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Preface

At this moment, a half-dozen astronauts are assembling a new space sta-
tion hundreds of miles above the surface of the earth. Thousands of sail-
ors live and work under the sea in submarines. Incas jog through the
Andes. Nomads roam the Arabian sands. Homo sapiens—literally, “intelli-
gent man”—has adapted to nearly every environment on the face of the
earth, below it, and as far above it as we can propel ourselves. We must be
doing something right.

In this book we argue that what we do right is related to our sociality.
We will investigate that elusive quality known as intelligence, which is
considered first of all a trait of humans and second as something that
might be created in a computer, and our conclusion will be that what-
ever this “intelligence” is, it arises from interactions among individuals.
We humans are the most social of animals: we live together in families,
tribes, cities, nations, behaving and thinking according to the rules and
norms of our communities, adopting the customs of our fellows, includ-
ing the facts they believe and the explanations they use to tie those facts
together. Even when we are alone, we think about other people, and
even when we think about inanimate things, we think using language—
the medium of interpersonal communication.

Almost as soon as the electronic computer was invented (or, we could
point out, more than a century earlier, when Babbage’s mechanical
analytical engine was first conceived), philosophers and scientists began
to ask questions about the similarities between computer programs and
minds. Computers can process symbolic information, can derive conclu-
sions from premises, can store information and recall it when it is appro-
priate, and so on—all things that minds do. If minds can be intelligent,
those thinkers reasoned, there was no reason that computers could not
be. And thus was born the great experiment of artificial intelligence.

To the early AI researchers, the mark of intelligence was the ability to
solve large problems quickly. A problem might have a huge number of
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possible solutions, most of which are not very good, some of which are
passable, and a very few of which are the best. Given the huge number
of possible ways to solve a problem, how would an intelligent computer
program find the best choice, or at least a very good one? AI researchers
thought up a number of clever methods for sorting through the possibili-
ties, and shortcuts, called heuristics, to speed up the process. Since logical
principles are universal, a logical method could be developed for one
problem and used for another. For instance, it is not hard to see that
strings of logical premises and conclusions are very similar to tours
through cities. You can put facts together to draw conclusions in the
same way that you can plan routes among a number of locations. Thus,
programs that search a geographical map can be easily adapted to ex-
plore deductive threads in other domains. By the mid-1950s, programs
already existed that could prove mathematical theorems and solve prob-
lems that were hard even for a human. The promise of these programs
was staggering: if computers could be programmed to solve hard prob-
lems on their own, then it should only be a short time until they were
able to converse with us and perform all the functions that we the living
found tiresome or uninteresting.

But it was quickly found that, while the computer could perform
superhuman feats of calculation and memory, it was very poor—a com-
plete failure—at the simple things. No AI program could recognize a
face, for instance, or carry on a simple conversation. These “brilliant”
machines weren’t very good at solving problems having to do with real
people and real business and things with moving parts. It seemed that
no matter how many variables were added to the decision process, there
was always something else. Systems didn’t work the same when they
were hot, or cold, or stressed, or dirty, or cranky, or in the light, or in the
dark, or when two things went wrong at the same time. There was always
something else.

The early AI researchers had made an important assumption, so fun-
damental that it was never stated explicitly nor consciously acknowl-
edged. They assumed that cognition is something inside an individual’s
head. An AI program was modeled on the vision of a single disconnected
person, processing information inside his or her brain, turning the prob-
lem this way and that, rationally and coolly. Indeed, this is the way we
experience our own thinking, as if we hear private voices and see private
visions. But this experience can lead us to overlook what should be our
most noticeable quality as a species: our tendency to associate with one
another, to socialize. If you want to model human intelligence, we argue
here, then you should do it by modeling individuals in a social context,
interacting with one another.
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In this regard it will be made clear that we do not mean the kinds of
interaction typically seen in multiagent systems, where autonomous
subroutines perform specialized functions. Agent subroutines may pass
information back and forth, but subroutines are not changed as a result
of the interaction, as people are. In real social interaction, information is
exchanged, but also something else, perhaps more important: individ-
uals exchange rules, tips, and beliefs about how to process the informa-
tion. Thus a social interaction typically results in a change in the think-
ing processes—not just the contents—of the participants.

It is obvious that sexually reproducing animals must interact occa-
sionally, at least, in order to make babies. It is equally obvious that most
species interact far more often than that biological bottom line. Fish
school, birds flock, bugs swarm—not just so they can mate, but for rea-
sons extending above and beyond that. For instance, schools of fish have
an advantage in escaping predators, as each individual fish can be a kind
of lookout for the whole group. It is like having a thousand eyes. Herding
animals also have an advantage in finding food: if one animal finds
something to eat, the others will watch and follow. Social behavior helps
individual species members adapt to their environment, especially by
providing individuals with more information than their own senses can
gather. You sniff the air and detect the scent of a predator; I, seeing you
tense in anticipation, tense also, and grow suspicious. There are numer-
ous other advantages as well that give social animals a survival advan-
tage, to make social behavior the norm throughout the animal kingdom.

What is the relationship between adaptation and intelligence? Some
writers have argued that in fact there is no difference, that intelligence is
the ability to adapt (for instance, Fogel, 1995). We are not in a hurry to
take on the fearsome task of battling this particular dragon at the mo-
ment and will leave the topic for now, but not without asserting that
there is a relationship between adaptability and intelligence, and noting
that social behavior greatly increases the ability of organisms to adapt.

We argue here against the view, widely held in cognitive science, of
the individual as an isolated information-processing entity. We wish to
write computer programs that simulate societies of individuals, each
working on a problem and at the same time perceiving the problem-
solving endeavors of its neighbors, and being influenced by those neigh-
bors’ successes. What would such programs look like?

In this book we explore ideas about intelligence arising in social con-
texts. Sometimes we talk about people and other living—carbon-based—
organisms, and at other times we talk about silicon-based entities, exist-
ing in computer programs. To us, a mind is a mind, whether embodied
in protoplasm or semiconductors, and intelligence is intelligence. The
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important thing is that minds arise from interaction with other minds.
That is not to say that we will dismiss the question casually. The interest-
ing relationship between human minds and simulated minds will keep
us on our toes through much of the book; there is more to it than meets
the eye.

In the title of this book, and throughout it, we use the word swarm to
describe a certain family of social processes. In its common usage,
“swarm” refers to a disorganized cluster of moving things, usually in-
sects, moving irregularly, chaotically, somehow staying together even
while all of them move in apparently random directions. This is a good
visual image of what we talk about, though we won’t try to convince you
that gnats possess some little-known intelligence that we have discov-
ered. As you will see, an insect swarm is a three-dimensional version of
something that can take place in a space of many dimensions—a space of
ideas, beliefs, attitudes, behaviors, and the other things that minds are
concerned with, and in spaces of high-dimensional mathematical sys-
tems like those computer scientists and engineers may be interested in.

We implement our swarms in computer programs. Sometimes the
emphasis is on understanding intelligence and aspects of culture. Other
times, we use our swarms for optimization, showing how to solve hard
engineering problems. The social-science and computer-science ques-
tions are so interrelated here that it seems they require the same answers.
On the one hand, the psychologist wants to know, how do minds work
and why do people act the way they do? On the other, the engineer
wants to know, what kinds of programs can I write that will help me
solve extremely difficult real-world problems? It seems to us that if you
knew the answer to the first question, you would know the answer to the
second one. The half-century’s drive to make computers intelligent has
been largely an endeavor in simulated thinking, trying to understand
how people arrive at their answers, so that powerful electronic computa-
tional devices can be programmed to do the hard work. But it seems re-
searchers have not understood minds well enough to program one. In
this volume we propose a view of mind, and we propose a way to imple-
ment that view in computer programs—programs that are able to solve
very hard mathematical problems.

In The Computer and the Brain, John von Neumann (1958) wrote, “I
suspect that a deeper mathematical study of the nervous system . . . will
affect our understanding of the aspects of mathematics itself that are in-
volved. In fact, it may alter the way in which we look on mathematics
and logics proper.” This is just one of the prescient von Neumann’s pre-
dictions that has turned out to be correct; the study of neural systems has
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opened up new perspectives for understanding complex systems of all
sorts. In this volume we emphasize that neural systems of the intelligent
kind are embedded in sociocultural systems of separate but connected
nervous systems. Deeper computational studies of biological and cul-
tural phenomena are affecting our understanding of many aspects of
computing itself and are altering the way in which we perceive comput-
ing proper. We hope that this book is one step along the way toward that
understanding and perception.

A Thumbnail Sketch of Particle Swarm Optimization

The field of evolutionary computation is often considered to comprise
four major paradigms: genetic algorithms, evolutionary programming,
evolution strategies, and genetic programming (Eberhart, Simpson, and
Dobbins, 1996). (Genetic programming is sometimes categorized as a
subfield of genetic algorithms.) As is the case with these evolutionary
computation paradigms, particle swarm optimization utilizes a “popula-
tion” of candidate solutions to evolve an optimal or near-optimal solu-
tion to a problem. The degree of optimality is measured by a fitness func-
tion defined by the user.

Particle swarm optimization, which has roots in artificial life and so-
cial psychology as well as engineering and computer science, differs from
evolutionary computation methods in that the population members,
called particles, are flown through the problem hyperspace. When the
population is initialized, in addition to the variables being given random
values, they are stochastically assigned velocities. Each iteration, each
particle’s velocity is stochastically accelerated toward its previous best
position (where it had its highest fitness value) and toward a neighbor-
hood best position (the position of highest fitness by any particle in its
neighborhood).

The particle swarms we will be describing are closely related to cellular
automata (CA), which are used for self-generating computer graphics
movies, simulating biological systems and physical phenomena, design-
ing massively parallel computers, and most importantly for basic re-
search into the characteristics of complex dynamic systems. According
to mathematician Rudy Rucker, CAs have three main attributes: (1) indi-
vidual cell updates are done in parallel, (2) each new cell value depends
only on the old values of the cell and its neighbors, and (3) all cells are
updated using the same rules (Rucker, 1999). Individuals in a particle
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swarm population can be conceptualized as cells in a CA, whose states
change in many dimensions simultaneously.

Particle swarm optimization is powerful, easy to understand, easy to
implement, and computationally efficient. The central algorithm com-
prises just two lines of computer code and is often at least an order of
magnitude faster than other evolutionary algorithms on benchmark
functions. It is extremely resistant to being trapped in local optima.

As an engineering methodology, particle swarm optimization has
been applied to fields as diverse as electric/hybrid vehicle battery pack
state of charge, human performance assessment, and human tremor di-
agnosis. Particle swarm optimization also provides evidence for theo-
retical perspectives on mind, consciousness, and intelligence. These
theoretical views, in addition to the implications and applications for
engineering and computer science, are discussed in this book.

What This Book Is, and Is Not, About

Let’s start with what it’s not about. This book is not a cookbook or a how-
to book. In this volume we will tell you about some exciting research that
you may not have heard about—since it covers recent findings in both
psychology and computer science, we expect most readers will find
something here that is new to them. If you are interested in trying out
some of these ideas, you will either find enough information to get
started or we will show you where to go for the information.

This book is not a list of facts. Unfortunately, too much science, and
especially science education, today has become a simple listing of re-
search findings presented as absolute truths. All the research described in
this volume is ongoing, not only ours but others’ as well, and all conclu-
sions are subject to interpretation. We tend to focus on issues; accom-
plishments and failures in science point the way to larger theoretical
truths, which are what we really want. We will occasionally make state-
ments that are controversial, hoping not to hurt anyone’s feelings but to
incite our readers to think about the topics, even if it means disagreeing
with us.

This book is about emergent behavior (self-organization), about simple
processes leading to complex results. It’s about the whole being more
than the sum of its parts. In the words of one eminent mathematician,
Stephen Wolfram: “It is possible to make things of great complexity out
of things that are very simple. There is no conservation of simplicity.”
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We are not the first to publish a book with the words “swarm intelli-
gence” in the title, but we do have a significantly distinct viewpoint from
some others who use the term. For example, in Swarm Intelligence: From
Natural to Artificial Systems, by Bonabeau, Dorigo, and Theraulaz (1999),
which focuses on the modeling of social insect (primarily ant) behavior,
page 7 states:

It is, however, fair to say that very few applications of swarm intelli-
gence have been developed. One of the main reasons for this relative
lack of success resides in the fact that swarm-intelligent systems are
hard to “program,” because the paths to problem solving are not
predefined but emergent in these systems and result from interac-
tions among individuals and between individuals and their environ-
ment as much as from the behaviors of the individuals themselves.
Therefore, using a swarm-intelligent system to solve a problem re-
quires a thorough knowledge not only of what individual behaviors
must be implemented but also of what interactions are needed to pro-
duce such or such global behavior.

It is our observation that quite a few applications of swarm intelligence
(at least our brand of it) have been developed, that swarm intelligent sys-
tems are quite easy to program, and that a knowledge of individual be-
haviors and interactions is not needed. Rather, these behaviors and inter-
actions emerge from very simple rules.

Bonabeau et al. define swarm intelligence as “the emergent collective
intelligence of groups of simple agents.” We agree with the spirit of this
definition, but prefer not to tie swarm intelligence to the concept of
“agents.” Members of a swarm seem to us to fall short of the usual quali-
fications for something to be called an “agent,” notably autonomy and
specialization. Swarm members tend to be homogeneous and follow
their programs explicitly. It may be politically incorrect for us to fail to
align ourselves with the popular paradigm, given the current hype sur-
rounding anything to do with agents. We just don’t think it is the best fit.

So why, after all, did we call our paradigm a “particle swarm?” Well, to
tell the truth, our very first programs were intended to model the coordi-
nated movements of bird flocks and schools of fish. As the programs
evolved from modeling social behavior to doing optimization, at some
point the two-dimensional plots we used to watch the algorithms per-
form ceased to look much like bird flocks or fish schools and started
looking more like swarms of mosquitoes. The name came as simply as
that.

Preface xix



Mark Millonas (1994), at Santa Fe Institute, who develops his kind of
swarm models for applications in artificial life, has articulated five basic
principles of swarm intelligence:

� The proximity principle: The population should be able to carry
out simple space and time computations.

� The quality principle: The population should be able to respond to
quality factors in the environment.

� The principle of diverse response: The population should not com-
mit its activity along excessively narrow channels.

� The principle of stability: The population should not change its
mode of behavior every time the environment changes.

� The principle of adaptability: The population must be able to
change behavior mode when it’s worth the computational price.

(Note that stability and adaptability are the opposite sides of the same
coin.) All five of Millonas’ principles seem to describe particle swarms;
we’ll keep the name.

As for the term particle, population members are massless and
volumeless mathematical abstractions and would be called “points” if
they stayed still; velocities and accelerations are more appropriately ap-
plied to particles, even if each is defined to have arbitrarily small mass
and volume. Reeves (1983) discusses particle systems consisting of clouds
of primitive particles as models of diffuse objects such as clouds, fire, and
smoke within a computer graphics framework. Thus, the label we chose
to represent the concept is particle swarm.

Assertions

The discussions in this book center around two fundamental assertions
and the corollaries that follow from them. The assertions emerge from
the interdisciplinary nature of this research; they may seem like strange
bedfellows, but they work together to provide insights for both social
and computer scientists.

I. Mind is social. We reject the cognitivistic perspective of mind as an
internal, private thing or process and argue instead that both
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function and phenomenon derive from the interactions of indi-
viduals in a social world. Though it is mainstream social science,
the statement needs to be made explicit in this age where the
cognitivistic view dominates popular as well as scientific thought.

A. Human intelligence results from social interaction. Evaluating,
comparing, and imitating one another, learning from experi-
ence and emulating the successful behaviors of others, people
are able to adapt to complex environments through the discov-
ery of relatively optimal patterns of attitudes, beliefs, and be-
haviors. Our species’ predilection for a certain kind of social
interaction has resulted in the development of the inherent in-
telligence of humans.

B. Culture and cognition are inseparable consequences of human soci-
ality. Culture emerges as individuals become more similar
through mutual social learning. The sweep of culture moves
individuals toward more adaptive patterns of thought and
behavior. The emergent and immergent phenomena occur si-
multaneously and inseparably.

II. Particle swarms are a useful computational intelligence (soft com-
puting) methodology. There are a number of definitions of “com-
putational intelligence” and “soft computing.” Computational
intelligence and soft computing both include hybrids of evolu-
tionary computation, fuzzy logic, neural networks, and artificial
life. Central to the concept of computational intelligence is sys-
tem adaptation that enables or facilitates intelligent behavior in
complex and changing environments. Included in soft computing
is the softening “parameterization” of operations such as AND,
OR, and NOT.

A. Swarm intelligence provides a useful paradigm for implementing
adaptive systems. In this sense, it is an extension of evolutionary
computation. Included application areas are simulation, con-
trol, and diagnostic systems in engineering and computer
science.

B. Particle swarm optimization is an extension of, and potentially im-
portant new incarnation of, cellular automata. We speak of course
of topologically structured systems in which the members’ top-
ological positions do not vary. Each cell, or location, performs
only very simple calculations.
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Organization of the Book

This book is intended for researchers; senior undergraduate and graduate
students with a social science, cognitive science, engineering, or com-
puter science background; and those with a keen interest in this quickly
evolving “interdiscipline.” It is also written for what is referred to in the
business as the “intelligent layperson.” You shouldn’t need a Ph.D. to
read this book; a driving curiosity and interest in the current state of sci-
ence should be enough. The sections on application of the swarm algo-
rithm principles will be especially helpful to those researchers and engi-
neers who are concerned with getting something that works. It is helpful
to understand the basic concepts of classical (two-valued) logic and ele-
mentary statistics. Familiarity with personal computers is also helpful,
but not required. We will occasionally wade into some mathematical
equations, but only an elementary knowledge of mathematics should be
necessary for understanding the concepts discussed here.

Part I lays the groundwork for our journey into the world of particle
swarms and swarm intelligence that occurs later in the book. We visit big
topics such as life, intelligence, optimization, adaptation, simulation,
and modeling.

Chapter 1, Models and Concepts of Life and Intelligence, first looks at
what kinds of phenomena can be included under these terms. What is
life? This is an important question of our historical era, as there are many
ambiguous cases. Can life be created by humans? What is the role of ad-
aptation in life and thought? And why do so many natural adaptive sys-
tems seem to rely on randomness?

Is cultural evolution Darwinian? Some think so; the question of evo-
lution in culture is central to this volume. The Game of Life and cellular
automata in general are computational examples of emergence, which
seems to be fundamental to life and intelligence, and some artificial life
paradigms are introduced. The chapter begins to inquire about the na-
ture of intelligence and reviews some of the ways that researchers have
tried to model human thought. We conclude that intelligence just
means “the qualities of a good mind,” which of course might not be de-
fined the same by everybody.

Chapter 2, Symbols, Connections, and Optimization by Trial and
Error, is intended to provide a background that will make the later chap-
ters meaningful. What is optimization and what does it have to do with
minds? We describe aspects of complex fitness landscapes and some
methods that are used to find optimal regions on them. Minds can be
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thought of as points in high-dimensional space: what would be needed
to optimize them? Symbols as discrete packages of meaning are con-
trasted to the connectionist approach where meaning is distributed
across a network. Some issues are discussed having to do with numeric
representations of cognitive variables and mathematical problems.

Chapter 3, On Our Nonexistence as Entities: The Social Organism,
considers the various zoom angles that can be used to look at living and
thinking things. Though we tend to think of ourselves as autonomous
beings, we can be considered as macroentities hosting multitudes of cel-
lular or even subcellular guests, or as microentities inhabiting a planet
that is alive. The chapter addresses some issues about social behavior.
Why do animals live in groups? How do the social insects manage to
build arches, organize cemeteries, stack woodchips? How do bird flocks
and fish schools stay together? And what in the world could any of this
have to do with human intelligence? (Hint: It has a lot to do with it.)

Some interesting questions have had to be answered before robots
could do anything on their own. Rodney Brooks’ subsumption archi-
tecture builds apparently goal-directed behavior out of modules. And
what’s the difference between a simulated robot and an agent? Finally,
Chapter 3 looks at computer programs that can converse with people.
How do they do it? Usually by exploiting the shallowness or mindless-
ness of most conversation.

Chapter 4, Evolutionary Computation Theory and Paradigms, de-
scribes in some detail the four major computational paradigms that use
evolutionary theory for problem solving. The fitness of potential prob-
lem solutions is calculated, and the survival of the fittest allows better so-
lutions to reproduce. These powerful methods are known as the “second-
best way” to solve any problem.

Chapter 5, Humans—Actual, Imagined, and Implied, starts off mus-
ing on language as a bottom-up phenomenon. The chapter goes on to
review the downfall of behavioristic psychology and the rise of cog-
nitivism, with social psychology simmering in the background. Clearly
there is a relationship between culture and mind, and a number of re-
searchers have tried to write computer programs based on that relation-
ship. As we review various paradigms, it becomes apparent that a lot of
people think that culture must be similar to Darwinistic evolution. Are
they the same? How are they different?

Chapter 6, Thinking Is Social, eases us into our own research on so-
cial models of optimization. The adaptive culture model is based on
Axelrod’s culture model—in fact, it is exactly like it except for one little
thing: individuals imitate their neighbors, not on the basis of similarity,
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but on the basis of their performance. If your neighbor has a better solu-
tion to the problem than you do, you try to be more like them. It is a very
simple algorithm with big implications.

Part II focuses on our particle swarm paradigm and the collective and
individual intelligence that arises within the swarm. We first introduce
the conceptually simplest version of particle swarms, binary particle
swarms, and then discuss the “workhorse” of particle swarms, the real-
valued version. Variations on the basic algorithm and the performance
of the particle swarm on benchmark functions precede a review of a few
applications.

Chapter 7, The Particle Swarm, begins by suggesting that the same
simple processes that underlie cultural adaptation can be incorporated
into a computational paradigm. Multivariate decision making is re-
flected in a binary particle swarm. The performance of binary particle
swarms is then evaluated on a number of benchmarks.

The chapter then describes the real-valued particle swarm optimiza-
tion paradigm. Individuals are depicted as points in a shared high-
dimensional space. The influence of each individual’s successes and
those of neighbors is similar to the binary version, but change is now
portrayed as movement rather than probability. The chapter concludes
with a description of the use of particle swarm optimization to find the
weights in a simple neural network.

Chapter 8, Variations and Comparisons, is a somewhat more techni-
cal look at what various researchers have done with the basic particle
swarm algorithm. We first look at the effects of the algorithm’s main pa-
rameters and at a couple of techniques for improving performance. Are
particle swarms actually just another kind of evolutionary algorithm?
There are reasons to think so, and reasons not to. Considering the simi-
larities and differences between evolution and culture can help us under-
stand the algorithm and possible things to try with it.

Chapter 9, Applications, reviews a few of the applications of particle
swarm optimization. The use of particle swarm optimization to evolve
artificial neural networks is presented first. Evolutionary computation
techniques have most commonly been used to evolve neural network
weights, but have sometimes been used to evolve neural network struc-
ture or the neural network learning algorithm. The strengths and weak-
nesses of these approaches are reviewed. The use of particle swarm opti-
mization to replace the learning algorithm and evolve both the weights
and structure of a neural network is described. An added benefit of
this approach is that it makes scaling or normalization of input data
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unnecessary. The classification of the Iris Data Set is used to illustrate the
approach. Although a feedforward neural network is used as the exam-
ple, the methodology is valid for practically any type of network.

Chapter 10, Implications and Speculations, reviews the implications
of particle swarms for theorizing about psychology and computation. If
social interaction provides the algorithm for optimizing minds, then
what must that be like for the individual? Various social- and computer-
science perspectives are brought to bear on the subject.

Chapter 11, And in Conclusion . . . , looks back at some of the motifs
that were woven through the narrative.

Appendix A, Statistics for Swarmers, is where we review some meth-
ods for scientific experimental design and data analysis. The discussion is
a high-level overview to help researchers design their investigations; you
should be conversant with these tools if you’re going to evaluate what
you are doing with particle swarm optimization—or any other stochastic
optimization, for that matter. Included are sections on descriptive and
inferential statistics, confidence intervals, student’s t-test, one-way anal-
ysis of variance, factorial and multivariate ANOVA, regression analysis,
and the chi-square test of independence. The material in this appendix
provides you with sufficient information to perform some of the simple
statistical analyses.

Appendix B, Genetic Algorithm Implementation, explains how to use
the genetic algorithm software distributed at the book’s web site. The
program, which includes the famous Fisher Iris Data Set, is set up to opti-
mize weights in a neural network. You can experiment with various pa-
rameters described in Chapter 4 to see how they affect the ability of the
algorithm to optimize the weights in the neural network, to accurately
classify flowers according to several measurements taken on them. The
source code is also available at the book’s web site and can be edited to
optimize any kind of function you might like to try.

Software

The software associated with this book can be found on the Internet at
www.engr.iupui.edu/~eberhart/web/PSObook.html. The decision to use the
Internet as the medium to distribute the software was made for two main
reasons. First, by not including it with the book as, say, a CD-ROM, the
cost of the book can be lower. And we hope more folks will read the book
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as a result of the lower price. Second, we can update the software (and
add new stuff) whenever we want—so we can actually do something
about it when readers let us know about the (inevitable?) software crit-
ters known as bugs. Some of the software is designed to be run online
from within your web browser; some of it is downloadable and execut-
able in a Windows environment on your PC.

Definitions

A few terms that are used at multiple places in the book are defined in
this section. These terms either do not have universally accepted defini-
tions or their definitions are not widely known outside of the research
community. Throughout the book, glossary terms are italicized and will
be defined in the back of the book. Unless otherwise stated, the following
definitions are to be used throughout the book:

Evolutionary computation comprises machine learning optimization
and classification paradigms roughly based on mechanisms of evolution
such as biological genetics and natural selection (Eberhart, Simpson, and
Dobbins, 1996). The evolutionary computation field includes genetic al-
gorithms, evolutionary programming, genetic programming, and evolu-
tion strategies, in addition to the new kid on the block: particle swarm
optimization.

Mind is a term we use in the ordinary sense, which is of course
not very well defined. Generally, mind is “that which thinks.” David
Chalmers helps us out by noting that the colloquial use of the concept of
mind really contains two aspects, which he calls “phenomenological”
and “psychological.” The phenomenological aspect of mind has to do
with the conscious experience of thinking, what it is like to think, while
the psychological aspect (as Chalmers uses the term, perhaps many psy-
chologists would disagree) has to do with the function of thinking, the
information processing that results in observable behavior. The connec-
tion between conscious experience and cognitive function is neither
simple nor obvious. Because consciousness is not observable, falsifiable,
or provable, and we are talking in this book about computer programs
that simulate human behavior, we mostly ignore the phenomenology of
mind, except where it is relevant in explaining function. Sometimes the
experience of being human makes it harder to perceive functional cogni-
tion objectively, and we feel responsible to note where first-person sub-
jectivity steers the folk-psychologist away from a scientific view.
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A swarm is a population of interacting elements that is able to opti-
mize some global objective through collaborative search of a space. In-
teractions that are relatively local (topologically) are often emphasized.
There is a general stochastic (or chaotic) tendency in a swarm for individ-
uals to move toward a center of mass in the population on critical dimen-
sions, resulting in convergence on an optimum.

An artificial neural network (ANN) is an analysis paradigm that is
roughly modeled after the massively parallel structure of the brain. It
simulates a highly interconnected, parallel computational structure with
many relatively simple individual processing elements (PEs) (Eberhart,
Simpson, and Dobbins, 1996). In this book the terms artificial neural net-
work and neural network are used interchangeably.
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chapter
one

Models and Concepts of Life
and Intelligence

This chapter begins to set the stage for the
computational intelligence paradigm we call
“particle swarm,” which will be the focus
of the second half of the book. As human
cognition is really the gold standard for in-
telligence, we will, as artificial intelligence
researchers have done before us, base our
model on people’s thinking. Unlike many
previous AI researchers, though, we do not
subscribe to the view of mind as equivalent
to brain, as a private internal process, as
some set of mechanistic dynamics, and we
deemphasize the autonomy of the individual
thinker. The currently prevailing cognitivist
view, while it is extreme in its assumptions,
has taken on the mantle of orthodoxy in
both popular and scientific thinking. Thus we
expect that many readers will appreciate our
setting a context for this new perspective.
This introductory discussion will emphasize

the adaptive and dynamic nature of life in
general, and of human intelligence in partic-
ular, and will introduce some computational
approaches that support these views.

We consider thinking to be an aspect
of our social nature, and we are in very
good company in assuming this. Further, we
tend to emphasize the similarities between
human social behavior and that of other
species. The main difference to us is that
people, that is, minds, “move” in a high-
dimensional abstract space. People navi-
gate through a world of meaning, of many
distinctions, gradations of differences, and
degrees of similarity. This chapter then will
investigate some views of the adaptability of
living things and computational models and
the adaptability of human thought, again
with some discussion of computational
instantiations. �
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The Mechanics of Life and Thought

From the beginning of written history there has been speculation about
exactly what distinguished living from nonliving things. The distinction
seemed obvious, but hard to put a finger on. Aristotle believed:

What has soul in it differs from what has not, in that the former dis-
plays life . . . Living, that is, may mean thinking or perception or local
movement and rest, or movement in the sense of nutrition, decay,
and growth . . . This power of self-nutrition . . . is the originative
power, the possession of which leads us to speak of things as living.

This list of attributes seemed to summarize the qualities of living things,
in the days before genetic engineering and “artificial life” computer pro-
grams were possible; Aristotle’s black-and-white philosophy defined or-
thodox thought for a thousand years and influenced it for another
thousand.

It does not seem that the idea was seriously entertained that living
bodies were continuous with inorganic things until the 17th century,
when William Harvey discovered that blood circulates through the body;
suddenly the heart was a pump, like any other pump, and the blood
moved like any other fluid. The impact was immediate and profound.
The year after the publication of Harvey’s On the Motion of the Heart and
Blood in Animals, Descartes noted: “Examining the functions which
might . . . exist in this body, I found precisely all those that might exist in
us without our having the power of thought, and consequently without
our soul—that is to say, this part of us, distinct from the body, of which it
has been said that its nature is to think.” So in the same stroke with
which he noted—or invented—the famous dichotomy between mind
and body, Descartes established as well the connection between living
bodies and other physical matter that is perhaps the real revolution of
the past few centuries. Our living bodies are just like everything else in
the world. Where earlier philosophers had thought of the entire human
organism, mind and body, as a living unity distinct from inanimate mat-
ter, Descartes invited the domain of cold matter up into the body, and
squeezed the soul back into some little-understood abstract dimension
of the universe that was somehow—but nobody knew how—connected
with a body, though fundamentally different from it. It was not that Des-
cartes invented the notion that mental stuff was different from physical
stuff—everybody already thought that. It was that he suggested that
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living bodies were the same as all the other stuff in the world. Minds
stayed where they were: different.

Though he knew it must be true, even Charles Darwin found it hard
to accept that living matter was continuous with inanimate matter: “The
most humble organism is something much higher than the inorganic
dust under our feet; and no one with an unbiased mind can study any
living creature, however humble, without being struck with enthusiasm
at its marvelous structure and properties.” Indeed it seems that a hall-
mark of life is its incredible complexity. Even the smallest, most primi-
tive microbe contains processes and structures that can only be described
as amazing. That these phenomena were designed by chance generation
and selection is so different from the way we ordinarily conceive design
and creation that people have difficulty even imagining that life could
have developed in this way, even when they know it must be true.

In considering a subtle aspect of the world such as the difference be-
tween living and nonliving objects, it seems desirable, though it may
turn out to be impossible, to know whether our distinctions are based on
the qualities of things or our attributions about them. A major obstacle is
that we are accustomed to thinking of ourselves as above and beyond na-
ture somehow; while human accomplishments should not be trivialized,
we must acknowledge (if this discussion is going to continue) that some
of our feelings of grandeur are delusional—and we can’t always tell
which ones. The taxonomic distinction between biological and other
physical systems has been one of the cornerstones of our sense of being
special in the world. We felt we were divine, and our flesh was the living
proof of it. But just as Copernicus bumped our little planet out of the
center of the universe, and Darwin demoted our species from divinity to
beast, we live to witness modern science chipping away these days at
even this last lingering self-aggrandizement, the idea that life itself con-
tains some element that sets it above inanimate things. Today, ethical ar-
guments arise in the contemplation of the aliveness of unborn fetuses, of
comatose medical patients, of donor organs, of tissues growing in test
tubes, of stem cells. Are these things alive? Where is the boundary be-
tween life and inanimate physical objects, really? And how about those
scientists who argue that the earth itself is a living superorganism? Or
that an insect colony is a superorganism—doesn’t that make the so-
called “death” of one ant something less than the loss of a life, some-
thing more like cutting hair or losing a tooth? On another front, the cre-
ation of adaptive robots and lifelike beings in computer programs, with
goal-seeking behaviors, capable of self-reproduction, learning and rea-
soning, and even evolution in their digital environments, blurs the
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division as well between living and nonliving systems. Creatures in arti-
ficial life programs may be able to do all the things that living things do.
Who is to say they are not themselves alive?

And why does it matter? Why should we have a category of things we
call “alive” and another category for which the word is inappropriate? It
seems to us that the distinction has to do with a moral concern about
killing things—not prohibition exactly, but concern. It is morally accept-
able to end some kinds of dynamic processes, and it is not acceptable to
end others. Termination of a living process calls for some special kinds of
emotion, depending mainly on the bond between the living thing and
ourselves. For whatever reasons, we humans develop an empathic rela-
tionship with particular objects in the world, especially ones that inter-
act with us, and the concept of “living” then is hopelessly bound up in
these empathic relations. The tendency to distinguish something vi-
brant and special in living things is part of our sociality; it is an extension
of our tendency to fraternize with other members of our species, which is
a theme you will encounter a lot in this book.

There may be good, rational reasons to draw a line between living and
other things. Perhaps a definition of life should include only those ob-
jects that possess a particular chemical makeup or that have evolved
from a single original lineage. The organisms we count as living are based
on hydrocarbon molecules, albeit of wide varieties, and self-reproducing
DNA and RNA are found throughout the biological kingdoms. Is this
what is meant by life? We doubt it. The concept of extraterrestrial life, for
instance, while hard to imagine, is nonetheless easy to accept. What
would we say if there were silicon-based beings on another planet? What
if we discovered Plutonians who had evolved from silica sand into a life-
like form with highly organized patterning—which we would recognize
immediately as microchips—and intricate, flexible, adaptive patterns of
cognition and behavior? If we ran into them in the Star Wars bar, would
we consider them alive? The answer is plainly yes. Does it make any
sense to allow that alien computers can be alive, while terrestrial ones
cannot? The answer has to be no.

Possibly the reluctance to consider computer programs, robots, or
molecularly manufactured beings as living stems from the fact that these
things are man-made—and how can anything living be man-made? This
argument is religious, and we can’t dispute it; those who believe life can
come only from deity can go ahead and win the argument.

Biologists with the Minimal Genome Project have been investigat-
ing the bottom line, trying to discern what is the very least information
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that needs to be contained in the genes for an organism (or is it?) to per-
petuate its dynamics, to be called “alive” (Hutchinson et al., 1999). By
methodically altering the genes of some very simple one-celled organ-
isms and by comparing the genomes of some very simple bacteria, these
scientists, led by J. Craig Venter, have been able to identify which ones
are necessary, and which are not, for the organisms’ survival. They have
determined that 265 to 350 of Mycoplasma genitalium’s 480 genes are es-
sential for life under laboratory conditions (interestingly, the biologists
don’t know what 111 of those genes do—only that they are necessary).
With the minimal subset, the organism may not be able to survive out-
side the warm comfort of its petri dish, but in carefully controlled condi-
tions it should be able to stay alive. As we are talking about a sequence of
only a few hundred genes, and molecular engineering is an everyday ac-
tivity, the question arises, what will you call it when—not if—some labo-
ratory mechanics put together a package of molecules that can reproduce
and metabolize nutrients in a carefully controlled synthetic environ-
ment? Do you call it life?

In all ways known, biological organisms are like other machines (e.g.,
Wooldridge, 1968). The operation of muscle, of digestive enzyme, of
neuron, of DNA—as Descartes observed, all these things are explainable
in technological terms. We know now that there is no special problem
with replacing body parts with man-made machinery, once the details of
their processes are known. If our bodies may be a kind of ordinary hard-
ware, what about our minds? Knowing that brain injury can result in
mental anomalies, and knowing that electrical and chemical activities in
the brain correlate with certain kinds of mental activities, we can cor-
rectly conclude that brains provide the machinery of minds. We will not
attempt to tackle the problem of the relationship of minds and brains
in this introductory section—we’ll work up to that. For now we only
note that brains are physical objects, extremely complex but physical
nonetheless, bound by the ordinary laws of physics; the machinery of
thought is like other machinery.

As for the question of whether man-made artifacts can really be alive,
we have encountered a situation that will appear at several points in this
book, so we may as well address it now. In science as in other domains of
discourse, there may be disagreements about how things work, what
they are made of, whether causes are related to effects, about the true
qualities of things—questions about the world. These kinds of questions
can be addressed through observation, experiment, and sometimes de-
duction. Sometimes, though, the question is simply whether something
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belongs to a semantic category. Given a word that is the label for a cate-
gory, and given some thing, idea, or process in the world, we may argue
about whether that label should properly be attached to the object.
There is of course no way to prove the answer to such a question, as cate-
gories are linguistic conventions that derive their usefulness exactly
from the fact that people agree on their usage. Is X an A? If we agree it is,
then it is: a tomato is a vegetable, not a fruit. If we disagree, then we may
as well go on to the next thing, because there is no way to prove that one
of us is correct. One of the fundamental characteristics of symbols, in-
cluding words, is that they are arbitrary; their meaning derives from
common usage. In the present case, we will wiggle away from the dispute
by agreeing with the scientific convention of calling lifelike beings in
computer programs “artificial life” or “Alife.” Some later questions will
not offer such a diplomatic resolution.

Computers are notorious for their inability to figure out what the user
wants them to do. If you are writing a document and you press ALT in-
stead of CTRL, the chances are good that your word processor will do
some frustrating thing that is entirely different from what you intended.
Hitting the wrong key, you might end up deleting a file, editing text,
changing channels, navigating to some web site you didn’t want to go
to—the computer doesn’t even try to understand what you mean. This
kind of crisp interpretation of the world is typical of “inanimate” objects.
Things happen in black and white, zero and hundred percents. Now and
then a software product will contain a “wizard” or other feature that is
supposed to anticipate the user’s needs, but generally these things are
simply based on the programmer’s assumptions about what users might
want to do—the program doesn’t “know” what you want to do, it just
does what it was programmed to do and contains a lot of if-then state-
ments to deal with many possibilities. Some of them are quite clever, but
we never feel guilty shutting down the computer. People who shut down
other people are called “inhuman”—another interesting word. You are
not considered inhuman for turning off your computer at the end of the
day. It is not alive.

Contrast the crispness of machines with animate things. Last week
there was a dog on television who had lost both his rear legs. An animate
system, for instance, the two-legged dog, adapts to novelty and to ambi-
guity in the environment. This dog had learned to walk on its forepaws
perfectly well. The television program showed him chasing a ball, fol-
lowing his master, eating, doing all the things we expect a dog to do, bal-
anced on his forepaws with his tail up in the air. For all he knew, dogs
were supposed to have two legs.
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Stochastic Adaptation: Is Anything Ever Really Random?

There was a word in the previous paragraph that will become a core con-
cept for everything we will be talking about. The word is adapt. It has
been argued that an important dimension of difference between animate
and inanimate things is the ability to adapt. Later we will consider an ar-
gument that intelligence is a propensity or ability to adapt, as well. So it
will be good to dwell on the term for a moment, to consider what it
means.

The word “adaptation” comes from a Latin root meaning “to fit to.”
Thus right from the beginning the word implies that there are two
things: something that adapts and something it adapts to. Among living
things, we say that organisms or species adapt to their environments.
Of course, interacting species adapting to their environments end up
changing the environments and adapting to the changed niches, which
include other adapting organisms, and so on—adaptation can be end-
lessly dynamic. It is important to keep in mind that an entity is adaptive
in relation to some criterion.

Adaptation in nature is almost always a stochastic process, meaning
that it contains randomness; the word usually refers to a phenomenon
that is probabilistic in nature. Most of the paradigms discussed here will
have a random component. By one definition, randomness exists when
repeated occurrences of the same phenomenon can result in different
outcomes. Almost always, things that appear random turn out to be de-
terministic (they follow certainly from causes), except that we don’t know
the chains of causality involved. For instance, people may lament after
an accident, “If only I had taken Third Street instead of Main,” or “If only
I had never introduced her to him.” These “if only’s” belie our inability
to perceive the chains of causes that reach from an early state of a system
to a later state.

“Random numbers” in a computer are of course not random at all,
though we have little trouble referring to them as such. Given the same
starting point, the random number generator will always produce ex-
actly the same series of numbers. These quasirandom processes appear
random to us because the sequence is unpredictable, unless you happen
to know the formula that produces it. Most of the time, when we say
“random” we really mean “unpredictable,” or even just “unexpected;” in
other words, we are really describing the state of our understanding
rather than a characteristic of the phenomena themselves. Randomness
may be another one of those things that don’t exist in the world, but
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only in our minds, something we attribute to the world that is not a
quality of it. The attribution of randomness is based on the observer’s in-
ability to understand what caused a pattern of events and is not necessar-
ily a quality of the pattern itself. For instance, we flip a coin in order to
introduce randomness into a decision-making process. If the direction
and magnitude of the force of the thumb against the coin were known, as
well as the mass of the coin and the distribution of density through its
volume, relevant atmospheric characteristics, and so on, the trajectory of
the coin could be perfectly predicted. But because these factors are hard
to measure and control, the outcome of a flip is unpredictable, what we
call “random”—close enough.

Sociobiologist E. O. Wilson (1978) proposed an interesting elabora-
tion on the coin-flipping example. He agrees with us that if all the knowl-
edge of physical science were focused on the coin flip, the outcome could
be perfectly predictable. So, he suggests, let us flip something more inter-
esting. What would happen if we flipped something more complicated—
perhaps a bee? A bee has memory, can learn, reacts to things, and in fact
would probably try to escape the trajectory imposed on it by the flipper’s
thumb. But, as Wilson points out, if we had knowledge of the nervous
system of the bee, the behaviors of bees, and something of the history of
this bee in particular, as well as the other things that we understood in
the previous paragraph about forces acting on a flipped object, we might
be able to predict the trajectory of the bee’s flight quite well, at least
better than chance. Wilson makes the profound point that the bee, kick-
ing and flapping and twitching as it soars off the thumb, has “free will,”
at least from its own point of view. From the human observer’s perspec-
tive, though, it is just an agitated missile, quite predictable.

Of course it is easy to extend Wilson’s provocative example one little
step further and imagine flipping a human being. Perhaps a mighty crea-
ture like King Kong or a more subtle Leviathan—perhaps social forces or
forces of nature—could control the actual trajectory of a human through
space. Would that human being have free will? He or she would probably
think so.

Let’s insert a social observation here. In a later chapter we will be dis-
cussing coordination games. These are situations involving two or more
participants who affect one another’s, as well as their own, outcomes.
Game-theory researchers long ago pointed out that it is impossible to de-
vise a strategy for successfully interacting with someone who is making
random choices. Imagine someone who spoke whether the other person
was talking or not, and whether the subject was related to the previous
one; such unpredictable behavior would be unconscionably rude and
unnerving. Being predictable is something we do for other people; it is a
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service we provide to enable other people to deal with us. Random be-
havior is rude. Even contrary behavior, where the person does the op-
posite of what we want, is at least predictable, and though we might not
appreciate them, we can accept rebels who behave contrary to our expec-
tations. But behavior performed without any reference to our expecta-
tions, that is, random behavior, is dangerous; the “loose cannon” is a
danger. Some writers, such as cultural psychologist Michael Tomasello
(1999), neuroscientist Leslie Brothers (1997), and social psychologist
Tom Ostrom (1984), have argued for the primacy of social cognition: cat-
egorization and other cognitive processes are simply extensions of social
information-processing techniques to apply to nonsocial objects. Our or-
dinary interpretation of randomness and its opposite, the identification
of simple kinds of order, might very well be a form of social thinking.

For most of the 20th century it was thought that “true” randomness
existed at the subatomic level. Results from double-slit experiments and
numerous thought experiments had convinced quantum physicists that
subatomic entities such as photons should be conceptualized both as
particles and as waves. In their wave form, such objects were thought to
occupy a state that was truly stochastic, a probability distribution, and
their position and momentum were not fixed until they were observed.
In one of the classic scientific debates of 20th-century physics, Niels Bohr
argued that a particle’s state was truly, unknowably random, while Ein-
stein argued vigorously that this must be impossible: “God does not play
dice.” Until very recently, Bohr was considered the winner of the dispute,
and quantum events were considered to be perhaps the only example of
true stochasticity in the universe. But in 1998, physicists Dürr, Nonn,
and Rempe (1998) disproved Bohr’s theorizing, which had been based on
Heisenberg’s uncertainty principle. The real source of quantum “ran-
domness” is now believed to be the interactions or “entanglements” of
particles, whose behavior is in fact deterministic.

The basis of observed randomness is our incomplete knowledge of the
world. A seemingly random set of events may have a perfectly good ex-
planation; that is, it may be perfectly compressible. Press, Teukolsky,
Vetterling, and Flannery’s bible of scientific programming, Numerical
Recipes in C (1993), shows a reasonably good random number generator
that can be written with one line of code. If we don’t know what the un-
derlying process is that is generating the observed sequence, we call it
random. If we define “randomness” as ignorance, we can continue to use
the term, in humility.

In a future section we will consider cellular automata, computer pro-
grams whose rules are fully deterministic, but whose outputs appear to
be random, or sometimes orderly in an unpredictable way. In discussions
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of randomness in this book, we will assume that we are talking about
something similar to the unpredictability that arises from complex sys-
tems such as cellular automata. This kind of randomness—and let’s go
ahead and call it that—is an integral aspect of the environment; life and
intelligence must be able to respond to unexpected challenges.

We have noted that adaptation usually seems to include some ran-
dom component, but we have not asked why. If we consider an adaptive
system as one that is adjusting itself in response to feedback, then the
question is in finding the appropriate adjustment to make; this can be
very difficult in a complex system, as we will see shortly, because of both
external demands and the need to maintain internal consistency. In
adaptive computer programs, randomness usually serves one of two
functions. First, it is often simply an expression of uncertainty. Maybe we
don’t know where to start searching for a number, or where to go next,
but we have to go somewhere—a random direction is as good as any. A
good, unbiased quasirandom number can be especially useful in areas
where people have known predispositions. Like the drunk who looks for
his keys under the streetlight, instead of in the bushes where he dropped
them, “because there’s more light here,” we often make decisions that re-
flect our own cognitive tendencies more than the necessities of the task
at hand. A random choice can safeguard against such tendencies. The
second important function of random numbers is, interestingly, to intro-
duce creativity or innovation. Just as artists and innovators are often the
eccentrics of a society, sometimes we need to introduce some random-
ness just to try something new, in hopes of improving our position. And
lots of times it works.

The “Two Great Stochastic Systems”

Stochastic adaptation is seen in all known living systems. Probabilistic
choices allow creative, innovative exploration of new possibilities, espe-
cially in a changing environment. There are other advantages as well—
for instance, perfectly predictable prey would be a little too convenient
for predators. In general, organisms can adapt by making adjustments
within what Gregory Bateson (1979) called the “two great stochastic sys-
tems.” These systems are evolution and mind.

Later we will go into evolutionary and genetic processes in more de-
tail. For the present, we note that evolution operates through variation
and selection. A variety of problem solutions (chromosomes or patterns
of features) are proposed and tested; those that do well in the test tend to
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survive and reproduce, while those that perform poorly tend to be elimi-
nated. This is what is meant by “survival of the fittest.” Looking at it
from the population level, for instance, looking at the proportion of in-
dividuals with a phenotypic trait, we see a kind of stochastic change, as
the probabilities of various traits increase and decrease in a population
over time, and the mean values of quantitative features, for instance,
height or weight, shift along their continua.

The second “great stochastic system” is the mind. Contemporary cog-
nitive scientists see the mind as a stochastic system of neurons, adjusting
their firings in response to stimuli that include other neurons. The brain
is an excellent exemplar of the concept of a complex adaptive system—
but this is not what Bateson meant when he described mind as a great
stochastic system, and it is not what we mean. The distinction between
brain and mind is extremely important and not subtle at all, though
most people today fail to observe it. We are talking about minds here, not
brains.

Some theorists argue that mental processes are very similar to evolu-
tionary ones, where hypotheses or ideas are proposed, tested, and either
accepted or rejected by a population. The most prevalent opinion along
these lines is the “memetic” view, proposed by Dawkins (1976) in The
Selfish Gene, which suggests that ideas and other cultural symbols and
patterns, called memes, act like genes; they evolve through selection,
with mutation and recombination just like biological genes, increasing
their frequency in the population if they are adaptive, dying out if
they’re not.

Dawkins points out that genes propagate through replication, mak-
ing copies of themselves with slight differences from one “generation” to
the next. Now the evolution of species, which crawls along over the
eons, has created a kind of environment for the propagation of a new
faster kind of replicator. In particular, the human brain provides a host
environment for memetic evolution. Memes are not restricted to brains,
though; they can be transmitted from brains to books and to computers,
and from books to computers, and from computer to computer. The evo-
lution of self-reproducing memes is much faster than biological evolu-
tion, and as we will see, some memes even try to dominate or control the
direction of human genetic evolution.

Dawkins asserts that memes replicate through imitation, and in fact
he coined the word from the ancient Greek mimeme, meaning to imitate.
Ideas spread through imitation; for instance, one person expresses an
idea in the presence of another, who adopts the idea for his or her own.
This person then expresses the idea, probably in their own words, adding
the possibility of mutation, and the meme replicates through the
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population. As if manifesting some kind of self-referential amplification,
the theory of memes itself has spread through the scientific community
with surprising efficiency; now there are scientific journals dedicated to
the topic, and a large number of recent books on scientific and computa-
tional subjects have endorsed the view in some form. The view that mind
and evolution operate by similar or identical processes is very widely ac-
cepted by those who should know.

The similarities between the two stochastic systems are significant,
but the analogy becomes ambiguous when we try to get specific about
the evolution of raw abstractions. The ancient question is, what, really, is
an “idea?” You could take the view that ideas exist somewhere, in a Pla-
tonic World of Forms, independent of minds. Our insights and under-
standing, then, are glimpses of the ideal world, perceptions of shadows
of pure ideas. “New” ideas existed previously, they had just not been
known yet to any human mind. Next we would have to ask, how does
evolution operate on such ideas? No one has proposed that ideas evolve
in their disembodied state, that truth itself changes over time, that the
World of Forms itself is in a dynamical process of evolving. The same
mathematical facts, for instance, that were true thousands of years ago
are equally true today—and if they are not true now, they never were. It
has only been proposed that ideas evolve in the minds of humans; in
other words, our knowledge evolves. The distinction is crucial.

The other view is that ideas have no existence independent of minds.
According to this view, ideas are only found in the states of individual
minds. At its most extreme, this position holds that an idea is nothing
more than a pattern of neuronal connections and activations. Memetic
evolution in this view then consists in imitating neuronal patterns, test-
ing them, and accepting them if they pass the test. The problem here is
that the same idea is almost certainly embodied in different neuronal
patterns in different people—individuals’ brains are simply wired up
differently.

Luckily for us, we don’t have to resolve millennia-old questions about
the preexistence of ideas. For the present discussion it is only important
to note that for memetic evolution to act upon ideas, they have to be-
come manifest somehow in minds. They have to take on a form that al-
lows mental representation of some type (a controversial topic in itself),
and if they are to propagate through the population, their form must
permit communication. The requirement of communication probably
means that ideas need to be encoded in a symbol system such as
language.

Our argument is that cultural evolution should be defined, not as op-
erations on ideas, but as operations on minds. The evolution of ideas
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involves changes in the states of minds that hold ideas, not changes in
the ideas themselves; it is a search—by minds—through the universe of
ideas, to find the fitter ones. This will become more important when we
discuss mental activity, intelligence, and culture.

We will emphasize now, and later as well, that cognition is a different
process from genetic evolution. The great stochastic systems are different
from one another: one uses selection, removing less fit members from
the population, and the other adapts by changing the states of individu-
als who persist over time. These are two different kinds of adaptation.
This is not to deny that ideas evolve in the minds of humans. The ideas
expressed by people certainly change over time, in an adaptive way. We
are suggesting a change in emphasis, that a scientific view of the evolu-
tion of ideas should look at changes of states of individuals, rather than
at the ideas themselves.

There is something difficult about thinking of minds in populations.
We are used to thinking of ourselves as autonomous thinkers, sometimes
accepting beliefs and processes that others around us hold, but most of
the time figuring out things on our own. Our experience is that we are in
control of our cognitive systems, perhaps with some exceptions, such as
when we are surprised or overcome with emotions; we experience our
thoughts as controlled and even logical. If we are to consider the evolu-
tion of ideas through a population, though, we will need to transcend
this illusion of autonomy and observe the individual in the context of a
society, whether it is family, tribe, nation, culture, or pancontinental
species. We are not writing this book to justify or romanticize commonly
held beliefs about mankind’s important place in the universe; we in-
tend to look unblinking at the evidence. In order to do that, we need
to remove self-interest and sentimental self-aggrandizement from the
discussion.

In Mind and Nature, Bateson detailed what he considered to be the cri-
teria of mind, qualities that were necessary and sufficient for something
to be called a mind:

1. A mind is an aggregate of interacting parts or components.

2. The interaction between parts of mind is triggered by difference. For in-
stance, perception depends on changes in stimuli.

3. Mental process requires collateral energy. The two systems involved
each contribute energy to an interaction—as Bateson says, “You
can take a horse to water, but you cannot make him drink. The
drinking is his business” (p. 102).
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4. Mental process requires circular (or more complex) chains of determina-
tion. The idea of reciprocal causation, or feedback, is a very impor-
tant one and is fundamental to mental processes.

5. In mental process, the effects of difference are to be regarded as trans-
forms (i.e., coded versions) of the difference which preceded them. Ef-
fects are not the same as their causes; the map is not the same as
the territory.

6. The description and classification of these processes of transformation
discloses a hierarchy of logical types immanent in the phenomena.

We will not attempt here to explain or elaborate Bateson’s insightful
and subtle analysis. We do want to note though that he hints—in fact it
is a theme of his book—that biological evolution meets these criteria,
that nature is a kind of mind. This seems a fair and just turnaround of the
currently prevalent opinion that mind is a kind of evolution. We will see
that evolutionary processes can be encoded in computer programs used
to solve seemingly intractable problems, where the problem is defined as
the analogue of an ecological niche, and recombined and mutated varia-
tions are tested and competitively selected. In other words, we can capi-
talize on the intelligence, the mental power, of evolution to solve many
kinds of problems. Once we understand the social nature of mental pro-
cesses, we can capitalize on those as well.

It appears to some thinkers that mind is a phenomenon that occurs
when human beings coexist in societies. The day-to-day rules of living
together are not especially complicated—some relatively straightforward
scraps of wisdom will get you through life well enough. But the accumu-
lated effect of these rules is a cultural system of imponderable depth and
breadth. If we could get a sufficiently rich system of interactions going in
a computer, we just might be able to elicit something like human intelli-
gence. The next few sections will examine some ways that scientists and
other curious people have tried to understand how to write computer
programs with the qualities of the great stochastic systems.

The Game of Life: Emergence in Complex Systems

We have described inanimate things as being intolerant of variation in
the environment and have used everyday commercial computer pro-
grams as an example of this. But it doesn’t need to be that way: research-
ers have developed methods of computing that are tolerant of errors and
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novel inputs, computer programs that show the kinds of adaptation that
we associate with living things.

The Game of Life

An arbitrary starting point for the story of the modern paradigm known
as artificial life is an idea published in Scientific American in October 1970,
in Martin Gardner’s “Mathematical Games” column: mathematician
John Conway’s “Game of Life” (Gardner, 1970). The Game of Life is a
grid of binary elements, maybe checkerboard squares or pixels on a
screen, arranged on a two-dimensional plane, with a simple set of rules
to define the state of each element or “cell.” Each cell is conceptualized
as belonging to a neighborhood comprising its eight immediate neigh-
bors (above, below, to the sides, and diagonal). The rules say that

� If an occupied cell has fewer than two neighbors in the “on” state
(which we can call “alive”), then that cell will die of loneliness—it
will be in the “off” or “dead” state in the next turn.

� If it has more than three neighbors in the on state, then it will die
of overcrowding.

� If the cell is unoccupied and it has exactly three alive neighbors, it
will be born in the next iteration.

The Game of Life can be programmed into a computer, where the
rules can be run iteratively at a high speed (unlike in Conway’s time, the
1960s, when the game had to be seen on a checkerboard or Go board, or
other matrix, in slow motion). The effect on the screen is mesmerizing,
always changing and never repeating, and the program demonstrates
many of the features that have come to be considered aspects of artificial
life.

A common way to program it is to define cells or pixels on the screen
as lit when they are in the alive state, and dark when they are not, or vice
versa. The program is often run on a torus grid, meaning that the cells at
the edges are considered to be neighbors to the cells at the opposite end.
A torus is shaped like a doughnut; if you rolled up a sheet of paper so that
the left and right edges met, it would be a tube or cylinder, and if you
rolled that so that the open ends met, it would be in a torus shape. A to-
rus grid is usually displayed as a rectangle on the screen, but where rules
in the program require a cell to assess the states of its neighbors, those at
the edges look at the cells at the far end.
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When the Game of Life runs, cohesive patterns form out of apparent
randomness on the grid and race around the screen. Two patterns collid-
ing may explode into myriad new patterns, or they may disappear, or
they may just keep going right through one another. Some simple pat-
terns just sit there and blink, while some have been likened to cannons,
shooting out new patterns to careen around the grid. A kind of Game of
Life lore has developed over the years, with names for these different pat-
terns, such as “blinkers,” “b-heptaminos,” “brains” and “bookends,”
“gliders” and “glider guns,” and “r-pentaminos.” Some of the names are
scientifically meaningful, and some are just fun. Figure 1.1 shows the
glider pattern, which moves diagonally across the screen forever, unless
it hits something.

The Game of Life is fascinating to watch. Writer M. Mitchell Waldrop
(1992) has called it a “cartoon biology” (p. 202). When it is programmed
to start with a random pattern, it is different every time, and sometimes
it runs for a long time before all the cells die out. Artificial life researchers
have pointed out many ways that Conway’s simple game is similar to bi-
ological life, and it has even been suggested that this algorithm, or one
like it, might be implemented as a kind of universal computer. Mostly,
though, there is a sense conveyed by the program that is chillingly famil-
iar, a sense of real life in process.

Emergence

Perhaps the most obvious and most interesting characteristic of the
Game of Life is a property called emergence. There is much discussion in
the scientific community about a complete definition of emergence; at
least in this simple instance we can see that the complex, self-organizing
patterns on the screen were not written into the code of the program that
produced them. The program only says whether you are dead or alive de-
pending on how many of your neighbors are alive; it never defines blink-
ers and gliders and r-pentaminos. They emerge somehow from a lower-
level specification of the system.

Emergence is considered to be a defining characteristic of a complex
dynamical system. Consider for instance the economy of a nation. (Note
that economies of nations interact, and that the “economy of a nation”
is simply an arbitrary subset of the world’s economy.) As a physical sys-
tem, an economy consists of a great many independent pairwise interac-
tions between people who offer services or goods and people who want
them. The 18th-century Scottish economist Adam Smith proposed that
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there seems to be something like an “invisible hand” guiding the whole
process, and in fact it is the absence of an invisible hand that makes the
system interesting to us. Somehow, though no person controls an econ-
omy, it evolves toward and maintains an equilibrium; it is a relatively sta-
ble stochastic process, not really predictable but dependable. Prices and
wages are consistent from place to place and over time. This does not
mean they are the same everywhere, or at all times, but the differences
are more or less consistent. The important point is that there is no cen-
tral control. The stability or consistency of an economy at the large scale
emerges from the qualities of the very many person-to-person interac-
tions that make it up. (We will emphasize later the fact that the local in-
dividual interactions are affected by the global state of the system as well,
a top-down phenomenon we call immergence.)

An ecology (note that all ecologies are interconnected) is another ex-
ample of a complex system with emergent qualities. (Note that econo-
mies and ecologies are components of the same global system.) Predators
and prey keep one another in check; trees and underbrush, hosts and
parasites, heat and gases and fluids and soils interact incalculably to pro-
duce a system that persists very well over time in a kind of dynamic equi-
librium. These complex systems are resilient; that is, if they are per-
turbed, they return to balance. This is a feature that we earlier described
as “animate,” a feature of life: graceful degradation or even complete re-
covery in the face of disruption. Any individual in an economy may ex-
perience failure. Any organism in an ecological environment might be
uprooted or killed. Whole species may become extinct. Volcanoes, hurri-
canes, stock market crashes may result in devastation, but the system re-
pairs itself and returns to a stable state—without central control.

Some have argued that emergence is simply a word, like “random,”
to cover up our ignorance about the true relationships between causes
and effects. In this view, “emergent” really means that an effect was
not predicted, implying that the person describing the system didn’t
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understand it well enough to guess what was going to happen. On the
other hand, emergence can be viewed as a kind of process in which the
system returns robustly to an attractor that is an irresistible mathemati-
cal necessity of the dynamics that define it. These are not mutually exclu-
sive definitions of emergence; an omniscient person would expect the
emergent effect, but its relation to the lower-level events that produce it
is often too complex for most of us to comprehend. In his book Emer-
gence: From Chaos to Order, John Holland (1998) simply refuses to try to
define the term, leaving us to understand it in both its senses, whichever
is more appropriate in any instance. Whichever way you choose to con-
sider emergence, the fact remains that very complex systems are able to
maintain something like equilibrium, stability, or regularity without any
invisible hand or central control.

An important aspect of the Game of Life is the fact that the rules as
given by Conway cause the system to run for a long time without repeat-
ing. Other rules can be made up: for instance, a cell could stay alive only
if all or none of its neighbors were alive. There are many freeware Game
of Life programs that readers can acquire for experimenting with various
rules. The finding will be that most rule sets are uninteresting. For most
sets of rules the system simply stops after a few time steps, with all cells
either on or off, or the screen fills with utter chaos. Only a few known
sets of rules result in a system that continues without repetition. In order
to understand how this occurs, we will have to move the discussion up a
notch to discuss the superset of which the Game of Life is a member: cel-
lular automata.

Cellular Automata and the Edge of Chaos

The cellular automaton (CA) is a very simple virtual machine that re-
sults in complex, even lifelike, behavior. In the most common one-
dimensional, binary versions, a “cell” is a site on a string of ones and
zeroes (a bitstring): a cell can exist in either of two states, represented as
zero or one. The state of a cell at the next time step is determined by its
state at the current time and by the states of cells in its neighborhood. A
neighborhood usually comprises some number of cells lying on each side
of the cell in question. The simplest neighborhood includes a cell and its
immediately adjacent neighbors on either side. Thus a neighborhood
might look like 011, which is the cell in the middle with the state value 1
and its two adjacent neighbors, one in state 0 and one in state 1.
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A neighborhood is embedded in a bitstring of some length greater
than the neighborhood size. For instance, the neighborhood 011 occurs
around the fifth position of this bitstring of length = 20:

01001100011011110111

The behavior of a CA is defined in a set of rules based on the pattern of
states in the neighborhood. With a three-cell neighborhood, there are 23

= 8 possible neighborhood configurations. A CA rule set specifies the
state of the cell at the next iteration for each of these eight configura-
tions. For instance, a rule set might be given as shown in Table 1.1.

These rules are applied to every cell in the bitstring, the next state is
calculated, and then the new bitstring is printed in the next row, or more
likely, ones are indicated by lit pixels and zeroes by dark pixels. As the
system iterates, the patterns of cells as they are affected by their rules
over time are printed on the screen, each iteration producing the row of
pixels directly under the preceding iteration’s. Figure 1.2 shows some
examples.

In an important early contribution to the study that became artificial
life theory, Stephen Wolfram (1984/1994) noted that CA behaviors can
be assigned to four classes:

1. Evolution leads to a homogeneous state, with all cells in the same
state.
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Table 1.1 A set of rules for implementing a one-dimensional
cellular automaton.

Neighbor 1 Cell now Neighbor 2 Cell next

1 1 1 → 0

1 1 0 → 1

1 0 1 → 0

1 0 0 → 1

0 1 1 → 1

0 1 0 → 0

0 0 1 → 1

0 0 0 → 0



Figure 1.2 Some examples of one-dimensional binary cellular automata. Each row of pixels
is determined by the states of the pixels in the row above it, as operated on by
the particular set of rules.



2. Evolution leads to a set of simple stable or periodic structures.

3. Evolution leads to a chaotic pattern.

4. Evolution leads to complex localized structures, sometimes long-
lived.

The first type of CA can be characterized as a point attractor; the dy-
namics of the system simply stop with all cells in the one state or all in
the zero state. The second type results in a repeating, cyclic pattern,
called a periodic attractor, and the third type results in a complex nonre-
peating pattern with no apparent patterns to be seen: a strange attractor.
Keep in mind that, though these strange system behaviors appear ran-
dom, they are fully deterministic. The rules are clear and inviolable;
there are no perturbations from outside the system or surprises intro-
duced. The state of every cell can be predicted precisely from its neigh-
borhood’s state in the previous iteration, all the way back from the start-
ing configuration.

Cellular automata of the fourth type are the interesting ones to us.
Certain sets of rules result in patterns that run on and on, maybe forever,
creating patterns that are characteristic and identifiable but that never
repeat. These patterns look like something produced by nature, like the
tangle of branches in a winter wood, the king’s crowns of raindrops on a
puddle, the wiggling ripples of wind blowing over a pond’s surface, the
fuzz on a thistle. Looking at the computer screen as the sequence of CA
iterations unfolds, you feel a sense of recognizing nature at work.

John von Neumann (1951), who first proposed the idea of cellular au-
tomata a half-century ago, described an organism composed of cells,
each one of which was a “black box,” a unit with some kinds of unknown
processes inside it. The term “cellular automata” was actually coined by
Arthur Burks (1970). The state of each cell, for instance, a neuron, de-
pends on the states of the cells it is connected to. The rules of a CA de-
scribe patterns of causality, such as exist among parts of many kinds of
complex systems. The state of any element in the system—ecology,
brain, climate, economy, galaxy—depends causally on the states of other
elements, and not just on the states of individual elements, but on the
pattern or combination of states. Life and mind are woven on just this
kind of causal patterning, and it is a theme we will be dwelling on much
in these pages.

Stephen Wolfram had shown that Type 4 cellular automata (the
Game of Life is one) could function as universal computers. Langton
demonstrated how CA gliders or moving particles can be used to perform
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computations, while stationary, period-two blinkers can store informa-
tion. In one of the pioneering essays on artificial life, Christopher
Langton (1991) argued that the unending complexity of the Type 4 CA,
almost comprehensible but never predictable, may be directed and ma-
nipulated in such a way that it can perform any kind of computation
imaginable. In his resonating phrase, this is “computation on the edge of
chaos.”

Why the “edge of chaos?” Langton compared “solid” and “fluid”
states of matter, that is, static and dynamic molecular states, and sug-
gested that these were two “fundamental universality classes” of dynam-
ical behavior. A system that exhibits Type 1 or 2 behavior, that is, a static
or periodic system, is predictable and orderly. Langton compared these
kinds of systems to the behaviors of molecules in solids and noted that
such simple and predictable systems are unable to either store or process
information. Type 3 systems, similar to the gaseous states of matter, are
essentially random. Whatever information they may contain is over-
powered by the noise of the system. Langton argued that the interesting
Type 4 dynamical systems, which are capable of both storing and pro-
cessing information, resemble matter in between states, at the instant of
a phase transition. For instance, molecules in frozen water are locked into
their positions, unable to move, while molecules in a liquid move chaoti-
cally, unpredictably. Decreasing the temperature of a liquid can cause the
molecules to change from the unpredictable to the predictable state, but
right at the transition each molecule must make an either-or decision, to
try to lock into place or to try to break free; at the same moment, that
molecule’s neighbors are making the same decision, and they may decide
the same or different. The result is the formation of extended, complex
Jack-Frost fingers or islands of molecules in the solid state, propagating
through the liquid matrix, dissolving in some places even while new
structures form in others. The behavior of the system at the edge of chaos
is not predictable, and it’s not random: it is complex.

Langton observed the appearance, at the edge of chaos, of simple lin-
ear patterns in the CA that persist over time, sometimes shifting position
regularly so as to appear to move across the screen (see Figure 1.3); some
of Conway’s patterns are examples of these phenomena in two dimen-
sions. Langton compared these to solitary waves and described them as
“particle-like.” It is as if a quality were transmitted across the field
through changes at successive locations of a medium, though the emer-
gent entity is composed only of changes of the states of those locations.
These “particles” sometimes continue through time until they collide
with other particles, with the result being dependent on the nature of the
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particles, the angle of their impact, the state of the neighborhood in
which they collided, and other factors.

Langton’s early interest in cellular automata has evolved into his cur-
rent involvement in the development of Swarm, a computer program
that allows researchers to simulate the interactions of actors in a com-
plex system. Langton and his colleagues at Santa Fe Institute and the
Swarm Corporation use the word “swarm” to mean any loosely struc-
tured collection of agents that interact with one another. In common us-
age, the term agent refers to an object in a computer program that has an
identity and performs some actions, usually with some presumption that
the activities of the agent are somewhat autonomous or independent of
the activities of other agents. An ant colony is a kind of swarm where the
agents are ants, highway traffic can be conceptualized as a swarm whose
agents are cars and drivers, and so on; all these kinds of swarms can be
simulated using this CA-derived software.

Swarm researchers are especially interested in the interactions be-
tween individual- and group-level phenomena; for instance, a bird flock
has properties over and above the properties of the birds themselves,
though there is of course a direct relation between the two levels of phe-
nomena. The Swarm simulation program allows a user to program hier-
archical swarms; for instance, an economy might be made up of a swarm
of agents who are people, while each person might be made up of a
swarm that is their beliefs or even the neurons that provide the
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Figure 1.3 Particles in a cellular automaton. As the system steps through time, three patterns (in
this case) are perpetuated.



infrastructure for their beliefs—swarms within swarms. So far, uses of
Swarm have been focused on providing simulations of higher-level phe-
nomena that emerge from lower-level specification of rules, much as
gliders and other CA particles emerge from the low-level rule sets speci-
fied in a cellular automaton.

One-dimensional cellular automata are the most commonly studied
type. Where the two-dimensional Game of Life was pictured as a torus,
the one-dimensional CA is simply a ring, with the first and last cells of a
row joined. One row of binary cells iterates down the screen. In the
Game of Life cells are defined on a plane rather than a line, and the state
of each cell depends on the cells above and below as well as to the sides of
it. That means that patterns run not only down the screen, but up it, and
across it, and at weird unpredictable angles like a rat in a dairy.

Later we will be spending some time on the topic of dimensionality.
Just as a teaser, think about what a three-dimensional Game of Life
would look like. Gliders and other patterns can move not only in a rect-
angle on a plane, but above and below it; they can move up away from
the surface of the environment as well as across it. Now the CA can be a
bird flock, or a star cluster, or weather, extending in space.

It was easy to imagine a third dimension—now try a fourth. Mathe-
matically there is no reason not to devise a rule set for a four-dimensional
CA. What would it look like? Well, we can’t say. Imagine a five-, six-, or
seven-dimensional, try a one-hundred-dimensional vision of gliders,
blinkers, patterns marching through the hyperspace (a hyperspace is a
space of more than three dimensions). Perhaps we can eventually ap-
proach the emergent dynamics of the great stochastic systems. The cellu-
lar automaton, a simple machine brimming with interactions, gives us a
way of thinking of randomness and stochastic behavior in the systems
we will be discussing; everything follows the rules, but nothing is
predictable.

Artificial Life in Computer Programs

We have mentioned that life may be a quality we attribute to some
things, even more than it is a quality of the things themselves. This issue
is perhaps most salient in the consideration of computer programs that
emulate life processes. An artificial life program does not have to resem-
ble any “real” living thing; it might be considered living by some set of
criteria but seem, well, completely strange by earthly biostandards, by
what we know from nature as it is on earth. Things might be able to
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learn, to reproduce, to evolve in an adaptive way, without resembling
earthling life much at all. Conway’s Game of Life opened the door for in-
tense study of systems that exhibit lifelike behaviors.

And what are lifelike behaviors? It is sometimes said that a defining
feature of life is its resistance to entropy. Entropy is disorder, which al-
ways increases in a system. Well-organized patterns fall into decay, disin-
tegration, deterioration, as rust never sleeps. Yet life alone seems contin-
ually to renew itself. Wolfram’s Type 4 CAs seem to have the ability to
perpetually renew themselves, and it is for this reason that they have be-
come the symbol, if not the seed, for artificial life research. They seem re-
sistant to entropy.

It is possible to apply evolutionary algorithms to CA rules to produce
behaviors of particular types, “breeding” interesting CAs. For instance,
random mutations can be introduced in order to explore variations on
CA rules by flipping a bit in the rule table occasionally—not too often, or
you will destroy the behavior, but a low rate of mutation might allow the
evolution of interesting dynamics. In this case we are considering the
rule set as a kind of chromosome, a string of genes encoding the behavior
of the cellular automata. This is a good analogy to the distinction be-
tween genotype and phenotype in nature: you can’t see the genotype; it is
an abstract coding scheme or program for the organism. What you see in
nature is the phenotypic expression of the genotype. Just so in cellular
automata, a researcher might encode the rule set in a string of ones and
zeroes and mutate that string to evolve surprising behaviors in the visible
cells.

One early program that could be called artificial life was produced as a
sort of demonstration of the effects of genetic mutation on phenotypic
forms. In The Blind Watchmaker, Richard Dawkins (1987) created graphi-
cal creatures he called biomorphs (see Figure 1.4), whose form was en-
coded in a chromosome of nine genes, each of which could take on a
value from zero to nine. These genes encoded the rules for the develop-
ment of the biomorph, for instance, the angle or length of a branch, and
they could be “mutated” by one step. That is, a gene in state 5 can,
through mutation, be changed to a 4 or a 6. The user could generate a
population of biomorphs with random genes, then select one that
looked interesting. Dawkins reported that, though he expected his or-
ganisms to look like trees, he discovered that insect forms were also pos-
sible. Thus, he might select a biomorph that looked particularly insect-
like. Once selected, this biomorph reproduces to create a generation of
children, each containing a random mutation that causes it to differ
slightly from its parent. The user can then select an interesting-looking
member of the offspring population to produce another generation of
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mutations resembling it, and so forth. The result is incremental and un-
predictable change in a desired direction: evolution.

In nature of course it is the environment that decides what individu-
als will produce the next generation. Individual organisms with some
new genetic pattern, that is, a mutation, may or may not reproduce, de-
pending on the effect of the mutation in combination with the rest of
the genetic heritage in the environment. In Dawkins’ program the re-
searcher “plays God” with the population, deciding who lives and who
dies, guiding evolution from step to step according to whatever whim or
goal he or she has.

It is important to think about the size and structure of the search space
for a population of biomorphs. With nine genes, each of which can exist
in one of 10 states, we can see that there are 910, that is, 3,486,784,401,
possible genetic combinations. These can be thought of as points in a
nine-dimensional space. Though of course we can’t visualize such a
space, we can visualize objects with attributes selected from locations on
each of those nine dimensions. If mutation consists of making a change
on a single dimension, and if the changes are (as in Dawkins’ program)
simple moves to positions that are a single unit away on the dimension,
then we can say that the child is adjacent to the parent. That means that
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conceptually, mathematically, they are near one another in the search
space. This conceptualization turns out to be important when we want
to search for a good point or region in the space, for instance, in search-
ing for the solution to a problem. Whether the objects are continuous,
binary, or—as in the current case—discrete, the concept of distance per-
tains in searching the space; in particular, the concept applies when we
want to decide what size steps to take in our search. If we can’t look at ev-
ery point in a space, as in this case where there are billions of possibili-
ties, then we must come up with a plan for moving around. This plan
will usually have to specify how big steps should be in order to balance
the need to explore or look at new regions, versus the need to exploit
knowledge that has already been gained, by focusing on good areas.
Dawkins’ biomorphs search by taking small steps through the space of
possible mutations, so that the creatures evolve gradually, changing one
aspect at a time. In nature as well, adaptive changes introduced by muta-
tion are generally small and infrequent.

Other artificial life researchers have taken a slightly less godlike ap-
proach to the evolution of computer-generated organisms. If the re-
searcher provides information about the physics and other aspects of
the environment, then life-forms can adapt to environmental demands
and to one another. The artificial creatures developed by Karl Sims
(e.g., 1994) are a beautiful example of this. Sims creates artificial three-
dimensional worlds with physical properties such as gravity, friction,
collision protection, and elasticity of objects so that they bounce realisti-
cally off one another upon colliding. “Seed” creatures are introduced
into this world and allowed to evolve bodies and nervous systems. In or-
der to guide the evolution, the creatures are given a task to measure their
fitness; for instance, in one version the goal is to control a cube in the
center of the world. The creatures are built out of rectangular forms
whose size, shape, number, and arrangement is determined by evolu-
tion. Their “minds” are built out of artificial neurons composed of math-
ematical operations that are also selected by evolution.

The randomly initialized creatures in Sims’ programs have been
shown to evolve surprising strategies for controlling the cube, as well as
innovative solutions to problems of locomotion on land and in water,
with all forms of walking, hopping, crawling, rolling, and many kinds of
fin waving, tail wagging, and body wriggling in a fluid environment.
Some movies of these creatures are available on the web—they are well
worth looking at.

It is possible then, in computer programs, to evolve lifelike beings
with realistic solutions to the kinds of problems that real life-forms must
solve. All that is needed is some way to define and measure fitness, some
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method for generating new variations, and some rules for capitalizing on
adaptive improvements.

Christopher Langton (1988) has defined artificial life as “the study of
man-made systems that exhibit behaviors characteristic of natural living
systems.” In the same paper, he states, “Life is a property of form, not
matter . . .” If we accept Langton’s premise, then we would have to admit
that the similarity between an artificial-life program and life itself may be
somewhat stronger than the usual kind of analogy. We will avoid declar-
ing that computer programs live, but will note here and in other places
throughout this book that it is unsettlingly difficult sometimes to draw
the line between a phenomenon and a simulation of that phenomenon.

Intelligence: Good Minds in People and Machines

We have discussed the futility of arguing about whether an instance of
something fits into one category or another. The next topic is perhaps
the most famous example of this dilemma. Intelligence is a word usually
used to describe the mental abilities of humans, though it can be applied
to other organisms and even to inanimate things, especially computers
and computer programs. There is very little agreement among psycholo-
gists and little agreement among computer scientists about what this
word means—and almost no agreement between the two groups. Be-
cause the Holy Grail of computing is the elicitation of intelligence from
electronic machines, we should spend some time considering the mean-
ing of the word and the history of the concept in modern times. It isn’t
always such a warm and fuzzy story. Again we find that the Great Sto-
chastic Systems, evolution and mind, are tightly linked.

Intelligence in People: The Boring Criterion

In this Bell Curve world (Herrnstein and Murray, 1994) there is a great
amount of heated controversy and disagreement about the relationship
between intelligence and heredity. Much of the discussion focuses on the
issues of statistical differences among various populations on IQ test per-
formance. It is interesting in this light to note that the modern concept
of intelligence arose in association with heredity, and that attempts to
understand intelligence and heredity have historically been intertwined.
Following the world-shaking evolutionary pronouncements of Darwin,
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the eugenicists of the 19th and the first half of the 20th centuries had the
idea that humans should practice artificial selection. According to Dar-
winist theory, natural selection is the process by which species are
changed; adaptation is propelled by selection pressures applied by the
environment. Artificial selection then would be a process whereby human
authorities would decide which of their peers would be allowed to propa-
gate and which would not. As Victoria Woodhull, who in 1872 was the
first woman ever nominated for president of the United States, said, “If
superior people are to be desired, they must be bred; and if imbeciles,
criminals, paupers, and [the] otherwise unfit are undesirable citizens,
they must not be bred.” Thus was born the modern concept of intelli-
gence: a criterion for selecting who should be allowed to reproduce.

The concept of intelligence has always been intended to distinguish
“better” people from “worse.” Intelligence can be simply defined by a set
of measures that support the experts’ opinion of what comprises a
“good” mind. In 20th-century American and European society, the
definition has included some widely agreed-upon qualities such as mem-
ory, problem-solving ability, and verbal and mathematical abilities. The
fact is, though, that intelligent people, including intelligence experts,
have different abilities from one another; as far as they attempt to define
intelligence they end up describing their own favorite qualities—thus in-
evitable disagreement.

We noted above that there is very little consensus on a definition of
intelligence. In psychology, the most quoted (off the record) definition
of intelligence is that given in 1923 by E. G. Boring: intelligence is what-
ever it is that an intelligence test measures. The study of intelligence in
psychology has been dominated by a focus on testing, ways to measure
the trait, and has suffered from a lack of success at defining what it is.

Intelligence has always been considered as a trait of the individual;
for instance, an underlying assumption is that measurements of a per-
son’s intelligence will produce approximately the same results at differ-
ent times (an aspect of measurement known as “reliability”). This book is
about collective adaptation, and we will tend to view intelligence from
the viewpoint of the population. As noted in the first paragraphs of the
Preface, humans have proven themselves as a species. While differences
between individuals exist, the achievements of the outstanding individ-
uals are absorbed into their societies, to the benefit of all members. We
can’t all be Sir Isaac Newton, but every high school offers courses in
physics and calculus, and all of us benefit from Newton’s discoveries. The
achievements of outstanding individuals make us all more intelligent—
we may not all rise to the standard of an Einstein, but by absorbing their
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ideas we raise our level of functioning considerably. Michael Tomasello
(1999) calls this the ratchet effect: cumulative cultural evolution resulting
from innovation and imitation produces an accumulation of problem
solutions building on one another. Like a ratchet that prevents slippage
backwards, cultures maintain standards and strive to meet or exceed
them.

Intelligence in Machines: The Turing Criterion

So far we have been talking about intelligence as a psychological phe-
nomenon, as it appears in humans. Yet for the past half-century or more
there has been a parallel discussion in the computer-science community.
It became immediately apparent that electronic computers could dupli-
cate many of the processes associated with minds: they could process
symbols and statistical associations, could reason and remember and re-
act to stimuli, all things that minds do. If they could do things that our
biological brains do, then perhaps we could eventually build computers
that would be more powerful than brains and program them to solve
problems that brains can’t solve. There was even the suggestion that
computers could become more intelligent than people.

In a nutshell: that hasn’t happened. Modern computers have not
turned out to be very good at thinking, at solving real problems for us.
Perhaps part of the reason may be found in the way that computer scien-
tists have defined intelligence, which is very different from how psychol-
ogists have defined it, and how they have implemented their beliefs
about intelligence.

It is fair to say that any discussion of computer intelligence eventually
comes around to the Turing test (Turing, 1950). The Turing test sounds
simple enough. A subject is placed in a room with a computer keyboard
and monitor, while in another room there is a computer and a person.
The subject types questions into the keyboard and receives a reply from
the other side. A simplistic summary of the test is this: if the subject can’t
tell if the computer’s responses were generated by the human or the ma-
chine, then the computer is considered intelligent.

At first this sounds like a strange test of intelligence. It certainly is dif-
ferent from the IQ tests we give ourselves! The funny thing is, the puniest
computer could do perfectly well on a human intelligence test. A com-
puter has perfect recall, and a simple brute-force algorithm, for instance,
one that tests every possible combination, can find the solution to any
pattern-matching or arranging problem such as are found in IQ tests, if

32 Chapter One—Models and Concepts of Life and Intelligence



it’s given enough time. A computer can be programmed with a huge vo-
cabulary and some rules of grammar for the verbal scales, and of course
the math test would be a snap. By the standard that we set for ourselves,
computers are already very intelligent. So what we look for in computer
intelligence (e.g., the Turing test) is something else entirely. We can only
really be fooled into thinking a computer is a person if it makes mistakes,
or takes a long time to do a math problem, or claims to have gaps in its
knowledge. This is a confusing situation indeed.

For our discussion, the important thing is where the Turing test looks
for intelligence. Turing did not suggest looking “inside the head” of the
computer for a sign of intelligence; he suggested looking directly at the
social interface between the judge and the subject. A program that was
capable of forming a convincing bond was intelligent. It was not that the
interaction was a “sign of” intelligence—it was in fact intelligence. To-
day’s cognitivistic orthodoxy looks for intelligence inside the person, or
in the information processing of the machine. Turing knew to look at the
social nexus directly.

Evolutionary computation researcher David Fogel (1995) says that a
good definition of intelligence should apply to humans and machines
equally well, and believes that the concept should apply to evolution as
well as to behaviors perceptible on the human time scale. According to
him, intelligence is epitomized by the scientific method, in which pre-
dictions about the world are tested by comparison to measurements of
real-world phenomena and a generalized model is proposed, refined, and
tested again. Successful models might be adjusted, extended, or com-
bined with other models. The result is a new generation of ideas
that carry what David’s father Larry Fogel has called “a heredity of
reasonableness.” The process is iterated, with the model successively
approximating the environment.

The Fogels conclude that intelligence, whether in animate or inani-
mate contexts, can be defined as the “ability of a system to adapt its
behavior to meet its goals in a range of environments” (Fogel, 1995,
p. 24). Their research enterprise focuses on eliciting intelligence from
computing machines by programming processes that are analogous to
evolution, learning incrementally by trial and error, adapting their own
mutability in reaction to aspects of the environment as it is encountered.

David Fogel (1995) theorizes, following Wirt Atmar (1976), that
sociogenetic learning is an intelligent process in which the basic unit of
mutability is the idea, with culture being the reservoir of learned behav-
iors and beliefs. “Good” adaptive ideas are maintained by the society,
much as good genes increase in a population, while poor ideas are
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forgotten. In insect societies (as we will see) this only requires the evapo-
ration of pheromone trails; in humans it requires time for actual
forgetting.

For some researchers, a hallmark of the scientific method and intelli-
gence in general is its reliance on inductive logical methods. Whereas de-
ductive reasoning is concerned with beliefs that follow from one another
by necessity, induction is concerned with beliefs that are supported by
the accumulation of evidence. It comprises the class of reasoning tech-
niques that generalize from known facts to unknown ones, for instance,
through use of analogy or probabilistic estimates of future events based
on past ones. Interestingly, inductive reasoning, which people use every
day, is not logically valid. We apply our prior knowledge of the subject at
hand, assumptions about the uncertainty of the facts that have been dis-
covered, observations of systematic relationships among events, theoret-
ical assumptions, and so on, to understand the world—but this is not
valid logic, by a long shot.

The popular view of scientists as coldly rational, clear-thinking lo-
gicians is challenged by the observation that creativity, imagination,
serendipity, and induction are crucial aspects of the scientific method.
Valid experimental methods are practiced, as far as possible, to test hy-
potheses—but where do those hypotheses come from? If they followed
necessarily from previous findings, then experimentation would not be
necessary, but it is. A scientist resembles an artist more than a calculator.
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chapter
two

Symbols, Connections, and
Optimization by Trial and Error

This chapter introduces some of the techni-
cal concepts that will provide the founda-
tion for our synthesis of social and computer
scientific theorizing. Thinking people and
evolving species solve problems by trying so-
lutions, making adjustments in response to
feedback, and trying again. While we may
consider the application of logical rules to
be a “higher” or more sophisticated kind
of problem-solving approach, in fact the
“lower” methods work extremely well. In
this chapter we develop a vocabulary and set
of concepts for discussing cognitive pro-
cesses and the trial-and-error optimization of
hard problems. What are some approaches

that can be taken? What have computer sci-
entists implemented in artificially intelligent
programs, and how did it work? Human lan-
guage—now there’s a nice, big problem!
How in the world can people (even people
who aren’t outstandingly intelligent in other
ways) possibly navigate through a semantic
jungle of thousands of words and constantly
innovative grammatical structures? We dis-
cuss some of the major types of problems,
and major types of solutions, at a level that
should not be intimidating to the reader who
is encountering these concepts for the first
time. �
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Symbols in Trees and Networks

Though we are asserting that the source of human intelligence is to be
found in the connections between individuals, we would not argue that
no processing goes on within them. Clearly there is some ordering of in-
formation, some arranging of facts and opinions in such a way as to pro-
duce a feeling of certainty or knowing. We could argue (and later will de-
velop the argument) that the feeling of certainty itself is a social artifact,
based on the sense that the individual could, if asked, explain or act on
some facts in a socially acceptable—that is, consistent—way. But first we
will consider some of the ways that theorists have attempted to model
the processes that comprise human thinking and have attempted to sim-
ulate, and even to replicate, human thinking. As we develop the swarm
model of intelligence, we will need to represent cognitive processes in
some way. Where representations are complex—and how could they not
be?—it will be necessary to find optimal states of mind. We will find
these states through social processes.

The earliest approaches to artificial intelligence (AI) assumed that hu-
man intelligence is a matter of processing symbols. Symbol processing
means that a problem is embedded in a universe of symbols, which are
like algebraic variables; that is, a symbol is a discrete unit of knowledge (a
woefully underdefined term!) that can be manipulated according to
some rules of logic. Further, the same rules of logic were expected to ap-
ply to all subject-matter domains. For instance, we could set up a syllo-
gistic algorithm:

All A are C
If B is A
Then B is C

and plug words in where the letters go. The program then would be given
the definitions of some symbols (say, A= “man,” B= “Socrates,” and C=
“mortal”) as facts in its “knowledge base”; then if the first two statements
were sent to the “inference engine,” it could create the new fact, “Socra-
tes is mortal.” Of course it would only know that Socrates was a B if we
told it so, unless it figured it out from another thread of logic—and the
same would be true for that reasoning; that is, either a human gave the
program the facts or it figured them out from a previous chain of logi-
cally linked symbols. This can only go back to the start of the program,
and it necessarily eventually depends on some facts that have been given
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it. This is an aspect of a question that has been called the grounding prob-
lem. There is a problem indeed if facts depend on other facts that are in-
evitably defined themselves by the facts that depend on them. There is
necessarily an innate assumption, in the symbol-processing paradigm,
that all the relevant facts are known and that their interrelationships are
known.

There is another assumption, too, and one that was not recognized
for a long time but that meant that the crisp symbol-processing para-
digm could never really succeed. The assumption was revealed by Lotfi
Zadeh (see Yager et al., 1987), a Berkeley computer-science professor,
who forged a philosophy that revolutionized the way many computer
scientists think about thinking. Zadeh pointed out that it is usually the
case that “Some A are sort of C.” Truth, that is, is fuzzy—it has degree.
Fuzzy logic is built on the presupposition that the truth of propositions
can be rated on a scale from zero to one, so that a statement that is en-
tirely false has a truth value of 0.0, a statement that is perfectly true has a
value of 1.0, and most statements go somewhere in the middle. Zadeh
methodically worked out the rules for reasoning with approximate facts.
Fuzzy logic operates in parallel, unlike the earlier symbol-processing
models, which evaluated facts in a linked series, one after the other;
fuzzy facts are evaluated all at once. Some people think that “fuzzy logic”
means something like fuzzy thinking, a kind of sloppy way of vaguely
guessing at things instead of really figuring them out, but in fact the re-
sults of fuzzy operations are precise. It is also sometimes alleged that
fuzziness is another word for probability, but it is an entirely different
form of uncertainty. For instance, take a second to draw a circle on a
sheet of paper. Now look at it. Is it really a circle? If you measured, would
you find that every point on the edge was exactly the same distance from
the center? No—even if you used a compass you would find that varia-
tions in the thickness of the line result in variations in the radius. So your
circle is not really a circle, it is sort of a circle (see Figure 2.1). If you did re-
ally well, it may be 99 percent a circle, and if you drew a square or a figure
eight or something uncirclelike, it might be closer to 1 percent a circle—
maybe it has roundish sides or encloses an area. It is not meaningful
to say that it is “probably” a circle (unless you mean that you probably
meant to draw a circle, which is an entirely different question). Fuzzy
logic has turned out to be a very powerful way to control complicated
processes in machines and to solve hard problems of many kinds.

Traditional (symbol-processing) AI commonly made inferences by ar-
ranging symbols in the form of a tree. A question is considered, and de-
pending on the answer to it another question is asked. For instance, you
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might start by asking, “Is the door locked?” If the answer is yes, then the
next thing is to find the key; if the answer is no, then the next step is to
turn the doorknob and push the door open. Each step leads to another
decision, and the answer to that leads to yet another, and so on. A graph
of the domain of such a decision-making process looks like a tree, with
ever more numerous branches as you progress through the logic. Fuzzy
logic, on the other hand, assumes that, rather than making crisp deci-
sions at each point, a reasonable person might “sort of” choose one alter-
native over another, but without absolutely rejecting another one, or a
statement may be partly true and partly false at the same time. Instead of
a tree, a fuzzy logic diagram might look more like ripples flowing over a
surface or a storm blowing through the countryside, stronger in some
areas and weaker in others. Rules are implemented in parallel, all at
once, and the conclusion is obtained by combining the outputs of all
the if-then rules and defuzzifying the combination to produce a crisp
output.

One limitation of tree representations is the requirement that there
be no feedback. A might imply or cause B, but in a tree we must be sure
that B does not imply or cause A in return, either directly or by acting
through intermediate links. In reality though premises and conclusions
imply one another all the time, and causes affect other causes that affect
them back. We saw that Bateson considered this kind of reciprocal causa-
tion as a defining or necessary quality of mind. Not only are feedback
loops common in nature, but some theorists think that feedback is really
the basis for many natural processes.

We should point out here, because we will be dealing with them
extensively, the interchangeability of matrices and graphs. Suppose we
have a table of numbers in rows and columns. We can say that the
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numbers indicate the strength of the effect of the row variable upon the
column variable. Variables—which we might think of as symbols, or
things, or events, or ideas, or people, for that matter—can be assumed to
have positive or negative effects on one another.

When the system is considered as a tree, it really only makes sense to
allow positive connections; zero and negative connection strengths
would be logically indiscriminable. That is because each node represents
a discrete decision to follow one route or another. An option unchosen is
in the same state whether there is a vacuous link or a negative one.

In contrast to a tree, in a network matrix it is not hard to depict things
in a feedback relationship, having effects upon one another. Further, ef-
fects in a network can be positive or negative; one thing can prevent an-
other as easily as it can cause it. When two things have a positive causal
effect on one another, we would say they have a positive feedback or
autocatalytic effect. If they decrease one another, their relationship is
one of negative feedback. In many of the examples throughout this
book, autocatalysis is the basis for the dynamics that make a system
interesting.

Interrelated variables in a matrix can be graphed as well (see Figure
2.2). Each variable is a node in the graph, and we can draw arrows be-
tween pairs of them where a table has nonzero entries, indicating causal
(one causes the other) or implicative (one implies the other) effects be-
tween them. Now it should be clear that a graph and a table can contain
exactly the same information. The connections among the nodes are
sometimes called constraints, where the state of the node (for instance,
off or on) is intended to satisfy the constraints upon it. Of course there
are other terminologies, but for this discussion we will call them nodes
and constraints, or sometimes just “connections.”

Tree representations use only half of the matrix, either the half above
or below the diagonal, depending on how you decide to implement it. In
a tree structure, no node later in the chain of logic can affect any node
earlier, so you don’t need both halves of the matrix. A graph or matrix
where nodes can affect one another would be called a recurrent network.
Trees can be graphed as networks, but networks that contain feedback
cannot be diagrammed as trees.

One common kind of network is depicted with symmetrical connec-
tions between nodes. Instead of arrows between pairs of nodes pointing
from one to the other, the graph needs only lines; the implication is that
things with positive connections “go together,” and things with negative
links do not. Figure 2.3 shows an example of such a network. In a matrix,
the upper and lower diagonal halves of this kind of network are mirror
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images of one another. This kind of graph is very common as a cognitive
model in contemporary psychological theorizing, and it can be useful for
problem solving in computer programs, too.

We will make the simplifying assumption here that nodes are binary,
they are either on or off, yes or no, one or zero. In a constraint-satisfac-
tion paradigm, the goal is to find a pattern of node states that best satis-
fies the constraints. Each node is connected to some other nodes by posi-
tive or negative links. The effect of an active node through a positive link
is positive and through a negative link is negative, and the effect of an
inactive node through a positive link is zero or negative, depending on
how it is specified, and through a negative link is zero or positive. In
other words, the effect is the product of the node state times the con-
straint value. A node with mostly positive inputs fits its constraints best
when it is in the active state, and one with zero or negative inputs should
be in the inactive state.
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Paul Smolensky (1986) has noted that the optimal state of such a net-
work, that is, the state where the most constraints are satisfied, can be
found by maximizing the sum of the products of pairs of node states (0
and 1, or −1 and +1) times the value of the strength of the connection
between them:

H a w ai ij j
ji

= ∑∑

where ai is the activation of node i, wij is the strength of the connection
between nodes i and j, and aj is the activation of node j. The products of
pairs of nodes times the weights of the connections between them
should be as big as possible. The “harmony function” (Smolensky’s cog-
nitive theory was called “harmony theory”) can be calculated over the
entire network, or the optimality of each node can be calculated sepa-
rately and the sum taken.

It has long been noted that people strive to maintain cognitive consis-
tency. We want our thoughts to fit together with one another as well as
with facts in and about the world. Leon Festinger (1957) theorized that
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connections between pairs of nodes.



people have a drive to reduce cognitive dissonance, defined as the clash
among cognitive elements, whether they are beliefs, behaviors, or atti-
tudes. Later we will stress that there is an important interpersonal com-
ponent to this drive, but for the moment it is only necessary to point out
that—for whatever reasons—people do strive to maintain consistency.
Harmony maximization is a good way to represent this principle in a
computer program, where inconsistencies between elements are de-
picted as negative connections.

We know that we want to maximize the harmony function over the
network—but how do you do that? Any time we change the state of a
node, we are about as likely to make it inconsistent with some other
nodes as we are to improve its fit with some; if the network is not triv-
ial, there are probably a number of conflicting constraints in it. John
Hopfield had shown, in 1982, a method that usually arrived at the best
state (a network’s state is the pattern of its node activations). Hopfield ac-
tually had two methods, one for binary nodes and another for networks
whose nodes can take on continuous values; here we will stay with the
binary type (Hopfield, 1982, 1984). Hopfield’s algorithm starts by ran-
domly initializing nodes as zeroes or ones. Then a node is selected at ran-
dom, and its inputs are summed; that is, the states of nodes connected to
the selected one are multiplied by the strength of their connections,
which can be positive or negative. If the sum of the inputs is greater than
a threshold, then the node is assigned the active state; for instance, it is
given a state value of one. If the sum is below the threshold, then the
node is set to zero (or minus one), the inactive state. Then another node
is selected at random and the process is repeated until all nodes are in the
state they should be in.

Most parallel constraint satisfaction models use some version of
Hopfield optimization, but we will be arguing that it is not a good model
of the way people reduce conflicts among cognitive elements. The fact is,
people talk with one another about their thoughts, and they learn from
one another how to arrange their beliefs, attitudes, and behaviors to
maximize their consistency, to reduce cognitive dissonance. We don’t
think that people organize their thoughts by considering them one at a
time in the isolated privacy of their own skulls, and we don’t think this is
the best way for computers to do it, either.

The models we have discussed, whether crisp symbol processing,
fuzzy logic, or constraint-satisfaction networks, all assume that some-
body has given them knowledge. Given a set of connections—directed or
symmetrical—between nodes in a graph, we have been trying to find
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node patterns that best fit. But where do the connections come from?
Finding the pattern of connections among elements is called learning.

When two things change together, for instance, when they are both
loud or both intense or both present whenever the other is present, or
when they are only loud or intense or present when the other thing is in
the opposite state, then we say the two things are correlated. Things may
be positively correlated, like heat and sunshine or money and power, or
pairs of things can be negatively correlated, for instance, wealth and star-
vation or aspirin and headaches. Notice that positive and negative corre-
lations are the same, they are still correlations; you can always define a
thing negatively—we could measure “poverty” instead of “wealth”—to
change the sign of the correlation. Correlation is a form of statistical as-
sociation between two variables that gives some evidence for predicting
one from the other. Learning can be described in terms of finding correla-
tions among things. The strengths of the connections in the graphs we
have been looking at are a kind of correlation coefficient, showing
whether the two nodes change together, how strong the relationship is,
and whether the changes are positive or negative.

Every college student learns—or should learn—that “correlation does
not imply causation.” The fact that two things rise and fall together does
not mean that one causes the other. A correlation matrix, just like the
symmetrical table in a parallel constraint satisfaction network, is made
up of mirror-image halves, as A’s correlation with B is equal to B’s cor-
relation with A. In the network, a symmetrical connection weight be-
tween binary nodes indicates the likelihood of one being active when
the other is.

The meaning of a connection weight is a little more complicated, or
should we say interesting, when the connections are asymmetrical. In
this case the weight indicates the likelihood or strength of activation of
the node at the head of the arrow as a function of the state of the node at
the arrow’s origin. So if an arrow points from A to B, with a positive con-
nection between them, that is saying that A’s activation makes it more
likely that B will be active or increases B’s activation level: A causes B.

Let’s consider an example that is simple but should make the situa-
tion clearer. We will have some binary causes, called x1, x2, and x3, and a
binary effect, y (see Figure 2.4). In this simple causal network, we will say
that y is in the zero state when the sum of its inputs is less than or equal
to 0.5 and is in the active state when the sum is above that. We see that
the connection from x1 to y has a weight of 1.0; thus, if x1 is active, then
the input to y is 1 × 1.0 = 1.0, and y will be activated. The connection
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from x2 is only 0.5, though, so when it is active it sends an input of 1 ×
0.5= 0.5 to y—not enough to activate it, all by itself. The same holds for
x3: it is not enough by itself to cause y, that is, to put y into its active state.

Note, though, that if x2 and x3 are both on, their summed effect is
(1 × 0.5) + (1 × 0.5) = 1.0, and y will be turned on. Now the system of
weighted connections, it is seen, can numerically emulate the rules of
logic. The network shown in the top of Figure 2.4 can be stated in
Boolean terms: IF (x1) OR (x2 AND x3) THEN y. Not only are a matrix and
a graph interchangeable, but logical propositions are interchangeable
with these as well.

More complex logical interactions might require the addition of hid-
den nodes to the graph. For instance, if we had more inputs, and the rule
was IF (x1 AND x2) OR (x3 AND x4) THEN y, then we might need to link
the first pair to a hidden node that sums its inputs, do the same for the
second two, and create a logical OR relation between the hidden nodes
and y, where each hidden node would have a 1.0 connection (or any
strength above the threshold) to the output node y. To implement a NOT
statement, we could use negative weights. All combinations are possible
through judicious use of connection weights and hidden layers of nodes.
A network where the information passes through from one or more in-
puts to one or more outputs is called a feedforward network.

In the previous example we used a crisp threshold for deciding if the
output node y should be on or off: this a less-than-satisfying situation. If
some of the causes of an effect, or premises of a conclusion, are present,
then that should count for something, even if the activation does not
reach the threshold. Say the inputs to y had added up to exactly 0.5,
where we needed a “greater than 0.5” to flip its state. In reality things do
not usually wait until the exactly perfect conditions are met and then go
into a discretely opposite state. More commonly, the effect just becomes
more uncertain up to a point near the decision boundary, then more cer-
tain again as the causes sum more clearly past the cutoff. If y were the
kind of thing that was really binary, that is, it exists either in one state or
the other and not in between, then we might interpret the sum of the in-
puts to indicate the probability of it being true or false. The more com-
mon instance, though, is where y is not binary but can exist to some de-
gree, in which case the inputs to y indicate “how true” y is. If I wanted to
know if “Joe is a big guy,” the inputs to y might be Joe’s height and per-
haps Joe’s weight or girth. If Joe is six feet tall and weighs, say, 200
pounds, then he might be a big guy, but if he is six foot, six inches tall
and weighs 300 pounds, he is even more of a big guy. So the truth of the
statement has degree, and we are back to fuzzy logic. In fact, many
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networks—and almost all feedforward networks—do have continuous-
valued nodes, and the states of those nodes, usually in the range between
zero and one, can be interpreted to indicate either probability or fuzzy
truth values.

We should also mention that there are formulas for squashing the in-
puts into the tolerable range, usually zero to one, to make this business
more manageable. The most common formula is referred to as the sig-
moid function, since its output is S-shaped. Its equation is

s x
x

( )
exp( )

=
+ −

1
1

and its graph is seen in Figure 2.5. When x = 0, s(x) = 0.5. Negative in-
puts result in a value that approaches zero as the x becomes more nega-
tive, and positive values approach a limit of one. The sigmoid function is
very useful and will come up again later in this book.

Networks like the ones we have been describing are often called neural
networks because they roughly resemble the way cells in the brain are
hooked up, and because they are often able to categorize things and
make decisions something like a brain does.

We still have not answered the question of learning: finding values
for the connection weights that makes for the accurate estimation of out-
puts from inputs. This is another optimization problem. Optimization
means that we are looking for input values that minimize or maximize
the result of some function—we’ll be going into the gory details of opti-
mization later in this chapter. Normally in training a feedforward net-
work we want to minimize error at the output; that is, we want the
sums of products to make the best estimate of what y should be. Again,
there is a traditional way to find optimal patterns of weights, and there is
our way.

The traditional way is to use some version of gradient descent, a kind
of method for adjusting numbers in a direction that seems to result in
improvement. Backpropagation of error is the most standard way to adjust
neural net weights. “Backprop,” as it is called, finds optimal combina-
tions of weights by adjusting its search according to a momentum term,
so that shorter steps are taken as the best values are approached.

Neural networks were introduced to the psychological community by
the PDP (Parallel Distributed Processing) Group headquartered at the
University of California at San Diego, to suggest a theory of cognition
that is called connectionism (Rumelhart, McClelland, and the PDP Group,
1986; McClelland, Rumelhart, and the PDP Group, 1986). Connectionist
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theory differs from the symbol-processing view in that it assumes that
cognitive elements have a “microstructure”: they are composed of pat-
terns distributed over a network of connection weights. Both gradient
descent and Hopfield optimization are part of the connectionist perspec-
tive. Connectionist approaches, though, just like their traditional AI pre-
decessors, tend to miss something extremely crucial about human cogni-
tion: we don’t do it alone. Learning often, if not usually, occurs in the
form of adaptation to information received from other people, including
both information about facts and how to make sense of them. Optimiza-
tion of node activation patterns as well as patterns of connection weights
can be an extremely complicated process, with lots of conflicting con-
straints, redundancy, nonlinearity, and noise in the data; that is, things
may not always be what they appear to be. Some optimization methods
are better able than others to deal with such messy problems; we assert
that social forms of optimization are at least as powerful and are more re-
alistic for cognitive simulations than the inside-the-head methods that
have been proposed.

A good thing about network models of cognition is that the kinds of
judgments they make are similar to those that humans make. For in-
stance, symbol-processing methods require linear separability of elements
for categorization. This mouthful means that if you graphed the attri-
butes of some category members on a chart, you should be able to draw a
straight line or surface that separates two categories of things from one
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another. A simple rule or combination of rules should distinguish them.
In fact, though, humans do not categorize by linear separation; neither
do neural networks. Categories are not sets. Another advantage is that,
since networks work by a kind of statistical analysis of data, they can be
more robust in the face of noise and measurement error. They don’t as-
sume that symbols or the rules that connect them are hard-and-fast dis-
crete entities, with information flowing through one logical branch or
another.

Neural networks and the closely related fuzzy logic models have been
called “universal function approximators” because they can reproduce
the outputs of any arbitrarily complex mathematical function. Their
power as psychological models has grown as well because of their ability
to simulate human processes such as perception, categorization, learn-
ing, memory, and attention, including the errors that humans make.

These errors seem to be at the heart of the Turing test of machine
intelligence. Imagine that a judge in a Turing test situation asked the sub-
ject on the other side of the wall to answer a mathematical question, say,
what is 43,657 times 87,698? If the perfectly correct answer came back
after several milliseconds, there would be no question about whether a
human or mechanical mind had answered. Even a highly trained mathe-
matician or a savant would have to take a few seconds at least to answer
such a question. The “most human” response would be an estimate, and
it would take some time. People make errors in crisp calculations, but at
the same time exceed any known computational models in “simple”
tasks such as recognizing faces.

So far we have considered a few issues regarding the adaptiveness of
living things, and in particular adaptation as it applies in the mental
world. By perusing a few kinds of structures that have been used to simu-
late human thinking processes,we have inched our way closer to the goal
of writing computer programs that embed such structures in social con-
texts. As we said, these models will tend to be complicated—in fact their
complexity is part of what makes them work—and it will be difficult to
find the right combinations of weights and activations. The next sec-
tions examine some methods for finding solutions to complex problems.

Problem Solving and Optimization

Both evolution and mind are concerned with a certain kind of business,
and that is the business of finding patterns that satisfy a complex set of
constraints. In one case the pattern is a set of features that best fit a
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dynamic ecological niche, and in the other case it is a pattern of beliefs,
attitudes, and behaviors that minimize conflict with personal, social,
and physical constraints. Some propensities to acquire particular mental
qualities seem to be inherited, though the topic of individual differences
in the various propensities (traits such as intelligence, introversion, cre-
ativity, etc.) is still the subject of lively controversy. While a tendency to
learn, or to learn in a particular way, may be inherited, learning can only
take place within a lifetime; there is no genetic transfer of learned knowl-
edge from one generation to another. As we have seen, the two great
stochastic systems have different ways of going about their business,
though both rely heavily, if not exclusively, on some version of trial and
error. In this section we discuss some aspects of problem solving where
the goal is to fit a number of constraints as well as possible.

It may seem that we use the word “problem” in an unusual way. In-
deed, the word has specialized meanings to specific groups who use it.
We use it to describe situations—not necessarily mathematical ones
(they might be psychological, ecological, economical, or states of any
kind of phenomena)—where some facts exist and there is a need to find
other facts that are consistent with them. A changing environment
might be a problem to an evolving species. An ethical dilemma is a prob-
lem to a moral person. Making money is a problem for most people. An
equation with some unknowns presents a problem to a mathematician.
In some cases, the facts that are sought might be higher-level facts about
how to arrange or connect the facts we already have.

Optimization is another term that has different connotations to differ-
ent people. Generally this term refers to a process of adjusting a system to
get the best possible outcome. Sometimes a “good” outcome is good
enough, and the search for the very best outcome is hopeless or unneces-
sary. As we have defined a problem as a situation where some facts are
sought, we will define optimization as a process of searching for the miss-
ing facts by adjusting the system. In the swarm intelligence view of the
present volume, we argue that social interactions among individuals en-
able the optimization of complex patterns of attitudes, behaviors, and
cognitions.

A Super-Simple Optimization Problem

A problem has some characteristics that allow the goodness of a solution
to be estimated. This measurement often starts contrarily with an esti-
mate of the error of a solution. For example, a simple arithmetic problem
might have some unknowns in it, as 4 + x = 10, where the problem is to
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find a value (a pattern consisting of only one element in this trivial ex-
ample) for x that results in the best performance or fitness. The error of a
proposed solution in this case is the difference between the actual and
desired results; where we want 4 + x to equal 10, it might be that we
take a guess at what x should be and find that 4+ x actually equals 20, for
instance, if we tried x = 16. So we could say that the error, when x = 16,
is 10.

Error is a factor that decreases when goodness increases. An optimiza-
tion problem may be given in terms of minimizing error or maximizing
goodness, with the same result. Sometimes, though, it is preferable to
speak in terms of the goodness or fitness of a problem solution—note the
tie-in to evolution. Fitness is the measure of the goodness of a genetic or
phenotypic pattern. Converting error to goodness is not always straight-
forward; there are a couple of standard tricks, but neither is universally
ideal. One estimate of goodness is the reciprocal of error (e.g., 1/e). This
particular measure of goodness approaches infinity as error approaches
zero and is undefined if the denominator equals zero, but that’s not nec-
essarily a problem, as we know that if the denominator is zero we have
actually solved the problem. Besides, in floating-point precision we will
probably never get so close to an absolutely perfect answer that the com-
puter will think it’s a zero and crash. Another obvious way to measure
the goodness of a potential solution is to take the negative of the error
(multiply e by −1); then the highest values are the best.

We can use the super-simple arithmetic problem given above to dem-
onstrate some basic trial-and-error optimization concepts. Our general
approach is to try some solutions, that is, values for x, and choose the
one that fits best. As we try answers, we will see that the search process it-
self provides us with some clues about what to try next. First, if 4+ x does
not equal 10, then can we look at how far it is from 10 and use that
knowledge—the error—to guide us in looking for a better number. If the
error is very big, then maybe we should take a big jump to try the next
potential solution; if the error is very small, then we are probably close to
an answer and should take little steps.

There is another kind of useful information provided by the search
process as well. If we tried a number selected at random, say, 20, for x, we
would see that the answer was not very good (error is (10− 24)= 14).
If we tried another number, we could find out if performance improved
or got worse. Trying 12, we see that 4 + 12 is still wrong, but the result is
nearer to 10 than 4+ 20 was, with error= 6. If we went past x= 6, say, we
tried x = 1, we would discover that, though error has improved to 5, the
sign of the difference has flipped, and we have to change direction and

50 Chapter Two—Symbols, Connections, and Optimization by Trial and Error



go up again. Thus various kinds of facts are available to help solve a prob-
lem by trial and error: the goodness or error of a potential solution gives
us a clue about how far we might be from the optimum (which may be a
minimum or a maximum). Comparing the fitness of two or more points
and looking at the sign of their difference gives us gradient information
about the likely direction toward an optimum so we can improve our
guess about which way to go. A gradient is a kind of multidimensional
slope. A computer program that can detect a gradient might be able to
move in the direction that leads toward the peak. This knowledge can be
helpful if the gradient indicates the slope of a peak that is good enough;
sometimes, though, it is only the slope of a low-lying hill. Thus an algo-
rithm that relies only on gradient information can get stuck on a medio-
cre solution.

Three Spaces of Optimization

Optimization can be thought to occur in three interrelated number
spaces. The parameter space contains the legal values of all the elements—
called parameters—that can be entered into the function to be tested. In
the exceedingly simple arithmetic problem above, x is the only parame-
ter; thus the parameter space is one-dimensional and can be represented
as a number line extending from negative to positive infinity: the legal
values of x. Most interesting optimization problems have higher parame-
ter dimensionality, and the challenge might be to juggle the values of a
lot of numbers. Sometimes there are infeasible regions in the parameter
space, patterns of input values that are paradoxical, inconsistent, or
meaningless.

A function is a set of operations on the parameters, and the function
space contains the results of those operations. The usual one-dimen-
sional function space is a special case, as multidimensional outputs can
be considered, for instance, in cases of multiobjective optimization; this
might be thought of as the evaluation of a number of functions at once,
for example, if you were to rate a new car simultaneously in terms of its
price, its appearance, its power, and its safety. Each of these measures is
the result of the combination of some parameters; for instance, the as-
sessment of appearance might combine color, aerodynamic styling, the
amount of chrome, and so on.

The fitness space is one-dimensional; it contains the degrees of success
with which patterns of parameters optimize the values in the function
space, measured as goodness or error. To continue the analogy, the
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fitness is the value that determines whether you will decide to buy the
car. Having estimated price, appearance, power, and so on, you will need
to combine these various functions into one decision-supporting quan-
tity; if the quantity is big, you are more likely to buy the car. Each point
in the parameter space maps to a point in the function space, which in
turn maps to a point in the fitness space. In many cases it is possible to
map directly from the parameter space to the fitness space, that is, to di-
rectly calculate the degree of fitness associated with each pattern of pa-
rameters. When the goal is to maximize a single function result, the
fitness space and the function space might be the same; in function
minimization they may be the inverse of one another. In many common
cases the fitness and function spaces are treated as if they were the same,
though it is often helpful to keep the distinction in mind. The point of
optimization is to find the parameters that maximize fitness.

Of course, for a simple arithmetic problem such as 4 + x = 10 we
don’t have to optimize—someone a long time ago did the work for us,
and we only have to memorize their answers. But other problems, espe-
cially those that human minds and evolving species have to solve,
definitely require some work, even if they are not obviously numeric. It
may seem unfamiliar or odd to think of people engaging in day-to-day
optimization, until the link is made between mathematics and the struc-
tures of real human situations. While we are talking about the rather aca-
demic topic of optimizing mathematical functions, what is being said
also applies to the dynamics of evolving species and thinking minds.

Fitness Landscapes

It is common to talk about an optimization problem in terms of a fitness
landscape. In the simple arithmetic example above, as we adjusted our
parameter up and down, the fitness of the solution changed by degree.
As we move nearer to and farther from the optimum x= 6, the goodness
of the solution rises and falls. Conceptually, this equation with one un-
known is depicted as a fitness landscape plotted in two dimensions, with
one dimension for the parameter being adjusted and the second dimen-
sion plotting fitness (see Figure 2.6). When goodness is the negative of er-
ror, the fitness landscape is linear, but when goodness= 1/abs(10− (4+
x)), it stretches nonlinearly to infinity at the peak. The goal is to find the
highest point on a hill plotted on the y-axis, with the peak indicating the
point in the parameter space where the value of x results in maximum
fitness. We find, as is typical in most nonrandom situations, that solu-
tions in the region of a global optimum are pretty good, relative to points
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in other regions of the landscape. Where the function is not random—
and therefore impossible to optimize—a good optimization algorithm
should be able to capitalize on regularities of the fitness landscape.

Multimodal functions have more than one optimum. A simple one-
dimensional example is the equation x2= 100. The fitness landscape has
a peak at x = 10 and another at x = −10. Note that there is a kind of
bridge or “saddle” between the two optima, where fitness drops until it
gets to x = 0, then whichever way we go it increases again. The fitness of
x = 0 is not nearly so bad as, say, the fitness of x = 10,000. No matter
where you started a trial-and-error search, you would end up finding one
of the optima if you simply followed the gradient.

John Holland has used a term that well describes the strategic goal in
finding a solution to a hard problem in a short time; the issue, he said, is
“the optimal allocation of trials.” We can’t look everywhere for the an-
swer to a problem; we need to limit our search somehow. An ideal algo-
rithm finds the optimum relatively efficiently.

Two basic approaches can be taken in searching for optima on a
fitness landscape. Exploration is a term that describes the broad search for
a relatively good region on a landscape. If a problem has more than one
peak, and some are better than others, the lesser peaks are known as local
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optima. Normally we prefer to find the global optimum, or at least the
highest peak we can find in some reasonable amount of time. Explora-
tion then is a strategic approach that samples widely around the land-
scape, so we don’t miss an Everest while searching on a hillside. The
more focused way to search is known as exploitation. Having found a
good region on the landscape, we wish to ascend to the very best point in
it, to the tip-top of the peak. Generally, exploitation requires smaller
steps across the landscape, in fact they should often decrease as the top
of a peak is neared. The most common exploitational method is hill
climbing, in which search proceeds from a position that is updated when
a better position is found. Then the search can continue around that new
point, and so on. There are very many variations on the hill-climbing
scheme. All are guaranteed to find hilltops, but none can guarantee that
the hill is a high one. The trade-off between exploration and exploitation
is central to the topic of finding a good algorithm for optimization: the
optimal allocation of trials.

The examples given above are one-dimensional, as the independent
variable can be represented on a single number line, using the y-axis to
plot fitness. A more complex landscape exists when two parameters
affect the fitness of the system; this is usually plotted using a three-
dimensional coordinate system, with the z-axis representing fitness; that
is, the parameters or independent variables are plotted on a plane with
the fitness function depicted as a surface of hills and valleys above the
plane. Systems of more than two dimensions present a perceptual dif-
ficulty to us. Though they are not problematic mathematically, there is
no way to graph them using the Cartesian method. We can only imagine
them, and we cannot do that very well.

The concepts that apply to one-dimensional problems also hold in
the multidimensional case, though things can quickly get much more
complicated. In the superficial case where the parameters are indepen-
dent of one another, for example, where the goal is to minimize the
sphere function f xi xi( ) ,=∑ 2 then the problem is really just multiple
(and simultaneous) instances of a one-dimensional problem. The solu-
tion is found by moving the values of all the xi’s toward zero, and reduc-
ing any of them will move the solution equally well toward the global
optimum. In this kind of case the fitness landscape looks like a volcano
sloping gradually upward from all directions toward a single global opti-
mum (see Figure 2.7). On the other hand, where independent variables
interact with one another, for example,when searching for a set of neural
network weights, it is very often the case that what seems a good position
on one dimension or subset of dimensions deteriorates the optimality of
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values on other dimensions. Decreasing one of the xi’s might improve
performance if and only if you simultaneously increase another one and
deteriorates goodness otherwise. In this more common case the fitness
landscape looks like a real landscape, with hills and valleys and some-
times cliffs.

High-Dimensional Cognitive Space and Word Meanings

It may seem odd that we have wandered away from the interesting sub-
ject of minds and cultures into a discussion of mathematics, of all things.
Before digging any deeper into this topic, let us mention one example of
why we think that optimization of complex functions has anything to
do with minds.

One of the most exciting findings in cognitive science in the past de-
cade has to do with the discovery of computer algorithms that can begin
to find the meanings of words. Two groups of scientists have indepen-
dently developed approaches for statistically extracting the meaning of a
word from its context.

The story goes back to the 1950s, when Osgood, Suci, and Tannen-
baum (1957) investigated the placement of words and concepts in a
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Figure 2.7 The sphere function in two dimensions.



multidimensional space. Their approach, called the semantic differential,
presented people with a word on the top of a page and asked them to rate
that word on a lot of scales. For instance, the word might be “radio,” and
people were asked to rate it on scales such as cold to hot, cruel to kind,
and so on (see Figure 2.8). (The first surprise was that people generally
did not have much trouble doing this.)

The well-known halo effect occurs when a person or object with some
positive characteristics is assumed to have other positive characteristics
as well. In other words, ratings along different dimensions tend to corre-
late with one another. These multiple correlations can be identified us-
ing principal components or factor analytical techniques. With these
statistical methods, Osgood and his colleagues were able to show that
three major dimensions most affected the words and concepts they
looked at in their studies. By far the most important dimension was one
they labeled “evaluation.” People rate things in terms of good versus bad,
liked versus disliked, and their opinions about other aspects of the thing
tend to go along with these evaluative ratings. Two other orthogonal fac-
tors, which they labeled “potency” and “activity,” were also seen to be
important, but not as important as evaluation.

In the 1990s, researchers at the University of Colorado and at the Uni-
versity of California, Riverside, started to revisit and extend this work.
First they noted that there is an inherent weakness in picking target
words and rating scales out of the blue; the researchers’ choices of rating
scales might be affected by their own preconceptions, for instance, and
not really say anything at all about how ordinary people think of the
words and concepts. The investigators decided to do a simple-sounding
thing. They took a large body of writing, called a corpus, and analyzed
the co-occurrences of the words in it.

If you have ever read Usenet news, then you know that there is a lot of
text there, a lot of words. Usenet is a set of discussion groups on the
Internet; nobody knows how many there are really, but there are easily
more than 30,000 different ones, many of which are very busy with par-
ticipants writing or “posting” to the groups, replying to one another’s
postings, and replying to the replies. Again, if you have ever visited
Usenet, you will know that this is not a place for the King’s English; there
is a lot of slang and, yes, obscenity, with flame wars and other tangents
mixed in with level-headed talk of love and software and philosophy and
pet care and other things. Riverside psychologists Curt Burgess and
Kevin Lund (e.g., Burgess, Livesay, and Lund, 1998; Burgess, 1998; Lund,
Burgess, and Atchley, 1995) downloaded 300 million words of Usenet
discussions for analysis by their program, which they call HAL, for
“Hyperspace Analogue to Language.”
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Their program went through the entire corpus, looking at each word
through a “window” of its 10 nearest neighbors on each side. A matrix
was prepared, containing every word (there were about 170,000 different
words) in the entire corpus as row and as column headings. When a word
occurred directly before the target word, a 10 was added to the target
word’s row under the neighbor’s column. A word appearing two posi-
tions before the target had a 9 added to its column in the row corre-
sponding to the target word, and so on. Words appearing after the target
word were counted up in that word’s columns. Thus the matrix con-
tained bigger numbers in the cells defined by the rows and columns of
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Radio

Bad
Cruel
Ugly
Sad

Negative
Unpleasant
Worthless

Weak
Small
Soft

Light
Shallow

Submissive
Simple

Passive
Relaxed

Slow
Cold

Quiet
Dim

Rounded

Evaluation
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7

Potency
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7

Activity
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7

Good
Kind
Beautiful
Happy
Positive
Pleasant
Valuable

Strong
Large
Hard
Heavy
Deep
Assertive
Complex

Active
Tense
Fast
Hot
Noisy
Bright
Angular

Rate how you feel about this object on each of the scales below.

Figure 2.8 An example of the semantic differential scale, where items that measure the three
most important dimensions—evaluation, potency, and activity—are separated.



words that appeared together most frequently and smaller numbers for
pairs of words that did not co-occur often in the Usenet discussions.

Words that occurred very rarely were removed. The result of this pro-
cess was a 70,000× 70,000 matrix—still too big to use. Burgess and Lund
concatenated the words’ column vectors to their row vectors, so that
each word was followed by the entire set of the association strengths of
words that preceded it and ones that followed it in the corpus. Some of
the words were not really words, at least they did not turn up in a stan-
dard computer dictionary; also, some of the words had very little vari-
ance and did not contribute much to the analysis. By removing the col-
umns that contributed little, the researchers found that they could trim
the matrix down to the most important 200 columns for each of the
70,000 words.

The effect of this is that each word has 200 numbers associated with
it—a vector of dimension 200, each number representing the degree to
which a word appears in the proximity of some other word. A first mea-
sure that can be taken then is association, which is simply shown by the
size of the numbers. Where target word A is often associated with word B,
we will find a big number in B’s column of A’s row. A second and more in-
teresting measure, though, is possible, and that is the Euclidean distance
between two words in the 200-dimensional space:

DAB= −∑( )a bi i
2

where ai is the ith number in A’s row vector and bi is the ith number in B’s
row vector. A small distance between two words means that they are of-
ten associated with the same other words: they are used in similar con-
texts. When Burgess and his colleagues plotted subsets of words in two
dimensions using a technique called multidimensional scaling, they
found that words that were similar in meaning were near one another in
the semantic space (see Figure 2.9).

Similar work was going on simultaneously at the University of Colo-
rado, Boulder, where Thomas Landauer was working with Susan Dumais,
a researcher for Bellcore, in New Jersey (Landauer and Dumais, 1997).
Their paradigm, which they call Latent Semantic Analysis (LSA), is
implemented somewhat differently, in that word clusters in high-
dimensional space are found using a statistical technique called singular
value decomposition, but the result is essentially identical to Burgess and
Lund’s—a fact acknowledged by both groups of researchers.

The view that depicts meaning as a position in a hyperspace is very
different from the usual word definitions we are familiar with. A
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dictionary, for instance, purports to explain the meanings of words by
considering them as discrete symbols and providing denotative lists or
descriptions of their attributes. Plotting words in a high-dimensional
contextual space, though, depicts the words’ meanings connotatively,
from the inside out. Landauer and Dumais point out that the average
seventh-grade child learns approximately 10 to 15 new words every day.
These are not typically learned by having their definitions explained,
and who ever saw a seventh-grader look up anything in a dictionary? It
seems clear that humans learn word meanings from contexts, just as HAL
and LSA do. The view of high-dimensional semantic space is a bottom-up
view of language, as opposed to the top-down imposition of definitional
rules in the usual dictionary reference.

Landauer and Dumais have suggested that the LSA/HAL model could
be presented as a neural network. In fact the connectionist paradigm in
general supposes that many aspects of human cognition can be repre-
sented as structure in a high-dimensional space. Human cognition and
development then can be seen as a gradual process of optimization
within a complex space; our thesis is that this process is collaborative in
nature.
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puppy

dog

cow

cat

france

panama
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toe
head

ear
tooth

foot

leg

eye

Figure 2.9 Burgess and Lund’s multidimensional scaling analyses find that words with similar
meanings are associated with the same regions of semantic space, here collapsed to
two dimensions. (From Burgess, 1998, p. 191.)



People do not consciously compute with matrices of thousands and
thousands of words all at once, yet somehow the interrelationships of
many thousands of words are understood, and meaningful verbal com-
munication is possible. A child’s vocabulary is small, and errors are com-
mon; learning to map concepts into the appropriate region of the cogni-
tive space occurs gradually and takes a long time. So how do people learn
the meanings of words? How do they learn to form connections between
concepts found in different regions of the semantic hyperspace? The
easy and obvious answer (and a central theme of this book) is that they
learn from other people. The symbols themselves are arbitrary, and so
different cultures can use different sounds and glyphs to mean the same
thing. Yet within a culture meanings are agreed upon. The “swarm”
model we are building toward considers the movements of individuals
within a commonly held high-dimensional space. Thus the psychologi-
cal issue is one of adaptation and optimization, of finding our way
through labyrinthine landscapes of meaning and mapping related re-
gions appropriately.

Two Factors of Complexity: NK Landscapes

In cases where variables are independent of one another, optimization is
a relatively simple case of figuring out which way to adjust each one of
them. But in most real situations variables are interdependent, and ad-
justing one might make another one less effective. Language is possibly
the penultimate example of this; as we have seen, the meaning of a word
depends on its context. For instance, what do the words “bat” and “dia-
mond” mean? If we have been talking about caves, they might refer to
flying mammals and found treasures, but if we have been talking about
baseball, these words probably mean a sturdy stick and a playing field.
The interrelatedness of linguistic symbols is a necessary part of their use-
fulness; we note that most people learn to use language fluently, but de-
spite decades of striving no programmer has succeeded at writing a pro-
gram that can converse in fluent natural language.

Stuart Kauffman (1993, 1995) has argued that two factors affect the
complexity of a landscape, making a problem hard. These factors are N,
the size of a problem, and K, the amount of interconnectedness of the el-
ements that make it up. Consider a small network of five binary nodes.
We start with an ultimately dull network where there are no connections
between nodes (see Figure 2.10). In such a simple network, each node has
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a preferred value; that is, it is “better” for it to take on the value of one or
of zero. In Kauffman’s research, a table of fitness values is determined by
random numbers. For instance, if node 1 has a state value of 1, its fitness
is 0.123, and if it is zero, its fitness is 0.987. We want to maximize fitness,
so we see in this case that it is better, or more optimal, for this node to
have a value of zero. A fitness table for this overly simple graph is shown
in Table 2.1.

Since these nodes are binary, we can write the state of the network as a
bitstring; for instance, 10101 means that the first node has a state value
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Table 2.1 Fitness table for simple NK
network where K = 0.

Node Value if 0 Value if 1

1 0.987 0.123

2 0.333 0.777

3 0.864 0.923

4 0.001 0.004

5 0.789 0.321

Figure 2.10 NK network with K = 0 and N = 5.



of one, the second is zero, the third is one, the fourth is zero, and the fifth
is one. Looking at Table 2.1, we note that the best possible state of the
network is 01110. This pattern of node states results in the highest fitness
at each site in the graph and thus produces the highest sum over the
entire graph.

Now that is not much of a graph, we agree. While there are five nodes,
which we will write as N = 5, they don’t interact; none has any effect on
the other. Kauffman says that such a system has K= 0, where K stands for
the average number of inputs that each node receives from other nodes.
Obviously, with K = 0 it is very easy to find the global optimum of the
network. We can simply pick a site at random and flip its sign from zero
to one or vice versa; if the network’s total score increases, we leave it in
the new state, otherwise we return it to its original state (this is called a
greedy algorithm). We only need to perform N operations; once we have
found the best state for each node, the job is done.

If we increase K to 1, each node will receive input from one other
node, and the size of the table doubles. When K= 1, the fitness of a node
depends on its own state and the state of the node at the sending end of
an arrow pointing to it. A typical network is shown in Figure 2.11.

In this connected situation, we have to conduct more than N opera-
tions to find the optimal pattern. It is entirely possible that reversing
the state of a node will increase its performance but decrease the
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performance of the node it is connected to, or the opposite, its perfor-
mance will decrease while the other’s increases. Further, while we might
find a combination that optimizes the pair, the state of the receiving
node affects the node it is connected to, too, and it is entirely likely that
the state of that node is best when this node is in the opposite state—and
so on.

When K = 2, the fitness of each node depends on its own state (zero
or one) and the states of two other nodes whose arrows point to it (see
Figure 2.12). The size of the lookup table increases exponentially as K in-
creases; its size is N2K+1. Reversing the state of a node directly affects the
fitness of two other nodes, perhaps changing their optimal state, and
their states affect two others, and so on. K can be any number up to N −
1, at which point every node is connected to every other node in the
whole system.

It is easy to see why Kauffman has theorized that the two parameters
N and K describe the complexity of any system. First, as N, the dimen-
sionality of the system, increases, the number of possible states of the
system increases exponentially: remember that there are 2N arrange-
ments of N binary elements. This increase is known as combinatorial ex-
plosion, and even if it seems obvious, this is a significant factor in deter-
mining how hard it will be to find an optimal configuration of elements.
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Figure 2.12 As K increases, the better state of each node depends on the state of the nodes that
receive its inputs, and the states of the nodes that provide inputs to it. Here, N = 5
and K = 2.



Each new binary element that is added doubles the patterns of node acti-
vations. It quickly becomes impossible to test all possible combinations,
and so it is necessary to find a way to reduce the size of the search; we
need a good algorithm for the optimal allocation of trials.

The second factor, K, is also known as epistasis. This term has been
borrowed, perhaps inaccurately, from genetics, where it is often seen that
the effect of a gene at one site on the chromosome depends on the states
of genes at other sites. Kauffman has shown that when K becomes higher
relative to N, landscapes become irregular and eventually random. When
K is high, the highest peaks are poorer, due to conflicting constraints,
and the paths to peaks on the landscape are shorter. When K= 0, there is
one peak, and as we saw, that peak is found when each node takes on its
better value. The path to it is simple and direct: a Fujiyama landscape.

Combinatorial Optimization

Optimizing problems with qualitative variables, that is, variables with
discrete attributes, states, or values, is inherently different from optimi-
zation of quantitative or numerical problems. Here the problem is one of
arranging the elements to minimize or maximize a result. In some cases
we might want to eliminate some elements as well, so that the number of
things to be rearranged is itself part of the problem. Combinatorial opti-
mization is particularly addressed within the field of traditional artificial
intelligence, especially often where the task is to arrange some proposi-
tions in such a way that they conform to some rules of logic. “Production
rules,” if-then statements such as “if A is true then do C,” are evaluated
and executed in series, to obtain a valid logical conclusion or to deter-
mine the sequence of steps that should be followed in order to accom-
plish some task. Arranging the order of the propositions is a combina-
torial optimization problem.

The statement of the goal of an optimization problem is the objective
function, sometimes called a “cost function.” For example, consider a
classic combinatorial problem called the traveling salesman problem
(TSP). In this problem, a map is given with some number of cities on it,
and the objective function to minimize is the distance of a route that
goes through all the cities exactly once, ending up where it started.

The simple permutations of some elements are all the possible order-
ings of an entire set. In a very small traveling salesman problem, we
might have three cities, called A, B, and C, and their simple permutations
would be ABC, ACD, BAC, BCA, CAB, and CBA. Many combinatorial
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optimization problems require finding the best simple permutation of
some objects. There are n factorial (written as n!) simple permutations of
n elements. Thus with our example of three things, there are 1× 2× 3=
6 permutations. The point to realize here is that this number, which rep-
resents the size of the search space or set of possible solutions to the prob-
lem, gets big quickly. For instance, with only 10 elements the search
space contains 3,628,800 possible simple permutations. Any problem
that is likely to exist in the real world, for instance, a complicated sched-
uling or routing problem or cognitive model, will almost certainly have
more elements in it than that; we need to find ways to search for an an-
swer without trying every possible solution. Optimal allocation of trials,
again.

Simple permutation problems are often represented, conceptually at
least, as trees. The three-element problem is just too trivial, so let’s con-
sider a simple permutation problem with four elements (see Figure 2.13).
The first decision is where to start, and it has four options, A, B, C, or D.
Once we’ve selected one of these, say, A, then we are faced with the next
decision: B, C, or D? Each step of the process reduces the number of op-
tions by one. Say we choose B, now the decision is between C and D. Se-
lecting C, we have no real choice, but end at D. We see that there are in-
deed n! paths through the decision tree—and so of course it is impossible
to actually draw a graph when the problem is big. But the conceptualiza-
tion is often useful to keep in mind. In an optimization situation the task
is to find the path through the decision tree that gives the optimal
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Figure 2.13 Simple permutations of four elements depicted as a tree. The dotted line indicates
where branches were omitted due to lack of space.



evaluation or result, whether this is the shortest path from a start to a fin-
ish, or any feasible path from a premise to a conclusion, or some other
kind of problem.

There are two general ways to search through such a tree data struc-
ture. Breadth-first search involves going into the tree one layer at a time,
through all branches, and evaluating the result of each partial search. In
our four-element example, if we are searching for the shortest path from
start to end, we might ask, for instance, starting on A, what is the dis-
tance to B, to C, to D? If we started on B, what is the distance to A, to C, to
D? and so on. It may be that we can eliminate some routes at this point,
just because a step is so large that we are sure not to have the shortest
route. Depth-first search comprises going from the start all the way to the
end of a path, evaluating one entire proposed solution. Once the end is
reached, depth-first search goes back to the first decision node and then
searches to the end of the next path, and so on.

Heuristics are shortcuts in the search strategy that reduce the size of
the space that needs to be examined. We proposed a simple heuristic for
breadth-first search in the previous paragraph: abandoning a search as
soon as there is reason to expect failure. If we were using a depth-first
strategy, we might establish a rule where we abandon a path when its dis-
tance becomes longer than the shortest we have found so far. Maybe af-
ter a few steps into the tree we will be able to eliminate a proposed path
or subtree by this method. There are many clever general heuristics and
very many ingenious heuristics that apply only to specific problems.

While “order matters” in permutations, the term combination refers to
the situation where some number of elements is selected from a uni-
verse of possibilities, without regard to their order. Thus, a universe of {A,
B, C, D} contains these combinations: {A}, {B}, {C}, {D}, {A, B}, {A, C}, {A,
D}, {B, C}, {B, D}, {C, D}, {A, B, C}, {A, B, D}, {A, C, D}, {B, C, D}, {A, B, C, D}.
Since order doesn’t matter in combinations, the combination {A, B, C} is
identical to {B, C, A}, {C, A, B}, and so on.

In many situations the problem is defined in such a way that some
permutations or combinations are inadmissible; for instance, nodes are
connected only to certain other nodes in the graph (there is no road con-
necting city B with city F). In these cases the size of the search space is of
course reduced, though the problem may be more difficult than a simple
permutation problem if at each step the appropriateness or correctness
of a branch in the tree needs to be validated.

We can muse upon combinatorial aspects of the great stochastic sys-
tems. Even though it is a simple-sounding problem of ordering genetic
proteins, natural evolution could not have gone from bacterium directly

66 Chapter Two—Symbols, Connections, and Optimization by Trial and Error



to human (which is not to suggest that we are the ultimate achievement
of evolution—we just make a good reference point for the present). The
search of the space of possibilities that led down to human intelligence
needed to discover RNA, DNA, nucleated cell structures, multicellularity,
breathing out of water, spines and centralized nervous systems, and so
forth in order to reach the social, linguistic primate called Homo sapiens.
At the same time the environment had to change and evolve, affecting
and being affected by the new forms that inhabited it. It may have been
“technically” possible to jump from bacterium to human in one huge
mutational leap, but the probability of that happening was miniscule.
Evolution can be seen as a kind of search of the space of possible life-
forms, where various adaptations are tried, continuing into the future.
An important aspect of this search is that it is conducted in parallel; that
is, a number of mutations and genetic combinations are proposed and
tested simultaneously throughout the populations of species. Since traits
cannot be passed from one species to another, evolutionary search at the
macro level can be conceptualized as a branching tree.

Minds as well search their space of ideas in parallel, but the search is
not well represented as a tree since the nodes at the ends of the branches
are connected to one another. Various cultures explore their own regions
of a cognitive parameter space, and within those cultures particular indi-
viduals search particular regions of the vast search space of beliefs, atti-
tudes, and behaviors. Here and there a culture hits a dead end, and cul-
tures interact, passing heuristical information back and forth to one
another, and out on the little branches individuals convey information
to one another that shapes their searches.

A human born into this world alone, to make sense of what William
James called the “buzzing, blooming confusion” of the world, would not
be able in a lifetime to understand very much of it at all—if indeed the
word “understand” even has meaning for an asocial hominid. Informa-
tion sharing is our main heuristic for searching the large space of possible
explanations for the world.

Binary Optimization

A frequently used kind of combinatorial optimization, which we have
already seen in NK landscapes and some Hopfield networks, occurs
when elements are represented as binary variables. The binary encoding
scheme is very useful, for a number of reasons. First of all, as the
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versatility of the digital computer indicates, almost anything can be rep-
resented to any degree of precision using zeroes and ones. A bitstring can
represent a base-two number; for instance, the number 10011 repre-
sents—going from right to left and increasing the multiplier by powers of
two—(1 × 1) + (1 × 2) + (0 × 4) + (0 × 8) + (1 × 16) = 19. A problem
may be set up so that the 19 indicates the 19th letter of the alphabet (e.g.,
S) or the 19th thing in some list, for instance, the 19th city in a tour.
The 19 could be divided by 10 in the evaluation function to represent
1.9, and in fact it can go to any specified number of decimal places.
The segment can be embedded in a longer bitstring, for instance,
10010010111011100110110, where positions or sets of positions are
evaluated in specific ways.

Because zero and one are discrete states, they can be used to encode
qualitative, nonnumeric variables as well as numeric ones. The sites on
the bitstring can represent discrete aspects of a problem, for instance, the
presence or absence of some quality or item. Thus the same bitstring
10011 can mean 19, or it can be used to summarize attendance at a meet-
ing where Andy was present, Beth was absent, Carl was absent, Denise
was present, and Everett was present. While this flexibility gives binary
coding great power, its greatest disadvantage has to do with failure to dis-
tinguish between these two kinds of uses of bitstrings, numeric and qual-
itative. As we will see, real-valued encodings are usually more appropri-
ate for numeric problems, but binary encoding offers many advantages
in a wide range of situations.

The size of a binary search space doubles with each element added to
the bitstring. Thus there are 2n points in the search space of a bitstring of
n elements. A bitstring of more than three dimensions is conceptualized
as a hypercube. To understand this concept, start with a one-dimensional
bitstring, that is, one element that is in either the zero or the one state: a
bit. This can be depicted as a line segment with a zero at one end and a
one at the other (see Figure 2.14). The state of this one-dimensional “sys-
tem” can be summarized by a point at one end of the line segment. Now
to add a dimension, we will place another line segment with its zero end
at the same point as the first dimension’s zero, rising perpendicular to
the first line segment. Now our system can take on 22 possible states:
(0,0), (0,1), (1,0), or (1,1). We can plot the first of these states at the ori-
gin, and the other points will be seen to mark the corners of a square
whose sides are the (arbitrary) length of the line segments we used. The
(1,1) point is diagonally opposed to the origin, which is meaningful
since it has nothing in common with the (0,0) corner and thus should
not be near it. Corners that do share a value are adjacent to one another;
those that don’t are opposed.
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To add a third dimension, draw a cube extending above the page into
space. Now the 2n points are three-dimensional: (0,0,0), (0,0,1), (0,1,0),
(0,1,1), (1,0,0), (1,0,1), (1,1,0), and (1,1,1), and each state of the system
can be represented as a corner of a cube. As with the two-dimensional
bitstring, points with elements in common are connected to one another
by an edge of the cube, and points with none in common, for instance,
(1,0,1) and (0,1,0), are not connected. The number of positions in which
two bitstrings differ is called the Hamming distance between them, and it
is a measure of their similarity/difference as well as the distance between
them on the cube. If two points have a Hamming distance of h between
them, it will take a minimum of h steps to travel from one of the corners
of the hypercube to the other.

A hypercube has the characteristics of a cube, that is, bitstrings are
conceived as corners of the hypercube. It is possible to depict a low-
dimensional hypercube (see Figure 2.14), and some insights can be
gained from inspecting the graph, but with more dimensions it quickly
becomes incomprehensible.

Binary optimization searches for the best corner of the hypercube.
Even though the size of binary problems only increases by powers of two,
they can get intractable; it is not practical or possible to consider every
corner of a high-dimensional hypercube. For instance, a 25-bit prob-
lem—which is not an especially big problem—represents a hypercube
with 33,554,432 corners. There is obviously a need for methods to reduce
the size of the search space, so that we can find a good answer without
evaluating every possibility, so we can optimally allocate trials.

A couple of years ago, a hamburger restaurant advertised that they
could prepare their hamburgers “more than 1,023 different ways.” Any-
one with experience in binary arithmetic would immediately recognize
that 1,024 is 210, thus indicating how “more than 1,023” came to be im-
portant. If you could order your hamburger with or without (1) cheese,
(2) lettuce, (3) mayonnaise, (4) pickles, (5) ketchup, (6) onions, (7) mus-
tard, (8) relish, (9) dressing, and (10) sesame seed bun, you could have
it more than 1,023 different ways. Each combination of the presence
or absence of each item represents a corner on a 10-dimensional hyper-
cube, which could be evaluated. For instance, you might consider a
1110000011, which is a hamburger with cheese, lettuce, mayonnaise,
dressing, and sesame seed bun. For me, I prefer corners of the hypercube
where pickles = 0, cheese = 1, and mustard = 0. Some notational sys-
tems use the “#” sign to mean “don’t care”: you might say I prefer my
hamburgers prepared as 1##0##0###. The preferred state (absent or pres-
ent) of the other ingredients might depend on my mood, how other peo-
ple’s food looks, the smell of the place, and so on, but mainly they are
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not very important. At least I can focus my search in the region of the
hypercube that has those values.

Random and Greedy Searches

What is a rational strategy for searching for a good point in the binary
space? We will assume that the space is large, that we don’t want to con-
sider every possible corner on the hypercube. So how could we reduce
the size of our search? Let’s start by making up a naive algorithm.

Common sense tells us we need to start somewhere. Our natural sense
of order suggests that we start at the extremes, say—assuming a 10-bit
problem—0000000000 or 1111111111. Now, which one of these is a
better place to start? We don’t have any way to know. Is it better to pic-
ture a bare hamburger and imagine adding things to it or to start with
the “everything” burger and remove stuff? We don’t know. If we started
at one extreme (say, all zeroes) and the optimum was at the other end, we
would end up having to go the entire distance before we found it. The
best answer is probably somewhere in the middle. One commonsense
strategy is just to pick a point randomly, say, 1001011010.

Since we don’t know anything about our problem, we could try a ran-
dom search strategy, also called “generate and test.” Random bitstrings
are generated, one after the other, each one is evaluated, and the best one
is saved. After some prespecified number of iterations, the algorithm
stops, and the best bitstring found is taken as the solution. There is no
reason to expect the random search strategy to find a very good answer,
and in fact it really doesn’t produce very impressive results on big
problems.

Another method that won’t work especially well is to take a random
walk on the landscape. We could generate a bitstring solution, flip one bit
chosen at random, evaluate the new bitstring, flip another bit, evaluate
that, and so on. Such a search can be imagined as movement around the
hypercube, going from corner to adjacent corner, one step at a time. If we
were looking for an optimum, we could just store the best solution found
so far and use it after the walk was finished. As far as optimization goes, a
random walk is just an exploitational random search, focusing in one re-
gion of the search space.

One thing that sometimes works is the so-called greedy approach that
we tried with NK landscapes. Start by generating a bitstring and evaluat-
ing it. Then select the first bit on the bitstring, flip it, and evaluate
the new bitstring. If flipping the bit resulted in improved performance,
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the “flipped” value is kept, or else it is set back to what it was. The greedy
algorithm goes through the entire bitstring in this way, flipping, eval-
uating, and choosing, once for every position, 10 times if N= 10. This al-
gorithm will result in improvement unless the search happened to ran-
domly start on a really good corner. What the greedy algorithm doesn’t
do is to capitalize on patterns of bits that work together. The difficulty of
this can be gleaned from the discussion of NK landscapes; when K is
high, the effect of a site depends on the states of many other sites. The
greedy algorithm may be a reasonable, quick first-guess approach to opti-
mizing a small or simple system and will probably work fine where
epistasis, or interaction among elements, is weak.

Hill Climbing

A hill-climbing search strategy is a kind of random walk that modifies a
pattern, accepts the changes if they result in improvement, and then
tries changes to the new pattern (Kauffman calls this an “adaptive ran-
dom walk”). A good way to do this on a binary landscape is to set a proba-
bility of flipping a bit, say, 0.10; this will be called a probability threshold.
Then at every position on the bitstring a random number between 0.0
and 1.0 is generated; if it is less than 0.10, that bit is flipped, and if it is
not, it stays as it was. Once we have gone through the entire bitstring, we
evaluate the new pattern. If its fitness is better than the best so far, then
we keep this bitstring. On the next iteration, we stochastically flip the
bits on this new bitstring. If this leads to improvement, we keep it, other-
wise we retain the pattern, so fitness is always improving, as long as
it can.

It is easy to see why this is called hill climbing and also why it is not a
perfect method. If the mutation rate, or proportion of bits flipped, is
small, for instance, where an average of one bit per iteration or less is
flipped, then a hill climber will climb to the top of whatever hill it started
on—it will improve until it reaches the top of that hill. Then it’s stuck.
This is called finding a local optimum, and while a hill climber is guar-
anteed to find the top of the hill eventually, we really want to find
the global optimum—the highest peak on the entire landscape. (Hill-
climbing terminology assumes we are maximizing something, but the
same concepts hold for minimization problems.)

Increasing the mutation rate would enable the hill climber to jump
from one hill to another—maybe higher—one, but it probably would
not climb that hill very well; it would be as likely to jump to another hill
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as to climb the one it’s on. When the Hamming distance between states
of a hill climber on successive iterations is large, the algorithm can cover
large areas of the landscape and might find better regions than it would
have if it had only climbed its original hill. Here is the trade-off between
exploration and exploitation. At one extreme, the random search algo-
rithm explores perfectly well, testing one region of the landscape after
the other, but fails miserably to zero in on the peaks in those regions. At
the opposite extreme, the hill climber is excellent for zeroing in on the
best point in its area, but fails entirely to explore new regions.

In fact random search and hill climbing can be seen as two variations
on the same theme. Random search, where a new bitstring is randomly
generated at every time step, can be variously considered as new individ-
uals being created every time, or it can be considered as successive gener-
ations or states of the same individual. In this view, if each bit is deter-
mined randomly, it will appear that about half the individual’s bits
change state each time, on the average. In comparison, if you took a hill
climber with a low mutation rate, say, 1/n, where n is the number of bits
in the string—guaranteed to find a local optimum—and increased the
mutation rate to 0.5, you would have exactly the search algorithm we
have been calling random search. Thus, from at least this point of view,
the difference between exploration and exploitation is the mutation
rate, or size of steps through the search space.

Simulated Annealing

One of the more powerful approaches to binary optimization is known
as simulated annealing. Simulated annealing is based on the metaphor of
molecules cooling into a crystalline pattern after being heated. In a mol-
ten metal the molecules move chaotically, and as the metal cools they
begin to find patterns of connectivity with neighboring molecules, until
they cool into a nice orderly pattern—an optimum. Simulated annealing
takes the basic idea of hill climbing and adds to it a stochastic decision
and a cooling schedule. A bitstring is modified by flipping randomly se-
lected bits, and if the modified bitstring performs better, it replaces the
original. If the modified bitstring performs worse, though, it can still be
accepted if a probability test is passed. The probability threshold is a
function of the system’s “temperature,” which decreases over time. Thus
the probability of accepting a poorer problem solution decreases as the
system cools; the effect of this is that the algorithm roams over wide
areas of the search space in the early iterations, bouncing into and out of
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locally optimal regions. Later in the search the algorithm will be focused
on the more promising regions of the problem space.

The salient lesson to be learned from simulated annealing is that
sometimes you have to choose to do worse in the short run to do better
in the long run. It may seem counterproductive to accept a bad solution,
but it is necessary in order to make sure that the search moves beyond lo-
cal optima, increasing the chances of finding global optima, or at least
better local optima. Simulated annealing explores early in the experi-
ment and exploits later—an approach that has been shown to be quite
successful for many kinds of problems.

There is another, subtler, lesson to be learned here, too, having to do
with the usefulness of metaphor for understanding abstract mathemati-
cal systems. There is nothing about the procedure of the simulated an-
nealing algorithm that ties it inextricably to the cooling of molecules in a
crystal lattice. The algorithm can be written in abstract algebraic sym-
bols, just like any other algorithmic process. But it was the metaphor
of annealing that allowed the conceptualization and creation of the
method in the first place, and it is the metaphor that enables people to
understand how it works: it would be much more difficult to convey the
process through purely abstract symbols. In discussions of some of the
paradigms in this book, there may be ambiguity and even confusion be-
tween computer programs that are intended to simulate real processes
and computer programs that are explained in terms of real processes.
Metaphor is the other side of simulation, and considering the two to-
gether gives insights into both. There is a computer program, and there is
something in the world, and we perceive some degree of resemblance be-
tween them. A simulation is a program that helps us understand some-
thing about the world, but sometimes the world simply offers a template
that helps us understand a program. The world and the program are two
systems whose contours are parallel in some relevant way. In one view
they are separate and different things, with imagined similarities; in an-
other view they are two ways of doing the same thing. On the one hand,
we say a computer program is like a process in the physical world, and on
the other, it is often insightful to recognize that the physical world is like
a computer program. Beings in computers evolve—and computers think.

Binary and Gray Coding

Flipping bits increments a numeric bitstring with a certain lack of sub-
tlety and grace, especially as binary encoding of real numbers introduces
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Hamming cliffs into the landscape. Imagine some parameters were being
adjusted, getting close to a solution, and perhaps needed to move only
one unit—for instance, from 15 to 16—in order to get to the optimum.
Though this is a step of only one unit on a number line, in binary code it
requires a jump from 01111 to 10000: this is a Hamming distance of 5—
the maximum, as all five bits have to be flipped. A binary algorithm
searching for a quantity (for instance, a hill climber) would encounter an
obstacle at these cliffs and might never make the complete reversal at all
positions necessary to improve the bitstring’s fitness.

Gray coding overcomes this impediment while retaining the advan-
tages of binary operations. The challenge is to devise a scheme, using ze-
roes and ones, to encode integers where the Hamming distance between
adjacent numbers equals one; this is called the adjacency property. There
can be many ways to accomplish this for any length bitstring; the most
commonly used version is called “binary-reflected Gray code” (Gray,
1953; Gardner, 1986). As shown in Table 2.2, Gray-coded integers that
are one unit different in value are also one unit distant in Hamming
distance.

The algorithm for generating Gray code from binary is quite simple.
The length of the Gray bitstring will be the same length as the binary ver-
sion. Further, the leftmost bit will be the same. Starting at the second po-
sition from the left, then, the formula is

G XOR B Bi i i= −( , )1

where Gi is the bit in the ith position of the Gray code, Bi is the bit in the
ith position of the binary code, counting from the left-hand side, and the
function XOR() returns 1 if the adjacent bits are different from one an-
other, 0 if they are the same. In other words, set the most significant bit on
the Gray bitstring equal to the same bit on the binary bitstring, and move
to the right. Where a bit matches the bit to the left of it on the binary
bitstring, place a 0 in the Gray bitstring, otherwise put a 1. Go down the
line doing this at each position. With Gray coding, a movement of one
unit on the number line is performed by flipping a single bit, allowing a
numeric bit-flipping optimizer to climb more gracefully toward optima.

Step Sizes and Granularity

The search of a parameter space of real numbers will likely entail move-
ment where the length of the steps is important. In binary encoding
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schemes, including Gray coding, it is important to note that bits at the
right end of the bitstring represent smaller numbers than bits on the left,
increasing exponentially as we move from right to left. For instance, the
binary bitstring 1001011 represents the decimal integer 75. Flipping the
rightmost bit from 1 to 0 decrements the numeric value to 74. If instead
we flipped the leftmost bit from 1 to 0, we would decrement the number
to 11—a step size of 64 units in one operation. Thus random bit flipping
on a bitstring that encodes true numbers results in a step of unknown
distance through the space. A random-mutation algorithm may test con-
secutive points that are near one another in the number space, or ones
that are far apart, and this feature is uncontrolled. It is extremely un-
likely that a researcher would intentionally search the space with such
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Table 2.2 Comparison of binary and
Gray code. Hamming cliffs,
for instance, between 7 and
8 in the binary column, do not
exist in Gray coding.

Decimal Binary Gray

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000



uncontrolled step sizes, but this is indeed what can happen when opti-
mization is conducted with real numbers encoded in bitstrings.

A second issue has to do with the floating-point granularity of bit-
string representations, how many decimal places a number can have. Of
course a digital computer can represent numbers to hundreds of decimal
places using an internal binary representation—it can be done. But the
other side of that fact is that an investigator can use the computer’s built-
in encoding scheme to represent floating-point numbers rather than
using an explicit binary encoding with division in the user interface.
For example, the number 0.852 could be represented as a bitstring
11001010100, and the program would decode and divide by 1,000—or
the number can be represented as it is, as the decimal 0.852, using the
computer’s internal translation and performing optimization operations
on the explicit decimal number. In sum, when numbers are considered as
quantities, binary coding might introduce weaknesses and complica-
tions that could be avoided by searching in a real-numbered space.

Of course we are mentioning this for a reason. Since Holland’s influ-
ential Adaptation in Natural and Artificial Systems (1975), many genetic al-
gorithm researchers have used binary encoding on all kinds of problems.
Some lore and some theory have arisen regarding the right and wrong
ways to operate on binary-encoded data. Binary encoding can have ad-
vantages, but some operations, for instance, indiscriminate mutation of
numeric bitstrings, may interfere with problem solving more often than
they help. Almost all genetic algorithm operations can be performed
with real-number encodings—while acknowledging some advantages of
binary encoding, we recommend using floating-point numbers when
they are more appropriate.

Optimizing with Real Numbers

The size of a real-numbered parameter space cannot be calculated: it is
infinite. Even a bounded single dimension with end-points at zero and
one has an infinity of points on it. So in a strict sense, optimization of
real-numbered problems should be impossible. But of course it’s not, be-
cause real-numbered landscapes, like other types, almost always have
some kind of order to them.

Many of the methods used to optimize continuous problems are simi-
lar to those used for binary and combinatorial problems. Distance, in-
cluding step sizes, now is not Hamming distance, but (usually) Euclidean
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distance. If one point A in an n-dimensional space is defined by coordi-
nates (a1, a2, ... an), and another, B, has coordinates (b1, b2, ... bn), then the
distance between the two points is (the useful formula, again)

D a bAB i i= −∑( )2

Distance is the square root of the sum of the squared differences be-
tween pairs of coordinates. In one dimension, the square root of the dif-
ference squared is just the difference itself, which seems like a reasonable
measure of distance. In two dimensions, it is the familiar Pythagorean
theorem, the length of the hypotenuse of a triangle, and in more dimen-
sions this conceptualization is known as the square root of a sum of
squares.

If we imagine a random problem, where there is no systematic rela-
tionship between points in the parameter space and points on the fitness
surface, then the distance between two points is not a useful piece of in-
formation in looking for an optimum. In fact, there would be no short-
cut for looking for an optimum on a random landscape; any guess would
be as good as any other. At the other extreme, if there were a problem
with a smooth landscape and a single global optimum, then you could
reasonably make the assumption that points that were near each other
would have correlated fitness. Moving in a direction that improved
fitness on the previous step would probably improve fitness on the cur-
rent step, too.

This might seem trivial, even obvious—and it is, but it points to an
important property of high-dimensional landscapes, which can be ex-
ploited by an optimizer. That property is sometimes called landscape cor-
relation: the distance between two points in a multidimensional space is
seen to be correlated with the difference in their fitness values. This prop-
erty can be exploited in the search for an optimal point in a continuous
space where the landscape is not random. If an algorithm can find a
“good” point, for instance, a point with a good fitness value, then it has a
clue that there may be a better point nearby. At least it might be worth-
while to search in the area for other good points.

Summary

In this chapter we have been leaning heavily on the assumption that
minds and species engage in something like optimization. This is quite a
safe assumption really, if we are not too strict with the definition. Nature
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doesn’t necessarily look for the globally optimal solution to a problem
(nature isn’t looking for anything at all!); all that is required is that a solu-
tion be good enough, what Herbert Simon (1979) has called a satisficing
solution. Both evolution and cognition require search of enormous
spaces. As we have suggested, there can be a great number of search strat-
egies. The social strategies of humans and evolutionary search are both
population based, meaning that many solutions can be tested in paral-
lel; in both cases, interactions among population members result in
problem-solving intensity greater than the sum of individuals’ solitary
efforts.
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chapter
three

On Our Nonexistence as
Entities: The Social Organism

While human phenomenology by its nature
tends to aggrandize the individual’s contri-
bution, cognition and behavior can be
viewed through multiple “zoom angles” or
frames of reference that can provide insights
for understanding and explaining mental life
and intelligence. These perspectives range
from the microscopic to the cosmic, and
include consideration of the origin of life,
the dynamics of planetary ecology, and the

evolution of social behaviors. Modern think-
ers exploring the implications of these differ-
ent zoom angles have frequently turned to
computer simulations, robotics, and other
creative projects to test ideas, and we report
some of these experiments. The history of
these models provides fundamental context
for the swarm intelligence paradigm de-
scribed later in the volume. �
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Views of Evolution

Incredibly, as the second millennium drew to a close, the State of Kansas
Board of Education voted to eliminate evolutionary theory from the
state’s elementary school curriculum. Polls showed that only about a
tenth of Americans could wholeheartedly accept the premises of Darwin-
ism, that life has evolved to its present state through natural selection.
“Creation scientists,” whose conclusions are biblically predetermined
and whose arguments are based on the absence of some “missing links,”
ignoring the tremendous body of positive evidence that does exist, are
cited in the media as if they were real scientists. The Creation Science As-
sociation for Mid-America helped write Kansas’ curriculum proposal,
over the objections of biologists and educators, who now must attempt
to teach religion disguised as science.

Science strives to remain skeptical and cannot refer to faith to judge
the validity of theoretical constructs. The evidence for evolution of spe-
cies through the mechanism of natural selection is widespread and pro-
found; it is not an “unproven theory,” but is the very backbone of mod-
ern biology. Religion is an important part of human life, but when
religious beliefs based on faith are contradicted by empirical evidence
that can be held in the hand and seen with the eyes, the evidence has to
win. It is hard to see how anything can be gained by clinging to unsub-
stantiated beliefs that contradict reality.

The disagreement between religious advocates and evolutionary sci-
entists comes down to this: the creationists know how life began on
earth, and the evolutionists don’t. The biologists are sure it didn’t arrive
fully formed during one important week a few thousand years ago, but
there is still plenty of debate in the scientific communities about the
mechanisms that might have produced the first terrestrial organisms.

Wherever they came from, the first molecules of life appeared on this
planet when it was very young. The earth formed about four and a half
billion years ago, and the earliest known signs of life date back to 3.45
billion years ago—just 300 million years after the surface of the earth had
cooled enough to allow the survival of living things. Those first living
molecules were most likely suspended in water with other chemicals. As
the earth’s atmosphere, in what has been called for obvious reasons the
Hadean Eon, was very different from what it became after the evolution
of oxygen-emitting flora, we can expect that the surface of the planet was
constantly scorched with solar radiation that tore at fragile molecular
strands. Volcanoes belched poisonous sulphurous gases into the
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atmosphere. Uranium 235 was 50 times more abundant than it is now
and bombarded the environment with deadly radioactivity. Corrosive
compounds would have torn at those primal organisms; lightning and
lava and other volatile forces must have made the environment very
hard to endure. Somehow in that tough world the self-replicating mole-
cules continued to increase in number, surviving, mutating, changing,
adapting to conditions in the liquid, and on the solid land, and in the at-
mosphere, such as it was then.

What did it take to survive in that environment? Some microor-
ganisms mutated in ways that doomed them, that caused them to fail to
reproduce, and some formerly secure molecules (the first living things
must not have been much more than that) found themselves in envi-
ronments that destroyed them. On the other hand, some mutations
improved the molecules’ chances of reproducing, and occasionally mu-
tations improved their ability to adjust to conditions that were previ-
ously forbidding, so the simple life-forms could extend their territory to
new kinds of surroundings. The environment presented a kind of chal-
lenge, to which the evolving molecules needed to be able to respond; if
the environment was a problem, then emerging life needed to evolve a
solution to it. Where dangers prevailed, either reproduction ceased or
mutation resulted in adaptive features.

The early environment was of course very different from what we
have today. We could even say that life today is its own environment, or
at least has evolved its own world. The adaptations of the first life-forms
would not be adaptive today. Evolution is a constantly adjusting process,
with organisms changing to meet the requirements of an environment
that contains themselves and other organisms. One of the products of
that process is the thinking ape, Homo sapiens.

Gaia: The Living Earth

Widening the zoom, it is possible to view the entire planet earth as one
large organism, with various plant and animal species carrying out their
functions much as cells do in our bodies. The atmosphere, the oceans,
dry land, and the species that inhabit them conspire (literally, “to
breathe together”) to maintain the health of the biosphere. It is also pos-
sible to view a species as a single distributed organism whose component
parts are the individuals who carry on and perpetuate the genetic heri-
tage, and it is possible to see individual organisms as vehicles for even
smaller viable units, and so on ad infinitum. There is no “correct” zoom
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angle for looking at nature, but it is interesting, perhaps even enlighten-
ing, to try looking through different-sized scopes.

In the late 18th century James Hutton, who is now known as the fa-
ther of geology, wrote that he considered the earth to be a superorganism
whose characteristics should be studied by a kind of science resembling
physiology. His argument, which he called uniformitarianism, was that
the physical earth had undergone many changes as a result of life’s pres-
ence. Two hundred years later, British chemist James Lovelock (1979,
1988) revived the idea that the earth is a living organism, calling his view
the Gaia hypothesis. Lovelock (1972) wrote his famous controversial
statement in the journal Atmospheric Environment: “Life, or the bio-
sphere, regulates or maintains the climate and the atmospheric composi-
tion at an optimum for itself.”

As evidence for the Gaia hypothesis, Lovelock noted that the atmo-
spheres of Mars and Venus are stable with 95 percent carbon dioxide,
though there is only a trace of it in the earth’s atmosphere. His argument
was that early life-forms, especially algae and bacteria, took the carbon
dioxide out of the air and replaced it with oxygen. Oxygen is not usually
found plentifully (it makes up more than one-fifth of the earth’s atmo-
sphere), as it is a very volatile element; it easily combines with other
chemicals in the phenomenon we call combustion, or fire. The earth’s at-
mosphere is stable, though the combination of gases that comprise it is
extremely unstable. The earth exists in a state of deep chemical disequi-
librium, balanced, as it were, at the edge of chaos.

While Lovelock’s hypothesis was eagerly accepted by whole-earth en-
vironmentalists and New Age philosophers, more hard-nosed natural
scientists were reluctant to accept it. The main point of contention had
to do with the implication that the earth-organism had a sense of pur-
pose, as suggested by the idea that the planet is “trying” somehow to
maintain an environmental state that is beneficial for itself. In conse-
quent discussions, Lovelock admitted he had confused the situation by
introducing teleological language, that is, language that implied purpose.
He revised his statement to reduce this effect, removing implication of
the “will” of the superorganism from the hypothesis. Whether the de-
tails of the theory are ultimately confirmed or rejected, it is relevant for
our discussion simply to consider human life and thought from this
level, as a force or factor in dynamics on a global scale.

Also relevant for our discussion, Lovelock demonstrates Gaia theory
dynamics in a computer simulation he calls Daisyworld. In one version,
Daisyworld is a virtual planet upon which three species of daisies, a dark
species, a gray species, and a light species, grow. In the beginning, the
planet is cold, as its young sun has not yet reached full strength; the dark
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daisies are better suited to that kind of climate, as they are able to hold
the heat from the world’s sunlike star. They would reproduce, taking over
the world, but their heat absorption ends up heating the surface of the
Daisyworld, until it becomes inhospitable for the dark daisies, too warm
for them (A in Figure 3.1), and their numbers decrease quickly. By warm-
ing the environment, however, the dark daisies have made it a good
place for white and gray daisies to thrive; these lighter daisies cool their
environment by reflecting heat (B). As the young sun reaches its full
strength, the lighter daisies have even more advantage, and as their
numbers grow, their effect is to bring the planet’s temperature down (C).
The prevalence of the white daisies keeps the planet’s climate much
milder than it would have been without life (D). Thus with no knowl-
edge of the environment, and with no intent to do so, the biosphere
is able to make adjustments that keep it relatively optimal. The Daisy-
world simulation can be run with various parameters such as starting
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Figure 3.1 Lovelock’s Daisyworld simulations let several species of daisies—in this case, Dark,
Gray, and Light—grow in their optimal climate. (Adapted from Lovelock, 1988.)



temperature, number of species, heat of the planet’s sun, and so on, with
a consistent result: through selecting the prevalence of each variety of
daisy, the system maintains the temperature at the planet’s surface at a
viable level.

Gaia theory holds that the entire planet functions as one single inte-
grated organism, including “inorganic” systems such as the climate and
the oceans as well as the biosphere. It is a literally global view that places
individual organisms and even species in the roles of cells and subsys-
tems, supporting the larger dynamical system through their breathing,
eating, breeding, dying. In yet another blow to the human ego, this per-
spective seems to trivialize the individual—in fact, from the Gaia per-
spective our species appears to be more of a blight or a cancer than a
beneficent organ of the planetary body. Our contribution seems to be to
introduce disturbance, imbalance, disruption. So far, seen from the plan-
etary perspective, our human intelligence has simply empowered the de-
struction of a global system that preceded us by billions of years.

Differential Selection

In 1962, the Scottish ecologist V. C. Wynne-Edwards theorized that evo-
lution selected against animals that reproduced too much, to prevent
overpopulation and decimation of a species. He stated:

Experiment generally shows that . . . many if not all the higher ani-
mals can limit their population-densities by intrinsic means. Most
important of all, we shall find that self-limiting homeostatic methods
of density-regulation are in practically universal operation not only
in experiments, but under “wild” conditions also (Wynne-Edwards,
1962, p. 11).

According to him, many behaviors that had previously been unex-
plained, for instance, noisy group vocalizations, communal displays,
and winter roosting aggregations, might serve the function of informing
species members about the size of their population. With this knowl-
edge, species could adjust their reproduction rate to maintain equilib-
rium, avoiding the disaster they could cause by overextending them-
selves in their limited environment. Acknowledging that many species
live in social groups, it may be that a trait resulting in reproductive re-
straint would survive if it provides advantage for the group as a whole.
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The problem with Wynne-Edwards’ model, called group selection, is
that the theory must assume the existence of a gene that carries an auto-
matic selection against itself. If a gene resulted in a reduction of repro-
duction (e.g., through delayed fertility or some instinctive form of infan-
ticide), then its frequency would decrease as competing genes—ones that
reproduced at a higher rate—dominated the population. The idea has
been controversial since it was first proposed; if members of a population
risk fatal sacrifice, then their genes would be less likely to be passed on to
succeeding generations. Though the concept is not subscribed to by
most biologists today, argument regarding group selection did focus in-
teresting discussions on the question of altruism, which is seen widely
through nature and presents some fascinating puzzles to evolutionary
theorists.

In 1964, W. D. Hamilton proposed an explanation for behaviors that
don’t make sense under the assumption that individuals seek self-gain.
Inclusive fitness is the concept that organisms strive to ensure the survival
of others whose genes most resemble their own. He observed that altruis-
tic behaviors frequently increase the probability of the altruistic individ-
ual’s genes being passed on, even when the individual will not be the ac-
tual ancestor. Animals will sometimes risk or sacrifice their own lives to
guarantee the survival of their genetic relatives—noting the confound-
ing fact that a local group of conspeciates is likely to contain numerous
near kin. A mother animal who charges a predator to save her offspring
risks paying the ultimate cost to herself individually, yet it happens every
day, in very many species. The same goes for animals who give a warning
call in the presence of a predator, thereby calling attention to them-
selves. Inclusive fitness suggests that there is a general tendency in na-
ture for genes to do what they can to improve their own chances, even at
the cost of individual lives. The majority of self-sacrificing altruistic be-
haviors seen in nature are performed in the service of siblings, offspring,
and cousins.

Think of the cost of reproduction itself. To reproduce means having
to have sexual intercourse, which puts an animal in a vulnerable situa-
tion, besides forcing it to associate with its potentially dangerous—some-
times cannibalistic—conspeciates. Being pregnant, as we know, means
eating for the number in the litter plus one, besides slowing the mother
down and making her easier prey or a less adept predator. The cost of
nurturing a litter is extremely high; the mother, and sometimes the fa-
ther, must keep the helpless little ones safe and well fed, and parental
sacrifices are high. If the system were oriented around the individual’s
needs, would we choose to take on all these troubles? Animals’ lives,
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including our own, are organized around the phenomenon of reproduc-
tion, from courtship to sexual jealousy to altruistic protection of kin.

Darwin was puzzled by marked differences between the sexes in
many species. For example, male elephant seals weigh four times as
much as females (4,000 pounds to 1,000)—how could this have hap-
pened, if both sexes faced the same challenges from the environment?
Males of some species have developed heavy antlers or plumage that ob-
viously imperils their ability to escape predators. In response to these
paradoxes, Darwin created a kind of second theory of evolution, having
to do with the evolution of sexual characteristics. Though it was not
widely accepted at first, the theory of sexual selection is now considered to
be an important part of evolutionary theory. If we consider that evolu-
tion works via a process of differential reproduction, it seems obvious
that features that promote reproduction per se—and not necessarily ad-
aptation to environmental challenges—will be selected along with adap-
tive features.

Further, it is apparent that the investment in reproduction is different
for males and females, especially in species such as humans where the
pregnancy is relatively long and the newborn offspring are helpless. Ac-
cording to sociobiological theory, “sexier” individuals have more oppor-
tunities to mate, for almost all species (though standards of sexiness ad-
mittedly differ from species to species!). Where females have an innate
preference for mates who can provide shelter and protection, males have
an interest in choosing mates who show signs of being fertile. Further,
because maternity is certain but paternity is not, it is in the male’s best
interest to elicit a long-term, exclusive sexual commitment from the fe-
male; otherwise he may invest much in perpetuating somebody else’s
genes. On the other hand, as the male is capable of impregnating multi-
ple females, there is less pressure for males to be sexually exclusive, and
in fact evidence is accumulating that human males tend to be more pro-
miscuous than females across cultures.

This is illustrated by a phenomenon known as the Coolidge Effect,
named after former U.S. President Calvin Coolidge. The story goes that
President Coolidge and his wife were touring a farm. When the First Lady
came through the chicken house, the farmer mentioned that roosters
are capable of copulating many times in a single day. “Please mention
that to the President,” she requested. When the President came to the
chicken house, the dutiful farmer repeated the fact to him. Silent Cal
contemplated this for a few seconds, then asked, “Same hen every time?”
“Why, no,” said the farmer. “Please mention that to Mrs. Coolidge,” said
the President.
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Hölldobler and Wilson (1990) argued that a colony of ants should be
thought of as a single superorganism. In order to understand ant behav-
ior it is necessary to look at the behavior of the colony as a whole, rather
than the individual. In fact some species of ants die at a rate of 6 percent
of the population per day; thus it would seem that the individual’s con-
tribution cannot be very great.

The slavish subjugation of the individual to the needs of colonies of
social insects of the order Hymenoptera, which includes ants, termites,
bees, and wasps, can be explained uniquely in terms of kin selection.
Hamilton noted that species in this order reproduce by a method known
as haplodiploidy (see Figure 3.2). Females inherit half their alleles from the
mother. Assuming a 50 percent chance of receiving either of two copies
of a gene (one from each of a pair of chromosomes), about one-fourth of
the genes that two sisters get from the mother will be the same. But the
male insects grow from unfertilized eggs, and so all the males receive all
their genes from the mother, that is, the queen. Further, father’s sperm
cells are produced by mitosis, or cell division, so there is no variation
among them. Thus all sisters receive the same genes—half their in-
heritance—from the father’s side. Add them up, and it is seen that
Hymenoptera sisters’ genes are on average three-fourths the same, daugh-
ters and fathers are 50 percent the same, and mothers and daughters are
also about half the same.

This suggests that, rather than seeking to reproduce herself, in order
to perpetuate her own genes the sterile female worker would increase the
chances of her own genes being passed on by serving the queen, who
gives birth to more sisters. The ideal strategy is to produce only enough
males to ensure the insemination of young queens, thus passing on the
individual’s genes to a new colony.

Views of Evolution 89

aa bb cc

bb cc aa cc

0.51.0 1.00.5

Figure 3.2 Haplodiploid sexual reproduction.



Richard Dawkins’ readable and influential books The Selfish Gene
(1976) and The Blind Watchmaker (1985) accomplished several important
goals. For one, Dawkins introduced the concept of memes, those units of
epistemological evolution that correspond to genes in physical evolu-
tion. He also suggested, through his Biomorphs, a way for using comput-
ers to simulate evolution to better understand the processes of mutation
and selection and how they work together. And his accessible prose in-
troduced a large population of literate but nontechnical readers to evolu-
tionary concepts such as kin selection.

Unfortunately, Dawkins’ choice of the term “selfish gene” to describe
kin selection left some with the impression that genes have a mind of
their own, that they have goals and intent, a sense of purpose. This teleo-
logical interpretation is incorrect, and it must be understood that the
author never stated any such thing—it was only the title of the book that
suggested it. When we are discussing trial-and-error evolutionary adapta-
tion, it seems clear that there is no place for purpose; we cannot say
that a species “wants to” adapt, or even survive. As for the individual
organisms comprising a species, of course the whole point is that their
motivations, including their desire to survive, are subservient to the re-
quirements of genetic propagation. An animal might do all it can to sus-
tain its own life, within the constraints of the behavioral repertoire that
biology has provided it, but in the long run the behavioral traits that are
passed down through the generations are the ones that maximize their
own survival as genetic programs. This is a statistical effect and not a tele-
ological one, and the difference is very important.

Ross Buck and Benson Ginsburg (1997) have a somewhat different
take on the evolution of social behaviors. They argue that sociality re-
quires communication, which has an innate basis in the displays and
preattunements in organisms; displays are visible (i.e., public) behaviors,
and conspeciates have evolved the tendency to “tune in” to particular
forms of display, to detect and respond to them. They contrast their view
with the selfish gene hypothesis; where Dawkins implies that communi-
cation is inherently manipulative and exploitative, Buck and Ginsburg
argue that social communications create the foundation that allows or-
ganisms to support the survival of the species.

Buck and Ginsburg argue that the “general affiliative phenomenon”
is a property of protoplasm itself, a fundamental characteristic of all liv-
ing things. Social—and especially emotional—communication was de-
scribed by Darwin as a tool for creating and maintaining social order;
Buck and Ginsburg elaborate on this theme by noting that spontaneous
communication exists in all living things, as a kind of raw social
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knowledge that is nonpropositional and direct. An animal knows that
another animal is angry or sexually excited, and this knowledge is direct;
it is not something that has to be “figured out.” The communicative gene
hypothesis suggests that displays and preattunements evolve together
through the selection of communicative relationships.

Most recently, Howard Bloom (2000) has argued for a reexamination
of group selection as an explanation for much social behavior through-
out the animal kingdom. Bloom compares the spread of information in a
population of social animals to a neural network. Selection of socially
dominant members of the population allows continual strengthening of
the information-processing network, improving the adaptive abilities of
the species in general. He argues provocatively, “It is time for evolution-
ists to open their minds and abandon individual selectionism as a rigid
creed which cannot coexist with its supposed opposite, group selection.
For when one joins the two, one can see that the networked intelligence
forecast by computer scientists and physicists as a product of emerging
technologies has been around for a very long time” (pp. 12–13).

The question of the unit of selection is a troublesome one for evolu-
tion theorists, as we have seen with some awkward and frequently con-
tentious theorizing about group selection, altruism, inclusive fitness,
selfish genes, and so on (for an insider’s review of the sociobiology debate
see Segerstråle, 2000). While the low-level mechanism for the process of
evolution is the survival and reproduction of the individual organism, it
is obvious that individuals’ connections to their conspeciates as well as
to other aspects of the environment are critical to survival and largely de-
termine the direction that adaptive evolution will take. Because genetic
transmission works across generations and through populations, com-
mon sense suggests looking at the phenomenon at the species or popula-
tion level and in the adaptive relationships that the species develops
with elements of its world.

Our Microscopic Masters?

Finally, as we think about different levels of looking at the behaviors and
the minds of individuals, let us consider the presence of foreign life-
forms within the cells of plants and animals including ourselves. Mito-
chondria are a kind of organelle, like a cell-within-a-cell, found in almost
all eukaryotic cells, that is, cells with nuclei. There are usually several
or many mitochondria in each cell; they assist the cell by burning sugar
to provide energy. The mitochondria are formed of two membranes
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with a space between. Plants contain another kind of organelle called
chloroplasts, which convert light energy to chemical energy in
photosynthesis.

The endosymbiont theory states that these organelles were originally
forms of bacteria that entered plant and animal cells at a very early pe-
riod of evolution. Both mitochondria and chloroplasts make their own
DNA, which is independent of that of the host, and conduct some but
not all of their own protein synthesis—chemical life processes. Not only
do they move around inside the cell, changing shape, but they control
their own replication within the cell. The two layers of membrane sug-
gest that one layer originates in the organelle and the other in the host
cell. In sexual reproduction it is seen that the organelle’s DNA comes
only from the mother’s cells, not from the father’s, so it descends from a
lineage unique from that of the cell in which it resides. Analysis of
organelles’ DNA suggests that they come from a very primitive and ar-
chaic form of bacteria, perhaps cyanobacteria.

In Lives of a Cell, Lewis Thomas (1974) argues for our nonentity as in-
dividuals. He suggests the perspective that we so-called “organisms” are
really just the vehicles for the perpetuation of the master race, the
organelles—mitochondria and chloroplasts. As individuals our job is to
strive to maintain the viability of nutrients for our masters, and we live
to pass their DNA on to future generations, requiring that we adapt to
our circumstances, survive, and reproduce.

Looking for the Right Zoom Angle

We present these various views because they seriously challenge the intu-
itive perception of the individual as a self-interested autonomous be-
ing—only time will tell which ones of these theories pass the tests of sci-
entific investigation. Evolution, or life in the broader sense, fails to make
sense as a method for fulfillment of the individual’s needs. From the evo-
lutionary zoom view, the individual organism, whether tree, insect, or
human, is a medium for perpetuation of the species’ heritage and for in-
troducing variations to the line. As the theory of evolution has bumped
us down a few notches closer to the monkeys as biological entities, fur-
ther insulting human pride, so these various perspectives on behavior
tend to demote the individual from master of his own psyche to a single
atomic participant in a transpersonal information-processing effort, or
cosmic slave to some bacterial hitchhikers.

One thing we have seen in these various explanations is an assump-
tion that life embodies a dynamic process of optimization. Those first
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molecules—wherever they came from—are important to us today be-
cause they were able to maximize the probability of self-reproduction, as
has life ever since. Given an environment that serves exactly as a com-
plex function to optimize—a mixture of gases, solids, liquids, and varia-
tions of energy, of nutrients and poisons, of edible cohabitants and pred-
atory ones—the life-system adapts, changing, flowing around obstacles
and toward balance and stability, even as the environment is adapting
and flowing.

Because we think with biological brains evolved through natural se-
lection to serve an evolutionary end, it may be impossible for humans to
really extract ourselves from our egoistic perspective, to see ourselves as
disposable stepping stones for some bigger or littler entity’s progress and
survival. It is our nature to attribute causes to individuals, to two-eyed,
four-limbed sacks of skin with presumed intentions, feelings, thoughts,
and personalities locked up inside them—locked up but visible through
strange insightful empathic perceptions. It is science’s task to find ways
around these limitations, to enable us as well as possible to see the world,
including ourselves, as it really exists.

Our role in nature, whether it is to pass on genes or mitochondria, to
support our group, to maintain the Gaia-sphere, or even to provide for
the survival of the individual organism, involves our ability to minimize
error in our adaptations to the environment. Where the environment
puts up an obstacle, some species has almost always found a way to over-
come it, and our species in particular has found ways to adapt to every
environment we have encountered. Konrad Lorenz (1973) even rated us
higher than rats and roaches in terms of being able to adapt to diverse en-
vironments. Where the environment offers snow and ice, humans live in
igloos; where it offers clay, they live in adobe; where palms grow, they
thatch their dwellings with fronds, capitalizing at every turn on the op-
portunities the environment provides, no matter how subtle. Our ability
to think—our intelligence—allows us to optimize the probability of our
surviving to reproduce. Even if we think of intelligence as a trait of indi-
viduals, it seems obvious that bright individuals innovate by building on
the existing accomplishments of their social group, often to the benefit
of the less-bright members of the group.

Evolution is commonly regarded as an excellent algorithm for the ad-
aptation of organisms. Social behavior, especially culture, is often com-
pared to it, but it has not seemed that an adequate theory has been pro-
posed to explain how culture can result in adaptation. In the following
sections we elaborate some of the benefits of sociality generally through-
out the animal kingdom, and in humans specifically. While it is interest-
ing to consider some of the varieties of social experience in different
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animals, we are also interested in the computer programs that imple-
ment or simulate social behaviors. Some of these are simulations, where
a population of individuals is modeled in a program, and some are pro-
grams that interact socially with a user. There is much to learn from both.

Flocks, Herds, Schools, and Swarms: Social Behavior
as Optimization

Mutation and sexual genetic recombination, along with selection and
perhaps with self-organization (discussed in a later chapter), empower
evolution to search for optima on difficult landscapes. The important
function of random mutation and recombination is to introduce varia-
tion or innovation to a population; selection then ensures that better so-
lutions persist over time. More than one observer of human nature has
argued that creativity requires some kind of operation like mutation,
some way to randomly generate new solutions. For instance, psycholo-
gist Donald Campbell (1960) described creative thinking in terms of
“blind variation and selective retention” and suggested that mental cre-
ativity might be very much analogous to the processes of biological
evolution.

Trial-and-error learning must include some way to create new varie-
ties of problem solutions. The generation of random behaviors is ubiqui-
tous throughout the animal world. The chaotic behaviors of a hooked
fish, the head-shaking of a dog playing tug-of-war, the bucking of a
bronco or a bull, the zig-zagging of a chased rabbit through a meadow—
all these indicate that the ability to generate random, that is, unpredict-
able, behaviors is adaptive for animals. Random activity is useful for
predator avoidance and is also useful for an organism that is searching
for something, whether it is food, a mate, a location to build a nest, or a
safe hideout. In an insightful chapter entitled “Oscillation and Fluctua-
tion as Cognitive Functions,” Konrad Lorenz (1973) discusses the impor-
tance of random fluctuations of an organism’s movements for search as
well as escape from danger. For example (he says), the marine snail waves
its long breathing tube from side to side in order to detect the scent of
something to eat, as it moves randomly across the bottom of the ocean.
The snail is sensitive to the differences in the strength of a scent at the
two extremes of the breathing tube’s motion. These differences are natu-
rally greatest when the snail is turned at right angles to the goal, so that
the food is on one side or the other. But instead of turning at right angles
toward the stimulus, the snail makes a sharp reversal that resembles an
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escape response and continues crawling along so that the odor will strike
the receptor on the other side. The result is a repetitive zig-zag path that
takes the snail toward its goal (see Figure 3.3).

Lorenz compares the kind of search typified by the marine snail to
fluctuations in human public opinion. He deserves quoting here:

As has already been said, the public idea of what is true and real is
based on a highly complicated system of social interactions. Since
processes having a definite degree of inertia play a part in these, pub-
lic opinion tends to oscillate. It was Thomas Huxley who said that ev-
ery new truth starts as a heresy and ends up as an orthodoxy. If one
were to interpret the word orthodoxy as signifying a body of rigid and
mindless dogma, this would be a depressing statement, but if we take
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it as meaning the body of moderate views subscribed to by the ma-
jority of people in a given culture, we can see that what Huxley is
describing is a characteristic cognitive function of human society
(Lorenz, 1973, p. 240).

We quote Lorenz at such length for one reason: he concisely summarizes
an important part of the paradigm that we are building here, the view of
cognition as a function of collective adaptive search. He barely stops
short of giving our particle swarm formula.

Species benefit from sociality in different ways. The bottom-line,
bare-necessity requirement for species practicing sexual reproduction is
interaction during mating, and in many species the strongest bonds are
formed between mothers and offspring. Other species of animals form
lifetime monogamous pair bonds between mates. The advantage of this
appears to be improved rearing of offspring and the ability of a pair to
better defend their nesting territory. While living in social groups in-
creases the chances of any individual finding a mate, it also introduces
the negative specter of competition for sexual partners, especially for
males, since one male can inseminate many females. Thus males of so-
cial species tend to show less affiliation with the group.

In many species that live in groups, social networks of kin help take
care of young communally. The gregarious life also permits the ability to
share food and to provide warning as well as collaborative defense when
predators intrude. Groups of prey may be more conspicuous than soli-
tary individuals, but running with a pack reduces the probability of any
individual being selected for attack. Foraging efficiency can be increased
when many eyes look for food. Also, groups of animals can acquire infor-
mation about the environment from conspeciates, for instance, by not-
ing which direction a well-fed flockmate just flew in from. For some pred-
ators there is additional advantage in cooperative strategic hunting.
Groups have the potential for division of labor, which is most clearly
seen in the social insects. For the various social animals, some of these
benefits are more important and some less; in general, though, we see
that social organisms can attain enormous survival advantage.

Doug Hoskins (1995) has shown how the simplest behaviors of the
simplest organisms in the animal kingdom can be shown to function as
an optimization algorithm. E. coli bacteria show what is perhaps the sim-
plest “intelligent” behavior imaginable. (Hoskins defines intelligence as
the “ability of the organism to control its long term distribution in the
environment,” p. 2.) These single-cell organisms are capable of two
kinds of locomotion behaviors, called “run” and “tumble.” Running is a
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forward motion implemented by rotating the flagella counterclockwise.
Tumbling occurs when the flagella are rotated clockwise. The change
causes the bundle to fall apart, so that the next “run” begins in a random
direction. The cell tumbles more frequently in the presence of an adverse
chemical, and the overall change of direction is enough to increase the
bacterium’s probability of survival, enabling it to escape from toxins.
This is about as simple as an adaptive behavior can be. Hoskins uses the
bacterial adaptation as the cornerstone of his iterated function system
model of neuronal interactions in the human brain.

The paramecium’s behavior repertoire includes a phobic response
that is adaptive and just as simple as the run and tumble of E. coli. When
a paramecium encounters an aversive chemical environment, it reverses
its direction briefly. Then the cilia on one side act to spin the body ran-
domly, until it moves forward again.

Eshel Ben-Jacobs, at the University of Tel Aviv, argues that colonies of
bacteria are able to communicate and even alter their genetic makeup in
response to environmental challenges. Indeed, Ben-Jacobs asserts that
the lowly bacteria colony is capable of computing better than the best
computers of our time, and attributes to them properties of creativity, in-
telligence, and even self-awareness. Discoveries of DNA sequences that
can move from one site on the chromosome to another, as well as discov-
eries of plasmids, which are genetic substances found outside the chro-
mosome in many bacterial species, support the theory that bacterial cells
can transmit genetic material to one another, outside the bounds of
genetic processes as they had been previously understood. Further, a
number of studies have shown that bacteria can mutate nonrandomly,
producing particular mutations in response to certain selection pres-
sures. From these discoveries and others, Ben-Jacobs theorizes that the
genome operates as an adaptive cybernetic unit, able to solve complex
problems posed by the environment.

Not only do the cells adapt as solitary units, but Ben-Jacobs argues
that, due to effects that have been observed such as direct physical and
chemical interactions between cells, indirect communication through
release of chemicals into the environment, and long-range chemical
sensing, bacteria are able to organize into what is essentially a single,
multicellular superorganism. While research is yet necessary to fill in the
gaps in Ben-Jacobs’ theory, the social phenomena are well known and
noncontroversial.

It is surprising to think that single-celled microbes might possess so-
phisticated intelligence—maybe it is just because they are so small, so re-
moved from our perceptions. Near the beginning of the 20th century,
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the biologist H. S. Jennings made the interesting comment that if an
amoeba were the size of a dog, we would not hesitate to attribute to it the
power of subjective experience (quoted in Lorenz, 1973). The single
mechanism of mobility for an amoeba is its familiar flowing, effected by
alternating softening and hardening of the protoplasm; this most simple
form of locomotion is, in the amoeba, the method both for phobia, that
is, avoidance of noxious stimuli, and for approaching positive stimuli.
Even this simplest semiliquid creature adapts and responds appropri-
ately to its environment.

Perhaps the most extreme example of the intimate relation between
the individual and the social group is found in the life of the lowly slime
mold. When food is plentiful, this organism exists as an amoeba, a
single-celled organism that feeds on bacteria and reproduces by cell divi-
sion. When food becomes scarce, though, the amoebas gravitate toward
one another and actually bond together to form a kind of slug that can
crawl around. At this point they have lost their autonomy and exist only
as cells in the aggregate organism. When the slug has found a good spot,
it sends up a stalk that releases spores into the environment; the spores
eventually become amoebas, and the process starts over.

UC San Diego physicist Herbert Levine has shown how slime-mold
amoebas are capable of communicating among themselves and organiz-
ing in a way that allows the emergence of superorganisms from clusters
of microbes (e.g., Levine, 1998; Ben-Jacobs and Levine, 1998). If mem-
bers of the species Dictyostelium discoideum are spread over a surface that
provides no nutrients, they will begin to emit a chemical signal; an
amoeba of that species that detects the presence of the signal will emit
the signal itself, in what becomes an autocatalytic or self-amplifying pro-
cess. The effect is that spiral waves of the signaling chemical (cyclic
adenosine monophosphate) form in the population. Amoebas then be-
gin to move toward the center of the spiral, and when they meet other
amoebas they merge with them in what has been described as a “river
system” of protists. Eventually the organisms will have aggregated into a
single organism, which then produces reproductive spores that can be
spread to more favorable environments. In this way the simple amoeba is
able to cope socially with adversity and perpetuate itself.

Accomplishments of the Social Insects

The optimization potential of simple behaviors has been most noted in
studies of insects, and in particular in the behaviors of the social insects.
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An insect may have only a few hundred brain cells, but insect organiza-
tions are capable of architectural marvels, elaborate communication sys-
tems, and terrific resistance to the threats of nature.

E. O. Wilson began his systematic study of the social behaviors of ants
in 1953, when he attended Konrad Lorenz’ lectures at Harvard Univer-
sity. Lorenz is probably best known as the scientist who showed the phe-
nomenon of “imprinting” in animals: some kinds of baby birds adopt
the first thing they see when they hatch as their parent and follow it ev-
erywhere it goes. In some famous photographs, Lorenz is seen leading a
line of happy goslings who had adopted him as their mother. Imprinting
is a form of instinctive behavior Lorenz called a fixed action pattern. A
fixed action pattern is a behavior that an organism emits in response to a
particular, often very specific, stimulus. For example, in the springtime
the male European robin seeks to drive away other males by song, dis-
play, and outright attack. It has been shown that the fixed action stimu-
lus for these behaviors is the red breast. If a stuffed male robin with an ol-
ive breast is set near the nest, the male will ignore it, but a tuft of red
feathers mounted on a wire frame elicits the entire range of territorial
threats.

Extrapolating from Lorenz’ descriptions of the fixed action patterns,
the stereotypical “instinctive” behaviors of organisms, Wilson theorized
that the dazzling accomplishments of ant societies could be explained
and understood in terms of simple fixed action patterns, which, Wilson
discovered, included behavioral responses to pheromones, chemicals that
possess a kind of odor that can be detected by other ants. Wilson showed
that ants emit specific pheromones and identified the chemicals and
even the glands that emitted them. He also laboriously identified the
fixed action responses to each of the various pheromones. He found that
pheromones comprise a medium for communication among the ants, al-
lowing fixed action collaboration, the result of which is a group behavior
that is adaptive where the individuals’ behaviors are not.

For Wilson, the problem of the construction of mass behaviors from
the behaviors of single ants was the central problem in the sociobiology
of insects. Given that the behavior of a single ant is almost random, with
a stochastic tendency to gravitate toward paths that have been trodden
by other ants, the achievements of swarms of ants are most incredible.
An isolated ant’s behavior quickly results in the demise of the individual,
but the mass behavior of a colony of ants provides sustenance and defen-
sive protection for the entire population.

The study of complex systems and the rise to prominence of com-
puter simulation models of such systems gave scientists the tools they
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needed to model the simple behaviors of ants and how they could com-
bine to produce an effect that is much more than the sum of its parts, and
these insights have in turn led to more insights about the nature of man
and society and about the physical world. Insect sociality is a classic ex-
ample of the emergence of global effects from local interactions.

There is a long and interesting tradition in artificial intelligence re-
search of using ant examples to explain important points. These exam-
ples make a fascinating barometer of their historical eras and demon-
strate a fundamental shift in the way we view ourselves and the workings
of complex social and cognitive systems, beginning (as far as we know)
with the negative rhetoric of Norbert Wiener’s 1950 The Human Use of
Human Beings. In the aftermath of World War II (and before Wilson’s re-
search), Wiener thought that the view of human societies as antlike was
essentially a fascist view in which rulers rule forever, followers always fol-
low, and everyone knows and accepts their place: “This aspiration of the
fascist for a human state based on the model of the ant results from a pro-
found misapprehension both of the nature of the ant and of the nature
of man” (Wiener, 1950/1954, p. 51). Wiener theorized that the structure
of a machine or organism is an index of the performance it can be ex-
pected to produce. Because ants’ bodies are rigid and crude, we should
not expect much of them: Wiener describes the ant as “an essentially stu-
pid and unlearning individual, cast in a mold which cannot be modified
to any great extent” (p. 51). Humans, on the other hand, are viewed as
complex, creative, adaptable, able to learn and to control their own be-
haviors and the outcomes that result from them—and the sophistication
of individuals largely explains the accomplishments of human societies.

In his 1969 The Sciences of the Artificial, Herbert Simon proposed that
the path of an ant across a “wind- and wave-molded beach” is very irreg-
ular, nearly random, but with a general sense of direction. Simon used
this image to make the strong point that the complexity of its path is not
a characteristic of the ant, but of the environment. The ant itself is a very
simple being, unable to generate anything very complex at all. Then (ig-
noring Wiener) he suggests substituting the word “man” for “ant.” His
conclusion: “A man, viewed as a behaving system, is quite simple. The
apparent complexity of his behavior over time is largely a reflection of
the complexity of the environment in which he finds himself” (p. 25).

Of course Simon’s characterization of humans as antlike in our sim-
plicity is a tough pill to swallow, but it did serve one pragmatic end for
early AI researchers: it made the simulation of human behavior and hu-
man cognition seem tractable. If people are like ants, then researchers
should be able to write computer programs that do what people do, using
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complicated data structures and relatively simple programs. This gives us
a small insight into the roots of some of the problems that artificial intel-
ligence researchers have been unable to overcome. Wiener was right: an
ant by itself is not only simple but very stupid and unable to accomplish
anything. Trying to figure out how a solitary ant’s mind works does not
sound like much of a challenge: it simply follows a small set of rules. Ants
succeed by collaborating and so do people.

As early as 1979, Douglas Hofstadter was suggesting in his inimitable
half-cipher prose that maybe the brain was like an ant colony. No single
neuron in a brain contains knowledge in itself, it is only through their
interaction that thinking can occur. As Hofstadter’s Anteater explains:

There is some degree of communication among the ants, just enough
to keep them from wandering off completely at random. By this mini-
mal communication they can remind each other that they are not
alone but are cooperating with teammates. It takes a large number of
ants, all reinforcing each other this way, to sustain any activity—such
as trail building—for any length of time. Now my very hazy under-
standing of the operation of brains leads me to believe that some-
thing similar pertains to the firing of neurons . . . (Hofstadter, 1979,
p. 316).

Hofstadter’s view of ants is in line with the contemporary apprecia-
tion for the emergence of complex dynamical systems from the inter-
actions of simple elements following simple rules. Cellular automaton
virtual ants by Christopher Langton and subsequent computational in-
vestigations of emergent patterns in antlike populations has resulted in a
kind of fascination with the intelligent accomplishments of large num-
bers of unintelligent agents. Mitchel Resnick has stated that “Indeed,
ants have become the unofficial mascots of the ALife community”
(Resnick, 1998, p. 59).

The year 1999 saw the release of the Santa Fe Institute volume enti-
tled Swarm Intelligence: From Natural to Artificial Systems (Bonabeau,
Dorigo, Theraulz, 1999), which builds a half-dozen systems for problem
solving based on the behaviors of swarms of insects. Eric Bonabeau,
Marco Dorigo, and Guy Theraulz have built upon E.O. Wilson’s early re-
search on the effects of pheromone communication in ant swarms, as pi-
oneered in the computational studies of Jean-Louis Deneubourg, to
show that the model of the humble ant can be adopted to solve some
kinds of combinatorial problems that were previously thought to be too
hard to attempt.
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In the introduction to that text, the authors note that the term
“swarm intelligence” was originally used to describe a particular para-
digm in robot research. They continue:

Using the expression “swarm intelligence” to describe only this work
seems unnecessarily restrictive: that is why we extend its definition to
include any attempt to design algorithms or distributed problem-
solving devices inspired by the collective behavior of insect colonies
and other animal societies (p. 7).

In fact, all their published models derive from the activities of the so-
cial insects. Our use of the term is even less restrictive than Bonabeau,
Dorigo, and Theraulz’. We note, for instance, that the term “swarm intel-
ligence” has been used in the field of semiotics to describe the kind of ir-
rational buzz of ideas in the mind that underlies the communication of
signs between two individuals. More to the point, we found this descrip-
tion of the concept of “swarm” in an early version of an FAQ document
from Santa Fe Institute about the Swarm simulation system:

We use the term “swarm” in a general sense to refer to any such
loosely structured collection of interacting agents. The classic exam-
ple of a swarm is a swarm of bees, but the metaphor of a swarm can be
extended to other systems with a similar architecture. An ant colony
can be thought of as a swarm whose individual agents are ants, a flock
of birds is a swarm whose agents are birds, traffic is a swarm of cars, a
crowd is a swarm of people, an immune system is a swarm of cells and
molecules, and an economy is a swarm of economic agents. Although
the notion of a swarm suggests an aspect of collective motion in
space, as in the swarm of a flock of birds, we are interested in all types
of collective behavior, not just spatial motion.

We agree with the SFI definition (forgiving their casual use of the term
“agents”) and explicitly add the possibility of escaping from physical
space, defining swarms as they might occur in high-dimensional cogni-
tive space, where collision is not a concern.

The shift in scientific perspectives over the past half-century has been
from considering the ant as an individual without dignity, locked in a ty-
rannical web of conformity, to the ant as a simple but powerful informa-
tion processor, to the metaphor of the individual ant as a component of a
brain, to the modern view that the ant colony, composed of many col-
laborating individuals, is itself a powerful information processor. Con-
temporary ants are individuals as individuals, rather than parts of

102 Chapter Three—On Our Nonexistence as Entities: The Social Organism



individuals, and their accomplishments are credited to their interindi-
vidual interactions.

Some tropical termites are able to build elaborate domed structures
that are begun as pillars; in the course of building, the pillars are tilted to-
ward one another until their tops touch and they form an arch. Con-
necting arches results in the typical dome. As it is frequently remarked
that the invention of the arch was a major milestone in the development
of the architecture of civilized man, we might wonder how in the world a
swarm of simple-minded termites could accomplish the feat. If we were
building an arch, we would start with a plan, that is, a central representa-
tion of the goal and the steps leading to it. Then, as the work would prob-
ably require more than one person (unless it was a very small arch), a
team of workers would be organized, with the architect or someone who
understands the plan supervising the laborers, telling them where to
put materials, controlling the timing of the ascension of the two pillars
and their meeting. We are so dependent on centralized control of com-
plex functions that it is sometimes impossible for us to understand how
the same task could be accomplished by a distributed, noncentralized
system.

It appears that the termites build a dome by taking some dirt in their
mouths, moistening it, and following these rules:

� Move in the direction of the strongest pheromone concentration.

� Deposit what you are carrying where the smell is strongest.

After some random movements searching for a relatively strong
pheromone field, the termites will have started a number of small pillars.
The pillars signify places where a greater number of termites have re-
cently passed, and thus the pheromone concentration is high there. The
pheromone dissipates with time, so in order for it to accumulate, the
number of termites must exceed some threshold; they must leave phero-
mones faster than the chemicals evaporate. This prevents the formation
of a great number of pillars, or of a wasteland strewn with little mouth-
fuls of dirt.

The ascension of the pillars results from an autocatalytic or positive
feedback cycle. The greater the number of termites depositing their
mouthfuls in a place, the more attractive it is to other termites. Auto-
catalysis is a significant aspect of many complex systems, enabling the
amplification of apparently trivial effects into significant ones. As ter-
mite pillars ascend and the termites become increasingly involved in de-
positing their loads, the pheromone concentration near the pillars
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increases. A termite approaching the area then detects the pheromone,
and as there are multiple pillars and the termite is steering toward the
highest concentration, it is likely to end up in the area between two pil-
lars. It is attracted toward both, and eventually chooses one or the other.
As it is approaching the pillar from the region in between, it is more
likely to climb up the side of the pillar that faces the other one. As a con-
sequence, deposits tend to be on the inner face of the pillars, and as each
builds up with more substance on the facing side, the higher it goes the
more it leans toward the other. The result is an arch.

Termite builders are one kind of self-organizing system. There is no
central control, the intention of the population is distributed through-
out its membership—and the members themselves are unaware of the
“plan” they are carrying out. Actors in the system follow simple rules,
and improbable structures emerge from lower-level activities, analogous
to the way gliders emerge from simple rules in a cellular automaton.

When insects work collaboratively there is no apparent symbolic
communication about the task. A social insect may possess a repertoire
of pheromones that amount to messages, but the content of the mes-
sage is hardly symbolic. The message content may be something like “an
angry ant was here,” or “somebody was building something here.”
Pheromone communications do not have an intended audience; they
are simply the output of gland secretion in response to a stimulus.

Much of the communication among social insects is accomplished
indirectly by a method that the entomologist P. P. Grassé (1959) has
called stigmergy. If members of a species, for instance, have an inbred re-
sponse to encountering a pheromone-drenched ball of mud, then any
bug that deposits such a ball is unintentionally sending a message to
any others that might pass by. Stigmergy is communication by altering
the state of the environment in a way that will affect the behaviors
of others for whom the environment is a stimulus. Holland and Beckers
distinguish between cue-based and sign-based stigmergy. In cue-based
stigmergy, the change in the environment simply provides a cue for the
behavior of other actors, while in sign-based stigmergy the environmen-
tal change actually sends a signal to other actors. Termite arch-building
contains both kinds of stigmergy, with pheromones providing signals
while the growing pillars provide cues.

Ant corpse-piling has been described as a cue-based stigmergic activ-
ity. When an ant dies in the nest, the other ants ignore it for the first few
days, until the body begins to decompose. The release of chemicals re-
lated to oleic acid stimulates a passing ant to pick up the body and carry
it out of the nest. Some species of ants actually organize cemeteries
where they deposit the corpses of their conspeciates. If dead bodies of
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these species are scattered randomly over an area, the survivors will
hurry around picking up the bodies, moving them, and dropping them
again, until soon all the corpses are arranged into a small number of dis-
tinct piles. The piles might form at the edges of an area or on a promi-
nence or other heterogeneous feature of the landscape.

Deneubourg and his colleagues (Deneubourg et al., 1991) have shown
that ant cemetery formation can be explained in terms of simple rules.
The essence of the rule set is that isolated items should be picked up and
dropped at some other location where more items of that type are pres-
ent. A similar algorithm appears to be able to explain larval sorting, in
which larvae are stored in the nest according to their size, with smaller
larvae near the center and large ones at the periphery, and also the for-
mation of piles of woodchips by termites. In the latter, termites may obey
the following rules:

� If you are not carrying a woodchip and you encounter one, pick
it up.

� If you are carrying a woodchip and you encounter another one, set
yours down.

Thus a woodchip that has been set down by a termite provides a
stigmergic cue for succeeding termites to set their woodchips down. If a
termite sets a chip down where another chip is, the new pile of two chips
becomes probabilistically more likely to be discovered by the next ter-
mite that comes past carrying a chip, since it’s bigger. Each additional
woodchip makes the pile more conspicuous, increasing its growth more
and more in an autocatalytic loop.

Optimizing with Simulated Ants: Computational
Swarm Intelligence

Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni (1996; Dorigo and
Gambardella, 1997) showed how a very simple pheromone-following
behavior could be used to optimize the traveling salesman problem.
Their “ant colony optimization” is based on the observation that ants
will find the shortest path around an obstacle separating their nest from
a target such as a piece of candy simmering on a summer sidewalk.

As ants move around they leave pheromone trails, which dissipate
over time and distance. The pheromone intensity at a spot, that is, the
number of pheromone molecules that a wandering ant might encounter,
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is higher either when ants have passed over the spot more recently or
when a greater number of ants have passed over the spot. Thus ants fol-
lowing pheromone trails will tend to congregate simply from the fact
that the pheromone density increases with each additional ant that fol-
lows the trail.

Dorigo and his colleagues capitalized on the fact that ants meander-
ing from the nest to the candy and back will return more quickly, and
thus will pass the same points more frequently, when following a shorter
path. Passing more frequently, they will lay down a denser pheromone
trail. As more ants pick up the strengthened trail, it becomes increasingly
stronger (see Figure 3.4). In their computer adaptation of these behav-
iors, Dorigo et al. let a population of “ants” search a traveling salesman
map stochastically, increasing the probability of following a connection
between two cities as a function of the number of other simulated ants
that had already followed that link. By exploitation of the positive feed-
back effect, that is, the strengthening of the trail with every additional
ant, this algorithm is able to solve quite complicated combinatorial
problems where the goal is to find a way to accomplish a task in the few-
est number of operations.

At the Santa Fe Institute and Los Alamos National Laboratory, Mark
Millonas and his colleagues have developed mathematical models of the
dynamics of swarms and collective intelligence, based on the example of
pheromone-sniffing, simple-minded ants (Millonas, 1993; Chialvo and
Millonas, 1995). Research on live ants has shown that when food is
placed at some distance from the nest, with two paths of unequal length
leading to it, they will end up with the swarm following the shorter path.
If a shorter path is introduced, though, for instance, if an obstacle is re-
moved, they are unable to switch to it. If both paths are of equal length,
the ants will choose one or the other. If two food sources are offered, with
one being a richer source than the other, a swarm of ants will choose the
richer source; if a richer source is offered after the choice has been made,
most species are unable to switch, but some species are able to change
their pattern to the better source. If two equal sources are offered, an ant
will choose one or the other arbitrarily.

Like Hofstadter, Millonas compares the communications network
within a swarm of ants to the highly interconnected architecture of
neurons in a brain. Both cases can be described in terms of three
characteristics:

� Their structure comprises a set of nodes and their
interconnections.
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� The states of node variables change dynamically over time.

� There is learning—changes in the strengths of the connections
among the nodes.

(This argument is based on a famous paper by Doyne Farmer (1991)—
another Santa Fe Institute habitué—depicting “The Rosetta Stone of
Connectionism.”) Millonas argues that the intelligence of an ant swarm
arises during phase transitions—the same transitions that Langton de-
scribed as defining “the edge of chaos.” The movements of ants are es-
sentially random as long as there is no systematic pheromone pattern;
activity is a function of two parameters, which are the strength of phero-
mones and the attractiveness of the pheromone to the ants. If the
pheromone distribution is random, or if the attraction of ants to the
pheromone is weak, then no pattern will form. On the other hand, if a
too-strong pheromone concentration is established, or if the attraction
of ants to the pheromone is very intense, then a suboptimal pattern may
emerge, as the ants crowd together in a sort of pointless conformity. At
the edge, though, at the very edge of chaos where the parameters are
tuned correctly, Millonas says, like a pencil balanced on its end that will
fall, but we don’t know which way it will fall, the ants will explore and
follow the pheromone signals, and wander from the swarm, and come
back to it, and eventually coalesce into a pattern that is, most of the time,
the shortest, most efficient path from here to there.

In these real and simulated examples of insect accomplishments, we
see optimization of various types, whether clustering items or finding
the shortest path through a landscape, with certain interesting charac-
teristics. None of these instances include global evaluation of the situa-
tion: an insect can only detect its immediate environment. Optimization
traditionally requires some method for evaluating the fitness of a solu-
tion, which seems to require that candidate solutions be compared
to some standard, which may be a desired goal state or the fitness of
other potential solutions. The bottom-up methods of the insect societies,
though, permit no evaluation—no ant knows how well the swarm is
doing. In general, the method of pheromone communication means
that a more successful path will be somewhat more attractive, with an
autocatalytic accumulation of pheromone resulting in the population’s
convergence on the most-fit behavior—all done at the local level.

In a 1992 presentation to the Workshop on Artificial Life, Mark
Millonas cited several “serious” scientific topics that could be illumi-
nated through the study of emergent swarm behaviors, then acknowl-
edged: “In the end perhaps the most pervasive appeal of swarms
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centers on a kind of emotional attractiveness of the subject . . . More than
a paradigm, swarms are almost, at times, an archetype” (Millonas, 1993,
p. 418). Our study, too, of swarm intelligence and collection adaptation
is motivated in part by the uninformed suspicion there is wisdom to be
gained from it, and by the feeling that there is something about the dis-
orderly interactions of dumb actors and their achievements that is just,
well, fascinating. It seems that there is something profound and mean-
ingful in these phenomena, something that transcends the compulsive
rationality imposed by our intellectual tradition. We are pulled toward
the study of these systems with hope that some good result will justify
the time spent.

Staying Together but Not Colliding: Flocks, Herds,
and Schools

Where ants move more or less randomly around their physical world,
some other social animals move about in more orderly ways. Many
species of fish, for instance, swim in schools that seem to take on an
emergent life of their own. A fish school appears to move as one, with
hundreds if not hundreds of thousands of fish changing direction, dart-
ing at what appears to be the same exact instant. In 1954, a Smithsonian
zoologist named Breder attempted to meet the interesting challenge of
contriving a mathematical model to describe the behavior of schooling
fishes.

Analyzing empirical biological data, Breder argued that the cohesive-
ness of a school is a function of the number of fish in the school, the dis-
tance between fish, and something he called the “potential” of each indi-
vidual, which varies with size, among other things. Breder showed that
the attraction of a school for a solitary fish (measured by placing a fish in
one side of a divided aquarium, with various numbers of fish in the other
side where they could be seen, and seeing how much the isolated fish
swam on the “social” half of its side) was described by the formula

c kN t=

where k and t are constants and N is the number of fish in the other tank.
In one of his examples, k = 0.355 and t = 0.818. The effect of having

an exponent, t, less than 1 is that the attractiveness of the group in-
creases, but the increase becomes less as the group increases in size (Fig-
ure 3.5). A larger school is more attractive than a smaller school, but the
impact of adding one more individual to the group is more pronounced
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in a smaller group. The difference between four and five members may be
the same, numerically, as the difference between ninety-nine and a hun-
dred, but the effect of adding one to a group of four is much greater in
terms of social attractiveness.

Breder’s conclusion is interesting indeed in light of a more recent the-
ory of human social behavior. Bibb Latané’s social impact theory, con-
ceived in the 1970s and still evolving, resulted from dozens of laboratory
and field experiments with human subjects (Latané, 1981). Latané finds
that the impact of a group on an individual is a function of the Strength,
Immediacy, and Number of sources of influence, that is, other people.
Strength is a kind of social influence variable, similar to status or persua-
siveness or “potential,” Immediacy is the inverse of distance, such that
Immediacy increases as distance decreases, and Number is simply the
number of people influencing the target individual.

Latané had found, for instance, that the size of the tip left by a group
of people in a restaurant is a function of the number of people sitting at
the table—the more people in a party, the larger the total amount but the
smaller the percentage each pays of the bill. The nervousness of partici-
pants in a college talent show was shown to be a function of the number
of people in the audience. In these cases and many more, the effect of the
number of sources of influence was found to fit a formula:

$i kN t=
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where $i is impact, N is the number of sources of influence, k and t are con-
stants, and t < 1. Thus, the impact of a group increases monotonically
with the size of the group, but the increase slows with group size—just as
it does in fish schools.

It may not be the most flattering self-image for us to view ourselves as
flocking, schooling conformists. But the literature of social psychology
since the 1930s consistently shows us to be, in spite of ourselves, herd-
ing creatures. Whenever people interact they become more similar, as
they influence and imitate one another, teach and learn from one an-
other, lead and follow one another. Norms and cultures, and, we would
say, minds, are the result. It is not the usual case that humans move
in synchronously choreographed swoops and dashes across the land-
scape, as fish and birds do; human physical behaviors are not flocklike
or schoollike, but the trajectories of human thoughts through high-
dimensional cognitive space just might be.

We are working toward a model that describes peoples’ thinking as a
social phenomenon. Thinking differs from the choreographed behaviors
of fish and birds in two major ways. First, thinking takes place in a space
of many more than three dimensions, as we have seen in our discussions
of graphs and matrices, high-dimensional analogues of language, and
neural nets. Second, when two minds converge on the same point in cog-
nitive space, we call it “agreement,” not “collision.”

A very influential simulation of bird flocking was published by Craig
Reynolds in 1987. Reynolds assumed that flocking birds were driven by
three local forces: collision avoidance, velocity matching, and flock cen-
tering. That is, “boids” (Reynolds’ name for his simulated birds)

� pull away before they crash into one another

� try to go about the same speed as their neighbors in the flock

� try to move toward the center of the flock as they perceive it

Implementing just these three rules, Reynolds’ programs show very real-
istic flocking behavior, with coherent clusters of boids whirling through
the three-dimensional simulated space, splitting to flock around obsta-
cles and rejoining again (see Figure 3.6). Reynolds has gone on to provide
animation of herds and flocks for movies, and his simple noncentralized
algorithm lies behind many animated cinematic sequences.

The biologist B. L. Partridge showed that fish seem to regulate their
schooling behavior using visual information and information from
the fish’s lateral line. Vision guides the “approach” or flock-centering
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tendency; blinded pollock swim farther from their neighbors than
do fish with vision. The lateral line, on the other hand, enables the
collision-avoiding “repulsive force.” Fish with their lateral lines removed
swam closer to neighbors than did normal fish. Fish that were either
blinded or had their lateral lines removed still schooled, but fish with
both sensory systems disabled did not maintain their position in the
school at all. Thus there is empirical support for a biological infrastruc-
ture corresponding to Reynolds’ simple rules, at least in fish.

In a classic 1971 paper called “Geometry for the selfish herd,” W. D.
Hamilton had proposed one explanation for the why of herding, school-
ing, and flocking behavior, a functional explanation showing what it
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accomplishes. These social congregations are seen more often in prey
than in predators. Hamilton noted that an animal at the edge of the herd
is more likely to be picked off by a predator. Thus the “selfish” behavior
of any member of the population would be to try to move as close to the
center of the herd as possible. The population-level effect of this re-
sponse, along with some simple rules to minimize collisions and other
conflicts, is the organized behavior seen in nature.

In his paper “Flocks, herds, and schools: A distributed behavioral
model,” Craig Reynolds (1987) had compared his model to a particle sys-
tem. Particle systems are a kind of computer graphics method that com-
prises large numbers of individual agents or objects, each having its own
behavior. Reynolds noted that boid behavior is more complicated than
the typical particle system—and less complicated than the behaviors of
real birds.

At about the same time, the early 1980s, in less widely cited but more
empirical research, University of Rhode Island biologist Frank Heppner
observed bird flocks, using a pair of movie cameras placed at 90-degree
angles, filming at three frames per second (Heppner and Grenander,
1990). Watching the movies one frame at a time, Heppner could distin-
guish some features of flocking that had previously not been understood.
For instance, he concluded that there was not, in fact, a leader to the
flock; any bird could lead a maneuver at any time. The flock maintained
a kind of dynamic equilibrium without any central control.

Heppner had also been experimenting with a computer program im-
plementing Conway’s Game of Life and noted that the spontaneous be-
haviors of gliders in that program bore a strong resemblance to the spon-
taneous order that arose in the bird flocks he was studying. He assembled
a small team including himself, applied mathematician Ulf Grenander,
and an undergraduate programmer named Daniel Potter, and they began
investigating the possibility that complex bird flock maneuvers could
emerge from programs of very simple rules. The result was a graphical
display of artificial bird flocks whose coordinated movements were star-
tlingly similar to the real thing.

The rules that Heppner and his colleagues implemented were some-
what similar to Reynolds’, but with some differences. Heppner too im-
plemented an “attractive force” rule, which attracted birds toward one
another unless they were too close, in which case they were repelled. Un-
like Reynolds’ boids, Heppner’s were attracted to a roost; the closer they
got to it, the stronger the attraction would become. Heppner’s birds
had a tendency to maintain a target velocity, and finally, birds were
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occasionally knocked off course by a random force, similar to a gust of
wind. Again, the result was a very believable, simple, decentralized simu-
lation of bird flock choreography.

Some of our own earliest experiments were derived from approxima-
tions of Reynolds/Heppner bird flocks; in fact, Heppner’s roost idea pro-
vided an inspiration that led us deep into the study of swarm intelligence
(Kennedy and Eberhart, 1995). In our very first experiments, populations
of “birds” flew in orderly flocking patterns. If birds could be programmed
to flock toward a roost, then how about having them look for something
like birdseed? It seems impossible that birds flying hundreds of feet in
the air could see something as tiny as seed on the ground—but they are
able to find it. A flock of birds might fly over a neighborhood watching
for signs of edibles—and importantly, those signs might come through
observing other birds eating or circling in on a target, or in seeing an-
other member of the flock turning back and descending toward some-
thing that it might have seen. These are social cues of a different order
from seeing the food substance itself, seeing somebody see something.

The flock does not know where the seed is, but responds to social sig-
nals by turning back, flying past the target, circling around, spiraling in
cautiously until the birds are sure they have found food in a safe place. In
one of our first publications on the topic of the particle swarm algorithm,
we called the function optimum a “cornfield vector,” suggesting that the
population members have a motivation to find the hidden point. It is
like finding something in a landscape where the searcher gets clues from
other searchers.

Most recently, physicists Toner and Tu (1999) published a mathemati-
cal analysis in a paper with the familiar-sounding title, “Flocks, herds,
and schools: A quantitative theory of flocking.” Their model analyzes the
collective movements of large numbers of self-propelled agents or organ-
isms. They note that flock simulations have several features in common.
First, a flock is made up of a large number of individuals attempting to
move in the same direction as their neighbors. Second, individuals
(these authors also call them “boids”) respond only to their nearer neigh-
bors. Third, stochastic noise—randomness—is introduced into the indi-
viduals’ movements, so that flocking is never perfect. Finally, “rotational
symmetry” is maintained, that is, the flock is equally likely to move in
any direction.

Toner and Tu assert that one of the most interesting things about
flocks is that they never attain equilibrium. The behavior of a flock re-
sembles a Type 4 cellular automaton, continuing in characteristic but
unpredictable patterns that extend for long periods of time. (Our particle
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swarms described later in the book seem to share this attribute with
flocks.)

In flocking simulations the important thing to simulate is coordi-
nated movement of the organisms, whether flocks, herds, or schools.
Some motives for studying such a topic include the desire to understand
biological aspects of social behavior and the wish to create interesting
and lucrative graphical effects. There is another, more pragmatic, reason
to learn about coordinating movements with simple decentralized rules,
and that is to design and develop robot societies.

Robot Societies

The stereotypical movie robot is an android with a voice-recognition in-
terface and a sardonic sense of humor. In fact the most common type of
robot is quite a bit less exotic than that, often built out of Legos, with a
couple of motors and some big cables that need to be held up by a gradu-
ate student who follows the robot around the room. It will be worth-
while for us to sidetrack for a moment and talk about robot intelligence,
since some of the most important work in swarms and swarm intelli-
gence is being conducted in that field.

In the early days of electronic computing, robots were a perfect labo-
ratory for the implementation of artificial intelligence, and the classic ro-
bots were based on the paradigm that has come to be known as GOFAI
(Good Old-Fashioned Artificial Intelligence), which is practically synon-
ymous with the symbol-processing paradigm. Robot intelligence was
presumed to operate—in fact, human intelligence was presumed to oper-
ate—through the manipulation of symbols. Presumably, the same rules
of logic should operate on any set of symbols, no matter what the subject
domain. Generally, a robot or human mind was presumed to contain a
central executive processor; this was presumed to include a kind of infer-
ence engine that operates on data that have been prepared by a perceptual
system, and the executive’s output was sent to effectors, or motor de-
vices, which were able to act upon the world.

Given the assumptions of cognitive science and the profound vanity
of humans generally, it is not surprising that scientists would assign the
will (central executive) to a central role in an artificial mind and imple-
ment a system of information processing that followed directly from the
classical academic philosophies of the universities, and before that, from
the pronouncements of the Church. The early researchers had no way of
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knowing that scientific psychology would fail to support their intuitions
about human nature and mind—remember that, before the “cognitive
revolution” of the 1960s and 1970s, almost all scientific psychology was
behavioristic, dismissing everything mental as unworthy of scientific
study. Thus there was not a well-developed understanding of things
cognitive.

In robotics, it turned out that the symbol-processing approach just
didn’t work out very well. As the robot’s world became more compli-
cated, the robot’s mind became more complicated; it had more symbols
to retain. Worse, maintenance of complicated chains of logic meant that
it had to figure out that when one fact changes, other facts have to
change, too. It is not trivial to deduce which ones. For instance, if you are
told that someone has just turned out the lights, you know immediately
that they can’t see where they’re going. A symbol processor has to figure
it out. GOFAI robots might stand in one spot for 10 minutes contemplat-
ing their next step, trying to figure out whether they would bump into
something.

In a highly readable paper called “Elephants don’t play chess,” MIT
researcher Rodney Brooks (1991) proposed an alternative to GOFAI (a
tradition with deep roots at MIT, by the way). Brooks argued that sym-
bols must be grounded in a physical reality if they are to have any mean-
ing. Brooks’ view solved some computational problems that had made
real-world robotics intractable, and the successful results seen in Brooks’
laboratory lent support to his conjecture.

Brooks’ robots’ minds are organized according to a principle called
the subsumption architecture. A subsumption architecture is built from the
bottom up; simple robot behaviors are developed, and then these are
fitted loosely together. They remain independent of one another, each
module doing its specific part without consulting the other. For instance,
Brooks’ soda-can-finding robot, Herbert, has a collision avoidance mod-
ule that sends a signal to turn it when it comes too close to something it
might bump into, and a can-pick-up module to pick up the cans when
it finds them. Herbert can pick up cans whether it is or is not avoiding
anything, and can avoid things without picking up cans, or do neither,
or do both. The modules are independent. Further, both modules are
grounded in the world; that is, avoidance happens when there is some-
thing in the world to avoid, and picking up happens when a can is de-
tected in the world. There is nothing like a central executive control.

The quotable Brooks has said, “The world is its own best model. It is
always exactly up to date. It always contains every detail there is to be
known.” Rather than maintaining a symbolic representation of the
world, Brooks’ robots simply respond to the world as it presents itself to
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their sensors. The effect of this is that computation can be reduced to a
tiny fraction, perhaps 1 or 2 percent, of what was required by previous
robots, programs can be smaller, storage and memory requirements are
reduced, and as a result smaller, smarter robots can be built more
cheaply.

Brooks’ robots are able to navigate messy scenes. For instance, Her-
bert roams around cluttered laboratory offices looking for empty cans,
which it picks up and throws away. No set of rules could prepare a sym-
bol processor for all the kinds of complexities that might exist there,
for instance, tipped-over chairs, wadded-up papers—tipped-over gradu-
ate students, for that matter. The bottom-up subsumption architecture,
though, is able to adapt to whatever conditions it finds.

Tom and Jerry were two identical robots that were programmed to in-
teract with one another. They were given an urge to wander about, that
is, to perform random actions, a repulsive force that kept them from
bumping into things, and were programmed as well with an attractive
force, to make them move toward distant things. They also had a motion
detector sense that allowed them to detect moving objects—most likely
one another—and follow them: a possible genesis of robot sociality.

Construction of subsumption architectures is bottom up: it is incre-
mental; small parts are constructed and then fitted together in a way that
Brooks likens to evolutionary change. Communication among various
modules is minimal, with tight coupling between modules and the
world. The hallmark of such an intelligence is that it is decentralized, a
theme that should be getting familiar by now. In the subsumption archi-
tecture, behaviors are separate, each one defined to accomplish one
small, distinct goal, yet someone watching the robot feels that there is an
intentional unity about the way it moves. Wheels are programmed to
stop when the robot approaches a possible soda can; arms are pro-
grammed to reach up when the wheels stop turning; a hand is pro-
grammed to grasp when the light beam between fingers and thumb is
broken—an observer sees the robot go to the table, reach out, and pick
up a can. Oddly, goal-directed behavior emerges, or so it seems, from a se-
quence of fixed action patterns linking perceptions to actions. Pushes
look like pulls through the prism of our biological brains.

Brooks’ model brings up a new facet of this swarm business. We note
that the MIT robots are autonomous: they are self-contained and self-suf-
ficient—with an occasional human helping hand. But inside the robot’s
mind there is something of a swarm of modules, you might say, a multi-
tude of subroutines that perform particular functions.

Marvin Minsky, another MIT veteran, calls such a cognitive modular-
ity a “Society of Mind” (Minsky, 1985). Unfortunately, where Brooks
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makes it clear that he is talking about robots, man-made minds, and sim-
ple ones at that, Minsky takes the model of AI modularity and tries to use
it to explain the workings of the human mind. Minsky’s coffee-table
book, Society of Mind, contains 270 essays, each one packaged as a pearl of
wisdom or aphoristic reading on a psychological or cognitive topic. The
theme of the book is that mind is composed of a “society” of specialized
functions or “agents” that operate more or less independently of one an-
other. Unfortunately, the subsumption approach that is so successful
with robots has no basis in psychology—though there is evidence of
modularity in the organization of the brain, the metaphor of a society of
cognitive agents is exactly the kind of reified fiction that scientific psy-
chology rejects. There is no homunculus inside the head, never mind
teams of homunculi.

Near the end of his book, Minsky summarizes with the statement:
“Minds are simply what brains do.” The statement is concise and super-
ficially plausible. It seems to do away with the mind-body problem in
one slicing phrase and reduces much of Western philosophy to dry chat-
tering. But the statement is obviously incorrect. There is doubtless a
relation between brains and minds, but there are very many brains
that don’t do minds at all, for instance, bird brains, and bug brains, and
sleeping brains, and fetus brains, and damaged brains—dead brains
definitely don’t do minds. There are also lots of things that brains do
that are not mind: having seizures, controlling digestion, growing, me-
tabolizing oxygen, hemorrhaging. Further, there doesn’t seem to be any
reason that minds require brains—we can imagine aliens having minds,
and there is a strong enough case for computers having minds, at least
potentially, that Minsky’s statement just can’t be true in an absolute
sense.

Even worse, the statement—and the cognitivistic philosophy that
supports it—assumes that a brain by itself, we’ll even grant that it is a
healthy human brain, would develop into a mind, that it would become
conscious and learn to think (which we take to be minimum require-
ments for something to be called a “mind.”). This ignores all social sci-
ence research for the past hundred years. In order for a brain to become
mental, it needs to have interaction with other minds. A fetal brain
grown to adulthood in a vat containing nutritious fluids would never ac-
quire the qualities of mind. If it were transplanted into a Frankensteinian
body, it would be unable to reason, remember, categorize, communicate,
or do any of the other things that a minimal mind should be able to do.
Feral humans, that is, humans who have grown up in the wild, have
never been known to show signs of having anything like a mind—it is
not sufficient to have perceptual stimuli; social ones are necessary. The
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relation between mind and society is unquestionable, but is ignored by
Minsky’s oversimplifying, where the “society” is moved into the cavern
of the skull.

We would have thought the issue was more or less settled in the
research debate between Ernest Hilgard, a cognitivist, and Nicholas
Spanos, a social psychologist, in a fascinating series of investigations into
the nature of hypnotic responding, multiple personalities, and other
forms of psychopathology. Hilgard’s neodissociation theory (e.g., 1979,
1977) postulated autonomous cognitive processes inside the mind,
which under certain circumstances separated and acted independently
from the self. For instance, in hypnosis, cognitive subsystems could
come under the control of a hypnotist. Hilgard’s mechanistic model re-
sembled Minsky’s society of mind, with agentic substructures expressing
autonomous volition beyond the reach of the individual’s self. Spanos
(e.g., 1982, 1986), on the other hand, argued that individuals were sim-
ply acting in ways they believed were appropriate for situations labeled
“hypnosis,” “multiple personality,” and so on. Anyone can act like they
have multiple personalities, but only a few people convince themselves.
According to Spanos’ sociocognitive theory, hypnosis and certain forms
of pathological responding were manifestations of normal behavior; no
internal systems or “agents” were invoked to explain behaviors. Hypno-
sis, in this view, is something the person does—not something that hap-
pens to him. Where Hilgard’s experiments would seem to show that a
hypnotist could communicate with different autonomous subsystems of
the hypnotized person, for instance, a “hidden observer” within the sub-
ject, sealed off from the rest of the cognitive system, Spanos would repli-
cate the experiments under slightly different conditions to show that the
hypnotized individuals were just doing what they thought they should
be doing. The neodissociationists’ internal special processes were shown
to be fictitious, theoretical constructions with no basis in reality. Again
and again Hilgard and his colleagues attempted to prove the existence of
cognitive substructures, and repeatedly Spanos’ case for strategic role
enactment prevailed. Nothing is gained in thinking of the mind as a
“society” of interacting agents.

There are some differences between multiagent systems such as the
subsumption architecture and swarms such as are being described here.
In swarm intelligence the global behavior of the swarm is an emergent ef-
fect of the local interactions of swarm members; in a system of multiple
autonomous agents, however, the system’s behavior is more nearly a sum
of the agent’s contributions. The effect may strike a human observer as
being surprisingly well choreographed, as if the robot were pursuing a
goal, but that is only a matter of attribution by the observer. In fact the
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behaviors are exactly what they have been programmed to be, and the
cause of the surprise is anthrocentrism, not emergence. Further, individ-
uals in a swarm are usually relatively homogeneous, while “society of
mind” or subsumption modules are assigned to specialized tasks. One
ant is the same as the next; one bee does pretty much the same thing as
the next bee. Grasping is very different from looking, which is different
from rolling.

Rodney Brooks has expressed the opinion that robots will continue to
get smaller and smaller; indeed the simplicity of the subsumption archi-
tecture enables such a miniaturization. For instance, he says, imagine a
colony of “gnat robots,” living in your television, that come out when
the set is off and dust the screen. Indeed, the stage is set for such develop-
ments; it appears likely, though, that the miniature robots of the future
will probably not be seen as autonomous agents, each one fully empow-
ered to accomplish whole tasks. The microrobots of the future will be
swarms.

On an even smaller scale are the nanotechnology robot swarms envi-
sioned and described by Kurzweil (1999). Large assemblies of the constit-
uent nanomachines will be able to create any desired environment. One
example of nanorobot swarms is described by Hall (1994, 1995), in
which each nanorobot, called a Foglet, is a cell-sized device with 12 arms
pointing every which way, each with a gripper. A large assemblage of
these devices can not only cooperate to form large structures, but also
form distributed intelligence. But let’s come back to the present for the
moment.

Toshio Fukuda’s laboratory in Nagoya, Japan, is a day-and-night bus-
tle of graduate students, postdocs, assistant professors, and engineers,
planning, designing, and building robots of many types. For Honda Cor-
poration, Fukuda has built a life-size android robot with two legs, two
arms, a trunk, and a head, balancing and walking with a humanlike gait.
If you shove this robot backwards, it will flail its arms and catch its bal-
ance just like a person would. It’s a lucky thing, too, since it weighs
nearly 600 pounds. Fukuda’s lab also produces robotic gibbons, two me-
chanical arms and the trunk of a body; a gibbon is able to train itself
to swing from limb to limb in an artificial jungle with both overhanded
and underhanded brachiation movements. When a gibbon’s hand is
knocked from its branch, the robot swings incrementally higher and
higher until it can reach the branch again—just as a real gibbon or mon-
key would do. In lectures, Fukuda likes to show a video of a gibbon in a
jungle setting and say, “That’s not a robot, that’s a real monkey.” In the
next scene a robotic gibbon is depicted, with uncanny resemblance to
the live one. Fukuda says, “That’s a robot” (Fukuda, 1998).
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Fukuda’s lab is developing robot swarms. Where Brooks’ subsump-
tion methodology took the cognitive executive control out of the pic-
ture, decentralizing the individual robot’s behavior, Fukuda’s robots re-
place the individual’s control with reflex and reactive influence of one
robot by another. These decentralized systems have the advantages that
the task load can be distributed among a number of workers, the design
of each individual can be much simpler than the design of a fully auton-
omous robot, and the processor required—and the code that runs on it—
can be small and inexpensive. Further, individuals are exchangeable. We
think back to 1994 when the NASA robot named Dante II ambled several
hundred feet down into the inferno of Mt. Spurr, a violent Alaskan vol-
cano, to measure gases that were being released from the bowels of the
earth. The 1,700-pound Dante II toppled into those self-same bowels and
would now be just an expensive piece of molten litter if helicopters bear-
ing earthlings had not saved it—for instance, if the accident had hap-
pened on another planet, which was what Dante was being developed
for. If, instead, a swarm of cheap robots had been sent into the crater, per-
haps a few would have been lost, but the mission could have continued
and succeeded. (Dante II was named after Dante I, whose tether snapped
only 21 feet down into Mount Erebus in 1993—another potentially ex-
pensive loss.)

Just as knowledge is distributed through the connections of a neural
network, so cellular robots, as they are called, might be able to encode
representations through their population, communicating as they in-
vestigate diverse regions of the landscape—a real, three-dimensional
landscape this time. The concept of cellular robotics, as Fukuda tells it, is
based on the concepts found in E. O. Wilson’s research on insect socie-
ties, where global intelligence emerges from the local interactions of
individually unintelligent beings. Researchers R. G. Smith and R. Davis
have described two general kinds of cooperation that might take place
when such a population tries to solve a problem. Task sharing occurs
when individuals share the computational load for performing the
subtasks required to solve the problem, while result sharing comprises a
form of cooperation in which the individuals share the results of their
individual tasks. Fukuda and his colleagues argue that both types of co-
operation are probably necessary for societies of real robots to solve prob-
lems in the real world.

Robots are different from pure software agents in one obvious but
important respect: they must follow the laws of physics in the three-
dimensional world. They have to deal with collisions somehow; the lo-
comotion of cellular robots in physical space in most implementations is
programmed as some variation on Reynolds’ three-rule boids algorithm,
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where individuals are attracted to the group, repulsed by too-near neigh-
bors, and attempt to match velocities with neighbors.

For research purposes, it is certainly less expensive to write a program
that displays pictures of a population of robots on a computer screen
than to make real robots, especially when there are a great number of
them. Some of Fukuda’s studies in self-organizing societies of robots are
in fact implemented with software robots; by programming appropriate
physics into their simulations, researchers can get the bugs out of their
robots before the cost gets high.

At Georgia Tech, Jennifer Hodgins and her colleagues experiment
with software robots, programmed with full simulated real-world phys-
ics (Brogan and Hodgins, 1997; Hodgins and Brogan, 1994) . Their stan-
dard simulated robot, for some reason, is a one-legged hopping robot,
something like a bowling-ball/pogo-stick combo. The simulated robot
moves by leaning and hopping. The steeper it leans the farther it hops.

Hodgins’ algorithm for group behavior has two parts: a perception
model and a placement algorithm. The perception model lets the robot
scan its simulated environment. For instance, if there are, as in one of her
reports, 105 robots, and each one needs to avoid colliding with its neigh-
bors, then they must be able to tell who is nearby. In a simulation this
means the program has to loop through each of the robots one at a time,
and for each one calculate the distance to all of the others, in order to de-
termine which ones are nearest—a total of 1052 , or 11,025, calculations
at each time step. This has been called the problem of N-squared complex-
ity, and it is computationally very expensive; the movements of the ro-
bots will be slowed as the computer is busy calculating neighborhoods.
In fact this is a good reason for Brooks to say that the world is its own best
model. While a computer has to work very hard to tell individual agents
what is around them, an embodied agent only has to sense what looms
large, or sounds loud, or produces a fast echo, letting the world do its
own computation. Hodgins uses some heuristics to reduce the number of
calculations required, and she does report that on a powerful Silicon
Graphics computer the simulations go faster than real time—so the prob-
lem is not technologically insurmountable.

The placement algorithm calculates a desired velocity, based on the
positions and velocities of nearby neighbors. Hodgins’ one-legged hop-
pers are generally able to avoid running into one another, but she reports
that they do sometimes collide and are sometimes unable to miss obsta-
cles in their paths. Hodgins has conducted similar experiments with
“point masses,” that is, populations of particles with no physical proper-
ties, and reports that they are more successful at coordinating their
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movements. This might be because the hopping of one-legged robots
introduces somewhat erratic trajectories that are hard to coordinate.
Hodgins and her colleagues have also run populations of simulated bicy-
cle riders, including in their programs all the physical aspects of balanc-
ing, elasticity of objects, friction, and so on. The human rider is modeled
as a rigid body of 15 segments with movable joints, and the bicycle is
likewise realistic.

Kerstin Dautenhahn (1998, 1999), a German researcher now in the
UK, has been conducting an intensive program of investigation into
many aspects of socially intelligent computational entities, including ro-
bots, virtual robots, and lifelike software agents. Her robots interact with
humans and with one another, often learning and adapting during the
course of the social interaction. Dautenhahn concludes that embodiment
is central to social behavior and to intelligence generally. Her research is
centered around a set of hypotheses that really amount to a manifesto
(Dautenhahn, 1999):

1. Life and intelligence only develop inside a body,

2. which is adapted to the environment that the agent is living in.

3. Intelligence can only be studied with a complete system, embed-
ded and coupled with its environment.

4. Intelligence is linked to a social context. All intelligent agents are
social beings.

She further asserts that social robotics can be characterized by these
statements (Dautenhahn, 1999):

1. Agents are embodied.

2. Agents are individuals, part of a heterogeneous group (the mem-
bers are not identical but have individual features, like different
sensors, different shapes and mechanics, etc.).

3. Agents can recognize and interact with each other and engage
in social interactions as a prerequisite to developing social
relationships.

4. Agents have “histories”; they perceive and interpret the world in
terms of their own experiences.

5. Agents can explicitly communicate with each other. Communica-
tion is grounded in imitation and interactions between agents;
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meaning is transferred between two agents by sharing the same
context.

6. The individual agent contributes to the dynamics of the whole
group (society) as well as the society contributing to the
individual.

Dautenhahn allows that the term “agent” can be used to refer to com-
putational, mechanical, or biological entities—as long as they have some
degree of autonomy and can interact with their environment. Robotic
and biological agents of course do have a physical body and are embed-
ded in an environment that they can interact with, but what about soft-
ware agents? Of course it is possible to computationally simulate an envi-
ronment and some corporeal structure, and if the simulation is thorough
and precise, then, as with other simulations, the modeled events might
perfectly well mimic real physical events. But isn’t this cheating? If we
have defined our territory in such a way that having a body is a necessary
part of it—well, does a simulated body count? Are function inputs and
outputs the same as perceptions and motor activities? Dautenhahn asks
the questions and proposes an answer: simulation allows experimenta-
tion with alternative embodiments. What aspects of the physics of the
real world are necessary for the production of intelligent behavior? What
if we stripped out some qualities—for instance, what if collisions were al-
lowed, and beings could interpenetrate? What if movement was allowed
in three or four or more dimensions? These kinds of questions can only
be answered in experimentation with simulated beings.

Dautenhahn has proposed that social intelligence be defined as “the
individual’s capability to develop and manage relationships between in-
dividualized, autobiographic agents which, by means of communica-
tion, build up shared social interaction structures which help to integrate
and manage the individual’s basic (‘selfish’) interests in relationship to
the interests of the social system at the next higher level.” She contrasts
this kind of social intelligence with swarm intelligence, in particular the
kinds of work described above with insect behavior, in which individuals
tend to be more or less the same and interactions among them are primi-
tive. She explains that nature has produced two kinds of social models,
which she calls “anonymous” and “individualized” societies. Social in-
sects do not keep track of one another as individuals, but only as group
members, while members of individualized societies will search for a
missing member.

As researchers in the field of robotics search for ways to create a social
milieu among their man-made hardware agents, they are forced to work
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within the constraints of the three-dimensional physical world. The
most important communications have to do with the individual agents’
relative positions in space and coordination of movements. When we
think of mental life in a social context, though, we find that, while some
of our communications and thoughts have to do with coordination of
movements in physical space, a preponderance of them have to do with
seeking agreement on beliefs and attitudes. Agreement means that two
individuals occupy the same point in a cognitive space; obviously colli-
sion is not an issue here, but something to be desired.

Shallow Understanding

The cognitivistic view of mind assumes that social interaction is a kind of
interface between persons and that the important information process-
ing occurs inside the participants. Though there has been a considerable
amount of research on natural language processing, this research has
mostly focused on development of interfaces that would allow users to
communicate with the computer in a natural way, without needing to
rely on precise and arbitrary commands and hard-to-comprehend out-
puts. The “deep” processing is performed through logical operations
on symbolic representations in the computer’s native mode. A user’s in-
puts are translated into commands to the operating system, and then
again into binary machine language: zeroes and ones. A message is inter-
preted by the receiver according to its own inner “deep” structures and
constraints.

An interesting minor tradition in artificial intelligence shows the po-
tential, though, for a “shallow” view of language processing and interac-
tion between humans and computers. Chatterbots are programs whose
specialty is real-time verbal interaction with human users. Some chatter-
bots are connected to knowledge sources such as databases on particular
topics, but their real strength, what makes them different from any other
database-querying program, is their ability to deliver natural-sounding
responses to questions and conversational comments. The most com-
monly seen chatterbot application is implemented in a chat room or
MUD environment, where the bot might show newcomers around, an-
swer questions and provide information, strike up conversations with
people, or make a general nuisance of itself.

Recall that the Turing test defined computer intelligence in terms of
social interaction; a computer that could interact with a human in such a
manner that the user could not tell whether it was a machine or a person
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was considered to be able to think, according to Turing. This classic
definition conspicuously fails to mention aspects of “deep processing,”
but rather focuses on lifelike, anthropomorphic communication. We
suspect that this was a profoundly insightful move on Turing’s part. It is
part of our positive self-image, especially for us intellectual types who
play with sophisticated toys, to see our minds, our understanding of the
world, as something deep, mysterious, profound. Computer programs
that process complex databases of information, drawing profound con-
clusions, proving theorems, finding logical contradictions in convoluted
inferential arguments—these seem “deep.” Programs that can make
small talk and silly jokes do not seem deep; we have heard them referred
to as “shallow AI.” They are also a lot harder to write.

The original chatterbot was ELIZA, a famous psychoanalysis program
described in a 1967 paper by Joseph Weizenbaum (Weizenbaum, 1967,
1976). Named after Eliza Doolittle from the musical My Fair Lady, ELIZA
was intended to model the behavior of a Rogerian therapist interacting
with a client. Carl Rogers’ “client-centered” method of therapy worked
by forming an empathic bond between client and therapist through un-
conditional acceptance of the client’s views. The therapist was not sup-
posed to offer his or her own opinions, but rather encouraged clients to
express their feelings and thoughts freely. An important tactic for the
therapist was to reflect or rephrase the client’s statements. For instance, if
the client says, “I can’t stand my kids,” the therapist might respond,
“You say you can’t stand your children?” Occasionally the therapist
guides the discussion by asking the client to elaborate, but the whole
point is to talk about what the client wants to talk about.

In programming ELIZA, Weizenbaum capitalized on the nondirected
nature of Rogerian therapy. ELIZA does not offer much in the way of
comment or opinion or information, but does zero in on psychologically
relevant words and draws the client to explain further. She might change
the wording of a sentence around or turn statements into questions, but
there is no attempt anywhere in the program to “understand” what the
user is saying—there is no “deep” processing of information, only shal-
low processing of the surface structure of language.

In fact, most of what ELIZA does is scan the input text string for key
words and then look up her canned response to those words. If it is easily
possible to invert a sentence, to turn a statement into a question, or a
question into a statement, then she will do that. For instance, one LISP
version of ELIZA has a rule written as

(((?* ?x) my mother (?* ?y))
(Who else in your family ?y))
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This rule looks to see if the user’s input has the text string “my mother”
in it. Whatever is in the sentence before the target string is assigned to
the variable x, and whatever comes after it is assigned to y. ELIZA then re-
plies with a question that begins with “Who else in your family” and
ends with whatever was just assigned to y. For instance, if the user types,
“My mother was a wild-eyed Gypsy dancer,” the program will respond
with, “Who else in your family was a wild-eyed Gypsy dancer?” Thus the
interaction is purely, simply, absolutely, and unapologetically super-
ficial. ELIZA makes no pretense of understanding the user’s input, yet her
responses are, a great deal of the time, perfectly appropriate. The pro-
gram itself is only a hundred or so lines of code, with another hundred
lines in a data set of responses and targets to match.

The Loebner Prize is a monetary award given annually to the designer
of a computer program that best performs in a Turing test. A bronze
medal and $2,000 are awarded to the “most human” computer, based
on the ratings of a panel of judges. Multimillionaire Hugh Loebner
has promised an award of $100,000 and a gold medal to the designer
of a computer program whose responses are indistinguishable from a
human’s.

Judges sit at a computer and interact with the programs through a
keyboard, asking it questions, giving it information, and freely probing
its ability to respond in a humanlike way to their inputs. Though there is
some complaining about the procedure, for instance, that no program
could have sufficient knowledge about every kind of thing a judge could
ask, it does turn out that some of the programs produce a believable in-
teraction script.

The winner of both the 1998 and 1999 contests was a program called
“Albert,” produced by a programmer in northern Georgia named Robby
Garner. Albert is an impudent character who convinces the user he is hu-
man through sheer personality. If there is a lull in the conversation, Al-
bert will throw out something, like, “Have you seen any good movies
lately?” Albert can be programmed with an encyclopedia of knowledge
that can be used to answer users’ questions. He also keeps track of previ-
ous information the user has entered; for instance, he never seems to for-
get a name.

Here is a snippet of conversation about Star Trek that Albert had with a
judge in the competition:

Judge05: What is the Cage?

Program: The United Federation of Planets.

Judge05: No it isn’t.
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Program: Yes it is.

Judge05: No it’s not.

Program: Oh, okay.

Judge05: Stop arguing.

Program: I’m not arguing.

Judge05: Who is your favorite character?

Program: I think Spock is my favorite.

Judge05: Why do you like Spock so much?

Program: He is just so cool.

Judge05: Do you like Scotty?

Program: Yes. He’s always there when you need him.

Judge05: What does Scotty say?

Program: I believe he likes scotch and maybe brandy on occasion.

Judge05: What is Scotty’s job?

Program: You’re kidding, right?

As you can see, Albert’s ability to seem human comes largely from his
skill at changing the subject and making disingenuous comments in
place of following the train of a conversation that has veered outside his
realm of knowledge.

This question of deep understanding versus superficial reacting is a
tough one. In trying to measure understanding, we are simply sure to
fail. Except under extraordinarily confusing circumstances, any time you
ask someone if they understand what is happening they will say yes, they
do. Even if it is proven that they had an entirely opposite interpretation
of the context from everyone else, they will have had some interpreta-
tion, and to them that constituted “understanding.” Imagine if, to ask
whether a computer program understands us, we just programmed it to
answer “Yes” to the question, “Do you understand?” That would very
well mirror the situation as it stands with humans. (Without throwing in
our two bits about Searle’s Chinese Room, we can suggest that most peo-
ple don’t really know what’s going on, most of the time.)

Harvard psychologist Ellen Langer (1989) has shown, in a large num-
ber of informative experiments, that a great amount of human behavior
results from mindless processing of superficial information—we really
can’t think deeply about everything that happens to us. And even when
we do, we often seem to apply socially sanitized methods of processing
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information. Psychologists have had a very hard time finding examples
of real logic being used in human cognition.

We seem here to be arguing in favor of stupidity. Of course that’s not
the point. The point is that much thinking might not be best character-
ized as “deep” information processing. Perhaps it is better thought of as a
relatively shallow process of imagined social interactions. From this
view, the power of human intellect will not be found hidden away in the
mystical recesses of the brain, but rather should be sought in the open, in
the links between people.

Agency

What is an agent? We have seen some examples, for instance, in Minsky’s
societies of agents, Hodgins’ bowling-ball/pogo-stick simulated robots,
and chatterbots. Some have argued that software agents are simply func-
tions in a computer program, or even computer programs themselves,
and that is indeed literally true—they are that. But the idea of an agent,
especially an autonomous agent or an intelligent agent, supposes some-
thing more; it supposes that there is something agentic about the pro-
gram. It seems to have something like a will, or an ability to make judg-
ments or decisions; it’s able to do things—and not just what it’s told,
either.

Stan Franklin and Art Graesser (1996) of the University of Memphis
have provided a taxonomy of autonomous agents as a way of under-
standing what is—and what is not—an “agent.” They ask how an agent
differs from other computer programs, and after sifting through all the
discussions on the topic, they conclude, “An autonomous agent is a sys-
tem situated within and a part of an environment that senses that envi-
ronment and acts on it, over time, in pursuit of its own agenda and so as
to effect what it senses in the future” (Franklin and Graesser, 1996). The
most interesting thing to us about autonomous agents is the tendency
we have to anthropomorphize their behavior, to ascribe such things as
“sensation,” “action,” “understanding,” and even “agendas” to them. In
writing autonomous agent programs, developers attempt to capture
some of the attributes that make a human useful, and in so doing they
necessarily build on a foundation of their own preconceptions about
what people are, how they work, what motivates them.

Social psychologists have long studied questions about the attribu-
tion of causality, especially distinguishing between internal and external
causes, that is, whether a behavior was caused by something about the
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person or about the situation, and between stable and unstable causes,
mainly between dispositional traits of a person and short-lived responses
to situations. Causal agency, intention, free will, consciousness—these
are characteristics that are attributed to persons, they are part of our ex-
planation of the world, but can never be demonstrated to exist in any
real sense.

From the social science viewpoint, the self is theorized to arise from
the individual’s participation in a social milieu (James, 1892; Cooley,
1902; Mead, 1934; Goffman, 1959; Baumeister, 1982; Schlenker, 1982).
Constructing an identity requires believing our own explanations for
what has caused us to act the way we have, and requires us to construct a
model of the world that is believable and that justifies our behavior or
casts it in a positive light.

In light of chatterbots and autonomous agents, we can consider hu-
man thought and interaction from the perspective of role theory, where
the individual’s objective is positive self-presentation, and the function
of covert information processing is to support that presentation. From
the role-theoretic view, the individual is concerned mainly with the in-
terface between self and other. Roles provide us a way to interpret inter-
personal actions. Let’s say, for instance, that a cognitive psychologist
conducts a memory experiment with a sophomore student. From the
second she walks in the door, the student is trying to figure out what the
experiment is really about and what she can do to make a good impres-
sion. She then grants the experimenter’s request that she look at a series
of words on the computer monitor, and makes every effort to commit
them to memory, assuming that she is expected to do this by repeating
them silently to herself, over and over again. When the experimenter
asks her to recall the words, she wonders whether she should give them
back in order—or would that be too obvious and boring? If she wants to
make a good impression on the experimenter she will do her best to tell
him what words she saw. Thus, the researcher (who is working on a paper
with the preliminary title “Proactive interference effects of abstract and
concrete words in implicit memory”) is measuring the extent to which
the participant will comply with his expectations—the strength of the
connection between the two of them. According to the role-playing per-
spective, cognitive mechanisms are only useful as they serve the individ-
ual’s self-presentation and self-identity. The role-theoretical perspective
would predict that individuals retrieve and report different information
depending on who makes the request, and in fact that is what is seen—
schemata are primed by context.

According to neuroscientist Leslie Brothers (1997), evidence about
the evolution of language suggests that it may have come to us as an
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extension of grooming behaviors seen in primates. Picking parasites
from one another’s fur is a very important social activity in most species
of primates, allowing them to show affection and respect, apologize for
aggression, and strengthen alliances. Though grooming confers some
small survival advantage by getting rid of parasites, this advantage
clearly does not justify the amount of time spent at it. The same can be
said for human conversation: the amount of information conveyed in
conversation rarely justifies the amount of time people spend talking
with one another. The primary purpose of both grooming and language
is to establish and maintain social relationships. We share verbiage with
others as a display of respect and affection. Our perspective in this book
places interpersonal activities in the center of human affairs, not at the
periphery.

Summary

We have seen many ways in which individuals interacting according to
simple local rules can produce complex and adaptive social patterns of
behaviors. Physical constraints limit certain kinds of coordinated behav-
iors, in particular those that require collision avoidance, and in many
systems it is adaptation to physical constraints that results in the inter-
esting behavior. For instance, flocking and schooling, those remarkable
group dynamisms, result when a repulsive force is added to the force that
attracts individuals toward the center of the aggregation. The repulsive
force (so-called, of course it is not a force but a behavioral disposition) is
simply an adjustment to prevent collisions, but its inclusion in the tra-
jectory algorithm results in a surprising emergent display of distributed
choreography.

Schools, flocks, and herds benefit from the aggregation of individuals,
but the advantage of the coordinated movement is mainly that it mini-
mizes the occurrence of contusions, abrasions, and loss of scales, feath-
ers, and fur. The simple fact of their numbers increases each individual’s
safety from predators, improves their luck at browsing, and bestows
other benefits as well. The choreography, though, only keeps them from
bumping into one another.

The behavior of the social insects is, on the face of it, simpler, less so-
phisticated, random, aimless. Yet there are many examples of impressive
accomplishments emerging from the simplest rules imaginable. Swarms
of insects are not concerned with collision; they routinely climb on and
over one another. The choreography itself is not pretty, but the results,
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whether arch building or larvae sorting or finding the shortest path to a
goal, begin to suggest what we would call the emergence of a collective
intelligence.

In the next chapter we explore the paradigms of evolution as they
have been adapted for computational intelligence in computer pro-
grams. We consider four main paradigms: genetic algorithms, evolution-
ary programming, evolution strategies, and genetic programming. In
each paradigm, populations of problem solutions are allowed to evolve
over time, breeding the best together to capitalize on evolutionary selec-
tion. We will see that evolution in a computer can solve problems that
often prove to be intractable otherwise.
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chapter
four

Evolutionary Computation
Theory and Paradigms

Previously in this book, we have discussed
mind and evolution, which have been de-
scribed as the two great stochastic systems
in nature. As if to support Bateson’s com-
ment, these two great systems have pro-
vided some of the most exciting challenges
in the history of computer science. Modeling
the information-processing techniques of
minds, of course, was the task of the artificial
intelligence movement. Modeling the pon-
derous adaptive processes of natural evolu-
tion has been an equal challenge, and the re-
wards have been tremendous. The several
evolutionary computation paradigms have
provided insights into the workings of na-
ture as well as a toolbox for engineers and

others who need to solve extremely hard, of-
ten poorly specified, problems.

Evolutionary computing paradigms are
intimately related to the swarm methods
that are the focus of this volume and have
been mentioned in numerous contexts in
these discussions. This chapter goes into
some detail in reviewing the field of evolu-
tionary computation, which consists of ma-
chine learning optimization and classifica-
tion paradigms that are roughly based on
evolution mechanisms such as biological
genetics, natural selection, and emergent
adaptive behavior. Evolutionary computation
paradigms provide tools to build intelligent
systems that model intelligent behavior.
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This book is designed to appeal to people in engineering and the physical
sciences as well as those in the social sciences and intelligent laypersons. In
this chapter we go into the history and basics of evolutionary computation
in some detail—perhaps too much detail if you already have some familiar-
ity with the subject. So if you are an established practitioner of evolutionary
computation, you may want to skim through at least the first parts of this
chapter. �

Introduction

This chapter is designed to provide basic information needed to utilize
evolutionary computation tools to solve practical problems. We present
the terminology and key concepts, followed by paradigms that are devel-
oped from and illustrate the key concepts. The chapter is written largely
from the perspective of an engineer or computer scientist, emphasizing
the application potential of evolutionary computation tools, and draw-
ing comparisons with other applied problem-solving techniques.

We begin with a brief history of evolutionary computation, followed
by an overview of the evolutionary computation field. Each of the four
main areas (as we define them) is discussed in more detail in its own sec-
tion. Comparisons of evolutionary computation tools (in these four
areas) and other processing methods appear in each section. Particle
swarm optimization, which is sometimes considered a fifth component
area of evolutionary computation, is introduced in a later chapter.

Evolutionary Computation History

This history section focuses on people, rather than theory or technology.
We do this for two main reasons. First, it seems to us a more interesting
way to look at history. History is, after all, just a record of people doing
things. Second, the evolutionary computation field, particularly in the
early days, revolved around a few key individuals. These individuals and
their followers seemed to us to sometimes resemble minicultures.

Having said that, the selection of individuals is somewhat arbitrary
because the intent is to provide a broad sample of people who contrib-
uted to current technology, rather than an exhaustive list. Some well-
known researchers are mentioned only briefly, and others are omit-
ted. The fact that someone is discussed only briefly, or even omitted
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altogether, is not meant to reflect the authors’ opinion of that person’s
contribution. The selected people and their contributions are discussed
roughly in chronological order.

The Four Areas of Evolutionary Computation

The evolutionary computation field has been considered by many re-
searchers to include four areas:

� Genetic algorithms

� Evolutionary programming

� Evolution strategies

� Genetic programming

There are other ways to look at the field, such as considering genetic
programming as a branch of genetic algorithms, but we choose this ap-
proach. Bentley (1999) takes a similar approach, stating that there are
four main types of evolutionary algorithms in use, then several pages
later recognizing that genetic programming is a specialized form of ge-
netic algorithm. (As the father of one of the authors [RE] was fond of say-
ing, “There are two kinds of people in the world. People who think that
there are two kinds of people in the world, and people who don’t.”)

Of these four methodologies, more work has been done with genetic
algorithms, and so we focus on that field. (We realize that the emphasis
on genetic algorithms is fading somewhat. In fact, hybrids of the four
methodologies are becoming increasingly popular.) Contributors to the
other three areas are also discussed, but in somewhat less detail. Al-
though it might be argued that work in the early 20th century on Dar-
winian synthesis by Haldane and others may be the place we should
start, what is now known as evolutionary computation really began to
take shape about 50 years later.

Genetic Algorithms

The development of genetic algorithms has its roots in work done in the
1950s by biologists using computers to simulate natural genetic systems.
Of the people doing these simulations, one of those doing work most
closely related to our current concepts of genetic algorithms was an Aus-
tralian, A. S. Fraser, who began publishing in the field in the late 1950s
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(Fraser 1957). Our history of evolutionary computation thus (arbitrarily)
begins with him.

Fraser was working in the area of epistasis (suppression of the effect of
a gene) and represented each of three parameters of an epistatic function
as 5 bits in a 15-bit string. He then based his selection of “parents” by
choosing those strings whose variable values produced function values
between−1 and+1. Fraser was working with natural systems, and while
his work somewhat resembles function optimization as currently done
by genetic algorithms, he apparently did not consider the possibilities of
applying his methodology to artificial systems (Fraser 1960, 1962).

Also beginning to publish in the early 1960s was the man who to-
gether with his students has probably had more influence on the field of
genetic algorithms than any others: John H. Holland of the University of
Michigan. Holland attended MIT as an undergraduate, where he was in-
fluenced by such luminaries as Norbert Weiner and John McCarthy. He
was part of a team that programmed the prototype of the IBM 701 to
“learn” something about running a maze, prompting Holland to regard
the computer as a sort of “simulated lab rat.” After working at IBM, Hol-
land went to the University of Michigan, where, under Arthur Burks, he
obtained the first Ph.D. in the United States in computer science (Levy
1992).

Davis (1991) stated:

John Holland . . . created the genetic algorithm field. The field would
not exist if he had not decided to harness the power inherent in ge-
netic processes in the early 1970s and functioned as the technical and
political leader of the genetic algorithm field from its inception to the
present time. Our understanding of the unique features of genetic al-
gorithms has been shaped by the careful and insightful work of Hol-
land and his students from the field’s critical first years to the present
time (p. vi).

Holland’s interest was in machine intelligence, and he and his stu-
dents developed and applied the capabilities of genetic algorithms to
artificial systems. He taught courses in adaptive systems in the early 1960s
while laying the groundwork for applications to artificial systems with
his publications on adaptive systems theory (Holland 1962). Holland’s
systems were adaptive because of their robustness in spite of changes and
uncertainty in the environment. Further, they were self-adaptive in that
they could make adjustments based on their interaction with the envi-
ronment over time.
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The GA metaphor is genetic inheritance at the level of the individual.
A problem solution is considered as an individual’s chromosome, or pat-
tern of genetic alleles, and low-level operations such as those that are
seen in the nuclei of cells are proposed for developing new solutions.

One of Holland’s many contributions was his use of a population
of individuals, conceptualized as chromosomes, in the search process,
rather than the use of single individuals as was common at the time. (Fra-
ser used populations, but, as stated previously, didn’t apply his method-
ology to artificial systems.) He also derived the schema theorem, which
shows that schema (fundamental building blocks of individual chromo-
somes) that are more “fit” with respect to a defined fitness function are
more likely to reproduce in successive generations of the population of
chromosomes. We go into more detail about the schema theorem later in
this chapter.

Chromosomes in nature are formed of twisted strands of DNA, com-
posed of the four proteins adenine, cytosine, guanine, and thymine.
These strands are presently understood as a kind of computer program
that gives instructions to the cells that comprise the organism; the DNA
sequence contains instructions about how to develop and what to do.
While our digital computers use the base-two or binary number system
to encode program instructions and data, chromosomes use a base-four
method, encoded in the ordering of the four proteins. Genetic algo-
rithms usually use base-two chromosomes, though the methods devel-
oped by Holland and his followers can be applied to any base number
system, including floating-point decimals.

Beginning in the 1960s Holland’s students routinely used selection,
crossover, and mutation in their applications. Several of Holland’s stu-
dents made significant contributions to the genetic algorithm field, of-
ten starting with their Ph.D. dissertations. We mention only a few.

The term “genetic algorithm” was used first by Bagley (1967) in his
dissertation, which utilized genetic algorithms to find parameter sets in
evaluation functions for playing the game of Hexapawn, which is played
on a 3 × 3 chessboard in which each player starts with three pawns.
Bagley’s genetic algorithm resembled many used today, with selection,
crossover, and mutation.

For the genetic algorithm field, 1975 was an important year. It was in
this year that Holland published one of the field’s most important books,
entitled Adaptation in Natural and Artificial Systems. In the first five years
after it was published, the book sold 100–200 copies per year and seemed
to be fading into oblivion. Instead, between 1985 and 1990, the number
of people working on genetic algorithms—and interest in his book—
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increased sufficiently to persuade Holland to update and reissue it (Hol-
land 1992).

Also in 1975, K. A. De Jong, one of Holland’s students, published his
Ph.D. dissertation entitled “An analysis of the behavior of a class of ge-
netic adaptive systems.” As part of his dissertation, De Jong put forward a
set of five test functions designed to measure the performance of any ge-
netic algorithm. Two metrics were devised, one to measure the conver-
gence of the algorithm, the other to measure the ongoing performance.
De Jong examined the effects of varying four parameters (population
size, crossover probability, mutation probability, and generation gap)
on the performance of six main kinds of genetic algorithm paradigms
(De Jong, 1975). Although a number of other benchmark functions
have emerged, De Jong’s five-function test bed and two performance
metrics are still among frequently referenced criteria for genetic algo-
rithm performance.

De Jong went to the University of Pittsburgh from Michigan, where
he taught genetic algorithms to a number of students, among them Steve
Smith and John Grefenstette. Smith published a significant dissertation
on machine learning involving a classifier system that became known as
“Smith’s Poker Player” (Smith, 1980). Upon graduation, Grefenstette be-
gan teaching yet another generation of students at Vanderbilt Univer-
sity, including J. David Schaffer, who was the first to develop a multi-
objective algorithm (Schaffer, 1984), work that has enjoyed a revival in
popularity. For a comprehensive survey of multiobjective evolutionary
algorithms, see Coello (1999).

Grefenstette developed a genetic algorithm implementation called
GENESIS that, in its various incarnations and reincarnations, became
perhaps the most widely used genetic algorithm implementation in the
late 1980s (Grefenstette, 1984a, 1984b). He also was instrumental in
founding and editing the proceedings of the first International Con-
ference on Genetic Algorithms, a premier conference in the field
(Grefenstette, 1985).

David E. Goldberg, another of Holland’s students, has concentrated
on engineering applications of genetic algorithms. He is a former gas
pipeline worker; his Ph.D. dissertation considered a 10-compressor, 10-
pipe, steady-state, serial gas pipeline problem (Goldberg, 1983). The goal
was to provide a strategy that minimizes the power consumed in the
pumping stations, subject to pressure-related constraints. He summa-
rized the power the genetic algorithm brought to the pipeline problem
when he wrote, “If we were, for example, to search for the best person
among the world’s 4.5 billion people as rapidly as the GA, we would only
need to talk to four or five people before making our near optimal
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selection” (Goldberg, 1987). Goldberg’s 1989 volume is one of the most
influential books on genetic algorithms: Genetic Algorithms in Search, Op-
timization, and Machine Learning. He continues to be an important con-
tributor to the field.

The author of another significant genetic algorithm book is self-
taught in genetic algorithms. Lawrence (Dave) Davis got interested in
them while at Texas Instruments, where he obtained support to evaluate
genetic algorithms for 2D bin packing in a chip layout application. He
published the Handbook of Genetic Algorithms, after moving to the Boston
area, where he worked for BBN. The book comprises two main parts. The
first is a tutorial on genetic algorithms, and the second is a collection of
case studies contributed by a number of researchers (Davis, 1991). In the
mid-1990s, two of the most widely read books for people wanting to
learn about genetic algorithms were those by Goldberg and Davis.

At approximately the same time that Holland and his students were
developing genetic algorithms, two groups were working on opposite
sides of the Atlantic on a different approach that did not utilize crossover,
a feature of the genetic algorithm implementations.

Evolutionary Programming

In the United States, Larry J. Fogel and his colleagues developed what
they named evolutionary programming. Evolutionary programming uses
the selection of the fittest, but the only structure-modifying operation
allowed is mutation—there is no crossover. Fogel and his colleagues
mainly worked with finite state machines and were interested in ma-
chine intelligence, and they were able to solve some problems that were
quite difficult for genetic algorithms. Fogel (1994) described evolution-
ary programming as taking a fundamentally different approach than ge-
netic algorithms:

The procedure abstracts evolution as a top-down process of adaptive
behavior, rather than a bottom-up process of adaptive genetics. It is
argued that this approach is more appropriate because natural selec-
tion does not act on individual components in isolation, but rather
on the complete set of expressed behaviors of an organism in light of
its interaction with its environment.

Philosophically, then, evolutionary programming researchers consider
each point in the population to represent an entire species, with species
competing to fill environmental niches.
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Since the original development of evolutionary programming, two of
the main extensions have been adding the ability to evolve continuous
parameters and the capability for self-adaptation. (The original version of
evolutionary programming worked only with discrete parameters.) The
inclusion of self-adaptation allows the strategy parameters that guide the
mutation to be evolved.

Fogel summarizes evolutionary programming as implementing “sur-
vival of the more skillful” rather than the “survival of the fittest” empha-
sized by genetic algorithm developers. In the mid-1960s a book docu-
menting this approach proved to be quite controversial (Fogel, Owens,
and Walsh, 1966). Misunderstandings and misinterpretations related to
the book have been identified as a contributing factor to problems expe-
rienced by researchers in obtaining funding for evolutionary computa-
tion in the late 1960s and 1970s (Goldberg, 1989). It is, however, proba-
ble that another significant factor was the well-known symbolics versus
numerics controversy (temporarily won by Minsky and the symbolics re-
searchers). One of the leading evolutionary programming researchers
during the 1970s was at New Mexico State University. Don Dearholt and
his students were responsible for a significant number of publications on
evolutionary programming during this decade.

Evolution Strategies

At the same time, across the ocean, Ingo Rechenberg and Hans-Paul
Schwefel were experimenting with mutation in their attempts to find
optimal physical configurations for a series of hinged plates in a wind
tunnel and a tube that delivered liquid. The usual gradient-descent
techniques were unable to solve the sets of equations for reducing wind
resistance. They began experimenting with mutation, slightly perturb-
ing their best problem solutions to search randomly in the nearby
regions of the problem space.

Rechenberg and Schwefel used the first computer available at the
Technical University of Berlin to simulate various versions of the ap-
proach that became known as evolution strategies (Rechenberg, 1965;
Schwefel, 1965). In the early 1970s, Rechenberg published a book that is
considered the foundation for this approach (Rechenberg, 1973), and
evolution strategy continues to experience significant activity, especially
in Europe. Research developments in Germany and the United States
continued in parallel, with each group unaware of the other’s findings
until the 1980s, although they may have known about each other (Fogel,
2000).
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Genetic Programming

The fourth major area of evolutionary computation (although, as we said
earlier, some consider it a subset of genetic algorithms) is genetic pro-
gramming. In genetic programming, computer programs are evolved di-
rectly. Some of the earliest related work done by Friedberg (1958) and
Friedberg, Dunham, and North (1959) worked with fixed-length com-
puter programs that were coded by another program designed to opti-
mize the performance of the fixed-length program. Their programs,
dubbed “Herman” and “Ramsey,” each comprised a set of 64 instruc-
tions, with each instruction being 14 bits long. The programs were de-
fined such that every arrangement of the 14 bits was a valid instruction
and each set of 64 instructions was a valid program. Unfortunately, the
results of the efforts did not live up to expectations. In retrospect, there
were probably three main reasons for this. First, the programs were lim-
ited in length to 64 instructions: a “failure” was tallied if the program did
not terminate successfully by the end of the 64th instruction (even if
there was a loop). Second, there was only one program; thus, there was a
population of just one that evolved. Third, it is not clear that the fitness
function used was appropriate.

These limitations were successfully dealt with by Stanford’s John
Koza (yet another former student of Holland), who developed genetic
programming in its current form in the late 1980s. Whereas the other
three evolutionary computation approaches use string-shaped chromo-
somes, Koza evolved computer programs in a population of tree-shaped
ones. The units used for crossover were LISP symbolic expressions that
are essentially subroutines. Koza has been a prolific producer of docu-
mentation, including books (Koza, 1992; Koza et al., 1999) and video-
tapes related to genetic programming, and it is one of the fastest-growing
and most fascinating areas of evolutionary computation. The idea of
evolving computer programs has been around for decades and is now be-
coming a reality.

Toward Unification

As the 1980s came to a close, the four areas of evolutionary computation
continued to develop relatively independently, with little cooperation or
communication among them. In 1994, however, an important meet-
ing was held that brought together researchers from all four evolution-
ary computation areas: the IEEE World Congress on Computational In-
telligence, held at Walt Disney World, Florida. The World Congress
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comprised a minisymposium on computational intelligence and three
conferences: The International Conference on Neural Networks; the
fuzzy logic conference FUZZ/IEEE 1994; and the first IEEE Conference
on Evolutionary Computation (ICEC), chaired by Professor Zbigniew
Michalewicz of the University of North Carolina at Charlotte.

A total of 96 papers were presented orally in ICEC and 63 in poster
sessions, representing authors from 23 countries worldwide. The two
volumes of proceedings from this evolutionary computation confer-
ence are a landmark in the field (Michalewicz et al., 1994). The field of
computational intelligence seems to have come of age with the second
IEEE World Congress on Computational Intelligence held in Anchorage,
Alaska, in May 1998. Researchers in these four areas of evolutionary
computation are now communicating and working significantly more
with each other.

Evolutionary Computation Overview

Evolutionary computation (EC) paradigms generally differ from tradi-
tional search and optimization paradigms in three main ways by

1. utilizing a population of points (potential solutions) in their
search.

2. using direct “fitness” information instead of function derivatives
or other related knowledge.

3. using probabilistic, rather than deterministic, transition rules.

In addition, EC implementations sometimes encode the parameters in
binary or other symbols, rather than working with the parameters them-
selves. We now examine these differences in more detail, followed by a
quick look at how to put evolutionary algorithms to work.

EC Paradigm Attributes

Most traditional optimization paradigms move from one point in the de-
cision hyperspace to another, using some deterministic rule. One of the
drawbacks of this approach is the likelihood of getting stuck at a local op-
timum. EC paradigms, on the other hand, start with a population of
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points (hyperspace vectors). They typically generate a new population
with the same number of members each epoch, or generation. Thus,
many maxima or minima can be explored simultaneously, lowering the
probability of getting stuck. Operators such as crossover and mutation
effectively enhance this parallel search capability, allowing the search to
directly “tunnel through” from one promising hyperspace region to
another.

EC paradigms do not require information that is auxiliary to the
problem, such as function derivatives. Many hill-climbing search para-
digms, for example, require the calculation of derivatives in order to ex-
plore the local maximum. In EC optimization paradigms the fitness of
each member of the population is calculated from the value of the func-
tion being optimized, and it is common to use the function output as the
measure of fitness. Fitness is a direct metric of the performance of the in-
dividual population member on the function being optimized.

The fact that EC paradigms use probabilistic transition rules certainly
does not mean that a strictly random search is being carried out. Rather,
stochastic operators are applied to operations that direct the search to-
ward regions of the hyperspace that are likely to have higher values of
fitness. Thus, for example, reproduction (selection) is often carried out
with a probability that is proportional to the individual’s fitness value.

Some EC paradigms, and especially canonical genetic algorithms, use
special encodings for the parameters of the problem being solved. In ge-
netic algorithms, the parameters are often encoded as binary strings, but
any finite alphabet can be used. These strings are almost always of fixed
length, with a fixed total number of ones and zeroes, in the case of a bi-
nary string, being assigned to each parameter. By “fixed length” it is
meant that the string length does not vary during the running of the EC
paradigm. The string length (number of bits for a binary string) assigned
to each parameter depends on its maximum range for the problem being
solved and on the precision required.

Implementation

Regardless of the paradigm implemented, evolutionary computation
tools often follow a similar procedure:

1. Initialize the population.

2. Calculate the fitness for each individual in the population.
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3. Reproduce selected individuals to form a new population.

4. Perform evolutionary operations, such as crossover and mutation,
on the population.

5. Loop to step 2 until some condition is met.

Initialization is most commonly done by seeding the population with
random values. When the parameters are represented by binary strings,
this simply means generating random strings of ones and zeroes (with a
uniform probability for each value) of the fixed length described earlier.
(While most evolutionary algorithms use population members of fixed
length, we should note here that genetic programming also evolves the
population members’ structure, including each member’s length.) It is
sometimes feasible to seed the population with “promising” values,
known to be in the hyperspace region relatively close to the optimum.
The total number of individuals chosen to make up the population is
both problem and paradigm dependent, but is often in the range of a few
dozen to a few hundred.

The fitness value is often proportional to the output value of the func-
tion being optimized, though it may also be derived from some combi-
nation of a number of function outputs. The fitness (evaluation) func-
tion takes as its inputs the outputs of one or more functions, and outputs
some probability of reproduction. It is sometimes necessary to transform
the function outputs to produce an appropriate fitness metric; some-
times it is not. For some evolutionary algorithms, only a small percent-
age of the computational time is required for the algorithm itself; most of
the computational time is required for evaluating fitnesses.

Selection of individuals for reproduction to constitute a new popula-
tion (often called a new generation) is usually based upon fitness values.
The higher the fitness, the more likely it is that the individual will be se-
lected for the new generation. Some paradigms that are considered evo-
lutionary, however, such as particle swarm optimization, can retain all
population members from epoch to epoch. In fact, Bentley (1999) states
that “the preferential selection of some parents instead of others is not
essential to evolution.” (If there is no selection operator, then all popula-
tion members produce offspring with equal probability.)

Termination of the algorithm is usually based either on achieving a
population member with some specified fitness or on having run the al-
gorithm for a given number of generations.

In many, if not most, cases, a global optimum exists at one point in
the decision hyperspace. Furthermore, there may be stochastic or
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chaotic noise present. Sometimes the global optimum changes dynami-
cally because of external influences; frequently there are very good local
optima as well. For these and other reasons, the bottom line is that it is
often unreasonable to expect any optimization method to find a global
optimum (even if it exists) within a finite time. The best that can be
hoped for is to find near-optimum solutions and to hope that the time it
takes to find them increases less than exponentially with the number of
variables. One leading EC researcher (Schwefel, 1994) suggests that the
focus should be on “meliorization” (improvement) rather than optimi-
zation. We agree. Put another way, evolutionary computation is often
the second-best way to solve a problem. Classical methods such as linear
programming should often be tried first, as should customized ap-
proaches that take full advantage of knowledge about the problem.

Why should we be satisfied with second best? Well, for one thing,
classical and customized approaches will frequently not be feasible, and
EC paradigms will be usable in a vast number of situations. For another, a
real strength of EC paradigms is that they are generally quite robust. In
this field, robustness means that an algorithm can be used to solve many
problems, and even many kinds of problems, with a minimum amount
of special adjustments to account for special qualities of a particular
problem. Typically an evolutionary algorithm requires specification of
the length of the problem solution vectors, some details of their encod-
ing, and an evaluation function—the rest of the program does not need
to be changed. Finally, robust methodologies are generally fast and easy
to implement.

This brings us to our Law of Sufficiency: If a solution is good enough,
and it is fast enough, and it is cheap enough, then it is sufficient. In almost
all real-world applications, we are looking for, and satisfied with, suf-
ficient solutions. (Note that “good enough” means that the solution
meets specifications.)

In the next sections we review four areas of evolutionary computa-
tion: genetic algorithms, evolutionary programming, evolution strate-
gies, and genetic programming. Genetic algorithms, discussed in the
next section, receive a majority of the attention, as they currently ac-
count for most of the successful applications in the literature (although
this is changing). It is also important to note that hybrids of these ap-
proaches, and hybrids of these approaches with other computational in-
telligence tools such as neural networks, are becoming more prevalent.
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Genetic Algorithms

It seems that every technology has its jargon; genetic algorithms are no
exception. Therefore, we begin by reviewing some of the basic terminol-
ogy that is needed to understand the genetic algorithm (GA) literature. A
sample problem is then presented to illustrate how GAs work; a step-by-
step analysis illustrates a GA application, with options discussed for
some of the individual operations. The section concludes with a more
detailed look at the fundamental schema theorem and at approaches for
improving GA performance in some situations.

Details on implementing GAs are discussed in Appendix B, in which a
specific GA implementation is summarized. Executable code for this im-
plementation is on the Internet site for the book.

An Overview

Genetic algorithms are search algorithms that reflect in a primitive way
some of the processes of natural evolution. (As such, they are analogous
to artificial neural networks’ status as primitive approximations to bio-
logical neural processing.) Engineers and computer scientists generally
do not care as much about the biological foundations of GAs as their util-
ity as analysis tools (another parallel with neural networks). GAs often
provide very effective search mechanisms that can be used in optimiza-
tion or classification applications.

EC paradigms work with a population of points, rather than a single
point; each “point” is actually a vector in hyperspace representing one
potential, or candidate, solution to the optimization or classification
problem. A population is thus just an ensemble, or set, of hyperspace
vectors. Each vector is called an individual in the population; sometimes
an individual in a GA is referred to as a chromosome because of the anal-
ogy to genetic evolution of organisms.

Because real numbers are often encoded in GAs using binary num-
bers, the dimensionality of the problem vector might be different from
the dimensionality of the bitstring chromosome. The number of ele-
ments in each vector (individual) equals the number of real parameters
in the optimization problem. A vector element generally corresponds to
one parameter, or dimension, of the numeric vector. Each element can
be encoded in any number of bits, depending on the representation of
each parameter. The total number of bits defines the dimension of
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hyperspace being searched. If a GA is being used to find “optimum” (suf-
ficient, in terms of the Law of Sufficiency described previously) weights
for a neural network, for example, the number of vector elements equals
the number of weights in the network. If there are w weights, and it is de-
sired to calculate each weight to a precision of b bits, then each individ-
ual will consist of w× b bits, and the dimension of binary hyperspace be-
ing searched is 2wb.

The series of operations carried out when implementing a “plain va-
nilla” GA paradigm is the following:

1. Initialize the population.

2. Calculate fitness for each individual in the population.

3. Reproduce selected individuals to form a new population.

4. Perform crossover and mutation on the population.

5. Loop to step 2 until some condition is met.

In some GA implementations, operations other than crossover and mu-
tation are carried out in step 4. Crossover, however, is considered by
many to be an essential operation of all GAs.

A Simple GA Example Problem

Because implementing a “plain vanilla” GA paradigm is so simple, a sam-
ple problem (also simple) seems to be the best way to introduce most of
the basic GA concepts and methods. As will be seen, implementing a
simple GA involves only copying strings, exchanging portions of strings,
and flipping bits in strings.

Our sample problem is to find the value of x that maximizes the func-
tion ƒ(x)= sin (π x/256) over the range 0≤ x≤ 255, where values of x are
restricted to integers. This is just the sine function from zero to π radians,
as illustrated in Figure 4.1. Its maximum value of 1 occurs at π/2, or x =
128. The function value and the fitness value are thus defined to be iden-
tical for the sample problem.

There is only one variable in our sample problem: x. We assume for
the sample problem that the GA paradigm uses a binary alphabet. The
first decision to be made is how to represent the variable. This has been
made easy in this case since the variable can only take on integer
values between 0 and 255. It is therefore logical to represent each

Genetic Algorithms 147



individual in our population with an eight-bit binary string. The binary
string 00000000 will evaluate to 0, and 11111111 to 255.

We next decide how many individuals will make up the population.
In an actual application, it would be common to have somewhere be-
tween a few dozen and a few hundred individuals. For the purposes of
this illustrative example, however, the population consists of eight
individuals.

The next step is to initialize the population. This is usually done ran-
domly. We therefore use a random number generator to assign a 1 or 0 to
each of the eight positions in each of the eight individuals, resulting in
the initial population in Figure 4.2. Also shown in the figure are the val-
ues of x and f(x) for each binary string.

After fitness calculation, the next step is reproduction. Reproduction
consists of forming a new population with the same total number of in-
dividuals by selecting from members of the current population with a
stochastic process that is weighted by each of their fitness values. In the
example problem, the sum of all fitness values for the initial population
is 5.083. Dividing each fitness value by 5.083, then, yields a normalized
fitness value fnorm for each individual. The sum of the normalized values
is 1.

These normalized fitness values are used in a process called “roulette
wheel” selection, where the size of the roulette wheel wedge for each
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population member, which reflects the probability of that individual be-
ing selected, is proportional to its normalized fitness value.

We spin the roulette wheel by generating eight random numbers be-
tween 0 and 1. If a random number is between 0 and 0.144, the first indi-
vidual in the existing population is selected for the next population. If
the number is between 0.144 and (0.144+ 0.093)= 0.237, the second in-
dividual is selected, and so on. Finally, if the random number is between
(1− 0.128)= 0.872 and 1.0, the last individual is selected. The probabil-
ity that an individual is selected is thus proportional to its fitness value. It
is possible, though highly improbable, that the individual with the low-
est fitness value could be selected eight times in a row and make up the
entire next population. It is more likely that individuals with high fitness
values are picked more than once for the new population.

The eight random numbers generated are 0.293, 0.971, 0.160, 0.469,
0.664, 0.568, 0.371, and 0.109. This results in initial population member
numbers 3, 8, 2, 5, 6, 5, 3, and 1 being chosen to make up the population
after reproduction, as shown in Figure 4.3.

The next operation is crossover. To many evolutionary computation
practitioners, crossover of binary encoded substrings is what makes a ge-
netic algorithm a genetic algorithm. Crossover is the process of exchang-
ing portions of the strings of two “parent” individuals. An overall proba-
bility is assigned to the crossover process, which is the probability that,
given two parents, the crossover process will occur. This crossover rate is
often in the range of 0.65 to 0.80; we select a value of 0.75 for the sample
problem.
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Individuals Cumulative

1 0 1 1 1 1 0 1 189 0.733 0.144 0.144

1 1 0 1 1 0 0 0 216 0.471 0.093 0.237

0 1 1 0 0 0 1 1 99 0.937 0.184 0.421

1 1 1 0 1 1 0 0 236 0.243 0.048 0.469

1 0 1 0 1 1 1 0 174 0.845 0.166 0.635

0 1 0 0 1 0 1 0 74 0.788 0.155 0.790

0 0 1 0 0 0 1 1 35 0.416 0.082 0.872

0 0 1 1 0 1 0 1 53 0.650 0.128 1.000

x f(x) f fnorm norm

Figure 4.2 Initial population and f(x) values for GA example.



First, the population is paired off randomly into pairs of parents.
Since the order of the population after reproduction in Figure 4.3 is al-
ready randomized, parents will be paired as they appear there. For each
pair, a random number is generated to determine whether crossover will
occur. It is thereby determined that three of the four pairs will undergo
crossover.

Next, for the pairs undergoing crossover, two crossover points are se-
lected at random. (Other crossover techniques are discussed later in this
chapter.) The portions of the strings between the first and second cross-
over points (moving from left to right in the string) will be exchanged.
The paired population, with the first and second crossover points labeled
for the three pairs of individuals undergoing crossover, is illustrated in
Figure 4.4(a) prior to the crossover operation. The portions of the strings
to be exchanged are in bold. Figure 4.4(b) illustrates the population after
crossover is performed.

Note that, for the third pair from the top, the first crossover point is to
the right of the second. The crossover operation thus “wraps around” the
end of the string, exchanging the portion between the first and the sec-
ond, moving from left to right. For two-point crossover, then, it is as if
the head (left end) of each individual string is joined to the tail (right
end), thus forming a ring structure. The section exchanged starts at the
first crossover point, moving to the right along the binary ring, and ends
at the second crossover point. The values of x and f(x) for the population
following crossover appear in Figure 4.4(c) and (d), respectively.

The final operation in this plain vanilla genetic algorithm is muta-
tion. Mutation consists of flipping bits at random, generally with a con-
stant probability for each bit in the population. As is the case with the
probability of crossover, the probability of mutation can vary widely
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Figure 4.3 Population after reproduction.



according to the application and the preference of the researcher. Values
of between 0.001 and 0.01 are not unusual for the mutation probability.
This means that the bit at each site on the bitstring is flipped, on average,
between 0.1 and 1.0 percent of the time. One fixed value is used for each
generation and often is maintained for an entire run.

Since there are 64 bits in the example problem’s population (8 bits ×
8 individuals), it is quite possible that none would be altered as a result
of mutation, so we will consider the population of Figure 4.4(b) as
the “final” population after one iteration of the GA procedure. Going
through the entire GA procedure one time is said to produce a new gener-
ation. The population of Figure 4.4(b) therefore represents the first gener-
ation of the initial randomized population.

Note that the fitness values now total 6.313, up from 5.083 in the ini-
tial random population, and that there are now two members of the pop-
ulation with fitness values higher than 0.99. The average and maximum
fitness values have thus both increased.
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1 2 Individuals

0 1 1 | |1 1 0 1 1 1 0 1 1 1 119 0.994

0 0 | 0 1 0 0 1 0 0 0 0 1 33 0.394

1 2

1 | | 0 0 0 1 0 1 0 1 0 0 0 168 0.882

1 | |1 1 0 1 1 0 1 1 1 1 0 222 0.405

2 1

| 0 0 1 0 1 | 1 0 0 0 1 0 1 0 138 0.992

|1 0 1 1 1 | 0 1 1 0 1 1 1 0 110 0.976

0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 99 0.937

1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 189 0.733

(a) (b) (c) (d)

x f(x)

0 0 0

1 0 1

1 0 1 1

0 1 0 1

0 1 0

1 0 0

1 |

Figure 4.4 Population before crossover showing crossover points (a), after crossover (b), and
values of x (c) and f(x) (d) after crossover.



The population of Figure 4.4(b) and the corresponding fitness values
in Figure 4.4(d) are now ready for another round of reproduction, cross-
over, and mutation, producing yet another generation. More genera-
tions are produced until some stopping condition is met. We may simply
set a maximum number of generations to let the algorithm search, let it
run until a performance criterion has been met, or stop the algorithm af-
ter some number of generations with no improvement.

A Review of GA Operations

Now that one iteration of the GA operations (one generation) for the ex-
ample problem has been completed, we will review each of the opera-
tions in more detail. We will examine various approaches and reasons
for each.

Representation of Variables

The representation of the values for the variable x was made (perhaps un-
realistically) straightforward by choosing a dynamic range of 256; an
eight-bit binary number was thus an obvious approach. Standard binary
coding, however, is only one approach; others may be more appropriate.

In this example, the nature of the sine function places the optimal
value of x at 128, where f(x) is 1. The binary representation of 128 is
10000000; the representation of 127 is 01111111. Thus, the smallest
change in fitness value can require a change of every bit in the represen-
tation. This situation is an artifact of the encoding scheme and is not de-
sirable—it only makes the GA’s search more difficult. Often, a better rep-
resentation is one in which adjacent integer values have a Hamming
distance of one; in other words, adjacent values differ by only a single
bit. One such scheme is Gray coding, which is described in Chapter 2.

Some GA software allows the user to specify the dynamic range and
resolution for each variable. The program then assigns the correct num-
ber of bits and the coding. For example, if a variable has a range from 2.5
to 6.5 (a dynamic range of 4) and it is desired to have a resolution of three
decimal places, the product of the dynamic range and the resolution re-
quires a string 12 bits long, where the string of zeroes represents the
value 2.5. A major advantage of being able to represent variables in this
way is that the user can think of the population individuals as real-val-
ued vectors rather than as bitstrings, thus simplifying the development
of GA applications.
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The “alphabet” used in the representation can, in theory, be any
finite alphabet. Thus, rather than using the binary alphabet of 1 and 0,
we could use an alphabet containing more characters or numbers. Most
GA implementations, however, use the binary alphabet.

Population Size

De Jong’s dissertation (1975) offers guidelines that are still usually ob-
served: start with a relatively high crossover rate, a relatively low muta-
tion rate, and a moderately sized population—though just what consti-
tutes a moderately sized population is unclear. The main trade-off is
obvious: a large population will search the space more completely, but at
a higher computational cost. We generally have used populations of be-
tween 20 and 200 individuals, depending, it seems, primarily on the
string length of the individuals. It also seems (in our experience) that the
sizes of populations used tend to increase approximately linearly with
individual string length, rather than exponentially, but “optimal” popu-
lation size (if an optimal size exists) depends on the problem as well.

Population Initialization

The initialization of the population is usually done stochastically,
though it is sometimes appropriate to start with one or more individuals
that are selected heuristically. The GA is thereby initially aimed in prom-
ising directions, or given hints. It is not uncommon to seed the popula-
tion with a few members selected heuristically and to complete the pop-
ulation with randomly chosen members. Regardless of the process used,
the population should represent a wide assortment of individuals. The
urge to skew the population significantly should generally be avoided, if
our limited experience is generalizable.

Fitness Calculation

The calculation of fitness values is conceptually simple, though it can be
quite complex to implement in a way that optimizes the efficiency of the
GA’s search of the problem space. In the example problem, the value of
f(x) varies (quite conveniently) from 0 to 1. Lurking within the problem,
however, are two drawbacks to using the “raw” function output as a
fitness function—one that is common to many implementations, the
other arising from the nature of the sample problem.
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The first drawback, common to many implementations, is that after
the GA has been run for a number of generations it is not unusual for
most (if not all) of the individuals’ fitness values, after, say, a few dozen
generations, to be quite high. In cases where the fitness value can range
from 0 to 1, for example (as in the sample problem), most or all of the
fitness values may be 0.9 or higher. This lowers the fitness differences be-
tween individuals that provide the impetus for effective roulette wheel
selection; relatively higher fitness values should have a higher probabil-
ity of reproduction.

One way around this problem is to equally space the fitness values.
For example, in the sample problem, the fitness values used for reproduc-
tion could be equally spaced from 0 to 1, assigning a fitness value of 1 to
the most fit population member, 0.875 to the second, and 0.125 to the
lowest fitness value of the eight. In this case the population members are
ranked on the basis of fitness, and then their ranks are divided by the
number of individuals to provide a probability threshold for selection.
Note that the value of 0 is generally not assigned, since that would result
in one population member being made ineligible for reproduction. Also
note that f(x), the function result, is now not equal to the fitness, and
that in order to evaluate actual performance of the GA, the function
value should be monitored as well as the spaced fitness.

Another way around the problem is to use what is called scaling.
Scaling takes into account the recent history of the population and as-
signs fitness values on the basis of comparison of individuals’ perfor-
mance to the recent average performance of the population. If the GA
optimization is maximizing some function, then scaling involves keep-
ing a record of the minimum fitness value obtained in the last w genera-
tions, where w is the size of the scaling window. If, for example, w = 5,
then the minimum fitness value in the last five generations is kept and
used instead of 0 as the “floor” of fitness values. Fitness values can be as-
signed a value based on their actual distance from the floor value, or they
can be equally spaced, as described earlier.

The second drawback is that the example problem exacerbates the
“compression of fitness values” situation described earlier because near
the global optimum fitness value of 1, f(x) (which is also the fitness) is rel-
atively flat. There is thus relatively little selection advantage for popula-
tion members near the optimum value x= 128. If this situation is known
to exist, a different representation scheme might be selected, such as de-
fining a new fitness function that is the function output raised to some
power.
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Note that the shape of some functions “assists” discrimination near
the optimum value. For example, consider maximizing the function f(x)
= x2 over the range 0 to 10; there is a higher differential in values of f(x)
between adjacent values of x near 10 than near 0. Thus slight change of
the independent variable results in great improvement or deterioration
of performance—which is equally informative—near the optimum.

In the discussion thus far, we have assumed that optimization implies
finding a maximum value. Sometimes, of course, optimization requires
finding a minimum value. Some versions of GA implementations allow
for this possibility. Often, the user must specify the maximum value fmax

of the function being optimized, f(x), over the range of the search. The
GA then can be programmed to maximize the fitness function fmax− f(x).
In this case, scaling, described above, keeps track of fmax over the past w
generations and uses it as a “roof” value from which to calculate fitness.

Roulette Wheel Selection

In genetic algorithms, the expected number of times each individual in
the current population is selected for the new population is proportional
to the fitness of that individual relative to the average fitness of the entire
population. Thus, in the initial population of the example problem,
where the average fitness was 5.083/8 = 0.635, the third population
member had a fitness value of 0.937, so it could be expected to appear
about 1.5 times in the next population; it actually appeared twice.

The conceptualization is that of a wheel whose surface is subdivided
into wedges representing the probabilities for each individual (see Figure
4.5). For instance, one point on the edge is determined to be the zero
point, and each arc around the circle corresponds to an area on the num-
ber line between zero and one. A random number is generated, between
0.0 and 1.0, and the individual whose wedge contains that number is
chosen. In this way, individuals with greater fitness are more likely to be
chosen. The selection algorithm can be repeated until the desired num-
ber of individuals has been selected.

There are a number of variations to the roulette wheel procedure. A
few of them are reviewed below.

One variation on the basic roulette wheel procedure is a process de-
veloped by Baker (1987) in which the portion of the roulette wheel is as-
signed based on each unique string’s relative fitness. One spin of the rou-
lette wheel then determines the number of times each string will appear
in the next generation. To illustrate how this is done, assume the fitness
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values are normalized (sum of all equals one). Each string is assigned a
portion of the roulette wheel proportional to its normalized fitness. In-
stead of one “pointer” on the roulette wheel spun n times, there are n
pointers spaced 1/n apart; the n-pointer assembly is spun once. When the
wheel comes to rest, the place each of the n pointers points determines a
population member in the next generation. If a string has a normalized
fitness greater than 1/n (corresponding to an expected value greater than
1), it is guaranteed at least one occurrence in the next generation. If the
string has a normalized fitness fn such that 1/n < fn < 2/n, it will have ei-
ther one or two occurrences in the next generation. If 2/n < fn < 3/n, it
will have either two or three occurrences, and so on.

In the discussion thus far, it has been assumed that all of the popula-
tion members are replaced each generation. Although this is often the
case, it sometimes is desirable to replace only a portion of the popula-
tion, say, the 80 percent with the worst fitness values. The percentage of
the population replaced each generation is sometimes called the genera-
tion gap.

Unless some provision is made, with standard roulette wheel selec-
tion it is possible that the individual with the highest fitness value in a
given generation may not survive reproduction, crossover, and mutation
to appear unaltered in the new generation. It is frequently helpful to use
what is called the elitist strategy, which ensures that the individual with
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its slice of the wheel) is proportional to its fitness (indicated here by shading).



the highest fitness is always copied into the next generation. We always
include this strategy when using a genetic algorithm.

Crossover

The most important operator in GA is crossover, based on the metaphor of
sexual combination. (An operator is a rule for changing a proposed prob-
lem solution.) If a solution is encoded as a bitstring, then mutation may
be implemented by setting a probability threshold and flipping bits
when a random number is less than the threshold. As a matter of fact,
mutation is not an especially important operator in GA. It is usually set
at a very low rate, and sometimes it is omitted altogether. Crossover is
more important and adds a new dimension to the discussion of evolu-
tion so far.

Other evolutionary algorithms use random mutation plus selection
as the primary method for searching the landscape for peaks or niches.
One of the greatest and most fundamental search methods that biologi-
cal life has found is sexual reproduction, which is extremely widespread
throughout both the animal and plant kingdoms. Sexual reproduction
capitalizes on the differences and similarities among individuals within a
species; where one individual may have descended from a line that con-
tained a good solution to one set of environmental constraints, another
individual might have evolved to deal better with another aspect of sur-
vival. Perhaps one genetic line of rabbits has evolved a winter coloration
that protects it through the changing seasons, while another has devel-
oped a “freeze” behavior that makes it hard for predators to spot. Mating
between these two lines of rabbits might result in offspring lacking both
of the advantages, offspring with one or the other characteristic either
totally or in some degree, or offspring possessing both of the advanta-
geous traits. Selection will decide, in the long run, which of these possi-
bilities are most adaptable; the ones that adapt better, survive.

Crossover is a term for the recombination of genetic information dur-
ing sexual reproduction. In GAs, offspring have equal probabilities of re-
ceiving any gene from either parent, as the parents’ chromosomes are
combined randomly. In nature, chromosomal combination leaves sec-
tions intact; that is, contiguous sections of chromosomes from one par-
ent are combined with sections from the other, rather than simply
shuffling randomly. In GAs there are many ways to implement crossover.

The two main attributes of crossover that can be varied are the proba-
bility that it occurs and the type of crossover that is implemented. The
following paragraphs examine variations of each.
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A crossover probability of 0.75 was used in the sample problem, and
two-point crossover was implemented. Two-point crossover with a prob-
ability of 0.60–0.80 is a relatively common choice, especially when Gray
coding is used.

The most basic crossover type is one-point crossover, as described by
Holland (1975/1992) and others, for instance, Goldberg (1989) and Da-
vis (1991). It is inspired by natural evolution processes. One-point cross-
over involves selecting a single crossover point at random and exchang-
ing the portions of the individual strings to the right of the crossover
point. Figure 4.6 illustrates one-point crossover; the crossover point is
the vertical line, and portions to be exchanged are in bold in Figure
4.6(a).

Another type of crossover that has been found useful is called uniform
crossover, described by Syswerda (1989). A random decision is made at
each bit position in the string as to whether or not to exchange (cross-
over) bits between the parent strings. If a 0.50 probability at each bit po-
sition is implemented, an average of about 50 percent of the bits in the
parent strings are exchanged. Note that a 50 percent rate will result in the
maximum disruption due to uniform crossover. Higher rates just mirror
rates lower than 50 percent. For example, a 0.60 probability uniform
crossover rate produces results identical to a 0.40 probability rate. If the
rate were 100 percent, the two strings would simply switch places, and if
it were 0 percent neither would change.

Values for the probability of crossover vary with the problem. In gen-
eral, values between 60 and 80 percent are common for one-point and
two-point crossover. Uniform crossover sometimes works better with
slightly lower crossover probability. It is also common to start out run-
ning the GA with a relatively higher value for crossover, then taper off
the value linearly to the end of the run, ending with a value of, say, one-
half or two-thirds the initial value.

Mutation

In GAs, mutation is the stochastic flipping of bits that occurs each gener-
ation. It is done bit-by-bit on the entire population. It is often done with
a probability of something like .001, but higher probabilities are not un-
usual. For example, Liepins and Potter (1991) used a mutation probabil-
ity of .033 in a multiple-fault diagnosis application.

If the population comprises real-valued parameters, mutation can be
implemented in various ways. For instance, in an image classification
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application, Montana (1991) used strings of real-valued parameters that
represented thresholds of event detection rules as the individuals. Each
parameter in the string was range limited and quantized (could take on
only a certain finite number of values). If chosen for mutation, a parame-
ter was randomly assigned any allowed value in the range of values valid
for that parameter.

The probability of mutation is often held constant for the entire run
of the GA, although this approach will not produce optimal results in
many cases. It can be varied during the run, and if varied, usually is in-
creased. For example, the mutation rate may start at .001 and end at .01
or so when the specified number of generations has been completed. In
the software implementation described in Appendix B, a flag in the
run file can be set that increases the mutation rate significantly when
the variability in fitness values becomes low, as is often the case late in
the run.

Schemata and the Schema Theorem

Exactly how do GAs do what they do? How is it possible to develop new
population members that, on average, are fitter than the previous gener-
ation, while searching new regions of the problem space? Since all that
GAs have to work with are (often binary) strings, there must be features
related to the fitness inherent in the strings that are utilized.

Schemata

The string features that are relevant to the optimization process are
called schemata (singular: schema). A theorem that describes why the ca-
nonical GA paradigm is able to efficiently direct an optimization process
is the schema theorem. (This theorem also applies to other proportional
selection methodologies.)
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First described for the GA field by Holland (1975/1992), schemata are
similarity templates for strings. Each schema defines a subset of strings
with identical values at specified string locations. As used here, the word
“string” usually refers to substrings of an individual population member
string, but can refer to the entire string. Schemata provide a means by
which relevant similarities among the individual population members
can be described and exploited.

In order to define schemata, the alphabet of the strings is used to de-
fine values at specified locations, and an additional character is used as a
“don’t care” symbol in locations where the value doesn’t matter. As
is common in the GA literature, the pound symbol (#) is used in this
book as the “don’t care” symbol. (The asterisk symbol “*” is also com-
monly used.) Schemata can thus generally be thought of as comprising
an alphabet of ao + 1 characters, where ao is the number of characters in
the GA representation. In most cases, as in the example, the GA strings
have a binary representation, so the schemata comprise the characters
{0, 1, #}.

As an example, consider the schemata of length 4 that may appear in,
say, the leftmost four positions of the population strings of the example
problem. One such schema is #000, which has two member strings. That
is, two strings match the schema: 1000 and 0000. The schema 1##0 has
four matching strings: 1000, 1010, 1100, and 1110.

Holland argued that adaptation can be thought of in terms of sche-
mata. Recall the hamburger example of an earlier chapter. Any ham-
burger that included the schema 1##0##0###—cheese but no mustard or
pickles—was fitter than the average. It is possible that fitness could be in-
creased even more by choosing an absolutely perfect combination of
other ingredients. In other words, this might not be the very fittest
schema in the search space, but as soon as this combination is hit upon it
will be found to be quite a bit fitter than most other kinds of hamburgers.
In a GA the hamburger that contains 1##0##0### will be likely to be se-
lected to reproduce in the next generation, relative to hamburgers that
have mustard or pickles or don’t have cheese.

Genetic optimization increases the likelihood that the schemata that
most improve the species’ fitness will persist to the next generation. Hol-
land argues that crossover among the fittest members of a population
will result in the discovery and survival of better schemata. It should
be noted, though, that some researchers have recently found errors in
Holland’s argument, and the issue is currently controversial. Even if
the proof is shaky, it can be seen empirically, simply by running GA
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programs, that crossover is quite effective, if not always fast, for finding
good solutions to highly complex problems.

How many schemata are possible for a string length of l and an alpha-
bet of ao characters? In the previous example, for ao= 2, there can be a 0,
1, or # at each string position, resulting in a total possible number of
schemata of 3 × 3 × 3 × 3 = 81. Generalizing, there are (ao + 1)l total
possible schemata for any representation of length l.

Another informative measure is the total possible number of unique
schemata in a population. Consider a specific string of length 8, taken
from the example problem: 01110111. Since each string position can as-
sume the value it has, or the wild-card value, the string belongs to 28 =
256 schemata. Any binary string of length l thus belongs to 2l schemata.
In a population of n individuals, then, there are between 2l (if all mem-
bers are identical) and n2l (if no two schemata are the same) schemata.
Populations with higher diversity have a greater number of schemata.

Schemata that are part of an individual with high fitness have a
higher than average probability of reproducing. Therefore, highly fit
schemata benefit from differential reproduction relative to fitness. If se-
lection were the only operator used, though, no new regions of the
search hyperspace would ever be explored. Crossover and mutation pro-
vide new schemata to guide the search into new regions.

Crossover is a slightly more complicated matter than reproduction.
Consider two schemata: ##1####0 and ###10###. If both are parts of
strings of equal fitness, which is more likely to be passed on to the new
population? Either one- or two-point crossover is more likely to disrupt
the first, since it is quite likely that a crossover point will occur between
the two string end-points. The second is more compact in nature and is
relatively unlikely to be disrupted by a one- or two-point crossover
operation.

Mutation is not likely to disrupt either schema, since it typically oc-
curs at a very low rate. And since it is considered on a bit-by-bit basis, if it
does occur it is just as likely to disrupt one as the other.

While crossover and mutation are potentially disruptive, they facili-
tate an efficient search by introducing innovations. Furthermore, com-
pact (short) schemata that are part of highly fit individuals will, with
high probability, appear in ever-increasing numbers in future genera-
tions. The schemata are the elements of which future generations are
built; Holland (1992) named them “building blocks.” The schema theo-
rem sums up all of this and provides a quantitative estimation of one as-
pect of GA performance.
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The Schema Theorem

The schema theorem predicts the number of times a specific schema will
appear in the next generation of a GA, given the fitness of the population
member(s) containing the schema, the average fitness of the popula-
tion, and other parameters. The GA can be thought of as effectively
working with a large number of schemata simultaneously, ranging from
very short schemata to schemata as long as the individual population
members. This has been named “intrinsic parallelism” by Holland. The
schema theorem provides a quantitative prediction for all schemata, re-
gardless of length. It should be noted that the theorem applies only to
“plain vanilla” GAs. As soon as you do anything special, including some-
thing as simple as implementing elitism, where the fittest population
member is automatically copied into the next generation, the schema
theorem no longer applies.

The derivation of the theorem is beyond the scope of this book. The
reader is referred to the derivation in Goldberg (1989). The schema theo-
rem is
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In Equation 4.1, n is the total number of examples of a particular
schema S. The subscripts t + 1 and t refer to time steps, or generations.
The parameter f(S) is the average fitness of the individual population
members that contain the schema S, while favg is the average fitness of the
entire population. The probabilities of crossover and mutation are pc and
pm, respectively.

The parameter δ(S) is called the “defining length” of the schema; it is
the distance between the first and last specific string positions. For exam-
ple, for the schema #01#11#, the defining length is 4. The total length of
the string is l, while o(S) is the “order” of the schema, or the number of
fixed positions (ones and zeroes) in the schema. In the preceding exam-
ple, the order of the schema is 4. The order of a schema is just the number
of potential “cut” points within the schema that could be affected by
crossover.

Summarized, Equation 4.1 states that the expected number of occur-
rences of schema S in generation t+ 1 is the number in the current gener-
ation multiplied by the average schema fitness divided by the average
population fitness, less the disruptive effects caused by crossover and
mutation. Schemata with above-average fitness values will be
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represented an increasing number of times as generations proceed.
Those with below-average values will be represented less and less; they
will “die out,” just as happens in nature.

The schemata with small values for defining length are disrupted least
by crossover, so the most rapidly increasing representation in any popu-
lation will be of highly fit, short schemata, called building blocks, which
will experience exponential growth. Building blocks illustrate that it is
often beneficial to keep some parts of a solution intact. This is the most
important consequence of the schema theorem.

Note that the schema theorem, by itself, does not specify how well a
GA will solve a particular problem. It should also be noted that there is
controversy in the EC community with respect to the usefulness and va-
lidity of the theorem. We include it, as have other recent books dealing
with GAs such as Mitchell (1996), Pedrycz (1998), and Haupt and Haupt
(1998), because we believe it provides useful insights into GA processes.

Final Comments on Genetic Algorithms

In sum, the genetic algorithm operates by evaluating a population of
bitstrings (there are real-numbered GAs, but binary implementations are
more common) and selecting survivors stochastically based on their
fitness, so fitter members of the population are more likely to survive.
Survivors are paired for crossover, and often some mutation is performed
on chromosomes. Other operations might be performed as well, but
crossover and mutation are the most important ones. Sexual recombina-
tion of genetic material is a powerful method for adaptation.

The material on genetic algorithms in this chapter has provided only
an introduction to the subject. We suggest that you explore GAs further
by sampling the references cited in this section. With further study and
application, it will become apparent why GAs have such a devoted fol-
lowing. In the words of Davis (1991):

There is something profoundly moving about linking a genetic algo-
rithm to a difficult problem and returning later to find that the algo-
rithm has evolved a solution that is better than the one a human
found. With genetic algorithms we are not optimizing; we are creat-
ing conditions in which optimization occurs, as it may have occurred
in the natural world. One feels a kind of resonance at such times that
is uncommon and profound.
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This feeling, of course, is not unique to experiences with GAs; using
other evolutionary algorithms can result in similar feelings. An imple-
mentation of a genetic algorithm is presented in Appendix B. The soft-
ware for the GA implementation is on the book’s Internet site.

Evolutionary Programming

Evolutionary programming is the second of the four evolutionary com-
putation paradigms we examine in this chapter. It is similar to genetic al-
gorithms in its use of a population of candidate solutions to evolve an
answer to a specific problem, and differs in its concentration on “top-
down” processes of adaptive behavior. The emphasis in evolutionary
programming is on developing behavioral models, that is, models of ob-
servable system interactions with the environment. Theories of natural
evolution heavily influence the development of evolutionary program-
ming concepts and paradigms.

Evolutionary programming is derived from the simulation of adap-
tive behavior in evolution: GAs are derived from the simulation of genet-
ics. The difference is perhaps subtle, but important. Genetic algorithms
work in the genotype space of the information codings, while evolution-
ary programming (EP) emphasizes the phenotype space of observable be-
haviors (Fogel, 1990). EP therefore is directed at evolving “behavior” that
solves the problem at hand; it mimics “phenotypic evolution.”

Evolutionary programming is a more flexible approach to evolution
than some of the other paradigms. Operators are freely adapted to fit the
problem at hand. Generally the paradigm relies on mutation—and not
sexual recombination—to produce offspring. Whereas evolution strate-
gies systems usually generate many more offspring than parents (a ratio
of seven to one is common, as we will see in the next section), EP usually
generates the same number of children as parents. Parents are selected to
reproduce using a tournament method; their features are mutated to pro-
duce children who are added to the population. When the population
has doubled, the members—parents and offspring together—are ranked,
and the best half are kept for the next generation.

A significant addition to the basic evolutionary programming meth-
odology is self-adaptation, which provides the capability of strategy pa-
rameters to evolve themselves, thus directing mutation into more prom-
ising search space. The three main types of evolutionary programming
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are called standard EP, meta-EP, and Rmeta-EP, which are distinguished by
different levels of self-adaptation (Bentley, 1999).

The process of implementing EP in an application is presented next.
Examples of specific application areas follow.

The Evolutionary Programming Procedure

The procedure that is generally followed when implementing an EP ap-
pears in the following listing. Following a brief description of the proce-
dure, we review two types of applications: modeling of a predictive sys-
tem and building a function optimization tool.

The EP procedure is

1. Initialize the population.

2. Expose the population to the environment.

3. Calculate fitness for each member.

4. Randomly mutate each “parent” population member.

5. Evaluate parents and children.

6. Select members of new population.

7. Go to step 2 until some condition is met.

The population is randomly initialized. For problems in real (comput-
able) space, each component variable of each individual’s vector is gener-
ally a real value that is constrained to some dynamic range. In the two EP
examples that follow, the variables (vector elements) represent finite
state machine parameters and function variables, respectively. The num-
ber of population members is problem dependent, but is often a few
dozen to a few hundred, similar to GA populations.

In order to better understand the remaining steps in the EP proce-
dure, we consider two examples. These examples are representative of
two main types of problems to which EP paradigms are often applied.
The first involves time series prediction using a finite state machine. The
second is the optimization of a mathematical function.
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Finite State Machine Evolution

Evolutionary programming paradigms are sometimes used for problems
involving prediction. One way to represent prediction of the environ-
ment is with a sequence of symbols. As with GAs, the symbols must be
members of a finite alphabet. We can use a system comprising a finite
state machine, for example, to analyze a symbol sequence and to gener-
ate an output that optimizes a fitness function, which often involves pre-
dicting the next symbol in the sequence. In other words, a prediction is
used to calculate a system response that seeks to achieve some specified
goal.

A finite state machine is defined as “a transducer that can be stimulated
by a finite alphabet of input symbols, can respond in a finite alphabet of
output signals, and possesses some finite number of different internal
states” (Fogel, 1991). The input and output symbol alphabets need not
be identical. We must specify the initial state of the machine. We must
also specify, for each state and input symbol combination, the output
symbol and next state. Table 4.1 specifies a three-state finite state ma-
chine with an input alphabet of two characters and three possible output
symbols.

Finite state machines are essentially a subset of Turing machines, de-
veloped by the English mathematician and computer science pioneer
Alan Turing (1937). Turing machines are capable, in principle, of solving
all mathematical problems (of a defined general class) in sequence. Finite
state machines, as used in EP, can model, or represent, an organism or a
system.

Unlike GAs, where crossover is an important component of produc-
ing a new generation, mutation is the only operator used in EP systems.
Each member of the current population typically undergoes mutation to
produce a “child.” Given the specification of the finite state machine
and its operation, there are five main types of mutation that can occur:
As long as more than one state exists, the initial state can be changed,
and/or a state can be deleted. A state can be added. A state transition can
be changed. Finally, an output symbol for a given state-input symbol can
be changed.

Although the number of children produced by each parent is a system
parameter, each “parent” typically produces one “child,” and the popu-
lation becomes twice its original size after mutation. After measuring the
fitness of each structure, the best one-half are kept, maintaining the pop-
ulation size at a constant value from generation to generation. At some
point in some applications, it is necessary to make a prediction of the
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next symbol in a sequence. The structure with the highest fitness is cho-
sen to generate this new symbol, which is then added to the sequence. (It
is also possible to specify the problem so that the symbol predicted is fur-
ther in the future than one time step.)

Unlike other evolutionary paradigms, in EP systems mutation can
change the size of structures (states can be added and deleted). This fact
and the potential for changing state transitions lead to another consider-
ation: the specification table for a finite state machine can have unfilled
blanks in it. There can be mutations that add states that are never utilized
in a given problem; Fogel (1991) calls these “neutral mutations.” It is also
possible to create the situation via mutation where a state transition that
is specified is not possible because the new state has been deleted. Muta-
tions such as this and others, such as changing output symbols, tend to
have less effect the more states the machine has, but can still cause fatal
errors in the finite state machine if they are not handled properly.

Although Fogel (1995) usually allows a variable-length structure, it is
also possible to evolve a finite state machine with EP using a fixed struc-
ture. First, the maximum number of states must be determined. For pur-
poses of illustration, using the three-state machine defined earlier as an
example, we will assume that no more than four states are allowed.

Each state could then be represented by a fixed six-bit binary element
as follows. The first bit could represent the “activation” of the state: if it is
1, the state is active, if 0, the state is inactive (i.e., it does not exist). The
next bit could represent the input symbol: 1 or 0. The next two bits could
represent the output symbol: X, Y, or Z. (Note that our example above
has only three output symbols. We have to either allow four or handle a
nonexistent symbol the way nonexistent states are handled.) The final
two bits then designate one of four output states.

The population is thus initialized with individuals 24 bits long. For
the example it may be a good idea to specify that only individuals with at
least two active states can be allowed in the initial population.
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Table 4.1 Specification table for a three-state finite state
machine (after Fogel, 1991).

Existing state A A B B C C

Input symbol 1 0 1 0 1 0

Output symbol Y Y X Z Z Y

Next state A B C B A B



A child is now generated for each parent. Given the five possible
kinds of mutation outlined earlier, one possible mutation procedure is
the following:

1. For each individual, generate a random number from 0 to 1.

2. If the number is between 0.0 and 0.2, change the initial state; if be-
tween 0.2 and 0.4, delete a state; and so on.

3. The mutation selected in step 2 is done with a flat probability
across all possibilities. For example, if the initial state is to be
changed and there are a active states, then one active state is se-
lected to be the initial state; each active state has the probability of
1/a of being selected.

4. Infeasible state transitions are modified to be feasible. If a state
transition to an inactive state has been specified, one of the active
states is selected to be the object of the transition. As above, each
active state has the probability of 1/a of being selected.

5. Evaluate fitnesses and keep the best 50 percent, resulting in a new
population of the same size.

The scenario outlined above is only one of many possibilities. For ex-
ample, it might be desirable to lower the probability ranges (the ranges
between 0 and 1 in step 2) for adding and deleting states, and corre-
spondingly increase the mutation probability ranges for changing input
symbols and/or output symbols. It is also possible to evolve the ranges,
number of states, and so on.

So how do finite state machines relate to what we’ve been discussing
in earlier chapters? One example is the development by Fogel (1995) us-
ing evolutionary programming of finite state machines that do very well
at playing the prisoners’ dilemma game. The payoff function is that used
by Axelrod (1980): if both cooperate, each player gets 3 points; if both
defect, each player gets 1 point; if one defects and one cooperates, the co-
operating player gets no points while the defecting player gets 5 points.

Fogel allowed the finite state machines to have up to eight states. This
doesn’t represent all possible behaviors à la Axelrod, but does allow a de-
pendence on sequences of greater than third order. Fogel was able to
evolve finite state machines that had average scores slightly greater than
3.0, which is the score that is achieved through mutual cooperation
alone.
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Figure 4.7 is the diagram for a seven-state finite state machine (one of
many evolved by Fogel) to play prisoners’ dilemma. The start state is
state 6, and play is begun by cooperating. In the figure, “C” denotes co-
operate and “D” denotes defect. The input alphabet comprises [(C,C),
(C,D), (D,C), (D,D)], where the first letter represents the finite state ma-
chine’s previous move and the second the opponent’s. So, for example, a
label of C,D/C on the arrow leading from state X to state Y means that if
the system is in state X and on the previous move the finite state ma-
chine cooperated and the opponent defected, then cooperate and transi-
tion to state Y. Sometimes, more than one situation can result in the
same state transition. For example, in Figure 4.7, assume the machine is
in state 6, in which case if the machine and opponent both defected on
the previous move, the machine defects (D,D/D) and transitions to state
2. Likewise, a transition from state 6 to state 2 occurs if the machine co-
operated and the opponent defected on the previous move; the machine
cooperates in this case (C,D/C) as it moves into state 2.

Function Optimization

The second example of a type of problem to which EP paradigms are ap-
plied is function optimization. The following example features the modi-
fication of each component of the evolving individual structures with a
Gaussian random function.

Consider, for the example, optimizing a function with two variables
such as F(x,y)= x2+ y2. The extremum in this case is a minimum at x= y
= 0. The first step is to establish a random initial population and to spec-
ify the dynamic range of the two variables. One plausible approach
might be to start with an initial population of 50 individuals, each vari-
able of which is initialized randomly over the range [−5, 5]. The fitness
value of each of the individuals is then calculated. The inverse of the Eu-
clidean distance from the origin is one reasonable fitness measure.

Each “parent” individual is mutated to create one “child.” The muta-
tion method used by Fogel (1991) is to add a Gaussian random variable
with zero mean and variance equal to the parent’s error value (the Euclid-
ean distance from the origin in this example) to each parent vector com-
ponent. The fitness of each of the children is then evaluated the same
way as the parents.

The process of mutation is illustrated by the following equation:

p p N z ni k j i j pi j j+ = + + ∀ =, ( , ), , . . . ,0 1β φ (4.2)
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where pi,j is the jth element of the ith organism, N( µ, σ2) is a Gaussian
random variable with mean µ and variance σ2, φpi is the fitness score for
pi, βj is a constant of proportionality to scale φpi, and zj represents an off-
set. For the function used in the example, it has been shown that the op-
timum rate of convergence is represented by

σ =
1224. ( )f x

n

where n is the number of dimensions (Baeck and Schwefel, 1993).
Another way to perform mutation involves the process of self-

adaptation, mentioned earlier. In this variation, the standard deviations
(and rotation angles, if used) are modified based on their current values.
As a result, the search adapts to the error surface contours (Fogel, 1995).

Fitness, however, is sometimes not used directly by itself to decide
which half of the augmented population will survive to the next genera-
tion. Tournament selection is used, with each individual competing with
a number, say, 10, of other individuals in the following way.

For each of the 10 competitions with other individuals, a probability
of “scoring a point” is set equal to the error score of the opponent di-
vided by the sum of the individual and opponent errors. For instance, if
the error of the individual is 2 and that of the opponent (one of 10 oppo-
nents) is 3, the probability of scoring a point is 3/5, or 60 percent. The to-
tal score is tallied over the 10 competitions for each individual, and the
half of the population with the highest total scores is selected for the
next generation.

Final Comments

The implementation of evolutionary programming concepts seems to
vary more from application to application than GA implementations. A
number of factors contribute to the differences in approach, but the
most important factor seems to be the “top-down” emphasis of EP. An-
other is the fact that selection is a probabilistic function of fitness, rather
than being tied directly to it. One developer of EP (Fogel, 1991) stated
that EP is at its best when it is used to optimize overall system behavior.
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Evolution Strategies

As a biological analogy, evolution strategies models problem solutions as
species rather than as they have been described earlier, as populations
of normally distributed multivariate points scattered around a fitness
landscape. The aspect of these populations that permits them to adapt
to their environment (in research this is often simulated by a test func-
tion or hard optimization problem) is their ability to evolve their own
evolvability.

If evolutionary programming is based on evolution, then, reasons
Rechenberg (1994), the field of evolution strategies is based upon the
evolution of evolution. Since biological processes have been optimized
by evolution, and evolution is a biological process, then evolution must
have optimized itself. Evolution strategies, although utilizing forms of
both mutation and crossover (usually called recombination in the evolu-
tion strategies literature), have a slightly different view of both opera-
tions than either evolutionary programming or genetic algorithms.

There are many similarities between evolution strategies and evolu-
tionary programming, and in fact the two paradigms are moving closer
together as researchers exchange techniques across the Atlantic. Evolu-
tion strategies, like evolutionary programming, take a top-down view.
They also stress the phenotypic behavior as opposed to the genotypic.
This means, for example, that the phenotypic behavior ramifications of
recombination are of importance, rather than what happens to the geno-
types. ES paradigms also usually use real values for the variables, rather
than the binary coding favored in genetic algorithm implementations.

Mutation

In evolution strategies the goal is to move the mass of the population to-
ward the best region of the landscape. Through application of the simple
rule, “survival of the fittest,” the best individuals in any generation are
allowed to reproduce; their offspring resemble them but with some dif-
ferences introduced through mutation. An individual is a potential prob-
lem solution characterized by a vector of numbers representing pheno-
typic features. Mutation is performed by adding normally distributed
random numbers to the parents’ phenotypic coordinates, their position
in the search space, so that the next generation of children explores
around the area in the landscape that has proven good for their parents.
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The amount of mutation—the evolvability of the population—is con-
trolled in an interesting way in ES. An individual is typified by a set of
features and by a corresponding set of strategy parameters. These are usu-
ally variances or standard deviations (the square root of the variance),
though other statistics are sometimes used. The strategy parameters are
used to mutate the feature vectors for the individual’s offspring; for in-
stance, standard deviations can be used to define the variability of the
normal distribution used to perturb the parent’s features. Random num-
bers can be generated from a probability distribution with a mean of zero
and a standard deviation defined by the strategy parameters; adding
these random numbers to the values in the parent’s feature vector simu-
lates mutation in the offspring. They resemble the parents but differ
from them to some controlled extent. Since the evolutionary process is
applied to the strategy parameters themselves, the range of mutation, or
the variability of the changes introduced in the next generation, evolves
along with the features that are being optimized. This is analogous to the
self-adaptation process in evolutionary programming that we previously
discussed.

Intuitively it can be seen that increasing the variance is like increas-
ing the step size taken by population members on the landscape. High
variance equals exploration, wide-ranging search for good regions of the
landscape, and corresponds to a high rate of mutation, while low vari-
ance is exploitation, focused search within regions. The strategy parame-
ters stochastically determine the size of the steps taken when generating
offspring of the individual; a large variance means that large steps are
likely to be taken, that the children are likely to differ greatly from their
parents. As the children are randomly generated from a normal distribu-
tion, though, a large variance can produce a small step size and vice
versa. It is known that 68.26 percent of random normal numbers gener-
ated will fall within one standard deviation, 95 percent fall within 1.96
standard deviations of the mean, and so on. So widening the standard
deviation widens the dispersion of randomly generated points.

ES’s unique view of mutation includes the concept of an evolution win-
dow. The theory behind the concept is that mutation operations result in
fitness improvement only if they land within a defined step size band, or
window (Rechenberg, 1994). Recombination (crossover) and mutation
operations that land outside the evolution window are not helpful. A
theoretical derivation of Rechenberg states that if mutations are carried
out with an optimal standard deviation, the probability of a “successful”
(helpful) mutation is about one-fifth. Evolution strategies carry the
idea of the evolution window still further. They assert that dynamic
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adjustment of the mutation size to a dynamic evolution window can
provide benefits called meta-evolution, or evolution of the second kind
(Rechenberg, 1994).

Like evolutionary programming, ES employs Gaussian noise func-
tions with zero mean to determine mutation magnitudes for the vari-
ables. For the strategy parameters, log normal distributions are some-
times used as mutation standard deviations.

ES theory states that mutation rates should be inversely proportional
to the number of variables in the individual population member and
should be proportional to the distance from the function optimum. In
real-world applications, of course, the exact value of the optimum is usu-
ally unknown. However, some knowledge often exists about the opti-
mum. It is often known within an order of magnitude; sometimes to
within a factor of two or three. Even limited knowledge such as this can
be helpful in guiding an evolution strategy search.

Recombination

In ES, recombination manipulates entire variable values. This is usually
done using one of two methods. The first and more common method
(the local method) involves forming one new individual using com-
ponents (variables) from two randomly selected parents. The second
method, the global method, uses the entire population of individuals as
potential sources from which individual components for the new indi-
vidual can be obtained.

Each of the two methods, local and global, is generally implemented
in one of two ways. The first is called discrete recombination, which con-
sists of selecting the parameter value from either of the two parents. In
other words, the parameter value in the child equals the value of one of
the parents. The second way, called intermediate recombination, involves
setting each parameter value for a child at a point between the values for
the two parents; typically, the value is set midway between those values.
If the parents are denoted by A and B, and the ith parameter is being de-
termined, then the value established using intermediate recombina-
tion is

x x C x xi
new

A i B i A i= + −, , ,( )

where C is a constant, usually set to 0.5 to yield the midpoint between
the two parent values.
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Thus we see that evolutionary strategies contain a component repre-
senting sexual combination of features. In intermediate recombination,
for instance, the children’s features are computed as a kind of average of
the two parents’ features, while in discrete recombination, individual
features may come intact or mutated from one parent or the other.

In the experience of ES practitioners, the best results often seem to be
obtained by using the local version of discrete recombination for the pa-
rameter values and the local version of intermediate recombination for
the strategy parameter(s). In fact, Baeck and Schwefel (1993) report that
implementation of strategy parameter recombination is mandatory for
success of any ES paradigm.

Selection

In evolution strategies, as in all Darwinian models, an individual’s fitness
determines the probability that it will reproduce in the next generation.
There can be many ways to decide this; for instance, we could rank all the
individuals from best to worst, chop off the bottom of the list, and save
only the proportion that we want to survive. This proportion depends on
how many offspring they shall have, assuming the population size re-
mains constant from one generation to the next. In nature, of course,
there is no ranking of individuals; the survival of each depends on the
environment and that individual’s chance encounters. Imagine a snow-
shoe hare that has a mutation that makes its fur turn black in the winter.
In the snow this hare is more visible than its camouflaged cousins. It
might just happen, though, that no predators come into the area where
this hare lives, so they don’t see it, and subsequently it reproduces, pass-
ing on the mutation. It can happen—it is just that the likelihood is re-
duced relative to the alternative, which is that a predator that comes into
the area immediately notices this contrastive morsel and eats him, rather
than his harder-to-see littermates. In nature, the measure of fitness has a
great amount of error in it; possible improvements are commonly lost.

This suggests that selection needs to be probabilistic—you can’t just
propagate the best so-many individuals to the next generation. The les-
son we learned from simulated annealing was that sometimes a step
backward is productive in the long run. In the same way, natural evolu-
tion lets some less-fit individuals reproduce, and it is quite likely that
eventual improvement is transmitted through the less obvious route.
Evolutionary computation researchers have come up with a number of
techniques for stochastically selecting survivors for the next generation.
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In order to better model the stochastic aspect of natural selection—what
could be called survival of the luckiest—several computational methods
of selection have been devised. Common methods include ranking, rou-
lette wheel selection, and tournament selection.

Ranking is the simplest procedure, though it does not have the ad-
vantage of allowing selection of less-fit individuals. The population is
sorted from best to worse, and individuals above the cutoff in the list are
chosen. One salient objection to this method is that it requires global in-
formation. Knowledge of all fitness values is needed in order to deter-
mine the rank of any individual. Obviously nature does not work this
way; only local information is used in natural selection, and errors in
ranking—occasions where more-fit members fail to reproduce or less-fit
members succeed—contribute to the adaptation of the population. This
might be a weaker argument than it seems; there are plenty of times,
though, where a computer needs to use global information in order to
accomplish things that nature does without it. For instance, to detect
collisions in virtual worlds requires computation of the relative positions
of all objects in the world, while in the physical world things behave ap-
propriately without any such computations. Running into a brick wall
stops you, period. So evolution in a computer program might be accept-
able even if it requires global information as a way to accomplish an end.

Roulette wheel selection was discussed in the previous section on ge-
netic algorithms. Recall that, in roulette-wheel selection, each individual
is given a probability of selection proportional to its fitness.

In our discussion of optimization we discussed three number spaces:
the parameter space, the function space, and the fitness space. Almost all
studies in artificial evolution treat the function space as if it is identical to
the fitness space; that is, the function output provides a number that in-
dicates how close to the global optimum the search algorithm is. We
note, though, that there are dangerous ambiguities in the confusion of
these two quantities. Recall the two measures of fitness that could be
used with the simple problem 4+ x= 10 in the earlier chapter. The land-
scape was very different when fitness was defined as a multiplicative in-
verse from when it was simply the negative of additive error. The ideal
fitness measure should generally be scaled between zero and one, repre-
senting the probability of a population member’s survival.

Outside of Eden there is always some selection pressure; a limited
number of individuals can survive, so fitness should remain constant on
the average. When population size is limited—as it always is—an indi-
vidual’s fitness must be considered to be relative to that of other individ-
uals in the population, as well as relative to the function result. Selection
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based on simple ranking is consistent with the concept of competition,
where one contestant wins and one loses, though an individual that is a
little bit better gets the same advantage as one that is very much better.
We see in sum that fitness contains two components that are correlated
but not necessarily identical: the first is simple fitness, having to do with
the ability of the individual to meet the demands of the environment,
and the second derives from the inability of the environment to support
all the individuals that meet the first criterion. The first should ideally be
reported in floating-point quantities, and the second requires rank infor-
mation only.

Tournament selection uses local competitions to determine survivors.
In its simplest form, individuals are paired at random, and the best mem-
ber of each pair is selected to reproduce. This can be repeated until the
next generation is sufficiently populated. Other tournament methods
pair up individuals in some number of competitions, adding a point to
their score each time they win, and then keep individuals with more
than a critical number of points; other methods select subgroups at ran-
dom from the population and allow the one with the highest fitness to
survive to the next generation (see Figure 4.8).

The results of tournament selection correlate with the results of rank-
ing; that is, fitter individuals survive in general. One-on-one, winner-
take-all tournaments allow the most error in terms of less-fit individuals
being selected; while the very best individual is guaranteed to survive
and the very worst is guaranteed not to, it is entirely possible that the
next-to-worse individual is paired with the worst one and thus is se-
lected. Repetitive and subgroup tournaments decrease the amount of er-
ror while increasing the correlation with ranking results, until an algo-
rithm where each individual engages in n − 1 unique tournaments,
where n is the population size, is exactly equivalent to ranking.

Differences exist between evolution strategies and other paradigms of
evolutionary computation with respect to selection. ESs generally oper-
ate with a surplus of descendants. Schwefel (1994) describes the most
common versions of ES selection, known as the (µ, λ) and (µ + λ)-ES. In
both versions, the number of children generated from µ parents is λ > µ.
Commonly used is a λ/µ ratio of 7.

In the original (1+1)-ES, one parent produces one offspring, with
only the fitter of the two surviving. Although it is called “two-member
ES,” this is an evolutionary algorithm with a population of one (Bentley,
1999). This version is now seldom used.

The difference between the “plus” and “comma” versions comes in
the next step. In the (µ, λ) version, the µ individuals with the highest
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fitness values out of the λ children are selected. Note that the µ parents
are not eligible for selection in this scheme, only the children. In the (µ
+ λ) version, the best µ individuals are selected from a pool of candidates
that includes both the µ parents and the λ children, that is, the union of
the two groups of individuals. Whichever of the methods is used, the µ
individuals that are left have thus been selected completely deterministi-
cally and have equal probabilities to mate and have descendants in the
next generation.

In the discussion of genetic algorithms, the elitist strategy was men-
tioned, in which the individual with the highest fitness in each genera-
tion is guaranteed to survive to the next generation. This individual may
be carried over from the previous generation or appear as a result of oper-
ations in the current one. As can be seen from the preceding discussion,
the (µ + λ) version implements elitism, as the most-fit parent will be re-
tained, while the (µ, λ) version does not. Elitism is generally considered
to be helpful in GA applications. With evolution strategies, however, the
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(µ, λ) version is generally observed to yield better performance (Baeck
and Schwefel, 1993).

The following list summarizes the procedure used in most evolution
strategies:

1. Initialize population.

2. Perform recombination using the µ parents to form λ children.

3. Perform mutation on all children.

4. Evaluate λ or µ + λ population members.

5. Select µ individuals for the new population.

6. If the termination criterion is not met, go to step 2; otherwise,
terminate.

In sum, in evolution strategies mutation is applied to the parent’s
features to generate children that resemble the parent but differ sto-
chastically from it. Each of the survivor’s positional coordinates is en-
tered as the mean of a normal distribution, the corresponding strategy
parameter is entered as the variance or standard deviation, and a child
vector of numbers is generated for both positions and strategy parame-
ters. These children are evaluated, selection is applied, and the cycle re-
peats. The evolution of strategy parameters suggests the evolution of
evolvability, adaptation of the mutability of a species as it searches for,
then settles into, a niche.

Genetic Programming

The three areas of evolutionary computation discussed thus far have all
involved individual structures that are defined as strings. Some are
strings of binary values, some include real-valued variables, but all are
strings, or vectors. The genetic programming (GP) paradigm deals with
evolving hierarchical computer programs that are generally represented
as tree structures. Furthermore, while individual structures utilized up to
this point have generally been of fixed length, programs being evolved
by genetic programming generally vary in size, shape, and complexity.

One perspective is that GPs are a subset of GAs that evolve execut-
able programs. Differences between GPs and generic GAs include the
following:
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� Population members are executable structures (generally, com-
puter programs) rather than strings of bits and/or variables.

� The fitness of an individual population member in a GP is mea-
sured by executing it. (Generic GAs’ measure of fitness depends on
the problem being solved.)

The goal of a genetic programming implementation is to “discover” a
computer program within the space of potential computer programs be-
ing searched that gives a desired output for a given set of inputs. In other
words, a computer is figuring out how to write its own code.

Each program is represented as a parse tree, where the functions de-
fined for the problem appear at the internal tree points, and the variables
and constants are located at the external points (leaves) of the tree. The
nature of the computer programs generated gives genetic programming
an inherently hierarchical nature.

In preparation for running a genetic programming implementation,
five steps are carried out:

1. Specify the terminal set.

2. Specify the function set.

3. Specify the fitness measure.

4. Select the system control parameters.

5. Specify termination conditions.

The terminal set comprises the variables (the system state variables)
and constants associated with the problem being solved. For example,
consider a “cart centering” problem, where the goal is to center a cart in
the least amount of time on a one-dimensional frictionless track by im-
parting fixed-magnitude forces that accelerate the cart left or right. The
variables would be the cart’s position x and velocity v. A constant such as
−1 would also be an appropriate terminal for this problem (see Koza,
1992, Chapter 6).

The functions selected for the function set are limited only by the
programming language implementation that will be used to run the pro-
grams evolved by the GP implementation. They can thus include mathe-
matical functions (cos, exp, etc.), arithmetic operations (+, #, etc.),
Boolean operators (AND, NOT, etc.), conditional operators such as if-
then-else, and iterative and recursive functions. Each function in the
function set requires a certain (fixed) number of arguments, known as
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the function’s arity. (Terminals are functions with arity 0.) One of the
tasks of specifying the function set is to select a minimal set that is capa-
ble of accomplishing the task.

This leads to two properties that are desirable in any GP application:
closure and sufficiency. For the closure property to be satisfied, each func-
tion must be able to successfully operate on any function in the function
set and on any value of any data type assumable by a member of the ter-
minal set.

This occasionally requires definition of special cases for functions. For
example, in arithmetic functions division by zero can be defined for the
purposes of a problem as being equal to some constant value such as 1. If
Boolean values returned by conditional operators are not acceptable, the
conditional operator can be redefined in one of two ways: (1) Numerical
values (such as 0 and 1) can be returned rather than Boolean values (such
as F and T), or (2) conditional branching and conditional comparative
operators can be defined to execute one of their arguments depending on
the evaluation of the test involving an external state or condition, or on
the comparison test outcome. Functions that are redefined so as to return
acceptable values are called protected functions. If the closure property is
not satisfied, some method must be specified for dealing with infeasible
population members, and with members whose fitness is not acceptable.

For the sufficiency property to be satisfied, the set of functions and set
of terminals must be sufficiently extensive to allow a solution to be
evolved. In other words, some combination of functions and terminals
must be capable of producing a solution. Some knowledge of the prob-
lem is generally required to be able to judge when the sufficiency prop-
erty is met. In some problem domains, sufficiency is relatively easy to de-
termine. For example, if Boolean functions are being used, it is well
known that the function set comprising AND, OR, NOT is sufficient for
any problem. For other problems, it can be relatively difficult to establish
sufficiency.

Having more than the minimally sufficient number of functions has
been found to degrade performance somewhat in some cases and to sig-
nificantly improve it in others. Having too many terminals, however,
usually degrades performance (Koza, 1992).

The fitness measure often is selected to be inversely proportional to
the error produced by program output. Other fitness measures are also
common, such as the score a program achieves in the game.

The two main control parameters are the population size and the
maximum number of generations that will be run. Other parameters
used include reproduction probability, crossover probability, and the
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maximum size allowed (as measured by the depth, or number of hierar-
chical levels) in the initial and final program populations.

The termination condition is usually determined by the maximum
number of generations specified. The winning program is usually the
best program (in terms of the fitness measure) created thus far in any
generation.

Once the five preparatory steps for running a GP are completed, the
GP process can be implemented as follows:

1. Initialize the population of computer programs.

2. Determine the fitness of each individual program.

3. Carry out reproduction according to fitness values and reproduc-
tion probability.

4. Perform crossover of subexpressions.

5. Go to step 2 unless termination condition is met.

The population is initialized with randomly generated computer pro-
grams comprising functions and terminals from the selected sets. In
other words, each program in the initial population is created by build-
ing a rooted tree structure with randomly selected functions and termi-
nals from the defined sets. No restrictions are placed on the size or shape
(configuration) of acceptable programs, other than the maximum depth,
or number of hierarchical levels, allowed. Each individual structure cre-
ated is a hierarchically structured executable program. A population size
of 500 has been reported to be sufficient for most problems solved with
GP implementations (Koza, 1992).

The root of each program tree is a function randomly selected from
the function set. The root of a randomly created program appears at the
top of Figure 4.9. The number of lines, or branches, emanating from the
function is equal to its arity. In the figure, the multiplication function
“*” takes two arguments.

Once the root function is selected, there are a number of ways the
program population can be created. Following is a description of what
Koza (1992) calls the ramped half-and-half method. It makes use of two
approaches to building program trees: the grow method and the full
method.

In the grow approach, a random selection is made from the combined
set of functions and terminals for placement at the end of each line ema-
nating from the root function. If a function is selected, program creation
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continues recursively with selections from the combined set. Whenever
a terminal is selected, a leaf, or end-point, of the tree is established. Pro-
gram creation along that line is thus terminated. Except for the root
function, therefore, all functions are at internal tree locations. The leaves
of the tree are all terminals. Anytime the maximum depth (number of hi-
erarchical levels) is reached, the random selection is limited to the termi-
nal set. When the grow method is used, the program tree configuration is
guided by the ratio of the number of functions to the number of termi-
nals. When the ratio is higher, the average depth of each limb is higher.

In the full approach, each limb of the program tree extends for the full
depth. Only functions are selected for placement at the end of each line
until the maximum depth is reached, at which time only terminals are
selected. All programs created using the full approach thus have identical
fully developed structures.

The ramped half-and-half approach produces a population diverse in
size and shape. Koza (1992) reports using this method for almost all
problems except those involving Boolean functions. The method con-
sists of creating programs with evenly distributed depth parameters
ranging from 2 to the maximum depth. For example, if the maximum
depth is 5, 25 percent of the population would have depth 2, 25 percent
depth 3, and so on. Within each subpopulation of a given depth, one-
half of the programs are created using the grow approach, one-half using
the full approach.

The fitness of each program is generally calculated for a number of
cases, with the average fitness value over the cases being defined as a pro-
gram’s fitness. For example, if a program were being evolved to calculate
y as some function of x, each individual program might be tested over 50
or 100 cases, each representing a value of x in the domain. It is important
to use a sufficient number of cases to represent this domain. Although it

Genetic Programming 183

*

Other functions and links
continue down from here

Figure 4.9 Example of a root of a randomly created program in the initial population.



is possible to use different cases in different generations, the same fitness
cases are usually used across all generations. Fitness can be calculated in a
number of ways. Koza (1992) defines four fitness metrics: raw, standard-
ized, adjusted, and normalized fitnesses.

Steps 3 and 4 of the GP process are often carried out in parallel. A
probability is assigned to reproduction, and another to crossover, so that
the two sum to 1. If, for example, the probability of reproduction is 10
percent (a typical value in Koza’s problems), then the probability of
crossover is 90 percent. This means that once fitness calculations have
been made, and it is time to build the new program population, a deci-
sion is made based on these probabilities whether to perform reproduc-
tion or crossover.

If reproduction is selected, it is often carried out in a similar fashion to
roulette wheel selection used in GAs. A candidate program is selected for
reproduction with a probability proportional to its fitness divided by the
sum of all of the programs’ fitnesses (its normalized fitness). For very
large populations of 1,000 or more, highly fit individuals are sometimes
given an even greater probability of selection than their normalized
fitness. This is called overselection.

If crossover is selected, it is accomplished by first selecting two par-
ents using a method based on normalized fitness similar to that used for
reproduction. Then, one point is randomly selected in each parent as the
crossover point. The point can be anywhere in each program, including
the root and internal functions, or the terminals. The entire substructure
consisting of the crossover point root and everything below it is ex-
changed between the two programs.

Note that the parent programs, as well as the exchanged substruc-
tures, are usually of different sizes and configurations. Note also that the
results of some operations may not be what is usually expected of cross-
over. An example is when the roots of the two programs are selected as
crossover points, in which case the results are identical to the two pro-
grams being selected for reproduction into the new population.

When a crossover operation would result in a program that exceeds
the maximum defined depth, the program that would exceed the depth
limit as a result of crossover is copied unaltered into the new population,
while the crossover operation is carried out for the other program. In
other words, the subtree at and below the crossover point in the unal-
tered program replaces the program portion at and below the crossover
point in the other program.

Preprocessing and postprocessing, as typically done when working
with other computational intelligence tools such as artificial neural
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networks and genetic algorithms, play a relatively minor role in GP im-
plementations. The selection of the function and terminal sets sig-
nificantly depends on the problem domain, however, so this selection
could be thought of as preprocessing.

Formulating the approach to solving a problem with a GP implemen-
tation can be difficult. Discovering what other people have done in simi-
lar circumstances is often helpful. Chapter 26 of Koza’s 1992 book pre-
sents tables to help guide a user in selection of terminal sets, function
sets, population size, and so on. Genetic programming has, as have the
other evolutionary algorithms we’ve discussed, developed a set of “ad-
vanced” operators. Included are permutation, in which two characters in
a tree are exchanged, editing, in which lengthy S-expressions are com-
pressed, and encapsulation, in which an entire subtree is treated as a sin-
gle node, thereby insulating it from any effects of crossover or mutation.

Summary

Genetic algorithms, evolutionary programming, evolution strategies,
and genetic programming have a number of qualities in common, in-
cluding the fact that all evolve solutions, all utilize some kind of selec-
tion based on survival of the fittest, and all invoke some sort of evolu-
tionary manipulation such as crossover or mutation.

The paradigms differ in their handling of infeasible points in an EC
implementation. This subject has been studied and discussed exten-
sively, but no universally applicable resolution has been developed. This
lack of resolution is supported by the fairly detailed discussion of infeasi-
ble solutions that appears in Michalewicz and Michalewicz (1995). In ge-
netic programming, however, where feasibility corresponds to closure,
Koza (1992) recommends that infeasible solutions not be allowed (i.e.,
that closure be required).

We should emphasize (again) that the boundaries between the para-
digms of evolutionary computation are becoming increasingly indis-
tinct. Researchers in one area are adapting techniques and approaches
from others. For instance, the concept of self-adaptation is now em-
braced by researchers in all four areas we’ve discussed.

In Appendix B, an implementation of an example of an evolutionary
computation paradigm, a “plain vanilla” genetic algorithm, is presented.
As you will see in Chapters 7 and 8, the particle swarm optimizer has
some attributes similar to ES, GAs, and EP.
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chapter
five

Humans—Actual, Imagined,
and Implied

In painting the background for the particle
swarm, we are developing a perspective of
the individual mind embedded inextricably in
its social context. But it is hard to establish
what exactly is meant by “mind.” It is a word
with no definition, because all attempts to
define it are necessarily circular. The exis-
tence of mind is self-evident and only self-
evident, known only by direct experience
of one’s own mind and inference of other
people’s—or is it through inference that we
know our own minds, too?

In this chapter we introduce some ideas
from the social sciences, focusing as before
on computer simulations and programs that
instantiate relevant theoretical ideas. Our ar-
gument leads us from the individual mind up
to culture, and back, and forth; it is apparent

that one cannot be considered without con-
sideration of the other. The ultimate example
of the interpenetration of mind and culture is
language, and so we begin by attempting to
incite an appreciation for the acquisition and
understanding of language in its context; in
this we are developing an idea that has been
seen in high-dimensional semantic spaces
and also in the superficial but often-credible
natterings of chatterbots. Language is not
something that is held and maintained by
authorities who punish grammatical viola-
tors and reward wordcraft. It is much better
viewed as an emergent system, where each
individual in a linguistic community partici-
pates in the creation of the language and in
its maintenance. And thus with the wisdom
of a culture, in all its forms. �
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Studying Minds

As minds cannot be observed directly, the experience of thinking and
feeling can only be described in metaphorical terms, and throughout his-
tory people have used the symbols and technology of their times to de-
scribe their experience of thinking. At various times mind has been pop-
ularly conceived as operating by humors, the interventions of gods, the
actions of stars and their corresponding terrestrial substances, possession
by demons, and, in more recent centuries, by pneumatic and hydraulic
operations of glands and other physiological systems. The metaphor
used to describe mental functions comes to prescribe acceptable func-
tions; thus the metaphor and its referent co-construct one another.

In our day the prevailing metaphor is that the cognitive system is like
a computer program; brains are like hardware and minds are like the soft-
ware that runs on them. While there is no precise instant when this now-
common idea can be said to have begun, the rise of information theory in
the 1950s made it possible. Claude Shannon (1948) revolutionized mod-
ern thought, not to mention technology, by proposing that information
could be conceptualized mathematically as a kind of inverse function of
probability (see Figure 5.1).

If information is a function of the probabilities of different events,
and thinking can be somehow defined as the processing of information,
then the question is how thinking is dependent on the probabilities of
things. Shannon conducted an experiment with language that was inter-
esting and prescient, and demonstrates the kinds of calculations that we
make in extracting information from our environments. He was curious
about the information content of the alphabet as it is used in English. As
it is described in his landmark 1948 Bell System Technical Journal paper,
“Mathematical theory of communication,” Shannon took a table of the
probabilities of occurrence of the letters in the English language and gen-
erated some random text by picking letters stochastically. His “first-
order” approximation to English looked like this:

OCRO HLI RGWR NMIEL WIS EU LL NBNESENYA A TH EEI
ALHENHTTPA OOBTTVA NAH BRL

A second-order approximation was created by taking the transition
probabilities of letters, for instance, the probability that T will be fol-
lowed by H. In fact, Shannon used a heuristic approach here. After
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picking a random starting place in a book written in English, he recorded
the letter he found there, then turned to a random page in the book and
ran his finger down the page until he encountered that letter. He then re-
corded the letter that followed it, and flipped to another random page
and looked for that letter, and so on. Shannon’s resulting second-order
approximation was

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACIN D
ILONASIVE TUCCOE AT TEASONARE FUSO TIZIN ANDY TOBE
SEACE CTISBE

It is very interesting to see how much this random text looks like written
English. Shannon’s third-order approximation sampled pairs of letters,
found them in a random page, took the letter that followed them, and so
on. His third-order approximation was
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Figure 5.1 The amount of information, or entropy, in an event is a function of its probability.



IN NO IST LAT WHEY CRATICT FROURE BIRS GROCIDE
PONDENOME OF DEMONSTRURES OF THE REPTAGIN IS
REGOACTIONA OF CRE

Here, Shannon makes a remark whose implications he could not have
known. He says, “It would be interesting if further approximations could
be constructed, but the labor involved becomes enormous at the next
stage” (p. 8). Of course, since then, the computers that were made possi-
ble by his own theory are now able to perform the laborious calculations
almost instantaneously, with negligible human effort.

For instance, we analyzed a draft of a previous chapter of this present
volume in a similar way. The first-order approximation simply samples
the letters (including spaces and punctuation) in proportion to the fre-
quency of their appearance in the text:

aa r ptnlomid ntm tensiidn nip nmJ irtnenflo04epnfmp tuclo sse Pt
s unhttllb rttcp opu aus t,wautihalrta.imv wflmie io ensar ih
oshotsil bss m0t r sp r.hsO lhne,.hmirrrnlriend c1f mt g ta,eoh
kmeeamsts aeekevncgsgsi ipweeeoes ariolvuhstg ertiawalnei.ii
fangmp,c aiam vrf-tlfistgcloicO Isio s eaTseoaatmtinlnnna

We agree that this passage fails to convey much meaning. The second-
order approximation samples single letters in proportion to the probabil-
ity of their following the previously sampled letter:

rse me che mise by Thapan the Tulicoutoundiog ale?” Wiod hens,
atem te, wher Thoreg anof inen thuraiouskiehesithieny o alllya s
ilute Hest at oman Sthe Kichisodimborsurgly es tie ttenterofallanes
ong ia Scly trugeroajesuged Stirimant Acareiselixp as IZA
Corobisthen we, d ron theroun e ta ncotaler e ha Bomickee taces

This passage gives at least the impression of an actual language. We note
already that strings seem to have syllabic structure—you could pro-
nounce most of these words or at least make a good guess at their
pronunciation.

Because our technique is automated, and we don’t have to run our
finger down a page, we can extend the paradigm to look at the third-
order approximation, that is, where pairs of characters are sampled as a
function of their following the previously selected pair (note that the
present methodology differs slightly from Shannon’s, in that he sampled
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the next single letter, while we take n letters at a time as a function of the
previous n):

grationgene or grepoweent a tancre pro a cal it isions or asursentin
promoveme as it morgetionds, ther in hat retal embest go unds one
evelowithe exed behavidualsopherends. Youtputsionmenable sual It
of simizator of phen that knot ink atin the eerstices as ward peries
the in es; itionarythers ife rouncts. mustife for come to

Good readers have the ability to spot misspellings on a page, as if they
“jump out” at them. This effect is likely due to a powerful cognitive abil-
ity to recognize improbable character sequences in text. It is interesting
then to note the failure of anything to “jump out” of the third-order ran-
dom text. It “looks like” ordinary text until you try to read it.

The experiment continues to the fourth order—three-letter combina-
tions selected probabilistically:

1967 paper with individual computerspect male, say for the robots
of been admining comple of firstood real of animaller another ant
and by simposed on seems the body, when inters frequeens when
generally genes in trival, experimented you are population, fitter
ches to point to waits. guage is a species’ changers more able or

Suddenly, at this level of approximation, simply sampling random char-
acter strings based on the probability of their following some other
strings, real English words appear. Even the strings that aren’t words look
like real English. It is possible to read this passage aloud with minimal
difficulty.

This makes us want to sample letters in groups of four:

is mother” in a less landscape. Hoskins uses, then there is person to
us as individual’s of three frameter the potential,” Reynolds has
program to maintaining that detect word “accept understanding
individual’s concept is defined with even rates thematical ant
theorem of fish, 1977, p. 240). Brooks’ subsumption among

This passage is mostly true English words. We are almost tempted to go
back in our manuscript and add something about the “thematical ant
theorem of fish.”

Shannon left the alphabetic analysis after the third order and
switched to the generation of random text based on the probabilities
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of the appearance of words, rather than letters. The results of this ex-
periment are equally striking; as Attneave remarks, “the discourse ap-
proaches a sort of schizoid plausibility” (p. 17). Here is Shannon’s
second-order word approximation:

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER
METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER
TOLD THE PROBLEM FOR AN UNEXPECTED

A similar kind of text-generating experiment was reported by Brian
Hayes in a 1983 Scientific American “Computer Recreations” column, de-
liciously titled “A progress report on the fine art of turning literature into
drivel.” These exercises are closely related to the contemporary genera-
tion of semantic models from sampled text by Burgess and Lund, and
Landauer and Dumais. The high-dimensional semantic models extend
Shannon’s findings, particularly through the discovery that meaning it-
self emerges from the analysis of the probabilities of linguistic units’ oc-
currence within contexts. The result is insight into the nature of lan-
guage and of the use of symbols by humans; we discover that semantic
processes may be driven, bottom up, by a finely tuned capacity to ana-
lyze information in its context.

Information theory gave rise to cybernetics, which made the leap of
applying communication and control theory equally to animals—in-
cluding humans—and machines, and by the 1960s the idea that human
minds could be programmed like computers—they called it “psycho-
cybernetics”—had saturated the popular belief system. During the Cold
War there was great concern about “brainwashing,” which was a sup-
posed method by which Communists could take good capitalist minds
and reprogram them to believe foul Red propaganda. Despite the popu-
lar belief, there was and is no scientific evidence that a person’s mind can
be overtaken and controlled by another without their compliance. The
popular concept of mind was deteriorating from something purposive,
spiritual, self-generated, and subjective to something machinelike, con-
trollable by external forces, something that could be programmed by ex-
perts; your own mind was something that you yourself knew very little
about, compared to the programmers and the psychologists (“Why did I
do that, Doc?”). Mind was brain, the computer, the machine. And so we
find it today.
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The Fall of the Behaviorist Empire

Through most of the 20th century, mainstream academic psychologists,
at least in the United States, were not allowed to talk about the mind.
From the 1920s on, the influence of behaviorism was wide and pro-
found, and mind was considered to be “the ghost in the machine.” Be-
haviorism had emerged from the logical positivism of the early 20th cen-
tury, which postulated that science can theorize only about phenomena
that can be observed directly. In psychology it was clear that nothing
mental could be observed directly, and therefore cognition was off the
list of topics for serious research. The one thing that could be observed
was the behavior of organisms, and so psychology (from Psyche, the an-
cient Greek goddess of the soul) came to be defined as the science of
overt behavior. An undergraduate psychology education during that
time consisted of lecture after lecture of well-meaning professors de-
riding concepts such as mind (“Show me mind!”) and consciousness
(“Show me consciousness!”) as being unobservable and therefore unwor-
thy of scientific study. Most research was conducted with animals, espe-
cially rats and pigeons, though generalizations to humans were offered
with great optimism and confidence. Skinner’s explanation of language
was one such extrapolation, and the sensational thrashing it received has
been partly credited with the downfall of the behaviorist dynasty.

The two branches of behavioristic doctrine perfectly well reflected the
polarization of the Cold War era in which they thrived. The Russian clas-
sical conditioning paradigm, originating in Pavlov’s laboratory, focused
on the gland and smooth-muscle responses of the organism. When pre-
sented with an unconditioned stimulus such as the smell of food or pres-
ence of a threat, an animal’s response is visceral, triggered by the auto-
nomic nervous system. Salivation is of course the famous Pavlovian
example of a glandular response, while increased heart rate, perspiration,
and so on, are other classical responses. If a new stimulus is paired repeat-
edly with one that elicits a response, then that new stimulus will also
come to elicit the response. Thus classical conditioning views the or-
ganism as passively reacting to events in the environment; the behav-
ior of the organism is “pushed” by stimuli that precede it. (It is notewor-
thy that all behavior was described by the behaviorists as “responses,”
eliminating the possibility of curiosity, play, and other self-generated
behaviors.)

American behaviorists on the other hand emphasized operant condi-
tioning, in which the organism acts on its environment in order to obtain
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a reinforcement. The organism here is “pulled” toward a stimulus that
follows the behavior. Operant behavior uses the striated muscles that
move the skeleton; in other words, these responses are overt body move-
ments or actions. American behaviorism, following the work of Watson,
Hull, and Skinner, viewed all nature as a kind of capitalistic enterprise,
with animals of all sorts doing whatever it takes for the almighty rein-
forcer. Similarities to the 20th-century American lifestyle were reflected
in popular use of the term “rat race” to describe the daily life of a typical
worker.

In many ways behaviorism was a step forward from the introspective
psychologies of the 19th century. Though the old-time psychologists
had discovered some important facts about the workings of the mind,
their methods were very susceptible to error. In Wilhelm Wundt’s labora-
tory, established in 1879, trained observers attended closely to their own
sensations and reported them as carefully and objectively as possible.
The memory researcher Ebbinghaus built his entire theory around exper-
iments with himself as the only subject. Some of his findings have en-
dured and still contribute to the literature of memory and learning, but it
is clear that the introspective, single-subject, scientist-as-subject meth-
odology was not adequate for discovering covert processes that are sup-
posed to be universal across persons.

Behaviorism (which also relied on single-subject research designs)
emphasized the importance of empirical observation in psychological
research. Behaviors were defined in operational terms and were recorded
carefully. From these observations the behaviorists derived elaborate for-
mulas linking stimuli to responses. While behaviorism has all but van-
ished from the intellectual landscape, we can thank the paradigm for
holding scientific psychology’s nose to the methodological grindstone.
The behaviorists themselves did not use sophisticated methods of mea-
surement, experimental design, or statistical analysis, but they set a strict
standard for empiricism that continues to influence researchers up to the
present time.

The behaviorist orthodoxy continued to persist even while informa-
tion science ascended in other departments of the university. Rats could
be shown to strive for reinforcement consistently; once you deprived
them of water for a long enough time, you could get them to do almost
anything for a drink. Behaviorism fit in very comfortably with the polar-
ized worldview of the time, and it provided professors (“Show me infor-
mation!”) with a self-consistent philosophy that required little justifica-
tion, since everything except stimuli and responses was eliminated from
the discussion, and behavior could be reduced to a set of fundamentals
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just large enough to provide new topics for journal publications. There
did not seem to be any reason to abandon the paradigm.

The Cognitive Revolution

Different authors give different dates for the birth of the “cognitive revo-
lution” in psychology, a precise moment when the veil was lifted and ac-
ademic psychologists admitted that there was more to human behavior
than simply responding to things in the environment. Howard Gardner
argues that the crucial moment occurred during the Symposium on In-
formation Theory held at MIT in September 1956. Attendees included
George Miller, Allen Newell and Herbert Simon, Noam Chomsky, and
others who soon became the leaders of this new field. George Miller’s in-
fluential research on “chunking,” cognitive compression of information
by hierarchically aggregating facts, was first presented at the symposium
and later published in the Psychological Review. Some psychologists were
present at the symposium, but the field as a whole was not immediately
affected by the new views.

Another event often cited as a moment when the tide turned was
Noam Chomsky’s 1959 review of B. F. Skinner’s 1957 book, Verbal Behav-
ior (Chomsky, 1959; Skinner, 1957). Skinner had tried to assimilate
human language to the behaviorist paradigm, explaining it in terms
of stimuli and responses. Chomsky’s review tore into Skinner’s views
mercilessly; many readers of the day felt that he had shredded the
epistemological and methodological underpinnings of Skinner’s behav-
ioristic psychology of language and of the Skinnerian explanation of hu-
man behavior generally. (In retrospect, time has been surprisingly kind
to Skinner’s theory of language; the effect of Chomsky’s review was im-
mediate and devastating, but new readers of Skinner often find much to
agree with.)

Festinger’s 1957 cognitive dissonance theory turned behaviorist as-
sumptions on their head. In Festinger’s paradigm, an experimental sub-
ject in one condition might be offered a small reward, say, 25 cents,
for performing a very boring task, while subjects in another condition
were offered a large amount, for instance, 10 dollars, for doing the ex-
act same thing. When they were asked afterwards how much they had
enjoyed the task, subjects in the low-reward condition reported sig-
nificantly more enjoyment. Dozens, then hundreds, of experiments sup-
ported these findings. Why did a low reward have more effect than a
higher one? It went totally against the premises of reinforcement theory
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and broke another door open for considerable research into cognitive
processes.

An occasion given as the birth moment of the cognitive revolution,
or at least the beginning of the end for psychological behaviorism, was
the APA presidential address of Albert Bandura in 1974, when he stressed
the importance of self-regulation in human behavior: “It is true that be-
havior is regulated by its contingencies, but the contingencies are partly
a person’s own making. By their actions, people play an active role in
producing the reinforcing contingencies that impinge upon them.”
Bandura argued that cognitive processes must be considered in explain-
ing human behavior. In that same year, Brewer published a chapter enti-
tled, “There Is No Convincing Evidence for Operant or Classical Condi-
tioning in Adult Humans”—the title says it all. The tide of cognitivism
was pounding on the cliffs of the behaviorist island, and it was washing
into the sea.

Those mainstream psychologists who had flocked around the behav-
iorists’ roost regrouped, split, and reassembled, and by the mid-1980s
were circling around another explanation for human behavior. Cogni-
tive psychology was emerging from the ashes of behaviorism to domi-
nate academic psychology. As the cognitive paradigm is based on the
metaphor of the mind as a computer program that runs in the hardware
of the brain, cognitive psychologists study individuals as information
processors, with inputs and outputs, which is a relatively small step from
the behaviorist view. But where behaviorism was depicted as an S-R
(stimulus-response) paradigm, cognitive psychology made the transition
to S-O-R; an internal mediating system was postulated (the O stands for
organism), being the cerebral computations that transformed inputs
into representations, which then were manipulated to produce the output
behavior. The behaviorists had reduced psychology to a study of inputs
and their effects on outputs of organisms, and the question was, “How
are responses related to stimuli?” Cognitive psychology introjected an-
other stage into the process and asked, “How are stimuli, representa-
tions, and responses related?” It was a small step really, accompanied by
much debate over the acceptance of abstract, unobservable mental vari-
ables, but empirical methods were found for identifying the effects of la-
tent variables. For instance, different kinds of problems could be shown
to take different lengths of time to solve; memorizing some kinds of
items resulted in predictable errors in recalling other items, and so on.
The internal dynamics could not be observed directly, perhaps, but they
could be inferred through careful measurement of observed behaviors. In
the long run the transition from behaviorism to cognitivism was accom-
plished with a minimal number of professors losing their jobs.
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Academic psychologists came around to embrace the cognitivistic
view, but their field had no research tradition to base their theorizing on.
There were, however, results and discussions in the field of information
and cybernetic theory, and in particular in artificial intelligence, that
seemed applicable to human information processing, and so in the early
days of cognitive psychology there was a wholesale one-way osmosis of
concepts through the membrane that separated the psychology depart-
ment from the computer science department on campus. The models
that had shown promise for the elicitation of intelligence from elec-
tronic machines were adapted to explain human thought.

Some of those AI models had been developed with the consultation
of psychologists and with the use of psychological methods. For in-
stance, Allen Newell and Herbert Simon’s logic theorist program (Newell
and Simon, 1956), which was able by 1956 to prove and even discover
new mathematical theorems, was based on self-reported strategies of hu-
mans. Those researchers had asked people to explain the steps they
would take to solve certain problems, and then encoded some of the re-
ported strategies into their computer program. Thus, according to one
view, these programs did represent human thinking. To tarnish the silver
lining somewhat, though, it must be pointed out that Simon and New-
ell’s programs contained self-reported processes, that is, processes that a
person described when asked by another person to explain something
about themselves. Later research has shown that people may have little
or no direct access to their own cognitive processes, suggesting that per-
haps the reports given to Simon and Newell represented subjects’ socially
acceptable rationalizations about how they “must have” solved the prob-
lem, inferences based on their preconceptions about thinking. The ex-
planations given to Simon and Newell and captured in their AI programs
were not necessarily real cognitive processes.

Bandura’s Social Learning Paradigm

At Stanford University, Albert Bandura had an insight back in the early
1960s that has carried him into the current era. The main technique of
behaviorist research had been to administer some schedule or system of
reinforcements to an animal and to plot the changes in the animal’s be-
havior over time as a function of the reinforcement schedule. For in-
stance, reinforcement of every occurrence of the desired behavior (pull-
ing a chain, turning around, finding the way through a maze, etc.) was
found to result in a steep initial learning curve, followed by rapid extinc-
tion of the behavior when the reinforcer was removed. “Fixed interval”
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schedules, where the animal was reinforced for executing the behavior
after some fixed amount of time, resulted in a typical scalloped curve in
criterion behavior frequency, with the animal increasing the rate of re-
sponding as the time for the reward neared. Other schedules, such as
variable and fixed interval and ratio schedules, resulted in characteristic
patterns of learning.

In 1965 Bandura challenged the behavioristic establishment by an-
nouncing the discovery of “no-trial learning.” He showed that humans
can learn a task without even trying it once. Of course the trick is to let
them watch somebody else do it. If the model is successful at performing
the task, and in particular if they are reinforced for the behavior, then the
observer can learn from them. Bandura called this vicarious reinforcement.
Bandura’s use of familiar jargon made the concept seem like an exten-
sion, rather than a rejection, of behaviorism, though it perhaps obfus-
cated the topic for later readers, who might think that giving a person a
food pellet for performing a behavior will make it more likely that others
will imitate them (some students—and yes, even their professors—today
hold a view sadly close to this). In most cases, where the behavior is lin-
guistic, for instance, the model may be demonstrating a conclusion
drawn from an attitude or belief system that can be inferred by the ob-
server, and in this case “reinforcement” comes in the form of satisfying
logical validity or apparent cognitive consistency.

Bandura’s most famous demonstration of vicarious learning, familiar
to anyone who has taken Intro Psych in the last half-century, was his
“Bobo doll” experiment (Bandura, 1962). After a child had watched an-
other person beat up a Bobo doll, the child was much more likely himself
to do it. This has been taken by ideologists of course to warn us about the
importance of being good role models and about the contagiousness of
aggression, but the real finding was that a person can do something they
would not have otherwise thought to try by imitating the behavior of an-
other. Other terms for the phenomenon are modeling, observational learn-
ing, and social learning; it is a very important form of learning for humans
and seems hardly to exist at all among other species.

Bandura has touched almost all the psychological bases in his career.
Starting as a behaviorist, he helped give birth to the cognitive revolution,
has contributed very much to the practice of clinical psychotherapists,
and has shifted the emphasis of theorists everywhere with his social-
cognition perspective. His Social Foundations of Thought and Action: A So-
cial Cognitive Theory (Bandura, 1986) reviews decades of research by psy-
chologists on the many varieties of imitation in human life. The corner-
stone of Bandura’s theoretical perspective is the concept of reciprocal
causation. Where previous theorists had seen behavior as a response to
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the presence of stimuli in the environment, Bandura saw behavior as
much as a cause as an effect, and in fact he demonstrates in this land-
mark volume that reciprocal causation of individuals’ behavior and cog-
nition results in increased opportunities for people to exercise control
over their destinies; it is, almost paradoxically, the root of free will.

Bandura has apparently never concerned himself with the larger
question of what would happen if thousands, or millions, of reciprocal-
causation agents interacted in a population; he was more concerned
with the fate of the individual embedded in such a system. As we will see,
it appears almost inevitable that the result of a complex system of inter-
acting causal beings will be the formation of norms, and ultimately of
cultures, as the individuals become more similar to one another through
the effects of demonstration, persuasion, and other influence processes.

Social Psychology

Meanwhile, in another hall of the psychology department, social psy-
chologists had been plugging along more or less ignoring the whole
behavior-versus-cognition argument altogether. Social psychology,
which addresses questions about the individual in a social context, never
attained the dogmatic prominence of behaviorism, or even the current
status of cognitive psychology, but it has persisted quietly since the
1920s and has become more visible in recent years.

Though social psychology is focused in American universities, many
of its early leading proponents were German and Austrian immigrants
who brought to the field a background in Gestalt theory. Gestalt psychol-
ogy was primarily concerned with the ways that fragmentary percep-
tions become organized into wholes. This school of psychology pre-
vailed in Germany before World War II, and the rise of Nazism led to the
migration of a number of Gestalt theorists to the States—in fact, Dorwin
Cartwright (1979) has written that the person who most contributed to
modern social psychology was Adolph Hitler!

A fundamental principle of Gestalt psychology is Prägnanz, or “good
form,” the tendency to organize perceptions into coherent wholes. For
instance, looking at Figure 5.2 it is impossible not to see a triangle whose
corners cut into the three circles, though it doesn’t actually exist. The tri-
angle is entirely in your mind.

While every undergraduate who ever took Intro Psych has pondered
textbook optical Gestalt phenomena, the reason that Prägnanz is im-
portant is often overlooked. It is important because it permits the
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partitioning of the blur of the environment into things. Once things are
identified, the organism can respond differentially to them, can general-
ize about things that fit the same categorical pattern, and can distinguish
among categories. Cognitive scientists have expended much effort dis-
cussing distinctions between symbolic and statistical modes of thinking;
something like Prägnanz, which partitions data arrays into meaningful
units, including symbols, must be necessary in order to join the two
types of processes. Though there has been a great amount of work done
on pattern recognition, so far the kind of low-level, high-speed, data-
driven cognitive operation seen in humans has not been successfully
synthesized in a computer program.

Lewin’s Field Theory

One of the early immigrants, whose name stands above and behind al-
most all the social-psychological research that followed him, was Kurt
Lewin (pronounced either “Levine” or “Loo-in,” both are correct)
(Lewin, 1935, 1936, 1938). Lewin’s mission was to produce a field theory
of psychology that was conceptually similar to contemporary theorizing
in physics, like models by Faraday, Maxwell, and Herz on the dynamics
of electromagnetic fields and Einstein’s new theory of relativity. Of
course the psychological forces involved were themselves different from
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those in physical systems, but the method of representing them could be
similar.

Lewin portrayed a “life space” wherein the individual was repre-
sented as a bounded region, acted upon and reciprocally acting through
dynamical forces among elements. Using the new mathematics of topol-
ogy, Lewin considered the person as being subdivided into a number of
separate but interconnected regions, and the environment likewise was
differentiated into numerous regions—some of which were persons.
Each region represented what Lewin called a “fact,” meaning anything,
real or imagined, perceived or inferred, that could affect the person. Loco-
motion was Lewin’s term for the person’s movement through the life
space. It is very important that this term does not necessarily or usually
mean movement through physical space. It might better be thought of as
change of state than change of position. Regions of the environment
that are interconnected are able to influence one another, and locomo-
tion from one of the regions to the other is facilitated. As seen in Figure
5.3, forces acting on the person in the life space can result in locomotion
that results in equilibrium among the many regions of the person and
the environment. Figure 5.3 shows paths from different beginnings to
the same goal. In these cases, both the distance and the direction differ
for different starting points.

Besides his high-level theoretical abstractions, Lewin was very much
involved in applying psychological principles to solving social problems.
He is most widely quoted for having said, “There is nothing so practical
as a good theory,” and he demonstrated that scientific psychology could
be used to make the world a better place. For instance, during wartime
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he researched methods for persuading housewives to cook meats that
were not popular, like brains and tripe, in order to save money for the
war effort. He spearheaded group-dynamics research that resulted in
the encounter groups of the 1960s as well as changing psychologists’ un-
derstanding of organizations. Through his students, including Leon
Festinger, Stanley Schachter, Kurt Back, Dorwin Cartwright, Hal Kelley,
Morton Deutsch, John Thibaut, and others, Lewin profoundly influ-
enced the atmosphere (one of the terms from his small-group theory) of
social psychology through the latter half of the 20th century.

The dynamic theory of Lewin, for instance, as represented in 1936’s
Principles of Topological Psychology and a 1938 monograph titled The Con-
ceptual Representation and Measurement of Psychological Forces, relied
heavily on mathematical methods without losing touch with the hu-
manity of its subject. The modern scholar reading Lewin’s many articles
and chapters can scarcely believe they were written decades ago—the
Kurt Lewin bibliography spans the years from 1917 through the year of
his death, 1947, and posthumously through 1960. Lewin’s theorizing
was visionary and prescient of the theories of complex dynamic systems
that prevail today. Sadly, the only modeling tools available to him were
pencil and paper, and near-hallucinatory abilities were required to imag-
ine the dynamic implications of those static words and images. We can
only guess, if Lewin had had a computer, how he could have demon-
strated his vision in ways that others could really understand, how he
could have explained the complex dynamics of psychological life. We
think of him as a man before his time; he was in fact a man who set the
stage for modern complex systems theory in psychology.

Norms, Conformity, and Social Influence

If we are to discuss something like swarming in human affairs, we should
go back to 1936, when Musafer Sherif’s The Psychology of Social Norms re-
ported an innovative and illuminative series of experiments demonstrat-
ing the convergence of individuals’ perceptions. Sherif placed subjects in
a dark room with a point of light projected on the far wall. In the absence
of any visual frame of reference, people tend to report that the stationary
light is moving, and each person has a relatively stable characteristic rate
at which it appears to them to move. This is called the autokinetic effect,
and it results from movements of the eyes as they try to adjust to an in-
variant stimulus. An individual tends to report movements that are con-
sistent across trials, though individuals’ typical reports differ from one
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another. When Sherif placed groups of individuals in a dark room to-
gether and asked them to report publicly how much the light had
moved, each individual’s reports drifted away from their characteristic
distance toward a norm that was characteristic of the group (see Figure
5.4).

Sherif’s research led to developments in social influence and norm
formation, which really reached a peak in the 1950s. The lockstep unifor-
mity of Nazi Germany followed by the enforced conformity of the
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McCarthy era in the United States led Solomon Asch (1956), a German
immigrant to America, to ask about the nature of conformity generally.
In his famous experimental paradigm, a subject was led to believe that
the other people in the room were also naive experimental subjects who
were being asked to rate the relative lengths of some lines displayed by
the experimenter (see Figure 5.5). The situation was contrived so that the
real subject always answered last, after the others, who were confederates
of the experimenter. On most trials, the confederates gave the correct an-
swers, but occasionally they would unanimously give obviously incor-
rect ratings of the lines, saying, for instance, that a short line was the
same length as one that was in fact twice as long.

Subjects in the experiment were faced with the dilemma of reporting
the obvious truth versus agreeing with the group. In about a third of the
trials, they chose to express the same judgments as their peers, even
though the answer was plainly wrong—almost no one answered incor-
rectly when they were tested by themselves. Asch had expected to dem-
onstrate that people would resist pure peer pressure to give a false report,
but he found quite the opposite. People would do whatever the people
around them were doing, whether it made sense or not, and even when
there was no reward for conforming or punishment for deviating.

Two subsequent experiments, one by Crutchfield and another by
Deutsch and Gerard, both in 1955, used automated methods to imply
the presence of a group opinion without having to coordinate a large
pool of confederates (and how did Asch keep them from laughing?). Sub-
jects sat in booths that blocked their view of one another. In each booth
were some lights that were said to represent the responses of the others.
Each subject was informed that he or she would be responding last, giv-
ing them a chance to see how their peers had answered some questions.
In this way, data could be collected from a group of subjects simulta-
neously, under very well controlled circumstances. Crutchfield and his
colleagues asked his subjects various kinds of questions, with occasion-
ally amusing results. Berkeley researcher Read D. Tuddenham put to-
gether a paragraph of statements that he had been able to induce people
to agree with in this paradigm. Here is part:

The United States is largely populated by old people, 60 to 70 percent
being over 65 years of age. These oldsters must be almost all women,
since male babies have a life expectancy of only 25 years. Though out-
lived by women, men tower over them, being eight or nine inches
taller, on the average. The society is preoccupied with eating, averag-
ing six meals per day, this perhaps accounting for their agreement
with the assertion, “I never seem to get hungry.” Americans waste
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little time on sleep, averaging only four to five hours a night, a pattern
not unrelated to the statement that the average American family in-
cludes five or six children . . . (p. 513).

Sociocognition

Research in conformity waned after the early 1960s, though group influ-
ence continued to survive as an important topic of research. In an impor-
tant 1993 paper titled “Social foundations of cognition,” published in
the Annual Review of Psychology, John Levine, Lauren Resnick, and E. Tory
Higgins surveyed recent research and concluded that thinking is funda-
mentally a social activity. For instance, findings that coordinated cogni-
tive activities, such as some kinds of problem solving, evoke intersubjec-
tivity, or shared understanding of the topic, help explain why groups are
sometimes better able than individuals to perform certain kinds of
tasks—and why they perform worse when group members rely too much
on shared information. According to Levine and his colleagues, there are
at least three well-known social aspects to memory. First, in “transactive
memory,” as studied by Dan Wegner at the University of Virginia, people
who know each other well use one another to encode, store, and retrieve
memories. For instance, a husband and wife may distribute certain kinds
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of memories between them, so that some details are known by one or
the other, but not both (honey, isn’t Georgey’s birthday around this time
of year?).

A second social aspect of memory is its content—a great proportion of
an individual’s memories refer to past social actions and experiences.
Finally, research on recall in face-to-face groups has shown that the pro-
cess of memory is often based on symbolic communications with other
people. Collaborative recall appears to be affected by three kinds of vari-
ables: the group’s consensus favoring an alternative, the correctness of
the alternative, and members’ apparent confidence in their recall.

Levine, Resnick, and Higgins (1993) conclude that a new field of
sociocognition is emerging, which considers social interaction to be the
occasion for the development and practice of cognition. They write:

Although some might claim that the brain as the physical site of men-
tal processing requires that we treat cognition as a fundamentally in-
dividual and even private activity, we are prepared to argue that all
mental activity—from perceptual recognition to memory to problem
solving—involves either representations of other people or the use of
artifacts and cultural forms that have a social history (p. 604).

In sum, social psychologists worked more or less in parallel with, and
separately from, behavioristic and cognitive psychologists through
much of the 20th century, pursuing a line of inquiry that was informed
by those other paradigms but relatively unaffected by them. The ongo-
ing—and recently revitalized—tradition of social influence research ex-
amines how a person is affected by other people who seem to hold a be-
lief or opinion, and the universal finding has been that social influence is
an extremely powerful force in human affairs.

Simulating Social Influence

The particle swarm model explored in the latter half of this volume can
be described as a simulation of social processes, or as a problem-solving
algorithm. Computers have long been used to explore social and cogni-
tive hypotheses; here we will describe some of the issues involved in sim-
ulating sociocognitive phenomena and some of the previous work that
influenced our research.
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In a 1990 Psychological Review paper, Bibb Latané and his colleagues
(Nowak, Szamrej, and Latané, 1990) presented computer simulations to
support their argument that interactions of individuals according to the
principles of social impact theory will result, as an algorithmic effect, in
patterns of belief and opinion that resemble those seen in real societies.

The introduction of simulation in any science is likely to raise a few
eyebrows, and social psychologists had not previously shown them-
selves to be technological adventurers. Because by 1990 most social psy-
chologists were aware of the disappointing inability of artificial intelli-
gence to successfully approximate the performance of humans, there
was and is today a great deal of skepticism about computational studies.
This is a conservative field that would rather accumulate one more grain
of good hard empirical data from a well-designed experiment with hu-
man subjects than accomplish an eye-opening leap of speculative theo-
retical insight. Further, few social-psychological hypotheses are specified
in the kind of detail that permits mathematical description, which is
necessary for simulation, and so the interpretation of parameter values
and even what parameters to include are widely considered ambiguous
and suspect subjects.

The field of artificial intelligence had first of all borne an interesting
kind of confusion about computer simulations. It is one thing to simu-
late a mental process and quite another to create an artificial one. If
someone were to simulate a meteorological phenomenon, for instance,
by modeling the interactions of some climatic variables, no one would
be likely to say there was “weather” inside the computer. It is a unique as-
pect of this particular topic that you could contend that the simulated
mind was in fact a real mind. The question is really quite abstruse, per-
haps unanswerable when you get down to it, and is a special case of the
situation previously described where we are only asking whether some
phenomenon belongs to a particular semantic category.

It is like someone making an edible sculpture of food. On the one
hand it is a representation of food, intended to look like real food, and on
the other hand, it is food, because you can eat it. If a mind is something
that thinks, and a simulation of a mind can be shown to think, then it
seems we must conclude that the simulation is not only the representa-
tion of a mind—but a mind itself. We can’t really say that the difference
is consciousness, because we can’t prove that computer programs are not
conscious, any more than we can prove that people are: consciousness is
something that is self-evident to the person experiencing it, and totally
unverifiable otherwise. If computer minds can perform the same kinds
of cognitive operations that human minds do, and the question of
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consciousness is unanswerable, then the comparison between human
and computer minds comes down to a simple test of skepticism.

Just to unsimplify the matter, thinking itself can be described as a co-
vert simulation of physical or psychological reality. Simulation theorists
argue that we understand events, including the thinking of other people,
by running a kind of mental simulation. For instance, if I want to know
how another person will respond if I say such-and-such to him, it may be
that I simulate the situation, perhaps imagining myself as the recipient
of the comment, and see how I would feel if it was said to me. The mental
simulation view is sometimes described as one system modeling another;
though it is usually discussed in terms of folk psychology, that is, the
commonsense understanding of other people’s minds, it can also be used
to understand cognitions about physical events as well.

Mental simulation is apparent in the results of an important early ex-
periment by cognitive psychologist Roger Shepard and his colleagues
(Shepard and Metzler, 1971). Experimental participants were shown two
three-dimensional images and asked whether they were the same or dif-
ferent (see Figure 5.6). On target trials, the second image was a rotated
view of the first. The dependent variable was the time it took to give an
answer for “same” pairs.

If the individual were creating a simulation of the object and rotating
it in their imagination, then we would expect the response time to be a
function of the amount of rotation required, the difference between the
first and second views of the object. Think about this: if you were given
two twisted objects and asked if they were the same shape, you would
turn one of them until they lined up—and the farther you had to turn
them the longer it would take you to answer the question. Shepard and
his coworkers found that the amount of time required to respond was an
almost perfectly linear function of the angle of rotation required. These
results suggest that a mental simulation is run in order to make judg-
ments about physical reality; a mental replica is created and manipulated
as the physical object might have been.

This simulation-as-reality issue has some serious implications. Much
human social behavior is imitative, yet socialized individuals come to ac-
cept the beliefs they copy from others as genuine, originating from
themselves. A person may initially perform a behavior to imitate some-
one else; for instance, a child makes fun of someone because that is what
his friend is doing. His behavior may be intended as an imitation of the
friend’s and is therefore “artificial” in the sense that it is not genuine, but
the effects of the two children’s behaviors—and the way they are inter-
preted by others—are identical. Other people will view the two actors as

208 Chapter Five—Humans—Actual, Imagined, and Implied



equally cruel, and social-psychological theory predicts that the follower
will likely actually come to dislike the child he is pretending to torment.
Thus the behavioral simulation of another person’s behavior is in fact
“real” behavior, with real consequences.

Confusion between “real” intentions and imitation lies at the core of
the induced compliance paradigm in social psychology, which is funda-
mental to cognitive dissonance theory. In the induced compliance ex-
periment an individual is subtly persuaded to comply with the experi-
menter’s implied request, for instance, to write an essay advocating an
unpopular position. The subject is offered a choice, told they are free to
choose, for instance, which side of an issue to advocate, but they may
also be told that the experimenter already has enough essays expressing
one view and hopes that “someone” will choose the other. In order to
produce cognitive dissonance in the subject, it is necessary for them to
feel that they have freely chosen to perform the behavior. Even though
experimental subjects might believe at the time that they are super-
ficially complying, it is very commonly found that their opinions ac-
tually shift in the direction of that expressed in the essay; they come to
believe what they have written. The inability to distinguish between a
phenomenon and a simulation of that phenomenon may be a basic piv-
otal feature of human nature, and the edible-sculpture-of-food analogy
might well describe an important aspect of the state of knowledge and il-
lusion of humans in the world.

The argument of “strong AI” has been that computer programs can
actually think. The fact that one of the very first AI programs, Simon and
Newell’s logic theorist, was able to discover theorems that Russell and
Whitehead had failed to prove in the Mathematica Principia demon-
strated that a computer could have thoughts beyond those that its
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programmer gave it. It could make inferences and draw conclusions on
its own, just like a real human mind. Thus the founders decided not to
call the field “simulated intelligence,” but used the word “artificial” to
suggest that the intelligence was real, but man-made. In The Sciences of
the Artificial, Herbert Simon (1969), one of the original pioneers of AI, re-
ported that he thought the term “artificial intelligence” originated at
MIT; his own research group, he says, preferred the terms “complex in-
formation processing” and “simulation of cognitive processes” to de-
scribe computer programs that emulate thinking. In interpreting the
phrase “artificial intelligence” as it applies to mental simulation, Simon
states, “It may be easier to cleanse the phrase than to dispense with it. In
time it will become sufficiently idiomatic that it will no longer be the tar-
get of cheap rhetoric” (p. 4). In fact the phrase “artificial intelligence”
never did quite rise above the assaults of cheap rhetoric and is presently
fading from the vernacular, leaving behind a kind of Buck Rogers sort of
nostalgic glow. There are plenty of laboratories still working on artificial
intelligence projects, but the field is swinging away from the traditional
symbol-processing paradigm toward other forms of information pro-
cessing. (One writer has suggested that calling it artificial intelligence is
like calling what airplanes do “artificial flight.”)

Paradigm Shifts in Cognitive Science

Traditional AI, and cognitive science in general, has been dominated
since its beginning by the symbol-processing paradigm, which is charac-
terized [according to Eliot Smith (1996)] by

� Separation of representation and process. Representations are static
unless acted upon by a processing unit. Representations are oper-
ated upon in two stages: retrieval from storage and use.

� Learning. In the symbolic paradigm, learning means constructing
a new representation.

� Retrieval and accessibility. A representation is retrieved from storage
as a function of its appropriateness given the currently available
cues and its accessibility. Accessibility depends on how frequently
and how recently the representation has been used.

In contrast, according to Smith, connectionist models have the fol-
lowing characteristics:
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� Structure. All the representation and processing is performed by a
network of interconnected processing elements.

� Representation. An object or concept is represented as a pattern of
activations across the network of processors.

� Learning. Connectionist learning comprises adjustment of the
weights connecting the processing elements.

� Unity of representation and process. Contrasted with symbol pro-
cessing, representations are dynamically stored in the matrix of
weights between pairs of processing elements.

� Retrieval and accessibility. Patterns to be retrieved are not explicitly
stored anywhere. Retrieval is accomplished by activating a pattern
of inputs, which is processed by the network, resulting in output
of a recalled pattern. Accessibility is determined by the dynamical
process of learning, such that more recently and more frequently
encountered patterns have a higher probability of being recalled.

Connectionist explanations have a number of advantages for ex-
plaining psychological phenomena; further, the use of neural networks
has turned out to be a rich lode for engineering and other AI-type appli-
cations. The turf battle between the two paradigms, though, is far from
finished; casualties are occurring on both sides as theorists duke it out.
(Of course the inevitable outcome is that it will be found that both sym-
bolic and connectionist models explain some psychological processes
better, and solve certain engineering problems, and that the matter is
one of applying the right method to the particular instance.)

Newell and Simon (1977) have described the traditional AI paradigm
in terms of goal-directed problem solving. For them, a problem can be
broken down into an initial state, a goal state, and a set of operators for
transforming one into the other via a series of intermediate steps. The
operators have constraints that must be satisfied in order for the goal to
be attained. The set of states, operators, goals, and constraints is called
the problem space, and problem solving comprises the search for a path
leading from the initial state to the goal state.

Some of the bad blood between the “artificial intelligentsia” and pro-
ponents of connectionist, fuzzy logic, and evolutionary methods results
from the domination of funding opportunities by AI researchers through
several decades in the mid-20th century. For instance, one of the first
neural net models—the perceptron of Frank Rosenblatt—was severely crit-
icized by Marvin Minsky and Seymour Papert, who were leading figures
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in the artificial intelligence movement at the time, in a 1968 book enti-
tled Perceptrons. They asserted that research in perceptrons—an early
form of neural network—was “without scientific value”; their critique,
which has since been proven to be extraordinarily wrong, set back
connectionist techniques by about two decades, while the artificial intel-
ligentsia spent millions of dollars pursuing objectives that never came
to pass.

In fact, artificial intelligence researchers never delivered what they
promised. Quotes abound from the 1950s, 1960s, and 1970s, promising a
Jetson future within 5, 10, or 20 years—yet we still live a lot like
Flintstones; the promised future is not nearly here yet. Although they are
present in every part of our lives now, almost none of the many things
that computers do for us today use anything that can be called artificial
intelligence. The symbol-processing paradigm may have been pretty
good for such clear-cut problems as theorem proving and playing chess,
but it was totally impractical when it came to such “simple” tasks—tasks
that any below-average human, or dog for that matter, can do—as face or
voice recognition, or drawing conclusions from noisy, ambiguous, or
nonlinear data. The desire to dissociate their research from that of the
past has prompted some contemporary researchers to discard the old la-
bel “artificial intelligence” and to call the newer paradigms “computa-
tional intelligence.” In general, computational intelligence is considered to
include neural networks, fuzzy logic, and evolutionary algorithms; these
approaches’ strengths tend to lie just where the traditional AI methods
fail, that is, in dealing with complex, dynamic, poorly defined problems
such as are encountered in the real world.

Doubts about traditional AI were expressed very clearly (!) in 1976 by
Joseph Weizenbaum, himself a profoundly respected MIT computer sci-
ence professor and contributor to artificial intelligence research (his
ELIZA program was the original chatterbot):

The various systems and programs we have been discussing share
some very significant characteristics: they are all, in a certain sense,
simple; they all distort and abuse language; and they all, while dis-
claiming normative content, advocate an authoritarianism based on
expertise. Their advocacy is, of course, disguised by their use of rheto-
ric couched in apparently neutral, jargon-laden, factual language
(that is, by what the common man calls “bullshit”) (p. 248).

Parts of Weizenbaum’s humanist critique of the attempted mechaniza-
tion of human processes may seem somewhat Luddite in the present day,
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now that computers have come to play a central role in our lives, but
mainly his predictions of two and a half decades ago resonate loudly;
many of his nightmares have come to pass. Anyone who has dealt with a
corporate or government “telephone tree” or had their records mis-
placed in a database will recognize that, in many aspects of our lives, we
have become subservient to a system of black-and-white, in-or-out, off-
or-on, this-or-that computers that are incapable of dealing with the
rough edges and ambiguous cases that make life livable. Some develop-
ments in computational intelligence have the potential to soften the de-
humanizing aspects of computer modeling and the imposition of com-
puters into daily life, though perhaps Weizenbaum would not be willing
to accept the omnipresence of today’s computers. The earlier approach
imposed strict logical formalisms, questions rephrased to fit the format,
answers were crisply, distinctly right or wrong, and the human was slave
to the machine. The more modern paradigms allow trial-and-error learn-
ing, and ambiguities are expected; we suspect that Weizenbaum would
be more accepting of the warmer, gentler computational intelligence
approach.

We suppose the scientific study of mental phenomena to be necessar-
ily a kind of exercise in self-portraiture. What can anyone theorize about
minds, unless the theory describes his or her own mind? Who would
want to deliver up a theory of mind that applies to everyone but himself?
Unfortunately fashions in theory of mind change, and also unfortu-
nately the kinds of minds that ascend to positions of academic authority
are, almost inevitably, unusual or unique minds—venerable professors
are not like other people. Their theories of mind are likely to reflect the
processes that have made them successful academicians, but may have
little to say about ordinary peoples’ thinking. Likewise, computer pro-
grams that model these elite professors’ rational thought methodologies
may not very well emulate ordinary thinking.

Social psychologists have always tended to be somewhat more hu-
manistic than behaviorists or cognitivists. Perhaps it results from the hy-
bridization of American pragmatism, as proposed in diverse versions by
James, Dewey, and Peirce, with the holistic Gestalt principles of German
psychology. While social psychologists look for laws of human behav-
ior, they tend to hesitate to reduce people to a set of cold, deterministic
principles. Assumptions of free will and personal autonomy underlie
much social-psychological theorizing, and the mechanization implied
by S-R and even S-O-R theory has never seemed especially palatable to
social psychologists. Even Lewin’s mathematical models included what
he called “quasi-concepts” such as hope, expectancy, and frustration,
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purely humanistic causal variables. While the practice of social-
psychological science requires profound statistical knowledge, that
knowledge is used to analyze methodically collected experimental data
and only rarely to model the characteristics of experimental subjects.

The 1968 Handbook of Social Psychology featured an 80-plus–page trea-
tise by Robert Abelson (1968) called “Simulation of social behavior,”
which surveyed the field up to that time and summarized the notions of
the day regarding the whys and hows of social-psychological simulation.
It is clear from Abelson’s early summary of the field that the most ad-
vanced psychological simulations of the day were cognitive; in particu-
lar Simon and Newell’s general problem solver was the prime example,
but a good number of social-psychological models had also been key-
punched and dropped off at the campus computer center. While the
Handbook chapter generated some interest, academic social psycholo-
gists remained fixed on laboratory experimentation with human sub-
jects, laboriously collecting data in order to refine the details of theories,
and were generally not interested in taking the large conceptual step of
running computer programs to generate predictions from theoretical
constructs.

The Evolution of Cooperation

By far the most important and influential computer simulation for social
psychologists was the prisoners’ dilemma research reported in Robert
Axelrod’s 1984 The Evolution of Cooperation. It is not overstatement to say
that the publication of Axelrod’s highly readable book was one of those
events that turned the course of the river of science. Researchers in com-
puter science, biology, economics, and the other social sciences read
Axelrod’s work with great interest; not only had he successfully applied a
new research methodology to an important theoretical problem, but the
results of Axelrod’s investigations seemed to have implications for un-
derstanding the behavior of many kinds of systems—including systems
composed of interacting humans.

The prisoners’ dilemma is a situation where two players have opposite,
symmetrical motives. Each player has the choice to cooperate or com-
pete with the opponent: if both cooperate, their payoffs are high, and if
both compete payoffs are low. If one competes (the technical term is de-
fecting) while the other cooperates, the defector receives a very high re-
ward while the cooperator’s payoff is very low—the lowest in the game,
called the “sucker’s payoff.” When the game is played just one time, the
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most reasonable thing to do is to defect, as there is no basis for trusting
the other player and there is nothing to gain by being a sucker.

Usually, though, including in Axelrod’s study, the game is iterated, a
series of games is played. A player would score the highest if he always
defected while his partner always cooperated—but of course no sensible
player would continue to cooperate while being hammered repeatedly
by a competitive opponent. Repeated trials require some consideration
of strategy; for instance, a player might end up with the highest score if
he lulled his opponent into cooperating, then struck with a defection,
then lulled and defected, and so on. It might be that the best approach
would be just to cooperate from the start—except that nothing then
prevents the opponent from taking advantage. The simple game then
produces opportunities for many kinds of strategies. Axelrod roughly
grouped these into two kinds: “nice” strategies, which rely on coopera-
tion to keep the level of payoffs high for both parties, and strategies he
refers to as “mean” (specifically, that includes only the all-defect strat-
egy) or “not nice.” Strategies that are not nice include ones that might
try to use cooperation as a way to make the opponent vulnerable, then
defect for the higher payoff.

Axelrod took the interesting approach of asking a number of leading
social scientists, game theorists, and others to submit computer pro-
grams representing strategies that they thought would score well in iter-
ated prisoners’ dilemma tournaments against other strategies. A contest
was then held, with programs playing against one another in pairs until
a winner was found. The winner of the competition was a strategy called
TIT-FOR-TAT, submitted by Anatol Rapoport. TIT-FOR-TAT is a mostly
nice strategy that can be summarized as follows: start by cooperating,
then do whatever your opponent does. Thus, an opponent who tries de-
fecting will be defected against, but one who cooperates will be rewarded
with the relatively high double-cooperation payoff.

Even though TIT-FOR-TAT won the competition, Axelrod pointed out
that there were several strategies that could have beaten it. For instance,
one called TIT-FOR-TWO-TATS does not retaliate until the opponent has
defected on two turns in a row. This extra bit of forgiveness helps keep
the game from falling into the trap of constant retaliatory defection,
which produces of course no winners. A strategy called LOOK AHEAD
could have won, using a method developed for an AI chess-playing pro-
gram to anticipate the opponent’s move—except that no one submitted
the program to the contest (it was included as an example in the in-
troductory materials Axelrod sent to the participants). A third strategy
that was submitted, called DOWNING, would have won, Axelrod notes,
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with only a small modification. DOWNING was an attempt to simulate
behaviors seen in human subjects in a prisoners’ dilemma situation. It
deliberately tried to understand the other player’s approach and make
the decision that seemed likely to yield the best long-term payoff.
DOWNING started out by defecting on its first two moves, provoking
some of the other strategies to retaliate, thus lowering its total score.
When Axelrod tried a MODIFIED DOWNING strategy that began with
cooperation, it easily beat all the other programs, including TIT-FOR-
TAT.

Axelrod also noted that the success of TIT-FOR-TAT depended on the
length of the game, and it may not do so well in the short run. If the strat-
egy were adopted by a large number of population members, however, it
could provide a safe environment for cooperation by all parties, with
consequent high payoffs for all.

The results of Axelrod’s tournament, and especially the superiority of
TIT-FOR-TAT, were in accordance with mainstream social-psychological
theories, in particular Thibaut and Kelley’s (both former students of Kurt
Lewin) interdependence theory, which was based on an analysis of
game-theoretic payoff matrices. Partly because Axelrod’s results were
consistent with familiar existing theories, concepts from The Evolution of
Cooperation were accepted by mainstream social psychologists—even
though they were computer simulations.

Explanatory Coherence

Through the 1980s and 1990s, the rise of the connectionist paradigm in
cognitive psychology, which is based almost entirely on simulation re-
sults, caught the attention of some social psychologists, but the field was
faced with a dilemma. While it became obvious that the connectionist
models were very consistent with traditional social-psychological theo-
rizing, social-psychological methodologists were still reluctant to accept
computer simulations as a legitimate research strategy. It’s one thing to
cite Axelrod’s research and quite another to program simulations of your
own model.

The reluctance diminished under the two-pronged attack of a paper
and a computer program developed by a Canadian philosopher named
Paul Thagard. Thagard’s 1989 paper in Behavior and Brain Sciences de-
scribed cognition in terms of a search for a coherent explanation for
events, and postulated a number of aspects of coherence that needed to
be accounted for. The concept of coherence does not seem to differ
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dramatically from Smolensky’s principle of harmony (Thagard prefers to
spell it “Harmany,” in tribute to the Princeton philosopher Gilbert Har-
man), but the focus on explanation set Thagard’s theory apart from other
connectionist thought and placed it comfortably within the domain of
social psychology. Like some previous philosophers and psychologists,
Thagard theorized that people understand events by placing them in
the context of a narrative or explanation—a story. This much was famil-
iar to social psychologists, and in fact investigators had long been look-
ing for a good, comprehensive theory of explanation. But Thagard
brought in something that social psychologists were not used to. He sup-
ported his theory of explanation by encoding it in a connectionist com-
puter program.

Some neural-net software had been distributed with the Parallel Dis-
tributed Processing volumes, but it was mostly used to demonstrate ex-
amples from the book and was not well designed for research. Thagard’s
ECHO program (ECHO stands for Explanatory Coherence Harmony Op-
timization), though, available in the LISP and C programming lan-
guages, let researchers tweak parameters, design their own models, try
things. In a footnote to the BBS paper, Thagard made the program avail-
able on request. And as social psychologists experimented with it, they
found that parallel constraint networks were almost exactly what they
had been theorizing about for years, under names like cognitive disso-
nance theory, consistency theory, balance theory, congruence theory,
and many others. Those theoretical descriptions of human thought
addressed various aspects of the need for individuals to maintain consis-
tency among their beliefs, attitudes, and behaviors—just what maximiz-
ing a harmony function does. Harmony or coherence is maximized
when the nodes of a network fit together, when positively connected
elements are in the same state and negatively connected ones are in
opposite states—when dissonance is minimized.

Stephen Read, at the University of Southern California, and Elliot
Smith, at Purdue, independently began to introduce some computer-
simulated connectionist models into the social-psychological literature.
An important finding of these early papers was that ECHO programs
could replicate the results of many traditional laboratory experiments.
Other researchers have begun to participate in this new paradigm, using
simulations to investigate theoretical ideas. As of today, very few social
psychologists have adopted the simulation method of research, but
they are tolerating them, and simulations are accepted in most social-
psychological journals.
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Networks in Groups

One innovation relevant to our present discussion was reported by a cog-
nitive anthropologist, Edwin Hutchins. Hutchins (1995) may be credited
with breaking the connectionist paradigm out of its inside-the-head
cognitivistic shell and opening up the possibilities of studying cognition
in a social context.

A parallel constraint satisfaction network, as described in Chapter 2,
depicts a number of cognitive elements and the relations between pairs
of them. Some elements are consistent with others and inconsistent
with yet others, and the goal is to find a pattern of activity and inactivity
of elements that is most consistent, cohesive, harmonious. Some of the
elements may be considered “external”— that is, they represent known
facts or perceived phenomena in the environment. Of course the “inter-
nal” parts of the network should be consistent with these, as well as with
one another.

Hutchins wanted to see what would happen if a group of people—in
his example it was the crew of a ship—were able to communicate with
one another. Each person was represented as a parallel constraint satis-
faction network, and Hutchins programmed a model with four of them,
where an occasional node of one was positively connected to the corre-
sponding node of another. This was like one person communicating
their belief to another person, affecting the strength with which the
other person held that belief, encouraging agreement. The situation as
Hutchins presented it had two globally optimal solutions, two opposite
patterns of activations that satisfied the constraints equally well (see Fig-
ure 5.7).

Hutchins found that when individuals were very highly connected,
what he described as a “mega-mind,” the entire population gravitated to-
ward some unsatisfactory solution, some combination of elements that
could be highly inconsistent. When they operated in isolation the usual
results were obtained, and each one tended to converge on one good pat-
tern or the other. But when individuals were moderately connected, the
entire population ended up in agreement, stabilized in one optimal pat-
tern or the other.

Hutchins was more interested in observing the effects of different pat-
terns of connections and did not remark on the fact that multiple net-
works could help one another optimize their activations. What we are
working toward in this discussion is a model where the optimizing oc-
curs through connections between individuals; thus Hutchins’ results
are especially interesting to us.
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Hutchins did not explain how he created his groups of networks,
but we can guess that, rather than running four ECHO programs simul-
taneously and adding connections between them, he designed one
network and deleted most of the connections between subsets of it (see
Figure 5.8). These subsets then were conceptualized as “individuals,”
though in actuality the group was the individual, and the so-called indi-
viduals were simply partly disconnected cells of the superorganism.

This is remindful of the American philosopher Charles Peirce’s com-
ments on the human state of ignorance. A longish, perfectly typical
Peircean quote is appropriate (Peirce, 1931–35, vol. 5, p. 317):

What anything really is, is what it may finally come to be known in
the ideal state of complete information, so that reality depends on the
ultimate decision of the community . . . The individual man, since his
separate existence is manifested only by ignorance and error, so far as
he is anything apart from his fellows, and from what he and they are
to be, is only a negation . . .

Peirce is suggesting that, because reality is defined by ultimate social con-
sensus, and because we never know everything that everyone else thinks,
we are always in a negative state of knowledge, ignorance. There is a hy-
pothetical transpersonal network out there, where all the nodes are con-
nected, but we as individuals exist in a state of unconnectedness. We are
able to transmit partial information to one another and use this incom-
plete information to move ourselves, and our community, into a better
position to understand and deal with the world. Hutchins’ analysis sug-
gests that moderate ignorance permits not only cognitive consistency,
but agreement among members of a group.
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side are connected by positive links (indicated by solid lines), while connections
between the two sides are negative (broken lines).



Culture in Theory and Practice

We have been hinting that the mind of the individual can be considered
as if it were a single cell in a larger superorganism. Because of our lack of
perspective, it is most difficult for us to see clearly how the superorgan-
ism is composed, how it functions—how can the cell see the whole
beast? The larger entity that we are talking about, culture, presents partic-
ular problems to a scientific inquirer.

The first problem is simply to determine whether culture is really
something that exists or an abstraction. We have no difficulty (as we are
not solipsists) stating that things exist, solid physical things, and even
though we must grant some semantic latitude, we are almost unanimous
that events exist. While we will readily agree that air is a real thing, we
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Figure 5.8 Hutchins connected subsets of nodes of networks together, simulating the effects of
individuals communicating within a group. Solid lines are positive connections, dotted
lines are negative connections.



could have some trouble identifying exactly what a “wind” is, and when
it does and does not exist, and whether it is a reality or an abstraction,
simply moving air. But just as behavioristic psychologists accepted the
reality of behavior as distinct from the physical body of the organism, we
agree that wind is something that exists, and it is permissible to accept
verb-things, events, as real things.

It is one little step further, having admitted motion and change as
things, to admit patterns of things as things in themselves. A flock of
sheep is a thing, even though you could argue that the individual sheep
themselves are the real things—but that argument has to conclude that
the cell and then the atoms of which they are composed are really real,
and so on down to some infinitesimal quantum phantom. We do habitu-
ally accept patterns of things as things and patterns of motion and
change as things, too; for instance, the falling from clouds of many drops
of water can be “rain.” Thus it seems entirely reasonable to view culture,
the supraindividual pattern of human belief and behavior, as a thing, as
something that exists.

There is one sense in which culture is undoubtedly real, and that is
when it is embodied in concrete artifacts. A Navajo bracelet, a truck-stop
coffee cup, ivory chopsticks—these are definitely real things, artifacts of
their cultures. More interestingly, the literature of a culture is real, real
ink on paper pages—but it is the abstraction embodied in the literature
that lets it reflect the culture. When we talk about culture we are more
likely to mean the symbols of a population of people than the hardware
they share—and it is not the symbols, which might be marks or sounds
or ritualistic behaviors, but their meaning that is important. The same
spiral signature or cross may appear in different populations with differ-
ent meanings, and the meanings are what comprise the essence of the
culture. Thus even when we start with rock-solid artifacts, our search for
culture leads us up and away to abstractions.

In their classic 1952 reference Culture: A Critical Review of Concepts and
Definitions, Kroeber and Kluckhohn acknowledged and commented on
these difficulties in studying culture:

As Ernst Cassirer and Kurt Lewin, among others, have pointed out,
scientific progress frequently depends upon changes in what is re-
garded as real and amenable to objective study. The development of
the social sciences has been impeded by a confusion between the
“real” and the concrete. Psychologists, typically, are reluctant to
concede reality in the social world to anything but individuals. The
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greatest advance in contemporary anthropological theory is probably
the increasing recognition that there is something more to culture
than artifacts, linguistic texts, and lists of atomized traits.

Structural relations are characterized by relatively fixed relations
between parts rather than by the parts or elements themselves. That
relations are as “real” as things is conceded by most philosophers. It is
also clear from ordinary experience that an exhaustive analysis of
reality cannot be made within the limitations of an atomistic or nar-
rowly positivistic scheme (p. 122).

Anthropologists above all have had to grapple with the problem of
defining and identifying culture. In trying to describe a culture, it is not
enough to go into a society and record the behaviors of the people going
about their business, and it is not enough to record their symbols. To col-
lect data on real human culture, the anthropologist should understand
the meanings of the behaviors and the symbols. But for a number of rea-
sons this might be very difficult. Most importantly, because of the inti-
mate relation—we would say identity—between the mind of the anthro-
pologist and his or her own culture, it might be impossible to understand
meanings as they are understood by members of another culture. An an-
thropologist interviewing a native is really a system of two people. They
can only be people, bound by their own cultures to interpret their sense
data the way their people do.

In her groundbreaking 1934 volume Patterns of Culture, anthropol-
ogist Ruth Benedict made the strong point that “society” or culture
cannot be thought of as an entity separate from the individuals who
comprise it. She noted that the average person conceptualizes an antago-
nistic relationship between the individual and society, as if something
called “society” was forcing people to obey its rules. Yet, as she notes, the
individual and the culture are two aspects of a single process: “No indi-
vidual can arrive even at the threshold of his potentialities without a cul-
ture in which he participates. Conversely, no civilization has in it any el-
ement which in the last analysis is not the contribution of an individual”
(p. 234). In order to consider human intelligence we should consider the
intelligent mind as a participant in a larger cultural dynamic.

We are describing culture as if it were a kind of norm, and we are
comfortable admitting it. As people interact they become more similar.
Many of these convergences are ephemeral, disappearing overnight, it
would seem; slang and trends in popular music are examples. Other
norms last longer, sometimes for years before they dissipate, and others
persevere for centuries, even millennia. Languages and the traditions
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that accompany them exemplify these long-lived norms. These latter
can be considered the signs of cultures. We are not then distinguishing
crisply between norms and cultures, which perhaps only differ in the
breadth of their influence, the depth of their acceptance in the minds of
the people, and the length of their persistence. In later sections we will
look at some models of the formation of stable strategies or norms in
populations of individuals as a result of their interacting, that is, the for-
mation and maintenance of culture.

Coordination Games

A computer simulation can represent a number of individuals in a social
context, with each individual implementing a cognitive strategy, based
on the researcher’s beliefs about how cognition works. Of course there
are simulations of isolated individuals, as well; for instance, we could
consider most AI programs to fit this description, but here we are mostly
interested in programs that look at multiple individuals. Some of these
focus on specialization and questions about how individuals choreo-
graph their behaviors in order to minimize conflict, while others look at
the spread of influence through communities and other aspects of social
behavior. In this section we look at some computer paradigms for study-
ing coordination among individuals, leading toward studies of culture in
computational communities. Our version of swarm intelligence depends
on an understanding of the emergence of culture and its effect on the in-
dividuals who comprise a culture.

The prisoners’ dilemma game (PDG) reported previously is a very
well-studied type of coordination game, where the outcomes of a player
are determined by the combination of his or her choices and the other
players’ choices. In most coordination games a player could achieve high
payoffs if they knew what the other person was going to do. For instance,
if in a PDG you knew with certainty that the other player was going to
cooperate, all you would have to do is defect and you would be assured
the highest payoff. But of course the other player knows you know that.
Thus for them the choice to cooperate is risky and requires trust that you
will not take advantage of their vulnerability. It is common to represent
coordination games in matrix form; Figure 5.9 is a PDG in the form of a
payoff matrix.

In this kind of representation, player A gets the payoff above the diag-
onal, in the right half of the cell, and player B gets the bottom, left pay-
off. Each player chooses one of two options; that is, player A can choose
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a1 or a2, and B can choose b1 or b2. If A chooses a1 and B chooses b1,
then they each get a payoff of 8 points; this represents cooperation by
both parties. Choice 2 for either player then represents defection; they
receive a high payoff when they choose 2 and the other player chooses
cooperation, choice 1, and they get a low payoff if both choose to defect
simultaneously.

Thus a payoff matrix shows the consequences of pairs of interdepen-
dent choices. Two players’ choices affect not only their own outcomes
but the other player’s. In a game such as PDG there is an inherent motive,
to try to get the cooperation of the other player. Whether you want to
achieve the highest group outcome—the sum 8 + 8 = 16 points is the
highest joint cell in the matrix—or you want to get the other person to
play sucker to your defection, you want them to choose 1. And of course
the best way to do that is to play 1 yourself, to create a condition where
their cooperation will not hurt them.

Payoff matrices can be used to represent an infinite number of possi-
ble interdependency situations. For instance, you might take a second
to figure out why the game in Figure 5.10 is called “Chicken.” Here,
choice 1 is “swerving” and choice 2 is “staying on the road.” The “win-
ner” receives the highest reward by choosing 2 when the opponent
chooses 1, that is, you win by staying on the road when the other driver
swerves. If both swerve, that is, choose 1, then both get a moderately
high payoff—you get to live, and there is not much shame, since the
other person swerved, too. If you swerve and the other person doesn’t,
then you do get to live, but in humiliation, with a mere 6 points. If nei-
ther swerves, payoffs are zero for both, who push up daisies, but in heroic
fashion.
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The “Battle of the Sexes” is another famous coordination game, in
which a husband and wife try to work out complementary roles (see Fig-
ure 5.11). For instance, it may be that both of them strongly prefer to
play the piano while the other sings, but less strongly prefer to hear the
partner play the piano rather than sing. Least desirable of all is for them
both to sing, though both playing the piano is pretty bad, too.

In the Battle of the Sexes, as in the other games, the objective is for
the players to coordinate their choices. Here, the lowest payoffs occur
where both participants do the same thing; the trick when this game is it-
erated is to alternate. In all these games, the meaning of what one player
does is determined by the context that the other person creates for it.
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The literature of coordination games is very extensive. Economists
and social psychologists study the behavior of persons in coordination
games for a number of reasons. By manipulating payoffs and game rules,
they can study the effects of belonging to a group, the effects of commu-
nication between players, how people make decisions under uncertainty
and under risk, important aspects of competition and cooperation, and
so on. Importantly these studies help researchers understand exactly
how and where people depart from the assumption of rationality that is
traditional in economic theory as well as decision theory. A player’s
choice is very much bound up with his or her expectations of how the
other person will play, which can reflect a great amount of information
about their beliefs about human interaction in general. Many of the as-
sumptions of game theory underlie the programs described in this sec-
tion, paradigms where interacting agents affect one another’s payoffs, of-
ten with conflicting constraints.

The El Farol Problem

Economist Brian Arthur (1994) noted that it is impossible for people to
reason deductively in complex situations; there are just too many link-
ages of facts for anyone to keep them straight. In such situations people
end up floundering in a pool of subjective beliefs, including subjective
beliefs about subjective beliefs. The rationality then that is assumed by
classical economists cannot hold. As an example, Arthur devised a dia-
bolical situation known as the “El Farol” problem. The story is told a lit-
tle differently every time, but we will accept John Casti’s slightly more
colorful introduction to it (Casti, 1997). According to Casti, Brian Arthur
is an Irishman who likes to go to the local pub in Santa Fe, a place called
the El Farol, to listen to Irish music and have a beer or two. The El Farol
has Irish music only on Thursday nights. Besides Arthur, there are a lot of
Irishmen in Santa Fe who enjoy a beer with Irish music in the back-
ground, and, like Arthur, they very much prefer to go on nights when the
place is not crowded. In fact, they absolutely hate to go when the crowd
is greater than 60 people.

But how is a thirsty Irishman supposed to predict when the bar might
not be crowded? He would be glad to go to the El Farol, if only he knew
those other noisy bastards would stay home. In Brian Arthur’s example,
the Irishmen (there are 100 of them) know that in the past weeks this
many people have attended Irish Night at the bar:

44 78 56 15 23 67 84 34 45 76 40 56 22 35
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A thirsty Irishman could come up with any of a number of rules, accord-
ing to Arthur, for predicting this Thursday’s attendance, including

� the same as last week’s [35]

� a mirror image around 50 of last week’s [65]

� a (rounded) average of the last four weeks [49]

� the trend in the last eight weeks, bounded by 0, 100 [29]

� the same as two weeks ago (2-period cycle detector) [22]

� the same as five weeks ago (5-period cycle detector) [76]

The paradox is that if there were in fact a good theory for predicting
when a Thursday night will be quiet, all the Irishmen would figure it out,
and they would all go to the El Farol on the same night, and it would end
up being packed with antisocial Irishmen. Any solution to this problem
in other words is self-negating.

Arthur, who is one of the founders of the Santa Fe Institute, ran
a computer experiment to see how a population of computational
Irishmen-agents would in fact adjust their attendance. He gave each
member of the population a set of possible hypotheses, including those
mentioned above, and let agents choose the ones that seemed to work
for them, that is, the ones that best predicted the nights that fewer than
60 percent of the agents attended the bar. They could change hypotheses
if one failed to work.

Bar attendance in Arthur’s experiment fluctuated chaotically (see Fig-
ure 5.12), as the majority under- and overcorrected for previous estima-
tion errors: there is of course no stable solution to this problem, no way
all the Irishmen can go to the bar without it becoming crowded. On the
other hand, Arthur noted that over time attendance was very nearly 60
percent: average prediction was excellent.

In his report on the experiment, Arthur suggested that perhaps a
critic would argue that he had “lumbered the agents in this experiment
with a fixed set of clunky predictive models” and suggested that perhaps
a method such as genetic programming would be able to generate more
sophisticated and flexible solutions to the problem. Recall that genetic
programming is a method for evolving computer programs, using evolu-
tionary operators. Genetically derived programs are often able to find so-
lutions to complicated mathematical and algorithmic problems where
more mundane approaches fail.

Bruce Edmonds, of the Centre for Policy Modelling at Manchester
Metropolitan University in Great Britain, picked up the gauntlet and
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programmed a population of agents with genetic programming minds
to evolve strategies for the El Farol problem. Edmonds’ agents could
communicate with and “recognize” other agents, and could tailor their
strategies toward those others. Most interestingly, agents communicated
their intentions to other agents, but were not required to report them ac-
curately; they could evolve reporting strategies to try to persuade others
to stay home. If an agent lied every time, the others could learn to ignore
its reports, and the deception would be ineffective. Therefore, it seems
that honesty should be the best policy—most of the time.

Edmonds’ socially intelligent agents performed on average about as
well as Arthur’s; that is, the average attendance was very close to 60 per-
cent. Further, no agent dominated or performed any better than any oth-
ers. Upon analyzing the strategies that evolved, however, Edmonds dis-
covered that some very sophisticated deceptive strategies had sprung up
in the population. For instance, an agent could report that it was NOT-
going, or that it was NOT-NOT-going, and so on, as they had been sup-
plied with a basic alphabet including Boolean operations. Edmonds re-
ports that one of the agents, after 100 “weeks” in the simulation, had
evolved a statement of nine NOTs, so that it could sometimes trick an-
other agent and sometimes be truthful, leaving the other in a perfect
state of perplexity. What would you conclude if someone said they were
not-not-not-not-not-not-not-not-not-going somewhere?
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David Fogel and Pete Angeline, researchers for an evolutionary com-
putation company called—what else?—Natural Selection, Inc., with UC
San Diego engineer Kumar Chellapilla, attempted to evolve strategies for
the El Farol problem using evolutionary programming of autoregression
parameters. Populations in their experiments failed to converge, as Ar-
thur’s and Edmonds’ had, on strategies that averaged near the optimum,
leading them to suggest that Arthur’s use of discrete problem-solving
strategies, as compared to stochastic induction, had led to an artificially
“ideal” result.

The El Farol problem is a beautiful paradigm for describing a kind of
event that occurs often in nature, and especially often in human social
life. A boy who wants to ask a girl for a date must not be too obvious, but
he has to say something. She knows that he has to try not to be obvious,
but cannot tell if that is his motive or if he is really not interested, so if
she is interested in him her reply will have to address both interpreta-
tions. Knowing this, he will have to interpret her coolness as possibly ei-
ther subdued passion or heartfelt disinterest—and so love goes. Social
psychologist Ned Jones wrote a whole book on ingratiation, in which
one person tries to make another person like them without appearing to
be trying to ingratiate, which is of course the most unlikable thing in the
world. A baseball pitcher with a count of three balls and two strikes
knows he must throw a fastball right down the middle of the strike zone,
and the batter knows this as well, and knows that it will be a perfect pitch
to swing on—besides, he will strike out if it’s in the strike zone and he
doesn’t swing. The pitcher, knowing that the batter knows he knows
this, knows that if he throws something other than a good fastball,
maybe something a little off the plate, the batter will probably swing at
it, expecting a fastball, and, instead of walking him, he will strike him
out. The batter knows that the pitcher knows this, though, so he will not
really expect a fastball—after all, if it is a little off the plate, the umpire
will call it a ball and he will walk. This is what makes baseball interesting.
It’s those not-not-not-not-not-not-not-not-not-fastballs on a full count.

Sugarscape

Josh Epstein and Rob Axtell are economists at the Brookings Institution
who “grow” artificial societies in an environment they call Sugarscape
(Epstein and Axtell, 1996). They compare Sugarscape to a kind of labora-
tory or “CompuTerrarium,” which they can seed with a population of
agents, an environment, and some rules for their behavior; in this way
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they can test whether certain phenomena of economics are necessary
outcomes of dynamical principles and what parameters affect the pat-
terns of observed behaviors.

Sugarscape is described as a cellular automaton with agents built into
it. The environment is a grid containing some resources—sugar and
sometimes spice—that the agents need in order to remain vital. Agents
are able to “see” into the cells that are nondiagonally adjacent to theirs
(sometimes farther) and are able to move into neighboring cells. Though
rules can be revised by the researcher, generally agents attempt to move
toward regions with higher densities of resources. Once there, they de-
vour the resource, which (in some sets of rules) can eventually grow
back.

Epstein and Axtell conducted a number of experiments demonstrat-
ing the emergence of population-level patterns from local interactions of
agents with their environment and with one another. One experiment
reported in Growing Artificial Societies: Social Science from the Bottom Up at-
tempts to grow cultural patterns in the agent population by allowing
agents to influence one another. Each agent is born with a random
bitstring “label,” say, 01101101. Agents are selected in turn. For each of
their four neighbors (left, right, above, below), a “tag” or site on the
bitstring label is selected at random; if the neighbor’s tag differs from the
selected agent’s at that position, that is, if one has a zero and the other
has a one, then the neighbor’s label is changed at that position to match
the selected agent’s. If they match, no changes are made. As in most of
the reported examples, agents move across the sugarscape toward re-
gions where they perceive the greatest density of resources.

In this experiment, agents were colored red if more than half of their
tags were ones and blue if the majority were zeroes, in order to differenti-
ate two “cultural” subpopulations. The sugarscape contained two re-
gions where resources were dense, in the northeast and in the southwest
corners of the screen (the environment is actually a torus field); agents
typically end up where the resources are. The effect of agents’ taking tags
from their partners is the formation of homogeneous red or blue popula-
tions within each of the resource-rich regions; one region may be occu-
pied by the red culture and the other with the blue, or both sites are ei-
ther red or blue. Sociograms depicting the patterns of connections
between pairs of agents that have interacted with one another reveal
dense interlinkage within clusters and almost no connections between
them. In other words, agents interacting with their neighbors become
more similar and gravitate together toward locations rich in resources—
and cultures do not communicate with one another.
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In an interesting footnote chapter to Growing Societies, Epstein and
Axtell describe an epidemiological model with a very interesting im-
plication. Disease agents—germs—are coded as binary strings of length
five, for instance, 10110, and the “immune system” of an agent is coded
as a bitstring of length 50. If any section of the agent’s immune
system bitstring matches an antigen’s five bits, then the agent is
immune to that disease. Thus an immune system that starts
101001011011101010010100 . . . gives immunity from disease caused by
antigen 10110 because they match in the italicized section.

Agents in the simulation were allowed to propagate genetically,
evolving immune systems, with fitness being a function of how well the
individual’s immune system protected them from a number of diseases
that existed in the population. Diseases were spread from agent to agent;
when they interacted, an agent acquired one disease from its neighbor.
Thus the fitness landscape was constantly evolving as diseases spread
and immune systems searched for solutions through the generations.

Epstein and Axtell report that some immune systems did something
that was “quite marvelous,” in their words (p. 150). An immune-system
bitstring could evolve that was shorter than the sum of the lengths of
the antigens it guarded against. For instance, a 15-bit immune system
100101101001001 can obviously fight three 5-bit germs:

� 10010

� 11010

� 01001

as these make up the three five-bit sections of its bitstring. But further,
the same immune system could prevent against germs

� 00101 (starting at the second position)

� 00100 (starting at the ninth position)

and so on. In fact, immune systems with overlapping substrings did ap-
pear on the sugarscape. The evolution of this kind of compression of in-
formation is indeed quite startling, and it is a kind of effect that deserves
further investigation.

Unfortunately we do not have enough room in this volume to re-
view the several interesting computer models of immune-system re-
sponse. The immune system is a very subtle and complicated learning
system found in all living things. It is able to identify antigens after one
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encounter, prepare a defense against them, and mount a full attack at the
slightest provocation—and hardly ever when it is inappropriate. Simula-
tions of the immune system have been developed for optimization pur-
poses, with very good results, but are a little off the topic here.

In this short section we have seen examples of agents in the sugar-
scape environment interacting, pursuing resources, evolving, forming
cultures, and even developing immunities. This is quite a comprehen-
sive collection of accomplishments and indicates a good direction for
the future growth of simulation software. Wide access to such a
CompuTerrarium can allow testing of many interesting questions about
human, ecological, and even physical systems.

Tesfatsion’s ACE

Leigh Tesfatsion, at Iowa State University, conducts research in a para-
digm she calls ACE, or agent-based computational economics (Tesfatsion,
1995, 1997). She agrees with Epstein and Axtell that simulation laborato-
ries such as ACE might finally provide an ultimate paradigm for the
study of social science and especially the study of economics.

Almost all prisoners’ dilemma paradigms assign pairs of individu-
als to interact with one another—they almost never get to choose.
Tesfatsion makes the obvious-once-you-hear-it observation that in real
life, people choose whom to talk with, whom to interact with, whom to
do business with. If we don’t like someone’s strategy, if we think they are
likely to cheat us in order to beat us, we just don’t interact with them.
Thus she has conducted a number of simulation experiments on a model
she calls “evolutionary IPD [iterated prisoners’ dilemma] with choice
and refusal.” Choice enables individuals to increase their chances of
finding a player that will cooperate with them, and refusal lets them es-
cape defection; further, as not-nice strategies tend to result in ostracism,
which leads to reduced payoffs over time, there is an incentive for mean
players to adjust, to cooperate.

In one kind of choice-and-refusal ACE model, called the trade network
game (TNG), Tesfatsion creates populations of interacting autonomous
agents she calls tradebots with behavioral functions that enable them to
trade with other tradebots and memories that allow them to identify the
others that they have traded with. Thus they can have preconceptions
about what to expect in dealing with others, based on experience. The
tradebots are implemented in an object-oriented computer system, writ-
ten by wiz programmer David McFadzean, that allows manipulation—
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technically known in the field as tweaking—of parameters that might af-
fect the agents’ trading behaviors, their expectations, the structure of the
market, the matching up of trading partners, and the way that trading
behaviors are learned or evolved.

Buyers form lists of preferred sellers, and sellers maintain lists of pre-
ferred buyers. Buyers make offers to the sellers, who are privileged to se-
lect which tradebots they wish to sell to. Underlying the TNG is an as-
sumption that the situation resembles a prisoners’ dilemma. Traders
receive payoffs depending on what happens in the trading process; for
instance, there is a negative payoff for being refused, a “wallflower pay-
off” for failing to make an offer, a “sucker’s payoff” for trading coopera-
tively with someone who defects, and so on. After each trade cycle, each
tradebot updates its memory for the individual it interacted with, in-
creasing its value if the interaction was profitable and decreasing it if the
trade turned out negatively.

Evolution occurs after each cycle of trading and is conceptualized as
the formation and transmission of new ideas, not biological evolution.
Tradebots evolve trading strategies as a result of their experiences in the
trade network. Successful trade strategies are imitated, while unsuccess-
ful strategies are replaced with ones that more resemble successful ones.

Tesfatsion believes that the central problem for ACE researchers is to
understand how order and regularity arise spontaneously in decentral-
ized economic systems. Coordination is unplanned; buyers buy what
they want, and sellers sell what they think buyers will buy. Yet an econ-
omy functions as if the famous “invisible hand” were pushing, pulling,
kneading, arranging, and rearranging actors, actors’ intentions, and ac-
tors’ behaviors. We agree, and add another clause to the proposition: not
only is it important to come to understand how local interactions can re-
sult in global effects, but it is important to understand how the global ef-
fects in turn benefit the lower-level actors.

Picker’s Competing-Norms Model

Randal Picker is a law professor interested in the relationship between
government and the norms that arise in social behavior. In a paper pub-
lished in the University of Chicago Law Review, he focused particularly on
the issue of competing norms (Picker, 1997). One kind of behavior might
remain prevalent even while a superior behavior is available to the mem-
bers of a community. Some of these kinds of norms can be very subtle;
for instance, he mentions that buckling your seat belt in a Hungarian cab
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is considered an offense to the driver, while a French driver would take
no notice. The persistence of inferior norms is of great concern to anyone
interested in the welfare of society; people insist on doing dangerous
things, ignoring threats, starving themselves in the name of beauty—the
list could indeed be very long, and it is often not easy to change risky be-
haviors. Nor is it easy to enforce laws that contradict the popular way of
doing things—the current American drug prohibition is an example.

Picker implemented a kind of mutable prisoners’ dilemma game in a
grid resembling a cellular automaton. An individual agent is represented
as a cell in the CA and plays repeated games with the members of its pay-
off neighborhood. The payoff neighborhood might be a von Neumann
neighborhood comprising adjacent cells above, below, and to the left and
right, or a Moore neighborhood, which also includes the diagonal adjacent
cells (see Figure 5.13).

An agent in Picker’s model is also conceptualized as belonging to an
information neighborhood, which can be of the von Neumann or Moore
types. The agent gathers feedback from members of the information
neighborhood about what strategies other players have used, and how
successful these were for them. Players then adopt the strategy that re-
sulted in the highest payoffs in the information neighborhood. Picker
manipulated the two kinds of neighborhoods, so that in some cases the
information neighborhood was larger than the payoff neighborhood, in
some cases they were the same size, and in other cases the payoff neigh-
borhood was larger.

The choice of strategy for the first round, to cooperate or defect, was
randomly assigned with the proportion of defecting and cooperating
agents set as a parameter for the experiment. In most cases, Picker’s pop-
ulations converged to unanimity on one strategy or the other; the strat-
egy selected was a function of the initial proportions and the relative
goodness of the superior strategy. In general the population tended to
converge on the superior strategy, in other words, they tended to opti-
mize their decisions; but in cases where the relative benefit of the supe-
rior choice fell below a threshold, or when the initial superior population
was too low, the population converged on the inferior choice. As he says,
“For the inferior equilibrium to win over our players, we need either ex-
tremely bad luck or something that makes the inferior strategy especially
salient” (p. 1255). Picker’s data show clear phase transitions at very nar-
row regions near the two thresholds (payoff benefit and initial propor-
tion), where mixed strategies are found; otherwise the population be-
comes uniform, all cooperators or all defectors.

An important finding in Picker’s research, which almost goes unmen-
tioned, is that by observing the strategies of some local neighbors and
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their consequences, his simple computational agents were able to opti-
mize a rather complex decision function. Given a fair chance, local inter-
actions lead to global convergence on the norm that results in the higher
payoff. Knowing the meaningfulness of phase transitions, we would like
to explore further the dynamics at the transition boundaries in Picker’s
paradigm, where competing norms coexist. It would also be interesting
to experiment further with various sociometric patterns of connections
among agents in the payoff and information neighborhoods; it seems
that overlapping neighborhoods, as in this study, represent a special case
and perhaps not an especially typical one. Picker’s paradigm is rich in im-
plications for future research.

Latané’s Dynamic Social Impact Theory

In 1913 a German social psychologist named Ringelmann asked peo-
ple to pull on a rope attached to a dynamometer, individually and in
groups. A dynamometer measures the strength of a force applied to it;
Ringelmann was measuring how hard people pulled on the rope. His in-
teresting finding, now known as the “Ringelmann effect,” was that
groups of people pulled with a strength that was considerably less than
the sum of their individual efforts. With each additional person pulling
on the rope, it appeared that each one pulled with a smaller proportion
of their full strength. The relationship between N, the number of people,
and total force was monotonic, meaning that force increased with N, but
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increase was negatively accelerating; as the size of the group grew, the
force with which they pulled grew slower (see Figure 5.14).

Through the middle of the 20th century, results similar to these were
found in numerous social-psychological studies of group influence on a
target individual. As the sources of influence increased, the amount of in-
fluence increased, but the increase of influence was slower than the in-
crease of the size of the group.

In 1981 Bibb Latané summarized these results and reported on a
rather large accumulation of evidence from numerous laboratory and
field experiments. For instance, his research with John Darley on helping
behavior and bystander intervention, exploring the conditions under
which people will and will not help someone in need, had found that the
probability of any individual helping someone in need decreased as the
number of people present increased, similar to the Ringelmann effect
(though the probability that someone would help continued to increase).
This finding was consistent across a large number of emergency situa-
tions, both real and contrived. Latané concluded that the effect was
ubiquitous and could be adopted as a parsimonious theoretical construct
to explain a great amount of human conduct.

Latané’s social impact theory was described as the “light bulb” theory
of social influence. Just as the brightness on a surface is a function of the
number, wattage, and nearness of light bulbs shining on it, so people are
influenced by a group in proportion to the “Strength” (something like
status or persuasiveness), Immediacy (the opposite of distance), and
Number of the group members: î = f(SIN). (See Figure 5.15.)
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With the emergence of complex dynamical systems research through
the 1980s, Latané began to expand the predictions of social impact the-
ory to show that the behaviors of individuals could be explained in terms
of the self-organizing properties of the social system they comprised. As
individuals conformed to the norms they perceived as a function of the
Strength, Immediacy, and Number of people participating, patterns
formed that were only apparent from the population level. Clusters of in-
dividuals began to believe similarly, and subpopulations diverged from
one another.

Latané teamed up with the Polish physicist/psychologist Andrzej
Nowak and some of his Polish colleagues, who had developed a com-
puter package they called the Warsaw Simulation System (WSS) (Nowak,
Szamrej, and Latané, 1990). This software allowed the user to adjust pa-
rameters and rules applied to a population of binary individuals, similar
to cells in a cellular automaton, and observe their effect in terms of
which states the individuals settled into. A WSS trial programmed with
social impact rules progressed until change had stopped. When this oc-
curred, it was seen that individuals resembled their neighbors, while
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Figure 5.15 In Latané’s original social impact theory formulation, impact on the hapless target was
a multiplicative function of the Strength, Immediacy, and Number of sources of
influence. (From Latané, 1981.)



regions of the population matrix differed from one another (see Figure
5.16). In their 1990 Psychological Review paper, Nowak, Szamrej, and
Latané called this effect polarization and demonstrated that it was very
similar to effects found in real societies.

This finding of polarization was important, as previous social scien-
tists had believed that any mathematical model of interacting agents
would inevitably gravitate toward homogeneity; Festinger had called it
“pressure toward uniformity.” But Latané had long noted that in fact
people in societies, and even in small groups, do not come to agree uni-
formly about everything. The more common finding was just as Latané’s
simulations showed, that pockets of agreement formed, with differences
between them.

Social impact theory evolved over the years (e.g., Latané and
L’Herrou, 1996). Latané calls the current incarnation dynamic social im-
pact theory, and his findings have developed beyond simple polarization.
Dynamic social impact theory results, whether in simulations or studies
with human subjects, are seen to possess four characteristics, as de-
scribed by Latané in numerous publications. These are

� Consolidation: The diversity of opinions is reduced as individuals
are exposed to a preponderance of majority arguments.

� Clustering: People become more similar to their neighbors in social
space (usually correlated with physical space in Latané’s view).

� Correlation: Attitudes that were originally independent tend to
become associated.

� Continuing diversity: Clustering protects minority views from com-
plete consolidation.

The dynamic social impact model differs only slightly from those
described in previous chapters, depicting germs, bugs, varmints, and
widgets. Now we are considering how people come to hold beliefs and
attitudes, and we are not considering the process to be rational or even
self-serving. Latané’s model is at least approximately consistent with
findings in the field of social psychology and also in sociology, econom-
ics, and anthropology. As people interact they persuade one another of
things, they show one another how to do things, they impress one an-
other, they copy one another, and the simple, obvious result is they be-
come more similar. Their experience may be that they are making ratio-
nal decisions about everything they do, but the observed effect is that
they are becoming more like the people they know and interact with.
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Figure 5.16 In Nowak, Szamrej, and Latané’s simulations, minority attitudes (initially 30 percent of
the population in this example) ended up mostly clustered within well-defined
subpopulations when the system reached equilibrium. (From Nowak et al., 1990.)
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Latané’s simulations demonstrate some important features of collec-
tive adaptation, and they move us without much strain toward the idea
of swarm intelligence as a human phenomenon. Latané’s theorizing is
based on a great deal of experimental evidence, both his own and oth-
ers’, and the effects of Strength, Immediacy, and Number are ubiquitous
and easy to confirm. There is not unanimous, universal agreement
among social psychologists as to the mechanisms by which polarization
comes about, and neither is there complete agreement that Latané’s ex-
act formula is correct. But there is agreement at least that a nonlinear
monotonic relationship exists between attitudes and beliefs on the one
hand and number of sources and targets of influence on the other, and
certainly there is very little disagreement about the finding that people
influence one another, and in so doing, become more similar.

Though most of Latané’s research reports influence on single atti-
tudes or beliefs, the third effect reported in dynamic social impact simu-
lations is correlation. By this term, social impact researchers mean that
the patterns of beliefs held by individuals tend to correlate within regions
of a population. If you agree with topic number one and disagree with
topic number two, then it is likely your friends and neighbors hold those
two views, too. Latané’s explanation for this effect in humans and in his
simulations is that individuals with high Strength, that is, relatively per-
suasive or influential individuals, affect their neighbors on a number of
topics. Social impact theory does not predict any interaction among the
various opinions or beliefs that the individual might have. Multiple atti-
tudes are not described as a multivariate effect, but more as a set of
univariate effects. The high-Strength individual affects the target’s posi-
tion on opinion number one, and also on opinion number two, and so
on. There is no serious psychological model, however, that would assert
that an individual’s beliefs are independent of one another, simply blow-
ing the same direction like a staff of flags in the wind of social influence;
instead, someone’s beliefs must be seen as logically interrelated, and
their attitudes as affectively interrelated, as individuals strive for consis-
tency. A truly multivariate view may seem to make social influence more
complicated—we think it makes it simpler.

Boyd and Richerson’s Evolutionary Culture Model

With their 1985 Culture and the Evolutionary Process, Robert Boyd and
Peter Richerson laid out some of the implications of innumerable human
interactions in a population in terms of evolution and culture and their
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interaction. The two ecologists were co-teaching an introductory course
in environmental studies when they decided to pursue a kind of theme:
the idea that humans adapt to their environments as other organisms
do. Thus was born their dual-inheritance mathematical model of hu-
man behavior. On the one hand, they reasoned that some part of human
behavior is determined by genetics; our biology determines our behav-
ior or at least influences it. On the other hand, our genes predispose us
to behave socially in a way that results in culture, and much of our be-
havior is acquired by imitation, through a process they called cultural
transmission.

Boyd and Richerson developed a mathematical model, calculating
among other things the types of environments in which social learning
or individual learning might be more adaptive. An individual’s learning
from his or her own experience, they reasoned, should be most adaptive
when the environment is relatively homogeneous and stable over time,
so that lessons learned in one situation can be generalized to others. So-
cial learning is more adaptive, they reasoned, when an individual is un-
likely to sample sufficiently diverse aspects of the environment on his or
her own, and can only attain a comprehensive view of the world by
learning from others’ experiences.

These scientists (Boyd is now an anthropology professor) presented
an original and insightful view into various types and aspects of cultural
transmission and how these interact with biological evolution. Recall
that a genotype is the genetic coding of an organism or its traits and a
phenotype is the expression of the genotype. The important fact is that
the phenotype develops through the interaction of the genes with the
environment. Some phenotypes are more variable than others, and some
depend more on the environment for expression; for instance, pheno-
typic freckles do not appear unless the person spends some time in the
sun. Boyd and Richerson note that in humans phenotypic expression
of behavior depends on two kinds of learning—learning derived from
cultural norms that the person is exposed to and learning acquired
through individual experience.

As the human species evolved, individuals’ adaptations—and their
subsequent probability of survival and reproduction—depended jointly
on their individual experiences and on what they learned socially. Boyd
and Richerson hypothesize that the tendency to learn more in one way
or the other was genetically evolved. Thus, genetic evolution would have
produced a population that emphasized social or individual types of
learning; in humans it appears that social learning was favored by
evolution.
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In Boyd and Richerson’s view, guided variation occurs when evolution
is informed by within-lifetime adaptation, that is, by learned behavior.
Individuals who are capable of learning to adapt to their environment
are more likely to survive, and natural selection is thus more likely to fa-
vor those kinds of learners. Over time the population moves toward the
more adaptive learning style. When individual learning predominates
over cultural transmission in the population, there is a greater amount of
variation in phenotypic expression, as each individual makes his or her
own errors, and the force of genetic evolution is strong. When cultural
transmission is more important, then there is less variation, as all indi-
viduals behave in approximately the same way, and genetic evolution is
slowed; less fit members of the population are able to survive by adapting
through imitation, dulling the effect of natural selection. Thus cultural
evolution is able to influence the flow of genetic evolution.

An interesting implication of the dual-inheritance model is that cul-
tural and genetic evolution can move in opposite directions, resulting in
what Boyd and Richerson call the “Freudian model.” For instance, strict
sexual taboos might evolve culturally even while the genetic tendency
toward promiscuity or sexual impulsiveness increases. The result would
be a tension between the two motives, possibly with no difference in the
average prevalence of any overt behaviors. Importantly, dual inheritance
implies predictions that disagree with those of sociobiologists, who ar-
gue for the importance of genetic inheritance in human behavior and
downplay the ability of culture to neutralize inherited tendencies.

Boyd and Richerson note that because cultural evolution favors some
variants over others, it can introduce a bias into the development of
phenotypic behaviors. Unbiased transmission exists when individuals
simply adopt the variants they are exposed to, for instance, by their
parents; it does not affect the prevalence of the trait in the population.
Direct bias occurs when the individual selects a belief or behavior based
on attributes of the variant itself; that is, it may appear to be the best
choice for some reason. Direct bias implies that better solutions to
problems will become prevalent in a population; it suggests a tendency
for improvement. Frequency-dependent bias exists when the individual
adopts a variant because it is statistically prevalent in the population, or
at least among the people that the individual interacts with. A term used
by Boyd and Richerson for cultural evolution with a heavy dose of
frequency-dependent bias is conformist transmission. Finally, indirect bias
occurs when a variant is associated with other variants that are consid-
ered desirable. The search for cognitive consistency is highly motivating
and is one of the central themes of social psychology. In Boyd and
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Richerson’s model it is a force that shapes human cultural evolution, and
ultimately genetic evolution, through indirect bias.

In recent computer simulations testing Boyd and Richerson’s hy-
potheses, Henrich and Boyd (1998) examined effects in a model featur-
ing conformist transmission, that is, social influence with frequency-
dependent bias. In this kind of cultural transmission, the frequency of a
trait in the culture provides information about how adaptive the trait is.
When the probability of adopting a trait depends on how widespread it is
already, traits—beliefs, attitudes, or behaviors—that begin to become
prevalent in the population will eventually take over a population or
subpopulation. Therefore a culture must have other forms of transmis-
sion, in order to preserve diversity and consequent adaptability.

Henrich and Boyd (1998) hypothesized that there are two general
cues for learning, social and nonsocial. Use of nonsocial environmental
cues amounts to learning from your own experience, while social learn-
ing comprises the acquisition of knowledge by observing others. Thus
the simulations were conducted in four phases:

� Cultural transmission, including conformist transmission of traits

� Individual learning

� Migration of individuals between cultures

� Natural selection of individuals who populate the next generation

Individuals in the simulations differed in their inherited tendency to
rely on social versus individual learning, and environments differed in
the stability and in the amount of information they presented to the in-
dividual, that is, how easy or hard it was to detect the state of the envi-
ronment. Where an individual implemented conformist learning, their
probability of acquiring a trait equaled the proportion of the population
who possess it. Henrich and Boyd postulate two heritable learning pa-
rameters. One that they (as well as Boyd and Richerson) call L denotes
the degree to which a person tends to use social learning. For instance,
someone for whom L = 0.0 learns entirely from experience, where an-
other with L = 1.0 learns purely by imitation. The second parameter ∆
encodes the tendency to rely on biased (∆= 1.0) or unbiased (∆= 0.0) in-
fluence. Thus an individual with L = 1.0 and ∆ = 0.0 learns socially
through pure unbiased imitation of observed behaviors, while if ∆ = 1.0,
the probability of their adopting a behavior is determined by its fre-
quency in the population. In other words, L is the social learning gene,
and ∆ is the conformist gene. They also manipulated the probability of
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individuals migrating from one population to another and the variabil-
ity of the environment.

In Henrich and Boyd’s simulations, individuals were given the oppor-
tunity to adapt in an environment; they searched within lifetimes for op-
timal behaviors and across generations for the genetic patterns that pro-
duced the best behaviors. Adaptiveness was defined in terms of a choice
between two behaviors, one of which was defined as more adaptive,
given a particular environment, and genetic fitness was defined by
the individual’s ability to select the optimal behavior. A slight reproduc-
tive advantage was given to more fit individuals. The process was run un-
til it reached an equilibrium state where change ceased or fell below a
threshold.

As suggested by Boyd and Richerson’s analysis, these authors found
that selection favors conformist transmission, that is, frequency-
dependent social influence, over a wide range of environments. More dy-
namic, changing environments produced populations that relied less on
social learning. Even then, frequency-dependent transmission remained
advantageous; thus, though individual learning is emphasized in fluctu-
ating environments, the social learning that is used tends to rely on imi-
tation of popular traits. Further, a population that has discovered the
value of conformist, biased learning tends to rely more on social versus
individual learning in general. Regular migration of individuals between
cultures reduced reliance on social learning but increased the effect of
conformist transmission. In sum, when individuals take into account the
frequency of behaviors in the population before deciding to imitate
them, social learning is enhanced, in almost any kind of circumstance.

Henrich and Boyd note that frequency-dependent transmission is
evolutionarily important because it reduces behavioral variation within
groups, enabling the establishment of group boundaries and cultural dif-
ferences. These differences, though they often generate conflict and
strife, may also have adaptive value. As Henrich and Boyd point out,
there are of course other explanations for the formation of cultures. For
instance, some social scientists argue that phenotypic behavioral differ-
ences between cultures actually arise from differences in environments.
It is easy, though, to point to instances of groups that, while inhabiting
the same environment, maintain very different norms of behavior.

The evolution of culture may be seen in terms of movement on an en-
vironmental fitness landscape containing multiple peaks. Leaping from
peak to peak is rare, and cultures tend to maintain behaviors they have
found to be optimal. Some theorists have suggested that individuals con-
form to statistically prevalent norms in order to escape punishment. It is
clear, though, that while some norms are subject to punishment, for
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instance, the norm of wearing clothes, others persist even though there
is no sanction for violating them. The conclusion is that cultures form
simply because conformist learning is adaptive.

Memetics

Since evolution was first proposed as an explanation for biological diver-
sity, numerous social theorists have pointed out its profound similari-
ties to human culture—in fact, it appears that Darwin may have bor-
rowed the insight of incremental adaptation of species from the writings
of Sir William Jones on the evolution of Indo-European languages,
which Jones had described as “homology by descent.” It is apparent that
ideas, behaviors, and other changeable features of individuals propagate
through populations, changing through some kind of process similar to
mutation, combining with other features, evolving—there is no better
word for it—over time. Cultures are a lot like species.

Contemporary thinkers who think about the evolution of culture are
most likely to think of it in terms of memetics, a topic we briefly intro-
duced in Chapter 1. Richard Dawkins (1987) invented the label memes to
describe something analogous to genes but transmitted interperson-
ally; memes are usually treated as though they were identical to ideas,
though ideas are only one kind of meme. The term was inadequately de-
fined, but the concept has been widely—we almost said wildly—ac-
cepted by diverse observers of society. Enthusiastic proponents of the
view range from Nobel winners to Internet flamers to New Age manage-
ment consultants.

Paleontologist Stephen Jay Gould (1991) asserts that biological evolu-
tion is a false analogy for cultural change. In Bully for Brontosaurus he sug-
gests three reasons for his skepticism. First, the speed of cultural evolu-
tion far outstrips anything that Darwinian processes can do, and as
Gould notes, timing is crucial in evolution. Second, Gould asserts that
cultural evolution is Lamarckian and direct, whereas biological evolu-
tion is not Lamarckian and works indirectly. The biologist Jean Baptiste
Lamarck had argued, in Darwin’s day, that acquired behaviors and traits
could be passed from one generation to the next—the giraffe’s long
neck is the clichéd example, the idea being that as giraffes reached for
higher and higher branches, their offspring were born with longer
necks. The fact that cultural evolution involves the direct transmission
of “phenotypes” is an important point in the breakdown of the meta-
phor; there is nothing analogous to a covert genetic medium of inheri-
tance. Third, Gould raises the serious objection that the topologies of the
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two processes are different. In particular, he notes that biological evolu-
tion is a divergent process, forever branching; species never merge with
other species, but can only split. Cultural evolution on the other hand
seems to be forever merging, as new ideas form out of the synthesis of
ones that existed previously, with a strong measure of mutation. Of
course it can be argued that biological lineages do merge, at least within
species, through the process of sexual recombination, so this criticism is
not strictly accurate; between-species transmission, which would seem
to be analogous to cross-cultural spread of ideas, does not occur, how-
ever. Gould argues that biological and cultural change, while they are
not analogues, may reflect some more profound principle of organiza-
tion that is common to both, and perhaps to other “historical” systems
as well—a statement with which we most wholeheartedly agree.

Philosopher Daniel Dennett (1995) appreciates the richness of the
idea that culture is Darwinistic. The memetic metaphor offers him a tasty
soup of flavors, illuminating aspects of mind and life that might other-
wise never be understood; for Dennett the comparison between cultural
and genetic transmission of information is importantly insightful. At the
same time, Dennett systematically reveals some serious weaknesses in
the theory of memes.

For instance, Dennett notes that each mind that hosts a meme
changes it greatly. We could cite evidence from social psychology, espe-
cially the literature on norms, social influence, and conformity, to argue
that people do in fact tend to pick up any old idea that is floating around
the social environment. Social impact theory, for instance, predicts that
people will simply adopt the opinions and attitudes that are prevalent in
their neighborhood. On the other hand, persuasion researchers have
been somewhat able to taxonomize the conditions under which a person
will accept an argument, identifying, for instance, features of the mes-
sage, the source, and the target of a communication that will result in a
change in belief or attitude. Obviously, in at least some cases, people pick
and choose what to believe. In this way cultural transmission is unlike
genetic combination, where genes are mixed and matched randomly.
(Our experience is that we pick and choose what to accept from others—
we rarely see ourselves as conformists.)

Dennett notes that memes change when they come into contact with
one another in a mind. A freshly introduced idea is blended with knowl-
edge that is already held; useful parts are kept and troublesome parts
might be forgotten or rationalized away. Certainly there is nothing like
this in biological evolution. As modern criminal science emphasizes,
DNA is like a fingerprint; its patterns remain constant throughout an or-
ganism’s lifetime, beginning at conception.
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Dennett grapples with another fundamental problem of the
memetic-genetic analogy, which is the question of the mapping between
meme and some medium or carrier. An idea cannot be defined in terms
of the language in which it is expressed, as it can be expressed in a variety
of different language patterns. It almost surely cannot be defined in
terms of brain structures, as it is extremely unlikely that some future
neuroscientist will discover that each idea is stored in the same neurons
in all people. Genes present no such problem: each gene is a distinctive
pattern of amino acids on a chromosome. True, similar biological pheno-
types can be generated by different genotypes, but for cultural transmis-
sion it is rarely the case that two people acquired the same belief through
exposure to identical expressions of it.

Another place where the analogy breaks down, according to Dennett,
is in the fact that genetic duplication is extremely precise, with very rare
mutations or copying errors. On the other hand, memes, that is, ideas,
are almost never copied accurately. Historians and critics may attempt to
trace ideas back to their sources, through the lineage of cultural inheri-
tance, but the quest is always ambiguous. Our culture, in fact, has come
up with ways to address this problem: refereed publications and patents,
one of the main purposes of which is to provide an “audit trail” for ideas.

Finally, Dennett asks about the kind of fitness that might be increased
through memetic evolution. In one view, a meme might persist and
spread simply because it is a good replicator—not necessarily because it
helps the person who hosts it. On the other hand, Dennett argues that
memes that are good replicators seem also to tend to be good for people.
Here his argument is not too persuasive, as we could spend a long time
listing bad ideas that have spread through populations, sometimes per-
sisting for millennia.

We can argue from the point of view of social psychology that fitness
of a “meme” or pattern of ideas for cultural evolution is measured, not in
terms of survival of the organism but in terms of consistency among
cognitive elements. Beliefs need to fit together logically, emotions need
to fit together affectively, and emotions and beliefs need to fit together
with behaviors. It is very uncomfortable to like a person with disgusting
characteristics or to dislike someone who is, by all measures, good and
admirable—we are cognitively obligated to find something bad about
them. From this viewpoint we would say that a fitness of a meme de-
pends on some measure of how well it fits with other memes that are al-
ready present.

Dawkins retreated somewhat from his initial formulation of memetic
theory, and Dennett calls him out for it. Though Dawkins’ concessions
to the criticisms seem rather reasonable, at least as they are quoted in
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Dennett’s Darwin’s Dangerous Idea, Dennett seems to view them as a kind
of chickening out, backing down in the face of politically correct human-
istic dogmatists:

I suggest that the meme’s-eye view of what happened to the meme
meme is quite obvious: “humanist” minds have set up an aggressive
set of filters against memes coming from “sociobiology,” and once
Dawkins was identified as a sociobiologist, this almost guaranteed re-
jection of whatever this interloper had to say about culture—not for
good reasons, but just in a sort of immunological rejection (Dennett,
1995, pp. 361–362).

We are sympathetic to his argument, insofar as we have seen the
march of “political correctness” in recent decades, trampling over good
ideas that might have potentially disturbing implications, and we sym-
pathize with Dennett’s concerns—sociobiological theory does tend to
evoke a knee-jerk response from humanist types. But antihumanism is
not a meaningful support for memetic theory, and here it seems a rather
weak, mildly paranoid rearguard defense. In fact there are good reasons
to criticize memetic theory, and Dennett himself has listed a number of
them, with no serious rebuttals.

Cultural change and biological evolution are similar in that they are
dynamic, stochastic, and adaptive, and occur in populations. But where
natural selection is primary in Darwinian evolution, it is a minor aspect
of cultural change. Minds adapt by changing, not by survival of the
fittest, not by constant replacement of weak ones. As we discussed curso-
rily above, it is not clear that ideas have an existence independent of
minds. There seems to be little to gain by focusing on the evolution of
ideas and much to gain by looking at the evolution of minds.

Memetic Algorithms

Some computational intelligence researchers are currently working in a
paradigm they call memetic algorithms, though they bear almost no rela-
tionship to Dawkins’ theoretical perspective. Memetic algorithms are
defined as evolutionary algorithms with local search. That is, as a popula-
tion evolves, the individuals who comprise it conduct their own in-
dividual searches, resembling the way individual organisms learn within
their lifetimes even as the species evolves on a larger time scale. The idea
is intuitively appealing and its implementation is very flexible—noth-
ing says which evolutionary algorithm is to be used or which local
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search technique. Macro- and microcomponents of the paradigm can be
adapted to a particular problem or situation.

Pablo Moscato is a South American researcher who has pioneered the
study of memetic algorithms (e.g., Moscato, 1989). He and Michael Nor-
man, who is now in Scotland at the University of Edinburgh, began
working together in the 1980s at Caltech. In a recent paper they describe
the use of a memetic algorithm for optimization of a traveling salesman
problem (TSP) (Moscato and Norman, 1992). Recall that the TSP requires
finding the shortest path through a number of cities, passing through
each one only once. The problem has a rich history in applied mathe-
matics, as it is very hard to solve, especially when the number of cities is
large. TSP is an NP-hard problem, which suggests that if a way is found to
solve it, then a large number of other problems will also have been
solved. Moscato and Norman use an algorithm with both cooperation
and competition among agents in the population, and implement a hy-
brid version of simulated annealing for local search.

A population of individuals—these researchers usually use a popula-
tion size of 16—searches the problem space, which is defined by permu-
tations of the cities, called “tours.” The population is conceptualized as a
ring, where each individual is attached to its two immediately adjacent
neighbors, with whom it competes in the search; individuals are also
connected to others on the far side of the ring, with whom they cooper-
ate. Each individual in the population comprises a tour of the cities.
Competition is seen as “challenge” and “battles” between pairs of indi-
viduals, where the tour lengths of an individual and its neighbor are
compared and a probability threshold is set based on the difference. The
difference between the tours’ lengths affects the steepness of the s-
shaped curve; when the difference is small or the temperature is cool, the
probability distribution becomes nearly uniform, and when the differ-
ence in lengths between the two tours is great, the probability is in-
creased that tour 1 will be deleted and replaced with a copy of tour 0.

Cooperation is used to let more successful individuals “mate” with
one another, rather than with less-fit members of the population. The
same rule that is used in deciding competitive interactions is used to as-
sess the desirability of partners for crossover, which is implemented just
as it is in GA. One individual “proposes” to another, and if the proposi-
tion is accepted, that is, if the stochastic decision favors their interaction,
then the crossover operator is implemented. Thus the next generation is
created.

Moscato and Norman implement some sophisticated twists to the
coding of the chromosome, and their version of simulated annealing
draws on previous research in TSP optimization. Within each time step,
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each individual is changed in one of several ways, for instance by swap-
ping a pair of cities or by inserting a city between two others. Improve-
ments are accepted depending on the “temperature,” which decreases
through the course of the experiment; recall that in simulated annealing
the probability of taking a step that results in worse performance de-
creases over time. The simulated annealing cycle is repeated numerous
times within each generation of the evolutionary algorithm.

The authors report excellent results on a number of different TSP ex-
amples with as many as 532 cities. They find that the most improvement
in their algorithm occurs when the temperature is low, that is, in the
final stages of the trial. This suggests that exploitation is the most impor-
tant part of the local search strategy, which basically functions to en-
hance the genetic algorithm within which it is nested.

Peter Merz and Bernd Freisleben (1999a, 1999b) have reported ver-
sions of a memetic algorithm, which they have also called “genetic local
search,” that uses local search within a genetic algorithm framework (see
Figure 5.17). They define the paradigm in terms of these four steps:

� Choose a representation and evaluation scheme for the problem.

� Choose a suitable local search algorithm.

� Choose a method for initializing the population.

� Define mutation and recombination operators.

In 1996, Merz and Freisleben’s algorithm won first place in the first
International Contest on Evolutionary Computation. The contest al-
lowed researchers to submit programs to optimize a standardized set of
problems. Subsequent papers have reported further successes in using
the memetic algorithm for optimization.

Edmund Burke and Alistair Smith (1997, 1999) at the University of
Nottingham compared various kinds of local search techniques, includ-
ing simulated annealing, hill climbing, and tabu search, in a memetic al-
gorithm framework. Tabu search is a kind of algorithm that maintains a
list of “bad” points in the problem space, points that have been evalu-
ated most poorly; the search algorithm then steers away from those
points. They reported that hill climbing was fastest, followed by tabu
search, and finally simulated annealing, for the kinds of scheduling
problems they work with. Though the memetic algorithm performs
about as well as other algorithms on simple, low-dimensional combina-
torial problems, it is superior when problems are big.

Finally, biologist Liane Gabora (1995, 1996, 1998) has a version
of memetic algorithms that she has used to optimize the design of a
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hypothetical creature, which she calls a “vehicle.” The vehicle has six
body parts, and the problem is to evolve an internal neural network that
coordinates the development and movements of the parts. Fitness is
measured as a function of movement, symmetry, and head stability.
There is epistasis in the fact that the movements of a limb depend on
what the opposite limb is doing, and there can be numerous suboptimal
combinations of features; lots of combinations of parts can be pretty
good but not the best.

Vehicles in Gabora’s paradigm evolve on a 10 × 10 torus grid, with
one vehicle per cell. At each iteration, a vehicle is able to acquire a new
meme, either by creating one or imitating a neighbor; they can also up-
date the mutation operator or implement the new meme. To create a new
meme (there is a 50 percent chance of creating versus imitating), the
memetic algorithm is applied to the meme represented in the neural net-
work; a change is accepted if it increases the fitness value. Several “rules
of thumb” are implemented in determining mutational changes. In
short, as the author says, “Generalizations about what seems to work and
what does not are translated into guidelines that specify the behavior of
the memetic algorithm.” In imitation, a vehicle evaluates its eight neigh-
bors’ fitness one after the other until it finds one whose fitness exceeds its
own. This neighbor’s meme is copied to the vehicle’s own neural net-
work. If no neighbor has a better fitness, then nothing is done.

Gabora has studied three cultural evolution strategies:

� Mental simulation, where a new meme is not evaluated until the
next time step so that the vehicle can “think about it” before
expressing it

� Imitation, where memes are taken from neighbors

� Knowledge-based operators, where individuals use a mental
equivalent of mutation and crossover to evolve schemas

She concluded that all three of these strategies speed up optimization,
while mental simulation and imitation also increase the peak mean
fitness. Further, in her experiments the ratio of creation to imitation af-
fects peak fitness; fitness is maximized when creation occurs at about
twice the rate of imitation. Increased creation also results in the popula-
tion finding more of the various most-fit memes.

Gabora notes that an important difference between cultural and bio-
logical evolution is that cultural features are transmitted horizontally,
that is, across individuals within generations, while genetically inherited
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features can only be propagated vertically, down from one generation to
the next. A highly speculative theorist, she has written extensively on is-
sues of creativity, spirituality, and other nontechnical topics, arguing
that the theory of memes “plants us squarely in a garden of knowledge
where spiritual truth can blossom.” We agree that there is something en-
couraging in a point of view that optimistically theorizes that society is
constantly moving toward ever more adaptive states, that sees the evolu-
tion of truth from the bottom up—rather than flowing down from all-
knowing “experts” and authorities to the ignorant masses.

Cultural Algorithms

Wayne State University’s Robert Reynolds is a computer scientist with a
background in anthropology. He is interested in discovering how princi-
ples of the evolution of culture can be adopted to solve the kinds of prob-
lems found in computer science and applied mathematics. If culture
enables human individuals to adapt to complex environments, then per-
haps the processes that drive culture can be used to enable adaptation of
artificial individuals to other kinds of fitness landscapes.

Reynolds’ technique, which he calls cultural algorithms, is usually de-
scribed as a kind of evolutionary algorithm (Reynolds, 1994). As in other
evolutionary algorithms, a population of problem solutions is generated,
usually with a random start, and operators are applied to encourage im-
proved fitness in the population. Cultural algorithms differ from evolu-
tionary ones, though, in an important way: they have memory. Most
particularly, a population maintains a group memory or belief space of in-
formation about what kinds of proposed solutions have performed espe-
cially well and sometimes ones that have performed poorly and should
be avoided. Individuals in the population may access this information,
which provides guidance toward increasingly fitter problem solutions
(see Figure 5.18).

As in human societies, culture changes over time, and its changes per-
sist over time relative to the more rapid explorations of individuals.
Reynolds has referred to this as a dual-inheritance model, not to be con-
fused with the dual inheritance of Boyd and Richerson. The two paths of
inheritance in Reynolds’ view are the “micro-evolutionary” transmission
of traits and behaviors between individuals and the “macro-evolution-
ary” formation of generalized beliefs based on individual experiences.
These generalized beliefs then can operate at the group level to constrain
individuals’ behaviors within the population. In cultural algorithms,
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individuals interact with one another in a population space and are influ-
enced by group-level generalized beliefs in the belief space.

In each step of the algorithm, individuals are evaluated using a per-
formance function, and their fitness is determined. An acceptance func-
tion determines if the individual should influence the population’s di-
rection, that is, whether the individual will contribute to the belief
space. If an individual is accepted, its state is adjusted with those of other
individuals to form group beliefs, as information in the belief space is
used to guide evolution in the next step.

Reynolds and his students have applied cultural algorithms to a di-
verse group of difficult problems in social science, computer science, and
mathematics, and they have used the paradigm to improve the perfor-
mance of other established algorithms. In recent years it has seemed that
every conference has at least a few cultural algorithm papers, and it
seems likely that this flexible and powerful approach to adaptive prob-
lem solving has a bright future.

Convergence of Basic and Applied Research

You will have noticed that the models we have just described come from
two very different kinds of traditions. One kind of computer program is
written by social scientists in order to see if they can understand human
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behavior better. A psychologist, economist, or anthropologist might
have a theory about how people behave or think, and might want to
study the consequences of the theory’s assumptions, or might want to
know how tweaking certain parameters affects the outcomes of the simu-
lation; the scientist hopes to be able to generalize his or her findings to
explain something about people.

The other tradition arises mainly from computer science, applied
mathematics, and electrical engineering. This approach to modeling cul-
ture looks for better ways to solve hard mathematical problems. Parame-
ters are tweaked not to learn anything in particular about human society,
but to achieve the best results—to find the best answer to a hard problem
fastest. This is similar to the situation with evolutionary algorithms,
where biologists and computer scientists work together to explain and
emulate the dynamical processes that comprise evolution, in order to
understand biology and again to solve hard problems. It is also similar to
research in neural networks, where psychologists and cognitive scientists
hope to gain insights into human thinking, while computer scientists
and engineers seek powerful methods for analyzing data.

This book is a psychologist/engineer joint effort and seeks a kind of
middle ground that encompasses both ends. It seems most likely that na-
ture, fine-tuning for billions of years, has found methods that really
work. This suggests that it may be well worth learning about natural
processes, whether you want to understand nature—in this case, hu-
man nature—or to find answers to difficult problems in applied mathe-
matics. We expect to find convergence of basic and applied research, as
application-oriented investigators find out that the best methods are
those that nature herself already uses.

Culture—and Life without It

Our too-brief overview suggests that various theorists look at culture as a
dynamical process similar in some ways to biological evolution and with
a similar effect: adaptation. The long-term result of human culture is the
survival of individuals and the propagation of future generations, with
the interesting side effect noted by Boyd and Richerson that genetic evo-
lution is slowed when natural selection is interfered with. Almost all cul-
tures include procedures for protecting the frail and sick, the elderly and
the very young, the unintelligent and the clumsy, those individuals who
might not survive otherwise. Their survival suggests that their genes are
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passed on, along with those of the strong, the fittest, members of the
population, and the evolution of the species takes on the aspect of genetic
drift, rather than evolution toward a fitness peak.

As individuals we naturally take the perspective of individuals, and it
is sometimes hard to see ourselves in the context of a culture. But the
view of the individual as a cell in the cultural superorganism does not
necessarily undermine the importance of individuals. In fact, though we
have been considering the bottom-up effect of the individual on the cul-
ture, the emergence of norms and population-level effects from the local
interactions of individuals, we can just as well look the other way at the
top-down immergence of individual minds from the higher-level culture.

What would it be like to exist as a human being without a culture? Let
us summarize first by saying that we would probably not be human be-
ings, but only humans—not Homo sapiens, but only Homo.

A man who has been alone since birth will have no verbal behavior,
will not be aware of himself as a person, will possess no techniques of
self-management, and with respect to the world around him will have
only those meager skills which can be acquired in one short lifetime
from nonsocial contingencies . . . To be for oneself is to be almost
nothing (Skinner, 1971, pp. 117–118).

To consider what an individual raised without culture would be like,
we can look at several known instances of feral children, that is, children
raised in the wild (Candland, 1993). For instance, “Wild Peter” appeared
in the countryside near the German town of Hameln in 1724. When
found, he appeared to be about 12 years old, tanned and naked. He sat on
his haunches like a four-footed creature, ate raw but not cooked grasses
and vegetables, and liked to catch, kill, dismember, and eat (raw) birds.
Though Wild Peter was passed from one protector to the other, including
the royal family of England, for more than 60 years, he never learned to
talk. It was reported that his best words were “ki scho,” for “King
George,” and “qui ca,” for “Queen Caroline”; other than that, his vocal-
izations were indecipherable.

Peter was obviously able to learn, for he had knowledge of edible
foods in the wild and learned to adapt to civilized ways, even if he did
not enjoy them. For instance, he would wear clothes, but preferred not
to. He never was known to laugh, though he enjoyed music, and he was
not interested in sex. Peter was considered a curiosity in his time and was
taken care of, and though he had his favorites, he never formed any real
connections to other people.
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Victor, the “Wild Boy of Aveyron,” appeared at the edge of the woods
in France near the end of the 18th century (Lane, 1976). As a contempo-
rary wrote: “A child of eleven or twelve, who some years before had been
seen completely naked in the Caune Woods seeking acorns and roots to
eat, was met in the same place toward the end of September 1799 by
three sportsmen who seized him as he was climbing into a tree to escape
their pursuit.” After a week Victor broke free, but later voluntarily en-
tered a house and was kept captive thereafter. Victor was largely cared for
by Dr. Jean-Marc-Gaspard Itard, who by all accounts gave Victor the best
attention possible and tried earnestly to civilize him. Itard described the
12- or 13-year-old Victor as “a disgustingly dirty child affected with spas-
modic movements, and often convulsions, who swayed back and forth
ceaselessly like certain animals in a zoo, who bit and scratched those
who opposed him, who showed no affection for those who took care of
him; and who was, in short, indifferent to everything and attentive to
nothing.”

Even as he went through puberty, Victor showed no interest in sex,
though he was seen sometimes to become agitated and uncomfortable in
the presence of women; he had no sense of justice, or of right and wrong,
for instance, as they applied to stealing. He never learned to speak,
though he could occasionally imitate the actions depicted in pictures.
Victor died in 1828, at the age of 40, without ever having become
socialized.

In 1920, an Indian missionary named Singh heard stories from jungle
tribesmen about some “ghosts” that resided in a large ant mound in a
clearing (Candland, 1993). When Singh and some helpers went to dig
out the mound, they found living inside a family of wolves and two very
dirty, naked little girls, who were obviously being raised by the wolves.
They appeared to be about eight and one-and-a-half years old, with mat-
ted balls of hair. They were captured and raised by Reverend Singh, who
was careful not to let word get out. The girls liked to sleep in a ball,
walked on all fours, disliked human company, and appeared to be able to
see better at night than in the daylight. Singh reported that they could
smell meat from a great distance, and one of them once found the en-
trails of a fowl that had been thrown out 80 yards from the compound
where they lived; the child was caught eating them.

The younger girl died of illness after about a year, but the older one
survived until 1929. By that time, she had learned to say about 30
words—not “real” words, but sounds of her own device that apparently
had meaning. Though she could name some things, she never learned to
speak spontaneously, for instance, to ask for things by name.
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None of these children, or any other known feral children, for there
are a few other cases, ever formed social bonds with other people; they
never learned to communicate or to care what others thought of them.
Their intellects were so poorly formed as to be immeasurable, as they had
none of the curiosity or desire to please that enables a person to perform
well on a test.

In short, and in order to provoke thought and discussion, we would
argue that unsocialized humans do not have what we normally think of
as minds. They cannot think or communicate, and their learning is re-
stricted to the kind of individual experience that omits the accumulation
of knowledge through culture. Thus we would not conclude that culture
“strengthens” the mind or “helps” the mind, but that it “creates” the
mind.

Summary

Psychology traces its descent dually from philosophy and from the
physical and natural sciences. The 20th century saw tremendous im-
provements in scientific methods for research and analysis of empirical
data on psychological phenomena and a rapid expansion of scientific
knowledge about human thought, feeling, and behavior. Some of the
most important findings contradict our intuitive view of ourselves and
are almost universally ignored by laypersons. Unfortunately, these “lay-
persons” include researchers in other fields who sometimes feel that in-
trospection and common sense should be adequate for informing theo-
ries of mind and computational models of cognition. On the other hand,
a tradition of computational simulation is rising in the social sciences,
with demonstration of many important effects. Encouragingly, this tra-
dition is beginning to spread to the computer sciences, where it is blos-
soming into varieties of useful and interesting paradigms.

Anthropologists and others have long noted that cultural change re-
sembles biological evolution in its ability to adapt to new and diverse cir-
cumstances. Some theorists have asserted that the two processes are
nearly identical, but there is plenty of reason to doubt this extreme view.
Our feeling is that natural selection of memes is an imperfect analogy for
the evolution of ideas through a population; it seems better to describe
such phenomena in terms of changes in the states of individual minds,
instead of changes in ideas themselves. We have considered some well-
grounded theories of social influence—the changing of individual minds
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in response to perceptions about the minds around them—and have
seen some powerful computer algorithms based on these social and cul-
tural processes.

Next we begin exploring our own vision of sociocognitive computa-
tion. We start by introducing a simple algorithm called the Adaptive
Culture Model, which we will use to build a base for understanding the
particle swarms to be revealed in the next chapters.
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chapter
six

Thinking Is Social

The linkage between social science simula-
tions and computer programs for engineer-
ing and other applications is not always obvi-
ous. Neural networks, simulated annealing,
cultural algorithms, ant colony optimization,
and evolutionary algorithms are several in-
stances where psychological, physical, and
biological theories have influenced the de-
velopment of computational methods for
problem solving.

This chapter takes a simulation from the
social sciences and shows how it can be
modified slightly to perform combinatorial
optimization. The adaptive culture model is
extremely straightforward and easy to un-
derstand; further, it contains most of the
ingredients that will be used in the more so-
phisticated particle swarm algorithms stud-
ied in the rest of the book. �
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Introduction

The problem with the story about the blind men and the elephant is that
it assumes they were also deaf. The famous tale, set in verse in the 19th
century by John Godfrey Saxe (1869/1936), describes the experiences of
six blind men who, converging upon an elephant, each come to believe
that the entire elephant resembles the particular part he has encountered
by chance:

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
“God bless me! but the Elephant
Is very like a wall!”

The second blind man, feeling a tusk, cries that the elephant is like a
spear, and so on. Of course the moral of the story is that people derive in-
complete beliefs from their incomplete experiences in the world. In real-
ity, if a group of blind men took turns announcing a description of his
particular part of the elephant, it is clear that by listening to each other
all the blind men would come to a rather complete and correct under-
standing of the heterogeneous qualities that make up an elephant. All
members of the group would know that the creature has a side like a wall,
tusks like spears, legs like trees, and so on. Through discussion they
might even figure out how the parts are connected and how they func-
tion together. The point of this literary critique is that societies are able
to benefit from the sharing of individuals’ partial knowledge, resulting in
a body of facts and strategies that far exceeds what any individual could
have ever acquired independently.

The theme of the present chapter is that thinking is a social activity;
human culture and cognition are aspects of a single process. People learn
from one another not only facts but methods for processing those
facts. The theme is not new: Bandura, for one, has explicitly theorized
about the learning that occurs when individuals observe one another’s
behaviors:

If knowledge could be acquired only through the effects of one’s own
actions, the process of cognitive and social development would be
greatly retarded, not to mention exceedingly tedious . . . Fortunately,
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most human behavior is learned through modeling . . . The capacity
to learn by observation enables people to expand their knowledge
and skills on the basis of information exhibited and authored by oth-
ers (Bandura, 1986, p. 47).

Adaptation on Three Levels

Not only do people learn from one another, but as knowledge and skills
spread from person to person, the population converges on optimal pro-
cesses. The present chapter describes a system that operates simulta-
neously on three levels:

� Individuals learn locally from their neighbors. People are aware of
interacting with their neighbors, gleaning insights from them,
and sharing their own insights in turn, and local social learning is
an easily measured and well-documented phenomenon.

� The spread of knowledge through social learning results in emer-
gent group-level processes. This sociological, economic, or politi-
cal level of phenomenon is seen as regularities in beliefs, attitudes,
behaviors, and other attributes across individuals within a popula-
tion. A society is a self-organizing system with global properties
that cannot be predicted from the properties of the individuals
who make it up.

� Culture optimizes cognition. Though all interactions are local,
insights and innovations are transported by culture from the origi-
nator to distant individuals; further, combination of various inno-
vations results in even more improved methods. This global effect
is largely transparent to actors in the system who benefit from it.

The Adaptive Culture Model

In an earlier chapter we discussed Robert Axelrod’s influential work in
the 1980s with the prisoners’ dilemma and the “evolution of coopera-
tion.” In 1997, this same Axelrod published a volume titled The Complex-
ity of Cooperation, in which he proposed a computational model of the
dissemination of culture. The present chapter extends Axelrod’s com-
puter simulation of the spread of features through a culture to demon-
strate how social interaction might comprise a natural computation
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method that results in coherent and intelligent human thought, opin-
ion, and action. We are considering the Axelrod model and the version
we derive from it to contain the fundamental principles of the swarm al-
gorithms that will be discussed in the following chapters. The current
model has a kind of simplicity and elegance that makes it ideal for intro-
ducing the more challenging algorithms.

It has been theorized elsewhere that collaboration among individuals
can result in cognitive optimization, that is, that social interaction may
enable individuals to arrive at effective structures and strategies for the
management of knowledge. The view has been supported in part by a
paradigm called particle swarm adaptation, computer simulations of pop-
ulations interacting in a multivariate real-number space; through imita-
tion of successful others, individuals evolve optimal weights or activa-
tion values in connectionist and other cognitive models.

While the particle swarm algorithm has been found effective for
optimization of continuous and binary phenomena, many cognitive
theories include discrete variables. A major instance occurs in symbol-
processing models, where discrete elements represent symbolic enti-
ties. Further, many connectionist models, especially those based on
Hopfield’s earlier network, are essentially combinatorial in nature; even
if activations range between lower and upper limits during optimization,
when a stable state is attained, activation values are usually seen to have
settled in the corners of the hypercube; that is, they approach their limits
of +1 and 0 (or −1, depending on the specification of the model), and
variables are essentially discrete.

Axelrod’s recent simulation of the spread of culture provides insights
into the effects of social interaction and gives us a starting point for dem-
onstrating that a small number of exceedingly simple principles can
cause an artificial system to behave remarkably like a complex human so-
ciety. Axelrod’s culture model and the particle swarm are two branches of
the same tree, with the culture model simulating societies in terms of dis-
crete variables and the particle swarm algorithm operating on continu-
ous or binary ones. The two approaches complement one another and
point the way to a theory of culture and cognition emerging from inter-
action. In the present chapter, an expansion of Axelrod’s algorithm
called the Adaptive Culture Model (ACM) is shown to be able to optimize
complex functions, and it is suggested that cognitions, attitudes, and
other arrays of psychological phenomena are optimized by interaction
among individuals. A series of experiments are reported that test the ca-
pabilities of the algorithm. Several cognitive theoretical models are sim-
ulated, including a new kind of multivalued combinatorial constraint
satisfaction network.
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Axelrod’s Culture Model

Axelrod has theorized that similarity between pairs of individuals can re-
sult in the spread of culture. In his simulations, individuals are repre-
sented as strings of symbols called “features”; the number and length of
the strings and the universe of symbols available to them are parameters
of the system. For example, if individuals comprise five features, and
these are defined as numerals in {0, 1 . . ., 9}, then one individual may be
represented as 42237 and another as 99217. A two-dimensional matrix
of individuals is initialized into the simulation, and they are allowed to
interact.

Axelrod postulates that the probability of human interaction is a
function of the similarity of two individuals: “The basic idea is that
agents who are similar to each other are likely to interact and then be-
come even more similar” (Axelrod, 1997). For instance, in the example
above, the two individuals are similar in the third and fifth positions;
with 40 percent similarity they have a 0.40 probability of interacting.

An interaction in ACM occurs when one individual adopts a non-
matching feature of the other. An individual and one of its horizontally
or vertically adjacent neighbors are selected at random. If stochastic sim-
ilarity criteria are met, the selected individual will change one of its ele-
ments to match the symbol in the same position of the neighbor’s string.
For instance, if the two individuals above interacted, 42237 could take
the 1 from its neighbor, and become 42217. The element changed is se-
lected stochastically from the elements that are different. (This way of se-
lecting elements to change is the same for the rest of the examples in the
chapter.)

As a simulation iterates, neighbors are observed to begin resem-
bling one another, until regions of the matrix contain identical strings.
Axelrod focuses largely on the group-level effects of various parameters
on the formation of regions, for instance, the numbers and sizes of re-
gions as a function of number of features and population size. Figures
6.1 and 6.2 show “before” and “after” snapshots of a population of five-
featured individuals. In this run and the others following, the begin-
nings and ends of rows and columns are considered adjacent, in a torus
field, so that all individuals have four neighbors with whom they may in-
teract. Note that fields do not usually wrap in Axelrod’s simulations; this
may result in some differences in results between the two implementa-
tions, but these do not affect the theoretical implications of the findings.
Because similarity sets the threshold for instigating changes, bound-
aries between regions containing strings with no matching members
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eventually become fixed, and change in the system stops. This kind of
polarization is very similar to that noted in the simulations of Nowak,
Szamrej, and Latané’s 1990 paper and other social impact studies.

The present chapter remains conceptually close to Axelrod’s original,
insofar as the simulations model populations of individuals within a so-
ciety who interact by exchanging features. “Features” in both models
may comprise a variety of phenomena: “Although beliefs, attitudes, and
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27217 74924 31157 53671 22660 37316 07959 57666 33206 92725

66219 08226 26707 45600 48767 39481 62784 89859 27792 35492

37262 66163 89178 60968 91098 19937 62103 07562 03500 13864

87746 66209 94122 72784 03593 16647 19776 87819 22160 48185

16880 09713 76057 30843 92125 41152 74156 98801 64760 00144

86287 66161 23271 46773 53014 44442 25424 98309 32553 16678

90624 65685 68785 32385 90770 24676 68806 25347 16640 30602

98681 11402 57304 68003 16943 01041 44693 63237 76040 61075

52249 30617 91425 92780 82342 30467 19721 84117 96595 55215

79949 70851 29089 89311 19176 67653 95954 64805 51332 74301

Figure 6.2 Result of simulation where interaction is a stochastic function of similarity (Axelrod’s
paradigm).

22233 22233 22233 22233 22233 22233 22233 22233 22233 22233

22233 22233 22233 22233 22233 22233 22233 22233 22233 22233

22233 65955 65955 22233 22233 22233 22233 33588 33588 33588

22233 22233 22233 22233 22233 22233 22233 33588 33588 33588

22233 22233 22233 22233 22233 22233 22233 22233 22233 22233

22233 22233 22233 22233 22233 22233 22233 22233 22233 22233

22233 22233 22233 22233 22233 22233 22233 13157 22233 22233

22233 22233 22233 22233 22233 22233 22233 13157 22233 22233

22233 22233 22233 22233 22233 22233 22233 22233 22233 22233

22233 22233 22233 22233 22233 22233 22233 22233 22233 22233

Figure 6.1 Initial random start for a simulation of a 10 × 10 population of individuals made up
of strings of five features represented by numerals ranging from zero to nine.



behaviors cover a wide range indeed, there are even more things over
which interpersonal influence extends, such as language, art, technical
standards, and social norms.” Axelrod moves between levels of analogy
when he simultaneously describes the symbol strings as persons and as
“sites,” which might be thought of as neighboring villages. The model is
described in this chapter on the level of individual persons interacting
with their neighbors, which does appear to be Axelrod’s primary focus as
well.

Experiment One: Similarity in Axelrod’s Model

Axelrod theorizes that similarity is a precondition for social interaction
and subsequent exchange of cultural features. In the simulations that
instantiate his theory, the probability of interaction depends on similar-
ity, and culture is seen to spread and finally stabilize through links be-
tween similar individuals. According to Axelrod and others, people be-
come more similar as they interact; an apparent paradox, however, is
that populations do not converge on unanimity. Instead, subgroups tend
to become more homogeneous over time and more different from one
another.

The “birds of a feather” hypothesis—that people are attracted to and
influenced by others who are similar to them—has been supported by
much research, especially in the attitude similarity paradigm promul-
gated by Byrne. On the other hand, Wetzel and Insko have shown that
people are attracted to others who resemble their ideal, rather than ac-
tual, selves. Over six carefully conducted experiments, when the effects
of “ideal similarity” were statistically removed from data, the effect of
“self-similarity” was nonsignificant. Wetzel and Insko’s conclusion was
that people strive to attain their ideals; in the meantime they find others
who approximate their ideals to be attractive and persuasive. At the least,
there is evidence to suggest that the role of similarity is not as important
as Axelrod theorizes; as he notes, few models of social influence give the
factor much weight. As Axelrod purports to simulate the social influence
process, that is, the propagation of beliefs, attitudes, and other features
from one individual to another, it is prudent to question the causal posi-
tion of similarity in the paradigm.

In the first experiment, Axelrod’s model was altered slightly: the ef-
fect of similarity as a causal influence was deleted from the model. This
was accomplished easily by setting the probability of interaction to 1.0
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for all selected pairs. Thus when an individual and its neighbor were se-
lected they interacted, regardless of their similarity, with the individual
changing one of its nonmatching elements to be the same as the neigh-
bor’s. These trials resulted in unanimity (see Figure 6.3). All 20 trials run
to stability in a 10 × 10 population resulted in uniform populations of
individuals with identical features.

Interestingly, the effect of similarity as a causal influence in Axelrod’s
model is to introduce polarization: dissimilarity creates boundaries between
cultural regions. Interindividual similarities do not facilitate conver-
gence, but rather, when individuals contain no matching features, the
probability of interaction is defined as 0.0, and cultural differences
become insurmountable. Interaction occurs, and the population con-
verges, in the absence of any similarity criterion, but polarization was
not seen; thus the effect of similarity is negative, in that its absence cre-
ates the conditions for impassable group boundaries to form.

Experiment Two: Optimization of an Arbitrary Function

It was hypothesized that the culture model might belong to a larger class
of general function optimizers and that in Axelrod’s implementation
the function that is optimized is, in fact, similarity. Axelrod’s place-
ment of similarity as a cause in the simulations makes it essentially an
objective function; if a test is passed, then a feature is adopted from a
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Figure 6.3 Result of a simulation of the culture model with no criterion for interaction.



neighbor, and in the end the population maximizes the criterion. Thus,
in the original versions of the model, the change rule is “if (rand < S/N)
then interact,” where rand is a random number between zero and one, S
represents the number of similar or matching elements, and N is the
number of features in a string. The following experiments substitute new
terms into the parentheses on the left side of the change rule.

Experiment Two substituted a simple arbitrary function for the simi-
larity test previously used. Rather than testing the similarity of two
neighbors, the algorithm was modified so that the numerals comprising
an individual’s features were summed: this sum was a performance met-
ric. The change rule became “if (the neighbor’s sum is larger than the
targeted individual’s sum) then interact.” As before, an interaction com-
prised the taking of a nonmatching feature from a neighbor. The ques-
tion was whether the algorithm would maximize the sums of numerals
comprising the individuals.

It was seen that a randomly initialized population does indeed con-
verge on the maximum; in 20 trials of the paradigm, the population con-
verged on the global optimum every time. Though the string “99999”
was not seen in the initial population, interaction resulted in the adap-
tive discovery of that optimal set of features and its spread through the
population. ACM is capable of optimizing a simple numerical function.

Experiment Three: A Slightly Harder and More
Interesting Function

Minimizing and maximizing an entire string of digits is perhaps the sim-
plest optimization exercise conceivable. A second task was programmed,
which is at once more difficult and more interesting as a social science
metaphor. The task in the next experiment was to find a set of five num-
bers—the individual’s feature string—within which the sum of the first
three numbers equaled the sum of the last two. Thus, the string 34153
would successfully accomplish the objective, since the sum of 3 + 4 + 1,
the first three characters in the string, equals the sum of 5 + 3, the last
two. In the program, the difference was calculated between the first and
second sums, and if the neighbor’s difference was smaller (the sums were
more nearly equal), the target adopted a feature from the neighbor.

This task is interesting for two reasons. First, unlike the previous ex-
ample, in which a string of nines or of zeroes satisfies the maximization
or minimization constraints, the equal-sums task has a great number of
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perfect solutions. In the current paradigm, assuming that the algorithm
would optimize the problem, it was impossible to predict whether ho-
mogeneous regions would develop or individuals would evolve idiosyn-
cratic vectors.

Second, the task requires the complex coordination of the entire vec-
tor of elements. A “2” in the fifth position is only successful if it and the
fourth element contribute together to a sum that is predicted by the first
three elements. In a psychological sense, this is analogous to a model of
cognitive or attitudinal consistency. Thus the task supports conceptual-
ization of the paradigm as a model of individuals in a society, each trying
to acquire and maintain a cognitive set that meets the requirements of
the situation.

As seen in Figure 6.4, all individuals in the population solved the
problem, and parts of solutions were distributed through contiguous re-
gions of the population; in 20 trials, this pattern of results was seen every
time. Even though the paradigm required coordination of all elements
and the interaction operated on individual elements, the method suc-
cessfully found solutions to this rather difficult problem. It was as if an
individual picked up a hairstyle from one friend, a style of jacket from
another, slang from another—and made them all fit together. It was, in
other words, a depiction of a social process in which no individual
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17769 13967 13967 13967 03764 49094 83193 83193 03434 07979

17769 18137 13967 13967 49094 49094 49094 24381 23454 07979

17567 14537 14537 12737 49094 49094 49094 13453 13453 13453

32739 34539 85599 72999 49094 49094 49094 13453 13453 13866

82789 84598 85599 72999 72081 04581 40581 40581 82459 13866

95169 85168 62127 62127 09081 04581 40141 40141 90191 92193

95187 85168 62127 62127 09081 09081 00110 92193 92193 92193

68178 19239 19239 01230 01230 21223 00110 92193 92193 92193

10955 19239 92579 02727 02727 21223 27283 92193 92193 10955

17769 13509 13509 13509 02754 23124 83193 83193 83139 07979

Figure 6.4 Result of a simulation where interaction occurred when the difference between the
sums of the first three numbers and the last two was smaller for the neighbor than
for the individual. Note that in all cases the sum of the first three numbers equals the
sum of the last two.



embodied every single aspect of the stereotypical culture, but rather indi-
viduals adopted particular aspects of the cultural features prevalent in
their area.

These results have an obvious analogue in human society. A string in
the simulation may be seen as a set of features, attitudes, or beliefs held
by an individual, which must be internally consistent in order to become
stable. The features are also constrained to be externally consistent; that
is, individuals strive to resemble their neighbors, at least when the neigh-
bors are relatively successful at attaining a “good” set of features.

These experiments have taken Axelrod’s model of the spread of fea-
tures through a culture and modified it somewhat. In the ACM para-
digm, an individual takes a feature from a randomly selected neighbor if
a criterion is met. In Axelrod’s writings the criterion is similarity; the
present chapter substitutes other criteria and shows that the spread of
culture can optimize other functions, resulting, by the way, in similarity
among proximal individuals. Similarity, which was a cause in Axelrod’s
simulations, is now an effect.

Experiment Four: A Hard Function

A problem is considered intractable if the amount of time required to
solve it increases at a faster-than-polynomial rate as the size of the prob-
lem increases. For instance, the traveling salesman problem (TSP) re-
quires finding the shortest path through a set of nodes, or cities, without
passing through any node twice, and ending up at the starting point.
With each additional city the number of possible solutions grows expo-
nentially; with N nodes there are NN possible combinations of nodes and
N! “legal” tours. The TSP is a type of problem called “NP-complete” by
computer scientists. The NP problems are intractable, as there is no
known deterministic solution to them that reduces the search to polyno-
mial time.

The TSP requires the ordering of discrete elements. As such it is used
here to represent analogous cognitive tasks, such as determining the se-
quence of steps necessary to solve a complex problem, arranging con-
scious thoughts such that no contradictory beliefs are juxtaposed, and so
on. For instance, Thagard and Verbeurgt (1995) have shown that con-
straint satisfaction in connectionist networks is an NP-complete prob-
lem. Rich has suggested that the essence of artificial intelligence (AI) is
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in solving these problems: “ . . . one way of describing AI is that it is an
attempt to solve NP-complete problems in polynomial time” (Rich,
1983, p. 104).

The present experiment implemented an eight-city tour. Thus, there
are 88, or 16,777,216, possible combinations of eight cities, allowing for
cities to be visited more than once, and there are 8!, or 40,320, legitimate
tours, in which each city is visited once. Of those tours, there are 16, one
starting in each of the eight cities, and going either direction around the
tour, that are globally optimal, or provide the shortest possible path.
Some heuristic algorithms have been devised to find relatively good
tours without testing all possible permutations (for instance, terminate a
tour without completing it when it exceeds the shortest distance found
so far), but the problem is considered hard by all standards.

The test was set up with a set of cities defined as two-dimensional Car-
tesian coordinates, which were contrived so that the best tour was
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Figure 6.5 Result of a simulation of TSP.



known to the researcher. The problem was set up so that the optimal tour
was “ABCDEFGH,” of course starting on any letter and going in either di-
rection. A typical result is seen in Figure 6.5. The adaptive culture algo-
rithm is able to optimize combinatorial functions. A penalty was added
to the length of a tour if it went to a node more than once. The algorithm
was run 20 times with an 18 × 8 population of individuals: the popula-
tion converged on the globally optimal tour, which had a distance of
7.483 units, on 11 of those trials (16/16,777,216≈ 0.00000095 probabil-
ity of finding the optimum by chance). The mean tour was 7.909 units in
length; when suboptimal tours dominated, these were seen in all cases to
differ from the optimal by at most one element. Either a city was re-
peated (perhaps a higher penalty would have prevented this) or two
neighboring cities were reversed (e.g., BDCE instead of BCDE). Note that
this trial resulted in convergence on two globally optimal solutions to
the problem.

In a test of the propensity for the algorithm to find multiple optima,
the TSP program was run for a second set of 20 trials. Nine of these trials
resulted in the globally optimal tour of length 7.483; of these, two trials
resulted in convergence on two different optimal patterns, and one trial
found five different series of cities that produced the shortest possible
route. Other successful trials converged on a single optimum. Thus po-
larization was sometimes seen to occur in this paradigm.

Experiment Five: Parallel Constraint Satisfaction

ACM models the spread of features through a community. These can be
beliefs and attitudes as well as tangible phenomena. A string of features
then could represent a kind of cognitive system, with string symbols rep-
resenting cognitive elements, using some model of cognitive goodness
to optimize the vector.

Connectionist networks often implement binary coding of variables.
A set of mutually inconsistent units or nodes are coded with inhibitory
connections between each pair. An optimized network contains a value
of one for one of the beliefs and zeroes for the others. For instance,
Rumelhart, Smolensky, McClelland, and Hinton present an example of a
constraint satisfaction network comprising features of rooms. Given
some subset of features, such as toaster and refrigerator, the network is
able to compute other features of the room that are likely to be present,
such as table and sink, while deactivating features such as bed and couch
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that are likely to be absent. Rumelhart et al. make the point that sche-
mata have variables, which they call “slots.” As they write:

In some cases, there are sets of units that are mutually inhibitory so
that only one can be active at a time, but any of which could be com-
bined with most other units . . . Perhaps the best example from our
current data base is what might be called the size slot. In this case, the
very-large, large, medium, small, and very-small units are all mutually
inhibitory . . . (Rumelhart et al., 1986, pp. 33–34).

It does not seem reasonable to suppose that a person who thinks
about a large room must actually inhibit thoughts about small, medium,
and very large rooms. But because the network is coded in binary terms,
it is necessary to code a large number of variables, and an even larger
number of connections, to describe a single “slot.” A primary reason for
implementing binary constraints is the feasibility of optimizing the acti-
vation pattern; the Hopfield techniques work on binary nodes. ACM,
however, offers a method for optimizing multiple-valued discrete nodes,
as well as a sound social-psychological premise for how it could be done
in reality. In the present paradigm, the “size slot” can be coded as a single
node that can take on six values—the five size classes and a zero for ab-
sent or irrelevant. The model is essentially unchanged, except that it is
now more comprehensible, realistic, and parsimonious.

For demonstration a parallel constraint satisfaction network was
taken from a recent Psychological Review paper by Kunda and Thagard.
The model simulates the effect of stereotypical information on a con-
cept, in this case the descriptor “aggressive.” Kunda and Thagard hy-
pothesized that individuals are more likely to expect a stereotypical
construction worker to punch someone and a lawyer to argue with some-
one, given that both targets are labeled “aggressive.” In their paper this
was demonstrated using two networks, as shown in Figure 6.6. The first
network shows the constraints resulting from factors associated with a
lawyer, that is, the target is stereotypically expected to be Upper middle
class and Verbal, and if labeled “Aggressive,” is expected to Argue rather
than Punch. This effect results largely from the negative connection be-
tween Upper middle class and Punch. The second network represents the
stereotype of a construction worker, i.e., Working class, Unrefined, and
more likely to Punch than to Argue.

One advantage of using multivalued nodes is that comparisons can
be implemented in a single network. In the example, both of Kunda and
Thagard’s networks have identical binary nodes representing Aggressive,
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Punch, and Argue; they differ in the other three nodes. It is clear, how-
ever, that Lawyer and Construction worker are levels of the same vari-
able, as are Upper middle class and Working class, and Verbal and Unre-
fined are implicitly exclusive of one another. Further, as the question is
whether Punch or Verbal satisfies the constraints better, it is possible to
code them as levels of a variable called “Response.” Thus, the two net-
works can be conceptually collapsed into one, as seen in Figure 6.7, with
nodes labeled “Occupation,” “Aggressive,” “Socioeconomic class,” “So-
phistication” (for want of a better term—as usual, all labels are arbitrary),
and “Expected response.”

An experimental trial clamped, that is, held constant, a value of Occu-
pation: a population was initialized with random values for the nodes
and with one occupation fixed, for instance, Occupation clamped to the
value “Lawyer.” Individuals in the population generated patterns of acti-
vation, evaluated these, compared their own evaluations to their neigh-
bors’, and adopted a feature from the neighbor if their pattern was better.
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Figure 6.6 Parallel constraint satisfaction examples. Solid lines represent positive links, and the
dotted line represents a negative link. (From Kunda and Thagard, 1996.)



A string is composed of the variables in the following order:

1. Occupation (A = Lawyer, B = Construction worker)

2. Aggressive (value is A or 0)

3. Socioeconomic class (A=Upper middle class, B=Working class)

4. Sophistication (A = Verbal, B = Unrefined)

5. Expected response (A = Punch, B = Argue)

Thus a string such as “AABBA” represents a Lawyer who is Aggressive,
Working class, Unrefined, and more likely to Punch than to Argue. In
cases where a node is not connected, or the total inputs to all levels of it
are zero or less, the node takes on the value of zero, indicating it is irrele-
vant, nonsalient, or unnecessary.

276 Chapter Six—Thinking Is Social

Lawyer

Aggressive

Working class

Verbal

Unrefined

Punch

Argue

Aggressive

Occupation

Sophistication

Construction
worker

Upper middle
class

Socioeconomic
class

Expected
response

Figure 6.7 The two binary networks shown in Figure 6.6 are combined into a single multivalued
network. Note that each node can also take on a zero value.



The network was coded as a series of rules of five elements. Negative
connections were coded with a minus sign on the node value or on the
weight, and a period represented no connection. Note that coding such a
system in a two-dimensional matrix would remove all advantage and
make it identical to a binary network, and thus a series of rule statements
was employed.

For instance, the following was the rule set for Figure 6.7, with “Con-
struction worker” clamped on:

B . . . �.
A A A A �.
B A B B �.
. A . . �#
. . A . �A
. . B . �A
. . . A �B
. . . B �A

The first rule is special; it determines values to be clamped on
throughout the trial. In this set the first line tells the system to assign a
“B” for the first node; the dots in that row mean the other nodes are free
to vary. Rules are designed so that the first column with a symbol in it
represents the focal node, and other columns are nodes connected to it.
The second line says that state “A” of the first node is connected to “A”
for the second, third, and fourth nodes and is not connected to the fifth.
The “#” symbol in the fourth rule means that the second node (the sec-
ond column is the first with a symbol in it) connects to any value of the
fifth node. A minus sign means that the element should not be present; it
represents a negative or inhibitory connection.

The rule set may be accompanied by a set of weights for each element
in each row, or a default weight of 1 can be used for everything. The pro-
gram compares a proposed solution, for instance, “BABAB”—meaning
that a Construction worker is Aggressive, Working class, Verbal, and
likely to Argue—to each rule, and sums up the weights of the items that
match. In the present example, the first “B” is clamped on, so all popula-
tion members will have that state for their first node. The rule in the sec-
ond line (A A A A .) fails to match in the first specified position, so the rest
of the rule is not evaluated. The next rule (B A B B .) does match in the
first specified position, so the weights for the rest of the line are summed,
with a penalty for mismatches. Assuming all weights = 1.0, the sum is 1
for the matching “A” in the second position, plus 1 for the matching “B”
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in the third position, minus a penalty for the mismatch between the “A”
in the problem solution and the “B” in the rule, minus another penalty
for the final “B” in the solution, which corresponds with a “.” or no con-
nection in the rule.

The next rule says that a state of “A” for the second node corresponds
with anything in the fifth node. Since the proposed solution does meet
the criterion, the sum is added for a match in this row. Thus the program
goes through, comparing the symbol string to the rules. A measure of
goodness is defined by the sum of the weights of all constraints that are
satisfied by a pattern of values:

G Wm
nr

= ∑∑

where r is rules, n is nodes, and Wm is the weight of a relation or connec-
tion that matches, that is, is identical in the test and the rule strings.

Note that some theorists code binary node activations in {0, 1} and
some in {−1, +1}. The difference between these two implementations is
seen in the effect of a node when it is turned off; a node with zero value
has no effect on the units it is connected to, while a node value of−1 ac-
tively tends to inhibit them. This results in some paradoxical cases,
where in order to achieve the desired result positive relationships must
actually be coded using negative connections. The present model emu-
lates connectionist networks with {0, 1} activations and as such avoids
that anomalous instance.

When the program is executed, a population of random symbol
strings is generated. A string is evaluated by comparing it to each rule in
the rule file. Weighted matches between the test string and the rules are
summed through the rule set. A larger total indicates that more con-
straints were satisfied. The ACM algorithm is applied by selecting an in-
dividual and a neighbor, comparing their evaluation totals, and interact-
ing when the neighbor’s total is greater than the individual’s.

This network model using a 10 × 10 population was tested 20
times with Lawyer clamped on and 20 times with Construction worker
clamped on. All 40 trials resulted in the population converging on the
correct stereotypical conclusion, that is, Lawyers would be thought more
likely to Argue than to Punch, and Construction workers would be ex-
pected to be more likely to Punch than to Argue.

What does this approach to constraint satisfaction buy us? First, the
use of multivalued nodes is a more efficient and theoretically sound way
to encode slots, or sets of mutually exclusive variables. Second, the
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population dynamics allow important insights into the cognitive opera-
tions involved. Part of the definition, indeed, of a stereotype is that it is a
belief shared by a group about members of another group. ACM shows
the development of stereotyped thinking as it spreads through a popula-
tion. A set of commonly held beliefs is arranged in various ways until the
best explanations are found. The search is shared by the population, and
the successful results spread to all members.

Experiment Six: Symbol Processing

Many kinds of problems in conventional AI are conceptualized as a
search for the shortest path through some symbolic nodes. The example
described here is taken from Chapter 4 of Patrick Henry Winston’s classic
textbook, Artificial Intelligence (Winston, 1992). Winston gives the exam-
ple in terms of finding the shortest path from city A to city H. Sym-
bolically this kind of problem is the same as rebuilding a carburetor,
cooking an omelet, preparing for an exam—a sequence of steps must be
followed, they must be in correct order, and no steps must be skipped.
Many decision trees have a number of alternative successful routes, some
of which are superior to others, in which case the investigator decides
whether to accept a good-enough solution or to hold out for the global
optimum.

Figure 6.8 depicts a network of paths, which can be transformed into
a set of hierarchical paths that can be searched without looping back to a
previous point. The usual discussion of this kind of problem describes
strategies that can be used to reduce unproductive searches. The culture
model completely ignores these rational approaches. As usual, a popula-
tion of individuals is initialized, with each individual comprising a string
of symbols, for instance, ADCHBEAF, in an eight-node problem (the first
node will always be A).

As before, each string is evaluated, that is, the distance from the ini-
tial A to the first occurrence of the goal H is calculated. Since only a small
proportion of nodes are legitimately connected to one another, a penalty
is added to the length of the path for illegal connections. A neighbor is
selected, the two are compared, and a feature of the neighbor is taken if
the neighbor’s trip is shorter.

Because trips through the graph vary in the number of nodes they
pass through to reach the goal, an adjustment in the performance mea-
sure was necessary. If simple tour length were used as a performance
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Figure 6.8 The shortest path problem. A network of nodes is transformed into a hierarchical tree
structure. (Adapted from Winston, 1992.)



measure, the system would converge quickly on a shorter, more probable
path, even though it is suboptimal, simply because it will be found
sooner. In order to equalize the chances of finding longer, less probable,
sequences of graph nodes, total distance was weighted by

αγχN
N
−1δγφ

L−2

× αγχ 1
N

δγγφ

where N is the number of nodes in the graph and L is the ordinal position
of the goal, for comparisons of individuals and their neighbors. The first
term of this weight represents the probability that elements preceding
the goal in the series will not be the goal value, and the second term is
the probability that the final element will be the goal value.

For example, in the example given above, the best possible tour is
ACEGH, with a distance of 13 units and the target in the fifth ordinal po-
sition of the string. The penalty for invalid sequences, that is, for going
from one node to another when there is no connection between them,
can be set by the user; let us assume it has been set equal to 10 units of
distance added to the total for each violation. An individual then that
tried the invalid tour AH would have a distance of 10 units—better than
the global optimum! Thus cheating would be rewarded if it was not pre-
vented. Weighting by the formula above, though, transforms the opti-
mal tour into

13 × αγχ7
8

δγφ
5−2

×
1
8

which evaluates to approximately 1.088, while the “cheater” solution
becomes

10 × αγχ7
8

δγφ
2−2

×
1
8

which is 1.25 transformed units in distance. Thus the incentive to take
shortcuts is reduced. This approach enables operations on solution
strings of various lengths.

In 20 trials of the Winston decision tree a 12 × 8 population con-
verged on the global optimum 14 times. While it is not argued here that
this trial-and-error algorithm is more efficient than traditional search
procedures, it is suggested that in fact many real problems requiring
the sequencing of elements are solved socially through collaboration,
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with each individual contributing and recombining pieces to result in
improvement.

Discussion

An ACM system iterates, with individuals repeatedly interacting, until it
reaches a stable point where change ceases. The simulations reported in
this chapter have been seen to stop in three kinds of states: states where
the population is uniform, with all feature strings identical; states with
two or more regions of strings that are identical within regions and dif-
ferent between them; and states with a population of unique strings that
satisfy the change criterion equally well.

The question of what causes groups to diverge is of course profound,
important, and difficult. In Axelrod’s simulations change stopped when
the similarity criterion was not met anywhere in the matrix; the result
was a population with one or more homogeneous regions. As was seen in
the first experiment above, when the similarity criterion was deleted
from the paradigm, the system evolved until no individual had a neigh-
bor with a nonmatching feature—the entire population became homo-
geneous. Thus it was concluded that the similarity rule was responsible
for producing boundaries between distinct groups.

In the other experiments reported here, the change rule stated that
interaction occurred only when the neighbor’s performance exceeded
the selected individual’s. In one experiment (Experiment Three), very
many global optima existed, and individual feature strings tended to be
correlated but unique. In others, for example, the maximization and
stereotype experiments, a single global optimum existed, and the popu-
lation converged on it. When a limited number of optima existed, the
population would converge on as many as were discovered; when the
function was hard and global optima few in number (e.g., the TSP), only
one solution was found in most cases, but in some trials multiple best so-
lutions were discovered by the population. Where two or more global
optima were more easily found, regions of the population tended more
frequently to converge on separate patterns. It is interesting to note the
formation of “multiethnic” populations out of benign conditions, that
is, individuals converged on different combinations of features; group
divergence occurred even in the absence of self-categorization, as in
Henri Tajfel’s theory, or competition for resources, as theorized by Don-
ald Campbell and others.

282 Chapter Six—Thinking Is Social



In sum, culture and cognition are seen from three simultaneous levels
of phenomena. First, individuals searching for solutions learn from the
experiences of others. The “problems” addressed by the present theoreti-
cal viewpoint may be epistemological, logical, ethical, aesthetic, or meta-
physical; they may be emotional, political, physical, or sexual. At the so-
cial learning level of culture and cognition, individuals learn from their
neighbors. This is the level that is most easily measured by social scien-
tists, and importantly it is the level at which the system is programmed.

Second, an observer looking at a population as a whole perceives phe-
nomena of which individual people are the parts. Opinions, beliefs, and
behaviors correlate with geographical regions, as well as with ethnic, reli-
gious, socioeconomic, and other cultural dimensions. People who inter-
act frequently become similar to one another in many ways. Nothing in
the computer programs specified that regions should become homoge-
neous or that borders should form between groups; these global effects
emerged from simple local interactions.

Third, culture affects the performance of the individuals who com-
prise it. Individuals gain benefit by imitating their neighbors, good pat-
terns spread through the population, and the best patterns spread most
widely through the group, so that individuals benefit from improve-
ments that might have been discovered in quite remote regions. Further,
as patterns move through a population and become integrated with ex-
isting patterns of features, the probability of even greater improvement
increases. Again, nothing in the programs specified that individuals
would solve problems, but only that they would imitate others who per-
formed better than themselves.

This latter global phenomenon is largely invisible to participants in
the system, for two reasons. First, an individual does not necessarily real-
ize where an idea came from, if it originated beyond the horizon. Second,
individuals are incapable of seeing the effect of culture because they are
it: there is no background against which the figure can be seen, as the
perceiver is an element in the perceived field.

This model appears to give individuals very little credit. Thinking,
and in fact hard thinking, is depicted here with no assertions about, or re-
liance on, the intelligence of individuals. A human processing unit in
these simulations functions mainly through adaptive imitation. Obvi-
ously an individual human processes a great deal of information. The
present view would suggest that a relatively large proportion of cogni-
tion is concerned with evaluation and comparison of self and others. The
strings of symbols processed in the current examples are highly over-
simplified tokens of the multidimensional, dynamic arrays that are
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processed by human societies—and these experiments suggest that socie-
ties process information.

Summary

The ACM is able to find some combinatorial optima, but is not designed
for that purpose—it was really devised only to show that a simple princi-
ple, which could be called “imitation of your betters,” is able to find its
way through a complex search space. The following chapters present and
elaborate a paradigm that capitalizes on the ability of social interaction
to result in optimization of hard problems.
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The Particle Swarm

This chapter introduces the particle swarm
in its binary and real-numbered forms. The
book so far has been preparing a context, de-
scribing related paradigms in computer sci-
ence and social science, discussing culture
and norms and language and other scien-
tific and philosophical developments that, if
we have been successful, will make the parti-
cle swarm seem like an obvious thing to
propose.

The Adaptive Culture Model in the previ-
ous chapter hints at what can happen as a re-
sult of the simplest imaginable interactions
of the simplest imaginable agents—if these
can even be called “agents.” Given a large
space of possibilities, the population is often
able to find multivariate solutions, patterns
that solve problems, through a stripped-
down form of social interaction.

It is worth emphasizing that individuals in
the culture model are not trying to solve
problems. They are only following the simple

rules of the algorithm, which say nothing
about the existence of a problem or how to
solve it. Yet through reciprocal social influ-
ence each individual betters its “fitness” (the
term is less appropriate here than in discus-
sion of evolutionary algorithms), and the per-
formance of the population improves. We
would not say that the adaptive culture algo-
rithm is an especially powerful way to solve
problems, but it is a good introduction to
some social algorithms that are.

The particle swarm algorithm is intro-
duced here in terms of social and cogni-
tive behavior, though it is widely used as a
problem-solving method in engineering and
computer science. We have discussed binary
encoding of problems, and the first version
of the particle swarm we present here is de-
signed to work in a binary search space. Later
in the chapter we introduce the more com-
monly used version, which operates in a
space of real numbers. �
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Sociocognitive Underpinnings: Evaluate, Compare,
and Imitate

A very simple sociocognitive theory underlies the Adaptive Culture Model
and particle swarms. We theorize that the process of cultural adaptation
comprises a high-level component, seen in the formation of patterns
across individuals and the ability to solve problems, and a low-level com-
ponent, the actual and probably universal behaviors of individuals,
which can be summarized in terms of three principles (Kennedy, 1998):

� Evaluate

� Compare

� Imitate

Evaluate

The tendency to evaluate stimuli—to rate them as positive or negative,
attractive or repulsive—is perhaps the most ubiquitous behavioral char-
acteristic of living organisms. Even the bacterium becomes agitated, run-
ning and tumbling, when the environment is noxious. Learning cannot
occur unless the organism can evaluate, can distinguish features of
the environment that attract and features that repel, can tell good from
bad. From this point of view, learning could even be defined as a change
that enables the organism to improve the average evaluation of its
environment.

Compare

Festinger’s social comparison theory (1954) described some of the ways
that people use others as a standard for measuring themselves, and how
the comparisons to others may serve as a kind of motivation to learn and
change. Festinger’s theory in its original form was not stated in a way
that was easily tested or falsified, and a few of the predictions generated
by the theory have not been confirmed, but in general it has served as a
backbone for subsequent social-psychological theories. In almost every-
thing we think and do, we judge ourselves through comparison with
others, whether in evaluating our looks, wealth, humor, intelligence
(note that IQ scales are normed to a population average; in other words,
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your score tells you how you compare to others—which is really the
point, isn’t it?), or other aspects of opinion and ability. Individuals in the
Adaptive Culture Model—and in particle swarms—compare themselves
with their neighbors on the critical measure and imitate only those
neighbors who are superior to themselves. The standards for social be-
haviors are set by comparison to others.

Imitate

You would think that imitation would be everywhere in nature; it is such
an effective way to learn to do things. Yet, as Lorenz has pointed out,
very few animals are capable of real imitation; in fact, he asserts that only
humans and some birds are capable of it. Some slight variations of social
learning are found among other species, but none compare to our ability
to mimic one another. While “monkey see, monkey do,” well describes
the imitative behavior of our cousins, human imitation comprises taking
the perspective of the other person, not only imitating a behavior but re-
alizing its purpose, executing the behavior when it is appropriate. In The
Cultural Origins of Human Cognition, Michael Tomasello argues that social
learning of several kinds occurs in chimpanzees, but true imitation learn-
ing, if it occurs at all, is rare. For instance, an individual’s use of an object
as a tool may call another individual’s attention to the object; this sec-
ond individual may use the same object, but in a different way. True imi-
tation is central to human sociality, and it is central to the acquisition
and maintenance of mental abilities.

The three principles of evaluating, comparing, and imitating may be
combined, even in simplified social beings in computer programs, en-
abling them to adapt to complex environmental challenges, solving ex-
tremely hard problems. Our view diverges from the cognitive viewpoint
in that nothing besides evaluation, comparison, and imitation takes
place within the individual; mind is not found in covert, private cham-
bers hidden away inside the individual, but exists out in the open; it is a
public phenomenon.

A Model of Binary Decision

Consider a bare-bones individual, a simple being with only one thing on
its mind, one set of decisions to make, yes/no or true/false, binary deci-
sions, but very subtle decisions, where it is hard to decide which choices
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to make. For each decision, this supersimplified individual can be in one
state or the other, either in the yes state, which we will represent with a 1,
or the no= 0 state. It is surrounded by other yes/no individuals, who are
also trying to decide. Should I say yes? Should I say no? They all want to
make the best choices.

Two important kinds of information are available to these primitive
beings. The first is their own experience; that is, they have tried the
choices and know which state has been better so far, and they know how
good it was. But these social beings have a second consideration; they
have knowledge of how the other individuals around them have per-
formed. In fact they are so simple that all they know is which choices
their neighbors have found most positive so far and how positive the
best pattern of choices was. If these stripped-down beings are anything
like people, they know how their neighbors have done by observing
them and by talking with them about their experiences.

These two types of information correspond to Boyd and Richerson’s
individual learning and cultural transmission. The probability that the
individual will choose “yes” for any of the decisions is a function of how
successful the “yes” choice has been for them in the past relative to “no.”
The decision is also affected by social influence, though the exact rule in
humans is admittedly not so clear. Social impact theory states that the
individual’s binary decisions will tend to agree with the opinion held by
the majority of others, weighted by strength and proximity. But even
that rule is somewhat vague, given ambiguities in the concepts of
strength and proximity.

For the present introductory model we will just say that individuals
tend to be influenced by the best success of anyone they are connected
to, the member of their sociometric neighborhood that has had the most
success so far. While we admit this is an oversimplification, it has a kernel
of truth that justifies the parsimony it brings to the model.

Individuals can be connected to one another according to a great
number of schemes, some of which will be mentioned in Chapter 8. Most
particle swarm implementations use one of two simple sociometric prin-
ciples (see Figure 7.1). The first, called gbest, conceptually connects all
members of the population to one another. The effect of this is that each
particle is influenced by the very best performance of any member of the
entire population. The second, called lbest (g and l stand for “global” and
“local”), creates a neighborhood for each individual comprising itself
and its k nearest neighbors in the population. For instance, if k= 2, then
each individual i will be influenced by the best performance among a
group made up of particles i− 1, i, and i+ 1. Different neighborhood to-
pologies may result in somewhat different kinds of effects. Unless stated
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otherwise, the following discussions will presume lbest neighborhoods
with k = 2 (sometimes described as “neighborhood = 3”).

In a sociocognitive instance the individual must arrange an array of
decisions or judgments in such a way that they all fit together, what we
call “making sense” or “understanding” things. The individual must be
able to evaluate, compare, and imitate a number of binary choices
simultaneously.

Evaluation of binary strings can be accomplished in one step. In the
psychological case, that is, if we are talking about humans, we can again
use the concept of cognitive dissonance to evoke the sense of tension
that exists when an array of decisions contains inconsistencies. We expe-
rience the state as discomfort and are motivated to change something to
reduce the tension, to improve the evaluation. Dissonance as described
by Festinger provides a single measure of cognitive evaluation, exactly as
“fitness” is a single measure of genetic or phenotypic goodness.

How do we improve cognitive fitness? Of course there are plenty of
theories about this. In Ajzen and Fishbein’s Reasoned Action Model, (1980)
intent is seen as a function of two kinds of things that should be getting
familiar by now (see Figure 7.2). On the one hand, intent is affected by
the person’s attitude toward the behavior; for instance, if they believe vi-
olence is harmful or immoral, then they may intend not to act violently.
This attitude is formed, in Ajzen (pronounced “eye-zen”) and Fishbein’s
theory, by a linear combination of beliefs that the behavior will result
in some outcomes (bi) times the individual’s evaluation of those out-
comes (ei):

A b eo i i
i

n

=
=

∑
1

This kind of expectancy-value model of attitude has existed in some
form for many years, and we will not criticize its linearity or asymptotic
issues here (never mind the decades-old debate about summing versus
averaging). We are interested in the fact that intent has a second cause,
which Ajzen and Fishbein call the subjective norm. The subjective norm
regarding a behavior is also built up, in their theory, as a linear sum of
products, but this time the factors entering into the formula are social.
The individual’s subjective norm toward a behavior is a sum of the prod-
ucts of their beliefs that certain others think they should or should not
perform the behavior, multiplied by the motivation to comply with each
of those others:

SN b mo i i
i

n

=
=

∑
1

292 Chapter Seven—The Particle Swarm



To point out the obvious, these two components of the theory of rea-
soned action map easily onto the components of Boyd and Richerson’s
cultural transmission model; that is, there is an individual term (individ-
ual learning or attitude toward a behavior) and a social term (cultural
transmission or subjective norm). These two kinds of concepts are found
in other theories as well and are represented in our decision model as the
two terms that make up the change formula. We theorize that the coexis-
tence of these two modes of knowledge, that is, knowledge acquired by
the senses through experience in the world and knowledge acquired
from others, gives humans the intellectual advantage; it is the source of
our intelligence.

Besides their past experience and inputs from the social environ-
ment, another factor that affects the individual’s decision is their cur-
rent propensity or position regarding the issue. They may start with a
strongly negative attitude and have subsequent positive experiences re-
garding the choice or attitude object—but still have a negative feeling
about it. The positive experiences may make the individual more likely to
choose the positive alternative, but in order to shift the individual’s gen-
eral propensity into the positive domain, the decision threshold would
still have to shift upwards. If the individual’s initial position is extreme,
the probability is lower of its changing—for one thing, the individual is
less likely to try the other alternative.

In mathematical terms, we are proposing a model wherein the proba-
bility of an individual’s deciding yes or no, true or false, or making some
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other binary decision, is a function of personal and social factors (Ken-
nedy and Eberhart, 1997):

P x t f x t v t p pid id id id gd( ( ) ) ( ( ), ( ), , )= = − −1 1 1

where

� P(xid(t)=1) is the probability that individual i will choose 1 (of
course the probability of their making the zero choice is 1− P) for
the bit at the dth site on the bitstring

� xid(t) is the current state of the bitstring site d of individual i

� t means the current time step, and t − 1 is the previous step

� vid(t − 1)is a measure of the individual’s predisposition or current
probability of deciding 1

� pid is the best state found so far, for example, it is 1 if the individ-
ual’s best success occurred when xid was 1 and 0 if it was 0

� pgd is the neighborhood best, again 1 if the best success attained by
any member of the neighborhood was when it was in the 1 state
and 0 otherwise

The decisions themselves will be stochastic, if for no better theoretical
reason than that we never know all the forces involved—it is very un-
likely that any decision is made based solely on isolated facts pertaining
directly to that decision alone. A lot of randomness allows exploration of
new possibilities, and a little bit allows exploitation by testing patterns
similar to the best one found so far; thus we can balance between those
two modes of search by adjusting the uncertainty of decisions.

The parameter v tid ( ),an individual’s predisposition to make one or the
other choice, will determine a probability threshold. If v tid ( ) is higher, the
individual is more likely to choose 1, and lower values favor the 0 choice.
Such a threshold needs to stay in the range [0.0, 1.0]. We have already
seen one straightforward function for accomplishing this, when we
talked about neural networks. The sigmoid function

s v
vid

id

( )
exp( )

=
+ −

1
1

squashes its input into the requisite range and has properties that make it
agreeable to being used as a probability threshold (though there is noth-
ing magical about this particular function).
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We wish to adjust the individual’s disposition toward the successes of
the individual and the community. To do that we construct a formula for
each vid in the current time step that will be some function of the differ-
ence between the individual’s current state or position and the best
points found so far by itself and by its neighbors. We want to favor the
best position, but not so much that the individual ceases searching pre-
maturely. If we simply added ( pid− xid(t−1)) and ( pgd− xid(t−1)) to vid (t),
it would move upward when the difference between the individual’s pre-
vious best and most recent states, or the difference between the neigh-
borhood’s best and the individual’s most recent states, equaled 1, and
would be attracted downward if either difference equaled−1. The proba-
bility threshold moves upward when the bests are ones and downward
when they are zeroes.

In any situation we do not know whether the individual-learning or
the social-influence terms should be stronger; if we weight them both
with random numbers, then sometimes the effect of one, and sometimes
the other, will be stronger. We use the symbol ϕ (the Greek letter phi) to
represent a positive random number drawn from a uniform distribution
with a predefined upper limit. In the binary version the limit is some-
what arbitrary, and it is often set so that the two ϕ limits sum to 4.0. Thus
the formula for binary decision is

v t v t p x t p x tid id id id gd id( ) ( ) ( ( )) ( ( ))= − + − − + − −1 1 11 2ϕ ϕ

if then elseρ id id id ids v t x t x t< = =( ( )) ( ) ; ( )1 0

where ρid is a vector of random numbers, drawn from a uniform distribu-
tion between 0.0 and 1.0. These formulas are iterated repeatedly over
each dimension of each individual, testing every time to see if the cur-
rent value of xid results in a better evaluation than pid, which will be up-
dated if it does. Boyd and Richerson varied the relative weighting of indi-
vidual experience and social transmission according to some theoretical
suggestions; the current model acknowledges the differential effects of
the two forces without preconceptions about their relative importance.
Sometimes decisions are based more on an individual’s personal experi-
ence and sometimes on their perception of what other people believe,
and either kind of information will dominate sometimes.

One more thing: we can limit vid so that s(vid) does not approach too
closely to 0.0 or 1.0; this ensures that there is always some chance of a bit
flipping (we also don’t want vi moving toward infinity and overloading
the exponential function!). A constant parameter Vmax can be set at the
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start of a trial to limit the range of vid. In practice, Vmax is often set at
±4.0, so that there is always at least a chance of s(Vmax) ≈ 0.0180 that a
bit will change state. In this binary model, Vmax functions similarly to
mutation rate in genetic algorithms.

Individuals make their decision in a population, where they are influ-
enced by the successes of their neighbors. As each individual’s decision is
affected by (pgd− xid(t− 1)), that is, (usually) some other individual’s suc-
cess, they influence one another and tend to move toward a common po-
sition. As an individual begins to approximate its neighbor’s best posi-
tion, it may perform better and influence its neighbors, and on and on;
good decisions spread through the population. We are comfortable call-
ing this the formation of a culture in a computational population.

In this section we have developed an extremely parsimonious model
of binary choice as a function of individual learning and social influence.
Individuals tend to gravitate probabilistically toward the decisions that
have resulted in successes for themselves and their colleagues. The result
is optimization of each individual’s decision vector and convergence of
the population on an optimal pattern of choices.

The entire algorithm, maximizing goodness, is shown in pseudocode:

Loop
For i = 1 to number of individuals

if G x G pi i( ) ( )
r r
> then do //G() evaluates goodness

For d = 1 to dimensions
pid = xid //pid is best so far

Next d
End do

g = i //arbitrary
For j = indexes of neighbors

If G p G pj g( ) ( )
r r
> then g = j //g is index of best performer

in the neighborhood
Next j
For d = 1 to number of dimensions

v t v t p x t p x ti id id id gd id( ) ( ) ( ( )) ( ( ))= − + − − + − −1 1 11 2ϕ ϕ
v V Vid ∈ − +( , )max max

if ρid id id ids v t x t x t< = =( ( )) ( ) ; ( ) ;then else1 0
Next d

Next i
Until criterion
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Testing the Binary Algorithm with the De Jong Test Suite

It may seem confusing to jump back and forth between “cognitive mod-
els” and “test functions.” We are maintaining a generous definition of
cognitive models, given the lack of consensus among psychologists
about the internal structure of the mechanisms of thought. Thus, to us, a
cognitive model is just like any other multidimensional problem where
elements interact with one another in a combination possessing some
measurable goodness.

Kennedy and Eberhart (1997) tested the binary particle swarm using a
binary-coded version of the classic De Jong suite of test problems. The bi-
nary versions had already been prepared for experimentation with bi-
nary genetic algorithms, so importing them into a binary particle swarm
program was straightforward. A population size of 20 was used for all
tests. In all cases the global optimum was at (0.0)n. The algebraic forms of
the functions are given in Table 7.1.

The binary particle swarm converged quickly on f1, also known as
the sphere function, encoded as a 30-dimensional bitstring. The best
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Table 7.1 Functions used by De Jong to test various aspects of optimization algorithms.

Function Dimension
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solution the particle swarm found was 0.000002 away from the “perfect”
result of 0.0, which it found on 10 of the 20 trials. It is presumed that the
difference between the found optimum and the target is due to impreci-
sion in the binary encoding rather than a failure of the algorithm to hit
the target.

On the second function, De Jong’s f 2, in 24 dimensions, the particle
swarm was able to attain a best value of 0.000068, compared to a target of
0.0; again, the difference is thought to derive from the precision of the
encoding rather than the algorithm. This function was encoded in a 24-
dimension bitstring. f2 was the hardest of the De Jong functions for the
particle swarm; the system converged on the best-known optimum 4
times in this set of 20. The hardness of the function might be explained
by the existence of very good local optima in regions that are distant in
Hamming space from the best-known optimum. For instance, the local
optimum

010111111101111000000111

returns a value of 0.000312, while the bitstring

110111101001110111011111

returns 0.000557, and

111000011001011001000001

returns 0.005439. The best-known optimum, returning 0.000068, was
found at

110111101110110111101001.

Thus bitstrings that are very different from one another, in terms of
Hamming distance, are all relatively good problem solutions. A search al-
gorithm that relies on hill climbing is unlikely to make the leap from a
locally optimal region to the global optimum. The function itself has
only one optimum and is hard because of the wide flat regions where
movement, whether it is toward or away from the optimum, likely re-
sults in no real change in fitness.

The third function, f3, is an integer function encoded in 50 dimen-
sions whose target value was attained easily on every trial. De Jong’s f4
function introduces Gaussian noise to the function, and performance
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was measured as an average over the entire population rather than a
population best. Finally, on f5 the algorithm was able to attain a best
value of 0.943665 on 20 out of 20 attempts, in 34 dimensions; we pre-
sume that to be the global optimum. The system converged rapidly on
this fitness peak every time.

The five functions were implemented in a single program, where the
only code changed from one test to another was the evaluation function.
All other aspects of the program, including parameter values, ran identi-
cally on the various functions. Thus it appeared from this preliminary re-
search that the binary particle swarm was flexible and robust.

No Free Lunch

There is some controversy in the field regarding the evaluation of an al-
gorithm, and maybe our claims that particle swarm optimization is
“powerful” or “effective” should be disregarded. Imagine two optimiza-
tion algorithms, one that searches by following the gradient, that is, a
hill-climbing algorithm, and another that searches by hopping ran-
domly around the landscape. Now imagine two problems, one, like the
sphere function, where the gradient leads inevitably to the optimum
and another that has many optimal regions, some better and some
worse, a landscape peppered with hills and mountain ranges.

Of course the descriptions have been contrived so that it will be obvi-
ous that each algorithm will perform better on one of the problems. It
would be foolish to search this way and that when there is a clear-cut
yellow brick road leading directly to Oz, and it is equally foolish to climb
the nearest hill in a rugged landscape. In this particular case it is clear
that the performance of the algorithm depends on the kind of problem.

In important and controversial papers in 1996 and 1997, David
Wolpert and William Macready formalized and generalized this observa-
tion, and their analysis has some surprising implications. Not only are
some algorithms relatively more or less appropriate for certain kinds of
problems—but averaged over all possible problems or cost functions, the
performance of all search algorithms is exactly the same. This includes
such things as random search; no algorithm is better, on average, than
blind guessing. Provocatively, Wolpert and Macready question whether
natural selection is an effective biological search strategy and suggest
that breed-the-worst might work as well as breed-the-best, except that no
one has ever conducted the experiment on the massively parallel scale of
natural evolution.
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The No Free Lunch (NFL) theorem, as Wolpert and Macready (1997)
called it, has generated considerable discussion among researchers.
Where previously there had been hope that some search strategy could
be found—and evolutionary computation researchers thought they had
it—that would be a best first-guess approach to any class of problems,
research has more recently focused on finding exactly what the strengths
and limitations of various search strategies are.

Some observers take NFL to mean that no optimization algorithm can
be any better than any other. Of course—that’s exactly what the theorem
says, isn’t it? Actually, the theorem says that no algorithm can be better
than any other averaged over all cost functions. This is a hugely important
condition.

What does it mean to average over all possible cost functions? Think
of it this way. We have an optimization problem: exiting a room in the
dark. Our special algorithm follows these steps (see Figure 7.3(a)):

� Move in a straight line until you reach a wall.

� Move along the wall until you feel an opening.

� Go through the opening.

There could easily be other algorithms, such as stumble-around-
waving-your-arms-in-the-air, ever-widening circles, and so on, and some
may help us exit better, some worse, than our own proprietary
algorithm.
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(a) (b)

Figure 7.3 Two different algorithms, equally good at different things: the stop-in-corners
algorithm is good for finding the way out of a room (a), and the find-corners
algorithm is good at getting stuck in the corner of a room (b).



Now imagine that a nefarious NFL advocate has an algorithm called
stop-in-corners, which he claims is just as good as our feel-for-opening
algorithm. His algorithm goes like this (see Figure 7.3(b)):

� Move in a straight line until you reach a wall.

� Move along the wall until you feel a corner.

� Stop there.

But (you argue) you don’t see how he will ever be able to exit a room
in the dark, behaving like that! His response is, of course I won’t leave the
room very well, but there are four corners to the room and only one door,
so I will on average be four times as successful at getting stuck in a corner
as you will be at exiting. But (you insist) you don’t want to get stuck in a
corner, you want to exit the room—and your method is better than his
for that. He admits that, but adds, my algorithm is as good as yours—av-
eraged over all problems.

The NFL theorem says that, in order to evaluate an algorithm, you
have to average it over all cost functions—and there can be very many of
those. Some might be

� Exit the room (which is your problem)

� Get stuck in a corner (his problem)

� Find the center

� Find a point halfway between the center and the edge

� Find a point a third of the way between the center and the edge (et
cetera, ad infinitum)

� Avoid walls altogether

and so on (another condition is that the search space must be finite, so
we don’t need to worry about problems from outside our domain). And
averaged over all of those, his algorithm and yours are equally good. You
might argue that you would never want to find the center or avoid walls
altogether, and that gets to the limitation of the No Free Lunch theorem.

While it may be true that no algorithm is better than any other, when
averaged over every absurd task that can possibly be imagined, it is per-
fectly possible that an algorithm would be better than others on the
kinds of tasks that we call “problems.” If anything, the NFL theorem
makes us think about what it is that we try to address with an
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optimization algorithm. Most things, even in a finite universe, do not
qualify as problems; this may be more a reflection of our way of thinking
than anything inherent in mathematics or in the world. Suffice it to say,
we do not feel uncomfortable saying that one algorithm, which can reli-
ably find global optima in real problem spaces, is better than another,
which can find answers to questions that no one would ever ask.

Multimodality

As part of Bill Spears’ investigations of the strengths and weaknesses of
genetic algorithms at the Naval Research Laboratory (NRL) and as a for-
mer graduate student of Ken De Jong’s, he has assembled and posted
online a collection of interesting test functions, problems that push
and pull and stretch an optimization algorithm to its limit to see what it
can and can’t do. If there is No Free Lunch, there might be at least Some
Kind of Lunch, and researchers want to know what their algorithm is
good at.

In collaboration with his NRL colleague Mitch Potter, Spears designed
and programmed a “multimodal random problem generator” (De Jong,
Potter, and Spears, 1997). The rationale was this: obviously, if a re-
searcher precision-tunes an optimization algorithm to work on one
problem, there is a danger that it will fail on everything else. There was a
need for a way to come up with different problems, but with some con-
trollable characteristics. The random problem generator offers a way to
test an algorithm on novel problems, controlling some aspects of the
problems that are expected to affect performance.

Multimodality, in this context, means that a problem has more than
one solution or global optimum, conceived as peaks on the fitness land-
scape. For instance, the problem x2 = 25 is multimodal; it has two opti-
mal solutions: x = +5 and x = −5. Since a genetic algorithm is often im-
plemented using binary encoding, Spears wrote the program to create
multimodal binary problems for the GA to solve. The concept is very
straightforward. The researcher defines the dimensionality of the prob-
lem, that is, the length of the bitstring, and how many modes or peaks
are desired, and the program creates that number of bitstrings, made of
random sequences of zeroes and ones. For instance, imagine a researcher
has specified that dimensionality N = 10 and multimodality or num-
ber of peaks P = 5. The problem generator might produce these
bitstrings:
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0100110111

1110010010

1101101010

0100000000

1110100101

With 10-dimensional bitstrings there are 210= 1,024 possible patterns of
bits. The goal for the optimizing algorithm is to find any one of the five
peaks that have been defined by the program. The Hamming distance be-
tween a bitstring and the nearest optimum provides a fitness evaluation;
that is, the more similar the bitstring is to one of the specified peaks, the
fitter it is. For 10-dimensional bitstrings, the farthest an individual can
be from a peak is 10 Hamming units, and of course a perfect match is a
distance of zero from one of the peaks.

Multimodal problems can be hard for genetic algorithms. Recall that
in GAs, chromosomes cross over in every generation; sections of success-
ful ones are joined together to produce the next generation’s population.
In a multimodal situation it is entirely possible that the parts that are
joined together come from chromosomes whose fitness derives from
their proximity to different optima. For instance, the chromosome
0100110110 is only one bit different from the first optimum defined
above, and 0110010010 is only one bit different from the second solu-
tion. Putting them together (we’ll cut it right in the middle to be fair)
could produce the child chromosome 0100110010, which is three bits
different from the first optimum (Hamming distance = 3) and three bits
different from the second—moving away from both of them. It is exactly
the multimodality of the problem that makes crossover ineffective in
this case.

GAs rely not only on recombination but on mutation (and some-
times other operators) for moving through a problem space. De Jong,
Potter, and Spears tried several modifications of GAs, including one
whose only operator was mutation—no crossover—in the multimodal
random problem generator, calling it GA-M. In this algorithm, each site
on each bitstring has a low probability of changing from a zero to a one
or vice versa, usually less than 0.01. At each generation the population is
evaluated, the fittest ones are selected, and mutation is applied to them.
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Through this process, generations tend to improve; this amounts to a
kind of stochastic hill climbing, as the more fit members of the popula-
tion are more likely to be retained and mutated.

De Jong, Potter, and Spears also tested a GA implemented with cross-
over only—no mutation—and found that this kind tended to flounder in
the early generations, but once the population started to converge on
one particular peak or another, improvement came relatively fast. These
crossover-only GAs, called GA-C, were very successful at finding one
of the optima, if you waited long enough. The same was true of tradi-
tional GAs with both crossover and mutation. Mutation-only GAs, on
the other hand, constantly improved, generation by generation, but if
the dimensionality of the problem was high, the chance of mutating in a
direction that led to improvement was very small and grew smaller as the
population approached the optimum. When bitstrings were short, mu-
tating chromosomes found optima quickly and efficiently, but “the curse
of dimensionality” made bigger problems too difficult for them. Though
they might have eventually found the global optimum, improvement
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problems. (From De Jong, Potter, and Spears, 1997.)



decelerated over time. Figure 7.4 shows the performance of the three
types of genetic algorithms.

In a follow-up to the De Jong et al. study, Kennedy and Spears (1998)
compared the binary particle swarm algorithm with the three variations
of GAs in the multimodal random problem generator. The study was
constructed in the form of an experiment, where three independent vari-
ables were manipulated—algorithm, dimensionality, and multimodal-
ity. There were four kinds of algorithms (GA-C, GA-M, GA, and PS), two
levels of dimensionality (20 and 100), and two levels of multimodality
(20 and 100). In each of the 16 conditions of the experiment, there were
20 observations, and the population size was 100. (This population size,
which is much bigger than a typical particle swarm, was used to make the
two paradigms commensurate.)

The dependent variable in Kennedy and Spears’ experiment was the
shape of the best-so-far performance curves over time. This is a multi-
variate measure, more complicated than those found in the typical ex-
periment, but easily computable with good statistical software. Each
condition in the experiment was run 20 times for 20,000 evaluations.
The mean best performance was calculated after 20 evaluations, and after
1,000, 2,000, and so on up to 20,000. It was possible to statistically
compare the shapes of the performance curves for all comparisons, the
question being not how well the various algorithms perform in the long
run over the dimensionality and multimodality conditions, but how
changes in their performance differed over time (see Figure 7.5).

GA-M performed best of all the algorithms in the early iterations of
every condition, but was quickly overtaken by all the others, except in
the “lite” condition, with short, 20-bit bitstrings and only 20 peaks.
When either dimension or modality or both increased, however, GA-M
suffered in its ability to find one of the peaks. The two GA variations with
crossover, that is GA-C and GA—which implemented both crossover and
mutation—started in every condition with a “dip” in performance, and
then rose toward an optimum, almost always finding one of the peaks by
the 20,000th evaluation.

The binary particle swarm performed the best in all conditions except
the “lite” one (where it was second best); it found a global optimum on
every trial in every condition and did it faster than the comparison algo-
rithms. This is not to say that it would have performed better than any
GA on these problems, and it may be possible to tune the parameters of a
GA to optimize its performance in a particular situation. On the other
hand, the significance of these results—which were statistically sig-
nificant in a multivariate analysis of variance (MANOVA)—should not
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be underestimated. The binary particle swarm performed very well in
the multimodal random problem generator, compared to some tough
competitors.

As mentioned above, the traditional genetic algorithm with crossover
often has trouble with multimodality: Crossover between parent chro-
mosomes that are near different optima can result in a child chromo-
some that is not near any optimum at all. The GA with mutation simply
didn’t have the power to search a large space for one of the target
bitstrings. For the binary particle swarm, though, multimodality just
means more places to roost, more targets to hit; the effect is just the op-
posite of the traditional GA with crossover. Subsections of a binary parti-
cle swarm population can converge on different optima, and particles
that are halfway between two optima have twice as many good direc-
tions to turn—not twice as many opportunities to fail.
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Minds as Parallel Constraint Satisfaction Networks
in Cultures

John J. Hopfield is a well-respected physicist. You might say that he is
a “silicon-based” researcher. In 1982, Hopfield published a paper that,
according to many neural network researchers, played a more impor-
tant role than any other single paper in reviving the field of neural net-
works. One of his developments was the definition of the energy of a
neural network: For a given state of the network, the energy is pro-
portional to the overall sum of the products of each pair of node activa-
tion values (Vi, Vj) and the connection weight associated with them (Tij),
that is,

E T V V Tij i j ii
i j i j

=− ≡
≠

∑0 5 0. ( )
, ;

He showed that his algorithm for adapting the node activations, given a
set of weights connecting the nodes, makes E decrease and that eventu-
ally a minimum E is obtained.

In the parallel constraint satisfaction paradigm as typically published
in psychological journals, nodes in a Hopfield network represent ele-
ments, often propositions or concepts. When some subset of the nodes’
states is clamped on, the network seeks a pattern of states of the other
nodes that maximizes harmony or coherence or minimizes energy (E in
the above equation).

Both binary- and continuous-valued Hopfield networks have been
studied, but here we focus on the binary version. Nodes exist in either
the active or the inactive state, represented as one and zero, and are
linked by bidirectional, symmetrical connections Tij. The usefulness of
the network is seen when only part of an input pattern, or a noisy pat-
tern, is introduced; the network outputs the complete pattern that best
fits with the clamped pattern.

In the original Hopfield paradigm the weights between nodes are de-
rived from data, but in most “cognitive” versions the weights are derived
from the assumptions about the connections among attitudes, beliefs, or
behaviors. There is usually some rationale for the choice of weight val-
ues, but these vary from one implementation to another. The common-
sense fact is that some beliefs are related and others are not, they can be
related positively or negatively, and some pairs of beliefs are more
strongly related than others. Theorists instantiate this fact into their
models with varying degrees of success and credibility.
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A binary particle swarm was set up to optimize the simple network
structure described by Edwin Hutchins (1995) and described in Chapter
5. A network is composed of six nodes, where the three left nodes are pos-
itively connected with one another, the three right nodes are positively
connected, and there are negative connections between the right- and
left-side nodes. The network is in its optimal state either when the left
nodes are active and the right nodes are inactive or when the right nodes
are active and the left ones are inactive; in binary terms this means that
000111 and 111000 are globally optimal patterns of node activation.
These two states correspond to two interpretations of a pattern of stim-
uli; Hutchins introduces the model with a story of a shipwreck, where
some lights in the distance were interpreted differently by various peo-
ple, resulting in a collision.

As we described earlier, Hutchins had programmed a group of four
networks with varying numbers of connections between them to dem-
onstrate the effects of communication within a group. Somewhat simi-
larly, in the particle swarm each individual is represented as a network,
and their interactions allow them to find the optimal activation pat-
terns. When the paradigm was run with 20 individuals, the globally opti-
mal patterns were found every time by all members of the population.
We admit it is not an especially difficult optimization problem, as there
are only 26, or 64, possible network states, with two equally good global
optima. The binary particle swarm has been implemented on much
larger and more complicated constraint satisfaction networks, with ex-
cellent results.

In this example it is important to note the formation of cultures in
the population, as seen in Figure 7.6. In the lbest particle swarm, individ-
uals interact with their adjacent neighbors; as a result of this, neighbors
become more similar to one another over time, and patterns spread from
neighbor to neighbor. As commonly happens, different sections of the
population settle on different optima. This seems to be a very good
model of the process by which polarization forms in a society. Given the
facts as they are known, both conclusions are correct: both result in pat-
terns where the nodes with positive inputs are activated and nodes with
negative inputs are inactive. Through discussing the issues among them-
selves, individuals not only come to agree with their neighbors but also
arrive at conclusions that fit together optimally. Social interaction results
in cultural convergence on patterns of beliefs, and culture results in rela-
tively good cognitive performance.

We have described a version of particle swarm optimization that
is useful when binary variables (1 or 0, true or false, etc.) are used. It is
a powerful paradigm that is simple to use, easy to understand, and
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converges rapidly, even for high-dimensional, multimodal problems. In
the real world, however, we usually must deal with continuous numbers.
In the next section we show how particle swarm optimization works in
continuous numbers, maintaining its simplicity, power, and ease of use.

The Particle Swarm in Continuous Numbers

The progression of ideas has been from a purely qualitative social optimi-
zation algorithm—the Adaptive Culture Model—to a model that can be
interpreted as qualitative or quantitative—the binary particle swarm.
In this chapter we arrive at the “real” particle swarm, which is a truly
numeric optimization algorithm (Kennedy and Eberhart, 1995; Eber-
hart and Kennedy, 1995). The particle swarm algorithm searches for
optima in the infinite search space that is often symbolized as Rn—the n-
dimensional space of real numbers. (Actually, of course, it searches in
computable space. And we are using PCs, so caveats related to things
such as round-off errors are valid.)

The Particle Swarm in Real-Number Space

In real-number space, the parameters of a function can be conceptualized
as a point. If we think of a psychological system as a kind of information-
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processing function, then any measure such as the psychotherapist’s
MMPI, a public opinion survey questionnaire, a risk-seeking inventory, a
management consultant’s Myers-Briggs, or the “What’s Your Love-Q?” in
the back of Cosmo will produce real numbers that can be interpreted as a
point in a psychological space. In engineering applications it is custom-
ary to think of system states as points in multidimensional space. The
multidimensional space is referred to by various names, depending on
the situation. Names include state space, phase space, and hyperspace.

It is a small philosophical leap to suggest that multiple individuals
can be plotted within a single set of coordinates, where the measures on a
number of individuals will produce a population of points (see Figure
7.7). Being near one another in the space means that individuals are sim-
ilar in the relevant measures; if the test is valid, there may be real similari-
ties between the individuals. If various vectors of parameters to a mathe-
matical function are being tested, then we would expect points in the
same region to have correlated function outputs and correlated fitness.

In this view of individual minds as points in a space, change over time
is represented as movement of the points, now truly particles. Forgetting
and learning might be seen as cognitive decrease and increase on some
dimensions, attitude changes are seen as movements between the nega-
tive and positive ends of an axis, and emotion and mood changes of nu-
merous individuals can be plotted conceptually in a coordinate system.
As multiple individuals exist within the same high-dimensional frame-
work, the coordinate system contains a number of moving particles. One
insight from social psychology is that these points will tend to move to-
ward one another, to influence one another, as individuals seek agree-
ment with their neighbors.

Another insight is that the space in which the particles move is heter-
ogeneous with respect to evaluation: some regions are better than others.
This is of course true for functions and systems as well as psychology;
some points in the parameter space result in greater fitness than others. A
vector of cognitive, mathematical or engineering parameters can be eval-
uated, and it is presumed that there exists some kind of preference or at-
traction for better regions of the space.

The position of a particle i is assigned the algebraic vector symbol
r
xi .

Naturally there can be any number of particles, and each vector can be of
any dimension. Change of position of a particle could be called ∆

r
xi , but

in order to simplify the notation we call it
r
vi , for velocity. Velocity is a

vector of numbers that are added to the position coordinates in order to
move the particle from one time step to another:

r r r
x t x t v ti i i( ) ( ) ( )= − +1
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The question then is to define rules that move the particle in the desired
way, in a way that optimally allocates trials while searching for optima.
The particle swarm algorithm samples the search space by modifying the
velocity term.

Social-psychological theory suggests that individuals moving
through a sociocognitive space should be influenced by their own previ-
ous behavior and by the successes of their neighbors. These neighbors
are not necessarily individuals who are near them in the parameter
space, but rather ones that are near them in a topological space that de-
fines the sociometric structure of the population. Who influences you is
defined by your connections in the social network, not by positions in a
belief space—there may be someone who agrees closely with you about
everything, whom you have never met (and whom no one you know has
ever met—and no one they know . . . ), and who consequently does not
influence you. Thus in the continuous-number particle swarm, as in the
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Figure 7.7 Particles in a real-number space are connected to topological neighbors, and
neighbors tend to cluster in the same regions of the search space.



binary version, a neighborhood is defined for each individual, based on
the position in the topological population array. The population array is
commonly implemented as a ring structure, with the last member a
“next-door” neighbor to the first member.

As the system is dynamic, each individual is presumed to be mov-
ing—this should really be called changing—at all times: this is the
Lewinian concept of locomotion. The direction of movement is a func-
tion of the current position and velocity, the location of the individual’s
previous best success, and the best position found by any member of the
neighborhood:

r r r r r
x t f x t v t p pi i i i g( ) ( ( ), ( ), , )= − −1 1

Further, just as in the binary version, change (which is now defined in
terms of velocity instead of probability) is a function of the difference be-
tween the individual’s previous best and current positions and the dif-
ference between the neighborhood’s best and the individual’s current
position. In fact the formula for changing the velocity is identical to the
one used to adjust probabilities in the binary version, except that now
variables are continuous, and what is adjusted is the particle’s velocity
and position in Rn:

r r r r r r

r
v t v t p x t p x ti i i i g i( ) ( ) ( ( )) ( ( ))= − + − − + − −1 1 11 2ϕ ϕ

x t x t v ti i i( ) ( ) ( )= − +






r r

1

where, as before, the ϕ variables are random numbers defined by an up-
per limit. The effect of this is that the particle cycles unevenly around a
point defined as a weighted average of the two “bests”:

ϕ ϕ

ϕ ϕ
i i gp p
r r
+

+
2

1 2

Because of the random numbers, the exact location of this point changes
on every iteration.

For reasons that will be discussed in the next chapter, the system as
given thus far has a tendency to explode as oscillations become wider
and wider, unless some method is applied for damping the velocity. The
usual method for preventing explosion is simply to define a parameter
Vmax and prevent the velocity from exceeding it on each dimension d for
individual i:

if then

else if then

v V v V

v V v V
id id

id id

> =

<− =−
max max

max max
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The effect of this is to allow particles to oscillate within bounds, al-
though with no tendency for convergence or collapse of the swarm to-
ward a point. Even without converging, the swarm’s oscillations do find
improved points in the optimal region. One approach to controlling the
search is the implementation of an “inertia weight.” Another method,
developed by French mathematician Maurice Clerc, involves a system of
“constriction coefficients” applied to various terms of the formula. These
approaches are discussed in the next chapter.

Pseudocode for Particle Swarm Optimization in
Continuous Numbers

In sum, the particle swarm algorithm in the space of real numbers is al-
most identical to the binary one, except that

r
vi defines increments of

movement rather than a probability threshold, as illustrated by the fol-
lowing pseudocode:

Loop
For i = 1 to number of individuals

if G x G pi i( ) ( )
r r
> then do //G() evaluates fitness

For d = 1 to dimensions
pid = xid //pid is best so far

Next d
End do

g = i //arbitrary
For j = indexes of neighbors

If G p G pj g( ) ( )
r r
> then g = j //g is index of best performer

in the neighborhood

Next j
For d = 1 to number of dimensions

v t v t p x t p x tid id id id gd id( ) ( ) ( ( )) ( ( ))= − + − − + − −1 1 11 2ϕ ϕ
v V Vid ∈ − +( , )max max

x t x t v tid id id( ) ( ) ( )= − +1
Next d

Next i
Until criterion
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Implementation Issues

One issue faced by anyone implementing the algorithm is how to initial-
ize the population. The positions and velocities of the particles are usu-
ally initialized randomly. The initial random positions are often distrib-
uted over the dynamic range of each dimension. The initial velocities are
often distributed randomly over [−Vmax, Vmax].

Another question faced at implementation time is, “How many parti-
cles should I use?” There is no pat answer to this question, but the experi-
ence of the authors indicates that choosing somewhere between 10 and
50 usually seems to work well. One of the authors [JK] tends to run with
populations at the lower end of this range, while another [RE] often pre-
fers higher numbers of population members. If you are used to work-
ing with traditional genetic algorithms, you should probably consider
starting with fewer particles than the number of GA chromosomes you
would use.

The particles’ flight patterns can be interesting to watch. We find that
you can sometimes learn something about the problem being modeled
or optimized by watching the particles fly. Pictures of the swarm that are
snapshots in time, such as the figures of this book must be, cannot do
justice to the system’s dynamics. We therefore suggest that you watch
the flight patterns for yourself. You can do this by compiling and run-
ning the source code we provide on the book’s web site. But an even eas-
ier way is to go to the web site and run the Java applet. You can choose
from a number of test functions and set the parameters for each
function.

An Example: Particle Swarm Optimization of Neural
Net Weights

The first real implementation of the particle swarm algorithm was a
model that bridges psychological theory and engineering applications.
The feedforward artificial neural network is a statistical model of cogni-
tion that inputs vectors of independent variables and outputs estimates
of vectors of dependent variables. The network is structured as a set of
weights, usually arranged in layers, and the optimization problem is to
find values for the weights that make the mapping with minimal error. It
is beyond the scope of this book to go into detail about neural networks;
you are encouraged to refer to books that contain basic information on
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neural networks and their applications such as Eberhart, Simpson, and
Dobbins (1996) or Reed and Marks (1999).

Normally, feedforward networks are optimized through some sort of
gradient descent algorithm, traditionally using backpropagation of error.
The cognitivistic interpretation is that the individual makes judgments
about stimuli through adjustments based on personal experience. In
contrast to this, the particle swarm view places the individual in a social-
psychological context. The individual makes adjustments by integrating
individual experience with the discoveries of others. Cognition in this
view is a collaborative enterprise, occurring in a transpersonal milieu
within which the individual is only a part.

Besides its ability to provide insights to the understanding of cogni-
tion, the feedforward neural network is also an extremely useful data-
analysis tool, comprising a superset of which regression analysis is a
member. These networks are often referred to as “universal function
approximators” because they are able to mimic any kind of mathemati-
cal function. Networks excel in matters of estimation, for instance, when
it is desirable to make a prediction from some data; their shortcoming for
statistical use is related to difficulty in explaining a result, once it is ob-
tained. This shortcoming has two levels to it: not only is there a human
relations problem in trying to understand or explain how an estimate
was produced by passing data through dozens or hundreds of weighted
connections, but also it is so far not known how to make statistical infer-
ences to a population from a network, that is, how to estimate the degree
of confidence in a result.

A classic test problem for the feedforward network is the “XOR prob-
lem.” The exclusive-or (abbreviated XOR) logical operation is true if one
and only one argument is true, unlike the usual Boolean OR operator,
which is true if any argument is true. This little logic puzzle accepts a pair
of binary inputs, and outputs a 0 if they are the same, 1 if they are differ-
ent from one another. The network is trained with a data set of inputs
and outputs, shown in Table 7.2.

The feedforward neural network has been widely studied as a kind of
model of human cognition, especially categorization, as it is able to sim-
ulate the human knack for lumping things together that do not seem to
belong together. Linear separability exists when some weighted additive
combination of properties can be used to classify examples, in other
words, when things are graphed by their attributes and a straight line or
surface can be drawn that perfectly separates the two kinds of things. Hu-
man categorization often—perhaps usually—is not linearly separable.
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The XOR problem exemplifies this, as it is not linearly separable (see Fig-
ure 7.8).

Besides the two input and one output nodes required, it has been es-
tablished that at least two “hidden nodes” are required for this problem,
unless the inputs are to be directly connected to the outputs. Thus for
purposes of illustration, we will use a network with two hidden nodes
(see Figure 7.9). Weighted connections link each input node to each hid-
den node and each hidden node to the output node. Each hidden and
output node also has a bias weight associated with it. Thus this network
requires optimization of nine weights. The particles, in other words,
move in nine-dimensional space, looking for patterns of weight values
that effectively output the correct value for a given pair of inputs.

A population of 20 individuals is defined, where each individual
starts the trial as a random vector of weights; neighborhoods are parsi-
moniously defined as each individual’s adjacent array neighbors (bor-
rowing from cellular automaton methodology). Inputs are entered into
the network, and the mean squared difference between the obtained and
observed values is calculated. The objective of course is to minimize this
error measure. Error is computed for each member of the population;
each particle compares its current position to its previous best and its
neighbors’ previous best and adjusts its velocity toward the points where
those values were found. Eventually some member of the population will
have found a pattern of weights that meets the criterion, for example, av-
erage sum-squared error < 0.02. One early study (Kennedy, 1997) found
the network weights could be optimized to the criterion, with Vmax = 2
and ϕtotal= 4, in a median of 70 iterations, using a population of 20 parti-
cles. We note that some recent adaptations of the particle swarm algo-
rithm permit faster optimization of neural net weights.
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Table 7.2 The XOR function outputs a
zero when the inputs match
and a one if they are different
from one another.

Inputs Output

1 1 0

1 0 1

0 1 1

0 0 0
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(0,0) (1,0)

(0,1) (1,1)

Figure 7.8 The XOR problem is not linearly separable. No line can be drawn such that the
corners (0,0) and (1,1) are on one side of it and the corners (0,1) and (1,0) are on the
other side.

Inputs Hidden nodes Output

Bias

Bias

Bias

Figure 7.9 The XOR feedforward network takes a pair of inputs. It outputs 1 if the two inputs
are different and 0 if they are the same.



A Real-World Application

The XOR network example has been used to ease you into the subject of
neural networks. The first real-world application of particle swarm opti-
mization to a neural network was one designed to provide an estimate of
the state of charge of a pack of batteries in an electric vehicle. The net-
work originally had eight inputs, five hidden nodes, and one output.
Eventually, the network was simplified to five inputs, three hidden
nodes, and one output. A team that included one of the authors [RE] was
training feedforward neural networks using the backpropagation algo-
rithm. Although the networks were fairly small, there were approxi-
mately 2,500 data sets being used to train them, and each training ses-
sion using backpropagation required approximately 3.5 hours.

It was a simple matter to delete the backpropagation training algo-
rithm and substitute particle swarm optimization. The results were dra-
matic. Training time required to achieve the same sum-squared error
value dropped from about 3.5 hours to about 2.2 minutes. This was the
first time we got a glimpse of how powerful the particle swarm algorithm
is when applied to real-world optimization problems. For a more com-
plete description of this application, see Eberhart, Simpson, and Dobbins
(1996). Although the training of the network did not depend on particle
swarm optimization to be successful, it became obvious that it was a sub-
ject worthy of further investigation.

Subsequently, many neural networks have been trained using particle
swarm optimization. In these and other applications, some “rules of
thumb” have evolved. The first regards the selection of Vmax. The stan-
dard sigmoid function used in feedforward networks essentially saturates
with inputs of about +/− 10. Therefore, we often consider the dynamic
range of weights to be something like 20. It seems reasonable that we
limit the maximum velocity to some percentage of the dynamic range. A
Vmax of 2.0 has thus been found to be successful for training feedforward
networks with sigmoid activation functions. The maximum acceleration
constant ϕtotal has generally been set to 4.0 for these applications. (Other
ways to limit velocity, such as the damping weight and constriction fac-
tor approaches, are described in Chapter 8.)

The second rule of thumb regards the setting of the neighborhood
size. Although no theoretical foundation exists, it has been found that a
neighborhood size of about 10–20 percent of the population often works
well. Thus, when the population comprises 40 particles, we often choose
a neighborhood size of two or three adjacent neighbors on both sides of
each particle, for a neighborhood size of 5 or 7, including i.
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As will be seen in Chapter 9 on applications of particle swarms to en-
gineering problems, the particle swarm paradigm has been used on very
large networks. Further, in an exciting recent development, the particle
swarm can actually be used to design the neural net; nodes can be simpli-
fied and deleted from the network at the same time that optimal values
for weights are being found.

The training (weight adjustment) of multilayer artificial neural net-
works with nonlinear transfer functions was previously thought to be
intractable. Though the techniques such as backpropagation of error
developed for optimizing weights are known to be imperfect—they are
susceptible to local optima—the methods have been considered good
enough for most uses. In fact, some tricks (we are thinking here of Scott
Falman’s “quickprop” algorithm) have been found that propitiate the
discovery of robust solutions.

As has been seen, there exists a largish library of functions for the test-
ing of the strengths and weaknesses of optimization algorithms, in-
cluding the De Jong test suite and other functions that have been
collected over the years. Any new optimization algorithm, including
the particle swarm, has to prove itself by triumphing over these diaboli-
cal mathematical minefields, which are contrived with multiple optima,
corrugation, serration, cavities and bumps, high dimensionality, in-
feasible regions, epistasis, dynamic distortions, and deception (this latter
is a term for problems where the gradient would move a hill climber
away from the global optimum). In our studies and those of others,
the particle swarm algorithms have been successful at solving these
problems.

The Hybrid Particle Swarm

Now that we’ve shown you how binary and real-valued particle swarms
work, we’d like to briefly mention one of the current subjects of our re-
search: hybrid particle swarms. As you might guess, a hybrid swarm com-
bines binary and real-valued parameters in one search. In this section, we
give you a few ideas about why you might want to implement such a sys-
tem and how to do it.

Why would we want a hybrid algorithm? Perhaps we have a problem
with both continuous and binary variables; one example is an explana-
tion facility for a multiple-symptom diagnostic system. Let’s say you
have designed a neural-network-based diagnostic system to diagnose
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various abdominal diseases such as appendicitis and nonspecific abdom-
inal pain. Some of the symptoms such as body temperature and white
blood cell count are continuous variables and are best represented as real
numbers. Other inputs such as the answer to the question “Have you
had your appendix removed?” are binary values. So the mix of symp-
toms includes real and binary numbers. This poses no trouble when
training a neural network, whether you use a more traditional approach
such as backpropagation or our favorite approach using particle swarm
optimization.

It can be very difficult to explain how a network has made the deci-
sion it has. As the information is encoded in complex patterns of connec-
tion weights, usually linking several layers of nodes, it is rarely clear what
it is about a pattern of inputs that led to the diagnosis. It is possible to
construct an explanation facility that provides the physician with a tool to
understand how the network diagnoses. We typically use an evolution-
ary algorithm to determine two kinds of things. First, where are the
hypersurfaces that represent differential diagnoses? A differential diag-
nosis is that set of inputs (or a suite of such inputs) that lies on the bor-
derline between two diagnoses. In other words, the differential diagno-
ses are those sets of inputs for which the chances are equal that the
symptoms represent appendicitis and nonspecific abdominal pain, for
example. Second, what are quintessential examples of each diagnosis? In
other words, what combinations of inputs result in the maximum likeli-
hood of a disease such as appendicitis, according to the system?

Finding these sets of inputs is an example of an “inverse problem”
and is something that evolutionary algorithms are good at. So now the
question is how we do it. You’ve probably already figured out the answer.
We simply operate on (medical pun intended) binary inputs with the bi-
nary particle swarm algorithm and treat (oh no, another medical pun)
the continuous variables with the real-valued particle swarm.

We’ve done some preliminary tests, and the approach seems to work
well. We emphasize, however, that it is a subject of ongoing research and
development.

Science as Collaborative Search

The kind of decision processes instantiated in both the binary and real-
valued particle swarm algorithms exemplify a tendency that has been
widely regarded as a flaw or error when seen in human cognition. Karl
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Popper (1959) revolutionized scientific methodology by persuading us
that it is impossible to confirm a hypothesis—it is only possible to dis-
prove one. In his famous example, even if you have seen a million white
swans, and never in your life have you seen any other color, you still
have not conclusively proven that “all swans are white.” On the other
hand, a single black swan will disprove the statement. Modern scientific
methodology is based on the philosophy of null hypothesis testing, which
takes the tack of trying to prove the hypothesis that your research hy-
pothesis is in fact false, that is, you look for black swans. A hypothesis
cannot be tested unless it is falsifiable, and scientific proof relies on iden-
tifying what would happen if the hypothesis were indeed false and then
discovering if those events occur in an experimental situation.

While it is logically impossible to prove a hypothesis by accumulating
support for it, this is exactly the approach people normally take. Cogni-
tive psychologists call this tendency confirmation bias, the propensity to
irrationally seek confirmation for our beliefs, rather than falsification.
Klayman and Ha (1987) turned the issue around by pointing out that
falsification is not a good strategy for determining the truth or falsehood
of many hypotheses. They proposed that people tend to use a “positive
test strategy,” which is defined as testing cases that are expected to pro-
duce the hypothesized result, rather than testing cases that are intended
to fail to produce it. They suggested that people use the positive test strat-
egy (+testing) as a default heuristic. Further, they noted that “as an all-
purpose heuristic, +testing often serves the hypothesis tester well”
(p. 225).

Another way of looking at this is to compare truth and certainty. Most
of the time, people solving a problem don’t require knowledge that
something be established as true; they only require that it be established
to a level of certainty. As Karl Popper said in a recent interview with writer
John Horgan (1996), “We must distinguish between truth, which is ob-
jective and absolute, and certainty, which is subjective.” Adjusting your
hypotheses toward the consensus position and testing cases that con-
firm what you already believe are methods for increasing the sense of cer-
tainty. One thing that will undermine that sense is of course contradic-
tion by empirical facts; thus, “+testing” can only work if it is consistent
with phenomena in the world. While it is possible to build up certainty
in the absence of truth, the two are not independent—a fact that can be
capitalized on. Strategies that increase certainty may be likely to discover
truths as well.

In the model we have just described, individuals move toward their
previous successes; confirmation bias is fundamental to this strategy. But
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this is an elaborated, social confirmation bias: individuals seek to con-
firm not only their own hypotheses but also those of their neighbors.
Paradoxically, though we may be pointing out that people are not very
scientific in their thinking, especially insofar as science is supposed to be
mathematical and deductive, even scientists act like this. What Thomas
Kuhn (1970) calls a paradigm is a kind of confirmatory social convergence
of scientists in a theoretical decision space: “A paradigm is what the
members of a scientific community share, and conversely, a scientific
community consists of men who share a paradigm” (p. 176). The scien-
tists come to agreement on the use of terminology, acceptable research
methods, and other aspects of their work, and it is by intense communal
focus on a narrowly defined subject domain that the scientists are able to
fully exploit the learning that has preceded them. In the particle swarm
analogy, a Kuhnian “revolution” occurs when an individual finds a
better region of the search space and begins to attract its neighbors to-
ward it by becoming the best in the neighborhood.

In the 1960s and 1970s some evolutionary theorists began to propose
a correspondence between scientific and evolutionary processes that
continues to be reiterated (Campbell, 1965, 1974; Popper, 1972; Lorenz,
1973; Atmar, 1976; Dawkins, 1987). In this view, an individual member
of a species represents a hypothesis about the logical properties of the en-
vironment; the validity of the hypothesis is shown by the survival of the
individual. This inductive approach to learning leads to constantly im-
proving prediction of the important aspects of the environment. As in
previous discussion of the memetic view, our objection to the too-literal
acceptance of this view has to do with the difference between selection,
as it occurs in evolution, and change as it appears in learning. A scientist
often has a long career spanning the comings and goings of multiple par-
adigms. Hypotheses are ideas that are held in the minds of scientists,
who are able through constant refinement, through constant adapta-
tion—through learning—to improve the validity of their hypotheses.
The evolutionary perspective looks at the mutation and selection of
ideas per se, while the particle swarm view looks at the adaptive changes
of individuals who hold those ideas.

In informal human social search of a problem space, little effort is
typically made to carefully choose data, and both measurement and
sampling error are extremely plentiful—a glance through any textbook
in social or cognitive psychology will reveal dozens of “heuristics,” “bi-
ases,” and “errors” in human information processing. We propose that
many of the biases result from the “particle swarm” tendency of indi-
viduals to move toward self- and social confirmation of hypotheses—
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a tendency that, while logically invalid, in fact results in excellent
information-processing capabilities. We don’t agree that human think-
ing is faulty; we suggest on the contrary that formal logic is insufficient
to solve the kinds of problems that humans typically deal with.

Emergent Culture, Immergent Intelligence

After some number of iterations the members of the particle swarm pop-
ulations are found to have congregated around one or more of the op-
tima. In cases where multiple global optima are discovered by the popu-
lation, topological neighbors tend to cluster in the same regions of the
search space. These clusters extend beyond hard-coded neighborhoods.
When an individual finds a relatively optimal combination of elements,
it draws its adjacent neighbors toward itself; if the region is superior, the
neighbors’ evaluations will improve as well, and they will attract their
neighbors, and so on. If another subset of the population is attracted to a
different but equally good region of the problem space, then a natural
separation of groups is seen to emerge, each with its own pattern of coor-
dinates that may easily be thought of as norms or cultures. (“We used to
say ‘customs’ when we were talking about norms; now the norm, of
course, is to say ‘norm’ ” (Picker, 1997, p. 1233).)

When one solution is better than another, it usually ends up absorb-
ing the lesser pattern, though in some cases mediocre “compromise”
individuals on the borders of groups prevent the spreading of better solu-
tions through the population. The polarization of these artificial pop-
ulations into separate cultures appears very similar to the convergence
of human subpopulations on diverse norms of attitude, behavior, and
cognition. Interaction results in conformity or convergence on patterns
that are similar for proximal individuals and may be different between
groups.

The formation of cultures in particle swarm trials is not specified in
the computer programs and is not readily predictable from the defini-
tions of interactions in the programs. It thus would be considered an
emergent effect, though we grant that “emergence” might actually be a
term that represents the simplicity of our own minds; a property not of
the system but of our failure to understand it.

There is another important feature of the behavior of a particle
swarm, or of a human society, and that is the immergence of cognitive
adaptation of individuals as a result of the top-down effect of emergent
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culture. Participants in the system become intelligent, acquiring what-
ever qualities have been defined as “good” in the fitness function, as a re-
sult of the cultural optimization enabled by local interactions (see Camp-
bell, 1990).

The cultural convergence of individuals in the search space allows the
intensive exploitation of optimal regions. Relatively good combinations
of elements, which in human society may be beliefs, behaviors, problem-
solving steps, opinions, and so on, receive focused attention. As a result,
the performances of individuals are improved. Culture, the emergent re-
sult of bottom-up processes, enables top-down immergent mental phe-
nomena, optimizing the cognitive processes of individuals.

According to this perspective, minds and cultures are intimately in-
terwoven products of the interactions of individuals. There is no need to
postulate any great distinction between “internal” and “external” infor-
mation processing—it all works together. This is not to deny any individ-
ual’s conscious experience, or to say that any two individual minds are
identical to one another, and certainly is not to predict the spread of in-
sipid homogeneity through a society. Rather, the diversity of minds, of
explorations and explanations and exploitations, provides the raw mate-
rial for the emergence of culture and simultaneous immergence of intel-
ligent behavior.

Emulation of superior cognitive positions allows individuals to adapt
efficiently to complex cognitive landscapes. As an optimizer, the particle
swarm algorithm has been shown to perform very well on a wide range of
hard test functions. The obvious conclusion is that mutual collaborative
emulation can result in individual adaptation: intelligence. A popula-
tion of social entities evaluating, comparing, and imitating is able to zero
in on good solutions to complex problems.

Summary

The No Free Lunch theorem argues that no single algorithm can opti-
mize better than any other, if we compare them on all possible objective
functions. But it turns out that most “possible” functions are uninterest-
ing; they fail to qualify to be considered problems. Given the subset of
situations that researchers really do concern themselves with, it is possi-
ble to demonstrate that one algorithm has the advantage over another.
One way to find these differences is by trying the algorithms on sets of
problems that are known to be difficult, for different reasons; one may
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have very many local optima, for instance, while another features com-
plex interactions among variables. Several kinds of algorithms have
proven themselves superior in their ability to optimize various kinds of
difficult functions. Simulated annealing, various evolutionary computa-
tion methods, and now the particle swarm are among these.

The particle swarm algorithm imitates human social behavior. Indi-
viduals interact with one another while learning from their own experi-
ence, and gradually the population members move into better regions of
the problem space. The algorithm is extremely simple—it can be de-
scribed in one straightforward formula—but it is able to surmount
many of the obstacles that optimization problems commonly present. In
Chapter 8 we will see that the simple formula generates rich and com-
plex effects. Researchers have investigated numerous ways to manipulate
the search trajectories of the particles, and some of these ways have re-
sulted in improvements and insights.
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chapter
eight

Variations and Comparisons

In this chapter, we explore implementa-
tions of the particle swarm paradigm, look
at some variations of the algorithm, ask
whether the particle swarm is an evolution-
ary algorithm, and compare the performance
of various versions of particle swarms for
optimization. This chapter is more technical
than some of the others.

In the “Variations” section, we first take
apart the algorithm to see what makes it tick,
focusing on ways to facilitate convergence
and prevent “explosion” of the swarm. Ap-
proaches include limiting the maximum al-
lowed particle velocity, including Vmax, a con-
striction coefficient, and an inertia weight.
We look at the effects of varying neighbor-
hood topologies and some other ways to
modify the algorithm.

Are particle swarms really a kind of evolu-
tionary algorithm? We consider a new way
to look at evolution, focusing on the role
of self-organization, and look at the pro-
cesses of selection and self-organization in
the context of the particle swarm. We then
examine crossover and mutation processes
and population topology as they relate to
particle swarms.

Finally we compare versions of the parti-
cle swarm paradigm. Included are experi-
ments in which selection is added to the par-
ticle swarm paradigm, comparisons of the
inertia weight and constriction factor ap-
proaches, and a test in which particle swarms
are initialized asymmetrically with respect to
the global optimum. �
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Variations of the Particle Swarm Paradigm

The particle swarm paradigm has undergone many tweaks and modifica-
tions since its discovery in 1994. Various researchers have analyzed it
and experimented with it, including mathematicians, engineers, physi-
cists, biochemists, and psychologists. In the process, a certain body of
lore has emerged to provide hypotheses for research as well as guidelines
for applications. The lore itself evolves as the algorithm is better under-
stood, as theorists debate the nature of adaptive systems, and as pro-
grammers’ serendipitous trials and errors result in surprising improve-
ments. This section addresses some of the major directions of current
investigations into the functioning of the algorithm.

Parameter Selection

In the particle swarm there are several explicit parameters whose values
can be adjusted to produce variations in the way the algorithm searches
the problem space. The most important of these are Vmax and ϕ, which
are set at the beginning of a trial and remain constant throughout. As
will be seen, manipulation of these two parameters alone can cause sur-
prising changes in the system’s behavior.

Besides the explicit parameters, the system can be thought to contain
a number of implicit ones, if we consider the terms of the formulas to be
weighted, in the original version, by 1.0. We can change these implicit
parameters, of course; for instance, we could eliminate the effect of a
term by giving it a weight of 0.0 or increase its effect with a larger
weight. In these ways we can make subtle adjustments to the system that
can control important behaviors such as convergence and explosion. We
can optimize the algorithm’s performance by adjusting the importance
of various explicit and implicit parameters.

Vmax

The particle swarm algorithm proceeds by modifying the distance that
each particle moves on each dimension per iteration. Changes in the
velocity are stochastic, and an undesirable result of this is that the parti-
cle’s trajectory, uncontrolled, can expand into wider and wider cycles
through the problem space, eventually approaching infinity. Something
needs to be done to dampen the oscillations if the particle is to search
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usefully. The traditional method is to implement a system constant Vmax,
with the stipulation

if then

else if then

v V v V

v V v V
id id

id id

> =

<− =−
max max

max max

The effect of this parameter, and other constriction methods, can be
better understood by graphing the trajectory of a simplified particle
(Kennedy, 1998). In order to make comprehensible graphs we will sim-
plify the algorithm. If the particle is reduced to one dimension, and there
is only one of them, then the vector notation can be thrown out, and a
simple graph can display the particle’s trajectory. Further, the two terms
of the formula can be collapsed to one without losing any information,
where p represents the weighted average of the two bests:

p
p pi g

=
+

+

ϕ ϕ

ϕ ϕ
1 2

1 2

and

ϕ ϕ ϕ= +1 2

If the weighted best point p is made constant, rather than dynamic, then
the trajectory of the particle can be plotted and studied. The simplified
formula is

v v p x

x x v

= + ⋅ −

= +

ϕ ( )

where ϕ is (for now) a random number defined by its upper limit and
other variables are scalars.

Keep in mind that this does not represent a realistic situation. Our
population sizes are greater than one, and seldom does a particle operate
on only one dimension. Furthermore, the weighted best point p is typi-
cally dynamic, often exhibiting complex behavior. So this artificial situa-
tion is contrived only to give some insight into how particles fly.

Figure 8.1 demonstrates what happens if v is undamped, that is, with
no Vmax, with ϕ = 3.9 for 150 iterations. The trajectory of x is started in
these examples at x = 2 and p = 0, unless otherwise stated. Time moves
from left to right, and the vertical axis represents the x value of the parti-
cle at each point.

Because Figure 8.1 is plotted to the scale of the most extreme values,
the early cycles appear as a flat line. In fact the trajectory of x grows wider
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and wider with time, until by 150 iterations it is in the range of±109. Ob-
viously this is not a good way to search around the area of 0.0. (We will
consider causes of the explosion later in this chapter.)

Figure 8.2 shows a typical particle’s behavior when the velocity is lim-
ited to Vmax = 2.0. As can be seen, the explosion is prevented, and the
particle cycles within a range of approximately±4. The search is stochas-
tic and roughly quasi-periodic, with mean x ≈ p.

It can also be seen that the trajectory of the particle does not converge
toward p over time; instead, it cycles widely. If some cycles are seen to
collapse so that amplitude is decreased, the opposite trend will just as
likely be seen. All in all, this is not really a bad way to search around an
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Figure 8.1 If the particle swarm algorithm is run without limiting velocity, the particle quickly
explodes beyond the region of interest. (Note: Time runs from left to right for 150
iterations in the graphs in Figures 8.1 through 8.15.)
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Figure 8.2 Setting a Vmax limit of 2.0 on the particle’s velocity keeps it in a useful range. Note
that the particle does not converge on the optimum, which is 0.0 in this example.



optimal region, though we would prefer the search to narrow over time,
exploiting exploratory discoveries.

For comparison’s sake, if we reduce the value of Vmax to 0.2, dividing
by 10, in other words, we see that after dropping from its initial value of
2.0, x cycles around p = 0, but in narrower cycles, within a range of ap-
proximately ±0.30 (see Figure 8.3). If we were to continue the experi-
ment with all values of Vmax, we would see that it simply scales the ampli-
tude of x’s oscillation around p.

Thus the system parameter Vmax has the beneficial effect of prevent-
ing explosion and scales the exploration of the particle’s search. Unfortu-
nately the choice of a value for Vmax depends on some knowledge of the
problem. For instance, if a step larger than Vmax is required in order to es-
cape a local optimum, then the particle will be trapped. Further, in ap-
proaching an optimum it would be better to take smaller steps.

The Control Parameter

The control parameter ϕ, sometimes called the “acceleration constant,”
turns out to be very important in determining the type of trajectory the
particle travels. If ϕ = 0.0, it is obvious that v = v + 0, and as x = x + v it
simply increases linearly. If ϕ is set to a very small value, the trajectory of
x rises and falls slowly over time. Note that for all figures where Vmax is
implemented, it is set to Vmax = 2.0 unless otherwise stated. Figure 8.4
shows a particle with ϕ = 0.01, a very small value that lets the particle
wander before being pulled back by the accumulation of (p − x).

Increasing ϕ to 0.10 increases the frequency of the waveform (see Fig-
ure 8.5). Since ϕ is random, the waves are uneven. The amplitude of the
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Figure 8.3 Reducing the Vmax limit to 0.2 restrains the particle’s movements to a narrower range
around the optimum.



wave is great relative to Vmax ; the distances between pairs of succeeding
steps are small, though there are frequently series of Vmax-sized steps
along the sloping part of the curve.

Increasing ϕ to 1.0 increases the frequency of the wave even more,
and overall amplitude is decreased (see Figure 8.6).

As ϕ increases to 10, the waveform appears to oscillate randomly (see
Figure 8.7). Note that in this example there is a sequence near the begin-
ning (and in a couple of other places) where the wave vibrates sharply
back and forth, touching on the same points repeatedly. This occurs
where v is repeatedly limited to Vmax = 2.0, because its calculated value
has exceeded the limit.
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Figure 8.4 When ϕ is very small (ϕ = 0.01 in this example), the particle swings far from the
optimum (which is 0.0 in this example) before the accumulated (p − x) differences
pull it back.
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Figure 8.5 Increasing ϕ to 0.1 reduces the amplitude of the particle’s trajectory, which is still
approximately sinusoid around the optimum at 0.0.



Finally, when ϕ = 100, the particle’s trajectory is almost entirely vi-
bratory, dominated by steps of size Vmax (see Figure 8.8). Though values
mentioned here are specific to this particular example, in general the sys-
tem behaves in this way with any Vmax value.

In sum, in the stochastic particle swarm the system parameter ϕ con-
trols the strength of the effect of (p − x) on the velocity. When ϕ is very
low, the effect is weak, and the particle’s trajectory follows a wide path,
only being drawn back toward p by the pull of (p − x) after a large num-
ber of iterations. As ϕ increases, the oscillatory wavelength shortens, but
individual steps lengthen until they surpass the Vmax limit. After that
point, Vmax imposes a fixed step size on the particle trajectory. (Remem-
ber that ϕ = ϕ1 + ϕ2 and that we typically choose ϕ1= ϕ2 � 2.0.)
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Figure 8.7 When ϕ = 10, the stochastic particle moves at Vmax-sized steps much of the time.
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Figure 8.6 When ϕ = 1.0, the stochastic particle explores irregularly around the optimum.
Velocity is limited in these examples to Vmax = 2.0.



The Effect of ϕ Varying

It is not immediately obvious why the velocity requires damping. After
all, the (p − x) term should become increasingly negative as x becomes
positive and increasingly positive as x becomes negative—in either case
pulling the particle back toward the region of p. It turns out that the sys-
tem explodes because ϕ is varying due to being weighted with random
numbers. This explosion can occur with a random ϕ or with ϕ fluctu-
ating in almost any way. Some kind of damping is required to control it.

In order to explore this phenomenon, the examples in the preceding
sections can be compared to a similar model implemented without ran-
domness. Vmax and random numbers temper the formal trajectory of the
particle; if they are removed from the model the pure effect of ϕ is made
evident—and that effect is interesting to see. Figures 8.9 and 8.10 dem-
onstrate the trajectory of x, varying ϕ with no randomness. It can be
seen that the looping sine wave of the very small values of ϕ gives way to
complex waves of interwoven cyclicity at various values of ϕ and finally
reaches to infinity when ϕ ≥ 4.0. Note that explosion can also be caused
when ϕ exceeds 4.0.

Ender Ozcan and Chilukuri Mohan (1999) analyzed the nonrandom,
one-dimensional particle with constant p and concluded that “the parti-
cle does not ‘fly’ through the search space, but rather ‘surfs’ it on sine
waves” (1999, p. 1943). The underlying sine waves can be clearly seen in
Figures 8.9 and 8.10, crosscutting the literal trajectory of the particle
with each time step; according to Ozcan and Mohan, a stochastic particle
samples randomly from a sine wave and uses the underlying dynamic
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Figure 8.8 When ϕ is very high, for instance, 100 in this example, it hits the Vmax limit on nearly
every iteration. This ineffective trajectory searches the same points repeatedly.
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Figure 8.9 Particles “surfing the waves.” The trajectories of nonrandom particles cross the
underlying periodic attractor, the outline of which becomes visible with time.
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pattern to search for optima. They argue that the Vmax limit seems to help
the particle jump onto a wave. Maurice Clerc showed that the particle’s
trajectory (whether stochastic or not) goes into complex space when
time intervals are not integers, and that Ozcan and Mohan’s sine waves
are the “real” edges of a five-dimensional circular attractor, where two of
the dimensions comprise the imaginary parts of the complex numbers
and the other three dimensions are real.

When units of time are integers, as in the usual iterative computer
program, the trajectory of the particle crosses the underlying sine waves
at regular intervals. Clerc has determined the values of ϕ at which the tra-
jectory of the nonrandom particle corresponds exactly with the sine
waves; the consequence is that the particle’s trajectory becomes cyclic for
these values of ϕ.

Of course in the stochastic versions of the algorithm perfect periodic-
ity is prevented by the damping of cycles through Vmax as well as random
weighting of ϕ. Doug Hoskins has compared the effect of the random-
ness in the system to a child’s kicking in order to swing higher, and
showed that the system explodes even when the “random numbers” are
alternately selected from a set of two numbers. Effectively the random
sampling of various patterns adds energy to the system, causing it to os-
cillate in an increasingly widening path.

We have seen that the deterministic system is inherently cyclical and
complex—in both senses of the word. When 0 < ϕ < 4.0, a nonrandom
particle oscillates regularly around the target point p, with the path of
the trajectory varying characteristically with ϕ. Randomness, though,
has the effect of causing the system to explode in what has been called a
“drunkard’s walk.” A drunk staggering randomly on the sidewalk will
eventually wander into the street, especially if there is a building or
hedge along the side of the sidewalk. Explosion is more probable than
implosion simply because there is more area for expansion than contrac-
tion of the cycle.

Controlling the Explosion

The trajectory of the nonrandom particle is perfectly cyclic at a few spe-
cial values of ϕ, though generally it weaves back and forth with a charac-
teristic but nonrepeating series of values. When ϕ contains a random
component the particle trajectory expands toward infinity: the question
here is, what can be done to control the explosion?
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Clerc (Clerc and Kennedy, 2000) has studied the deterministic system
defined by

v v y

y v y
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where yt = p − xt. This system can be recast in terms of matrix algebra.
With this kind of representation
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is the matrix of the system. Thus, Pt+1 = MPt and, more generally,
Pt =ΜtP0; the system is completely defined by M.

Clerc has further produced a generalized particle swarm model, com-
prising a set of coefficients that can be adjusted to affect swarm behavior:
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where α, β, γ, δ, and η are coefficients that can be manipulated in order to
influence the particle trajectory.

Based on this system, he showed that a generalized particle swarm
system can be created in which explosion—and convergence as well—
can be controlled. There are, Clerc says, an infinite number of ways to ac-
complish this, and he has worked out several methods.

Simplest Constriction

Clerc’s simplest constriction coefficient, called Type 1″, requires applica-
tion of coefficients to both terms of the velocity formula. This constric-
tion method is described by the simplified system

v t v t p x t

x t x t v t

( ) ( ( ) ( ( )))

( ) ( ) ( )

= − + − −

= − +




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where ϕ must be greater than 4.0.
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A simple formula to compute the constriction coefficient is

χ
κ

ϕ ϕ ϕ
=

− − −

2

2 42

The variable κ can range in [0,1]; a value of 1.0 works fine, as does a value
of ϕ = 4.1.

Thus, if ϕ= 4.1 and κ = 1, then χ ≈ 0.73, simultaneously damping the
previous velocity term and the random ϕ. The Type 1″ constriction coef-
ficient is not defined for ϕ ≤ 4.0. As ϕ increases above 4.0, χ gets smaller;
for instance, if ϕ = 5, then χ ≈ 0.38, and the damping effect is even more
pronounced.

This constriction method results in particle convergence over time
(see Figure 8.11); that is, the amplitude of the individual particle’s oscilla-
tions decreases as it focuses on a previous best point. When κ = 1,
convergence is slow enough to allow thorough exploration before the
search converges.

Though this kind of particle converges to a point over time, another
factor in the paradigm prevents collapse of the trajectory—that is the fact
that the target “best” point is actually a stochastically weighted average
of two points, pi and pg. If those two points are near one another, then
the particle will cycle around a singular center, eventually converging on
the region of the two points (see Figure 8.12). On the other hand, if the
swarm is still exploring various optima, and a particle’s own previous
best is in a different region from the neighborhood’s previous best, that
is, pi is distant from pg, then the particle’s cycles will remain wide; it can-
not converge on a target that keeps moving around the search space (see
Figure 8.13). Thus a particle with a built-in tendency to converge will
continue to explore when the “social” conditions are not conformist.

As the members of a neighborhood begin to cluster in the same opti-
mal region, the particle trajectories will become narrower, intensely ex-
ploiting a focused region of the search space. If it should happen that an-
other member of the neighborhood discovers a new optimum, the
particle’s trajectory is free to expand again to search the region between
pi and the new pg. As can be seen in Figure 8.14, the Type 1″ particle has
no difficulty switching from exploratory mode to exploitative and back
again.

The Inertia Weight

Eberhart and Shi have published several papers describing research with
a version of the particle swarm algorithm that incorporates what is called
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Figure 8.11 Clerc’s Type 1” constriction coefficient causes the particle trajectory to converge
over time.
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Figure 8.12 If there are two bests and they are near one another, as in this case where both equal
2.0, the Type 1” particle’s trajectory converges. The amplitude of the particle’s path,
in other words, is scaled to the distance between the two best points.
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Figure 8.13 When there are two bests, for instance, the individual’s best and the neighborhood’s
best, the spread between them causes the Type 1” particle to continue searching in a
wide area, without converging.



an inertia weight (Shi and Eberhart, 1998). The inertia weight can be
conceptualized within Clerc’s generalized model as α = γ ; β = δ = η = 1,
or in simplified form:
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x t x t v t
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As a thought experiment—this is never done in practical applica-
tions—to help us understand the inertia weight, we can consider what
the system does when α = 0. In this extreme case, the particle trajectory
is defined as
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or, simplified:

x t x t p x t( ) ( ) ( ( ))= − + − −1 1ϕ

It is apparent in this case that if ϕ < 1.0, the particle simply approaches p
asymptotically without passing it. If ϕ > 1.0, the stochastic particle can
fly past p, but the absolute value of (p − x) decreases over time if ϕ < 2.0,
so the particle converges on p. If ϕ = 2.0, then on average the particle
moves to the other side of p, the same distance from it as when it began,
and cycles back without converging or expanding. ϕ > 2.0 can cause the
system to expand over time.

A nonzero inertia coefficient introduces the preference for the parti-
cle to continue moving in the same direction it was going on the previ-
ous iteration. If the absolute value of v increases on average over time,
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Figure 8.14 If a new best point is found after the particle has converged, the trajectory will be
rescaled to the new distance between the two bests. Here a new best is introduced
after 100 iterations.



then the particle will oscillate out of bounds. As both α and ϕ affect the
change in v, it is possible to prevent explosion by selecting values of these
parameters that will control the convergence or de-convergence of the
particle system.

Clerc’s generalized constriction model suggests that the inertia-
weighted particle swarm will eventually converge when 0<ϕ≤ 2α+ 2−
ε and 0 ≤ α < 1. Using these convergence criteria it is possible to
parameterize the inertia-weighted particle swarm so that no Vmax is
necessary for convergence, though it may still turn out to be useful as a
problem-solving heuristic.

Eberhart and Shi usually implement the inertia weight so that it de-
creases over time, typically from approximately 0.9 to 0.4, with ϕ = 4.0.
Vmax is set as a function of the dynamic range of the variables. The effect
of the time-decreasing coefficient is to narrow the search, to induce a
shift from an exploratory to an exploitative mode.

Neither the inertia coefficient with appropriate weight values nor the
constricted models require any Vmax parameter; convergence is an innate
consequence of the mathematical properties of the algorithm. The con-
stricted model has the advantage that it can recover from the shift to ex-
ploitation; the time-decreasing inertia weight is not as able to recover,
but with a well-chosen “cooling schedule” the contraction of the parti-
cle search can perform effectively. Experience with the particle swarm al-
gorithm indicates that inclusion of a Vmax when using a constriction fac-
tor may be a good idea and costs very little computationally.

Particle Interactions

The effectiveness of the particle swarm algorithm comes from the inter-
actions of particles with their neighbors. As one particle discovers a local
optimum, it becomes the “best” in its neighbors’ neighborhoods, and
they too are attracted to the optimal region. As they move toward the
new optimum, their search may uncover new regions that are even
better, and they may end up attracting the first particle toward their best
positions, and so on.

Figure 8.15 shows two particles searching for the minimum of the
one-dimensional sphere function:

f x x( )= 2

Since this is only one dimension, it can be plotted like previous exam-
ples. A simple constriction coefficient of approximately 0.7298 was
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implemented, with ϕ = 4.1. One particle starts out at +20 and the other
at−20, with initial velocities of 0.0. As can be seen, in this trial the parti-
cles’ trajectories weave around one another and quickly converge on the
optimum x = 0.0. Naturally, every trial follows a different path; in this
example, the solid-lined particle is initially attracted upward toward the
dotted-lined one’s better value, and then both race down toward the
optimum.

In a typical particle swarm, neighborhood size can vary from three
(the particle and its two neighbors) to the population size (in which case
there is just one neighborhood).

Neighborhood Topology

Human social interaction occurs in the context of a group or social struc-
ture, often depicted by social scientists as a network of connections be-
tween pairs of individuals. Research since the 1940s has shown that com-
munication within a group, and ultimately the group’s performance, is
affected by the structure of the social network. Particle swarm research
has relied on several simple social structures, in particular the interaction
of individuals with their immediate adjacent neighbors and interaction
of all individuals with the best-performing individual in the population,
though other social structures are possible. It has been shown that iso-
lated particle swarm individuals perform very poorly: the interactions be-
tween particles make the algorithm work. Is there a best social structure
for particles? If the analogy between particle swarms and human popula-
tions holds, then the answer to this question also has relevance for hu-
man organizations.
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Figure 8.15 Two particles interact to optimize the sphere function.



Sociometrics of the Particle Swarm

Particles have historically been studied in two general types of neigh-
borhoods, called gbest and lbest. In the gbest neighborhood every indi-
vidual is attracted to the best solution found by any member of the popu-
lation. This structure then is equivalent to a fully connected social
network; every individual is able to compare the performances of every
other member of the population, imitating the very best. In the lbest net-
work each individual is affected by the best performance of its k immedi-
ate neighbors in the topological population—a regular ring lattice. In
one common lbest case, k = 2, the individual is affected by only its
immediately adjacent neighbors.

The choice of social structures used has been frequently a matter of
individual artistry, with some lore and little data to help the researcher
choose a strategy. The lore suggests that gbest populations tend to con-
verge more rapidly on optima than lbest populations, when they con-
verge, but are also more susceptible to convergence on local optima.

An experiment was conducted where populations of 20 individuals
were configured into Circles (lbest), where each individual is connected
to its k immediate neighbors only, and Wheels, where one individual is
connected to all others and they are connected to only that one (see Fig-
ure 8.16) (Kennedy, 1999). A gbest condition was also run.

In the Circle topology, parts of the population that are distant from
one another are also independent of one another, but neighbors are
closely connected. Thus one segment of the population might converge
on a local optimum, while another segment converges on a different op-
timum or keeps searching. Influence spreads from neighbor to neighbor
in this topology, until, if an optimum really is the best found by any part
of the population, it will eventually pull all the particles in. Circles were
defined with k = 2.

The Wheel topology, on the other hand, effectively isolates individ-
uals from one another, as all information has to be communicated
through the focal individual. This focal individual compares perfor-
mances of all individuals in the population and adjusts its trajectory to-
ward the very best of them. If adjustments result in improvement in the
focal individual’s performance, then that performance is eventually
communicated to the rest of the population. Thus the focal individual
serves as a kind of buffer or filter, slowing the speed of transmission of
good solutions through the population. (It should be noted that the
highly centralized Wheel is a common configuration for many business
and government organizations.) The buffering effect of the focal particle
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should prevent overly rapid convergence on local optima; it is a way to
preserve diversity of potential problem solutions, though it was expected
that it might entirely destroy the ability of the population to collaborate.

Standard test functions were taken from the literature of evolutionary
computation, including De Jong’s f1 sphere, Griewank, Rastrigin, and
Rosenbrock functions (see Table 8.1). All functions were implemented in
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(a) (b)

Figure 8.16 In the Circle topology (a), individuals interact with their k nearest neighbors (here k =
2). The Wheel (b) is like a lot of business and government organizations, where all
information is filtered through one central individual.

Table 8.1 Functions used in the experiment.
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30 dimensions, and the dependent variable used was best performance
on the test function after 1,000 iterations. All trials used populations
of 20 individuals, with ϕ= 4.1. Other factors were manipulated in the ex-
periment, though this chapter will report only on effects of sociometric
structure on functions.

Analysis of variance showed that the interaction of neighborhood
type with function was very strong, as it was seen that populations per-
formed better on three of the functions when they were in the Circle
rather than the Wheel configuration. Performance on the Rastrigin func-
tion, however, was just the opposite; Rastrigin populations performed
better in the Wheel topology.

Discussion of Sociometry Experiment

The sociometry of the particle population interacts significantly with
function; in other words, the optimal pattern of connectivity among in-
dividuals depends on the problem being solved. The study did not sys-
tematically manipulate aspects of test functions, but there are grounds
for speculation as to an explanation for the interaction. The sphere and
Rosenbrock functions are unimodal, with relatively smooth surfaces.
The Griewank function is depicted in two dimensions as a bumpy bowl-
like surface, a gradual overall slope toward the global optimum textured
with many slight local optima. The Rastrigin function, though, features
very many steep gradients toward local optima, with the depth of min-
ima gradually increasing toward the global optimum. Failure occurs
when the population clusters on a local optimum and is unable to leap
from that hill to a better one. One explanation for the current results—
Wheels performed better than Circles on Rastrigin only—might be that
the buffering effect of communicating through a “hub” slows the popu-
lation’s attraction toward the population best, preserving diversity and
preventing premature convergence on local optima. Thus a hypothesis
can be proposed for future testing: centralized Wheel topologies may
perform better by maintaining a diverse population on landscapes with
many local optima.

It had been thought that the Star or gbest structure would be better
for easier functions but that perhaps populations would “follow the
leader” into locally optimal solutions. In the present data, with 30-
dimensional mean-and-nasty test functions, Star performed very well. In
fact, on all functions the Star was either best or nearly so. (The main dis-
advantage of the gbest topology is that it is unable to explore multiple
optimal regions simultaneously.)
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Substituting Cluster Centers for Previous Bests

After a few iterations, particles in the particle swarm are seen to cluster in
one or several regions of the search space. These clusters indicate the
presence of optima, where individuals’ relatively good performances
have caused them to attract their neighbors, who in moving toward
the optimal regions improved their own performances, attracting their
neighbors, and so on. It seemed reasonable to investigate whether infor-
mation about the distribution of particles in the search space could be
exploited to improve particle trajectories.

If clusters in regions of the search space indicate the location of op-
tima, then perhaps the mean position of a clustered subpopulation will
be closer to the optimum than any of their individual positions. One of
the authors [JK] programmed a variation on the particle swarm that iden-
tified clusters of particles in the search space, and used the centers of
clusters as substitutes for the bests (Kennedy, 2000).

In a population of 20 particles, it was arbitrarily determined to use
five clusters. Clusters were found by the following steps:

1. Select C individuals as proposed cluster centers (evenly distributed
topologically in the population).

2. Calculate the distance of all N individuals from the centers.

3. Assign all N individuals to the nearest cluster center.

4. Calculate the mean point in vector space for each cluster.

5. Loop to step 2 until centers stabilize.

Steps 2–5 were iterated three times based on the observation that little
change typically occurred after three iterations. The cluster centers, iden-
tified on each iteration of the algorithm, could substitute for either the
individual best or neighborhood best, using i’s cluster center or g’s.

Experimental Design

Four variations were tried:

1. Both terms used i’s and g’s individual previous bests.

2. The individual best term was replaced with i’s cluster center.

3. The neighborhood best term was replaced with g’s cluster center.

4. Both best terms were replaced with cluster centers.
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The first of these versions is the traditional particle swarm. An lbest
sociometry was defined, with each neighborhood comprising the indi-
vidual and its two adjacent neighbors. For version 1, then,

r
pi and

r
pg were

simply the best points found by the individual and by its best-
performing neighbor (including itself).

In version 2, the individual’s previous best performance was stereo-
typed, that is, particle i was attracted toward its cluster’s average previous
best performance as well as the performance of the best neighbor.

Version 3, replacing
r
pg with g’s (the best neighbor’s) cluster center, at-

tracted particle i toward the center of g’s cluster, while i still gravitated to-
ward its own previous best performance. Social-psychologically this was
like conforming to a group norm rather than the actual behaviors of
group members.

The fourth version used cluster centers for both previous best terms.
Here the individual stereotyped both self and other, and information
from aggregate performance was used wholly.

First Experiment

Particle swarms were run in each of the four conditions on the four test
functions given above, plus Shaffer’s f6:
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with Clerc’s constriction factor and ϕ = 4.1. These versions implemented
the Vmax = Xmax parameterization described later in this chapter.
Rosenbrock, Rastrigin, Griewank, and sphere functions were imple-
mented in 30 dimensions, and f6, as usual, was run in 2 dimensions.
Each trial consisted of 1,000 iterations, and the dependent measure was
best fitness at that time. The experimental design was viewed in terms of
manipulation of two independent variables in two levels each, crossed
with a five-level function factor (the factor is called FUNC). The individ-
ual term (CLUSI) of the particle swarm formula could be the individual
particle’s best performance or a cluster center, as could the social influ-
ence term (CLUSG) (see Table 8.2).

The design is conceptually a 2 × 2 × 5 factorial experiment. Because
the test functions were not comparable, for instance, their ranges are
quite different, it was not reasonable to compare performance on them
using their unstandardized output. Instead, scores within each function
were standardized by subtracting the mean and dividing by the standard
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deviation. Using this method it is not possible to test for a main effect of
function; that is, we cannot identify if one function or another was
harder or easier overall. We can, however, compare the effects of the ex-
perimental manipulations across the various functions to see if using
cluster centers in either term works better with some problems than with
others.

The results are shown in Table 8.3. Analysis of variance on the results
found that several effects were significant. The largest effect, by far, was
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Table 8.2 Experimental design of the first
experiment.

individual-g cluster-g

individual-i 1 3

cluster-i 2 4

Table 8.3 The mean best performance for all functions,
for all experimental conditions, after 1,000
iterations (each entry represents 20 trials).

individual-g cluster-g

Sphere

individual-i
cluster-i

0.00000
0.00000

0.3178
0.0002

Rosenbrock

individual-i
cluster-i

39.6499
25.2236

51.2138
26.8999

Rastrigin

individual-i
cluster-i

58.8001
8.6626

9.2720
10.3473

Griewank

individual-i
cluster-i

0.0012
0.0151

2.0669
0.1580

Shaffer’s f6

individual-i
cluster-i

0.0000
0.0017

0.0020
0.0038



the main effect for CLUSI: results were significantly better when
r
pi was a

cluster center than when it was the individual particle’s previous best po-
sition. The second-largest effect, in terms of the amount of variance ex-
plained, was CLUSG’s main effect; performance was significantly worse
when

r
pg was a cluster center. CLUSG interacted with FUNC, with the

effect being that cluster-g conditions did worse than individual-g on
all functions except Rastrigin, where they performed better than the av-
erage; this effect seems to be due largely to the poor performance of
the standard version 1 particle swarm on that function. CLUSI also in-
teracted significantly with FUNC; while it was better overall, it was
not better than the traditional version on either Griewank or f6 func-
tions. CLUSI and CLUSG interacted significantly; while performance was
better when

r
pi was a cluster center, algorithms with individual-i per-

formed especially badly when
r
pg was a cluster center. Finally, the sig-

nificant three-way interaction suggests that, in some sense, everything
depends on everything else. While

r
pi cluster centers may result in better

problem solutions in general, the improvement to be expected is moder-
ated by whether

r
pg is an individual’s best or a cluster center, depending

on the function.

Second Experiment

In human cognition, clustering or categorization of persons and things
happens very fast. In fact, recognition seems to be largely a matter of
sensing that information is processed faster for familiar stimuli than for
unfamiliar ones; the term “perceptual fluency” is used in cognitive psy-
chology to describe this effect (e.g., Jacoby and Dallas, 1981). In a com-
puter, though, clustering requires some work, which takes some time.
The substitution of cluster centers resulted in better average results over a
fixed number of iterations; another question is, how does the clustering
affect length of time required to reach a criterion?

To test this question, the program was run with a timer until a crite-
rion was met. Each experimental condition was run 20 times, as before;
trials were terminated after 3,000 iterations if the criterion had not been
reached or after 500 iterations without improvement. As before, the con-
stricted version with Vmax= Xmax was used, with populations of 20 parti-
cles (see Table 8.4).

Table 8.5 gives the median time to meet the criterion in seconds.
Numbers in parentheses give the percentage out of 20 trials that met
the criterion. The right column gives the ratio of the median times
for the two individual-g conditions for each function. As can be seen, the
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cluster-g condition struggled to meet the criteria, and the individual-g
versions failed to meet them sometimes for two of the functions. The
median amount of time required for version 2, cluster-i and individual-g,
relative to the standard version 1 particle swarm ranged from 74 percent
to nearly 200 percent. Thus, as expected, adding the clustering steps to
the program generally made it take longer.
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Table 8.4 Functions used, their initialization ranges, and criteria.

Function Xmax Criterion

Sphere 100 0.01

Rosenbrock 10 100

Rastrigin 5.12 100

Griewank 300 0.05

Shaffer’s f6 100 0.00001

Table 8.5 Results of the second experiment.

Median time (seconds) Ratio

individual-g cluster-g

Sphere 1.301

individual-i
cluster-i

1.479 (100)
1.924 (100)

∞ (0)
2.852 (100)

Rosenbrock 0.739

individual-i
cluster-i

1.334 (100)
0.9902 (100)

∞ (30)
1.260 (100)

Rastrigin 1.994

individual-i
cluster-i

0.631 (100)
1.258 (100)

1.283 (100)
0.990 (95)

Griewank 1.432

individual-i
cluster-i

1.895 (95)
2.713 (90)

∞ (0)
∞ (50)

Shaffer’s f6 1.670

individual-i
cluster-i

0.574 (60)
0.959 (70)

∞ (30)
∞ (15)



Discussion

The empirical evidence from these experiments suggests that average
performance per a fixed number of iterations can be improved by substi-
tuting cluster centers for the individual’s previous best positions. The
clustering algorithm implemented in this experiment generally added
some time.

These preliminary results should not be taken as a recommendation
to use the cluster-analyzed version instead of the standard incarnations,
but they do point to a potentially useful research direction. The cluster-
ing algorithm used here was not intended to produce perfectly calculated
centers, nor was it chosen for its speed and efficiency; it is expected that
improved clustering methods will cut down the extra time added and
may improve performance as well by discovering points in the search
space that are nearer the optima.

It was seen that particle swarm search is relatively effective when indi-
viduals are attracted toward the centers of their own clusters and is not
good when they are attracted to neighbors’ cluster centers. It is interest-
ing to think about how substituting a cluster center for the individual’s
previous best can result in improvement. The explanation is to be found
in consideration of the probability that any individual’s performance
will be better than its cluster’s center. As seen in Figure 8.17, if the indi-
viduals comprising a cluster are distributed around a local optimum, as
in Cluster A, then it is entirely possible that the evaluation of the cluster
center will be better than that of any of the particles that make it up. If,
on the other hand, the particles are approaching an optimum from one
side, as exemplified by Cluster B, then the cluster center’s fitness will be
closer to the average of the particles’ evaluations. It is not likely, if the
clusters do in fact indicate local optima, that the cluster center will be
worse than the average of the particles that make it up. Thus the average
cluster center’s fitness will be greater than the average individual’s.

Even though the average cluster center might be better than the aver-
age individual, it seems that the average cluster is not better than the best
of a number of individuals. Note that in Cluster B, some individuals per-
form better than their cluster center; this is surely a common occurrence.
In the lbest version with k = 2, the neighborhood best is determined
through comparison of individuals i − 1, i, and i + 1. Taking the best of
the three obviously increases the chances that

r
pg will be better than

r
pi .

From these results it appears that the neighborhood members’ bests will
have been better than their clusters’ centers often enough to facilitate
search. It appears in the present data that the performance of the cluster
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center is usually better than an average individual, but worse than the
best of a group of three.

Adding Selection to Particle Swarms

Peter J. Angeline (1998a) investigated the relationship between particle
swarms and evolutionary methods by introducing selection to particle
swarms. At every iteration the worst half of the population, as deter-
mined by tournament selection, was replaced by clones of the better
half. Social-psychologically, this simulates the effect of changing group
membership, for instance, in an organization when poor workers are
fired or quit, to be replaced by new and better individuals, or in informal
groups where deviants are rejected by the group, to be replaced by better-
fitting members.

Results of testing of the hybridized algorithm are intriguing. Angeline
compared a version of the original Vmax particle swarm to the hybridized
version on four test functions: the sphere, Rosenbrock, Rastrigin, and
Griewank functions. Angeline found that the hybridized algorithm
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Figure 8.17 Cluster A’s center (white circle) performs better than any of the members of the
cluster, while Cluster B’s center performs better than some and worse than others.



performed significantly better on the first three functions, though the
standard particle swarm performed better on the Griewank function—
significantly better, according to t-tests, when functions comprised 20
and 30 dimensions. At 10 dimensions, no statistically significant differ-
ence was found in performance.

Though no analysis of variance was performed, Angeline’s results ap-
pear to demonstrate the causal interaction of algorithm with function;
that is, the effectiveness of the algorithms depended on the function to
be optimized. Adding selection to the particle swarm algorithm resulted
in improvement on some test functions, but performance was worse on
at least one other. Hybridization had an effect—but the effect depended
on the test function. This kind of hybridization of methods certainly sug-
gests some interesting new directions for research.

Comparing Inertia Weights and Constriction Factors

In optimization, as in other areas of computer science and other en-
deavors, the investigator is often forced to make a choice between speed
and power. For instance, a brute-force search of every point in the prob-
lem space is certain to provide the best possible answer, but it is not used
on “real” problems because it would take too long. The two most com-
mon ways to run the particle swarm as of this writing have been the “in-
ertia weight method,” multiplying v(t − 1) by a coefficient, and Clerc’s
constriction method, where the entire right side of the formula is
weighted by a coefficient. Both approaches have been described above.
In this section we report an empirical comparison between the two ap-
proaches and a variation that appears to significantly improve perfor-
mance (Eberhart and Shi, 2000).

Method

The two versions were tested on a standard set of five test functions used
in the cluster experiment above (see Table 8.6). All functions except f6
were run in 30 dimensions; f6 is a two-dimensional function.

Procedure

Particle swarms were run until some individual in the population met
the criterion for the function and the number of required iterations was
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recorded. In all trials the population size was set to 30, and the maximum
number of iterations was set to 10,000. Each of these values is somewhat
arbitrary. The maximum number of iterations was set higher than ever
found necessary in previous applications and at the upper limit of the
author’s [RE’s] patience given the speed of his home computer. The
neighborhood size was set to include the particle and its two neighbors
on each side; the total neighborhood size was thus five, or about 17 per-
cent of the population size.

In all cases for which the inertia weight was used, it was set to 0.9 at
the beginning of the run and made to decrease linearly to 0.4 at the max-
imum number of iterations. Inertia weight cases used a Vmax set to the
maximum range Xmax. Each of the two (p− x) terms was multiplied by an
acceleration constant of 2.0 (times a random number between 0 and 1).

In all cases for which Clerc’s constriction method was used, ϕ was set
to 4.1 and the constant coefficient to χ = 0.729, as calculated in the for-
mula given earlier in this chapter. In the initial comparisons, Vmax was
set to 100,000, since it was believed that Vmax isn’t even needed when
Clerc’s constriction approach is used, and it was expected that no step
would approach this unreasonably large value.

Results

The results are shown in Table 8.7. Several trials of the constriction
method failed to achieve the criterion. On the Rastrigin function the
specified error value was not achieved in one of the 20 runs; that run was
terminated after 10,000 iterations with an error of about 125. Also, on
the Griewank function the constriction method failed to meet the crite-
rion after 10,000 iterations on three trials.

Variations of the Particle Swarm Paradigm 355

Table 8.6 Functions used in the comparison of inertia
and constriction versions.

Function Xmax Criterion

Sphere 100 0.01

Rosenbrock 30 100

Rastrigin 5.12 100

Griewank 600 0.05

Shaffer’s f6 100 0.00001



Observations and Improvements

One of the authors [RE] observed that the variance using the constriction
method and an essentially infinite Vmax of 100,000 was much greater
than when using the inertia weight method. In fact, the scale of the area
used to observe the particles had to be increased by 10 times on both the
x and y scales (100 times in area) in order to keep constriction method
particles on the screen. It was like watching spacecraft explore the Milky
Way galaxy in order to find a target known to be in the solar system.

If you know that the target is in the solar system, it makes sense to
limit the distance that can be covered in one time step to the largest di-
mension of (distance across) the system. We call this maximum distance,
that is, the upper limit of allowable parameter values, Xmax. Note that if
we limit our maximum velocity to Xmax, we are not limiting our explora-
tion to the solar system; our spacecraft particles can still overshoot the
system, sometimes by a wide range. But we are limiting our search to at
least some reasonable vicinity of the system. It is, of course, assumed that
the optimum we are seeking is somewhere within the dynamic range de-
fined by Xmax.

It was therefore decided to try the constriction method on all of the
test functions configured as before except to set Vmax = Xmax. The results
are presented in Table 8.8. The swarm’s performance was surprisingly
better. All trials met the criterion in this condition.
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Table 8.7 Mean number of iterations required to meet the criterion for the two versions on
each of the five functions, and the minimum and maximum number of iterations
required.

Inertia version Constriction version

Mean
iterations

Min Max Mean
iterations

Min Max

Sphere 1537.8 1485 1615 552.05 503 599

Rosenbrock 3517.35 2866 4506 1424.1 475 4793

Rastrigin 1320.9 743 1704 943* 233 7056

Griewank 2900.5 2556 3891 437* 384 663

f6 512.35 339 748 430.55 105 899

*These means include only trials that did meet the criterion, including 19/20 for the
Rastrigin function and 17/20 for the Griewank.



Conclusion

The constricted particle swarm met the criterion faster on average than
the inertia-weighted versions on all functions, but tended to get stuck in
local optima. The results of these experiments suggest that an implemen-
tation that uses Clerc’s constriction coefficient may perform better if it
also has a Vmax limit to keep particles in bounds. The dynamic range of
variables Xmax suggests a reasonable limit that seems to improve perfor-
mance significantly, and it is usually an available value; that is, it does
not require extra calculations or parameterization.

Asymmetric Initialization

Up to this point, we have been initializing the particle swarm symmetri-
cally with respect to the origin, and in most of the test functions the opti-
mal point has also been at the origin. Real life doesn’t work that way.
Very few optima are at 0,0 and seldom do we know where the optimum is
when we initialize our system.

So how does particle swarm function when we initialize it “off-
center,” that is to say, asymmetrically? To answer this question, one of
the authors [YS] ran four of the benchmark functions described earlier
(sphere, Rosenbrock, Rastrigin, and Griewank) but initialized them off-
center, as indicated in Table 8.9 (Shi and Eberhart, 1999).
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Table 8.8 Mean number of iterations required to meet
the criterion for the constriction version with
Vmax = Xmax on each of the five functions, and
the minimum and maximum number of iterations
required.

Mean
iterations

Min Max

Sphere 529.65 495 573

Rosenbrock 668.75 402 1394

Rastrigin 213.45 161 336

Griewank 312.6 282 366

f6 532.4 94 2046



Each function was tested in 10, 20, and 30 dimensions. The maxi-
mum number of iterations was set to 1000, 1500, and 2000, correspond-
ing to the dimensions 10, 20, and 30, respectively. Different population
sizes were used for each function with different dimensions: 20, 40, 80,
and 160. A linearly decreasing inertia weight was used that started at 0.9
and ended at 0.4, with acceleration constants ϕ of 2.0 for each (p − x)
term. Vmax and Xmax were set to be equal, with values identical to those in
the previous section. A total of 50 runs for each experimental setting
were conducted.

Results

Table 8.10 lists the mean fitness values of the best particle found in 50
runs for each condition.

Discussion

From these results it appears that asymmetrically initialized particle
swarms are indeed able to find the optima of these difficult functions.
Increasing population size not surprisingly improves performance in
terms of the overall best solution, though of course it has a cost. From
these data it cannot be determined whether a better strategy is to distrib-
ute the computational cost across a larger population for a smaller num-
ber of iterations or to use a smaller population size and a greater number
of iterations.

We note that the two experiments reported above took different ap-
proaches to benchmarking. In the previous experiment, the number of
iterations to a given error value was investigated. In the second one, the
error values found after a fixed number of iterations were tabulated. The
preferred approach will depend somewhat on knowledge of the problem
being investigated. For example, if you don’t know much about the
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Table 8.9 Asymmetric initialization ranges.

Function Asymmetric initialization range

Sphere (50, 100)n

Rosenbrock (15, 30)n

Rastrigin (2.56, 5.12)n

Griewank (300, 600)n



optimum, running to a constant (large) number of generations can pro-
vide information about the performance of the algorithm over time. If
the optimum value is known, you may want to see how long it takes
(how many iterations) to get to some small error value. Training to an er-
ror value may also be preferred if you are designing a system to a speci-
fication. For example, if you must meet certain performance criteria for a
diagnostic system, you will need to train until these criteria are met,
which is analogous to training to a given error. Finally, if your goal is to
compare your results with others, you should use the same approach
they used.

Some Thoughts on Variations

Several features distinguish the particle swarm from related adaptive dy-
namical systems. First, in especial contrast to Darwinistic evolutionary
computation paradigms, the particle swarm is a cooperative approach
to population problem solving. Evolutionary methods are typified by a
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Table 8.10 Mean fitness values for the various functions, with asymmetric initialization.

Mean best fitness

Population
size

Dimensions Iterations Sphere Rosenbrock Rastrigin Griewank

20 10 1000 0.0000 96.1715 5.5572 0.0919

20 1500 0.0000 214.6764 22.8892 0.0303

30 2000 0.0000 316.4468 47.2941 0.0182

40 10 1000 0.0000 70.2139 3.5623 0.0862

20 1500 0.0000 180.9671 16.3504 0.0286

30 2000 0.0000 299.7061 38.5250 0.0127

80 10 1000 0.0000 36.2945 2.5379 0.0760

20 1500 0.0000 87.2802 13.4263 0.0288

30 2000 0.0000 205.5596 29.3063 0.0128

160 10 1000 0.0000 24.4477 1.4943 0.0628

20 1500 0.0000 72.8190 10.3696 0.0300

30 2000 0.0000 131.5866 24.0864 0.0127



fundamentally competitive philosophy, evoked by the phrase “survival
of the fittest.” In particle swarms, on the other hand, all individuals
survive, all persist from one time to the next. Rather than adapting
through differential reproduction, individuals (who are guaranteed sur-
vival) change over time, and one particle’s successful adaptation is
quickly shared and reflected in the performance of its neighbors. Axelrod
might call the particle swarm algorithm “nice.”

A particle with coordinates
r
xi will, on the next step, move into

a rectilinear box that is bounded by corners
r r
x t v ti i( ) ( )+ and

r r r r r r
x v t p x p xi i i i g i+ + − + −( ) ( ) ( );max maxϕ ϕ1 2 the target region is bounded by
corners where the random numbers are 0.0 and those where they are 1.0.
As seen in Figure 8.18, this box may contain the current position of the
particle, or exclude it, in which case the particle has to “think outside the
box.” (Attention future readers: please forgive this quaint turn-of-the-
century colloquialism.) Or perhaps the box has to think outside the
particle.
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Figure 8.18 When a particle is moving away from p, its next step takes it into an area that does
not include its current position (a). If it is returning toward p, though, it may end up
at, or very near to, its current position (b). Note that it may be in different parts of its
cycle on different dimensions.



Some “swarm” and social-theoretic methods are said to be derived
from the cellular automaton concept, where the locations of agents are
defined in terms of cells in a grid. There is no theoretical gap between the
CA and particle swarm views; in fact it seems that thinking of the swarm
as a cellular automaton illuminates some aspects of the system’s behav-
ior. But first—it is not clear to us that some models where agents are de-
fined as objects moving across a lattice are really cellular automata at all.
In a traditional CA, rules determine what happens next for a fixed cell de-
pending on its neighborhood configuration, and the miracle is the emer-
gence of phenomena such as gliders—that is, individual entities—from
the rules. Some applications, though, define an agent as a cell that is
turned on, and operate by moving the “glider” or agent across the lattice
directly. In other words, a cell on the grid is a location, and an agent
moves from one location to another—but it seems to us that in a tradi-
tional CA the cells in the grid are the individuals themselves, and the dy-
namics of the system comprise their changes of state.

In the particle swarm each individual is conceived to be fixed in a
physical or topological location. It interacts with the same neighbors
throughout the trial and does not move in either topological or physical
space. All its movements take place in the parameter space that defines
its state and that is essentially independent of the topological space in
which the particle resides. Thus in some paradigms the movements of in-
dividuals on the lattice determine the sequence of problem solutions to
be tested. In the particle swarm the individuals stay where they are, as do
cells in a CA, but they change states—as do cells in a CA—depending on
their previous states and the states of their neighbors.

Are Particle Swarms Really a Kind of
Evolutionary Algorithm?

The particle swarm algorithm has been influenced by concepts from evo-
lutionary computation (EC) since its inception, and continues to be. The
use of populations of simple individual problem-solution vectors derives
directly from the traditions of EC, and features of the particle swarm al-
gorithm can be seen to resemble evolutionary operators in important
ways. There are also important differences. The EC community has wel-
comed particle swarming as an alternative way of doing things, and par-
ticle swarm researchers consider themselves to be coparticipants in an
important joint enterprise—to the point of considering particle swarms
to be a kind of evolutionary algorithm.
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Evolution beyond Darwin

We have commented that the distinguishing feature of traditional
Darwinistic evolution is selection, the survival of the fittest members of
each generation, with the subsequent propagation of characteristics in
proportion to their fitness. This is not exactly an uncontested viewpoint.
Some theorists, of whom Stuart Kauffman is probably the most visible,
contend that self-organization and emergence are as important as selec-
tion in the coming together of life and its subsequent evolutionary
development.

The Neo-Darwinian View of Evolution and Its Shortcomings

What is usually described as the Darwinian view of evolution is perhaps
better described as the neo-Darwinian view. For example, chromosomes
weren’t even known in Darwin’s time, so the presently prevailing view
is a sort of an amalgam of Darwinian and Mendelian ideas. (In 1865
Gregor Johann Mendel, an Augustinian priest in Brno Monastery in the
Czech Republic, described to the Brno Natural Science Society the trans-
fer of genetic material in pea plants. Unfortunately, the fundamental im-
portance of Mendel’s finding was not understood by the Society. Until
about 1900 it was not recognized that Mendel had discovered the “law of
heredity.”)

The neo-Darwinian view of evolution reflects three main observa-
tions. First is that chromosome composition is determined by the par-
ents (at least in animals and humans). Second is that random mutation
expands the search space of the species, providing the desirable attribute
of diversity. Third, fitter individuals have a higher probability of surviv-
ing to the next generation.

According to modern researchers including Kauffman, there are two
fundamental shortcomings of the existing theory. The first is that the or-
igin of life by “chance” or mutation is highly improbable in the time
frame of earth’s history. The second is that evolution of complex life
forms solely through mutation is also highly improbable. A detailed dis-
cussion of these points is beyond the scope of this book. For compelling
arguments, see Kauffman (1993, 1995).

Self-Organization and the New View of Evolution

Enter self-organization. There are almost as many ways to define self-
organization as there are writers on the subject, but a summary of
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attributes and descriptions of self-organization usually include the fol-
lowing points:

� Self-organizing systems usually exhibit what appears to be sponta-
neous order.

� Self-organization can be viewed as a system’s incessant attempts to
organize itself into ever more complex structures, even in the face
of the incessant forces of dissolution described by the second law
of thermodynamics.

� The overall system state of a self-organizing system is an emergent
property of the system.

� Interconnected system components become organized in a pro-
ductive or meaningful way based on local information.

� Complex systems can self-organize.

� The self-organization process works near the “edge of chaos.”

For example, anthropologist Jeffrey McKee (2000) has described the
evolution of the human brain as a self-organizing process. He uses the
term autocatalysis to describe how the design of an organism’s features at
one point in time affects or even determines the kinds of designs it can
change into later. For example, when early hominids began walking up-
right, the angle of the skull on the top of the spine—instead of level with
it—left some extra room for the brain to expand. Thus the evolution of
the organism is determined not only by selection pressures but by the
constraints and opportunities offered by the structures that have evolved
so far.

This leads to a new view of evolution, in which, due primarily to self-
organization, complex systems can “appear” over a relatively short time
frame compared with Darwinian evolution. In this new perception of
evolution, it appears that natural selection and self-organization work
hand in hand, that is,

evolution = natural selection + self-organization

Selection and Self-Organization

Selection is not generally considered to play a part in the particle swarm
algorithm. Whereas in evolution, individuals’ differential survival
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determines the nature of the next generation, all particle swarm individ-
uals survive. The word “learning” is sometimes applied to evolutionary
populations, as if the population itself were learning to solve a problem,
but learning is more usually a kind of change in an individual over time.
It is the acquisition and retention of knowledge. The word “adaptation”
seems more appropriate to evolutionary populations. A particle swarm
models changes in—not replacement of—individuals in time; in this im-
portant way the particle swarm approach differs from all the EC ap-
proaches that have been discussed in this book (Angeline, 1998b).

If you were to try to fit particle swarms into the evolutionary mold, it
could be argued that all of the particles from one iteration are replaced by
those of the next. That is, all of the particles could be said to “die” at each
point in time and be replaced by their “children” in the next moment—
as Freud commented, “The child is the father of the man.” In this view,
particle swarms are somewhat similar to evolutionary programming, in
which each population member is mutated to produce a (candidate)
population member for the next generation. In EP, as in particle swarm
optimization, there is a clear “ancestral” path for each population mem-
ber across time, except that in EP some parents may leave no descen-
dants and some may survive to the next generation alongside their off-
spring. In particle swarms there is a one-to-one correspondence between
individuals at one iteration and those in the next. Thus, in EP lineages
die out, which cannot happen in a particle swarm. In the (1,1)-ES strat-
egy (which is seldom used in evolution strategies but is nonetheless a
valid variation), each parent produces one child that replaces it in the
next generation. This replacement strategy can be seen as very similar to
that used in particle swarms, as can the (1+1)-ES, where the survivor is
either the child or the parent (now considered to be a clone of the
parent).

One major difference between particle swarms and traditional evolu-
tionary computation methods is that particles’ velocities are adjusted,
while evolutionary individuals’ positions are acted upon; it is as if we were
altering the “fate” rather than the “state” of particle swarm individuals.
In EAs that self-adapt step sizes, the variance of the step and not its direc-
tion is optimized—it is not meaningful to speak of an evolutionary indi-
vidual’s “trajectory,” even if individuals were considered to persist across
generations. If the model above where the inertia weight was set to 0.0
were considered, that is, where position alone was acted upon by the par-
ticle swarm formula, the similarity between particle swarms and evolu-
tionary methods, especially EP and (1,1)-ES, would be even greater. The
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main differences would be the directional component of the “muta-
tion,” repeated interaction with the same neighbors, and the fact that EP
and ES step size is evolved in response to the fitness of the current param-
eters, while particle swarm velocities are adjusted in relation to a previ-
ously discovered relatively optimal point. Explicit velocity cannot exist
when selection is practiced, as it presumes the conservation of an object’s
identity over time.

The distinctions and similarities between evolutionary and socio-
cognitive processes provide the central theme of this book. If we are to
seek analogues and similarities, we note that particle swarms implement
a kind of operator that mixes the effects of crossover and mutation, and
adds directionality as well as a feature that is similar to momentum—a
tendency for the particle to continue in the direction it was going on the
previous time step. In the particle swarm algorithm the mutation and
crossover operations are performed simultaneously. Not only is the effect
of the “borrowed” information

r
pg randomly weighted, but the individ-

ual’s previous best
r
pi is too. We can consider the first of these to be a kind

of crossover and the second to be a kind of mutation, if we wish to
stretch the evolutionary metaphor to cover this other thing.

Particle swarm step size is controlled by three factors. First, the step
size of the current iteration is derived from the step size in the previous
one. Whichever direction and distance per iteration the particle was
moving, it has a tendency to continue. Second, the distances from the
current position to the previous bests (p− x) scale the change in velocity
for the time step. Often this means that the particle moves faster when it
is near the optimum, then slows as it moves farther from it, until the par-
ticle changes direction and approaches the weighted average best from
the other side. This is because, when x is near p, the term (p− x) is small,
and as it is added to v, the smaller term produces a greater tendency for v
to remain as it was. Third, all particle swarm implementations have some
method for limiting velocity, whether it is the inertia weight, a constric-
tion coefficient, or simply Vmax. The common usage of the first two of
these results in a convergence of the individual particle’s trajectory to-
ward the optimum, while Vmax limiting only prevents it from escaping its
orbit, without inducing convergence; Vmax versions are better at explora-
tion than exploitation.

Particle swarms have a unique way of using gradient information to
guide their search. In fact the (p− x) terms in the algorithm define a gra-
dient; they show the direction and distance from the point that is cur-
rently being tested and the point that has previously been found to be
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best. As the effect of these terms is to adjust the velocity of the particle,
the effect on its trajectory is not to move it with the gradient, but to
cause the particle to oscillate around the previous best point—sometimes
with the gradient and sometimes against it. The gradient then is used
simply to keep the particle oriented in the region of previous successes,
similar to methods in EC, and is not followed in the traditional way of
hill climbers.

A particle moves in a stochastic oscillatory trajectory through the
problem space, sampling around relatively optimal local points, while an
evolutionary individual searches by changing position through muta-
tion and crossover. This perpetuated directional movement through the
search space gives particles their characteristic behavior; their interac-
tion results in effective search for optima.

A particle swarm is a self-organizing system whose global dynamics
emerge from local rules. As each individual trajectory is adjusted toward
the successes of neighbors, the population converges or clusters in opti-
mal regions of the search space. The search would fail if individuals did
not influence one another; because a number of them are sharing infor-
mation locally, it is possible to discover optima in the landscape. Because
of this reliance on self-organization, we are comfortable comparing par-
ticle swarms to evolutionary algorithms and usually do not see any rea-
son to draw a line between the two approaches, as long as the differences,
especially regarding selection, are understood. The two approaches are
just not linearly separable.

This is the last example in this book of an argument about whether a
phenomenon should be correctly categorized as a such-and-such. We
have seen throughout the discussion that sociocognitive and Darwinian
processes are similar enough to lead a good number of very knowledge-
able people to wonder if they are identical. We quibble with the memetic
theorists, but the issues are probably academic; culture and mind are a
lot like the evolution of species, even if they are a lot different.

Ergodicity: Where Can It Get from Here?

It is theoretically possible for a GA chromosome to reach any point in the
problem space via mutation. It is, however, unlikely, particularly near
the end of a run. This is because a number of mutations will likely be
needed to reach a distant point. Since mutation rates are typically quite
low (0.1–1.0 percent is a common range), several generations of
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favorable mutations may be needed. Near the end of a run, however,
when the population has converged and the average fitness value is high,
mutation will quite likely result in a low-fitness chromosome that does
not survive the selection process. In fact, the probability of survival de-
creases geometrically with generations. So even though a number of mu-
tations could bring the chromosome into a high-fitness region, the chro-
mosome never gets there because it doesn’t survive selection.

So, even though a GA is theoretically ergodic (there exists a nonzero
probability that a chromosome can occupy any state, or, stated another
way, there is a zero probability that any given state cannot recur), it is not
ergodic in a practical sense because of the multiple steps required. An
evolutionary programming (EP) system is truly ergodic, since there is a
finite probability that an individual can reach any point in problem
space with one jump (in one generation).

The behavior of particle swarm systems seems to fall somewhere be-
tween GA and EP systems in this regard. It may be that a particle cannot
reach any point in problem space in one iteration, although this might
be possible at some point of the run, given sufficiently large velocity. But
any particle can eventually go anywhere, given enough iterations and an
appropriate set of parameters. A stronger case can thus be made for the
ergodicity of particle swarms than for GAs.

Convergence of Evolutionary Computation and
Particle Swarms

In reviewing the literature of recent EC research, it occurs to us that
many of the changes being attempted with evolutionary algorithms
have a sociocognitive or “persisting-individuals” aspect to them. Various
researchers have implemented versions of evolutionary algorithms, for
instance, “group memories,” in which some subset of superior individu-
als is allowed to persist across generations, to interact with popula-
tion members. In GA, “elitism” is a term for the retention of the most-fit
individual from a generation to the next; we tend to think of these
collective-memory methods as elaborations on elitism. Parasite and
coevolutionary methods, such as the “virus” algorithm, provide another
way that successful problem solutions and schemata can be retained for
future interaction with population members. Numerous independent re-
searchers have come up with methods for keeping individuals across
generations.
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In sum, evolutionary and social algorithms have much in common,
and their fusion seems inevitable. Some evolutionary operations are
markedly analogous to particle swarm methods, but the differences be-
tween approaches are considerable.

Summary

In this book we are looking at a paradigm in its youth, full of potential
and fertile with new ideas and new perspectives. Researchers in many
countries are experimenting with particle swarms, applying their imagi-
nations to this simple system. The algorithm is really just a pair of formu-
las, one for velocity and one for position, a two-line computer program
with some housekeeping (in fact these two lines can be collapsed into
one). Even so, the trajectories of particles are rich and interesting, even
when they are stripped down to the bare minimum. Who knows what
will be tried next?

Many of the questions that have been asked have not yet been satis-
factorily answered. The interaction of sociometry with function, for in-
stance, obviously depends on some aspect of the problem—but what? Af-
ter more investigation perhaps researchers will be able to parameterize
the swarm appropriately depending on particular problem characteris-
tics—or perhaps the parameterization can be built into the algorithm it-
self, so that a program can assess aspects of the problem and structure the
swarm topology and relevant parameters to optimize performance. Re-
searchers who want to use the algorithm for solving problems might
want to know how best to set up the swarm so that explosion and con-
vergence are held in optimal balance. For instance, it may turn out to be
best to keep the system at the edge of chaos, where it’s gnarly (Rucker,
1999).
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chapter
nine

Applications

In the last chapter, we saw how particle
swarm optimization works. But we were still
in the world of mathematics. In this chapter,
we move into the practical world of engi-
neering and take a brief look at some appli-
cations of particle swarm optimization.

There are various kinds of applications.
Some are more general; others are more spe-
cific. By “general” we mean approaches that
can be used across a wide range of specific
applications. Specific applications are those
that are tailored to a specific requirement.
Even though they are focused on solving a
particular problem, however, we can often
see how to apply the concepts to other
problems.

We begin with a section on a general ap-
plication: evolving neural networks. Evolving
artificial neural networks, including not only

the network weights but also the network
structure, is one of the most exciting early
applications of particle swarm optimization.
The method is so simple and efficient that
we have almost completely ceased using
traditional neural network training para-
digms such as backpropagation. Instead, we
evolve our networks using particle swarms.
The approach works for any network topol-
ogy (e.g., feedforward, recurrent, etc.) and
any training algorithm (e.g., radial basis
function, backpropagation, etc.).

In the next section, we look at a specific
application in the area of biomedical engi-
neering: diagnosis of human tremor. Here,
we use particle swarm optimization to evolve
the weights of a feedforward neural network
that can differentiate between normal (phys-
iologic) and abnormal (pathologic) tremor.
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Finally, in the third section, we briefly review four other engineering applica-
tions in widely diverse areas: ingredient mix optimization, battery state-of-
charge estimation, electric power and voltage management, and computer
numerical control machine optimization.

It’s time to put on your hard hats! We tried to minimize the “engineer-ese,”
but this chapter is decidedly applications oriented, and the writing unashamedly
reflects that. �

Evolving Neural Networks with Particle Swarms

Neural network and evolutionary computation methodologies have
each been proven effective in solving certain classes of problems. For ex-
ample, neural networks are very good at mapping input vectors (pat-
terns) to outputs in such applications as diagnostic systems; evolution-
ary algorithms are very good at optimization in applications such as
scheduling systems. It was therefore natural for engineers and scientists
to combine the methodologies to develop hybrid computational tools
that are even more effective than either methodology by itself.

Since the popularization of the backpropagation algorithm in the
mid-1980s (Rumelhart and McClelland, 1986; Werbos, 1974), there has
been a significant increase in research and development in the area of ap-
plying evolutionary computation (EC) techniques for the purposes of
evolving one or more aspects of artificial neural networks. Publications
you might want to look at that review these efforts include Schaffer,
Whitley, and Eshelman (1992), Yao (1995, 1997), and Fogel (1998).

These EC techniques have usually been used to evolve neural network
weights, but sometimes have been used to evolve network structure or
the network learning algorithm. In the next section we provide a brief re-
view of previously published work. In the following section, we discuss
advantages and disadvantages of the approaches described previously.
Then we present the concept of applying particle swarm optimization to
replace the learning algorithm and evolve both the weights and structure
of a neural network. In the final section, we provide an illustration of the
approach by means of a classification system for the Iris Data Set.

Review of Previous Work

Evolutionary computation methodologies have generally been ap-
plied to three main attributes of neural networks: network connec-
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tion weights, network architecture, and network learning algorithms. A
fourth area, the evolution of inputs (finding the optimal set of inputs),
has received a relatively minor amount of attention.

With respect to the architecture of a neural network, evolutionary al-
gorithms (EAs) have been applied to evolve the network weights, the
network topology (structure), and the processing element (PE) transfer
function. Occasionally, they have been used for more than one pur-
pose, for instance, evolving the network weights and the structure simul-
taneously. Furthermore, EC methodologies are sometimes used in com-
binations and sometimes with other methodologies. For example, it is
possible for an EA such as a GA to find a set of weights in the global mini-
mum’s basin of attraction. A greedy local search algorithm can then be
used to find the globally optimal weight matrix (Yao, 1995). A number of
approaches have been used to encode the weights into the chromosome
of a GA. Included are direct encoding schemes, in which each weight is
explicitly represented in the chromosome, and indirect schemes, in
which a compression scheme is used that requires an expansion of the
chromosome to derive the individual weights. We discuss specific exam-
ples of these approaches below. We intend that the examples chosen be
only representative; an exhaustive survey is beyond the scope of this
section.

As early as 1968, Bremmermann, a pioneer in the EC field, suggested
that “we should be encouraged to try [evolutionary search] procedures
on more complex problems, where no efficient algorithms are known
(e.g., searching for strategies, optimizing ‘weights’ in a multilayer neural
net, etc.).” Widespread efforts to evolve neural networks, however, did
not occur until the popularization of the backpropagation algorithm.

One of the first published works that described use of a GA and in-
cluded example applications was by Whitley (1989), in which a GA was
used to evolve the weights in a feedforward neural network. He applied
the technique to relatively small problems, such as the exclusive-or
(XOR). Also in 1989, Montana and Davis described the use of a GA to
train a neural network of approximately 500 weights. It wasn’t a “tradi-
tional” GA in that, instead of replacing the entire population each gener-
ation, only one or two individuals were produced, which then had to
compete to be included in the new population. Also, network weights
were represented by real, rather than binary, numbers. This type of im-
plementation is known as a “steady-state” GA. Furthermore, Montana
and Davis’ paradigm included an option for improving population
members using backpropagation. This was thus a truly hybrid approach.
(This hill-climbing capability, however, did not result in better results
than when using the GA alone.)
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Another promising early result was that of Schaffer, Carvana, and
Eshelman (1990), which demonstrated that an evolved neural network
had better generalization performance than one designed by a human
and trained with backpropagation. A number of similar papers were also
published. The network training times reported were sometimes faster
and sometimes slower than backpropagation, but were generally not
as fast as network training algorithms noted for their speed, such as
quickprop.

Most of the work involving the evolution of network architecture
has focused on the network topological structure. Relatively little has
been done on the evolution of neural network processing element (PE)
transfer functions and even less on evolving topological structure and PE
transfer functions simultaneously.

Two of the general (nonevolutionary) approaches used to evolve net-
work topology are constructive and destructive algorithms. A constructive
algorithm starts with a minimal topology and evolves the appropriate to-
pology by adding weights, PEs, and layers, as needed. The destructive ap-
proach starts with a large network and evolves the appropriate topology
by removing weights, PEs, and/or layers. EAs have been shown to be su-
perior to these approaches because of the large (often infinite) size,
nondifferentiability, complexity, and multimodality of the search space
(Yao, 1995).

Reduced (indirect) coding schemes have been developed in which pa-
rameters that specify the network topology are evolved. This approach
often involves a discrete number (limited set) of architectures. Other
times, the number of PEs and/or the number of hidden layers is encoded
(Caudell, 1990). These approaches result in chromosome discontinuities
between any two network configurations.

Another approach is to evolve developmental rules used to construct
the network topology. Kitano (1990) evolved a graph generation gram-
mar, or rules for generating weight connection matrices. His grammar
included rules for obtaining 2 × 2 matrices from 1 × 1 matrices, 4 × 4
matrices from 2 × 2 matrices, and so on, until a matrix of the size neces-
sary to specify the weight connectivity for the network was obtained.
Although Kitano reported better results than some direct encoding
methods, his method is not very good at fine-tuning connections among
single nodes.

Perhaps the first publication reporting the evolution of both network
topology and PE transfer functions using a GA was that of Stork et al.
(1990). They were modeling a biological neuron in the tail-flip circuitry
of a crayfish. Although the network had only seven PEs, the transfer
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function evolved was the very complex Hodgkin-Huxley equation for
neuronal activity. Chromosomes included coded specifications for neu-
ron type, cell surface molecules, neurotransmitter type, synapse receptor
types, cell channel densities, and other functional properties of the
network.

Koza and Rice (1991) used the genetic programming paradigm to find
both the weights and the topology (number of layers, number of PEs per
layer, and weight connectivity pattern) of a neural network. They en-
coded a tree structure of Lisp S-expressions in the chromosome. Special
crossover and mutation operators were used that preserved the syntax.
This may be the first published report of using genetic programming to
evolve neural networks.

Some investigators have investigated the optimization of the EA oper-
ators used to evolve neural networks. Research reported by Whitley,
Dominic, and Das (1991) indicated that hill-climbing capabilities of GAs
using real-valued encoding for the network weights were increased sig-
nificantly by a combination of increasing the mutation rate, decreasing
the crossover rate, and decreasing the population size. Convergence was
faster, too, but the probability of obtaining a usable solution decreased
by about 10 percent. It should be noted that “steady-state” GAs similar to
those of Montana and Davis (1989) were used, resulting in relatively
monotonic searches. This type of GA is referred to as a “genetic hill
climber” (Schaffer, Whitley, and Eshelman, 1992). GAs have thus been
designed that emphasize either global or local search. The trick, of
course, is knowing which to use for a particular problem, or, perhaps
more importantly, how and when to switch from one to the other when
solving a problem.

It seems that relatively few researchers, when reporting their work,
provide quantitative comparisons with other approaches. For example,
how well did their network with evolved weights perform compared to a
network with weights trained using backpropagation? Included in the
term performance are both a performance metric, such as percent correct,
and the speed of computation, expressed in such a way as to be compara-
ble with other approaches. How well was the network able to generalize?
How long did it take to train the network? Information given should al-
low the reader not only to reproduce the work described in the paper but
to allow meaningful comparisons with other techniques.

Furthermore, the results obtained depend on the specific algorithms
being compared. It is unfair to compare speed of convergence between
a standard EA and a fast backpropagation algorithm or between a fast
EA and a standard backpropagation algorithm. It is also important to
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recognize that all of these algorithms are sensitive to the parameters and
operators used in them, and that some, particularly backpropagation,
are quite sensitive to initial conditions.

Comparisons are therefore valid only if the best available version of
each algorithm is used, complete and quantitative results are reported,
and sufficient information is given so that the work can be reproduced.

Advantages and Disadvantages of Previous Approaches

In this section, we briefly summarize some of the advantages and disad-
vantages that have been discussed in the literature and that have been
experienced with respect to using EC techniques with artificial neural
networks. The discussion is not meant to be thorough. Rather, our intent
is to highlight the successes and to examine issues that should be ad-
dressed in order to make further progress. It is not our intent in this sec-
tion to review the advantages and disadvantages of neural networks and
evolutionary algorithms individually. Such reviews appear in a number
of other places (Schaffer, Whitley, and Eshelman, 1992; Yao, 1995).

Advantages

The backpropagation neural network learning algorithm, as well as oth-
ers, requires a differentiable PE transfer function. EAs can be used to train
neural networks with nondifferentiable (even discontinuous) PE transfer
functions. Step functions are an example. Additionally, not all of the
transfer functions have to be identical in a network trained by an EA.

EAs can also be used in cases where gradient or error information is
not available (Schaffer, Whitley, and Eshelman, 1992). (See, however, a
statement from the same reference in the section below on disadvan-
tages.) EAs can thus be applied to neural networks using many archi-
tectures and topologies. In addition to backpropagation, EAs have been
applied to networks using a variety of learning algorithms, including
reinforcement learning, recurrent learning, and higher-order learn-
ing. EAs have the capability to perform a global search in the problem
space.

We can define the fitness of an architecture evolved by an EA in a way
appropriate for the problem. For example, speed of learning, topological
complexity, and performance on the test set can all be incorporated into
the fitness function. Furthermore, the fitness function does not have to
be continuous or differentiable.
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Disadvantages

Schaffer, Whitley, and Eshelman (1992) state: “Using a genetic algorithm
as a replacement for back propagation does not seem to be competitive
with the best gradient methods (e.g., quickprop).” GAs are known to per-
form global search quite well, but to be relatively inefficient in fine-
tuned local search (Yao, 1995).

Evolution of network topology is generally done in ways that re-
sult in discontinuities in the search space. Examples include removing
and inserting connections (weights), discrete changes in connections
(weights), from 1 to −1, for example, and removing and inserting PEs.
These discontinuities usually require retraining of the network. Since the
training of a backpropagation network is sensitive to the randomized
initial weights, the fitness value used to measure the network’s perfor-
mance reflects noise as well as the network architecture. It is therefore
usually necessary to train the network several times and compute an av-
erage fitness value, or partially train the network a number of times to get
an indication of convergence rates. Either approach is computationally
intensive.

Selection of a representation for the weights in a chromosome is often
difficult. In addition to the basic decision whether to use binary or real
representations, the ordering of the weights must be considered, espe-
cially if an EA that uses crossover or recombination is being used. For in-
stance, should the heuristic (Yao, 1995) that weights connecting into the
same hidden PE be adjacent in the chromosome be implemented? If bi-
nary encoding is selected, which encoding method should be selected
(uniform, Gray, exponential, etc.)? Once the representation is selected,
the genetic operators (crossover, mutation, etc.) and their parameter val-
ues must be selected or, in many cases, developed. Often, operators are
designed specifically for a problem.

If a real-number representation for weights is used, a set of operators
must be selected or developed. These must generally be tailored to the
application. In addition, the criterion used for selection must be spe-
cified.

Finally, a problem that has consistently been reported in the litera-
ture is the permutation problem (Yao, 1995; Hancock, 1992), also referred
to as the competing conventions problem (Schaffer, Whitley, and Eshelman,
1992) and the isomorphism problem (Hancock, 1992). This situation arises
whenever there exist multiple chromosome configurations that rep-
resent equivalent optimum solutions. These configurations are called
permutations or competing conventions, and the error surfaces are
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multimodal. For example, two networks that have a different order to
their hidden PEs (and thus have a different representation on the chro-
mosome) but are otherwise identical are equivalent. In fact, any permu-
tation of the hidden PEs produces an equivalent network in this case.

Hancock’s work was limited to the specification of the network con-
nectivity, not the weights associated with the connections. Nonetheless,
he reported that “the most unexpected result here was that permutations
are apparently more of a help than a hindrance,” and that “it appears
that, in practice, the permutation or competing conventions problem is
not as severe as had been supposed” (Hancock, 1992). We address this
“problem” area in our conclusions.

The Particle Swarm Optimization Implementation
Used Here

Following is a brief description of the particle swarm implementation
used in this chapter to evolve artificial neural networks. For a more de-
tailed description of particle swarm optimization, see Chapter 7.

Each particle is treated as a point in an n-dimensional space. The ith
particle is represented as xi = (xi1,xi2,...,xin). The best previous position
pbest of the ith particle is recorded and represented as pi = (pi1,pi2,...,pin).
The index of the best particle among all the particles in the population
(global model) is represented by the subscript g. The index of the best
particle among all the particles in a defined topological neighborhood
(local model) is represented by the subscript l. The rate of the position
change (velocity) for particle i is represented by vi = (vi1,vi2,...,vin). The
particles are manipulated according to the following equations (global
model):

v w v c p x c p xid i id id id gd id= + − + −* * ) * () * ( )1 2rand() * ( Rand (8.1)

x x vid id id= + (8.2)

where d is the dimension (1 ≤ d ≤ n), c1 and c2 are positive constants,
rand() and Rand() are two random functions in the range [0,1], and w is
the inertia weight. (Note that we use the inertia weight version of the
particle swarm algorithm here.) For the neighborhood (lbest) model, the
only change is to substitute pld for pgd in Equation 8.1. For the global
model, Equation 8.1 is used to calculate a particle’s new velocity accord-
ing to its previous velocity and the distances of its current position from
its own best experience (pbest) and the group’s best experience (gbest).
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The local model calculation is identical, except that the neighborhood’s
best experience is used instead of the group’s best experience.

The performance of each particle is measured according to a prede-
fined fitness function, which is related to the problem to be solved. The
inertia weight w controls the impact of the previous histories of veloci-
ties on the current velocity, thus influencing the trade-off between global
(wide-ranging) and local (nearby) exploration (exploitation) abilities of
the “flying points.” A larger inertia weight facilitates global exploration
(searching new areas), while a smaller inertia weight tends to facilitate lo-
cal exploration to fine-tune the current search area. Suitable choices of
the inertia weight provide a balance between global and local explora-
tion abilities and thus require fewer iterations on average to find the op-
timum (Shi and Eberhart, 1998a). Although experimentation with the
inertia weight is still in progress, it appears that a good general approach
is to decrease the inertia weight linearly from 0.9 to 0.4 over 1,000 gener-
ations (Shi and Eberhart, 1998b). The same inertia weight is used for all
dimensions of all particles in a given generation.

Implementing Neural Network Evolution

The benefits of evolving attributes of neural networks are clear. Multi-
layer perceptrons (feedforward networks using the backpropagation al-
gorithm as the learning algorithm) have been shown to be capable of be-
ing universal approximators (Hornick, Stinchcombe, and White, 1989).
The most common transfer function used is the sigmoidal function:

output = 1 / (1 + e−input)

Radial basis function networks, which generally use a form of a Gaussian
function as the transfer function, have also been shown to be capable of
serving as universal approximators (Poggio and Girosi, 1990). The idea of
being able to automatically evolve a universal approximator is quite at-
tractive, especially if it can be done as (or more) quickly as training the
network with back propagation.

One of the first uses of particle swarm optimization (PSO) was for
evolving neural network weights. Eberhart, Simpson, and Dobbins
(1996) reported using PSO to replace the backpropagation learning algo-
rithm in a multilayer perceptron.

The development being reported in this section is the use of PSO to
evolve the network weights and, indirectly, to evolve the structure. The
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methodology has the additional benefit of making the preprocessing
(such as normalization or scaling) of input data unnecessary.

This is accomplished by evolving, in addition to the network weights,
the slopes of the sigmoidal transfer functions of the hidden and output
PEs of a feedforward network. In other words, if we now consider the
transfer function to be

output = 1 / (1 + e−k*input)

then we are evolving k in addition to evolving the weights. (The method
is quite general and can be applied to other network topologies such as
recurrent networks and to other transfer functions such as radial basis
functions.)

Slopes are allowed to be either positive or negative. The output of
a transfer function with a negative slope is just one minus the output
with a positive slope of the same absolute value. The effect of a trans-
fer function with a negative slope is identical to that of a transfer func-
tion with a positive slope (with the same absolute value) if the signs of
the input weights are reversed. There is thus no reason to constrain
slopes to be positive, and by allowing them to take on negative values,
the flexibility of the network evolution is increased, resulting in faster
convergence.

This method can be used to evolve the network structure indirectly. If
the evolved slope is sufficiently small (the exact amount depends on the
application), then the output is essentially constant regardless of the in-
put. (In the case of the sigmoidal transfer function, the output would be
0.5, or very nearly so.) If the PE is in a hidden layer, it can therefore be re-
moved. Its effect can be replicated by increasing the weights from the
bias PE in that hidden layer to each of the PEs in the next layer by one-
half the value of each weight from the PE being removed to the next-
layer PEs. The method therefore can be used to prune PEs from the net-
work, reducing network complexity.

Additionally, if the slope is sufficiently large (the exact amount de-
pends on the application) then the sigmoid transfer function can be re-
placed by a step transfer function. A sigmoid with a large positive slope is
thus replaced by a step transfer function that has an output of 0 for in-
puts less than or equal to 0 and 1 for positive inputs. A sigmoid with a
large negative slope is replaced by a step function with an output of 1 for
inputs ≤ 0 and 0 for positive inputs. Sigmoidal function PEs can thus
evolve to be step function PEs, reducing the computational complexity
of the network significantly.
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Since the slopes can evolve to large values (relative to 1, which is the
slope used in traditional backpropagation networks), input normaliza-
tion or scaling is not needed. Since data preprocessing requires a sig-
nificant amount of effort in most applications, this methodology can
simplify the applications process and shorten development time.

Another feature of this methodology is the continuous nature of the
PSO algorithm. Transfer function slopes are evolved in a continuous
way; that is, slopes can vary continuously from large negative to large
positive values. This results in an evolution of network structures that
is also essentially continuous in nature. For example, as a hidden PE’s
transfer function slope approaches zero, it is replaced with revised con-
nection weights from the bias PE; as the slope becomes very large, the
sigmoidal PE is replaced by a threshold PE. No sudden significant discon-
tinuities exist in the evolutionary process such as those that plague other
approaches to evolving network structures.

An Example Application

The methodology described above was first tested on the Iris Data Set
introduced by Anderson (1935) and popularized by Fisher (1936). This
data set is frequently used as a benchmark for classification algorithms
(Eberhart, Simpson, and Dobbins, 1996). Measurements of four attrib-
utes of iris flowers are provided in each data set record: sepal length, sepal
width, petal length, and petal width. Fifty sets of measurements are pres-
ent for each of three varieties of iris flowers, for a total of 150 records, or
patterns.

We used both normalized and unnormalized data versions of the data
set. The unnormalized version was transcribed from Fisher’s original pa-
per (Fisher, 1936). In the results presented below, all 150 patterns were
used to evolve a network. The issue of generalization was thus not ad-
dressed; it is being addressed in work currently ongoing. For all of the re-
sults reported in this chapter, values of –k*input within the transfer func-
tion that exceeded 100 (in other words, values greater than e100 in the
denominator of the transfer function) were clamped such that the PE
transfer function output was zero. Stated another way, in these cases the
denominator was arbitrarily set to infinity, so that the output would be
zero. This was done to avoid computational overflow errors. This condi-
tion can arise due to a large negative slope with large positive inputs or
with a large positive slope and large negative inputs.
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A normalized version of the data set was first used to test the concept
of evolving both weights and slopes. A high degree of success in dozens
of runs led to our next investigating the threshold value for slope at
which the sigmoidal transfer function could be transitioned into a step
function without significant loss of performance. The preliminary re-
sults of this effort are summarized in Table 9.1. The values for s in the ta-
ble are the absolute slope values above which the slope was set to
infinity; that is, a step function was substituted for the sigmoidal transfer
function. For example, for the data corresponding to s = 20, each PE
transfer function with an absolute value of evolved slope greater than 20
was changed into a step function.

Since there are 150 patterns, 150 minus the average number of cor-
rect classifications per run yields the average number of errors per run.
The results in the table indicate that the average number of errors was
2.15 out of 150 patterns when both weights and slopes were evolved
(no slope threshold was implemented). This is a very good result for
this data set. This table also shows that the accuracy degrades grace-
fully as the slope threshold is decreased to 5. As the slope threshold
decreases from 5 to 4, there is an increase in the average number of er-
rors from 2.95 to 4.65 and an increase in the variance from 2.25 to 62.75.
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Table 9.1 Performance variations with slope thresholds. For each threshold value, 40 runs
of 1,000 generations each were made using the 150-pattern data set.

Slope threshold s
(absolute value)

Total number
correct in 40 runs

Average number
correct per run

Variance

None 5914 147.85 1.57

80 5914 147.85 1.57

40 5911 147.78 1.77

20 5904 147.60 1.94

10 5894 147.35 2.08

5 5882 147.05 2.25

4 5814 145.35 62.75

3 5811 145.28 62.56

2 5782 144.55 69.43

1 5693 142.33 126.64



This indicates that there were a few of the 40 runs that did not arrive at
good solutions. (It is recognized that variance is defined for data sets with
normal distributions, and our data sets do not meet this criterion. It
seems to provide a useful metric for our work despite our skewed data
sets.)

This experiment thus provides a preliminary indication that the
slopes can be evolved and that a slope threshold of around 10 to 20
would be a reasonable value (minimal impact on performance) for this
problem. Other data sets are now being examined with the same idea in
mind. Also, the transition of low values of slope to 0, thus enabling the
elimination of the PE, are being examined. Although some low values for
slope were obtained in this experiment, there were too few of them to
provide a statistically meaningful sample from which conclusions can be
drawn.

One set of runs was made with the unnormalized data set. No slope
threshold was implemented. The results, summarized in Table 9.2, show
that a reasonably good solution was obtained in 38 of the 40 runs, or 95
percent of the time. The average number correct was 145.45, and if the
two worst solutions are ignored, the average number correct is about
148, a very good result. This means that 95 percent of the time, using an
unnormalized data set, and evolving both slopes and weights, solutions
with an average of only two errors were evolved. The results shown in Ta-
ble 9.2 are also only an indication of the potential for the method. Statis-
tically valid conclusions await further experiments.

Conclusions

A brief review of prior work in using EC techniques to evolve attributes
of neural networks has been presented. Advantages and disadvantages
of these approaches were summarized. A new methodology using par-
ticle swarm optimization for evolving neural network weights and

Evolving Neural Networks with Particle Swarms 381

Table 9.2 Performance for 40 runs of 1000 generations each with the unnormalized data
set.

Number correct 149 148 147 146 145 144 100 99

Number of runs with
this number correct

11 16 6 3 1 1 1 1



simultaneously indirectly evolving network architecture was presented.
The methodology seems to overcome the first four disadvantages to pre-
vious approaches listed earlier. With respect to the fifth “disadvantage,”
our work on this and other projects leads us to agree with Hancock’s con-
clusion that permutations are more a help than a hindrance and, further,
that multimodality is one reason why particle swarm optimization (and
other evolutionary algorithms) works so well. Classification of the Iris
Data Set (both normalized and unnormalized) was used to show that
good results can be obtained by evolving weights and architecture of
neural networks using particle swarm optimization.

Human Tremor Analysis

In this section we discuss methods for the analysis of human tremor us-
ing particle swarm optimization. Two forms of human tremor are ad-
dressed: essential tremor and Parkinson’s disease. Particle swarm optimi-
zation is used to evolve a neural network that distinguishes between
normal subjects and those with tremor. Inputs to the neural network are
normalized movement amplitudes obtained from an actigraph system.
The results from this preliminary investigation are quite promising, and
work is continuing.

Tremor is defined as any involuntary, approximately rhythmic, and
roughly sinusoidal movement (Elble and Koller, 1990). The analysis and
diagnosis of human tremor is a very challenging area. Two of the most
common types of tremor affecting the U.S. population are essential
tremor and Parkinson’s disease (Elble and Koller, 1990). Despite years of
effort, relatively little seems to be known about these disorders.

Parkinson’s disease (PD) is due primarily to the degeneration of
dopaminergic neurons. The motor circuit is subsequently open and
downstream circuit flow inhibited in the brain. Central nervous system
commands for muscle control are blocked and as a result produce rigid-
ity, bradykinesia (slowed movements), and tremor in the body. In addi-
tion, PD patients on long-term medical management often develop de-
bilitating abnormal movements called dyskinesias (Worth, 2000).

Essential tremor is a familial tremor with onset at varying ages, usu-
ally at about 50 years of age, beginning with a fine rapid tremor of the
hands, followed by tremor of the arms, tongue, head, legs, and trunk; it
is aggravated by emotional factors and is accentuated by volitional
movement.
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Both of these disorders are initially managed by administration of a
variety of pharmacologic agents, but long-term cases often become re-
fractory to medical management. In these patients, surgical intervention
either in the form of neuroablation (destruction) of hyperactive neurons
or implantation of chronic deep brain stimulators (DBS) into various
subcortical targets becomes a necessary option. In both situations, sur-
gery is done under local anesthesia in awake patients, and intraoperative
neurophysiologic recording of single neurons is essential in order to
achieve the safest and most efficacious surgical intervention. Further-
more, test stimulation is often carried out in the operating room to assess
the patient’s response before permanent electrode placement (Worth,
2000).

Precise characterizations of these forms of pathologic tremor in terms
of frequencies and amplitudes do not exist. Furthermore, differentia-
tion between normal physiologic tremor and these pathologic tremors is
often difficult, and precise characterizations of the ranges of normal
physiologic tremors have not been defined.

This section presents the results of a preliminary study that used digi-
tal actigraphs to acquire data from normal and tremor subjects and
particle swarm optimization to evolve a neural network to discriminate
between tremor and normal subjects.

Data Acquisition Using Actigraphy

Actigraphy is the measurement of movement. Wrist-worn devices for
measuring movement called actigraphs have been available since the
1970s. These actigraphs have been widely used in medicine for thera-
putic, drug, and diagnostic studies. Analysis of data from a wrist-worn
actigraph provides an inexpensive and noninvasive method of move-
ment assessment.

Most actigraphs use a piezoresistive accelerometer (a sensing element
that changes its electrical resistance with changes in acceleration) as the
sensor. Many actigraphs, however, do not provide the absolute value of
acceleration as output. Rather, they provide the varying, or “AC,” com-
ponent, of acceleration as output. Additionally, although motion occurs
in three dimensions, most actigraphs measure movement on only one
axis. When worn on the wrist, this axis is generally oriented to be per-
pendicular to the inside or outside flat surface of the wrist.

Until recently, available actigraph systems recorded only limited,
summarized data. For example, typical measurements have been limited
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to the number of zero crossings (above some threshold) that occur each
time epoch. Time epochs may be as brief as 4 or 5 seconds or as long as a
minute or more.

Recently, trimode actigraphs have become available from Precision
Control Design, Inc. (PCD) in Ft. Walton Beach, Florida, that record zero
crossings, time above threshold, and integrated amplitude for each time
epoch. These units still do not, however, provide the sampling frequency
and amplitude resolution necessary to quantitatively characterize hu-
man tremor.

Within the past year, however, digital signal processing (DSP) based
actigraphs have been developed that provide the required sampling fre-
quency and sensitivity. PCD’s Tele-Actigraph system samples data at ap-
proximately 27 Hz with a resolution of about 12 bits. It can sense a
change in acceleration as small as about 10 milligravities (mGs). Data are
telemetered real-time on a 300-megahertz carrier from the wrist-worn
unit to an ambulatory unit that can be worn on the belt. The belt unit
can acquire data autonomously for up to 5 hours 20 minutes, after which
it is downloaded into a PC. Alternatively, the PC can be connected di-
rectly to the belt unit to achieve continuous data acquisition. Using
Labview on a PC, for example, data can be simultaneously acquired,
viewed, and stored on the hard disk of the PC.

For this preliminary study, data were acquired with the Tele-
Actigraph (TAG) worn on the outside of the subject’s nondominant
wrist. The data acquired were for what is known as postural tremor. The
subject held his or her arm with the wrist and elbow unsupported. They
were allowed to hold their arm in a comfortable position, with the elbow
bent and the forearm approximately parallel to the floor. Data were ac-
quired for approximately 60 seconds from each subject.

Figure 9.1 shows the three components of the Tele-Actigraph system.
On the left is the TAG unit itself, which is usually worn on the wrist, but
which may be attached to other parts of the body such as the leg. In the
center of Figure 9.1 is the belt-worn unit that acquires the data from the
TAG unit. On the right is the belt unit programmer that is used to load
programs into the belt unit. In the current system configuration, the belt
unit must be reinitialized by the belt unit programmer each time a new
data session is started. In practice, the belt unit programmer is connected
to a PC via the parallel port. The TAG unit can be programmed via a serial
port on the PC.

Figure 9.2 shows the TAG unit being worn on the wrist and the
belt unit being worn on the belt. This is the usual configuration for
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ambulatory data acquisition sessions ranging up to 5 hours 20 minutes
in length.

Data Preprocessing

The raw data acquired from the TAG is in a columnar ASCII format, with
the high nybble (4 bits) followed by the low byte (8 bits) for each data
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Figure 9.2 The TAG and belt units being worn.

Figure 9.1 The Tele-Actigraph system.



sample. The first preprocessing entails adding 16 times the value of the
high nybble to the value of the low byte to obtain each data sample
value.

The resulting raw data file is then viewed using a Matlab script, and
the file is shortened to remove data received during the warm-up period
of the TAG, which can be up to 30 seconds (but which is usually less than
15 seconds). The shortened raw data file is then analyzed using the
Matlab power spectral density routine. Various spectral resolutions were
tried, from 512 points down to 64 points. It was decided to use 128-point
transforms for this study, resulting in an amplitude value for each of 64
frequency bins.

The upper and lower two values are stripped from the files, resulting
in 60-point data vectors. The square root is taken for each power value,
and the resulting amplitude vectors are normalized such that the maxi-
mum value for each vector is one. These normalized 60-element ampli-
tude vectors are then used as inputs to a neural network.

Analysis with Particle Swarm Optimization

Particle swarm optimization (PSO) was used for evolving the neural net-
work weights and, indirectly, to evolve the network structure. This was
accomplished by evolving, in addition to the network weights, the
slopes of the sigmoidal transfer functions of the hidden and output pro-
cessing elements (PEs) of a feedforward network. In other words, using
the PE transfer function

output = 1/(1 + e−k*input)

the slope k was evolved in addition to evolving the weights.
The purpose of this preliminary study was to determine if pathologic

tremor (essential tremor and Parkinson’s disease) could be distinguished
from normal physiologic tremor. No distinction was thus made between
essential tremor and Parkinson’s tremor subjects when evolving the neu-
ral network. A feedforward network with 60 inputs, 12 hidden PEs, and
two outputs was evolved. Sigmoidal transfer functions were used in the
hidden and output layers.

Data sets were available from 12 subjects with tremor and 10 normal
subjects. The power spectral density plot for a subject with Parkinson’s
disease is shown in Figure 9.3, while Figure 9.4 depicts the spectrum for a
normal patient. Neural networks were originally evolved using all 22 pat-
terns; generalization was not the main object of this effort. However,
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Figure 9.3 Power spectral density of wrist postural tremor of subject with Parkinson’s disease.
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Figure 9.4 Power spectral density of wrist postural tremor of normal subject.



subsequently, training on all but one pattern and testing on that remain-
ing pattern has yielded an accuracy of 100 percent. Table 9.3 presents the
outputs from a neural network evolved using all 22 patterns.

The outputs for the first processing element show outputs greater
than 0.8 for all tremor subjects and under 0.2 for all normal subjects.
Analogously, the second output has outputs greater than 0.8 for all nor-
mal subjects and under 0.2 for all tremor patients.
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Table 9.3 Classification results with a 60-12-2 feedforward
neural network.

Classification Output 1 Output 2

Normal 0.053 0.948

Normal 0.027 0.973

Tremor 0.917 0.088

Tremor 0.981 0.019

Normal 0.181 0.813

Normal 0.025 0.975

Normal 0.038 0.962

Tremor 0.982 0.020

Tremor 0.932 0.067

Tremor 0.948 0.051

Tremor 0.968 0.036

Tremor 0.982 0.019

Normal 0.048 0.953

Tremor 0.986 0.015

Normal 0.066 0.935

Normal 0.070 0.930

Tremor 0.842 0.157

Tremor 0.944 0.058

Normal 0.028 0.972

Tremor 0.955 0.049

Tremor 0.990 0.011

Normal 0.038 0.961



The particle swarm used to evolve the neural network had a popula-
tion of 30 particles and a maximum velocity of 2.0. The initial damping
weight was 0.9, and it was set to decrease to 0.4 over 2,000 iterations.
However, only 38 iterations, or generations, were required to evolve the
network. The process was thus extremely fast.

These results are very encouraging. Time has not permitted the evolu-
tion of other network topologies, but this is planned as part of the con-
tinuing work in this area. Also planned are attempts to distinguish be-
tween essential tremor and Parkinson’s disease and between pathologic
and physiologic tremor (at the early stages of pathologic tremor).

Summary

We successfully applied particle swarm optimization to evolve a neural
network that classifies human tremor (Parkinson’s disease or essential
tremor) versus normal subjects. The method is extremely fast and highly
accurate. The relatively small size of the data set indicates the need for
further testing and development.

We gratefully acknowledge the assistance of Robert Worth, M.D.,
Neurological Surgery Department, and Joanne Wojcieszek, M.D., Neurol-
ogy Department, at the Indiana University Medical Center. Without
their help, this study could not have occurred.

Other Applications

Following are brief summaries of four recent applications of particle
swarm optimization. They provide a snapshot of the rapidly increasing
utilization of this technology.

Computer Numerically Controlled Milling Optimization

End milling is a fundamental and commonly encountered metal re-
moval operation in manufacturing environments. While development
of computer numerically controlled (CNC) machine tools has sig-
nificantly improved productivity, the operation is far from optimized.
Numerous predictive models are described in the literature, but none is
sufficiently general to be applied in numerous situations with high
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accuracy. This is mainly due to the fact that the process fundamentals of
multipoint metal cutting are not well understood. It is also due to the
highly nonlinear nature of the process, which stems from numerous
interdependent parameters such as spindle speed, feed rate, workpiece
material characteristics, cutting depth, tool geometry, wear conditions,
and tool rigidity.

A new and successful approach involves using artificial neural net-
works for process simulation and particle swarm optimization for multi-
dimensional optimization. The implementation was accomplished us-
ing computer-aided design and computer-aided manufacturing (CAD/
CAM) and other standard engineering development tools as the
platform.

The configuration of the artificial neural network is illustrated in Fig-
ure 9.5. The evolution of the network weights using particle swarm opti-
mization provides an approach that is accurate and reliable. A significant
reduction in the time required to complete end milling operations is re-
alized, which results in overall lower cost. Better milling quality is also
achieved. The concept is being extended to other machining processes
and to the prediction and optimization of a more comprehensive set of
process parameters (Tandon, 2000).
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Ingredient Mix Optimization

One of the most exciting applications of particle swarm optimization is
that by a major American corporation to ingredient mix optimization. In
this work “ingredient mix” refers to the mixture of ingredients—carbon
sources, nitrogen sources, salts, trace minerals, and so on—that are used
to grow production strains of microorganisms that naturally secrete or
manufacture something of interest. Here, particle swarm optimization
was used in parallel with traditional industrial optimization methods
known commonly as statistical design or design of experiments (DOE).
PSO provided an optimized ingredient mix that provided over twice the
fitness as the mix found using DOE methods, at a very different location
in ingredient space. PSO was shown to be robust: the occurrence of an in-
gredient becoming contaminated hampered the search for a few itera-
tions but in the end did not result in poor final results. PSO, by its nature,
searched a much larger portion of the design space as compared to DOE
methods, which could be of value in other applications of ingredient
mix optimization.

Reactive Power and Voltage Control

Another, completely different, application is the use of particle swarm
optimization for reactive power and voltage control by a Japanese elec-
tric utility (Yoshida et al., 1999). Here, particle swarm optimization was
used to determine a control strategy with continuous and discrete con-
trol variables, resulting in a sort of hybrid of binary and real-valued ver-
sions of the algorithm. Voltage stability in the system was achieved using
a continuation power flow technique. One of the reasons the authors se-
lected particle swarm optimization was its capability to be expanded to a
nonlinear optimization problem using both continuous and discrete
variables.

Battery Pack State-of-Charge Estimation

In the last application we summarize, particle swarm optimization was
used in conjunction with the backpropagation algorithm to train a neu-
ral network as a state-of-charge estimator for a battery pack for electric
vehicle use. Determination of the battery pack state of charge is an im-
portant issue in the development of electric and hybrid/electric vehicle
technology. The state of charge is basically the fuel gauge of an electric
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vehicle. When it indicates empty, your batteries are dead; a “full tank” is
a full charge on your battery pack. The main framework of the state-of-
charge estimator is a three-layer neural network. Its inputs are the battery
pack’s terminal parameters: pack current, accumulated ampere hours
(how much energy has been provided so far), average battery pack tem-
perature, and the minimum voltage exhibited by any one of the individ-
ual batteries. A strategy was developed to train the neural network based
on a combination of particle swarm optimization and the backpropa-
gation algorithm. One innovation was to use this combination to opti-
mize the training data set. We can’t say much more about this, since the
application is proprietary, but the results are more accurate than those
provided by any other method.

Summary

These few examples of the widely expanding fields of applications for
particle swarm optimization are intended to whet your appetite. More
examples can be found in evolutionary computation–related conference
proceedings, especially those with a special session on particle swarm op-
timization, and on a number of web sites.
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chapter
ten

Implications and Speculations

This chapter reviews the arguments that
have been made thus far and proposes some
speculative conclusions. These include di-
rections for further research and observa-
tions about the work itself and its place in
the scientific endeavor generally. The particle

swarm paradigm serves to provide a kind of
framework for social-psychological theory,
as well as a set of tools for engineering and
computer science; in this chapter we begin
to ponder the theoretical and practical impli-
cations of this new research. �
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Introduction

A scientific approach to considering the mind is complicated by some
factors that generally do not bother investigators in other fields. First of
all is the well-known and widely discussed problem that minds are
unobservable. This was the rationale behind behaviorism’s rejection of
things mental, but it has not stopped other sciences. Dinosaurs’ eating
habits are unobservable; black holes are unobservable; electricity is
unobservable; gravity is unobservable—but all these things are consid-
ered appropriate subject matter for scientific research. Lots of scientific
phenomena are statistically or mathematically inferred rather than ob-
served; this is not really a good reason to deny them the attention of sci-
entific investigation.

More importantly, it is difficult to study minds because we are mental
beings. We have our own minds to maintain and protect, and may not
wish to discover facts that force us to change, or make us question our
own being in the world, or conflict with our sense of right and wrong. We
have not discussed belief systems known as religions to any extent in this
book. However, particularly threatening are facts that run counter to our
religious beliefs, especially if those beliefs are strongly held. Further, sci-
entists have hopes, standards, and ethical beliefs, and they—like any-
body—are not eager to find that their beliefs are invalid. For instance, it
is quite one thing to acknowledge that humans are animals; it is another
thing to follow that belief to the logical conclusion that they could be
euthanized by the millions when they are unwanted, as dogs and cats
are, or eaten, as are cattle and chickens. Really, why shouldn’t humans be
raised for food? There’s plenty of meat on some of them. It is not easy,
even for scientists, to think dispassionately about people, and maybe this
example suggests it is a good thing!

But that is exactly what must be done in order to “do science” about
minds. The scientist needs to drop his or her romantic beliefs about
minds, his or her sympathies and preferences, his or her preconceptions
about what human nature is and—especially—what it should be, and in-
stead needs to observe impartially. The “is” should not be sideswiped by
the “ought to be.” The intimate coloring of perception by interpretation
makes pure objectivity impossible in any case, and this complication is
magnified in consideration of something as personally relevant as the
mind.
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Assertions

We have presented the particle swarm paradigm as an interdisciplinary
project, a kind of computer program and a kind of way to think about
carbon- and silicon-based minds, life, and intelligence. In this chapter
we focus in a bit on some arguments regarding the social-psychological
and computational science assertions put forward here.

First, what are the assertions? Basically there are two major ones, with
minor propositions dependent on them. The major assertions are

I. Minds are social.

II. Particle swarms are a useful computational intelligence (soft com-
puting) methodology.

These two statements summarize the central themes of this book. From
the perspective of the social and cognitive scientist trying to better un-
derstand human behavior, we emphasize the social interaction compo-
nents of thought. Then, as AI researchers have done before us, we try to
capitalize on intelligent human strategies by implementing mind as we
know it—as a social phenomenon—in computer programs. This new
method of problem solving has proved to be a very useful approach to
optimization of complex functions.

Hierarchically dependent on these two major assertions are some cor-
ollaries that have provided the meat of the arguments filling this book.

I. Mind is social. We reject the cognitivistic perspective of mind as an
internal, private thing or process and argue instead that both
function and phenomenon derive from the interactions of indi-
viduals in a social world. Though it is a tenet of mainstream social
science, the statement needs to be made explicit in this age where
the cognitivistic view dominates popular as well as scientific
thought.

A. Human intelligence results from social interaction. Evaluating,
comparing, and imitating one another, learning from experi-
ence and emulating the successful behaviors of others, people
are able to adapt to complex environments through the discov-
ery of relatively optimal patterns of attitudes, beliefs, and be-
haviors. Our species’ predilection for a certain kind of social
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interaction has resulted in the development of the species’ in-
herent intelligence.

B. Culture and cognition are inseparable consequences of human so-
ciality. Culture emerges as individuals become more similar
through mutual social learning. The sweep of culture moves in-
dividuals toward more adaptive patterns of thought and be-
havior. The emergent and immergent phenomena occur simul-
taneously and inseparably.

II. Particle swarms are a useful computational intelligence (soft com-
puting) methodology. There are a number of definitions of computa-
tional intelligence and soft computing. Computational intelli-
gence and soft computing both include hybrids of evolutionary
computation, fuzzy logic, neural networks, and artificial life. Cen-
tral to the concept of computational intelligence is system adapta-
tion that enables or facilitates intelligent behavior in complex and
changing environments. Included in soft computing is the soft-
ening “parameterization” of operations such as AND, OR, and
NOT.

A. Swarm intelligence provides a useful paradigm for implementing
adaptive systems. In this sense, it is an extension of evolutionary
computation. Included application areas are simulation, con-
trol, and diagnostic systems in engineering and computer
science.

B. Particle swarm optimization is an extension of, and potentially im-
portant new incarnation of, cellular automata. We speak of course
of topologically structured systems in which the members’ top-
ological positions do not vary. Each cell, or location, performs
only very simple calculations.

These assertions are consistent with social-psychological and compu-
tational science findings and mainstream academic theorizing, with
only a slight tilt of the head required to see some of the implications we
have noted throughout this volume. In fact we admit that we bring al-
most no new facts to the discussion; it is mostly our interpretation and
our computer programs that are new. Social scientists have always as-
sumed that self and others comprise an integrated system, and no serious
theorist would suggest that there was much to gain by attempting to
study the individual out of context. As has been pointed out already, an-
thropologists since at least the time of Ruth Benedict have known that
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culture and personality are simply two views of the same phenomenon
and have well understood the adaptiveness of cultural behaviors, even if
the benefit is sometimes not obvious to a researcher from outside the
community.

The recently fashionable view of cognitive science is a reduction-
ist one that hopes to explain mind in terms of low-level neural events.
New methods enable researchers to measure electrical and chemical
changes in the brain as it performs various tasks, and it is hoped that
the mind can be explained in terms of such things as synaptic dynam-
ics and brain modularity. This is like trying to predict the weather based
on the known behavior of gas molecules. It may be true that the weather
is in fact a system of moving molecules, but forecasting must be based
on molar patterns of air masses. Local weather is predicted by consid-
ering the state of the local weather in the context of the dynamics
of weather patterns in other locations. Human conduct may one day
be explained in terms of neural firings and the organization of the
brain, but it will never be understood in those terms, just as the weather
will never be understood by examining gas molecules. To understand
people you have to know how they participate in their social con-
text. You need to know who they care about and who they believe
and who they want to be like, and you should know who taught
them what they know if you want to understand their thoughts and
actions.MM

The particle swarm view is a way to depict the movements of multiple
individuals within a single mathematical frame. It is inherently a multi-
variate view of nonlinear systems including human behavior; it would
be ludicrous to try to predict or describe the trajectories of cognitive vari-
ables without accounting for the trajectories of variables they depend on
and interact with. For instance, a logical conclusion will change if its
premises change; it is the pattern of propositions that must be optimized,
not the premise or the conclusion, but both.

Some readers may feel that reducing warm-blooded, creative people
to points in space is a little dry or demeaning. Let us point out that this is
only a mathematical heuristic. Intelligence tests normally reduce people
to points on a one-dimensional number line; personality tests like the
Minnesota Multiphasic Personality Inventory reduce people to patterns
on a printout that translate directly into points in a space of personality
dimensions. By considering individuals as particles we are simply open-
ing a view on the individual changing, searching for understanding in a
complex space of thoughts, acts, feelings, and other people.
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Up from Social Learning: Bandura

There seem to be two directions for approaching the particle swarm
model as a psychological perspective: we can come “up” from the level of
the individual or “down” from the level of the culture and the society.

The social learning theoretical perspective in social psychology arose
out of the reinforcement theories of behaviorism and emerged as a chal-
lenge to them (Bandura, 1962). Behavioristic theorizing was mainly
based on experiments with animals, especially fairly unintelligent and
socially primitive animals such as rats and pigeons, where control of re-
inforcers produced predictable changes in behaviors. Social behavior
was not very well understood in terms of operant or classical condition-
ing. Oddly, social learning is very rare among animals other than hu-
mans; even simple imitation is hard to demonstrate in species other
than ours (Lorenz, 1973; Tomasello, 1999). You cannot teach a dog to sit,
for instance, by letting it watch another dog sit—and don’t even start
with cats!

On the other hand, you very clearly can teach a human to do a trick
by letting them watch you do it. Albert Bandura is the prime proponent
of the social cognitive theoretical view of human observational learning:

Observers can acquire cognitive skills and new patterns of behavior
by observing the performance of others. The learning may take var-
ied forms, including new behavior patterns, judgmental standards,
cognitive competencies, and generative rules for creating behaviors
(Bandura, 1986, p. 49).

In observational learning, the individual learns a behavior by watch-
ing a model perform it. In the case of cognitions, of course, direct obser-
vation is impossible, but models can express their thoughts verbally;
plus, people are extremely good at inferring one another’s thoughts and
feelings from subtle cues. Research findings that cognitive processes can
be learned observationally begin to lay down a bottom-up foundation
for the development of a psychological particle swarm theory.

As social learning theory emerged from behaviorism, there has always
been emphasis on the effect of reinforcement of models. The recurrent
finding is that people are more likely to imitate models whose behavior is
rewarded. In a general social context this might mean that individuals
with status, prestige, friends, or other signs of success are more likely to
be emulated—which everyday observation confirms. Specifically, in a
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cognitive domain it suggests that the belief patterns of individuals who
appear to have made sense of some information will be emulated, assum-
ing that it is rewarding to make sense.

Information and Motivation

Bandura (1986) has discussed two major kinds of advantages gained by
emulating models; social learning has informative and motivational
functions. The model’s consequences give the observer information
about what effects he or she would experience if they engaged in the
same actions. In order to infer accurately, though, the observer needs to
consider various aspects of the event. For instance, if the model is similar
to the observer, then some kinds of similarities of outcomes might be ex-
pected. It is likely that some features of the context suggest whether imi-
tation will result in similar outcomes. People are more likely to emulate a
model when the requirements of a situation are ambiguous, that is,
when they are not sure of what to do, or if the benefits of the modeled be-
havior far outweigh the observer’s previous way of acting, the new one
may be adopted. Interestingly, it appears that observers are much more
likely to imitate others when the rules are very complex. Bandura points
out that individuals can learn a modeled behavior that is punished—and
in fact are more likely to learn punished behavior than behavior that
does not have negative consequences—but they may be less likely to en-
act the behavior immediately; after time, though, the individuals tend to
remember the act but forget the consequences, resulting in a kind of de-
layed perpetuation of undesirable behaviors.

Besides providing information, vicarious outcomes can motivate ob-
servers. Bandura reports that the frequency and magnitude of models’
outcomes can affect the perseverance of behaviors that are learned
through observation. Larger rewards are more motivating, especially
when tenacious effort is required to obtain an infrequent reward. These
effects are moderated by similarities between the observer and the
model; if the two of them are very different from one another, then the
observer is not as likely to expect similar outcomes.

Vicarious versus Direct Experience

Finally, Bandura has compared the effects of vicarious versus directly re-
ceived outcomes. For one thing, others’ outcomes provide a standard for
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judging if your own outcomes are just or fair. A number of studies have
shown that observers learn more and faster than individuals whose own
performances are reinforced, especially on tasks that are conceptual as
compared to manual and complex as compared to simple. Vicarious
or observational learning can take place in a large number of individuals
simultaneously, unlike learning from direct experience; that is, one
learner’s example can provide a lesson for a large number of observers.
Bandura theorizes that part of the relative advantage of observational
learning derives from the fact that an actor must pay attention to the per-
formance of his or her actions, but an observer may focus undivided at-
tention on the behaviors and outcomes of a third-party actor.

The Spread of Influence

Bandura does note that observers who imitate a model’s behavior may
become models for other observers, resulting in the spread of an adaptive
behavior through a community, but he does not dwell on the conse-
quences of such an effect. The sociocognitive theory promulgated in the
present volume suggests that the spread of behaviors from person to per-
son through a population results in the dominance of adaptive attitudes,
behaviors, and cognitions.

The social algorithms described in the previous chapters instantiate
the assumptions of social learning theory within populations of individ-
uals. Individuals’ trajectories through the problem space carry them
nearer to one another, or nearer to the successes of one another, which
because of self-presentational concerns is more likely to be what models
convey to observers—people are more likely to let others know about
their successes than about their unproductive or failed explorations. (Se-
lection of characteristics to promote publicly about oneself introduces a
bias into social search; perfectly good problem solutions that are socially
unacceptable may be hidden from others.)

The spread of adaptive behaviors through a population results in a
clustering or convergence of individuals within a region of the problem
space. This clustering, in the short term, comprises the formation of
norms; on a longer time scale it is culture.
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Machine Adaptation

Adaptation as used in particle swarm computer programs falls within
the area of computational intelligence, which comprises practical adapta-
tion concepts, paradigms, algorithms, and implementations that enable
or facilitate appropriate actions (intelligent behavior) in complex and
changing environments (Eberhart, Simpson, and Dobbins, 1996). For a
discussion of complex adaptive systems that is applicable to intelligent
systems, see Holland (1992).

Particle swarms can be used in many machine adaptation applica-
tions, such as evolving fuzzy expert systems, a process that relies on
nonprogrammed emergent behavior to evolve fuzzy rule sets (Shi,
Eberhart, and Chen, 1999). In turn, incidentally, the parameters of the
particle swarm (such as constriction factors) can be adapted via fuzzy
rules. The resulting system is like a self-referential Gordian knot that is
impossible to classify as either evolutionary or fuzzy; hence the term
computational intelligence. A fuzzy expert system is a powerful tool for
control, diagnosis, classification, and optimization. Evolving such a sys-
tem using particle swarm methodology can yield compact systems (low
number of rules) that degrade gracefully. And these systems can be
evolved in a small fraction of the time required to build traditional ex-
pert systems, which must use knowledge engineering to acquire all rele-
vant rules from experts and which are inherently “brittle,” failing cata-
strophically when presented with situations outside their rule domain.

An area that must currently be labeled as speculative (but this is a
chapter titled “Implications and Speculations”) is the use of particle
swarms to evolve computer programs in a manner analogous to genetic
programming. One approach could be to build a feedforward network
using each member of the terminal set (the input variables and con-
stants) as a node of the input layer and each member of the function set
as a node in the hidden layer. More than one hidden layer could be used,
and the terminal set could be incorporated in all but the last hidden
layer. Then the binary particle swarm could be used to establish the opti-
mal (near-optimal) connection matrix that defines a program to solve
the problem. A potentially more powerful approach would use the parti-
cle swarm in real numbers to evolve a program that weighted each con-
nection. The implementation would then be similar to a traditional
feedforward neural network, but the solution could be represented in
standard computer programming code.
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Learning or Adaptation?

The words learning and adaptation tend to mean different things to differ-
ent people. The field of psychology, for example, tends to use them
somewhat differently from computer science and engineering.

According to Webster’s New Collegiate Dictionary (1975), adaptation is

1: the act or process of adapting: the state of being adapted 2: adjustment to
environmental conditions: as a: adjustment of a sense organ to the intensity
or quality of stimulation b: modification of an organism or its parts that
makes it more fit for existence under the conditions of its environment.

The same source defines the word adapt as follows:

to make fit (as for a specific or new use or situation) often by modification.

(To be fit is to be suitable, adapted so as to be capable of surviving, and ac-
ceptable from a particular viewpoint.)

These definitions essentially describe (and apply to) computational
intelligence systems. Often, the process of altering structures such as
neural networks, evolutionary computation tools, and fuzzy systems is
described as learning. This usage is in accordance with that of a majority
of researchers.

The first definition for learning, however, is “knowledge or skill ac-
quired by instruction or study,” and the synonym listed for learning is
knowledge. Likewise, to learn is defined as “to gain knowledge or under-
standing of or skill in by study, instruction or experience” (Webster’s New
Collegiate Dictionary, 1975).

From the perspective of computer science, learning is what an entire
intelligent system does. Learning thus applies to the entire intelligent sys-
tem, while adaptation mainly applies to the portion of the system we are
addressing in this book: the area where computational intelligence is
relevant.

Adaptation must often overcome numerous barriers, including local
optima and nonlinearities. The problem hyperspace landscape (topogra-
phy, environment) may be constantly changing. The adaptive (computa-
tional intelligence) systems with which we are dealing are complex. The
fitness or performance measure is often complicated and varying over
time.
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Adaptive systems answer this challenge by progressively modifying
population structures, using a set of operators that themselves evolve
(adapt) over time. These adaptive processes drastically shorten the time
required to arrive at a solution when compared with enumerative meth-
ods that must explore significant portions of the problem space. In sum-
mary, from the perspective of computer science and engineering, adapta-
tion is arguably the most appropriate term for what computational
intelligence systems do. In fact, it is not too much of a stretch to say that,
in computer science and engineering, computational intelligence and sys-
tem adaptation are synonymous.

We are not trying to redefine either learning or adaptation in this
chapter. We are simply calling your attention to the different ways these
words tend to be used, particularly the differences in how they are used
in psychology and the social sciences and in engineering and computer
science.

Psychologists might prefer not to define learning in terms of knowl-
edge, especially insofar as the term is used for machine learning. The
word “knowledge” connotes a conscious experience as well as the correct
processing or storage of information. Cognitive psychologists study
“feeling of knowing,” which is a reported subjective experience that you
would be able to recall a fact, and which is not at all the same as the
actual ability to recall the fact—and which is not the same as knowl-
edge. Traditionally, psychologists have studied learning as an empirical
phenomenon, as Webster’s second definition puts it: “modification of a
behavioral tendency by experience (as exposure to conditioning).” Sci-
entific psychology recognizes the impossibility of the measurement of
subjective events; the concept of “knowledge” can only be operation-
alized in terms of behavior and therefore cannot be studied directly.
“Learning” therefore can only be studied as a measurable change in be-
havior; these interdisciplinary differences in definition of a commonly
used term, philosophical on the one hand and empirical on the other,
could possibly lead to confusion, which we hope has not been too great
in this volume.

Cellular Automata

Cellular automata (CAs), referred to throughout the book, are topologi-
cally structured systems in which the members’ topological positions do
not vary. Each cell, or location, performs only very simple calculations.
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CAs are a subset of automata, and like their big brothers, have undergone
development (evolution) over time. The evolution of automata was rec-
ognized decades ago by Norbert Wiener (1961):

At every stage of technique since Daedalus or Hero of Alexandria, the
ability of the artificer to produce a working simulacrum of a living or-
ganism has always intrigued people. This desire to produce and to
study automata has always been expressed in terms of the living tech-
nique of the age. In the days of magic, we have the bizarre and sinister
concept of Golem, that figure of clay into which the Rabbi of Prague
breathed life with the blasphemy of the Ineffable Name of God. In the
time of Newton, the automaton becomes the clockwork music box,
with the little effigies pirouetting stiffly on top. In the nineteenth
century, the automaton is a glorified heat engine, burning some com-
bustible fuel instead of the glycogen of the human muscles. Finally,
the present automaton opens doors by means of photocells, or points
guns to the place at which a radar beam picks up an airplane, or com-
putes the solution of a differential equation.

The first use of the term “cellular automata” seems to have occurred
in the writings of John von Neumann, as edited by Arthur Burks. Al-
though von Neumann defined a system that was capable of reproducing
itself, he didn’t implement it. The concept was discussed and further de-
veloped by Arthur Burks (1970) and others. It was Chris Langton, aca-
demic son of Burks, who first developed a computer program simulation
for a self-reproducing CA and popularized the concept of artificial life
(Simon, 1996). In a traditional CA, each cell can sense the state of only
immediately adjacent cells. Each cell then performs a very simple, usu-
ally rule-based, calculation using these immediately adjacent states
and determines the new cell state. The CA is a variation of a finite state
machine, with the next state dependent on the states of immediately ad-
jacent cells and rules applied to these cells’ states.

Particle swarms can thus be considered an extension and evolution of
CAs that include four additional features. First is the dependence of a
cell’s (particle’s) value on the state of a cell that may or may not be adja-
cent to it (the neighborhood or global best cell). (But it is dependent on
only one such external value, rather than multiple adjacent cells in a CA.)
Second is the dependence on the state (location) of the cell itself. Third is
that generally real-number space is used for calculations, although bi-
nary versions of the particle swarm also exist—as do real-valued CAs.
Fourth, and perhaps most significant, is that particle swarm calculations
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involve stochasticity. Otherwise, these particle swarm CAs mimic tradi-
tional CAs, including the dependence on unprogrammed emergent be-
havior (self-organization) to evolve a solution.

Down from Culture

In 1952 A. L. Kroeber and Clyde Kluckhohn published an invaluable
and scholarly volume entitled Culture: A Critical Review of Concepts and
Definitions, wherein they set out to collect and classify every social sci-
ence definition and usage of the word “culture.” (A new edition is ex-
pected in 2000.) Even though this list was compiled nearly fifty years
ago, and a huge amount of social science research has been conducted
since then, the compendium is definitely worth taking a look at; Table
10.1 summarizes the categories Kroeber and Kluckhohn used for the 161
definitions cited.

The sheer variety of definitions (each fitting comfortably within the
scientific culture that produced it) by itself suggests that the concept is
ambiguous, difficult—and important. All meaningful human behavior
takes place within the nurturing context of a culture. The linguistic sym-
bol systems that provide the primary medium of conscious thought are
transmitted culturally; allies and enemies are defined in cultural terms,
in-groups and out-groups. At the same time, a culture is nothing at all
but the sum of the contributions of the individuals who participate in it.
If X is a cultural norm, and all members of a community stop doing X,
then X simply ceases to be a cultural norm. Culture comprises nothing
but the attitudes, behaviors, and cognitions of people and the artifacts
that are associated with them.

It may seem illogical to start with culture and try to work down to the
individual, since individuals themselves make up the tissue of culture—
minds are the chicken, culture is the egg. From the particle swarm per-
spective, though, the contribution of culture is unique and conceptually
separate from the contributions of individuals or from their pairwise in-
teractions. The effect of culture arises from the numerous interactions
within and between neighborhoods; as various subgroups explore their
regions of the space, interactions within the neighborhoods result in im-
provement, and when the communication is at least partially unblocked
the interactions between subgroups contribute again to the extension
and refinement of improved problem solutions.
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Kaiping Peng and Richard Nisbett (1999) argue that differences in the
history of science in China and the West can be explained by differences
in reasoning styles between the two cultures. When confronted with a
contradiction between two propositions, individuals may choose to
deny or ignore the logical conflict, discount its importance, choose one
or the other, or they may engage in dialectical thinking, searching for the
truth of both statements and the overarching proposition that reconciles
them. Peng and Nisbett have shown differences in the ways that Chinese
and American subjects deal with contradiction.

According to Peng and Nisbett, Chinese reasoning is based on three
important principles:
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Table 10.1 Categoriation of the definitions of culture.

Group Description Number

A Enumeratively descriptive 20

B Historical 22

C Normative 25

C-I Emphasis on rule or way 19

C-II Emphasis on ideals or values plus behavior 6

D Psychological 38

D-I Emphasis on adjustment, on culture as a
problem-solving device

17

D-II Emphasis on learning 16

D-III Emphasis on habit 3

D-IV Purely psychological definitions 2

E Structural 9

F Genetic 40

F-I Emphasis on culture as a product or artifact 20

F-II Emphasis on ideas 10

F-III Emphasis on symbols 5

F-IV Residual category definitions 5

G Incomplete definitions 7

Total 161



� The Principle of Change holds that reality is a dynamical, con-
stantly changing process. Thus the concepts that reflect reality
must be subjective, active, flexible.

� The Principle of Contradiction holds that reality is full of contradic-
tions and never clear-cut or precise. Opposites coexist on every
level and in everything. The opposites exist in harmony with one
another, opposed but connected.

� The Principle of Relationship or Holism states that in order to know
something completely, it is necessary to know its relations, what it
affects and what affects it. This, according to Peng and Nisbett, is
the holistic principle that facilitates dialectical thinking.

Western reasoning, on the other hand, is based on these principles:

� The Law of Identity is the logical assertion that “everything is what
it is.” Thus it is a necessary fact that A equals A, no matter what
A is.

� The Law of Noncontradiction holds that no statement can be both
true and false; that is, A cannot equal not-A. According to Aristotle
this was the most certain of the principles.

� The Law of the Excluded Middle says that every statement is either
true or false. In Aristotle’s words, “Between the two members of a
contradiction, there is no middle term.”

Peng and Nisbett found support for these two approaches to reason-
ing—which have long been noted by various writers—in their research
with Chinese and white American research participants. Their (admit-
tedly dialectical) argument is that each approach has its strength, de-
pending on its application, and differences between the two approaches
lend understanding to differences in the accomplishments of Eastern
and Western science.

Peng and Nisbett’s research provides a clear example of the relation
between culture and the individual mind. These psychologists found
that an individual’s interpretation of a set of propositions, that is, their
reasoning, depends on their culture. Where logicians have attempted to
enumerate the processes that allow valid logical inference, it turns out
that the information-processing methods people actually use in their
daily lives are largely dependent on what the people around them are us-
ing, their culture.
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Thus even though culture can be defined reductively as a kind of sta-
tistical summary of its participants, its top-down effect on those partici-
pants is both unitary and variable, is widespread and profound, is funda-
mental and intimate. Cultural truisms are reified into personal truths;
the culture’s way of interpreting facts is presumed to be the correct way,
and in a sense it is, regardless of the culture and the method of the inter-
pretation, because it enables humans to become human beings.

Soft Computing

As stated earlier, there are a number of definitions of “soft computing.”
Included are the softening “parameterization” of operations such as
AND, OR, and NOT. Also included are hybrids of fuzzy logic, neural net-
works, and evolutionary computation, sometimes called computational
intelligence. According to a web page devoted to the Soft Computing Jour-
nal (owner-newjour@ccat.sas.upenn.edu), soft computing technologies are
a fusion of the following research areas:

� Evolutionary algorithms and genetic programming

� Neural science and neural network systems

� Fuzzy set theory and fuzzy systems

� Chaos theory and chaotic systems

Soft computing has a number of attributes that distinguish it from
traditional (hard) computing:

1. Hard computing requires programs to be written; soft computing
can evolve its own programs.

2. Hard computing uses two-valued logic; soft computing can use
multivalued or fuzzy logic.

3. Hard computing is deterministic; soft computing incorporates
stochasticity.

4. Hard computing requires exact input data; soft computing can
deal with ambiguous and noisy data.

5. Hard computing is strictly sequential; soft computing allows par-
allel computations.
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6. Hard computing produces precise answers; soft computing can
yield approximate answers.

One net result is that soft computing systems are more robust and de-
grade more gracefully than hard computing systems. In addition, it is
usually possible to develop an application using soft computing tech-
niques in significantly less time than required for a similar application
using hard computing.

We believe that the material in this book supports our conclusion
that particle swarms and swarm intelligence are useful additions to soft
computing methodologies. Certainly, particle swarms mesh nicely with
the attributes of soft computing and are applicable to the listed research
areas.

Interaction within Small Groups: Group Polarization

In 1961 a graduate student named James Stoner set out to test the widely
held belief that groups make more conservative choices than individu-
als. He showed experimental participants some vignettes describing indi-
viduals faced with decisions and asked them to rate how much risk they
would advise the protagonist to take. After making their individual rat-
ings, five or six participants were gathered together and asked to discuss
the situations until they reached agreement. Whereas it had been antici-
pated that the group ratings would regress toward the mean, resulting in
more conservative ratings than the individuals had made on their own,
it turned out that the groups’ decisions were riskier than those selected
by the members individually.

This phenomenon, called the risky shift, resulted in the publication of
hundreds of papers replicating the effect and trying to understand how
and why it occurred. A subsequent finding was that individuals tested af-
ter the discussions would also change their individual ratings; it was not
just a group pressure effect, but an actual change in individual views.

As the research progressed and various hypotheses were tested and re-
jected, some investigators noted that the shift was not always in the risky
direction; sometimes the group’s decision was more cautious than the
average of the individuals’ positions. This was called, not surprisingly,
the “cautious shift,” and it occurred reliably on some of the items in
the decision vignette set that was routinely administered in risky-shift
experiments.
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More careful experimentation revealed that groups tend to exagger-
ate the opinions of the individuals; that is, if the group members were
initially cautious, then group discussion was even more cautious, and if
they initially favored riskiness, group discussion would make them even
more daring. This new phenomenon was labeled group polarization, to re-
flect the finding that group views moved toward the extremes. The effect
especially occurs when group members initially agree; when two factions
disagree, a tendency toward compromise known as “group depolariza-
tion” might be seen.

Social psychologists have provided several theoretical explanations
for group polarization (e.g., Jones, 1998). For instance, the persuasive-
arguments view suggests that individuals change their views because
they are exposed to a greater number of arguments in favor of one posi-
tion. When the group comes together, members mention more reasons
supporting the position they like than the position they don’t like, and
they end up persuading one another. Further, active verbal participation
in the discussion results in more change than does passive listening; hav-
ing made the statement, a person might feel more inclined to find sup-
port for it.

A normative explanation suggests that individuals underestimate the
group’s position; when group members learn that others’ opinions are as
extreme as their own, they feel that they can win other members’ ap-
proval, or even admiration, if they go out on a limb a little bit. The result
is that other members perceive the group position as more extreme, and
they too feel they can express more polarized opinions. This view is sup-
ported by the finding that members’ opinions will shift after they have
simply been exposed to the other members’ views, with no discussion. It
is also likely that, having learned what others’ views are on the subject,
individuals would want to go “one up” and present views that they ex-
pect to be perceived as unique or especially bold, thus further pushing
the perceived norm out toward the limit.

The particle swarm theoretical view suggests that the effects of indi-
vidual learning and social influence, modeled as movement through a
space toward own and others’ best positions, can maximize cognitive
consistency. It has long been remarked that one feature of the particle
swarm that helps it to optimize complex functions is that particles tend
to “overfly” the previous bests, they go past them in their explorations.
That is, in changing toward a position that has been found to be good,
particles move past the known good points to more extreme positions.
It often turns out that optima lie outside the average of best-known
points; thus overflying results in improvement. Likewise, groups of hu-
mans “overfly” their previous belief positions as a result of interaction,
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discovering points of agreement beyond their initial locations in the be-
lief space.

Does group polarization always result in improvement? Certainly
not. Irving Janis’ research into groupthink, where a group of individuals
converges on a solution that is not optimal, demonstrates this very well
(Janis, 1972). In groupthink, members talk themselves into agreeing to
something that is often just plain stupid; the Kennedy cabinet’s decision
to attack the Bay of Pigs is given as a salient example. In particle swarm
terminology, groupthink happens when solutions fail to spread from
one neighborhood to another—it turns out that group insulation is a
prerequisite for groupthink. As one part of the population might focus
on a region of the parameter space, other parts are exploring elsewhere.
Interaction among the neighborhoods results in the spread of innova-
tions throughout the population. Thus where norms form in local neigh-
borhoods, particle swarm cultures transcend these, and the moderating
effect of culture tempers the tendencies of small groups to converge on
suboptimal regions.

It would be very difficult to measure the oscillations of attitudes, be-
liefs, and opinions in the course of real time, and we would not venture
to assert that human thought follows the exact trajectories we have pro-
posed. There is some reason to believe, though, that as individuals con-
sider a proposition, they entertain aspects of it that are slightly but not
extremely different from the core idea; that is, they explore the region of
the semantic space. An effect like group polarization occurs in particle
swarms as well as in human groups.

Informational and Normative Social Influence

In 1955 Morton Deutsch and Harold Gerard (Deutsch was a student of
Kurt Lewin) proposed that people are affected by normative social influ-
ence, defined as “an influence to conform with the positive expectations
of others,” and by informational social influence, “an influence to accept
information obtained from another as evidence about reality” (p. 629).
In later research, Chester Insko (e.g., Insko et al., 1983) referred to these
as the “desire to be right” and the “desire to be liked,” and demonstrated
that they are in fact two distinct processes that can be disambiguated
experimentally.

Social theorists have tended to talk about informational and nor-
mative influence as if they were two orthogonal, more or less equal,
processes. The particle swarm is usually thought to be a model of
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informational influence, not directly addressed to the question of nor-
mative behavior. The algorithm, though, can be seen to consist of two as-
pects: a hard-coded set of behaviors and a flexible process of discovery.
Every particle swarm program tells the particles to maintain a memory of
their previous successes, to evaluate the relative achievements of their
neighbors, and to adjust their trajectories toward previous successes;
their social and cognitive propensities are specified in computer code.
No particle swarm program tells the particles where the optimum is, or
which particular neighbors will have found the best so far, and nothing
tells them to converge on optima—or even to look for optimal regions of
the space. Like the gliders in a cellular automaton, the optimization be-
havior of the system emerges (self-organizes) from interactions of parts
whose behaviors are specified in the program’s code.

In a similar way, human behavior and cognition consist of a hard-
coded set of predispositions and an emergent process of discovery. And
just as a naive researcher attempting to simulate the behaviors of gliders
in a cellular automaton would be tempted to hard-code the patterns of
the cells and their movement, investigators of human nature have had a
difficult time disentangling the low-level causes from the emergent ef-
fects. It is rarely clear, with humans, what is learned and what is inher-
ited. We offer the suggestion that people are predisposed to evaluate,
compare, and imitate—normative social influence, in general. While this
tendency itself has nothing to do with the development of knowledge, it
can clearly be adapted to informational situations; the effect of this is
Tomasello’s ratchet effect (1999) and improved information-processing
capabilities.

Self-Esteem

If there is anything that is universally motivating for people it must be
the need for self-esteem; this seems as good a place as any to search for
the biological base of human nature. Thousands of studies have sup-
ported the assumption that people tend to seek behaviors and situations
that help them value themselves positively and to avoid those that make
them feel bad about who they are. Several functions of self-esteem have
been theorized. For instance, high self-esteem seems to help the individ-
ual deal with stress and other negative emotions, while low self-esteem is
associated with depression. Further, high self-esteem appears to facilitate
goal achievement by giving the individual confidence and persistence in
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the face of adversity. Some theorists have suggested that self-esteem is
just a good thing; the motive to maintain it leads people to behave with
integrity, to meet a high standard.

Why would evolution have produced a species with a need to main-
tain high self-esteem? What possible adaptive value could be provided
by a motivation to feel good about yourself, to value yourself highly?
Wake Forest social psychologist Mark Leary and his colleagues (Leary and
Downs, 1995; Leary et al., 1995) have proposed that self-esteem is adap-
tive in that it facilitates the maintenance of social groups; self-esteem
acts as a sociometer, a measure of how well the individual is succeeding at
social inclusion, that is, how well they are accepted by their social group.
According to Leary, people do not really have a need to maintain self-
esteem itself; instead, they have a need for inclusion in the social group.
The experience for the individual is that he or she feels good when main-
taining a good relationship with the social group and feels bad when los-
ing the approval of the group; the instrumental effect is that information
flows effectively through the social network of individuals whose self-
esteem, that is, social connectedness, is being constantly maintained, re-
sulting in potential adaptation for all members of the group.

Self-esteem is a good example of a dissociation between the phenom-
enology of a behavior and its function—what it feels like versus what it
does. Nature has provided us with an adaptive set of behavioral tenden-
cies, but has not graced us with a good explanation for why we act as we
do. We may interpret our biological requirements as something very dif-
ferent from what they are. Let us briefly put the shoe on the other foot
and ask, what would it feel like to be a particle in a particle swarm pro-
gram? You will be constantly attending to your performance—am I do-
ing better than I was?—and constantly watching the particles around
you to see how they are doing. You will see successful neighborhood
members as being intensely attractive and will feel irresistibly drawn to
act like them. There will be great pride in being the one that the others
imitate and warm pleasure in emulating successful particles. To be stuck
between optima, pulled this way and that by neighbors in different re-
gions of the problem space—ugh! Being a particle, in other words, might
be very much like being a person in some fundamental ways.

If we accept that people are hardwired as individuals to seek and
maintain a high reading on the sociometer, then we see that the func-
tional result is the emergence of groups and cultures and immergent cog-
itation. Evolution does not have the technology to program group for-
mation directly, but can only motivate individuals in such a way that
social groups result. Thus a low-level behavioral tendency, distributed
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across members of a population, can create a society or culture whose
power and accomplishments far exceed the sum of the parts, just as low-
level rules in the Game of Life result in complex higher-level dynamic
patterns and patterns of patterns.

On a related note, human self-presentation is biased in order to dis-
play the self—to yourself as well as to others—in a positive light. We note
the similarity between this human tendency and the particle swarm reli-
ance on communication and memory of successes. Most function evalu-
ations in a particle swarm trial are forgotten instantly, but the best ones
are saved and dwelt upon, much as people dwell upon their accomplish-
ments and the accomplishments of others, discounting their meander-
ing fantasies and failed attempts.

Self-Attribution and Social Illusion

Daryl Bem (1967, 1972) has argued persuasively that we make attribu-
tions about ourselves on the basis of the same kinds of information we
use to interpret the actions of others: we observe our own behavior and
draw conclusions from the visible evidence to determine how we think
and feel. Bem describes it as putting “the hypothetical communicator
and the observer in the same skin” (Bem, 1967, p. 188). Bem’s self-
perception theory, which derives from the assumptions of radical be-
haviorism, offers an explanation for cognitive dissonance effects that
requires no mention of cognition and that fits the research data very
well. The individual may infer his or her own mental state from the same
sorts of facts that would be used to make inferences about others.

For instance, in a common version of the induced compliance experi-
ment, a subject may write a counterattitudinal essay, with the experi-
mental result that his or her attitude shifts toward the view expressed in
the essay. Dissonance theorists had argued that the conflict between the
belief and the behavior, namely, “I believe A” versus “I said B,” produces
a tension—cognitive dissonance—that is aversive and can be relieved by
shifting the attitude. In contrast, Bem asserted that the individual simply
observes his or her own behavior; that is, they see what they have written
and draw the same conclusion that anybody would: someone who writes
an essay in favor of B probably believes B. Thus the individual infers his
or her own beliefs from their behavior.

Bem is not unique in his interpretation of subjective experience—in
fact his views are consistent with a long tradition in mainstream psy-
chology. More than a century ago William James wrote:
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Common sense says, we lose our fortune, are sorry and weep, we meet
a bear, are frightened, and run; we are insulted by a rival, are angry
and strike. The hypothesis here to be defended says that this order of
sequence is incorrect . . . and that the more rational statement is that
we feel sorry because we cry, angry because we strike, afraid because
we tremble” (James, 1890/1948, pp. 375–376).

James notes, even while proposing the idea, that it goes against common
sense; it contradicts the usual way we think of ourselves. Our experience
tells us that we have direct, immediate knowledge of our thoughts and
feelings—but perhaps we simply look at ourselves in the same way that
other people look at us, make the same kinds of inferences about our-
selves that we make about other people.

Consider Schachter and Singer’s (1962) “misattribution” paradigm.
In their experiments they injected subjects with epinephrine (the same
as adrenaline), inducing, after several minutes, a state of arousal similar
to an emotional state. Subjects who had been told they were given a “vi-
tamin” waited for the drug to take effect in a room with another person
who they believed had also been administered the substance, but who in
fact was a confederate of the experimenter. In the “happy” condition,
the confederate started behaving euphorically, laughing wildly and be-
coming quite silly, while in the “angry” condition the confederate began
to become angry at having to wait and started slamming things around
and shouting. As the epinephrine began to have its effect on the real ex-
perimental participants, they generally became exhilarated in the happy
conditions and angry in the angry conditions; they interpreted their
own arousal as elation when the other person was elated, or anger when
the other person was angry. In other words, social cues enabled them to
interpret their own sensations, gave meaning to their feelings, defined
them to themselves.

In a classic paper, Nisbett and Wilson (1977) reviewed self-report re-
search up to that time and conducted a series of experiments in which
conditions were manipulated to influence subject’s choices; subjects
then were asked to explain why they had made that choice. All of them
gave good rational reasons—but all of them were wrong. Nisbett and
Wilson came to the conclusion that people are sometimes unable to re-
port their own mental processes, not because they are being deceptive,
but because they are not aware of how they think. They summarize by
stating that “there may be little or no direct introspective access to
higher order cognitive processes” (p. 231). According to them, people are
sometimes able to report accurately about their cognitive processes
when the causes of their behaviors are plausible and the stimuli are
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salient. People can infer their cognitive processes but are not directly
aware of them.

People are usually quite confident in the explanations they give for
what may have caused an event to occur. According to Nisbett and Wil-
son (1977, p. 255), people are more likely to believe that they have cor-
rectly identified the cause of an event

� when causal candidates are few in number

� when causal candidates are perceptually or memorially salient

� when causal candidates are highly plausible (especially when
strong and explicit cultural rules apply)

� when causes have been associated with the same outcomes in the
past

We have wandered a long, long way from the Enlightenment view of
man as a rational being. And it is interesting to consider what this says
about our attempts to “mimic” human intelligence and reason using ap-
proaches such as traditional rule-based AI.

Barry Schlenker’s self-identity theory (1982) asserts that self-presenta-
tion is an attempt to control information about your identity before real
or imagined audiences—including yourself. People try to provide expla-
nations of their own conduct; they try to construct an identity that is sat-
isfying to themselves and that explains their behavior in a favorable
light. One of the criteria of a good explanation is believability; that is, ex-
planations must fit with existing knowledge. Schlenker argues that peo-
ple are not motivated to attain cognitive consistency as an end in itself;
rather, they need to provide a believable and self-beneficial account of
their conduct, and consistency is a by-product of that. The need to pro-
vide explanations for your conduct results in the construction of an in-
ternally consistent view of reality.

Thus self and mind are theorized to arise from the individual’s partici-
pation in a social milieu. Constructing an identity requires believing our
own explanations about ourselves and requires us to construct a model
of the world that is believable and that justifies our behavior or casts it in
a positive light when viewed by others.

These findings contradict our common experience of being human;
we are usually unaware of our reliance on social information for con-
structing our own awareness of ourselves. We don’t feel like we infer
our emotions and cognitive processes; we feel like we have immediate
awareness of them. The naive thinker tries to find explanations that are
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consistent with experience, while the social scientist tests hypotheses
about how that experience might come to be. This is why a science of
psychology is important.

Philosopher Wilfrid Sellars (1956) attacked what he called “the myth
of the given.” While some had assumed that the content of mental life is
simply given, or immediately accessible, Sellars argued that our own
mental states enjoy no special epistemic status. He theorized that early
man may have developed, as an adaptation, a theory of inner events as
causes for overt behaviors. The application of this theory to others al-
lowed early humans to predict the behaviors of their peers. While the
theory was originally used only to interpret the behaviors of other peo-
ple, it was eventually altered to allow individuals to interpret their own
behavior by attributing “mental states” to themselves, too.

Sellars’ view is not inconsistent with that expressed by Theodore
Sarbin and William Coe (1979). They point out that metaphors are used
to indicate a resemblance between two things and not an identity: “A is
like B.” It is common, however, to stretch this kind of statement, known
as a simile, into one with the form “It is as if A is B”—a standard expres-
sion of metaphor or analogy. It is even common to drop the “as if” part of
the statement: “A is B”; for instance, you might say to a loved one, “You
are a ray of sunshine.” The context of the statement provides evidence
for the interpretation—they will know they are not really a ray of sun-
shine. Occasionally, though, the context is not clear; this often provides
material for humor and frequently results in confusion.

Sarbin and Coe argue that under some conditions metaphors be-
come reified into myths. For instance, when the metaphor is opaque
and hard to understand, it may be given the weight of a mythical fact;
also when the metaphor maker is authoritative, people may accept meta-
phor as fact. Their argument is that the concept of mind is the product
of just such a process: mind is “a reified region of mythical space”
(p. 509).

Their discussion goes on to question the meaning of hypnotic states
and some psychopathological categories. Individuals who believe in a
metaphor, they suggest, are likely to play along with the script, as actors
in a play. Thus, knowing what hypnosis “is” and what is expected of a
hypnotized person, they proceed to play the role. This social-psychologi-
cal explanation for hypnotic behavior is contrasted in the psychological
literature with the cognitive view, which postulates that there are ac-
tual mechanisms at work in “trance” and suggestion, such as executive
control processes and dissociations between various modular cognitive
subprocesses.
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Possibly the most articulate—and certainly the most prolific—propo-
nent of the sociocognitive view of hypnotic responding was Nicholas
Spanos (1986), who sadly died recently in an airplane crash. Spanos’
sociocognitive theory of hypnosis and psychopathology held that these
“abnormal” states are continuous with “normal” ones; individuals per-
ceive some social cues about how they are supposed to behave, feel, or
think in a situation and then respond accordingly. The interesting aspect
of these two special cases—hypnosis and psychopathology, especially
such forms as multiple personality disorder—is that they seem to violate
our expectations about how people think. We don’t expect people to
have multiple personalities, and so when someone does appear to, it sur-
prises us and we need an explanation. On the other hand, it does not sur-
prise us when people have single personalities, and so we do not seek an
explanation. The sociocognitive view theorizes that the same processes
that give rise to hypnotic and psychopathological behaviors also under-
lie ordinary psychology. People detect the expectations or “demand
characteristics” of their social context and attempt to do what they are
supposed to do.

The paradigm of hypnosis research—a specialized subset of social in-
fluence research—offers an unusually poignant view of the subtle and
profound interaction between cognition and social context. From all ap-
pearances, good hypnotic subjects who have been told not to remember
really believe they cannot remember. The question of whether they “re-
ally can” remember details of the hypnosis session, which they had been
instructed to forget, is moot—if they think they can’t recall the events
and they can’t produce the memories, then effectively the answer is no,
they can’t remember (until they are told that they can recall, and then—
presto!—the memory returns to them). Some good subjects are so inti-
mately involved in fulfilling the role of the hypnotized person that they
lose their sense of being deceptive; they are adapted to the demands of
the context.

A particle swarm program gives simulated individuals a social predis-
position to evaluate, compare, and imitate; individuals are only pro-
grammed to behave socially. Likewise, a social-psychological perspective
would suggest that a great deal of humans’ resources are dedicated to
maintaining social relations. Intentionally contrasted with the cognitive
view of the self-interested solipsistic individual, this perspective analyzes
thinking and behavior in terms of interpersonal strategies.
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Summary

This chapter has argued that mental events are rooted in social interac-
tions. Why is this important? Because it shifts the explanation of mind
away from the inner mechanisms of the individual—and especially from
the brain, which is an entirely isolated piece of machinery—and out into
the connections between people. The experience of thinking is contra-
dicted by empirical evidence about what thinking really is. The prevail-
ing myth is that of mind as an internal process, the myth of the given,
the myth of consciousness, and we believe it as fact. As scientists we must
penetrate the myth; it is our duty to look dispassionately at the evidence,
if we are to understand human conduct.

The particle swarm paradigm works through dynamics that are
overtly similar to processes found in human societies. As individuals in-
teract with and are influenced by others, their cognitive structures are
optimized. A great deal of human effort is expended in maintaining the
social relations that allow this optimization to occur. Our experience of
being human is naturally biased; there is no reason to think that nature
would have provided us with a mechanism for transcending the perspec-
tive that comes with our biological package, no reason to think that in-
trospection should be scientifically valid. While it may be difficult to
imagine persons in a way that is contradicted by our everyday experi-
ence, it is necessary if we are to hold a correct scientific understanding of
human behavior.
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chapter
eleven

And in Conclusion . . .

This book is about a complex kind of infor-
mation processing that can be performed by
a simple computer program. The whole thing
can be written in a few dozen lines of code,
and most of the time it is used to solve tough
math problems. Human minds and social be-
havior provide the metaphors for explaining
how the program works. Alternatively, this
book is about minds and intelligence and
how they emerge from the dynamics of so-
cial interaction. This sociocognitive theoreti-
cal view is supported by simple computer
simulations.

Several motifs have recurred throughout
the telling of this story; some of them were
intentional, and some just turned out to be
important in a lot of ways. One important

theme has been the mysterious relationship
between simulation and metaphor. We run
mental simulations to test the consequences
of actions without danger, to understand
things we can’t control, to see where an ar-
gument would end up—simulation, or imag-
ination, is a most important and useful kind
of talent. Often the simulations—thoughts,
imaginings, beliefs—take on greater impor-
tance than actual events in the physical envi-
ronment; the simulacrum is more real than
the referent. And just as easily as it happens
in wetware minds, simulations of life and
mind in computer programs can take on lives
of their own and have thoughts of their own,
perhaps as real in every sense as the physical
events they model.
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Sometimes the world provides explanation for informational processes that
have no necessary referent. A mathematical system might be represented as a
set of algebraic symbols and describe the behaviors of a wide range of systems;
for instance, the formula for a sine wave can be used to describe the dynamics
of many kinds of systems, from electromagnetic transmissions to astronomical
orbits. The abstract system itself is just that, an abstraction, but its properties
can be understood by comparison to events in the world, and people have an
understanding of what a sine wave is and what it does because they know of
sine-like phenomena in the world. The physical world provides material for
understanding ideal phenomena. �

Thus abstractions and observable things sustain one another, and it
may be impossible to perceive anything that is entirely of one or the
other; they are always interwoven. This theme of reciprocal imitators
and explicators is central to cognitive science as well as the humanities in
the current era; thus it threads through the present narrative almost
uninvited.

We are balancing on a tightrope between psychology and computer
science, a tightrope that is usually strung between poles under the tent of
cognitive science, but this time we are performing under a different Big
Top. Cognitivist reductionism has provided a great wealth of under-
standing about how brains work, and even about the relationships be-
tween some mental activities and the physical infrastructure that sup-
ports them, but it has not given us what we need in terms of explanation
of mind in its ordinary sense. In this book we have not required that
minds be human and have not even required that they do any profound
information processing, as cognitive science and human vanity tend to
presume. Our assumption is that individuals are components of a system
that thrives on their participation and nurtures it, too. We assume that
individual and culture can be embodied in abstract computer programs,
where the individual’s behavioral tendencies are hard-coded, adaptive
culture emerges from those tendencies, and culture, the emergent effect,
turns around to have a causative effect on the individuals who em-
power it.

Such an abstract social system can perform intelligent tasks for engi-
neering purposes—and the simulation has a mind of its own. That is, we
again are relying on the emergent attributes of the system to produce so-
lutions; these solutions are not hard-coded into the program. And we
cannot understand the solutions in terms of the coding. This tends to go
against the grain of traditional engineering.
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We have tried to remain vigilant about distinguishing between things
that exist in the world and things that exist mentally only, which might
paradoxically include what we call mind itself. What is a feature of a
thing, and what features are attributed to the thing in order to expedite
explanation and understanding? It is not always clear, and sometimes it
matters. And as we have been walking through the fantastic world of
minds and mental attributes such as intelligence, and of life and its at-
tributes, it has been especially important and especially difficult to try to
distinguish between attribution and qualities of things. We present a
view that mind is socially created—a view that maps directly into the
Eastern concept of maya, the veil of social illusion that separates humans
from truth. In one sense we have been attempting to describe the warp
and woof of maya, who is a powerful goddess capable of bestowing great
powers. It is paradoxically through social illusion that we come to know
our world; it is our mind, and yet it is seen to be built upon the shaky
ground of social serendipity. We become what the people around us are.
And in the long run, maya does not provide truth, but only facts and
methods for seeking truth.

In the computational arena, we have embraced the basic tenets of soft
computing. We recognize that we don’t live in a world of ones and ze-
roes, of truth and falsehood. Real life, including real-life engineering and
computer science applications, must deal successfully with vagueness
and imprecision, with linguistic variables and noisy data. We must in-
creasingly learn to live with near-optimum answers. We must realize that
global optimization is usually a myth. We don’t do it as humans; neither
should we, in most cases, expect our machines to do it.

The particle swarm algorithm is a short sequence of algebraic steps
that can solve hard mathematical problems easily. As a computer algo-
rithm, the particle swarm is a new way to do business. It emerges easily
from, and allies itself with, the evolutionary algorithms already in wide
use. But it differs from them importantly in both metaphorical explana-
tion and in how it works. Individuals that persist over time influence one
another’s search of the problem space. This is new, and we hope we have
emphasized it enough. As the review of other paradigms should indicate
(and we fear the review was too short; we would like to have gone on and
on with it), the particle swarm is but an incremental advance beyond
existing methods. There are socially intelligent agents, and there are
population-based search methods, and there are swarms, and there are
even simulations of populations of simple interacting agents that repre-
sent people. But none of these have shown the pure problem-solving
power inherent in the simple act of imitating your betters. This one
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simple feature, when it occurs stochastically in a population of individu-
als who are all doing it, leads incessantly toward better and better ways of
doing things.

Another theme that has come up repeatedly is that of the integration
of individual experience with social learning. The particle swarm algo-
rithm has two terms, and we have shown that a good number of social
science models also contain some version of these same two terms. Re-
cently, Eddie Harmon-Jones and Judson Mills (1999) edited a volume of
papers on current cognitive dissonance research. The volume included
an unpublished paper by Leon Festinger, the paper that eventually grew
into The Theory of Cognitive Dissonance in 1957. Festinger had shared car-
bons of this draft with his graduate students as early as 1954. The paper
was titled “Social communication and cognition: A very preliminary and
highly tentative draft,” suggesting that Festinger considered social com-
munication to be fundamental to the theory (a feature that was not em-
phasized in the final publication). The paper is arranged as a series of hy-
potheses and their elaboration. The first one is

Hypothesis I: There are two major sources of cognition, namely, own
experience and communication from others (p. 355).

The theme of dual fountainheads of cognition has not been widely
explored by dissonance researchers, or at least has not been an important
topic of inquiry, but as we have seen it is a view that comes up in a num-
ber of social theories. The particle swarm system shows that this two-
term model is a very powerful way to process information. Even dumb
dots on a computer screen are able to figure out extremely hard prob-
lems, just by remembering their own experiences and being influenced
by the experiences of others.

A minor theme that has emerged in the writing of this book is that of
distance; proximity is a most important aspect of causation and implica-
tion. We have come across at least three kinds of distances: Euclidean dis-
tance in real-number spaces, Hamming distance in binary spaces, and
topological distance in networks of interconnected nodes. Euclidean and
Hamming distances have been usually called upon to describe aspects of
a problem, while topological distances have been used to describe the
population of individuals working on the problem.

Societies of organisms, humans, and even abstract algebraic matrix el-
ements can be depicted through use of a sociogram, a graph showing the
connections between pairs of individuals. Distances between individuals
can be measured in terms of the minimum number of links that must be
traversed in order for information to pass from one to the other.
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Cognitive variables such as beliefs and attitudes can be measured, too,
and can be located in a binary or real-valued space, and members of a so-
ciety can be plotted in a graph of that cognitive space. Again, distances
between them can be measured in that parameter space; in this case, dis-
tance represents similarity and not necessarily physical proximity. In ar-
tificial societies these variables might be vectors that represent potential
problem solutions; in any case they can be plotted within a single set of
coordinates.

There is almost always a correspondence between location on the
topological sociogram and location in the problem space. That is, there is
a correlation between problem solution or cognitive vectors of individu-
als that are near each other in the social network. Social scientists know
that the causes and effects go both ways: people are attracted to others
who are similar to themselves—or perhaps more accurately, to their ideal
selves—and (the greater effect) people who associate frequently and
closely become more similar to one another. The result is that physical
location, sociometric location, and semantic/problem space location
tend to correlate rather highly. People who are near each other geograph-
ically will be more likely to have friends in common and more likely to
share a worldview. Distance matters.

The topic of similarity-as-distance is not uncontroversial, and this ties
into another motif that has woven throughout this book. Usually we
have called it “linear separability,” and it really refers to the difference
between categories as used by persons, sets as used in mathematics, and
classes as used in diagnostic systems. It seems that as humans we assign
things to categories in a more or less messy, maybe incoherent, way, vio-
lating our own rules without justification or concern whenever it seems
appropriate. Things that are near one another in some feature space may
be assigned to different categories. People with many things in common
may be worst enemies. Some of the most virulent hatred exists between
factions of the same religion or members of the same family. Current re-
search in categories suggests that people categorize objects not by impos-
ing definitions, but rather by comparison of the object at hand with
some category center, which might be an ultimate exemplar or some
kind of prototypical average of examples of that category; a robin is
“more of a bird” than a penguin is. This use of semantic proximity seems
to require linear separability, or something like it. The tension is re-
solved, though, in connectionist models, where the qualities of stimuli
are mapped to hidden nodes, which then link to the outputs. For in-
stance, in some cases the function of an object determines its category
(tomatoes are used more like a vegetable than a fruit), and other times ap-
pearance (dolphins look like fish) determines how it will be categorized.
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Traditional computer systems categorize in a strict, rigid fashion. An
object or a pattern is either totally a member of a class or totally not a
member. You either have a myocardial infarction or nonspecific abdomi-
nal pain. Only in the past few years, with the acceptance of fuzzy logic,
has the hard science world begun to recognize the validity of approxi-
mate reasoning and fuzzy category membership.

It is only a short leap from there to another theme that has insinuated
itself into the current narrative, which is the bottom-up view of lan-
guage. Language is a sticky topic, for many reasons. First, there are many
theories of language and beliefs about what language is and how it
works, and researchers are polarized into ideological camps; we have no
desire to jump into that particular boiling vat of controversy. This situa-
tion exists because language is so important. It is how we communicate,
how we think most of the time, what we notice about each other and
present to each other. Our language tells the public private things about
ourselves and lets us control the impression we make on others; it gives
information and conceals it. Language encapsulates what being human
is all about.

Human languages are not like computer languages. A variable in a
computer program can have any name (within some limitations im-
posed by variable types and reserved names); it can be called “AAA” or
“FutzGibble” or anything. This is technically true of human speech, and
now and then there is an arbitrary word, but mostly words evolve from
other words. The English language is very close to the Germanic and Ro-
mance languages that it came from, and they were close to the languages
that preceded them. Human language is definitely not arbitrary; it is a
part of tradition. It is a superindividual phenomenon that extends be-
yond lives and boundaries, beyond persons; individuals partake of it.

The bottom-up view of language has come up in two distinct ways in
this book. First, it has been the explicit topic in several sections, for in-
stance, the discussions of hyperspace analogues of language and Shan-
non’s experiments with the transition probabilities of letters and words.
But in another sense a view of language that could be called anarchic or
antiauthoritarian has provided a backdrop for all that has been said here.
Words mean whatever we agree they mean, though we will only agree
with meanings that improve our feeling of understanding, that make
sense—so meanings are not arbitrary, any more than sounds are, but
fulfill some pragmatic ends.

Some words have been commandeered by ideologues who claim to
have special understanding of meanings. Words such as “life,” “intelli-
gence,” “mind,” and others have been redefined by special interests who
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would prefer to discourage language users from imposing common sense
on them. In this book we have tried to ignore the special interests, occa-
sionally pointing out their influence, trying to see what these concepts
would really mean if the “oughts” were pushed out of the way.

This book has been built, starting with the title, around the idea of
swarms. The word “swarm,” as has been noted, has a certain attractive-
ness to it beyond its scientific value, and we have already admitted being
drawn to it for idiosyncratic reasons. But beyond that, there are some im-
portant connections between swarms, such as swarms of insects on the
one hand and human thought and behavior on the other. Kerstin
Dautenhahn (1997) distinguishes swarms from more complex societies
on the basis of the propensity of individuals to recognize one another.
Humans form lifelong alliances, while as far as we know bugs do not.
So from her point of view we should not be calling this algorithm
a “swarm,” because individuals in the population interact repeatedly
throughout the entire trial. But we note that while these enduring re-
lationships exist between individuals in the topological lattice, the
behavior of points in the parameter space is perfectly swarmlike. It
seems to us that swarms provide the best metaphor for understanding
the irregular oscillations of individuals in high-dimensional parameter
spaces.

In computational science as well, swarms provide a very useful and
insightful metaphor for the imprecise and robust field of soft computing.
The idea of multiple potential solutions, even computer programs, in-
teracting throughout a computer run is a relatively revolutionary and
important one. Also new is the idea that potential problem solutions
(system designs, etc.) can irregularly oscillate (with stochasticity, no less)
in the system parameter hyperspace on their way to a near-optimal
configuration.

It is almost unbelievable, even to us, that the computer program that
started out as a social-psychology simulation is now used to optimize
power grids in Asia; develop high-tech products in the United States; and
to solve high-dimensional, nonlinear, noisy mathematical problems. To
our knowledge, particle swarms are being researched and used for engi-
neering purposes in the United States, Great Britain, Japan, China, Tur-
key, Greece, France, Germany, Canada, and Australia. If a user can define
a function that can be evaluated, the particle swarm can most likely find
the solution to it. This approach to problem solving is extremely versa-
tile and robust. It can be applied to many kinds of problems with only
minimal adjustments to the algorithm itself. Tell it how many variables
you want, give it a way to evaluate its performance, and let it go.
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We hope we have made it clear that this paradigm is in its youth. It
may, in fact, still be at the toddler stage. We and our colleagues have ac-
cumulated some insights into ways to manage the population, but the
topic is not nearly exhausted. We hope that readers will look at this work
and say—as they say to us constantly at conferences and seminars—“I
have an idea I want to try.” This is how the paradigm unfolds, individuals
collaborating to improve the state of knowledge for all.
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Appendix A
Statistics for Swarmers

Stochastic algorithms, including evolutionary methods, some gradi-
ent descent algorithms, simulated annealing, and particle swarms—

most of the approaches discussed in this book—can perform differently
each time they are run. If a landscape has a number of hills, the algo-
rithm may start in a better or a worse region and may proceed from there
to a better or worse point in the problem space. A researcher is often
interested in comparing the effects of various parameter levels, or differ-
ent algorithms, or problem types, or some other causal factor, called an
independent variable, on some effect or dependent variable, which might be
the fitness after some number of iterations, number of survivors, vari-
ance or convergence of the population, or some other measure. In an
experiment, an independent variable is one that is manipulated, and a
dependent variable is one that is measured; an experiment then is a situ-
ation in which the effect of one variable or set of variables upon another
can be isolated and identified.

The value of the dependent variable is typically different on every
trial, at least where it is measured with floating-point precision. For in-
stance, if fitness is measured after 10,000 iterations of an algorithm, it
will be found that some trials result in fitter solutions to the problem
than others. It will usually be found that these values are normally dis-
tributed around a mean, with some variance. If two or more levels of an
independent variable are tested, then the distributions of the values for
the two levels of the independent variable may be different from one an-
other—the question is whether they are significantly different, that is,
whether changing the independent variable really caused a change in
the dependent variable. Unless the manipulation was unusually power-
ful, the researcher will discover that the distributions of the two condi-
tions overlap; that is, the best trial of the worse condition might be better

429



than the worst trial of the other (see Figure A.1). In some cases there is
considerable overlap of scores in the conditions that are being compared.
The question is, then, whether the differences between the means are
large relative to the variance of the scores.

Descriptive Statistics

There are two kinds of statistics: descriptive and inferential. Descriptive
statistics give information about the particular sample of observations.
For instance, if 20 measures are taken, say, 20 runs of an algorithm where
fitness is recorded after 1,000 iterations, then a mean, usually symbol-
ized as x, can be calculated as the sum of the values divided by their
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Figure A.1 Comparing two groups. Is the difference between two groups meaningful, or could
the values have come from a single normal distribution?



number. This is a sample mean, descriptive of the particular 20 times the
algorithm was run. Further, we can calculate the standard deviation:
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which summarizes the dispersion of values around the mean—for this
particular sample.

A sample is a set drawn from some population of values. Scores in a
sample can be standardized by scaling them to the mean and standard de-
viation. Having computed the mean and standard deviation of a sample,
a researcher can subtract the mean from each score and divide the result
by the standard deviation, producing a sample with a mean of zero and a
standard deviation of one. Values in the sample are called z-scores.

An example is IQ, which is defined to have a mean of 100 and a stan-
dard deviation of 15. If you, our very intelligent reader, have an IQ of
130, then we can subtract the mean, 130 − 100 = 30, and divide by 15
(the standard deviation) to get a z-score of 2. This information indicates
that your IQ is two standard deviations above the average. If someone
else had a different scale where IQ was scaled to a mean of 50 and a stan-
dard deviation of 10, we could easily transform those test scores to com-
pare these two scales. Thus the z-score is very useful for describing a value
in a sample.

The normal distribution is a probability distribution that is observed
very widely in nature. In a perfect normal distribution there are more
events near the average (think of the height of adult males in a popula-
tion), somewhat fewer above and below the average, and fewer at more
extreme distances above and below the average. An important aspect of
normal distributions is that the z-score can be used to estimate the per-
centage of scores that lie below or above a sampled data point. For in-
stance, it is known that 95 percent of the values in a normal distribution
lie between plus and minus 1.96 standard deviations of the mean. Thus
there is a 0.05 probability of sampling a point with a z-score less than
−1.96 or greater than+1.96. As will be seen, this knowledge can be used
to draw conclusions from data.

Descriptive statistics can be useful but contribute nothing to the de-
velopment of scientific inferences. In fact no one is interested in reading
a journal article about the 20 times that you ran your algorithm. Re-
searchers need to know about the performance of the algorithm in

Descriptive Statistics 431



general. It is necessary to understand how the sample represents the pop-
ulation about which inferences will be made.

Inferential Statistics

Inferential statistics, such as t-tests, analysis of variance, chi-square, and
some nonparametric statistics, do more than just compare groups that
are observed in the experiment; they allow inferences about the popula-
tion. That is, they extrapolate from a small sample to estimate what
would happen if all possible tests were run; this enables generalization
from data with known certainty. For instance, to measure the perfor-
mance of a new algorithm you might have the time and energy to run it
using every possible random number seed. The values that describe such
a population are called parameters; the numbers that estimate population
parameters from a sample are called statistics. It is customary to represent
parameters algebraically with Greek letters and statistics with Roman
letters.

It is traditional to consider the population parameter to be a variable’s
“true” or expected value, and the difference between an observed value
and its population value is called “error.” Thus, if the population mean
fitness value for a certain algorithm on a certain function, after a certain
number of iterations, is 0.4567, and we run our algorithm and observe a
fitness (after the same number of iterations) of 0.5678, then we would
say that the error for that trial was 0.1111. Usually squared error, or its
square root, is used in order to make the number positive.

Luckily it is possible to make an unbiased estimate of the population
mean, that is, the average of all possible scores, which is usually repre-
sented as µ. (“Unbiased” just means that the statistic does not consis-
tently overestimate or underestimate a parameter; errors are randomly
distributed around the true value in such a way that the average value of
the statistic over all possible random samples would equal the parameter
being estimated.) This is simply done by taking the mean of a sample
randomly drawn from that population. So if you started your random
number generator from randomly determined seeds and ran it some
number of times, the average of your dependent variable would be an
unbiased estimate of the average you would obtain if you were able to
run the algorithm on all possible seeds. The Law of Large Numbers says
that the more times you measure your dependent variable, the more
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accurately your average estimate will approximate the population mean.
Surprisingly, the size of the sample needed to make an accurate estimate
is not related to the size of the population to which results will be
generalized.

In order to compare experimental treatments it is necessary to esti-
mate the population variance, or dispersion or scores, as we want to
know if our effect is large relative to ordinary error variance. Unluckily
this time, the sample variance is biased in estimating the population
variance. But it turns out that the population variance can be estimated
without bias, simply by changing the denominator of the formula for the
mean. If σ 2 is the population variance, then by definition
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where N is the size of the population. For infinite or very large popula-
tions—which will be assumed in this discussion—this population pa-
rameter can be estimated by the sample statistic s2:
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where the hat over the sigma means that the population parameter is es-
timated, with n now representing the sample size and x being the mean
of the sample. It is obvious that as the sample size increases, n and (n− 1)
become closer together, and the true value of the population parameter
and its estimate converge—which is as it should be.

One more concept is important for understanding inferential statis-
tics. It would be possible to draw a sample of one single observation and
try to use it to estimate the population mean, since the mean is the sum
of observations divided by n, but of course we would not be very con-
fident in its accuracy. We could improve our estimate considerably by av-
eraging two observations—and it would be better, but you would not
want to invest your money on the basis of such an estimate! The mean of
a sample of three observations is even more likely to approximate the
population mean, four is better, and so on. The mean of bigger random
samples better approximates the population mean.
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This fact suggests that if we take a number of random samples of some
size, compute their means, and plot them, the distribution—called the
sampling distribution of the means—will be narrower where n is larger. Ob-
viously if the samples were as large as the population, they would all
have the same mean, which would equal the population mean, and their
variance would equal zero. Smaller samples will vary around the popula-
tion mean. As you would think, the mean of the sampling distribution of
the means equals the population mean. An interesting finding of this
kind of exercise is that, if the samples contain about 30 or more observa-
tions, the sampling distribution will be normally distributed—whether
the population values are normal or not.

Knowledge of the sampling distribution of the means of samples
of size n can allow inferences about the population distribution. It turns
out that the standard deviation of the sampling distribution of the
means, called the standard error, can be estimated from the sample esti-
mate of σ:

$σ x
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n
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2

Now, with knowledge of the mean of the sampling distribution and
an estimate of standard error, we are in a position to answer questions
about the relationship of our sample’s statistics and the population pa-
rameters they estimate.

Confidence Intervals

We have seen that the mean of a sample gives an unbiased estimate of a
population mean. We have seen further that it is possible to estimate the
standard error of the distribution of means of samples of size n, using the
information acquired from one sample.

Because we know what percentage of a population lies within certain
regions of the normal curve measured in standard deviations, we can use
our sample to identify a range within which we are confident, with some
known certainty, that the true population mean will be found. Thus we
might mark, for instance, a 90 percent confidence interval around a sam-
ple mean; this means we are 90 percent certain that if we sampled every
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possible value in the population we would find that the true mean is be-
tween the bounds we have set.

If sample sizes are small (n < 30), then the estimate of the sampling
distribution of the means is not normally distributed, but rather follows
what is called a t distribution. The t distribution is generally flatter and
wider than the normal, meaning that values are concentrated somewhat
less in the center and more in the tails. As samples grow larger the distri-
bution approaches the normal distribution: this is the Central Limit
theorem.

Say we have a sample of 20 observations, that is, with 19 degrees of
freedom, and wish to establish the bounds within which we are 90 per-
cent certain that the true population mean will be found. We look up in a
table and discover that, for df= 19, 5 percent of scores lie above a t value
of 1.729. That suggests that another 5 percent lie below−1.729, account-
ing for 10 percent. The confidence interval is computed:

x t x± ⋅ $σ

It is a simple matter to add and subtract and put a bound around the
sample mean. We can then say, with 90 percent certainty, that the true
population mean, that is, the average of all possible observations, would
lie within the interval we have just defined.

Student’s t-Test

Now that we can estimate mean and variance population parameters
from sample statistics, we are in a position to compare whether the ef-
fects of a manipulation result in a difference in population means of a de-
pendent variable—that is, a true difference and not just one that turned
up in our random samples. First we consider the case where the indepen-
dent variable has two levels. Let us assume that a single measure of the
dependent variable y is a function of the gth level of the causal factor and
some unique deviation due to error ε. In other words:

ygi g gi= +β ε

where g represents the group and i is the individual within the group.
We have noted that ε is the unique term that distinguishes each value

from its group mean. An estimate of the population error in each group is
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made by summing the within-group squared error over all scores and di-
viding by n − 1; this estimates the average deviation of squared individ-
ual measures from their cell means. The square root of this is the sample
standard deviation:
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This statistic is used to estimate the population standard error for differ-
ences between the means of the two groups:
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Now we have a standard for deciding whether β is big or small. A t-
statistic is defined as the difference between the group means divided by
the standard error of the difference:
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Note the “df” subscript to the t; for the two-group case, the degrees of free-
dom equal the total number of values minus two. Given the degrees of
freedom, it is possible to look up the probability that the t-statistic would
have occurred if there was in fact no difference between the two groups,
that is, if the population mean of the difference equaled zero. This is
sometimes expressed in null-hypothesis terminology: the p-value is the
probability of rejecting the null hypothesis of no difference when the
null hypothesis is in fact true. It is customary to say that if p < 0.05, the
difference is significant, though more stringent or more relaxed levels
may be used.

In sum, we can compare the causal effect of a manipulated variable
upon a measured one—that is, the change in a phenomenon resulting
from a hypothesized cause—by estimating the differences, in the popula-
tion, between the means of the dependent variable in the groups receiv-
ing different treatments. The differences are compared to the standard
error, which is an estimate of the amount of deviation to be expected
in the population whether the groups differ or not; if the differences
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between the groups are big relative to the error within groups, then we
can say with some known confidence that the independent variable
causes a change in the dependent variable.

One-Way Analysis of Variance

The t-test can be adapted to a single-group design, where the question is
whether the group mean equals some given value, usually zero; in this
case, there are n − 1 degrees of freedom in the denominator. If we have
more than two groups, it may seem tempting to perform pairwise t-tests
between all the different conditions to see if any of them differ sig-
nificantly from any of the others. This is clearly not okay, as it allows the
analyst to capitalize on chance. That is, if you conduct 20 t-tests at a p <
0.05 significance level, then by chance alone you would expect one of
the tests to have a t greater than the critical value. There are some adjust-
ments that can be made, for instance, those proposed by Bonferroni,
Tukey, Sheffé, and Fisher, but these are all approximations and are as
likely to penalize the researcher as to help. The correct approach when
more than two groups are being compared is to conduct an analysis of
variance, or ANOVA.

The transition from t-tests to ANOVA is very easy, as we can still think
of it in terms of nearly the same model:

ygi g gi= + +µ β ε

where µ is the “grand mean” of all the observations.
As before, the sum of the betas equals zero, and the sum of the errors

within each cell is zero. Again, as before, the question is the size of the
betas relative to the error. In the analysis of variance, a slightly different
statistical distribution is used for the hypothesis test. The F-distribution
maps, as does the t, to a normal population distribution, and as before,
allows calculation of a p-value that gives the probability that we will say
there is no difference between groups when in fact there is. In fact, in the
two-group case F = t2.

The analysis of variance calculates the mean error variance, usually
defined as the mean within-group variance, and the mean between-
group variance, which estimates the amount of difference between
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groups receiving different manipulations. These are defined in terms of
sums of squares. The mean error variance is defined as
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where g is groups, i is individuals within groups, N is the number of mea-
surements, and G is the number of groups. Thus this mean square repre-
sents the average deviation of values in each group around their group’s
mean.

The between-group mean square estimates the difference between
groups:
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where xtot is the grand mean and G is the number of groups.
The results of these two operations are used to compute an F-statistic,

which is related to t:
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As with t, the F-statistic can be compared to a table to determine whether
the observed difference is significant at a preselected probability level. If
F < 1, there is certainly not a significant difference; the criterion value is
a function of the degrees of freedom of the numerator and the denomi-
nator. The one-way analysis of variance tells you if there is any sig-
nificant effect, that is, whether the average differences among the groups
is greater than what would have been expected by chance alone. But it
doesn’t tell you where the difference lies.

Apologetic disclaimer: We hope you will understand that we are simpli-
fying terribly here. Our hope is to describe in general terms how these an-
alytical techniques can be used to determine the significance of effects;
we seriously hope that the interested reader will pick up a thorough text
on the subject, and perhaps take a course in statistics, before proceeding.
For instance, we assume that group sizes are equal; we overlook problems
with nonnormal data; we do not explain the critical importance of the
philosophy of null-hypothesis testing; we ignore the measurement scale;
we say nothing about effect size or statistical power; and there are many
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other gaps in this discussion. We are only trying to introduce the subject
to an audience that may not otherwise have been exposed to it.

Factorial ANOVA

The one-way analysis of variance assumes that there is one independent
variable with two or more levels. For instance, we may test an evolution-
ary algorithm’s performance with 3 or 4—or 20—different population
sizes or with several kinds of tweaks or features. And for these situations
the one-way ANOVA is an extremely powerful way to determine if an in-
dependent variable causes a change in the dependent variable.

Often the more interesting experimental question has to do with the
simultaneous effects of multiple independent variables. Some examples
might be

� the effect of population size in GA with mutation, crossover, and
both

� the effect of problem dimensionality when mutation rate is high,
medium, or low

� the effect of using first-term, second-term, and both-term particle
swarms when populations are initialized symmetrically around
the optimum, or asymmetrically

and so on. If it were possible to list all potential experiments, they would
not be worth conducting, would they?!

The factorial ANOVA can have two or more independent variables. F-
statistics are computed for the effects of each of the independent vari-
ables and for interactions among them.

yghi h g h g igh= + + + ⋅ +µ α β α β ε

Let us begin with an example where we have two independent vari-
ables—called factors—which we call A and B. Each of these factors is ad-
ministered in two levels, which we will call here “high” and “low.” Thus
we can conceptualize the experiment in terms of a 2 × 2 design. We in-
sert some fictional means into the cells, as in Table A.1.

In this design we can look for two kinds of effects, called main ef-
fects and interactions. These particular data have been cooked up to
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demonstrate a main effect for Factor B. There is a large difference be-
tween the sums of the means for the Low level of B (0.5 + 0.5 = 1.0) and
for the High level (1.5+ 1.5= 3.0). Of course the significance of this dif-
ference can only be determined by reference to the error, which cannot
be calculated from this table. In comparison, if we compare the sums for
the High and Low levels of Factor A, which are 2.0 in both cases, there is
obviously no difference. Thus this experiment demonstrates a main ef-
fect for Factor B and none for Factor A (see Figure A.2).

Besides main effects for Factor A and Factor B, there is a third impor-
tant kind of test to be performed in this kind of simple experiment. To
test interactions in a 2 × 2 table of results, we look at the diagonals.

Table A.2 demonstrates two main effects in a 2 × 2 experiment. Here
the sums for Factor A are 0.75 and 2.25, a rather large difference, and the
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Table A.1 A hypothetical pattern of means demonstrating
a main effect for Factor B and none for Factor A.

Factor A

Low High

Factor B
Low 0.5 0.5

High 1.5 1.5

B High=

B = Low

A Low= A High=

Figure A.2 Main effect for Factor B only. The value of the dependent variable depends on the
level of B and not A.



sums for Factor B are also 0.75 and 2.25. Both diagonal sums are 1.5; thus
there is no interaction between the two factors. This indicates that Factor
A has a causal effect on the dependent variable, and that Factor B also has
a causal effect, but the two effects are independent of one another (see
Figure A.3).

Finally, Table A.3 demonstrates an interaction effect. In this case, the
sums for the Factor A columns are both 2.25, as are the sums for B’s rows.
The diagonals, though, are not equivalent. Low-A plus High-B equals 1.5,
while High-A plus Low-B equals 3.0. In this more interesting case we see
that the independent variables do have an effect on the dependent vari-
able, but the effect of each factor depends on the level of the other (see
Figure A.4). Had we conducted our experiment with Low-A only, we
would have concluded that the High level of B increases the dependent
variable, relative to Low B. But if we had tested with High A we would
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Table A.2 A hypothetical pattern of means where both Factors,
A and B, have main effects with no interaction.

Factor A

Low High

Factor B
Low 0.75 1.5

High 0.0 0.75

B Low=

B High=

A Low= A High=

Figure A.3 The parallel lines indicate that both A and B have main effects on the dependent
variable, and they do not interact.



have concluded the opposite. If we had tested either variable without
controlling the level of the other, we might very well have concluded
that it had no effect.

The test of interaction in analysis of variance is extremely powerful
and allows the researcher to investigate subtle and interesting questions
regarding a number of independent variables. Let us warn, though, that
the 2 × 2 ANOVA is the simple case. If there are more than two levels of
either factor and a significant test of interaction is obtained, it may not
be obvious where the interaction lies. There are special tests, including
contrast tests, for focusing the analysis on particular cells in the design.
For instance, we may have wanted to test the question of whether the
Low-A, Low-B condition was significantly different from all the other
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Table A.3 A hypothetical pattern of means showing an
interaction without main effects. The effect
of A depends on the level of B.

Factor A

Low High

Factor B
Low 0.75 1.5

High 1.5 0.75

A Low= A High=

B High=

B = Low

Figure A.4 The effect of A depends on the level of B: they interact.



cells combined: analysis of variance includes a way to perform that test
and many others.

One more warning: ANOVA can be conducted with any number of
factors, but experience has shown that the human mind can rarely com-
prehend interactions of more than three independent variables.

Multivariate ANOVA

The analysis of variance can be extended to the analysis of the effects of
one or more independent variables on more than one dependent vari-
able. This is not a topic for the squeamish, and we will not dwell on it
here. Most statistical software, such as SAS, SPSS, and others, will perform
multivariate analysis of variance, or MANOVA, as it is called. Usually, a
linear composite of the dependent variables is created, and a variety of
ANOVA is conducted using that new combination as the dependent
variable.

One example using MANOVA has been described already in this vol-
ume. Kennedy and Spears analyzed differences in the shapes of curves
generated over time by various algorithms. For instance, if we measured
two algorithms over three points in time (Kennedy and Spears looked at
four algorithms over 20 points in time), we might find the means of the
dependent variable for algorithm 1 after 1,000, 2,000, and 3,000 itera-
tions were (0, 1, 2) and for algorithm 2 were (2, 1, 0). The averages for the
two algorithms are the same, though that is really meaningless, since we
want to compare how they changed over time. A multivariate analysis of
variance will handle this by multiplying the raw data by a vector of
weights that are designed to sum to zero and that maximally distin-
guish the groups, and taking the sum. It is easy to see that (−1, 0, 1) will
do the trick, as would (+1, 0, −1)—we will demonstrate with the first.
The weighted means for the first group, that is, (0, 1, 2) × (−1, 0, 1) =
(0, 0, 2), resulting in a sum of 2; for the second group we get (−2, 0, 0),
summing to –2. This makes it apparent that the two weighted groups will
differ; weighting each value in the data set lets us perform a univariate
ANOVA on the transformed data, to test the hypothesis that change over
time is different for the two groups.

If you are considering using a sophisticated technique such as this,
we hope it goes without saying—but we’ll say it again—that a good text
should be kept nearby, or preferably, a good graduate-level class should
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be taken. Calculation of multivariate composite weights can be done
without effort in some of the powerful statistical programs that are avail-
able—kids, don’t try this at home.

Regression Analysis

Regression analysis has a kind of bad name in the computational intelli-
gence world because it is so, well, linear. In fact, all the analytic methods
described so far are subsets of the so-called General Linear Model (GLM),
so the accusation can be directed at ANOVA as well as regression. Perhaps
snobbish computer scientists would feel better if we suggested that re-
gression analysis and its kin can be considered as a linear univariate sub-
set of a larger family of models, which we could call “neural networks.”
In fact, the argument can be made and has been made; neural nets and
regression are very closely related methods. But beyond that, there is no
constraint that regression models have to be linear; exponents can be
placed on the terms of the equations, and any kind of data surface can be
analyzed.

Regression analysis is typically used when both the independent and
the dependent variables are numeric. For instance, we might want to
vary population sizes in a GA, or neighborhood size in a particle swarm,
and see its effect on fitness after 1,000 iterations. In this case we will use a
familiar formula:

y xi i i= + +µ β ε

In ordinary quantitative regression the x’s are the values of the inde-
pendent variable and may fluctuate numerically as we assign our condi-
tions; for instance, if we have a hypothesis about population size, then in
some conditions population= 100, thus x= 100, and so on. In quantita-
tive regression analysis, error is not calculated within cells as in ANOVA,
but is calculated as a function of the deviation of observed values from
values calculated on a regression line. Beta values are found that mini-
mize squared error, and these can be plotted as a line through the data
that minimizes the distance from data points. A line slanted upward to-
ward the right, such as the one in Figure A.5, indicates that the indepen-
dent variable has a positive effect on the dependent variable. If it had no
effect, the line would be level, and a negative effect would slope upward
toward the left.
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As the graph indicates, the system parameter µ functions as the inter-
cept of a linear equation, that is, it gives the value of the dependent vari-
able when the value of the independent variable equals zero; β represents
the slope of the regression line. Where the independent variable has a
large effect, the slope of the line will be steep and the β will be large; no
effect results in a flat line, and β ≈ 0. The size of β required for a sig-
nificant effect depends, as with previous models, on the dispersion of the
data; it is possible to have a very steep regression line but error variance
very large, meaning that the effect is strong on average but highly vari-
able. For regression, an F-statistic is computed, and significance tested,
based on the ratio of the slope estimate divided by residual error.

Regression is sometimes misused, especially when independent vari-
ables are not assigned by the researcher but are simply collected observa-
tionally. In this case it cannot be said that an experiment has been con-
ducted, and in fact all that exists is a correlation—for simple regression is
very little more than a form of correlation equation. But if the researcher
assigns values for the independent variables and measures effects on a
dependent variable, then an experiment has been conducted, and the
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Figure A.5 A regression line is plotted through a set of points.



slope of the regression line—the β—estimates the strength of the effect of
the independent variable. More will be said about the weakness of
correlational research below.

Multiple regression allows testing of effects of multiple independent
variables simultaneously. The variance in the dependent variable is “ex-
plained” by the values of the independent variable, with the effect of one
variable removed before the next is tested. There are numerous ways to
implement a multiple regression test, and some of the ways are not rigor-
ous—regression is easily abused by untrained, untalented, or unscrupu-
lous analysts.

The Chi-Square Test of Independence

In some experiments it is not possible to make a numeric measurement
of the dependent variable, but only to count occurrences of certain kinds
of results. For instance, a particle swarm experiment might look at how
many individuals end up in a particular region of the parameter space, or
solve the problem, or accomplish some objective; a researcher might
measure the proportion of times that success, or failure, or some other
event, is encountered. In these cases no quantitative measure is taken,
other than simply counting events. (Note that proportions are only fre-
quencies divided by a total; thus, the methods described here can be ap-
plied to both frequencies and proportions.)

Consider, for instance, a situation where High and Low levels of an
independent variable are administered, and we count how many times
the algorithm succeeds or fails to meet a criterion. In this case it may be
hypothesized that the two variables are not independent; that is, we hy-
pothesize that the number of observations associated with one level of
one variable (say, the Fail-Succeed variable) will be affected by the level
of the other (Low-High). The resulting data can be displayed in a contin-
gency table such as in Table A.4.

This data set has 125 observations in it. From these simple frequen-
cies we can calculate what the expected count in each condition should
be. For instance, the first row contains 20 + 25 = 45 observations, and
the first column contains 20 + 50 = 70 observations; thus we would ex-
pect to find, in the first (Low-Fail) cell,

E
T T

Nij

i j
=

×
=

×
=

45 70
125

252.
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where Ti is the total number of observations for the row, Tj is the total for
the column, and N is the total number of observations. Thus we expect
the cell to contain 25.2 observations. The same calculations can be done
for all cells, resulting in the table of expected frequencies, shown in Table
A.5.

We are now ready to compute the χ2 (chi-square) test of independence
for this experiment. The formula is very simple:

χ 2
2

=
−

∑∑
( )O E

E
ij ij

ijji

that is, it is the sum of the squared differences between the expected and
observed values of each cell, divided by the sum of the expected values.
In our present example, this amounts to
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We wanted to test the hypothesis that the two variables are not inde-
pendent. We do this by looking up the probability that a chi-square this
big or bigger, with this number of observations, would be found if—the
big if—the two variables were in fact independent. The p-value gives us
the probability of saying there is an effect when there actually isn’t, or,
more formally, it is the probability of rejecting the null hypothesis when
the null hypothesis is in fact true. Degrees of freedom for χ2 are defined
as the number of rows minus 1 times the number of columns minus 1;
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Table A.4 A contingency table.

Fail Succeed

Low 20 25

High 50 30

Table A.5 Expected frequencies.

Fail Succeed

Low 25.2 19.8

High 44.8 35.2



a 2 × 2 table such as this then has 1 degree of freedom. Looking up in a
table of critical values of χ2, we see that the value needs to be greater than
3.84 to be significant at the p< 0.05 level with 1 degree of freedom. Thus
there is insufficient evidence to say that manipulating the level of the
Low-High variable resulted in a real difference in the numbers of Suc-
cesses and Failures.

The χ2 distribution is an important one in inferential statistics and
can be implemented in a number of kinds of tests. This example was pre-
sented here as a kind of experimental design that can be analyzed with a
test that is simple and easy to understand.

Experimental Design

The analysis and design of experiments are just two sides of the same
coin. Before an experiment is run the researcher should know how the
analysis will be conducted. Are you running a 2 × 3 × 2 factorial experi-
ment? Then allocate your trials accordingly, and plan your analysis. Do
you expect certain cells in your design to contrast with certain other
cells? Then you should express this in the beginning, and plan to allocate
your degrees of freedom to test your exact hypothesis. A rational, ef-
ficient research plan will allow you to find the answers to your questions
with confidence.

An experiment forces you to state your hypothesis, at least to your-
self, before you start collecting data. You don’t just go fishing for some-
thing/anything; you should know what you’re looking for and plan a ra-
tional way to test for it. Computer experiments are ridiculously easy to
conduct, compared to experiments in the real world. The test of a sto-
chastic algorithm should have equal cell sizes, carefully chosen levels of
independent variables, and a well-planned research design in general.
You can control every possible confounding variable (that is, one that
correlates with an independent in such a way that it is not clear which
one caused an observed effect); in fact a kind of perfection can be
achieved in computer-generated data that is impossible in any other
field.

One word: simplicity. The 2 × 2 factorial design is elegant, compre-
hensive, and easily understood. The hypothesis of an experiment should
be plainly stated, and the statistical result should tell the reader whether
the initial hypothesis has been supported or not. Where—as is usually
the case—the result suggests further research, the further research should
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be conducted with as much care as the original study. There is nothing
worse than attempting to answer all questions about a topic simulta-
neously, throwing every possible factor into the design and then trying
to figure out what may have caused what. Two or three factors at a time
can provide insights that can be built upon; where interactions among
factors are expected, by all means test for those interactions, but in real-
ity the interaction of more than a couple of variables is not only hard to
understand but rare.

We have warned above that this appendix is to be considered an ex-
tremely superficial introduction. There are a great many controversies
and challenges in the use of these research methods—another reason to
keep studies simple. On the other hand, techniques such as analysis of
variance provide very powerful tools for determining, with known cer-
tainty, whether a hypothesized cause really does produce a hypothesized
effect.
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Appendix B
Genetic Algorithm
Implementation

In this appendix, a genetic algorithm implementation is presented.
Software for it is on the web site for the book at www.engr.iupui.edu/

�eberhart/web/PSObook.html. The implementation includes files neces-
sary to train a neural network to classify the Iris Data Set introduced by
Anderson (1935) and popularized by Fisher (1936). The genetic algo-
rithm is used to evolve the weights of the network.

The data set contains 150 patterns, each with four inputs and one
output. Each input is a feature of an iris flower: sepal length, sepal width,
petal length, or petal width. The output is the species of flower. There are
three species, each represented by 50 patterns in the data set. It is a noto-
riously hard data set to classify well.

The genetic algorithm (GA) implementation is basically a “plain va-
nilla” GA, but with a few interesting options available. It implements
one-point, two-point, or uniform crossover, as well as mutation, with an
interesting set of options available for mutation, one of which is reminis-
cent of evolution strategies. To learn more about the basics of genetic al-
gorithms, refer to Chapter 4.

Source code is provided on the web site along with the executable
code needed to evolve neural network weights. We provide the source
code because of the somewhat unusual nature of genetic algorithm
implementations.

In the case of genetic algorithm implementations the fitness function
being optimized is the main user-supplied component. This fitness func-
tion is an integral part of the genetic algorithm, and so must be coded
and compiled with it. For each major change in fitness function, a new
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executable GA must be compiled. Therefore, for you to apply the GA to
your problem, you will need to substitute your fitness function into the
source code and recompile.

The Run File

To run the genetic algorithm implementation on the web site requires
the executable file ga.exe and an associated run file, for example, ga.run.
To run the implementation from within the directory containing ga.exe
and ga.run, at the system prompt type ga ga.run at the DOS prompt.

One way to present the genetic algorithm implementation is to exam-
ine and discuss the contents of a typical run file that can be invoked with
the executable:

c:\ga\iris.dat
c:\ga\weight_1
c:\ga\corect_1
4
2000
16
4
3
150
70
0.60
0.01
0.02
1
0
0
2

The first entry, iris.dat, is the name of the data file. The number of
targets appears on the first line of the file, and targets are included with
each pattern. The next entry, weight_1, is the name of the file into which
the “evolved” weights are placed at the end of the run. Next is the name
of the file into which the results (outputs) are written, corect_1 in this
case.
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Following the file list is a list of numbers: the number of hidden neu-
ral network processing elements (PEs) (4), the maximum number of gen-
erations (2,000), the number of bits per variable (16), the number of in-
put PEs (4), the number of output PEs (3), the number of patterns in the
pattern file (150), the population size (70), the percent probability of
crossover divided by 100 (0.60), the percent probability of mutation di-
vided by 100 (0.01), the acceptable sum-squared error to which the net-
work weights are to be evolved (0.02), the “mutate according to bit posi-
tion” flag (1), the fitness shift flag (0), the “mutate according to variance”
flag (0), and the crossover flag (2).

The numbers of input, hidden, and output PEs define the configura-
tion of the neural network for which the weights are to be evolved. The
activation function utilized in the software is (tanh() + 1)/2, which has
an output range from 0 to 1. The maximum number of generations is the
maximum number of epochs, that is, the maximum number of times the
entire pattern set will be evaluated for fitnesses of individuals.

The number of bits per variable allows the user to set the resolution
for each vector element; in this case, each element represents one net-
work weight. The trade-off here is that a relatively high number of bits
provides the resolution needed to successfully adjust weights on a com-
plex error surface, but also increases computational complexity sig-
nificantly. A debate has raged for years with respect to weight resolution
needed to guarantee successful network training. This GA implementa-
tion provides a tool to investigate this question with a variety of data sets
representing various problems.

The size of the pattern file can of course be varied to investigate the ef-
fect on test sets. If this value n is less than the number of patterns actually
in the designated pattern file, only the first n patterns will be utilized for
evolving the network weights; all patterns are utilized, however, when
the network is tested.

The number of population members (70 in this case) can be varied ac-
cording to the problem. A higher number allows a more thorough explo-
ration of the problem domain, but increases computing time. Typically,
the value should be set between 20 and 200, but values outside the range
may be appropriate for relatively simple problems that involve relatively
short individuals (<20) or for highly complex problems involving very
long chromosomes (>200).

The probability of crossover should be set between 60 and 80 per-
cent for many problems. Straightforward two-point crossover as de-
scribed in Chapter 4 can be implemented, as can one-point and uniform
crossover.
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The next value (0.01 in the list) is the probability of mutation. Op-
tions for mutation implemented in this GA are explained later. The value
listed here is a sort of baseline mutation value, as it can be modified in up
to two ways. If not modified, however, the value represents the chance
that mutation will occur, determined bit by bit.

The next value, 0.02, is the sum-squared error target for the perfor-
mance of the “evolved” neural network. The GA will terminate when
this error level is achieved or when the maximum number of genera-
tions have been calculated, whichever occurs first. In either case, the re-
sult and weight files are written.

The next value (1) is the “mutation according to bit position” flag.
When this flag is 0 (disabled), mutation is carried out in the normal way:
mutation is done bit by bit with the probability of mutation listed ear-
lier. When it is 1 (enabled), the probability of mutation mb varies with
the bit position in each variable. The variation in mutation across each
variable approximates a Gaussian function; that is, it is much more prob-
able that the least significant bit will be mutated than it is that the most
significant bit will. It is implemented according to the following equa-
tion, where b is the bit position (b = 0 for the least significant bit, b = 1
for the next-to-least significant bit, etc.) and m0 is the probability of mu-
tation in the run file:

m m eb
b= −

0
21

2π
/ (B.1)

Note that this is only an approximation of a Gaussian function. Note
also that the calculation is done across each variable. So, in the above run
file, for a variable represented by 16 bits, the resulting probability of mu-
tation is m0(1/2π)1/2, or about (.01)(.40) for the least significant bit and
about (.01)(.40)exp(−7.5) = (.004)(.00055) for the most significant bit.
The variance for the quasi-Gaussian function can thus be seen to depend
upon the variables’ dynamic range (−10 to 10 in this case) and how the
variables are represented by the binary string.

The next value in the run file (0) provides an option to implement a
shift in fitness values (for purposes of reproduction only). When this flag
is 0, the option is disabled, and “raw” fitness values are used to calculate
normalized fitness values for the reproduction step. When set to 1, all
fitness values are shifted so that the minimum value is 0.1; the
min_value to max_value fitness range is preserved. For example, if all raw
fitness values are between 0.90 and 0.99, implementing fitness shift will
scale them between 0.10 and 0.19. This provides an expanded fitness
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differential that is often useful when fitness values become bunched to-
gether near 1.0 late in a GA run.

The next-to-last item in the run file (0) allows a change in mutation
rate if the variance of the fitness values drops below 0.05. This change
can be in addition to (on top of, so to speak) the change caused by mutat-
ing according to bit position, if it is enabled. If this option is disabled (0),
no change in mutation rate is triggered by a low variance value. If it is
enabled, the mutation rate mlv is increased for low variance values, ac-
cording to the following equation, where mprev is the previous (exist-
ing) mutation rate, modified by bit position or not, depending on the
modify-by-bit-position flag:

m miv prev= − + <{(int)[( . var) * ] } var .005 100 1 005for (B.2)

This option allows the mutation rate to increase significantly toward
the end of a run when there are often many identical population mem-
bers and fitness value variation is quite low. In the limit as variance ap-
proaches 0, the mutation rate multiplier will approach 6. This sig-
nificantly “bumps up” mutation, facilitating exploration of more of the
problem space.

The last value in the list (2) is the crossover flag. The GA implementa-
tion allows the user to choose either of three kinds of crossover. If the
flag is set to 0, one-point crossover is implemented; if it is set to 1, uni-
form crossover is implemented; and a value of 2 implements two-point
crossover.

Recompiling

Because source code for the genetic algorithm is included on the web site,
it is possible to use the GA to optimize functions other than neural net-
work weights. To do so, the following alterations to the source code that
are tailored to the problem must be made.

First, in the file ga.c the individual population length calculation
must be changed to reflect the new problem. The length is currently cal-
culated as

length = ((N + 1) × H + (H + 1) × P) × K

which reflects the number of weights in a neural network.
Second, in the file fitness.c it is necessary to do the following:
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1. Arrange and allocate memory to the parameters for the new prob-
lem. In the example provided on the web site, the connection
weights are arranged into two weight matrices in accordance with
the topology of the backpropagation network.

2. Change the getWeight() function source code to correspond with
the new parameter arrangement.

3. Write a new evaluation function to replace the one (bp.c) that is
provided.

4. Modify the final fitness calculation source code according to the
meaning of the return value of the new evaluation function. In
the existing bp() function, the return value is the mean sum-
squared error, not the fitness. This can be incorporated into the
new evaluation function source code.

Third, the run file must be modified as appropriate in light of the new
variable structure.

Running the Program

When the program is run, values of the best, average, and worst individ-
ual fitnesses are plotted on the screen. (Be sure that the file egavga.bgi is
in the same directory as the executable file ga.exe.) By observing the plot
a number of interesting things can be learned. For example, with the
variance flag set, which implements a higher mutation rate for low vari-
ance, it is possible to see an almost immediate effect on the best, average,
and worst values when the variance drops below 0.05.
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Glossary

ACE (agent-based computational economics) Leigh Tesfatsion’s para-
digm for the computational simulation of economic systems. Includes
agents called “tradebots” that sometimes choose whether to interact
with other agents.

Adaptation Any process whereby a structure is progressively modified
to give better performance in its environment (Holland, 1992).

Allele Alternate forms or varieties of a gene.

Arity The number of arguments required by a function.

Artificial intelligence A name for a paradigm in which people attempt to
elicit intelligence from machines.

Artificial life (sometimes “Alife”) The study of alternative forms of life
to biological.

Artificial selection The survival of the fittest, as defined by some
humans.

Attitudes Usually defined in scientific research as units of integrated
cognition and emotion, thoughts that are bundled with evaluations.

Attractor A set of points or states in state space to which trajectories
within some volume of state space converge asymptotically over time
(Kauffman, 1993).

Autocatalytic Causing positive feedback.

Autokinetic effect The apparent movement of a fixed point of light in a
dark room; results from movements of the eyes as they try to adjust to an
invariant stimulus.

Autonomous The ability of an agent to form decisions independently.

Backpropagation of error A learning rule for multilayer feedforward
networks, in which weights are adjusted by backward propagation of the
error signal from outputs to inputs.
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Belief space In cultural algorithms, information about what kinds of
proposed solutions have performed especially well, and sometimes ones
that have performed poorly and should be avoided; interacts with the
population space.

Biomorphs Evolvable graphical creatures created by Richard Dawkins.

Bitstring A string or series of ones and zeroes.

Bottom up System effects resulting from local interactions or emergent
order.

Breadth-first search A search strategy that involves going into the tree
one layer at a time, through all branches, evaluating the result of each
partial search before proceeding to the next layer.

Building blocks In a genetic algorithm, this term generally refers to
compact (short) schemata that are part of highly fit individuals and
that, with high probability, appear in ever-increasing numbers in future
generations.

Cellular automaton (CA) A very simple virtual machine that can result
in complex, even lifelike, behavior.

Cellular robots A population of robots based on insect societies, where
global intelligence emerges from the local interactions of individually
unintelligent beings.

Central executive A hypothesized centralized control mechanism of a
cognitive system.

Chatterbots Programs whose specialty is real-time verbal interaction
with human users.

Chromosome A data structure that holds a “string” of task parameters,
or genes (IEEE NNC, 1996).

Classical conditioning The behaviorist paradigm that describes learned
autonomous nervous system conditioning of responses to stimuli that
precede the response.

Closure property In genetic programming, for the closure property to be
satisfied, each function must be able to successfully operate on any func-
tion in the function set and on any value of any data type assumable by a
member of the terminal set.

Cognitive consistency The state that exists when cognitive elements fit
together with one another, as well as with phenomena in the real world.
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Cognitive dissonance A clash or inconsistency among cognitive ele-
ments, including beliefs, behaviors, and attitudes.

Combination Some number of elements are selected from a universe of
possibilities, without regard to their order.

Combinatorial explosion The number of possible solutions, and hence
the difficulty, of a problem increases exponentially with its
dimensionality.

Communicative gene Buck and Ginsburg’s hypothesis that social ten-
dencies called displays and preattunements evolve together through the
adaptive selection of communicative relationships.

Complexity The interaction of many parts of a system, giving rise to
behaviors and/or properties that are not found in the individual ele-
ments of the system.

Compressible A series of symbols can be encoded in fewer bits of infor-
mation than it contains.

Computational intelligence Comprises practical adaptation concepts,
paradigms, algorithms, and implementations that enable or facilitate
appropriate actions (intelligent behavior) in complex and changing
environments.

Confirmation bias The propensity of people to irrationally seek confir-
mation for their beliefs, rather than falsification.

Conformist transmission A term used by Boyd and Richerson for cul-
tural evolution with a heavy dose of frequency-dependent bias.

Constraints The state of a node in a network depends on, or is con-
strained by, the states of other nodes and the strengths of their connec-
tions to it.

Constriction coefficient One of a family of coefficients that enable con-
trol over the convergence properties of a particle swarm system.

Convergent evolution Occurs when similar or identical phenotypic
structures evolve through different genetic pathways.

Correlation A form of statistical association between two or more vari-
ables that gives some evidence for predicting one from the other.

Crossover Term used by genetic algorithm researchers for sexual recom-
bination of chromosomes.

Crossover rate In a genetic algorithm, the probability that, given two
parent chromosomes, the crossover process will occur.
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Cultural algorithms A search paradigm, promulgated by Robert Rey-
nolds, that uses a belief space of stored information to enhance an evolv-
ing population’s search.

Cultural transmission The process whereby phenotypic traits, such as
learned behaviors, are passed from one individual to another.

Culture The full set of attitudes, beliefs, behaviors, and artifacts that are
shared by a population over a considerable length of time. A pattern of
persistent, profound, and widespread norms.

Cybernetics The study of control systems, based on the theory that
intelligent living beings adapt to their environments and accomplish
objectives primarily by reacting to feedback from their surroundings.

Deduction Inference that is concerned with beliefs that follow from one
another by logical necessity.

Defecting In game theory, the decision to try to gain advantage over an
opponent, rather than cooperate for mutual advantage.

Depth-first search A search strategy that comprises going from the start
all the way to the end of a path, evaluating one entire proposed solution.
Once the end is reached, depth-first search goes back to the first decision
node and searches to the end of the next path, and so on.

Deterministic A situation in which effects follow certainly from causes.

Dialectical thinking Searching for the truth of both statements and the
overarching proposition that reconciles them.

Direct bias Boyd and Richerson’s term for influence that occurs when
the individual selects a belief or behavior based on attributes of the vari-
ant itself; that is, it may appear to be the best choice for some reason.
Direct bias implies that better solutions to problems will become preva-
lent in a population.

Discrete recombination In evolution strategies, an operation that com-
prises selection of a parameter value from either of two parents.

Dynamic social impact theory Revision of social impact theory that
considers the simultaneous causal interaction of individuals as sources
and targets of influence upon one another.

Element In evolutionary computation, a vector element generally corre-
sponds to one parameter, or dimension, of the numeric vector, or
chromosome.
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Elitist strategy In a genetic algorithm, ensuring that the individual
chromosome with the highest fitness is always copied into the next
generation.

Embodiment The property of having a body; includes occupying an
observable position in space, perceiving the environment from a central
position, and exaggeration of proximal causes relative to distal ones.

Emergence Global behavior of a system is not evident from the local
behavior of its elements.

Endosymbiont theory The theory that organelles were originally forms
of bacteria that entered plant and animal cells at a very early period of
evolution.

Entropy The tendency of systems to lose energy and order and to settle
to more homogenous states.

Epistasis In evolutionary computation, any kind of strong interaction
among genes, not just masking effects. It is the extent to which the con-
tribution of fitness of one gene depends on the values of other genes.
Highly epistatic problems are difficult to solve, even for genetic algo-
rithms. High epistasis means that building blocks cannot form, and there
will be deception (IEEE NNC, 1996).

Eugenics The belief, prevalent in the early-twentieth century, that it
would be a good idea to improve the human race genetically, especially
by encouraging the reproduction of “desirable” individuals and discour-
aging the reproduction of “undesirable” individuals.

Evolutionary computation Encompasses methods of simulating evolu-
tion on a computer. The field includes research in genetic algorithms,
evolution strategies, evolutionary programming, genetic programming,
particle swarm optimization, artificial life, and so on.

Evolutionary programming An evolutionary algorithm developed in
the mid-1960s. It is a stochastic optimization strategy that is similar to
genetic algorithms, but dispenses with both “genomic” representations
and crossover as a reproduction operator (IEEE NNC, 1996).

Evolution strategies A type of evolutionary algorithm developed in the
early 1960s in Germany. It employs real-coded parameters, and in its
original form, it relied on mutation as the search operator and a popula-
tion size of one. Since then it has evolved to share many features with
genetic algorithms.
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Evolution window In evolution strategies, that step-band size, or win-
dow, within which mutation operations result in fitness improvement.

Exploitation (exploit) A search strategy that focuses on knowledge that
has already been gained.

Exploration (explore) A search strategy that searches widely by sam-
pling new regions of the problem space.

Finite state machine A transducer that can be stimulated by a finite
alphabet of input symbols, can respond in a finite alphabet of output sig-
nals, and possesses some finite number of different internal states (Fogel,
1991).

Fitness The measure of the probability that an organism will survive to
reproduce. A measure of the degree to which an individual (candidate
solution) successfully solves the problem being addresses by an EA.

Fitness landscape The topography of the fitness surface over the param-
eter space.

Fitness space A one-dimensional space containing the fitness values of
patterns of parameters.

Fixed action pattern A behavior that an organism emits in response to a
particular, often very specific, stimulus.

Frequency-dependent bias Boyd and Richerson’s term for cultural
transmission that exists when the individual adopts a variant because it
is statistically prevalent in the population, or at least among the people
that the individual interacts with.

Full approach In genetic programming, each limb of the program tree
extends for the maximum allowed depth.

Function space Contains the ranges of results of functions.

Fuzziness Refers to nonstatistical imprecision and vagueness in infor-
mation and data.

Gaia hypothesis “The Gaia hypothesis says that the temperature, oxida-
tion, state, acidity, and certain aspects of the rocks and waters are kept
constant, and that this homeostasis is maintained by active feedback
processes operated automatically and unconsciously by the biota” (Love-
lock, 1988).

Gbest In particle swarm jargon, a neighborhood comprising the entire
population, so that every individual is influenced by the very best solu-
tion found so far.
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Generation In an evolutionary algorithm, an iteration of the measure-
ment of fitness and the creation of a new population by means of repro-
duction operators (IEEE NNC, 1996).

Generation gap In an evolutionary algorithm, the percentage of the
population replaced each generation.

Genetic algorithm (GA) A computational method for adapting problem
solutions that is based on genetic aspects of evolution. Implementations
typically use fixed-length character strings to represent their genetic
information, together with a population of individuals that undergo
crossover and mutation in order to find promising regions of the search
space (IEEE NNC, 1996).

Genetic drift Genetic changes that evolve under minimal selection pres-
sure and thus do not affect adaptation.

Genotype The genetic composition of an organism or data structure;
the information contained in the genome (IEEE NNC, 1996).

Global method In evolution strategies, uses the entire population of
individuals as potential sources from which individual components for
the new individual can be obtained.

Global optimum The most optimal point in the parameter space.

Graceful degradation The behavior of a complex adaptive system is not
catastrophically affected by modification or removal of some of its
components.

Gradient A kind of multidimensional slope, often considered to lead
toward an optimum.

Gray coding A kind of binary encoding that removes the Hamming
cliffs.

Greedy algorithm An algorithm that makes the best decision, as com-
puted locally, at each point in the series.

Grounding problem In order to have meaning, symbols cannot refer
only to one another, but must eventually refer, even if through chains of
relations, to real things or events in the environment.

Group polarization Groups tend to exaggerate the opinions of the indi-
viduals. Thus, if the group members were initially cautious, then group
decision would be even more cautious, and if they initially favored riski-
ness, then the group decision would be even more daring.
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Group selection The hypothesis that species may engage in behaviors
that are good for the group, even when they reduce the chances of sur-
vival of the individual.

Guided variation Boyd and Richerson’s term for adaptation that occurs
when evolution is informed by within-lifetime adaptation.

Halo effect A person or object with some positive characteristics is
assumed to have other positive characteristics as well.

Hamming cliffs In order for a binary number to increment by one
numeric unit, it is sometimes necessary to flip all its bits, for example,
01111 (15) to 10000 (16). A numeric algorithm may encounter difficulty
moving over this “cliff.”

Haplodiploidy A genetic strategy in which males are haploid, that is,
their cells contain only a single set of chromosomes, and females are dip-
loid, containing two homologous chromosomes and thus two copies of
each gene. In many social insects, for instance, fertilized eggs (diploid)
become females, while unfertilized eggs (haploid) develop into males.

Heuristics Shortcuts in a search strategy that reduce the number of
points in the space that need to be examined.

Hidden nodes Nodes in a neural net that receive their inputs from other
nodes and send their outputs to other nodes.

Hill The depiction of a local optimum on a fitness landscape.

Hill climbing A strategy in which search proceeds from a position that is
updated only when a better position is found.

Hypercube The conceptual representation of points in binary space of
more than three dimensions. A hypercube has the characteristics of a
cube; that is, the corners of the hypercube can be conceived as bitstrings
whose distance is the number of sites in which they differ.

Hyperspace A Cartesian coordinate space of high dimension, typically
higher than three dimensions.

Immergence Local states of elements are affected by global system
behavior.

Inclusive fitness The concept that organisms strive to ensure the sur-
vival of others whose genes most resemble their own.

Indirect bias Boyd and Richerson’s term for cultural transmission that
occurs when a variant is associated with other variants that are consid-
ered desirable.
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Individual In evolutionary computation, a single member of a popula-
tion. Each individual represents a possible solution to the problem being
solved; it is a single point in the problem space.

Induced compliance An experimental paradigm in social psychology,
used in cognitive dissonance research. In the induced compliance exper-
iment an individual is compelled to behave in a way that contradicts his
or her attitude; the person’s opinion is often seen to change in the direc-
tion of an attitude they were persuaded to express.

Induction Inference that is supported by the accumulation of evidence.

Inertia weight A kind of coefficient used in particle swarms to control
the trajectories of particles.

Inference engine A program or subroutine that draws conclusions from
premises.

Information theory A branch of mathematics that analyzes the amount
of information or entropy in a system.

Intelligence The quality of a good mind.

Intermediate recombination In evolution strategies, setting each pa-
rameter value for a child at a point between the values for the two
parents. Typically, the value is set midway between those values.

Intractability The quality of a problem that is too difficult to solve.

Landscape correlation The distance between two points in a multidi-
mensional space correlates with the difference in their fitness values.

Lbest In particle swarm jargon, a neighborhood comprising some num-
ber of adjacent neighbors in the population array.

Life space Lewin’s conception of a topological field comprising the
interaction of a person and his or her environment.

Linear separability Exists when some weighted additive combination of
properties can be used to classify examples. When attributes of things are
graphed, a straight line or surface can be drawn that perfectly separates
the two kinds of things.

Local method of recombination In evolution strategies, forming one
new individual using components from two parents that are randomly
selected.

Local optima Relatively optimal solutions that are not the best.

Locomotion Kurt Lewin’s term for the person’s movement through the
life space. Does not necessarily or usually mean movement through
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physical space; it might better be thought of as change of state than
change of position.

Maximum The vector of input parameters that produces the greatest
function output.

Means-end analysis A classical AI technique for comparing the current
state to the goal state and searching for an operator that reduces the
most important differences between the two.

Memes Richard Dawkins’ proposition that ideas and other cultural sym-
bols and patterns, called memes, are analogous to genes; they evolve
through selection, with mutation and recombination, increasing their
frequency in the population if they are adaptive.

Memetics A view originating with Richard Dawkins that suggests that
cultural features such as ideas and artifacts evolve in a process similar to
genetic evolution.

Meta-evolution Described by developers of evolution strategies as the
evolution of evolution, or evolution of the second kind; said to be
accomplished by evolution strategies.

Mind That which thinks; Sarbin and Coe (1979) call it “a reified region
of mythical space.”

Mindlessness The production of automatic behaviors, often comprising
inappropriate responses to stimuli that superficially resemble familiar
ones.

Minimum The vector of input parameters that produces the smallest
output.

Modeling See social learning.

Moore neighborhood The topological region around an individual in a
two-dimensional cellular automaton comprising adjacent cells above,
below, to the left and right, and the four diagonals.

Multimodality Exists when a problem has multiple solutions, global
optima, or good local optima.

Mutation rate The proportion of chromosome elements that will be
altered on average by mutation.

Natural language processing Computation based on the understanding,
analysis, and generation of natural (e.g., written or spoken) language.

Neural networks A family of statistical configurations that superficially
resemble the arrangements of neurons in the brain.
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NK landscapes The fitness surface over a parameter space of N nodes,
with an average of K inputs to each.

Nodes A term for the vertices of a graph.

Norm A pattern of attitudes, behaviors, and/or cognition shared by
members of a group.

Normalized fitness An individual’s normalized fitness is its raw fitness
value divided by the sum of the raw fitness values for all population
members.

N-squared complexity A simulation program may have to loop through
each of the elements one at a time, and for each one calculate the dis-
tance to all of the others, in order to identify nearest neighbors.

Objective function The statement of the goal of an optimization
problem.

Observational learning See social learning.

One-point crossover In a genetic algorithm, one-point crossover in-
volves selecting a single crossover point at random and exchanging the
portions of the individual strings to the right of the crossover point.

Operant conditioning The behaviorist paradigm that describes learned
skeletomuscular (operant) responses that enable the organism to act on
its environment in order to obtain a reinforcement.

Optimization The adjustment of a system in order to minimize or maxi-
mize the result of some function.

Optimum A pattern of parameters that produces a minimum or maxi-
mum function result, generally.

Organelle Structures found in almost all eukaryotic cells that have their
own DNA and are able to synthesize some of their own proteins;
organelles may be descended from prokaryotic invaders.

Overselection In genetic programming, for very large populations of
1,000 or more, highly fit individuals are sometimes given an even greater
probability of selection than their normalized fitness would indicate.

Parameter space Contains the legal values of all the elements that can
be entered into a function to be optimized.

Particle An infinitesimal, moving, usually multidimensional representa-
tion of a vector.
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Particle system A kind of computer graphics method that comprises
large numbers of individual agents or objects, each having its own
behavior.

Payoff matrix A depiction of the pattern of rewards and costs (payoffs)
allocated to each participant in an interaction on the basis of their own
and their opponents’ choices.

Peak The depiction of an optimum on a fitness landscape.

Perceptron A simple neural network consisting of an input layer con-
nected to a single processing element. The activation function of this
unit is a linear threshold function, applied to the inner product of the
input and weight vectors.

Periodic attractor A repeating, cyclic sequence of events.

Phase transition A movement between static, periodic, or chaotic states.

Phenotype The expressed traits of an individual (IEEE NNC, 1996). Also,
the observed characteristics of a species.

Pheromones Chemicals emitted by individuals that can elicit a response
from conspeciates.

Point attractor The dynamics of a system simply stop.

Polarization The tendency of attitudes in a population to cluster in
groups of proximal individuals.

Population In evolutionary computation, a group of individuals that
may interact together, for example, by mating and producing offspring.
Typical population sizes in evolutionary computation range from one
(for certain evolution strategies) to many thousands (for certain genetic
programming problems) (IEEE NNC, 1996).

Population space In cultural algorithms, the space that is searched by
an evolving population.

Prisoners’ dilemma A situation where two interacting players choose
whether to cooperate or compete with one another. If both cooperate,
their payoffs are high, and if both compete, payoffs are low. If one com-
petes while the other cooperates, the defector receives a very high reward
while the cooperator’s payoff is very low—the lowest in the game, called
the “sucker’s payoff.”

Probability A form of uncertainty that exists when it is not known
whether a discrete event will occur or not.
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Probability threshold A number that sets the probability of an event. A
random number can be chosen from the same range as the threshold; if
the random number is smaller than the threshold, the event occurs, oth-
erwise not.

Problem space According to Simon and Newell, the set of states, opera-
tors, goals, and constraints comprising a problem. In more general use,
the space of potential parameter values that can be tried to solve a
problem.

Quasirandom Processes that appear random, though the cause of the
sequence is deterministic.

Ramped half-and-half method In genetic programming, a method of
creating programs with evenly distributed depth parameters. Within
each subpopulation of a given depth, one-half of the programs are cre-
ated using the grow approach, one-half using the full approach.

Random search A strategy, also called “random generate and test,” in
which random problem solutions are generated, one after the other, each
one is evaluated, and the best one is saved.

Random walk A bitstring is generated, a randomly chosen bit is flipped,
the new bitstring is evaluated, another bit is flipped, and so on.

Reasoned Action Model A social-psychological theory of attitude, be-
havior, and cognition proposed by Ajzen and Fishbein.

Reciprocal causation Bandura theorized that behavioral, cognitive, and
personal factors interact with environmental influences to operate as
determinants of one another; that is seen, almost paradoxically, as the
root of free will.

Recombination The type of crossover used in evolution strategies. It
manipulates entire variable values.

Recurrent network A graph or matrix whose nodes can reciprocally
affect one another. Also, a feedback network in which the current activa-
tion state is a function of the previous activation state as well as the cur-
rent input.

Region A local area of a space.

Representations Hypothesized constructs that enable the manipulation
of symbols.

Result sharing Social cooperation in which the individuals share the
results of their individual tasks.
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Risky shift The tendency for groups to make riskier decisions than
would have been made by the members individually.

Robust In this field, robustness means that an algorithm can be used to
solve many problems, and even many kinds of problems, with a mini-
mum amount of special adjustment to account for special qualities of a
particular problem. It also can mean that an algorithm works acceptably
even with noisy and/or missing data.

Role theory The social-psychological theory of behaviors that are in-
tended to enact social roles; the individual’s objective is positive self-
presentation, and the function of covert information processing is to
support that presentation.

Satisficing Herbert Simon’s term for the search for a solution that is
good enough, as compared to a perfect solution.

Scaling To adjust a set of values in some orderly way (linear, logarithmic,
etc.) so that they fall between two specified end-points. For example, 100
data points with a minimum value of 3.1 and a maximum value of 125.4
could be scaled to be between 1 and 2. Note that this is not the same
thing as normalization.

Schemata (singular: schema) In a genetic algorithm, each schema de-
fines a subset of strings with identical values at specified string locations.
Schemata provide a means by which similarities among the individual
population members can be described and exploited.

Schema theorem Holland’s proof that selection plus genetic operators
results in improvement of problem solutions in a population.

Selection A number of problem solutions (chromosomes or patterns of
features) are proposed and tested; those that do well in the test produce
offspring in the next generation, while those that perform poorly are
eliminated. This is what is meant by “survival of the fittest.”

Self-organization The ability of some systems to generate their form
without external pressures, either wholly or in part. It can be viewed as a
system’s incessant attempts to organize itself into ever more complex
structures, even in the face of the incessant forces of dissolution des-
cribed by the second law of thermodynamics.

Semantic differential An attitude measurement scale that asked people
to rate a word or concept on a number of scales.

Semantic space Some set of dimensions within which meaning can be
represented.
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Sexual selection The selection of sexual characteristics, whether or not
they are adaptive for survival.

Sigmoid S-shaped. Refers to a kind of mathematical function that trans-
forms a linear monotonic input series into an s-shaped curve.

Simple permutations All the possible orderings of an entire set of
elements.

Simulated annealing Simulated annealing is based on the metaphor of
molecules cooling into a crystalline pattern after being heated. A prob-
lem solution is modified, and if the modified solution performs better
than the original, then it replaces it. If the modified solution performs
worse, though, it can still be accepted if a probability test is passed. The
probability threshold is a function of the system’s “temperature,” which
decreases over time. Thus the probability of accepting a poorer problem
solution decreases as the system cools.

Social impact theory Latané’s theory that people are influenced by a
group in proportion to the strength, immediacy, and number of the
group members: î = f(SIN). (See also dynamic social impact theory.)

Social learning An individual learns by observing and imitating the
behavior of a model.

Sociocognition A social-psychological view that considers thinking to
be a social phenomenon.

Sociogenetic learning An intelligent process in which the basic unit of
mutability is the idea, with culture being the reservoir of learned behav-
iors and beliefs. (Atmar’s concept, cited by D. Fogel.)

Sociometer A measure of how well the individual is succeeding at social
inclusion, that is, how well they are accepted by their social group. Used
by Leary to explain self-esteem.

Stigmergy Communication by altering the state of the environment in
a way that will affect the behaviors of others for whom the environment
is a stimulus.

Stochastic process Contains random components; the word usually
refers to a phenomenon that is probabilistic in nature.

Strange attractor A complex nonrepeating (chaotic) pattern of events
with no apparent patterns to be seen. Variables never repeat their values
but always are found within a restricted area of state space.
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Strategy parameters Usually standard deviations or variances, used to
scale the mutation of feature vectors in evolution strategies and evolu-
tionary programming.

Subjective norm In the Reasoned Action Model, a sum of the products
of an individual’s beliefs that certain others think they should or should
not perform the behavior, multiplied by the motivation to comply with
each of those others; predicts intent, which in turn predicts behavior.

Subsumption architecture A robotic intelligence approach built from
the bottom up; simple robot behaviors are developed, and then these are
fitted loosely together.

Sufficiency property In genetic programming, for the sufficiency prop-
erty to be satisfied, the set of functions and set of terminals must be suf-
ficiently extensive to allow a solution to be evolved.

Surprisal value (surprise) The informational value of a particular event
or kind of event, as a function of its probability.

Tabu search A kind of algorithm that maintains a list of points in the
problem space that have been evaluated most poorly. The search algo-
rithm then steers away from those points.

Task sharing Social cooperation that occurs when individuals share the
computational load for performing the subtasks required to solve the
problem.

Teleological Implying purpose.

Test function A mathematical function that is intended to be hard to
optimize, used to test and compare algorithms.

Top down Local effects that result from systemwide causes or imposed
order.

Tradebots Interacting autonomous agents in Tesfatsion’s ACE. They
have behavioral functions that enable them to trade with other tradebots
and memories that allow them to identify the others that they have
traded with.

Trade network game (TNG) One kind of choice-and-refusal model in
Tesfatsion’s ACE paradigm.

Trial and error A family of remarkably robust general approaches to
problem solving.

Turing test If the subject can’t tell if the computer’s responses were gen-
erated by a human or a machine, then the computer is considered
intelligent.
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Tweaking Technical term for the adjustment of system parameters by a
researcher in order to optimize the performance of a system.

Unbiased Boyd and Richerson’s term for transmission of cultural infor-
mation when individuals simply adopt the variants they are exposed to,
for instance, by their parents.

Uniform crossover In a genetic algorithm, a random decision is made at
each bit position in the string as to whether or not to exchange (cross-
over) bits between the parent strings.

Vicarious reinforcement According to Bandura, if a model is successful
at performing a task, and in particular if they are reinforced for the
behavior, then the observer is more likely to learn from them.

von Neumann neighborhood The topological region around an indi-
vidual in a cellular automaton comprising adjacent cells above, below,
and to the left and right.
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