3), in which case

Di =
di√
1 + v21

.

Figure 8.5 Different measures of error for the linear model function g(x) = v1+v2x.

8.2 Regression: Introduction 333

Both of these are used. The di’s are used in traditional least squares data
fitting, while the Di’s are used in what is called orthogonal regression or
Deming regression. It’s necessary to be careful with the dimensional units
using Di. For example, the usual distance between two points requires the
calculation of D =

√
(x0 − x1)2 + (y0 − y1)2. If the x’s are measured, say,

in terms of length, and the y’s are measured in terms of, say, time then the
formula for D has no meaning. The simplest way to avoid this problem is to
scale, or nondimensionalize, the variables before using orthogonal regression.
This scaling plays a central role in what is called a principal component
analysis, which is one of the main tools for data analysis, and this is explained
in Section 9.2.

8.2.2.1 Vertical Distance

The usual reason for data fitting is to obtain a function g(x) that is capable
of giving a representative, or approximate, value of the data as a function
of x. This is a situation where using the vertical distances is appropriate.
To examine how this can be done, we start with the linear model g(x) =
v1 + v2x. Suppose there are three data points, as illustrated in Figure 8.5.
We want to find the values of v1 and v2 that will minimize d1, d2, and d3.
One way this can be done is to use the maximum error, which is

E∞ = max{d1, d2, d3}
= max

i=1,2,3
|g(xi)− yi|

= ||g − y||∞ , (8.7)

where the ∞-norm is defined in Section 3.5, y = (y1, y2, y3)
T is the data

vector, and g = (g(x1), g(x2), g(x3))
T is the corresponding vector of values

of the model function. Other choices are the sum

E1 = d1 + d2 + d3

=

3∑
i=1

|g(xi)− yi|

= ||g − y||1 , (8.8)

and the sum of squares

E2 = d21 + d22 + d23

=

3∑
i=1

[g(xi)− yi]
2

= ||g − y||22 . (8.9)

334 8 Optimization

-4 -2 0 2 4 6

v 2
-a

xi
s

v 2
-a

xi
s

v1-axis v1-axis

-2

0

2

4

6

8

-4 -2 0 2 4 6
-2

0

2

4

6

8

Figure 8.6 Plots of E∞(v1, v2) and E2(v1, v2), both as a surface and as a contour
plot, for the linear least squares function.

These functions have the properties associated with an error function, which
are:

• they satisfy E ≥ 0,
• in the (unlikely) case of when the curve passes through all of the data

points, E = 0,
• they get larger the more g(xi) differs from yi.

An example of a poor choice for an error function is E = d1d2d3. One reason
is that E = 0 if d1 = 0, but d2 or d3 could be huge.

Of the three error functions given above, E2 is the one most often used,
producing what is called least squares. This function has the advantage of
being differentiable if g(xi) is a differentiable function of the vj ’s. This is
illustrated in Figure 8.6 in the case of when g(x) = v1 + v2x. It is evident
that E∞ has edges and corners, while E2 is smooth. This smoothness allows
the minimization problem to be solved using calculus methods, and this will
be demonstrated below. Note, however, that the vj ’s that minimize E2 are
not necessarily the same as those that minimize E1 or E∞. This will be
discussed in more detail in Section 8.3.3.

8.3 Linear Least Squares 335

8.3 Linear Least Squares

The assumption is that the model function g(x) depends linearly on the
parameters to be fitted to the data. This means it can be written as

g(x) = v1φ1(x) + v2φ2(x) + · · ·+ vmφm(x),

where the φj ’s are known, or given, functions. For example, if g(x) = v1+v2x,
then φ1 = 1 and φ2 = x. As before, the data is assumed to be (x1, y1),
(x2, y2), · · · , (xn, yn). In what follows it is assumed there is more data than
parameters, and this means that m < n.

8.3.1 Two Parameters

We begin with the case of when g(x) = v1 + v2x, which means that the
associated error function is

E(v1, v2) =

n∑
i=1

(v1 + v2xi − yi)
2. (8.10)

To find the minimum, we first find the first derivatives, which are

∂E

∂v1
= 2

n∑
i=1

(v1 + v2xi − yi) = 2

(
nv1 + v2

n∑
i=1

xi −
n∑

i=1

yi

)
,

and

∂E

∂v2
= 2

n∑
i=1

(v1 + v2xi − yi)xi = 2

(
v1

n∑
i=1

xi + v2

n∑
i=1

x2
i −

n∑
i=1

xiyi

)
.

Setting these derivatives to zero yields the system of equations

(
n

∑
xi∑

xi

∑
x2
i

)(
v1
v2

)
=

(∑
yi∑
xiyi

)
. (8.11)

This is called the normal equation for the vj ’s. Using the formula for the
inverse matrix in (3.15), we have that

(
v1
v2

)
=

1

n
∑

x2
i − (

∑
xi)2

(∑
x2
i −∑xi

−∑xi n

)(∑
yi∑
xiyi

)
. (8.12)

With this, we have solved the least squares problem when using a linear
model to fit the data.

336 8 Optimization

xi −1 2 0 1

yi 1 −1 2 1

Table 8.1 Data used in linear least squares example.

Example

For the data in Table 8.1, n = 4,
∑

xi = 2,
∑

x2
i = 6,

∑
yi = 3, and∑

xiyi = −2. In this case, (8.12) gives

(
v1

v2

)
=

1

20

(
6 −2

−2 4

)(
3

−2

)

=
1

10

(
11

−7

)
.

The linear fit g(x) = 1
10 (11−7x), as well as the data, is shown in Figure 8.7. �

A couple of mathematical comments are in order before continuing. First,
the solution in (8.12) requires that the denominator be nonzero. It is not
hard to prove that this holds except when all the xi’s are the same (also
recall that we are assuming n > 2). Geometrically this makes sense because
if all of the data points fall on a vertical line, then it is impossible to write
the line as g(x) = v1+ v2x. The second comment concerns whether the point
is a minimum. It is possible to examine the second derivatives to determine
this, but it’s easier just to examine the function in (8.10). It is a quadratic
function of v1 or v2 that opens upwards (i.e., E → ∞ as either v1 → ∞ or
v2 → ∞). Given that the solution is unique then the only possibility is that
the solution is a minimum.

-1 -0.5 0 0.5 1 1.5 2
x-axis

-1

0

1

2

y-
ax

is

Figure 8.7 Linear fit obtained using the least squares formula in (8.12).

8.3 Linear Least Squares 337

The more general two parameter least squares problem involving g(x) =
v1φ1(x) + v2φ2(x) can also be solved easily, and this is considered in
Exercise 8.16.

8.3.2 General Case

The model function is now taken to have the general form

g(x) = v1φ1(x) + v2φ2(x) + · · ·+ vmφm(x), (8.13)

and the error function is

E(v1, v2, · · · , vm) =

n∑
i=1

[g(xi)− yi]
2. (8.14)

It is not hard to show that this can be written in matrix form as

E(v) = ||Av − y||22 (8.15)

where v = (v1, v2, · · · , vm)T , y = (y1, y2, · · · , yn)T , andA is the n×mmatrix

A =

⎛
⎜⎜⎜⎜⎝

φ1(x1) φ2(x1) · · · φm(x1)

φ1(x2) φ2(x2) · · · φm(x2)

...
...

...

φ1(xn) φ2(xn) · · · φm(xn)

⎞
⎟⎟⎟⎟⎠ . (8.16)

There are various ways to find the v that minimizes E, and we will begin
with the most direct method. It is assumed in what follows that the columns
of A are independent, which means that the matrix has rank m.

8.3.2.1 Normal Equation

Using the calculus approach, one simply calculates the first derivatives of E,
and then sets them to zero. After cleaning up the resulting expressions, one
finds that the problem reduces to solving

(ATA)v = ATy. (8.17)

This is the m-dimensional version of the matrix problem in (8.11). As before,
it is called the normal equation for the vj ’s. Because the columns of A are
assumed to be independent, it is possible to prove that the symmetric m×m
matrix ATA is positive definite. This means that the normal equation can

338 8 Optimization

be solved using a Cholesky factorization. If this is done, then for larger values
of m and n, the computationally expensive steps are calculating ATA and
then finding the Cholesky factorization. Altogether this adds up to about
nm2 + 1

3m
3 flops.

Example

In the case of when

g(x) = v1 + v2x+ · · ·+ vmxm−1,

then

A =

⎛
⎜⎜⎜⎜⎝

1 x1 x2
1 · · · xm−1

1

1 x2 x2
2 · · · xm−1

2

...
...

...
...

1 xn x2
n · · · xm−1

n

⎞
⎟⎟⎟⎟⎠ . (8.18)

Although this matrix is not square, it strongly resembles the Vandermonde
matrix we derived in Chapter 5 when taking the direct approach for poly-
nomial interpolation. As you might recall, we found that the Vandermonde
matrix is ill-conditioned when attempting to interpolate with larger degree
polynomials. It should not be a surprise that the square matrix ATA in
(8.17) suffers similar problems for this example. To check on this, the condi-
tion number for the matrix is given in Table 8.2, where the xi’s are picked
randomly from the interval 0 < x < 1. Based on the heuristic given in Sec-
tion 3.6.3, it is likely that a numerical solution of the normal equation is
correct to only about 3 digits when m = 10, and is meaningless when m is
12 or larger. �

m n κ∞(ATA) κ∞(Rm)

4 100 2.84e+04 1.89e+02

6 100 2.51e+07 5.17e+03

8 100 3.12e+10 1.91e+05

10 100 3.79e+13 6.55e+06

12 100 4.92e+16 2.30e+08

14 100 2.56e+18 7.59e+09

Table 8.2 Condition number of matrices that arise when fitting a m − 1 degree
polynomial to data.

8.3 Linear Least Squares 339

The question arises as to whether the ill-conditioned nature of the matrix
in the last example is typical when solving the normal equation. One way to
answer this is to run some numerical experiments and calculate κ∞(ATA)
for random n×m matrices. This is easy to do and you find that if the number
of parameters m is not close to the number of data points n, then ATA is
well-conditioned. However, as m gets close to n, the condition number starts
to increase rapidly with the result that the matrix becomes ill-conditioned. It
is also possible to find, as the last example illustrates, matrices which are ill-
conditioned even though m is not close to n. In those cases when the matrix
is ill-conditioned, or even if it is well-conditioned, the next method can be
used.

8.3.2.2 QR Approach

Although it might not be immediately obvious, it is possible to use the QR
factorization to solve the least square problem. To explain, as shown in Sec-
tion 4.3.2, an invertible matrix can be factored as B = QR, where Q is an
orthogonal matrix, and R is an upper triangular matrix. The procedure used
to find this factorization can be used, without modification, on n×mmatrices,
assuming that the matrix has m linearly independent columns with m ≤ n.
For the matrix A in the least squares problem, this means that it is possible
to factor it as A = QR, where Q is an n× n orthogonal matrix and R is an
n×m matrix of the form

R =

(
Rm

O

)
, (8.19)

where Rm is an upper triangular m × m matrix and O is a (n − m) × m
matrix containing only zeros. Using the useful fact that orthogonal matrices
have the property that ||Qx||2 = ||x||2, a straightforward calculation shows
that (8.15) can be rewritten as

E(v) = ||Rmv − bm||22 + ||bn−m||22,

where bm is the vector coming from the first m rows of QTb and bn−m is
the vector coming from the remaining n−m rows of QTb. There is nothing
we can do about the second term on the right-hand side, but we do have the
ability to minimize the first term. In fact, the minimum occurs when

Rmv = bm. (8.20)

This equation is easy to solve for v since Rm is upper triangular. The con-
dition number of Rm is given in Table 8.2 for the previous example. This
shows that in this case the QR approach produces a better conditioned ma-
trix than when using the normal equation, but it also shows that Rm becomes
ill-conditioned when a larger number of parameters are used. As for work,

340 8 Optimization

for larger values of m and n, the computationally expensive step using this
method is finding the QR factorization, which requires about 2nm2 − 2

3m
3

flops.

8.3.2.3 Parting Comments

There is no question that solving the least squares problem using the normal
equation approach is simpler and easier to code. In terms of speed, based
on the flops, when there is a lot of data compared to the number of fitting
parameters, solving the normal equation should be about twice as fast as
using the QR approach. When m and n are about the same then the two
methods should, in theory, take about the same computing time. However,
it is not really necessary to worry about this for data and parameter sets
that are not particularly large (hundreds rather than millions), because the
actual computing times are small in both cases. Consequently, because the
QR approach has the advantage of producing a better conditioned matrix
problem than when using normal equations, it is often the method of choice.

There are other methods, and one that is useful when the matrix is rank
deficient (i.e., it does not have m linearly independent columns), uses the
SVD factorization. Another approach, which has the additional benefit of
not being limited to linear regression, is to return to the original minimiza-
tion formulation and use descent methods (which are discussed later in the
chapter).

8.3.3 Other Error Functions

The least squares error function in (8.10) was chosen, in part, simply because
it’s possible to differentiate it. Making the choice that is not based on phys-
ical reasoning but on mathematical convenience is not necessarily a good
thing. So, it is worth examining what other error functions might produce.
To explore this, we first state the least squares error function

E2 =
∑

d2i (8.21)

=

n∑
i=1

[g(xi)− yi]
2. (8.22)

An alternative is the true distance, as illustrated in Figure 8.5. Using least
squares, the error function in this case is

8.3 Linear Least Squares 341

-1 -0.5 0 0.5 1 1.5 2
x-axis

-1

0

1

2

3
y-

ax
is

E
D

E
2

Figure 8.8 Linear fit obtained using ED, solid red line, and E2, the dashed black
line.

ED =
∑

D2
i (8.23)

=
1

1 + v21

n∑
i=1

[g(xi)− yi]
2. (8.24)

In the case of when g(x) = v1 + v2x, finding the values of v1 and v2 that
minimizes ED reduces to solving a cubic equation. Although it is possible
to find a formula for the solution, it is easier to just find v1 and v2 numeri-
cally. In the example below, the values are calculated using the Nelder-Mead
algorithm, which is described in Section 8.8.

Example

Earlier we used the data in Table 8.1 to find v1 and v2 when using the error
function E2. Using the same data, but using the error function ED, one finds
that v1 = 1.4895 and v2 = −0.8298. The resulting linear fit to the data is
shown in Figure 8.8. For comparison, the earlier determined line using E2

is also shown. The fact that the lines are different is no surprise. �

Two other error functions mentioned earlier are

E1 =
∑

di

=

n∑
i=1

|g(xi)− yi|,

and
E∞ = max

i=1,··· ,n
|g(xi)− yi|.

As stated earlier, both of these have edges, so it is not possible to use the
calculus solution for finding the minimum. However, there are derivative free

342 8 Optimization

0 0.2 0.4 0.6 0.8 1

y-
ax

is

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

y-
ax

is

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

y-
ax

is

0

1

2

3

4

5
E

1
: v

1
 = 1.2839 v

2
 = 2.3794

x-axis
0 0.2 0.4 0.6 0.8 1

y-
ax

is

0

1

2

3

4

5
E∞: v

1
 = 0.89719 v

2
 = 3.2042

E
D
: v

1
 = 0.37295 v

2
 = 4.1128

E
2
: v

1
 = 1.0415 v

2
 = 2.7757

Figure 8.9 Linear fits obtained using different error functions on the same data set.

minimization methods, and one is described in Section 8.8. It is known as
the Nelder-Mead algorithm, and this is used in the example below for all the
error functions except E2.

Example

An example of the linear fit obtained from each of these error functions is
shown in Figure 8.9. It is difficult to make sweeping generalizations from this

8.3 Linear Least Squares 343

x-axis
-4 -2 0 2 4

y-
ax

is

-4

-2

0

2

4

Figure 8.10 Data to be fitted by a circle, and the resulting circle obtained using
least squares.

one comparison, but the values obtained using E1 and E2 are fairly close.
They also differ from the values obtained using E∞, even though all three of
them are using vertical distances in some way. The one using true distances,
ED, produces values even more different than E∞. One might be tempted
to declare a winner, claiming one is better than the others. However, this
requires a definition or criterion for winning, and in this sense they all win.
Namely, each is based on a different definition of error, and they minimize
their particular error function. �

Example

As a third example, consider the data shown in Figure 8.10. The objective
is to find the circle x2 + y2 = r2 that best fits this data, with the parameter
in this case being the radius r. The first step is to specify the error function.
This is a situation where using the vertical distance runs into some serious
complications. This is because for any data point to the right (so, xi >r) or
left (so, xi < −r) of the circle, the vertical distance is not defined. Conse-
quently, it is more appropriate to use the radial (true) distance between the
curve and the data. So, given a data point (xi, yi), the corresponding radial
coordinates are (ri, θi), where r

2
i = x2

i + y2i . The least squares error based on
the radial distance is

E(r) =

n∑
i=1

(r − ri)
2. (8.25)

344 8 Optimization

Taking the derivative of this with respect to r, setting the result to zero, and
solving yields the solution

r =
1

n

n∑
i=1

ri. (8.26)

This answer is one that you might have guested before undertaking the re-
gression analysis because it states that the circle that best fits the data is
the one whose radius is the average of the radii from the data. A comparison
between the resulting circle and the data is shown in Figure 8.10. �

8.4 Nonlinear Regression

To illustrate some of the complications that arise with nonlinear regression,
we will consider the data shown in Figure 8.11, which is from Smith et al.
[2010]. Based on what they refer to as a model for simple hyperbolic binding,
they assumed the data can be fit with the function

g(x) =
v1x

v2 + x
. (8.27)

This is known as the Michaelis-Menten model function, and is used exten-
sively in biochemistry. Using a least squares error function, then

E(v1, v2) =

n∑
i=1

(
v1xi

v2 + xi
− yi

)2

. (8.28)

Taking the first partials of E, and setting them to zero, we get the following
system of equations to solve:

n∑
i=1

(
v1xi

v2 + xi
− yi

)
xi

v2 + xi
= 0,

n∑
i=1

(
v1xi

v2 + xi
− yi

)
v1xi

(v2 + xi)2
= 0.

In other words, we have to solve two nonlinear equations for v1 and v2. One
possibility is to use Newton’s method, see Section 3.10. However, a more
direct approach is considered next.

8.4 Nonlinear Regression 345

8.4.1 Transforming to Linear Regression

Some nonlinear regression problems can be transformed into linear ones,
although this usually only works when the model function is not too compli-
cated. To illustrate, the Michaelis-Menten function, given in (8.27),

y =
v1x

v2 + x
,

can be written as

1

y
=

v2 + x

v1x

=
v2
v1

1

x
+

1

v1
.

Setting Y = 1/y and X = 1/x, then the above model function takes the form

G(X) = V1 + V2X . (8.29)

where V1 = 1/v1 and V2 = v2/v1. If (xi, yi) is one of the original data points,
then the corresponding point for the transformed problem is (Xi, Yi) =
(1/xi, 1/yi).

Using least squares, then the error function is

E(V1, V2) =

n∑
i=1

(V1 + V2Xi − Yi)
2. (8.30)

According to (8.12), the resulting solution is

(
V1

V2

)
=

1

n
∑

X2
i − (

∑
Xi)2

(∑
X2

i −∑Xi

−∑Xi n

)(∑
Yi∑

XiYi

)
. (8.31)

Figure 8.11 Data from Smith et al. [2010].

346 8 Optimization

0 1 2 3 4 5 6 7 8 9 10
x-axis

0

3

6

9

12
y-

ax
is

Figure 8.12 Fit of data from Smith et al. [2010] when using the error function
in (8.30).

The last step is to transform back, using the formulas v1 = 1/V1 and v2 =
V2/V1. With this, we have been able to find a solution without the need for
Newton’s method.

Although the solution in (8.31) is often used, it has a rather serious flaw. To
illustrate what this is, if you use the data in Figure 8.11, then the curve shown
in Figure 8.12 is obtained. The poor fit occurs because, for this particular
model function,

g(xi)− yi =
G(Xi)− Yi

YiG(Xi)
.

So, having G(Xi) − Yi close to zero does not necessarily mean g(xi) − yi is
close to zero, and the reason is the denominator. As an example, the last data
point in Figure 8.12 is (x6, y6) = (10, 11.1), which results in Y6G(X6) ≈ 0.008
and g(x6)−y6 ≈ 123[G(X6)−Y6]. This magnification of the error is the cause
for the poor fit in Figure 8.12.

There is a simple fix, and it is to use the relative error ER, which is given as

ER(V1, V2) =

n∑
i=1

(
V1 + V2Xi − Yi

Yi

)2

. (8.32)

Using the solution for the minimum given in Exercise 8.15, the resulting fit
is shown in Figure 8.13. As is clear, the fit is definitely better than what was
obtained earlier.

The transformation used above needs more discussion. First, it requires
that the change of variables is defined for the data under consideration, which
means that the xi’s and yi’s are nonzero. Second, the connection between the
original and transformed minimization problems is tenuous. To illustrate, the
linear least squares function (8.32), or the one in (8.32), is not the transformed
version of the nonlinear least squares function in (8.28). The transformation
method is based, in part, on the assumption that all three qualify as error
functions for the data (transformed or not), and should produce v1 and v2
values that are close. The above example shows that there is merit to this

8.5 Descent Methods: Introduction 347

0 1 2 3 4 5 6 7 8 9 10
x-axis

0

3

6

9

12
y-

ax
is

Figure 8.13 Fit of data from Smith et al. [2010] when using the error function in
(8.32).

assumption, but it also shows that the nonlinear nature of the transformation
can magnify the differences in these functions. What one could do is take the
easily computable solutions using (8.32) and (8.32), and determine which
produces the smallest value of (8.28). Or, for those set on minimizing (8.28),
to use one of the solutions as the starting point when using Newton’s method
to minimize (8.28).

8.5 Descent Methods: Introduction

We are going to return to the original formulation of the problem, which is the
following: given a function F (v), find the point vm ∈ R

n where F achieves
its minimum value. As was done for the regression problem, one possible
approach is to use the calculus solution, and this means solving ∇F = 0. We
will, however, do something different, and to illustrate this situation, consider
the linear least squares example in Figure 8.7. The values of the error function
E2(v1, v2) are shown in Figure 8.14, both as a surface and as a contour plot.
The basic idea of what we are going to do is easy to explain geometrically. If
you were standing somewhere on this surface and wanted to go downhill, you
would pick a direction of descent and then start walking in that direction.
This simple idea can be used to solve the minimization problem, but two
recurring decisions must be made: which particular downhill direction to use
and just how far should you walk in this direction before picking another
direction.

The basic algorithm consists of picking a starting position v1 and then
constructing a sequence v2, v3, v4, . . . that (hopefully) converges to vm.
In doing this it is required that the value of F decreases with each step.
To get this to happen, suppose we are located at vk. We first need to identify
a direction of descent dk and we then need to “walk” a distance αk in that
direction. In mathematical terms we have the following formula:

348 8 Optimization

43
40

-2

50

60

70

E
2

80

90

20
v1

v2
2 4

-1 0 1 2 3
1

2

3

4

5

v1-axis

v 2
-a

xi
s

Figure 8.14 Plot of E2(v1, v2), both as a surface and as a contour plot, for the
linear least squares function for data similar to what was used for Figure 8.7.

vk+1 = vk + αkdk, for k = 1, 2, 3, (8.33)

Assuming, for the moment, that we know dk then the question arises as to
how far we should walk in this direction. In other words, what is the value
of αk? The ideal solution is that αk is the value of α that minimizes

8.5 Descent Methods: Introduction 349

q(α) = F (vk + αdk). (8.34)

In optimization, determining the value of αk is known as the line search
problem. One possible way to solve this involves the calculus solution, which
means that we solve q′(α) = 0. We will certainly do this but we will also
experiment with other possibilities. For example, the only requirement is
that F (vk+1) < F (vk). For at least one of the methods we will consider we
will simply guess values for αk. This might not be optimum but it avoids the
potentially time-consuming problem of finding a minima for q(α).

8.5.1 Descent Directions

Almost everyone who first uses a descent method picks the direction of steep-
est descent for dk. In a way this is the most natural choice because water
flowing down a hillside will try to follow a steepest descent path (however, it
has a little problem with inertia that messes this up).

Recall from calculus that given a function y = F (v), if ∇F (v) �= 0, then
the direction of steepest descent is −∇F (v). Based on this, if one picks the
direction of steepest descent at vk, then

dk = −∇F (vk). (8.35)

This formula is used often in the pages that follow, and with it come some im-
plicit assumptions. First, the function F (v) is assumed to be C1(Rn), which
means that its first partial derivatives are defined and continuous everywhere.
Second, whenever using this to determine a direction of descent it is assumed
that ∇F (vk) �= 0.

We need a simple test to determine if any given d is a descent direction.
Recall that the two vectors ±∇F (v) are normal, or perpendicular, to the
level curves (or surfaces) of F (v). Our descent directions must be on the
same side as −∇F (v), and this is illustrated in Figure 8.15. Said another
way, the angle θ between d and −∇F (v) must be less than 90o. According
to the law of cosines, ||d|| · ||∇F (v)|| cos θ = −d ·∇F (v). From this it follows
that the condition for d to be a descent direction at v is

d · ∇F (v) < 0. (8.36)

It is difficult to say much more about the general form of the descent method
because the choices one makes depend on the particular function being min-
imized. So, we consider an important special case, which is the problem of
solving a matrix equation.

350 8 Optimization

Figure 8.15 Angle θ between a direction of descent d and the direction of steepest
descent.

8.6 Solving Linear Systems

It is easy to rewrite a linear system Av = b as a minimization problem. For
example, as mentioned earlier, one can take F (v) = ||Av − b||22. However,
for certain matrices there is another possibility. To explain, we start with the
n = 1 case, where the equation is simply av = b. We want to find a function
F (v) that has a minimum exactly when av = b. Recall that at a minimum
of F (v) one solves F ′(v) = 0. If av − b = 0 corresponds to the equation
F ′(v) = 0 then we need F ′(v) = av−b. Integrating gives us F (v) = 1

2av
2−bv

(the additive constant is not needed). For this to correspond to a minimum
problem the quadratic must open upward, which means we have the positivity
requirement a > 0.

To see what happens when there are more variables, let n = 2, so the
equations have the form

a11v1 + a12v2 = b1,

a21v1 + a22v2 = b2.

We want to find a smooth function F (v) that has a minimum exactly when
Av = b. To achieve this we require that F satisfies

∂F

∂v1
= a11v1 + a12v2 − b1, (8.37)

∂F

∂v2
= a21v1 + a22v2 − b2. (8.38)

For F to be smooth we need

∂2F

∂v1∂v2
=

∂2F

∂v2∂v1
,

and so from (8.37), (8.38) we conclude a12 = a21. In other words, our con-
struction requires that the matrixA be symmetric. Assuming this holds, then
integrating (8.37) and (8.38) it follows that

8.6 Solving Linear Systems 351

F (v) =
1

2
vTAv − b · v. (8.39)

To guarantee that this has a minimum there is a positivity requirement on
A, namely, it must be positive definite (as well as symmetric). Although this
result has been derived in the particular case of n = 2, the quadratic form in
(8.39) is what is obtained for general n and it is the function used in what
follows. To summarize this discussion, we have the following result:

Theorem 8.1. If F (v) = 1
2v

TAv−b ·v, where A is symmetric and positive
definite, then the minimum of F occurs at the same v that is the solution of
Av = b.

8.6.1 Basic Descent Algorithm for Av = b

To find the v that minimizes F (v) in (8.39), the general form for the iteration
given in (8.33) applies. Namely, given a descent direction dk at vk, then
vk+1 = vk + αkdk. For αk we will use the value of α that minimizes q(α) =
F (vk+αdk). Plugging in the formula for F from (8.39), taking the derivative
with respect to α, and then setting the result to zero produces the solution

αk =
dk · rk
dk · qk

, (8.40)

where
qk = Adk, (8.41)

and
rk = b−Avk. (8.42)

The vector rk is the residual and this was introduced in Section 3.6. It is also
related to the direction of steepest descent. To explain, note that from (8.39)

−∇F (v) = −Av + b. (8.43)

Therefore, the residual rk at vk is the direction of steepest descent at vk.
This means, from (8.36), that for dk to be a direction of descent it must
satisfy

dk · rk > 0. (8.44)

Another observation worth mentioning is that, given r1 = b−Av1, then for
the other values of k,

rk = b−Avk

= b−A(vk−1 + αk−1dk−1)

= rk−1 − αk−1qk−1. (8.45)

352 8 Optimization

This makes computing the residual a bit easier as it avoids a matrix multi-
plication.

To summarize the above discussion, the descent method used to solve
Av = b, when A is symmetric and positive definite, is: after picking v1, then

vk+1 = vk + αkdk, for k = 1, 2, 3, . . . , (8.46)

where dk is a direction of descent at vk and

αk =
dk · rk
dk · qk

. (8.47)

In the above formula, qk is given in (8.41) and the residual rk is calculated
using (8.45). The only thing left to do is specify the direction of descent.

8.6.2 Method of Steepest Descents for Av = b

We are going to consider what happens when we use the steepest descent
direction to solve the minimization problem for Av = b. In other words, we
will take dk = rk in (8.46) and (8.47). Not surprisingly, this gives rise to what
is known as the method of steepest descents (SDM). The resulting algorithm
is: after picking v1, then

vk+1 = vk + αkrk, for k = 1, 2, 3, . . . , (8.48)

where rk = b−Avk,

αk =
rk · rk
rk · qk

, (8.49)

and qk = Ark.
The vectors vk+1 computed using (8.46) continue getting closer to the

solution vm, and we need a way to determine when we are close enough.
One possibility is to use the iteration error (see Section 1.5), which means
that we specify an error tolerance tol and then stop computing when
||vk+1 − vk|| ≤ tol. Another possibility is to use the residual rk given in
(8.42). If we are fortunate enough to have rk = 0, then the problem is solved
and vm = vk. Since ‖rk‖ = 0 only when vk is the solution, having ‖rk‖ small
can be used as a stopping condition for the iteration. This works as long as
A is not ill-conditioned, and we will return to this topic later.

Because the only significant operations involved with SDM are vector and
matrix multiplication it is very easy to code. Moreover, it is capable of taking
maximum advantage of the sparseness of A. For example, to calculate qk =
Adk we need to store, and use, only the nonzero entries in A.

How effective is SDM in solving matrix equations? Let’s find out by trying
a couple of examples.

8.6 Solving Linear Systems 353

Examples

In the two examples below the stopping condition is ‖vk+1 − vk‖∞ < 10−4.
Also, once the SDM has stopped, then the error ‖vm − vk‖∞, which is the
difference between the exact and SDM solutions, is computed to check to see
how well the method has worked.

1.

(
3 −2

−2 4

)(
v1

v2

)
=

(
1

−1

)

First note that the matrix is symmetric and, from Theorem 3.4, positive
definite. Taking v1 = (1, 2)T , to determine v2, note that

r1 =

(
1

−1

)
−
(

3 −2

−2 4

)(
1

2

)
=

(
2

−7

)
,

q1 =

(
3 −2

−2 4

)(
2

−7

)
=

(
20

−32

)

and

α1 =
r1 · r1
r1 · q1

=
53

264
.

With this,

v2 = v1 + α1r1 =

(
185/132

157/264

)
≈
(
1.4

0.6

)
.

The remaining vk’s are computed using MATLAB, and the resulting steps
produced are shown in the contour plot on the left in Figure 8.16. There
are two important observations to be made here. First, each path (line)
is orthogonal to the contour it starts from. This is expected to given that

-0.5 1 2.5
-0.5

1

2.5

v1-axisv1-axis

v 2-
ax

is

0 20 40 60 80
-80

-60

-40

-20

0

Figure 8.16 Contours of F (v1, v2) and the first few steps taken by the method of
steepest descent in the two example problems.

354 8 Optimization

this is the method of steepest descents. The second observation is that the
paths form right angles to each other. For example, the line from v1 to v2

is perpendicular to the one from v2 to v3. As will be explained below, this
is not a good thing and we will modify the method to prevent this from
happening. Finally, for this example, the method takes 14 iterations and
the resulting error is 4× 10−5. For later reference, the condition number
for this matrix is κ∞ ≈ 4.5. �

2.

(
5 4.99

4.99 5

)(
v1

v2

)
=

(
1

−1

)

Taking v1 = (1, 1)T , the first few steps produced with SDM are shown
in the contour plot on the right in Figure 8.16. The contours are so elon-
gated in this example that the elliptical curves around the minimum are
not evident (as they are in the contour plot to the left). It is found that
the method takes a whopping 200 iteration steps and the resulting error
is a mediocre 9× 10−3. For later reference, the condition number for this
matrix is κ∞ ≈ 1000. �

In reviewing the results from the above examples one might wonder
why anyone would ever consider using the SDM because the method can
be painfully slow to converge. This is not because the matrices are ill-
conditioned. Although the condition number for the second matrix is not
particularly small, it is not so large that we would anticipate a problem with
round-off error. The difficulty the SDM has arises because of the alternating
perpendicular paths it uses to locate the minimum.

8.6.3 Conjugate Gradient Method for Av = b

To improve the convergence of the SDM we need to modify the direction of
descent. We will still include the direction of steepest decent, but we will
add in a term to adjust the direction slightly to prevent what happens in
Figure 8.16. Our choice will be to start off with d1 = r1 but from then
on take

dk = rk + βk−1dk−1, for k = 2, 3, (8.50)

So, the question is, how to pick βk−1? The choice is based on the observation
that in the SDM the direction of steepest descent at vk is orthogonal to the
steepest descent direction at vk−1; that is, rk · rk−1 = 0. This is evident in
Figure 8.16 because of the right angle the path makes at each vk. In this
two dimensional setting, because there are only two nonzero perpendicular
directions, then the SDM keeps repeating its descent directions. In particular,

8.6 Solving Linear Systems 355

Pick: v1

Let: r1 = b−Av1

d1 = r1

Loop For k = 1, 2, 3, · · · , n
qk = Adk

αk =
rk · rk
dk · qk

vk+1 = vk + αkdk

rk+1 = rk − αkqk

βk =
rk+1 · rk+1

rk · rk
dk+1 = rk+1 + βkdk

End

Table 8.3 Outline of the conjugate gradient method (CGM) used to solve the linear
system Av = b, where A is an n× n symmetric positive definite matrix.

the direction it uses at v1 is the same one it uses at v3, v5, v7, etc. This is the
primary culprit in slowing down the SDM and we will use βk−1 to stop this.

The way we will prevent rk from being in the same direction as rk−2 is
to select βk−1 so that rk is actually orthogonal to rk−2. To determine how
this can be accomplished, consider the first three points produced by the
algorithm: v1, v2, and v3. The residuals at these points are: r1, r2 = r1−α1q1,
and r3 = r2 − α2q2, where qk is given in (8.41) and αk in (8.40). Given that
r1 ·r2 = 0 then to have r1 ·r3 = 0, we require that r1 ·q2 = 0. Substituting in
d2 = r2 + β1d1 into the formula for q2, and then simplifying one finds that

β1 =
r2 · r2
r1 · r1 .

Continuing in this way yields the following formula:

βk =
rk+1 · rk+1

rk · rk , for k = 1, 2, 3, (8.51)

Another outcome of the above analysis is that dk · rk = rr · rk. The resulting
algorithm is given in Table 8.3.

It is assumed here that rk · rk �= 0, but if this were not the case we would
have solved the equation exactly at the previous step and there would be no
need to calculate βk. This choice of βk, along with the descent direction in
(8.50), produces what is known as the conjugate gradient method (CGM),
and the steps involved are summarized in Table 8.3. In terms of operations

356 8 Optimization

k 1 2 3 4 · · ·
Position v1 v2 v3 v4 · · ·
Residual r1 r2 r3 r4 · · ·
Descent d1 d2 d3 d4 · · ·

Table 8.4 The three important vectors used in the CGM algorithm.

per iteration step it is not much more than SDM. To calculate βk and then
construct dk adds about 4n flops per step.

The CGM has a remarkable property that has profound consequences for
how well it works. At each step, three vectors are computed that are of
importance, and these are the position (vk+1), the residual (rk+1), and the
direction of descent (dk+1). These are listed in Table 8.4. As explained earlier,
the descent direction d3 is selected so that the residual r3 is orthogonal to
the previous residuals, r1 and r2. Similarly, d4 is selected so r4 is orthogonal
to r1, r2, and r3. The result is that the residuals r1, r2, r3, . . . are mutually
orthogonal, which means that ri · rj = 0, ∀i �= j. In n dimensions, the only
way for n + 1 vectors to be mutually orthogonal is that one of them is the
zero vector. If a residual is zero, then we have found the exact solution.
Therefore, the conjugate gradient method produces the exact solution in no
more than n + 1 steps! This is known as the finite termination property.
In contrast, iterative methods such as the SDM, Newton’s method, or the
bisection method, are not guaranteed to stop and only approach the solution
in the limit (if they converge at all). This discussion is summarized in the
following theorem:

Theorem 8.2. The conjugate gradient method, when used to solve Ax = b,
where A is an n × n symmetric positive definite matrix, will find the exact
solution in m steps, where m ≤ n+ 1.

The proof of this can be found in Nocedal and Wright [2006].

Examples

1.

(
3 −2

−2 4

)(
v1

v2

)
=

(
1

−1

)

Taking v1 = (1, 2)T , all of the steps produced with CGM are shown in
the contour plot on the left in Figure 8.17. It is found that the method
calculates v2 and v3, at which point the error is 5.6× 10−17 and the algo-
rithm stops. Note that this is as accurate as can be expected using double
precision. It should also be noted that v1 and v2 are the same as for SDM
shown in Figure 8.16. This is expected because CGM uses the steepest

8.6 Solving Linear Systems 357

descent direction at the first step, so if the SDM and CGM are started at
the same point then they will calculate the same value for v2. However,
unlike what is obtained using the SDM, the descent direction at v2 used
by the CGM is not perpendicular to the level curve. �

2.

(
5 4.99

4.99 5

)(
v1

v2

)
=

(
1

−1

)

Taking v1 = (1, 1)T , all of the steps produced with CGM are shown in
the contour plot on the right in Figure 8.17. It is found that the method
stops after calculating v3, with the resulting error being 7× 10−12. �

In comparing the search paths with Figures 8.16 and 8.17, the contrast
between SDM and CGM is striking. As advertised, the CGM took three
steps to solve the 2× 2 matrix equations, and in doing so it showed itself to
be far superior to the SDM. However, the reality is that round-off generally
prevents CGM from producing the exact result. This is not unexpected, nor
a criticism of the method, because as with all floating-point computations we
can only get as close as round-off permits. The issue with CGM is that it is
built on the assumption of exact orthogonality of the residuals at each step.
With round-off, however, this will not happen. For well-conditioned matrices
this is not an issue, and the above examples demonstrate this fact. However,
if the condition number of the matrix gets too large then it is an issue and
CGM will lose its finite termination property. The usual fix for this is to use
a preconditioner, and what this entails is described in Section 3.11.

-0.5 1 2.5
-0.5

1

2.5

0 50 100

-100

-80

-60

-40

-20

0

v1-axis v1-axis

v 2-
ax

is

Figure 8.17 Contours of F (v1, v2) and the paths taken by the conjugate gradient
method in the two example problems.

358 8 Optimization

Figure 8.18 The x’s designate the positions of the nonzero entries in the symmetric
positive definite matrix used to test the convergence of the CGM.

8.6.3.1 Error and Rate of Convergence of CGM

One of the more important applications that produces large positive defi-
nite matrix equations involves numerically solving Laplace’s equation. So,
to investigate the effectiveness of the CGM for larger systems we will solve
Av = b, where A is a matrix similar to those obtained for Laplace’s equa-
tion on a rectangular domain. The matrix is illustrated schematically in
Figure 8.18. It is symmetric and contains zeros everywhere except along 5
diagonals. In this example, the main diagonal entries are aii = a and all
the other nonzero entries are −1. Specifically, the super-diagonal entries are
ai,i+1 = −1, the upper-most diagonal, which is m places to the right of the
diagonal, are ai,i+m = −1 and the nonzero entries below the diagonal can be
determined from the symmetry of A. Note that according to Theorem 3.4,
in Section 3.7, this matrix is positive definite if a > 4.

To check on the accuracy of CGM we need to know the exact solution vm.
This will be done by specifying vm and then setting b = Avm. This way
we can observe the accuracy, and rate of convergence, of the CGM as it
progresses. Also, there are various ways to measure error, and for this example
we will consider the following:

Error: Ek = ‖vk − vm‖,
Iteration Error: Ik = ‖vk − vk−1‖,
Residual Error: Rk = ‖rk‖.

The reason for considering Ik and Rk is that we would like to have some idea
of whether Ik or Rk can be used as a reasonable substitute for Ek, and then
using one of these quantities in the stopping condition in the code.

The results when m = 102 and n = 104 are shown in Figure 8.19. It shows
that for this example the residual and iteration errors are effectively equiv-
alent in their estimation of Ek. Except at the start, both underestimate the

8.6 Solving Linear Systems 359

error and neither decreases monotonically. Another observation is that there
are two stages in the convergence. For the first hundred steps, or so, the error
reduction is modest. In fact, it is hard to tell if the error Ek decreases at all
at the beginning. Shortly after that things change, and CGM converges rel-
atively quickly. Where exactly this switch occurs depends on the eigenvalues
of the matrix, and for most matrices this information is difficult to obtain.
Those interested in how the rate of convergence depends on the eigenvalues
should consult Nocedal and Wright [2006].

Another important point to make about Figure 8.19 concerns the number
of iterations. According to Theorem 8.2, it could take up to n + 1 steps for
the CGM to find the solution. Even so, the CGM has produced a reason-
ably accurate solution of the matrix equation in significantly fewer than n
iterations.

To conclude, we consider the question of how the CGM compares with a
direct solver for this example when n is large. An example of a direct solver is
the Cholesky factorization (see Section 3.7.1). It is possible to take advantage
of the structure of the matrix and use what is known as a band Cholesky
factorization. For this example, the bandwidth for A is m. Assuming m � n,
then solving the problem using a band Cholesky factorization requires about
nm(m + 7) flops [Golub and Van Loan, 2013]. Since m = 102 and n = 104,
the flop count is about 108. For the CGM, in this example, calculating vk+1

takes approximately 19n flops. This means the CGM requires fewer flops if the
solution can be found using fewer that about 520 iteration steps. According
to Figure 8.19, if you are satisfied with an error of 10−4 or 10−8, then the
CGM takes fewer flops that band Cholesky, but if you want an error on the
order of machine ε then band Cholesky looks to require fewer flops. Finally,
in terms of memory, CGM requires storage of only the nonzero entries of A
along with five n-vectors. Direct solvers cannot do better than this.

100 101 102 103

Iteration Steps

10-12

10-8

10-4

100

E
rr

o
r

Error
Iteration Error
Residual

Figure 8.19 Error obtained at each iteration step of CGM to solve a equation in-
volving the matrix illustrated in Figure 8.18. In this calculation, a = 4.0001, m = 102,
and n = 104.

360 8 Optimization

8.7 Descent Methods: General Nonlinear Problem

We now take up the problem of minimizing a general nonlinear function, and
not necessarily a quadratic form as considered earlier. To be specific, we are
going to consider how to numerically find a point vm ∈ R

n at which a given
function F (v) achieves a local minimum value. We are going to be using the
gradient of F to determine descent directions, and so it is assumed that the
function is smooth enough that this is possible.

The basic descent algorithm is: after picking a starting position v1 then

vk+1 = vk + αkdk, for k = 1, 2, 3, (8.52)

The complication now is how to pick directions of descent dk and how to
solve the line search problem to determine αk.

8.7.1 Descent Direction

The vector dk is a direction of descent at vk. This means that it satisfies (see
Section 8.5.1)

dk · gk < 0,

where gk is the gradient vector at vk and it is defined as

g(v) = ∇F (v).

As for possible descent directions, we have our two earlier favorites.

i) Steepest Descent Choice: dk = −gk

ii) Conjugate Gradient Choice: dk = −gk + βk−1dk−1, where β0 = 0 and
otherwise

βk =
gk+1 · gk+1

gk · gk
. (8.53)

Even though this choice for βk corresponds exactly to what is given in the
CGM algorithm, in nonlinear optimization it is known as the Fletcher-
Reeves method.

Both of the above choices come directly from the case of when F is a
quadratic form. There have been numerous others proposed, attempting to
account for the non-quadratic nature of a general nonlinear function. One of
particular note is

βk =
gk+1 · (gk+1 − gk)

gk · gk
, (8.54)

8.7 Descent Methods: General Nonlinear Problem 361

which gives rise to what is known as the Polak-Ribière method. In the case of
when F is the quadratic form given in (8.39), gk+1 · gk = 0, so this formula
reduces to the earlier choice. It is often stated that numerical testing shows
(8.54) to be a better choice than using (8.53), and so it will be used in the
examples to follow.

There are certainly other possibilities. For example, if B is a symmetric
and positive definite matrix then one can take

dk = −Bgk.

Note that the steepest descent method is obtained if B = I. Another possi-
bility is to take B−1 to be the Hessian of F at vk, which produces Newton’s
method for finding the minimum. To explain, the calculus solution for find-
ing the minimum is to solve ∇F = 0. As shown in Section 3.10, if Newton’s
method is used to solve this then you need to calculate the Jacobian of ∇F ,
and this is called the Hessian of F . For this to qualify for a descent method
it is required that the Hessian be positive definite. Also, the matrix B in this
case depends on vk, which means the LU factorization, or whatever method
is used to solve the matrix equation, must be redone at each iteration step.

8.7.2 Line Search Problem

Determining the value of αk is known as the line search problem. The basic
objective is to find a value of α that reduces the value of

q(α) = F (vk + αdk).

It is usually not worthwhile to calculate an accurate value of α that minimizes
q(α). This is because this is only one step in the iteration process, and will be
mostly forgotten in the later iteration steps. What is needed is to find a value
for αk that reduces the function enough so the decent method continues to
make good progress towards the solution.

With this in mind, most of the methods that are used start by sampling,
which means that they have a method for picking a small number α’s at
which they evaluate q(α). They then use this information to determine αk.
How well this works depends on how clever they are in picking the α’s.

To illustrate, we consider what is currently one of the “preferred” methods.
The first step is to determine the line tangent to q(α) at α = 0, and this is

q(α) ≈ q(0) + α q′(0)
= Fk +mkα ,

where mk = gk · dk is the slope of the line and Fk = F (vk). Also note that
the slope is negative because dk is a descent direction. This tangent line,
which is a linear function of α, is shown in Figure 8.20. A second line is also
shown, and it is given as

362 8 Optimization

0

Figure 8.20 The lower dashed line is tangent to q(α) at α = 0, and the upper
dashed line is Q(α), which is given in (8.55). The goal of Armijo’s method is to find
a value of α that is close to α.

Q(α) = Fk + γ mkα, (8.55)

where 0 < γ < 1 is a fixed number. So, Q is obtained from the tangent line,
but it has a slope γ mk that is not as steep. A consequence of this is that
near α = 0 the curve q(α) is above the tangent line but below Q(α). As α
increases, q(α) will eventually start to increase and intersect Q(α). Letting
α denote the value of α where this occurs, the algorithm to be described
attempts to find a value of α that is closer to α than to α = 0. It does this by
simply guessing a value a1 for what α might be. We want a1 big enough that
we keep making progress towards the minimum. However, once we get close
to the minimum, a large value of a1 can undo a lot of the progress we have
made. The test used to decide if a1 is too big is to check if q(a1) > Q(a1). If so
then a smaller value is tried, and the one used is a2 = τa1, where 0 < τ < 1.
This is continued until one finds that q(ai) ≤ Q(ai), and this is the value
used as the approximate solution of the line search problem.

The procedure described above is known as Armijo’s method, and it con-
sists of the following steps:

Step 0: Pick γ that satisfies 0 < γ < 1 (e.g., γ = 1
100),

and pick τ that satisfies 0 < τ < 1 (e.g., τ = 1
2).

Step 1: Pick a1 that satisfies 0 < a1 (e.g., a1 = 1)

Step 2: If F (vk + aidk) < Fk + ai γ gk · dk then stop,

otherwise let ai+1 = τai and repeat Step 2.

At termination, one takes αk = ai.
To provide some insight into the parameters used here, note that if γ is

close to zero then Q(α) is close to being horizontal. In contrast, if γ is chosen
close to one then Q(α) gets closer to the tangent line shown in Figure 8.20.
Because the goal is to try to make sufficient progress in the descent direction,
the values usually suggested for γ are small, typically satisfying 10−3 ≤ γ ≤
10−1. The value of τ determines how fast one reduces the value of ai. Again,

8.7 Descent Methods: General Nonlinear Problem 363

the goal is to not end up with a point near zero, and so the suggested values
for τ usually satisfy 1

2 ≤ τ ≤ 3
4 . Finally, a1 is simply how far in the descent

direction one starts the process.
One of its distinctive features of Armijo’s method is that it uses a back-

tracking sampling method, which means that it starts with the farthest point,
determined by a1, and then tries points that get progressively closer to α = 0.
This is done to try to maximize the step size in this particular direction. As
a final comment, in the description of how an approximate solution of the
line search problem is obtained, the issue of not wanting ai either too big or
too small came up (what you might call the Goldilocks problem). There is a
more mathematical formulation of these requirements, and they are based on
what are known as the Wolfe conditions. Those who are interested in learning
more about this should consult Nocedal and Wright [2006].

8.7.3 Examples

Example 1: Consider the function

F (x, y) = (x− y)4 + 8xy − x+ y + 3. (8.56)

This is plotted in Figure 8.21, and it is evident that there are two local
minimum points and a saddle point in-between them. We will try both the
SDM and the CGM, using Polak-Ribière, on this problem. The SDM results
are also shown in the figure, using two different starting points. The CGM
results are shown as well, using the same two starting points. Note that
the local minimum one finds depends on the location of the starting point,
and the associated direction of steepest descent. Also, the difference between
the SDM and CGM is most evident in the path on the right, which starts
at (x, y) = (1, 0.8). By construction the SDM selects directions that are
perpendicular to the level contour it is located at, and this is seen clearly
for the first and second point. In contrast, the CGM only does this at the
first point but not at the second point. Finally, the Polak-Ribière method
takes 6 iteration steps for the left path, while if you were to use the Fletcher-
Reeves choice the number is 16 (a similar improvement also occurs for the
right path). �

It is worth commenting on SDM and CGM and the contours in Figure 8.21.
For both methods, the first step is in the direction of the steepest descent. By
following that direction it is possible to predict which minimum the method
will find. The prediction is not certain because it is possible that the sam-
pling in the line search will cause the method to jump over to the other
minimum point. However, this did not happen in the four examples shown
in Figure 8.21.

364 8 Optimization

10.5
x-axis

0-0.5-1-1
0

y-axis

0

2

4

12

10

8

6

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

-0.5

0

0.5

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

-0.5

0

0.5

1

Figure 8.21 Top: Function given in (8.56). Middle: Decent paths, for two different
starting points, obtained using SDM. Bottom: Decent paths, for two different starting
points, obtained using Polak-Ribière version of the CGM.

8.7 Descent Methods: General Nonlinear Problem 365

-1
-0.5

x-axis
0

0.5
1

2
1

y-axis

0
-1

0

200

400

600

800

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

-0.5

0

0.5

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

-0.5

0

0.5

1

Figure 8.22 Top: Function given in (8.57). Middle: Decent path for the first 200
iteration steps using SDM. Bottom: Decent path obtained using the Polak-Ribière
version of the CGM. The ∗ designates the location of the minimum.

366 8 Optimization

Example 2: Consider the function

F (x, y) = 100(x2 − y)2 + (x− 1)2. (8.57)

This is known as the Rosenbrock function, and it is plotted in Figure 8.22.
There is one minimum point and it is located at (x, y) = (1, 1). The SDM
and CGM (using Polak-Ribière) results are shown in Figure 8.22. The first
200 steps of the SDM are shown, and it is evident that it is very slow. If it is
allowed to continue, it takes 11,529 iteration steps to achieve an error of less
than 10−7. In contrast, the CGM takes 15 steps to obtain a solution with an
error of less than 10−7. �

As is evident in the above examples, the CGM looses its finite termination
property for general nonlinear functions. However, it is still capable of finding
the relative minimum points without much effort. The SDM, on the other
hand, has many of the same difficulties seen for the quadratic case. On some
problems it does just fine but it can be very slow on others, to the point that
it is almost useless.

Example 3: As was explained earlier, it is possible to rewrite Av = b as a
minimization problem using

F (v) = ||Av − b||22.

In this example, this will be referred to as the least squares formulation.
It has the advantage that it does not require the matrix to be symmetric
or positive definite, unlike the equations considered in Section 8.6. So, the
question arises as to how the CGM does solving the problem using the above
function, versus the quadratic form in (8.39). To make this comparison it is
required that the matrix be symmetric and positive definite, and we will use
the matrix described in Section 8.6.3.1 with a = 4.0001, but now n = 900
and m = 30. Also, for the least squares problem, the Polak-Ribière version
of the CGM is used. The error for the two methods is shown in Figure 8.23.

100 101 102 103

Iteration Steps

10-12

10-8

10-4

100

E
rr

o
r

CGM: Quad
CGM: P-R

Figure 8.23 Comparison between using the CGM when solving Av = b by mini-
mizing the quadratic form or the least squares function.

8.8 Minimization Without Differentiation 367

It is not surprising that the CGM using the quadratic form finds the solution
faster because it has the finite termination property, which the least squares
version does not have. What the two versions do share is the ability to make
advantage of the sparsity of the matrix, which can significantly reduce both
the flop count per iteration step and the storage. �

8.8 Minimization Without Differentiation

The last minimization method we will consider does not use the gradient, and
is therefore applicable to functions that are just continuous. It is based on a
simple geometrical argument and has probably been known since antiquity.
However, the method described here is of more recent vintage, first proposed
in 1965, and it is known as the Nelder-Mead algorithm [Nelder and Mead,
1965]. It is worth mentioning that according to Nelder, their method was
not well received by some “professional optimizers” because of the lack of
mathematical analysis [Nelder, 1979]. Another reason researchers did not take
them seriously was their address, which was the National Vegetable Research
Station. However, all is well now (almost) and it is one of the foundational
methods in nonlinear optimization.

The basic idea underlying the method can be illustrated using either of the
surfaces shown in Figures 8.21 and 8.22. Given three points on either surface,
it’s possible to construct an approximate direction of descent by positioning
yourself at the highest point and then looking in a direction that passes
between the other two points. The goal is to find a point in this direction
that is lower than the highest value. A description of the procedure is given
in Table 8.5 for the case of finding a local minimum of F (v), where v ∈ R

2.
To explain some of the reasoning, in Step 1 the points are relabeled so v3

produces the largest value of the function. In Step 2 the midpoint between the
two lower points, the centroid, is used to determine an approximate direction
of descent by letting d = vc − v3. Note that it is likely that this is a descent
direction but it does not have to be, and contingencies are included later
if this fails. With this, in Step 3, the procedure attempts to move in that
direction by using reflection. If the value of the function at vr is lower than
all the other values then it will make a double step just to see if the function
can be reduced even further (Step 4). However, if the value at vr is not small
enough then the procedure will try a contraction (Steps 5 or 6). If all this
fails then there is a restart (Step 7), which is done by placing the new points
near the point that currently produces the smallest value of the function.
Note that, in each loop (from Step 1 back to Step 1), if a restart is not
needed then the method evaluates the function F no more than twice.

Like all iteration methods, the question is when to stop. Given the geo-
metric nature of the construction, a natural choice for a measure of the error
is to use the area of the triangle. For example, given a tolerance tol, in Step 1

368 8 Optimization

Step 0 Pick α > 0 (e.g., α = 1) and β with 0 < β < α (e.g., β = 1
2
).

Pick 0 < δ < 1 (e.g., δ = 1
2
).

Pick v1, v2, and v3 that are not collinear.

Step 1 If necessary, relabel points so that F1 ≤ F2 < F3,
where Fi = F (vi).

Step 2
Calculate the centroid of the lowest side:
vc = 1

2
(v1 + v2), and calculate an approximate di-

rection of descent: d = vc − v3

Step 3

Reflection: Calculate vr = vc + αd, and
Fr = F (vr).

If F1 ≤ Fr < F2, let v3 = vr and return to Step 1.

If Fr < F1 then go to Step 4

If F2 ≤ Fr < F3 then go to Step 5.

If F3 ≤ Fr then go to Step 6.

Step 4
Expansion: Calculate ve = vc + 2αd, and
Fe = F (ve). If Fe < Fr then let v3 = ve otherwise
let v3 = vr. Return to Step 1.

Step 5
Outside Contraction: Calculate vo = vc + βd. If
F (vo) ≤ Fr then let v3 = vo and return to Step 1,
otherwise go to Step 7.

Step 6
Inside Contraction: Calculate vs = v3 + βd. If
F (vs) < F3 then let v3 = vs and return to Step
1, otherwise go to Step 7.

Step 7 Restart: Replace each vi with v1 + δ(vi − v1) and
return to Step 1.

Table 8.5 Nelder-Mead algorithm for v ∈ R
2.

8.8 Minimization Without Differentiation 369

one can calculate the area A of the triangle and if A < tol then the iteration
is stopped and one uses v1 as the solution. The drawback with this is that
the triangles may be elongated, so a somewhat better choice would be to use
the distances between the three vertices.

Not every situation is covered by the above algorithm, and a complete
version would need to explain, for example, what to do if F2 = F3, or if
the three points calculated by this procedure become collinear. For those
interested, the complete version is given in Lagarias et al. [1998] and Conn
et al. [2009].

A few examples are given below using the Nelder-Mead algorithm outlined
above. It will be seen that it finds the minimum fairly easily but the number
of iteration steps is larger that what was needed when using the CGM. This
is not surprising because some price is expected when using a method that
works on a broader class of problems than the CGM (or any method that
uses the gradient). However, the computational effort for Nelder-Mead is
fairly low, usually requiring only 1 or 2 function evaluations per iteration.

8.8.1 Examples

Example 1: Consider the function

F (x, y) = 10x2 + y2. (8.58)

The resulting surface is a paraboloid, which has a minimum at (x, y) = (0, 0).
The first five triangles produced by Nelder-Mead are shown in Figure 8.24.
It is worth identifying how the steps in the algorithm produced these trian-
gles. To get the 2nd, the first was reflected and then a double step was made.
In other words, it comes from Step 4. The third comes from a single reflection,
so Step 3 was used. In contrast, the 4th comes from an outside contraction,
which is Step 5, and the same is true for the 5th triangle. Because the mini-
mum point is now within the 5th triangle, it is expected that the majority of
triangles produced by the method involves inside contractions (Step 6). If so
then from this point on the method is reminiscent of the bisection method.
This is because an inside contraction involves a single subdivision after which
one picks which side the solution is on. Like the bisection method, this pro-
duces a dependable way to find the minimizer but it is not particularly fast in
finding it. For this example, it takes the method 46 iteration steps to achieve
an area error that is about 10−6. �

Example 2: Consider the function

F (x, y) = (x− y)4 + 8xy − x+ y + 3. (8.59)

370 8 Optimization

–0.5 0.50 1–1

–0.5

0

0.5

1

–1

2
3

4

5

1

y–
ax

is

x–axis

Figure 8.24 Triangles constructed using the Nelder-Mead algorithm to find the
minimum of (8.58).

This surface is shown in Figure 8.21, and the first six triangles used by Nelder-
Mead are shown in Figure 8.25. It takes the method 46 iteration steps to
achieve an error that is less than 10−6. �

–0.5

–0.5

0

0.5

1

0.50

1
2 3

4 5
6

1–1

–1

x–axis

y–
ax

is

Figure 8.25 Triangles constructed using the Nelder-Mead algorithm to find the
minimum of (8.59).

8.8 Minimization Without Differentiation 371

x–axis

y–
ax

is

–4
1

0

1

2

3

4

5

–3 –2 –1 1 20

Figure 8.26 Data to be fitted by a circle, and the resulting circle obtained using
least squares.

Example 3: We return to an example considered earlier, which is how to fit
a circle to data. Unlike before, the circle is not centered at the origin, and a
sample data set is shown in Figure 8.26. The equation for the circle is

(x− a)2 + (y − b)2 = r2,

and the goal is to determine a, b, and r from the minimization procedure.
For given values of these parameters, the error will be calculated using the
difference between the radius and the distance between the center (a, b) and
each data point (xi, yi). In other words, the error function is

F (a, b, r) =
n∑

i=1

(√
(xi − a)2 + (yi − b)2 − r

)2
, (8.60)

which is a generalization of the function given in (8.25). If you try to use
the calculus solution, which means finding the first derivatives and setting
them to zero, you end up with three nonlinear equations. It is not possible to
solve these by hand, but one very useful piece of information is determined.
Namely, from the equation

∂F

∂r
= 0,

372 8 Optimization

it is found that

r =
1

n

n∑
i=1

√
(xi − a)2 + (yi − b)2 .

This is the same solution given in (8.26), but before it was assumed that
a = b = 0. What this result does do is make it so (8.60) is a function of
two parameters: a and b. This means the Nelder-Mead procedure outline
in Table 8.5 can be applied to this problem (without having to extend it
to three dimensions). The method takes 55 steps and concludes that a =
−1.170734, b = 2.079167, and r = 1.9822. The resulting circle is plotted
in Figure 8.26. The problem of fitting geometric shapes to data arises in
numerous applications, and those interested in circles and ellipses should
consult Gander et al. [1994] and Chernov and Lesort [2005]. Those interested
in polygons should consider looking at Persson et al. [2006] and Watson
[2007]. �

8.9 Variational Problems

There are several well-known minimization principles in physics that can
be used to characterize how something will behave. For example, Fermat’s
principle states that the path taken by a ray of light minimizes the travel
time. Another is the principle of minimum potential energy which states that
out of all possible admissible displacements an object can undergo, the one
that is realized is the one that minimizes the potential energy of the system.
The question considered here is how these can be solved using one or more
of the numerical optimization methods we have considered earlier in this
chapter. Note that most of these principles are used to derive what are called
Euler-Lagrange equations using the calculus of variations. This is not done
here, and the problems will be solved by considering only the minimization
principle.

8.9.1 Example: Minimum Potential Energy

An elastic string occupies the interval 0 ≤ x ≤ 1, and is held at its two
endpoints. When a transverse load w(x) is applied, the string deflects. Letting
u(x) be the vertical displacement of the string, then the potential energy is

V =

∫ 1

0

(
1

2
Tu2

x − wu

)
dx, (8.61)

8.9 Variational Problems 373

where T is the tension (it is a positive constant). According to the principle
of minimum potential energy, the displacement u(x) is the function which
minimizes V [Weinstock, 1974]. Also, note that the string is being held at
its ends, and so any possible solution of this problem is required to satisfy
u(0) = u(1) = 0.

We will find the minimizing function by introducing grid points along
the x-axis, and then use them to numerically determine ux as well as the
value of the integral. To help make it clear how these approximations are
used, the problem is written as

V =

∫ 1

0

f(x)dx, (8.62)

where

f(x) =
1

2
Tu2

x − wu. (8.63)

Suppose five points are used, and they are x0 = 0, x1 = 1/4, x2 = 1/2,
x3 = 3/4, and x4 = 1. We will use the composite trapezoidal rule to compute
V (see Table C.2), and so

V ≈ h

(
1

2
f0 + f1 + f2 + f3 +

1

2
f4

)
, (8.64)

where fi = f(xi). Centered, or symmetric, approximations will be used when
possible to compute fi. Specifically, using the first-order approximations in
Table 7.1 (with h = 1/4)

ux(0)
2 ≈

(
u(x1)− u(x0)

h

)2

,

ux(xi)
2 ≈ 1

2

[(
u(xi+1)− u(xi)

h

)2

+

(
u(xi)− u(xi−1)

h

)2
]
, for i = 1, 2, 3,

ux(1)
2 ≈

(
u(x4)− u(x3)

h

)2

. (8.65)

The reasoning behind using a symmetric difference formula will be explained
after the examples are complete.

Combining (8.64) and (8.65), and using the boundary conditions u0 =
u4 = 0, we have that

V ≈ T

2h

[
u2
1 + (u2 − u1)

2 + (u3 − u2)
2 + u2

3

]−h(w1u1+w2u2+w3u3), (8.66)

where wi = w(xi). It is worth observing that the above expression is a
quadratic function of the ui’s.

374 8 Optimization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

-0.02

-0.01

0
u

-a
xi

s

Figure 8.27 Numerical solution, the circles, for the function that minimizes (8.61)
when using five grid points, and the exact solution, the solid (red) curve.

To find the values of u1, u2, and u3 that minimize V we can use the CGM,
Nelder-Mead, or the calculus solution. The latter is informative, and so we
calculate the three derivatives

∂V

∂ui
for i = 1, 2, 3

and then set them to zero. This leads to the matrix equation

⎛
⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞
⎠
⎛
⎝u1

u2

u3

⎞
⎠ = α

⎛
⎝w1

w2

w3

⎞
⎠ ,

where α = h2/T . The above matrix is tri-diagonal, and this also happens
when more grid points are used. Consequently, the equation can be solved
very quickly using the Thomas algorithm (see Section 3.8).

Comparisons between the resulting solution and the exact solution are
given in Figures 8.27 and 8.28 in the case of when w = x4 and T = 1. The
exact solution is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

-0.02

-0.01

0

u
-a

xi
s

Figure 8.28 Numerical solution, the circles, for the function that minimizes (8.61)
when using 22 grid points, and the exact solution, the solid (red) curve.

8.9 Variational Problems 375

u =
1

30T
x(x5 − 1).

Not unexpectedly, using 5 grid points does not produce a very accurate an-
swer, but as more points are used the approximation closely matches the
exact result. �

8.9.2 Example: Brachistochrone Problem

Suppose two points A and B in a vertical plane are given, with A higher
than B. A mass is going to move from A to B, while subjected to gravity, and
the problem is to find the path it must take so the travel time is minimized.
If A is directly above B the answer is easy, the mass should simply drop
straight down. So, in what follows it is assumed that the two points are not
on a vertical line. In particular, it is assumed that A is the origin, and B is
the point (1, b), where b > 0. It is assumed that y is positive in the downward
direction. In this case, if the mass follows a path y(x), then the travel time
for that path is [Weinstock, 1974]

T =

∫ 1

0

f(x)dx, (8.67)

where

f(x) =

√√√√ 1

2gy

[
1 +

(
dy

dx

)2
]
. (8.68)

The objective is to find the path y(x) that minimizes the value of this integral.
In doing this it is required that y(0) = 0 and y(1) = b.

This problem is one of the first examples studied in the calculus of vari-
ations, but its numerical solution is not so simple. This is evident in (8.68)
because the denominator is zero at the left endpoint, and this complicates
using a numerical method. However, the situation is actually worse than this.
To explain, the solution is found to be a cycloid, and it is given parametri-
cally as

x = A(θ − sin θ),

y = A(1 − cos θ),

for 0 ≤ θ ≤ θM . The values of A and θM are found from the requirements
that x = 1 and y = b at θ = θM . From this it is possible to show that near the
left endpoint, y ≈ mx2/3, where m is a positive constant. This means that
the (y′)2 term in the numerator in (8.68) is as bad as the y term in the
denominator. As a final comment, the numerical solution will be compared

376 8 Optimization

to the above exact solution. To make the comparison, we will take θM = π/2,
which means that A = b = 2/(π − 2).

One way to deal with the singularity at the left endpoint is to change
variables in the integral. The particular choice will use the inverse function
for y. If y = f(x), then x = f−1(y). This means that dx = (d

dyf
−1)dy = dx

dy dy

and dy
dx = 1/ dx

dy . Substituting this into (8.67) we get that

T =

∫ b

0

F (y)dy, (8.69)

where

F (y) =

√√√√ 1

2gy

[
1 +

(
dx

dy

)2
]
. (8.70)

Note that the denominator is still zero at y = 0 but the (dxdy)
2 term is not

singular at y = 0. This is because near the left end, x ≈ My3/2, where M
is a positive constant. So, (dxdy)

2 ≈ (32M)2y and this is a continuous function
at y = 0.

We will minimize (8.69) in a manner similar to what was done in the last
example, which means a set of grid points will be used to find approximations
for the derivative and integral. The difference now is that the grid points are
placed along the y-axis, and we solve for the values of the xi’s. Also, to deal
with the singularity at y = 0 we will separate it from the rest of the interval,
and this will be done by writing

T =

∫ δ

0

F (y)dy +

∫ b

δ

F (y)dy, (8.71)

where δ is small and positive. It should also be noted that the original re-
quirements that y(0) = 0 and y(1) = b are now written as x(0) = 0 and
x(b) = 1.

The integral on the right in (8.71) has no singularity and the composite
trapezoidal rule will be used to evaluate it. The grid points are y1 < y2 <
· · · < yn+1, where y1 = δ, yn+1 = b, and yi+1 − yi = k. The resulting
approximation is

∫ b

δ

F (y)dy ≈ k

(
1

2
F1 + F2 + F3 + · · ·+ Fn +

1

2
Fn+1

)
, (8.72)

As before, centered, or symmetric, approximations will be used when possible
to compute the derivative term in F . Specifically,

8.9 Variational Problems 377

(
dx

dy

)2

≈
(
x(y1)− x(y2)

k

)2

, for i = 1

(
dx

dy

)2

≈ 1

2

[(
x(yi+1)− x(yi)

k

)2

+

(
x(yi)− x(yi−1)

k

)2
]
, for i = 2, 3, · · · , n

(
dx

dy

)2

≈
(
x(yn+1)− x(yn)

k

)2

for i = n+ 1.

The left integral in (8.71) requires a bit more care. As explained in Sec-
tion 6.2, one possibility is to pick a point c0 in this interval and then use the
approximation ∫ δ

0

F (y)dy ≈ F (c0)δ.

We will do this for the “good” part of F (y) but leave the term that is re-
sponsible for the singularity. Picking the midpoint, so c0 = δ/2, leads to the
approximation

∫ δ

0

F (y)dy ≈
√

1

2g

[
1 +(x′(c0))

2
] ∫ δ

0

1√
y
dy

=

√
2δ

g

[
1 +(x′(c0))

2
]
,

where

x′(c0) ≈ x(y1)− x(0)

δ
=

x(y1)

δ
.

A comparison between the resulting numerical solution obtained from min-
imizing (8.69) and the exact solution is shown in Figure 8.29. In this calcu-
lation, n = 24, δ = 10−2, b = 2/(π − 2), and the minimizer was found using

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

0

0.5

1

1.5

2

y-
ax

is

Figure 8.29 Numerical solution, the circles, of the brachistochrone problem, and
the exact solution, the solid (blue) curve.

378 8 Optimization

the Nelder-Mead algorithm. The initial guess used to start the solver is sim-
ply a straight line connecting the two points. As is evident in the figure, the
solution is accurately computed using this procedure. �

8.9.3 Parting Comments

The problem of finding a function which minimizes an integral looks to be
straightforward, in the sense that it involves using numerical methods we have
derived earlier. The fact is, however, that these problems are more finicky
than what we have encountered elsewhere. This is one of the reasons for
the symmetric differences used in the numerical procedure. To explain, both
examples involve an integrand that includes a term of the form

(
df

dx

)2

.

Without thinking about it too hard, one might try using a second-order
difference of the form

(
df

dx

)2

≈
(
fi+1 − fi−1

2h

)2

.

If you write this out for each grid point, you will notice that the values of f
at the even nodes do not depend on the values of f at the odd nodes. This is
a well-known problem in numerical fluid dynamics, but the solutions used for
fluids (staggered grids, artificial dissipation, etc) are not directly applicable
to the integrals considered here. This leads to dropping the idea of using a
second-order approximation and reverting to just first-order differences

(
df

dx

)2

≈
(
fi+1 − fi

h

)2

.

or (
df

dx

)2

≈
(
fi − fi−1

h

)2

.

In minimization problems, the boundary conditions play a critical role in the
formula for the quantity being minimized as well as determining the function
which is the minimizer. The forward and backward differences given above
have a biased direction implicit in their formulation, and this causes problems
when interacting with the boundary conditions. This is the reason for looking
for symmetric formulas, and examples are

(
df

dx

)2

≈
∣∣∣∣fi+1 − fi

h

fi − fi−1

h

∣∣∣∣ ,

Exercises 379

and (
df

dx

)2

≈ 1

2

[(
fi+1 − fi

h

)2

+

(
fi − fi−1

h

)2
]
.

The second has the distinct advantage of being a smooth function of the fi’s,
and for this reason was used in the formulation.

There have been numerous studies related to deriving numerical solutions
that minimize integrals, and most discuss the difficulties encountered. For
those interested, you might consult Dussault [2014], Levin et al. [2002], and
Jameson and Vassberg [2001].

As a final comment, for the string example the calculus method was used to
find the minimum but this was not done for the brachistochrone problem. The
reason is that (8.66) is a quadratic function of the unknown ui’s, so setting
the derivatives to zero results in a linear problem. For the brachistochrone
problem, T is a non-quadratic function of the unknown xi’s, so the calculus
method results in a system of nonlinear equations. Because of the difficulty
of solving such a system, it is easier to just find the minimum directly, which
was done using the Nelder-Mead algorithm.

8.10 Global Minimum

Although the objective is to find the global minimum of a function, assuming
it exists, for many nonlinear functions this can be a very difficult thing to
determine. All of the methods considered here are good at working with local
minima, but they provide little if any information about whether the solution
is the global minimum point. There are methods that can be used for this,
such as simulated annealing or an evolutionary computational algorithm, but
they are fairly slow.

Exercises

8.1. Rewrite the following as a minimization problem (you do not need to
solve the problem).
(a) Solve:

(x − 2)4 + (x− 2y)2 = 5

x2 − y = 0

380 8 Optimization

(b) Solve:

x+ y2 + ex+y = 3

2y + 3x =
x+ y

x2 + y2 + 1

(c) Find the distance between y = 3e−x + 5x+ 1 and the point (−1,−2).
(d) The positions of two objects moving in the x, y-plane are: (x1, y1) = (t+

sin(3t), t + 3 cos(3t)), and (x2, y2) = (4 sin t, t2 − 3). How close do they
come to bumping into each other?

(e) Two points p and q are on a surface z = f(x, y). Find a curve on this sur-
face which connects these two points, and which has the smallest length.

(f) Consider a region 0 ≤ x ≤ a, 0 ≤ y ≤ b. Three heaters are going to placed
in this region, at points h1, h2, and h3. The resulting temperature T at
any point x in the region is

T (x) = T1F (||x− h1||2) + T2F (||x− h2||2) + T3F (||x− h3||2),
where F (z) = 1/(1+z2). Where should the heaters be placed in the region
so the coldest point in the room is as hot as possible?

8.2. Given the data in Table 8.6, determine the least squares approximation
of the form f(x) = a+ b sin(x).

8.3. The function y(t) = v1t
2+v2(2− t)3 is to be fit to the data in Table 8.7.

(a) Find the values of v1 and v2 so the function best fits the data using least
squares error.

(b) Explain why the following function would not be a good error function to
use with this problem.

E(v1, v2) =

3∑
i=1

(y(ti)− yi)
3.

xi −π/2 0 π/6

fi 2 0 −1

Table 8.6 Data for Exercise 8.2.

8.4. This exercise considers what happens when there is only one parameter
when data fitting using linear least squares. Assume here that f(x) is a given
function.
(a) Suppose the model function is y = v1f(x). Using least squares error, what

is the resulting formula for v1? In doing this, assume that there is at least
one data point with f(xi) nonzero.

Exercises 381

ti 0 1 2

yi 2 0 −1

Table 8.7 Data for Exercise 8.3.

θi 0.00 1.57 3.14 4.71 6.28

ri 0.62 1.23 16.14 1.35 0.62

Table 8.8 Data for the comet 27P/Crommelin, used in Exercise 8.5.

(b) Suppose the model function is y = v1 + f(x). Using least squares error,
what is the resulting formula for v1?

8.5. The elliptical path of a comet is described using the equation

r =
p

1 + ε cos θ
,

where r is the radial distance to the Sun, θ is the angular position, ε is the
eccentricity of the orbit, and p is a rectum parameter. In this exercise you
are to use data for the comet 27P/Crommelin, which is given in Table 8.8.
(a) Writing the model function as r = g(θ), and using least squares, then the

error function is

E(p, ε) =

n∑
i=1

[g(θi)− ri]
2.

What two equations need to be solved to find the value(s) of p and ε that
minimize this function?

(b) By writing the model function as

1

r
=

1 + ε cos θ

p
,

explain how the nonlinear regression problem can be transformed into one
with the model function R = V1 + V2 cos(θ). Also, what happens to the
data values?

(c) Writing the model function in part (b) as R = G(θ), and using the least
squares error function

E(V1, V2) =

n∑
i=1

[G(θi)−Ri]
2,

compute V1 and V2. Using these values, determine p and ε.

382 8 Optimization

(d) Redo part (c) but use the relative least squares error function

ER(V1, V2) =

n∑
i=1

(
G(θi)−Ri

Ri

)2

.

(e) Does part (c) or does part (d) produce the better answer? You need to
provide an explanation for your conclusion, using a quantified comparison,
graphs, and/or other information.

8.6. The exercise considers fitting data using the model function

g(x) = v1x
v2 ,

which is known as a power law function, and also as an allometric function.
Two different methods are considered, one summarized in (a) and (b), and
the second in (c) and (d). Assume that the data are (x1, y1), (x2, y2), · · · ,
(xn, yn), where the xi’s and yi’s are positive.
(a) Writing y = v1x

v2 , and then taking the log of this equation, show that the
transformed model function can be written as G(X) = V1 + V2X , where
V1 = log v1 and V2 = v2. Also, show that the transformed data points
(Xi, Yi) are Xi = log xi and Yi = log yi.

(b) Continuing from part (a), using the least squares error E(V1, V2) =∑
(V1 + V2Xi − Yi)

2, and the common log, show that v1 = 10V1 and
v2 = V2, where V1 and V2 are given in (8.31).

(c) Show that to minimize the error function E(v1, v2) =
∑

(v1x
v2
i −yi)

2, one
gets that

v1 =

∑
yix

v2
i∑

x2v2
i

.

(d) Continuing from part (c), show that finding the minimum of E(v1, v2)
reduces to solving an equation of the form F (v2) = 0. Write down the
function F , and explain why the secant method might be easier to use to
solve the equation than Newton’s method.

8.7. Allometric functions of the form

g(x) = v1x
v2 ,

are often used by experimentalists in biology and ecology. This exercise
explores such an application, and the data are given in Table 8.9. What
is given, for each animal, is its typical mass and its maximum relative speed.
The latter is the animal’s maximum speed divided by its body length. This
exercise uses the results from Exercise 8.6(a),(b).
(a) Taking x to be the mass, fit the power law to the data in Table 8.9 and

then plot the data and power law curve using a log-log plot.
(b) Based on your result from part (a), what was the running speed of a

Tyrannosaurus rex?

Exercises 383

Animal Mass (kg) Relative Speed (1/s)

canyon mouse 1.37e−02 39.1

chipmunk 5.10e−02 42.9

red squirrel 2.20e−01 20.5

snowshoe hare 1.50e+00 35.8

red fox 4.80e+00 28.7

human 7.00e+01 7.9

reindeer 1.00e+02 12.7

wildebeest 3.00e+02 11.0

giraffe 1.08e+03 3.8

rhinoceros 2.00e+03 1.8

elephant 6.00e+03 1.4

Table 8.9 Data for Exercise 8.7 adapted from Iriarte-Dı́az [2002].

(c) Taking x to be the relative speed, fit the power law to the data in Table 8.9
and then plot the data and power law curve using a log-log plot.

(d) If speed = α(mass)β , then mass = a(speed)b, where b = 1/β. Based on
this, one might think that the exponents from parts (a) and (c) satisfy
b = 1/β. Do they? Using a sketch similar to the ones in Figure 8.5, but in
the X,Y -plane, explain why the error functions are different in the two
cases. Because of this, it is not expected that b = 1/β.

8.8. The computing times for three matrix algorithms are given in Table 8.10,
which is adapted from Table 4.13. The assumption is that the computing time
T can be modeled using the function

T = αNβ .

The goal of this exercise is to use regression to find α and β. Note that you
do not need to know anything about how the matrix methods work to do
this exercise.
(a) Using the results from Exercise 8.6(a),(b), fit the model function to the

LU times, and then plot the model function and data on the same axis.
(b) Show that to minimize the least square error E =

∑
[T (Ni) − Ti]

2 one
gets that

α =

∑
TiN

β
i∑

N2β
i

.

(c) It would seem reasonable to expect that the computing time is a reflection
of the flops used to calculate the factorization. If so, then β should be a

384 8 Optimization

N LU QR SVD

200 0.0003 0.0007 0.0062

400 0.0009 0.0025 0.0238

600 0.0025 0.0072 0.0591

800 0.0050 0.0143 0.1181

1000 0.0094 0.0264 0.2163

2000 0.1067 0.1881 2.5702

4000 0.4107 1.3351 14.2420

Table 8.10 Data for Exercise 8.8. Computing time, in seconds, for a LU, QR, and
SVD factorization of a random N ×N matrix using MATLAB.

positive integer. Using the resulting from part (b), and assuming β is a
positive integer, find α and β. Also, using these values, plot the model
function and data on the same axis. Explain how you find β, and also
comment on how the assumption that β is an integer affects how well the
model function fits the data.

(d) Redo (a) and (c) for the QR times.
(e) Redo (a) and (c) for the SVD times.

8.9. Typically, in reporting experimental data, at any given xi, the mean
yi and standard deviation σi are given. Examples are shown in Figures 5.1
and 8.11. The objective of this exercise is to derive a regression procedure
that produces a predicted value y that: i) of foremost importance, falls within
the interval yi−σi < y < yi+σi, and ii) of secondary importance, has y ≈ yi.

(a) Setting

Ei =

(
y − yi
σi

)p

,

on the same axes, sketch Ei as a function of y for p = 2, 4, 8. Use this
to explain why taking a larger p has the effect of giving more weight to
objective (i).

(b) Does Ei satisfy the three expected properties of an error function given
in Section 8.2.2?

(c) Taking p = 2, y = a+ bx, and the error function

E =

n∑
i=1

Ei ,

find a and b that minimize E.

Exercises 385

(d) Suppose one gets better, and presumably more expensive, experimental
equipment so the standard deviations are all reduced by a factor of, say,
10. Assuming the same yi values are obtained, explain why the answer
in part (c) is unchanged.

8.10. A matrix A is negative definite if −A is positive definite. Explain why
the algorithm in Table 8.3 can be used to solve Av = b if A is an n × n
symmetric negative definite matrix.

8.11. Consider the equation

(
2 −1

−1 4

)(
v1

v2

)
=

(
7

0

)
.

(a) What is the quadratic form associated with this equation? Write it out
as a polynomial.

(b) In this question you are to use the SDM. Taking v1 = (1, 1)T , calcu-
late v2.

(c) In this question you are to use the CGM. Taking v1 = (1, 1)T , calculate
v2 and v3.

8.12. Consider the equation

(
3 1

1 2

)(
v1

v2

)
=

(
1

−1

)
.

(a) What is the quadratic form associated with this equation? Write it out
as a polynomial.

(b) In this question you are to use the SDM. Taking v1 = (−1, 2)T , calcu-
late v2.

(c) In this question you are to use the CGM. Taking v1 = (−1, 2)T , calculate
v2 and v3.

8.13. The equation Av = 0 is going to be solved using one of the following
matrices:

A1 =

(−1 1

0 2

)
A2 =

(
2 1

1 2

)
A3 =

(
2 1

−1 1

)
A4 =

(
0 1

1 2

)
A5 =

(
1 2

2 1

)

(a) If the CGM is going to be used to solve the equation, only one matrix
can be used. Which matrix is it? Make sure to explain why.

(b) Picking the matrix from part (a), and assuming that v1 = (1 , 0)T , find
v2 and v3.

8.14. Letting F (v) = 1
2v

TBv−b·v, suppose that∇F = 0 yields the equation
Av = b. It was shown that for this to happen A must be symmetric. The

386 8 Optimization

purpose of this exercise is to show that the properties of B are more flexible.
To do this, assume that

A =

(
2 1

1 3

)
.

(a) Show that A is positive definite.
(b) Find a nonsymmetric B.
(c) Find a symmetric but not positive definite B.
(d) Is it possible for B to be diagonal?
(e) Is it possible for B to be non-invertible?

8.15. The exercise considers a least squares problem using the relative error.
As usual, the data are (x1, y1), (x2, y2), · · · , (xn, yn). The error function in
this case is

ER =
n∑

i=1

(
g(xi)− yi

yi

)2

.

It is assumed here that the yi’s are nonzero.
(a) In the case of when g(x) = v1+v2x, show that the minimum occurs when

(
v1

v2

)
=

1

ad− b2

(
a −b

−b d

)(∑
1/yi∑
xi/yi

)
,

where a =
∑

x2
i /y

2
i , b =

∑
xi/y

2
i , and d =

∑
1/y2i .

(b) Calculate v1 and v2 for the data in Table 8.1. On the same axis, plot the
resulting line, the data points, and the line found using (8.12).

8.16. The exercise considers the least squares problem using the general lin-
ear model function g(x) = v1p(x) + v2q(x). As usual, the data are (x1, y1),
(x2, y2), · · · , (xn, yn), where n > 2.
(a) Using the error function

E(v1, v2) =

n∑
i=1

[g(xi)− yi]
2,

show that(
v1

v2

)
=

1∑
p2i
∑

q2i − (
∑

piqi)2

(∑
p2i

∑
piqi∑

piqi
∑

q2i

)(∑
piyi∑
qiyi

)
,

where pi = p(xi) and qi = q(xi).
(b) Show that the solution in part (a) reduces to the one given in (8.12) in

the case of when p(x) = 1 and q(x) = x.
(c) Suppose the model function is g(x) = v1x + v2x

2 and the data is given
in Table 8.11. Find v1 and v2.

Exercises 387

xi −π 0 π

yi 1 0 2

Table 8.11 Data for Exercise 8.16.

(d) Suppose the model function is g(x) = v1 sin(x) + v2 sin(2x) and the data
is given in Table 8.11. Explain why it is not possible to determine v1
and v2.

(e) The question is, what requirement is needed to prevent the problem in
part (d), or more generally what is needed so the solution in part (a)
is defined. Setting p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn), explain
why the needed condition is that the angle θ between p and q is not 0
or π. Note that if either p or q is the zero vector then θ = 0.

(f) What is the matrix A, as defined in (8.16), for this problem? Explain
why the condition derived in part (e) is equivalent to the requirement
that the columns of A are independent.

(g) What are p and q for part (d)?
(h) If n = 3 and p = (1,−1, 1), give two nonzero examples for q where the

solution in part (a) is not defined.

8.17. The question considered in this exercise concerns whether the solution
obtained using regression reduces to the solution obtained using interpola-
tion in the case of when the number of data points equals the number of
parameters.
(a) The least squares solution in (8.12) is for the model function g(x) =

v1 + v2x. Show that the solution reduces to the point-slope formula in
the case of when n = 2 and x1 �= x2. In other words, the regression
solution produces the interpolation solution.

(b) In the case of when n = 2, x1 �= x2, and g(x) = v1 + v2x, show that the
values of v1 and v2 obtained using the point-slope formula produce the
minimum error for E1, E∞, and ED (these are defined in Section 8.3.3).

8.18. This exercise explores fitting an ellipse to a data set, and an example
of such data is given in Figure 8.30. The formula for the ellipse is

(x
a

)2
+
(y
b

)2
= 1,

where a and b are positive and to be determined from the curve fitting. In
what follows you are to find an error function and from this find a and b.
(a) For a given a and b, write down an expression that can be used as a

measure of the error between a data point (xi, yi) and the curve. The
requirements on this expression are: it is non-negative and only zero if
(xi, yi) is on the ellipse.

388 8 Optimization

(b) Using your expression from part (a), sum over the data points to produce
an error function E(a, b).

(c) Minimize E(a, b) and find explicit formulas for a and b. Note that if your
error function does not result in you being able to find explicit formulas,
then you need to redo parts (a) and (b) so you can.

8.19. In this problem, assume that you are given data (xi, yi), with i =
1, 2, · · · , n, and a nonlinear model function g(x) that contains two parameters:
v1 and v2. The objective is to find a change of variables from (x, y) to (X,Y)
so the transformed model function has the form G(X) = V1 + V2X . Find a
change of variables that accomplishes this for the following model functions,
give the resulting solution for V1 and V2, and the corresponding solution for
v1 and v2.
(a) g(x) = v1xe

v2x

(b) g(x) = 1/(v1 + v2x)
(c) g(x) = v1 exp(−v2x

2)

8.20. Consider the function

F (x, y) = −x4 +
1

6
x6 − 10xy + y + y4.

(a) Plot the surface and contour curves for this function for −4 ≤ x ≤ 4 and
−4 ≤ y ≤ 4.

(b) Use the SDM to find the (global) minimum point for this function. Make
sure to state what stopping condition you used, the initial point, and the
number of iterations needed.

(c) Redo (b) but use the Polak-Ribière method. Also, you must use the same
starting point(s) as in part (b).

0–5
–3

0

3

5
x–axis

y–
ax

is
y–

ax
is

Figure 8.30 Example data set to be fitted by elliptic curve in Exercise 8.18.

Exercises 389

8.21. Consider the function

F (x, y) =
1

10
(x+ y)4 + (x − 1)2 + 4y2.

(a) Plot the surface and contour curves for this function for −2 ≤ x ≤ 2 and
−2 ≤ y ≤ 2.

(b) Use the SDM to find the (global) minimum point for this function. Make
sure to state what stopping condition you used, the initial point, and the
number of iterations needed.

(c) Redo (b) but use the Polak-Ribière method. Also, you must use the same
starting point(s) as in part (b).

8.22. Consider the problem of minimizing the following function:

f(x, y) = 2x2 + 2xy + y2 − x− 2y.

(a) If v1 = (0, 0) then find v2 and v3 using the steepest descent method.
(b) If v1 = (0, 0) then find v2 and v3 using the Polak-Ribière method.

8.23. The SDM is used to find the minimum of a function F (v), and the
contours for this function are shown in Figure 8.31.
(a) Shown in the plot is the second point v2 calculated using the SDM. If

the first point v1 is located on the contour labeled with 28, where is v1

located? Make sure to explain how you arrive at your answer. Also, you
only need to find one location for v1.

-4 -3 -2 -1 0 1 2 3 4
v1-axis

v 2-
ax

is

-4

-3

-2

-1

0

1

2

3

4

28

28

28

28
28

28

28

28

Figure 8.31 Contour plot for Exercise 8.23. The ∗ designates the location of the
minimum.

390 8 Optimization

(b) Suppose the starting point v1 is located on the contour labeled with 28.
Where should it be so v2 is the exact solution?

8.24. Consider the function F (v) = 1
2v

TAv−b ·v, where A is a symmetric
and positive definite 2× 2 matrix, and v = (v1, v2)

T . The contour plot for F
is shown below in Figure 8.32.
(a) Also shown in the figure is the starting point v1 and the point v2 cal-

culated using the CGM. Determine where the next point v3 is located.
Make sure to clearly explain how you arrive at your answer.

(b) If one uses the same starting point v1 for the SDM, where is v2? Make
sure to clearly explain how you arrive at your answer.

(c) What starting point v1 should be used so the point v2 computed by the
SDM is exactly at the minimum? The point v1 must be located on one
of the four sides of the contour plot (in a similar manner as was done in
part (a)). Make sure to clearly explain how you arrive at your answer.

8.25. It is possible to think a model function has three parameters, where
in fact there are effectively only two (or just one). This exercise investigates
such a situation.
(a) Suppose g(x) is a linear function of the variable x. In trying to decide

if two or three parameters are needed to fit a particular data set, the
following possibilities are considered:

-4 -3 -2 -1 0 1 2 3 4
v1-axis

v 2-
ax

is

-4

-3

-2

-1

0

1

2

3

4

Figure 8.32 Contour plot for Exercise 8.24. The ∗ designates the location of the
minimum.

Exercises 391

i) g1(x) = v1 + v2x
ii) g2(x) = v1v3 + v2x
iii) g3(x) = (v1 + v2x)/(1 + v3)
Suppose the minimum error using g2(x) occurs when v1 = 1, v2 = 3, and
v3 = −2. Explain why the minimum error using g1(x) occurs when v1 =
−2 and v2 = 3. What values for v1, v2, and v3 produce the minimum error
using g3(x)? Finally, explain why (i) corresponds to linear regression,
while (ii) and (iii) correspond to nonlinear regression.

(b) For the model functions in part (a), suppose the minimum error using
g1(x) occurs only when v1 = 6 and v2 = −1. Explain why if one uses
either of the other two model functions that the minimum error does not
occur at unique values for v1, v2, and v3.

8.26. This problem considers the various steps used in the Nelder-Mead
method.
(a) For the top contour plot in Figure 8.33, explain which step from Table 8.5

was used to determine each triangle.
(b) For the bottom contour plot in Figure 8.33, explain which step from

Table 8.5 was used to determine each triangle.

8.27. This exercise considers the problem of finding the axial displacement
u(x) of an elastic bar, which is subject to a body force w(x) as well as a force
Fr on the right end x = 1. At the left end, where x = 0, the bar is fixed,
which means that u(0) = 0. The potential energy is

V =

∫ 1

0

(
1

2
Du2

x + wu

)
dx− Fru(1),

where D is a positive constant.
(a) Suppose the grid points are x0 = 0, x1 = h, x2 = 2h, · · · , xn+1 = 1,

where h = 1/(n+1). Writing V =
∫ 1

0 F (x)dx, write down the composite
trapezoidal approximation for V .

(b) As with the string example, use a centered second-order approximation
for ux at x1, x2, · · · , xn, and a first-order approximation for ux at x0

and xn+1. Using these with the result from part (a), what is the resulting
approximation for V ? Note that like the string example, u0 = 0, but
unlike the string example, un+1 is an unknown in this problem.

(c) What is the resulting matrix equation that must be solved to find the
minimum for the approximation for V found in part (b)?

(d) The minimum of V from part (b) can be found using the MATLAB
command fminsearch(@V,U), where V is the approximation from part (b)
and U is an (n + 1)-vector containing a starting guess for (u1, u2,
· · · , un+1)

T . What would be a good, simple, and nonzero choice for U,
and why is it a good choice?

392 8 Optimization

0

1

2

–2

–2
–2 –1

–1

–1

0

1

2

1

3

4

4

3

2

1

5

0

0

y–
ax

is
y–

ax
is

x–axis

x–axis

1

1 2 3

2

Figure 8.33 Plots used in Exercise 8.26.

(e) IfD = 1, Fr = 1, w = x4, then the exact solution is u = x(x5+24)/30. On
the same axis, plot the exact solution and the numerical solution when
using 32 grid points. In doing this, explain how you found the numerical
solution (using part (c) or part (d)), and why.

(f) The exact solution of the problem satisfies the boundary condition

D
du

dx
(1) = Fr.

Exercises 393

So, the question is, does your numerical solution satisfy this condition.
Using the first-order approximation you used in part (b), from the numer-
ical solution calculate ux(1), using n = 20, 40, 80, 160. Are your answers
consistent with the statement that the solution satisfies the above con-
dition?

8.28. This exercise considers the problem of finding the traverse displacement
u(x) of an elastic beam, which is subject to a body force w(x). The potential
energy is

V =

∫ 1

0

(
1

2
EIu2

xx − wu

)
dx,

where EI is a positive constant. It is assumed that the beam has what are
called simply supported ends. One consequence of this is that u(0) = 0 and
u(1) = 0. The role of the boundary conditions will be discussed in more detail
in part (f).
(a) Suppose the grid points are x0 = 0, x1 = h, x2 = 2h, · · · , xn+1 = 1,

where h = 1/(n+1). Writing V =
∫ 1

0
F (x)dx, write down the composite

trapezoidal approximation for V .
(b) Use a centered second-order approximation for uxx at x1, x2, · · · , xn.

You can use a first-order approximations for uxx at x0 and xn+1. Using
these with the result from part (a), what is the resulting approximation
for V ? In doing this, remember that u0 = un+1 = 0.

(c) What is the resulting matrix equation that must be solved to find the
minimum for the approximation for V found in part (b)?

(d) The minimum of V from part (b) can be found using the MATLAB
command fminsearch(@V,U), where V is the approximation from part
(b) and U is an n-vector containing a starting guess for (u1, u2, · · · , un)

T .
What would be a good, simple, and nonzero choice for U, and why is it a
good choice? In answering this, it is worth knowing that a cable hanging
between two poles is an elastic beam, subject to gravity.

(e) If EI = 1 and w = x4, then the exact solution is

u =
1

1680
x8 − 1

180
x3 +

5

1008
x.

On the same axis, plot the exact solution and the numerical solution when
using 22 grid points. In doing this, explain how you found the numerical
solution (using part (c) or part (d)), and why.

(f) A simply supported beam is required to satisfy the four boundary con-
ditions: u(0) = 0, u(1) = 0, uxx(0) = 0, and uxx(1) = 0. The numerical
solution was derived without any mention of the last two conditions.
The reason is that they are natural boundary conditions, which means
that if u minimizes V , then it will automatically satisfy uxx(0) = 0
and uxx(1) = 0. In comparison, u(0) = 0 and u(1) = 0 are essential
boundary conditions, which means that we must explicitly require this

394 8 Optimization

of our approximation (see part (b)). So, the question is, does your numer-
ical solution satisfy (approximately) uxx(0) = 0 and uxx(1) = 0. Using
the first-order approximations you used in part (b), from the numeri-
cal solution calculate uxx(0) and uxx(1), using n = 20, 40, 80, 160. Are
your answers consistent with the statement that the minimizer satisfies
uxx(0) = 0 and uxx(1) = 0?

8.29. This problem considers solving Ax = b. The n× n symmetric matrix
A contains zeros except aii = 3, ai,i−2 = ai,i+2 = −1 (see below). Also the
exact solution is x = (1, 1, · · · , 1)T , and so calculate b using the formula
b = Ax.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 −1
0 3 0 −1

−1 0 3 0 −1
−1 0 3 0 −1

. . .
. . .

. . .

−1 0 3 0
−1 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is an example of what is called a penta-diagonal matrix.
(a) Show the matrix is positive definite.
(b) Taking n = 1000 and using the SDM, plot the error, iteration error, and

the residual error as a function of the iteration number (as is done in
Figure 8.19).

(c) Taking n = 1000 and using the CGM, plot the error, iteration error, and
the residual error as a function of the iteration number (as is done in
Figure 8.19).

8.30. This problem considers solving Ax = b. The n× n symmetric matrix
A has elements aii =

1
2n(n+1))+ i(n− i) + 1 and aij = i+ j for i �= j. Also

the exact solution is x = (1, 1, · · · , 1)T , and so calculate b using the formula
b = Ax.
(a) Write out the matrix in the case of when n = 2, n = 3, and n = 4, and

explain why they are all positive definite. It is possible to prove that A
is positive definite for all values of n (you do not need to show this).

(b) Taking n = 1000 and using the SDM, plot the error, iteration error, and
the relative residual error as a function of the iteration number (as is
done in Figure 8.19). Note that the relative residual is ‖r‖/‖b‖.

(c) Taking n = 1000 and using the CGM, plot the error, iteration error, and
the relative residual error as a function of the iteration number (as is
done in Figure 8.19).

8.31. This exercise considers computing the curve that produces a surface
of revolution with minimum area. Given two points (a,A) and (b, B) in the
plane, with a < b and A and B positive, assume that y(x) is a smooth,
positive, function connecting these points. If y(x) is rotated about the x-
axis, the resulting surface has area

Exercises 395

Jan July Jan July Jan
Date

-20

0

20

40
T

em
p

er
at

u
re

Figure 8.34 Temperature data over a two year period, and the cubic spline fit using
least squares as considered in Exercise 8.32 [NCEI, 2015].

S =

∫ b

a

2πy
√
1 + (y′)2dx.

It should be noted that the curve is required to satisfy y(a) = A and y(b) = B.
Also, unlike the brachistochrone problem, y(x) does not have a singularity
(at either end).
(a) Suppose the grid points are x0 = 0, x1 = h, x2 = 2h, · · · , xn+1 = 1,

where h = 1/(n+ 1). Writing S =
∫ 1

0
F (x)dx, write down the composite

trapezoidal approximation for S.
(b) Use a centered second-order approximation for y′ at x1, x2, · · · , xn, and

a first-order approximation for y′ at x0 and xn+1. Using these with the
result from part (a), what is the resulting approximation for S?

(c) The minimum of S from part (b) can be found using the MATLAB
command fminsearch(@S,Y), where S is the approximation from part
(b) and Y is an n-vector containing a starting guess for (y1, y2, · · · , yn)T .
What would be a good, simple, and nonzero choice for Y, and why is it
a good choice?

(d) Taking a = 0, A = 1, b = 1, and B = 3, plot the numerical solution for
y(x) for n = 4, n = 9, and n = 19.

(e) In calculus it is shown that the curve producing the minimum area is
y = (1/α)cosh(αx+ β), where α and β are determined from the require-
ments that y(a) = A and y(b) = B. Determine the nonlinear equations
that must be solved to find α and β. Discuss the numerical difficulties
associated with solving these equations, compared to the direct solution
in parts (a)–(c).
Note: The minimal surface problem has some interesting mathematical
complications, and for more about this see Oprea [2007].

8.32. This exercise considers using a cubic spline as the model function when
using least squares. An example of this is shown in Figure 8.34. Assume the
data points are (x1, y1), (x2, y2), · · · , (xn, yn). These are going to be fitted
with the cubic spline function

396 8 Optimization

x 1 48 94 144 193 242 286 334 382 430 474 532 592 651 715

y -5.6 -5 10.6 17.2 25 27.2 17.2 6.1 -4.3 -3.3 23.3 22.8 31.7 25.6 12.8

Table 8.12 Temperature data for Exercise 8.32(c) [NCEI, 2015]. Note, x is measured
in days, with x = 1 corresponding to January 1, and x = 715 corresponding to
December 15 of the following year.

s(x) =

m+1∑
j=0

ajBj(x),

where Bj(x) is given in (5.22). The nodes for the B-splines are assumed to
be x̄1, x̄2, · · · , x̄m, where the x̄j ’s are equally spaced between x̄1 and x̄m.
Note that in (5.22), h is the spacing between the x̄j points. In this exercise,
m is taken to be given, and then least squares is used to determine the aj ’s.
Also, the reason for including j = 0 and j = m + 1 in the sum is explained
in Section 5.4.1.
(a) Show that to obtain the minimum of the error function

E(a0, a1, · · · , am+1) =

n∑
i=1

[s(xi)− yi]
2

one needs to solve Ca = d, where a = (a0, a1, · · · , am+1)
T , C = BBT ,

d = By, y = (y1, y2, · · · , yn)T , and B is a (m + 2) × n matrix. In
particular, the (�, k) entry of B is B�−1(xk).

(b) What value should you take for x̄1? What about x̄m?
(c) Taking m = 3, compute the aj ’s using the data in Table 8.12. With this,

plot s(x) and the data on the same axis, for 1 ≤ x ≤ 715. Also, compute
||C||∞ and comment on whether the matrix is ill-conditioned.

(d) Redo part (c), but take m = 4, m = 5, m = 6, and m = 13.
(e) Based on your results from parts (c) and (d), for a data set with n

points, what do you recommend to use for m? In answering this, keep in
mind that the model function should be capable of reproducing the more
significant trends in the data, as well as provide a reasonable approxima-
tion over the entire interval. For example, the data in Table 8.12 comes
from the same location, and time interval, as the data in Figure 8.34.
Consequently, your recommendation using the data from Table 8.12 to
determine s(x) should result in a model function that does well with the
data in Figure 8.34.

Chapter 9

Data Analysis

9.1 Introduction

In this chapter we consider a problem we have examined in earlier chapters,
which is how to derive information from data. This was central to Chapter 5,
when we derived interpolation formulas, and also in Chapter 8, where we
investigated ways to use linear and nonlinear regression. In this chapter, four
different situations are considered. The first three have a lot in common, and
are examples illustrating the usefulness of the singular value decomposition
(SVD) in data analysis. The SVD is explained in Section 4.5. These three
methods also make use of the regression material covered in Section 8.2. The
fourth method relates to what is sometimes called causal data, which means
that there is an underlying mathematical model to explain the observed be-
havior, but it is necessary to fit the model to the data. This is similar to the
regression problem, but in this case the model function comes from equations
derived elsewhere, such as Newton’s laws of mechanics, or Maxwell’s equa-
tions of electrodynamics. This material will rely heavily on Section 5.4.1,
which means cubic B-splines, and it uses the RK4 method, which is derived
in Section 7.5.

9.2 Principal Component Analysis

The goal is to have a method that can be used to find connections between
experimentally determined quantities, even though there is no obvious rea-
son why they have to be connected. It is easiest to explain this using an
example. In addition to introducing how the SVD can be used to find the
connections, it will also show how the method overlaps with the regression
material considered in the last chapter.

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0 9

397

398 9 Data Analysis

word L W X Y x y

bag 3 223 −3 117.70 −0.6 0.766

across 6 117 0 11.70 0.0 0.076

if 2 101 −4 −4.30 −0.8 −0.028

insane 6 40 0 −65.30 0.0 −0.425

by 2 217 −4 111.70 −0.8 0.727

detective 9 41 3 −64.30 0.6 −0.418

relief 6 153 0 47.70 0.0 0.310

slope 5 87 −1 −18.30 −0.2 −0.119

scoundrel 9 4 3 −101.30 0.6 −0.659

look 4 212 −2 106.70 −0.4 0.694

neither 7 51 1 −54.30 0.2 −0.353

pretentious 11 70 5 −35.30 1.0 −0.230

solid 5 259 −1 153.70 −0.2 1.000

gone 4 90 −2 −15.30 −0.4 −0.100

fun 3 78 −3 −27.30 −0.6 −0.178

therefore 9 13 3 −92.30 0.6 −0.601

generality 10 22 4 −83.30 0.8 −0.542

month 5 57 −1 −48.30 −0.2 −0.314

blot 4 185 −2 79.70 −0.4 0.519

infectious 10 86 4 −19.30 0.8 −0.126

Table 9.1 Number, L, of letters in a word, and the number, W , of words appearing
in its definition in a dictionary. Also, X , Y are the centered values, and x, y are the
scaled values.

9.2.1 Example: Word Length

The question considered is, is there a connection between the length of a word
and how many words are used in its definition in the dictionary. Some sample
data are given in Table 9.1, which were obtained from the Merriam-Webster
Dictionary. We are going to see if there is a linear relationship between these
values. In particular, if L is the number of letters in a word, and W is the
number of words in its definition, we want to fit

W = αL + β (9.1)

9.2 Principal Component Analysis 399

to the data. This brings up the first observation about this problem, which is
that writing the formula this way implies that L is the independent variable
and W is the dependent variable. The idea of independent and dependent is
almost arbitrary here, and we could just as well have written

L = aW + b. (9.2)

Mathematically these two formulas are equivalent, with α = 1/a and
β = −b/a. However, as explain in Section 8.3.3, traditional linear least
squares applied to (9.1) will not produce equivalent coefficients to the values
obtained when it is applied to (9.2). A way to avoid this is to use orthogo-
nal regression, which uses the true distance between the point and line (see
Figure 8.5). Not thinking too hard about this, and using the linear relation-
ship in (9.1), one might claim that the error function is (see Section 8.3.3)

E(α, β) =
1

1 + α2

n∑
i=1

(αLi + β −Wi)
2. (9.3)

There are two complications with this, and how these are resolved are as
follows:

Center the Data

The first issue concerns finding the minimizer of the above error function.
Even for this rather simple two variable problem, finding the minimum of
E requires solving a cubic. One way to avoid this is to center the data
values using their mean, or average, values. In particular, letting

L =
1

n

n∑
i=1

Li and W =
1

n

n∑
i=1

Wi, (9.4)

then the centered data values are computed using the formulas

Xi = Li − L and Yi = Wi −W. (9.5)

The resulting data values are given in Table 9.1. The significance of this
step is that instead of the more general linear equation in (9.1), it is
possible to now assume that

Y = αX. (9.6)

One reason this is possible is that, for it to hold, it is necessary that∑
Yi = α

∑
Xi. This applies to our centered data because

∑
Yi = 0 and∑

Xi = 0. Moreover, as will be shown shortly, using this model function
it is possible to find the minimizer rather easily.

400 9 Data Analysis

Scale Data

The second complication with (9.3) concerns the differences in the dimen-
sional units, and magnitudes, of the variables. The solution is to scale each
variable using a characteristic value for that variable. Letting Xc and Yc

be characteristic values for X and Y , respectively, then the scaled data
are obtained from the formulas

xi = Xi/Xc and yi = Yi/Yc. (9.7)

There are various ways to pick Xc and Yc, and these will be considered
later. For this example we will pick the largest entry, in absolute value, for
each variable. This means we will take Xc = 5 and Yc = 153.7.

Based on the above adjustments, we will fit the line y = αx to the data
values (xi, yi), using the error function

E(α) =
1

1 + α2

n∑
i=1

(αxi − yi)
2. (9.8)

Taking the derivative of this expression, and setting it to zero, one finds that
α satisfies α2 + λα− 1 = 0, where

λ =

∑
(x2

i − y2i)∑
xiyi

. (9.9)

The conclusion is that

α =
1

2

(
−λ±

√
λ2 + 4

)
, (9.10)

where the + is used if
∑

xiyi > 0 and the − is used if
∑

xiyi < 0. It is
also apparent that this conclusion requires that the normalized data vectors
x and y not be orthogonal (since x · y =

∑
xiyi).

Converting the answer back into the original variables used to introduce
the example, we have the formula

W = W +m(L− L), (9.11)

where the slope is m = αYc/Xc. The resulting linear fit to this data is shown
in Figure 9.1.

What is rather surprising is that the linear fit obtained by minimizing
the modified error function (9.8) can also be found using the singular value
decomposition (SVD) of the transformed data matrix. To show this, let P be
the 20× 2 normalized data set obtained from the (xi, yi) values in Table 9.1.
From the SVD, as given in Section 4.5.2,

9.2 Principal Component Analysis 401

0 1 2 3 4 5 6 7 8 9 10 11
Number of Letters

0

50

100

150

200

250
N

u
m

b
er

 o
f

W
o

rd
s

Figure 9.1 Linear fit connecting the length of a word and the number of words in
its definition.

P = UΣVT , (9.12)

whereV is a 2×2 orthogonal matrix whose column vectors vi are orthonormal
eigenvectors for PTP, and Σ is a 20× 2 diagonal-like matrix containing the
two singular values σ1 and σ2. The latter are calculated using σi =

√
λi,

where λi is an eigenvalue for PTP and labeled so that λ1 ≥ λ2. Using the
values given in Table 9.1, one finds that σ1 = 2.96, σ2 = 1.42, and

V =

(
0.7694 −0.6388

−0.6388 −0.7694

)
.

-1 0 1
x-axis

-1

0

1

y-
ax

is

v
1

v
2

Figure 9.2 Eigenvectors v1 and v2 obtained using the SVD. Also shown are the
normalized data from Table 9.1 and, by the solid (red) line, the linear fit determined
by minimizing (9.8).

402 9 Data Analysis

The two column vectors v1 and v2 from this matrix, along with the normal-
ized data from Table 9.1, are shown in Figure 9.2. As is immediately evident,
the first vector v1 points in the direction determined by the linear fit, while
the second column points in a direction orthogonal to the first. In other
words, by using the first column from the matrix V we can solve the linear
fit problem. As will be shown next, this is not a coincidence.

9.2.2 Principal Component Decomposition

It is assumed that there are m variables, or quantities, q1, q2, · · · , qm under
consideration. Also, there are n observations, or data points, for these vari-
ables. These will be denoted as q1, q2, · · · , qn, where each qi is an m-vector.
Letting qi = (qi1, qi2, · · · , qim), then qij is the value of qj for the ith data
point. This generates an n×m data matrix as illustrated in Table 9.2.

Before using a PCA, the data needs to be normalized, which involves two
steps. The first is to center the values in each column using the mean value
for that column. The resulting matrix entries are Qij = qij − qj , where

qj =
1

n

n∑
i=1

qij

is the mean of the jth column. The second step is to scale the values in each
column using a characteristic value for that column. The result is

pij =
Qij

Sj
,

where Sj is a characteristic value for the jth column. In the word length
example, we used the maximum entry in the jth column, in absolute value,
for Sj . However, there are various choices one can take for Sj , and these will
be discussed later.

q1 q2 · · · qm p1 p2 · · · pm

q1 q11 q12 · · · q1m p1 p11 p12 · · · p1m

q2 q21 q22 · · · q2m p2 p21 p22 · · · p2m

...
...

...
...

...
...

...
...

qn qn1 qn2 · · · qnm pn pn1 pn2 · · · pnm

Table 9.2 Original data matrix on the left, and its normalized version on the right.

9.2 Principal Component Analysis 403

Linear Approximation

We want to determine the best linear fit of the normalized data. What this
means requires some explanation because of the multivariable nature of the
data. In using a PCA, with m variables, setting p = (p1, p2, · · · , pm)T , one
needs to select one of the following linear functions:

p = α1v1, (9.13)

p = α1v1 + α2v2, (9.14)

p = α1v1 + α2v2 + α3v3,

...
...

p = α1v1 + α2v2 + · · ·+ αm−1vm−1. (9.15)

The data fitting that is part of a PCA is used to find the direction vectors vj

in the above expressions. It is assumed that the vj ’s are m-vectors that have
unit length, and they are mutually orthogonal. The first choice (9.13) can be
interpreted as a line and (9.15) is an example of what is called a hyperplane,
but geometrical interpretations for the others is not as obvious. For this
reason, they are referred to by their dimensionality. So, (9.13) corresponds to
a one-dimensional approximation, (9.14) corresponds to a two-dimensional
approximation, etc.

The goal of a PCA is to find the principal directions for the data, and this
is the role of the vj ’s in the above functions. As an example, the data points
shown in the upper plot in Figure 9.3 occupy, approximately, an ellipsoidal
region. If we use (9.13), then the goal of PCA is to find a direction v1 that
points along the main diagonal of this region, which is indicated with the
solid (red) line. Finding this line is a three dimensional regression problem.
Note that in doing this we will be using true distance between the line and
data points (see Section 8.2.2).

Now, suppose the two dimensional approximation in (9.14) is used with the
data in Figure 9.3. As in the one dimensional case, the vector v1 is required
to identify the principal direction for the data, and so it points along the solid
(red) line. To determine v2, in the lower plot in Figure 9.3 the data points
are plotted in a plane perpendicular to the red line (the origin in this plot is
a point on the red line). This is what you would see, for example, if you were
to look at the data in the direction of the red line. The vector v2 is required
to point in the principal direction of this data, which means that it points in
the direction determined by the dashed (black) line.

Error Function

This brings us to the next step, which is to determine the formula for the
error. So, suppose we pick the one-dimensional approximation (9.13). The
error will be based on the distance between the data points and this line. To

404 9 Data Analysis

1
0

x
-1-1

y

0
1

0

-1

1

z

-0.5 0 0.5
-0.5

0

0.5

Figure 9.3 Example data set in the case of three variables. The upper plot is the
data in three dimensions, and the lower plot is the data projected onto a plane that
is perpendicular to the solid (red) line shown in the upper plot.

determine this, the distance between a point on the line and a data point pi is
di = ||α1v1 −pi||2. The distance di between pi and the line is, by definition,
the smallest value of d̄i. Taking the derivative of di with respect to α1, and
setting it to zero, one finds that the distance is

di =
√
pi · pi − (pi · v1)2 .

We are looking for the least squares error, and so the resulting error function
obtain using the entire data set is

E1 =
n∑

i=1

d2i

=

n∑
i=1

[
pi · pi − (pi · v1)

2
]
. (9.16)

We will look for a vector v1 that minimizes this function under the constraint
that ||v1||2 = 1.

9.2 Principal Component Analysis 405

As a second example, suppose one picks the two-dimensional approxima-
tion (9.14). The distance between a point in this region and a data point
pi is

di = ||α1v1 + α2v2 − pi||2.
The distance di between the two-dimensional region generated using (9.14)
and pi is the minimum of di. Finding this, and then adding the squares of
these distances for the data points, the resulting error function is

E2 =

n∑
i=1

[
pi · pi − (pi · v1)

2 − (pi · v2)
2
]
. (9.17)

It should be remembered that when finding v1 and v2 which minimize E2,
it is required that ||v1||2 = 1, ||v2||2 = 1, and v1 · v2 = 0.

The formula obtained when using more vj ’s is a straightforward general-
ization of (9.16) and (9.17).

Minimization

We now turn to the problem of minimizing the error function, subject to the
constraint that the vj ’s have unit length. This can be done using the method
of Lagrange multipliers. For the one-dimensional approximation, the function
to minimize is

F (v1, λ1) = E1(v1) + λ1(||v1||22 − 1), (9.18)

where λ1 is the Lagrange multiplier. For the two dimensional approximation
it is

F (v1,v2, λ1, λ2) = E2(v1,v2) + λ1(||v1||22 − 1) + λ2(||v2||22 − 1), (9.19)

where λ1 and λ2 are the Lagrange multipliers.
Finding the minimum is straightforward, but tedious. For (9.18), the first

step is to differentiate F with respect to the components of v1, as well as
λ1, and then set the derivatives to zero. Something similar is done for (9.19).
The details are left as an exercise, and one finds that the vj ’s must satisfy

(PTP)vj = λjvj ,

where P is the n ×m matrix of normalized data values given in Table 9.2.
The conclusion is that vj must be an eigenvector for PTP, and it has corre-
sponding eigenvalue λj . With this, one finds that

n∑
i=1

(pi · vj)
2 = λj .

406 9 Data Analysis

Substituting this into (9.16) we obtain

E1 = −λ1 +

n∑
i=1

(pi · pi) , (9.20)

and from (9.17) we have

E2 = −λ1 − λ2 +

n∑
i=1

(pi · pi) . (9.21)

Therefore, to minimize E1 we should use the eigenvector v1 corresponding to
the largest eigenvalue ofPTP, and to minimize E2 we should use the eigenvec-
tors v1 and v2 corresponding to the largest, and second largest, eigenvalues
of PTP (assuming, for the moment, that there is only one independent eigen-
vector for λ1). Also, note that since PTP is symmetric, the eigenvectors are
orthogonal, as required for the PCA.

This is the point where we need to recall some of the facts about the singu-
lar value decomposition (SVD), which were derived in Section 4.5. The SVD
has the form P = UΣVT , where Σ is a diagonal-like matrix containing the
singular values σi, and V is an orthogonal m×m matrix. Also, the eigenval-
ues λi of P

TP, and the singular values σi for P, are connected through the
formula λi = σ2

i . Second, the columns of the matrixV are the eigenvectors for
PTP. Third, the SVD orders the singular values by size, so σ1 ≥ σ2 ≥ · · · ≥ 0.
Based on this, the smallest value of E1 in (9.16) is obtained when v1 is taken
to be the first column from V. This is because v1 is an eigenvector for the
largest singular value σ1 =

√
λ1, and this produces the smallest value of the

error E1 as given in (9.20). Similarly, to obtain the smallest value of E2, as
given in (9.17), v1 and v2 should be the first two columns of V.

The conclusions of the previous paragraph generalize to the case for higher
order linear approximations, and this is summarized in the following theorem.

Theorem 9.1. Let P be a normalized nonzero n×m data matrix, with m < n.
Also, let the SVD of this matrix be P = UΣVT . Given k, with 1 ≤ k < m,
consider a linear fit of the data of the form

p = α1v1 + α2v2 + · · ·+ αkvk.

The smallest error is obtained when the vectors v1, v2, · · · , vk are chosen to
be the first k columns of V.

In the parlance of the subject, the columns of V are called the principal
components.

Now the more practical question, which is, so what? The easiest way to
answer this is thorough an example.

9.2 Principal Component Analysis 407

Word L W 1908 2008 p1 p2 p3 p4

bag 3 223 0.002 0.003 −0.6 0.766 −0.062 −0.064

across 6 117 0.002 0.003 0.0 0.076 −0.062 −0.064

if 2 101 0.176 0.173 −0.8 −0.028 1.000 1.000

insane 6 40 0.002 0.003 0.0 −0.425 −0.062 −0.064

by 2 217 0.002 0.003 −0.8 0.727 −0.062 −0.064

detective 9 41 0.000 0.001 0.6 −0.418 −0.070 −0.076

relief 6 153 0.002 0.003 0.0 0.310 −0.062 −0.064

slope 5 87 0.002 0.003 −0.2 −0.119 −0.062 −0.064

scoundrel 9 4 0.002 0.003 0.6 −0.659 −0.062 −0.064

look 4 212 0.019 0.028 −0.4 0.694 0.043 0.093

neither 7 51 0.002 0.003 0.2 −0.353 −0.062 −0.064

pretentious 11 70 0.002 0.003 1.0 −0.230 −0.062 −0.064

solid 5 259 0.002 0.003 −0.2 1.000 −0.062 −0.064

gone 4 90 0.011 0.010 −0.4 −0.100 −0.006 −0.020

fun 3 78 0.001 0.003 −0.6 −0.178 −0.067 −0.063

therefore 9 13 0.002 0.003 0.6 −0.601 −0.062 −0.064

generality 10 22 0.002 0.003 0.8 −0.542 −0.062 −0.064

month 5 57 0.008 0.007 −0.2 −0.314 −0.026 −0.038

blot 4 185 0.002 0.003 −0.4 0.519 −0.062 −0.064

infectious 10 86 0.002 0.003 0.8 −0.126 −0.062 −0.064

Table 9.3 Extension of the data given in Table 9.3, where 1908 and 2008 refer to
the relative use of the word in the respective year. The variables p1, p2, p3, and p4
are the respective normalized values of the data.

Example

The word length data in Table 9.1 is expanded in Table 9.3 to include two
new variables. One is the relative number of times the word appeared in print
in 1908, and the other is the number of times for 2008 (both of these numbers
are given in percentages). These were acquired using Google’s ngram program
[Michel et al., 2011]. The last four columns are the normalized values for the
data, which were obtained by first centering each column and then dividing
by the largest value for each variable (in absolute value) in that column.

408 9 Data Analysis

Calculating the SVD of the normalized data matrix, one finds that

V =

⎛
⎜⎜⎝

0.7712 0.3621 0.5236 0.0031
−0.6169 0.6279 0.4744 0.0082
−0.1086 −0.4895 0.4944 0.7100
−0.1134 −0.4848 0.5064 −0.7041

⎞
⎟⎟⎠ .

Also, the means for the four original variables are q1 = 6, q2 = 105.3, q3 =
0.0119, and q4 = 0.0131, and the scaling factors used on the centered data
are S1 = 5, S2 = 153.7, S3 = 0.1641, and S4 = 0.1599, respectively.

1. k = 1

In this case, one selects p = α1v1, where v1 is the vector coming from
the first column of V. Because of the single coefficient α1, what is being
assumed here is that knowing one of the variables, then p = α1v1 can be
used to determine approximate values for the other three. To illustrate,
consider the word “anything,” which has 8 letters. Given the normalization
used in Table 9.3, for this word

p1 =
8− q1
S1

= 0.4.

From the equation p = α1v1 we get that p1 = α1v11. Since v11 = 0.7712,
it then follows that α1 = p1/v11 = 0.5187. From this we obtain the values,
p2 = α1v21 = −0.32, p3 = α1v31 = −0.0564, and p4 = α1v41 = −0.0588.
In original variables, the assumption that p = α1v1 leads us to the con-
clusions that “anything” takes q2 + S2p2 ≈ 56 words in the dictionary,
it appeared in q3 + S3p3 ≈ 0.003% of the printed literature in 1908, and
appeared in q4 + S4p4 ≈ 0.004% in 2008.

2. k = 2

The assumption now is that p = α1v1 + α2v2, where v1 and v2 are the
first two column vectors from V. Again using the word “anything,” it has
8 letters and, using Google’s ngram program, it appeared in 0.0154% of
the printed literature in 1908. As before, p1 = 0.4. Also, p3 = (0.0154 −
q3)/S3 = 0.0212. From the first and third entries in the equation p =
α1v1 + α2v2 we get that

p1 = α1v11 + α2v12

p3 = α1v31 + α2v32.

Substituting in the values for the p’s and v’s, and then solving one finds
that α1 = 0.6017 and α2 = −0.1769. We can now use this information to
find approximations for the other two variables, using the formula pi =
α1vi1 + α2vi2. The conclusions are that the word “anything” takes about
31 words in the dictionary, and that it appeared in 0.016% of the printed
literature in 2008. �

9.2 Principal Component Analysis 409

As demonstrated in the previous example, using a PCA, one or more vari-
ables are used to predict the values of the others. Also, it does not make
any difference which variables are taken to be “known” and which are “pre-
dicted.” The exception to this statement occurs when there is a zero divisor.
For example, when k = 1 in the previous example, if v11 = 0 then the value
of α1 would need to be determined from the second or third component of
v1. Note that it would be concluded in this case that p1 = 0.

Another point to make is that you might have noticed that nothing was
said about how accurate the predictions are. The reason is that there is not
enough data in the example to expect to be able to make accurate predictions.
This is not the case of the next example, which involves crime data reported
by the U.S. Census Bureau. The question of accuracy will be addressed, as
it often is using a PCA, by splitting the data set into a training set, which is
used to find the principal directions, and then a testing set which is used to
test the accuracy of the approximations.

9.2.3 Scaling Factors

One question left unanswered is how to select a characteristic value Sj to scale
the values in the jth column of the centered data matrix. A mathematical
answer to this is to use a vector norm. If cj is the jth column vector from
the centered data matrix, then possibilities are

Sj =
1

n
||cj ||1, Sj =

1√
n
||cj ||2, or Sj = ||cj ||∞.

Each of these is dimensionally consistent with the dimensions of cj .
The multiplicative factors for the first two are there to scale for the size
of the vector. For example, if cj = (c, c, · · · , c)T , with c ≥ 0, then each of
the above scaling factors yield Sj = c. Also, note that in the word length
example, the ∞-norm choice was used for the scaling.

In applications, other choices are often used. One is autoscaling, and the
formula is

Sj =
1√
n− 1

||cj ||2 .

This is used in statistical applications because it corresponds to the standard
deviation for the column. Another choice that is sometimes used comes from
the difference between the largest and smallest entries in the uncentered data
column, which results in the formula Sj = maxi qij −mini qij . This is called
range scaling.

Whatever choice is made, it is essential that Sj have the same dimensions
as the values appearing in the jth column. Not unexpectedly, the choice can

410 9 Data Analysis

have an affect on the final answer. This is because different scalings produce
different error functions, and, as illustrated in Figure 8.9, this will likely affect
the value of the minimizer. A discussion of various ways to scale data, as well
as other aspects of the normalization process, can be found in van den Berg
et al. [2006] and Parente and Sutherland [2013].

9.2.4 Application: Crime Data

To illustrate how a PCA can be used, consider the major crime rates for the
larger cities in the U.S. A portion of the dataset is shown in Table 9.4. In
total there are 105 cities (note that three cities in the original dataset were
removed because their data were incomplete). We will use this data and a
PCA to see what connections there might be between the different crime
rates. This will be done by splitting the data into two sets, one will be the
training set and the other the testing set. The PCA will be carried out on
the training set, and we will then see how well this does in predicting the
data values for the cities in the testing set. For the training set we will use
every other row in the dataset, which means using the data for New York,
Houston, etc. The testing dataset will consist of those left out, which means
Los Angeles, Phoenix, etc. Also, the normalization is determined using the
training set, and for this example the 2-norm scaling given in the previous
section will be used.

One Dimensional Approximation

The first question is, can one of the crime rates be used to estimate the other
rates (as well as the population). For the training set, the singular values are
σ1 = 18.8, σ2 = 5.42, σ3 = 4.28, σ4 = 3.16, σ5 = 1.60, σ6 = 1.28, σ7 = 0.651,
and σ8 = 0.184. Also, the first column of V is

v1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.2116
−0.2961
−0.3616
−0.4760
−0.3101
−0.3915
−0.3878
−0.3323

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

9.2 Principal Component Analysis 411

C
it
y

P
o
p
u
la
ti
o
n
M
u
rd

er
R
a
p
e
R
o
b
b
er
y
A
ss
a
u
lt

B
u
rg
la
ry

L
a
rc
en

y
V
eh

ic
le

T
h
ef
t

N
ew

Y
o
rk
,
N
Y

8
4
0
0
9
0
7

4
6
3
5
7

4
7
1

8
3
2

1
8
5
9
7

1
4
2
0
0
0

1
8
7
8
0

1
1
2
5
2
6

L
o
s
A
n
g
el
es
,
C
A

3
8
4
8
7
7
6

2
4
0
7
0

3
1
2

9
0
3

1
2
2
1
7

9
4
2
4
0

1
8
4
3
5

5
7
4
1
4

H
o
u
st
o
n
,
T
X

2
2
7
3
7
7
1

2
5
5
9
3

2
8
7

8
2
3

1
1
3
6
7

1
2
0
9
3
3

2
9
2
7
9

7
7
0
5
8

P
h
o
en

ix
,
A
Z

1
5
9
7
3
9
7

8
7
3
0

1
2
2

5
2
2

3
7
5
7

6
5
6
1
7

1
6
2
8
1

3
9
6
4
3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

F
re
m
o
n
t,

C
A

2
0
2
7
1
4

4
9
0

2
3
4

2
3
7

4
9
7
8

1
1
9
0

3
2
3
7

Ir
v
in
g
,
T
X

2
0
2
4
4
7

6
0
4

4
3
4

3
5
2

8
4
2
7

1
9
1
3

5
7
3
0

Y
o
n
k
er
s,

N
Y

2
0
2
1
9
2

9
6
5

8
3
6

4
4
6

3
1
4
5

6
2
0

2
1
8
2

T
a
b
le

9
.4

C
ri
m
e
d
a
ta

ra
te
s
fo
r
1
0
5

o
f
th

e
la
rg
es
t
ci
ti
es

in
th

e
U
.S
.
in

2
0
0
9

[U
.S
.
C
en

su
s
B
u
re
a
u
,
2
0
1
2
].

T
h
e
ra
te
s
a
re

p
er

1
0
0
,0
0
0

p
o
p
u
la
ti
o
n
.
A
ls
o
g
iv
en

is
th

e
p
o
p
u
la
ti
o
n
o
f
th

e
ci
ty
.

412 9 Data Analysis

-1 0 1 2 3
Murder

-1

0

1

2

3

P
o

p
u

la
ti

o
n

-1 0 1 2 3
Murder

-1

0

1

2

3

4

R
o

b
b

er
y

-1 0 1 2 3
Murder

-1

0

1

2

3

4

A
ss

au
lt

-1 0 1 2 3
Murder

-1

0

1

2

3

V
eh

ic
le

Figure 9.4 Using the murder rate to predict the rates of three other crimes and
the population. The line comes from the training set, while the data comes from the
testing set.

According to Theorem 9.1, the line of best fit is p = αv1. The question we
are considering is, given one of the rates (i.e., one of the pi’s), what would
we predict the other rates (and population) are. We will use the murder rate,
which means we will select p2. Since p2 = αv21, then α = p2/v21. From the
equation p = αv1, the best line fits for the other rates (and population) are
pi = aip2, where ai = vi1/v21. The resulting lines, along with the data from
the testing set, are shown in Figure 9.4. It is evident that the murder rate can
be used to predict the assault rate fairly accurately, and it does reasonably
well predicting the population of the city. The predictions for the other two
rates are not quite as good, as there is more scatter in the data.

Seven Dimensional Approximation

We consider a second question, which is given the values for six of the crime
rates and the population, how well can we predict the remaining crime rate?
According to Theorem 9.1, the best fit seven dimensional plane is

p = α1v1 + α2v2 + · · ·+ α7v7.

9.2 Principal Component Analysis 413

This can be written out in matrix form as⎛
⎜⎜⎜⎝

p1
p2
...
p8

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

v11 v12 · · · v17
v21 v22 · · · v27
...

...
...

...
v81 v82 · · · v87

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

α1

α2

...
α7

⎞
⎟⎟⎟⎠ . (9.22)

We want to determine one of the pi’s, given the values for the others. It makes
the mathematical formulas easier to write down if the variable of interest is
p1. In other words, it is assumed that the original data matrix is either written
down, or column swapped, so the first column is the variable of interest here.
With this, and (9.22), we need to find the αi’s in terms of p2, p3, · · · , p8.
This is done by solving the reduced problem

⎛
⎜⎜⎜⎝

p2
p3
...
p8

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

v21 v22 · · · v27
v31 v32 · · · v37
...

...
...

...
v81 v82 · · · v87

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

α1

α2

...
α7

⎞
⎟⎟⎟⎠ .

Writing the solution as αi =
∑8

j=2 aijpj , then the first row from (9.22) can
be written as

p1 = a2p2 + a3p3 + · · ·+ a8p8, (9.23)

where ai =
∑7

i=1 v1jaji. This is the formula we will use to predict the value
of p1 given the value of the other pi’s.

The resulting predictions for the vehicle theft rate, and the predictions
for the murder rate, using the testing data are given in Figure 9.5. In these
graphs, each symbol corresponds to the values for a city in the testing set.

-1 0 1 2 3
Training

-1

0

1

2

3

T
es

ti
n

g

Vehicle

-1 0 1 2 3
Training

-10

0

10

20

30

40

50

T
es

ti
n

g

Murder

Figure 9.5 The testing value versus the value predicted using the training set. The
(red) line is what would be obtained if the testing value and training value are equal.

414 9 Data Analysis

Figure 9.6 Example data set similar to the one shown in Figure 9.3, except now
the three orthogonal vectors determined using a PCA are shown.

The training value for the city is the predicted value using (9.23). For ex-
ample, to determine the predicted vehicle theft rate, the other rates (and
population) for that city are used in (9.23) to calculate p1. The second coor-
dinate of the data points in Figure 9.5 are the known values from the testing
dataset (for that particular crime). So, the better the prediction, the closer
the data points will be to the line, which is what would be obtained if the two
values are equal. What we conclude from this analysis is that it is possible
to accurately predict the vehicle theft rate, but not the murder rate. This
naturally leads to the question as to why this happens. The answer to this
involves complicated social and economic reasons, and outside the prevue of
mathematics. What the mathematics has done is made the connections, or
non-connections, evident. It is up to the disciplinary experts to explain why.

9.2.5 Geometry and Data

The PCA was derived using a regression analysis, and the usefulness of this
was demonstrated in the subsequent examples. However, it is worth consid-
ering what was done geometrically. For this we will use the data shown in
Figure 9.6. The first step, which involved centering, is nothing more than
finding the centroid of the data and then shifting the coordinate system so
this is the origin. The regression step in a PCA is equivalent to rotating the
coordinate system about the origin so it is aligned with the data, with the
first coordinate vector pointing in the longest direction, the second coordinate
pointing in the next longest direction, etc. This is illustrated in Figure 9.6.

9.2 Principal Component Analysis 415

Looking at the procedure geometrically helps identify some of the compli-
cations that might arise using a PCA. The one of most concern involves the
scaling. This is done on each coordinate independently, which is equivalent to
stretching (or contracting) the data points in the respective direction. Math-
ematically, it is possible to select scalings that dramatically distort the data.
Consequently, it’s important to select a scaling that reflects the data under
consideration, and the vector norm based choices discussed in Section 9.2.3
are reasonable choices for this.

A second complication arises when the data form a circular, or spherical,
pattern rather than an elliptical, or ellipsoidal, pattern shown in Figure 9.3.
In such cases there is no longest direction. The PCA procedure works in such
cases, but how it is used needs to be modified to be effective. This situation
arises when the singular values repeat. As an example, suppose that there
are three variables, and the singular values satisfy σ1 = σ2 and σ2 > σ3. The
error, as given in (9.20), would be the same if we pick v1 or v2, and this means
that the line of best fit is not unique. In such a case, the one dimensional
approximation should be avoided and a two dimensional approximation used
instead.

A third issue, with a more practical flavor, concerns the question of how
many data points are needed for a PCA. The mathematical answer is sim-
ple, for a regression problem it is required that m < n. In considering this
question, we begin with two variables, so m = 2. With this, the question is,
how many points in the plane are needed so you can confidently determine
the orientation of the elliptical pattern? The number is unclear, but it is
certainly more than three. If it is assumed that 20 points are enough, then
presumably for larger values of m the number is 10m. This is known as the
“rule of 10,” and it is often used in experimental studies. Further discussion
about such rules, including their limitations, can be found in Costello and
Osborne [2005] and Mei et al. [2008].

9.2.6 Error

The error formulas used to derive Theorem 9.1 are useful enough that they
should be considered in more detail. From (9.20) and (9.21), we found that
the error using v1 is E1 =

∑
pi · pi − σ2

1 , while using v1 and v2 the error
is E2 =

∑
pi · pi − σ2

1 − σ2
2 . Generalizing this, if we use the first k columns

from V, then the error is

Ek =

n∑
i=1

pi · pi −
(
σ2
1 + σ2

2 + · · ·+ σ2
k

)
, (9.24)

416 9 Data Analysis

where the σj ’s are the singular values determined from the SVD for P. It is
reasonable to expect that if all of the columns of V are used, which provide
a basis for the possible p values, then the error is zero. If so, then it must
be that

n∑
i=1

pi · pi =

m∑
j=1

σ2
j .

It is possible to use the SVD of P to prove that this does indeed hold. The
quantity

∑
pi ·pi has different names, depending on the discipline. In statis-

tics it is known as the variance of the normalized data set. In mathematics
it gives rise to what is called the Frobenius norm of a matrix, and this is
defined as

||P||F ≡
√∑

i,j

p2ij =

√√√√ n∑
i=1

pi · pi .

This is an example of a matrix norm that is not induced by a vector norm,
what is referred to in Chapter 3 as an unnatural norm.

What the above formulas show is that the jth column of V contributes an
amount σ2

j to the variance. It also shows that the relative error when using
the first k columns from V is

R(k) =
σ2
k+1 + σ2

k+2 + · · ·+ σ2
m

σ2
1 + σ2

2 + · · ·+ σ2
m

, (9.25)

assuming that 1 ≤ k < m. This is also called the relative residual variance.
The singular values and the relative error (9.25) for the normalized crime

data are given in Figure 9.7. This information can be used to decide on how
many columns (components) to use for a PCA. For example, one recom-
mendation, known as the Guttman-Kaiser criterion, is that the number is
determined by the average 1

m

∑
σj . Specifically, the columns with values of

σ larger than this average are used. For the data shown in Figure 9.7, the
average is 4.42, and so according to the Guttman-Kaiser criterion, the first
two columns should be used. Another recommendation is based on a notice-
able change in the plot of the singular values. This is known as Cattell’s scree
test, and it uses the point where there is a clear drop in the singular values,
or they start to even out (at small values). Applying this to Figure 9.7, one
would again decide on taking the first two columns. Finally, there are those
who use the relative error (9.25), using a criterion of the form R(k) < tol,
where tol is a number chosen somewhere between 0.25 and 0.05. In this case,
from the plot in Figure 9.7, one would take 1 to 2 columns, depending on
the choice for tol. Needless to say, there has been considerable discussion of
this in the research literature, and some insights about this can be found in
Jackson [1993], Peres-Neto et al. [2005], and Josse and Husson [2012].

9.2 Principal Component Analysis 417

9.2.7 Parting Comments

PCA is used in a wide variety of applications, and one reason is that it pro-
vides a relatively simple way to determine connections between variables in
large datasets. As examples, it has been used in magnetic resonance imaging
(MRI) of the brain [Jung et al., 2012; Andersen et al., 1999], for studying tur-
bulent combustion [Parente and Sutherland, 2013], to determine connections
between cancer and gene expression [Khan et al., 2001], for fraud detection
for bodily injury claims in automobile insurance [Brockett et al., 2002], for
assessing energy sustainability of rural communities [Doukas et al., 2012],
and for cosmological tests of general relativity [Hojjati et al., 2012]. There
are also variations on how to compute a PCA, or an approximate PCA. One
of recent interest uses a randomized algorithm, that can be used on very large
data sets, and this is discussed in Rokhlin et al. [2010].

As successful as PCA has been, it is based on a major assumption, which is
that the variables are related through a linear equation. In many problems the
dependence is nonlinear, which limits the use of PCA. For example, suppose
you are interested in the trajectory of a baseball, and your data variables are
speed, position, and time. A PCA study would assume that these variables
are linearly related, where a more appropriate assumption would be that the
speed is determined by the ratio of the relative values for position and time,
which is a nonlinear relationship. A significant effort has been invested in
developing a nonlinear version of PCA, and this falls into the more general

1 2 3 4 5 6 7 8
0

5

10

15

20

S
ig

m
a

1 2 3 4 5 6 7 8
k-axis

0

0.05

0.1

0.15

E
rr

o
r

Figure 9.7 Top: Singular values for the normalized crime data. Bottom: Relative
error (9.25) for the crime data.

418 9 Data Analysis

problem of finding dimensionality reduction methods. There are numerous
versions of this, including isomaps, diffusion maps, Laplacian eigenmaps, etc.
A nice review of some of them, and how well they work, can be found in
van der Maaten et al. [2009] and Burges [2010].

As a final comment, PCA is used extensively in statistics, which is a subject
not considered in this text. For those who might be interested in the statistical
implications of PCA, the word length example was based on a similar example
considered in Abdi and Williams [2010]. They concentrate on the statistical
applications, which includes correlations, statistical inference and confidence
intervals, and it should be consulted to learn more about this.

9.3 Independent Component Analysis

To introduce the idea considered next, consider the situation of microphones
recording sounds from multiple sources. Because the microphones are placed
at different distances and angles from the sources, what they record will
differ. The question is, from nothing more than what is recorded by each
microphone, it is possible to separate out the independent sources (compo-
nents) contributing to the sound record? This is an example of what is called
a blind source separation problem.

As a simple example of what is being considered, suppose there are two
sources, S1 and S2, and they are emitting the waves shown in Figure 9.8.
There are also two microphones M1 and M2. It is assumed that the signals

0 2 4 6 8 10

S
1

-a
xi

s

-1

0

1

t-axis
0 2 4 6 8 10

S
2

-a
xi

s

-1

0

1

Figure 9.8 Waves being emitted by sources S1 and S2.

9.3 Independent Component Analysis 419

0 2 4 6 8 10

M
1

-a
xi

s

-5

0

5

t-axis
0 2 4 6 8 10

M
2

-a
xi

s

-5

0

5

Figure 9.9 Waves recorded by microphones M1 and M2.

they record are M1 = 2S1 + S2 and M2 = 3S1 − 2S2, which produce the
curves shown in Figure 9.9. So, the question is, given the data in Figure 9.9,
how close can we come to reproducing the source data in Figure 9.8.

To answer this, we will make several assumptions. The first is that the
recorded, or observed, data is determined linearly from the source values.
In the case of two sources, s1 and s2, and two recorders, x1 and x2, it is
assumed that

x1 = a11s1 + a12s2 (9.26)

x2 = a21s1 + a22s2.

Written this way, the problem is to determine the aij ’s and sj’s from the
measured values of the xi’s. Given that there are six unknowns, and only
two equations, it is apparent that the solution is not unique. Nevertheless,
it is possible to derive useful information from this analysis, and this will be
apparent later, after we complete the derivation of the method.

A few comments are needed before continuing. First, for the time series
data in Figure 9.9, it is assumed that the same coefficients aij are used at
each time point (i.e., they do not change with t). Also, note that we are using
the same number of recorders as sources, and this will play an important role
later. Finally, our solution will come close to determining the sources, but it
will not be able to determine which is which (i.e., which one is s1 and which
is s2).

420 9 Data Analysis

9.3.1 Derivation of Method

The general form for the data set is given in Table 9.5. The assumption we are
making is that at each t = ti, the recorded and source signals are connected
as in (9.26). This can be written in matrix form as

xi = Asi , (9.27)

where A is called the mixing matrix and it is assumed to be invertible. Note
that in writing the equation this way, the problem is not limited to two
recorders. In fact, in deriving the method, it’s assumed there are m sources
and m recorders. Consequently, si = (si1, si2, · · · , sim)T is the m-vector con-
taining the values of the sources at time ti, xi = (xi1, xi2, · · · , xim)T is the
m-vector containing the observed values at time ti, and the mixing matrix is
m×m.

The objective is to find A using the xi’s. In the derivation to follow, at
least at the beginning, this will be done using all of the data values. However,
as the method unfolds, it will become evident that only a subset of the data
values are needed to find A. This is important because the data sets that
arise in applications can be enormous, and finding the mixing matrix using
the entire data set is essentially impossible from a computational point of
view.

As was done for a PCA, the data will be centered by letting x∗
i = xi−xM ,

where

xM =
1

n

n∑
i=1

xi.

With this, (9.27) takes the form

x∗
i = As∗i , (9.28)

where s∗i = si − sM and xM = AsM . Note that because A is invertible, it
follows that

1

n

n∑
i=1

s∗i = 0. (9.29)

In other words, the centered sources have zero mean.
The data values are also going to be scaled, but not in the straightfor-

ward method used for PCA. To explain what this is, the solution is going
to be found using a singular value decomposition (SVD). As described in
Section 4.5.2, a SVD involves the eigenvalues and eigenvectors of a matrix
of the form AAT . This will require us to consider the matrices x∗(x∗)T and
s∗(s∗)T , which are called outer products. For those who might not remember
what these are, given a vector x = (x1, x2, · · · , xm)T , the outer product is

9.3 Independent Component Analysis 421

x1 x2 · · · xm x∗
1 x∗

2 · · · x∗
m

t1 x1 x11 x12 · · · x1m x∗
1 x∗

11 x∗
12 · · · x∗

1m

t2 x2 x21 x22 · · · x2m x∗
2 x∗

21 x∗
22 · · · x∗

2m

...
...

...
...

...
...

...
...

...

tn xn xn1 xn2 · · · xnm x∗
n x∗

n1 x∗
n2 · · · x∗

nm

Table 9.5 Original time series data for x1, x2, · · · , xm on the left, and their centered
values x∗

1 , x
∗
2 , · · · , x∗

m on the right.

xxT ≡

⎛
⎜⎜⎜⎝

x2
1 x1x2 x1x3 · · · x1xm

x1x2 x2
2 x2x3 · · · x2xm

...
...

...
...

x1xm x2xm x3xm · · · x2
m

⎞
⎟⎟⎟⎠ .

Also, as mentioned earlier, the solution of our problem is not unique, and one
way to see this is that (9.28) can be rewritten as

x∗ = (AC−1)(Cs∗),

where C is an arbitrary invertible matrix. What this means is that if A and
s∗ is claimed to be a solution, then so is AC−1 and Cs∗. Among the various
solutions possible for this problem we will look for one that scales so that

1

n

n∑
i=1

s∗i (s
∗
i)

T = I, (9.30)

where I is the m ×m identity matrix. The practical reason for making this
assumption is that it will enable us to find a solution. In statistics this is
referred to as whitening the source data, and it has the effect of removing
the correlations in the input. Finally, given a data set, it is not difficult to
whiten it, and the steps involved are outlined in Exercise 9.3.

Assuming there are m sources, and m recorders, then using a SVD (Sec-
tion 4.5.2), it is possible to write

A = UΣVT ,

where U is an m×m orthogonal matrix, V is an m×m orthogonal matrix,
and Σ is an m × m diagonal matrix. This would seem to make solving the
problem more difficult because instead of finding one matrix, we are now
looking for three. However, note that from (9.28),

422 9 Data Analysis

1

n

n∑
i=1

x∗
i (x

∗
i)

T =
1

n

n∑
i=1

(As∗i)(As∗i)
T

=
1

n

n∑
i=1

A(s∗i)(s
∗
i)

TAT

= A

(
1

n

n∑
i=1

s∗i (s
∗
i)

T

)
AT

= (UΣVT)(UΣVT)T

= UΣ2UT . (9.31)

Now, each outer product x∗
i (x

∗
i)

T is a symmetric matrix, which means the
left hand side of the above equation is a symmetric matrix. It is also possible
to show that its eigenvalues are never negative, which means it is a positive
semidefinite matrix. Therefore, according to Theorem 4.7 (Section 4.5.2), it
has a SVD of the form

1

n

n∑
i=1

x∗
i (x

∗
i)

T = QDQT , (9.32)

where D is a diagonal matrix with non-negative entries, and Q is an orthogo-
nal matrix. It is also possible to assume that Q is a proper orthogonal matrix,
which means that it corresponds geometrically to a rotation.

It is important to note that both D and Q are known, or determinable,
from the data. Comparing (9.31) and (9.32), it is seen that we are able to
determine two of the matrices in the SVD for A. Namely, we can take U = Q
and Σ = D1/2. In this last expression, since D is a diagonal matrix with
diagonals di, then D1/2 is a diagonal matrix with diagonals

√
di. We are

going to need D to be invertible, and so the data must be such that the di’s
are positive. According to Theorem 4.8, this is true if the columns of the
normalized data matrix are independent, which means that the matrix has
rank m (see Exercise 9.7).

The outer product sum in (9.32) plays a central role in the analysis, and
it can be expressed in different ways. To explain, let X∗ denote the n × m
centered data matrix (see Table 9.5). It is not hard to show that

1

n

n∑
i=1

x∗
i (x

∗
i)

T =
1

n
X∗(X∗)T . (9.33)

The right hand side of the above equation is known as the covariance matrix
of X∗. Another useful formula that comes directly from the above equation is

9.3 Independent Component Analysis 423

1

n

n∑
i=1

x∗
i (x

∗
i)

T =
1

n

⎛
⎜⎜⎜⎝

c∗1 · c∗1 c∗1 · c∗2 c∗1 · c∗3 · · · c∗1 · c∗m
c∗2 · c∗1 c∗2 · c∗2 c∗2 · c∗3 · · · c∗2 · c∗m

...
...

...
...

c∗m · c∗1 c∗m · c∗2 c∗m · c∗3 · · · c∗m · c∗m

⎞
⎟⎟⎟⎠ , (9.34)

where c∗1, c∗2, · · · , and c∗m are the n-vectors coming from them columns ofX∗.
In linear algebra the above matrix is referred to as a Gram matrix. Although
(9.34) looks more cumbersome than the formula in (9.33), it is actually more
useful when computing the covariance matrix. Specifically, because of the
symmetry of the matrix, it is only necessary to compute the entries on, and
above, the diagonal. For larger data sets, this reduces the computing time by
about half, and this is explored in Exercise 9.8.

9.3.2 Reduced Problem

What we have been able to establish, so far, is that the mixing matrix A in
(9.27) has the form

A = QD1/2VT . (9.35)

In other words, the solution of the problem can be written as

s∗i = Vy∗
i , (9.36)

where y∗
i = D−1/2QTx∗

i . In terms of the original variables, the solution is

si = Wxi, (9.37)

where W = VD−1/2QT is known as the unmixing matrix. What is left to do
is determine the orthogonal matrix V.

To help explain how V is determined, consider the original two source
example shown in Figure 9.9. Becausem = 2, and the matrixV is orthogonal,
it is possible to write

V =

(
cos θ − sin θ
sin θ cos θ

)
. (9.38)

Geometrically, V corresponds to a counter-clockwise rotation through an an-
gle θ. This is useful to know, and to explain, in Figure 9.10, the experimental
values for s∗i are plotted in the (s∗1, s∗2)-plane, and the experimental values
for y∗

i are plotted in the (y∗1 , y
∗
2)-plane. Note that the s∗i values have been

whitened, which means they have been normalized so they satisfy (9.30). Ac-
cording to (9.36), the problem of finding V means we are looking for an angle
that will rotate the y∗

i data in Figure 9.10 so they will approximate the s∗i
data. Looking at the y∗ data region, it appears that a rotation of 20◦ to 30◦

will align it with the s∗ region. It is also apparent there are four solutions,

424 9 Data Analysis

s1 -axis

s 2
 -

ax
is

-2 0 2
-2

-1

0

1

2

y1 -axis

y 2
 -

ax
is

-2 0 2
-2

-1

0

1

2

Figure 9.10 On the left the experimental values of s∗i are plotted, and on the left
the experimental values for y∗

i are plotted.

and they differ by approximately 90◦ from each other. A second useful ob-
servation coming from Figure 9.10 is that if the data regions happen to be
circular, rather than square, then there is no rotation for the y∗

i ’s that will
provide the best fit. In statistics, circular data patterns arise with Gaussian
distributions, and avoiding these will play a central role in finding V.

9.3.3 Contrast Function

The matrix V is found by introducing what is called a contrast function,
which serves a similar purpose to the error function in regression. Before
doing this, it is worth first determining what angle produces the best fit
(so we will know if the contrast function is successful in finding it). This
requires a measure of how different, or similar, the computed values for the
sources are compared to the original values. To explore this idea, some of the
possible solutions obtained from (9.36) and (9.38), for particular values of
θ, are shown in Figure 9.11. The original source curves are also shown. One
way to measure how close the dashed and solid curves are in this figure is to
use the area between them (the closer they are, the smaller the area). This is
easy to compute, and the result is shown in Figure 9.12 (see Exercise 6.25 for
the specifics on how this is done). Locating the minimum for this curve, the
conclusion is that the best fit occurs when θ ≈ 0.63π, and the corresponding
solution is shown in the lower row in Figure 9.11. The third row in the figure
corresponds to the angle producing the maximum area in Figure 9.12.

The reason for introducing a contrast function is to find the optimal angle.
What makes the problem so challenging is that the minimum error must be
determined without knowing the si’s. Just so its clear, the area between the
curves, which is used to produce Figure 9.12, can not be used as a contrast
function, because it requires knowing the si’s.

9.3 Independent Component Analysis 425

Kurtosis

The ICA method was originally developed as a statistical tool for data anal-
ysis, and the assumption central in the development is that the sources are
independent. More precisely, they are described using independent probabil-
ity distributions. This can be achieved if the distributions are non-Gaussian.
As a measure of how Gaussian they are, the kurtosis is used. For a single dis-
tribution s∗, that satisfies (9.29) and (9.30), the kurtosis is computed using
the formula

κ =
1

n

n∑
i=1

(s∗i)
4 − 3.

If s∗ is Gaussian, the exact value for the kurtosis is κ = 0. For the ICA we
want s∗ to be as non-Gaussian as possible, and so the goal is to find a solution
which produces a kurtosis value that is as far away from zero as possible. In
other words, we need to find a solution which maximizes |κ| or κ2.

The complication for ICA is that there are multiple sources, and this means
the measure of non-Gaussianity must be generalized. One possibility for a

0 5 10
-2

0

2
s1

0 5 10
-2

0

2
s2

0 5 10
-2

0

2

0 5 10
-2

0

2

0 5 10
-2

0

2

0 5 10
-2

0

2

t-axis
0 5 10

-2

0

2

t-axis
0 5 10

-2

0

2

Figure 9.11 The solid (red) curves are the values for s∗i obtained from (9.36) and
(9.38) for four different values of θ. The dashed (blue) curves are the original sources
used to generate the data. For each row, starting at the top, θ = π/3, π, 5π/3, and
0.63π.

426 9 Data Analysis

Theta
0 π/2 π 3π/2 2π

A
re

a

5

10

15

20

25

30

35

Figure 9.12 The area between the computed and actual source curves, as a function
of the angle θ in (9.38).

contrast function is to simply add the functions together. Assuming there
are m sources, then the result is

K =
m∑
j=1

|κj |, (9.39)

where

κj =
1

n

n∑
i=1

(s∗ij)
4 − 3, (9.40)

and s∗i = (s∗i1, s
∗
i2, · · · , s∗im). The requirement is that, after substituting (9.36)

into this expression, that V maximizes K. For the case of when m = 2,
(9.39) is

K(θ) = |κ1|+ |κ2|, (9.41)

where

κ1 =
1

n

n∑
i=1

(y∗i1 cos θ − y∗i2 sin θ)
4 − 3, (9.42)

κ2 =
1

n

n∑
i=1

(y∗i1 sin θ + y∗i2 cos θ)
4 − 3, (9.43)

and y∗
i = (y∗i1, y

∗
i2)

T . The connection between y∗
i and the source data is given

in (9.36).
As an example, K is plotted in Figure 9.13, using the data from Figure 9.9.

There are four maximum points, corresponding to the values θ1 = 0.434,
θ2 = 2.01, θ3 = 3.58, and θ4 = 5.15. The corresponding solutions for the
sources are shown in Figure 9.14. Note that the respective curves for s1,
and for s2, differ only by a multiple of −1, and for the ICA method they
are equivalent. Also note that θ2 is very close to the value obtained earlier
using the area between the curves, which found that the optimal solution is

9.3 Independent Component Analysis 427

θ-axis
0 π/2 π 3π/2 2π

K
 -

ax
is

1.5

2

2.5

3

Figure 9.13 Function K, given in (9.41), plotted over the interval 0 ≤ θ ≤ 2π, using
the data from Figure 9.9.

θ = 0.63π ≈ 1.977. As a final comment, finding four solutions is consistent
with our earlier observation that there are four rotation angles in Figure 9.10.

0 5 10
-2

0

2
s1

0 5 10
-2

0

2
s2

0 5 10
-2

0

2

0 5 10
-2

0

2

0 5 10
-2

0

2

0 5 10
-2

0

2

t-axis
0 5 10

-2

0

2

t-axis
0 5 10

-2

0

2

Figure 9.14 Solutions obtained for the four values for θ that maximize K, solid
(red) curves, and the original signals from Figure 9.8, dashed (blue) curves.

428 9 Data Analysis

Reduced Data Set

In the above example, n = 6000 and all of the x∗
i data points were used to find

the mixing matrix A. The computationally expensive step in the derivation
involves computing

∑
x∗
i (x

∗
i)

T . It is possible to obtain a reasonably accu-
rate approximation for this matrix using only a small subset of the data. To
demonstrate this, first note that the order of the y∗

i ’s used to compute the
kurtosis functions (9.41)–(9.43) is not important. In fact, if they are relabeled
in a random order, the value of K is unchanged. So, suppose we randomly
pick N data points. Using these points, the kurtosis function (9.41) can be
evaluated, similar to the situation shown in Figure 9.13. What is of interest
here is the location θ2 of the second maximum, which is the angle produc-
ing the optimal solution. The value of θ2, as a function of N , is shown in
Figure 9.15. This shows that the values of θ2 stabilize once N is 40 or larger.

There have been proposals for how to determine the minimum number of
data points needed. For EEG signals, the assumption that the mixing matrix
is time independent is applicable only over relatively short time periods, and
the concern is that they are able to acquire enough data to carry out an ICA.
The rule of thumb they often use is that one needs at least km2 data points,
where k is a constant between 5 and 32 [Särelä and Vigário, 2003; Onton and
Makeig, 2006; Korats et al., 2013]. The result in Figure 9.15 is consistent with
this, which shows that k should be 10 or larger for this example. However,
for the image separation problem considered later, it appears that k should
be at least 50.

An idea related to using a reduced sample size is known as downsampling.
In this case, instead of using every data point, one uses every other point, or
every third point, or every Kth point. This results in using, approximately,
n/K data points. The difference here is that the recommendation is based
on the number of data points, while the EEG rule is based on the number of
unknowns in the mixing matrix.

150100500
N-axis

0

1

2

3

T
h

et
a

Figure 9.15 Value of the optimal angle as a function of the number N of random
data points used. Shown are the values for a particular case, dashed (red) curve, and
the average using 10 cases, solid (blue) curve.

9.3 Independent Component Analysis 429

Parting Comments

In the case of m sources, the contrast function in (9.41) can be written as
K = ||κ||1, where κ = (κ1, κ2, · · · , κm)T . It is also possible to use K = ||κ||22
or K = ||κ||∞. When using m sources, the orthogonal matrix V contains
1
2m(m−1) independent entries, and these are determined by maximizing the
contrast function. So, an ICA requires solving a multidimensional maximiza-
tion problem, and the methods considered in Chapter 8 can be used in this
case. The fly in the ointment is the contrast function. The kurtosis based
functions considered here have the advantage of simplicity, but it is possible
to find examples where they produce non-optimal answers (i.e., the solutions
they produce are not the best possible). This has been the impetus for finding
better contrast functions, as well as a more refined theoretical explanation
of how they produce optimal solutions. Comprehensive introductions to the
ICA method, which discuss different types of contrast functions, can be found
in Comon and Jutten [2010] and Hyvärinen et al. [2001]. It is also possible to
generalize the method to the problem of having more sources than recorders
(overcompete ICA) and not as many (undercomplete ICA), and more about
these can be found in Fabian et al. [2004] and Teh et al. [2003].

9.3.4 Summary of ICA

Given an n×m data set X, corresponding to m sources and n observations,
an ICA consists of the following steps:

1. Center the data to produce the data set X∗.

2. Compute the matrix 1
nX

∗(X∗)T and then find its SVD, which can be writ-
ten as 1

nX
∗(X∗)T = QDQT .

3. Compute Y∗ = X∗QD−1/2.

4. Pick a contrast function K(S∗). Setting S∗ = Y∗VT , determine the m×m
orthogonal matrices V that minimize K.

5. Selecting one of the V’s, the unmixing matrix is W = VD−1/2QT and
the corresponding source data are S = XWT .

To use this procedure it is required that the columns of X are independent.
Also, note that the above procedure is written in matrix form. To connect
this with the vector version considered earlier, the ith row of the data matrix
X is obtained from the data vector xi. The same applies to X∗, Y∗, S∗,
and S. In doing this, because the original column vectors are put into the
matrices as row vectors, the above formulas appear as transposes of the ones
given earlier. As an example, the equations si = Wxi are written above in
matrix form as S = XWT .

430 9 Data Analysis

9.3.5 Application: Image Separation

An interesting use of ICA is to separate images, and as an example the
two images in the upper row in Figure 9.16 were mixed to produce the two
images in the second row. To explain how this was done, each of the original
grayscale images consists of an M × N array of integers, each with a value
from 0 to 255. This number represents the intensity of gray for that pixel,
with 0 corresponding to black and 255 corresponding to white. Letting the
pixel matrices for the two source images be S1 and S2, then the pixel matrices
for the two mixed images are 0.6S1 + 0.4S2 and 0.4S1 + 0.6S2.

Even though there is no time variable, it is possible to construct data
vectors for each image. We will arrange the pixel information into vector
form by simply putting the columns (or rows) together as one vector. Using
columns, the first M entries of the data vector come from the first column of
the pixel array, the next M entries come from the second column, etc. Apply-
ing this procedure to the two original images we obtain source data vectors
(s11, s21, · · · , sn1)T and (s12, s22, · · · , sn2)T , where n = MN . From this we
then have si = (si1, si2)

T . The same procedure is applied to the mixed images
to first obtain data vectors (x11, x21, · · · , xn1)

T and (x12, x22, · · · , xn2)
T , and

from this xi = (xi1, xi2)
T . The images in Figure 9.16 are 1944× 2592, so for

this example n = 5,038,848. Also, a common question that arises is whether
a different answer will be obtained if one uses rows instead of columns. The
answer is no, and in fact, you can label the pixels randomly without changing
the answer, as long as the same labeling order is used for both images. The
reason is explained in the previous example when using a reduced data set.

The problem is now mathematically equivalent to the microphone example,
which means the formulas we derived earlier are directly applicable to the
data vectors for the images. In particular, the solution is given in (9.37), and
the contrast function using the kurtosis is given in (9.39).

After finding the unmixed values using ICA, and then reassembling them
into pixel arrays, the images shown in Figure 9.17 are obtained. The separa-
tion used the entire data set, although it is possible, and certainly faster, to
use a reduced data set. To illustrate, the computed values of the kurtosis for
a particular angle are shown in Figure 9.18, both as an average as well for a
particular instance. It would appear that the value of k for the EEG rule of
thumb, which was explained earlier, is about 50 in this case.

How you react to the images in Figure 9.17 depends on what you were plan-
ning to do with them. If you had hoped to have them framed and mounted on
your wall, then you are likely disappointed. The reason being that the sepa-
ration is incomplete (e.g., there is a residual image of the TV in the image on
the right). Also, the image quality is not the same as the originals. If, on the
other hand, you intended to use these images for feature detection, or motion
control, then they are likely adequate. These are some of the primary appli-
cations of ICA, and particular examples include facial recognition [Bartlett
et al., 2002], finding defects in fabrics [Zhang and Cheng, 2014], identifying

9.3 Independent Component Analysis 431

Figure 9.16 Original images taken in Disney World, top row, and the images ob-
tained after they are mixed, bottom row.

3D shapes of the heart [Wu et al., 2014], detection of Down syndrome in new-
borns [Zhao et al., 2014], and for methods of watermarking images [Nguyen
and Patra, 2008].

To address possible improvements for using ICA to separate images, note
that it does not appear to be possible to get a better result by using a differ-
ent contrast function. The images in Figure 9.17, which are found using the
kurtosis function, are almost indistinguishable from the images one gets by

Figure 9.17 Result of using ICA to unmix the two images.

432 9 Data Analysis

0 100 500 1000 1500 2000
Sample Size

0

1

2

3

4
K

u
rt

o
si

s

Figure 9.18 Value of the kurtosis function (9.41), for θ = π/4, as a function of
the number of random data points used. Shown are the values for a particular case,
dashed (red) curve, and the average using 10 cases, solid (blue) curve.

minimizing the area. To be specific, using the kurtosis function, the angle is
found to be θ = 1.1020, which is very close to the optimal value θ = 0.9952
determined using the 2-norm with the original sources, as explained in
Exercise 9.9.

A second point that should be made is that the form of ICA used here is
inherently lossy because floating point transformations are being applied to
integer arrays. So, when converting the computed results back into integer
arrays, round off error is almost inevitable, and this reduces the quality of
the final images.

There have been several proposals on ways to measure how well ICA
has separated the sources, what are called performance measures [Chen and
Bickel, 2006; Nordhausen et al., 2011]. There has also been work on what is
called robustification of ICA. It is not difficult to find examples where outliers
in the data, produced by noise or other artifacts, can seriously degrade the
quality of separation. Removing such data is called robustification, and this
is discussed more in Anderson and Adali [2010] and Brys et al. [2005].

9.4 Modal Data Analysis

As usual, we will introduce the ideas underlying this method by considering
an example. The one of interest has to do with the spread of flu. Over the
course of a year, the portion of the population sick with the flu changes dra-
matically across the country, and we would like to have a way of understand-
ing how it propagates through the population. There are fairly sophisticated
models for the epidemiology of flu, but we are going to derive the information
directly from experimental observations. In doing this, assume there are m
locations at which the flu information is collected. It is assumed these are
distributed across the country, but exactly where they are is not important

9.4 Modal Data Analysis 433

for the moment. Suppose at time ti the number of individuals with the flu at
each location is counted, producing an m-vector xi. We then wait a period of
time, and again count the flu cases at each location to produce an m-vector
yi. It is going to be assumed that yi can be predicted using a linear function
of xi, and so

yi = Axi + b.

This can be simplified by normalizing the data, using centering and scaling
in exactly the same way as was done for the PCA. Expressing this in matrix
form, the normalized x’s are

x∗
i = S−1

x (xi − xM),

where xM = 1
n

∑
xi is the mean, and Sx is a m × m diagonal matrix con-

taining the scaling factors for the components of x. Similarly, the normalized
y’s are

y∗
i = S−1

y (yi − yM).

Using the scaled variables, the assumption of linearity can now be written as

y∗
i = Px∗

i , (9.44)

where P is called the propagator matrix. A critical observation here is that
it is assumed that P does not depend on ti. However, it is very likely that P
does depend on the time interval between when xi and yi are measured, and
it is therefore assumed that the same interval is used for all data points.

Suppose there are n time points at which we conduct our counting exper-
iment. This will produce a sequence of observation vectors x1, x2, · · · , xn,
along with the subsequent observations y1, y2, · · · , yn. This information can
be used to determine P. Treating this as a least squares problem, the error
function is

E(P) =

n∑
i=1

||Px∗
i − y∗

i ||22 .

Finding the m2 entries in P that minimize this function can be found by
simply differentiating E with respect to each of these entries, and then setting
the derivatives equal to zero. The calculation is straightforward, and to write
down the solution, we introduce the n×m normalized data matrices X∗ and
Y∗. The ith row of X∗ is (x∗

i)
T , and the ith row of Y∗ is (y∗

i)
T . Denoting

the ith row of P as pT
i , then minimizing E reduces to solving

Gpi = (X∗)T ci,

where G = (X∗)TX∗ and ci is the ith column of Y∗. Note that G is an
example of what is called a Gram matrix. Multiplying by G−1, and expressing
the answer in matrix form, we have that

P = (Y∗)TX∗G−1. (9.45)

434 9 Data Analysis

In writing down this expression, it is assumed that the columns of X∗ are
independent, which guarantees that G is invertible. The above solution can
be written as

P = (Y∗)T (X+)T ,

where X+ =
(
(X∗)TX∗)−1

(X∗)T is known as the Moore-Penrose pseudoin-
verse of X∗.

Once P is known, returning to the original (unnormalized) variables,

yi = Axi + b, (9.46)

where
A = SyPS−1

x ,

and b = yM −AxM .

9.4.1 Application: Google’s Flu Data

The data we will consider comes from Google Flu Trends. Using search data,
Google developed a method for estimating the flu activity and how this is
done is partly explained in Ginsberg et al. [2009]. They provide data for each
state, including Washington DC, in the United States, and the data were
collected every seven days from 2007 through 2015. A portion of the dataset
is shown in Table 9.6. Using the notation introduced earlier,m = 51, n = 398,
and xi consists of the 51 flu values listed in the ith row of the data matrix.
Also note that yi = xi+1, X

∗ comes from the first 398 rows in the normalized
data matrix, and Y∗ comes from rows 2 to 399.

This brings us to the question of how well the assumption (9.46) works
on this data set when the projector matrix is computed using (9.45). It is
easy to compute P using this formula, and the resulting comparison for three
states is given in Figure 9.19. Apparently the assumption works very well.
Nevertheless, it is worth comparing this method with other possibilities. An
easy one uses what is called a persistence forecast, which means that one
simply assumes yi is the same as xi (this is often used in weather forecasting).
Mathematically, this is equivalent to assuming that P = I in (9.44). Using
the least squares error to determine the difference between the actual and
predicted curves, the error using the persistence forecast is about a factor of
two larger than what is obtained using the above method.

9.4 Modal Data Analysis 435

Date Alabama Alaska Arizona Arkansas · · · West Wisconsin Wyoming

Virginia

2007/12/2 1438 1517 1582 3325 · · · 2268 1288 429

2007/12/9 1278 1635 1710 2993 · · · 2148 1420 471

2007/12/16 1161 1715 2018 2809 · · · 2158 1513 524

2007/12/23 1250 1868 2601 2778 · · · 2151 1685 576

...
...

...
...

...
...

...
...

2015/6/28 707 780 1113 1547 · · · 1479 696 691

2015/7/5 589 755 1582 1449 · · · 1341 693 593

2015/7/12 549 685 1065 1256 · · · 1290 660 520

2015/7/19 575 696 1116 1235 · · · 1271 662 514

Table 9.6 Google Flu Trends data for the estimated number of flu cases in each
state and Washington DC over an approximately eight year period [Google, 2015].

9.4.2 Propagation Modes

It is possible to derive an understanding of how the flu spreads through the
country by looking at the SVD expansion of the propagator matrix P. As
explained in Section 4.5.3, from the SVD of P, the matrix can be written as

P =

r∑
i=1

σiWi, (9.47)

where Wi = uiv
T
i is the outer product matrix obtained using the columns

of the matrices U and V computed using the SVD. The entries in the Wi’s
satisfy −1 ≤ w ≤ 1. Also, the σi’s are the nonzero singular values of P, and
satisfy σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

To apply this to the flu problem, note that the singular values for the
normalized flu data are

σ1 = 8.59, σ2 = 3.81, σ3 = 3.10, σ4 = 2.73, · · · , σ51 = 0.02.

436 9 Data Analysis

2007 2011 2015

2007 2011 2015

2007 2011 2015

0

10

20
A

ri
zo

n
a

0

5

10

15

N
o

rt
h

 C
ar

o
lin

a

Actual
Predicted

t-axis

0

5

10

15

M
as

sa
ch

u
se

tt
s

Figure 9.19 The Google flu values, solid (red) curve, and the values predicted using
(9.46), dashed (blue) curve, for three different states. The values are per 1000.

Consequently, the terms in the sum (9.47) with singular values that are ap-
preciably larger than one are the principal contributors to P. To explore
what can be learned from this, note that at time ti, from (9.44), the values
at location j satisfy

y∗ij = pj1x
∗
i2 + pj2x

∗
i2 + · · ·+ pjmx∗

im .

Suppose we use only a first term approximation in (9.47), which gives us
P ≈ σ1W1. Writing the entries of W1 as wij , then we have that

y∗ij ≈ σ1(wj1x
∗
i2 + wj2x

∗
i2 + · · ·+ wjmx∗

im).

Assuming that the x∗
ik values in this equation are approximately equal and

positive, then this approximation shows that states with a large wjk value
are the ones that are principally responsible for the larger increases of flu
cases at location j.

As an example, for North Carolina, j = 34. When the w34,k’s are sorted
from largest to smallest one obtains the list

0.07, 0.055, 0.054, 0.052, 0.047, · · · , −0.04, −0.12 .

Writing this list in terms of the respective state, the first five are

9.4 Modal Data Analysis 437

Texas, New Jersey, New Hampshire, Massachusetts, Illinois,

while the last two are Wisconsin and Connecticut. Consequently, if you live
in North Carolina and are concerned about the increased prevalence of flu,
then according to this analysis you should pay attention to the current flu
cases in Texas, and to a lesser extent to those in New Jersey, New Hamp-
shire, etc. Why this happens is not clear. For example, one might expect that
the best first-order approximation for how many flu cases to expect in any
state would be determined by the number currently in that state, and not
the number in an nonadjacent state. Looking for an explanation, the first
question to address is whether P ≈ σ1W1 is an accurate approximation for
NorthCarolina. A comparison is shown in Figure 9.20 for a one year inter-

July, 2014 July, 2015
t-axis

0

2

4

6

8

10

F
lu

 C
as

es

Actual
One Term
All Terms

Figure 9.20 The Google flu values, solid (red) curve, for North Carolina over a one
year period. Also shown are the values predicted using (9.46), dashed (blue) curve,
and the one term approximation P ≈ σ1W1. The values are per 1000.

val, and it is apparent that it does provide a reasonable approximation. So,
turning to the question of how much the current value of x∗ for North Car-
olina affects the predicted value of y∗ for North Carolina, the model predicts
there is little dependence. This is because the computed value for w34,34 is
very close to zero. Pursuing this a bit further, the question is whether there
are any states for which the increase in that state is primarily due to itself.
Mathematically this corresponds to looking for states for which wj,j is close
to the largest value of its wj,k values. This is easy to determine, and the list
in decreasing order is

Texas, New Jersey, New Hampshire, Massachusetts, Illinois, · · · .
It can not be a coincidence that the first five states in this list are also the
first five states in the list for North Carolina. However, figuring out why this
happens is outside the purview of this text, and is left for a topic for future
study. What this does nicely demonstrate is that the mathematical analysis
has generated several interesting interconnections in the data set that were
not evident at the start.

438 9 Data Analysis

Before leaving this example involving the Google flu values, there has been
some criticism of using their method to determine, or estimate, the actual
number of flu cases. This does not affect the conclusions or analysis used in
the example, but those interested in this should consult Lazer et al. [2014]
and Santillana et al. [2014].

9.4.3 Parting Comments

The central assumptions made here concern linearity and time independence,
as expressed in (9.44) and (9.46). For the flu example there is a week separat-
ing the x and y values. During this period the actual number of flu cases is
inevitability affected by weather conditions across the county, school sched-
ules, and a host of other time dependent and potentially nonlinear affects.
Nevertheless, we found that the assumptions work reasonably well. One could
argue that the reason is that (9.46) is basically a two term Taylor series, about
the mean, and it should therefore serve as a reasonable approximation so long
as the nonlinear affects do not have the ability to strongly affect the num-
ber of flu cases over the given time interval. This argument is often given to
justify, or explain, why (9.46) is used. For this reason, in the meteorological
literature (9.46) is referred to as a tangent linear model. This also explains
why if you use a longer time interval, like two weeks, then the error in the
approximation increases, by about 30%.

Once the projector matrix is known there is a temptation to use it for
longer-term forecasts. For example, knowing the normalized value x∗

i at ti, we
used it to forecast the value at ti+1 using the formula y∗

i = Pix
∗
i . One could

take this a step further and state that the predicted value at ti+2 is P(Px∗
i) =

P2x∗
i . This can be continued, with the result that after k time steps the

predicted value is Pkx∗
i . It is very unlikely that Pkx∗

i is anywhere close to
the actual value for x∗

i+k for k values much bigger than one. To illustrate,
using the data at the beginning of July, 2014 then this method would predict
there will be about 1600 cases of flu in North Carolina at the beginning of
January, 2015, which differs significantly from the actual value of 8821 (see
Figure 9.20).

The problem considered here falls into the category of predictive, or fore-
cast, modeling. The most well known application of this arises with weather
prediction, and considerable research has been invested into obtaining accu-
rate data based weather models. How the pseudo-inverse and the SVD are
used in such cases can be found by consulting Schneider and Griffies [1999]
and Leutbecher and Palmer [2008]. A method very similar to the one consid-
ered here is used in fluid dynamics, and is known as dynamic mode decom-
position. One of the objectives in this case is to identify coherent structures
in the flow from the data, and more about this can be found in Tissot et al.
[2014] and Tu et al. [2014].

9.5 Fitting IVPs to Data 439

9.5 Fitting IVPs to Data

A nonlinear regression problem that arises frequently in applications concerns
how to find material coefficients from experiment. It is often the case that
the equations governing the system are known. For example, the equations
come from Newton’s second law or from Maxwell’s equations. What is not
known are the material parameters for the particular system being studied.
The question then arises is, if the response can be measured experimentally
how can this information be used to find the parameters?

9.5.1 Logistic Equation

To give an example of this type of problem, it is often assumed that a popu-
lation y(t) of a species satisfies the logistic equation

dy

dt
= αy(β − y), for 0 < t, (9.48)

where y(0) = a. Note that although it is possible to solve this problem in
closed form, in the discussion to follow this will not be used because in most
problems such a solution is not available.

To illustrate, consider the data shown in Figure 9.21. Suppose it is known
that the values, which are the average concentrations at something called
4-fold degenerate sites, are described using the logistic equation (9.48). The
goal is to determine α and β from the data. We will use least squares to
measure the error, and so the error function is

E(α, β) =

n∑
i=1

[y(ti)− yi]
2. (9.49)

To use our minimization methods we need to be able to evaluate this function
for given values of α and β. There are various strategies on how this can be
done, and we will consider two: a direct method, and an interpolation method.

Direct Method: For this one solves (9.48) numerically, and makes sure that
the solver calculates the solution at all of the tj ’s in the data set. If there are a
large number of points, as is the case in Figure 9.21, this can add considerable
computing time to the procedure. Nevertheless, because this type of data
fitting is so common, many IVP solvers have the ability to control the time
points. For example, in MATLAB this is accomplished using the tspan option
in ode45.

Interpolation Method: The idea here is that the time steps are determined
based on the objective of obtaining an accurate solution of the IVP. These

440 9 Data Analysis

100

80

60

G
+

C
%

 a
t 4

–f
ol

d
de

ge
ne

ra
te

 s
ite

s

p < 2 x 10−16

40

20

0

0 20 40 60 80 100
Figure 9.21 Data and curves
from Raghavan et al. [2012].

points are then connected using an interpolation function, producing an ap-
proximation for y(t) over the entire interval. The procedure consists of the
following steps:

1. Solve the IVP using a coarse time step. It is assumed that the time step
required for an accurate numerical solution is significantly larger than the
distance between the time points in the data set. In the example below,
RK4 is used with a time step of 0.2, while the average distance between
the data time points is 0.02.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t-axis

1

1.5

2

2.5

3

3.5

y-
ax

is

Figure 9.22 The numerical solution of the IVP using the values for the parameters
obtained using the Nelder-Mead algorithm, using a least-squares error.

2. With the computed values of the solution of the IVP, use interpolation to
produce a function that approximates y(t) over the interval. In the example
below, a clamped cubic spline is used. Note that this requires the value
of y′(t) at the two endpoints. However, given that we know y(0), and we
have just computed y at the right endpoint, we can compute y′(t) at the

9.5 Fitting IVPs to Data 441

endpoints using the differential equation (the merits of this are discussed
in Section 7.7).

3. Evaluate the interpolation function at the tj ’s in the data set, and from
this calculate the error in (9.49).

Whichever method is used to evaluate E, it is also necessary to decide
on what method to use to find the minimum. The gradient descent methods
described in Chapter 8 are certainly possible, but these require the calculation
of the gradient of E. This, in turn, requires the calculation of the derivatives
using a numerical method. For example,

∂E

∂α
≈ E(α+Δα, β) − E(α, β)

Δα
.

Although this is often done in practice, there is another choice that avoids
differentiation and this is the Nelder-Mead method. The latter is used in the
examples to follow.

Example

To demonstrate the procedure we will use what is called synthetic data. What
this means is that the value of α and β is selected, and then (9.48) is solved
numerically. These computed values are then randomized to resemble what
is obtained in an experiment. An example of such a data set, which consists
of 100 points, is shown in Figure 9.22. The interpolation method is used to fit
this data. To do this, RK4 with 11 time steps is used to produce the points
needed to determine the clamped cubic spline. Using the Nelder-Mead algo-
rithm one finds that after 38 iteration steps, α = 1.878 and β = 3.093. Using
these values the IVP was solved numerically, and the resulting curve is given
in Figure 9.22. This is what is obtained using the interpolation method. If you
use the direct method, then the computing time for this example increases
by a factor of about 5, and the final solution is approximately the same (the
parameter values agree to two or three digits). �

Although there are several steps in the minimization process, the method
is straightforward. It is essential to point out that even though it worked very
well in the example, the procedure can easily fail. One complication is that
it can be unpredictable what values the minimizer might use for α and β
when searching for the minimum. For example, the minimizer might try to
use unphysical values for the parameters, or values that cause the solution to
behave in an unstable manner. In effect, this means that for many problems
there are constraints on the minimization process, and one needs to build this
into the algorithm. To illustrate, for the logistic equation, it is known that α
must be positive. If the minimizer attempts to use a negative value this must
be overridden, and an alternative put in its place.

442 9 Data Analysis

9.5.2 FitzHugh-Nagumo Equations

In computational neuroscience, the FitzHugh-Nagumo equations are used as
a model for the potential in the nerve. The equations in this case are

v′ = c(v − 1

3
v3 + w), (9.50)

w′ = −1

c
(v − a− bw). (9.51)

The numerical solution of this problem in the case of when v(0) = −1,
w(0) = 1, a = b = 0.2 and c = 3 is shown in Figure 9.23. To mimic a typical
data set from experiment, consider the synthetic data shown in Figure 9.24,
which were obtained from the randomization of the solution in Figure 9.23.
The error function to be used is

E(c, b) =
n∑

i=1

{[v(ti)− vi]
2 + [w(ti)− wi]

2}. (9.52)

where (ti, vi) and (ti, wi) are the data, and v(t) and w(t) are the solution of the
FitzHugh-Nagumo equations. Also note that we are going to assume a = 0.2
is known, and the objective is to use a fitting method to find the values of c
and b. We will use the interpolation method, which means that to evaluate
the error function for a particular (c, b), the FitzHugh-Nagumo equations are
first solved numerically using a coarse time step (coarse in comparison to the
step-size observed in the data). In this particular example, the RK4 method
is used with k ≈ 0.25. This solution is then used to construct a clamped
cubic spline interpolation function that can be evaluated to obtain values
for v and w at the various ti’s appearing in the error function. Finally, the
Nelder-Mead algorithm is used to find the minimum. The fitting procedure
takes 77 iteration steps and concludes that c = 2.97 and b = 0.227. The
resulting solution cures, and the data, are shown in Figure 9.25.

9.5.3 Mass-Spring-Dashpot System

As another illustration, consider the equation for a damped oscillator

m
d2y

dt2
+ c

dy

dt
+ ky = 0, for 0 < t, (9.53)

where y(0) = a and y′(0) = b. The material parameters arem, the mass, c, the
damping coefficient, and k, the spring constant. There are a couple of reasons
for considering this particular example. One is how often this equation arises

9.5 Fitting IVPs to Data 443

in applications. A second is that there is a complication concerning which
parameters can be determined from fitting the solution to a data set, and
this is explained below.

A typical data set is shown in Figure 9.26. It is not possible from this data
to determine the three material parameters, and the reason is uniqueness.
Because the right hand side of the equation is zero, it is possible to multiply
it by any nonzero constant and not affect the answer. This means the solution
obtained using the values m0, c0, and k0 is exactly the same as the solution
using 2m0, 2c0, and 2k0. To avoid this problem we will rewrite the equation as

0 2 4 6 8 10 12 14 16 18 20
t-axis

-1.5

-0.5

0.5

1.5

y-
ax

is

v
w

Figure 9.23 The numerical solution of the FitzHugh-Nagumo equations in (9.50),
(9.51).

0 2 4 6 8 10 12 14 16 18 20
t-axis

-1.5

-0.5

0.5

1.5

y-
ax

is

v
w

Figure 9.24 Synthetic data obtained from the solution of the FitzHugh-Nagumo
equations in (9.50), (9.51).

d2y

dt2
+ α

dy

dt
+ βy = 0, (9.54)

where α = c/m and β = k/m. As one check on whether this works, note
that the same values of α and β are obtained if one uses m0, c0, and k0 or
uses 2m0, 2c0, and 2k0. The theory related to parameters, and the scaling of

444 9 Data Analysis

a problem, is an important component of analyzing a problem and a more
complete discussion can be found in Holmes [2009]. The final step is to write
the equation as a first-order system be letting v = y′. The result is

y′ = v, (9.55)

v′ = −αv − βy. (9.56)

The data set for this example is shown in Figure 9.26, and as was the case
for the two earlier examples, this is synthetic data derived from the exact
solution. The error function is

0 2 4 6 8 10 12 14 16 18 20
t-axis

-1.5

-0.5

0.5

1.5

y-
ax

is

v
w

Figure 9.25 Synthetic data and corresponding numerical solution of the FitzHugh-
Nagumo equations in (9.50), (9.51).

0 10 20 30 40 50
-2

0

2

y-
ax

is

0 10 20 30 40 50
t-axis

-4

0

4

v-
ax

is

Figure 9.26 Synthetic data obtained from the solution of the mass-spring-dashpot
equations in (9.55), (9.56).

9.5 Fitting IVPs to Data 445

E(α, β) =

n∑
i=1

{[y(ti)− vi]
2 + [v(ti)− wi]

2}. (9.57)

where (ti, yi) and (ti, vi) are the data, and y(t) and v(t) = y′(t) are the
solution of (9.55), (9.56).

Using the Nelder-Mead algorithm one finds that after 58 iteration steps,
α = 0.092 and β = 3.025. Note that the stopping condition used in the
calculation was that the area of the approximating triangle was less than
10−14. Also, because of the wavelength of the oscillations in the solution,
100 time points were used when solving the IVP for constructing the cubic
spline (versus 80 used for the FitzHugh-Nagumo example). The resulting
comparison between the numerical solution of the IVP and the data is given
in Figure 9.27.

9.5.4 Parting Comments

We used the blunt approach to find the coefficients of the IVPs, which means
we just coded everything and then computed the answer. A better way would
be to first analyze the problem, determine its basic mathematical properties,
and then use a computational approach if necessary. As an example, for
the logistic equation (9.48) a simple analysis shows that y = β is a steady

0 10 20 30 40 50
-2

0

2

y-
ax

is

0 10 20 30 40 50
t-axis

-4

0

4

v-
ax

is

Figure 9.27 Data and numerical solution of the (9.55), (9.56) obtained using pa-
rameter values found using the fitting procedure.

446 9 Data Analysis

state which is asymptotically stable if the parameters are positive. What this
mean is that it is possible to just to look at the data in Figures 9.21 and 9.22
and produce a reasonably accurate value for β (it is the value the solution
approaches as t → ∞). One can also get an estimate of α by noting that at
t = 0, y′(0) = αa(β−a). From the estimate of β, and using the approximation
y′(0) ≈ (y(t1) − y(0))/t1 = (y1 − a)/t1, one can obtain an estimate for α.
This information can then be used to produce reasonably good guesses for
the minimization algorithm.

Numerous methods have been proposed for finding material parameters
from data. For example, Varah [1982] uses splines but fits them to the data,
and then uses the spline to find the parameters. This is known as data smooth-
ing, and more recent work on this can be found in Ramsay et al. [2007]. Other
possibilities are discussed in Brewer et al. [2008] and Xue et al. [2010].

Exercises

9.1. This problem applies a PCA to the data given in Table 9.7.
(a) Find the normalized data set using the ∞-norm normalization (which is

the same one used for the word length example).
(b) Find the SVD for the normalized data matrix from part (a).
(c) Suppose x = 2.5. What do you predict the values are for y and z?
(d) Suppose x = 2.5 and y = 0.5. What do you predict the value is for z?

x y z

2 1 2

1 −1 1

−1 1 −1

−2 −1 −2

Table 9.7 Data for Exercise 9.1

9.2. An often used model function in nonlinear regression is

g(x) = v1x
v2 .

As shown in Exercise 8.6, by using the log, the model function can be written
as G(X) = V1 + V2X , where V1 = log v1 and V2 = v2. Also, a data point
(xi, yi) transforms to (Xi, Yi), where Xi = log xi and Yi = log yi. The data
considered in this exercise is given in Table 9.8, which was also considered in
Exercise 8.6.

Exercises 447

(a) Apply the same normalization to the transformed (Xi, Yi) data as was
used in the word length example. This means you center the X and Y
values, and then scale the values using the maximum entry, in absolute
value. Label the normalized variables as p and q. Also, make sure to give
the values of X and Y , as well as the values used to scale the centered
values.

(b) Assuming p = αq, and using the true distance, then the error function is

E(α) =
1

1 + α2

n∑
i=1

(αpi − qi)
2.

The minimum of E occurs when α is given in (9.10). Calculate α using
your normalized data from part (a).

(c) In this problem, instead of (9.11), we have Y = Y +m(X − X). Using
the common log, show that v2 = m and

v1 = 10Y−mX .

(d) Using part (c), plot the (original) data and power law curve using a
log-log plot.

(e) Based on your result from part (c), what was the running speed of a
Tyrannosaurus rex?

9.3. This problem considers the process of whitening a data set with two
sources. Let s1, s2, · · · , sn be the source data vectors, with si = (si1, si2)

T .
(a) Suppose it’s possible to find an invertible 2×2 matrix Z with the property

that

Animal Mass (kg) Relative Speed (1/s)

canyon mouse 1.37e−02 39.1

chipmunk 5.10e−02 42.9

red squirrel 2.20e−01 20.5

snowshoe hare 1.50e+00 35.8

red fox 4.80e+00 28.7

human 7.00e+01 7.9

reindeer 1.00e+02 12.7

wildebeest 3.00e+02 11.0

giraffe 1.08e+03 3.8

rhinoceros 2.00e+03 1.8

elephant 6.00e+03 1.4

Table 9.8 Data for Exercise 9.2 adapted from Iriarte-Dı́az [2002].

448 9 Data Analysis

i)
s1 1 3

s2 1 −1
ii)

s1 0 2

s2 −2 1

Table 9.9 Data for Exercise 9.3(b).

ZZT =
1

n

n∑
i=1

si(si)
T .

Setting s∗i = Z−1si, show that the s∗i ’s satisfy (9.30). This shows that
any matrix Z with the above property can be used to whiten the data
set.

(b) Since 1
n

∑
si(si)

T is symmetric, the SVD of this matrix can be written as

1

n

n∑
i=1

si(si)
T = UΣUT .

Setting s∗i = Σ−1/2UT si, show that the s∗i ’s satisfy (9.30).
(c) Whiten one of the data sets in Table 9.9. Note that you should first center

the data, so (9.29) is satisfied). Also, if you use the method from part
(a), Z is not unique, and you should make a particular choice for this
matrix.

9.4. Shown in Table 9.10 are the pixel values for two images (both images
contain 4 pixels). Suppose that the images are mixed as follows: 0.4S1+0.6S2

and 0.6S1+0.4S2. Apply, by hand, the ICA to find the unmixed images, and
compare your values with the originals.

9.5. In using the PCA, suppose that the data set contains two variables, and
the normalized versions are labeled as p1 and p2. Also, after calculating the
SVD, one obtains the matrix

V =

(
v11 v12
v21 v22

)
.

In this problem the PCA assumption is that p = α1v1.
(a) Assuming v11 �= 0, show that the assumption p = α1v1 can be written

as p2 = αp1, where α = v21/v11.
(b) Letting q1 and q2 be the original, unnormalized, data variables, show that

the fitted line can be written as

q2 = M2 + a (q1 −M1),

where M1 and M2 are the means of q1 and q2, respectively. Also, a =
αS2/S1, where S1 and S2 are the scale factors used for the respective
variables.

Exercises 449

S1:
2 1

0 1
S2:

0 1

1 2

Table 9.10 Data for Exercise 9.4.

9.6. Suppose that the data set contains three variables, and the normalized
versions are labeled as p1, p2, and p3. Also, assume that the PCA assumption
is p = α1v1 + α2v2, where v1 = (v11, v21, v31)

T and v2 = (v12, v22, v32)
T are

the first two columns in the matrix V.
(a) Show that the PCA assumption can be written as p3 = αp1+βp2, where

α = (v31v22 − v32v12)/D, β = (v32v11 − v31v21)/D, and D = v11v22 −
v12v21. This assumes, of course, that D �= 0.

(b) Using the result from part (a), show that the PCA assumption, when
expressed in terms of the original, unnormalized, data variables, can be
written as

q3 = M3 + a (q1 −M1) + b (q2 −M2),

where M1, M2 and M3 are the means of q1, q2 and q3, respectively. Also,
a = αS3/S1 and b = βS3/S2, where S1, S2, and S3 are the scale factors
used for the respective variables.

9.7. The ICA method requires that the eigenvalues of 1
n

∑
x∗
i (x

∗
i)

T are posi-
tive, and this problem determines when this holds directly from the summa-
tion formula. It is assumed that x∗

i = (x∗
i1, x

∗
i2)

T and at least one of the x∗
i ’s

is nonzero.

(a) Setting

B =

(
a b

b d

)
,

where a and d are positive, show that B has positive eigenvalues so long
as b2 < ad.

(b) Writing 1
n

∑
x∗
i (x

∗
i)

T = B, what are a, b, and d in terms of the x∗
ij ’s?

(c) Using the connection between the dot product and the angle between
two vectors, explain why the eigenvalues of 1

n

∑
x∗
i (x

∗
i)

T are positive so
long as c∗1 = (x∗

11, x
∗
21, · · · , x∗

n1)
T and c∗2 = (x∗

12, x
∗
22, · · · , x∗

n2)
T are not

multiples of each other.

9.8. Consider the problem of computing the covariance matrix

B =
1

n

n∑
i=1

xi(xi)
T ,

where xi = (xi1, xi2)
T . The question addressed is, what is the fastest way to

compute this matrix. In doing this, the xi’s should be randomly generated,
and this should be done before answering the following questions. Also, you

450 9 Data Analysis

should answer the questions taking n = 2,000, n = 20,000, and n = 200,000.
Finally, you should take advantage of any mathematical simplifications avail-
able (e.g., symmetry), to reduce the computational time.
(a) How long does it take to compute B using the summation formula? This

means that each 2× 2 matrix xi(xi)
T is computed, and then added into

the sum.
(b) How long does it take to compute B by first forming the matrix X, and

then using (9.33)? You should use MATLAB’s matrix multiply command
to compute the product.

(c) How long does it take to compute B by first forming the vectors c∗1
and c∗2, and then using (9.34)? You should use MATLAB’s dot multiply
command to compute the dot products.

(d) How long does it take to compute B by first forming the matrix X, and
then using MATLAB’s cov command?

(e) Explain the differences, or non-differences, in the computing times. Also,
comment if any of the methods failed, and why that happened.

9.9. This exercise explores modifications of the example used to introduce
an ICA. The sources used to generate the curves in Figure 9.8 are s1(t) =
sin(πt) and s2(t) = sin(1.7πt− 5), and the recorded signals for Figure 9.9 are
x1(t) = 2s1(t) + s1(t) and x2(t) = 3s1(t)− 2s1(t). Also, 200 points were used
over the interval 0 ≤ t ≤ 10.
(a) The area in Figure 9.12 comes from using the composite trapezoidal rule

to compute ∫ 10

0

|s1 − s∗1|dt+
∫ 10

0

|s2 − s∗2|dt,

where s∗1 and s∗2 are the sources computed using (9.37). Note that the
latter depend on the angle θ used to evaluate V, but the original sources
do not depend on θ. Plot a curve similar to the one in Figure 9.12, but
use ∫ 10

0

|s1 − s∗1|2dt+
∫ 10

0

|s2 − s∗2|2dt.

Does the value of the optimal angle change much using this error func-
tion? Note that because the ICA can not determine which source is s1 or
s2, you will need to create two plots. One with s∗1 and s∗2 as above, and
a second with s∗1 and s∗2 interchanged in the formula. Also, the above
formula is associated with the 2-norm, and is also the error measure
associated with least squares.

(b) The kurtosis plotted in Figure 9.13 comes from evaluating (9.41). Sup-
pose instead one uses the 2-norm, and takes K(θ) = κ2

1 + κ2
2. Plot this

function and determine the locations of the local maxima. One of these,
presumably, is close to the value obtained in part (a). Compare it with
the value in part (a), as well as the solution obtained in the text.

The exercises to follow require synthetic data, which is either provided or
you generate. For the latter, suppose that by using either the exact solution,

Exercises 451

or a numerical solution, you determine values y0, y1, · · · , yn of the solution
at the time points t0, t1, · · · , tn. By appropriately modifying the MATLAB
commands: q=A*(2*rand-1); yd=(1+q)*y; you can produce synthetic data.
In doing this, the synthetic data values will satisfy (1−A)y ≤ yd ≤ (1+A)y,
which means you should pick A so that 0 < A < 1. Also, a different random
number must be used at each time point.

9.10. This problem concerns the Bernoulli equation

y′ + y3 =
y

a+ t
, for t > 0,

where y(0) = 1. The exact solution is

y =
a+ t√

β + 2
3 (a+ t)3

,

where β = a2(1− 2a/3).
(a) Taking a = 0.01, generate synthetic data for this problem using 400

equally spaced time points over the interval 0 < t ≤ 2.
(b) Using either the data from part (a), or a data set provided, find a. Also,

plot the data and numerical solution using these parameter values.

9.11. In the description of the dynamics of excitons in semiconductor physics,
one finds the following problem

n′ = γ − αn2x,

x′ = αn2x− x

1 + x
,

where n(0) = 1 and x(0) = 1. Also, α and γ are constants that satisfy
0 < γ < 1 and α > 0. Note, x(t) and n(t) are densities and are therefore
non-negative.
(a) Taking α = 0.1 and γ = 0.2, generate synthetic data for n and x using

500 equally spaced time points over the interval 0 < t ≤ 200.
(b) Using either the data from part (a), or a data set provided, find α and γ.

Also, plot the data and numerical solution using these parameter values.
If you modify the minimization code make sure to explain why you did
so, and what exactly you did change.

Appendix A

Taylor’s Theorem

The essential tool in the development of numerical methods is Taylor’s
theorem. The reason is simple, Taylor’s theorem will enable us to approx-
imate a function with a polynomial, and polynomials are easy to compute
(most of the time). To start, we define what it means for a function to be Cn.

Definition A.1. Given a non-negative integer n, and an interval a < x < b,
stating that f ∈ Cn(a, b) means that f(x), f ′(x), f ′′(x), · · · , f (n)(x) exist
and are continuous functions on the interval a < x < b.

Note that this definition does not follow the usual convention for exponents.
In particular, f ∈ C(a, b) and f ∈ C0(a, b) are the same statement, which are
both different than stating that f ∈ C1(a, b). If f ∈ C(a, b), or equivalently
if f ∈ C0(a, b), then the function is continuous on the interval. In contrast,
f ∈ C1(a, b) means that f(x) and f ′(x) are continuous on the interval. Also,
to state that f ∈ C∞(a, b) means f(x) and all of its derivatives are defined
and continuous for a < x < b.

We now state Taylor’s theorem.

Theorem A.1. Given a function f(x), assume that f ∈ Cn+1(xL, xR). In
this case, if x and x+ h are points in the interval (xL, xR), then

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) + · · ·+ 1

n!
hnf (n)(x) +Rn+1, (A.1)

where the remainder is

Rn+1 =
1

(n+ 1)!
hn+1f (n+1)(η), (A.2)

and η is a point between x and x+ h.

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0

453

454 A Taylor’s Theorem

The result in (A.1) is known as Taylor’s theorem with remainder. The mystery
point η in (A.2) is not known other than it is somewhere in the given interval.

Writing out the first few cases we have that

f(x+ h) = f(x) + hf ′(η),

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(η),

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(η).

The η’s in these formulas are not the same. Usually the exact value of η is
not important because the remainder term is dropped when using Taylor’s
theorem to derive an approximation of a function. Doing this, the above
expressions become

f(x+ h) ≈ f(x), (A.3)

f(x+ h) ≈ f(x) + hf ′(x), (A.4)

f(x+ h) ≈ f(x) + hf ′(x) +
1

2
h2f ′′(x). (A.5)

As a function of h, (A.3) is a constant approximation, (A.4) is a linear ap-
proximation, and (A.5) is a quadratic approximation.

There are various ways to write a Taylor expansion. One is as stated in
the above theorem, which is

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) + · · ·+ 1

n!
hnf (n)(x) + · · · .

The assumption here is that h is close to zero. Another way to write the
expansion is as

f(x) = f(a)+ (x− a)f ′(a) +
1

2
(x− a)2f ′′(a) + · · ·+ 1

n!
(x− a)nf (n)(a) + · · · .

In this case it is assumed that x is close to a. This gives rise to the linear
approximation

f(x) ≈ f(a) + (x− a)f ′(a), (A.6)

the quadratic approximation

f(x) ≈ f(a) + (x− a)f ′(a) +
1

2
(x− a)2f ′′(a), (A.7)

and the cubic approximation

f(x) ≈ f(a) + (x− a)f ′(a) +
1

2
(x− a)2f ′′(a) +

1

6
(x− a)3f ′′′(a). (A.8)

It’s certainly possible to write down higher-order approximations, but they
are not needed in this text.

A.1 Useful Taylor Series for x Near Zero 455

A.1 Useful Taylor Series for x Near Zero

f(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) +

1

6
x3f ′′′(0) + · · ·

Power Functions

(a+ x)γ = aγ + γxaγ−1 +
1

2
γ(γ − 1)x2aγ−2 +

1

6
γ(γ − 1)(γ − 2)x3aγ−3 + · · ·

1

1− x
= 1 + x+ x2 + x3 + · · ·

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + · · ·

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 + · · ·

1√
1− x

= 1 +
1

2
x+

3

8
x2 +

5

16
x3 + · · ·

Trig Functions

sin(x) = x− 1

3!
x3 +

1

5!
x5 + · · ·

arcsin(x) = x+
1

6
x3 +

3

40
x5 + · · ·

cos(x) = 1− 1

2
x2 +

1

4!
x4 + · · ·

arccos(x) =
π

2
− x− 1

6
x3 − 3

40
x5 + · · ·

tan(x) = x+
1

3
x3 +

2

15
x5 + · · ·

arctan(x) = x− 1

3
x3 +

1

40
x5 + · · ·

cot(x) =
1

x
− 1

3
x− 1

45
x3 + · · ·

arccot(x) =
π

2
− x+

1

3
x3 − 1

5
x5 + · · ·

sin(a+ x) = sin(a) + x cos(a)− 1

2
x2 sin(a) + · · ·

cos(a+ x) = cos(a)− x sin(a)− 1

2
x2 cos(a) + · · ·

tan(a+ x) = tan(a) + x sec2(a) + x2 tan(a) sec2(a) + · · ·

456 A Taylor’s Theorem

Exponential and Log Functions

ex = 1 + x+
1

2
x2 +

1

6
x3 + · · ·

ax = ex ln(a) = 1 + x ln(a) +
1

2
[x ln(a)]2 +

1

6
[x ln(a)]3 + · · ·

ln(a+ x) = ln(a) +
x

a
− 1

2

(x
a

)2
+

1

3

(x
a

)3
+ · · ·

Hyperbolic Functions

sinh(x) = x+
1

6
x3 +

1

120
x5 + · · ·

arcsinh(x) = x− 1

6
x3 +

3

40
x5 + · · ·

cosh(x) = 1 +
1

2
x2 +

1

24
x4 + · · ·

arccosh(x) =
√
2x

(
1− 1

12
x+

3

160
x2 + · · ·

)

tanh(x) = x− 1

3
x3 +

2

15
x5 + · · ·

arctanh(x) = x+
1

3
x3 +

1

5
x5 + · · ·

A.2 Order Symbol and Truncation Error

As a typical example of how we will use Taylor’s theorem, for h close to zero

sin(h) = h− 1

3!
h3 +

1

5!
h5 − 1

7!
h7 + · · · .

From this we have the approximations

sin(h) ≈ h,

and

sin(h) ≈ h− 1

3!
h3.

It is useful to have a way to indicate how the next term in the series depends
on h. The big-O notation is used for this, and we write

sin(h) = h+O(h3), (A.9)

A.2 Order Symbol and Truncation Error 457

and
sin(h) = h− 1

3!
h3 +O(h5). (A.10)

In this text, the part of the series that is dropped when deriving an ap-
proximation is often designated as τ . Given where it comes from, τ is referred
to as the truncation error. Using the above example, we will sometimes write
(A.9) as

sin(h) = h+ τ,

where τ = O(h3). Similarly, (A.10) can be written as

sin(h) = h− 1

3!
h3 + τ,

where τ = O(h5).
The definition for big-O is given below. There are more general definitions,

but they are not needed here.

Definition A.2. For h close to zero, τ = O(hn) means that

lim
h→0

τ

hn
= L,

where −∞ < L < ∞.

We will occasionally need to know how big-O terms combine. The rules that
cover many of the situations we will come across are the following:

Lemma:

1) If n < m, then O(hn) +O(hm) = O(hn).
2) For any nonzero constant α, O(αhn) = αO(hn) = O(hn).

The proof of these statements comes directly from the definition. As an exam-
ple of how they are used, if f(h) = 1+2h+O(h3) and g(h) = −4+3h+O(h4)
then

f + 2g = 1+ 2h+O(h3) + 2[−4 + 3h+O(h4)]

= −7 + 8h+O(h3)

For the same reason,

−2f + 6g = −26 + 14h+O(h3).

The last topic concerns two ways that the truncation error can be written.
These come from writing the Taylor series using the remainder term, or else
writing it out as a series. For example, one can write the series version

sin(h) = h− 1

3!
h3 +

1

5!
h5 − 1

7!
h7 + · · · ,

458 A Taylor’s Theorem

as
sin(h) = h+ τ,

where

τ = − 1

3!
h3 +

1

5!
h5 − 1

7!
h7 + · · · . (A.11)

In contrast, the remainder form, coming from (A.1) and (A.2), is

sin(h) = h+ τ,

where

τ = − 1

3!
h3 cos(η). (A.12)

In the text, for both cases, the error term is written as τ = O(h3). For the
series version in (A.11) this should be interpreted as an asymptotic form
of the error. What this means is that as h approaches zero, the first term
approximation of τ has the stated dependence on h. More explanation about
asymptotic forms of an approximation can be found in Holmes [2013].

Appendix B

B-Splines

B.1 Definition

Compact Version:

Bi(x) = Q

(
1

h
(x− xi)

)

where

Q(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |x| ≥ 2,
1

6
(2 − |x|)3 if 1 ≤ |x| ≤ 2,

2

3
− x2

(
1− 1

2
|x|
)

if 0 ≤ |x| ≤ 1.

Expanded Version:

Bi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ xi−2,

qi−2(x) if xi−2 ≤ x ≤ xi−1,

qi−1(x) if xi−1 ≤ x ≤ xi,

qi+1(x) if xi ≤ x ≤ xi+1,

qi+2(x) if xi+1 ≤ x ≤ xi+2,

0 if xi+2 ≤ x,

where

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0

459

460 B B-Splines

qi−2(x) =
1

6h3
(x− xi−2)

3,

qi−1(x) =
1

6
+

1

2h
(x− xi−1) +

1

2h2
(x− xi−1)

2 − 1

2h3
(x− xi−1)

3,

q+1(x) =
1

6
− 1

2h
(x− xi+1) +

1

2h2
(x − xi+1)

2 +
1

2h3
(x− xi+1)

3,

qi+2(x) = − 1

6h3
(x− xi+2)

3.

B.2 Plot

xi–2

0

1/3

2/3

xi–1

B
–S

p
lin

e

xi xi+1 xi+2

Figure B.1 Plot of the cubic B-spline Bi(x).

B.3 Particular Values

Bi: Bi(xi−1) =
1
6 , Bi(xi) =

2
3 , Bi(xi+1) =

1
6 ,

Bi(xj) = 0 for j �= i− 1, i, i+ 1

B′
i: B′

i(xi−1) =
1
2h , B′

i(xi) = 0 , B′
i(xi+1) = − 1

2h ,

B′
i(xj) = 0 for j �= i− 1, i, i+ 1

B′′
i : B′′

i (xi−1) =
1
h2 , B′′

i (xi) = − 2
h2 , B

′′
i (xi+1) =

1
h2 ,

B′′
i (xj) = 0 for j �= i− 1, i, i+ 1

B.5 Integrals 461

B.4 Derivatives

B′
i(x) =

1

h
Q′
(
1

h
(x− xi)

)

where

Q′(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |x| ≥ 2,

−s

2
(2− |x|) if 1 ≤ |x| ≤ 2,

−2x

(
1− 1

2
|x|
)
+ sx2 if 0 ≤ |x| ≤ 1,

and s = sgn(x).

B.5 Integrals

∫ xi−1

xi−2

Bi(x)dx =

∫ xi+2

xi+1

Bi(x)dx =
1

24
h

∫ xi

xi−1

Bi(x)dx =

∫ xi+1

xi

Bi(x)dx =
11

24
h

∫ xi

xi−2

Bi(x)dx =

∫ xi+2

xi

Bi(x)dx =
1

2
h

∫ ∞

−∞
Bi(x)dx =

∫ xi+2

xi−2

Bi(x)dx = h

Appendix C

Summary Tables

In several of the chapters, multiple methods were derived that do basically
the same thing. The tables given here are a non-exhaustive listing for these
methods and some of their basic properties (Tables C.1, C.2, C.3, and C.4).
Not all of the notation is explained, and for that you need to consult the
respective chapter.

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0

463

464 C Summary Tables

G
e
n
e
r
a
l
F
o
r
m

S
u
b
in
te

r
v
a
l

x
i
≤

x
≤

x
i
+

1

C
o
m

m
e
n
ts

In
te

r
p
o
la
ti
o
n

E
r
r
o
r

a
≤

x
≤

b

L
a
g
r
a
n
g
e

p
n
(x

)
=

n
+

1
∑ i
=

1

y
i
	 i
(x

)

	 i
(x

)
=

n
+

1
∏ j
=

1
j
�=

i

x
−

x
j

x
i
−

x
j

p
n
∈

C
∞

[a
,b
]

C
a
n
h
av

e
p
ro
b
le
m
s

w
it
h
la
rg
e
d
a
ta

se
ts

w
it
h
eq

u
a
ll
y
sp

a
ce
d

p
o
in
ts
.

E
≤

||f
(
n
+

1
)
|| ∞

4
(n

+
1
)

h
n
+

1

P
ie
c
e
w
is
e

L
in

e
a
r

g
(x

)
=

n
+

1
∑ i
=

1

y
i
G

i
(x

)
g
i
(x

)
=

y
i
+

y
i
+

1
−

y
i

x
i
+

1
−

x
i

(x
−

x
i
)

g
∈

C
[a
,b
]

Q
u
ic
k
ly

ca
lc
u
la
te
d

b
u
t
h
a
s
co
rn

er
s.

E
≤

1 8
h
2
||f

′′
|| ∞

C
u
b
ic

S
p
li
n
e

s(
x
)
=

n
+

2
∑ i
=

0

a
i
B

i
(x

)
s i
(x

)
=

a
i
+

b i
(x

−
x
i
)

+
c i
(x

−
x
i
)2

+
d
i
(x

−
x
i
)3

s
∈

C
2
[a
,b
]

R
eq

u
ir
es

so
lu
ti
o
n
o
f

tr
id
ia
g
o
n
a
l
m
a
tr
ix

eq
u
a
ti
o
n
.

C
la
m
p
ed

E
≤

5

3
8
4
h
4
||f

′′
′′
|| ∞

C
h
e
b
y
sh

e
v

p
n
(x

)
=

n
+

1
∑ i
=

1

y
i
	 i
(x

)
x
i
=

1 2
[a

+
b
+

(b
−

a
)z

i
]

z i
=

co
s(2

i
−

1

2
n

π

)
p
n
∈

C
∞

[a
,b
]

E
≤

α √
n
R

n
+

1
||f

(
n
+

1
)
|| ∞

R
=

(b
−

a
)e

4
(n

+
1
)

T
a
b
le

C
.1

S
u
m
m
a
ry

o
f
in
te
rp

o
la
ti
o
n
m
et
h
o
d
s.

In
th

e
la
st

co
lu
m
n
,
a
n
ex

p
re
ss
io
n
w
it
h
a
h
m
ea
n
s
th

e
x
i
’s

a
re

eq
u
a
ll
y
sp

a
ce
d
.

C Summary Tables 465

R
u
le

C
o
m

p
o
si
te

M
id

p
o
in
t

∫
x

i
+

1

x
i

f
(x

)d
x
=

h
f
i
+

1
/
2
+

τ r

τ r
=

1 2
4
h
3
f
′′
(η
)

∫
b

a

f
(x

)d
x
=

h
(f

1
+

1
/
2
+

f
2
+

1
/
2
+

··
·+

f
n
+

1
/
2

) +
τ c

|τ c
|≤

b
−

a

2
4

h
2
||f

′′
|| ∞

T
r
a
p
e
z
o
id

∫
x

i
+

1

x
i

f
(x

)d
x
=

h 2
(f

i
+

1
+

f
i
)
+

τ r

τ r
=

−
1 1
2
h
3
f
′′
(η
)

∫
b

a

f
(x

)d
x
=

h

(1 2
f
1
+

f
2
+

f
3
+

··
·+

f
n
+

1 2
f
n
+

1

)
+

τ c

|τ c
|≤

b
−

a

1
2

h
2
||f

′′
|| ∞

S
im

p
so

n

∫
x

i
+

1

x
i
−

1

f
(x

)d
x
=

h 3
(f

i
−

1
+

4
f
i
+

f
i
+

1
)
+

τ r

τ r
=

−
1 9
0
h
5
f
′′
′′
(η
)

∫
b

a

f
(x

)d
x
=

h 3
(f

1
+

4
f
2
+

2
f
3
+

4
f
4
+

2
f
5
+

··
·+

4
f
n
+

f
n
+

1
)
+

τ c

|τ c
|≤

b
−

a

9
0

h
4
||f

′′
′′
|| ∞

H
e
r
m

it
e

∫
b

a

f
(x

)d
x
=

h

(1 2
f
1
+

f
2
+

··
·+

f
n
+

1 2
f
n
+

1

)
+

1 1
2
h
2
(f

′ 1
−

f
′ n
+

1

) +
τ c

|τ c
|≤

b
−

a

7
2
0

h
4
||f

′′
′′
|| ∞

2
-P

o
in
t

G
a
u
ss
ia
n

∫
x

i
+

1

x
i
−

1

f
(x

)d
x
=

1 2
h
[f

(z
+ i
)
+

f
(z

− i
)] +

τ r

z
± i

=
x
i
+

1 2
h
±

1

2
√
3
h

τ r
=

1

4
3
2
0
h
5
f
′′
′′
(η
)

∫
b

a

f
(x

)d
x
=

h 2

(f
− 1

+
f
+ 1

+
f
− 2

+
f
+ 2
··
·+

f
− n

+
f
+ n

) +
τ c

|τ c
|≤

b
−

a

4
3
2
0
h
4
||f

′′
′′
|| ∞

T
a
b
le

C
.2

S
u
m
m
a
ry

o
f
in
te
g
ra
ti
o
n
m
et
h
o
d
s.

N
o
te

th
a
t
h
=

x
i
+

1
−

x
i
,
f
i
=

f
(x

i
),

f
i
+

1
/
2
=

f
(x

i
+

1 2
h
),

a
n
d
f
± i

=
f
(z

± i
)
w
h
er
e
z
±

a
re

d
efi

n
ed

in
(6
.3
3
).

466 C Summary Tables

M
e
th

o
d
s
fo
r
so

lv
in

g
th

e
d
iff

e
r
e
n
ti
a
l
e
q
u
a
ti
o
n d
y d
t
=

f
(t
,y
)

M
e
th

o
d

D
iff

e
r
e
n
c
e
E
q
u
a
ti
o
n

τ j
P
r
o
p
e
r
ti
e
s

E
u
le
r

y
j
+

1
=

y
j
+

k
f
j

O
(k
)

E
x
p
li
ci
t;

C
o
n
d
it
io
n
a
ll
y
A
-s
ta
b
le

B
a
c
k
w
a
r
d

E
u
le
r

y
j
+

1
=

y
j
+

k
f
j
+

1
O
(k
)

Im
p
li
ci
t;

A
-s
ta
b
le

T
r
a
p
e
z
o
id

a
l

y
j
+

1
=

y
j
+

k 2
(f

j
+

f
j
+

1
)

O
(k

2
)

Im
p
li
ci
t;

A
-s
ta
b
le

H
e
u
n

(R
K
2
)

y
j
+

1
=

y
j
+

1 2
(k

1
+

k
2
)

w
h
er
e

k
1
=

k
f
j
,

k
2
=

k
f
(t

j
+

1
,y

j
+

k
1
)

O
(k

2
)

E
x
p
li
ci
t;

C
o
n
d
it
io
n
a
ll
y
A
-s
ta
b
le

C
la
ss
ic

R
u
n
g
e
–

K
u
tt
a

(R
K
4
)

y
j
+

1
=

y
j
+

1 6
(k

1
+

2
k
2
+

2
k
3
+

k
4
)

w
h
er
e

k
1
=

k
f
j
,

k
2
=

k
f
(t

j
+

k 2
,y

j
+

1 2
k
1
),

k
3
=

k
f
(t

j
+

k 2
,y

j
+

1 2
k
2
),

k
4
=

k
f
(t

j
+

1
,y

j
+

k
3
)

O
(k

4
)

E
x
p
li
ci
t;

C
o
n
d
it
io
n
a
ll
y
A
-s
ta
b
le

T
a
b
le

C
.3

F
in
it
e
d
iff
er
en

ce
m
et
h
o
d
s
fo
r
so
lv
in
g
a
n
IV

P
.
T
h
e
p
o
in
ts

t 1
,t

2
,t

3
,.
..

a
re

eq
u
a
ll
y
sp

a
ce
d
w
it
h
st
ep

si
ze

k
=

t j
+

1
−

t j
.
A
ls
o
,

f
j
=

f
(t

j
,y

j
),

f
j
+

1
=

f
(t

j
+

1
,y

j
+

1
),

a
n
d
τ j

is
th

e
tr
u
n
ca
ti
o
n
er
ro
r
fo
r
th

e
m
et
h
o
d
.

C Summary Tables 467

M
e
th

o
d

A
lg
o
r
it
h
m

:
F
o
r
S
o
lv
in

g
A
v
=

b
A
lg
o
r
it
h
m

:
G
e
n
e
r
a
l
N
o
n
li
n
e
a
r
F
(v

)

S
te

e
p
e
st

D
e
sc

e
n
t

M
e
th

o
d

P
ic
k
v
1

F
o
r
k
=

1
,2

,3
,.
.. v
k
+

1
=

v
k
+

α
k
r
k

r
k
+

1
=

r
k
−

α
k
q
k

w
h
er
e

q
k

=
A
d
k

α
k

=
r
k
·r

k

d
k
·q

k

P
ic
k
v
1

F
o
r
k
=

1
,2

,3
,.
..

v
k
+

1
=

v
k
−

α
k
g
k

w
h
er
e

g
k

=
∇
F
(v

k
)

α
k

	
F
(v

k
−

α
k
g
k
)
<

F
(v

k
)

C
o
n
ju

g
a
te

G
r
a
d
ie
n
t

M
e
th

o
d

P
ic
k
v
1
,
se
t
r
1
=

b
−

A
v
1
a
n
d
d
1
=

r
1

F
o
r
k
=

1
,2

,3
,.
..

v
k
+

1
=

v
k
+

α
k
d
k

r
k
+

1
=

r
k
−

α
k
q
k

d
k
+

1
=

r
k
+

1
+

β
k
d
k

w
h
er
e

q
k

=
A
d
k

α
k

=
r
k
·r

k

d
k
·q

k

β
k

=
r
k
+

1
·r

k
+

1

r
k
·r

k

P
ic
k
v
1
a
n
d
se
t
d
1
=

−g
1

F
o
r
k
=

1
,2

,3
,.
..

v
k
+

1
=

v
k
+

α
k
d
k

d
k
+

1
=

−g
k
+

1
+

β
k
d
k

w
h
er
e

α
k

	
F
(v

k
+

α
k
d
k
)
<

F
(v

k
)

β
k

=
g
k
+

1
·g

k
+

1

g
k
·g

k

T
a
b
le

C
.4

G
ra
d
ie
n
t
d
ec
en

t
m
et
h
o
d
s
fo
r
m
in
im

iz
a
ti
o
n
.
T
h
e
m
a
tr
ix

A
is

a
ss
u
m
ed

to
sy
m
m
et
ri
c
a
n
d
p
o
si
ti
v
e
d
efi

n
it
e.

References

Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip.
Rev. Comput. Stat. 2(4),433–459 (2010). ISSN 1939-0068. doi:10.1002/
wics.101

Anderson, M., Adali, T.: A general approach for robustification of ICA algo-
rithms. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent,
E. (eds.) Latent Variable Analysis and Signal Separation. Lecture Notes in
Computer Science, vol. 6365, pp. 295–302. Springer, Berlin (2010). ISBN
978-3-642-15994-7. doi:10.1007/978-3-642-15995-4 37

Andersen, A.H., Gash, D.M., Avison, M.J.: Principal component analysis
of the dynamic response measured by fMRI: a generalized linear systems
framework. Magn. Reson. Imaging 17(6), 795–815 (1999)

ANSI/IEEE: IEEE Standard for Binary Floating-Point Arithmetic, volume
Std 754-1985. IEEE, New York (1985)

Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Sales-
man Problem: A Computational Study. Princeton Series in Applied Math-
ematics. Princeton University Press, Princeton (2006)

Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. SIAM, Philadelphia, PA
(1998). ISBN 0898714125

Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., Basa, S.,
Carlberg, R.G., Fabbro, S., Fouchez, D., Hook, I.M., Howell, D.A., Lafoux,
H., Neill, J.D., Palanque-Delabrouille, N., Perrett, K., Pritchet, C.J., Rich,
J., Sullivan, M., Taillet, R., Aldering, G., Antilogus, P., Arsenijevic, V.,
Balland, C., Baumont, S., Bronder, J., Courtois, H., Ellis, R.S., Filiol,
M., Gonçalves, A.C., Goobar, A., Guide, D., Hardin, D., Lusset, V., Lid-
man, C., McMahon, R., Mouchet, M., Mourao, A., Perlmutter, S., Ripoche,
P., Tao, C., Walton, N.: The supernova legacy survey:measurement of

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0

469

470 References

ωm, ωΛ and w from the first year data set. Astron. Astrophys. 447(1),
31–48 (2006). doi:10.1051/0004-6361:20054185. http://dx.doi.org/10.
1051/0004-6361:20054185

Bailey, D.H., Lee, K., Simon, H.D.: Using Strassen’s algorithm to accelerate
the solution of linear systems. J. Supercomput. 4, 357–371 (1991)

Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Minimizing communication
in numerical linear algebra. SIAM J. Matrix Anal. Appl. 32(3), 866–901
(2011). doi:10.1137/090769156. http://dx.doi.org/10.1137/090769156

Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by inde-
pendent component analysis. IEEE Trans. Neural Netw. 13(6), 1450–1464
(2002). ISSN 1045-9227. doi:10.1109/tnn.2002.804287

Batterson, S., Smillie, J.: Rayleigh quotient iteration fails for nonsymmet-
ric matrices. Appl. Math. Lett. 2(1), 19–20 (1989). ISSN 0893-9659.
doi:http://dx.doi.org/10.1016/0893-9659(89)90107-9

Beattie, C., Fox, D.: Localization criteria and containment for Rayleigh
quotient iteration. SIAM J. Matrix Anal. Appl. 10(1), 80–93 (1989).
doi:10.1137/0610006

Benzi, M.: Preconditioning techniques for large linear systems: a survey. J.
Comput. Phys. 182(2), 418–477 (2002)

Berman, G.P., Izrailev, F.M.: The Fermi-Pasta-Ulam problem: fifty years of
progress. Chaos 15(1), 015104 (2005). ISSN 10541500

Bernoulli, J.: Meditationes de chordis vibrantibus. Comment. Acad. Sci. Imp.
Petropol. 3,13–28 (1728)

Bjöurck, A.: The calculation of linear least squares problems. Acta Nu-
mer. 13, 1–53 (2004). ISSN 1474-0508. doi:10.1017/S0962492904000169.
http://journals.cambridge.org/article_S0962492904000169

Bjöurck, A.: Numerical Methods in Matrix Computations. Springer, Cham
(2015). ISBN 978-3-319-05088-1

Bogaert, I.: Iteration-free computation of Gauss–Legendre quadrature nodes
and weights. SIAM J. Sci. Comput. 36(3), A1008–A1026 (2014). doi:10.
1137/140954969. http://dx.doi.org/10.1137/140954969

Boyd, J.P.: Solving Transcendental Equations: The Chebyshev Polynomial
Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles.
Other Titles in Applied Mathematics. SIAM, Philadelphia (2014). ISBN
9781611973525. https://books.google.com/books?id=29CgBAAAQBAJ

Brewer, D. Barenco, M., Callard, R., Hubank, M., Stark, J.: Fitting ordi-
nary differential equations to short time course data. Philos. Trans. A 366
(1865), 519–544 (2008)

Brockett, P.L., Derrig, R.A., Golden, L.L., Levine, A., Alpert, M.: Fraud
classification using principal component analysis of RIDITs. J. Risk In-
sur. 69(3), 341–371 (2002). ISSN 1539-6975. doi:10.1111/1539-6975.00027.
http://dx.doi.org/10.1111/1539-6975.00027

Brys, G., Hubert, M., Rousseeuw, P.J.: A robustification of independent com-
ponent analysis. J. Chemometr. 19(5–7), 364–375 (2005). ISSN 1099-128X.
doi:10.1002/cem.940

http://dx.doi.org/10.1051/0004-6361:20054185
http://dx.doi.org/10.1051/0004-6361:20054185
http://dx.doi.org/10.1137/090769156
http://dx.doi.org/10.1016/0893-9659(89)90107-9
http://journals.cambridge.org/article_S0962492904000169
http://dx.doi.org/10.1137/140954969
https://books.google.com/books?id=29CgBAAAQBAJ
http://dx.doi.org/10.1111/1539-6975.00027

References 471

Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast
matrix multiplication. Math. Comput. 28(125), 231–236 (1974)

Burges, C.J.C.: Geometric methods for feature extraction and dimensional
reduction. In: Maimon, O., Rokach, L. (eds.) The Data Mining and Knowl-
edge Discovery Handbook, 2nd edn., pp. 53–82. Springer, New York (2010)

Burkardt, J.: Hand-data. http://people.sc.fsu.edu/~jburkardt/m_src/
hand_data/hand_data.html (2015)

Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations,
2nd edn. Wiley, Chichester (2008)

Chen, A., Bickel, P.J.: Efficient independent component analysis. Ann. Stat.
34(6), 2825–2855 (2006). doi:10.1214/009053606000000939

Chernov, N., Lesort, C.: Least squares fitting of circles. J. Math. Imaging
Vision 23, 239–252 (2005)

Cline, A.K., Dhillon, I.S.: Computation of the singular value decomposi-
tion. In: Hogben, L. (ed.) Handbook of Linear Algebra, pp. 45.1–45.13.
Chapman & Hall/CRC, Boca Raton (2007)

Collange, S., Defour, D., Graillat, S., Iakymchuk, R.: Numerical reproducibil-
ity for the parallel reduction on multi- and many-core architectures. Par-
allel Comput. 49, 83–97 (2015). ISSN 0167-8191. doi:http://dx.doi.
org/10.1016/j.parco.2015.09.001. http://www.sciencedirect.com/
science/article/pii/S0167819115001155

Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation: Indepen-
dent Component Analysis and Applications. Communications Engineering.
Elsevier, Boston (2010). ISBN 978-0-12-374726-6

Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free
Optimization. SIAM, Philadelphia (2009)

Cordero, A., Jordnn, C., Torregrosa, J.R.: One-point Newton-type iterative
methods: a unified point of view. J. Comput. Appl. Math. 275, 366–
374 (2015). ISSN 0377-0427. doi:http://dx.doi.org/10.1016/j.cam.
2014.07.009. http://www.sciencedirect.com/science/article/pii/
S0377042714003288

Costello, A.B., Osborne, J.W.: Best practices in exploratory factor analy-
sis: four recommendations for getting the most from your analysis. Pract.
Assess. Res. Eval. 10(7), 1–9 (2005). ISSN 1531-7714

Crandall, R, Pomerance, C.B.: Prime Numbers: A Computational Perspec-
tive, 2nd edn. Springer, New York (2010). ISBN 9780387289793

Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Dover,
New York (2007). ISBN 9780486453392. https://books.google.com/

books?id=gGCKdqka0HAC

de Boor, C., Schoenberg, I.J.: Cardinal interpolation and spline functions
VIII. The Budan-Fourier theorem for splines and applications. In: Bohmer,
K., Meinardus, G., Schempp, W. (eds.) Spline Functions. Lecture Notes in
Mathematics, vol. 501, pp. 1–79. Springer, Berlin (1976). ISBN 978-3-540-
07543-1. doi:10.1007/BFb0079740

http://people.sc.fsu.edu/~jburkardt/m_src/hand_data/hand_data.html
http://people.sc.fsu.edu/~jburkardt/m_src/hand_data/hand_data.html
http://dx.doi.org/10.1016/j.parco.2015.09.001
http://dx.doi.org/10.1016/j.parco.2015.09.001
http://www.sciencedirect.com/science/article/pii/S0167819115001155
http://www.sciencedirect.com/science/article/pii/S0167819115001155
http://dx.doi.org/10.1016/j.cam.2014.07.009
http://dx.doi.org/10.1016/j.cam.2014.07.009
http://www.sciencedirect.com/science/article/pii/S0377042714003288
http://www.sciencedirect.com/science/article/pii/S0377042714003288
https://books.google.com/books?id=gGCKdqka0HAC
https://books.google.com/books?id=gGCKdqka0HAC

472 References

de Dinechin, F., Defour, D., Lauter, C.: Fast correct rounding of elementary
functions in double precision using double-extended arithmetic. Technical
Report 2004-10, Laboratoire de l’Informatique du Parallelisme, March 2004

Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia, PA
(1997). ISBN 0-89871-389-7

Demmel, J., Hida, Y.: Accurate and efficient floating point summation. SIAM
J. Sci. Comput. 25(4), 1214–1248 (2004)

Demmel, J, Nguyen, H.D.: Fast reproducible floating-point summation. In:
21st IEEE Symposium on Computer Arithmetic (ARITH), April 2013, pp.
163–172 (2013). doi:10.1109/ARITH.2013.9

Dennis, J.E., Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations. SIAM, Philadelphia, PA (1996). ISBN
0898713641

Dongarra, J., Sullivan, F.: The top 10 algorithms. Comput. Sci. Eng. 2(1),
22–23 (2000)

Doukas, H., Papadopoulou, A., Savvakis, N., Tsoutsos, T., Psarras, J.: As-
sessing energy sustainability of rural communities using principal compo-
nent analysis. Renew. Sust. Energ. Rev. 16(4), 1949–1957 (2012). ISSN
1364-0321. doi:http://dx.doi.org/10.1016/j.rser.2012.01.018

Dussault, J.-P.: Solving trajectory optimization problems via nonlinear pro-
gramming: the brachistochrone case study. Optim. Eng. 15, 1–17 (2014).
ISSN 1389-4420. doi:10.1007/s11081-013-9244-4

Erdmann, U., Ebeling, W., Mikhailov, A.S.: Noise-induced transition from
translational to rotational motion of swarms. Phys. Rev. E 71(5), 051904
(2005)

Evans, G.A., Webster, J.R.: A comparison of some methods for the
evaluation of highly oscillatory integrals. J. Comput. Appl. Math.
112, 55–69 (1999). ISSN 0377-0427. doi:http://dx.doi.org/10.1016/
S0377-0427(99)00213-7

Fabian, J.T., Elmar, W.L., Carlos, G.P.: A geometric algorithm for overcom-
plete linear ICA. Neurocomputing 56, 381–398 (2004). ISSN 0925-2312.
doi:http://dx.doi.org/10.1016/j.neucom.2003.09.008

Ford, J.: The Fermi-Pasta-Ulam problem: paradox turns discovery. Phys.
Rep. 213(5), 271–310 (1992). ISSN 0370-1573. doi:http://dx.doi.org/
10.1016/0370-1573(92)90116-H

Fourier, M.: Analyse des Équations Déterminées. Paris, Didot (1831).
https://books.google.com/books?id=HIU_AAAAcAAJ

Gander, W., Gautschi, W.: Adaptive quadrature—revisited. BIT 40(1),
84–101 (2000). ISSN 0006-3835. doi:10.1023/A:1022318402393

Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and
ellipses. BIT Numer. Math. 34(4), 558–578 (1994). ISSN 0006-3835. doi:10.
1007/BF01934268

GIMPS: Great Internet Mersenne Prime Search (2015). http://www.

mersenne.org

http://dx.doi.org/10.1016/j.rser.2012.01.018
http://dx.doi.org/10.1016/S0377-0427(99)00213-7
http://dx.doi.org/10.1016/S0377-0427(99)00213-7
http://dx.doi.org/10.1016/j.neucom.2003.09.008
http://dx.doi.org/10.1016/0370-1573(92)90116-H
http://dx.doi.org/10.1016/0370-1573(92)90116-H
https://books.google.com/books?id=HIU_AAAAcAAJ
http://www.mersenne.org
http://www.mersenne.org

References 473

Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S.,
Brilliant, L.: Detecting influenza epidemics using search engine query data.
Nature 457, 1012–1014 (2009). doi:10.1038/nature07634

Giraud, L., Langou, J., Rozloznik, M.: The loss of orthogonality in the Gram-
Schmidt orthogonalization process. Comput. Math. Appl. 50(7), 1069–1075
(2005). ISSN 0898-1221

Gladwell, G.M.L.: Contact Problems in the Classical Theory of Elasticity.
Sijthoff and Noordhoff, Germantown, MD (1980)

Goldberg, D.: What every computer scientist should know about floating-
point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)

Golub, G., Uhlig, F.: The QR algorithm: 50 years later its genesis by
John Francis and Vera Kublanovskaya and subsequent developments.
IMA J. Numer. Anal. 29(3), 467–485 (2009). doi:10.1093/imanum/drp012.
http://imajna.oxfordjournals.org/content/29/3/467.abstract

Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins
University Press, Baltimore, MD (2013). ISBN 1421408597

Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math.
Comput. 23(106), 221–230 (1969). doi:10.3934/jcd.2014.1.391

Gonnet, P.: A review of error estimation in adaptive quadrature. ACM Com-
put. Surv. 44(4), 22:1–22:36 (2012). ISSN 0360-0300. doi:10.1145/2333112.
2333117

Google: Google flu trends. http://www.google.org/flutrends (2015)
Grasselli, M., Pelinovsky, D.: Numerical Mathematics. Jones and Bartlett
Publishers, Sudbury, MA (2008)

Greenan, G., Brangwynne, C.P., Jaensch, S., Gharakhani, J., Julicher, F.,
Hyman, A.A.: Centrosome size sets mitotic spindle length in Caenorhab-
ditis elegans embryos. Curr. Biol. 20(4), 353–358 (2010)

Griffiths, D., Higham, D.J.: Numerical Methods for Ordinary Differential
Equations. Springer, London (2010)

Gwinn, C.R., Johnson, M.D., Reynolds, J.E., Jauncey, D.L., Tzioumis, A.K.,
Dougherty, S., Carlson, B., Del Rizzo, D., Hirabayashi, H., Kobayashi, H.,
Murata, Y., Edwards, P.G., Quick, J.F.H., Flanagan, C.S., McCulloch,
P.M.: Noise in the cross-power spectrum of the Vela pulsar. Astrophys. J.
758(1), 6 (2012)

Hagan, P.S., West, G.: Interpolation methods for curve construction. Appl.
Math. Finance 13(2), 89–129 (2006). ISSN 1350486X. http://search.
ebscohost.com.libproxy.rpi.edu/login.aspx?direct=true&db=buh&

AN=21645450&site=ehost-live&scope=site

Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, 2nd edn.
Springer, Berlin (2002)

Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illus-
trated by the Stormer–Verlet method. Acta Numer. 12, 399–450 (2003).
ISSN 1474-0508. doi:10.1017/S0962492902000144

http://imajna.oxfordjournals.org/content/29/3/467.abstract
http://www.google.org/flutrends
http://search.ebscohost.com.libproxy.rpi.edu/login.aspx?direct=true&db=buh&AN=21645450&site=ehost-live&scope=site
http://search.ebscohost.com.libproxy.rpi.edu/login.aspx?direct=true&db=buh&AN=21645450&site=ehost-live&scope=site
http://search.ebscohost.com.libproxy.rpi.edu/login.aspx?direct=true&db=buh&AN=21645450&site=ehost-live&scope=site

474 References

Halko, N., Martinsson, P.-G., Shkolnisky, Y., Tygert, M.: An algorithm for
the principal component analysis of large data sets. SIAM J. Sci. Comput.
33(5), 2580–2594 (2011). ISSN 1064-8275. doi:10.1137/100804139

Hall, C.A., Meyer, W.W.: Optimal error bounds for cubic spline interpolation.
J. Approx. Theory 16(2), 105–122 (1976). ISSN 0021-9045. doi:http://dx.
doi.org/10.1016/0021-9045(76)90040-X

Hanrot, G., Lefevre, V., Stehle, D., Zimmermann, P.: Worst cases of a peri-
odic function for large arguments. In: 18th IEEE Symposium on Computer
Arithmetic, 2007 (ARITH ’07), pp. 133–140 (2007). doi:10.1109/ARITH.
2007.37

Harrison, J., Kubaska, T., Story, S., Tang, P.: The computation of transcen-
dental functions on the IA-64 architecture. Intel Technol. J. 4, 234–251
(1999)

Higham, N.J.: The accuracy of floating point summation. SIAM J. Sci. Com-
put. 14, 783–799 (1993)

Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn.
SIAM, Philadelphia, PA (2002). ISBN 0-89871-521-0

Hojjati, A., Zhao, G.-B., Pogosian, L., Silvestri, A., Crittenden, R., Koyama,
K.: Cosmological tests of general relativity: a principal component analysis.
Phys. Rev. D 85, 043508 (2012). doi:10.1103/PhysRevD.85.043508

Holladay, J.C.: A smoothest curve approximation. Math. Tables Aids Com-
put. 11(60), 233–243 (1957)

Holmes, M.H.: Introduction to Numerical Methods in Differential Equations.
Springer, New York (2007)

Holmes, M.H.: Introduction to the Foundations of Applied Mathematics.
Springer, New York (2009)

Holmes, M.H.: Introduction to Perturbation Methods, 2nd edn. Springer,
New York (2013)

Holmes, M.H.: Connections between cubic splines and quadrature rules. Am.
Math. Mon. 121(7), 661–662 (2014)

Huss-Lederman, S., Jacobson, E.M., Johnson, J.R., Tsao, A., Turnbull, T.:
Implementation of Strassen’s algorithm for matrix multiplication. In: Pro-
ceedings of the 1996 ACM/IEEE Conference on Supercomputing, pp. 9–6
(1996)

Huynh, H.T.: Accurate monotone cubic interpolation. SIAM J. Numer. Anal.
30(1), 57–100 (1993)

Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis.
Wiley-Interscience. Wiley, New York (2001). ISBN 047140540X

Iooss, G., James, G.: Localized waves in nonlinear oscillator chains. Chaos
15(1), 015113 (2005)

Iriarte-Dı́az, J.: Differential scaling of locomotor performance in small and
large terrestrial mammals. J. Exp. Biol. 205(18), 2897–2908 (2002).
http://jeb.biologists.org/content/205/18/2897.abstract

http://dx.doi.org/10.1016/0021-9045(76)90040-X
http://dx.doi.org/10.1016/0021-9045(76)90040-X
http://jeb.biologists.org/content/205/18/2897.abstract

References 475

Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Dover Publica-
tions, New York (1994). ISBN 9780486680293. https://books.google.
com/books?id=y77n2ySMJHUC

Iserles, A., Nørsett, S.P., Olver, S.: Highly oscillatory quadrature: the story
so far. In: de Castro, A.B., Gomez, D., Quintela, P., Salgado, P. (eds.)
Numerical Mathematics and Advanced Applications, pp. 97–118. Springer,
Berlin (2006). ISBN 978-3-540-34287-8. doi:10.1007/978-3-540-34288-5 6

Jackson, D.A.: Stopping rules in principal components analysis: a comparison
of heuristical and statistical approaches. Ecology 74(8), 2204–2214 (1993)

James, G., Kevrekidis, P.G., Cuevas, J.: Breathers in oscillator chains
with Hertzian interactions. Phys. D 251, 39–59 (2013). ISSN 0167-2789.
doi:http://dx.doi.org/10.1016/j.physd.2013.01.017

Jameson, A., Vassberg, J.: Studies of alternate numerical optimization meth-
ods applied to the brachistochrone problem. CFD J. 9(3), 281–296 (2001)

Johnson, K.A., Goody, R.S.: The original Michaelis constant: translation of
the 1913 Michaelis-Menten paper. Biochemistry 50(39), 8264–8269 (2011)

Josse, J., Husson, F.: Selecting the number of components in principal
component analysis using cross-validation approximations. Comput. Stat.
Data Anal. 56(6), 1869–1879 (2012). ISSN 0167-9473. doi:http://dx.doi.
org/10.1016/j.csda.2011.11.012. http://www.sciencedirect.com/

science/article/pii/S0167947311004099

Jung, B.C., Choi, S.I., Du, A.X., Cuzzocreo, J.L., Geng, Z.Z., Ying, H.S.,
Perlman, S.L., Toga, A.W., Prince, J.L., Ying, S.H.: Principal component
analysis of cerebellar shape on MRI separates SCA types 2 and 6 into
two archetypal modes of degeneration. Cerebellum 11(4), 887–895 (2012).
ISSN 1473-4222. doi:10.1007/s12311-011-0334-6

Kahan, W.M.: Numerical linear algebra. Can. Math. Bull. 9, 757–801 (1966)
Kershaw, D.: A note on the convergence of interpolatory cubic splines. SIAM
J. Numer. Anal. 8(1), 67–74 (1971)

Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F.,
Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.:
Classification and diagnostic prediction of cancers using gene expression
profiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)
ISSN 10788956

Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey
of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004).
ISSN 0021-9991. doi:10.1016/j.jcp.2003.08.010

Knuth, D.E.: The Art of Computer Programming: Seminumerical Algo-
rithms, vol. 2, 3rd edn. Addison-Wesley Longman Publishing Co., Boston,
MA (1997). ISBN 0-201-89684-2

Kollerstrom, N.: Thomas Simpson and ‘Newton’s method of approxi-
mation’: an enduring myth. Br. J. Hist. Sci. 25, 347–354 (1992).
ISSN 1474-001X. doi:10.1017/S0007087400029150. http://journals.

cambridge.org/article_S0007087400029150

https://books.google.com/books?id=y77n2ySMJHUC
https://books.google.com/books?id=y77n2ySMJHUC
http://dx.doi.org/10.1016/j.physd.2013.01.017
http://dx.doi.org/10.1016/j.csda.2011.11.012
http://dx.doi.org/10.1016/j.csda.2011.11.012
http://www.sciencedirect.com/science/article/pii/S0167947311004099
http://www.sciencedirect.com/science/article/pii/S0167947311004099
http://journals.cambridge.org/article_S0007087400029150
http://journals.cambridge.org/article_S0007087400029150

476 References

Kondrat, S., Perez, C.R., Presser, V., Gogotsi, Y., Kornyshev, A.A.: Effect of
pore size and its dispersity on the energy storage in nanoporous supercapac-
itors. Energy Environ. Sci. 5, 6474–6479 (2012). doi:10.1039/C2EE03092F.
http://dx.doi.org/10.1039/C2EE03092F

Korats, G., Le Cam, S., Ranta, R., Hamid, M.: Applying ICA in EEG: choice
of the window length and of the decorrelation method. In: Gabriel, J.,
Schier, J., Van Huffel, S., Conchon, E., Correia, C., Fred, A., Gamboa, H.
(eds.) Biomedical Engineering Systems and Technologies. Communications
in Computer and Information Science, vol. 357, pp. 269–286. Springer,
Berlin (2013). ISBN 978-3-642-38255-0. doi:10.1007/978-3-642-38256-7 18.
http://dx.doi.org/10.1007/978-3-642-38256-7_18

Kuczyński, J., Woźniakowski, H.: Estimating the largest eigenvalue by the
power and Lanczos algorithms with a random start. SIAM J. Matrix Anal.
Appl. 13(4), 1094–1122 (1992). doi:10.1137/0613066

Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence prop-
erties of the Nelder-Mead simplex method in low dimensions. SIAM J.
Optim. 9, 112–147 (1998)

Lai, K.-L., Crassidis, J.L.: Extensions of the first and second complex-
step derivative approximations. J. Comput. Appl. Math. 219(1), 276–293
(2008). ISSN 0377-0427. doi:http://dx.doi.org/10.1016/j.cam.2007.07.026

Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The
Initial Value Problem. Wiley, Chichester (1991)

Lazer, D., Kennedy, R., King, G., Vespignani, A.: The parable of
Google flu: traps in big data analysis. Science 343(6176), 1203–
1205 (2014). doi:10.1126/science.1248506. http://www.sciencemag.org/
content/343/6176/1203.short

Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys.
227(7), 3515–3539 (2008). ISSN 0021-9991. doi:http://dx.doi.org/10.
1016/j.jcp.2007.02.014. http://www.sciencedirect.com/science/

article/pii/S0021999107000812. Predicting weather, climate and ex-
treme events

Levin, Y., Nediak, M., Ben-Israel, A.: A direct Newton method for calculus
of variations. J. Comput. Appl. Math. 139(2), 197–213 (2002). ISSN 0377-
0427. doi:http://dx.doi.org/10.1016/S0377-0427(01)00427-7

Liu, J.: The multifrontal method for sparse matrix solution: theory and prac-
tice. SIAM Rev. 34(1), 82–109 (1992). doi:10.1137/1034004

Loffeld, J., Tokman, M.: Comparative performance of exponential, implicit,
and explicit integrators for stiff systems of ODEs. J. Comput. Appl. Math.
241, 45–67 (2013). ISSN 0377-0427. doi:http://dx.doi.org/10.1016/j.
cam.2012.09.038

Love, C.H.: Abscissas and Weights for Gaussian Quadrature for n=2 to 100,
and n=125, 150, 175, and 200. National Bureau of Standards, U.S. Gov-
ernment Printing Office, Washington, DC (1966)

Marsden, M.J.: Quadratic spline interpolation. Bull. Am. Math. Soc. 80(5),
903–906, (1974)

http://dx.doi.org/10.1039/C2EE03092F
http://dx.doi.org/10.1007/978-3-642-38256-7_18
http://www.sciencemag.org/content/343/6176/1203.short
http://www.sciencemag.org/content/343/6176/1203.short
http://dx.doi.org/10.1016/j.jcp.2007.02.014
http://dx.doi.org/10.1016/j.jcp.2007.02.014
http://www.sciencedirect.com/science/article/pii/S0021999107000812
http://www.sciencedirect.com/science/article/pii/S0021999107000812
http://dx.doi.org/10.1016/S0377-0427(01)00427-7
http://dx.doi.org/10.1016/j.cam.2012.09.038
http://dx.doi.org/10.1016/j.cam.2012.09.038

References 477

Martins, J.R.R.A., Sturdza, P., Alonso, J.J.: The complex-step derivative
approximation. ACM Trans. Math. Softw. 29(3), 245–262 (2003)

Mei, L., Figl, M., Darzi, A., Rueckert, D., Edwards, P.: Sample sufficiency and
PCA dimension for statistical shape models. In: Forsyth, D., Torr, P., Zis-
serman, A. (eds.) Computer Vision—ECCV 2008. Lecture Notes in Com-
puter Science, vol. 5305, pp. 492–503. Springer, Berlin (2008). ISBN 978-3-
540-88692-1. doi:10.1007/978-3-540-88693-8 36. http://dx.doi.org/10.
1007/978-3-540-88693-8_36

Michel, J.-B., Shen, Y.K., Aiden, A.P., Veres, A., Gray, M.K., The
Google Books Team, Pickett, J.P., Hoiberg, D., Clancy, D., Norvig, P.,
Orwant, J., Pinker, S., Nowak, M.A., Aiden, E.L.: Quantitative analysis
of culture using millions of digitized books. Science 331(6014), 176–182
(2011). doi:10.1126/science.1199644

Morin, A., Urban J., Adams, P.D., Foster, I., Sali, A., Baker, D., Sliz, P.: Shin-
ing light into black boxes. Science 336(6078), 159–160 (2012). doi:10.1126/
science.1218263. http://www.sciencemag.org/content/336/6078/159.

short

Mortenson, M.E.: Geometric Modeling, 2nd edn. Wiley, New York (1997)
Muller, J.-M.: Elementary Functions: Algorithms and Implementation, 2nd
edn. Birkhauser, Boston (2005)

Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-
Point Arithmetic. Birkhäuser, Boston (2010)

Nakatsukasa, Y., Higham, N.: Stable and efficient spectral divide and con-
quer algorithms for the symmetric eigenvalue decomposition and the SVD.
SIAM J. Sci. Comput. 35(3), A1325–A1349 (2013). doi:10.1137/120876605

NCEI: Daily summary for Albany, NY. In: National Centers for Environ-
mental Information, Climate Data Online. Washington, DC. http://www.
ncdc.noaa.gov/cdo-web/search?datasetid=GHCND (2015)

Nelder, J.A.: This week’s citation classic. Citation Classics Commentaries
April 9(15), 22 (1979)

Nelder, J.A., Mead, R.: A simplex method for function minimization. Com-
put. J. 7(4), 308–313 (1965)

Nenad, U., Roberts, A.J.: A corrected quadrature formula and applications.
ANZIAM J. 45, E41–E56 (2008)

Nguyen, T.V., Patra, J.C.: A simple ICA-based digital image watermarking
scheme. Digital Signal Process. 18(5), 762–776 (2008). ISSN 1051-2004.
doi:http://dx.doi.org/10.1016/j.dsp.2007.10.004

Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Oper-
ations Research and Financial Engineering. Springer, New York (2006).
ISBN 9780387303031

Nordhausen, K., Ollila, E., Oja, H.: On the performance indices of ICA and
blind source separation. In: IEEE 12th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), June 2011,
pp. 486–490 (2011). doi:10.1109/SPAWC.2011.5990458

http://dx.doi.org/10.1007/978-3-540-88693-8_36
http://dx.doi.org/10.1007/978-3-540-88693-8_36
http://www.sciencemag.org/content/336/6078/159.short
http://www.sciencemag.org/content/336/6078/159.short
http://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND
http://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND
http://dx.doi.org/10.1016/j.dsp.2007.10.004

478 References

Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of
Mathematical Functions. Cambridge University Press, Cambridge (2010)

Onton, J., Makeig, S.: Information-based modeling of event-related brain
dynamics. In: Neuper, C., Klimesch, W. (eds.) Event-Related Dynamics
of Brain Oscillations. Progress in Brain Research, vol. 159, pp. 99–
120. Elsevier, Amsterdam (2006). doi:http://dx.doi.org/10.1016/
S0079-6123(06)59007-7. http://www.sciencedirect.com/science/

article/pii/S0079612306590077

Oprea, J.: Differential Geometry and Its Applications. Mathematical Associ-
ation of America, Washington, DC (2007). ISBN 9780883857489

Overton, M.L.: Numerical Computing with IEEE Floating Point Arithmetic.
SIAM, Philadelphia, PA (2001)

Pantazis, R.D., Szyld, D.B.: Regions of convergence of the Rayleigh quotient
iteration method. Numer. Linear Algebra Appl. 2(3), 251–269 (1995). ISSN
1099-1506. doi:10.1002/nla.1680020307

Parente, A., Sutherland, J.C.: Principal component analysis of turbulent
combustion data: data pre-processing and manifold sensitivity. Combust.
Flame 160(2), 340–350 (2013). ISSN 0010-2180. doi:http://dx.doi.org/
10.1016/j.combustflame.2012.09.016

Parlett, B.N.: The Rayleigh quotient iteration and some generalizations for
nonnormal matrices. Math. Comput. 28, 679–693 (1974)

Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA
(1998). doi:10.1137/1.9781611971163

Peckham, M.: RIKEN plans exascale supercomputer ‘30 times faster’ than
today’s fastest in six years. Time, 30 Dec 2013

Peng, R.D.: Reproducible research in computational science. Science 334
(6060), 1226–1227 (2011). doi:10.1126/science.1213847

Peres-Neto, P.R., Jackson, D.A., Somers, K.M.: How many principal com-
ponents? Stopping rules for determining the number of non-trivial axes
revisited. Comput. Stat. Data Anal. 49(4), 974–997 (2005). ISSN 0167-
9473. doi:http://dx.doi.org/10.1016/j.csda.2004.06.015. http://

www.sciencedirect.com/science/article/pii/S0167947304002014

Persson, A.H., Bondesson, L., Borlin, N.: Estimation of polygons and ar-
eas. Scand. J. Stat. 33(3), 541–559 (2006). ISSN 1467-9469. doi:10.1111/j.
1467-9469.2006.00507.x

Peters, G., Wilkinson, J.H.: Inverse iteration, ill-conditioned equations and
Newton’s method. SIAM Rev. 21(3), 339–360 (1979). ISSN 00361445.
http://www.jstor.org/stable/2029572

Raghavan, R., Kelkar, Y.D., Ochman, H.: A selective force favoring in-
creased g+c content in bacterial genes. Proc. Natl. Acad. Sci. U. S. A.
109(36), 14504–14507 (2012). doi:10.1073/pnas.1205683109. http://www.
pnas.org/content/109/36/14504.abstract

Ralston, A.: Runge-Kutta methods with minimum error bounds. Math. Com-
put. 16,431–437 (1962)

http://dx.doi.org/10.1016/S0079-6123(06)59007-7
http://dx.doi.org/10.1016/S0079-6123(06)59007-7
http://www.sciencedirect.com/science/article/pii/S0079612306590077
http://www.sciencedirect.com/science/article/pii/S0079612306590077
http://dx.doi.org/10.1016/j.combustflame.2012.09.016
http://dx.doi.org/10.1016/j.combustflame.2012.09.016
http://dx.doi.org/10.1016/j.csda.2004.06.015
http://www.sciencedirect.com/science/article/pii/S0167947304002014
http://www.sciencedirect.com/science/article/pii/S0167947304002014
http://www.jstor.org/stable/2029572
http://www.pnas.org/content/109/36/14504.abstract
http://www.pnas.org/content/109/36/14504.abstract

References 479

Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for
differential equations: a generalized smoothing approach. J. R. Stat. Soc.
B 69(5), 741–796 (2007). ISSN 1467-9868

Raphson, J.: Analysis Aequationum Universalis. London (1690). http://

books.google.com/books?id=JM4ZuQAACAAJ

Rokhlin, V., Szlam, A., Tygert, M.: A randomized algorithm for principal
component analysis. SIAM J. Matrix Anal. Appl. 31(3), 1100–1124 (2010).
doi:10.1137/080736417

Rosser, J.B., Lanczos, C., Hestenes, M.R., Karush, W.: Separation of close
eigenvalues of a real symmetric matrix. J. Res. Natl. Bur. Stand. 47(4),
291–297 (1951)

Rump, S., Ogita, T., Oishi, S.: Accurate floating-point summation part I:
faithful rounding. SIAM J. Sci. Comput. 31(1), 189–224 (2008). doi:10.
1137/050645671

Salomon, D.: Curves and Surfaces for Computer Graphics. Springer,
New York (2006)

Sandor, J., Debnath, L.: On certain inequalities involving the constant e
and their applications. J. Math. Anal. Appl. 249(2), 569–582 (2000). ISSN
0022-247X. doi:http://dx.doi.org/10.1006/jmaa.2000.6911. http://
www.sciencedirect.com/science/article/pii/S0022247X00969117

Santillana, M., Zhang, D., Althouse, B.M.: What can digital disease detection
learn from (an external revision to) Google flu trends? Am. J. Prev. Med.
47(3), 341–347 (2014). doi:10.1016/j.amepre.2014.05.020

Särelä, J., Vigário, R.: Overlearning in marginal distribution-based ICA:
analysis and solutions. J. Mach. Learn. Res. 4, 1447–1469 (2003).
ISSN 1532-4435. doi:10.1162/jmlr.2003.4.7-8.1447. http://dx.doi.org/
10.1162/jmlr.2003.4.7-8.1447

Schneider, T., Griffies, S.M.: A conceptual framework for predictability stud-
ies. J. Climate 12(10), 3133–3155 (1999). doi:10.1175/1520-0442(1999)
012〈3133:ACFFPS〉2.0.CO;2

Shure, L.: Comparing single-threaded vs. multithreaded floating point
calculations. In: MATLAB Central, Loren on the Art of MAT-
LAB (2009). http://blogs.mathworks.com/loren/2009/12/04/comparing-
single-threaded-vs-multithreaded-floating-point-calculations/

Singh, S.: The Simpsons and Their Mathematical Secrets. Bloomsbury,
New York (2013)

Smith, J.A., Wilson, L., Azarenko, O., Zhu, X., Lewis, B.M., Littlefield, B.A.,
Jordan, M.A.: Eribulin binds at microtubule ends to a single site on tubulin
to suppress dynamic instability. Biochemistry 49(6), 1331–1337 (2010)

Stadlbauer, A., Ganslandt, O., Buslei, R., Hammen, T., Gruber, S., Moser,
E., Buchfelder, M., Salomonowitz, E., Nimsky, C.: Gliomas: histopathologic
evaluation of changes in directionality and magnitude of water diffusion at
diffusion-tensor MR imaging. Radiology 240(3), 803–810 (2006)

Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4),
354–356 (1969). ISSN 0029-599X. doi:10.1007/BF02165411

http://books.google.com/books?id=JM4ZuQAACAAJ
http://books.google.com/books?id=JM4ZuQAACAAJ
http://dx.doi.org/10.1006/jmaa.2000.6911
http://www.sciencedirect.com/science/article/pii/S0022247X00969117
http://www.sciencedirect.com/science/article/pii/S0022247X00969117
http://dx.doi.org/10.1162/jmlr.2003.4.7-8.1447
http://dx.doi.org/10.1162/jmlr.2003.4.7-8.1447
http://blogs.mathworks.com/loren/2009/12/04/comparing-single-threaded-vs-multithreaded-floating-point-calculations/
http://blogs.mathworks.com/loren/2009/12/04/comparing-single-threaded-vs-multithreaded-floating-point-calculations/

480 References

Stuart, A., Humphries, A.R.: Dynamical Systems and Numerical Analysis.
Cambridge University Press, Cambridge (1998)

Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge
University Press, Cambridge (2003)

Teh, Y.W., Welling, M., Osindero, S., Hinton, G.E.: Energy-based models for
sparse overcomplete representations. J. Mach. Learn. Res. 4, 1235–1260
(2003). ISSN 1532-4435. http://dl.acm.org/citation.cfm?id=945365.
964304

Tissot, G., Cordier, L., Benard, N., Noack, B.R.: Model reduc-
tion using dynamic mode decomposition. C.R. Mec. 342(6–7), 410–
416 (2014) ISSN 1631-0721. doi:http://dx.doi.org/10.1016/j.crme.
2013.12.011. http://www.sciencedirect.com/science/article/pii/
S163107211400103X

Traub, J.F.: Iterative Methods for the Solution of Equations. AMS Chelsea
Publishing Series. Chelsea, New Jersey (1982). ISBN 9780828403122.
http://books.google.com/books?id=se3YdgFgz4YC

Trefethen, L.N.: Is gauss quadrature better than Clenshaw–Curtis? SIAM
Rev. 50(1), 67–87 (2008). doi:10.1137/060659831. http://dx.doi.org/
10.1137/060659831

Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM,
Philadelphia, PA (2012). ISBN 1611972396, 9781611972399

Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia, PA
(1997). ISBN 0898713617

Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal
rule. SIAM Rev. 56(3), 385–458 (2014). doi:10.1137/130932132

Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On
dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1
(2), 391–421 (2014). ISSN 2158-2491. doi:10.3934/jcd.2014.1.391. http://
aimsciences.org/journals/displayArticlesnew.jsp?paperID=10631

U.S. Census Bureau: Crime rates by type: selected large cities. In: Statistical
Abstract of the United States: 2012, 131st edn. Washington, DC (2012)

van den Berg, R.A., Hoefsloot, H.C.J., Westerhuis, J.A., Smilde, A.K.,
van der Werf, M.: Centering, scaling, and transformations: improving the
biological information content of metabolomics data. BMC Genomics 7(1),
142 (2006). doi:10.1186/1471-2164-7-142

van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensional-
ity Reduction: A Comparative Review. Technical report, Tilburg Uni-
versity (2009). http://homepage.tudelft.nl/19j49/Matlab_Toolbox_

for_Dimensionality_Reduction_files/TR_Dimensiereductie.pdf

Varah, J.: A spline least squares method for numerical parameter estimation
in differential equations. SIAM J. Sci. Stat. Comput. 3(1), 28–46 (1982).
doi:10.1137/0903003

Varga, R.S.: Gershgorin and His Circles. Springer Series in Computational
Mathematics. Springer, Berlin (2004)

http://dl.acm.org/citation.cfm?id=945365.964304
http://dl.acm.org/citation.cfm?id=945365.964304
http://dx.doi.org/10.1016/j.crme.2013.12.011
http://dx.doi.org/10.1016/j.crme.2013.12.011
http://www.sciencedirect.com/science/article/pii/S163107211400103X
http://www.sciencedirect.com/science/article/pii/S163107211400103X
http://books.google.com/books?id=se3YdgFgz4YC
http://dx.doi.org/10.1137/060659831
http://dx.doi.org/10.1137/060659831
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10631
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10631
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction_files/TR_Dimensiereductie.pdf
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction_files/TR_Dimensiereductie.pdf

References 481

Voglis, N.: Waves derived from galactic orbits. In: Galaxies and Chaos. Lec-
ture Notes in Physics. vol. 626, pp. 56–74. Springer, Berlin (2003)

Waldvogel, J.: Towards a general error theory of the trapezoidal rule.
In: Gautschi, W., Mastroianni, G., Rassias, T.M. (eds.) Approximation
and Computation. Springer Optimization and Its Applications, vol. 42,
pp. 267–282. Springer, New York (2011)

Wallis, J.: Operum Mathematicorum. Number v. 2. Typis Leon, Oxford
(1699). http://books.google.com/books?id=dhetMBKF4gkC

Watkins, D.S.: The QR algorithm revisited. SIAM Rev. 50(1), 133–145
(2008). ISSN 0036-1445. doi:10.1137/060659454

Watson, G.A.: A Levenberg-Marquardt method for estimating polygonal re-
gions. J. Comput. Appl. Math. 208(2), 331–340 (2007). ISSN 0377-0427.
doi:http://dx.doi.org/10.1016/j.cam.2006.10.001

Weideman, J.A.C.: Numerical integration of periodic functions: a few exam-
ples. Am. Math. Mon. 109(1), 21–36 (2002). ISSN 00029890. http://www.
jstor.org/stable/2695765

Weinstock, R.: Calculus of Variations: With Applications to Physics and
Engineering. Dover, New York (1974). ISBN 9780486630694

White, F.M.: Viscous Fluid Flow. McGraw Hill Series in Mechanical Engi-
neering, 3rd edn. McGraw-Hill, New York (2005)

Wilkins, G., Gu, M.: A modified Brent’s method for finding zeros of functions.
Numer. Math. 123(1), 177–188 (2013). ISSN 0029-599X. doi:10.1007/
s00211-012-0480-x. http://dx.doi.org/10.1007/s00211-012-0480-x

Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd.
In: Proceedings of the 44th Annual ACM Symposium on Theory of
Computing, STOC’12, pp. 887–898. ACM, New York, NY (2012). ISBN
978-1-4503-1245-5. doi:10.1145/2213977.2214056. http://doi.acm.org/

10.1145/2213977.2214056

Wu, J., Brigham, K.G., Simon, M.A., Brigham, J.C.: An implementation of
independent component analysis for 3D statistical shape analysis. Biomed.
Signal Process. Control 13, 345–356 (2014). ISSN 1746-8094. doi:http://
dx.doi.org/10.1016/j.bspc.2014.06.003

Xue, H., Miao, H., Wu, H.: Sieve estimation of constant and time-varying co-
efficients in nonlinear ordinary differential equation models by considering
both numerical error and measurement error. Ann. Stat. 38(4), 2351–2387
(2010). doi:10.1214/09-AOS784

Yamazaki, I., Li, X.S.: New scheduling strategies and hybrid programming for
a parallel right-looking sparse LU factorization algorithm on multicore clus-
ter systems. In: IEEE 26th International Parallel Distributed Processing
Symposium (IPDPS), May 2012, pp. 619–630 (2012). doi:10.1109/IPDPS.
2012.63

Ypma, T.J.: Historical development of the Newton-Raphson method.
SIAM Rev. 37(4), 531–551 (1995). ISSN 0036-1445. doi:10.1137/1037125.
http://dx.doi.org/10.1137/1037125

http://books.google.com/books?id=dhetMBKF4gkC
http://dx.doi.org/10.1016/j.cam.2006.10.001
http://www.jstor.org/stable/2695765
http://www.jstor.org/stable/2695765
http://dx.doi.org/10.1007/s00211-012-0480-x
http://doi.acm.org/10.1145/2213977.2214056
http://doi.acm.org/10.1145/2213977.2214056
http://dx.doi.org/10.1016/j.bspc.2014.06.003
http://dx.doi.org/10.1016/j.bspc.2014.06.003
http://dx.doi.org/10.1137/1037125

482 References

Zenil, H.: A Computable Universe: Understanding and Exploring Nature as
Computation. World Scientific, Singapore (2012)

Zhang, H., Cheng, Z.: The performance evaluation of classic ICA algorithms
for blind separation of fabric defects. J. Fiber Bioeng. Inform. 7, 377–386
(2014)

Zhao, Q., Okada, K., Rosenbaum, K., Kehoe, L., Zand, D.J., Sze, R., Sum-
mar, M., Linguraru, M.G.: Digital facial dysmorphology for genetic screen-
ing: hierarchical constrained local model using ICA. Med. Image Anal. 18
(5), 699–710 (2014). ISSN 1361-8415. doi:http://dx.doi.org/10.1016/
j.media.2014.04.002

http://dx.doi.org/10.1016/j.media.2014.04.002
http://dx.doi.org/10.1016/j.media.2014.04.002

Index

Cn(a, b), 453
O(hn), 456
∞-norm, 85
ε, 7
1-norm, 86
2-norm, 85

A-stable, 288
adaptive quadrature, 258
adjacency matrix, 156, 178, 179

benzene, 179
Hückel Hamiltonian matrices, 179
naphthalene, 179

airfoil cross-section, 223
Akima algorithm, 217
allometric function, 382
amplification factor, 288, 293, 297, 319
annoying ± problem, 130, 141
Armijo’s method, 362
asymptotically stable, 276
augmented matrix, 78

backtracking sampling method, 363
backward Euler method, 292
barycentric interpolation, 227
barycentric weights, 189, 227
Bernoulli equation, 321, 451
bisection method, 35
blind source separation problem, 418
brachistochrone problem, 375

causality, 312
chapeau function, 192

characteristic equation, 121
Chebyshev interpolation, 209

exponential convergence, 211, 215
interpolation error, 210
used for integration, 255
used for solving nonlinear equations,

54
Chebyshev points, 210
Chebyshev polynomial, 212
Cholesky factorization, 98

banded, 359
sparse, 102

Clenshaw-Curtis quadrature, 255
Colebrook equation, 64
compensated summation, 14

integration, 263
complex Taylor series expansion, 311
composite Hermite rule, 245
condition number, 89, 91, 357
conjugate gradient method, 355, 360

finite termination property, 356
consistent approximation, 285
contrast function, 424
corrected trapezoidal rule, 245
covariance matrix, 422, 449
crime rates, 410
Crout factorization, 74, 80
cubic B-splines, 197, 200, 244

least squares, 396
cubic spline interpolation, 194

integration rule, 245
interpolation error, 207
minimum curvature, 202

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0

483

484 Index

Deming regression, 333
descent direction

requirement, 349
steepest, 349, 360

digamma function, 14
dominant eigenvalue, 125
Doolittle factorization, 74, 80
dot product, 122
double precision, 5, 8
downsampling, 428
drag on sphere, 32, 64
Duffing equation, 295

Eckart-Young theorem, 169
eigenvalue problem, 121
elastic bar

minimum potential energy, 391
elastic beam

minimum potential energy, 393
elastic string

elastic foundation, 176
minimum potential energy, 372

elliptic integral
first kind, 59
second kind, 59

error, 18
asymptotic form, 237, 458
for IVP solver, 290
iterative, 19
relative, 18, 90
vector, 89

error function, 59, 267
Euclidean norm, 85
Euler’s constant, 14
exascale computers, 110
explicit method, 286

Fermi-Pasta-Ulam (FPU) chain, 124
Fibonacci sequence, 53
finite termination property, 47, 53, 54,

356
FitzHugh-Nagumo equations, 442
Fletcher-Reeves method, 360
floating-point numbers, 5
flop, 11, 81, 356
Freudenstein equation, 61
Fritsch-Butland procedure, 217
Frobenius norm, 416
Fundamental Theorem of Calculus, 296

Gauss-Kronrod rules, 263
Gaussian elimination, 78
Gaussian quadrature

	-point, 253

1-point, 249
2-point, 250
exponential convergence, 253

Givens rotations, 147
Golub-Reinsch algorithm, 165
Golub-Welsch algorithm, 254
Google Flu Trends, 434
Gram matrix, 423, 433
Gram-Schmidt, 140, 141, 143

modified, 144
Great Internet Mersenne Prime Search,

13

Halley’s method, 67
Hamiltonian, 310
hat function, 192
Hermite interpolation, 216
Hessian, 361
Homer Simpson, 24
Horner’s method, 15
Householder transformations, 147

ideal gas law, 66
IEEE-754, 5, 12
ill-conditioned, 90
image compression, 166
implicit method, 292
independent component analysis

contrast function, 424
downsampling, 428
EEG rule, 428
kurtosis, 425
mixing matrix, 420
unmixing matrix, 423
whitening source data, 421

Inf, 10
interpolation

Chebyshev, 464
cubic splines, 194, 440, 464
global polynomial, 185, 203
Lagrange, 187, 464
piecewise linear, 190, 205, 464
piecewise quadratic, 217, 229

inverse iteration, 134
inverse orthogonal iteration, 154
iteration error, 41, 352
iterative error, 19, 48, 127, 131
IVP solvers

A-stable, 288
backward Euler, 292
Euler’s method, 286
Heun’s method, 300
leapfrog method, 294
RK2, 298

Index 485

RK4, 301, 307, 312, 313, 440, 442
that conserve energy, 324
trapezoidal method, 297, 307, 308
velocity Verlet method, 309

Jacobian, 104, 361

Kermack-McKendrick model, 305
kurtosis, 425

Lagrange interpolation, 187
barycentric weights, 227
interpolation error, 203

Lagrange multipliers, 405
law of mass action, 32, 305
leapfrog method, 294, 298
least squares

cubic splines, 395
ill-conditioned, 338
nonlinear, 344
normal equation, 335, 337
QR approach, 339

Legendre polynomial, 254
Leslie matrix, 180
line search problem, 349, 361
Lobatto quadrature, 273, 314

IVP solver, 314
logistic equation, 276, 286, 297, 301,

332, 439
Lorentzian function, 258
LU factorization, 72, 80

computing time, 147, 384
Crout, 74, 80
Doolittle, 74, 77, 80
faster than, 109
flops, 80
pivoting, 77
tri-diagonal matrix, 100

machine epsilon, 6, 7
magic matrix, 115
mantissa, 5
Mars, 322
matrix

bandwidth, 359
condition number, 91
defective, 123, 125
dense, 102
diagonally dominant, 97
ill-conditioned, 90
inverse of 2× 2, 91
lower triangular, 72, 80
negative definite, 385
normal, 113

orthogonal, 146
penta-diagonal, 394
positive definite, 95, 98, 117, 351, 356
rotation, 423
sparse, 102
strictly diagonal dominant, 97
trace, 151
tri-diagonal, 82, 100, 154, 374
unit lower triangular, 80
unit upper lower triangular, 80
upper triangular, 72, 78, 80

matrix factorization
LU, 80
LDLT , 114
QP, 181
QR, 146
QDQT , 159
UL, 113
UΣVT , 162
UTU, 98
ZZT , 447

matrix norm, 87, 169
maximum error, 291
Mersenne prime, 13
Michaelis-Menten function, 332
Michaelis-Menten model, 32, 63

numerical solution, 317, 320
midpoint rule, 296
minimum potential energy, 373
mixing matrix, 420, 423
model function

allometric, 382
asymptotic regression, 331
logistic, 331
Michaelis-Menten, 331, 344
power law, 382

Mooney-Rivlin law, 269
Moore-Penrose pseudoinverse, 434
multifrontal method, 102
mutually orthogonal, 356

NaN, 10
National Vegetable Research Station,

367
natural matrix norms, 88
Nelder-Mead algorithm, 55, 367, 441,

445
Newton’s method, 40, 104

discoverer, 55
finding implicit functions, 44
finding inverse functions, 58
minimization, 361
nonlinear system, 102
order of convergence, 45, 48

486 Index

Newton’s second law, 305
ngram program, 407
norm

∞-norm, 85, 87
1-norm, 86, 87
2-norm, 85
dimensionally consistent, 86, 409
Euclidean, 85
Frobenius, 416
matrix, 87, 169
vector, 85

normal equation, 335, 337
ill-conditioned, 339

normal modes, 124
numerical differentiation, 282, 441

complex Taylor series expansion, 311
optimal step size, 281

objective function, 327
one-step method, 294
order of convergence, 43, 54, 138
orthogonal iteration, 141
orthogonal matrix, 146, 159

proper, 181
orthogonal regression, 333, 399
oscillators

chain, 124
coupled, 177, 323

outer product, 166, 420, 435
overflow

negative, 10
positive, 10

partial pivoting, 77
Pascal matrix, 115
pendulum equation, 307, 309
persistence forecast, 434
perturbation matrix, 106
piecewise linear interpolation, 190

integration rule, 238
interpolation error, 205

pivoting, 75, 77
Planck’s law of blackbody radiation, 268
Polak-Ribière method, 361, 363
polar decomposition, 181
population

integration, 268
interpolation, 222

power law fluid, 317
power law function, 382
power method, 126, 127
precision, 247

arbitrary, 12
double, 5, 8

of integration rule, 247
quadruple, 8
single, 8
solving matrix equations, 94

prime numbers, 13
principal component analysis

autoscaling, 409
Cattell’s scree test, 416
centering data, 399, 402
error function, 400, 403
Guttman-Kaiser criterion, 416
how many components, 416
how many points, 415
range scaling, 409
relative error, 416
relative residual variance, 416
scaling data, 400, 402

QR factorization, 147
computing time, 147, 384
flops, 340
least squares, 339

QR method, 148
divide and conquer, 150
implicitly shifted, 150

Radau quadrature, 273
radioactive decay, 275, 287
rank, 165
Rayleigh’s quotient, 122
Rayleigh’s quotient iteration, 137
regression

error function, 327, 332, 340
fitting circle, 343, 371
fitting ellipse, 387
model function, 331
nonlinear, 344
objective function, 327
relative error, 346

relative error, 18
relative iterative error, 19
residual, 89, 351, 358
Reynolds number, 32, 64
robustification, 432
Rolle’s theorem, 203
Romberg integration, 255, 272
Rosenbrock function, 366
Rosser matrix, 114, 173
round to nearest, 9
Runge’s function, 189, 214
Runge–Kutta methods, 298

Heun, 300
Lobatto quadrature, 314
order conditions, 302, 304, 313

Index 487

RK2, 298, 300
RK4, 311, 441
Simpson’s rule, 302

secant method, 51
golden ratio, 53
order of convergence, 53, 54

significant digits, 18, 90
Simpson’s rule, 241, 296

adaptive, 258
error, 242

singular value decomposition
computing time, 147, 384
derivation, 160
flops, 165
ICA, 421
image compression, 166
PCA, 400, 406
summary, 162

SIR model, 305
sparse matrix, 102
spline

clamped, 195, 207, 312, 440
natural, 195, 199, 200, 202, 208, 215
not-a-knot, 195, 200

square-and-multiply algorithm, 28
stability

IVPs, 287
steady-state solution, 276
steepest descent

direction, 349, 352, 360
method, 352, 360

Strassen’s method, 109
strictly convex, 330
subnormal floats, 9
superlinear convergence, 54
symplectic method, 310
synthetic data, 441, 442, 450

tangent linear model, 438
taxi-cabs, 110

Taylor’s theorem, 453
terminal velocity, 31, 64
Thomas algorithm, 100
trace, 151
transpose notation, 73
trapezoidal method, 297
trapezoidal rule, 238, 296

error, 239
periodic function, 264, 267

traveling salesman problem, 328
tri-diagonal matrix, 82, 100, 154

eigenvalues, 118
eigenvectors, 181
invertibility, 101
LU factorization, 100
positive definite, 118

truncation error
IVPs, 285, 297
quadrature approach, 297

two-step method, 294
Tyrannosaurus rex, 382, 447

unimodular matrix, 112
unit lower triangular matrix, 80
unit upper triangular matrix, 80
unmixing matrix, 423

van der Waals equation of state, 66
Van Wijngaarden - Dekker - Brent

method, 55
Vandermonde matrix, 84, 94, 145, 186,

338
vector norm, 85
velocity Verlet, 309

whitening source data, 421, 447
Wolfe conditions, 363

Yogi Berra, 106
Young’s modulus, 316

Editorial Policy

1. Textbooks on topics in the field of computational science and engineering will be
considered. They should be written for courses in CSE education. Both graduate
and undergraduate textbooks will be published in TCSE. Multidisciplinary topics
and multidisciplinary teams of authors are especially welcome.

2. Format: Only works in English will be considered. For evaluation purposes,
manuscripts may be submitted in print or electronic form, in the latter case,
preferably as pdf- or zipped ps-files. Authors are requested to use the LaTeX style
files available from Springer at: http://www.springer.com/authors/book+authors/
helpdesk?SGWID=0-1723113-12-971304-0 (Click on −→ Templates −→ La-
TeX −→ monographs)
Electronic material can be included if appropriate. Please contact the publisher.

3. Those considering a book which might be suitable for the series are strongly
advised to contact the publisher or the series editors at an early stage.

General Remarks

Careful preparation of manuscripts will help keep production time short and ensure
a satisfactory appearance of the finished book.

The following terms and conditions hold:

Regarding free copies and royalties, the standard terms for Springer mathematics
textbooks hold. Please write to martin.peters@springer.com for details.

Authors are entitled to purchase further copies of their book and other Springer
books for their personal use, at a discount of 33.3% directly from Springer-Verlag.

http://www.springer.com/authors/book+authors/helpdesk?SGWID=0-1723113-12-971304-0

Series Editors

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@tkk.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:
Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com

Texts in Computational Science and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numer-
ical Methods and Diffpack Programming, 2nd Edition.

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB
and Octave, 4th Edition.

3. H. P. Langtangen, Python Scripting for Computational Science, 3rd Edi-
tion.

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular
Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python, 5th
Edition.

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific
Computing.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

10. M.G. Larson, F. Bengzon, The Finite Element Method: Theory, Imple-
mentation, and Practice.

11.W. Gander, M.J. Gander, F. Kwok, Scientific Computing. An Introduction
using Maple and MATLAB.

12. P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems
Biology.

13. M.H. Holmes, Introduction to Scientific Computing and Data Analysis.

14. S. Linge, H. P. Langtangen, Programming for Computations - A Gentle
Introduction to Numerical Simulations with MATLAB/Octave.

15. S. Linge, H. P. Langtangen, Programming for Computations - A Gentle
Introduction to Numerical Simulations with Python.

For further information on these books please have a look at our mathematics cat-

alogue at the following URL: www.springer.com/series/5151

Monographs in Computational Science and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito,
Computing the Electrical Activity in the Heart.

For further information on this book, please have a look at our mathematics cata-

logue at the following URL: www.springer.com/series/7417

www.springer.com/series/5151
www.springer.com/series/7417

Lecture Notes in Computational Science and Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numer-
ical Methods and Diffpack Programming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D.
Skeel (eds.), Computational Molecular Dynamics: Challenges, Methods,
Ideas.

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent
Developments in Theory and Numerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algo-
rithmic and Computational Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods,
Algorithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific
and Engineering Computing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational
Physics.

10. H.P. Langtangen, A.M. Bruaset, E. Quak (eds.), Advances in Software
Tools for Scientific Computing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.),Discontinuous Galerkin
Methods. Theory, Computation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics.
Linear Systems in Practical Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and
Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Chal-
lenges in Lattice Quantum Chromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Sys-
tems. Theory, Algorithm, and Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on
Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in
Electrical Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and
Numerical Simulation in Continuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution
Methods. Theory and Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and
Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Con-
struction and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain De-
composition Methods.

24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules:
Challenges and Applications.

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Dis-
cretization Methods in Computational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Dif-
ferential Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk
(eds.), Computational Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for
Elliptic Partial Differential Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders
(eds.), Large-Scale PDE-Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics
in Computational Wave Propagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Trans-
port Dynamics. Computa- tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational
Partial Differential Equations. Numerical Methods and Diffpack Pro-
gramming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. An-
alytical and Numerical Results for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing - CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential
Equations by Reduction to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simula-
tion.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu
(eds.), Domain Decomposition Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement –
Theory and Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software.
The Finite Element Toolbox ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Dif-
ferential Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Sci-
ence and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction
of Large-Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue
Problems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD
and Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick,
C. Schütte, R. Skeel (eds.), New Algorithms for Macromolecular Simu-
lation.

50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Au-
tomatic Differentiation: Applications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differen-
tial Equations on Parallel Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Com-
puting.

53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science
and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in
Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Dif-
ferential Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Man-
ifolds for Data Visualization and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics:
A Volume Dedicated to Jean-Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.),
Domain Decomposition Methods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution
of Partial Differential Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and
Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve
Elliptic Boundary Value Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.),
Advances in Automatic Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Dif-
ferential Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and
Simulation in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Com-
putational Fluid Dynamics 2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 –
Boundary and Interior Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain
Decomposition Methods in Science and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science
and Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction
II – Modelling, Simulation, Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Par-
allel Computational Fluid Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction
and Data Analysis.

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods
for Partial Differential Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications
in Finance and Insurance.

78. Y. Huang, R. Kornhuber, O. Widlund, J. Xu (eds.), Domain Decompo-
sition Methods in Science and Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Dif-
ferential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numer-
ical Techniques for Global Atmospheric Models.

81. C. Clavero, J.L. Gracia, F. Lisbona (eds.), BAIL 2010 – Boundary and
Interior Layers, Computational and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and
Multiscale Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Anal-
ysis of Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differ-
ential Equations by the Finite Element Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis - Durham
2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-
Mechanical-Chemical Processes in Fractured Porous Media - Bench-
marks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), it Recent
Advances in Algorithmic Differentiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M. A. Schweitzer (eds.), Meshfree Methods for Partial Dif-
ferential Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting
Solvers for Multiscale Problems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition
Methods in Science and Engineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantifica-
tion in Computational Fluid Dynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and
Numerical Techniques for Multi-Band Effective Mass Approximations.

95. M. Azäıez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order
Methods for Partial Differential Equations ICOSAHOM 2012.

96. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers
and Challenges in Warm Dense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Munich
2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.),
Domain Decomposition Methods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, V. Perrier,
M. Ricchiuto (eds.), High Order Nonlinear Numerical Methods for Evo-
lutionary PDEs - HONOM 2013.

100. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Dif-
ferential Equations VII.

101. R. Hoppe (ed.), Optimization with PDE Constraints – ESF Networking
Program ‘OPTPDE’.

102. S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schnei-
der, C. Schwab, H. Yserentant (eds.), Extraction of Quantifiable Infor-
mation from Complex Systems.

103. A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (eds.), Nu-
merical Mathematics and Advanced Applications - ENUMATH 2013.

104. T. Dickopf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino (eds.),
Domain Decomposition Methods in Science and Engineering XXII.

105. M. Mehl, M. Bischoff, M. Schäefer (eds.), Recent Trends in Computa-
tional Engineering – CE2014.

106. R.M. Kirby, M. Berzins, J.S. Hesthaven (eds.), Spectral and High Order
Methods for Partial Differential Equations ICOSAHOM 2014.

107. B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications
2014.

108. P. Knobloch (ed.), Boundary and Interior Layers, Computational and
Asymptotic Methods – BAIL 2014.

109. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Stuttgart
2014.

110. H.P. Langtangen, Finite Difference Computing with Exponential Decay
Models.

111. A. Tveito, G. Lines, Computing Characterizations of Drugs for Ion
Channels and Receptors using Markov Models.

For further information on these books please have a look at our mathematics catalogue

at the following URL: www.springer.com/series/3527

www.springer.com/series/3527

	Preface
	Contents
	1 Introduction to Scientific Computing
	1.1 Unexpected Results
	1.2 Floating-Point Number System
	1.2.1 Normal Floats
	1.2.2 Machine Epsilon
	1.2.3 Rounding
	1.2.4 Nonnormal Floats
	1.2.5 Flops
	1.2.6 Functions

	1.3 Arbitrary-Precision Arithmetic
	1.4 Explaining, and Possibly Fixing, the Unexpected Results
	1.5 Error and Accuracy
	1.5.1 Test Cases
	1.5.2 Over-Computing?

	2 Solving A Nonlinear Equation
	2.1 Examples
	2.1.1 Physical
	2.1.2 Mathematical

	2.2 The Problem to Solve
	2.3 Bisection Method
	2.4 Newton's Method
	2.4.1 Order of Convergence
	2.4.2 Failure
	2.4.3 Some Theory

	2.5 Secant Method
	2.5.1 Some Theory

	2.6 Other Ideas
	2.6.1 Is Newton's Method Really Newton's Method?

	3 Matrix Equations
	3.1 An Example
	3.2 Finding L and U
	3.2.1 What Matrices Have an LU Factorization?
	3.2.2 Factoring n n Matrices
	3.2.3 Pivoting Strategies

	3.3 LU and Gaussian Elimination
	3.4 LU Method: Summary
	3.5 Vector and Matrix Norms
	3.5.1 Matrix Norms

	3.6 Error and Residual
	3.6.1 Significant Digits
	3.6.2 The Condition Number
	3.6.3 A Heuristic

	3.7 Positive Definite Matrices
	3.7.1 Cholesky Factorization

	3.8 Tri-Diagonal Matrices
	3.9 Sparse Matrices
	3.10 Nonlinear Systems
	3.11 Some Additional Ideas
	3.11.1 Yogi Berra and Perturbation Theory
	3.11.2 Fixing an Ill-Conditioned Matrix
	3.11.3 Insightful Observations About the Condition Number
	3.11.4 Faster than LU?
	3.11.5 Historical Comparisons

	4 Eigenvalue Problems
	4.1 Power Method
	4.1.1 General Formulation

	4.2 Extensions of the Power Method
	4.2.1 Inverse Power Method
	4.2.2 Inverse Iteration
	4.2.3 Rayleigh Quotient Iteration

	4.3 Calculating Multiple Eigenvalues
	4.3.1 Orthogonal Iteration
	4.3.1.1 Regular and Modified Gram-Schmidt

	4.3.2 QR Factorization
	4.3.3 The QR Method
	4.3.4 Are the Computed Values Correct?

	4.4 Applications
	4.4.1 Natural Frequencies
	4.4.2 Graphs and Networks

	4.5 Singular Value Decomposition
	4.5.1 Derivation of the Singular Value Decomposition
	4.5.2 Summary of the Singular Value Decomposition
	4.5.2.1 Computing a SVD

	4.5.3 Application: Image Compression
	4.5.3.1 Eckart-Young Theorem and Error

	5 Interpolation
	5.1 Information from Data
	5.2 Global Polynomial Interpolation
	5.2.1 Direct Approach
	5.2.2 Lagrange Approach
	5.2.3 Runge's Function

	5.3 Piecewise Linear Interpolation
	5.4 Piecewise Cubic Interpolation
	5.4.1 Cubic B-Splines

	5.5 Function Interpolation
	5.5.1 Global Polynomial Interpolation
	5.5.2 Piecewise Linear Interpolation
	5.5.3 Cubic Splines
	5.5.4 Chebyshev Interpolation
	5.5.5 Chebyshev Versus Cubic Splines
	5.5.6 Other Ideas

	5.6 Questions and Additional Comments

	6 Numerical Integration
	6.1 Introduction
	6.2 The Definition from Calculus
	6.2.1 Midpoint Rule

	6.3 Methods Based on Polynomial Interpolation
	6.3.1 Trapezoidal Rule
	6.3.2 Simpson's Rule
	6.3.3 Cubic Splines
	6.3.4 Other Interpolation Ideas

	6.4 Methods Based on Precision
	6.4.1 1-Point Gaussian Rule
	6.4.2 2-Point Gaussian Rule
	6.4.3 Error Formulas
	6.4.4 General Case

	6.5 Romberg Integration
	6.5.1 Computing Using Romberg

	6.6 Adaptive Quadrature
	6.7 Other Ideas
	6.8 Epilogue

	7 Initial Value Problems
	7.1 Examples of IVPs
	7.1.1 Radioactive Decay
	7.1.2 Logistic Equation

	7.2 Numerical Differentiation
	7.2.1 Using tj+2, tj+1, and tj
	7.2.2 Using tj+1 and tj-1
	7.2.3 Higher Derivatives
	7.2.4 Interpolation

	7.3 IVP Methods Using Numerical Differentiation
	7.3.1 The Five Steps
	7.3.2 Error
	7.3.3 Additional Difference Methods
	7.3.4 Extensions

	7.4 IVP Methods Using Numerical Integration
	7.5 Runge–Kutta Methods
	7.5.1 RK2
	7.5.2 RK4
	7.5.3 Stability
	7.5.4 RK-n

	7.6 Solving Systems of IVPs
	7.6.1 Examples
	7.6.1.1 Law of Mass Action
	7.6.1.2 Newton's Second Law

	7.6.2 Simple Approach
	7.6.3 Component Approach and Symplectic Methods

	7.7 Some Additional Questions and Ideas
	7.7.1 RK4: Why Use Simpson's Rule?

	8 Optimization
	8.1 Introduction
	8.2 Regression: Introduction
	8.2.1 Model Function
	8.2.2 Error Function
	8.2.2.1 Vertical Distance

	8.3 Linear Least Squares
	8.3.1 Two Parameters
	8.3.2 General Case
	8.3.2.1 Normal Equation
	8.3.2.2 QR Approach
	8.3.2.3 Parting Comments

	8.3.3 Other Error Functions

	8.4 Nonlinear Regression
	8.4.1 Transforming to Linear Regression

	8.5 Descent Methods: Introduction
	8.5.1 Descent Directions

	8.6 Solving Linear Systems
	8.6.1 Basic Descent Algorithm for Av = b
	8.6.2 Method of Steepest Descents for Av = b
	8.6.3 Conjugate Gradient Method for Av = b
	8.6.3.1 Error and Rate of Convergence of CGM

	8.7 Descent Methods: General Nonlinear Problem
	8.7.1 Descent Direction
	8.7.2 Line Search Problem
	8.7.3 Examples

	8.8 Minimization Without Differentiation
	8.8.1 Examples

	8.9 Variational Problems
	8.9.1 Example: Minimum Potential Energy
	8.9.2 Example: Brachistochrone Problem
	8.9.3 Parting Comments

	8.10 Global Minimum

	9 Data Analysis
	9.1 Introduction
	9.2 Principal Component Analysis
	9.2.1 Example: Word Length
	9.2.2 Principal Component Decomposition
	9.2.3 Scaling Factors
	9.2.4 Application: Crime Data
	9.2.5 Geometry and Data
	9.2.6 Error
	9.2.7 Parting Comments

	9.3 Independent Component Analysis
	9.3.1 Derivation of Method
	9.3.2 Reduced Problem
	9.3.3 Contrast Function
	9.3.4 Summary of ICA
	9.3.5 Application: Image Separation

	9.4 Modal Data Analysis
	9.4.1 Application: Google's Flu Data
	9.4.2 Propagation Modes
	9.4.3 Parting Comments

	9.5 Fitting IVPs to Data
	9.5.1 Logistic Equation
	9.5.2 FitzHugh-Nagumo Equations
	9.5.3 Mass-Spring-Dashpot System
	9.5.4 Parting Comments

	A Taylor's Theorem
	A.1 Useful Taylor Series for x Near Zero
	A.2 Order Symbol and Truncation Error

	B B-Splines
	B.1 Definition
	B.2 Plot
	B.3 Particular Values
	B.4 Derivatives
	B.5 Integrals

	C Summary Tables
	Interpolation Methods
	Integration Methods
	Methods for IVPs
	Gradient Decent Methods

	References
	Index

