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Introduction

One of my favorite professional activities is speaking at software
conferences. It’s great fun because you get to meet developers who
are passionate about their craft, and it gives you as a speaker the
opportunity to share knowledge with them.

A talk that I’ve enjoyed giving recently is called “Twins: FP and
OOP.” I’ve given it at a number of conferences and user group ses‐
sions, and I’ve even had the pleasure of giving it as O’Reilly webcast.
Developers enjoy the talk both because it has a large number of ref‐
erences to the film “Twins” and because it discusses one of the age-
old relationships between functional and object-oriented program‐
ming.

There’s only so much you can say in a conference talk though, so I
was really excited when Brian Foster from O’Reilly contacted me to
ask if I wanted to expand upon the topic in a report. You can also
think of this as a short followup to my earlier O’Reilly published
book Java 8 Lambdas (O’Reilly).

You can watch the talk delivered at a conference online or delivered
as an O’Reilly webcast.

What Object-Oriented and Functional
Programmers Can Learn From Each Other
Before we get into the technical nitty-gritty of lambdas and design
patterns, let’s take a look at the technical communities. This will
explain why comparing the relationship between functional and
object-oriented is so important and relevant.
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If you’ve ever read Hacker News, a programming subreddit, or any
other online forum, you might have noticed there’s often a touch of
friction between functional programmers and developers practicing
the object-oriented style. They often sound like they’re talking in a
different language to each other, sometimes even going so far as to
throw the odd snarky insult around.

On the one hand, functional programmers can often look down on
their OO counterparts. Functional programs can be very terse and
elegant, packing a lot of behavior into very few lines of code. Func‐
tional programmers will make the case that in a multicore world,
you need to avoid mutable state in order to scale out your programs,
that programming is basically just math, and that now is the time for
everyone to think in terms of functions.

Object-oriented programmers will retort that in actual business
environments, very few programmers use functional languages.
Object-oriented programming scales out well in terms of develop‐
ers, and as an industry, we know how to do it. While programming
can be viewed as a discipline of applied math, software engineering
requires us to match technical solutions to business problems. The
domain modelling and focus on representing real-world objects that
OOP encourages in developers helps narrow that gap.

Of course, these stereotypes are overplaying the difference. Both
groups of programmers are employed to solve similar business
problems. Both groups are working in the same industry. Are they
really so different?

I don’t think so, and I think there’s a lot that we can learn from each
other.

What’s in This Report
This report makes the case that a lot of the constructs of good
object-oriented design also exist in functional programming. In
order to make sure that we’re all on the same page, Chapter 1
explains a little bit about functional programming and the basics of
lambda expressions in Java 8.

In Chapter 2, we take a look at the SOLID principles, identified by
Robert Martin, and see how they map to functional languages and
paradigms. This demonstrates the similarity in terms of higher-level
concepts.
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In Chapter 3, we look at some behavioral design patterns. Design
patterns are commonly used as a vocabulary of shared knowledge
amongst object-oriented programmers. They’re also often criticized
by functional programmers. Here we’ll look at how some of the
most common object-oriented design patterns exist in the func‐
tional world.

Most of the examples in this guide are written in the Java program‐
ming language. That’s not to say that Java is the only language that
could have been used or that it’s even a good one! It is perfectly ade‐
quate for this task though and understood by many people. This
guide is also motivated by the release of Java 8 and its introduction
of lambda expressions to the language. Having said all that, a lot of
principles and concepts apply to many other programming lan‐
guages as well, and I hope that whatever your programming lan‐
guage is, you take something away.
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CHAPTER 1

Lambdas: Parameterizing Code by
Behavior

Why Do I Need to Learn About Lambda
Expressions?
Over the next two chapters, we’re going to be talking in depth about
the relationship between functional and object-oriented program‐
ming principles, but first let’s cover some of the basics. We’re going
to talk about a couple of the key language features that are related to
functional programming: lambda expressions and method refer‐
ences.

If you already have a background in functional pro‐
gramming, then you might want to skip this chapter
and move along to the next one.

We’re also going to talk about the change in thinking that they
enable which is key to functional thinking: parameterizing code by
behavior. It’s this thinking in terms of functions and parameterizing
by behavior rather than state which is key to differentiating func‐
tional programming from object-oriented programming. Theoreti‐
cally this is something that we could have done in Java before with
anonymous classes, but it was rarely done because they were so
bulky and verbose.
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We shall also be looking at the syntax of lambda expressions in the
Java programming language. As I mentioned in the Introduction, a
lot of these ideas go beyond Java; we are just using Java as a lingua-
franca: a common language that many developers know well.

The Basics of Lambda Expressions
We will define a lambda expression as a concise way of describing an
anonymous function. I appreciate that’s quite a lot to take in at once,
so we’re going to explain what lambda expressions are by working
through an example of some existing Java code. Swing is a platform-
agnostic Java library for writing graphical user interfaces (GUIs). It
has a fairly common idiom in which, in order to find out what your
user did, you register an event listener. The event listener can then
perform some action in response to the user input (see
Example 1-1).

Example 1-1. Using an anonymous inner class to associate behavior
with a button click

button.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent event) {
        System.out.println("button clicked");
    }
});

In this example, we’re creating a new object that provides an imple‐
mentation of the ActionListener class. This interface has a single
method, actionPerformed, which is called by the button instance
when a user actually clicks the on-screen button. The anonymous
inner class provides the implementation of this method. In
Example 1-1, all it does is print out a message to say that the button
has been clicked.

This is actually an example of behavior parameteriza‐
tion—we’re giving the button an object that represents
an action.

Anonymous inner classes were designed to make it easier for Java
programmers to represent and pass around behaviors. Unfortu‐
nately, they don’t make it easy enough. There are still four lines of
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boilerplate code required in order to call the single line of important
logic.

Boilerplate isn’t the only issue, though: this code is fairly hard to
read because it obscures the programmer’s intent. We don’t want to
pass in an object; what we really want to do is pass in some behavior.
In Java 8, we would write this code example as a lambda expression,
as shown in Example 1-2.

Example 1-2. Using a lambda expression to associate behavior with a
button click

button.addActionListener(event -> System.out.println("button clicked"));

Instead of passing in an object that implements an interface, we’re
passing in a block of code—a function without a name. event is the
name of a parameter, the same parameter as in the anonymous
inner class example. -> separates the parameter from the body of the
lambda expression, which is just some code that is run when a user
clicks our button.

Another difference between this example and the anonymous inner
class is how we declare the variable event. Previously, we needed to
explicitly provide its type—ActionEvent event. In this example, we
haven’t provided the type at all, yet this example still compiles. What
is happening under the hood is that javac is inferring the type of the
variable event from its context—here, from the signature of
addActionListener. What this means is that you don’t need to
explicitly write out the type when it’s obvious. We’ll cover this infer‐
ence in more detail soon, but first let’s take a look at the different
ways we can write lambda expressions.

Although lambda method parameters require less boil‐
erplate code than was needed previously, they are still
statically typed. For the sake of readability and famili‐
arity, you have the option to include the type declara‐
tions, and sometimes the compiler just can’t work it
out!

Method References
A common idiom you may have noticed is the creation of a lambda
expression that calls a method on its parameter. If we want a lambda
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expression that gets the name of an artist, we would write the fol‐
lowing:

        artist -> artist.getName()
        

This is such a common idiom that there’s actually an abbreviated
syntax for this that lets you reuse an existing method, called a
method reference. If we were to write the previous lambda expression
using a method reference, it would look like this:

        Artist::getName
        

The standard form is Classname::methodName. Remember that even
though it’s a method, you don’t need to use brackets because you’re
not actually calling the method. You’re providing the equivalent of a
lambda expression that can be called in order to call the method.
You can use method references in the same places as lambda expres‐
sions.

You can also call constructors using the same abbreviated syntax. If
you were to use a lambda expression to create an Artist, you might
write:

        (name, nationality) -> new Artist(name, nationality)
        

We can also write this using method references:
        Artist::new
        

This code is not only shorter but also a lot easier to read.
Artist::new immediately tells you that you’re creating a new
Artist without your having to scan the whole line of code. Another
thing to notice here is that method references automatically support
multiple parameters, as long as you have the right functional inter‐
face.

It’s also possible to create arrays using this method. Here is how you
would create a String array:

        String[]::new
        

When we were first exploring the Java 8 changes, a friend of mine
said that method references “feel like cheating.” What he meant was
that, having looked at how we can use lambda expressions to pass
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code around as if it were data, it felt like cheating to be able to refer‐
ence a method directly.

In fact, method references are really making the concept of first-
class functions explicit. This is the idea that we can pass behavior
around and treat it like another value. For example, we can compose
functions together.

Summary
Well, at one level we’ve learnt a little bit of new syntax that has been
introduced in Java 8, which reduces boilerplate for callbacks and
event handlers. But actually there’s a bigger picture to these changes.
We can now reduce the boilerplate around passing blocks of behav‐
ior: we’re treating functions as first-class citizens. This makes
parameterizing code by behavior a lot more attractive. This is key to
functional programming, so key in fact that it has an associated
name: higher-order functions.

Higher-order functions are just functions, methods, that return
other functions or take functions as a parameter. In the next chapter
we’ll see that a lot of design principles in object-oriented program‐
ming can be simplified by the adoption of functional concepts like
higher-order functions. Then we’ll look at how many of the behavio‐
ral design patterns are actually doing a similar job to higher-order
functions.

Summary | 5





CHAPTER 2

SOLID Principles

Lambda-Enabled SOLID Principles
The SOLID principles are a set of basic principles for designing OO
programs. The name itself is an acronym, with each of the five prin‐
ciples named after one of the letters: Single responsibility, Open/
closed, Liskov substitution, Interface segregation, and Dependency
inversion. The principles act as a set of guidelines to help you imple‐
ment code that is easy to maintain and extend over time.

Each of the principles corresponds to a set of potential code smells
that can exist in your code, and they offer a route out of the prob‐
lems caused. Many books have been written on this topic, and I’m
not going to cover the principles in comprehensive detail.

In the case of all these object-oriented principles, I’ve tried to find a
conceptually related approach from the functional-programming
realm. The goal here is to both show functional and object-oriented
programming are related, and also what object-oriented program‐
mers can learn from a functional style.

The Single-Responsibility Principle
Every class or method in your program should have only a single rea‐
son to change.

An inevitable fact of software development is that requirements
change over time. Whether because a new feature needs to be added,
your understanding of your problem domain or customer has
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changed, or you need your application to be faster, over time soft‐
ware must evolve.

When the requirements of your software change, the responsibilities
of the classes and methods that implement these requirements also
change. If you have a class that has more than one responsibility,
when a responsibility changes, the resulting code changes can affect
the other responsibilities that the class possesses. This possibly
introduces bugs and also impedes the ability of the code base to
evolve.

Let’s consider a simple example program that generates a Balance
Sheet. The program needs to tabulate the BalanceSheet from a list
of assets and render the BalanceSheet to a PDF report. If the imple‐
menter chose to put both the responsibilities of tabulation and ren‐
dering into one class, then that class would have two reasons for
change. You might wish to change the rendering in order to gener‐
ate an alternative output, such as HTML. You might also wish to
change the level of detail in the BalanceSheet itself. This is a good
motivation to decompose this problem at the high level into two
classes: one to tabulate the BalanceSheet and one to render it.

The single-responsibility principle is stronger than that, though. A
class should not just have a single responsibility: it should also
encapsulate it. In other words, if I want to change the output format,
then I should have to look at only the rendering class and not at the
tabulation class.

This is part of the idea of a design exhibiting strong cohesion. A class
is cohesive if its methods and fields should be treated together
because they are closely related. If you tried to divide up a cohesive
class, you would result in accidentally coupling the classes that you
have just created.

Now that you’re familiar with the single-responsibility principle, the
question arises, what does this have to do with lambda expressions?
Well lambda expressions make it a lot easier to implement the
single-responsibility principle at the method level. Let’s take a look
at some code that counts the number of prime numbers up to a cer‐
tain value (Example 2-1).
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Example 2-1. Counting prime numbers with multiple responsibilities
in a method

public long countPrimes(int upTo) {
    long tally = 0;
    for (int i = 1; i < upTo; i++) {
        boolean isPrime = true;
        for (int j = 2; j < i; j++) {
            if (i % j == 0) {
                isPrime = false;
            }
        }
        if (isPrime) {
            tally++;
        }
    }
    return tally;
}
    

It’s pretty obvious that we’re really doing two different responsibili‐
ties in Example 2-1: we’re counting numbers with a certain property,
and we’re checking whether a number is a prime. As shown in
Example 2-2, we can easily refactor this to split apart these two
responsibilities.

Example 2-2. Counting prime numbers after refactoring out the
isPrime check

public long countPrimes(int upTo) {
    long tally = 0;
    for (int i = 1; i < upTo; i++) {
        if (isPrime(i)) {
            tally++;
        }
    }
    return tally;
}

private boolean isPrime(int number) {
    for (int i = 2; i < number; i++) {
        if (number % i == 0) {
            return false;
        }
    }
    return true;
}
    

Unfortunately, we’re still left in a situation where our code has two
responsibilities. For the most part, our code here is dealing with
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looping over numbers. If we follow the single-responsibility princi‐
ple, then iteration should be encapsulated elsewhere. There’s also a
good practical reason to improve this code. If we want to count the
number of primes for a very large upTo value, then we want to be
able to perform this operation in parallel. That’s right—the thread‐
ing model is a responsibility of the code!

We can refactor our code to use the Java 8 streams library (see
Example 2-3), which delegates the responsibility for controlling the
loop to the library itself. Here we use the range method to count the
numbers between 0 and upTo, filter them to check that they really
are prime, and then count the result.

Example 2-3. Counting primes using the Java 8 streams API

public long countPrimes(int upTo) {
    return IntStream.range(1, upTo)
                    .filter(this::isPrime)
                    .count();
}

private boolean isPrime(int number) {
    return IntStream.range(2, number)
                    .allMatch(x -> (number % x) != 0);
}
    

So, we can use higher-order functions in order to help us easily
implement the single-responsibility principle.

The Open/Closed Principle
Software entities should be open for extension,

but closed for modification.
—Bertrand Meyer

The overarching goal of the open/closed principle is similar to that
of the single-responsibility principle: to make your software less
brittle to change. Again, the problem is that a single feature request
or change to your software can ripple through the code base in a
way that is likely to introduce new bugs. The open/closed principle
is an effort to avoid that problem by ensuring that existing classes
can be extended without their internal implementation being modi‐
fied.
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When you first hear about the open/closed principle, it sounds like a
bit of a pipe dream. How can you extend the functionality of a class
without having to change its implementation? The actual answer is
that you rely on an abstraction and can plug in new functionality
that fits into this abstraction. We can also use higher-order functions
and immutability to achieve similar aims in a functional style.

Abstraction
Robert Martin’s interpretation of the open/closed principle was that
it was all about using polymorphism to easily depend upon an
abstraction. Let’s think through a concrete example. We’re writing a
software program that measures information about system perfor‐
mance and graphs the results of these measurements. For example,
we might have a graph that plots how much time the computer
spends in user space, kernel space, and performing I/O. I’ll call the
class that has the responsibility for displaying these metrics
MetricDataGraph.

One way of designing the MetricDataGraph class would be to have
each of the new metric points pushed into it from the agent that
gathers the data. So, its public API would look something like
Example 2-4.

Example 2-4. The MetricDataGraph public API

    class MetricDataGraph {

        public void updateUserTime(int value);

        public void updateSystemTime(int value);

        public void updateIoTime(int value);

    }
    

But this would mean that every time we wanted to add in a new set
of time points to the plot, we would have to modify the MetricData
Graph class. We can resolve this issue by introducing an abstraction,
which I’ll call a TimeSeries, that represents a series of points in
time. Now our MetricDataGraph API can be simplified to not
depend upon the different types of metric that it needs to display, as
shown in Example 2-5.
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Example 2-5. Simplified MetricDataGraph API

    class MetricDataGraph {

        public void addTimeSeries(TimeSeries values);

    }
    

Each set of metric data can then implement the TimeSeries inter‐
face and be plugged in. For example, we might have concrete classes
called UserTimeSeries, SystemTimeSeries, and IoTimeSeries. If
we wanted to add, say, the amount of CPU time that gets stolen from
a machine if it’s virtualized, then we would add a new implementa‐
tion of TimeSeries called StealTimeSeries. MetricDataGraph has
been extended but hasn’t been modified.

Higher-Order Functions
Higher-order functions also exhibit the same property of being open
for extension, despite being closed for modification. A good exam‐
ple of this is the ThreadLocal class. The ThreadLocal class provides
a variable that is special in the sense that each thread has a single
copy for it to interact with. Its static withInitial method is a
higher-order function that takes a lambda expression that represents
a factory for producing an initial value.

This implements the open/closed principle because we can get new
behavior out of ThreadLocal without modifying it. We pass in a dif‐
ferent factory method to withInitial and get an instance of
ThreadLocal with different behavior. For example, we can use
ThreadLocal to produce a DateFormatter that is thread-safe with
the code in Example 2-6.

Example 2-6. A ThreadLocal date formatter

// One implementation
ThreadLocal<DateFormat> localFormatter
    = ThreadLocal.withInitial(SimpleDateFormat::new);

// Usage
DateFormat formatter = localFormatter.get();
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We can also generate completely different behavior by passing in a
different lambda expression. For example, in Example 2-7 we’re cre‐
ating a unique identifier for each Java thread that is sequential.

Example 2-7. A ThreadLocal identifier

// Or...
AtomicInteger threadId = new AtomicInteger();
ThreadLocal<Integer> localId
    = ThreadLocal.withInitial(() -> threadId.getAndIncrement());

// Usage
int idForThisThread = localId.get();

Immutability
Another interpretation of the open/closed principle that doesn’t fol‐
low in the object-oriented vein is the idea that immutable objects
implement the open/closed principle. An immutable object is one
that can’t be modified after it is created.

The term “immutability” can have two potential interpretations:
observable immutability or implementation immutability. Observable
immutability means that from the perspective of any other object, a
class is immutable; implementation immutability means that the
object never mutates. Implementation immutability implies observ‐
able immutability, but the inverse isn’t necessarily true.

A good example of a class that proclaims its immutability but
actually is only observably immutable is java.lang.String, as it
caches the hash code that it computes the first time its hashCode
method is called. This is entirely safe from the perspective of other
classes because there’s no way for them to observe the difference
between it being computed in the constructor every time or cached.

I mention immutable objects in the context of this report because
they are a fairly familiar concept within functional programming.
They naturally fit into the style of programming that I’m talking
about.

Immutable objects implement the open/closed principle in the sense
that because their internal state can’t be modified, it’s safe to add new
methods to them. The new methods can’t alter the internal state of
the object, so they are closed for modification, but they are adding
behavior, so they are open to extension. Of course, you still need to
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be careful in order to avoid modifying state elsewhere in your pro‐
gram.

Immutable objects are also of particular interest because they are
inherently thread-safe. There is no internal state to mutate, so they
can be shared between different threads.

If we reflect on these different approaches, it’s pretty clear that we’ve
diverged quite a bit from the traditional open/closed principle. In
fact, when Bertrand Meyer first introduced the principle, he defined
it so that the class itself couldn’t ever be altered after being comple‐
ted. Within a modern Agile developer environment, it’s pretty clear
that the idea of a class being complete is fairly outmoded. Business
requirements and usage of the application may dictate that a class be
used for something that it wasn’t intended to be used for. That’s not
a reason to ignore the open/closed principle though, just a good
example of how these principles should be taken as guidelines and
heuristics rather than followed religiously or to the extreme. We
shouldn’t judge the original definition too harshly, however, since it
used in a different era and for software with specific and defined
requirements.

A final point that I think is worth reflecting on is that in the context
of Java 8, interpreting the open/closed principle as advocating an
abstraction that we can plug multiple classes into or advocating
higher-order functions amounts to the same approach. Because our
abstraction needs to be represented by an interface upon which
methods are called, this approach to the open/closed principle is
really just a usage of polymorphism.

In Java 8, any lambda expression that gets passed into a higher-order
function is represented by a functional interface. The higher-order
function calls its single method, which leads to different behavior
depending upon which lambda expression gets passed in. Again,
under the hood, we’re using polymorphism in order to implement
the open/closed principle.

The Liskov Substitution Principle
Let q(x) be a property provable about objects x of type T. Then q(y)
should be true for objects y of type S where S is a subtype of T.

The Liskov substitution principle is often stated in these very formal
terms, but is actually a very simple concept. Informally we can think
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of this as meaning that child classes should maintain the behavior
they inherit from their parents. We can split out that property into
four distinct areas:

• Preconditions cannot be strengthened in a subtype. Where the
parent worked, the child should.

• Postconditions cannot be weakened in a subtype. Where the
parent caused an effect, then the child should.

• Invariants of the supertype must be preserved in a subtype.
Where parent always stuck left or maintained something, then
the child should as well.

• Rule from history: don’t allow state changes that your parent
didn’t. For example, a mutable point can’t subclass an immuta‐
ble point.

Functional programming tends to take a different perspective to
LSP. In functional programming inheritance of behavior isn’t a key
trait. If you avoid inheritance hierachies then you avoid the prob‐
lems that are associated with them, which is the antipattern that the
Liskov substitution principle is designed to solve. This is actually
becoming increasing accepted within the object-oriented commu‐
nity as well through the composite reuse principle: compose, don’t
inherit.

The Interface-Segregation Principle
The dependency of one class to another one should depend on the
smallest possible interface

In order to properly understand the interface-segregation principle,
let’s consider a worked example in which we have people who work
in a factory during the day and go home in the evening. We might
define our worker interface as follows:

Example 2-8. Parsing the headings out of a file

    interface Worker {
        public void goHome();
        public void work();
    }
    

Initially our AssemblyLine requires two types of Worker: an
AssemblyWorker and a Manager. Both of these go home in the eve‐
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ning but have different implementations of their work method
depending upon what they do.

As time passes, however, and the factory modernizes, they start to
introduce robots. Our robots also do work in the factory, but they
don’t go home at the end of the day. We can see now that our worker
interface isn’t meeting the ISP, since the goHome() method isn’t really
part of the minimal interface.

Now the interesting point about this example is that it all relates to
subtyping. Most statically typed object-oriented languages, such as
Java and C++, have what’s known as nominal subtyping. This means
that for a class called Foo to extend a class called Bar, you need to see
Foo extends Bar in your code. The relationship is explicit and
based upon the name of the class. This applies equally to interfaces
as well as classes. In our worked example, we have code like
Example 2-9 in order to let our compiler know what the relationship
is between classes.

Example 2-9. Parsing the headings out of a file

    class AssemblyWorker implements Worker
    class Manager implements Worker
    class Robot implements Worker
    

When the compiler comes to check whether a parameter argument
is type checked, it can identify the parent type, Worker, and check
based upon these explicit named relationships. This is shown in
Example 2-10.

Example 2-10. Parsing the headings out of a file

    public void addWorker(Worker worker) {
        workers.add(worker);
    }

    public static AssemblyLine newLine() {
        AssemblyLine line = new AssemblyLine();
        line.addWorker(new Manager());
        line.addWorker(new AssemblyWorker());
        line.addWorker(new Robot());
        return line;
    }
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The alternative approach is called structural subtyping, and here the
relationship is implicit between types based on the shape/structure
of the type. So if you call a method called getFoo() on a variable,
then that variable just needs a getFoo method; it doesn’t need to
implement an interface or extend another class. You see this a lot in
functional programming languages and also in systems like the C++
template framework. The duck typing in languages like Ruby and
Python is a dynamically typed variant of structural subtyping.

If we think about this hypothetical example in a language which uses
structural subtyping, then our example might be re-written like
Example 2-11. The key is that the parameter worker has no explicit
type, and the StructuralWorker implementation doesn’t need to say
explicitly that it implements or extends anything.

Example 2-11. Parsing the headings out of a file

    class StructuralWorker {
        def work(step:ProductionStep) {
            println("I'm working on: " + step.getName)
        }
    }

    def addWorker(worker) {
      workers += worker
    }

    def newLine() = {
        val line = new AssemblyLine
        line.addWorker(new Manager())
        line.addWorker(new StructuralWorker())
        line.addWorker(new Robot())
        line
    }
    

Structural subtyping removes the need for the interface-segregation
principle, since it removes the explicit nature of these interfaces. A
minimal interface is automatically inferred by the compiler from the
use of these parameters.

The Dependency-Inversion Principle
Abstractions should not depend on details; details should depend on
abstractions.
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On of the ways in which we can make rigid and fragile programs
that are resistant to change is by coupling high-level business logic
and low-level code designed to glue modules together. This is
because these are two different concerns that may change over time.

The goal of the dependency-inversion principle is to allow program‐
mers to write high-level business logic that is independent of low-
level glue code. This allows us to reuse the high-level code in a way
that is abstract of the details upon which it depends. This modular‐
ity and reuse goes both ways: we can substitute in different details in
order to reuse the high-level code, and we can reuse the implemen‐
tation details by layering alternative business logic on top.

Let’s look at a concrete example of how the dependency-inversion
principle is traditionally used by thinking through the high-level
decomposition involved in implementing an application that builds
up an address book automatically. Our application takes in a
sequence of electronic business cards as input and accumulates our
address book in some storage mechanism.

It’s fairly obvious that we can separate this code into three basic
modules:

• The business card reader that understands an electronic busi‐
ness card format

• The address book storage that stores data into a text file
• The accumulation module that takes useful information from

the business cards and puts it into the address book

We can visualize the relationship between these modules as shown
in Figure 2-1.

Figure 2-1. Dependencies

In this system, while reuse of the accumulation model is more com‐
plex, the business card reader and the address book storage do not
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depend on any other components. We can therefore easily reuse
them in another system. We can also change them; for example, we
might want to use a different reader, such as reading from people’s
Twitter profiles; or we might want to store our address book in
something other than a text file, such as a database.

In order to give ourselves the flexibility to change these components
within our system, we need to ensure that the implementation of
our accumulation module doesn’t depend upon the specific details
of either the business card reader or the address book storage. So, we
introduce an abstraction for reading information and an abstraction
for writing information. The implementation of our accumulation
module depends upon these abstractions. We can pass in the specific
details of these implementations at runtime. This is the dependency-
inversion principle at work.

In the context of lambda expressions, many of the higher-order
functions that we’ve encountered enable a dependency inversion. A
function such as map allows us to reuse code for the general concept
of transforming a stream of values between different specific trans‐
formations. The map function doesn’t depend upon the details of any
of these specific transformations, but upon an abstraction. In this
case, the abstraction is the functional interface Function.

A more complex example of dependency inversion is resource man‐
agement. Obviously, there are lots of resources that can be managed,
such as database connections, thread pools, files, and network con‐
nections. I’ll use files as an example because they are a relatively
simple resource, but the principle can easily be applied to more
complex resources within your application.

Let’s look at some code that extracts headings from a hypothetical
markup language where each heading is designated by being suf‐
fixed with a colon (:). Our method is going to extract the headings
from a file by reading the file, looking at each of the lines in turn,
filtering out the headings, and then closing the file. We shall also
wrap any Exception related to the file I/O into a friendly domain
exception called a HeadingLookupException. The code looks like
Example 2-12.
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Example 2-12. Parsing the headings out of a file

public List<String> findHeadings(Reader input) {
    try (BufferedReader reader = new BufferedReader(input)) {
        return reader.lines()
                     .filter(line -> line.endsWith(":"))
                     .map(line -> line.substring(0, line.length() - 1))
                     .collect(toList());
    } catch (IOException e) {
        throw new HeadingLookupException(e);
    }
}

Unfortunately, our heading-finding code is coupled with the
resource-management and file-handling code. What we really want
to do is write some code that finds the headings and delegates the
details of a file to another method. We can use a Stream<String> as
the abstraction we want to depend upon rather than a file. A Stream
is much safer and less open to abuse. We also want to be able to a
pass in a function that creates our domain exception if there’s a
problem with the file. This approach, shown in Example 2-13,
allows us to segregate the domain-level error handling from the
resource-management-level error handling.

Example 2-13. The domain logic with file handling split out

public List<String> findHeadings(Reader input) {
  return withLinesOf(
    input, 
    lines -> lines.filter(line -> line.endsWith(":"))
                  .map(line -> line.substring(0, line.length()-1))
                  .collect(toList()),
    HeadingLookupException::new);
}
    

I expect that you’re now wondering what that withLinesOf method
looks like! It’s shown in Example 2-14.

Example 2-14. The definition of withLinesOf

private <T> T withLinesOf(
   Reader input,
   Function<Stream<String>, T> handler,
   Function<IOException, RuntimeException> error) {
   
   try (BufferedReader reader = new BufferedReader(input)) {
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       return handler.apply(reader.lines());
   } catch (IOException e) {
       throw error.apply(e);
    }
}
    

withLinesOf takes in a reader that handles the underlying file I/O.
This is wrapped up in BufferedReader, which lets us read the file
line by line. The handler function represents the body of whatever
code we want to use with this function. It takes the Stream of the
file’s lines as its argument. We also take another handler called error
that gets called when there’s an exception in the I/O code. This con‐
structs whatever domain exception we want. This exception then
gets thrown in the event of a problem.

To summarize, higher-order functions provide an inversion of con‐
trol, which is a form of dependency-inversion. We can easily use
them with lambda expressions. The other observation to note with
the dependency-inversion principle is that the abstraction that we
depend upon doesn’t have to be an interface. Here we’ve relied
upon the existing Stream as an abstraction over raw reader and file
handling. This approach also fits into the way that resource manage‐
ment is performed in functional languages—usually a higher-order
function manages the resource and takes a callback function that is
applied to an open resource, which is closed afterward. In fact, if
lambda expressions had been available at the time, it’s arguable that
the try-with-resources feature of Java 7 could have been imple‐
mented with a single library function.

Summary
We’ve now reached the end of this section on SOLID, but I think it’s
worth going over a brief recap of the relationships that we’ve
exposed. We talked about how the single-responsibility principle
means that classes should only have a single reason to change. We’ve
talked about how we can use functional-programming ideas to ach‐
ieve that end, for example, by decoupling the threading model from
application logic. The open/closed principle is normally interpreted
as a call to use polymorphism to allow classes to be written in a
more flexible way. We’ve talked about how immutability and higher-
order functions are both functional programming techniques which
exhibit this same open/closed dynamic.
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The Liskov substitution principle imposes a set of constraints
around subclassing that defines what it means to implement a cor‐
rect subclass. In functional programming, we de-emphasize inheri‐
tance in our programming style. No inheritance, no problem! The
interface-segregation principle encourages us to minimize the
dependency on large interfaces that have multiple responsibilities.
By moving to functional languages that encourage structural sub‐
typing, we remove the need to declare these interfaces.

Finally we talked about how higher-order functions were really a
form of dependency inversion. In all cases, the SOLID principles
offer us a way of writing effective object-oriented programs, but we
can also think in functional terms and see what the equivalent
approach would be in that style.
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CHAPTER 3

Design Patterns

Functional Design Patterns
One of the other bastions of design we’re all familiar with is the idea
of design patterns. Patterns document reusable templates that solve
common problems in software architecture. If you spot a problem
and you’re familiar with an appropriate pattern, then you can take
the pattern and apply it to your situation. In a sense, patterns codify
what people consider to be a best-practice approach to a given prob‐
lem.

In this section, we’re instead going to look at how existing design
patterns have become better, simpler, or in some cases, implementa‐
ble in a different way. In all cases, the application of lambda expres‐
sions and a more functional approach are the driving factor behind
the pattern changing.

The Command Pattern
A command object is an object that encapsulates all the information
required to call another method later. The command pattern is a way
of using this object in order to write generic code that sequences and
executes methods based on runtime decisions. There are four classes
that take part in the command pattern, as shown in Figure 3-1:
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Receiver
Performs the actual work

Command
Encapsulates all the information required to call the receiver

Invoker
Controls the sequencing and execution of one or more com‐
mands

Client
Creates concrete command instances

Figure 3-1. The command pattern

Let’s look at a concrete example of the command pattern and see
how it improves with lambda expressions. Suppose we have a GUI
Editor component that has actions upon it that we’ll be calling, such
as open or save, like in Example 3-1. We want to implement macro
functionality—that is, a series of operations that can be recorded
and then run later as a single operation. This is our receiver.

Example 3-1. Common functions a text editor may have

interface Editor {

    void save();

    void open();

    void close();
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}
    

In this example, each of the operations, such as open and save, are
commands. We need a generic command interface to fit these differ‐
ent operations into. I’ll call this interface Action, as it represents
performing a single action within our domain. This is the interface
that all our command objects implement (Example 3-2).

Example 3-2. All our actions implement the Action interface

interface Action {

    void perform();

}
    

We can now implement our Action interface for each of the opera‐
tions. All these classes need to do is call a single method on our
Editor and wrap this call into our Action interface. I’ll name the
classes after the operations that they wrap, with the appropriate class
naming convention—so, the save method corresponds to a class
called Save. Example 3-3 and Example 3-4 are our command
objects.

Example 3-3. Our save action delegates to the underlying method call
on Editor

class Save implements Action {

    private final Editor editor;

    public Save(Editor editor) {
        this.editor = editor;
    }

    @Override
    public void perform() {
        editor.save();
    }
}
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Example 3-4. Our open action also delegates to the underlying method
call on Editor

class Open implements Action {

    private final Editor editor;

    public Open(Editor editor) {
        this.editor = editor;
    }

    @Override
    public void perform() {
        editor.open();
    }
}
    

Now we can implement our Macro class. This class can record
actions and run them as a group. We use a List to store the
sequence of actions and then call forEach in order to execute each
Action in turn. Example 3-5 is our invoker.

Example 3-5. A macro consists of a sequence of actions that can be
invoked in turn

class Macro {

    private final List<Action> actions;

    public Macro() {
        actions = new ArrayList<>();
    }

    public void record(Action action) {
        actions.add(action);
    }

    public void run() {
        actions.forEach(Action::perform);
    }

}
    

When we come to build up a macro programmatically, we add an
instance of each command that has been recorded to the Macro
object. We can then just run the macro, and it will call each of the
commands in turn. As a lazy programmer, I love the ability to define
common workflows as macros. Did I say “lazy?” I meant focused on
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improving my productivity. The Macro object is our client code and
is shown in Example 3-6.

Example 3-6. Building up a macro with the command pattern

Macro macro = new Macro();
macro.record(new Open(editor));
macro.record(new Save(editor));
macro.record(new Close(editor));
macro.run();
    

How do lambda expressions help? Actually, all our command
classes, such as Save and Open, are really just lambda expressions
wanting to get out of their shells. They are blocks of behavior that
we’re creating classes in order to pass around. This whole pattern
becomes a lot simpler with lambda expressions because we can
entirely dispense with these classes. Example 3-7 shows how to use
our Macro class without these command classes and with lambda
expressions instead.

Example 3-7. Using lambda expressions to build up a macro

Macro macro = new Macro();
macro.record(() -> editor.open());
macro.record(() -> editor.save());
macro.record(() -> editor.close());
macro.run();
    

In fact, we can do this even better by recognizing that each of these
lambda expressions is performing a single method call. So, we can
actually use method references in order to wire the editor’s com‐
mands to the macro object (see Example 3-8).

Example 3-8. Using method references to build up a macro

Macro macro = new Macro();
macro.record(editor::open);
macro.record(editor::save);
macro.record(editor::close);
macro.run();
    

The command pattern is really just a poor man’s lambda expression
to begin with. By using actual lambda expressions or method refer‐
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ences, we can clean up the code, reducing the amount of boilerplate
required and making the intent of the code more obvious.

Macros are just one example of how we can use the command pat‐
tern. It’s frequently used in implementing component-based GUI
systems, undo functions, thread pools, transactions, and wizards.

There is already a functional interface with the same
structure as our interface Action in core Java—
Runnable. We could have chosen to use that in our
macro class, but in this case, it seemed more appropri‐
ate to consider an Action to be part of the vocabulary
of our domain and create our own interface.

Strategy Pattern
The strategy pattern is a way of changing the algorithmic behavior
of software based upon a runtime decision. How you implement the
strategy pattern depends upon your circumstances, but in all cases,
the main idea is to be able to define a common problem that is
solved by different algorithms and then encapsulate all the algo‐
rithms behind the same programming interface.

An example algorithm we might want to encapsulate is compressing
files. We’ll give our users the choice of compressing our files using
either the zip algorithm or the gzip algorithm and implement a
generic Compressor class that can compress using either algorithm.

First we need to define the API for our strategy (see Figure 3-2),
which I’ll call CompressionStrategy. Each of our compression algo‐
rithms will implement this interface. They have the compress
method, which takes and returns an OutputStream. The returned
OutputStream is a compressed version of the input (see
Example 3-9).
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Figure 3-2. The Strategy Pattern

Example 3-9. Defining a strategy interface for compressing data

interface CompressionStrategy {

    OutputStream compress(OutputStream data) throws IOException;

}
    

We have two concrete implementations of this interface, one for
gzip and one for zip, which use the built-in Java classes to write
gzip (Example 3-10) and zip (Example 3-11) files.

Example 3-10. Using the gzip algorithm to compress data

class GzipCompressionStrategy implements CompressionStrategy {

    @Override
    public OutputStream compress(OutputStream data) throws IOException {
        return new GZIPOutputStream(data);
    }

}
    

Example 3-11. Using the zip algorithm to compress data

class ZipCompressionStrategy implements CompressionStrategy {

    @Override
    public OutputStream compress(OutputStream data) throws IOException {
        return new ZipOutputStream(data);
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    }

}
    

Now we can implement our Compressor class, which is the context
in which we use our strategy. This has a compress method on it that
takes input and output files and writes a compressed version of the
input file to the output file. It takes the CompressionStrategy as a
constructor parameter that its calling code can use to make a run‐
time choice as to which compression strategy to use—for example,
getting user input that would make the decision (see Example 3-12).

Example 3-12. Our compressor is provided with a compression strategy
at construction time

class Compressor {

    private final CompressionStrategy strategy;

    public Compressor(CompressionStrategy strategy) {
        this.strategy = strategy;
    }

    public void compress(Path inFile, File outFile) throws IOException {
        try (OutputStream outStream = new FileOutputStream(outFile)) {
            Files.copy(inFile, strategy.compress(outStream));
        }
    }
}
    

If we have a traditional implementation of the strategy pattern, then
we can write client code that creates a new Compressor with
whichever strategy we want (Example 3-13).

Example 3-13. Instantiating the Compressor using concrete strategy
classes

Compressor gzipCompressor = 
  new Compressor(new GzipCompressionStrategy());
gzipCompressor.compress(inFile, outFile);

Compressor zipCompressor = new Compressor(new ZipCompressionStrategy());
zipCompressor.compress(inFile, outFile);
    

As with the command pattern discussed earlier, using either lambda
expressions or method references allows us to remove a whole layer

30 | Chapter 3: Design Patterns



of boilerplate code from this pattern. In this case, we can remove
each of the concrete strategy implementations and refer to a method
that implements the algorithm. Here the algorithms are represented
by the constructors of the relevant OutputStream implementation.
We can totally dispense with the GzipCompressionStrategy and Zip
CompressionStrategy classes when taking this approach.
Example 3-14 is what the code would look like if we used method
references.

Example 3-14. Instantiating the Compressor using method references

Compressor gzipCompressor = new Compressor(GZIPOutputStream::new);
gzipCompressor.compress(inFile, outFile);
        
Compressor zipCompressor = new Compressor(ZipOutputStream::new);
zipCompressor.compress(inFile, outFile);
    

Yet again thinking in a more functional way—modelling in terms of
functions rather than classes and objects—has allowed us to reduce
the boilerplate and simplify an existing design pattern. This is the
great win about being able to combine the functional and object-
oriented world view: you get to pick the right approach for the right
situation.

Summary
In this section, we have evaluated a series of design patterns and
talked about how they could all be used differently with lambda
expressions. In some respect, a lot of these patterns are really object-
oriented embodiments of functional ideas. Take the command pat‐
tern. It’s called a pattern and has some different interacting compo‐
nents, but the essence of the pattern is the passing around and
invoking of behavior. The command pattern is all about first-class
functions.

The same thing with the Strategy pattern. Its really all about putting
together some behavior and passing it around; again it’s a design
pattern that’s mimicking first-class functions. Programming lan‐
guages that have a first-class representation of functions often don’t
talk about the strategy or command patterns, but this is what devel‐
opers are doing. This is an important theme in this report. Often
times, both functional and object-oriented programming languages
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end up with similar patterns of code, but with different names asso‐
ciated with them.
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CHAPTER 4

Conclusions

Object-Oriented vs. Functional Languages
In this report, we’ve covered a lot of ways in which ideas from func‐
tional programming relate to existing object-oriented design princi‐
ples. These idioms aren’t as different as a lot of people make them
out to be. Definitely functional programming emphasizes the power
of reuse and composition of behavior through higher-order func‐
tions. And there’s no doubt that immutable data structures improve
the safety of our code. But these features can be supported in an
object-oriented context as well, the common theme being the bene‐
fits that be achieved are universal to both approaches. We’re always
seeking to write code that is safer and offers more opportunity for
composing together behavior in a flexible manner.

Functional programming is about a thought process. It’s not neces‐
sarily the case that you need a new language in order to program in
a functional style. Some language features often help though. The
introduction of lambda expressions in Java 8 makes it a language
more suited to functional programming. While object-oriented pro‐
gramming traditionally has been about encapsulating data and
behavior together, it is now adding more support for behavior on its
own thanks to ideas from functional programming.

Other languages such as Scala or Haskell take functional ideas fur‐
ther. Scala offers a mix of both functional and object-oriented pro‐
gramming facilities, whilst Haskell focuses purely on functional pro‐
gramming. It’s well worth exploring these languages and seeing what
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set of language features you find useful in your problem domain.
However, there’s no need to necessarily move to Scala or Haskell
thinking that they’re the only way to program in a functional style.
However, they certainly offer some features that Java lacks, and it’s
sometimes worth using different programming languages.

I appreciate that this maybe is a controversial opinion to those who
have spent their careers advocating functional programming, but
software development isn’t about idealism or religious evangelism:
it’s about producing reliable software that works for our clients and
business. A functional style of programming can help us achieve this
end, but it is not the end in and of itself.

Programming Language Evolution
One of the interesting trends over time in programming languages
is the gradual shift between languages that are more object-oriented
and more functional. If we jump in our Delorean and go back in
time to the 1980s, a lot of interesting changes were going on. Older
procedural programming lanugages were being phased out and
there was a growth in the popularity of both object-oriented and
functional programming languages.

Interestingly enough, a lot of the early advocates of both functional
and object-oriented languages combined features of the other. If you
ask any object-oriented purist what her ideal programming language
is, she’ll tell you it’s Smalltalk. Smalltalk 80 had lambda expressions,
and Smalltalk’s collections library was inherently functional in
nature, and equivalent operations to map, reduce, and filter existed
(albeit under different names).

A lot of purist functional programmers from the period would tell
you that Common LISP is the ideal functional language. Interest‐
ingly enough, it had a system for object orientation called CLOS
(Common LISP Object System). So back in the 1980s, there was rea‐
sonable recognition that neither paradigm was the only true way to
enlightenment.

During the 1990s, programming changed. Object-oriented pro‐
gramming became established as a dominant programming
approach for business users. Languages such as Java and C++ grew
in popularity. In the late 1990s and early 2000s, Java became a
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hugely popular language. In 2001, the JavaOne conference had
28,000 attendees. That’s the size of a rock concert!

At the time of writing, the trend has changed again. Popular pro‐
gramming languages are moving away from being specifically
object-oriented or functional. You will no doubt get the old holdout
such as Haskell or Clojure, but by and large, languages are going
hybrid. Both C++ and Java 8 have added lambda expressions and
started to retrofit useful elements of functional programming to
their existing object-oriented capabilities. Not only that but the
underlying ideas which have been adopted in terms of generics in
Java and templating in C++ originated in functional programming
languages.

Newer languages are multiparadigm from the get-go. F# is a great
example of a language which has a functional style but also main‐
tains parity with C# in terms of its object-oriented features. Lan‐
guages such as Ruby, Python, and Groovy can be written in both a
functional and object-oriented style, all having functional features in
their collections API. There are a number of newer languages on the
JVM that have developed over the last decade or so, and they pre‐
dominantly have a mixture of functional and object-oriented fea‐
tures. Scala, Ceylon, and Kotlin all come to mind in this regard.

The future is hybrid: pick the best features and ideas from both
functional and object-oriented approaches in order to solve the
problem at hand.
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